

HANDS-ON

PYTHON

with Exercises, Projects, Assignments & Final Exam

ADVANCED

Musa Arda

Hands-On Python with Exercises, Projects, Assignments &
Final Exam: Advanced

By Musa Arda

Copyright © 2022 Musa Arda.

All rights reserved. No portion of this book or its
supplementary materials may be reproduced in any form
without permission from the publisher, except as permitted by
U.S. copyright law.

For permissions contact: python.hands.on.book@gmail.com

mailto:python.hands.on.book@gmail.com

Contents

Preface

1. Introduction

2. Collections

3. Iterators

4. Generators

5. Date And Time

6. Decorators

7. Context Managers

Preface

About This Book

This book is an in-depth and activity-based introduction
to the advanced level topics of Python programming. It
follows a step-by-step practical approach by combining the
theory of the language with the hands-on coding exercises
including quizzes, projects, assignments and exams.

We begin by introducing the Collections module in Python.
Then we cover Iterators, Generators, Date and Time
Operations, Decorators and Context Managers in Python.

By the end of the book, you will learn almost all of the
advanced level concepts of Python in great detail by writing
thousands of lines of code. All the supplementary resources
(code files, quizzes, assignments, final exam etc.) are
available for download at the GitHub repository. The link for
the repository is provided in the book.

This is the third book in Hands-On Python Series. And
here is what you will find in this book:

Theory: In each topic, we will cover all the Theoretical
Details with example coding.

Coding Exercises: At the end of each chapter, we will
have Coding Exercise, Quizzes.

Projects: We will build projects in this book. You will
learn how to apply Python concepts on real world problems.

Assignments: After each project, you will have an
Assignment. These assignments will let you build the project
from scratch on your own.

Final Exam: At the end of this book, you will have the
Final Exam. It is a multiple-choice exam with 20 questions
and a limited duration. The exam will let you to test your
Python level.

About Hands-On Python Series

This is the third book in our Hands-On Python Series. And
it covers the advanced level topics. So, we assume that you
already know the introductory and intermediate concepts of
Python programming like; Variables, Functions, Conditional
Statements, Loops, Strings, Lists, Dictionaries, Tuples, Sets
and Comprehensions, Exception Handling, File Operations
and OOP. If you don’t feel comfortable with these topics, you
are strongly recommended to finish the first two books in our
series, which are the Beginner and Intermediate levels. Here,
you can find them.[1]

About the Author

Musa Arda has Bachelor’s degree from Industrial
Engineering in 2007, and he has been working as a Software
Developer for more than 14 years. He uses many
programming languages and platforms like; Python, C#, Java,
JavaScript, SAP ABAP, SQL, React, Flutter and more.

He creates online learning content and writes books to
share his experience and knowledge with his students. His
main purpose is to combine theory and hands-on practice in
his teaching resources. That’s why there are hundreds of
programming exercises, quizzes, tests, projects, exams and
assignments in all of his courses and books. He is dedicated to
help his students to learn programming concepts in depth via a
practical and exiting way.

How to Contact Us

https://www.amazon.com/gp/product/B09JM26C3Z

Please feel free to get in contact with the author. To
comment or ask technical questions about this book, you can
send email to python.hands.on.book@gmail.com.

mailto:python.hands.on.book@gmail.com

1. Introduction

Who Is This Book For?

The goal of this book is to help students to learn Python
programming language in a hands-on and project-based
manner.

With its unique style of combining theory and practice, this
book is for:

people who want to learn and practice advanced concepts
in Python programming
people who are already working with Python language

What Can You Expect to Learn?

The purpose of this book is to provide you a good
introduction to the advanced topics of Python programming. In
general, you will gain solid programming skills and grasp the
main idea of software development. In particular, here are
some highlights on what you can you expect to learn with this
book.

You will:

learn & master advanced Python topics in a hands-on
approach
practice your Python knowledge with Quizzes and Coding
Exercises
build Real-World Project with Python and do
Assignments related to these projects
take the Final Exam on Python with 20 questions to
assess your learning
build Python applications with PyCharm and master it
gain solid and profound Python Programming skills
needed for a Python career

Outline of This Book

In Chapter 1, you will get the basics of the book. You will
learn about this books approach to Python programming and
how to get most out of it.

In Chapter 2, you will learn the Collections module in
Python. Collections are specialized container datatypes
providing alternatives to Python’s general-purpose containers,
dict, l is t, set, and tuple. You will learn; ChainMap, Counter,
Deque, DefaultDict, NamedTuple, OrderedDict, UserDict,
UserList, and UserString.

In Chapter 3, you will learn Iterables and Iterators in
Python. You will see the details of Iterator Protocol, how to
loop through an Iterator, how to define custom Iterators and
Infinite Iterators.

Chapter 4 is on Generators in Python. Generators allow
you to define Iterators more easily and efficiently. You will
define custom Generators and learn the benefits of using them.

In Chapter 5, you will learn all the details of Date and
Time operations in Python, which are crucial for robust
application development. You will learn the difference
between Aware and Naive Objects and get the details of the
classes in datetime module.

In Chapter 6, you will meet Decorators. A very important
concept in Python programming. You will learn how to define
a decorator, how to chain them and how to use class syntax for
creating new ones.

In Chapter 7, you will learn the details of Context
Managers, which are very handy tools when you need to deal
with resource management in your code. You will see how to
define and use a Context Manager in both class form and
function form.

Conventions Used in This Book

The following typographical conventions are used in this
book:

Italic
Indicates new URLs, email addresses, filenames, and file

extensions.

Bold
Indicates new terms and important concepts to pay

attention.

Constant width

Used for string literals and programming concepts within
paragraphs.

Constant width bold

Used for program elements within paragraphs, such as
variable or function names, data types, statements, and
keywords.

We will write our code in the code cells. Here is an
example code cell with the cell number as 7:

Figure 1-1: A code cell example used in this book

Using Code Examples

You can find all the supplementary resources for the book
(code files, quizzes, assignments, final exam etc.) available for
download at https://github.com/musaarda/python-hands-on-
book-advanced.

https://github.com/musaarda/python-hands-on-book-advanced

You & This Book

This book is designed in a way that, you can learn and
practice Python. At each chapter you will learn the basic
concepts and how to use them with examples. Then you will
have a quiz the end of the chapter. First you will try to solve
the quiz questions on your own, then I will provide the
solutions in detail. You will have projects after each block of
core concepts. And after every project you will an assignment
to test your understanding. This will be your path to learn real
Python.

Before we deep dive into Python, I want to give you some
tips for how you can get most out of this book:

Read the topics carefully before you try to solve the
quizzes
Try to code yourself while you are reading the concepts in
the chapters
Try to solve quizzes by yourself, before checking the
solutions
Read the quiz solutions and try to replicate them
Code the projects line by line with the book
Do the assignments (seriously)
Do not start a new chapter before finishing and solving
quiz of the previous one
Repeat the topics you fail in the Final Exam
Learning takes time, so give yourself enough time digest
the concepts

2. Collections

What are Collections

Collections are specialized container datatypes providing alternatives
to Python’s general purpose built-in containers, dict, l is t, set, and tuple.
A Container is a special-purpose object which is used to store different
objects. It provides a way to access the contained objects and iterate over
them.

Python provides the collections module which implements container
datatypes. In this chapter we will learn different classes in the collections
module. You can find the PyCharm project for this chapter in the Github
Repository of this book.

Chapter Outline:

ChainMap
Counter
Deque
DefaultDict
NamedTuple
OrderedDict
UserDict
UserList
UserString

ChainMap

A ChainMap class is provided for quickly linking a number of
mappings so they can be treated as a single unit. It is often much faster
than creating a new dictionary and running multiple update() calls.

Syntax:
class col lect ions.ChainMap(*maps)

https://docs.python.org/3/library/collections.html
https://github.com/musaarda/python-hands-on-book-advanced

A ChainMap groups multiple dicts or other mappings together to
create a single, updateable view (list of dictionaries). If no maps are
specified, a single empty dictionary is provided so that a new chain
always has at least one mapping.

The underlying mappings are stored in a list. That list is public and can
be accessed or updated using the maps attribute. There is no other state.

A ChainMap incorporates the underlying mappings by reference. So,
if one of the underlying mappings gets updated, those changes will be
reflected in ChainMap.

All of the usual dictionary methods are supported. In addition, there is
a maps attribute, a method for creating new subcontexts, and a property
for accessing all but the first mapping:

maps:

A user updateable list of mappings. The list is ordered from first-
searched to last-searched. It is the only stored state and can be modified to
change which mappings are searched. The list should always contain at
least one mapping.

[1] : 1 # import ChainMap class from col lect ions module

 2 from col lect ions import ChainMap

 3

 4 #– Def ining a ChainMap –#

 5 numbers = {‘one’: 1 , ‘ two’: 2}

 6 let ters = {‘a’ : ‘A’, ‘b’ : ‘B’}

 7

 8 # Def ine the ChainMap

 9 chain_map = ChainMap(numbers , le t ters)

 10

 11 print(chain_map)

[1] : ChainMap({‘one’: 1 , ‘ two’: 2}, {‘a’ : ‘A’, ‘b’ : ‘B’})

In cell 1, we define a ChainMap object (chain_map) with two
dictionaries. Then we print the ChainMap. As you see in the output, the
result is a view of these dicts.

Accessing Keys and Values from ChainMap:

We can access the keys and values of a ChainMap by using the keys()
and values() methods.

[2] : 1 #– Accessing Keys and Values from ChainMap –#

 2 print(chain_map.keys())

 3 print(chain_map.values())

[2] : KeysView(ChainMap({‘one’: 1 , ‘ two’: 2}, {‘a’ : ‘A’, ‘b’ : ‘B’}))

 ValuesView(ChainMap({‘one’: 1 , ‘ two’: 2}, {‘a’ : ‘A’, ‘b’ : ‘B’}))

As you see in the output of cell 2, the result of chain_map.keys() is a
KeysView and the result of chain_map.values() is a ValuesView.

Accessing Individual Values with Key Names:

We can access individual values from a ChainMap by using the key
name. This is exactly the same way what we do with regular dictionaries.

[3] : 1 #– Accessing Individual Values with Key Names –#

 2 print(chain_map[‘one’])

 3 print(chain_map[‘b’])

[3] : 1

 B

In cell 3, we access the values of the individual items in the underlying
dictionaries of the ChainMap by using the key names as:
chain_map[‘one’].

Adding a New Dictionary to ChainMap:

ChainMap can contain any number of dictionaries in it. We use the
built-in new_child() method to add new dictionaries to the ChainMap. The

new_child() method returns a new ChainMap containing a new map
followed by all of the maps in the current instance. One point to note here
is, the newly added dict will be placed at the beginning of the ChainMap.

[4] : 1 #– Adding a New Dict ionary to ChainMap –#

 2 variables = {‘x’ : 0 , ‘y’ : 1}

 3 new_chain_map = chain_map.new_chi ld(var iables)

 4 print(‘Old:’ , chain_map)

 5 print(‘New:’ , new_chain_map)

[4] : Old: ChainMap({‘one’: 1 , ‘ two’: 2}, {‘a’ : ‘A’, ‘b’ : ‘B’})

 New: ChainMap({‘x’: 0 , ‘y’ : 1}, {‘one’: 1 , ‘ two’: 2}, {‘a’ : ‘A’,
‘b’ : ‘B’})

Get the List of Mappings in ChainMap:

We use the maps attribute the get the list of all mappings in the
ChainMap.

[5] : 1 #– Get the Lis t of Mappings in ChainMap –#

 2 print(chain_map.maps)

[5] : [{‘one’: 1 , ‘ two’: 2}, {‘a’ : ‘A’, ‘b’ : ‘B’}]

In cell 5, we get all the mappings (dictionaries) in the chain_map. As
you see in the output, the maps attribute returns a l is t type object.

Counter

A Counter is a dict subclass for counting hashable objects. It is a
collection where elements are stored as dictionary keys and their counts
are stored as dictionary values. Counts are allowed to be any integer value
including zero or negative counts. The Counter class is similar to bags or
multisets in other languages.

Elements are counted from an iterable or initialized from another
mapping (or counter). Here are some ways we create Counter objects in
Python:

[6] : 1 from col lect ions import Counter

 2

 3 # a new, empty counter

 4 c1 = Counter()

 5 print(c1)

 6

 7 # a new counter from an i terable

 8 c2 = Counter(‘aabbbcddeeee’)

 9 print(c2)

 10

 11 # a new counter from a mapping

 12 c3 = Counter({‘orange’: 6 , ‘ red’ : 3 , ‘green’: 5})

 13 print(c3)

 14

 15 # a new counter from keyword args

 16 c4 = Counter(cats=4, dogs=8)

 17 print(c4)

[6] : Counter()

 Counter({‘e’ : 4 , ‘b’ : 3 , ‘a’ : 2 , ‘d’ : 2 , ‘c’ : 1})

 Counter({‘orange’: 6 , ‘green’: 5 , ‘ red’ : 3})

 Counter({‘dogs’ : 8 , ‘cats’ : 4})

Counter objects have a dictionary interface except that they return a
zero count for missing items instead of raising a KeyError:

[7] : 1 # count of exis t ing element

 2 c5 = Counter([‘eggs’ , ‘ham’, ‘ jar ’ , ‘ham’])

 3 print(c5[‘ham’])

 4

 5 # count of a missing element is zero

 6 print(c5[‘bacon’])

[7] : 2

 0

Delete Elements from a Counter:

To delete elements from a Counter, we use the del keyword. Please
keep in mind that, setting a count to zero does not remove an element
from a counter.

[8] : 1 # – Delete Elements from a Counter – #

 2 # counter entry wi th a zero count

 3 c5[‘sausage’] = 0

 4 print(c5)

 5

 6 # del actual ly removes the entry

 7 del c5[‘sausage’]

 8 print(c5)

[8] : Counter({‘ham’: 2 , ‘eggs’ : 1 , ‘ jar ’ : 1 , ‘sausage’: 0})

 Counter({‘ham’: 2 , ‘eggs’ : 1 , ‘ jar ’ : 1})

As you see in cell 8, we set zero to an item which even doesn’t exist in
the Counter. And Python adds that item to the Counter with zero value. In
line 7, we remove the item entirely with the del keyword.

Counter Methods:

Counter objects support additional methods beyond those available for
all dictionaries. Here are the most common methods:

elements():

Return an iterator over elements repeating each as many times as its
count. Elements are returned in the order first encountered. If an element’s
count is less than one, elements() will ignore it.

[9] : 1 # – Counter Methods – #

 2 # elements()

 3 counter = Counter(a=1, b=2, c=0, d=-2, e=4)

 4 sorted_elements = sor ted(counter .e lements())

 5 print(sor ted_elements)

[9] : [‘a’ , ‘b’ , ‘b’ , ‘e’ , ‘e’ , ‘e’ , ‘e’]

most_common([n]):

Return a list of the n most common elements and their counts from
the most common to the least. If n is omitted or None, most_common()
returns all elements in the counter. Elements with equal counts are ordered
in the order first encountered:

[10]: 1 # most_common()

 2 most_common_3 = Counter(‘abracadabra’) .most_common(3)

 3 print(most_common_3)

[10]: [(‘a’ , 5) , (‘b’ , 2) , (‘ r ’ , 2)]

subtract([i terable-or-mapping]):

Elements are subtracted from an iterable or from another mapping (or
counter). Like dict .update() but subtracts counts instead of replacing
them. Both inputs and outputs may be zero or negative.

[11]: 1 # subtract()

 2 c_1 = Counter(a=4, b=2, c=0, d=-2)

 3 c_2 = Counter(a=1, b=2, c=3, d=4)

 4 c_1.subtract(c_2)

 5 print(c_1)

[11]: Counter({‘a’ : 3 , ‘b’ : 0 , ‘c’ : -3 , ‘d’ : -6})

The usual dictionary methods are available for Counter objects except
for two which work differently for counters:

fromkeys(iterable):

This class method is not implemented for Counter objects.

update([i terable-or-mapping]):

Elements are counted from an iterable or added-in from
another mapping (or counter). Like dict .update() but adds counts instead
of replacing them. Also, the iterable is expected to be a sequence of
elements, not a sequence of (key, value) pairs.

[12]: 1 # update()

 2 d = Counter(a=3, b=1)

 3 d.update({‘a’ : 5 , ‘c’ : 4})

 4 print(d)

[12]: Counter({‘a’ : 8 , ‘c’ : 4 , ‘b’ : 1})

Deque

Deques are a generalization of stacks and queues (the name is
pronounced “deck” and is short for “double-ended queue”). Deques
support thread-safe, memory efficient appends and pops from either side

https://docs.python.org/3/library/collections.html#collections.Counter
https://docs.python.org/3/library/collections.html#collections.Counter
https://docs.python.org/3/library/stdtypes.html#dict.update

of the deque with approximately the same O(1) performance in either
direction.

Though list objects support similar operations, they are optimized for
fast fixed-length operations and incur O(n) memory movement costs for
pop(0) and insert(0, v) operations which change both the size and position
of the underlying data representation.

col lect ions.deque([i terable[, maxlen]]): Returns a new deque object
initialized left-to-right (using append()) with data from iterable. If iterable
is not specified, the new deque is empty.

maxlen: Maximum size of a deque or None if unbounded.

If maxlen is not specified or is None, deques may grow to an arbitrary
length. Otherwise, the deque is bounded to the specified maximum length.
Once a bounded length deque is full, when new items are added, a
corresponding number of items are discarded from the opposite end.

[13]: 1 ### Deque

 2

 3 from col lect ions import deque

 4

 5 # Declaring the deque

 6 q = deque([‘user ’ , ‘password’ , ‘ token’])

 7 print(q)

[13]: deque([‘user ’ , ‘password’ , ‘ token’])

In cell 13, we define a deque object by passing a list as argument. Now
let’s create another one but this time we will use a string:

[14]: 1 # make a new deque with three i tems

 2 d = deque(‘dqi’)

 3 # i terate over the deque’s e lements

 4 for e lem in d :

 5 print(e lem.upper())

[14]: D

 Q

 I

Now let’s see the contents in the deque object:

[15]: 1 # l is t the contents of the deque

 2 deque_contents = l is t (d)

 3 print(deque_contents)

 4

 5 # peek at le f tmost i tem

 6 print(d[0])

 7

 8 # peek at r ightmost i tem

 9 print(d[-1])

[15]: [‘d’ , ‘q’ , ‘ i ’]

 d

 i

Here are some methods that deque objects support:

append(x):

Add x to the right side of the deque.

appendleft(x):

Add x to the left side of the deque.

[16]: 1 # add a new entry to the r ight s ide

 2 d.append(‘ j ’)

 3

 4 # add a new entry to the le f t s ide

 5 d.appendlef t (‘ f ’)

 6

 7 # show the representat ion of the deque

 8 print(d)

[16]: deque([‘f ’ , ‘d’ , ‘q’ , ‘ i ’ , ‘ j ’])

pop():

Remove and return an element from the right side of the deque. If no
elements are present, raises an IndexError.

popleft():

Remove and return an element from the left side of the deque. If no
elements are present, raises an IndexError.

[17]: 1 # return and remove the r ightmost i tem

 2 rightmost = d.pop()

 3 print(r ightmost)

 4

 5 # return and remove the le f tmost i tem

 6 lef tmost = d.poplef t ()

 7 print(lef tmost)

[17]: j

 f

clear():

Remove all elements from the deque leaving it with length 0.

copy():

Create a shallow copy of the deque.

count(x):

Count the number of deque elements equal to x.

extend(iterable):

Extend the right side of the deque by appending elements from the
iterable argument.

[18]: 1 # add mult iple e lements at once

 2 d.extend(‘ jkl’)

 3 print(d)

[18]: deque([‘d’ , ‘q’ , ‘ i ’ , ‘ j ’ , ‘k’ , ‘ l ’])

extendleft(i terable):

Extend the left side of the deque by appending elements from iterable.
Note, the series of left appends results in reversing the order of elements
in the iterable argument.

[19]: 1 # extendlef t () reverses the input order

 2 d.extendlef t (‘xyz’)

 3 print(d)

[19]: deque([‘z’ , ‘y’ , ‘x’ , ‘d’ , ‘q’ , ‘ i ’ , ‘ j ’ , ‘k’ , ‘ l ’])

index(x[, start[, s top]]):

Return the position of x in the deque (at or after index start and before
index stop). Returns the first match or raises ValueError if not found.

insert(i , x):

Insert x into the deque at position i. If the insertion would cause a
bounded deque to grow beyond maxlen, an IndexError is raised.

remove(value):

Remove the first occurrence of value. If not found, raises a
ValueError.

rotate(n=1):

Rotate the deque n steps to the right. If n is negative, rotate to the left.

[20]: 1 # deque at the beginning

 2 print(d)

 3

 4 # r ight rotat ion

 5 d.rotate(1)

 6 print(d)

 7

 8 # le f t rotat ion

 9 d.rotate(-1)

 10 print(d)

[20]: deque([‘z’ , ‘y’ , ‘x’ , ‘d’ , ‘q’ , ‘ i ’ , ‘ j ’ , ‘k’ , ‘ l ’])

 deque([‘ l ’ , ‘z’ , ‘y’ , ‘x’ , ‘d’ , ‘q’ , ‘ i ’ , ‘ j ’ , ‘k’])

 deque([‘z’ , ‘y’ , ‘x’ , ‘d’ , ‘q’ , ‘ i ’ , ‘ j ’ , ‘k’ , ‘ l ’])

reverse():

Reverse the elements of the deque in-place and then return None.

[21]: 1 # deque at the beginning

 2 print(‘old deque:’ , d)

 3

 4 # reverse the elements in the deque

 5 new_deq = d.reverse()

 6 print(‘new deque:’ , new_deq)

 7

 8 # original deque af ter reversed()

 9 print(‘old deque:’ , d)

[21]: old deque: deque([‘z’ , ‘y’ , ‘x’ , ‘d’ , ‘q’ , ‘ i ’ , ‘ j ’ , ‘k’ , ‘ l ’])

 new deque: None

 old deque: deque([‘ l ’ , ‘k’ , ‘ j ’ , ‘ i ’ , ‘q’ , ‘d’ , ‘x’ , ‘y’ , ‘z’])

As you see in the output of cell 21, the reverse() method reverses the
elements of the deque in-place, which means our original deque object is
modified. And it returns None.

DefaultDict

One of the common problems with the Dictionary class in Python is
the missing keys. When you try to access a key that does not exist in the
dictionary you will get a KeyError. So have to handle this case whenever
you need to access an element in the dictionary. Fortunately, we have
DefaultDict class in Python. It is used to provide some default values for
the key that does not exist and does not raise a KeyError.

DefaultDict is a subclass of the built-in dict class. It overrides one
method and adds one writable instance variable. The remaining
functionality is the same as for the dict class and is not documented here.

col lect ions.defaultdict(default_factory=None, / [, …]): Return a new
dictionary-like object, DefaultDict, which is a subclass of the built-in dict
class.

The first argument provides the initial value for the default_factory
attribute; it defaults to None. All remaining arguments are treated the
same as if they were passed to the dict constructor, including keyword
arguments.

DefaultDict objects support the following method in addition to the
standard dict operations:

__missing__(key):

If the default_factory attribute is None, this raises a KeyError
exception with the key as argument.

If default_factory is not None, it is called without arguments to
provide a default value for the given key, this value is inserted in the
dictionary for the key, and returned.

DefaultDict objects support the following instance variable:

default_factory:

This attribute is used by the __missing__() method; it is initialized
from the first argument to the constructor, if present, or to None, if absent.

[22]: 1 from col lect ions import defaul tdict

 2

 3 s = [(‘yel low’, 1) , (‘blue’ , 2) , (‘yel low’, 3) , (‘blue’ , 4) , (‘ red’ ,
1)]

 4 d = defaul tdict(l is t)

 5 for k , v in s :

 6 d[k] .append(v)

 7

 8 sorted_i tems = sor ted(d. i tems())

 9 print(sor ted_i tems)

[22]: [(‘blue’ , [2 , 4]) , (‘ red’ , [1]) , (‘yel low’, [1 , 3])]

In cell 20, we use the list type as the default_factory, to make it easy
to group a sequence of key-value pairs into a dictionary of lists. When
each key is encountered for the first time, it is not already in the mapping;
so an entry is automatically created using the default_factory function
which returns an empty list. The l is t .append() operation then attaches the
value to the new list. When keys are encountered again, the look-up
proceeds normally (returning the list for that key) and the l is t .append()
operation adds another value to the list. This technique is simpler and
faster than an equivalent technique using dict .setdefault().

[23]: 1 r iver = ‘mississ ippi’

 2 dd = defaul tdict(int)

 3 for r in r iver :

 4 dd[r] += 1

 5

 6 s_i tems = sor ted(dd. i tems())

 7 print(s_i tems)

[23]: [(‘ i ’ , 4) , (‘m’, 1) , (‘p’ , 2) , (‘s’ , 4)]

In cell 23, we set the default_factory to int. This makes the
defaultdict useful for counting (like a bag or multiset in other languages).
When a letter is first encountered, it is missing from the mapping, so the
default_factory function calls int() to supply a default count of zero. The
increment operation then builds up the count for each letter.

NamedTuple

NamedTuples assign meaning to each position in a tuple and allow for
more readable, self-documenting code. They can be used wherever regular
tuples are used, and they add the ability to access fields by name instead
of position index.

col lect ions.namedtuple(typename, f ie ld_names):

Returns a new tuple subclass named typename. The new subclass is
used to create tuple-like objects that have fields accessible by attribute
lookup as well as being indexable and iterable. Instances of the subclass
also have a helpful docstring (with typename and f ie ld_names) and a
helpful __repr__() method which lists the tuple contents in a name=value
format.

The f ie ld_names are a sequence of strings such as [‘x’, ‘y’].
Alternatively, f ie ld_names can be a single string with each fieldname
separated by whitespace and/or commas, for example ‘x y’ or ‘x, y’.

To understand how the NamedTuple works, let’s assume we have an
Employee object. Employee has id, name and age attributes.

[24]: 1 from col lect ions import namedtuple

 2

 3 # Declare the namedtuple

 4 Employee = namedtuple(‘Employee’ , [‘ id’ , ‘name’, ‘age’])

 5

 6 # Add some values to the tuple

 7 E_1 = Employee(‘111’ , ‘Peter Parker ’ , ‘18’)

 8 E_2 = Employee(‘222’ , ‘Clark Kent’ , ‘26’)

 9

 10 # Access using index

 11 print(“Employee name by index is : “ , end=””)

 12 print(E_1[1])

 13

 14 # Access using keys

 15 print(“Employee name using key is : “ , end=””)

 16 print(E_2.name)

[24]: Employee name by index is : Peter Parker

 Employee name using key is : Clark Kent

In addition to the methods inherited from tuples, named tuples support
three additional methods and two attributes. To prevent conflicts with
field names, the method and attribute names start with an underscore.

_make(iterable):

Class method that makes a new instance from an existing sequence or
iterable.

[25]: 1 # _make()

 2 # ini t ial ize an i terable

 3 bat_data = [‘333’ , ‘Batman’, ‘28’]

 4 batman = Employee._make(bat_data)

 5 print(batman)

[25]: Employee(id=‘333’ , name=‘Batman’, age=‘28’)

_asdict():

Return a new dict which maps field names to their corresponding
values:

[26]: 1 # _asdict()

 2 bat_dict = batman._asdict()

 3 print(bat_dict)

[26]: {‘ id’ : ‘333’ , ‘name’: ‘Batman’, ‘age’ : ‘28’}

_replace(**kwargs):

Return a new instance of the named tuple replacing specified fields
with new values:

[27]: 1 # _replace()

 2 batman = batman._replace(id=‘777’ , age=‘34’)

 3 print(batman)

[27]: Employee(id=‘777’ , name=‘Batman’, age=‘34’)

_fields:

Tuple of strings listing the field names. Useful for introspection and
for creating new named tuple types from existing named tuples.

[28]: 1 # _f ie lds

 2 print(batman._f ie lds)

[28]: (‘ id’ , ‘name’, ‘age’)

We can use the _fields attribute to create new namedtuples from
existing ones:

[29]: 1 # namedtuple fields from others

 2 Point = namedtuple(‘Point’, [‘x’, ‘y’])

 3 Color = namedtuple(‘Color’, ‘red green blue’)

 4 Pixel = namedtuple(‘Pixel’, Point._fields + Color._fields)

 5 p = Pixel(5, 8, 128, 255, 0)

 6 print(p)

[29]: Pixel(x=5, y=8, red=128, green=255, blue=0)

OrderedDict

Ordered Dictionaries are just like regular dictionaries but have some
extra capabilities relating to ordering operations. OrderedDicts remember
the order in which the keys were inserted. They have become less
important now that the built-in dict class gained the ability to remember
insertion order (this new behavior became guaranteed in Python 3.7).

col lect ions.OrderedDict([i tems]):

Return an instance of a dict subclass that has methods specialized for
rearranging dictionary order.

popitem(last=True):

The popitem() method for ordered dictionaries returns and removes a
(key, value) pair. The pairs are returned in LIFO order if last is true or
FIFO order if false.

move_to_end(key, last=True):

Move an existing key to either end of an ordered dictionary. The item
is moved to the right end if last is true (the default) or to the beginning if
last is false. Raises KeyError if the key does not exist:

[30]: 1 from col lect ions import OrderedDict

 2

 3 od = OrderedDict . f romkeys(‘abcde’)

 4 od.move_to_end(‘b’)

 5 print(” . join(od))

 6 # ‘acdeb’

 7 od.move_to_end(‘b’ , las t=False)

 8 print(” . join(od))

 9 # ‘bacde’

[30]: acdeb

 bacde

Let’s say we delete and re-insert the same key to an OrderedDict. It
will push this key to the end to maintain the order of insertion of the keys.

[31]: 1 # delete and re- insert same key

 2 d = OrderedDict()

 3 d[‘x’] = ‘X’

 4 d[‘y’] = ‘Y’

 5 d[‘z’] = ‘Z’

 6

 7 print(‘OrderedDict before delet ing’)

 8 for key, value in d . i tems() :

 9 print(key, value)

 10

 11 # delete the element

 12 d.pop(‘x’)

 13

 14 # re- insert the same key

 15 d[‘x’] = ‘X’

 16

 17 print(’ \nOrderedDict af ter inser t ion’)

 18 for key, value in d . i tems() :

 19 print(key, value)

[31]: OrderedDict before delet ing

 x X

 y Y

 z Z

 OrderedDict af ter inser t ion

 y Y

 z Z

 x X

UserDict

The class, UserDict acts as a wrapper around dictionary objects. The
need for this class has been partially supplanted by the ability to subclass
directly from dict; however, this class can be easier to work with because
the underlying dictionary is accessible as an attribute. You can use
UserDict when you want to create your own dictionary with some
modified or new functionality.

col lect ions.UserDict([init ialdata]):

Class that simulates a dictionary. The instance’s contents are kept in a
regular dictionary, which is accessible via the data attribute of UserDict
instances. If init ialdata is provided, data is initialized with its contents;
note that a reference to init ialdata will not be kept, allowing it to be used
for other purposes.

In addition to supporting the methods and operations of mappings,
UserDict instances provide the following attribute:

data:

A real dictionary used to store the contents of the UserDict class.

[32]: 1 from col lect ions import UserDict

 2

 3 us = {‘name’: ‘John Doe’ , ‘age’: 24}

 4

 5 # Create UserDict object

 6 ud = UserDict(us)

 7 print(ud.data)

[32]: {‘name’: ‘John Doe’ , ‘age’ : 24}

Let’s say we want to define a custom dictionary object which supports
addition operation. When we add two instances of our custom dictionary
we want to get a new dictionary with all of the elements in both
dictionaries. Keep in mind that, you will get TypeError if you try to add to
regular dicts in Python. Let’s implement this with the help of UserDict:

[33]: 1 # class for our custom dict

 2 # inheri t from UserDict

 3 class AddEnabledDict(UserDict) :

 4 # override the __add__ method

 5 def __add__(self , o ther) :

 6 d = AddEnabledDict(self .data)

 7 d .update(other .data)

 8 return d

 9

 10 # create custom objects

 11 d_1 = AddEnabledDict(x = 10)

 12 d_2 = AddEnabledDict(y = 20)

 13 total = d_1 + d_2

 14 print(total)

[33]: {‘x’ : 10, ‘y’ : 20}

UserList

The UserList class acts as a wrapper around list objects. It is a useful
base class for your own list-like classes which can inherit from them and
override existing methods or add new ones. In this way, one can add new
behaviors to lists in Python.

The need for this class has been partially supplanted by the ability to
subclass directly from list; however, this class can be easier to work with
because the underlying list is accessible as an attribute.

col lect ions.UserList([l ist]):

Class that simulates a list. The instance’s contents are kept in a regular
list, which is accessible via the data attribute of UserList instances. The
instance’s contents are initially set to a copy of list, defaulting to the
empty list []. l is t parameter can be any iterable, for example a real Python
list or a UserList object.

In addition to supporting the methods and operations of mutable
sequences, UserList instances provide the following attribute:

data:

A real list object used to store the contents of the UserList class.

Let’s say we want to define a list which doesn’t allow deleting the
items in it. We can easily define such a class by inheriting UserList:

[34]: 1 from col lect ions import UserLis t

 2

 3 # def ine a custom class

 4 # this c lass wi l l inheri t from UserLis t

 5 # i t wi l l not al low i ts i tems to be deleted

 6 # Lis t c lass in Python has to methods for delete:

 7 # remove() and pop()

 8 class ListWithNoItemDelete(UserList) :

 9 # override remove() method

 10 def remove(self , s=None):

 11 se l f .not_al lowed()

 12

 13 # override pop() method

 14 def pop(self , s=None):

 15 se l f .not_al lowed()

 16

 17 def not_al lowed(self) :

 18 raise RuntimeError(“Delet ion not a l lowed”)

 19

 20 # custom l is t object

 21 custom_lis t = Lis tWithNoItemDelete([‘a’ , ‘b’ , ‘c’])

 22

 23 # try to delete an i tem

 24 custom_lis t . remove(‘b’)

[34]: Runt imeError : Delet ion not a l lowed

UserString

The class, UserString acts as a wrapper around string objects. The
need for this class has been partially supplanted by the ability to subclass
directly from str; however, this class can be easier to work with because
the underlying string is accessible as an attribute.

col lect ions.UserString(seq):

Class that simulates a string object. The instance’s content is kept in a
regular string object, which is accessible via the data attribute of
UserString instances. The instance’s contents are initially set to a copy of
seq. The seq argument can be any object which can be converted into a
string using the built-in str() function.

In addition to supporting the methods and operations of strings,
UserString instances provide the following attribute:

data:

A real str object used to store the contents of the UserString class.

Let’s say we want to define a custom str class that have concatenate()
method in it:

[35]: 1 # UserStr ing

 2

 3 from col lect ions import UserStr ing

 4

 5 # def ine a custom class

 6 # this c lass wi l l inheri t from UserStr ing

 7 class CustomStrClass (UserStr ing):

 8 # def ine a new method

 9 def concatenate(self , o ther=None, del imiter=‘ ‘) :

 10 se l f .data += del imiter + other

 11

 12 # custom str ing object

 13 custom_str = CustomStrClass(‘My Custom’)

 14 custom_str .concatenate(‘Str ing Class’)

 15 print(custom_str)

[35]: My Custom Str ing Class

3. Iterators

Iterables and Iterators

Iterator:

An Iterator is an object representing a stream of data and
can be iterated upon. In technical terms, a Python iterator is an
object that implements the iterator protocol, which consist of
two special methods: __iter__() and __next__().

Iterable:

An Iterable is an object capable of returning its members
one at a time. Examples of iterables include all sequence types
(such as list, str, and tuple) and some non-sequence types like
dict, and file objects. Technically, iterables are objects of any
classes with an __iter__() method or with a __getitem__()
method.

i ter():

The i ter() function (which calls the __iter__() method
behind the scenes) returns an iterator object. So we can say
that; an iterable is an object which returns an iterator.

In this chapter, we will learn how iterators work in Python
and how we can define our own iterator classes. You can find
the PyCharm project for this chapter in the Github Repository
of this book.

Chapter Outline:

https://github.com/musaarda/python-hands-on-book-advanced

The Iterator Protocol
Looping Through an Iterator
Define a Custom Iterator
Infinite Iterators
Benefits of Iterators

The Iterator Protocol

In Python, Iterator objects are required to support the
following two methods, which together form the Iterator
Protocol:

__iter__():

Return the iterator object itself. This is required to allow
both containers and iterators to be used with the for and in
statements. You can use built-in i ter() function which calls the
__iter__() method.

__next__():

Return the next item from the iterator. If there are no
further items, raise the StopIteration exception. You can use
built-in next() function which calls the __next__() method.

As we learned in the previous section, lists, tuples,
dictionaries, and sets are all iterable types. In other words,
they are the types which you can get an iterator from. Let’s
see some examples:

[1] : 1 # def ine a tuple (i terable)

 2 tup = (“A”, “B”, “C”)

 3 # get an i terator from the i terable -> i ter()

 4 tup_i ter = i ter(tup)

 5

 6 # cal l the next() funct ion

 7 item_1 = next(tup_i ter)

 8 print(i tem_1)

 9

 10 # cal l the next() funct ion

 11 item_2 = next(tup_i ter)

 12 print(i tem_2)

 13

 14 # cal l the next() funct ion

 15 item_3 = next(tup_i ter)

 16 print(i tem_3)

[1] : A

 B

 C

In cell 1, we define a tuple which is an iterable. Then in
line 4, we call the i ter() function on this iterable. The i ter()
function returns an iterator and we name it as tup_iter. In
lines 7 to 16 we call the next() function several times. Each
time the next() function executes, it returns the next item in
the iterator.

[2] : 1 # def ine a s tr ing (i terable)

 2 pyt = ‘python’

 3 # get an i terator from the i terable -> i ter()

 4 pyt_i ter = pyt .__i ter__()

 5

 6 # cal l the next() funct ion

 7 item_1 = pyt_i ter .__next__()

 8 print(i tem_1)

 9

 10 # cal l the next() funct ion

 11 item_2 = pyt_i ter .__next__()

 12 print(i tem_2)

[2] : p

 y

In cell 2, we call the __ i ter__() method on a string object.
Strings are iterable objects that contain a sequence of
characters. The __ i ter__() method returns an iterator in line 4.
And we print the elements in this iterator one by one by
calling the __ next__() method.

Looping Through an Iterator

As we see in the previous sections, we use the next()
function (or __next__() method) to manually iterate over the
items of an iterator. When the next() function reaches the end
of the iterator, then there is no more data to be returned and
you will get an StopIteration exception.

[3] : 1 # def ine a l is t (i terable)

 2 a_l is t = [10, 20, 30]

 3

 4 # get an i terator from the i terable -> i ter()

 5 lis t_i ter = i ter(a_l is t)

 6

 7 # cal l the next() funct ion

 8 print(next(l is t_i ter))

 9 print(next(l is t_i ter))

 10 print(next(l is t_i ter))

 11

 12 # the fol lowing next() cal l wi l l raise except ion

 13 print(next(l is t_i ter))

[3] : 10

 20

 30

 StopIterat ion

In cell 3, we call the next() function four times which is
more than the number of items in the iterator. And in the last
call we get StopIteration exception.

The for loop in Python, is able to iterate automatically
through any object that can return an iterator. In other words,
the for loop can iterate over any iterable object in Python.

[4] : 1 # for loop

 2 for e lement in a_l is t :

 3 print(e lement)

[4] : 10

 20

 30

In cell 4, we use the for loop to iterate over the list we
defined in cell 3. As you see, we do not use the next()
function manually or we don’t get any StopIteration
exception. That’s the beauty of the for loop in Python. It
handles all of these for us behind the scenes.

Now let’s define our own version of the for loop. We will
use the while loop and copy the behavior of the for loop. At
this point, we have everything we need for this
implementation. Let’s do it:

[5] : 1 # custom for loop implementat ion

 2 # i terable

 3 my_lis t = [1, 2 , 3]

 4

 5 # i terator from this i terable

 6 lis t_i ter = my_lis t .__i ter__()

 7

 8 # while loop

 9 while True:

 10 try :

 11 # next i tem

 12 e lement = l is t_i ter .__next__()

 13 print(e lement)

 14 except StopIteration :

 15 break

[5] : 1

 2

 3

In cell 5, we implement our own version of the for loop.
We use an infinite while loop as: while True. We set a try-
except block inside the loop. In the try block, we get the next
element by calling the __next__() method on our iterator. If
this call is successful then we print the element. If an error
occurs, which is of type StopIteration, then we catch that
exception in the except block. What we do inside the except
block is very simple. We simply break the loop. Which means
we have already reached the end of our iterator.

Define a Custom Iterator

Now that we know about iterators and iterator protocol
(__iter__() and __next__() methods) we can define our own
iterator classes from scratch.

Defining an iterator is quite easy in Python. All we have to
do is to implement __iter__() and __next__() methods in our
class definition. Here are the general rules that we must
follow:

The __iter__() method must return the iterator object
itself.
The __next__() method must return the next item in the
sequence. Also it has to raise a StopIteration exception
when it reaches the end of the sequence.

Let’s define an iterator object which will generate a
sequence of odd numbers like 1, 3, 5, 7, 9, … etc.

[6] : 1 # custom i terator

 2 class Odd :

 3 # implement __ini t__ method

 4 def __ini t__(self , l imit) :

 5 se l f .current = 1

 6 se l f . l imit = l imit

 7

 8 # implement __i ter__ method

 9 # s imply return the object i tsel f

 10 def __i ter__(self) :

 11 return se l f

 12

 13 # implement __next__ method

 14 def __next__(self) :

 15 # check i f l imi t reached

 16 i f se l f .current <= self . l imit :

 17 # get the current value

 18 current_value = self .current

 19 # increase the current

 20 se l f .current += 2

 21 return current_value

 22 # l imit is reached so raise except ion

 23 else :

 24 raise StopIteration

In cell 6, we define our own iterator class. It implements
both __iter__() and __next__() methods:

In the __iter__() method, it returns the object itself as:
return self.
In the __next__() method, it checks if the current value is
smaller than or equal to the l imit. If this is True, then it
returns the existing value of self .current and increases the
self .current value by 2. If the l imit is exceeded than it
will raise a StopIteration exception.

Now let’s call this class and get some odd numbers up to 20:

[7] : 1 # instant iate an Odd object

 2 odd_numbers = Odd(20)

 3

 4 # get f irs t 4 odd numbers

 5 print(odd_numbers .__next__())

 6 print(odd_numbers .__next__())

 7 print(next(odd_numbers))

 8 print(next(odd_numbers))

[7] : 1

 3

 5

 7

In cell 7, we instantiate an object from our Odd class. This
object will hold the odd numbers from 1 to 20. And we print
the first four odd numbers by calling the next() method on
this object four times.

Since our Odd class is an iterator we can easily set a for loop
to iterate over it. Let’s do it:

[8] : 1 # i terate over Odd class

 2 for n in Odd(8):

 3 print(n)

[8] : 1

 3

 5

 7

Infinite Iterators

Infinite Iterators are special type objects which has no
terminating conditions in their __next__() methods. They can
be useful when you need to set a counter that you do not know
where it will finalize. Let’s define a custom infinite iterator
that keeps increasing one by one.

[9] : 1 class InfiniteCounter :

 2 def __ini t__(self) :

 3 se l f .n = 1

 4

 5 def __i ter__(self) :

 6 return se l f

 7

 8 def __next__(self) :

 9 current = self .n

 10 se l f .n += 1

 11 return current

Now let’s call our InfiniteCounter class and get some
numbers in ascending order:

[10]: 1 # get f irs t four numbers

 2 counter = Inf ini teCounter()

 3 print(counter .__next__())

 4 print(counter .__next__())

 5 print(next(counter))

 6 print(next(counter))

[10]: 1

 2

 3

 4

Benefits of Iterators

Use of an iterator simplifies the code and makes it more
efficient instead of using a list. For small datasets, iterator and
list based approaches have similar performance. But for larger
datasets, iterators save both time and memory.

Here are some primary benefits of using iterators:

Iterators provide cleaner code
Theoretically, iterators can work with infinite sequences.
Iterators save resources. Iterator stores only one element
in the memory, while list (or tuple) stores all the elements.
Iterator treats variables of all types, sizes, and shapes
uniformly, whether they fit in memory or not.
Iterator makes recursion unnecessary in handling arrays
of arbitrary dimensionality.
Iterator supports iterating over multiple variables
concurrently, because each variable’s iteration state is
maintained in its own iterator structure.

4. Generators

What is a Generator?

In the previous chapter we learned about Iterators, which
are great tools especially when you need to deal with large
datasets. However, building an iterator in Python is a bit
cumbersome and time consuming. You have to define a new
class which implements the iterator protocol (__iter__() and
__next__() methods). In this class, you need to manage internal
state of the variables and update them. Moreover you need to
raise StopIteration exception when there is no value to return
back in the __next__() method.

Fortunately, we have an elegant solution for this in Python.
Python provides Generators to help you easily create iterators.
A Generator allows you to declare a function that behaves like
an iterator, i.e. it can be used in a for loop. In simple terms, a
Generator is a function which returns an iterator object. So it’s
an easy way of creating iterators. You don’t need to think
about all the work needed when you create an iterator, because
the Generator will handle all of them.

In this chapter, we will learn how generators work in
Python and how we can define them. You can find the
PyCharm project for this chapter in the Github Repository of
this book.

Chapter Outline:

Defining Generators
Generator Function vs. Normal Function
Generator Expression
Benefits of Generators

https://github.com/musaarda/python-hands-on-book-advanced

Defining Generators

As stated in the first section, a generator is a special type of
function in Python. This function does not return a single
value, instead, it returns an iterator object. In the generator
function, we use the yield statement instead of the return
statement. Let’s define a simple generator function:

[1] : 1 # def ine a generator funct ion

 2 def f i rs t_generator() :

 3 print(‘Yielding Firs t i tem’)

 4 yield ‘A’

 5

 6 print(‘Yielding Second i tem’)

 7 yield ‘B’

 8

 9 print(‘Yielding Last i tem’)

 10 yield ‘C’

In cell 1, we define a generator function. The function
executes the yield statement instead of the return keyword.
The yield statement is what makes this function a generator.
When we call this function it will return (yield) an iterator
object. Let’s see it:

[2] : 1 # cal l the generator

 2 iter_obj = f i rs t_generator()

 3

 4 # print f irs t i tem

 5 firs t_i tem = next(i ter_obj)

 6 print(f i rs t_i tem)

 7

 8 # print second i tem

 9 second_i tem = next(i ter_obj)

 10 print(second_i tem)

 11

 12 # print third i tem

 13 third_i tem = next(i ter_obj)

 14 print(third_i tem)

[2] : Yielding Firs t i tem

 A

 Yielding Second i tem

 B

 Yielding Last i tem

 C

In cell 2, we call the f irst_generator() function which is a
generator and returns an iterator object. We name this iterator
as i ter_obj. Then we call the next() function on this iterator
object. In each next() call the iterator executes the yield
statement in respective order and returns an item.

As a rule thumb, the generator function should not include
the return keyword. Because if it includes, then the return
statement will terminate the function.

Now let’s define a more realistic generator by the help of a
for loop. In this example we want to define a generator which
will keep track of the sequence of numbers starting from zero
and up to a given maximum limit.

[3] : 1 # generator for sequence of numbers

 2 def get_sequence_gen(max):

 3 for n in range(max):

 4 yield n

 5

 6 # cal l the funct ion and get i terator

 7 sequence_i ter = get_sequence_gen(10)

 8 # cal l the next() method

 9 print(sequence_i ter .__next__())

 10 print(sequence_i ter .__next__())

 11 print(next(sequence_i ter))

 12 print(next(sequence_i ter))

[3] : 0

 1

 2

 3

In cell 3, we define a generator function which yields the
integers from zero up to a given number. As you see, the yield
statement is inside the for loop. Please be careful that, the
value of n is stored during successive next() calls.

Generator Function vs. Normal Function

A function is a generator function if it contains at least one
yield statement. It may contain other yield or return
statements if needed. Both yield and return keywords will
return something from a function.

The difference between return and yield keywords is very
crucial for generators. While the return statement terminates a
function entirely, yield statement pauses the function saving
all its states and later continues from there on successive calls.

We call the generator function in the same way we call a
normal one. During its execution, the generator pauses when it
encounters the yield keyword. It sends the current value of the
iterator stream to the calling environment and wait for the next
call. Meanwhile, it saves the local variables and their states
internally.

Below are the key points where a generator function differs
from a normal function:

Generator function returns (yields) an iterator object. You
don’t need to worry about creating this iterator object
explicitly, the yield keywords does this for you.
Generator function must contain at least one yield
statement. It may include multiple yield keywords if
needed.
Generator function implements the iterator protocol
(i ter() and next() methods) internally.
Generator function saves the local variables and their
states automatically.
Generator function pauses execution at the yield keyword
and pass the control to the caller.
Generator function raises the StopIteration exception
automatically when the iterator stream has no value to
return.

Let’s consider a simple example to demonstrate the
difference between a normal function and a generator function.
In this example, we want to calculate the sum of first n
positive integers. To do this, we will define a function that
gives us the list of first n positive numbers. We will implement
this function in both ways, a normal function and a generator.

Here is the code for the normal function:

[4] : 1 # import the t ime module

 2 from t ime import t ime

 3

 4 # Normal Funct ion

 5 def f i rs t_n_numbers(max):

 6 n , numbers = 1, []

 7 while n <= max:

 8 numbers .append(n)

 9 n += 1

 10 return numbers

 11

 12 # cal l the funct ion

 13 star t = t ime()

 14 firs t_n_l is t = f i rs t_n_numbers(99999999)

 15 sum_of_firs t_numbers = sum(firs t_n_l is t)

 16 print(sum_of_firs t_numbers)

 17 # elapsed t ime

 18 end = t ime()

 19 print(“Elapsed Time in seconds:” , end - s tar t)

[4] : 4999999950000000

 Elapsed Time in seconds: 17.859

In cell 4, we define a normal function that returns the list
of first n positive integers. When we call this function it takes
a while to complete execution because the list it creates is
huge. It also uses a considerable amount of memory to
complete this task.

Now let’s define a generator function for the same
operation:

[5] : 1 # Generator Funct ion

 2 def f i rs t_n_numbers_gen(max):

 3 n = 1

 4 while n <= max:

 5 yield n

 6 n += 1

 7

 8 # cal l the funct ion

 9 star t = t ime()

 10 firs t_n_l is t = f i rs t_n_numbers_gen(99999999)

 11 sum_of_firs t_numbers = sum(firs t_n_l is t)

 12 print(sum_of_firs t_numbers)

 13 # elapsed t ime

 14 end = t ime()

 15 print(“Elapsed Time in seconds:” , end - s tar t)

[5] : 4999999950000000

 Elapsed Time in seconds: 15.302

As you see in cell 5, the generator finishes the same task in
less time and it uses less memory resources. Because the
generator yields items one by one instead of returning the
complete list.

The main reason for performance improvement (when we
use generators) is the lazy generation of values. This on
demand value generation, results in lower memory usage. One
more advantage of generators is, you do not need to wait until
all the elements have been generated before you start to use
them.

Generator Expression

There are times that you need simple generators for
relatively simple tasks in your code. This is where the
Generator Expression comes in. You can easily create simple
generators on the fly using generator expressions.

Generator expressions are similar to lambda functions in
Python. Remember that, lambda’s are anonymous functions
which let us create one-line functions on the fly. Just like a
lambda function, a generator expression creates an anonymous
generator function.

The syntax of a generator expression looks like a list
comprehension. The difference is, we have parentheses instead
of square brackets in a generator expression. Let’s see an
example:

[6] : 1 # def ine a s imple l is t

 2 nums = [1, 2 , 3 , 4 , 5]

 3

 4 # l is t comprehension

 5 num_cubes = [i**3 for i in nums]

 6

 7 # generator expression

 8 cubes_gen = (i**3 for i in nums)

 9

 10 # print both objects

 11 print(num_cubes)

 12 print(cubes_gen)

[6] : [1 , 8 , 27, 64, 125]

 <generator object <genexpr> at 0x103059d20>

In cell 6, line 8 we define a simple generator with the help
of the generator expression. Here is the syntax: cubes_gen =
(i**3 for i in nums). And you see the generator object in the
output. As we already know, to be able to get the items in a
generator we either need to call the next() method explicitly or
use a for loop to iterate over the generator. Let’s print the items
in the cubes_gen object:

[7] : 1 # loop over generator

 2 for i tem in cubes_gen:

 3 print(i tem)

[7] : 1

 8

 27

 64

 125

Let’s do another example. We will define a generator that
converts the letters of a string to uppercase. Then we will call
the next() method to print first two letters.

[8] : 1 # generator for upper case

 2 text = ‘machine learning’

 3 upper_gen = (l .upper() for l in text)

 4 print(upper_gen.__next__())

 5 print(next(upper_gen))

[8] : M

 A

Benefits of Generators

Benefits are great tools especially when you need to deal
with large data in relatively limited memory. Here are some
key benefits of using generators in Python:

Memory Efficiency:

Let’s assume, you have a normal function that returns a
very large sequence. A list with millions of items, for example.
You have to wait for this function to finish all the execution
and return you the list as a whole. This is obviously not
efficient in terms of time and memory resources. On the other

hand, if you use a generator function, it will return you the
items one by one, and you will have the chance to continue to
execute the next lines of code. You don’t need to wait for all of
the items in the list to be executed by the function. Because the
generator will give you one item at a time.

Lazy Evaluation:

Generators provide the power of lazy evaluation. Lazy
evaluation is computing a value when it is really needed, not
when it is instantiated. Let’s assume you have a large dataset
to compute; lazy evaluation allows you to start using the data
immediately while the whole data set is still being computed.
Because you do not need the whole data set if you are using a
generator.

Implement and Readability:

Generators are very easy to implement and provide code
readability. Remember that, you do not need to worry about
the __iter__() and __next__() methods if you are using a
generator. All you need is a simple yield statement in your
function.

Dealing with Infinite Streams:

Generators are wonderful tools when you need to represent
an infinite stream of data. An infinite counter, for example. In
theory, you cannot store an infinite stream in the memory. You
cannot be sure about how much size you will need to store an
infinite stream. This is where a generator really shines, since it
produces only one item at a time, it can represent an infinite
stream of data. And it doesn’t have to store all the stream in
the memory.

5. Date And Time

Date and Time in Python

Date and Time objects are very important in programming.
In Python we have a dedicated module for date and time
operations. The datet ime module supplies classes for
manipulating dates and times. While date and time arithmetic
is supported, the focus of the implementation of datetime
module is on efficient attribute extraction for output
formatting and manipulation.

In this chapter, we will learn how to use datetime module
in Python. You can find the PyCharm project for this chapter
in the Github Repository of this book.

Chapter Outline:

Aware and Naive Objects
Constants and Main Classes
Determining if an Object is Aware or Naïve
Timedelta Class
Date Class
Datetime Class
Time Class
Formatting Date and Time

Aware and Naive Objects

https://github.com/musaarda/python-hands-on-book-advanced

Date and time objects may be categorized as “aware” or
“naive” depending on whether or not they include timezone
information.

With sufficient knowledge of applicable algorithmic and
political time adjustments, such as time zone and daylight
saving time information, an aware object can locate itself
relative to other aware objects. An aware object represents a
specific moment in time that is not open to interpretation.

A naive object does not contain enough information to
unambiguously locate itself relative to other date/time objects.
Whether a naive object represents Coordinated Universal Time
(UTC), local time, or time in some other timezone is purely up
to the program, just like it is up to the program whether a
particular number represents meters, miles, or mass. Naive
objects are easy to understand and to work with, at the cost of
ignoring some aspects of reality.

For applications requiring aware objects, datetime and time
objects have an optional time zone information attribute,
tz info, that can be set to an instance of a subclass of the
abstract tz info class. These tz info objects capture information
about the offset from UTC time, the time zone name, and
whether daylight saving time is in effect.

Only one concrete tz info class, the t imezone class, is
supplied by the datetime module. The timezone class can
represent simple timezones with fixed offsets from UTC, such
as UTC itself or North American EST and EDT timezones.
Supporting timezones at deeper levels of detail is up to the
application. The rules for time adjustment across the world are
more political than rational, change frequently, and there is no
standard suitable for every application aside from UTC.

Constants and Main Classes

Constants:

The datetime module exports the following constants:

datet ime.MINYEAR: The smallest year number allowed in
a date or datetime object. MINYEAR is 1.

datet ime.MAXYEAR: The largest year number allowed in a
date or datetime object. MAXYEAR is 9999.

Available Types:

Here are the built-in types in datetime module in Python.
Keep in mind that, objects of these types are immutable.

class datet ime.date: An idealized naive date, assuming the
current Gregorian calendar always was, and always will be, in
effect. Attributes: year, month, and day.

class datet ime.t ime: An idealized time, independent of any
particular day, assuming that every day has exactly 24*60*60
seconds. (There is no notion of “leap seconds” here.)
Attributes: hour, minute, second, microsecond, and tzinfo.

class datet ime.datet ime: A combination of a date and a
time. Attributes: year, month, day, hour, minute, second,
microsecond, and tzinfo.

class datet ime.t imedelta: A duration expressing the
difference between two date, time, or datetime instances to
microsecond resolution.

class datet ime.tzinfo: An abstract base class for time zone
information objects. These are used by the datetime and time
classes to provide a customizable notion of time adjustment

(for example, to account for time zone and/or daylight saving
time).

class datet ime.t imezone: A class that implements the tzinfo
abstract base class as a fixed offset from the UTC.

Common Properties:

The date, datet ime, t ime, and t imezone types share these
common features:

Objects of these types are immutable.
Objects of these types are hashable, meaning that they can
be used as dictionary keys.
Objects of these types support efficient pickling via the
pickle module.

Determining if an Object is Aware or Naive

Naive and aware concepts are crucial in data and time
operations. Here are the general rules:

Objects of the date type are always naive.
An object of type t ime or datet ime may be aware or
naive.
A datet ime object d is aware if both of the following
hold:

d.tzinfo is not None
d.tzinfo.utcoffset(d) does not return None
Otherwise, d is naive.

A t ime object t is aware if both of the following hold:
t . tz info is not None
t.tzinfo.utcoffset(None) does not return None.
Otherwise, t is naive.

The distinction between aware and naive doesn’t apply to
t imedelta objects.

https://docs.python.org/3/library/pickle.html#module-pickle

Timedelta Class

A t imedelta object represents a duration, the difference
between two dates or times.

class datet ime.t imedelta(days=0, seconds=0,
microseconds=0, mil l iseconds=0, minutes=0, hours=0, weeks=0):

All arguments are optional and default to 0. Arguments
may be integers or floats, and may be positive or negative.

Only days, seconds and microseconds are stored internally.
Arguments are converted to those units:

A millisecond is converted to 1000 microseconds.
A minute is converted to 60 seconds.
An hour is converted to 3600 seconds.
A week is converted to 7 days.

and days, seconds and microseconds are then normalized
so that the representation is unique, with

0 <= microseconds < 1000000
0 <= seconds < 3600*24 (the number of seconds in one
day)
-999999999 <= days <= 999999999

The following example illustrates how any arguments
besides days, seconds and microseconds are “merged” and
normalized into those three resulting attributes:

[1] : 1 from datet ime import t imedel ta

 2

 3 del ta = t imedel ta(

 4 days=50,

 5 seconds=27,

 6 microseconds=10,

 7 mil l iseconds=29000,

 8 minutes=5,

 9 hours=8,

 10 weeks=2

 11)

 12 # Only days, seconds, and microseconds remain

 13 print(“Days:” , del ta .days)

 14 print(“Seconds:” , del ta .seconds)

 15 print(“Microseconds:” , del ta .microseconds)

[1] : Days: 64

 Seconds: 29156

 Microseconds: 10

In the next example let’s add days two timedelta objects:

[2] : 1 # Add two t imedel ta objects

 2 del ta1 = t imedel ta(minutes=10, seconds=50)

 3 del ta2 = t imedel ta(hours=25, seconds=20)

 4 del ta_sum = del ta1 + del ta2

 5 print(del ta_sum)

[2] : 1 day, 1:11:10

In cell 2, we add two t imedelta objects and print the result.
Addition (+), Subtraction (-), Multiplication (*), Division (/),
Floor Division (//) and Modulo (%) operations are supported
by the t imedelta class in Python.

Date Class

A date object represents a date (year, month and day) in an
idealized calendar, the current Gregorian calendar indefinitely
extended in both directions.

January 1 of year 1 is called day number 1, January 2 of
year 1 is called day number 2, and so on. 2

class datet ime.date(year, month, day):

All arguments are required. Arguments must be integers, in
the following ranges:

MINYEAR <= year <= MAXYEAR
1 <= month <= 12
1 <= day <= number of days in the given month and year

If an argument outside those ranges is given, ValueError is
raised.

Class Attributes:

date.min: The earliest representable date, date(MINYEAR,
1, 1).

date.max: The latest representable date, date(MAXYEAR,
12, 31).

date.resolution: The smallest possible difference between
non-equal date objects, t imedel ta(days=1).

Instance Attributes (read-only):
date.year: Between MINYEAR and MAXYEAR inclusive.

date.month: Between 1 and 12 inclusive.

date.day: Between 1 and the number of days in the given
month of the given year.

[3] : 1 from datet ime import date

 2

 3 # instant iate a date object: year, month, day

 4 a_val id_date = date(2021, 3 , 26)

 5 print(“This is a val id date:” , a_val id_date)

 6

 7 an_ival id_date = date(2021, 3 , 48)

 8 print(“This is an inval id date:” , an_ival id_date)

[3] : This is a val id date: 2021-03-26

 ValueError : day is out of range for month

date.today():

Return the current local date. Let’s get the current date:

[4] : 1 # current date

 2 current_date = date . today()

 3 print(“Current date is :” , current_date)

 4 print(“Current year :” , current_date .year)

 5 print(“Current month:” , current_date .month)

 6 print(“Current day:” , current_date .day)

[4] : Current date is : 2022-03-25

 Current year : 2022

 Current month: 3

 Current day: 25

date.fromtimestamp(timestamp):

Return the local date corresponding to the POSIX
timestamp.

POSIX timestamp is the time expressed as the number of
seconds that have passed since January 1, 1970. That zero
moment, known as the epoch, is simply the start of the decade
in which the Unix operating system (which first used this time
representation) was invented.

The fromtimestamp() method may raise OverflowError, if
the timestamp is out of the range of values supported by the
platform C localt ime() function, and OSError on localt ime()
failure. It’s common for this to be restricted to years from
1970 through 2038. Note that on non-POSIX systems that
include leap seconds in their notion of a timestamp, leap
seconds are ignored by fromtimestamp().

[5] : 1 # fromtimestamp: get datet ime from t imestamp

 2
date_t ime_from_timestamp =
date . f romtimestamp(1527635439)

 3
print(“Timestamp to datet ime:” ,
date_t ime_from_timestamp)

[5] : Timestamp to datet ime: 2018-05-30

date. isoformat():

Return a string representing the date in ISO 8601 format,
YYYY-MM-DD. It is equivalent to date.__str__().

[6] : 1 # isoformat() -> YYYY-MM-DD

 2 iso_formatted_date = date(2002, 12, 4) . isoformat()

 3 print(iso_formatted_date)

[6] : 2002-12-04

date.ct ime():

Return a string representing the date:

[7] : 1 # isoformat() -> YYYY-MM-DD

 2 iso_formatted_date = date(2002, 12, 4) . isoformat()

 3 print(iso_formatted_date)

[7] : Wed Dec 4 00:00:00 2002

date.fromisoformat(date_string):

Return a date corresponding to a date_string given in the
format YYYY-MM-DD:

[8] : 1 # fromisoformat

 2 date_from_iso_str = date . f romisoformat(‘2019-12-04’)

 3 print(date_from_iso_str)

[8] : 2019-12-04

date.fromordinal(ordinal):

Return the date corresponding to the proleptic Gregorian
ordinal, where January 1 of year 1 has ordinal 1. ValueError is
raised unless 1 <= ordinal <= date .max. toordinal().

For any date d, date.fromordinal(d.toordinal()) == d.

date.strft ime(format):

Return a string representing the date, controlled by an
explicit format string. Format codes referring to hours,
minutes or seconds will see 0 values. date.__format__(format)
dunder (double underscore) method also works the same.

[9] : 1 # fromordinal() and s tr f t ime()

 2 # 730920th day af ter 1 . 1 . 0001

 3 d = date . f romordinal(730920)

 4 print(d)

 5

 6 # Methods related to formatt ing s tr ing output

 7 print(d. isoformat())

 8 print(d.s t r f t ime(”%d/%m/%y”))

 9 print(d.s t r f t ime(“%A %d. %B %Y”))

[9] : 2002-03-11

 2002-03-11

 11/03/02

 Monday 11. March 2002

date. isocalendar():

Return a named tuple object with three components: year,
week and weekday. The ISO calendar is a widely used variant
of the Gregorian calendar.

The ISO year consists of 52 or 53 full weeks, and where a
week starts on a Monday and ends on a Sunday. The first week
of an ISO year is the first (Gregorian) calendar week of a year
containing a Thursday. This is called week number 1, and the
ISO year of that Thursday is the same as its Gregorian year.

For example, 2004 begins on a Thursday, so the first week
of ISO year 2004 begins on Monday, 29 Dec 2003 and ends on
Sunday, 4 Jan 2004:

[10]: 1 # isocalendar()

 2 iso_date_year_end = date(2003, 12, 29) . isocalendar()

 3 print(iso_date_year_end)

 4

 5 iso_date_year_star t = date(2004, 1 , 4) . isocalendar()

 6 print(iso_date_year_star t)

[10]: datet ime.IsoCalendarDate(year=2004, week=1,
weekday=1)

 datet ime.IsoCalendarDate(year=2004, week=1,
weekday=7)

date.replace(year=self .year, month=self .month,
day=self .day):

Return a date with the same value, except for those
parameters given new values by whichever keyword
arguments are specified.

[11]: 1 # replace()

 2 d = date(2002, 12, 31)

 3 d_new = d.replace(day=26)

 4 print(“d:” , d)

 5 print(“d_new:”, d_new)

[11]: d: 2002-12-31

 d_new: 2002-12-26

date.fromisocalendar(year, week, day):

Return a date corresponding to the ISO calendar date
specified by year, week and day. This is the inverse of the
function date. isocalendar().

date.toordinal():

Return the proleptic Gregorian ordinal of the date, where
January 1 of year 1 has ordinal 1. For any date object d,
date.fromordinal(d.toordinal()) == d.

date.weekday():

Return the day of the week as an integer, where Monday is
0 and Sunday is 6. For example, date(2002, 12, 4) .weekday()
== 2, a Wednesday.

date. isoweekday():

Return the day of the week as an integer, where Monday is
1 and Sunday is 7. For example, date(2002, 12, 4) . isoweekday()
== 3, a Wednesday.

date.t imetuple():

Return a t ime.struct_time such as returned by
t ime. localt ime(), which we will see later.

Datetime Class

A datet ime object is a single object containing all the
information from a date object and a t ime object. Like a date
object, datet ime assumes the current Gregorian calendar
extended in both directions; like a t ime object, datet ime
assumes there are exactly 3600*24 seconds in every day.

datet ime.datet ime(year, month, day, hour=0, minute=0,
second=0, microsecond=0, tz info=None, * , fold=0):

The year, month and day arguments are required. tzinfo
may be None, or an instance of a tz info subclass. The
remaining arguments must be integers in the following ranges:

MINYEAR <= year <= MAXYEAR,
1 <= month <= 12,
1 <= day <= number of days in the given month and year,
0 <= hour < 24,
0 <= minute < 60,
0 <= second < 60,
0 <= microsecond < 1000000,
fold in [0 , 1] .

If an argument outside those ranges is given, ValueError is
raised.

Let’s create a datet ime object with different parameter
sets:

[12]: 1 from datet ime import datet ime

 2

 3 # cal l the constructor

 4 datet ime_obj = datet ime(2020, 5 , 29)

 5 print(datet ime_obj)

 6

 7 # cal l the constructor wi th t ime parameters

 8
datet ime_obj_with_t ime = datet ime(2020, 5 , 29, 8 , 45,
52, 162420)

 9 print(datet ime_obj_with_t ime)

[12]: 2020-05-29 00:00:00

 2020-05-29 08:45:52.162420

Now let’s get the year, month, hour, minute, seconds, and
timestamp attributes from a datet ime object:

[13]: 1 # get at tr ibutes

 2 dt = datet ime(2019, 8 , 17, 23, 38, 54)

 3 print(“Year:” , dt .year)

 4 print(“Month:” , dt .month)

 5 print(“Day:”, dt .day)

 6 print(“Hour:” , dt .hour)

 7 print(“Minute:” , dt .minute)

 8 print(“Seconds:” , dt .second)

 9 print(“Timestamp:”, dt . t imestamp())

[13]: Year: 2019

 Month: 8

 Day: 17

 Hour: 23

 Minute: 38

 Seconds: 54

 Timestamp: 1566074334.0

datet ime.today():

Return the current local datetime, with tz info None.

datet ime.now(tz=None):

Return the current local date and time. If optional argument
tz is None or not specified, this is like today(). If tz is not
None, it must be an instance of a tz info subclass, and the
current date and time are converted to tz’s time zone.

[14]: 1 # now()

 2 current_date_t ime = datet ime.now()

 3 print(“Current date & t ime:”, current_date_t ime)

[14]: Current date & t ime: 2022-03-26 12:51:39.045639

Class Attributes:

datet ime.min: The earliest representable datetime,
datetime(MINYEAR, 1, 1, tzinfo=None).

datet ime.max: The latest representable datetime,
datetime(MAXYEAR, 12, 31, 23, 59, 59, 999999,
tzinfo=None).

datet ime.resolution: The smallest possible difference
between non-equal datetime objects,
timedelta(microseconds=1).

Instance Attributes (read-only):

datet ime.year: Between MINYEAR and MAXYEAR
inclusive.

datet ime.month: Between 1 and 12 inclusive.

datet ime.day: Between 1 and the number of days in the
given month of the given year.

datet ime.hour: In range(24).

datet ime.minute: In range(60).

datet ime.second: In range(60).

datet ime.microsecond: In range(1000000).

datet ime.tzinfo: The object passed as the tzinfo argument to
the datetime constructor, or None if none was passed.

datet ime.fold: In [0, 1]. Used to disambiguate wall times
during a repeated interval. (A repeated interval occurs when
clocks are rolled back at the end of daylight saving time or
when the UTC offset for the current zone is decreased for
political reasons.) The value 0 (1) represents the earlier (later)
of the two moments with the same wall time representation.

Datetime class has the same methods with date class. Here
is the list of datet ime class methods:

ast imezone():

Returns the datetime object with timezone (tz) information.

combine():

Combines the date and time objects and return a single
datetime object.

ct ime():

Returns a string representation of date and time.

date():

Return date object with same year, month and day.

fromisoformat():

Returns a datetime object from the string representation of
the date and time.

fromordinal():

Returns a date object from the proleptic Gregorian ordinal,
where January 1 of year 1 has ordinal 1. The hour, minute,
second, and microsecond are 0.

fromtimestamp():

Returns the local date and time corresponding to the
POSIX timestamp.

i socalendar():

Returns a named tuple with three components: year, week
and weekday.

i soformat():

Returns a string representing the date and time in ISO 8601
format:

YYYY-MM-DDTHH:MM:SS.ffffff , i f microsecond is not 0
YYYY-MM-DDTHH:MM:SS, i f microsecond is 0

i soweekday():

Returns the day of the week as an integer, where Monday
is 1 and Sunday is 7.

replace():

Returns a new datetime with the same attributes, except for
those attributes given new values by whichever keyword
arguments are specified.

s trft ime():

Returns a string representing the date and time, controlled
by an explicit format string.

s trptime():

Returns a datetime object corresponding to date string
provided as parameter.

t ime():

Returns time object with same hour, minute, second,
microsecond and fold. tzinfo is None.

t imetuple():

Returns an object of type t ime.struct_time.

t imetz():

Returns time object with same hour, minute, second,
microsecond, fold, and tzinfo attributes.

toordinal():

Returns the proleptic Gregorian ordinal of the date. The
same as self .date() . toordinal().

tzname():

Returns the name of the timezone if tzinfo is not None. If
tzinfo is None, returns None.

utcfromtimestamp():

Returns the UTC datetime corresponding to the POSIX
timestamp, with tzinfo None. (The resulting object is naive.)

utcoffset():

Returns the UTC offset if tzinfo is not None. If tzinfo is
None, returns None.

utcnow():

Returns the current UTC date and time, with tzinfo None.
This is like now(), but returns the current UTC date and time,
as a naive datetime object. An aware current UTC datetime
can be obtained by calling datet ime.now(timezone.utc).

weekday():

Returns the day of the week as an integer, where Monday
is 0 and Sunday is 6.

Let’s see some examples of working with datet ime
objects:

[15]: 1 # Using datet ime.combine()

 2 d = date(2005, 7 , 14)

 3 t = t ime(12, 30)

 4 combined_dt = datet ime.combine(d, t)

 5 print(combined_dt)

[15]: 2005-07-14 12:30:00

In cell 15, we instantiate two objects with date() and
t ime() constructors. Then we combine them by using the
datet ime.combine() method.

[16]: 1 # Using datet ime.now()

 2 # GMT +1

 3 now = datet ime.now()

 4 print(now)

 5

 6 # with t imezone info

 7 now_tz = datet ime.now(t imezone.utc)

 8 print(now_tz)

[16]: 2022-03-26 14:42:10.279281

 2022-03-26 11:42:10.279293+00:00

In cell 16, we call the datet ime.now() method with and
without timezone information.

[17]: 1 # Using datet ime.s trpt ime()

 2
dt = datet ime.s t rpt ime(“21/11/06 16:30”, “%d/%m/%y
%H:%M”)

 3 print(dt)

[17]: 2006-11-21 16:30:00

In cell 17, we create a datetime object by calling the
datet ime.strptime(date_string, format) method. We pass the
date_string and the format parameters.

[18]: 1
Using datet ime. t imetuple() to get tuple of al l
at tr ibutes

 2 tt = dt . t imetuple()

 3 for i t in t t :

 4 print(i t)

[18]: 2006 # year

 11 # month

 21 # day

 16 # hour

 30 # minute

 0 # second

 1 # weekday (0 = Monday)

 325 # number of days s ince 1st January

 -1 # dst - method tz info.dst() re turned None

In cell 18, we print all of the attributes of the dt object
which we defined in cell 17.

[19]: 1 # Date in ISO format

 2 ic = dt . isocalendar()

 3 for i t in ic :

 4 print(i t)

[19]: 2006 # ISO year

 47 # ISO week

 2 # ISO weekday

In cell 19, we print the ISO calendar information of our dt
object. We get this data by calling the isocalendar() method on
the datetime object.

[20]: 1 # Formatt ing a datet ime

 2
formatted_dt = dt .s t r f t ime(“%A, %d. %B %Y
%I:%M%p”)

 3 print(formatted_dt)

 4

5

dt_str = ‘The {1} is {0:%d}, the {2} is {0:%B}, the
{3} is {0:%I:%M%p}.’ . format(dt , “day”, “month”,
“t ime”)

 6 print(dt_str)

[20]: Tuesday, 21. November 2006 04:30PM

 The day is 21, the month is November, the t ime is
04:30PM.

In cell 20, we print the formatted date in two different
ways. The first one uses the datet ime.strft ime() method and
the second one is the str. format() method.

Time Class

A t ime object represents a (local) time of day, independent
of any particular day, and subject to adjustment via a tz info
object.

datet ime.t ime(hour=0, minute=0, second=0, microsecond=0,
tzinfo=None, * , fold=0):

All arguments are optional. tzinfo may be None, or an
instance of a tzinfo subclass. The remaining arguments must
be integers in the following ranges:

0 <= hour < 24,
0 <= minute < 60,
0 <= second < 60,
0 <= microsecond < 1000000,
fold in [0 , 1] .

If an argument outside those ranges is given, ValueError is
raised. All default to 0 except tz info, which defaults to None.

Class Attributes:

t ime.min: The earliest representable time, time(0, 0, 0, 0).

t ime.max: The latest representable time, time(23, 59, 59,
999999).

t ime.resolution: The smallest possible difference between
non-equal time objects, timedelta(microseconds=1), although
note that arithmetic on time objects is not supported.

Instance Attributes (read-only):
t ime.hour: In range(24).

t ime.minute: In range(60).

t ime.second: In range(60).

t ime.microsecond: In range(1000000).

t ime.tzinfo: The object passed as the tzinfo argument to the
time constructor, or None if none was passed.

t ime.fold: In [0, 1]. Used to disambiguate wall times during
a repeated interval. (A repeated interval occurs when clocks
are rolled back at the end of daylight saving time or when the
UTC offset for the current zone is decreased for political
reasons.) The value 0 (1) represents the earlier (later) of the
two moments with the same wall time representation.

t ime.fromisoformat(t ime_string):

Returns a time corresponding to a time_string in one of the
formats emitted by t ime. isoformat().

t ime.replace():

Returns a time with the same value, except for those
attributes given new values by whichever keyword arguments
are specified.

t ime. isoformat():

Returns a string representing the time in ISO 8601 format.

t ime.__str__():

For a time t, str(t) is equivalent to t . isoformat().

t ime.strft ime(format):

Returns a string representing the time, controlled by an
explicit format string.

t ime.__format__(format):

Same as t ime.strft ime(). This makes it possible to specify a
format string for a time object in formatted string literals and
when using str. format().

t ime.utcoffset():

If tzinfo is None, returns None, else returns
self . tz info.utcoffset(None), and raises an exception if the latter
doesn’t return None or a timedelta object with magnitude less
than one day.

t ime.dst():

If tzinfo is None, returns None, else returns
self . tz info.dst(None), and raises an exception if the latter
doesn’t return None, or a timedelta object with magnitude less
than one day.

t ime.tzname():

If tzinfo is None, returns None, else returns
self . tz info.tzname(None), or raises an exception if the latter
doesn’t return None or a string object.

Here are some examples of working with a t ime object:

[21]: 1 from datet ime import t ime, tz info, t imedel ta

 2

 3 # def ine a custom class

 4 class TZ1(tz info) :

 5 def u tcoffset(self , d t) :

 6 return t imedel ta(hours=1)

 7 def ds t (self , d t) :

 8 return t imedel ta(0)

 9 def tzname(self ,dt) :

 10 return “+01:00”

 11 def __repr__(self) :

 12 return f“{self .__class__.__name__}()”

In cell 21, we define a custom class, TZ1, which inherits
from tz info class. And we override some methods in its
parent. Let’s use this class for creating a t ime object and print
some attributes:

[22]: 1 # create a t ime object

 2 t = t ime(12, 10, 30, tz info=TZ1())

 3 print(“ t :” , t)

 4 print(“ isoformat:” , t . i soformat())

 5 print(“dst :” , t .ds t ())

 6 print(“ tzname:”, t . tzname())

 7 print(“s t r f t ime:”, t . s t r f t ime(“%H:%M:%S %Z”))

 8
print(“format:” , ‘The {} is
{:%H:%M}.’ . format(“t ime”, t))

[22]: t : 12:10:30+01:00

 isoformat: 12:10:30+01:00

 dst : 0:00:00

 tzname: +01:00

 s t r f t ime: 12:10:30 +01:00

 format: The t ime is 12:10.

Formatting Date and Time

We already covered the strft ime() and strptime() methods
that exist in the datetime class. These are the main methods
which are used for date and time formatting.

Here is the reference of all legal format codes that you can
use in these methods:

Directive Description Example

%a Weekday, short vers ion Wed

%A Weekday, ful l vers ion Wednesday

%w Weekday as a number 0-6, 0 is Sunday 2

%d Day of month 01-31 28

%b Month name, short vers ion Dec

%B Month name, ful l vers ion December

%m Month as a number 01-12 12

%y Year, short vers ion, without century 18

%Y Year, ful l vers ion 2021

%H Hour 00-23 17

%I Hour 00-12 5

%p AM/PM PM

%M Minute 00-59 41

%S Second 00-59 8

%f Microsecond 000000-999999 548513

%z UTC offset 100

%Z Timezone CST

%j Day number of year 001-366 365

%U Week number of year, Sunday as the
f i rs t day of week, 00-53 52

%W Week number of year, Monday as the
f i rs t day of week, 00-53

52

%c Local vers ion of date and t ime

Mon Dec
31
17:41:00
2018

%C Century 20

%x Local vers ion of date 12/31/18

%X Local vers ion of t ime 17:41:00

%% A % character %

%G ISO 8601 year 2018

%u ISO 8601 weekday (1-7) 1

%V ISO 8601 weeknumber (01-53) 1

Let’s see sone examples for these formats:

[23]: 1 # Formatt ing Examples

 2 from datet ime import datet ime

 3

 4 # current date & t ime

 5 current = datet ime.now()

 6 print(“No formatt ing”, current)

 7

 8 # Weekday short version

 9 weekday_short = current .s t r f t ime(“%a %-m %y”)

 10 print(‘Weekday Short Version:’ , weekday_short)

 11

 12 # Weekday

 13 weekday = current .s t r f t ime(“%A %m %-Y”)

 14 print(‘Weekday:’ , weekday)

 15

 16 # Hour with PM

 17 pm = current .s t r f t ime(“%-I %p %S”)

 18 print(‘Hour with PM:’ , pm)

 19

 20 # Time

 21 common_time = current .s t r f t ime(“%H:%M:%S”)

 22
print(‘Common Time Representat ion:’ ,
common_time)

[23]: No formatt ing 2022-03-26 18:17:54.351495

 Weekday Short Version: Sat 3 22

 Weekday: Saturday 03 2022

 Hour with PM: 6 PM 54

 Common Time Representat ion: 18:17:54

6. Decorators

Decorators in Python

Decorators are extremely useful tools in Python. A
decorator is a function that takes another function as the
parameter and extends its functionality without explicitly
modifying it. It allows us to modify the behavior of a function
or a class without touching its source code.

In other words, a decorator wraps a function in order to
extend its behaviors, without permanently modifying it.

In this chapter, we will learn how decorators work in
Python. You can find the PyCharm project for this chapter in
the Github Repository of this book.

Chapter Outline:

Functions are First-Class Citizens
Defining a Decorator
Decorators with Parameters
General Decorators
Decorator Changes the Function Name
Chaining Decorators
Class Decorators

Functions are First-Class Citizens

In order to understand how decorators work, we need to
revisit some important concepts about functions in Python.

https://github.com/musaarda/python-hands-on-book-advanced

In Python, functions are first-class citizens. By this we,
mean:

Functions can be assigned as regular variables
Functions can be passed as arguments to other functions
Functions can return functions
Functions can have other functions (inner functions) in
their function body

Now let’s see some examples of these points on functions:

Example 1: Functions can be assigned as regular variables.

[1] : 1 # Example 1:

 2 # assign funct ion to a variable

 3 def say_hi(user_name):

 4 return ‘Hi ‘ + user_name

 5

 6 # assign the funct ion

 7 hi_name = say_hi

 8 print(hi_name(‘Bruce Wayne’))

[1] : Hi Bruce Wayne

In cell 1, we define a function as say_hi. Then we assign
this function to a local variable named hi_name. Now this
hi_name variable is a function too. And in line 8, we call the
hi_name as: hi_name(‘Bruce Wayne’).

Example 2: Functions can be passed as arguments to other
functions.

[2] : 1 # Example 2:

 2
Funct ions can be passed as arguments to other
funct ions.

 3 def pr int_hel lo(user) :

 4 print(‘Hel lo’ , user)

 5

 6 def h i_with_funct ion(func, user_name):

 7 func(user_name)

 8

 9 # cal l the funct ion

 10 hi_with_funct ion(print_hel lo , ‘Clark Kent’)

[2] : Hel lo Clark Kent

In cell 2, we define two functions; print_hel lo and
hi_with_function. The second one takes a function as an
argument: hi_with_function(func, user_name). And it calls this
function in its function body in line 7 as: func(user_name).

Example 3: Functions can return functions.

[3] : 1 # Example 3:

 2 # Funct ions can return funct ions

 3 def re turn_hi_funct ion() :

 4 return say_hi

 5

 6 # cal l the funct ion

 7 hi = return_hi_funct ion()

 8 print(hi(‘Spiderman’))

[3] : Hi Spiderman

In cell 3, we define a function named return_hi_function.
This function simply returns another function, which is the
say_hi function that we defined in cell 1. In line 7, we assign
the returning function to a variable called hi. Now this hi
variable is also a function. Then we call it in line 8.

Example 4: Functions can have other functions (inner
functions) in their function body.

[4] : 1 # Example 4:

 2 # Funct ions can have other funct ions in their body

 3 def outer_func(msg):

 4 “““Outer funct ion”””

 5

 6 # def ine a nested funct ion

 7 def inner_func() :

 8 “““Inner funct ion”””

 9 print(msg, ‘ f rom nested funct ion.’)

 10

 11 # cal l the nested funct ion

 12 inner_func()

 13

 14 # cal l the outer funct ion

 15 outer_func(‘The Batman’)

[4] : The Batman from nested funct ion.

In cell 4 we define an outer function as outer_func. Inside
this function we define a nested function named inner_func.
And in line 12, we call the inner function.

When we call the outer the function in line 15, we pass the
text of ‘ The Batman’ for the value of the msg parameter. And
the output is ‘The Batman from nested function.’. This text is
printed by the inner_func. But be careful here, the inner_func
uses the msg variable which is not defined in its own body. In
other words, it uses a variable which belongs to its parent’s
scope. This is the idea behind the Closures in Python.

Python Closures: A Closure is a function object that
remembers the values in the parent’s scope even if they are not
present in memory.

Defining a Decorator

A decorator takes in a function as an argument, adds some
functionality to it and returns it back to the caller. Sometimes,
people call this action as metaprogramming because a part of
the program tries to modify another part of the program at
compile time.

[5] : 1 # def ine a s imple decorator

 2 def f i rs t_decorator(func):

 3 def wrapper() :

 4 print(“Before running {0}
funct ion”.format(func.__name__))

 5 func()

 6
 print(“After running {0}

funct ion”.format(func.__name__))

 7 return wrapper

 8

 9 def greet() :

 10 print(“Hi there”)

 11

 12 # cal l the f irs t_decorator funct ion

 13 greet = f i rs t_decorator(greet)

 14

 15 # cal l the greet funct ion now

 16 greet()

[5] : Before running greet funct ion

 Hi there

 After running greet funct ion

In cell 5, we define a simple decorator function. The
decorator’s name is f irst_decorator and it has a nested
function in it. The nested function is called wrapper. The
f irst_decorator function simply returns this wrapper function.

The wrapper function prints some text then calls the
function which is the parameter value (func) as: func(). And
finally, it prints another text.

In line 13, we call the f irst_decorator function by passing
the greet function as the argument. And we re-assign the
returning value to the greet function. Here is the code: greet =

f irst_decorator(greet). Remember that f irst_decorator returns
a function (wrapper).

In line 16, we call the greet() function. And in the output
you see that the behavior of greet() function is modified. In its
original form, it was printing just one line. But now, it prints
three lines.

To be sure about the final form of the greet() function, let’s
print its object data:

[6] : 1 # greet funct ion object data

 2 print(greet)

[6] : <funct ion f i rs t_decorator.<locals>.wrapper a t
0x100f569e0>

In cell 6, we print the greet function object data. And as
you see in the output, the function name is now wrapper in the
memory. Why? Because we re-assign it from the returning
value from the f irst_decorator function, which is the wrapper
function.

Now we are sure that, we have decorated our greet()
function. In other words, we didn’t modify its source code, but
we added some new functionality.

Decorator Syntax:

Line 13 in cell 5 is the way we decorate the greet()
function. It is: greet = f irst_decorator(greet). What we do is,
we pass the function to the decorator and re-assign the
resulting value to the same function. In Python, we have a
better and more readable syntax for decorating functions. Here
it is:

[7] : 1 # Decorator Syntax:

 2

 3 # Long Way

 4 # def greet():

 5 # pr int(“Hi there”)

 6

 7 # greet = f irs t_decorator(greet)

 8 # greet()

 9

 10 # Pythonic Way

 11 @firs t_decorator

 12 def greet() :

 13 print(“Hi there”)

 14

 15 greet()

[7] : Before running greet funct ion

 Hi there

 After running greet funct ion

In cell 7 line 11, you see the syntax for using a decorator.
We simply put the decorator’s name with an @ symbol on the
function definition line. Here it is:

[8] : 1 @firs t_decorator

 2 def greet() :

 3 …

So, saying @first_decorator is the simple way of saying
greet = f irst_decorator(greet). This is how we apply a
decorator to a function.

Decorators with Parameters

In the previous section, we learned how we define and use
a decorator function. Now let’s see what happens if the
function which we want to decorate accepts some parameters.
How will we decorate such functions?

Let’s assume we want to define a function which takes two
numbers, performs the division operation and returns the
result. Here is the function:

[9] : 1 # divis ion funct ion

 2 def d ivis ion(x, y) :

 3 return x / y

 4

 5 # cal l the funct ion

 6 resul t_1 = divis ion(20, 5)

 7 print(resul t_1)

 8

 9 resul t_2 = divis ion(8, 0)

 10 print(resul t_2)

[9] : 4 .0

 ZeroDivis ionError : divis ion by zero

In cell 9, you see the definition of the divis ion() function.
It simply returns the division result. And we call it with two
parameters (20, 5) and it returns 4.0 . But there is a problem
here. What if the second number, the divisor, is 0? We will get
a ZeroDivis ionError if the second parameter is zero. We can
implement a try-except block inside our division function to
overcome this problem. But we don’t want to modify the code
in the function body. So, we need another way.

The solution is to decorate this function with a decorator.
The decorator will be responsible of checking if the second
parameter is zero or not. Let’s define this decorator function:

[10]: 1 # decorator

 2 def d ivis ion_decorator(f) :

 3 # def ine the wrapper funct ion

 4 def wrapper(a , b) :

 5 i f b == 0:

 6 print(“Divis ion by zero is not possible .”)

 7 return

 8 else :

 9 return f (a , b)

 10

 11 # return the wrapper funct ion

 12 return wrapper

In cell 10, we define a decorator. The name is
divis ion_decorator and it is responsible to check for the
ZeroDivis ionError. In the wrapper function, it checks if b is
equal to zero or not. If it is, then it simply prints an error
message and returns. If b is not zero, then it calls the function
f and returns it: return f(a, b). Finally, the divis ion_decorator

function returns the wrapper function. Remember that this is
the idea behind the decorators in Python.

Now let’s decorate the division function with the
divis ion_decorator:

[11]: 1 # decorate divis ion funct ion

 2 @divis ion_decorator

 3 def d ivis ion(x, y) :

 4 return x / y

Now that we use the decorator for our divis ion function
let’s call it with zero for the divisor value:

[12]: 1 # cal l the funct ion now

 2 resul t_1 = divis ion(20, 5)

 3 print(resul t_1)

 4

 5 resul t_2 = divis ion(8, 0)

 6 print(resul t_2)

[12]: 4 .0

 Divis ion by zero is not possible .

 None

As you see in the output of cell 12, we handle the case
where the caller may pass a zero for the divisor. And we
managed this by the help of a decorator. The
divis ion_decorator function implements all the logic which is
necessary for this case. More importantly, we didn’t modify

our divis ion function. It’s still the same function, but
decorated now.

General Decorators

In the previous section we saw that the parameters of the
division function and the wrapper function inside the decorator
must match. Why? Because we wrapper function will replace
the division function after decoration. So, their parameters
should match. But this brings another problem. What if we
want to use the same decorator with multiple functions? And
what if these functions have different numbers of parameters?
Let’s answer this question now.

To start with, let’s assume we want to print our users’
names in full capital letters. Some users may have just their
first names, while the others may have first names and last
names. So, we will define two separate functions as
f irst_name and ful l_name. And we will define a decorator
function which will convert the names into upper case. Here is
the decorator:

[13]: 1 # def ine a general decorator

 2 def upper_decorator(func):

 3 # wrapper funct ion

 4 def wrapper(*args) :

 5 # modify the i tems in *args

 6 new_args = []

 7 for i , arg in enumerate(args) :

 8 new_args.append(arg.upper())

 9 new_args = tuple(new_args)

 10

 11 # return the cal l to the func

 12 return func(*new_args)

 13

 14 # return wrapper funct ion

 15 return wrapper

In cell 13, we define a general decorator. Why is it general?
Because, in its wrapper function, the parameter is *args. This
enables the wrapper function to take any number of
parameters. In other words, the wrapper function will be able
to present any function which is decorated with this decorator.

In the wrapper function, it modifies the items in the args
tuple. It converts each item to the upper case and appends it to
a list. In line 9, it converts this list to a tuple. And finally, in
line 12, it returns the call to the func parameter by passing
*new_args tuple. Here is the line: return func(*new_args).

Now let’s define the f irst_name and ful l_name functions.
We want both of them to be decorated with the
upper_decorator. Here they are:

[14]: 1 @upper_decorator

 2 def f i rs t_name(name):

 3 print(name)

 4

 5 # cal l f irs t_name funct ion

 6 firs t_name(‘ john’)

 7

 8 @upper_decorator

 9 def ful l_name(f i r t , las t) :

 10 print(f i r t , las t)

 11

 12 # cal l the ful l_name funct ion

 13 ful l_name(‘ john’ , ‘doe’)

[14]: JOHN

 JOHN DOE

In cell 14, we define two functions, f irst_name and
ful l_name, and we decorate both with the upper_decorator. Be
careful that, the functions have different number of
parameters. Then we call both functions with parameters. And
in the output, you see that the names have been capitalized for
both. That’s the way we use the same generator for functions
with any number of parameters.

Here is a more general decorator syntax with both *args
and **kwargs:

[15]: 1 # generator wi th *args and **kwargs

 2 def most_general_decorator(func):

 3 def wrapper(*args , **kwargs) :

 4 # implement some logic here

 5 return func(*args, **kwargs)

 6

 7 return wrapper

Decorator Changes the Function Name

There is an important point which you should always keep
in mind when you work with decorators. The function name
will be changed after you decorate it. How is that possible?
Let’s see with an example:

[16]: 1 # funct ion without decorator

 2 def las t_name(last) :

 3 print(las t)

 4

 5 # print funct ion name

 6
print(“Funct ion name before decorator :” ,
las t_name.__name__)

 7

 8 # funct ion with decoratoe

 9 @upper_decorator

 10 def las t_name(last) :

 11 print(las t)

 12

 13 # print funct ion name

 14
print(“Funct ion name af ter decorator :” ,
las t_name.__name__)

[16]: Funct ion name before decorator : las t_name

 Funct ion name af ter decorator : wrapper

In cell 16, we use the upper_decorator which we defined in
cell 13. We define a new function as last_name.

In the first definition, we didn’t decorate it. And we print
its name in line 6. The function name is ‘last_name’ as

expected.

Then we redefine this function with a decorator this time.
And in line 14, we print its name one more time. Surprisingly
this time its name is ‘wrapper’.

Why does the name changes from ‘last_name’ to
‘wrapper’? Because when we decorate it, the decorator returns
the wrapper function. Remember that decorating is exactly the
same as this line:

last_name = upper_decorator(last_name)

We reassign the returning value from the decorator to our
function. Since the decorator simply returns the wrapper
function, the name of our original function changes to
‘wrapper’ now.

To fix this issue, Python provides a very simple solution
which is the functools module. Let’s see how we can use this
module to keep the original function name unchanged:

[17]: 1 # functools

 2 import functools

 3

 4 # def ine a decorator wi th functools

 5 def upper_decorator(func):

 6 @functools .wraps(func)

 7 def wrapper(*args) :

 8 # modify the i tems in *args

 9 new_args = []

 10 for i , arg in enumerate(args) :

 11 new_args.append(arg.upper())

 12 new_args = tuple(new_args)

 13

 14 # return the cal l to the func

 15 return func(*new_args)

 16

 17 # return wrapper funct ion

 18 return wrapper

In cell 17 line 6, we use the functools .wraps() method.
This method is itself a decorator. So, we use it on the wrapper
function with the @ symbol. Here is the syntax:
@functools .wraps(func). The original function (func) is the
parameter to this method. This method preserves information
about the original function.

Now let’s print the name of the last_name function one
more time:

[18]: 1 # funct ion without decorator

 2 def las t_name(last) :

 3 print(las t)

 4

 5 # print funct ion name

 6
print(“Funct ion name before decorator :” ,
las t_name.__name__)

 7

 8 # funct ion with decoratoe

 9 @upper_decorator

 10 def las t_name(last) :

 11 print(las t)

 12

 13 # print funct ion name

 14 print(“Funct ion name af ter decorator :” ,
las t_name.__name__)

[18]: Funct ion name before decorator : las t_name

 Funct ion name af ter decorator : las t_name

As you see in the output of cell 18, now the name of our
original function is the same after we decorate it.

Chaining Decorators

Most of the time you will need to use more than one
decorator for a function. This is called chaining decorators on
the same function. Let’s see how we can use multiple
decorators (or the same decorator multiple times).

[19]: 1 # funct ion for print ing symbols

 2 def pr int_symbol(symbol , t imes) :

 3 print(symbol * t imes)

 4

 5 # decorator 1

 6 def p lus_sign(f) :

 7 def wrapper(*args , **kwargs) :

 8 pr int_symbol(‘+’ , 20)

 9 f (*args , **kwargs)

 10 pr int_symbol(‘+’ , 20)

 11 return wrapper

 12

 13 # decorator 2

 14 def minus_sign(f) :

 15 def wrapper(*args , **kwargs) :

 16 pr int_symbol(‘-‘ , 20)

 17 f (*args , **kwargs)

 18 pr int_symbol(‘-‘ , 20)

 19 return wrapper

In cell 19, we define two decorators. Each one prints a
different symbol before and after calling the original function.
Now let’s use both of them on the same function:

[20]: 1 # chain decorators

 2 @plus_sign

 3 @minus_sign

 4 def say_hi(msg):

 5 print(msg)

 6

 7 # cal l the decorated funct ion

 8 say_hi(“Hi Python Developer”)

[20]: ++++++++++++++++++++

 ––––––—

 Hi Python Developer

 ––––––—

 ++++++++++++++++++++

In cell 20, we chain two decorators on the say_hi()
function. And in the output, you see the order of execution of
the decorators. The one which is more close to the function
definition executes before the others.

Now let’s reverse the order of decorators and see the output
one more time:

[21]: 1 # change the order of chaining

 2 @minus_sign

 3 @plus_sign

 4 def say_hi(msg):

 5 print(msg)

[21]: ––––––—

 ++++++++++++++++++++

 Hi Python Developer

 ++++++++++++++++++++

 ––––––—

As you see in the output of cell 21, the order of execution
changes when we change the order of decorators.

Class Decorators

Decorators can be either functions or classes in Python. In
the previous sections we worked with function decorators.
Now, we will learn how to define class decorators.

We will define custom classes that acts as a decorator.
When a function is decorated with a class, that function
becomes an instance of the class. Let’s see how:

[22]: 1 # def ine a class decorator

 2 class ClassDecorator :

 3 # ini t method takes the funct ion

 4 def __ini t__(self , func):

 5 se l f . func = func

 6

 7 # implement __cal l__ method

 8 def __cal l__(self) :

 9 # some logic before func cal l

 10 print(‘__cal l__ method before func’)

 11 se l f . func()

 12 # Some logic af ter func cal l

 13 print(‘__cal l__ method af ter func’)

In cell 22, we have a simple class decorator. For any class
to be a decorator, it needs to implement the __cal l__() method.
The __cal l__() method acts the same way as the wrapper
function in the function decorators.

Now let’s use this class to decorate a function:

[23]: 1 # add class decorator to func

 2 @ClassDecorator

 3 def say_hi() :

 4 print(“Hi Python”)

 5

 6 # cal l the decorated funct ion

 7 say_hi()

[23]: __cal l__ method before func

 Hi Python

 __cal l__ method af ter func

Class Decorator with *args and **kwargs :

In order to use a class decorator with *args and **kwargs
arguments, we need to implement the __cal l__() method with
these arguments and pass them to the decorated function.

[24]: 1 # class decorator wi th *args & **kwargs

 2 class ClassDecorator :

 3 def __ini t__(self , func):

 4 se l f . func = func

 5

 6 def __cal l__(self , *args , **kwargs) :

 7 # some logic before func cal l

 8 se l f . func(*args, **kwargs)

 9 # Some logic af ter func cal l

In cell 24, the __call__() method of the class decorator
takes *args and **kwargs arguments. And in line 8, it passes
them to the decorated function as: self . func(*args, **kwargs).

Let’s decorate a function with this class decorator now:

[25]: 1 # add class decorator to func

 2 @ClassDecorator

 3 def say_hi(f i rs t , las t , msg=‘Hi’) :

 4 print(“{0} {1} {2}”.format(msg, f i rs t , las t))

 5

 6 # cal l the decorated funct ion

 7 say_hi(“Bruce”, “Wayne”, “Hi”)

[25]: Hi Bruce Wayne

Class Decorator with the return statement:
Remember that, in the wrapper function of a function

decorator we use the return keyword to return the decorated
function. We will do the same thing here, but inside the
__cal l__ method this time.

[26]: 1 # def ine a class decorator

 2 class UpperDecorator :

 3 def __ini t__(self , func):

 4 se l f . func = func

 5

 6 def __cal l__(self , *args) :

 7 # modify the i tems in *args

 8 new_args = []

 9 for i , arg in enumerate(args) :

 10 new_args.append(arg.upper())

 11 new_args = tuple(new_args)

 12

 13 # return the cal l to the func

 14 return se l f . func(*new_args)

 15

 16 @UpperDecorator

 17 def ful l_name(f i rs t , las t) :

 18 print(f i rs t , las t)

 19

 20 # cal l decorated funct ion

 21 ful l_name(‘ jane’ , ‘doe’)

[26]: JANE DOE

In cell 26 line 14, in the __cal l__ method we return the
decorated function as: return self . func(*new_args).

7. Context Managers

What is a Context Manager?

A Context Manager is an object that defines the runtime
context to be established when executing a with statement. The
context manager handles the entry into, and the exit from, the
desired runtime context for the execution of the block of code.
Context managers are normally invoked using the with statement,
but can also be used by directly invoking their methods.

Typical uses of context managers include saving and restoring
various kinds of global state, locking and unlocking resources,
closing opened files, etc…

In this chapter, we will learn how to work with context
managers in Python and how to define custom context managers.
You can find the PyCharm project for this chapter in the Github
Repository of this book.

Chapter Outline:

The with Statement
Context Manager Protocol
Creating a Context Manager in Class Form
Creating a Context Manager in Function Form

The width Statement
The with statement is used to wrap the execution of a block

with methods defined by a context manager. This allows common
try…except…final ly usage patterns to be encapsulated for
convenient reuse. Compared to traditional try…except…final ly
blocks, the with statement provide a shorter and reusable code.

https://github.com/musaarda/python-hands-on-book-advanced

In Python Standard Library many classes support with
statement. A very common example is the built-in open()
function which provides tools to work with the file objects using
the with statement.

Here is the general syntax of the with statement:

[1] : 1 with expression as target :

 2 # do something

 3 # using the target

Let’s see an example with the open() function. We have a text
file in the f i les folder in our current project. The file name is
color_names.txt and it includes some color names. We want to
open and print the content in this file by using the open() function
and with statement. Here is the code.

[2] : 1 # def ine the f i le path

 2 path = ‘f i les /color_names. txt’

 3

 4 # with s tatement

 5 with open(path, mode=‘r ’) as f i le :

 6 # read the f i le content

 7 print(f i le . read())

[2] : red

 orange

 yel low

 green

 blue

 white

 b lack

In cell 2, you see a common use case of the with statement.
We use the open() function to open the file at the given path.
And the open() function returns the f i le object in read mode. We
use this f i le object in line 7 to read and print its content as:
print(f i le .read()).

Context Manager Protocol

Python’s with statement supports the concept of a runtime
context defined by a context manager. This is implemented using
a pair of methods that allow user-defined classes to define a
runtime context that is entered before the statement body is
executed and exited when the statement ends.

These methods are called the Context Manager Protocol. Here
they are:

__enter__(self):

This method is called by the with statement to enter the
runtime context related to current object. The with statement will
bind this method’s return value to the target specified in the as
clause of the statement, if any. See cell 1.

An example of a context manager that returns itself is a f i le
object. File objects return themselves from __enter__() to allow
open() to be used as the context expression in a with statement.
See cell 2.

__exit__(self , exc_type, exc_value, traceback):

This method is called when the execution leaves the with code
block. It exits the runtime context related to this object. The
parameters describe the exception that caused the context to be
exited. If the context was exited without an exception, all three
arguments will be None.

If an exception is supplied, and the method wishes to suppress
the exception (i.e., prevent it from being propagated), it should
return a true value. Otherwise, the exception will be processed
normally upon exit from this method.

The __exit__() method returns a Boolean value, either True or
False.

The execution of the with statement with the methods in
context manager protocol proceeds as follows:

[3] : 1 with EXPRESSION as TARGET:

 2 SUITE

1. The context expression is evaluated to obtain a context
manager.

2. The context manager’s __enter__() is loaded for later use.
3. The context manager’s __exit__() is loaded for later use.
4. The context manager’s __enter__() method is invoked.
5. If a target was included in the with statement, the return

value from __enter__() is assigned to it.
6. The suite (code block in the with statement scope) is

executed.
7. The context manager’s __exit__() method is invoked. If an

exception caused the suite to be exited, its type, value, and
traceback are passed as arguments to __exit__(). Otherwise,
three None arguments are supplied.

If the suite was exited for any reason other than an exception,
the return value from __exit__() is ignored, and execution
proceeds at the normal location for the kind of exit that was
taken.

Creating a Context Manager in Class Form

Now that we know the basic idea behind the context manager
protocol let’s implement it in a class. This class will be our
context manager and we will use it later with the with statement.

[4] : 1 # custom context manager class

 2 class CustomContexManager :

 3 # ini t method -> def ine variables

 4 def __ini t__(self , path, mode):

 5 se l f .path = path

 6 se l f .mode = mode

 7 se l f . f i le = None

 8

 9 # __enter__ method -> open the f i le

 10 def __enter__(self) :

 11 se l f . f i le = open(self .path, self .mode)

 12 return se l f . f i le

 13

 14 # exi t method to c lose the f i le

 15
 def __exi t__(self , exc_type, exc_value,

exc_traceback):

 16 se l f . f i le .c lose()

Our CustomContexManager class implements the necessary
methods to become a context manager: __enter__ and __exit__.

In its __init__ method, it defines three instance variables to
store the path, mode and f i le objects.

In the __enter__ method it uses the built-in open() function to
open the file in the specified path. Since the open() function
returns the file object, we assign it to the self . f i le attribute.

In the __exit__ method we close the file as: self . f i le .c lose().
The __exit__ method accepts three arguments, which are required

by context manager protocol.

We can use our custom context manager in a with statement
now. Let’s do it:

[5] : 1 # custom contex manager in wi th s tatement

 2 fi le_path = ‘f i les /color_names. txt’

 3

 4
with CustomContexManager(path=fi le_path, mode=‘r ’) as
f i le :

 5 # print the f i le content

 6 print(f i le . read())

[5] : red

 orange

 yel low

 green

 blue

 white

 black

In cell 5, we use our CustomContexManager class in the with
statement. We read file content and print it.

Here is what happens behind the scenes:

1. The line 4 calls the __enter__ method of the
CustomContexManager class.

2. The __enter__ method opens the file and returns it.
3. We name the opened file simply as f i le.
4. In the suite of with statement, we read the file content and

print it.
5. The with statement calls the __exit__ method.

6. The __exit__ method closes the file.

Let’s define another context manager class. This time we want
to print the list of files in the specified folder.

[6] : 1 # context manager for l is t ing f i les

 2 import os

 3

 4 class ContentList :

 5 ”‘Prints the content of a directory”’

 6

 7 def __ini t__(self , d i rectory) :

 8 se l f .directory = directory

 9

 10 def __enter__(self) :

 11 return os . l is tdir(self .directory)

 12

 13 def __exi t__(self , exc_type, exc_val , exc_tb) :

 14 i f exc_type is not None:

 15 print(“Error get t ing directory l is t .”)

 16 return True

 17

 18 # print the contents of the project directory

 19 project_directory = ‘ . ’

 20 with ContentLis t (project_directory) as d i rectory_l is t :

 21 print(directory_l is t)

[6] : [‘ClassContextManager.py’ , ‘TheWithStatement .py’ ,
‘ f i les’ , ‘ . idea’]

In cell 6, we define a new context manager. The name of the
class is ContentList. Why is it a context manager? Because it
implements context manager protocol (__enter__ and __exit__
methods).

We take the directory path as the parameter in the class
constructor which is __init__ method.

In the __enter__ method we get the list of the contents in this
directory simply by calling the l is tdir() method in the os module
as: os. l istdir(self .directory). And we return this list. Please be
careful that, our __enter__ method returns a list in this context
manager.

In the __exit__ method, we check if there exist any errors. The
exc_type, exc_val, exc_tb parameter values will not be None if
there is an error in our context manager. So, we check if exc_type
is not None to print an error text.

In line 20, we use our context manager in the with statement.
Since it returns a list object, we simple assign the returning value
to the directory_l ist variable. And in the body of the with
statement, we print this list. In the cell output, you see the list of
the contents in the project directory. Remember that, ‘ . ’ means
the current directory, which is the project directory in our case.

Creating a Context Manager in Function Form

In the previous section we learned how to define context
managers by using the class syntax. However, it is a bit
cumbersome and lengthy. You need to implement __enter__ and
__exit__ methods explicitly and you need to handle possible
exceptions. Hopefully there is a better way of creating context
managers in Python: function-based context managers.

Function-Based Context Managers are special functions which
use generators and contextl ib.contextmanager decorator. The
contextl ib.contextmanager decorator is responsible for
implementing the context manager protocol.

Let’s define a context manager function:

[7] : 1 from contextl ib import contextmanager

 2

 3 # def ine the context manager funct ion

 4 @contextmanager

 5 def funct ion_based_context_manager() :

 6 print(“Enter ing the context : __enter__”)

 7 yield “This is a funct ion based context manager”

 8 print(“Leaving the context : __exi t__”)

 9

 10 # use context manager funct ion in wi th s tatement

 11 with funct ion_based_context_manager() as y ie ld_text :

 12 print(yield_text)

[7] : Enter ing the context : __enter__

 This is a funct ion based context manager

 Leaving the context : __exi t__

In cell 7, we define a custom function which acts as a context
manager. The contextmanager decorator is what turns a regular
function into a full-stack context manager. You don’t need to
worry about implementing the __enter__ and __exit__ functions
if you implement @contextmanager decorator.

The yield statement in line 7, acts as the return statement in
the __enter__ method in a class-based context manager. Since we
have a yield statement, function-based context managers are also
generator functions.

Let’s define a new context manager. This time it will open a
file in write mode and append some text. Here it is:

[8] : 1 # context manager for wri te operat ions

 2 from contextl ib import contextmanager

 3

 4 @contextmanager

 5 def wri ter_context_manager(path, mode=‘w’):

 6 f i le_object = None

 7 try :

 8 f i le_object = open(path, mode=mode)

 9 yield f i le_object

 10 f inal ly :

 11 i f f i le_object :

 12 f i le_object .c lose()

 13

 14 # context manager in wi th s tatement

15

with
writer_context_manager(“funct ion_based_context_managers . txt”)
as f i le :

 16 f i le .wri te(“The context l ib .contextmanager decorator \n”

 17 “ is responsible for implementing the \n”

 18 “context manager protocol .”)

In cell 8, we define a function-based context manager. In the
try block it tries to open the file in the specified path. If it opens it
successfully, then it yields (returns) the f i le_object. In the finally
block we check if we have a f i le_object to close. And we close
the f i le_object if it is not None.

In the with statement in line 15, we call our context manager
with a file name of function_based_context_managers.txt. The
context manager is open this file in write mode and return the file
object which we simply name as f i le. And in line 16, we write

some text in this file. Remember that ‘w’ mode will create an
empty file, if such a file doesn’t exist.

[1] Hands-On Python Series:
https://www.amazon.com/gp/product/B09JM26C3Z

https://www.amazon.com/gp/product/B09JM26C3Z

	Preface
	1.Introduction
	2.Collections
	3.Iterators
	4.Generators
	5.Date And Time
	6.Decorators
	7.Context Managers

