
Python
Challenges

100 Proven Programming Tasks Designed
to Prepare You for Anything
—
Michael Inden

Python Challenges
100 Proven Programming Tasks

Designed to Prepare You for Anything

Michael Inden

Python Challenges: 100 Proven Programming Tasks Designed to Prepare You
for Anything

ISBN-13 (pbk): 978-1-4842-7397-5 ISBN-13 (electronic): 978-1-4842-7398-2
https://doi.org/10.1007/978-1-4842-7398-2

Copyright © 2022 by Michael Inden

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: James Markham
Coordinating Editor: Mark Powers
Copyeditor: Mary Behr

Cover designed by eStudioCalamar

Cover image by Michael Inden

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.
springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science
+ Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub (github.com/apress). For more detailed information, please visit www.apress.com/
source- code.

Printed on acid-free paper

Michael Inden
Zurich, Switzerland

https://doi.org/10.1007/978-1-4842-7398-2

For our lovely princess Sophie Jelena

v

About the Author ��xix

About the Technical Reviewers ��xxi

Preface ���xxiii

Chapter 1: Introduction��� 1

1.1 Structure of the Chapters .. 1

1.1.1 Introduction .. 1

1.1.2 Exercises .. 1

1.1.3 Solutions ... 2

1.2 Basic Structure of the PyCharm Project .. 3

1.3 Basic Framework for Unit Tests with Pytest ... 5

1.4 Note on Programming Style .. 5

1.4.1 Thoughts on Source Code Compactness .. 6

1.4.2 Example 1 ... 6

1.4.3 Example 2 ... 7

1.4.4 Decorators and Sanity Checks at the Beginning of Functions .. 8

1.4.5 Block Comments in Listings ... 8

1.4.6 PEP 8 and the Zen of Python .. 9

1.4.7 More Information .. 12

1.5 Note on the Exercises ... 12

1.6 Trying Out the Examples and Solutions ... 13

1.7 Let’s Go: Discovering the Python Challenge .. 13

Table of Contents

vi

Part I: Fundamentals �� 15

Chapter 2: Mathematical Problems �� 17

2.1 Introduction ... 17

2.1.1 Short Introduction to Division and Modulo ... 17

2.1.2 Short Introduction to Divider .. 19

2.1.3 Short Introduction to Prime Numbers ... 20

2.1.4 Roman Numbers ... 22

2.1.5 Number Games ... 24

2.1.6 Getting Started with Lambdas .. 26

2.2 Exercises ... 28

2.2.1 Exercise 1: Basic Arithmetic (★✩✩✩✩) .. 28

2.2.2 Exercise 2: Number as Text (★★✩✩✩) ... 29

2.2.3 Exercise 3: Perfect Numbers (★★✩✩✩) ... 30

2.2.4 Exercise 4: Prime Numbers (★★✩✩✩) ... 30

2.2.5 Exercise 5: Prime Number Pairs (★★✩✩✩) .. 31

2.2.6 Exercise 6: Checksum (★★✩✩✩).. 31

2.2.7 Exercise 7: Roman Numbers (★★★★✩) ... 32

2.2.8 Exercise 8: Combinatorics (★★✩✩✩) ... 33

2.2.9 Exercise 9: Armstrong Numbers (★★✩✩✩) .. 33

2.2.10 Exercise 10: Max Change Calculator (★★★★✩) .. 34

2.2.11 Exercise 11: Related Numbers (★★✩✩✩) ... 34

2.2.12 Exercise 12: Prime Factorization (★★★✩✩) .. 35

2.3 Solutions ... 35

2.3.1 Solution 1: Basic Arithmetic (★✩✩✩✩) .. 35

2.3.2 Solution 2: Number as Text (★★✩✩✩) .. 39

2.3.3 Solution 3: Perfect Numbers (★★✩✩✩) .. 41

2.3.4 Solution 4: Prime Numbers (★★✩✩✩) .. 43

2.3.5 Solution 5: Prime Number Pairs (★★✩✩✩) ... 46

 2.3.6 Solution 6: Checksum (★★✩✩✩) ... 50

2.3.7 Solution 7: Roman Numbers (★★★★✩) ... 52

 2.3.8 Solution 8: Combinatorics (★★✩✩✩) ... 57

Table of ConTenTs

vii

2.3.9 Solution 9: Armstrong Numbers (★★✩✩✩)... 61

2.3.10 Solution 10: Max Change Calculator (★★★★✩) ... 64

2.3.11 Solution 11: Related Numbers (★★✩✩✩) ... 66

2.3.12 Solution 12: Prime Factorization (★★★✩✩) .. 67

2.4 Summary: What You Learned .. 70

Chapter 3: Recursion �� 71

3.1 Introduction ... 71

3.1.1 Mathematical Examples ... 71

3.1.2 Algorithmic Examples ... 77

3.1.3 Steps When Multiplying the Digits of a Number ... 82

3.1.4 Typical Problems: Endless Calls and RecursionError .. 83

3.2 Exercises ... 84

3.2.1 Exercise 1: Fibonacci (★★✩✩✩) ... 84

3.2.2 Exercise 2: Process Digits (★★✩✩✩) ... 85

3.2.3 Exercise 3: GCD (★★✩✩✩) ... 86

3.2.4 Exercise 4: Reverse String (★★✩✩✩) ... 87

3.2.5 Exercise 5: List Sum (★★✩✩✩) .. 87

3.2.6 Exercise 6: List Min (★★✩✩✩) .. 88

3.2.7 Exercise 7: Conversions (★★✩✩✩) .. 88

3.2.8 Exercise 8: Exponential Function (★★✩✩✩) ... 89

3.2.9 Exercise 9: Pascal’s Triangle (★★✩✩✩) .. 90

3.2.10 Exercise 10: Number Palindromes (★★★★✩) .. 91

3.2.11 Exercise 11: Permutations (★★★✩✩) ... 91

3.2.12 Exercise 12: Count Substrings (★★✩✩✩) ... 92

3.2.13 Exercise 13: Ruler (★★✩✩✩) .. 92

3.3 Solutions ... 93

3.3.1 Solution 1: Fibonacci (★★✩✩✩) ... 93

3.3.2 Solution 2: Process Digits (★★✩✩✩) .. 95

3.3.3 Solution 3: GCD (★★✩✩✩) .. 98

3.3.4 Solution 4: Reverse String (★★✩✩✩) ... 102

3.3.5 Solution 5: List Sum (★★✩✩✩) ... 103

Table of ConTenTs

viii

3.3.6 Solution 6: List Min (★★✩✩✩) .. 105

3.3.7 Solution 7: Conversions (★★✩✩✩) ... 106

3.3.8 Solution 8: Exponential Function (★★✩✩✩) ... 110

3.3.9 Solution 9: Pascal’s Triangle (★★✩✩✩) .. 114

3.3.10 Solution 10: Number Palindromes (★★★★✩) .. 118

3.3.11 Solution 11: Permutations (★★★✩✩) .. 122

3.3.12 Solution 12: Count Substrings (★★✩✩✩) ... 126

3.3.13 Solution 13: Ruler (★★✩✩✩) .. 130

3.4 Summary: What You Learned .. 132

Chapter 4: Strings ��� 133

4.1 Introduction ... 133

4.1.1 Practically Relevant Functions ... 133

4.1.2 Example Conversions and Extractions .. 135

4.1.3 Equality ... 136

4.1.4 Slicing—Access to Individual Characters and Substrings ... 137

4.1.5 Converting a String into a List of Characters .. 138

4.1.6 Iteration .. 138

4.1.7 Formatted Output ... 139

4.1.8 Character Processing ... 140

4.1.9 Example: String Processing .. 140

4.2 Exercises ... 141

4.2.1 Exercise 1: Number Conversions (★★✩✩✩) ... 141

4.2.2 Exercise 2: Joiner (★✩✩✩✩) .. 142

4.2.3 Exercise 3: Reverse String (★★✩✩✩) ... 142

4.2.4 Exercise 4: Palindrome (★★★✩✩) ... 143

4.2.5 Exercise 5: No Duplicate Chars (★★★✩✩) .. 144

4.2.6 Exercise 6: Remove Duplicate Letters (★★★✩✩) .. 144

4.2.7 Exercise 7: Capitalize (★★✩✩✩) ... 145

4.2.8 Exercise 8: Rotation (★★✩✩✩) ... 146

4.2.9 Exercise 9: Well Formed Braces (★★✩✩✩) .. 146

4.2.10 Exercise 10: Anagram (★★✩✩✩) .. 147

Table of ConTenTs

ix

4.2.11 Exercise 11: Morse Code (★★✩✩✩) ... 147

4.2.12 Exercise 12: Pattern Checker (★★★✩✩) ... 148

4.2.13 Exercise 13: Tennis Score (★★★✩✩) .. 148

4.2.14 Exercise 14: Version Numbers (★★✩✩✩) ... 149

4.2.15 Exercise 15: Conversion str_to_number (★★✩✩✩) .. 150

4.2.16 Exercise 16: Print Tower (★★★✩✩) ... 151

4.2.17 Exercise 17: Filled Frame (★★✩✩✩) .. 151

4.2.18 Exercise 18: Guessing Vowels (★★✩✩✩) ... 151

4.3 Solutions ... 152

4.3.1 Solution 1: Number Conversions (★★✩✩✩) ... 152

4.3.2 Solution 2: Joiner (★✩✩✩✩) .. 156

4.3.3 Solution 3: Reverse String (★★✩✩✩) ... 157

4.3.4 Solution 4: Palindrome (★★★✩✩) ... 160

4.3.5 Solution 5: No Duplicate Chars (★★★✩✩) ... 164

4.3.6 Solution 6: Remove Duplicate Letters (★★★✩✩) .. 166

 4.3.7 Solution 7: Capitalize (★★✩✩✩) .. 167

4.3.8 Solution 8: Rotation (★★✩✩✩) ... 172

4.3.9 Solution 9: Well Formed Braces (★★✩✩✩) ... 173

4.3.10 Solution 10: Anagram (★★✩✩✩) .. 175

4.3.11 Solution 11: Morse Code (★★✩✩✩) .. 177

4.3.12 Solution 12: Pattern Checker (★★★✩✩).. 179

4.3.13 Solution 13: Tennis Score (★★★✩✩) ... 182

4.3.14 Solution 14: Version Numbers (★★✩✩✩).. 185

4.3.15 Solution 15: Conversion str_to_number (★★✩✩✩) .. 187

4.3.16 Solution 16: Print Tower (★★★✩✩) ... 191

4.3.17 Solution 17: Filled Frame (★★✩✩✩) ... 193

4.3.18 Solution 18: Guessing Vowels (★★✩✩✩) .. 194

4.4 Summary: What You Learned .. 196

Table of ConTenTs

x

Chapter 5: Basic Data Structures: Lists, Sets, and Dictionaries ��������������������������� 197

5.1 Introduction ... 197

5.1.1 Sequential Data Types .. 197

5.1.2 Lists .. 199

5.1.3 Sets .. 205

5.1.4 Key-Value Mappings (Dictionaries) ... 206

5.1.5 The Stack as a LIFO Data Structure .. 209

5.1.6 The Queue as a FIFO Data Structure ... 210

5.2 Exercises ... 214

5.2.1 Exercise 1: Common Elements (★★✩✩✩) .. 214

5.2.2 Exercise 2: Your Own Stack (★★✩✩✩) .. 215

5.2.3 Exercise 3: List Reverse (★★✩✩✩) ... 215

5.2.4 Exercise 4: Remove Duplicates (★★✩✩✩) .. 216

5.2.5 Exercise 5: Maximum Profit (★★★✩✩) ... 216

5.2.6 Exercise 6: Longest Sequence (★★★✩✩) ... 217

5.2.7 Exercise 7: Well-Formed Braces (★★✩✩✩) .. 217

5.2.8 Exercise 8: Pascal’s Triangle (★★★✩✩) .. 218

5.2.9 Exercise 9: Check Magic Triangle (★★★✩✩) ... 219

5.2.10 Exercise 10: Most Frequent Elements (★★✩✩✩) ... 219

5.2.11 Exercise 11: Addition of Digits (★★★✩✩) .. 220

5.2.12 Exercise 12: List Merge (★★✩✩✩) ... 220

5.2.13 Exercise 13: Excel Magic Select (★★✩✩✩) .. 221

5.2.14 Exercise 14: Stack-Based Queue (★★✩✩✩) ... 221

5.3 Solutions ... 222

5.3.1 Solution 1: Common Elements (★★✩✩✩) ... 222

5.3.2 Solution 2: Your Own Stack (★★✩✩✩) ... 225

5.3.3 Solution 3: List Reverse (★★✩✩✩) ... 227

5.3.4 Solution 4: Remove Duplicates (★★✩✩✩) .. 231

5.3.5 Solution 5: Maximum Profit (★★★✩✩) .. 233

5.3.6 Solution 6: Longest Sequence (★★★✩✩) .. 235

5.3.7 Solution 7: Well-Formed Braces (★★✩✩✩) .. 239

5.3.8 Solution 8: Pascal’s Triangle (★★★✩✩) ... 244

Table of ConTenTs

xi

5.3.9 Solution 9: Check Magic Triangle (★★★✩✩) ... 246

5.3.10 Solution 10: Most Frequent Elements (★★✩✩✩) .. 250

5.3.11 Solution 11: Addition of Digits (★★★✩✩) .. 252

5.3.12 Solution 12: List Merge (★★✩✩✩) .. 257

5.3.13 Solution 13: Excel Magic Select (★★✩✩✩) .. 261

5.3.14 Solution 14: Stack-Based Queue (★★✩✩✩) ... 264

5.4 Summary: What You Learned .. 266

Chapter 6: Arrays �� 267

6.1 Introduction ... 267

6.1.1 One-Dimensional Arrays ... 268

6.1.2 Multidimensional Arrays ... 278

6.1.3 Typical Errors .. 286

6.1.4 Special Features ... 287

6.1.5 Recapitulation: NumPy ... 289

6.2 Exercises ... 296

6.2.1 Exercise 1: Even Before Odd Numbers (★★✩✩✩) .. 296

6.2.2 Exercise 2: Flip (★★✩✩✩) .. 297

6.2.3 Exercise 3: Palindrome (★★✩✩✩) .. 297

6.2.4 Exercise 4: Inplace Rotate (★★★✩✩) .. 298

6.2.5 Exercise 5: Jewels Board Init (★★★✩✩) ... 298

6.2.6 Exercise 6: Jewels Board Erase Diamonds (★★★★✩) ... 300

6.2.7 Exercise 7: Spiral Traversal (★★★★✩) ... 302

6.2.8 Exercise 8: Add One to an Array as a Number (★★✩✩✩) 303

6.2.9 Exercise 9: Sudoku Checker (★★★✩✩) ... 303

6.2.10 Exercise 10: Flood Fill (★★✩✩✩) .. 304

6.2.11 Exercise 11: Array Min and Max (★★✩✩✩) .. 305

6.2.12 Exercise 12: Array Split (★★★✩✩) .. 306

6.2.13 Exercise 13: Minesweeper Board (★★★✩✩) ... 308

6.3 Solutions ... 310

6.3.1 Solution 1: Even Before Odd Numbers (★★✩✩✩) ... 310

6.3.2 Solution 2: Flip (★★✩✩✩) ... 314

Table of ConTenTs

xii

6.3.3 Solution 3: Palindrome (★★✩✩✩)... 319

6.3.4 Solution 4: Inplace Rotate (★★★✩✩) .. 321

6.3.5 Solution 5: Jewels Board Init (★★★✩✩).. 326

6.3.6 Solution 6: Jewels Board Erase Diamonds (★★★★✩) ... 334

6.3.7 Solution 7: Spiral Traversal (★★★★✩) ... 346

6.3.8 Solution 8: Add One to an Array as a Number (★★✩✩✩) 351

6.3.9 Solution 9: Sudoku Checker (★★★✩✩) ... 353

6.3.10 Solution 10: Flood Fill (★★✩✩✩) .. 359

6.3.11 Solution 11: Array Min and Max (★★✩✩✩) ... 364

6.3.12 Solution 12: Array Split (★★★✩✩) ... 367

6.3.13 Solution 13: Minesweeper Board (★★★✩✩) ... 372

Part II: More Advanced and Tricky Topics �� 381

Chapter 7: Advanced Recursion ��� 383

7.1 Memoization ... 383

7.1.1 Memoization for Fibonacci Numbers .. 383

7.1.2 Memoization for Pascal’s Triangle .. 386

7.1.3 Memoization with Python On-Board Tools .. 388

7.2 Backtracking ... 393

7.2.1 The n-Queens Problem ... 393

7.3 Exercises ... 398

7.3.1 Exercise 1: Towers of Hanoi (★★★✩✩) ... 398

7.3.2 Exercise 2: Edit Distance (★★★★✩) .. 399

7.3.3 Exercise 3: Longest Common Subsequence (★★★✩✩) .. 400

7.3.4 Exercise 4: Way Out of a Labyrinth (★★★✩✩) ... 401

7.3.5 Exercise 5: Sudoku Solver (★★★★✩) .. 402

7.3.6 Exercise 6: Math Operator Checker (★★★★✩) .. 403

7.3.7 Exercise 7: Water Jug Problem (★★★✩✩) .. 404

7.3.8 Exercise 8: All Palindrome Substrings (★★★★✩) .. 405

7.3.9 Exercise 9: The n-Queens Problem (★★★✩✩) .. 405

Table of ConTenTs

xiii

7.4 Solutions ... 406

7.4.1 Solution 1: Towers of Hanoi (★★★✩✩) .. 406

7.4.2 Solution 2: Edit Distance (★★★★✩) ... 413

7.4.3 Solution 3: Longest Common Subsequence (★★★✩✩) ... 418

7.4.4 Solution 4: Way Out of a Labyrinth (★★★✩✩) ... 422

7.4.5 Solution 5: Sudoku Solver (★★★★✩) ... 426

7.4.6 Solution 6: Math Operator Checker (★★★★✩) ... 435

7.4.7 Solution 7: Water Jug Problem (★★★✩✩) ... 439

7.4.8 Exercise 8: All Palindrome Substrings (★★★★✩) .. 443

7.4.9 Solution 9: The n-Queens Problem (★★★✩✩) ... 449

7.5 Summary: What You Learned .. 457

Chapter 8: Binary Trees �� 459

8.1 Introduction ... 459

8.1.1 Structure, Terminology, and Examples of Use ... 460

8.1.2 Binary Trees .. 460

8.1.3 Binary Trees with Order: Binary Search Trees .. 461

8.1.4 Traversals ... 464

8.1.5 Balanced Trees and Other Properties ... 466

8.1.6 Trees for the Examples and Exercises .. 469

8.2 Exercises ... 471

8.2.1 Exercise 1: Tree Traversal (★★✩✩✩) .. 471

8.2.2 Exercise 2: Inorder, Preorder, and Postorder Iterative (★★★★✩) 472

8.2.3 Exercise 3: Tree Height (★★✩✩✩) .. 473

8.2.4 Exercise 4: Lowest Common Ancestor (★★★✩✩) ... 473

8.2.5 Exercise 5: Breadth-First (★★★✩✩) .. 474

8.2.6 Exercise 6: Level Sum (★★★★✩) ... 474

8.2.7 Exercise 7: Tree Rotate (★★★✩✩) ... 475

8.2.8 Exercise 8: Reconstruction (★★★✩✩) ... 476

8.2.9 Exercise 9: Math Evaluation (★★✩✩✩) ... 477

8.2.10 Exercise 10: Symmetry (★★✩✩✩) .. 477

8.2.11 Exercise 11: Check Binary Search Tree (★★✩✩✩) ... 479

Table of ConTenTs

xiv

8.2.12 Exercise 12: Completeness (★★★★★) ... 479

8.2.13 Exercise 13: Tree Printer (★★★★★).. 481

8.3 Solutions ... 485

8.3.1 Solution 1: Tree Traversal (★★✩✩✩) ... 485

8.3.2 Solution 2: Inorder, Preorder, and Postorder Iterative (★★★★✩) 489

8.3.3 Solution 3: Tree Height (★★✩✩✩) ... 497

8.3.4 Solution 4: Lowest Common Ancestor (★★★✩✩) .. 499

8.3.5 Solution 5: Breadth-First (★★★✩✩) ... 502

8.3.6 Solution 6: Level Sum (★★★★✩) ... 505

8.3.7 Solution 7: Tree Rotate (★★★✩✩) ... 509

8.3.8 Solution 8: Reconstruction (★★★✩✩) ... 513

8.3.9 Solution 9: Math Evaluation (★★✩✩✩) ... 519

8.3.10 Solution 10: Symmetry (★★✩✩✩) .. 522

8.3.11 Solution 11: Check Binary Search Tree (★★✩✩✩) .. 527

8.3.12 Solution 12: Completeness (★★★★★) .. 530

8.3.13 Solution 13: Tree Printer (★★★★★) .. 542

8.4 Summary: What You Learned .. 554

Chapter 9: Searching and Sorting �� 557

9.1 Introduction Search ... 557

9.1.1 Search with in(), index(), and count() .. 557

9.1.2 Search with rindex() and rfind() .. 559

9.1.3 Binary Search ... 559

9.2 Introduction Sort ... 560

9.2.1 Insertion Sort .. 560

9.2.2 Selection Sort ... 563

9.2.3 Merge Sort .. 566

9.2.4 Quick Sort ... 568

9.2.5 Bucket Sort ... 570

9.2.6 Final Thoughts .. 571

Table of ConTenTs

xv

9.3 Exercises ... 572

9.3.1 Exercise 1: Contains All (★★✩✩✩) ... 572

9.3.2 Exercise 2: Partitioning (★★★★✩) ... 573

9.3.3 Exercise 3: Binary Search (★★✩✩✩) .. 573

9.3.4 Exercise 4: Insertion Sort (★★✩✩✩) ... 574

9.3.5 Exercise 5: Selection Sort (★★✩✩✩) .. 574

9.3.6 Exercise 6: Quick Sort (★★★✩✩) .. 575

9.3.7 Exercise 7: Bucket Sort (★★✩✩✩) .. 576

9.3.8 Exercise 8: Search in Rotated Data (★★★★✩) ... 576

9.4 Solutions ... 577

9.4.1 Solution 1: Contains All (★★✩✩✩) .. 577

9.4.2 Solution 2: Partitioning (★★★★✩) ... 579

9.4.3 Solution 3: Binary Search (★★✩✩✩) .. 581

9.4.4 Solution 4: Insertion Sort (★★✩✩✩) ... 585

9.4.5 Solution 5: Selection Sort (★★✩✩✩) .. 586

9.4.6 Solution 6: Quick Sort (★★★✩✩) ... 588

9.4.7 Solution 7: Bucket Sort (★★✩✩✩) .. 590

9.4.8 Solution 8: Search in Rotated Data (★★★★✩) ... 592

9.5 Summary: What You Learned .. 599

Chapter 10: Conclusion and Supplementary Literature ��������������������������������������� 601

10.1 Conclusion .. 601

10.1.1 Lessons Learned Per Chapter ... 601

10.1.2 Noteworthy ... 603

10.2 Logic Puzzles .. 605

10.2.1 Gold Bags–Detect the Fake .. 605

10.2.2 Horse Race–Determine Fastest Three Horses .. 606

10.3 Supplementary Literature ... 609

10.3.1 Introduction to Algorithms and Data Structures ... 610

10.3.2 Basic Books .. 610

10.3.3 Specializing in Interview Questions.. 611

10.3.4 Supplements for Job Interviews at Top Companies ... 612

Table of ConTenTs

xvi

Part III: Appendix �� 613

Appendix A: Short Introduction to pytest ��� 615

A.1 Writing and Executing Tests .. 615

A.1.1 Installing pytest .. 615

A.1.2 First Unit Test.. 616

A.1.3 Executing Tests... 617

A.1.4 Handling Expected Exceptions ... 619

A.1.5 Parameterized Tests with pytest .. 620

A.2 Further Reading on pytest .. 622

Appendix B: Short Introduction to Decorators �� 623

B.1 Argument Checks by Decorator .. 623

B.2 Syntactic Sugar for Decorators ... 624

B.3 Checking Multiple Parameters .. 625

B.4 Logging Function Calls and Parameter Passing.. 626

B.5 Improvement with wraps from the functools Module ... 628

Appendix C: Quick Start O-Notation �� 629

C.1 Estimations with O-Notation ... 629

C.1.1 Complexity Classes .. 630

C.1.2 Complexity and Program Running Time ... 632

Appendix D: Short Introduction to Python 3�10 �� 635

D.1 Error Messages ... 635

D.1.1 Assignment Error Messages ... 635

D.1.2 Error Messages for Incomplete Strings .. 636

D.2 Case Distinctions with match ... 637

D.2.1 Python 3.9.x .. 637

Table of ConTenTs

xvii

D.3 Miscellaneous ... 640

D.3.1 Improvements in Context Managers .. 640

D.3.2 Performance Improvements ... 641

D.3.3 Extension at zip() .. 641

D.3.4 Typechecking Improvements .. 642

 Bibliography ��� 645

Index ��� 647

Table of ConTenTs

xix

About the Author

Michael Inden is an Oracle-certified Java developer with

over 20 years of professional experience designing complex

software systems for international companies, where he has

worked in various roles such as SW developer, SW architect,

consultant, team leader, CTO, head of academy, and trainer.

After being a freelancer for more than a year, he is currently

working as a Head of Development.

His special interests are creating high-quality

applications with ergonomic GUIs, developing and solving

programming puzzles, and coaching. He likes to pass on his knowledge and has led

various courses and talks, both internally and externally, as well as at conferences such

as JAX/W-JAX, JAX London, and Oracle Code One.

He is also an author of technical books. His German books Der Weg zum Java-Profi,

Java Challenge, and Python Challenge are all published by dpunkt.verlag.

xxi

About the Technical Reviewers

Aravind Medamoni is an experienced software developer. He works as a freelance

mobile application developer. He has proficiency in Java, Kotlin, Flutter, Dart, PHP,

JavaScript, Nodejs, MongoDB, and SQL. He worked as Tech Lead at OpenStackDC for

one year as a backend and Android developer. Aravind has trained many students to

start their career in the software domain. He has won a national level Hackathon.

Charles Bell conducts research in emerging technologies. He is a member of the Oracle

MySQL development team and is a principal developer for the MySQL cloud services

team. He lives in a small town in rural Virginia with his loving wife. He received his

Doctor of Philosophy in Engineering from Virginia Commonwealth University in 2005.

Dr. Bell is an expert in the database field and has extensive knowledge and experience

in software development and systems engineering. His research interests include 3D

printers, microcontrollers, three-dimensional printing, database systems, software

engineering, and sensor networks. He spends his limited free time as a practicing maker

focusing on microcontroller projects and refinement of three- dimensional printers.

xxiii

Preface

First of all, thank you for choosing this book. In it you will find a wide range of practice

exercises on a broad mix of topics that will help you improve your Python coding skills in

an enjoyable manner.

 Practice Makes Perfect
We all know the saying practice makes perfect. In crafts and other areas of real life, there

is a lot of practice, but the serious case is rare, such as in sports, music, and other fields.

Oddly enough, this is often significantly different for us software developers. We actually

spend almost all of our time implementing and tend to rarely spend time practicing and

learning—sometimes not at all. Why is that?

Presumably, this is due to the time pressure that usually dominates our professional

lives, and the fact that there isn’t much suitable exercise material available, even if there

are textbooks on algorithms and coding. Those tend to be either too theoretical or too

source code-focused and contain too little explanation of the solutions. This book aims

to change that.

 Why This Book?
So how did I come to tackle this book project? There are several reasons. On the one

hand, I was asked again and again by mail or personally by participants of my workshops

for a tutorial book as a supplement to my book Der Weg zum Java-Profi [Ind20]. That’s

how the first idea came about.

What really triggered the whole thing was that a recruiter from Google approached

me quite by surprise with an employment opportunity. As preparation for the upcoming

interviews and to refresh my knowledge, I started to search for suitable material.

Additionally, I developed some exercises for myself. In the process, I discovered the

great, but also partly quite challenging book Cracking the Coding Interview by Gayle

Laakmann McDowell [McD16], which inspired me further.

xxiv

As a result, I initially set out on a Java-focused book project called Java Challenges

in German and later in English. In the meantime, the idea came up to implement

something similar for Python, first as a German version and later as an English version.

So this Python edition is based on the Java version, but the whole book was revised and

“Pythonified.” For this purpose, I added, slightly modified, or partially removed things

in some places. In particular, I show (if appropriate) how to use Python features like List

Comprehensions and so on to make solutions more concise.

 Who Is This Book Aimed At?
This book is explicitly not intended for programming novices. It is aimed at readers

who already have basic or even good knowledge of Python and want to deepen it with

exercises. By solving small programming exercises, you will expand your knowledge

about Python, algorithms, and sound OO design in an entertaining way.

The following target groups are addresses in particular:

• High school and college students: First of all, this book is meant for

pupils with an interest in computer science as well as for students of

computer science who already know Python quite well as a language

and now want to deepen their knowledge by tackling some exercises.

• Teachers and lecturers: Of course, teachers and lecturers may also

benefit from this book and its large number of exercises of varying

difficulty, either as a stimulus for their own teaching or as a template

for exercises or exams.

• Hobby programmers and young professionals: In addition, the

book is aimed at dedicated hobby programmers and also young

professionals who like to program with Python and want to develop

themselves further. Furthermore, solving the exercises will help them

to be well prepared for potential questions in job interviews.

• Experienced software developers and architects: Finally, the book

is intended for experienced software developers and architects who

want to supplement or refresh their knowledge to be able to assist

their junior colleagues more effectively and are looking for some

inspiration and fresh ideas to do so. In addition, various exercises

PrefaCe

xxv

can also be used in job interviews, with the convenience of having

the sample solutions directly at hand for comparison. Also, for the

old hands there should be one or two “aha” experiences while finding

solutions and rethinking about algorithms and data structures.

 What Does This Book Teach?
This book provides a widespread mix of exercises on different topics. Some puzzles may

not be of direct, practical importance, but indirectly they help improve your creativity

and your ability to find solutions.

In addition to exercises and documented solutions, each topic covered in the book

starts with a short introduction. You can use the introductions to get up to speed with

the exercises to about the level of difficulty. In each subject area, there are always a few

easier exercises to get you started. With a little practice, you should also be able to tackle

more difficult problems. Occasionally there are some really challenging exercises, which

experts can try their hand at (or those who want to become experts).

 Practical Tips and Advice
This book is packed with various practical tips. They include interesting background

information as well as pitfalls to avoid.

HINT: TIP FROM THE TRENCHES

In boxes formatted like this you will find some tips worth knowing and additional hints to the

actual text later in the book.

 Difficulty Level at a Glance
A well-balanced, appealing exercise book needs a large number of tasks of different

levels of difficulty, which offer you as a reader the possibility to improve your knowledge

step by step. Although I assume a good understanding of Python, the solutions never

require deep knowledge of a specific topic or special language features.

PrefaCe

xxvi

To keep the level of difficulty obvious and straightforward, I use the star

categorization known from other areas, whose meaning in this context is explained in

more detail in Table 0-1.

Table 0-1.Levels of Diffiulty

Stars (meaning) Estimation Duration

★✩✩✩✩

(very easy)

These tasks should be solvable in a few minutes with simple

Python knowledge.

< 15 min

★★✩✩✩

(easy)

The tasks require a little bit of thinking, but then they are directly

solvable.

< 30 min

★★★✩✩

(medium)

The tasks are not overly challenging, but need some thinking,

a little bit of strategy and sometimes a look at different

constraints.

~ 30 – 45 min

★★★★✩

(difficult)

Proven problem-solving strategies, good knowledge of data

structures, and Python knowledge are required for the solution.

~ 45 – 90 min

★★★★★

(very difficult)

The tasks are really tricky and difficult to solve. These exercises

should only be tried once you’re able to solve the book’s easier

exercises without difficulty.

> 60 min

These ratings are only estimations from my side and are rather rough classifications.

Please keep in mind that the difficulty perceived by each individual also depends very

much on their background and level of knowledge. I have seen colleagues have a hard

time with tasks that I considered quite easy. But I also know the opposite: While others

seem to solve a task easily, you are in despair yourself because the penny just won’t drop.

Sometimes a break with a coffee or a short walk helps. Do not get demotivated! Everyone

struggles with some task at some time or another.

NOTE: POSSIBLE ALTERNATIVES TO THE SAMPLE SOLUTIONS

Please note that for some problems there are almost always some variants, which might be

even be more catchy for you. Therefore I will present interesting alternatives to the (sample)

solution from time to time as food for thought.

PrefaCe

xxvii

 Structure of This Book
Now that you have a rough picture of the contents of this book, I will introduce the topics

of each chapter briefly. As indicated, the exercises are grouped thematically. In this

context, the six chapters after the introduction build the basis and the subsequent three

chapters deal with more advanced topics.

Chapter 1: This chapter describes the basic structure of the following chapters with

an introduction, exercises, and solutions. Additionally, it provides a framework for the

unit tests that are often used to prove that the solutions are working. Finally, I give some

hints for trying out the examples and solutions.

Chapter 2: The second chapter is dedicated to mathematical operations as well as

tasks about prime numbers and the Roman numeral system. Besides, I present a few

ideas for number games.

Chapter 3: Recursion is an important basic building block concerning the definition

of algorithms. This chapter provides a short introduction, and the various exercises

should help you to understand recursion.

Chapter 4: Strings are known to be sequences of characters that offer a variety of

methods. A solid understanding is important since almost no program can operate

without strings. Therefore you will get to know the processing of strings through various

exercises.

Chapter 5: Python offers lists, sets, and dictionaries by default. For everyday

programming, a proficient use of all three containers is of great advantage, and you’ll get

training through the exercises.

Chapter 6: Arrays form basic building blocks in many programming languages. In

Python, lists are more common. Regarding performance and memory consumption,

arrays have advantages, which is reason enough to take a closer look at the whole thing

in this chapter.

Chapter 7: Chapter 3 covered the topic of recursion in an introductory manner. This

chapter reveals more advanced aspects of recursion. You start with the optimization

technique called memoization. After that, you look at backtracking as a problem-solving

strategy, which is based on trial and error. Just trying out possible solutions may help

keep various algorithms fairly understandable and elegant.

Chapter 8: Tree structures play an important role in computer science theory and

practice. In many application contexts, trees can be used profitably. This is the case,

for example, for the administration of a file system, the representation of a project with

subprojects and tasks, or a book with chapters, subchapters, and sections.

PrefaCe

xxviii

Chapter 9: Searching and sorting are two elementary topics in computer science

in the area of algorithms and data structures. The Python standard library implements

both of them and thus does the work for you. However, it is also worth looking behind

the scenes, for example, at different sorting methods and their specific strengths and

weaknesses.

Chapter 10: In this chapter, I summarize the book and give an outlook on

supplementary literature. To expand your skills, besides the training in programming, it

is recommended to study further books. A selection of helpful titles closes the main part

of this book.

Appendix A: Unit tests have proven to be useful for testing smaller modules. Many

of the solutions created in this book are tested with unit tests using pytest. This appendix

provides an introduction to the topic.

Appendix B: This appendix describes decorators. They allow elegant realizations

of cross-cutting functionality to be done transparently (i. e., without extensions in the

implementation of a function itself). For example, decorators can be used for parameter

checks and for memoization, an advanced recursion topic.

Appendix C: In this book, I sometimes estimate the running time behavior and

classify the complexity of algorithms. This appendix presents essentials about it.

Appendix D: This appendix presents some of the enhancements coming with the

current Python 3.10 that may be relevant to you.

 Conventions and Executable Programs
 Fonts Used
Throughout the text, the following conventions are applied concerning fonts:

• Normal text appears in the present font.

• Important text passages are marked italic or italic and bold.

• Sourcecode listings are written in this font to clarify that this text

is a part of a Python program. Also, classes, methods, function, and

parameters are displayed in this font.

PrefaCe

xxix

 Abbreviations Used
In the book, I use the abbreviations shown in Table 0-2. Other abbreviations are listed

in parentheses in the running text after their first definition and subsequently used

as needed.

Table 0-2.Abbreviations

Abbreviation Meaning

aPI application programming interface

asCII american standard Code for Information Interchange

(G)UI (Graphical) user interface

IDe Integrated development environment

 Python Version Used
This book was initially developed and tested with Python 3.9.6 but rechecked with the new

Python 3.10, which was released in October 2021 and is briefly covered in Appendix D.

Many of the solutions should also run in Python 2.7 with minimal adjustments. However,

I have only randomly checked this. In general, it makes sense to use the more modern

Python 3 for new projects.

 Download, Source Code, and Executables
The source code of the examples is available at www.apress.com/python- challenges.

There is a PyCharm project1 integrated. Because this is a hands-on book, many of the

programs are executable—it is possible to run them in the IDE or as a unit test.

However, many code snippets are great to try out in the Python command line

interpreter. To ensure this, functions that have already been developed are shown again

at suitable places.

1 PyCharm is a highly recommended IDE and is a Python-oriented variant of IntelliJ IDEA which
is available for free at www.jetbrains.com/de-de/pycharm/.

PrefaCe

http://www.apress.com/python-challenges
http://www.jetbrains.com/de-de/pycharm/

xxx

Some examples use special libraries that must be installed up front, like numpy,

pytest, and others, as follows:2

pip install pytest

pip install numpy

Please consult the installation instructions provided on the download site for further

information.

 Acknowledgments (English Book)
First of all, I am very grateful to all the people mentioned below in the acknowledgments

section for the German version of this book. Making this English version more than

a dream and realizing it was possible due to the effort of Steve Anglin of APress. He

organized a lot to finalize the contract and all the nitty-gritty details around publishing

rights. Additionally, Mark Powers was a great help by offering information on the

process and many other things around finalizing the manuscript. Guys, my warm thanks

go to you.

 Acknowledgments (German Book)
Writing a technical book is a beautiful but laborious and tedious task. You can hardly

do it on your own. Therefore, I would like to thank those who have directly or indirectly

contributed to the book’s emergence. In particular, I benefited from a strong team

of proofreaders during the preparation of the manuscript. It is helpful to learn from

different perspectives and experiences.

Many thanks to Martin Stypinski for various valuable hints and suggestions. Also, I

want to thank Jean-Claude Brantschen for his practical proposals. You have Pythonified

me even more :-) Multiple comments by Rainer Grimm and Tobias Overkamp around

Python and elegant solutions have further improved the book. Finally, as with many

of my books, Michael Kulla critically reviewed this Python version. Many thanks to all

of them!

2 Please remember to install pytest using the pip tool: pip install pytest (on Mac, use pip3
instead of pip).

PrefaCe

xxxi

Since this book was written based on the Java version, the acknowledgments in Java

Challenge are repeated below:

First of all, I would like to thank Michael Kulla, who is well known as a trainer for

Java SE and Java EE, for his multiple, thorough reviews of many chapters, the well-

founded comments, and great effort. I am also very grateful to Prof. Dr. Dominik Gruntz

for a multitude of suggestions for improvements. Besides, I received one or the other

helpful suggestions from Jean-Claude Brantschen, Prof. Dr. Carsten Kern, and Christian

Heitzmann. Once again, Ralph Willenborg read it very carefully and found several typing

errors. Many thanks for that!

Thanks also go to the team at dpunkt.verlag (Dr. Michael Barabas, Anja Weimer, and

Veronika Schnabel) for great cooperation. Also, I would like to thank Torsten Horn for his

sound professional review and Ursula Zimpfer for her eagle eyes in copy editing.

Finally, I would like to thank my wife, Lilija, for her understanding and support,

especially for several nudges to get on the bike and go for a ride instead of just working

on the book.

 Suggestions and Criticism
Although great care has been taken and the text was proofread several times,

misunderstandable formulations or even errors can unfortunately not be completely

excluded. If any of these should be noticeable to you, please do not hesitate to let me

know. I am also happy to receive suggestions or ideas for improvement. Please contact

me by mail at michael_inden@hotmail.com.

Zurich, April 2022

Michael Inden

PrefaCe

http://michael_inden@hotmail.com

1
© Michael Inden 2022
M. Inden, Python Challenges, https://doi.org/10.1007/978-1-4842-7398-2_1

CHAPTER 1

Introduction
Welcome to this workbook! Before you get started, I want to briefly outline what you can

expect when reading it.

This book covers a broad range of practice-relevant topics, represented by exercises

of different levels of difficulty. The exercises are (for the most part) independent of each

other and can be solved in any order, depending on your mood or interest.

Besides the exercises, you will find the corresponding answers, including a short

description of the algorithm used for the solution and the actual source code, which is

commented on at essential points.

1.1 Structure of the Chapters
Each chapter shares the same structure, so you will quickly find your way around.

1.1.1 Introduction
Each chapter begins with an introduction to the topic to get you familiar with the subject

area or get you in the right mood for the tasks that follow.

1.1.2 Exercises
The introduction is succeeded by a bunch of exercises and the following structure:

Task Each exercise first will have an assignment. In it, the desired functionality to be

realized is described in a few sentences. Often a function signature is already included as

a clue to the solution.

Examples Supplementary examples are almost always given for clarification with

inputs and expected results. For some quite simple tasks, which mainly serve to get to

know an API, examples are sometimes omitted.

https://doi.org/10.1007/978-1-4842-7398-2_1

2

Often, different value assignments of input parameter(s), as well as the expected

result, are shown in a table.

Input A Input B Result

[1, 2, 4, 7, 8] [2, 3, 7, 9] [2, 7]

The following notation styles apply to the specifications:

• “AB” represents textual specifications.

• True/False stands for Boolean values.

• 123 represent numeric values.

• [value1, value2,] represents collections like sets or lists,

but also arrays.

• { key1 : value1, key2 : value2, ... } describes dictionaries.

1.1.3 Solutions
The part of solutions follows the structure described below.

Task definition and examples First, you find the task description again so that you

don’t have to constantly flip back and forth between tasks and solutions. Instead, the

description of solutions is self-contained.

Algorithm A description of the chosen algorithm follows. For didactics, I sometime

present an erroneous way or a not-very-optimal solution to then uncover pitfalls and

iteratively come to an improvement. In fact, one or the other brute force solution is

sometimes even usable but offers optimization potentials. I then present corresponding,

sometimes astonishingly simple, but often very effective improvements.

Python shortcut Sometimes the task explicitly excludes certain Python standard

functionality for realizing the solution in order to penetrate a problem algorithmically.

In practice, however, you should use the defaults. In the separate short section named

“Python shortcut” I show how to make the solution shorter and more concise.

Examination Some of the tasks are quite easy or only serve to get used to syntax or

API functionality. For this, it often seems sufficient to execute a few calls directly in the

Python command line interpreter. That’s why I don’t use unit tests for this. The same

applies for a graphical presentation of a solution, such as displaying a Sudoku board and

if the corresponding unit test would probably be more difficult to understand.

Chapter 1 IntroduCtIon

3

However, the more complicated the algorithms become, the more sources of errors

exist, such as wrong index values, an accidental or omitted negation, or an overlooked

edge case. For this reason, it makes sense to check functionality with the help of unit

tests. In this book, for reasons of space, this is only accomplished for important inputs.

The companion resources contain over 80 unit tests with roughly 600 test cases, a pretty

good start. Nevertheless, in practice, the amount of unit tests and test cases should be

even more voluminous if possible.

1.2 Basic Structure of the PyCharm Project
The included PyCharm project closely follows the structure of the book. It offers a

separate folder for each relevant chapter (those with exercises), such as ch02_math or

ch08_recursion_advanced.

Some of the source code snippets from the respective introductions are located

in the subfolder intro. The provided (sample) solutions are collected in their own

subfolder named solutions and the modules are named according to the task as

follows: ex<no>_<taskdescription>.py.

Sources Figure 1-1 shows an outline for Chapter 2.

Figure 1-1. Outline of Chapter 2 sources

Chapter 1 IntroduCtIon

4

Utility modules All the useful utility functions developed in the respective chapters

are included in the provided PyCharm project in the form of utility modules. They are

combined into a module xyz_utils, which resides in its own subdirectory util—for

the chapter about mathematical tasks in the subdirectory ch02_math.util. The same

applies to the other chapters and topics.

Test classes Figure 1-2 shows some associated tests.

Figure 1-2. Tests

HINT: INSTALLATION OF EXTERNAL LIBRARIES OR FRAMEWORKS

Some examples use special libraries that must be installed up front, like numpy, pytest, and

others, using the pip tool (on Mac use pip3 instead of pip) as follows:

pip install pytest

pip install parameterized

pip install numpy

Chapter 1 IntroduCtIon

5

1.3 Basic Framework for Unit Tests with Pytest
To not exceed the scope of the book, the illustrated unit tests only show the test methods

but not the test module and the imports. To provide you with a basic framework into

which you can insert the test functions and as a starting point for your own experiments,

a typical test module is as follows:

import pytest

from ch02_math.solutions.ex01_basics import calc, \

 calc_sum_and_count_all_numbers_div_by_2_or_7_v2

@pytest.mark.parametrize("m, n, expected",

 [(6, 7, 0), (3, 4, 6), (5, 5, 5)])

def test_calc(m, n, expected):

 assert calc(m, n) == expected

@pytest.mark.parametrize("n, expected",

 [(3, {"sum": 2, "count": 1}),

 (8, {"sum": 19, "count": 4}),

 (15, {"sum": 63, "count": 8})])

def test_calc_sum_and_count_all_numbers_div_by_2_or_7(n, expected):

 assert calc_sum_and_count_all_numbers_div_by_2_or_7_v2(n) == expected

In addition to the import needed, this example shows parameterized tests that are

extensively used since they allow testing multiple combinations of values in a simple

way. For details, please see Appendix A.

1.4 Note on Programming Style
During discussions while writing this book the question came up if certain things should

be made more compact. This is why I would like to mention in advance something about

the programming style used in this book.

Chapter 1 IntroduCtIon

6

1.4.1 Thoughts on Source Code Compactness
The most important things for me when programming and especially for the

implementations in this book are easy comprehensibility and a clear structure.

This leads to simplified maintainability and changeability. Therefore, the shown

implementations are programmed as understandable as possible. I like to favor this

aspect in this book. In practice, it is often easier to live with a bit more verbosity than

with bad maintainability but more compact programming.

1.4.2 Example 1
Let’s have a look at a small example for clarification. First, let’s examine the readable,

easy-to-understand variant for inverting the contents of a string, which also shows very

nicely the two important elements of recursive termination and descent:

def reverse_string(text):

 # recursive termination

 if len(text) <= 1:

 return text

 first_char = text[0]

 remaining = text[1:]

 # recursive descent

 return reverse_string(remaining) + first_char

The following much more compact variant does not offer these advantages:

def reverse_string_short(text):

 return text if len(text) <= 1 else \

 reverse_string_short(text[1:]) + text[0]

Think briefly about in which of the two methods you feel safe making subsequent

changes. And what if you want to add unit tests? How do you find suitable value sets?

Chapter 1 IntroduCtIon

7

1.4.3 Example 2
Let’s bring in another example to illustrate my point. It concerns the following function

count_substrings() which is modeled after the standard count() function. The later

counts the number of occurrences of one string in another, and for the two inputs

“hellohe” and “he,” it returns the result 2.

First, we implement this reasonably straightforwardly as follows:

def count_substrings(text, value_to_find):

 # recursive termination

 if len(text) < len(value_to_find):

 return 0

 count = 0

 remaining = ""

 # does the text start with the search string?

 if text.startswith(value_to_find):

 # match: continue the search for the found

 # term after the location where it was found

 remaining = text[len(value_to_find):]

 count = 1

 else:

 # remove first character and search again

 remaining = text[1:]

 # recursive descent

 return count_substrings(remaining, value_to_find) + count

Let’s try to realize this compactly:

def count_substrings_short(text, value_to_find):

 return 0 if len(text) < len(value_to_find) else \

 (1 if text.startswith(value_to_find) else 0) + \

 count_substrings_short(text[1:], value_to_find)

Would you prefer to change this function or the one shown before?

Chapter 1 IntroduCtIon

8

By the way, the lower one still contains a subtle functional deviation! For the inputs

of “XXXX” and “XX” the first variant always consumes the characters and finds two

occurrences. The lower, however, moves only one character at a time and thus finds

three occurrences.

Further, integrating the previously realized functionality of advancing by the whole

search string into the second variant will lead to more obscure source code. On the

other hand, you can easily shift by only one character by simply adjusting the upper

text[len(value_to_find):] call and then even pull this functionality out of the if.

1.4.4 Decorators and Sanity Checks at the Beginning
of Functions

To ensure stable programs, it is often a good idea to check the parameters of central

functions for validity. These checks are adequate in the form of simple if statements.

In Python, however, this can often be accomplished more elegantly with the help of

decorators. To get started, please have a look at Appendix B.

1.4.5 Block Comments in Listings
Please note that there are various block comments in listings, which serve as orientation

and for better understanding. It’s advisable to use such comments with caution, and

it’s preferable to extract individual source code sections to methods or functions in

practice. For the book’s examples, these comments serve as reference points because the

introduced or presented facts are probably still new and unfamiliar to you as a reader.

does the text start with the search string?

if text.startswith(value_to_find):

 # match: continue the search for the found

 # term after the location where it was found

 remaining = text[len(value_to_find):]

 count = 1

else:

 # remove first character and search again

 remaining = text[1:]

Chapter 1 IntroduCtIon

9

1.4.6 PEP 8 and the Zen of Python
Besides my already presented thoughts about the programming style, I would like to

mention two things explicitly:

• PEP 8 Coding Standard (PEP = Python Enhancement Proposal)

• The Zen of Python—thoughts about Python

 PEP 8 Coding Standard

The official coding standard is available online at www.python.org/dev/peps/pep- 0008/

as PEP 8. This is intended to help write clean, consistent, and understandable Python

code. There is a tendency in the Python community to put more emphasis on pretty

source code than in other languages. In general, make it work somehow is not a

sustainable strategy, as I have also motivated.

However, there are a few things about which opinions may differ, for example

the limitation of the line length to 79 characters. With today’s HiDPI monitors and

resolutions beyond Full-HD, longer lines of around 120 characters are certainly possible.

But a line should also not be too long—especially if you want to compare two versions of

a file with each other; this can otherwise be annoying.

I may violate indentation hints for split lines to favor readability when optically

appropriate. Additionally, I occasionally name lambdas, which usually encapsulate only

a tiny piece of functionality and thus should not be named, for a better insight into how

things work or express more clearly what was intended. The latter is reported as E731 do

not assign a lambda expression, use a def. Please find more info in a moment.

 The Zen of Python

Interestingly, the Python command line interpreter (indicated by >>>) includes a built-in

output of style guides, also known as the Zen of Python. This is obtained by a call to

>>> import this

The following output occurs:

The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Chapter 1 IntroduCtIon

http://www.python.org/dev/peps/pep-0008/

10

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to do it.

Although that way may not be obvious at first unless you're Dutch.

Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.

Namespaces are one honking great idea -- let's do more of those!

Tooling As mentioned, PyCharm offers itself as IDE and provides various hints for

style and improvement possibilities directly in the editor. A configuration is possible

under Preferences > Editor > Code Style > Python as well as Preferences >

Editor > Inspections > Python. In particular, the latter gives you the option to enable

PEP8 coding style violation.

Alternatively or complementary, you can install the tool flake8 as follows—here,

and in the following text I always use $ to indicate input on the console (i.e., the

Windows command prompt and the terminal on MacOS). Please remember to use pip3

on Mac insted of pip.

$ pip install flake8

This helps to uncover various potential problems and violations against PEP 8 if you

call it as follows:

$ flake8 <mypythonmodule>.py mydirwithmodules ...

Chapter 1 IntroduCtIon

11

Sample run for the project sources Please find an example run that excludes the

virtual environment of Python and ignores some potential problems, just showing the

lambdas assignments mentioned before:

$ flake8 --exclude=venv --ignore=E501,F811,E126,E127,W504

./tests/ch02_math/ex09_armstrong_test.py:13:5: E731 do not assign a lambda

expression, use a def

./ch03_recursion/intro/intro.py:137:5: E731 do not assign a lambda

expression, use a def

./ch03_recursion/intro/intro.py:138:5: E731 do not assign a lambda

expression, use a def

./ch03_recursion/solutions/ex01_fibonacci.py:56:5: E731 do not assign a

lambda expression, use a def

./ch05_datastructures/intro/basics.py:41:1: E731 do not assign a lambda

expression, use a def

./ch06_arrays/solutions/ex06_erase_and_fall_down.py:146:5: F841 local

variable 'book_example' is assigned to but never used

./ch07_recursion_advanced/solutions/ex01_towers_of_hanoi.py:39:5: E731 do

not assign a lambda expression, use a def

Just for your info, these checks are excluded:

• E501 line too long (80 > 79 characters: As already stated, 79

characters per line are pretty few these days.

• F811 redefinition of unused ‘...’ from line ...: Samples

sometimes redefine variables and functions.

• E126 continuation line over-indented for hanging indent:

Minor deviations from the standard to achieve a nicer layout.

• E127 continuation line over-indented for visual indent:

Minor deviations from the standard to achieve a nicer layout.

• W504 line break after binary operator: Minor deviations from

the standard to achieve a nicer layout.

Chapter 1 IntroduCtIon

12

HINT: SONAR AS AN ALTERNATIVE

there are other tools for checking your sources. although somewhat more complex, for larger

projects it is recommended to perform a static source code analysis using Sonar. For this,

you must install Sonar and a Sonar runner. In return, though, you get a nice overview as well

as a history so that you can quickly recognize both positive and negative trends and take

countermeasures if necessary.

1.4.7 More Information
For more information on how to write clean Python, see the following books:

• Python Tricks: A Buffet of Awesome Python Features by Dan

Bader [Bad17]

• Mastering Python by Rick van Hattern [vH16]

1.5 Note on the Exercises
When solving the tasks, the goal is to deal with the appropriate algorithms and data

structures. Python offers an extensive collection of functionalities, for example for

calculating sums and minimums of lists or even more complex things like computing

permutations.

Some of the tasks can be solved with the ready-made standard functionalities in

a few lines. However, this is not the goal within this book, because the exercises serve

the algorithmic understanding and the extension of your problem-solving strategies.

By exploring and solving this yourself, you learn a lot in the process. Developing things

yourself is only for training, not for practical use: please keep in mind that in real projects

the standard functionality of Python should always be preferred and you should not

dream of inventing something yourself for which there is already a ready-made solution.

That’s why I often point out in a separate short section named “Python shortcut” a

solution that uses standard Python functionality.

Chapter 1 IntroduCtIon

13

1.6 Trying Out the Examples and Solutions
Basically, I prefer to use as comprehensible constructs as possible instead of fancy

syntax or API features of special Python versions. In many cases, you can simply copy

the source code snippets shown into the Python command line interpreter and execute

them. Alternatively, all relevant sources are provided in the PyCharm project that comes

with the book. There, the programs may be launched by a main() function or checked by

corresponding unit tests that are often available.

1.7 Let’s Go: Discovering the Python Challenge
So, enough of the preface! You are probably already excited about the first challenges

through the exercises. I hope you will enjoy this book and gain some new insights while

solving the exercises and experimenting with the algorithms.

If you need a refresher on pytest, decorators, or O-notation, you might want to take a

look at the appendices first.

Chapter 1 IntroduCtIon

PART I

Fundamentals

17
© Michael Inden 2022
M. Inden, Python Challenges, https://doi.org/10.1007/978-1-4842-7398-2_2

CHAPTER 2

Mathematical Problems
In this chapter, you start learning some basics about a few mathematical operations,

including prime numbers and the Roman numeral system. Additionally, I present a

couple of ideas for number games. The chapter is rounded off by a short introduction to

lambdas. With all this knowledge, you should be well prepared for the exercises.

2.1 Introduction
2.1.1 Short Introduction to Division and Modulo
Besides multiplication and division, the modulo operation (%) is also used quite

frequently. It is intended to determine the remainder of a division. Let’s illustrate this as

follows for integers where division remainders fall under the table:

(5 ∗ 7 + 3) // 7 = 38 // 7 = 5

(5 ∗ 7 + 3) % 7 = 38 % 7 = 3

Even with these few operations, you can solve various tasks. Please recall the

following things for actions on (integer) numbers:

• n / 10: Obviously divides by the value 10. Since Python 3, this returns

a floating point number as result. If you need an integer, you can use

a type conversion with int(), such as int(value / 10).

• n // 10: Also divides by the value 10. Because the // operator

performs an integer division without a remainder, it is possible to

truncate the last digit with it.

• n % 10: Determines the remainder of a division by 10 and thus the

last digit.

https://doi.org/10.1007/978-1-4842-7398-2_2

18

Extraction of digits To extract the digits of a number, combine modulo and division

as long as the remaining value is greater than 0.

def extract_digits(number):

 remaining_value = number

 while remaining_value > 0:

 digit = remaining_value % 10

 remaining_value = remaining_value // 10

 print(digit, end=' ')

 print()

In Python, there is another special feature with the built-in function divmod(), which

returns both the divisor and the remainder as a result—as a shortcut for the operators

that are often called in combination. In addition, you can exploit tuple unpacking in the

following, whereby the result is assigned to the respective variable:

def extract_digits(number):

 remaining_value = number

 while remaining_value > 0:

 remaining_value, digit = divmod(remaining_value, 10)

 print(digit, end=' ')

 print()

Let’s call this method once to understand its way of working—please note that the

digits are output in reverse order.

>>> extract_digits(123)

3 2 1

Determine number of digits Instead of extracting individual digits, you can also use

a repeated division to determine the number of digits in a decimal number by simply

dividing by 10 until there is no remainder left:

def count_digits(number):

 count = 0

 remaining_value = number

 while remaining_value > 0:

 remaining_value = remaining_value // 10

 count += 1

 return count

Chapter 2 MatheMatiCal probleMs

19

2.1.2 Short Introduction to Divider
In the following, you examine how to determine all real divisors of a number (i. e., those

without the number itself). The algorithm is quite simple. Initially, the result contains

the number 1, as this is always a valid divider. Then you go through all numbers starting

by 2 up to half of the value (all higher values cannot be integer divisors if 2 is already

a divisor) and check if they divide the given number without a remainder. If this is the

case, then this number is a divisor and is included in a result list. You implement the

whole thing as follows:

def find_proper_divisors(value):

 divisors = [1]

 for i in range(2, value // 2 + 1):

 if value % i == 0:

 divisors.append(i)

 return divisors

One more small note about naming: For loop variables, short names like i are

common, but current_number would also be a readable alternative.

Using list comprehension1 you can write the calculation more concisely:

def find_proper_divisors(value):

 return [i for i in range(1, value // 2 + 1) if value % i == 0]

Let’s call this method once to understand its operation and confirm it to be working

well based on the output conforming to expectations:

>>> find_proper_divisors(6)

[1, 2, 3]

>>> find_proper_divisors(24)

[1, 2, 3, 4, 6, 8, 12]

1 List comprehension is the term used to describe an expression that generates a new result list
based on a sequence of values and a calculation rule (see subsection 5.1.2).

Chapter 2 MatheMatiCal probleMs

20

2.1.3 Short Introduction to Prime Numbers
A prime number is a natural number that is greater than 1 and exclusively divisible by

itself and by 1. There are two quite understandable algorithms for checking whether a

given number is prime or for calculating primes up to a given maximum value.

Brute force algorithm for prime numbers Whether a number is a prime number or

not can be determined as follows. You look for the number to be checked starting from 2

up to at most half of the number, whether the current number is a divisor of the original

number.2 In that case, it’s not a prime. Otherwise, it needs to be checked further. In

Python, this can be written as follows:

def is_prime(potentially_prime):

 for i in range(2, potentially_prime // 2 + 1):

 if potentially_prime % i == 0:

 return False

 return True

To try it out, run the function in a loop and determine all prime numbers up to the

value 25. The program output demonstrates that the functionality works correctly.

>>> primes = []

>>> for number in range(2, 25):

... if is_prime(number):

... primes.append(number)

... print(primes)

Using list comprehension, you can write this more concisely:

>>> primes = [number for number in range(2, 25) if is_prime(number)]

... print(primes)

In both cases, you get the prime numbers less than 25 as the correct result:

[2, 3, 4, 5, 7, 11, 13, 17, 19, 23]

2 As an optimization, you actually only have to calculate up to the root. I briefly discuss this in the
following practical tip “Possible optimizations.”

Chapter 2 MatheMatiCal probleMs

21

Optimization: Sieve of Eratosthenes Another algorithm for determining prime

numbers up to a given maximum value is called the Sieve of Eratosthenes. It dates back

to the Greek mathematician with the same name.

The whole thing works as follows. Initially, all numbers starting at the value 2 up to

the given maximum value are written down, for example

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

All numbers are initially considered as potential candidates for prime numbers. Now

the numbers that cannot be prime numbers are eliminated step by step. The smallest

unmarked number is taken, in this case, the number 2, which corresponds to the first

prime number. Now all multiples of it are eliminated, in the example 4, 6, 8, 10, 12, 14:

You continue with the number 3, which is the second prime number. Again, the

multiples are eliminated. These are the numbers 6, 9, 12, 15:

The next unmarked number and thus a prime number is 5. The procedure is

repeated as long as there are still unmarked numbers after the current prime number:

This leads to the following result for all prime numbers smaller than 15:

2, 3, 5, 7, 11, 13

In exercise 4, you are supposed to implement the Sieve of Eratosthenes by yourself.

Then you may use the following values to test your algorithm in addition to the above:

Limit Result

25 [2, 3, 5, 7, 11, 13, 17, 19, 23]

50 [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]

Chapter 2 MatheMatiCal probleMs

22

HINT: POSSIBLE OPTIMIZATIONS

as you can see, numbers are often crossed out several times. if you are mathematically a

little more experienced, you can prove that at least one prime factor of a composite number

must always be smaller equal to the root of the number itself. the reason is that if x is a

divisor greater than sqrt(n), then it holds that p = n/x is smaller than sqrt(n) and thus this

value has already been tried. thus you can optimize the multiples’ elimination. Firstly, you

start the elimination with the square of the prime number since all smaller multiples are

already eliminated. secondly, the calculation has to be done only up to the root of the upper

limit. More details are supplied under https://en.wikipedia.org/wiki/Sieve_of_

Eratosthenes.

2.1.4 Roman Numbers
The Roman numeral system works with special letters and combinations of them to

represent numbers. The following basic mapping is applicable:3

Roman number i V X l C D M

Value 1 5 10 50 100 500 1000

The corresponding value is usually calculated by adding the values of the individual

digits from left to right. Normally (see the following rules), the largest number is on the

left and the smallest number is on the right, for example, XVI for the value 16.

 Rules

Roman numerals are composed according to certain rules:

 1. Addition rule: The same digits next to each other are added, for

example XXX = 30. Likewise, this applies to smaller digits after

larger ones, so XII = 12.

3 Interestingly the value 0 does not exist in Roman numerals.

Chapter 2 MatheMatiCal probleMs

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

23

 2. Repetition rule: No more than three identical digits may follow

each other. According to rule 1, you could write the number 4 as

IIII, which this rule 2 forbids. This is where the subtraction rule

comes into play.

 3. Subtraction rule: If a smaller number symbol appears in front of a

larger one, the corresponding value is subtracted. Let’s look again

at 4. It can be represented as subtraction 5 − 1. This is expressed

as IV in the Roman numeral system. The following rules apply to

the subtraction:

• I precedes only V and X.

• X precedes only L and C.

• C precedes only D and M.

 Examples

For better understanding and clarification of the above rules, let’s look at some notations

of Roman numerals and their corresponding values:

VII

MDCLXVI

MMXVIII

� � � �
� � � � � � � �
�

5 1 1 7

1000 500 100 50 10 5 1 1666

1000�� � � � � � �
� � � � � �

1000 10 5 1 1 1 2018

1000 1000 10 1 10 2019MMXIX

Noteworthy

The Arabic numerals common in our modern world rely on the decimal system. The

digits’ position determines their value: thus, 7 can be the number itself, but it can also

represent 70 or 700. However, in the Roman numeral system, the V always stands for a 5,

regardless of the position.

Because of this particular structure of Roman numerals, many math operations are

complex; even a simple addition may cause a bigger or sometimes even a complete change

of the number. This becomes very obvious for the numbers 2018 and 2019 or for the

addition III + II = V. Even worse, significantly more complex is a multiplication or division—

there are speculations that this was one of the factors why the Roman Empire collapsed.

Chapter 2 MatheMatiCal probleMs

24

NOTE: LARGER NUMBERS

there are special notations for representing larger roman numerals (in the range of ten

thousand and above) because no four or more Ms are allowed to follow each other. this has

no relevance for the tasks of this book. if interested, you may consult the internet or other

sources.

2.1.5 Number Games
In this section, you’ll look at a few special number constellations:

• Perfect numbers

• Armstrong numbers

• Checksums

In many of the algorithms used below, you subdivide numbers into their digits to be

able to perform corresponding number games.

 Perfect Numbers

By definition, a number is called a perfect number if its value is equal to the sum of its

real divisors (i. e., excluding itself). This may sound a bit strange, but it is quite simple.

Let’s consider the number 6 as an example. It possesses as real divisors the numbers 1, 2,

and 3. Interestingly, it now holds

1 + 2 + 3 = 6

Let’s look at another counterpart: the number 20, which has the real divisors 1, 2, 4, 5,

and 10, but their sum is 22 and not 20.

1 + 2 + 4 + 5 + 10 = 22

 Armstrong Numbers

In this section you examine Armstrong numbers. These are numbers whose individual

digits are first exponentiated by the number of digits in the number and then added

together. If this sum then corresponds to the original number’s value, it is called an

Armstrong number. To keep things a little simpler, let’s look at the special case of

Chapter 2 MatheMatiCal probleMs

25

three- digit numbers. To be an Armstrong number, the following equation must be

satisfied with this number:

 x y z x y z� � � � � � �100 10 3 3 3

The digits of the number are modeled as x, y, and z and are all in the range

from 0 to 9.

The formula x ∗ 100 + y ∗ 10 + z results from the position of the digits and a textual

representation of "xyz", so

1 100 5 10 3 153

3 100 7 10 1 371

� � � � �
� � � � �

" "
" "

Let’s consider two examples for which this formula is satisfied:

153 1 100 5 10 3 1 5 3 1 125 27 153

371 3 100 7 10 1 3

3 3 3

3

� � � � � � � � � � � �
� � � � � � �77 1 27 343 1 3713 3� � � � �

Variation As a modification, it is also quite interesting for which digits or numbers of

the following equation are fulfilled:

 x y z x y z� � � � � � �100 10 1 2 3

or

 x y z x y z� � � � � � �100 10 3 2 1

For the first equation, there are the following solutions:

[135, 175, 518, 598]

For the second equation, there is no solution for x, y, and z in the range up to 100. If

you like, you can verify this yourself when implementing the bonus part of exercise 9—or

look at the solutions.

 Algorithm for a Simple Checksum

A checksum is coded into various numbers so that it is easy to prove validity. This

applies, for example, to credit card numbers and to data transfers via special protocols.

Chapter 2 MatheMatiCal probleMs

26

Let’s assume that a checksum has to be calculated for a number with four digits

(hereafter modeled as a to d). Then you can perform the following calculation based on

the position:

 abcd a b c d� � � � � � � �� �1 2 3 4 10%

Once again, let’s illustrate the calculation with examples:

Input Position calculation Value Checksum

1111 1 * 1 + 1 * 2 + 1 * 3 + 1 * 4 1 + 2 + 3 + 4 = 10 10 % 10 = 0

1234 1 * 1 + 2 * 2 + 3 * 3 + 4 * 4 1 + 4 + 9 + 16 = 30 30 % 10 = 0

4321 4 * 1 + 3 * 2 + 2 * 3 + 1 * 4 4 + 6 + 6 + 4 = 20 20 % 10 = 0

7271 7 * 1 + 2 * 2 + 7 * 3 + 1 * 4 7 + 4 + 21 + 4 = 36 36 % 10 = 6

0815 0 * 1 + 8 * 2 + 1 * 3 + 5 * 4 0 + 16 + 3 + 20 = 39 39 % 10 = 9

5180 5 * 1 + 1 * 2 + 8 * 3 + 0 * 4 5 + 2 + 24 + 0 = 31 31 % 10 = 1

2.1.6 Getting Started with Lambdas
This subsection briefly introduces lambda expressions (lambdas for short). The

language construct lambda comes from functional programming. Lambdas reflect

the mathematical concept of functions with input, processing, and output, for

example a squaring f(x) = x ∗ x. This can also be implemented using functions in

Python, but lambdas offer an even shorter notation. Simply speaking, a lambda is

a container for some source code or an anonymous function, such as one without a

function name. Although lambdas are useful in many ways, sometimes readability and

comprehensibility suffer. Therefore the Python style guide (PEP 8) is not necessarily in

favor of lambdas.

 Lambda Syntax

Lambdas, unlike functions, have no name, no return, and do not need to be introduced

with def. This results in an even shorter notation, reduced to the essentials, with the

following syntax where only expressions are allowed, but not statements:

lambda parameter(s): expression

Chapter 2 MatheMatiCal probleMs

27

A few simple examples of lambdas are the addition of two numbers, the

multiplication by a factor of 2 or two numbers, and the calculation of power. These

actions can be written as lambdas as follows:

>>> add_one = lambda x: x + 1

>>> double_it = lambda x: x * 2

>>> mult = lambda a, b : a * b

>>> power_of = lambda x, y: x ** y

Please note that the PEP 8 style guide states to not assign a lambda expression and to

use a def instead. Occasionally, as in the above case, I name lambdas for a better insight

into how things work or to express more clearly what was intended even though they

usually encapsulate only a tiny piece of functionality and thus should not be named.

As an example, to perform doubling as well as exponentiation:

>>> double_it = lambda x: x * 2

>>> power_of = lambda x, y: x ** y

>>> print(double_it(7))

14

>>> print(power_of(2,8))

256

In fact, these lambdas look pretty unspectacular, and in particular, it becomes clear

that a lambda is just a small piece of executable source code. Let’s take another look at

the corresponding function definitions for the first two examples to differentiate them:

def add_one(x):

 return x + 1

def double_it(x)

 return x * 2

 Lambdas in Action with sort()

For lists Python offers a method named sort() to sort the elements. To get started, let’s

look at a list of numbers. First, you sort them according to their natural order:

>>> numbers = [11, 2, 30, 333, 14, 4444, 100, 2222]

>>> numbers.sort()

Chapter 2 MatheMatiCal probleMs

28

>>> print(numbers)

[2, 11, 14, 30, 100, 333, 2222, 4444]

When calling sort() you can use the named parameter key to control sorting. Now

you want to sort the numbers by length. Therefore, you use a lambda to convert the

numbers to strings using str() and sort them by their length with len()—within the

same length the ordering is not defined.

>>> numbers = [11, 2, 30, 333, 14, 4444, 100, 2222]

>>> numbers.sort(key=lambda x: len(str(x)))

>>> print(numbers)

[2, 11, 30, 14, 333, 100, 4444, 2222]

A second sort criterion can easily be added using the following tuple:

>>> numbers.sort(key=lambda x: (len(str(x)), x))

>>> print(numbers)

[2, 11, 14, 30, 100, 333, 2222, 4444]

2.2 Exercises
2.2.1 Exercise 1: Basic Arithmetic (★✩✩✩✩)
 Exercise 1a: Basic Arithmetic Operations (★✩✩✩✩)

Write function calc(m, n) that multiplies two variables m and n of type int, then

divides the product by two, and outputs the remainder with respect to division by 7.

 Examples

m n m * n m * n // 2 Result ((n * m // 2) % 7)

6 7 42 21 0

5 5 25 12 5

A short reminder: With an integer division, the remainder is truncated. Therefore

25//2 results in the value 12.

Chapter 2 MatheMatiCal probleMs

29

 Exercise 1b: Statistics (★★✩✩✩)

Count as well as sum up the natural numbers that are divisible by 2 or 7 up to a given

maximum value (exclusive) and output it to the console. Write function calc_sum_and_

count_all_numbers_div_by_2_or_7(max_exclusive). Extend it so that it returns the

two values instead of performing the console output.

 Examples

Maximum Divisible by 2 Divisible by 7 Result
Count Sum

3 2 -/- 1 2

8 2, 4, 6 7 4 19

15 2, 4, 6, 8, 10, 12, 14 7, 14 8 63

 Exercise 1c: Even or Odd Number (★✩✩✩✩)

Create the functions is_even(n) and is_odd(n) that will check if the passed integer is

even or odd, respectively.

2.2.2 Exercise 2: Number as Text (★★✩✩✩)
Write function number_as_text(n) which, for a given positive number, converts the

respective digits into corresponding text.

Start with the following fragment for the last digit of a number:

def number_as_text(n):

 remainder = n % 10

 value_to_text = ""

 if remainder == 0:

 value_to_text = "ZERO"

 if remainder == 1:

 value_to_text = "ONE"

 # ...

 return value_to_text

Chapter 2 MatheMatiCal probleMs

30

 Examples

Input Result

7 “seVeN”

42 “FoUr tWo”

24680 “tWo FoUr siX eiGht Zero”

13579 “oNe three FiVe seVeN NiNe”

2.2.3 Exercise 3: Perfect Numbers (★★✩✩✩)
By definition, a natural number is called a perfect number if its value is equal to the sum

of its real divisors. This is true, for example, for the numbers 6 and 28:

1 + 2 + 3 = 6

1 + 2 + 4 + 7 + 14 = 28

Write function calc_perfect_numbers(max_exclusive) that calculates the perfect

numbers up to a maximum value, say 10,000.

 Examples

Input Result

1000 [6, 28, 496]

10000 [6, 28, 496, 8128]

2.2.4 Exercise 4: Prime Numbers (★★✩✩✩)
Write function calc_primes_up_to(max_value) to compute all prime numbers up

to a given value. As a reminder, a prime number is a natural number greater than 1

and exclusively divisible by itself and by 1. To compute a prime number, the Sieve of

Eratosthenes was described before.

Chapter 2 MatheMatiCal probleMs

31

Examples

Check your algorithm with the following values:

Input Result

15 [2, 3, 5, 7, 11, 13]

25 [2, 3, 5, 7, 11, 13, 17, 19, 23]

50 [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]

2.2.5 Exercise 5: Prime Number Pairs (★★✩✩✩)
Compute all pairs of prime numbers with a distance of 2 (twin), 4 (cousin), and 6 (sexy)

up to an upper bound for n. For twins then the following is true:

 is Prime n is Prime n_ && _� � �� �2

Examples

The following results are expected for limit 50:

Type Result

twin {3: 5, 5: 7, 11: 13, 17: 19, 29: 31, 41: 43}

cousin {3: 7, 7: 11, 13: 17, 19: 23, 37: 41, 43: 47}

sexy {5: 11, 7: 13, 11: 17, 13: 19, 17: 23, 23: 29, 31: 37, 37: 43, 41: 47, 47: 53}

2.2.6 Exercise 6: Checksum (★★✩✩✩)
Create function calc_checksum(digits) that performs the following position-based

calculation for the checksum of a number of any length given as a string, with the n digits

modeled as z1 to zn:

 z z z z z z z n zn n1 2 3 1 2 31 2 3 10� � � � � � � ��� �� �%

Chapter 2 MatheMatiCal probleMs

32

 Examples

Input Sum Result

“11111” 1 + 2 + 3 + 4 + 5 = 15 15 % 10 = 5

“87654321” 8 + 14 + 18 + 20 + 20 + 18 + 14 + 8 = 120 120 % 10 = 0

2.2.7 Exercise 7: Roman Numbers (★★★★✩)
 Exercise 7a: Roman Numbers ➤ Decimal Numbers (★★★✩✩)

Write function from_roman_number(roman_number) that computes the corresponding

decimal number from a textually valid Roman number.4

 Exercise 7b: Decimal Numbers ➤ Roman Numbers (★★★★✩)

Write function to_roman_number(value) that converts a decimal number to a (valid)

Roman number.

 Examples

Arabic Roman

17 “XVii”

444 “CDXliV”

1971 “MCMlXXi”

2020 “MMXX”

4 For syntactically invalid Roman numbers, such as IXD, an incorrect result, here 489, can be
computed by applying subtraction rule twice in a row: 0 − 1 − 10 + 500.

Chapter 2 MatheMatiCal probleMs

33

2.2.8 Exercise 8: Combinatorics (★★✩✩✩)
 Exercise 8a: Computation of a2 + b2 = c2

Compute all combinations of the values a, b, and c (each starting from 1 and less than

100) for which the following formula holds:

 a b c2 2 2� �

Bonus (★★★✩✩) Reduce the running time of O(n3) to O(n2). If needed, consult

Appendix C for an introduction to O-notation.

 Exercise 8b: Computation of a2 + b2 = c2 + d 2

Compute all combinations of the values a, b, c, and d (each starting from 1 and less than

100) for which the following formula holds:

 a b c d2 2 2 2� � �

Bonus (★★★✩✩) Reduce the running time of O(n4) to O(n3).

2.2.9 Exercise 9: Armstrong Numbers (★★✩✩✩)
This exercise deals with three-digit Armstrong numbers. By definition, these are

numbers for whose digits x, y, and z from 1 to 9 satisfy the following equation:

 x y z x y z� � � � � � �100 10 3 3 3

Write function calc_armstrong_numbers() to compute all Armstrong numbers for x,

y, and z (each < 10).

 Examples

153 1 100 5 10 3 1 5 3 1 125 27 153

371 3 100 7 10 1 3

3 3 3

3

� � � � � � � � � � � �
� � � � � � �77 1 27 343 1 3713 3� � � � �

Chapter 2 MatheMatiCal probleMs

34

Bonus Find a generic version with functions or lambdas and then try the following

three formulas:

x y z x y z

x y z x y z

x y z x

� � � � � � �
� � � � � � �
� � � � � �

100 10

100 10

100 10

3 3 3

1 2 3

3 yy z2 1�

2.2.10 Exercise 10: Max Change Calculator (★★★★✩)
Suppose you have a collection of coins or numbers of different values. Write function

calc_max_possible_change(values) that determines, for positive integers, what

amounts can be seamlessly generated with it starting from the value 1. The maximum

value should be returned as a result.

 Examples

Input Possible values Maximum

1 1 1

1, 1 1, 2 2

1, 5 1 1

1, 2, 4 1, 2, 3, 4, 5, 6, 7 7

1, 2, 3, 7 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 13

1, 1, 1, 1, 5, 10, 20, 50 1, 2, 3, 4, 5, 6, ... 30, ... 39 39

2.2.11 Exercise 11: Related Numbers (★★✩✩✩)
Two numbers n1 and n2 are called friends (or related) if the sum of their divisors is equal

to the other number:

sum(divisors(n1)) = n2

sum(divisors(n2)) = n1

Write function calc_friends(max_exclusive) to compute all friends numbers up to

a passed maximum value.

Chapter 2 MatheMatiCal probleMs

35

 Examples

Input Divisors

∑(divisors(220)) = 284 div(220) = 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110

∑(divisors(284)) = 220 div(284) = 1, 2, 4, 71, 142

∑(divisors(1184)) = 1210 div(1184) = 1, 2, 4, 8, 16, 32, 37, 74, 148, 296, 592

∑(divisors(1210)) = 1184 div(1210) = 1, 2, 5, 10, 11, 22, 55, 110, 121, 242, 605

2.2.12 Exercise 12: Prime Factorization (★★★✩✩)
Any natural number greater than 1 can be represented as a multiplication of primes.

Remember the fact that 2 is also a prime. Write function calc_prime_factors(value)

that returns a list of prime numbers whose multiplication yields the desired number.

 Examples

Input Prime factors Result

8 2 * 2 * 2 [2, 2, 2]

14 2 * 7 [2, 7]

42 2 * 3 * 7 [2, 3, 7]

1155 3 * 5 * 7 * 11 [3, 5, 7, 11]

2222 2 * 11 * 101 [2, 11, 101]

2.3 Solutions
2.3.1 Solution 1: Basic Arithmetic (★✩✩✩✩)
 Solution 1a: Basic Arithmetic Operations (★✩✩✩✩)

Write function calc(m, n) that multiplies two variables m and n of type int, then

divides the product by two, and outputs the remainder with respect to division by 7.

Chapter 2 MatheMatiCal probleMs

36

 Examples

m n m * n m * n // 2 Result ((n * m // 2) % 7)

6 7 42 21 0

5 5 25 12 5

A reminder: With an integer division, the remainder is truncated. Therefore 25//2

results in the value 12.

Algorithm The implementation directly follows the mathematical operations:

def calc(m, n):

 return m * n // 2 % 7

Instead of the particular operator //, you can also perform a conversion of the result

of the simple division into an integer by calling int():

def calc_v2(m, n):

 return int(m * n / 2) % 7

 Solution 1b: Statistics (★★✩✩✩)

Count as well as sum up the natural numbers that are divisible by 2 or 7 up to a given

maximum value (exclusive) and output it to the console. Write function calc_sum_and_

count_all_numbers_div_by_2_or_7(max_exclusive). Extend it so that it returns the

two values instead of performing the console output.

 Examples

Maximum Divisible by 2 Divisible by 7 Result
Count Sum

3 2 -/- 1 2

8 2, 4, 6 7 4 19

15 2, 4, 6, 8, 10, 12, 14 7, 14 8 63

Algorithm The implementation is a tiny bit more complex than before. It uses two

variables for count and sum as well as a loop. The modulo operator helps to check

whether divisibility is given.

Chapter 2 MatheMatiCal probleMs

37

def calc_sum_and_count_all_numbers_div_by_2_or_7(max_exclusive):

 count = 0

 sum = 0

 for i in range(1, max_exclusive):

 if i % 2 == 0 or i % 7 == 0:

 count += 1

 sum += i

 print("count:", count)

 print("sum:", sum)

What remains is the desire to return the two values. With Python, this is an easy task

since tuples are applicable for this, for example, with return (sum, count) or the even

shorter return sum, count.

It is even clearer to use a dictionary. This makes the unit test very readable in the end:

def calc_sum_and_count_all_numbers_div_by_2_or_7_v2(max_exclusive):

 count = 0

 sum = 0

 for i in range(1, max_exclusive):

 if i % 2 == 0 or i % 7 == 0:

 count += 1

 sum += i

 return {"sum": sum, "count": count}

NOTE: SHADOWING OF BUILT-INS IN SMALL SCOPES

please note that there is a minor inconvenience in the two code samples: the shadowing of the

built-in function sum() by the local variable named sum. of course, it is easily possible to use

sum_ as a variable name. but due to the small scope, i prefer to stick to the more readable but

shadowing name sum. this should never cause a real problem.

if your functions grow and get more complex, please avoid shadowing to prevent bugs.

Chapter 2 MatheMatiCal probleMs

38

NOTE: STRUCTURING WITH BLANK LINES

blank lines sometimes cause problems when processed in the python command line

interpreter. in iDes like pyCharm, on the other hand, this is possible without problems. i will

use empty lines for the examples if this means clearer source code.

 Solution 1c: Even or Odd Number (★✩✩✩✩)

Create functions is_even(n) and is_odd(n) that will check if the passed integer is even

or odd, respectively.

Algorithm The implementation uses the modulo operator in each case. A number is

even if a division by 2 has no remainder; otherwise, it is odd.

def is_even(n):

 return n % 2 == 0

def is_odd(n):

 return n % 2 != 0

 Verification

For the test of exercise 1a, use a parameterized test and a comma-separated

enumeration for the specification of the input values for m and n and the result. To

refresh your knowledge of pytest, look at Appendix A.

@pytest.mark.parametrize("m, n, expected",

 [(6, 7, 0), (3, 4, 6), (5, 5, 5)])

def test_calc(m, n, expected):

 assert calc(m, n) == expected

To verify the exercise part 1b, use the Python command line:

>>> calc_sum_and_count_all_numbers_div_by_2_or_7(8)

count: 4

sum: 19

For professional programming, it is generally advisable to create unit tests. In other

languages, even a combined return value would be a first hurdle. With Python and tuples

in combination with dictionaries, this is very easy:

Chapter 2 MatheMatiCal probleMs

39

@pytest.mark.parametrize("n, expected",

 [(3, {"sum": 2, "count": 1}),

 (8, {"sum": 19, "count": 4}),

 (15, {"sum": 63, "count": 8})])

def test_calc_sum_and_count_all_numbers_div_by_2_or_7_v2(n, expected):

 assert calc_sum_and_count_all_numbers_div_by_2_or_7_v2(n) == expected

Testing exercise 1c for even or odd is so simple that I’ll just limit the output to two

exemplary calls in the Python command line:

>>> is_even(2)

True

>>> is_odd(7)

True

2.3.2 Solution 2: Number as Text (★★✩✩✩)
Write function number_as_text(n) which, for a given positive number, converts the

respective digits into corresponding text.

 Examples

Input Result

7 “seVeN”

42 “FoUr tWo”

24680 “tWo FoUr siX eiGht Zero”

13579 “oNe three FiVe seVeN NiNe”

Algorithm Always compute the remainder (i. e., the last digit), print it out, and

then divide by ten. Repeat this until no remainder exists anymore. Note that the

digit’s representation must be appended to the text’s front since the last digit is always

extracted. Otherwise, the digits would appear in the wrong order.

def number_as_text(n):

 value = ""

 remaining_value = n

 while remaining_value > 0:

Chapter 2 MatheMatiCal probleMs

40

 remainder_as_text = digit_as_text(remaining_value % 10)

 remaining_value = int(remaining_value / 10)

 value = remainder_as_text + " " + value

 return value.strip()

Implement the mapping from digit to text with a dictionary as follows:

value_to_text_mapping = {

 0: "ZERO", 1: "ONE", 2: "TWO", 3: "THREE", 4: "FOUR",

 5: "FIVE", 6: "SIX", 7: "SEVEN", 8: "EIGHT", 9: "NINE"

}

def digit_as_text(n):

 return value_to_text_mapping[n % 10]

Python shortcut As mentioned in the introduction, the built-in Python function

divmod() is often useful for division and modulo. Therewith the process changes only

minimally:

def number_as_text(n):

 value = ""

 remaining_value = n

 while remaining_value > 0:

 remaining_value, remainder = divmod(remaining_value, 10)

 value = digit_as_text(remainder) + " " + value

 return value.strip()

There is another variant that iterates character by character through the number. It is

first converted into a string. To access the dictionary, you reconvert it into a number.

def number_as_text_shorter(n):

 value = ""

 for ch in str(n):

 value += digit_as_text(int(ch)) + " "

 return value.strip()

Chapter 2 MatheMatiCal probleMs

41

 Verification

For testing, use a parameterized test that can be formulated elegantly using pytest:

@pytest.mark.parametrize("n, expected",

 [(7, "SEVEN"),

 (42, "FOUR TWO"),

 (7271, "SEVEN TWO SEVEN ONE"),

 (24680, "TWO FOUR SIX EIGHT ZERO"),

 (13579, "ONE THREE FIVE SEVEN NINE")])

def test_number_as_text(n, expected):

 assert number_as_text(n) == expected

2.3.3 Solution 3: Perfect Numbers (★★✩✩✩)
By definition, a natural number is called a perfect number if its value is equal to the sum

of its real divisors. This is true, for example, for the numbers 6 and 28:

1 + 2 + 3 = 6

1 + 2 + 4 + 7 + 14 = 28

Write function calc_perfect_numbers(max_exclusive) that calculates the perfect

numbers up to a maximum value, say 10,000.

 Examples

Input Result

1000 [6, 28, 496]

10000 [6, 28, 496, 8128]

Algorithm The simplest variant is to check all numbers from 2 to half of the

desired maximum value to see if they represent the original number’s divisor. In that

case, the sum of the divisors is increased by exactly that value. The sum starts with the

value 1 because this is invariably a valid divisor. Finally, you only have to compare the

determined sum with the initial number.

Chapter 2 MatheMatiCal probleMs

42

def is_perfect_number_simple(number):

 # always divisible by 1

 sum_of_multipliers = 1

 for i in range(2, int(number / 2) + 1):

 if number % i == 0:

 sum_of_multipliers += i

 return sum_of_multipliers == number

Based on this, the actual function is straightforward to implement:

def calc_perfect_numbers(max_exclusive):

 results = []

 for i in range(2, max_exclusive):

 if is_perfect_number_simple(i):

 results.append(i)

 return results

Python shortcut Using list comprehensions, this can be written a little shorter and

more elegantly:

def calc_perfect_numbers_comprehension(max_exclusive):

 return [i for i in range(2, max_exclusive) if is_perfect_number_simple(i)]

 Verification

For testing, use the following inputs, which show the correct operation for dedicated

numbers:

@pytest.mark.parametrize("n, expected",

 [(6, True), (28, True),

 (496, True), (8128, True)])

def test_is_perfect_number_simple(n, expected):

 assert is_perfect_number_simple(n) == expected

Now you have tested the basic building block of the examination. However, you

should still make sure that no other values than perfect numbers are supplied—in fact,

Chapter 2 MatheMatiCal probleMs

43

only these—for the testing, thus the first four perfect numbers are namely the numbers 6,

28, 496, and 8128:

@pytest.mark.parametrize("n, expected", [(50, [6, 28]),

 (1000, [6, 28, 496]),

 (10000, [6, 28, 496, 8128])])

def test_calc_perfect_numbers(n, expected):

 assert calc_perfect_numbers(n) == expected

 Implementation Optimization

Based on the function find_proper_divisors(n) presented in the introductory section

of this chapter that finds all true divisors, you can simplify the check as follows:

def is_perfect_number_based_on_proper_divisors(number):

 divisors = find_proper_divisors(number)

 return sum(divisors) == number

Conveniently, there is a built-in functionality in Python that sums the elements of a

list. This is the function sum(), which you use here.

2.3.4 Solution 4: Prime Numbers (★★✩✩✩)
Write function calc_primes_up_to(max_value) to compute all prime numbers up to

a given value. As a reminder, a prime number is a natural number greater than 1 and

exclusively divisible by itself and by 1. To compute a prime number, the so-called Sieve

of Eratosthenes was described before.

Examples

Check your algorithm with the following values:

Input Result

15 [2, 3, 5, 7, 11, 13]

25 [2, 3, 5, 7, 11, 13, 17, 19, 23]

50 [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]

Chapter 2 MatheMatiCal probleMs

44

Algorithm The algorithm follows the Sieve of Eratosthenes. At first, a list of booleans

is created and initialized with True since all numbers are considered potential prime

numbers. Mentally, this is analogous to initially writing down the numbers 2, 3, 4, ... up

to a given maximum value:

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

Now, starting at the value 2, the “sieving” is started. Because the number 2 is not

crossed out, it is included in the list of prime numbers. Afterwards every multiple of it is

crossed out, because they can’t be prime numbers:

Iteratively you look for the next not-eliminated number. In this case, it is 3, which is

the second prime number. Once again, all multiples of this number are eliminated:

This procedure is repeated until half of the maximum value is reached. This prime

number calculation is implemented in Python as follows:

def calc_primes_up_to(max_value):

 # initially mark all values as potential prime number

 is_potentially_prime = [True for _ in range(1, max_value + 2)]

 # run through all numbers starting at 2, optimization only up to half

 for number in range(2, max_value // 2 + 1):

 if is_potentially_prime[number]:

 erase_multiples_of_current(is_potentially_prime, number)

 return build_primes_list(is_potentially_prime)

The crossing out or erasing the multiples is extracted to the helper function erase_

multiples_of_current(). As a trick, use on the one hand the step size of i and on

the other hand that the first multiple is determined by adding the start value. For first

attempts, the commented console output can be helpful.

Chapter 2 MatheMatiCal probleMs

45

def erase_multiples_of_current(values, number):

 for n in range(number + number, len(values), number):

 values[n] = False

 # print("Eliminating:", n)

Finally, you need to reconstruct a list of numbers from the list of booleans. It is

essential that you start from the value 2 because the two values below this value are not

set to False (by mistake, but here without negative effect):

def build_primes_list(is_potentially_prime):

 primes = []

 for number in range(2, len(is_potentially_prime)):

 if is_potentially_prime[number]:

 primes.append(number)

 return primes

Python shortcut With the help of list comprehensions, this can be written a little

shorter and more elegantly in Python:

def build_primes_list(is_potentially_prime):

 return [number for number in range(2, len(is_potentially_prime))

 if is_potentially_prime[number]]

Python shortcut I would like to show another variant based on compress() from the

module itertools. This allows you to get a new sequence from a sequence of data and

a sequence of selectors in the form of Boolean values with only the values for which the

selector has the value True or 1:

>>> import itertools

>>> print(list(itertools.compress("ABCDEF", [1, 0, 1, 0, 1, 0])))

['A', 'C', 'E']

For the prime number calculation, you use this as follows:

import itertools

def calc_primes_up_to_v2(max_value):

 is_potentially_prime = [True for _ in range(1, max_value + 2)]

 for number in range(2, int(max_value / 2) + 1):

Chapter 2 MatheMatiCal probleMs

46

 if is_potentially_prime[number]:

 erase_multiples_of_current(is_potentially_prime, number)

 # mark values 0 and 1 as no prime number

 is_potentially_prime[0:2] = False, False

 # merging / selection of values

 return list(itertools.compress(range(len(is_potentially_prime)),

 is_potentially_prime))

 Verification

For testing, use the following inputs that show the correct operation:

def input_and_expected():

 return [(2, [2]),

 (3, [2, 3]),

 (10, [2, 3, 5, 7]),

 (15, [2, 3, 5, 7, 11, 13]),

 (20, [2, 3, 5, 7, 11, 13, 17, 19]),

 (25, [2, 3, 5, 7, 11, 13, 17, 19, 23]),

 (50, [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47])]

@pytest.mark.parametrize("n, expected",

 input_and_expected())

def test_calc_primes_up_to(n, expected):

 assert calc_primes_up_to(n) == expected

@pytest.mark.parametrize("n, expected",

 input_and_expected())

def test_calc_primes_up_to_v2(n, expected):

 assert calc_primes_up_to_v2(n) == expected

2.3.5 Solution 5: Prime Number Pairs (★★✩✩✩)
Compute all pairs of prime numbers with a distance of 2 (twin), 4 (cousin), and 6 (sexy)

up to an upper bound for n. For twins then the following is true:

Is_Prime(n) && is_Prime(n + 2)

Chapter 2 MatheMatiCal probleMs

47

Examples

The following results are expected for limit 50:

Type Result

twin {3: 5, 5: 7, 11: 13, 17: 19, 29: 31, 41: 43}

Cousin {3: 7, 7: 11, 13: 17, 19: 23, 37: 41, 43: 47}

sexy {5: 11, 7: 13, 11: 17, 13: 19, 17: 23, 23: 29, 31: 37, 37: 43, 41: 47, 47: 53}

Algorithm As a first step, you need to define the conditions for pairs. This can be done

explicitly via if statements or more elegantly by the definition of suitable predicates. For

all numbers starting at 2 up to a desired upper limit, you must check whether the number

itself and the corresponding other number added by 2, 4, or 6 are prime numbers. For this

purpose, you can call function is_prime(n), which in turn uses the previously written

function for determining the prime numbers. For twins, I still use the rather non-Pythonic

for loop with if check here. For the other two, dict comprehensions come into play. For

more details on prime twins, see https://en.wikipedia.org/wiki/Twin_prime.

def main():

 def is_twin_pair(n):

 return is_prime(n) and is_prime(n + 2)

 def is_cousin_pair(n):

 return is_prime(n) and is_prime(n + 4)

 def is_sexy_pair(n):

 return is_prime(n) and is_prime(n + 6)

 # manual update

 twin_pairs = {}

 for i in range(1, 50):

 if is_twin_pair(i):

 twin_pairs.update({i: i + 2})

 # dict comprehensions

 cousin_pairs = {i: i + 4 for i in range(1, 50) if is_cousin_pair(i)}

 sexy_pairs = {i : i + 6 for i in range(1, 50) if is_sexy_pair(i)}

Chapter 2 MatheMatiCal probleMs

https://en.wikipedia.org/wiki/Twin_prime

48

 print("Twins:", twin_pairs)

 print("Cousins:", cousin_pairs)

 print("Sexy:", sexy_pairs)

def is_prime(n):

 primes = calc_primes_up_to(n + 1)

 return n in primes

The realization shown here uses already implemented functionality, which is

preferable in principle, but has two drawbacks in this case:

 1. Every time all prime numbers are computed again up to the

given maximum value. This can be optimized by performing the

computation only once and caching the results appropriately.

 2. At the moment, the checks are still all interwoven. It is clearer

to use a validation function that checks only one condition and

returns only one result.

 Optimization of the Implementation

Vulnerability 1: Repeated calls First, you should compute the primes up to the

maximum value only once. In this case, you need to raise the limit by 7 so that you can

map all pairs correctly.

def calc_prime_pairs(max_value):

 primes = calc_primes_up_to(max_value + 7)

 def is_twin_pair(n):

 return is_prime(primes, n) and is_prime(primes, n + 2)

 def is_cousin_pair(n):

 return is_prime(primes, n) and is_prime(primes, n + 4)

 def is_sexy_pair(n):

 return is_prime(primes, n) and is_prime(primes, n + 6)

 # manual update

 twin_pairs = {}

 for i in range(1, max_value):

 if is_twin_pair(i):

Chapter 2 MatheMatiCal probleMs

49

 twin_pairs.update({i: i + 2})

 # dict comprehensions

 cousin_pairs = {i: i + 4 for i in range(1, max_value) if is_cousin_pair(i)}

 sexy_pairs = {i: i + 6 for i in range(1, max_value) if is_sexy_pair(i)}

 print("Twins: ", twin_pairs)

 print("Cousins: ", cousin_pairs)

 print("Sexy: ", sexy_pairs)

Computing the prime numbers is performed once at the beginning of the function.

Thus you achieve a significant performance improvement.

Finally, you move the check for a prime number to the following function:

def is_prime(primes, n):

 return n in primes

Vulnerability 2: Unclear program structure Your goal is to write more general-

purpose functions. You have already created the basic building blocks. However, the

determination of the pairs should be moved to function calc_pairs(). This way, you

can write it more clearly and understandably as follows:

def calc_prime_pairs_improved(max_value):

 twin_pairs = calc_pairs(max_value, 2)

 cousin_pairs = calc_pairs(max_value, 4)

 sexy_pairs = calc_pairs(max_value, 6)

 print("Twins:", twin_pairs)

 print("Cousins:", cousin_pairs)

 print("Sexy:", sexy_pairs)

def calc_pairs(max_value, distance):

 primes = calc_primes_up_to(max_value + distance)

 return {number: number + distance for number in range(1, max_value)

 if is_prime(primes, number) and is_prime(primes, number +

distance)}

This conversion also lays the foundation to be able to test the whole thing with

unit tests.

Chapter 2 MatheMatiCal probleMs

50

 Verification

If you call the method with the maximum value of 50, you get this result:

Twins: {3: 5, 5: 7, 11: 13, 17: 19, 29: 31, 41: 43}

Cousins: {3: 7, 7: 11, 13: 17, 19: 23, 37: 41, 43: 47}

Sexy: {5: 11, 7: 13, 11: 17, 13: 19, 17: 23, 23: 29, 31: 37, 37: 43, 41:

47, 47: 53}

Now let’s create another unit test with one test function per special case:

@pytest.mark.parametrize("n, expected",

 [(2, {3: 5, 5: 7, 11: 13, 17: 19, 29: 31,

41: 43}),

 (4, {3: 7, 7: 11, 13: 17, 19: 23, 37: 41,

43: 47}),

 (6, {5: 11, 7: 13, 11: 17, 13: 19, 17: 23, 23:

29, 31: 37, 37: 43, 41: 47, 47: 53})])

def test_calc_pairs(n, expected):

 max_value = 50

 assert calc_pairs(max_value, n) == expected

2.3.6 Solution 6: Checksum (★★✩✩✩)
Create function calc_checksum(digits) that performs the following position-based

calculation for the checksum of a number of any length given as a string, with the n digits

modeled as z1 to zn:

 z z z z z z z n zn n1 2 3 1 2 31 2 3 10� � � � � � � ��� �� �%

 Examples

Digits Sum Result

“11111” 1 + 2 + 3 + 4 + 5 = 15 15 % 10 = 5

“87654321” 8 + 14 + 18 + 20 + 20 + 18 + 14 + 8 = 120 120 % 10 = 0

Chapter 2 MatheMatiCal probleMs

51

Algorithm Traverse all digits from the front to the last position, extract the digit at

the given position, and multiply its numerical value by the current position. Add this to

the sum. Finally, the modulo operation maps the sum to a digit.

def calc_checksum(digits):

 if not digits.isdigit():

 raise ValueError("illegal chars: not only digits")

 crc = 0

 for i, current_char in enumerate(digits):

 value = (int(current_char)) * (i + 1)

 crc += value

 return int(crc % 10)

 Verification

For testing, use the following inputs, which show the correct operation for valid inputs

and check the handling of errors for wrong inputs:

@pytest.mark.parametrize("n, expected",

 [("11111", 5),

 ("22222", 0),

 ("111111", 1),

 ("12345678", 4),

 ("87654321", 0)])

def test_calc_checksum(n, expected):

 assert calc_checksum(n) == expected

def test_calc_checksum_with_letters_as_wrong_input():

 with pytest.raises(ValueError) as excinfo:

 calc_checksum("ABC")

 assert "illegal chars" in str(excinfo.value)

Chapter 2 MatheMatiCal probleMs

52

2.3.7 Solution 7: Roman Numbers (★★★★✩)
 Solution 7a: Roman Numbers ➤ Decimal Numbers (★★★✩✩)

Write function from_roman_number(roman_number) that computes the corresponding

decimal number from a textually valid Roman number.5

 Examples

Arabic Roman

17 “XVii”

444 “CDXliV”

1971 “MCMlXXi”

2020 “MMXX”

Algorithm You must pay particular attention to the addition rule described in

section 2.1.1: The relevant value is normally obtained by adding the individual digits’

values from left to right whenever a larger character precedes a smaller one. However, if

a smaller number character precedes a larger one, the corresponding value is subtracted.

With this knowledge, you traverse the characters from right to left and look up the

relevant value in a dictionary. To decide between addition or subtraction, remember the

last relevant character.

def from_roman_number(roman_number):

 value = 0

 last_digit_value = 0

 # for i in range(len(roman_number) - 1, -1, -1):

 # roman_digit = roman_number[i]

 for roman_digit in reversed(roman_number):

 digit_value = value_map[roman_digit]

 add_mode = digit_value >= last_digit_value

 if add_mode:

5 For syntactically invalid Roman numbers, such as IXD, an incorrect result, here 489, can be
computed by applying subtraction rule twice in a row: 0 − 1 − 10 + 500.

Chapter 2 MatheMatiCal probleMs

53

 value += digit_value

 last_digit_value = digit_value

 else:

 value -= digit_value

 return value

value_map = {"I": 1, "V": 5, "X": 10, "L": 50,

 "C": 100, "D": 500, "M": 1000}

In the code, I use a nicer variant of the traversal. Using the standard functionality

reversed(), you get an iterator that traverses the data in the opposite direction and

provides access to the respective element. Shown in the comment is index-based

processing, which is a little less Python-like (Pythonic).

 Solution 7b: Decimal Numbers ➤ Roman Numbers (★★★★✩)

Write function to_roman_number(value) that converts a decimal number to a (valid)

Roman number.

Algorithm When converting a decimal number to a Roman numeral, you again use

a dictionary. You sort this in descending order so that the largest value (1000) is at the

beginning. The current number value is divided by this factor. This yields the number

of required repetitions of this value. Now the remainder is determined by modulo. The

procedure is repeated until all values are checked and the remainder is greater than 0. In

the following, the procedure is shown for the number 7:

7 => 7 / 1000 => 0 => 0 x 'M'

 ...

 7 / 5 = 1 => 1 x 'V'

 7 % 5 = 2

 2 / 1 = 2 => 2 x 'I'

 2 % 1 = 0

 => 'VII'

The procedure is implemented in Python as follows (please note that a little pitfall is

included):

def to_roman_number(value):

 result = ""

Chapter 2 MatheMatiCal probleMs

54

 remainder = value

 # descending order => start with largest value

 for i in sorted(int_to_roman_digit_map.keys(), reverse=True):

 if remainder > 0:

 multiplier = i

 roman_digit = int_to_roman_digit_map[i]

 times = remainder // multiplier

 remainder = remainder % multiplier

 result += roman_digit * times

 return result

int_to_roman_digit_map = {1: "I", 5: "V", 10: "X", 50: "L",

 100: "C", 500: "D", 1000: "M"}

Here again the function divmod() is a good choice. Then the invocation

times = remainder // multiplier

remainder = remainder % multiplier

results in the following one-liner:

times, remainder = divmod(remainder, multiplier)

However, the conversion shown above is not yet 100 % correct because it does not

respect the rule of three and also repeats digits four times. Try it yourself using 147 as

input, resulting in CXXXXVII. To fix this problem, you may think about implementing

special treatments that are only hinted at below:

multiplier = i

roman_digit = int_to_roman_digit_map[i]

if remainder >= 900 and roman_digit == 'D':

 result += "CM"

 remainder -= 900}

...

elif remainder >= 4 and roman_digit == 'I':

 result += "IV"

 remainder -= 4

Chapter 2 MatheMatiCal probleMs

55

else:

 times = remainder / multiplier

 remainder = remainder % multiplier

 result += roman_digit * times

However, this quickly becomes confusing.

More elegant is the insertion of other lookup values for the exceptional cases:

int_to_roman_digit_map = {1: "I", 4: "IV", 5: "V", 9: "IX", 10: "X",

 40: "XL", 50: "L", 90: "XC", 100: "C",

 400: "CD", 500: "D", 900: "CM", 1000: "M"}

Using this enhanced lookup dictionary solves the problem and you get correct

answers.

 Verification

Let’s start the unit test with different values that show the correct conversion, especially

including the four values 17, 444, 1971, and 2020 from the example:

def arabic_to_roman_number_map():

 return [(1, "I"), (2, "II"), (3, "III"), (4, "IV"),

 (5, "V"), (7, "VII"), (9, "IX"), (17, "XVII"),

 (40, "XL"), (90, "XC"), (400, "CD"), (444, "CDXLIV"),

 (500, "D"), (900, "CM"), (1000, "M"), (1666, "MDCLXVI"),

 (1971, "MCMLXXI"), (2018, "MMXVIII"), (2019, "MMXIX"),

 (2020, "MMXX"), (3000, "MMM")]

attention different order, so you do not have to define it twice

@pytest.mark.parametrize("expected, roman_number",

 arabic_to_roman_number_map())

def test_from_roman_number(roman_number, expected):

 assert from_roman_number(roman_number) == expected

Now let’s take a look at how the testing of the reverse direction is accomplished. Here

you already benefit from the previously defined function arabic_to_roman_number_

map() to provide the test results.

Chapter 2 MatheMatiCal probleMs

56

@pytest.mark.parametrize("roman_number, expected",

 arabic_to_roman_number_map())

def test_to_roman_number(roman_number, expected):

 assert to_roman_number(roman_number) == expected

Without the extraction of the values into a list of tuples, there would have been a

duplication of the specifications. Only when specifying expected and roman_number, you

have to be a bit careful because this is a bidirectional mapping.

Providing data in a CSV file To avoid duplication, you could also read the values from

a file. With the help of the csv module, reading from a CSV file is implemented as follows:

def arabic_to_roman_number_map():

 result = []

 with open('arabicroman2.csv','rt') as file:

 data = csv.reader(file)

 skip_first = True

 for row in data:

 if not skip_first:

 result.append((int(row[0].strip()), row[1].strip()))

 skip_first = False

 return result

Assume that the content has the correct structure, as shown below. Furthermore, the

CSV file looks like the following:

arabic,roman

1, I

2, II

3, III

4, IV

5, V

7, VII

...

Chapter 2 MatheMatiCal probleMs

57

2.3.8 Solution 8: Combinatorics (★★✩✩✩)
 Solution 8a: Computation of a2 + b2 = c2

Compute all combinations of the values a, b, and c (each starting from 1 and less than

100) for which the following formula holds:

 a b c2 2 2� �

Algorithm The brute force solution uses three nested loops and then checks if the

above formula is satisfied.

brute force, three nested loops

def solve_quadratic_simple():

 for a in range(1, 100):

 for b in range(1, 100):

 for c in range(1, 100):

 # if a ** 2 + b ** 2 == c ** 2:

 # if pow(a, 2) + pow(b, 2) == pow(c, 2):

 if a * a + b * b == c * c:

 print("a =", a, "/ b =", b, "/ c =", c)

For squaring, simple multiplication provides better readability than the use of pow()

or of the operator ** implied in the comment.

Python shortcut By using list comprehension, you can have all tuples generated.

However, such construction is already a bit stylistically dubious.

def solve_quadratic_shorter():

 return [(a,b,c) for a in range(1, 100) for b in range(1, 100)

 for c in range(1, 100) if a * a + b * b == c * c]

Bonus: Reduce the Running Time of O(n3) to O(n2) (★★★✩✩)

You see three nested loops in the upper solution, resulting in a running time of O(n3).

Now let’s reduce this to O(n2). To achieve this, apply the following transformation

(resolving to c):

 c a a b b� � � �

Chapter 2 MatheMatiCal probleMs

58

Based on this transformation or resolution of the equation to c, the square root is

calculated and then the formula is verified:

import math

def solve_quadratic():

 for a in range(1, 100):

 for b in range(1, 100):

 c = int(math.sqrt(a * a + b * b))

 if a * a + b * b == c * c:

 print("a =", a, "/ b =", b, "/ c =", c)

This solution still contains a small flaw. Now c can also be greater than 100!

Therefore, you must ensure that c is below 100. To this end, you supplement the check as

follows:

def solve_quadratic():

 for a in range(1, 100):

 for b in range(1, 100):

 c = int(math.sqrt(a * a + b * b))

 if c < 100 and a * a + b * b == c * c:

 print("a =", a, "/ b =", b, "/ c =", c)

 Verification

For testing, call the function solve_quadratic() and perform the computation for

some values:

>>> solve_quadratic()

a = 3 / b = 4 / c = 5

a = 4 / b = 3 / c = 5

a = 5 / b = 12 / c = 13

a = 6 / b = 8 / c = 10

...

Chapter 2 MatheMatiCal probleMs

59

NOTE: WHY DOES THE COMPUTATION WORK AT ALL?

looking only briefly at the conversion, you might wonder why the computation does not yield

a successful comparison for all values. in fact, this would be the case purely mathematically,

since you are deriving c from a and b. however, you also use a cast to an int.

c = int(math.sqrt(a * a + b * b))

if a * a + b * b == c * c:

 print("a =", a, "/ b =", b, "/ c =", c)

as a result, the decimal digits are truncated. this, in turn, leads to the comparison being

successful only for certain values.

 Solution 8b: Computation of a2 + b2 = c2 + d 2

Compute all combinations of the values a, b, c, and d (each starting from 1 and less than

100) for which the following formula holds:

 a b c d2 2 2 2� � �

Algorithm Analogous to the previous part of the exercise, the brute force solution

consists of four nested loops. Therein a check whether the above formula is satisfied is

performed. In this particular case, the simple multiplication offers, to my taste, slightly

better readability than the use of the operator **.

brute force, four nested loops

def solve_cubic_simple():

 for a in range(1, 100):

 for b in range(1, 100):

 for c in range(1, 100):

 for d in range(1, 100):

 if a * a + b * b == c * c + d * d:

 print("a =", a, " / b =", b, " / c =", c,

" / d =", d)

Chapter 2 MatheMatiCal probleMs

60

Python shortcut By using list comprehension, you can have all tuples generated,

although such a structure is already stylistically a bit questionable, since it is slightly too

complex:

def solve_cubic_shorter():

 return [(a, b, c, d)

 for a in range(1, 100) for b in range(1, 100)

 for c in range(1, 100) for d in range(1, 100)

 if a * a + b * b == c * c + d * d]

Please note that both variants are not optimal in respect to performance. The next

task is to improve this.

 Bonus: Reduce the Running Time of O(n 4) to O(n 3) (★★★✩✩)

As can easily be seen, the solution uses four nested loops, resulting in a running time of

O(n4). Now you want to reduce this to O(n3). For that purpose, use transformations. First,

you separate to d and then you resolve to d:

 d d a a b b c c d a a b b c c� � � � � � � � � � � � � �

Based on this transformation or resolution of the equation to d, you can compute the

square root and then validate the formula. Additionally, you must ensure that the value

is not negative and the resulting d is below 100.

import math

def solve_cubic():

 for a in range(1, 100):

 for b in range(1, 100):

 for c in range(1, 100):

 value = a * a + b * b - c * c

 if value > 0:

 d = int(math.sqrt(value))

 if d < 100 and a * a + b * b == c * c + d * d:

 print("a =", a, " / b =", b, " / c =", c,

" / d =", d)

Chapter 2 MatheMatiCal probleMs

61

 Verification

For testing, use a function call and check some of the values:

>>> solve_cubic()

a = 1 / b = 1 / c = 1 / d = 1

a = 1 / b = 2 / c = 1 / d = 2

a = 1 / b = 2 / c = 2 / d = 1

a = 1 / b = 3 / c = 1 / d = 3

a = 1 / b = 3 / c = 3 / d = 1

...

2.3.9 Solution 9: Armstrong Numbers (★★✩✩✩)
This exercise deals with three-digit Armstrong numbers. By definition, these are

numbers for whose digits x, y, and z from 1 to 9 satisfy the following equation:

 x y z x y z� � � � � � �100 10 3 3 3

Write function calc_armstrong_numbers() to compute all Armstrong numbers for x,

y, and z (each < 10).

 Examples

153 1 100 5 10 3 1 5 3 1 125 27 153

371 3 100 7 10 1 3

3 3 3

3

� � � � � � � � � � � �
� � � � � � �77 1 27 343 1 3713 3� � � � �

Algorithm Iterate through all combinations of three-digit numbers using three

nested loops. The numeric value is calculated based on the position using the formula

x∗100+ y ∗ 10 + z. Also, compute the third power for each digit, sum them, and check if

the sum matches the number.

def calc_armstrong_numbers():

 results = []

 for x in range(1, 10):

 for y in range(1, 10):

 for z in range(1, 10):

 numeric_value = x * 100 + y * 10 + z

Chapter 2 MatheMatiCal probleMs

62

 cubic_value = int(pow(x, 3) + pow(y, 3) + pow(z, 3))

 if numeric_value == cubic_value:

 results.append(numeric_value)

 return results

NOTE: WHY DON’T THE LOOPS START AT 0?

although you could also use the value 0, this is unusual. in the first place, a value assignment

with x = 0 and y = 0 would correspond to the value z. however, there is another reason not to

start with 0. a leading 0 is used to mark octal numbers, so we will not use it here. by the way,

since python 3.8, octal numbers start with the prefix 0o.

 Verification

To test, call the above method and examine whether the two combinations of values

given as examples are included in the result list:

def test_calc_armstrong_numbers():

 assert calc_armstrong_numbers() == [153, 371]

 Bonus (★★★✩✩)

Find a generic version with functions or lambdas and then try the following three

formulas:

x y z x y z

x y z x y z

x y z x

� � � � � � �
� � � � � � �
� � � � � �

100 10

100 10

100 10

3 3 3

1 2 3

3 yy z2 1�

Algorithm Instead of the concrete calculation, you invoke a matching cubic_function:

def calc_numbers(cubic_function):

 results = []

 for x in range(1, 10):

 for y in range(1, 10):

 for z in range(1, 10):

 numeric_value = x * 100 + y * 10 + z

Chapter 2 MatheMatiCal probleMs

63

 cubic_value = int(cubic_function(x, y, z))

 if numeric_value == cubic_value:

 results.append(numeric_value)

 return results

Thus, the computation can be expressed as a function or a lambda. Please note that

lambdas usually encapsulate only a tiny piece of functionality and thus you should not

name them and assign them to a variable. In this book, I sometimes break this PEP-8

rule for a better insight into how things work or express more clearly what was intended.

def special(x,y,z):

 return int(pow(x, 3) + pow(y, 3) + pow(z, 3))

special_as_lambda = lambda x, y, z: int(pow(x, 3) + pow(y, 3) + pow(z, 3))

Based on this more general solution, you can now easily try other variants of

computation rules without much effort:

def special2(x, y, z):

 return int(pow(x, 1) + pow(y, 2) + pow(z, 3))

Likewise, you finally define the following:

def special3(x, y, z):

 return int(pow(x, 3) + pow(y, 2) + pow(z, 1))

 Verification

For testing, you invoke above function with different computation rules and look for that

of Armstrong numbers whether the two combinations of values given as examples are

included in the result list:

>>> def special(x,y,z):

... return int(pow(x, 3) + pow(y, 3) + pow(z, 3))

...

>>> print(calc_numbers(special))

[153, 371]

>>> def special2(x,y,z):

... return int(pow(x, 1) + pow(y, 2) + pow(z, 3))

Chapter 2 MatheMatiCal probleMs

64

...

>>> print(calc_numbers(special2))

[135, 175, 518, 598]

>>> special3 = lambda x, y, z: int(pow(x, 3) + pow(y, 2) + pow(z, 1))

>>> print(calc_numbers(special3))

[]

2.3.10 Solution 10: Max Change Calculator (★★★★✩)
Suppose you have a collection of coins or numbers of different values. Write function

calc_max_possible_change(values) that determines, for positive integers, what

amounts can be seamlessly generated with it starting from the value 1. The maximum

value should be returned as a result.

 Examples

Input Possible values Maximum

1 1 1

1, 1 1, 2 2

1, 5 1 1

1, 2, 4 1, 2, 3, 4, 5, 6, 7 7

1, 2, 3, 7 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 13

1, 1, 1, 1, 5, 10, 20, 50 1, 2, 3, 4, 5, 6, ... , 30, ... , 39 39

Algorithm You could try solving this exercise by computing a mapping to all

permutations of the sum of the numbers, but this gets complex fast. Let’s consider

another approach and start sorting the values for ease of use.

Input Possible values Maximum

1, 2, 3, 7 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 13

1, 2, 3, 8 1, 2, 3, 4, 5, 6, => _ <= , 8, 9, 10, 11, 12, 13, 14 6

Chapter 2 MatheMatiCal probleMs

65

If you take a look at the two examples, you may recognize for the cases 1, 2, 3, 7 and

1, 2, 3, 8 the clue to simplify the calculation decisively. Instead of always calculating

all permutations and then checking for a gap in the number line, here indicated by an

underscore (_), it is possible to start at the first number, always add the numbers to the

previous sum, and repeat this iteratively until next_number > sum + 1 becomes true.

Let’s apply this to Python. First, sort the input values. Start with the assumption that

there is nothing to change initially, so max_possible_change = 0. Now check the following

condition for each value. If current_value > max_possible_change + 1 holds, then it is

impossible to change. Otherwise, add the current value to max_possible_change. Repeat

this until all values are processed or until the termination condition is met. This leads to

the following implementation:

def calc_max_possible_change(values):

 # wrappng / copying necessary so that we do not sort the original

 sorted_numbers = list(values)

 sorted_numbers.sort()

 max_possible_change = 0

 for current_value in sorted_numbers:

 if current_value > max_possible_change + 1:

 break

 max_possible_change += current_value

 return max_possible_change

 Verification

For testing, use the following inputs, which show the correct operation:

@pytest.mark.parametrize("coins, max_change",

 [([1], 1),

 ([1, 1], 2),

 ([1, 5], 1),

 ([1, 2, 4], 7),

 ([1, 2, 3, 7], 13),

 ([1, 2, 3, 8], 6),

Chapter 2 MatheMatiCal probleMs

66

 ([1, 1, 1, 1, 5, 10, 20, 50], 39)])

def test_calc_max_possible_change(coins, max_change):

 assert calc_max_possible_change(coins) == max_change

2.3.11 Solution 11: Related Numbers (★★✩✩✩)
Two numbers n1 and n2 are called friends (or related) if the sum of their divisors is equal

to the other number:

sum(divisors(n1)) = n2

sum(divisors(n2)) = n1

Write method function calc_friends(max_exclusive) to compute all friends

numbers up to a passed maximum value.

 Examples

Input Divisors

∑(divisors(220)) = 284 div(220) = 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110

∑(divisors(284)) = 220 div(284) = 1, 2, 4, 71, 142

∑(divisors(1184)) = 1210 div(1184) = 1, 2, 4, 8, 16, 32, 37, 74, 148, 296, 592

∑(divisors(1210)) = 1184 div(1210) = 1, 2, 5, 10, 11, 22, 55, 110, 121, 242, 605

Algorithm It is easy to check whether two numbers are friends by determining for

each number its divisors and therefrom its sum. Now the divisors can be determined

from this sum and then added together. If this second sum is equal to the original

number, then the numbers are friends.

def calc_friends(max_exclusive):

 friends = {}

 for i in range(2, max_exclusive):

 divisors1 = find_proper_divisors(i)

 sum_div1 = sum(divisors1)

 divisors2 = find_proper_divisors(sum_div1)

Chapter 2 MatheMatiCal probleMs

67

 sum_div2 = sum(divisors2)

 if i == sum_div2 and sum_div1 != sum_div2:

 friends[i] = sum_div1

 return friends

For the implementation, you also use the function find_proper_divisors() to find

all real divisors. This was already presented in the introduction. Once again, it shows the

advantage of subdividing software into smaller, self-contained functionalities.

 Verification

In this case, you again use a parameterized test, which returns both the maximum value

and a dictionary with the two numbers:

@pytest.mark.parametrize("max, friends",

 [(250, {220: 284}),

 (300, {220: 284, 284: 220}),

 (2_000, {220: 284, 284: 220,

 1_184: 1_210, 1_210: 1_184})])

def test_calc_friends(max, friends):

 assert calc_friends(max) == friends

For some numbers I use the notation of separating the digits with an underscore,

which is an excellent way to simulate a thousand point. This is especially helpful with

larger numbers and serves here only for demonstration.

2.3.12 Solution 12: Prime Factorization (★★★✩✩)
Any natural number greater than 1 can be represented as a multiplication of primes.

Remember the fact that 2 is also a prime. Write function calc_prime_factors(value)

that returns a list of prime numbers whose multiplication yields the desired number.

Chapter 2 MatheMatiCal probleMs

68

 Examples

Input Prime factors Result

8 2 * 2 * 2 [2, 2, 2]

14 2 * 7 [2, 7]

42 2 * 3 * 7 [2, 3, 7]

1155 3 * 5 * 7 * 11 [3, 5, 7, 11]

2222 2 * 11 * 101 [2, 11, 101]

Algorithm Start by dividing the number by 2 as long as the number is even and

greater than 2. Then, at some point, you reach an odd number. If it is 1, you are done

(see the case for the number 8). Otherwise, you check if the odd number is a prime

number and collect it. In this case, you are done (for example, above for the number 14).

If not, you have to split the odd number further. Let’s take 50 as an example. First, you

divide by 2, there 25 remains, which is not a prime number. For these, you check for all

prime numbers if they represent a divisor. You continue this procedure until you reach

the number 1, which means that all divisors have been collected. For more info, see

https://en.wikipedia.org/wiki/Integer_factorization.

def calc_prime_factors(value):

 all_primes = calc_primes_up_to(value)

 prime_factors = []

 remaining_value = value

 # as long as even, divide by 2 again and again

 while remaining_value % 2 == 0 and remaining_value >= 2:

 remaining_value = remaining_value // 2

 prime_factors.append(2)

 # check remainder for prime

 if is_prime(all_primes, remaining_value):

 prime_factors.append(remaining_value)

 else:

 # remainder is not a prime number, further check

 while remaining_value > 1:

Chapter 2 MatheMatiCal probleMs

https://en.wikipedia.org/wiki/Integer_factorization

69

 for current_prime in all_primes:

 if remaining_value % current_prime == 0:

 remaining_value = remaining_value // current_prime

 prime_factors.append(current_prime)

 # start again from the beginning, because every divisor

 # may occur more than once

 break

 return prime_factors

def is_prime(all_primes, n):

 return n in all_primes

Optimized algorithm If you look at the algorithm just developed, you might be

bothered by all the special treatments. With a little thought, you may conclude that you

don’t need to check number 2 separately since it is also a prime number. Thus, this

is covered by the while loop. Instead of the break for repeated checking of the same

number, this can be expressed in a more stylistically pleasing way with a while loop.

With these preliminary considerations, you arrive at the following implementation:

def calc_prime_factors_optimized(value):

 all_primes = calc_primes_up_to(value)

 prime_factors = []

 remaining_value = value

 while remaining_value > 1:

 for current_prime in all_primes:

 while remaining_value % current_prime == 0:

 remaining_value = remaining_value // current_prime

 prime_factors.append(current_prime)

 return prime_factors

Chapter 2 MatheMatiCal probleMs

70

 Verification

For testing, use the following inputs, which show the correct operation:

def value_and_prime_factors():

 return [(8, [2, 2, 2]),

 (14, [2, 7]),

 (42, [2, 3, 7]),

 (1155, [3, 5, 7, 11]),

 (2222, [2, 11, 101])]

@pytest.mark.parametrize("value, primefactors",

 value_and_prime_factors())

def test_calc_prime_factors(value, primefactors):

 assert calc_prime_factors(value) == primefactors

@pytest.mark.parametrize("value, primefactors",

 value_and_prime_factors())

def test_calc_prime_factors_optimized(value, primefactors):

 assert calc_prime_factors_optimized(value) == primefactors

2.4 Summary: What You Learned
This chapter on basic mathematical knowledge introduces the modulo operator, which

is quite essential, for example, for the extraction of digits and in the calculation of

checksums. The exercises on combinatorics have shown how small tricks can easily

reduce the running time by an order of magnitude. Also, prime numbers offer some

interesting facets, such as variants to their calculation. In retrospect, this turns out to be

much easier than perhaps first thought. In general, when trying to find a solution for a

problem, the algorithm and the approach should be roughly understood because then,

for example, even the the decomposition into prime factors loses its possible horror.

Now let’s move on to recursion as an important technique to break down a more

complex task into several simpler subtasks.

Chapter 2 MatheMatiCal probleMs

71
© Michael Inden 2022
M. Inden, Python Challenges, https://doi.org/10.1007/978-1-4842-7398-2_3

CHAPTER 3

Recursion
In nature and mathematics, you can find the topic self-similarity or recurring structures,

such as snowflakes, fractals, and Julia sets, which are interesting graphical formations.

In this context, one speaks of recursion, meaning that things repeat or resemble each

other. Related to methods, this means that they call themselves. Important therefore is a

termination condition in the form of special input values, which leads to the end of the

self calls.

3.1 Introduction
Various computations can be described as recursive functions. The goal is to break down

a more complex task into several simpler subtasks.

3.1.1 Mathematical Examples
Below you will take a look at the computation of the factorial, summation, and Fibonacci

numbers, three introductory examples for recursive definitions.

 Example 1: Factorial

Mathematically, the factorial for a positive number n is defined as the product

(i. e., the multiplication) of all natural numbers from 1 to n, inclusive. For notation, the

exclamation mark is placed after the corresponding number. For example, 5! stands for

the factorial of the number 5:

5! = 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1 = 120

This can be generalized as follows:

n! = n ∗ (n − 1) ∗ (n − 2) ∗ ... ∗ 2 ∗ 1

https://doi.org/10.1007/978-1-4842-7398-2_3

72

Based on this, the recursive definition is derived:

n

n n

n n n
!

, ,

. !,
�

� �

�� � � �
�
�
�

��

1 0 1

1 1

Here, the inverted »A« (∀) denotes for all.

For the first n, you get the following value progression:

n 1 2 3 4 5 6 7 8

n! 1 2 6 24 120 720 5040 40320

Calculation of the factorial in Python Let’s take a quick look at how the recursive

calculation formula of the factorial can be transferred into a function of the same kind:

def factorial(n):

 if n < 0:

 raise ValueError("n must be >= 0")

 # recursive termination

 if n == 0 or n == 1:

 return 1

 # recursive descent

 return n * factorial(n - 1)

Figure 3-1 clarifies what this recursive definition generates in terms of calls.

Chapter 3 reCursion

73

Figure 3-1. Recursive calls to factorial(5)

Python shortcut To demonstrate that Python can be used to write compact source

code, I will repeatedly show which shortcuts exist in the following sections. In this case,

you can write the calculation in the form of a lambda as a one-liner. The brevity often

offers some disadvantages: Here there is no handling of wrong inputs and the whole

thing is a little bit less readable. All in all, the distinction between recursive termination

and descent is more challenging to recognize. In addition, the mathematical formula is

not so clearly evident:

factorial = lambda n: n if n == 1 else n * factorial(n - 1)

Please note that lambdas usually encapsulate only a tiny piece of functionality and

thus you should not name them and assign them to a variable. In this book, I sometimes

break this PEP-8 rule for a better insight into how things work or to express more clearly

what was intended.

There are almost always many ways to Rome and the solution. As a variant, I present

the function reduce() from the module functools, which requires an import as shown

below. However, no recursion is used and the readability decreases, which can be

compensated by a meaningful function name.

import functools

def factorial(n):

 return functools.reduce(lambda n_1, n: n_1 * n, range(1, n + 1))

Chapter 3 reCursion

74

 Example 2: Calculation of the Sum of Numbers Up to n
Mathematically, the sum for a number n is defined as the addition of all natural numbers

from 1 ascending up to and including n:

 1

1 2 2 1
n

i n n n� � � � � � ��� �

This can be defined recursively as follows:

1

1

1

1 1

1

n
ni

n

n i n� �
�

�

� � �

�
�
�

��
�

,

,

For the first n, you get the following value progression:

n 1 2 3 4 5 6 7 8

sum_of(n) 1 3 6 10 15 21 28 36

Calculation of the sum in Python Again, you convert the recursive calculation

formula of the summation into a recursive function:

def sum_of(n):

 if n <= 0:

 raise ValueError("n must be >= 1")

 # recursive termination

 if n == 1:

 return 1

 # recursive descent

 return n + sum_of(n - 1)

Python shortcut For the calculation of sums it is possible to use a lambda, but again

without error handling and a bit less readable:

sum_of = lambda n: n if n == 1 else n + sum_of(n - 1)

Chapter 3 reCursion

75

Likewise, the function reduce() from the module functools can be used, with the

disadvantages and possibilities hinted at earlier to compensate:

import functools

def sum_of_with_reduce(n):

 return functools.reduce(lambda n_1, n: n_1 + n, range(1, n + 1))

Optimized calculation of the sum Please keep in mind that the algorithms

presented here only served to illustrate the recursive nature or the functionalities from

the Python standard library. However, because there is a formula for calculating the sum

of the numbers from 1 to n that determines the whole thing performance-optimally in

O(1), you should not use the previous variants in practice:

 1

1

2

n

i
n n

� �
�� ��

 Example 3: Fibonacci Numbers

Fibonacci numbers are also excellent for recursive definitions, although the formula is

already a tiny bit more complex:

fib n

n

n

fib n fib n n

� � �
�
�

�� �� �� � � �

�

�
�

�
�

1 1

1 2

1 2 2

,

,

,

For the first n, you get the following value progression:

n 1 2 3 4 5 6 7 8

fib(n) 1 1 2 3 5 8 13 21

If the calculation formula is visualized graphically, it quickly becomes obvious how

wide the tree of self calls potentially spans. For larger n, the call tree would be much

more expansive, as indicated by the dashed arrows (see Figure 3-2). Even with this

exemplary invocation, it is evident that various calls are made several times, for example

for fib(n − 4) and fib(n − 2), but especially three times for fib(n − 3). This very quickly

leads to costly and tedious computations. You will learn how to optimize this later in

section 7.1.

Chapter 3 reCursion

76

Figure 3-2. Fibonacci recursive

HINT: DIFFERENT DEFINITION WITH ZERO AS THE START VALUE

it should furthermore be noted that there is a variation that starts at the value of 0. then fib(0)

= 0 and fib (1) = 1 are the base values and afterwards you get fib (n) = fib(n − 1) + fib(n − 2)

according to the recursive definition. this produces the same sequence of numbers as the

definition above, only with the value for 0 added.

ATTENTION: RESTRICTED CALL DEPTH

Keep in mind that self calls happen again and again for summing up and computing the

Fibonacci numbers. that’s why you can only pass inputs around 990 here. Larger values will

result in a RecursionError: maximum recursion depth exceeded. For other recursive

functions, there are similar restrictions on the number of self calls. other programming

languages like Java allow significantly more self calls. in Java, over 10,000 self calls are easily

possible.

there are several variants in recursion. an advantageous one is called tail-recursive. this

is characterized by the fact that the recursive call is the last action in the calculation. such

functions can be processed without the otherwise usual storing of intermediate results on

a stack.

Chapter 3 reCursion

77

3.1.2 Algorithmic Examples
In the introduction, you looked at mathematical examples. But recursion is also very

well suited for algorithmic tasks. For example, it is possible to check for an array or list

whether the values stored form a palindrome. A palindrome is a word that reads the

same from the front and the back, such as OTTO or ABBA. Here it is meant that the

elements match pairwise from the front and the back. This applies, for example, to a list

with the following values: { 1, 2, 3, 2, 1 }.

 Example 1: Palindrome—Recursive Variant

You can easily test for a palindrome property recursively. Let’s look at this as a program

after I have briefly described the algorithm.

Algorithm If the array or list has the length 0 or 1, then it is a palindrome by

definition. If the length is two and greater, you must check the outer left and outer right

elements for a match. After that, a copy of the array or the list is created, shortened by

one position at the front and one at the back. Further checking is then performed on the

remaining part of the array or the list, as shown in the following code:

def is_palindrome_simple_recursive(values):

 # recursive termination

 if len(values) <= 1:

 return True

 left = 0

 right = len(values) - 1

 if values[left] == values[right]:

 # attention: end is exclusive

 remainder = values[left + 1 : right]

 # recursive descent

 return is_palindrome_simple_recursive(remainder)

 return False

However, the described and implemented approach leads to many copies and

extractions of subarrays or sublists. It is affordable to avoid this effort by keeping the idea

but modifying the algorithm minimally by using a trick.

Chapter 3 reCursion

78

Optimized algorithm Rather than using a copy, you still use the original data

structure. You include two position markers left and right, which initially span

the entire array or list. Now you check if the left and right values referenced by these

positions match. If this is the case, the position markers are moved inward by one

position on both sides, and the whole procedure is called recursively. This is repeated

until the left position pointer reaches or skips the right one.

The implementation changes as follows:

def is_palindrome_recursive_optimized(values):

 return is_palindrome_recursive_in_range(values, 0, len(values) - 1)

def is_palindrome_recursive_in_range(values, left, right):

 # recursive termination

 if left >= right:

 return True

 if values[left] == values[right]:

 # recursive descent

 return is_palindrome_recursive_in_range(values, left + 1,

right - 1)

 return False

Perhaps you wonder why I don’t write the process more compactly and even use

less return statements. My main concern in presenting algorithms is comprehensibility.

Multiple returns are really only a problem if a function is very long and confusing.

HINT: AUXILIARY FUNCTIONS FOR FACILITATING RECURSION

the idea of position pointers in arrays, lists, or strings is a common tool used in solutions to

recursion for optimization and avoidance of, say, array copying. to prevent the whole thing

becoming inconvenient for callers, it is a good idea to have a high-level function calling a

helper function that has additional parameters. this allows you to include certain information

in the recursive descent. in this example, these are the left and right limits, so that potentially

costly copying can be eliminated. Many subsequent examples will take advantage of the

general idea.

Chapter 3 reCursion

79

 Example 1: Palindrome—Iterative Variant

Although a recursive definition of an algorithm is sometimes quite elegant, the recursive

descent produces self calls. This potentially creates quite a bit of overhead. Conveniently,

any recursive algorithm can be converted into an iterative one. Let’s look at this for the

palindrome calculation. You use two position pointers for the iterative conversion—

instead of the recursive descent, you use a while loop. This terminates when all elements

have been checked or if a mismatch has been detected before.

def is_palindrome_iterative(values):

 left = 0

 right = len(values) - 1

 same_value = True

 while left < right and same_value:

 same_value = values[left] == values[right]

 left += 1

 right -= 1

 return same_value

Again, a note on compactness: This function could be written as follows, omitting

the auxiliary variable:

def is_palindrome_iterative_compact(values):

 left = 0

 right = len(values) - 1

 while left < right and values[left] == values[right]:

 left += 1

 right -= 1

 # left >= right or values[left] != values[right]

 return left >= right

The return value is determined by the condition implied by the comment, if left >=

right holds, then values is not a palindrome. With this variant, however, you have to

think much more about the return. Again, I prefer understandability and maintainability

over brevity or performance.

Chapter 3 reCursion

80

Python shortcut Of course, the whole thing can be achieved much more easily by

calling the built-in functionality [::-1]. This produces a string or list (or even an array)

with the letters or elements in reverse order. I discuss this feature of Python called

slicing later in Chapters 4 and 5. Let’s return to the exercise of checking the palindrome

property of a list, which can be written exceptionally compactly with slicing:

def is_palindrome_shorter(values):

 return values == values[::-1]

Also, consider for this variant that in the presumably rare case of enormous amounts

of data, an inverse variant of the original list is generated here. Thus, the memory is

required twice.

 Example 2: Fractal Generation

As mentioned in the beginning, recursion allows you to create graphics as well. In the

following, a graphically simple variant is displayed, which is based on the subdivisions of

a ruler:

-

==

-

===

-

==

-

This can be implemented with a two times recursive descent as follows:

def fractal_generator(n):

 if n < 1:

 return

 if n == 1:

 print("-")

 else:

 fractal_generator(n - 1)

 print("=" * n)

 fractal_generator(n - 1)

Chapter 3 reCursion

81

If you use more complex drawing functions instead of ASCII characters, you can

use recursion to create exciting and appealing shapes, for example the snowflake in

Figure 3-3.

Figure 3-3. Recursive graphic with draw_snowflake()

This stylized representation of a snowflake can be implemented as follows:

import turtle

def draw_snowflake(turtle, length, depth):

 # recursive termination

 if depth == 0:

 return

 for _ in range(6):

 turtle.right(60)

 turtle.forward(length)

 # recursive descent

 draw_snowflake(turtle, length // 3, depth - 1)

 turtle.back(length)

screen = turtle.Screen()

turtle.speed(10)

draw_snowflake(turtle, 240, 5)

screen.exitonclick()

Chapter 3 reCursion

82

3.1.3 Steps When Multiplying the Digits of a Number
To conclude the algorithmic examples, I would like to clarify the individual steps and self

calls once more. As an artificial example, use the multiplication of the digits of a number,

also called cross product, for example for the value 257 ⇒ 2 ∗ 5 ∗ 7 = 10 ∗ 7 = 70.

Using modulo, the extraction of the individual digits and their multiplication can be

implemented quite simply as follows:

def multiply_all_digits(value):

 remainder = value // 10

 digit_value = value % 10

 print("multiply_all_digits: %-10d | remainder: %d, digit: %d" %

 (value, remainder, digit_value))

 if remainder > 0:

 result = multiply_all_digits(remainder)

 print("-> %d * %d = %d" % (digit_value, result, digit_value *

result))

 return digit_value * result

 else:

 print("-> " + str(value))

 return value

Let’s look at the outputs for the two numbers 1234 and 257:

>>> multiply_all_digits(1234)

multiply_all_digits: 1234 | remainder: 123, digit: 4

multiply_all_digits: 123 | remainder: 12, digit: 3

multiply_all_digits: 12 | remainder: 1, digit: 2

multiply_all_digits: 1 | remainder: 0, digit: 1

-> 1

-> 2 * 1 = 2

-> 3 * 2 = 6

-> 4 * 6 = 24

24

Chapter 3 reCursion

83

>>> multiply_all_digits(257)

multiply_all_digits: 257 | remainder: 25, digit: 7

multiply_all_digits: 25 | remainder: 2, digit: 5

multiply_all_digits: 2 | remainder: 0, digit: 2

-> 2

-> 5 * 2 = 10

-> 7 * 10 = 70

70

It is clearly visible how the recursive calls happen with a continuously shorter

sequence of numbers. Finally, the result is constructed or calculated based on the last

digit in the other direction.

Python shortcut Again, the whole thing can be accomplished much more easily by

calling the functionality reduce() from module functools Still, the point here is to get

acquainted with the recursive description of multiplying the digits of a number:

import functools

def multiply_all_digits_shorter(value):

 return functools.reduce(lambda x, y: int(x) * int(y), str(value))

3.1.4 Typical Problems: Endless Calls and RecursionError
Recursion often allows problems to be expressed and implemented in an understandable

way. A detail worth knowing is that the self calls lead to them being stored temporarily on

the stack. For each function call, a so-called stack frame containing information about the

called function and its parameters is stored on the stack. The stack is, however, limited in

its size. Thus only a finite number of nested function calls can take place—usually around

990. This was already discussed briefly in a practical tip.

A huge number of recursive calls can result in a RecursionError: maximum

recursion depth exceeded. Sometimes the problem occurs because there is no

termination condition in the recursion or the condition is formulated incorrectly.

attention: deliberately wrong for demonstration

def infinite_recursion(value):

 infinite_recursion(value)

def factorial_no_abortion(number):

 return number * factorial_no_abortion(number - 1)

Chapter 3 reCursion

84

Sometimes the call is also just wrong, simply because no decreased value is passed:

attention: deliberately wrong for demonstration

def factorial_wrong_call(n):

 if n == 0 or n == 1:

 return 1

 return n * factorial_wrong_call(n)

You may still recognize a direct endless self call fairly well. But this becomes more

difficult with an increasing number of lines. With some experience and practice in recursion,

even the missing termination condition in the function factorial_no_abortion() may still

be quite recognizable. But, in the function factorial_wrong_call() this is not that easy to

determine. Here you must know more accurately what was intended.

You should take away two things from the examples:

 1. Termination condition: A recursive function must always include

at least one termination condition. But even if defined correctly, it

is possible that, for example, the disallowed negative value range

is not checked. For factorial(n) a call with a negative value

would then lead to a RecursionError.

 2. Complexity reduction: A recursive function must always

subdivide the original problem into one or more smaller

subproblems. Sometimes, this is already accomplished by

reducing the value of a parameter by 1.

3.2 Exercises
3.2.1 Exercise 1: Fibonacci (★★✩✩✩)
 Exercise 1a: Fibonacci Recursive (★✩✩✩✩)

Write function fib_rec(n) that recursively computes Fibonacci numbers based on the

following definition:

fib n

n

n

fib n fib n n

� � �
�
�

�� �� �� � � �

�

�
�

�
�

1 1

1 2

1 2 2

,

,

,

Chapter 3 reCursion

85

Example

For example, check the implementation with the following value progression:

Input 1 2 3 4 5 6 7 8

fib(n) 1 1 2 3 5 8 13 21

 Exercise 1b: Fibonacci Iterative (★★✩✩✩)

The recursive calculation of Fibonacci numbers is not efficient, and the running time

increases enormously from about the fortieth or fiftieth Fibonacci number. Write an

iterative version for the calculation.

3.2.2 Exercise 2: Process Digits (★★✩✩✩)
 Exercise 2a: Count Digits (★★✩✩✩)

Write recursive function count_digits(value) that finds the number of digits in a

positive natural number. We already discussed how to extract digits in the previous

chapter in section 2.1.

 Exercise 2b: Cross Sum (★★✩✩✩)

Calculate the sum of the digits of a number recursively. Write recursive function calc_

sum_of_digits(value) for this purpose.

 Examples

Input Number of digits Cross sum

1234 4 1 + 2 + 3 + 4 = 10

1234567 7 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28

Chapter 3 reCursion

86

3.2.3 Exercise 3: GCD (★★✩✩✩)
 Exercise 3a: GCD Recursive (★✩✩✩✩)

Write function gcd(a, b) that computes the greatest common divisor (GCD)1. GCD can

be expressed mathematically recursively as follows for two natural numbers a and b:

gcd

,

gcd % ,
a b

a b

b a b b
,

,
� � �

�

� � �
�
�
�

0

0

 Examples

Input 1 Input 2 Result

42 7 7

42 28 14

42 14 14

 Exercise 3b: GCD Iterative (★★✩✩✩)

Create an iterative version for the GCD calculation.

 Exercise 3c: LCM (★✩✩✩✩)

Write function lcm(a, b) that computes the least common multiplier (LCM). For two

natural numbers a and b, you can calculate this based on the GCD using the following

formula:

 lcm a b a b a b, ,� � � � �� / ;gcd

1 Colloquially, this is the largest natural number by which two integers can be divided without a
remainder.

Chapter 3 reCursion

87

 Examples

Input 1 Input 2 Result

2 7 14

7 14 14

42 14 42

3.2.4 Exercise 4: Reverse String (★★✩✩✩)
Write recursive function reverse_string(text) that flips the letters of the text passed in.

 Examples

Input Result

“a” “a”

“aBC” “CBa”

“abcdefghi” “ihgfedcba”

3.2.5 Exercise 5: List Sum (★★✩✩✩)
Write function sum_rec(values) that recursively computes the sum of the values of the

given list. No call to the built-in functionality sum() is allowed.

 Examples

Input Result

[1, 2, 3] 6

[1, 2, 3, -7] -1

Chapter 3 reCursion

88

3.2.6 Exercise 6: List Min (★★✩✩✩)
Write function min_rec(values) that uses recursion to find the minimum value of

the passed list. For an empty list, the value sys.maxsize should be returned. In the

implementation, no call to the built-in functionality min() is allowed.

 Examples

Input Result

[7, 2, 1, 9, 7, 1] 1

[11, 2, 33, 44, 55, 6, 7] 2

[1, 2, 3, -7] -7

3.2.7 Exercise 7: Conversions (★★✩✩✩)
 Exercise 7a: Binary (★★✩✩✩)

Write function to_binary(n) that recursively converts the given positive integer into a

textual binary representation. No call to int(x, base) may be used.

 Examples

Input Result

5 “101”

7 “111”

22 “10110”

42 “101010”

256 “100000000”

 Exercise 7b: Octal and Hexadecimal Numbers (★★✩✩✩)

Write conversions to octal and hexadecimal numbers by implementing the

corresponding functions to_octal(n) and to_hex(n). Again, no call to int(x, base)

may be used.

Chapter 3 reCursion

89

 Examples

Input Method Result

7 octal “7”

8 octal “10”

42 octal “52”

15 hexadecimal “F”

77 hexadecimal “4D”

3.2.8 Exercise 8: Exponential Function (★★✩✩✩)
 Exercise 8a: Power of Two (★★✩✩✩)

Write recursive function is_power_of_2(n) that evaluates the given positive integer to

see if it is a power of two.

 Examples

Input Result

2 true

10 False

16 true

 Exercise 8b: Exponentiation Recursive (★★✩✩✩)

Write recursive function power_of(value, exponent) that exponentiates the given

positive integer with the positive number specified as second parameter. For example,

the call power_of(4, 2) should return the square of 4, so compute 42 = 16. You may not

use the built-in functionality pow() or the operator **.

 Exercise 8c: Exponentiation Iterative (★★✩✩✩)

Write an iterative version of this exponentiation functionality.

Chapter 3 reCursion

90

 Examples

Input base Input exponent Result

2 2 4

2 8 256

4 4 256

3.2.9 Exercise 9: Pascal’s Triangle (★★✩✩✩)
Write function print_pascal(n) that prints Pascal’s triangle. For the value 5, the

following output should be generated:

[1]

[1, 1]

[1, 2, 1]

[1, 3, 3, 1]

[1, 4, 6, 4, 1]

Starting with the third line, each subsequent line is calculated based on the previous

one with the help of an addition, as shown in the last line of the following definition. For

each line, these values are flanked by a 1 at the front and at the back. Since this is a two-

dimensional structure, the recursive definition is a little more complex.

Tip For background information and an in-depth explanation, please consult
https://en.wikipedia.org/wiki/Pascal's_triangle.

Chapter 3 reCursion

https://en.wikipedia.org/wiki/Pascal’s_triangle

91

3.2.10 Exercise 10: Number Palindromes (★★★★✩)
A palindrome is a word that reads the same from the front and the back. You can

extend this definition to the digits of a number. Write recursive function is_number_

palindrome(number) but without converting the number into a string and then using

string functionalities like [::-1].

 Examples

Input Result

7 true

13 False

171 true

47742 False

3.2.11 Exercise 11: Permutations (★★★✩✩)
Calculate all permutations of a sequence of letters given as a string; this means all

possible combinations of these letters. Implement this calculation in function

calc_permutations(text). Consider also the case of duplicate letters, but do not use

the standard Python functionality from the itertools module.

 Examples

Input Result

“a” “a”

“aa” “aa”

“aB” “aB”, “Ba”

“aBC” “aBC, “BaC”, “aCB”,

“CaB”, “CBa”, “BCa”

“aaC” “aaC”, “aCa”, “Caa”

Chapter 3 reCursion

92

3.2.12 Exercise 12: Count Substrings (★★✩✩✩)
Write function count_substrings(text, value_to_find) that counts all occurrences

of the given substring. Thereby, when a pattern is found, it should be consumed; in other

words, it should not be available for hits again. This is shown n the following table as the

last case. Implement the whole thing yourself without resorting to the standard count().

 Examples

Input Search term Result

“xhixhix” “x” 3

“xhixhix” “hi” 2

“mic” “mic” 1

“haha” “ho” 0

“xxxxyz” “xx” 2

3.2.13 Exercise 13: Ruler (★★✩✩✩)
In the introduction, I showed how to draw a simple shape of a ruler as well as a stylized

snowflake (see Figure 3-3) using recursion. In this exercise, you want to imitate an

English-style ruler. This involves dividing an area of one inch into 1/2 and 1/4 and 1/8. In

doing so, the length of the strokes decreases by one each time.

Example

The output should look somewhat like the following:

---- 0

-

--

-

-

--

-

Chapter 3 reCursion

93

---- 1

-

--

-

-

--

-

---- 2

3.3 Solutions
3.3.1 Solution 1: Fibonacci (★★✩✩✩)
 Solution 1a: Fibonacci Recursive (★✩✩✩✩)

Write function fib_rec(n) that recursively computes Fibonacci numbers based on the

following definition:

fib n

n

n

fib n fib n n

� � �
�
�

�� �� �� � � �

�

�
�

�
�

1 1

1 2

1 2 2

,

,

,

Example

For example, check the implementation with the following value progression:

Input 1 2 3 4 5 6 7 8

fib(n) 1 1 2 3 5 8 13 21

Algorithm The implementation in Python is exactly derived from the mathematical

definition:

def fib_rec(n):

 if n <= 0:

 raise ValueError("n must be >= 1")

Chapter 3 reCursion

94

 # recursive termination

 if n == 1 or n == 2:

 return 1

 # recursive descent

 return fib_rec(n - 1) + fib_rec(n - 2)

Python shortcut To calculate Fibonacci numbers, you can use a lambda and write

the whole thing as a one-liner—but without error handling and somewhat less readable.

In addition, the recursive termination and descent are more difficult to recognize.

fib = lambda n: n if n < 2 else fib(n - 1) + fib(n - 2)

ATTENTION: OPTIMIZATION

Keep in mind that self calls happen again and again when calculating Fibonacci numbers.

even worse, that is the case for values that have already been calculated before. this

is suboptimal. in addition to the iterative variant shown in the following, the technique

memoization discussed in section 7.1 can be used for optimization. in python, decorators are

suitable for this purpose, which i briefly introduce in appendix B.

 Solution 1b: Fibonacci Iterative (★★✩✩✩)

The recursive calculation of Fibonacci numbers is not efficient, and the running time

increases enormously from about the fortieth to fiftieth Fibonacci number. Write an

iterative version for the calculation.

Algorithm Similarly to the recursive version, the iterative implementation checks

at first the input for validity and then for the special cases for the invocation with the

values 1 or 2. After that, you use two helper variables and a loop that runs from 2 to n.

You then calculate the corresponding Fibonacci number from the sum of the two helper

variables. After that, the two helper variables are assigned appropriately. This results in

the following implementation:

def fib_iterative(n):

 if n <= 0:

 raise ValueError("n must be >= 1")

Chapter 3 reCursion

95

 if n == 1 or n == 2:

 return 1

 fib_n_2 = 1

 fib_n_1 = 1

 for _ in range(2, n):

 fib_n = fib_n_1 + fib_n_2

 # "shift" by one position

 fib_n_2 = fib_n_1

 fib_n_1 = fib_n

 return fib_n

 Verification

For testing, use the following inputs, which show the correct functioning:

def input_and_expected():

 return [(1, 1), (2, 1), (3, 2), (4, 3),

 (5, 5), (6, 8), (7, 13), (8, 21)]

@pytest.mark.parametrize("n, expected", input_and_expected())

def test_fib_rec(n, expected):

 assert fib_rec(n) == expected

@pytest.mark.parametrize("n, expected", input_and_expected())

def test_fib_iterative(n, expected):

 assert fib_iterative(n) == expected

3.3.2 Solution 2: Process Digits (★★✩✩✩)
 Solution 2a: Count Digits (★★✩✩✩)

Write recursive function count_digits(value) that finds the number of digits in a

positive natural number. You explored how to extract digits in the previous chapter in

section 2.1.

Chapter 3 reCursion

96

 Examples

Input Number of digits Cross sum

1234 4 1 + 2 + 3 + 4 = 10

1234567 7 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28

Algorithm If the number is less than 10, then return the value 1 because this

corresponds to a digit. Otherwise, calculate the remaining value by dividing the number

by 10. This invokes the counting method recursively as follows:

def count_digits(value):

 if value < 0:

 raise ValueError("value must be >= 0")

 # recursive termination

 if value < 10:

 return 1

 # recursive descent

 return count_digits(value // 10) + 1

ATTENTION: SANITY CHECKS AT THE BEGINNING OF THE METHOD

to ensure stable programs, it is often a good idea to check the parameters for validity. this can

be accomplished in the form of simple if statements, as you have done several times before.

in python, however, this can be achieved more elegantly with the help of decorators, which i

briefly introduce in appendix B.

Python shortcut Of course, there are different variants to solve this task non-

recursively and in a more performant way. With list comprehension, every digit is

converted into a 1. They are summed up using the built-in sum() function. However,

this tends to be a fancy, artificial solution. It is much clearer and more understandable

to convert the number into a string and then call the built-in function len() to count

the digits:

Chapter 3 reCursion

97

def count_digits_shorter(value):

 return sum([1 for _ in str(value)])

def count_digits_tricky(value):

 return len(str(value))

 Solution 2b: Cross Sum (★★✩✩✩)

Calculate the sum of the digits of a number recursively. Write recursive function

calc_sum_of_digits(value) for this purpose.

Algorithm Based on the solution for the first subtask, you only vary the returned

value for the digit as well as the addition and the self call as follows:

def calc_sum_of_digits(value):

 if value < 0:

 raise ValueError("value must be >= 0")

 # recursive termination

 if value < 10:

 return value

 remainder = value // 10

 last_digit = value % 10

 # recursive descent

 return calc_sum_of_digits(remainder) + last_digit

Python shortcut The built-in function divmod() is useful here:

def calc_sum_of_digits(value):

 if value < 0:

 raise ValueError("value must be >= 0")

 # recursive termination

 if value < 10:

 return value

 remainder, last_digit = divmod(value, 10)

 # recursive descent

 return calc_sum_of_digits(remainder) + last_digit

Chapter 3 reCursion

98

To sum the digits, you again use list comprehension, which converts each digit into a

numerical value. The sum is calculated with the built-in function sum():

def calc_sum_of_digits_shorter(value):

 return sum([int(ch) for ch in str(value)])

However, this assignment is not about brevity, but about getting to know the

recursive description of the calculation of the sum of the digits.

 Verification

For testing, use the following inputs, which show the correct operation:

@pytest.mark.parametrize("number, expected", [(1234, 4), (1234567, 7)])

def test_count_digits(number, expected):

 assert count_digits(number) == expected

@pytest.mark.parametrize("number, expected", [(1234, 10), (1234567, 28)])

def test_calc_sum_of_digits(number, expected):

 assert calc_sum_of_digits(number) == expected

3.3.3 Solution 3: GCD (★★✩✩✩)
 Solution 3a: GCD Recursive (★✩✩✩✩)

Write function gcd(a, b) that computes the greatest common divisor (GCD)2. GCD can

be expressed mathematically recursively as follows for two natural numbers a and b:

gcd

gcd
a b

a b

b a b b
,

,
� � �

�

� � �
�
�
�

��

,

% ,

0

0

2 Colloquially, this is the largest natural number by which two integers can be divided without a
remainder.

Chapter 3 reCursion

99

 Examples

Input 1 Input 2 Result

42 7 7

42 28 14

42 14 14

Algorithm The calculation of the GCD can be coded in Python fairly directly from

the mathematical definition:

def gcd(a, b):

 # recursive termination

 if b == 0:

 return a

 # recursive descent

 return gcd(b, a % b)

Python shortcut Of course, this task can be achieved in a much more

straightforward way by calling the built-in functionality gcd() from the module math.

However, this assignment is about getting to know the recursive calculation of the GCD.

>>> import math

>>> math.gcd(42, 7)

7

>>> math.gcd(42, 14)

14

 Solution 3b: GCD Iterative (★★✩✩✩)

Create an iterative version for the GCD calculation.

Algorithm The self call is transformed into a loop that is executed until the condition

of the recursive termination is met. The trick is to reassign the variables as specified by

the recursive definition.

Chapter 3 reCursion

100

def gcd_iterative(a, b):

 while b != 0:

 remainder = a % b

 a = b

 b = remainder

 # here applies b == 0

 return a

 Verification

For testing, use the following inputs, which show the correct operation:

@pytest.mark.parametrize("a, b, expected",

 [(42, 7, 7), (42, 28, 14), (42, 14, 14)])

def test_gcd(a, b, expected):

 assert gcd(a, b) == expected

@pytest.mark.parametrize("a, b, expected",

 [(42, 7, 7), (42, 28, 14), (42, 14, 14)])

def test_gcd_iterative(a, b, expected):

 assert gcd_iterative(a, b) == expected

 Solution 3c: LCM (★✩✩✩✩)

Write function lcm(a, b) that computes the least common multiplier (LCM). For two

natural numbers a and b, you can calculate this based on the GCD using the following

formula:

lcm(a, b) = a ∗ b / gcd(a, b);

 Examples

Input 1 Input 2 Result

2 7 14

7 14 14

42 14 42

Chapter 3 reCursion

101

Algorithm The calculation of the LCM can also be directly implemented from the

mathematical definition, as long as you have already completed the functionality for

the GCD:

def lcm(a, b):

 return a * b // gcd(a, b)

Python shortcut Of course, this task can be achieved in a much more

straightforward way by calling the built-in functionality lcm() from the module math:

>>> import math

>>> math.lcm(2, 7)

14

 Verification

For testing, use the following inputs, which show the correct operation:

@pytest.mark.parametrize("a, b, expected",

 [(2, 7, 14), (7, 14, 14), (42, 14, 42)])

def test_lcm(a, b, expected):

 assert lcm(a, b) == expected

HINT: CALCULATE LCM WITHOUT USING GCD

Without the calculation of the GCD, you proceeds as follows. You determine both the maximum

and the minimum of the two numbers. starting from the larger number, this is increased

by itself until the smaller number divides the resulting number perfectly (i.e., without a

remainder).

def lcm_iterative(a, b):

 larger = max(a, b)

 smaller = min(a, b)

 value = larger

 while value % smaller != 0:

 value += larger

 return value

Chapter 3 reCursion

102

3.3.4 Solution 4: Reverse String (★★✩✩✩)
Write recursive function reverse_string(text) that flips the letters of the text passed in.

 Examples

Input Result

“a” “a”

“aBC” “CBa”

“abcdefghi” “ihgfedcba”

Algorithm Extract the first character until you have a string of length 1 and then

concatenate the whole in reverse order:

def reverse_string(text):

 # recursive termination

 if len(text) <= 1:

 return text

 first_char = text[0]

 remaining = text[1:]

 # recursive descent

 return reverse_string(remaining) + first_char

Python shortcut This can be achieved much easier by the following calls:

reversed_text = text[::-1]

reversed_text = "".join(reversed(text))

However, this task is about getting to know recursion.

 Verification

For testing, use the following inputs, which show the correct operation:

Chapter 3 reCursion

103

@pytest.mark.parametrize("input, expected",

 [("A", "A"), ("ABC", "CBA"),

 ("abcdefghi", "ihgfedcba")])

def test_reverse_string(input, expected):

 assert reverse_string(input) == expected

3.3.5 Solution 5: List Sum (★★✩✩✩)
Write function sum_rec(values) that recursively computes the sum of the values of the

given list. No call to the built-in functionality sum() is allowed.

 Examples

Input Result

[1, 2, 3] 6

[1, 2, 3, -7] -1

Algorithm Compute the partial sum with the recursive definition as long as

sum(values(0)) = values[0]

sum(values(0 ... n)) = values[0] + sum(values(1 ... n))

until only a single element is left. As mentioned in the introduction, a helper function

is useful, containing the actual processing and logic. Here the current value in the list is

added to the recursively determined result:

def sum_rec(values):

 return sum_helper(values, 0)

def sum_helper(values, pos):

 # recursive termination

 if pos >= len(values):

 return 0

 # recursive descent

 return values[pos] + sum_helper(values, pos + 1)

Chapter 3 reCursion

104

Alternative algorithm Alternatively, it is also possible to let the pos counter run

from length - 1 to 0, so the recursion reverses to the following:

sum(values(0 ... n)) = sum(values(0 ... n − 1)) + values[n]

This can be implemented in the form of functions sum_tail(values) and sum_tail_

helper(values, pos) as follows:

def sum_tail(values):

 return sum_tail_helper(values, len(values) - 1)

def sum_tail_helper(values, pos):

 # recursive termination

 if pos < 0:

 return 0

 # recursive descent

 return sum_tail_helper(values, pos - 1) + values[pos]

Python shortcut Of course, the whole thing can be achieved in a much more

straightforward way by calling the built-in functionality sum(). However, this assignment

is about getting to know the recursive description of the sum calculation.

result = sum(values)

Likewise, the function reduce() from the module functools can be used—but this is

less understandable and less readable:

import functools

def sum_lambda(values):

 return functools.reduce(lambda x, y: x + y, values)

 Verification

The following inputs show the correct operation:

@pytest.mark.parametrize("values, expected",

 [([1], 1), ([1, 2, 3], 6), ([1, 2, 3, -7], -1)])

def test_sum_rec(values, expected):

 assert sum_rec(values) == expected

Chapter 3 reCursion

105

@pytest.mark.parametrize("values, expected",

 [([1], 1), ([1, 2, 3], 6), ([1, 2, 3, -7], -1)])

def test_sum_tail(values, expected):

 assert sum_tail(values) == expected

@pytest.mark.parametrize("values, expected",

 [([1], 1), ([1, 2, 3], 6), ([1, 2, 3, -7], -1)])

def test_sum_lambda(values, expected):

 assert sum_lambda(values) == expected

3.3.6 Solution 6: List Min (★★✩✩✩)
Write function min_rec(values) that uses recursion to find the minimum value of

the passed list. For an empty list, the value sys.maxsize should be returned. In the

implementation, no call to the built-in functionality min() is allowed.

 Examples

Input Result

[7, 2, 1, 9, 7, 1] 1

[11, 2, 33, 44, 55, 6, 7] 2

[1, 2, 3, -7] -7

Algorithm Check the list starting from the first element and compare it with an

initial minimum set to sys.maxsize. If the current element is smaller, it becomes the

new minimum. Repeat this check for the list shortened by one position until the position

has reached the end of the list.

def min_rec(values):

 return min_helper(values, 0, sys.maxsize)

def min_helper(values, pos, min_value):

 # recursive termination

 if pos >= len(values):

 return min_value

Chapter 3 reCursion

106

 value = values[pos]

 if value < min_value:

 min_value = value

 # recursive descent

 return min_helper(values, pos + 1, min_value)

Python shortcut An invocation of the built-in functionality min() would be much

simpler. However, this task is about the recursive determination of the minimum.

result = min(values)

 Verification

For testing, use the following inputs, which show the correct functionality:

@pytest.mark.parametrize("values, expected",

 [([7, 2, 1, 9, 7, 1], 1), ([1, 2, 3, -7], -7),

 ([11, 2, 33, 44, 55, 6, 7], 2), ([], sys.maxsize)])

def test_min_rec(values, expected):

 assert min_rec(values) == expected

3.3.7 Solution 7: Conversions (★★✩✩✩)
 Solution 7a: Binary (★★✩✩✩)

Write function to_binary(n) that recursively converts the given positive integer into a

textual binary representation. No call to int(x, base) may be used.

 Examples

Input Result

5 “101”

7 “111”

22 “10110”

42 “101010”

256 “100000000”

Chapter 3 reCursion

107

Algorithm The conversion is based on the already known extraction of the last

digit and the determination of remainder, as was introduced in section 2.1. To convert

a decimal number into a binary number, check whether the number passed can be

represented by a single digit in the binary system (i. e., whether it is smaller than 2).

Otherwise, the last digit is extracted first using the modulo operator and also the

remainder. For this, you call the function recursively and then concatenate the string

representation of the last digit. This results in the following sequence for the value 22:

Invocation Process Result

to_binary(22) to_binary(22/2) + str(22%2) => to_binary(11) + “0” “10110”

to_binary(11) to_binary(11/2) + str(11%2) => to_binary(5) + “1” “1011”

to_binary(5) to_binary(5/2) + str(5%2) => to_binary(2) + “1” “101”

to_binary(2) to_binary(2/2) + str(2%2) => to_binary(1) + “0” “10”

to_binary(1) str(1) => “1” “1”

Now let’s implement the whole thing in Python as follows:

def to_binary(n):

 if n < 0:

 raise ValueError("n must be >= 0")

 # recursive termination: check for digit in binary system

 if n <= 1:

 return str(n)

 remainder, last_digit = divmod(n, 2)

 # recursive descent

 return to_binary(remainder) + str(last_digit)

 Solution 7b: Octal and Hexadecimal Numbers (★★✩✩✩)

Write conversions to octal and hexadecimal numbers by implementing the

corresponding functions to_octal(n) and to_hex(n). Again, no call to int(x, base)

may be used.

Chapter 3 reCursion

108

 Examples

Input Method Result

7 octal “7”

8 octal “10”

42 octal “52”

15 hexadecimal “F”

77 hexadecimal “4D”

Algorithm The algorithm remains basically the same. You check whether the

number passed can be represented by a single digit of the desired number system, such

as smaller than 8 (octal) or 16 (hexadecimal). Otherwise, you first extract the last digit

using a modulo operation and also the remainder. For the remainder, this function is

called recursively and then the string representation of the last digit is concatenated.

In this solution, you use an explicit division and the modulo operator for octal number

processing and the built-in function divmod() when checking for hexadecimal numbers:

def to_octal(n):

 if n < 0:

 raise ValueError("n must be >= 0")

 # recursive termination: check for digit in octal system

 if n <= 7:

 return str(n)

 last_digit = n % 8

 remainder = n // 8

 # recursive descent

 return to_octal(remainder) + str(last_digit)

def to_hex(n):

 if n < 0:

 raise ValueError("n must be >= 0")

Chapter 3 reCursion

109

 # recursive termination: check for digit in hexadecimal system

 if n <= 15:

 return as_hex_digit(n)

 remainder, last_digit = divmod(n, 16)

 # recursive descent

 return to_hex(remainder) + as_hex_digit(last_digit)

For the sake of completeness there remains the conversion into a hexadecimal digit:

easier handling of hexadecimal conversion

def as_hex_digit(n):

 if 0 <= n < 9:

 return str(n)

 if 10 <= n <= 15:

 # special character arithmetic

 return chr(ord('A') + (n - 10))

 raise ValueError("value not in range 0 - 15, " + "but is: " + n)

HINT: POSSIBLE OPTIMIZATION

although the implementation shown for converting a single hexadecimal digit to a string

is pretty straightforward, there is an amazingly elegant variant that is also readable and

understandable. it checks in a given character set with indexed access via [n]:

def as_hex_digit_optimized(n):

 if 0 <= n <= 15:

 return "0123456789ABCDEF"[n]

 raise ValueError("value not in range 0 - 15, " + "but is: " + n)

Chapter 3 reCursion

110

 Verification

For testing, use the following inputs, which show the correct operation:

@pytest.mark.parametrize("value, expected",

 [(5, "101"), (7, "111"), (22, "10110"),

 (42, "101010"), (256, "100000000")])

def test_to_binary(value, expected):

 assert to_binary(value) == expected

@pytest.mark.parametrize("value, expected",

 [(42, "52"), (7, "7"), (8, "10")])

def test_to_octal(value, expected):

 assert to_octal(value) == expected

@pytest.mark.parametrize("value, expected",

 [(77, "4D"), (15, "F"), (16, "10")])

def test_to_hex(value, expected):

 assert to_hex(value) == expected

3.3.8 Solution 8: Exponential Function (★★✩✩✩)
 Solution 8a: Power of Two (★★✩✩✩)

Write recursive function is_power_of_2(n) that evaluates the given positive integer to

see if it is a power of two.

 Examples

Input Result

2 true

10 False

16 true

Chapter 3 reCursion

111

Algorithm If the given number is smaller than the value 2, only the value 1

corresponds to a power, namely the 0th (i. e., 20). Now you have to check if it is an odd

number. If this is the case, it is impossible for it to be a multiple and therefore not a

power of 2. If the number is even, then check recursively with the number divided by 2.

def is_power_of_2(n):

 # recursive termination

 if n < 2:

 return n == 1

 if n % 2 != 0:

 return False

 # recursive descent

 return is_power_of_2(n // 2)

For the initial check, use a little trick with return n==1, which has the

following effect:

n < 0 : False (negative number, so never the value 1)

n = 0 : False (0 ≠1)

n = 1 : True (1 = 1)

Let’s take a look at a short version of the implementation. To my mind, the upper one

is more comprehensible. Moreover, in the first version, the recursive termination and the

recursive descent are much clearer.

def is_power_of_2_short(n):

 return n == 1 or n > 0 and n % 2 == 0 and is_power_of_2_short(n // 2)

 Solution 8b: Exponentiation Recursive (★★✩✩✩)

Write recursive function power_of(value, exponent) that exponentiates the given

positive integer with the positive number specified as second parameter. For example,

the call power_of(4, 2) should return the square of 4, so compute 42 = 16. You may not

use the built-in functionality pow() or the operator **.

Algorithm Invoke the method recursively and multiply the number by the result

of the self call until the exponent reaches 0 or 1. Furthermore, you have to reduce the

exponent by 1 with each call.

Chapter 3 reCursion

112

def power_of(value, exponent):

 if exponent < 0:

 raise ValueError("exponent must be >= 0")

 # recursive termination

 if exponent == 0:

 return 1

 if exponent == 1:

 return value

 # recursive descent

 return value * power_of(value, exponent - 1)

This alternative has a cost of O(n). But it is quite easy to optimize this and reduce it to

O(log(n)).

Optimized algorithm For optimization, use the trick of squaring the value and

thereby halving the exponent. This leaves only the special treatment of an odd exponent,

which requires another multiplication.

def power_of_optimized(value, exponent):

 if exponent < 0:

 raise ValueError("exponent must be >= 0")

 # recursive termination

 if exponent == 0:

 return 1

 if exponent == 1:

 return value

 # recursive descent

 result = power_of_optimized(value * value, exponent // 2)

 if exponent % 2 == 1:

 return value * result

 return result

Chapter 3 reCursion

113

Python shortcut Of course, the whole thing can be achieved in a much more

straightforward way by calling the built-in functionality pow() or the operator **. But this

task is about getting to know the recursive calculation.

result = pow(value, exponent)

result = value ** exponent

 Solution 8c: Exponentiation Iterative (★★✩✩✩)

Write an iterative version of this exponentiation functionality.

 Examples

Input base Input exponent Result

2 2 4

2 8 256

4 4 256

Algorithm As with the recursive version, you probably start with the two checks.

Besides, the self call has to be converted into a loop, and the number has to be multiplied

with the previous intermediate result. Furthermore, in each iteration, the exponent

has to be reduced. However, a sharp look quickly shows that the two initial checks are

already covered by the general case and therefore are no longer included in the listing.

def power_of_iterative(value, exponent):

 result = 1

 while exponent > 0:

 result *= value

 exponent -= 1

 return result

Chapter 3 reCursion

114

 Verification

For testing, use the following inputs, which show the correct operation:

@pytest.mark.parametrize("value, expected",

 [(2, True), (3, False), (4, True),

 (10, False), (16, True)])

def test_is_power_of2(value, expected):

 assert is_power_of_2(value) == expected

def inputs_and_expected():

 return [(2, 2, 4), (4, 2, 16), (16, 2, 256),

 (4, 4, 256), (2, 8, 256)]

@pytest.mark.parametrize("number, exponent, expected",

 inputs_and_expected())

def test_power_of(number, exponent, expected):

 assert power_of(number, exponent) == expected

@pytest.mark.parametrize("number, exponent, expected",

 inputs_and_expected())

def test_power_of_iterative(number, exponent, expected):

 assert power_of_iterative(number, exponent) == expected

3.3.9 Solution 9: Pascal’s Triangle (★★✩✩✩)
Write function print_pascal(n) that prints Pascal’s triangle. For the value 5, the

following output should be generated:

[1]

[1, 1]

[1, 2, 1]

[1, 3, 3, 1]

[1, 4, 6, 4, 1]

Chapter 3 reCursion

115

Starting with the third line, each subsequent line is calculated based on the previous

one with the help of an addition, as shown in the last line of the following definition.

For each line, these values are flanked by a 1 at the front and at the back. Since this is a

two- dimensional structure, the recursive definition is a little more complex.

Tip For background information and an in-depth explanation, please consult
https://en.wikipedia.org/wiki/Pascal's_triangle.

Algorithm Implement the recursive definition as function as follows:

def calc_pascal(row, col):

 # recursive termination: top

 if col == 1 and row == 1:

 return 1

 # recursive termination: border

 if col == 1 or col == row:

 return 1

 # recursive descent

 return calc_pascal(row - 1, col) + calc_pascal(row - 1, col - 1)

Actually, there is no need for a separate termination condition for the top.

Nevertheless, this is shown here for the sake of better comprehension—but of course,

that is a matter of taste.

To calculate Pascal’s triangle, the previous method must now be invoked for each

position in the triangle using two nested loops covering all rows and columns:

Chapter 3 reCursion

https://en.wikipedia.org/wiki/Pascal’s_triangle

116

def print_pascal(n):

 for row in range(1, n + 1):

 for col in range(1, row + 1):

 print(calc_pascal(row, col), end=' ')

 print()

To try it out, use the Python console:

>>> print_pascal(7)

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

Optimized algorithm The pure recursive definition results in quite a lot of

computations. It becomes more understandable, comprehensible, and performant if you

work line by line.

The starting point is the first line, which contains only the value 1. For all other

values, you must call the method itself n times and then use the helper function

calc_line(previous_line_values) to compute the new line. But to avoid mixing the

computation and the console output, you add a parameter that is capable of performing

actions, such as logging intermediate steps to the console.

def calc_pascal_with_action(n, action):

 # recursive termination

 if n == 1:

 if action:

 action([1])

 return [1]

 else:

 # recursive descent

 previous_line_values = calc_pascal_with_action(n - 1, action)

Chapter 3 reCursion

117

 new_line = __calc_line(previous_line_values)

 if action:

 action(new_line)

 return new_line

You can find a bit more complexity in the helper function __calc_line(previous_

line) for calculating the values of the new line based on the previous one. It is important to

keep in mind that the previous line contains at least two values and that you do not sum up

to the last element, but only to the second last element. With the help of list comprehension,

however, this can be implemented quite understandably and briefly as follows:

def __calc_line(previous_line):

 # value results from the two values of the previous line

 current_line = [previous_line[i] + previous_line[i + 1]

 for i in range(len(previous_line) - 1)]

 # flanked by a 1 in each case

 return [1] + current_line + [1]

 Verification

For testing, use the following call, which shows the correct operation:

>>> calc_pascal_with_action(5, print)

[1]

[1, 1]

[1, 2, 1]

[1, 3, 3, 1]

[1, 4, 6, 4, 1]

You can then check something more formal with a unit test:

@pytest.mark.parametrize("n, expected",

 [(1, [1]),

 (2, [1, 1]),

 (3, [1, 2, 1]),

 (4, [1, 3, 3, 1]),

Chapter 3 reCursion

118

 (5, [1, 4, 6, 4, 1]),

 (6, [1, 5, 10, 10, 5, 1]),

 (7, [1, 6, 15, 20, 15, 6, 1])])

def test_calc_pascal_with_action(n, expected):

 assert calc_pascal_with_action(n, None) == expected

3.3.10 Solution 10: Number Palindromes (★★★★✩)
A palindrome is a word that reads the same from the front and the back. You can

extend this definition to the digits of a number. Write recursive function is_number_

palindrome(number) but without converting the number into a string and then using

string functionalities like [::-1].

 Examples

Input Result

7 true

13 False

171 true

47742 False

Algorithm Because of the restriction demanded in the exercise, it is not possible

to compare character by character. However, the operations modulo and division are

suitable, which you have already used for similar tasks. You use both to separate and

compare the left and right digits.

Let’s approach the solution with examples:

#digits value calculation

1 digit => special case, is always palindrome

2 digits 11 divisor = 10

< 100 1 % 10 = 1

 11 / 10 = 1 palindrome

Chapter 3 reCursion

119

 13

 3 % 10 = 3

 13 / 10 = 1 X

3 digits 171 divisor = 100

< 1000 1 % 10 = 1

 171 / 100 = 1

 remainder: 7 (171 / 10 = 17 % 10 = 7)

 => check recursively

4 digits 4774 divisor = 1000

<10000 4 % 10 = 4

 4774 / 1000 = 4 ok

 remainder: 77 (4774 / 10 = 477 % 100 = 77)

 => check recursively

The right and left digits of a digit have to be extracted. If they match, the new value is

determined by first dividing by 10 (cutting off the last digit) and then using the modulo

operator with the appropriately selected amount of digits to determine the remainder

(i. e., cutting off the front number). In particular, you have to figure out the length of the

number as a power of ten to get the correct divisor.

def is_number_palindrome(number):

 if number < 10:

 return True

 factor = calc_pow_of_ten(number)

 divisor = int(pow(10, factor))

 if number < divisor * 10:

 left_number = number // divisor

 right_number = number % 10

 # cuts away a leading zero ...

 remaining_number = (number // 10) % (divisor // 10)

 return left_number == right_number and \

 is_number_palindrome(remaining_number)

 return False

Chapter 3 reCursion

120

In the following, the calculation of the power of ten, as well as the counting of digits,

are shown as helper functions, which resides in the utility module math_utils:

def calc_pow_of_ten(number):

 return count_digits(number) - 1

def count_digits(number):

 count = 0

 while number > 0:

 number = number // 10

 count += 1

 return count

The solution shown is by no means optimal since the factors have to be determined

constantly. Furthermore, the entire procedure is still quite difficult to understand from

the source code, even though helper functions have already been extracted.

Optimized algorithm As an optimization, implement the following version.

Always separate the last digit, divide by 10, and call the function with the new values.

Beforehand, compute the new value from the current value and the last digit by

multiplying the current value by 10 and appending the last digit. If it is a palindrome,

then the original value corresponds to the calculated value. The recursive termination

occurs when either no more digits exist or only one single digit exists. The trick is that

you rebuild the number from the back and finally compare it with the original value. In

contrast to the other recursive helper functions presented so far, you need two buffers

here, one for the current value and one for the remaining value.

def is_number_palindrome_rec(number):

 return __is_number_palindrome_rec_helper(number, 0, number)

def __is_number_palindrome_rec_helper(original_number, current_value,

 remaining_value):

 # recursive termination

 if current_value == original_number:

 return True

 # recursive termination

 if (remaining_value < 1):

 return False

Chapter 3 reCursion

121

 last_digit = remaining_value % 10

 new_current = current_value * 10 + last_digit

 new_remaining = remaining_value // 10

 print("last_digit: %d, new_current: %d, new_remaining: %d" %

 (last_digit, new_current, new_remaining))

 return __is_number_palindrome_rec_helper(original_number, new_current,

 new_remaining)

The calls for the value 121 can be illustrated as follows:

__is_number_palindrome_rec_helper(121, 0, 121) =>

last_digit: 1, new_current: 1, new_remaining: 12

__is_number_palindrome_rec_helper(121, 1, 12) =>

last_digit: 2, new_current: 12, new_remaining: 1

i__s_number_palindrome_rec_helper(121, 12, 1) =>

last_digit: 1, new_current: 121, new_remaining: 0

__is_number_palindrome_rec_helper(121, 121, 0)

True

Certainly it is of interest to see how the entire procedure works for a number that is

not a palindrome, for example 123:

__is_number_palindrome_rec_helper(123, 0, 123) =>

last_digit: 3, new_current: 3, new_remaining: 12

__is_number_palindrome_rec_helper(123, 3, 12) =>

last_digit: 2, new_current: 32, new_remaining: 1

__is_number_palindrome_rec_helper(123, 32, 1) =>

last_digit: 1, new_current: 321, new_remaining: 0

__is_number_palindrome_rec_helper(123, 321, 0)

False

Chapter 3 reCursion

122

 Verification

For testing, use the following inputs, which show the correct operation:

@pytest.mark.parametrize("number, expected",

 [(7, True), (13, False), (171, True),

 (47742, False), (123321, True),

 (1234554321, True)])

def test_is_number_palindrome(number, expected):

 assert is_number_palindrome(number) == expected

3.3.11 Solution 11: Permutations (★★★✩✩)
Calculate all permutations of a sequence of letters given as a string; this means all

possible combinations of these letters. Implement this calculation in function calc_

permutations(text). Consider also the case of duplicate letters, but do not use the

standard Python functionality from the itertools module.

 Examples

Input Result

“a “a”

“aa” “aa”

“aB” “aB”, “Ba”

“aBC” “aBC, “BaC”, “aCB”,

“CaB”, “CBa”, “BCa”

“aaC” “aaC”, “aCa”, “Caa”

Algorithm The best way to compute all permutations for a given string is to take a

look at the recursive definition and then implement it:

Chapter 3 reCursion

123

You recognize that for a single character, the permutations consist of the character

itself. For multiple characters, the permutations are computed by finding the

permutations of the remaining string without the character and by later combining

them back with the character appropriately—more on this later. The original problem is

reduced from a string of length n to n problems for strings of length n − 1. Thus, for the

string ABC, you obtain the solution illustrated in Figure 3-4.

perm(A B C)

B+perm(A C)A+perm(B C) C+perm(A B)

B+perm(C) C+perm(B) A+perm(C) C+perm(A) A+perm(B) B+perm(A)

A B C A C B B A C B C A C A B C B A

Figure 3-4. Computation of the permutations of ABC

With this knowledge in mind, the implementation will become much easier, and you

can transform the following steps into Python.

• Select and extract the ith character.

• Build the remaining string and calculate the permutations for it.

• Put the whole thing together again.

This is implemented as follows:

def calc_permutations(text):

 # recursive termination

 if is_blank(text) or len(text) == 1:

 return {text}

 combinations = set()

 # extract i-th character as new first character

 for i, new_first in enumerate(text):

 # recursive descent for rest without i-th character

 permutations = calc_permutations(text[0:i] + text[i + 1:])

Chapter 3 reCursion

124

 # adding the extracted character to all partial solutions

 for perm in permutations:

 combinations.add(new_first + perm)

 return combinations

def is_blank(text):

 return not (text and text.strip())

This implementation leads to the creation of quite a lot of instances of strings and

sets as intermediate buffers. How can this be improved?

Optimized algorithm The drawbacks mentioned above are negligible for a short

string. However, the longer the string gets, creating all the temporary objects and

performing the string actions become more noticeable. How can this be avoided?

Let’s revisit ideas you’ve seen in other solutions. Instead of assembling the strings,

you can cleverly pass them as parameters. One of them defines the remaining string, and

the other one the currently already calculated prefix.

def calc_permutations_mini_opt(text):

 return __calc_permutations_mini_opt_helper(text, "")

def __calc_permutations_mini_opt_helper(remaining, prefix):

 # recursive termination

 if len(remaining) == 0:

 return {prefix}

 candidates = set()

 for i, current_char in enumerate(remaining):

 new_prefix = prefix + current_char

 new_remaining = remaining[0:i] + remaining[i + 1:]

 # recursive descent

 candidates.update(__calc_permutations_mini_opt_helper(new_

remaining, new_prefix))

 return candidates

Chapter 3 reCursion

125

Let me comment a bit on the optimization. While calling the method calc_

permutations("abcdefghij") takes about 7 to 8 seconds with my iMac (i7 4Ghz),

calc_permutations_mini_opt("abcdefghij") finishes after only about 4 to 5 seconds—

this is due to the very large number of calls, for which smaller optimizations may be

worthwhile.

However, if you add one additional character to the input, the overhead grows

enormously to around 111 seconds and for the optimized version to around 85 seconds.

Such increases in running time are, of course, absolutely undesirable. After reading

Chapter 7 covering more advanced recursion techniques, you may want to look again

at the computation of the permutations to attempt an improvement with the help of

memoization. However, this will be at the expense of the required memory.

Python shortcut Interestingly, Python provides ready-made functionality in the

itertools module. Its result is a bit clumsy because the permutations are represented

as a sequence of single characters. For your desired representation of the outcome, you

only need to merge the values of the result tuples with join(). Again, the performance is

better than that of the optimized variant. A call with “abcdefghij” takes about 3 seconds;

with one character longer, it takes about 50 seconds.

import itertools

def calc_permutations_built_in(text):

 result_tuples = list(itertools.permutations(text))

 return {"".join(tuple) for tuple in result_tuples}

 Verification

For testing, use the following inputs, which show the correct operation:

def input_and_expected():

 return [("A", {"A"}),

 ("AA", {"AA"}),

 ("AB", {"AB", "BA"}),

 ("ABC", {"ABC", "BAC", "ACB", "CAB", "CBA", "BCA"}),

 ("AAC", {"AAC", "ACA", "CAA"})]

Chapter 3 reCursion

126

@pytest.mark.parametrize("input, expected", input_and_expected())

def test_calc_permutations(input, expected):

 assert calc_permutations(input) == expected

@pytest.mark.parametrize("input, expected", input_and_expected())

def test_calc_permutations_mini_opt(input, expected):

 assert calc_permutations_mini_opt(input) == expected

@pytest.mark.parametrize("input, expected", input_and_expected())

def test_calc_permutations_built_in(input, expected):

 assert calc_permutations_built_in(input) == expected

3.3.12 Solution 12: Count Substrings (★★✩✩✩)
Write function count_substrings(text, value_to_find) that counts all occurrences

of the given substring. Thereby, when a pattern is found, it should be consumed, so it

should not be available for hits again. This is shown in the following table as the last case.

Implement the whole thing yourself without resorting to the standard count().

 Examples

Input Search term Result

“xhixhix” “x” 3

“xhixhix” “hi” 2

“mic” “mic” 1

“haha” “ho” 0

“xxxxyz” “xx” 2

Algorithm First of all, check whether the first characters from the source text and the

search string match. If this is the case, the number is increased and the search continues.

If there is no match, then the source text is shortened by the first character. The process

is continued recursively as previously described. The termination criterion is that the

length of the given input is smaller than that of the search text. This indicates that no

occurrences can exist.

Chapter 3 reCursion

127

def count_substrings(text, value_to_find):

 # recursive termination

 if len(text) < len(value_to_find):

 return 0

 count = 0

 remaining = ""

 # does the text start with the search string?

 if text.startswith(value_to_find):

 # hit: continue the search for the found

 # term after the occurrence

 remaining = text[len(value_to_find):]

 count = 1

 else:

 # remove first character and search again

 remaining = text[1:]

 # recursive descent

 return count_substrings(remaining, value_to_find) + count

HINT: POSSIBLE VARIATION

You could imagine that a small modification of the requirements would now be to find all

potential substrings rather than continuing to search behind them after finding a substring.

interestingly, this simplifies the implementation:

def count_substrings_v2(text, value_to_find):

 # recursive termination

 if len(text) < len(value_to_find):

 return 0

 # does the text starts with the search string?

 count = 1 if text.startswith(value_to_find) else 0

 # remove first character and search again

 remaining = text[1:]

 # recursive descent

 return count_substrings_v2(remaining, value_to_find) + count

Chapter 3 reCursion

128

Optimized algorithm Calls to text[len(value_to_find):] and text[1:] keep

generating new strings in the original algorithm. For short input values, this is not so

dramatic. But for a very long text, this can be unfavorable.

Well, what might an optimization look like? You still traverse the input from left to

right. But instead of shortening the input, it is more feasible to use a position pointer

left. This causes the following adjustments:

 1. Since the text does not get shorter, you must now subtract the

value of left from the original length.

 2. You used startswith() to compare for a match. Conveniently

there is a variant that allows for providing an offset.

 3. If there is a match, you must move the position pointer by the

number of characters in the search pattern, otherwise by one

position.

This results in the following implementation:

def count_substrings_optimized(text, value_to_find):

 return count_substrings_helper(text, value_to_find, 0)

def count_substrings_helper(text, value_to_find, left):

 if len(text) - left < len(value_to_find):

 return 0

 count = 1 if text.startswith(value_to_find, left) else 0

 if text.startswith(value_to_find, left):

 left += len(value_to_find)

 else:

 left += 1

 return count_substrings_helper(text, value_to_find, left) + count

Python shortcut Conveniently, this functionality is already built into Python.

Therefore, a call to the built-in functionality count() for strings would be much simpler.

However, the point here is to look at variants and see how to avoid too many temporary

strings.

Chapter 3 reCursion

129

In practice, please use calls like the following, here for the inputs from the example of

this task:

print("xhixhix".count("x"))

print("xhixhix".count("hi"))

print("mic".count("mic"))

print("haha".count("ho"))

print("xxxxyz".count("xx"))

 Verification

The following inputs show the correct operation for the three variants. You find the same

entries here in the first and last test cases. You have, therefore, already outsourced this to

a function to avoid duplication.

def create_inputs_and_expected():

 return [("xhixhix", "x", 3), ("xhixhix", "hi", 2), ("mic", "mic", 1),

 ("haha", "ho", 0), ("xxxxyz", "xx", 2), ("xxxx", "xx", 2),

 ("xx-xxx-xxxx-xxxxx-xxxxxx", "xx", 9),

 ("xx-xxx-xxxx-xxxxx-xxxxxx", "xxx", 5)]

@pytest.mark.parametrize("input, search_for, expected",

 create_inputs_and_expected())

def test_count_substrings(input, search_for, expected):

 assert count_substrings(input, search_for) == expected

@pytest.mark.parametrize("input, search_for, expected",

 [("xhixhix", "x", 3), ("xhixhix", "hi", 2),

 ("mic", "mic", 1), ("haha", "ho", 0),

 ("xxxxyz", "xx", 3), ("xxxx", "xx", 3),

 ("xx-xxx-xxxx-xxxxx-xxxxxx", "xx", 15),

 ("xx-xxx-xxxx-xxxxx-xxxxxx", "xxx", 10)])

def test_count_substrings_v2(input, search_for, expected):

 assert count_substrings_v2(input, search_for) == expected

@pytest.mark.parametrize("input, search_for, expected",

 create_inputs_and_expected())

def test_count_substrings_optimized(input, search_for, expected):

 assert count_substrings_optimized(input, search_for) == expected

Chapter 3 reCursion

130

3.3.13 Solution 13: Ruler (★★✩✩✩)
In the introduction, I showed how to draw a simple shape of a ruler as well as a stylized

snowflake (see Figure 3-3) using recursion. In this exercise, you want to imitate an

English-style ruler. This involves dividing an area of one inch into 1/2 and 1/4 and 1/8. In

doing so, the length of the strokes decreases by one each time.

Example

The output should look somewhat like the following:

---- 0

-

--

-

-

--

-

---- 1

-

--

-

-

--

-

---- 2

Algorithm The drawing of the full inch markers is done in a loop. The intermediate

lines are generated in function draw_interval(). This, in turn, takes advantage of the

recursive nature of the distribution of lines. A shorter line is drawn around each slightly

longer centerline. This is repeated as long as the line length is greater than or equal to 1.

Chapter 3 reCursion

131

def draw_ruler(major_tick_count, max_length):

 draw_line(max_length, "0")

 for i in range(1, major_tick_count + 1):

 draw_interval(max_length - 1)

 draw_line(max_length, i)

Finally, you need two helper functions for drawing an interval and a line of the

specified length, including an optional marker (for the full inch numbers):

def draw_interval(center_length):

 if center_length > 0:

 draw_interval(center_length - 1)

 draw_line(center_length, "")

 draw_interval(center_length - 1)

def draw_line(count, label):

 print(("-" * count) + " " + str(label))

 Verification

For testing, you call the draw_ruler() function as follows:

>>> draw_ruler(3, 4)

---- 0

-

--

-

-

--

-

---- 1

-

--

-

-

Chapter 3 reCursion

132

--

-

---- 2

-

--

-

-

--

-

---- 3

3.4 Summary: What You Learned
This introductory chapter laid the foundation for a good understanding of recursion.

The exercises expanded your knowledge on how to use recursion to solve problems.

This is crucial to be able to implement recursive solutions in the following chapters in an

efficient way and with a solid basis.

Now let’s move on to sequences of characters, also known as strings. Very few

program can live without them—time to get into it.

Chapter 3 reCursion

133
© Michael Inden 2022
M. Inden, Python Challenges, https://doi.org/10.1007/978-1-4842-7398-2_4

CHAPTER 4

Strings
Strings model character sequences and possess the type str, which offers a variety of

functions. In this chapter, you will learn about this topic through various exercises.

4.1 Introduction
Strings consist of single characters and, like lists, are sequential data types (see section

5.1.1), which is why many actions can be performed analogously, such as slicing. Unlike

other languages, Python does not have a data type for individual characters, so they are

simply represented as strings of length 1.

Strings can be created as character sequences in double or single quotes, as shown

by the following two lines:

str1 = "DOUBLE QUOTED STRING"

str2 = 'SINGLE QUOTED STRING'

4.1.1 Practically Relevant Functions
For strings, I’ll go over the most common functions that are useful in practice. Let’s

assume that the variable str is a string. Then you can call the following functions:

• len(str) gets the length of the string. This is a general Python

function for querying the length of sequential data types such as lists

or tuples, etc., but also strings.

• str[index] provides index-based access to individual letters.

https://doi.org/10.1007/978-1-4842-7398-2_4

134

• str[start:end]/str[start:end:step] extracts the characters

between the positions start and end - 1. As a special feature, a

stepwidth can be specified. Interestingly, even the range specification

can be omitted and with [::-1] only a negative step size can be

used, resulting in a new string with the reverse letter order of the

original string.

• str[:end] extracts the characters between the beginning and the

position end - 1.

• str[start:] extracts the characters between the position start and

the end of the string.

• str.lower()/str.upper() creates a new string consisting of

lowercase or uppercase letters. Numbers and punctuation marks are

not converted.

• str.strip() removes whitespace at the beginning and end of text

and returns this as a new string. As a special feature, you can pass a

character that will be removed instead of whitespace.

• str.isalpha()/str.isdigit()/... checks if all characters of the

string are alphanumeric, digits, etc.

• str.startswith(other)/str.endswith(other) checks whether the

string starts or ends with the given string.

• str.find(other)/str.rfind(other) searches for the supplied string

and returns the index of the first occurrence or -1 on nonexistence.

The function rfind() searches from the end. As a special feature, it is

possible to specify an index range in both cases.

• str.index(other, start, end)/str.rindex(other, start, end)

returns the index of the first or last occurrence of other. Unlike

find(), an exception is thrown if the index is not present.

• str.count(text) counts how many times text occurs in the string.

• str.replace(old, new) creates a new string in which all

occurrences of old are replaced by new.

Chapter 4 StringS

135

• str.split(delim) returns a list of substrings resulting from splitting

the original string. The delimiter is no regular expression1. Without

specifying a delimiter, a text is split with respect to whitespace.

• str.join(list) does the opposite of split(). Specifically, the

elements passed as a list are joined to the string as a delimiter.

• str.capitalize()/str.title() converts the first character to

uppercase. With title() additionally within a string, the beginning

of each new word is converted to uppercase.

4.1.2 Example Conversions and Extractions
Let’s take an introductory look at simple actions on strings such as converting to

lowercase or uppercase and splitting:

name = "Carl Heinz Miller"

print(name.lower())

print(name.upper())

print(name.split())

time = '20:26:45'

hrs, mins, secs = time.split(':')

print(hrs, mins, secs)

This results in the following output:

carl heinz miller

CARL HEINZ MILLER

['Carl', 'Heinz', 'Miller']

20 26 45

In addition, you can repeat text with * and remove text components, often

whitespace, from the margins with strip(). As you can see, you can even pass in

characters.

print("-repeater-" * 3)

1 https://en.wikipedia.org/wiki/Regular_expression

Chapter 4 StringS

https://en.wikipedia.org/wiki/Regular_expression

136

with_whitespace = " --CONTENT-- "

stripped1 = with_whitespace.strip()

stripped2 = stripped1.strip("-")

print("strip1:", stripped1, "length:", len(stripped1))

print("strip2:", stripped2, "length:", len(stripped2))

This results in the following output:

-repeater--repeater-repeater-

strip1:

--CONTENT-- length: 11

strip2: CONTENT length: 7

4.1.3 Equality
Now let’s look at the definition of two strings and how they can be compared, in

particular the effects of == (content equality) and is (reference equality):

str1 = 'String with same contents but different quotes'

str2 = "String with same contents but different quotes"

str3 = "String with same contents but XXX quotes".replace("XXX",

"different")

print("str1:", str1)

print("str2:", str2)

print("str3:", str3)

if str1 == str2:

 print("same content")

if str1 is str2:

 print("same reference str1 / str2")

if str1 == str3:

 print("same content")

if str1 is str3:

 print("same reference str1 / str3")

You get the following output:

str1: String with same contents but different quotes

str2: String with same contents but different quotes

Chapter 4 StringS

137

str3: String with same contents but different quotes

same content

same reference str1 / str2")

same content

That the output of references str1 and str2 is the same may be surprising at first.

Why is that? As an optimization, Python sometimes groups identical objects together.

However, this behavior is not guaranteed. At the latest, when actions are performed

on the strings, like above the replace() references are no longer the same, but the

content is in this case, of course, identical.

4.1.4 Slicing—Access to Individual Characters
and Substrings

In the following code you use powerful slicing operations to access single characters,

whole components, and even non-contiguous ranges. After that, you count occurrences

and simulate a search and research. Finally, you replace a text component.

strange_message= "a message containing only a message"

mid_chars = strange_message[10:20]

last_seven_chars = strange_message[-7:]

print("mid_chars:", mid_chars, " / last_seven_chars:", last_seven_chars)

first_char = strange_message[0]

print(first_char, "count:", strange_message.count(first_char))

print(last_seven_chars, "count:", strange_message.count(last_seven_chars))

search and continue searching

print("find message:", strange_message.find("message"))

print("find next message:", strange_message.find("message", 3))

replace (all)

print("replace by info:", strange_message.replace("message", "info"))

This results in the following output:

mid_chars: containing / last_seven_chars: message

a count: 5

Chapter 4 StringS

138

message count: 2

find message: 2

find next message: 28

replace by info: a info containing only a info

4.1.5 Converting a String into a List of Characters
Sometimes you want to process text as single characters. A call to list() can be helpful

for this:

print(list("Text als Liste"))

This results in the following outputs:

['T', 'e', 'x', 't', ' ', 'a', 'l', 's', ' ', 'L', 'i', 's', 't', 'e']

4.1.6 Iteration
There are several variants when looping through the individual characters of a string.

First, it is possible to work indexed with a for loop and len() in combination with

range(). However, this is the least adequate way in Python. It is better to work with

enumerate(), which provides access to both the index and the value. Sometimes you

don’t need access to the index at all; then the third variant with in is recommended.

message = "Python has several loop variants"

for i in range(len(message)):

 print(i, message[i], end=',')

print()

for i, current_char in enumerate(message):

 print(i, current_char, end=',')

print()

for current_char in message:

 print(current_char, end=',')

print()

These loops produce the following output:

Chapter 4 StringS

139

0 P,1 y,2 t,3 h,4 o,5 n,6 ,7 h,8 a,9 s,10 ,11 s,12 e,13 v,14 e,15 r,16 a,17 l

,18 ,19 l,20 o,21 o,22 p,23 ,24 v,25 a,26 r,27 i,28 a,29 n,30 t,31 s,

0 P,1 y,2 t,3 h,4 o,5 n,6 ,7 h,8 a,9 s,10 ,11 s,12 e,13 v,14 e,15 r,16 a,17 l

,18 ,19 l,20 o,21 o,22 p,23 ,24 v,25 a,26 r,27 i,28 a,29 n,30 t,31 s,

P,y,t,h,o,n, ,h,a,s, ,s,e,v,e,r,a,l, ,l,o,o,p, ,v,a,r,i,a,n,t,s,

4.1.7 Formatted Output
The following calls to capitalize() and title()

text = "this is a very special string"

print(text.capitalize())

print(text.title())

result in this output:

This is a very special string

This Is A Very Special String

Python offers different ways of formatting output with placeholders. In the simplest

case, you specify the values in a comma-separated way in print(). Alternatively, you

can specify placeholders in the text using {}, which will then be filled with the values of

the call to of format(). There is also the variant with placeholders like %s and %d as well

as the modulo operator in combination with a tuple that provides the values. Finally, an

explicitly formatted string with f"text" and named parameters can be used.

product = "Apple iMac"

price = 3699

variants of the formatted output

print("the", product, "costs", price)

print("the {} costs {}".format(product, price))

print(f"the %s costs %d" % (product, price))

print(f"the {product} costs {price}")

This results in the following output for all four variants:

the Apple iMac costs 3699

Chapter 4 StringS

140

4.1.8 Character Processing
If you need to process single characters, the functions ord() and chr() can be useful.

Here chr() converts a numerical value into a string of length 1 and ord() converts such

a such a string into an int value:

>>> ord("A")

65

>>> chr(65)

'A'

>>> ord("0")

48

>>> chr(48)

'0'

4.1.9 Example: String Processing
As a final example of string processing, you want to count the number of occurrences

of each letter in a string, treating lowercase and uppercase letters equally. For the

text “Otto,” you expect 2 x t and 2 x o due to the conversion to lowercase letters. Such

a processing is also called a histogram. This is a representation of the distribution of

objects, often numerical values. It is also known from photography for the brightness

distribution of a picture. The following is about the distribution or determination of the

frequencies of letters for a text. To do this, you first convert the input to lowercase with

lower() and then iterate through this string. By calling isalpha() you make sure that

you only include letters in your count.

from operator import itemgetter

def generate_character_histogram(word):

 char_count_map = {}

 for current_char in list(word.lower()):

 if current_char.isalpha():

 if current_char in char_count_map:

 char_count_map[current_char] += 1

 else:

Chapter 4 StringS

141

 char_count_map[current_char] = 1

 return dict(sorted(char_count_map.items(), key=itemgetter(0)))

Let’s try this out in the Python command line:

>>> generate_character_histogram("Otto")

{'o': 2, 't': 2}

>>> generate_character_histogram("Hello Micha")

{'a': 1, 'c': 1, 'e': 1, 'h': 2, 'i': 1, 'l': 2, 'm': 1, 'o': 1}

>>> generate_character_histogram("Python Challenges, Your Python Training")

{'a': 2, 'c': 1, 'e': 2, 'g': 2, 'h': 3, 'i': 2, 'l': 2, 'n': 5, 'o': 3,

'p': 2, 'r': 2, 's': 1, 't': 3, 'u': 1, 'y': 3}

4.2 Exercises
4.2.1 Exercise 1: Number Conversions (★★✩✩✩)
Based on a string, implement a validation for binary numbers and a conversion to it.

Repeat both for hexadecimal numbers.

Note the conversion can be solved with int(value, radix) and base 2 for
binary numbers and base 16 for hexadecimal numbers. Do not use these explicitly;
implement them yourself.

 Examples

Input Method Result

“10101” is_binary_number() true

“111” binary_to_decimal() 7

“aB” hex_to_decimal() 171

Chapter 4 StringS

142

 Exercise 1a (★✩✩✩✩)

Write function is_binary_number(number) that checks that a given string consists only

of the characters 0 and 1 (i. e., represents a binary number).

 Exercise 1b (★★✩✩✩)

Write function binary_to_decimal(number) that converts a (valid) binary number

represented as a string to the corresponding decimal number.

 Exercise 1c (★★✩✩✩)

Write the entire conversion again, but this time for hexadecimal numbers.

4.2.2 Exercise 2: Joiner (★✩✩✩✩)
Write function join(values, delimiter) that joins a list of strings with the given

delimiter and returns it as one string. Implement this yourself without using any special

Python functionality like join() provided by type str.

 Example

Input Separator Result

[“hello”, “world”, “message”] “ +++ ” “hello +++ world +++ message”

4.2.3 Exercise 3: Reverse String (★★✩✩✩)
Write function reverse(text) that reverses the letters in a string and returns it as

a result. Implement this yourself; in other words, do not use any special Python

functionality, such as [::-1].

Chapter 4 StringS

143

 Examples

Input Result

“aBCD” “DCBa”

“OttO” “OttO”

“peter” “retep”

4.2.4 Exercise 4: Palindrome (★★★✩✩)
 Exercise 4a (★★✩✩✩)

Write function is_palindrome(text) that checks whether a given string is a palindrome

regardless of case. A palindrome is a word that reads the same from the front and

the back.

Note You can easily solve the verification with [::-1]. explicitly do not use
python components; implement the functionality yourself.

 Examples

Input Result

“Otto” true

“aBCBX” False

“aBCXcba” true

 Exercise 4b (★★★✩✩)

Write an extension that does not consider spaces and punctuation as relevant, allowing

whole sentences to be checked, such as this one:

Was it a car or a cat I saw?

Chapter 4 StringS

144

4.2.5 Exercise 5: No Duplicate Chars (★★★✩✩)
Determine if a given string contains duplicate letters. Uppercase and lowercase letters

should not make any difference. Write function check_no_duplicate_chars(text) for

this purpose.

 Examples

Input Result

“Otto” False

“adrian” False

“Micha” true

“aBCDeFg” true

4.2.6 Exercise 6: Remove Duplicate Letters (★★★✩✩)
Write function remove_duplicates(text) that keeps each letter only once in a given

text, thus deleting all subsequent duplicates regardless of case. However, the original

order of the letters should be preserved.

 Examples

Input Result

“bananas” “bans”

“lalalamama” “lam”

“MiChaeL” “MiChaeL”

“aaBbcCdD” “aBcd“

Chapter 4 StringS

145

4.2.7 Exercise 7: Capitalize (★★✩✩✩)
 Exercise 7a (★★✩✩✩)

Write function capitalize(text) that converts a given text into an English title format

where each word starts with a capital letter. You must explicitly not use the built-in

function title() of the type str.

 Examples

Input Result

“this is a very special title” “this is a Very Special title”

“effective java is great” “effective Java is great”

 Exercise 7b: Modification (★★✩✩✩)

Assume now that the input is a list of strings and that a list of strings should be returned,

with the individual words and then starting with a capital letter.

 Exercise 7c: Special treatment (★★✩✩✩)

In headings, it is common to encounter special treatment of words. For example, “is”

and “a” are not capitalized. Implement this as function capitalize_special_2(words,

ignorable_words), which gets the words excluded from the conversion as the second

parameter.

 Example

Input Exceptions Result

[“this”, “is”, “a”, “title”] [“is”, “a”] [“this”, “is”, “a”, “title”]

Chapter 4 StringS

146

4.2.8 Exercise 8: Rotation (★★✩✩✩)
Consider two strings, str1 and str2, where the first string is supposed to be longer than

the second. Figure out if the first one contains the other one. In doing so, the characters

within the first string may also be rotated. Characters can be moved from the beginning

or the end to the opposite position (even repeatedly). To do this, create function

contains_rotation(str1, str2), which is case-insensitive during the check.

 Examples

Input 1 Input 2 Result

“aBCD” “aBC” true

“aBCDeF “eFaB” true (“aBCDeF” < x 2 ⇒ “CDeFaB” contains

“eFaB”)

“BCDe” “eC” False

“Challenge” “geCh” true

4.2.9 Exercise 9: Well Formed Braces (★★✩✩✩)
Write function check_braces(text) that checks whether the sequence of round braces

passed as a string contains matching (properly nested) pairs of braces.

 Examples

Input Result Comment

“(())” true

“()()” true

“(()))
((())”

False although it has the same amount of opening

and closing braces, it is not properly nested

“((()” False no suitable bracing

Chapter 4 StringS

147

4.2.10 Exercise 10: Anagram (★★✩✩✩)
The term anagram is used to describe two strings that contain the same letters in the

same frequency. Here, uppercase and lowercase should not make any difference. Write

function is_anagram(str1, str2).

 Examples

Input 1 Input 2 Result

“Otto” “toto” true

“Mary “army” true

“ananas” “Bananas” False

4.2.11 Exercise 11: Morse Code (★★✩✩✩)
Write function to_morse_code(text) that is capable of translating a given text into

Morse code characters. They consist of sequences of one to four short and long tones

per letter, symbolized by a dot (.) or a dash (-). It is desirable for easier distinguishability

to place a space between each tone and three spaces between each sequence of letter

tones. Otherwise, S (...) and EEE (...) would not be distinguishable from each other.

For simplicity, limit yourself to the letters E, O, S, T, W with the following encoding:

Letter Morse code

e .

O - - -

S . . .

t -

W . - -

Chapter 4 StringS

148

 Examples

Input Result

SOS . . . - - - . . .

tWeet - . - - . . -

WeSt . - - -

Bonus Try to find out the corresponding Morse code for all letters of the alphabet

so you can convert your name. You can find the necessary hints for this at https://

en.wikipedia.org/wiki/Morse_code.

4.2.12 Exercise 12: Pattern Checker (★★★✩✩)
Write function matches_pattern(pattern, text) that examines a space-separated

string (second parameter) against the structure of a pattern passed in the form of

individual characters as the first parameter.

 Examples

Input pattern Input text Result

“xyyx” “tim mike tim” true

“xyyx” “tim mike tom tim” False

“xyxx” “tim mike tim” False

“xxxx” “tim tim” true

4.2.13 Exercise 13: Tennis Score (★★★✩✩)
Write function tennis_score(score, player1_name, player2_name) that makes an

announcement in a familiar style such as Fifteen Love, Deuce, or Advantage Player X,

based on a textual score for two players, PL1 and PL2. The score is given in the format

<PL1 points>:<PL2 points>.

Chapter 4 StringS

https://en.wikipedia.org/wiki/Morse_code
https://en.wikipedia.org/wiki/Morse_code

149

The following counting rules apply to a game in tennis:

• A game is won (Game <PlayerX>) when a player reaches four or more

points and is ahead by at least two points.

• Points from zero to three are named Love, Fifteen, Thirty, and Forty.

• In case of at least three points and a tie, this is called Deuce.

• With at least three points and a one-point difference, this is called

Advantage <PlayerX> for the one who has one more point.

 Examples

Input Score

“1:0”, “Micha”, “tim” “Fifteen Love”

“2:2”, “Micha”, “tim” “thirty thirty”

“2:3”, “Micha”, “tim” “thirty Forty”

“3:3”, “Micha”, “tim” “Deuce”

“4:3”, “Micha”, “tim” “advantage Micha”

“4:4”, “Micha”, “tim” “Deuce”

“5:4”, “Micha”, “tim” “advantage Micha”

“6:4”, “Micha”, “tim” “game Micha”

4.2.14 Exercise 14: Version Numbers (★★✩✩✩)
Write function compare_versions(version1, version2) that compares version

numbers in the format MAJOR.MINOR.PATCH with each other. Thereby the

specification of PATCH is optional. In particular, the return value should be represented

in the form of the characters <, =, and >.

Chapter 4 StringS

150

 Examples

Version 1 Version 2 Result

1.11.17 2.3.5 <

2.1 2.1.3 <

2.3.5 2.4 <

3.1 2.4 >

3.3 3.2.9 >

7.2.71 7.2.71 =

4.2.15 Exercise 15: Conversion str_to_number
 (★★✩✩✩)

Convert a string into an integer. To do this, write function str_to_number(text) on

your own.

Note the conversion can be easily achieved with int(value). Do not use this
explicitly, but implement the entire conversion yourself.

 Examples

Input Result

“+123” 123

“-123” -123

“7271” 7271

“aBC” ValueError

“0123” 83 (for bonus task)

“-0123” -83 (for bonus task)

“0128” ValueError (for bonus task)

Bonus Enable the parsing of octal numbers.

Chapter 4 StringS

151

4.2.16 Exercise 16: Print Tower (★★★✩✩)
Write function print_tower(n) that represents a tower of n slices stacked on top of each

other as ASCII graphics, symbolized by the character #. Also, draw a lower boundary line.

Example

A tower of height three should look something like this:

 |

 # |#

 ## |##

 ### |###

4.2.17 Exercise 17: Filled Frame (★★✩✩✩)
Write function print_box(width, height, fillchar) that draws a rectangle of the

specified size as an ASCII graphic and fills it with the passed-in fill character.

Examples

Below you see two rectangles filled differently:

+-----+ +-------+

|*****| |$$$$$$$|

|*****| |$$$$$$$|

|*****| |$$$$$$$|

+-----+ |$$$$$$$|

 |$$$$$$$|

 +-------+

4.2.18 Exercise 18: Guessing Vowels (★★✩✩✩)
Write function translate_vowel(text, replacement) that replaces all vowels in a given

text with a character or string. This can be used for a little guessing quiz, for example, or

to determine word similarities based on consonants only.

Chapter 4 StringS

152

Input Replacement Result

“guide” “?” “g??d?”

“lawnmower” “-” “l-wnm-w-r”

“quiz” “_” “q z”

“lawnmower” “” “lwnmwr”

4.3 Solutions
4.3.1 Solution 1: Number Conversions (★★✩✩✩)
Based on a string, implement a validation for binary numbers and a conversion to it.

Repeat both for hexadecimal numbers.

Note the conversion can be solved with int(value, radix) and base 2 for
binary numbers and base 16 for hexadecimal numbers. Do not use these explicitly;
implement them yourself.

 Examples

Input Method Result

“10101” is_binary_number() true

“111” binary_to_decimal() 7

“aB ” hex_to_decimal() 171

 Solution 1a (★✩✩✩✩)

Write function is_binary_number(number) that checks that a given string consists only

of the characters 0 and 1 (i. e., represents a binary number).

Chapter 4 StringS

153

Algorithm The brute force and index-based version iterates through the string

character by character from the beginning to the end, checking whether the current

character is 0 or 1. If another character is detected, the loop terminates and then False is

returned.

def is_binary_number(number):

 is_binary = True

 i = 0

 while i < len(number) and is_binary:

 current_char = number[i]

 is_binary = (current_char == "0" or current_char == "1")

 i += 1

 return is_binary

This can also be formulated as a search problem but needs some thought here when

returning:

def is_binary_number_v2(number):

 i = 0

 while i < len(number) and number[i] in ["0", "1"]:

 i += 1

 return i >= len(number)

Python shortcut The whole thing can be implemented in an easier and more

understandable way with Python specifics:

def is_binary_number_short_cut(word):

 for current_char in word:

 if current_char not in ["0", "1"]:

 return False

 return True

Chapter 4 StringS

154

PYTHON STYLE: DON’T ASK FOR PERMISSION, ASK FOR FORGIVENESS

there is—as indicated in the task —still the possibility to use int(). then you follow

the python motto of “Don’t ask for permission, ask for forgiveness.” in this case, it means

trying potentially dangerous actions, like index accesses with the wrong index and reacting

appropriately if they fail. With a strong Java background, i take a rather critical view of this

habit—sure, the approach is often practical, but sometimes it is a bit risky. But let’s look at

this stylistically perfectly good variant of the check:

def is_binary_number_v3(number):

 try:

 int(number, 2)

 return True

 except ValueError:

 return False

 Solution 1b (★★✩✩✩)

Write function binary_to_decimal(number) that converts a (valid) binary number

represented as a string to the corresponding decimal number.

Algorithm You traverses the string character by character from left to right and

processes each character as a binary digit. The current character is used to calculate the

value by multiplying the previously converted value by 2 and adding the current value. It

is possible to formulate the algorithm more clearly, meaning without special treatments,

because a valid input is ensured by the previously implemented function is_binary_

number(number).

def binary_to_decimal(number):

 if not is_binary_number(number):

 raise ValueError(number + " is not a binary number")

 decimal_value = 0

 for current_char in number:

 value = int(current_char)

 decimal_value = decimal_value * 2 + value

 return decimal_value

Chapter 4 StringS

155

 Solution 1c (★★✩✩✩)

Write the entire conversion again, but this time for hexadecimal numbers.

Algorithm For hexadecimal numbers, the factor has to be changed to 16. In addition,

the letters A to F are now permitted in both lowercase and uppercase. Their value is

determined by a subtraction ord(current_char.upper()) - ord("A") + 10— thus

forming “A” to “F” to the values 0 to 5 and add 10, which then gives the correct value.

def hex_to_decimal(number):

 if not is_hex_number(number):

 raise ValueError(number + " is not a hex number")

 decimal_value = 0

 for current_char in number:

 if current_char.isdigit():

 value = int(current_char)

 else:

 value = ord(current_char.upper()) - ord("A") + 10

 decimal_value = decimal_value * 16 + value

 return decimal_value

The check for valid hexadecimal numbers uses a tricky check with in under the

specification of all possible digits and letters for hexadecimal numbers:

def is_hex_number(number):

 for current_char in number:

 if current_char not in "0123456789ABCDEFabcdef":

 return False

 return True

 Verification

For testing, use the following inputs, which show the correct functionality:

@pytest.mark.parametrize("value, expected",

 [("10101", True), ("222", False), ("12345",

False)])

Chapter 4 StringS

156

def test_is_binary_number(value, expected):

 assert is_binary_number(value) == expected

@pytest.mark.parametrize("value, expected",

 [("111", 7), ("1010", 10), ("1111", 15),

("10000", 16)])

def test_binary_to_decimal(value, expected):

 assert binary_to_decimal(value) == expected

@pytest.mark.parametrize("value, expected",

 [("7", 7), ("A", 10), ("F", 15), ("10", 16)])

def test_hex_to_decimal(value, expected):

 assert hex_to_decimal(value) == expected

4.3.2 Solution 2: Joiner (★✩✩✩✩)
Write function join(values, delimiter) that joins a list of strings with the given

delimiter and returns it as one string. Implement this yourself without using any special

Python functionality like join() provided by type str.

 Example

Input Separator Result

[“hello”, “world”, “message”] “ +++ ” “hello +++ world +++ message”

Algorithm Traverse the list of values from front to back. Insert the text into a string,

add the separator string, and repeat this until the last value. As a special treatment, no

separator string may be added after this.

def join(values, delimiter):

 result = ""

 for i, current_value in enumerate(values):

 result += current_value

 # no separator after last occurrence

Chapter 4 StringS

157

 if i < len(values) - 1:

 result += delimiter

 return result

Python shortcut String joining can be written in a compact and understandable way

and without special handling using the appropriate function join():

result = delimiter.join(values)

A variant with reduce() from module functools looks like this:

import functools

result = functools.reduce(lambda str1, str2: str1 + delimiter +

str2, values)

By the way, the function join() is also handy when you want to convert the values of

a list into a string. For this purpose, you use an empty string as a delimiter.

"".join(values) # trick: Convert list to string

 Verification

For testing, use the following inputs, which show the correct functionality:

@pytest.mark.parametrize("values, delimiter, expected",

 [(["hello", "world", "message"], " +++ ",

 "hello +++ world +++ message")])

def test_join(values, delimiter, expected):

 assert join(values, delimiter) == expected

4.3.3 Solution 3: Reverse String (★★✩✩✩)
Write function reverse(text) that reverses the letters in a string and returns it as

a result. Implement this yourself; in other words, without using any special Python

functionality, such as [::-1].

Chapter 4 StringS

158

 Examples

Input Result

“aBCD” “DCBa”

“OttO” “OttO”

“peter “retep”

Algorithm Initially, an idea could be to traverse the original string character by

character from the end and add the respective character to the result:

def reverse(text):

 reversed_text = ""

 for i in range(len(text) - 1, -1, -1):

 current_char = text[i]

 reversed_text += current_char

 return reversed_text

A bit messy is the for loop with the multiple -1. The built-in functionality

reversed() allows you to run through the text character by character from back to front,

which is more readable:

def reverse_nicer(text):

 reversed_text = ""

 for current_char in reversed(text):

 reversed_text += current_char

 return reversed_text

However, a small problem exists. The string concatenations with += are potentially

expensive because strings are immutable in Python and thereby new string objects are

created. Generally, each externally visible change creates a new string.

Optimized algorithm So how could it be more memory-efficient, for example, if

very long strings are to be reversed extremely frequently?

The idea is to convert the string with list() into a list and work directly on it. In

addition, you use two pointers, left and right, which initially point to the first and last

character, respectively. Now you swap the individual letters, and the position pointers

Chapter 4 StringS

159

move inwards. Repeat the whole process as long as left < right is valid; if left >= right, the

process is aborted.

Let’s illustrate the procedure for the text ABCD, where l stands for left and r for right:

A B C D

l r

D B C A

l r

D C B A

 r l => End

You implement the described procedure as follows:

def reverse_inplace(text):

 original_chars = list(text)

 left = 0

 right = len(original_chars) - 1

 while left < right:

 left_char = original_chars[left]

 right_char = original_chars[right]

 original_chars[left] = right_char

 original_chars[right] = left_char

 left+=1

 right-=1

 # trick: convert list to string

 return "".join(original_chars)

Python shortcut Of course, the whole thing can be achieved much easier by the

following two calls. Still, this exercise is about to get to know the character-by- character

processing and possible optimizations.

reversed_text = text[::-1])

reversed_text = "".join(reversed(text)))

Chapter 4 StringS

160

 Verification

Let’s write a unit test to verify the desired functionality:

def input_and_expected():

 return [("ABCD", "DCBA"), ("OTTO", "OTTO"), ("PETER", "RETEP")]

@pytest.mark.parametrize("input, expected",

 input_and_expected())

def test_reverse(input, expected):

 assert reverse(input) == expected

@pytest.mark.parametrize("input, expected",

 input_and_expected())

def test_reverse_inplace(input, expected):

 assert reverse_inplace(input) == expected

4.3.4 Solution 4: Palindrome (★★★✩✩)
 Solution 4a (★★✩✩✩)

Write function is_palindrome(text) that checks whether a given string is a palindrome

regardless of case. A palindrome is a word that reads the same from the front and

the back.

Note You can easily solve the verification with [::-1]. explicitly do not use
python components; implement the functionality yourself.

 Examples

Input Result

“Otto” true

“aBCBX” False

“aBCXcba” true

Chapter 4 StringS

161

JOB INTERVIEW TIPS

in a job interview, here are possible questions you may ask to clarify the scope of the assignment:

• Should it be case-sensitive?

anSWer: no

• are spaces relevant?

anSWer: First yes, later no, then to be ignored

Algorithm As in exercise 3, the string is represented as a list and you advance one

position inward from the left and one position from the right, as long as the characters

match and as long as the left position is still smaller than the right position:

def is_palindrome(text):

 left = 0

 right = len(text) - 1

 lower_input = text.lower()

 is_same_char = True

 while left < right and is_same_char:

 is_same_char = (lower_input[left] == lower_input[right])

 left += 1

 right -= 1

 return is_same_char

Python shortcut Of course, the whole thing can be achieved in a straightforward way

by calling the built-in functionality [::-1]. Still, this will generate an additional string.

def is_palindrome_short(text):

 adjusted_input = text.lower()

 return adjusted_input == adjusted_input[::-1]

Algorithm with recursion How can you solve the palindrome problem recursively

and without using a list as an auxiliary data structure? After reading Chapter 3 and

working through some of the exercises on recursion given there, you should be able to

implement this easily. With the strategy or the idiom of the helper function in mind, the

Chapter 4 StringS

162

following recursive implementation emerges, which, starting from the outside, always

checks two characters. This is continued inward as long as the characters match and the

left position is smaller than the right one.

def is_palindrome_rec(text):

 return is_palindrome_rec_in_range(text.lower(), 0, len(text) - 1)

def is_palindrome_rec_in_range(text, left, right):

 if left >= right:

 return True

 if text[left] == text[right]:

 return is_palindrome_rec_in_range(text, left + 1, right - 1)

 return False

An alternative way is always to shorten the string by the characters. Why is this

logical solution not so good practically? The answer is obvious: This causes many

temporary string objects to be created. Besides, a large number of copy actions would

have to take place.

 Solution 4b (★★★✩✩)

Write an extension that does not consider spaces and punctuation as relevant, allowing

whole sentences to be checked, such as this one:

Was it a car or a cat I saw?

Algorithm You can incorporate special checks for whitespace into the algorithm.

Still, it is easier to create a version of the function and replace all unwanted punctuation

and whitespace therein before calling the original function.

def is_palindrome_special(text, ignore_spaces_and_punctuation):

 adjusted_input = text.lower()

 if ignore_spaces_and_punctuation:

 adjusted_input = adjusted_input.replace(" ", "")

 adjusted_input = adjusted_input.replace("!", "")

 adjusted_input = adjusted_input.replace(".", "")

 return is_palindrome_rec(adjusted_input)

Chapter 4 StringS

163

Please note that replace() unfortunately does not support regular expression to

remove the special characters. Here this is the case for a space, exclamation mark, and

period. Therefore, you simply call this three times appropriately.

HINT: REGULAR EXPRESSIONS WITH PYTHON

if you prefer to use a regular expression after all, you can utilize the re module as follows:

import re

def is_palindrome_special_with_reg_ex(text, ignore_spaces_and_punctuation):

 adjusted_input = text.lower()

 if ignore_spaces_and_punctuation:

 adjusted_input = re.sub(r"[!\.\?]", "", adjusted_input)

 return is_palindrome_rec(adjusted_input)

 Verification

To verify, you again write a unit test with the following inputs that show the correct

operation:

def palindrome_inputs_and_expecteds():

 return [("Otto", True),

 ("ABCBX", False),

 ("ABCXcba", True)]

@pytest.mark.parametrize("input, expected",

 palindrome_inputs_and_expecteds())

def test_is_palindrome(input, expected):

 assert is_palindrome(input) == expected

@pytest.mark.parametrize("input, expected",

 palindrome_inputs_and_expecteds())

def test_is_palindrome_rec(input, expected):

 assert is_palindrome_rec(input) == expected

Chapter 4 StringS

164

@pytest.mark.parametrize("input, expected",

 [("Was it a car or a cat i saw.", True),

 ("This is not a Palindrome!", False)])

def test_is_palindrome_special(input, expected):

 ignore_spaces_and_punctuation = True

 assert is_palindrome_special(input,

 ignore_spaces_and_punctuation) == expected

FINDINGS: PAY ATTENTION TO COMPREHENSIBILITY

it is absolutely natural for strings to choose an iterative solution due to their api and position/

index-based access. this would no longer be convenient if you had to determine the

palindrome property for the digits of a number. this can be done with recursion and some

consideration even without the detour via conversion shown as exercise 10 in section 3.3.10.

having developed the functionality reverse() in the previous exercise, you can profitably use

it here as follows:

def is_palindrome_with_reverse(text):

 adjusted_input = text.lower()

 return adjusted_input == reverse(adjusted_input)

this demonstrates that problem- and context-aware programming enables the creation

of comprehensible and maintainable solutions. the properties of understandability,

maintainability, and changeability are of high importance in practice since source code is

usually modified far more frequently due to changing or new requirements than created

completely from scratch.

4.3.5 Solution 5: No Duplicate Chars (★★★✩✩)
Determine if a given string contains duplicate letters. Uppercase and lowercase letters

should not make any difference. Write function check_no_duplicate_chars(text) for

this purpose.

Chapter 4 StringS

165

 Examples

Input Result

“Otto” False

“adrian” False

“Micha” true

“aBCDeFg” true

Algorithm When solving the task, you might get the idea of storing the individual

characters in a set. You run through the input character by character from front to back.

For each character, you check whether it is already in the set. If so, you have encountered

a duplicate character and abort processing. Otherwise, you insert the character into the

set and continue with the next character until you reach the end of the input or detect a

duplicate character.

def check_no_duplicate_chars(text):

 contained_chars = set()

 for current_char in text.upper():

 if current_char in contained_chars:

 return False

 contained_chars.add(current_char)

 return True

Python Shortcut Although the implementation shown is quite straightforward,

other even more compact alternatives exist. They take advantage of the fact that any

string can be converted into a list or set using the functions list() or set(). If there are

no duplicates, the number of characters must be equal to the length of the string. Many

words, but few instructions ... the whole thing can be formulated as follows:

def check_no_duplicate_chars_v2(text):

 upper_case_input = text.upper()

 return len(upper_case_input) == len(set(upper_case_input))

Chapter 4 StringS

166

 Verification

You again use a unit test to verify the desired functionality:

@pytest.mark.parametrize("input, expected",

 [("Otto", False), ("Adrian", False),

 ("Micha", True), ("ABCDEFG", True)])

def test_check_no_duplicate_chars(input, expected):

 assert check_no_duplicate_chars(input) == expected

4.3.6 Solution 6: Remove Duplicate Letters (★★★✩✩)
Write function remove_duplicates(text) that keeps each letter only once in a given

text, thus deleting all subsequent duplicates regardless of case. However, the original

order of the letters should be preserved.

 Examples

Input Result

“bananas” “bans”

“lalalamama” “lam”

“MiChaeL” “MiChaeL”

“aaBbcCdD” “aBcd”

Algorithm Again, you run through the string character by character and store

the respective letters in a set called already_seen. If the current character is not yet

contained there, it will be included in both the set and the result text. However, if such a

character already exists, you continue with the next character of the input.

def remove_duplicates(text):

 result = ""

 already_seen = set()

 for current_char in text:

 if not current_char.lower() in already_seen:

Chapter 4 StringS

167

 already_seen.add(current_char.lower())

 result += current_char

 return result

 Verification

Check the removal of duplicate letters using the following unit test:

@pytest.mark.parametrize("input, expected",

 [("bananas", "bans"),

 ("lalalamama", "lam"),

 ("MICHAEL", "MICHAEL"),

 ("AaBbcCdD", "ABcd")])

def test_remove_duplicates(input, expected):

 assert remove_duplicates(input) == expected

4.3.7 Solution 7: Capitalize (★★✩✩✩)
 Exercise 7a (★★✩✩✩)

Write function capitalize(text) that converts a given text into an English title format

where each word starts with a capital letter. You must explicitly not use the built-in

function title() of the type str.

 Examples

Input Result

“this is a very special title” “this is a Very Special title”

“effective java is great” “effective Java is great”

Algorithm Because strings are immutable, initially you copy the contents into a list

upon which you make the modifications. You traverse this list from front to back, looking

for the beginning of a new word. As an indicator, you use a boolean flag capitalize_

next_char. This indicates that the first letter of the next word has to be capitalized.

Initially, this flag is True, so the current (first) character is converted into a capital

Chapter 4 StringS

168

letter. This happens only for letters, not for numbers. After the conversion, the flag

gets reset and letters are skipped until a space is found. You then reset the flag to True.

This procedure gets repeated until the end of the list is reached. Finally, a new string is

created from the list containing the modifications.

def capitalize(text):

 input_chars = list(text)

 capitalize_next_char = True

 for i, current_char in enumerate(input_chars):

 if current_char.isspace():

 capitalize_next_char = True

 elif capitalize_next_char and current_char.isalpha():

 input_chars[i] = current_char.upper()

 capitalize_next_char = False

 return "".join(input_chars)

Let’s try the whole thing in the Python command line:

>>> capitalize("seems to be okay")

'Seems To Be Okay'

Now, however, you may wonder about the behavior that is supposed to occur for

letters after digits or other non-letters:

>>> capitalize("what should happen with -a +b 1c")

'What Should Happen With -A +B 1C'

HINT: SPECIAL TREATMENT VARIANT

a moment ago, i brought up a special case. it is a matter of definition how to deal with it. if

letters after special characters should not be converted to uppercase, this can be achieved

easily. the difference compared to before is subtle: You remove the isalpha() check and call

upper() in every case. this is possible because the function can handle not only letters but

also other characters.

def capitalize_special(text):

 input_chars = list(text)

Chapter 4 StringS

169

 capitalize_next_char = True

 for i, current_char in enumerate(input_chars):

 if current_char.isspace():

 capitalize_next_char = True

 elif capitalize_next_char:

 input_chars[i] = current_char.upper()

 capitalize_next_char = False

 return "".join(input_chars)

this then yields the following output:

>>> capitalize_special("what should happen with -a +b 1c")

'What Should Happen With -a +b 1c'

Behavior for whitespace It is also interesting to see how whitespace is handled:

print(capitalize("This is a text"))

print(capitalize("This \t is a text"))

This returns the following, not entirely without surprise—which is not to be

considered further for your task:

This is a text

This is a text

Python shortcut The desired functionality can be implemented as follows with list

comprehension and split():

def capitalize_shorter(text):

 converted = [word[0].upper() + word[1:] for word in text.split()]

 return " ".join(converted)

This provides for the two inputs the same result:

>>> print(capitalize_shorter("This is a text"))

This Is A Text

>>> print(capitalize_shorter("This \t is a text"))

This Is A Text

Chapter 4 StringS

170

 Exercise 7b: Modification (★★✩✩✩)

Assume now that the input is a list of strings and that a list of strings should be returned,

with the individual words and then starting with a capital letter.

Algorithm First, create a list to store the converted words. Then iterate through all

elements of the given list and process each one by calling the function capitalize_

word(). To convert the first character to a capital letter, retrieve it indexed with [0]

and then call upper(). The remaining characters are returned by slicing with [1:].

A new word is formed from both and inserted into the result. To make the function

capitalize_word() error-tolerant, it handles an empty input with a sanity check.

def capitalize_words(words):

 return [capitalize_word(word) for word in words]

def capitalize_word(word):

 if not word:

 return ""

 return word[0].upper() + word[1:]

 Exercise 7c: Special treatment (★★✩✩✩)

In headings, it is common to encounter special treatment of words. For example, “is”

and “a” are not capitalized. Implement this as function capitalize_special_2(words,

ignorable_words) that gets the words excluded from the conversion as the second

parameter.

 Example

Input Exceptions Result

[“this”, “is”, “a”, “title”] [“is”, “a”] [“this”, “is”, “a”, “title”]

Algorithm The previously developed functionality is extended by a list of words that

should not be converted. When traversing, you check if the current word is one from the

negative list. If so, it is added to the result without modification. Otherwise, you perform

the actions as before.

def capitalize_special_2(words, ignorable_words):

Chapter 4 StringS

171

 capitalized_words = []

 for word in words:

 if word in ignorable_words:

 capitalized_words.append(word)

 else:

 capitalized_words.append(capitalize_word(word))

 return capitalized_words

 Verification

For testing, use the following inputs, which show the correct functionality:

@pytest.mark.parametrize("input, expected",

 [("this is a very special title",

 "This Is A Very Special Title"),

 ("effective java is great",

 "Effective Java Is Great")])

def test_capitalize(input, expected):

 assert capitalize(input) == expected

@pytest.mark.parametrize("words, expected",

 [(["this", "is", "a", "very", "special", "title"],

 ["This", "Is", "A", "Very", "Special", "Title"]),

 (["effective", "java", "is", "great"],

 ["Effective", "Java", "Is", "Great"])])

def test_capitalize_words(words, expected):

 assert capitalize_words(words) == expected

@pytest.mark.parametrize("words, expected",

 [(["this", "is", "a", "very", "special", "title"],

 ["This", "is", "a", "Very", "Special", "Title"]),

 (["effective", "java", "is", "great"],

 ["Effective", "Java", "is", "Great"])])

def test_capitalize_special_2(words, expected):

 assert capitalize_special_2(words, ["a", "is"]) == expected

Chapter 4 StringS

172

4.3.8 Solution 8: Rotation (★★✩✩✩)
Consider two strings, str1 and str2, where the first string is supposed to be longer than

the second. Figure out if the first one contains the other one. In doing so, the characters

within the first string may also be rotated. Characters can be moved from the beginning

or the end to the opposite position (even repeatedly). To do this, create function

contains_rotation(str1, str2), which is case-insensitive during the check.

 Examples

Input 1 Input 2 Result

“aBCD” “aBC” true

“aBCDeF “eFaB” true (“aBCDeF” < x 2 ⇒ “CDeFaB” contains “eFaB”)

“BCDe” “eC” False

“Challenge” “geCh” true

JOB INTERVIEW TIPS: POSSIBLE QUESTIONS AND SOLUTION IDEAS

in a job interview, here are possible questions you may ask to clarify the assignment:

• is the direction of the rotation known ← / →?

anSWer: no, arbitrary

• Should the rotation check be case-sensitive?

anSWer: no, treat as same

Idea 1: Brute Force as a first idea, you could try all combinations. You start without rotation.

then you rotate string str1 to the left and check if this rotated string is contained in str2. in

the worst case, this procedure is repeated up to n times. this is extremely inefficient.

Idea 2: First check if rotation makes sense another idea for solving this is to collect all

characters in a Set per string in advance and then use issubset() to check if all needed

letters are included. But even this is laborious and does not really reflect well the problem to

be solved.

Chapter 4 StringS

173

Idea 3: Procedure in reality think for a while and consider how you might solve the problem

on a piece of paper. at some point, you get the idea to write the word twice in a sequence:

ABCDEF EFAB

ABCDEFABCDEF EFAB

Algorithm Checking whether one string can be present in the other if rotated can be

solved very elegantly with the simple trick of writing the longer string behind the other.

In the combination, you check whether the string to be searched for is contained there.

With this approach, the solution is both surprisingly short and extremely simple:

def contains_rotation(str1, str2):

 new_doubled_str1 = (str1 + str1).lower()

 return str2.lower() in new_doubled_str1

 Verification

For testing, use the following inputs, which show the correct operation:

@pytest.mark.parametrize("str1, str2, expected",

 [("ABCD", "ABC", True),

 ("ABCDEF", "EFAB", True),

 ("BCDE", "EC", False),

 ("Challenge", "GECH", True)])

def test_contains_rotation(str1, str2, expected):

 assert contains_rotation(str1, str2) == expected

4.3.9 Solution 9: Well Formed Braces (★★✩✩✩)
Write function check_braces(text) to check whether the sequence of round braces

passed as string contains matching (properly nested) pairs of braces.

Chapter 4 StringS

174

 Examples

Input Result Comment

“(())” true

“()()” true

“(()))
((())”

False although it has the same amount of opening

and closing braces, it is not properly nested.

“((()” False no suitable bracing

Algorithm Without much consideration, you might be tempted to try all possible

combinations. After some thinking, you probably come to the following optimization:

You only count the number of opening braces and compare it with the number of closing

braces. You have to consider the detail of a closing brace before an opening one. Proceed

as follows: Traverse the string from front to back. If the current character is an opening

brace, increase the counter for opening braces by one. If it is a closing brace, reduce

the counter by one. If the counter fall below 0, you encounter a closing brace without

a corresponding opening brace. In the end, the counter must be equal to 0, so that it

represents a correct bracing.

def check_braces(text):

 opening_count = 0

 for ch in text:

 if ch == "(":

 opening_count += 1

 elif ch == ")":

 opening_count -= 1

 if opening_count < 0:

 return False

 return opening_count == 0

Chapter 4 StringS

175

 Verification

Test your newly developed check for correct bracing with the following inputs for a

parameterized test—using an additional hint parameter as a trick, which is not used for

testing, but only for preparing an informative output:

@pytest.mark.parametrize("input, expected, hint",

 [("(())", True, "ok"),

 ("()()", True, "ok"),

 ("(()))(())", False, "not properly nested"),

 ("(()", False, "no matching parenthesis"),

 (")()", False, "starts with closing

parenthesis")])

def test_check_braces(input, expected, hint):

 assert check_braces(input) == expected

4.3.10 Solution 10: Anagram (★★✩✩✩)
The term “anagram” is used to describe two strings that contain the same letters in the

same frequency. Here, uppercase and lowercase should not make any difference. Write

function is_anagram(str1, str2).

 Examples

Input 1 Input 2 Result

“Otto” “toto” true

“Mary “army” true

“ananas” “Bananas” False

Algorithm The description of the task provides hints on how you can proceed. First,

you convert the words with function calc_char_frequencies(text) into a histogram.

Here, you run character by character through the respective word and fill a dictionary.

This is done for both words. Afterwards, to find a deviation, the resulting two dictionaries

are compared with each other.

Chapter 4 StringS

176

def is_anagram(str1, str2):

 char_counts1 = calc_char_frequencies(str1)

 char_counts2 = calc_char_frequencies(str2)

 return char_counts1 == char_counts2

def calc_char_frequencies(text):

 char_counts = {}

 for current_char in text.upper():

 if current_char in char_counts:

 char_counts[current_char] += 1

 else:

 char_counts[current_char] = 1

 return char_counts

Python shortcut The creation of the histogram (i. e., the counting of the letter

frequencies) can be written a bit more compactly—but less comprehensibly for my taste.

So let’s take advantage of the fact that setdefault() returns the current value for the key

or else the default value given here in case of non-existence.

def calc_char_frequencies_shorter(text):

 char_counts = {}

 for current_char in text.upper():

 char_counts[current_char] = char_counts.setdefault(current_

char, 0) + 1

 return char_counts

 Verification

For testing, use the following inputs, which show the correct functioning:

@pytest.mark.parametrize("str1, str2, expected",

 [("Otto", "Toto", True),

 ("Mary", "Army", True),

 ("Ananas", "Bananas", False)])

def test_is_anagram(str1, str2, expected):

 assert is_anagram(str1, str2) == expected

Chapter 4 StringS

177

4.3.11 Solution 11: Morse Code (★★✩✩✩)
Write function to_morse_code(text) that is capable of translating a given text into

Morse code characters. They consist of sequences of one to four short and long tones

per letter, symbolized by a dot (.) or dash (-). It is desirable for easier distinguishability

to place a space between each tone and three spaces between each sequence of letter

tones. Otherwise, S (...) and EEE (...) would not be distinguishable from each other.

For simplicity, limit yourself to the letters E, O, S, T, W with the following encoding:

Letter Morse code

e .

O - - -

S . . .

t -

W . - -

 Examples

Input Result

SOS . . . - - - . . .

tWeet - . - - . . -

WeSt . - - -

Algorithm The string is traversed character by character and the current character

is mapped to the corresponding Morse code. The function convert_to_morse_code(

current_char) performs this task.

def to_morse_code(text):

 converted_msg = ""

 for current_char in text.upper():

 converted_letter = convert_to_morse_code(current_char)

Chapter 4 StringS

178

 converted_msg += converted_letter

 converted_msg += " "

 return converted_msg.strip()

While in other programming languages the mapping of single letters is accomplished

using a switch, in Python there is a trick with a dictionary:

def convert_to_morse_code(current_char):

 chars_to_morse = {"E": ".",

 "O": "- - -",

 "S": ". . .",

 "T": "-",

 "W": ". - -"}

 return chars_to_morse[current_char]

Modern Python and match In many languages, case distinctions may be expressed

using the if statement as well as the switch statement. The latter was missing in Python

for a long time. With Python 3.10 comes match, an even more powerful variant for case

discrimination with which we can now finally also realize the switch statement. Please

consult section D.2 in Appendix D for more details.

As mentioned, you can use the new keywords match and case to formulate case

distinctions like the following:

def convert_to_morse_code(current_char):

 value = "?"

 match current_char:

 case "E": value = "."

 case "O": value = "- - -"

 case "S": value = ". . ."

 case "T": value = "-"

 case "W": value = ". - -"

 return value

Chapter 4 StringS

179

 Bonus

Experiment and research a little bit to find out the corresponding Morse code for all

letters of the alphabet so you can convert your name. You can find the necessary hints for

this at https://en.wikipedia.org/wiki/Morse_code.

 Verification

Let’s check it using a unit test as follows:

@pytest.mark.parametrize("input, expected",

 [("SOS", ". . . - - - . . ."),

 ("TWEET", "- . - - . . -"),

 ("OST", "- - - . . . -"),

 ("WEST", ". - - -")])

def test_to_morse_code(input, expected):

 assert to_morse_code(input) == expected

4.3.12 Solution 12: Pattern Checker (★★★✩✩)
Write function matches_pattern(pattern, text) that examines a space-separated

string (second parameter) against the structure of a pattern passed in the form of

individual characters as the first parameter.

 Examples

Input pattern Input text Result

“xyyx” “tim mike tim” true

“xyyx” “tim mike tom tim” False

“xyxx” “tim mike tim” False

“xxxx” “tim tim tim” true

Chapter 4 StringS

https://en.wikipedia.org/wiki/Morse_code

180

JOB INTERVIEW TIPS: PROBLEM SOLVING STRATEGIES

With exercises like this, you should always ask a few questions to clarify the context and gain

a better understanding. For this example, possible questions include the following:

 1. is the pattern limited to the characters x and y?

anSWer: no, but only one letter each as a placeholder

 2. is the pattern always only four characters long?

anSWer: no, arbitrary

 3. Does the pattern ever contain spaces?

anSWer: no

 4. is the input always separated with exactly one space?

anSWer: Yes

Algorithm As always, it is important first to understand the problem and identify

appropriate data structures. You may recognize the pattern specification as a sequence

of characters and the input values as space-separated words. They can be transformed

into a corresponding list of individual values using split(). Initially, you check whether

the length of the pattern and the list of input values match. Only in this case you run

through the pattern character by character, as you have done so many times before. As

an auxiliary data structure, you use a dictionary, which maps individual characters of the

pattern to words. Now you check whether another word has already been inserted for a

pattern character. With the help of this trick, you can easily detect mapping errors.

def matches_pattern(pattern, text):

 # perparation

 values = text.split(" ")

 if len(values) != len(pattern) or (len(values) == 1 and not values[0]):

 return False

 placeholder_to_value_map = {}

Chapter 4 StringS

181

 # run through all characters

 for i, pattern_char in enumerate(pattern):

 value = values[i]

 # add, if not already there

 if pattern_char not in placeholder_to_value_map:

 placeholder_to_value_map[pattern_char] = value

 # does stored value match current string?

 assigned_value = placeholder_to_value_map[(pattern_char)]

 if not assigned_value == value:

 return False

 return True

In the code, before the actual check, you still need to verify the special case of an

empty input explicitly, since "".split(" ") results in a list of length 1.

 Verification

For testing, use the following inputs, which show the correct functionality:

@pytest.mark.parametrize("pattern, input, expected",

 [("x", "", False),

 ("", "x", False)])

def test_matches_pattern_special_cases(pattern, input, expected):

 assert matches_pattern(pattern, input) == expected

@pytest.mark.parametrize("pattern, input, expected",

 [("xyyx", "tim mike mike tim", True),

 ("xyyx", "time mike tom tim", False),

 ("xyxx", "tim mike mike tim", False),

 ("xxxx", "tim tim tim tim", True)])

def test_matches_pattern(pattern, input, expected):

 assert matches_pattern(pattern, input) == expected

Chapter 4 StringS

182

4.3.13 Solution 13: Tennis Score (★★★✩✩)
Write function tennis_score(score, player1_name, player2_name) that makes an

announcement in a familiar style such as Fifteen Love, Deuce, or Advantage Player X

based on a textual score for two players, PL1 and PL2. The score is given in the format

<PL1 points>:<PL2 points>.

The following counting rules apply to a game in tennis:

• A game is won (Game <PlayerX>) when a player reaches four or more

points and is ahead by at least two points.

• Points from zero to three are named Love, Fifteen, Thirty, and Forty.

• In case of at least three points and a tie, this is called Deuce.

• With at least three points and one point difference, this is called

Advantage <PlayerX> for the one who has one more point.

 Examples

Input Score

“1:0”, “Micha”, “tim” “Fifteen Love”

“2:2”, “Micha”, “tim” “thirty thirty”

“2:3”, “Micha”, “tim” “thirty Forty”

“3:3”, “Micha”, “tim” “Deuce”

“4:3”, “Micha”, “tim” “advantage Micha”

“4:4”, “Micha”, “tim” “Deuce”

“5:4”, “Micha”, “tim” “advantage Micha”

“6:4”, “Micha”, “tim” “game Micha”

Algorithm In this case, it is a two-step algorithm:

 1. First, a score in terms of two int values should be obtained from

the textual representation.

 2. Afterwards, it is your task to generate the corresponding textual

score names based on these values.

Chapter 4 StringS

183

When parsing the score, you can rely on standard functionality such as split() and

int(). In addition, for reusable functionality, it is reasonable to include certain security

checks. First, both values should be positive. After that, the specifics on the scores are to

be tested. The player who reaches four points first wins the match, but only if they lead at

least with two points. If both players have three or more points, then the point difference

must be less than three. Otherwise, it is not a valid state in tennis. You extract the parsing

with the checks into the function extract_points(score).

def extract_points(score):

 values = score.strip().split(":")

if len(values) != 2:

 raise ValueError("illegal format -- score has not" +

 "format <points>:<points>, e.\,g. 7:6")

 score1 = int(values[0])

 score2 = int(values[1])

 # sanity check

 if score1 < 0 or score2 < 0:

 raise ValueError("points must be > 0")

 # prevents both e. g. 6:3 and 5:1

 if (score1 > 4 or score2 > 4) and abs(score1 - score2) > 2:

 raise ValueError("point difference must be < 3, " +

 "otherwise invalid score")

 return score1, score2

After extracting the two scores separated by ‘:’ from the input, you proceed with the

conversion. Again, you use a multi-step decision procedure. According to the rules, a

simple mapping comes into play for scores below three. This is perfectly described in

terms of a dictionary. Starting from three points, a tie, advantage, or game win can occur.

It is also possible for one player to win with four points if the other scores a maximum of

two points. For the winning message, it is only necessary to determine which of the two

players has more points. The described logic is implemented as follows:

def tennis_score(score, player1_name, player2_name):

 points = extract_points(score)

Chapter 4 StringS

184

 score1 = points[0]

 score2 = points[1]

 if score1 >= 3 and score2 >= 3:

 return generate_info(score1, score2, player1_name, player2_name)

 elif score1 >= 4 or score2 >= 4:

 return "Game " + (player1_name if (score1 > score2) else

player2_name)

 else:

 # special naming

 point_names = {0: "Love", 1: "Fifteen", 2: "Thirty", 3: "Forty"}

 return point_names[score1] + " " + point_names[score2]

Only one last detail remains, namely the generation of the hint text for advantage or

victory:

def generate_info(score1, score2, player1_name, player2_name):

 score_difference = abs(score1 - score2)

 player_name = player1_name if (score1 > score2) else player2_name

 if score1 == score2:

 return "Deuce"

 if score_difference == 1:

 return "Advantage " + player_name

 if score_difference == 2:

 return "Game " + player_name

 raise ValueError("Unexpected difference: " + score_difference)

 Verification

Let’s test the tennis scoring functionality with an imaginary gameplay:

@pytest.mark.parametrize("score, expected",

 [("1:0", "Fifteen Love"),

 ("2:2", "Thirty Thirty"),

 ("2:3", "Thirty Forty"),

 ("3:3", "Deuce"),

Chapter 4 StringS

185

 ("4:3", "Advantage Micha"),

 ("4:4", "Deuce"),

 ("5:4", "Advantage Micha"),

 ("6:4", "Game Micha")])

def test_tennis_score_hard_win(score, expected):

 assert tennis_score(score, "Micha", "Tim") == expected

You should add more imaginary game sequences to neatly cover the edge cases of a

close victory and an unchallenged victory:

@pytest.mark.parametrize("score, expected",

 [("1:0", "Fifteen Love"),

 ("2:2", "Thirty Thirty"),

 ("3:2", "Forty Thirty"),

 ("4:2", "Game Micha")])

def test_tennis_score_normal_win(score, expected):

 assert tennis_score(score, "Micha", "Tim") == expected

@pytest.mark.parametrize("score, expected",

 [("1:0", "Fifteen Love"),

 ("2:0", "Thirty Love"),

 ("3:0", "Forty Love"),

 ("4:0", "Game Micha")])

def test_tennis_score_straight_win(score, expected):

 assert tennis_score(score, "Micha", "Tim") == expected

4.3.14 Solution 14: Version Numbers (★★✩✩✩)
Write function compare_versions(version1, version2) that permits you to compare

version numbers in the format MAJOR.MINOR.PATCH with each other, thereby the

specification of PATCH is optional. In particular, the return value should be represented

in the form of the characters <, =, and >.

Chapter 4 StringS

186

 Examples

Version 1 Version 2 Result

1.11.17 2.3.5 <

2.1 2.1.3 <

2.3.5 2.4 <

3.1 2.4 >

3.3 3.2.9 >

7.2.71 7.2.71 =

Algorithm Split the textual version numbers into a list containing version number

components by calling split(). Loop through them and convert them to a version

number using int(). Then compare in pairs using a separate function compare()

starting at MAJOR, then MINOR and PATCH if necessary. If one input has more values

than the other, then the single last number is not used except when the version number

matches up to that component, such as for 3.1 and 3.1.7.

def compare_versions(version1, version2):

 v1_numbers = version1.split(".")

 v2_numbers = version2.split(".")

 pos = 0

 compare_result = "="

 while pos < len(v1_numbers) and

 pos < len(v2_numbers) and compare_result == "=":

 current_v1 = int(v1_numbers[pos])

 current_v2 = int(v2_numbers[pos])

 compare_result = compare(current_v1, current_v2)

 pos += 1

 # same start about 3.1 and 3.1.7

 if compare_result == "=":

 return compare(len(v1_numbers), len(v2_numbers))

 return compare_result

Chapter 4 StringS

187

def compare(val1, val2):

 if val1 < val2:

 return "<"

 if val1 > val2:

 return ">"

 return "="

 Verification

Test the comparison of version numbers with the following inputs for a

parameterized test:

@pytest.mark.parametrize("version1, version2, expected",

 [("1.11.17", "2.3.5", "<"),

 ("2.3.5", "2.4", "<"),

 ("2.1", "2.1.3", "<"),

 ("3.1", "2.4", ">"),

 ("3.3", "3.2.9", ">"),

 ("7.2.71", "7.2.71", "=")])

def test_compare_versions(version1, version2, expected):

 assert compare_versions(version1, version2) == expected

HINT: HANDLING OF TRAILING ZEROS

the assignment did not specify a special case, namely the treatment of additional zeros in

version numbers, such as for 3.1 and 3.1.0 or 3 and 3.0.0. You will find an extension that

handles these special features in the accompanying sources.

4.3.15 Solution 15: Conversion str_to_number (★★✩✩✩)
Convert a string into an integer. To do this, write function str_to_number(text) on

your own.

Chapter 4 StringS

188

Note the conversion can be easily achieved with int(value). Do not use this
explicitly, but implement the entire conversion yourself.

 Examples

Input Result

“+123” 123

“-123” -123

“7271” 7271

“aBC” ValueError

“0123” 83 (for bonus task)

“-0123” -83 (for bonus task)

“0128” ValueError (for bonus task)

Algorithm Let’s start brute force without looking for all details. So the initial step

is checking if the first character is +/- and set flag is_negative accordingly. You also

check if the first character is a sign (+ or -) to start processing the digits one position later

if necessary. Then run through all characters and convert them to digits. The previous

value is multiplied by 10 each time, and at the end, the corresponding numeric value

results.

def str_to_number_first_try(text):

 is_negative = text[0] == "-"

 value = 0

 startpos = 1 if starts_with_sign(text) else 0

 for pos in range(startpos, len(text)):

 digit_value = ord(text[pos]) - 48

 value = value * 10 + digit_value

 return -value if is_negative else value

def starts_with_sign(text):

 return text[0] in ["-", "+"]

Chapter 4 StringS

189

Corrected algorithm Even without a more thorough analysis, it is clear that the

above variant does not work correctly when mixing letters with digits. In this case, it is

reasonable to throw a ValueError when a check with isdigit() fails:

def str_to_number(text):

 is_negative = text[0] == "-"

 value = 0

 startpos = 1 if starts_with_sign(text) else 0

 for pos in range(startpos, len(text)):

 if not text[pos].isdigit():

 raise ValueError(text + " contains not only digits")

 digit_value = ord(text[pos]) - 48

 value = value * 10 + digit_value

 return -value if is_negative else value

HINT: VARIANT

a variant would be to abort processing upon finding the first character that is not a digit, as

implemented in perl, for example. then the number string “123ab4567” would become 123.

 Verification

To test the functionality, use three numbers: one with a positive sign, one with a negative

sign, and one without. The positive sign should just be ignored during the conversion. Check

the reaction to input with letters instead of numbers separately and expect a ValueError.

@pytest.mark.parametrize("input, expected",

 [("+123", 123), ("-123", -123),

 ("123", 123), ("7271", 7271)])

def test_str_to_number(input, expected):

 assert str_to_number(input) == expected

def test_str_to_number_invalid_input():

 with pytest.raises(ValueError):

 str_to_number("ABC")

Chapter 4 StringS

190

 Bonus: Enable the Parsing of Octal Numbers

Octal numbers are identified in Python by a leading prefix 0 or, since Python 3.8, 0o and,

according to their name, have base 8 rather than base 10. To support octal numbers, you

must first determine whether the leading prefix exists. If this is the case, the factor for

the positions in the number system must be changed to 8. Finally, with base 8, the two

digits 8 and 9 are no longer allowed. Therefore, you add another check in the loop for

processing the values. All in all, the source code is a bit bloated by the special treatments.

The complexity is just manageable, especially because you use problem- adapted

auxiliary functions with speaking names here.

def str_to_number_bonus(text):

 is_negative = text[0] == "-"

 is_octal = text[0:2] == '0o' or \

 (starts_with_sign(text) and text[1:3] == "0o")

 value = 0

 factor = 8 if is_octal else 10

 startpos = calc_start_pos(text, is_octal)

 for pos in range(startpos, len(text)):

 if not text[pos].isdigit():

 raise ValueError(text + " contains not only digits")

 digit_value = ord(text[pos]) - 48

 if is_octal and digit_value >= 8:

 raise ValueError(text + " found digit >= 8")

 value = value * factor + digit_value

 return -value if is_negative else value

def calc_start_pos(text, is_octal):

 pos = 0

 if is_octal:

 pos = 3 if starts_with_sign(text) else 2

 elif starts_with_sign(text):

 pos = 1

 return pos

Chapter 4 StringS

191

 Verification

To test the functionality, use three numbers: one with a positive, one with a negative

sign, and one without. The positive sign should just be ignored during the conversion. In

addition, check a positive and negative octal number. In a separate test, it is ensured that

digits greater than or equal to 8 must not occur in octal numbers.

@pytest.mark.parametrize("input, expected",

 [("+123", 123), ("-123", -123),

 ("123", 123), ("7271", 7271),

 ("+0o77", 63), ("-0o77", -63),

 ("0o77", 63), ("+0o123", 83),

 ("-0o123", -83), ("0o123", 83)])

def test_str_to_number_bonus(input, expected):

 assert str_to_number_bonus(input) == expected

def test_str_to_number_bonus_invalid_input():

 with pytest.raises(ValueError) as excinfo:

 str_to_number_bonus("0o128")

 assert str(excinfo.value).find("found digit >= 8") != -1

4.3.16 Solution 16: Print Tower (★★★✩✩)
Write function print_tower(n) that represents a tower of n slices stacked on top of each

other as ASCII graphics, symbolized by the character #. Also, draw a lower boundary line.

Example

A tower of height three should look something like this:

 |

 #|#

 ##|##

 ###|###

Chapter 4 StringS

192

Algorithm You can divide the drawing into three steps: draw the top bar, the slices,

and then the bottom boundary. Thus, the algorithm can be described using three

function calls:

def print_tower(height):

 draw_top(height)

 draw_slices(height)

 draw_bottom(height)

You implement the drawing of the individual components of this tower in a couple of

helper functions, as already indicated:

def draw_top(height):

 print(" " * (height + 1) + "|")

def draw_bottom(height):

 print("-" * ((height + 1) * 2 + 1))

Drawing the slices of the tower is a bit more complex due to their different sizes and

the required computation of the free space on the left and right side:

def draw_slices(height):

 for i in range(height - 1, -1, -1):

 value = height - i

 padding = i + 1

 print(" " * padding + "#" * value + "|" + "#" * value)

It is obvious how the problem can be broken down into increasingly smaller

subproblems. Each function becomes thereby short for itself and usually also well

testable (if no console outputs, but computations with return take place).

Algorithm with recursion Interestingly, the drawing of the individual slices of the

tower can also be expressed recursively as follows:

def draw_slices_rec(slice, height):

 if slice > 1:

 draw_slices_rec(slice - 1, height)

 print(" " * (height - slice + 1) + "#" * slice + "|" + "#" * slice)

Then, the call must be minimally modified:

Chapter 4 StringS

193

def print_tower_rec(height):

 draw_top(height)

 draw_slices_rec(height, height)

 draw_bottom(height)

 Verification

To check the functionality, use the Python command line interpreter one more time—

here to print a tower of height four:

>>> print_tower(4)

 |

 #|#

 ##|##

 ###|###

 ####|####

4.3.17 Solution 17: Filled Frame (★★✩✩✩)
Write function print_box(width, height, fillchar) that draws a rectangle of the

specified size as an ASCII graphic and fills it with the passed-in fill character.

Examples

Below you see two rectangles filled differently:

+-----+ +-------+

|*****| |$$$$$$$|

|*****| |$$$$$$$|

|*****| |$$$$$$$|

+-----+ |$$$$$$$|

 |$$$$$$$|

 +-------+

Algorithm To draw the filled frame, you traverse all lines and likewise all positions

in the x-direction. In this exercise, the main concern is to correctly solve the special

treatments at the corners and the edges with the index positions. In addition, with print()

it is crucial to set the end character to empty to avoid the otherwise usual line break.

Chapter 4 StringS

194

def print_box(width, height, fillchar):

 for y in range(height):

 for x in range(width):

 if x == 0 and (y == 0 or y == height - 1):

 print("+", end="")

 elif x == width - 1 and (y == 0 or y == height - 1):

 print("+", end="")

 elif y == 0 or y == height - 1:

 print("-", end="")

 elif x == 0 or x == width - 1:

 print("|", end="")

 else:

 print(fillchar, end="")

 print()

 Verification

To check the functionality, use the Python command line interpreter again:

>>> print_box(9, 7, "$")

+-------+

|$$$$$$$|

|$$$$$$$|

|$$$$$$$|

|$$$$$$$|

|$$$$$$$|

+-------+

4.3.18 Solution 18: Guessing Vowels (★★✩✩✩)
Write function translate_vowel(text, replacement) that replaces all vowels in a given

text with a character or string. This can be used for a little guessing quiz, for example, or

to determine word similarities based on consonants only.

Chapter 4 StringS

195

Input Replacement Result

“guide” “?” “g??d?”

“lawnmower” “-” “l-wnm-w-r”

“quiz” “_” “q z”

“lawnmower” “” “lwnmwr”

Algorithm To convert the given text, you traverse it character by character from front

to back. You collect the result in a new string. If you find a vowel, you insert the given

replacement string, otherwise the consonant (or more precisely, the original character,

which could also be a digit or a punctuation mark).

def translate_vowel(text, replacement):

 translated = ""

 for letter in text:

 if is_vowel(letter):

 translated += replacement

 else:

 translated += letter

 return translated

def is_vowel(letter):

 return letter in "AÄEIOÖUüaäeioöuü"

Python shortcut Interestingly, strings in Python provide the method maketrans() to

create a mapping dictionary and the function translate() to transform according to the

passed mapping. Next, you implement the transformation as follows:

def translate_vowel_shorter(text, replacement):

 vowels = "AÄEIOÖUüaäeioöuü"

 trans_dict = text.maketrans(vowels, replacement * len(vowels))

 return text.translate(trans_dict)

Chapter 4 StringS

196

 Verification

To check the functionality, use the Python command line interpreter:

>>> print(translate_vowel("guide", "?"))

... print(translate_vowel("guide", "-"))

... print(translate_vowel("table tennis", "_"))

... print(translate_vowel("quiz", "_"))

... print(translate_vowel("lawnmower", ""))

g??d?

g--dt_

bl_ t_nn_s

q__z

lwnmwr

The chosen algorithm is even capable of transforming entire sentences:

>>> print(translate_vowel("the guide recommends Java", "-"))

th- g--d- r-c-mm-nds J-v-

>>>

>> print(translate_vowel("fit through the Python challenge", "-"))

f-t thr--gh th- Pyth-n ch-ll-ng-

4.4 Summary: What You Learned
Strings are an integral part of almost every program. You built up a sound understanding

by solving simple tasks like palindrome checking and string reversing. Other tasks

can be significantly simplified using suitable auxiliary data structures, such as sets or

dictionaries. They help when checking for well-formed braces, converting a word into

Morse code, and other tasks. I hope you feel that solving problems is becoming easier

the more basic knowledge you have in different areas, especially data structures.

That’s why you will have a deeper look into this topic in the next chapter, which

introduces lists, sets, and dictionaries in more depth.

Chapter 4 StringS

197
© Michael Inden 2022
M. Inden, Python Challenges, https://doi.org/10.1007/978-1-4842-7398-2_5

CHAPTER 5

Basic Data Structures:
Lists, Sets, and
Dictionaries
In Python, lists, sets, and key-value mappings (dictionaries) are provided directly in the

language as container classes. They manage objects of other classes (also potentially of

different data types).

5.1 Introduction
In the following, I first describe sequential data types and especially their operations.

After that, you briefly look at lists, sets, and dictionaries.

5.1.1 Sequential Data Types
In Python, sequential data types exist as the basis for various data containers, such

as lists, tuples, and strings. The name derives from the fact that these data containers

combine sequences of elements. This means that the elements have a defined order and

can be addressed via an index. Among other things, the following operations are defined:

• in: elem in values checks if the element is in the sequence.

• not in: elem not in values checks if the element is not in the

sequence.

• +/+=: values1 + values2 and values1 += values2 appends

the sequence values2 to the other sequence and returns a new

sequence.

https://doi.org/10.1007/978-1-4842-7398-2_5

198

• *: Repeats the sequence n times.

• [index]: values[index] leads to an indexed access and returns the

ith element from values. Specifically, [-1] can be used to access the

last element.

• [start:end]: values[start:end] performs slicing and returns the

elements from position start to exclusive end from values as a

new sequence. There are two interesting variants. On the one hand,

[:] (i. e. without range specification) returns a copy of the entire

sequence. On the other hand, [start:] and [:end] respectively

return the parts starting at start to the end or from the beginning to

the index end exclusive.

• [start:end:step]: values[start:end:step] results in slicing and

returns the elements from position start to exclusive end with a step

size of step from values as a new sequence. There is an interesting

variant [::-1] without range specification and with negative step

size, which creates a new sequence in reverse order of the original

sequence.

• len(): len(values) returns the size (i. e. the number of elements in

the data container).

• min()/max(): Calls to min(values) resp. max(values) gets the

element with the smallest or largest value from values.

• sum(): sum(values) sums the values from values.

 Example

Let’s look at an example of these operations because understanding them is essential for

solving tasks and everyday programming in Python. First, you define some lists and then

perform indexed accesses and slicing on them:

names1 = ["Micha", "Tim", "Tom", "Willi"]

names2 = ["Marcello", "Karthi", "Michael"]

names = names1 + names2

print(names)

print(names[-1])

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

199

print(names[::-1])

print(names[::2])

print("len: %d, min: %s, max: %s" % (len(names), min(names), max(names)))

This results in the following output:

['Micha', 'Tim', 'Tom', 'Willi', 'Marcello', 'Karthi', 'Michael']

Michael

['Michael', 'Karthi', 'Marcello', 'Willi', 'Tom', 'Tim', 'Micha']

['Micha', 'Tom', 'Marcello', 'Michael']

len: 7, min: Karthi, max: Willi

Custom implementation of rindex() A useful functionality, which unfortunately

can only be found in strings but not in sequential containers, is the search from the

end with rindex(). However, you can easily implement this as a function or lambda as

follows by inverting the sequential container and getting the position there:

def rindex(values, item):

 reversed_values = values[::-1]

 return len(values) - reversed_values.index(item) - 1

last_index_of = lambda values, item: len(values) - values[::-1].

index(item) - 1

5.1.2 Lists
A list is a sequence of elements ordered by their position. Duplicates are allowed. Lists

provide high-performance indexed access. Since the list is a sequential data type, it

possesses all the previously described operators for sequences. In addition, the following

indexed, 0-based accesses and operations can be performed on lists:

• pop(i) returns the ith element of the list and removes it from the list.

By default (i. e., without specifying the index), the first element is

returned.

• list[i] = element replaces the element at position i with the

passed element.

• append(element) appends the element to the end of the list.

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

200

• insert(i, element) inserts the element at index i in the list.

• extend(other_list) appends the elements of other_list to the end

of the list.

• count(value) counts how many times the value value occurs in

the list.

• index(value) returns the index where the value value first occurs in

the list.

• remove(value) removes the element with the value value from the

list. Only the first one will be deleted if multiple elements with this

value exist. If there is no such value, a ValueError is raised.

• reverse() reverses the order of the elements in the list.

• sort() sorts the list in ascending order. An inverse (descending) sort

is obtained with sort(reverse=True).

 Example

Let’s consider an example of these operations. First, you define two lists and then add

elements. You also remove one element and add several elements.

numbers = [1, 2, 3, 4]

names = ["Peter", "Tim", "Mike", "Tom", "Mike"]

names.append("Tom")

names.insert(1, "Carsten")

names.remove("Tom")

print(names)

names.extend(numbers)

names.reverse()

print(names)

print("pop:", names.pop())

print("Tom idx:", names.index("Tom"))

print("Mike count:", names.count("Mike"))

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

201

This results in the following output:

['Peter', 'Carsten', 'Tim', 'Mike', 'Mike', 'Tom']

[4, 3, 2, 1, 'Tom', 'Mike', 'Mike', 'Tim', 'Carsten', 'Peter']

pop: Peter

Tom idx: 4

Mike count: 2

 List Comprehension

Python offers comprehensions as elegant possibilities for creating new data structures.

A list comprehension is an expression that generates a new result list based on a

sequence of values and a calculation rule to generate a new list of results:

>>> even = [n for n in range(10) if n % 2 == 0]

>>> even

[0, 2, 4, 6, 8]

More complex expressions can also be specified, such as the creation of tuples:

>>> [(x, y) for x in range(3) for y in range(5)]

[(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (1, 0), (1, 1), (1, 2), (1, 3),

(1, 4), (2, 0), (2, 1), (2, 2), (2, 3), (2, 4)]

>>> [(x, y, z) for x in range(3) for y in range(3) for z in range(3)]

[(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 0), (0, 1, 1), (0, 1, 2), (0, 2, 0),

(0, 2, 1), (0, 2, 2), (1, 0, 0), (1, 0, 1), (1, 0, 2), (1, 1, 0), (1, 1, 1),

(1, 1, 2), (1, 2, 0), (1, 2, 1), (1, 2, 2), (2, 0, 0), (2, 0, 1), (2, 0, 2),

(2, 1, 0), (2, 1, 1), (2, 1, 2), (2, 2, 0), (2, 2, 1), (2, 2, 2)]

In addition, you saw the specification of a condition in the initial example. In

general, you should avoid the complexity getting too large. This assists in ensuring

understandability and maintainability.

Regardless, comprehensions are a compelling and helpful feature of Python that you

should undoubtedly master.

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

202

Variant as set and dictionary comprehension Similar possibilities exist for sets and

dictionaries. Two examples follow, one for the determination of all odd numbers up to

10 and another for the mapping of even numbers to their square:

>>> {i for i in range(10) if i % 2 != 0}

{1, 3, 5, 7, 9}

>>> {n: n ** 2 for n in range(10) if n % 2 == 0}

{0: 0, 2: 4, 4: 16, 6: 36, 8: 64}

 Example: Custom Implementation of remove_all()

Removing all elements from a collection that match a certain value is a functionality that

is unfortunately not built in. Different variants to solve this are shown below.

Inplace variants First, you start with inplace variants, which means that the original

list gets modified and consequently nothing is returned. Therefore, you repeatedly call

remove() until a ValueError occurs when the value to be deleted is no longer found.

not optimal variant

def remove_all_inplace(list, value):

 try:

 while True:

 list.remove(value)

 except (ValueError):

 pass

With this variant, it may be perceived as unattractive that exceptions are used to

regulate the control flow. Perhaps you come to the following alternative:

not optimal variant

def remove_all_inplace_improved(values, item):

 while item in values:

 values.remove(item)

At first these solutions look quite good, but both variants iterate using the outer loop

(while true/in) and a hidden inner one (by the implementation of remove()) resulting

in a running time of O(n2).

Variant offering better performance There is a solution that offers a running time of

O(n): You traverse through the list, and for every value, you check whether it matches the

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

203

one to be deleted. If this is not the case, you continue with the next entry. If you find an

entry to be deleted, you copy the successor into the position given by the write counter.

The write counter is always moved on if no match is found. Finally, all values up to the

write counter correspond to the desired result. You extract this with slicing.

def remove_all_fast(values, item):

 write_idx = 0

 for value in values:

 if value != item:

 values[write_idx] = value

 write_idx += 1

 return values[:write_idx]

Improved variants Next, you use a list comprehension that retains only the values

that satisfy the condition specified in if. This does not change the original list but

creates a new result list. Again, this solution offers a running time of O(n) but uses

slightly more memory.

def remove_all_v2(values, item):

 return [value for value in values if value != item]

This also applies to the following variant. Here, you use the built-in function

filter(). While in Python 2 this returns a list, in Python 3, you only get a filter object

that provides a function iter () and is thus iterable. You can, therefore, easily wrap this

in a list—please see the following practical tip about the implications.

def remove_all_v3(values, item):

 return list(filter(lambda x: x != item, values))

ATTENTION: WHY DOES FILTER() NO LONGER RETURN A LIST?

as convenient as it is for smaller datasets to get the data as a list, there are some reasons why

this is not feasible for large datasets. First of all, it may require a lot of memory. secondly, not

all values have to be kept for different calculations. thus, the change of the mode of operation

on Lazy evaluation in python 3 helps to save memory and increase performance. if you want

to process the data directly and need a list, a simple wrapping is appropriate, as shown above.

the dataset described by the filter is converted into a list.

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

204

 Example: Custom Implementation of collect_all()

Another useful functionality is to collect elements that match a certain condition. This

can be solved as follows:

Iteration

def collect_all(values, condition):

 result = []

 for elem in values:

 if condition(elem):

 result.append(elem)

 return result

List Comprehension

def collect_all_v2(values, condition):

 return [elem for elem in values if condition(elem)]

Filter

def collect_all_v3(values, condition):

 return list(filter(condition, values))

 Check Implementations

Let’s try some of the implementations of the functionality once. First, three variants of

remove_all() are tested to delete the entry Mike. Finally, collect_all() should keep all

entries with the value Mike.

>>> names = ["Tim", "Tom", "Mike", "Mike", "Mike"]

... remove_all_inplace(names, "Mike")

... print(names)

['Tim', 'Tom']

>>> print(remove_all_v2(["Tim", "Tom", "Mike", "Mike", "Mike"], "Mike"))

['Tim', 'Tom']

>>> print(remove_all_fast(["Tim", "Tom", "Mike", "Mike", "Mike"], "Mike"))

['Tim', 'Tom']

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

205

>>> names = ["Tim", "Tom", "Mike", "Mike", "Mike"]

... print(collect_all(names, lambda value: value == "Mike"))

['Mike', 'Mike', 'Mike']

5.1.3 Sets
Let’s now explore sets. The mathematical concept states that they contain no duplicates.

Thus, sets form an unordered data structure that does not contain duplicates, but

also does not provide indexed access. Instead, some set operations exist such as a test

for containment and computation of union, intersection, difference, and symmetric

difference.1 In addition, there are the following actions:

• add(element) adds an element to the set if it does not already exist.

• update(elements) inserts the elements elements from a list or tuple

into a set if not already present in the original set.

• remove(element)/discard(element) deletes the element from the set. If

the element does not exist, remove() will raise a KeyError. With discard(),

on the other hand, nonexistence will be ignored and nothing will happen.

• pop() removes the first element from the set (as an iteration would

return them).

• clear() deletes all elements from the set.

• copy() returns a (shallow) copy of the set.2

 Example

As an example of sets, you start by defining a set of colors (more precisely, their names)

in curly brackets. Then you add another set and then a single element.

color_set = {"RED", "GREEN", "BLUE"}

color_set.update(["YELLOW", "ORANGE"])

color_set.add("GOLD")

print(color_set)

1 All elements contained in either A or B, but not both sets.
2 This functionality can be found for lists too, but there slicing is often the better choice to copy data.

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

206

This results in the following output (showing that insertion order does not get

preserved in sets):

{'RED', 'BLUE', 'YELLOW', 'GOLD', 'GREEN', 'ORANGE'}

Finally, you define two sets with numbers and calculate the typical set operations

such as union, intersection, and difference:

number_set1 = {1, 2, 3, 4, 5, 6, 7, 8}

number_set2 = {2, 3, 5, 7, 9, 11, 13}

print("union: %s\nintersection: %s\ndiff 1-2: %s\nsym diff: %s" %

 ((number_set1 | number_set2), (number_set1 & number_set2),

 (number_set1 - number_set2), (number_set1 ^ number_set2)))

This results in the following output:

union: {1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13}

intersection: {2, 3, 5, 7}

diff 1-2: {8, 1, 4, 6}

sym diff: {1, 4, 6, 8, 9, 11, 13}

5.1.4 Key-Value Mappings (Dictionaries)
Let’s now turn to mappings from keys to values. They are also called dictionaries or lookup
tables; other terms are associative arrays and hashes, respectively. Regardless of the name,

the underlying idea is to assign a value for a unique key. An intuitive example is a telephone

directory where names are mapped to telephone numbers. A search by name (key) usually

returns a phone number (value) quite quickly. If there is no mapping back from phone

number to name, finding a name to a phone number becomes quite laborious.

Dictionaries store key-value pairs and offer, among others, the following functions

and operations:

• dictionary[key] = value adds a mapping (from key to value) as an

entry to this dictionary. If a value is already stored for the given key, it

gets overwritten with the new value.

• update(other_dictionary) inserts all entries from the passed

dictionary into this dictionary. This overwrites values of already

existing entries analogous to the way simple assignment works.

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

207

• items() generates a list containing all key-value pairs of the

dictionary as tuples.

• keys()/values() returns a list containing all keys or values stored in

the dictionary.

• get(key, default_value) get the associated value for a key key.

If no entry exists for the key, the default value default_value

is returned. If no default value was specified in the call, None is

returned.

• pop(key) deletes an entry (key and associated value) from the

dictionary. The value associated with the key key is returned. If no

entry was stored for this key, a KeyError is the result.

• clear() removes all entries of the dictionary.

Unfortunately, there are no functions like contains_key() or contains_value() to

check if a special key or value is stored in the dictionary. However, this functionality can

be easily recreated by querying with in, as you will see in the following example.

 Example

Again, you implement an example to learn about some of the possibilities. To do this,

you define a dictionary with an initial payload of names and ages. Then you add one as

well as several values. For inspection, you print out the dictionary, its keys, its values,

and its entries. Finally, you check for the existence of specific values in these results.

mapping = {"Micha" : 49, "Peter": 42, "Tom": 27}

mapping["NEW"] = 42

mapping.update({"Jim" : 37, "John": 55})

print(mapping)

print(mapping.items())

print(mapping.keys())

print(mapping.values())

"contains key"

print("contains key Micha?", "Micha" in mapping)

print("Micha values:", mapping.pop("Micha"))

print("contains key Micha?", "Micha" in mapping.keys())

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

208

"contains value"

print("contains value 55?", 55 in mapping.values())

This results in the following output:

{'Micha': 49, 'Peter': 42, 'Tom': 27, 'NEW': 42, 'Jim': 37, 'John': 55}

dict_items([('Micha', 49), ('Peter', 42), ('Tom', 27), ('NEW', 42),

('Jim', 37),

 ('John', 55)])

dict_keys(['Micha', 'Peter', 'Tom', 'NEW', 'Jim', 'John'])

dict_values([49, 42, 27, 42, 37, 55])

contains key Micha? True

Micha values: 49

contains key Micha? False

contains value 55? True

 Example: Filtering Elements of a Dictionary in a General Way

Sometimes you want to find all key-value mappings whose values meet a particular

condition. This can be programmed in a generally appropriate and elegant way for later

reuse as follows:

def filter_dict(input_dict, key_value_condition):

 filtered_dict = dict()

 for key, value in input_dict.items():

 if key_value_condition((key, value)):

 filtered_dict[key] = value

 return filtered_dict

def filter_by_value(input_dict, value_condition):

 filtered_result = filter_dict(input_dict,

 lambda item : value_condition(item[1]))

 return filtered_result

You can either use the more general function, which gets a filter for key and value, or

the specific function designed directly for value filtering.

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

209

Let’s define a mapping of cities to (approximate) population numbers and a filter

condition on larger cities between 200,000 and 700,000 inhabitants to see the whole

thing in action. The last call shows how easy it is to extract only the keys if only they are

of interest.

cities_sizes = {"Cologne": 1_000_000, "Kiel": 250_000, "Bremen": 550_000,

 "Zurich": 400_000, "Oldenburg": 170_000}

print(filter_dict(cities_sizes, lambda item: 200_000 <= item[1] <= 700_000))

filtered_cities = filter_by_value(cities_sizes,

 lambda size: 200_000 <= size <= 700_000)

print(filtered_cities)

print(set(filtered_cities.keys()))

This results in the following output:

{'Kiel': 250000, 'Bremen': 550000, 'Zurich': 400000}

{'Kiel': 250000, 'Bremen': 550000, 'Zurich': 400000}

{'Bremen', 'Zurich', 'Kiel'}

5.1.5 The Stack as a LIFO Data Structure
In the following, I describe the data structure stack. It is not directly a part of Python, but

it proves to be very practical for various use cases and can be easily implemented.

A stack is similar to a stack of paper or a desk tray in which you put things on top of a

pile and from which you can only take things from the top. In addition, a view of the top

element is possible. Beyond that, it offers size information or at least a check whether

elements are present. This results in the following methods that form the API:

 1. push(element) adds an element on top.

 2. pop() picks and removes the top element.

 3. peek() takes a peek at the top element.

 4. is_empty() checks if the stack is empty.

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

210

These four methods are sufficient to use stacks profitably for various tasks in practice

and for algorithms, for example, when sequences have to be reversed. This property is

described in computer science by the term LIFO for Last In, First Out. Sometimes it is

referred as FCFS for First Come, First Serve.

Exercise 2 is about implementing a stack on your own.

 Example

After solving Exercise 2, you can put some elements on the stack, look at the top element,

take elements from the top again, and finally, check if the stack is empty according to

expectations:

def main():

 stack = Stack()

 stack.push("first")

 stack.push("second")

 print("PEEK: " + stack.peek())

 print("POP: " + stack.pop())

 print("POP: " + stack.pop())

 print("ISEMPTY: " + str(stack.is_empty()))

This provides the following output:

PEEK: second

POP: second

POP: first

ISEMPTY: true

5.1.6 The Queue as a FIFO Data Structure
To conclude this introduction to basic data structures, I would like to talk about queues.

They are also not a part of Python. Like a stack, a queue is often very useful and can also

be easily implemented.

A queue is similar to a line at a cash register. People queue up, and the person who

came first is served first, known in computer science as FIFO for First In, First Out.

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

211

Normally, only a few actions, such as adding and removing elements, benefit from

a queue. In addition, a look at the element at the beginning is possible. Beyond that, it

offers size information or at least a check whether elements are present. This results in

the following methods that form the API:

 1. enqueue(element) adds an element to the end of the queue.

 2. dequeue() takes a look at the element at the beginning of

the queue.

 3. peek() takes a look at the element at the beginning of the queue.

 4. is_empty() checks if the queue is empty.

These four methods are sufficient to create queues for various tasks in practice and

for algorithms, such as if you intend to transform recursive algorithms into iterative ones.

 Implementation

The method names reflect the concept described earlier. For this purpose, the

implementation stores its elements in a list and inserts elements at the end. By using

pop(0) or shorter pop() the foremost element is provided.

class Queue:

 def __init__(self):

 self.values = []

 def enqueue(self, elem):

 self.values.append(elem)

 def dequeue(self):

 if self.is_empty():

 raise QueueIsEmptyException()

 return self.values.pop(0);

 def peek(self):

 if (self.is_empty()):

 raise QueueIsEmptyException()

 return self.values[0]

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

212

 def is_empty(self):

 return len(self.values) == 0

class QueueIsEmptyException(Exception):

 pass

 Example

To understand how it works, you can insert some elements into the queue and then

process them as long as there are elements. In particular, reprocessing is aimed for the

entry Michael.

def main():

 waiting_persons = Queue()

 waiting_persons.enqueue("Marcello")

 waiting_persons.enqueue("Michael")

 waiting_persons.enqueue("Karthi")

 while not waiting_persons.is_empty():

 if waiting_persons.peek() == "Michael":

 # reprocess at the end

 waiting_persons.enqueue("Michael again")

 next_person = waiting_persons.dequeue()

 print("Processing " + next_person)

The small sample program provides the following output:

Processing Marcello

Processing Michael

Processing Karthi

Processing Michael again

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

213

NOTE: DOES IT NEED THE CUSTOM CREATIONS OF STACK AND QUEUE?

Let’s recap: With a stack, you get the element stored last as the first element (that is, in

reverse insertion order). this is why it is called Last-In-First-Out (LIFO). For insertion, as you

know, you conceptually use a function called push() and for removal you use one called

pop(). on the other hand, a queue represents a queue as we know it from shopping or ticket

machines. here, the person who was there first gets to go first. accordingly, one speaks of

First-In-First-Out (FIFO). typically, the corresponding operations are called enqueue() and

dequeue().

Easily emulate stack and queue with lists as mentioned, python offers neither stack nor

queue as a data structure by default, but does offer powerful lists in terms of functionality.

With them, the functions of stack and queue previously mentioned can be implemented easily.

in both cases you use the function append() to add elements, such as to emulate push() or

enqueue(). in addition, the list provides the function pop(). it can optionally be passed an

index that determines the position of the element to be removed—without index, simply the

last element. Let’s see how to emulate a stack and a queue with a list:

List as Stack
stack_of_tasks = []

Add "tasks" to the stack via append()
stack_of_tasks.append("Task 1")
stack_of_tasks.append("Task 2")
stack_of_tasks.append("Task 3")
stack_of_tasks.append("Task 4")

Take the top 2 "tasks" from the stack via pop()
last_tasks = stack_of_tasks.pop()
second_last_tasks = stack_of_tasks.pop()
print("Top most:", last_tasks)
print("2nd from top:", second_last_tasks)

List as Queue
queue_of_numbers = []

Add 3 elements to the queue via append()
queue_of_numbers.append("First")
queue_of_numbers.append("Second")

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

214

queue_of_numbers.append("Third")
Remove elements via pop(0) until the queue is empty
while len(queue_of_numbers) > 0:
print("Processing:", queue_of_numbers.pop(0))

the above program produces the following output:

Top most: Task 4
2nd from top: Task 3
Processing: First
Processing: Second
Processing: Third

Discussion: What is not optimal about this? First of all, it is pretty obvious that the function

names of the list do not optimally match those commonly used for stacks and queues. Worse,

if you accidentally specify no index or the wrong index for pop(), this leads to confusion. even

worse, stacks and queues conceptually do not allow indexed access to elements, but lists do.

and this is only the beginning of possible problems. Because the above implementations (or to

be precise, usages) are lists, you can also call arbitrary functions that have nothing to do with

stacks and queues at all, such as insert() or remove(). if this is not clear enough, you

could also sort the elements by calling sort() and thus probably mess up the desired order a

lot. as you can see, the pitfalls are many.

Conclusion

Based on this reasoning and the need for intuitive handling without risk of misuse, the

definition of your own classes for providing the specific data structures stack and queue

becomes obvious.

5.2 Exercises
5.2.1 Exercise 1: Common Elements (★★✩✩✩)
Find the common elements of two lists, A and B, and return them as a set. Implement

this, both with and without using matching functions from Python’s sets. Write your

own function find_common(values1, values2), which works like the Python function

intersection().

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

215

 Examples

Input A Input B Result

[1, 2, 4, 7, 8] [2, 3, 7, 9] {2, 7}

[1, 2, 7, 4, 7, 8] [7, 7, 3, 2, 9] {2, 7}

[2, 4, 6, 8] [1, 3, 5, 7, 9] ∅ = set()

5.2.2 Exercise 2: Your Own Stack (★★✩✩✩)
Define the basic requirements for a stack and implement class Stack based on these

requirements using a list.

5.2.3 Exercise 3: List Reverse (★★✩✩✩)
 Exercise 3a: List Reverse (★✩✩✩✩)

Write function reverse(values) that returns the elements of the original list in reverse

order—of course without calling the reverse() function of the list.

 Examples

Input Result

[1, 2, 3, 4] [4, 3, 2, 1]

[“a”, “BB”, “CCC”, “DDDD”] [“DDDD”, “CCC”, “BB”, “a”]

 Exercise 3b: List Reverse Inplace (★★✩✩✩)

What is different if you want to implement reversing the order inplace to be memory-

optimal for very large datasets? What should be given then?

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

216

 Exercise 3c: List Reverse Without Performant Index
Access (★★✩✩✩)

Now let’s assume that no performant random index access is available. What happens

if you want to reverse the order and any position-based access will result in O(n) and

therefore O(n2) for the complete reversal process. How do you avoid this?

Tip use a stack.

5.2.4 Exercise 4: Remove Duplicates (★★✩✩✩)
You are supposed to remove duplicate entries from a list. The constraint is that the

original order should be preserved. Write function remove_duplicates(values).

 Examples

Input Result

[1, 1, 2, 3, 4, 1, 2, 3] [1, 2, 3, 4]

[7, 5, 3, 5, 1] [7, 5, 3, 1]

[1, 1, 1, 1] [1]

5.2.5 Exercise 5: Maximum Profit (★★★✩✩)
Imagine that you have a sequence of prices ordered in time and that you want to

calculate the maximum profit. The challenge is to determine at which time (or value, in

this case) it would be ideal to buy and to sell. Write function max_revenue(prices) for

this purpose, where the temporal order is expressed by the index in the list.

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

217

 Examples

Input Result

[250, 270, 230, 240, 222, 260, 294, 210] 72

[0, 10, 20, 30, 40, 50, 60, 70] 70

[70, 60, 50, 40, 30, 20, 10, 0] 0

[] 0

5.2.6 Exercise 6: Longest Sequence (★★★✩✩)
Suppose you are modeling stock prices or altitudes of a track by a list of numbers. Find

the longest sequence of numbers whose values ascend or at least stay the same. Write

function find_longest_growing_sequence(values).

 Examples

Input Result

[7, 2, 7, 1, 2, 5, 7, 1] [1, 2, 5, 7]

[7, 2, 7, 1, 2, 3, 8, 1, 2, 3, 4, 5] [1, 2, 3, 4, 5]

[1, 1, 2, 2, 2, 3, 3, 3, 3] [1, 1, 2, 2, 2, 3, 3, 3, 3]

5.2.7 Exercise 7: Well-Formed Braces (★★✩✩✩)
Write function check_parentheses(braces_input) that checks whether a sequence of

braces is neatly nested in each case. This should accept any round, square, and curly

braces but no other characters.

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

218

 Examples

Input Result Comment

“(())” true

“({[]})” true

“((())” False odd number of braces

“((a)” False Wrong character, no braces

“((])” False no matching braces

Bonus Extend the solution so that a clear assignment of error causes becomes

possible. Start with the following enumeration:

from enum import Enum, auto

class CheckResult(Enum):
 OK = auto()

 ODD_LENGTH = auto()

 CLOSING_BEFORE_OPENING = auto()

 MISMATCHING_PARENTHESIS = auto()

 INVALID_CHAR = auto()

 REMAINING_OPENING = auto()

5.2.8 Exercise 8: Pascal’s Triangle (★★★✩✩)
Write function pascal(n) that computes Pascal’s triangle in terms of nested lists. As you

know, each new line results from the previous one. If there are more than two elements

in it, two values are added and the sums build the values of the new line. In each case, a 1

is appended to the front and back.

Example
For the value 5, the desired representation is as follows:

[1]

[1, 1]

[1, 2, 1]

[1, 3, 3, 1]

[1, 4, 6, 4, 1]

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

219

5.2.9 Exercise 9: Check Magic Triangle (★★★✩✩)
Write function is_magic_triangle(values) that checks whether a sequence of

numbers forms a magic triangle. Such a triangle is defined as one where the respective

sums of the three sides’ values must all be equal.

Examples

The following shows this for one triangle each of side length three and side length four:

 1 2

 6 5 8 5

2 4 3 4 9

 3 7 6 1

This results in the following sides and sums:

Input Values 1 Values 2

side 1 1 + 5 + 3 = 9 2 + 5 + 9 + 1 = 17

side 2 3 + 4 + 2 = 9 1 + 6 + 7 + 3 = 17

side 3 2 + 6 + 1 = 9 3 + 4 + 8 + 2 = 17

Tip Model the individual sides of the triangle as sublists.

5.2.10 Exercise 10: Most Frequent Elements (★★✩✩✩)
Write function value_count(values) that determines a histogram (i. e., the distribution

of the frequencies of the numbers in the given list). Also write function sort_dict_by_

value(dictionary) to sort the dictionary by its values instead of by keys. Thereby a

descending sorting is to be realized so that smaller values are listed at the beginning.

 Examples

Input Result Most frequent(s)

[1, 2, 3, 4, 4, 4, 3, 3, 2, 4] {1=1, 2=2, 3=3, 4=4} 4=4

[1, 1, 1, 2, 2, 2, 3, 3, 3] {1=3, 2=3, 3=3} Depending on query, logically all

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

220

5.2.11 Exercise 11: Addition of Digits (★★★✩✩)
Consider two decimal numbers that are to be added. Sounds simple, but for this

assignment, the numbers are interestingly represented as a list of digits. Write function

list_add(values1, values2). Also, consider the special case where there is an

overflow.

 Exercise 11a: Addition (★★★✩✩)

In the first part of the task, the digits are to be stored in the order of their occurrence in

the list.

 Examples

Input 1 Input 2 Result

123 = [1, 2, 3] 456 = [4, 5, 6] 579 = [5, 7, 9]

927 = [9, 2, 7] 135 = [1, 3, 5] 1062 = [1, 0, 6, 2]

 Exercise 11b: Addition Inverse (★★★✩✩)

What changes if the digits are stored in reverse order in the list?

 Examples

Input 1 Input 2 Result

123 = [3, 2, 1] 456 = [6, 5, 4] 579 = [9, 7, 5]

927 = [7, 2, 9] 135 = [5, 3, 1] 1062 = [2, 6, 0, 1]

5.2.12 Exercise 12: List Merge (★★✩✩✩)
Given two lists of numbers, each sorted in ascending order, merge them into a result list

according to their order. Write function merge(values1, values2).

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

221

 Examples

Input 1 Input 2 Result

1, 4, 7, 12, 20 10, 15, 17, 33 1, 4, 7, 10, 12, 15, 17, 20, 33

2, 3, 5, 7 11, 13, 17 2, 3, 5, 7, 11, 13, 17

2, 3, 5, 7, 11 7, 11, 13, 17 2, 3, 5, 7, 7, 11, 11, 13, 17

[1, 2, 3] ∅ = [] [1, 2, 3]

5.2.13 Exercise 13: Excel Magic Select (★★✩✩✩)
If you have worked a little with Excel, then you have probably used the Magic Selection.

It continuously populates a selected area with values based on the previous values.

This works for numbers, weekdays, or dates, for example. To achieve something

similar on your own, write function generate_following_values(current_value,

sequence_length) that implements this for numbers. Create a variation suitable

for weekdays and with the following signature: generate_following_values_for_-

predefined(predefined_values, current_value, sequence_length).

 Examples

Initial value Count Result

1 7 [1, 2, 3, 4, 5, 6, 7]

5 4 [5, 6, 7, 8]

FriDaY 8 [FriDaY, saturDaY, sunDaY, MonDaY, tuesDaY,

WeDnesDaY, thursDaY, FriDaY]

5.2.14 Exercise 14: Stack-Based Queue (★★✩✩✩)
You learned about stack and queue data structures in the introduction and implemented

a queue based on a list. Then in exercise 2, you implemented a stack itself. Now you are

asked to build a queue based on the stack data structure.

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

222

 Example

Please check the functionality with the following procedure:

def main():

 waiting_persons = Queue()

 waiting_persons.enqueue("Marcello")

 waiting_persons.enqueue("Michael")

 waiting_persons.enqueue("Karthi")

 while not waiting_persons.is_empty():

 if waiting_persons.peek() == "Michael":

 # reprocess at the end

 waiting_persons.enqueue("Michael again")

 next_person = waiting_persons.dequeue()

 print("Processing " + next_person)

The small sample program should produce the following output:

Processing Marcello

Processing Michael

Processing Karthi

Processing Michael again

5.3 Solutions
5.3.1 Solution 1: Common Elements (★★✩✩✩)
Find the common elements of two lists, A and B, and return them as a set. Implement

this, both with and without using matching functions from Python’s sets. Write your

own function find_common(values1, values2), which works like the Python function

intersection().

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

223

 Examples

Input A Input B Result

[1, 2, 4, 7, 8] [2, 3, 7, 9] {2, 7}

[1, 2, 7, 4, 7, 8] [7, 7, 3, 2, 9] {2, 7}

[2, 4, 6, 8] [1, 3, 5, 7, 9] ∅ = set()

Algorithm Use dictionaries and manage a counter for being contained in list 1 or 2.

You first run through all elements from list 1 and enter the value 1 in the dictionary.

Now you run through all elements of the second list. You increase the counter if an entry

already exists in the dictionary for the value. Thus, all elements contained in both lists

receive the value 2 and with multiple occurrences, a higher value. On the other hand,

elements exclusively from list 2 are never stored. Finally, you keep only those entries

whose number is greater than or equal to 2.

def find_common(values1, values2):

 results = {}

 populate_from_collection1(values1, results)

 mark_if_also_in_second(values2, results)

 return remove_all_just_in_first(results)

def populate_from_collection1(values1, results):

 for elem1 in values1:

 results[elem1] = 1

def mark_if_also_in_second(values2, results):

 for elem2 in values2:

 if elem2 in results:

 results[elem2] += 1

def remove_all_just_in_first(results):

 final_result = set()

 for key, value in results.items():

 if value >= 2:

 final_result.add(key)

 return final_result

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

224

Python shortcut With the help of set comprehension, the last function becomes a

one-liner:

def remove_all_just_in_first(results):

 return {key for key, value in results.items() if value >= 2}

Despite this improvement, it seems too complicated. How can you make it better?

Optimized algorithm In fact, the problem can be solved much more compactly and

understandably. Check all elements from the first collection to see if they are contained

in the second collection. If so, these values get included in the result set.

def find_common_short(values1, values2):

 results = set()

 for elem1 in values1:

 if elem1 in values2:

 results.add(elem1)

 return results

Python shortcut With the help of set comprehension, this becomes a one-liner:

def find_common_short_comprehension(values1, values2):

 return {elem1 for elem1 in values1 if elem1 in values2}

Built-in Python shortcut For your own projects, please use the built-in functionality

in the form of intersection():

def find_common_build_in(values1, values2):

 return set(values1).intersection(values2)

 Verification

Test the implementation through the following unit tests:

def inputs_and_expected():

 return [([1, 2, 4, 7, 8], [2, 3, 7, 9], {2, 7}),

 ([1, 2, 7, 4, 7, 8], [7, 7, 3, 2, 9], {2, 7}),

 ([2, 4, 6, 8], [1, 3, 5, 7, 9], set())]

@pytest.mark.parametrize("values1, values2, expected",

 inputs_and_expected())

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

225

def test_find_common(values1, values2, expected):

 result = find_common(values1, values2)

 assert result == expected

@pytest.mark.parametrize("values1, values2, expected",

 inputs_and_expected())

def test_find_common(values1, values2, expected):

 result = find_common_short(values1, values2)

 assert result== expected

5.3.2 Solution 2: Your Own Stack (★★✩✩✩)
Define the basic requirements for a stack and implement class Stack based on these

requirements using a list.

Algorithm It is possible to implement a stack yourself, using a list as a data storage,

but not providing direct access to it externally. Users just have access through the

following methods typical of a stack:

 1. push(element) adds an element on top.

 2. pop() picks and removes the top element.

 3. peek() takes a look at the top element.

 4. is_empty() checks if the stack is empty.

Each call to push() adds an element at the end of the list. This way, you simulate

the stack. When accessing the top element, it is checked upfront whether the stack is

empty, in which case a StackIsEmptyException is thrown. Otherwise, the top element is

returned.

class Stack:

 def __init__(self):

 self.__values = []

 def push(self, elem):

 self.__values.append(elem)

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

226

 def pop(self):

 if self.is_empty():

 raise StackIsEmptyException()

 return self.__values.pop()

 def peek(self):

 if self.is_empty():

 raise StackIsEmptyException()

 return self.__values[-1]

 def is_empty(self):

 return len(self.__values) == 0

class StackIsEmptyException(Exception):

 pass

Perhaps somewhat more comprehensible would be to add elements at the beginning

of the list and take them from there. However, this would be unfavorable in terms of

performance. Why? This would result in constant recopying of the internal data of

the list.

In addition, one could argue that the Python online documentation3 describes how

to use lists as stacks. Even if possible, the interface is not restricted to the above methods.

In my book Der Weg zum Java-Profi [Ind20] I discuss in detail what can be problematic

about this.

HINT: VISIBILITIY/ACCESSIBILITY

While languages like Java or C++ have visibilities to control and protect access to private

class components, this is not possible in python. however, there are two variants with _and to

achieve something similar. What is this all about?

• if names start with _, then by convention, the one underscore means that

this method or attribute is considered private and an implementation detail

of the class. however, python does not enforce this. especially, access is not

prevented. instead, you must rely on other programmers to observe this fact.

3 https://docs.python.org/3/tutorial/datastructures.html

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

https://docs.python.org/3/tutorial/datastructures.html

227

• a double underscore (__) marks an internal method. When used for attributes,

this attribute is no longer visible to the outside for other classes under its name.

this is also true for methods.

 Verification

You verify the correct working of the stack you just implemented using a predefined

flow. First, you insert two elements. Then you look at the top one with peek().

After that, you remove elements twice with pop(). As expected, they are supplied

in reverse order of insertion. Finally, you check to see if the stack is empty. Because

this is the case, a subsequent inspection of the topmost element should throw a

StackIsEmptyException—show here just as a comment.

def main():

 stack = Stack()

 stack.push("first")

 stack.push("second")

 print("PEEK: " + stack.peek())

 print("POP: " + stack.pop())

 print("POP: " + stack.pop())

 print("ISEMPTY: " + str(stack.is_empty()))

 # print("POP: " + stack.pop())

This results in the following output:

PEEK: second

POP: second

POP: first

ISEMPTY: true

5.3.3 Solution 3: List Reverse (★★✩✩✩)
 Solution 3a: List Reverse (★✩✩✩✩)

Write function reverse(values) that returns the elements of the original list in reverse

order—of course without calling the reverse() function of the list.

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

228

 Examples

Input Result

[1, 2, 3, 4] [4, 3, 2, 1]

[“a”, “BB”, “CCC”, “DDDD”] [“DDDD”, “CCC”, “BB”, “a”]

Algorithm A simple solution is to traverse a list from back to front and add the

current element to a result list. This can be implemented index-based as follows:

def reverse(values):

 result = []

 for i in range(len(values) - 1, -1, -1):

 result.append(values[i])

 return result

Python shortcut Using list comprehensions, the whole thing can be written shorter

and more concisely. The first variant is still based on the realization shown above, while

the second relies on an inverted iterator with reversed():

def reverse_with_comprehension(values):

 return [values[i] for i in range(len(values) - 1, -1, -1)]

def reverse_with_comprehension_nicer(values):

 return [value for value in reversed(values)]

Using list() in combination with reversed() is even shorter and nicer:

def reverse_with_list_nicer(values):

 return list(reversed(values))

In fact, with slicing, the whole thing can be written briefly as follows, where again the

result is a new list with the contents reversed from the original:

reversed = values[::-1]

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

229

 Solution 3b: List Reverse Inplace (★★✩✩✩)

What is different if you want to implement reversing the order inplace to be memory-

optimal for very large datasets? What should be given then?

Algorithm Based on indexed access, you proceed inwards from the beginning and

the end, swapping the elements:

def reverse_inplace(original):

 left = 0

 right = len(original) - 1

 # run from the left and right, swap the elements based on their

positions

 while left < right:

 left_elem = original[left]

 right_elem = original[right]

 # swap

 original[left] = right_elem

 original[right] = left_elem

 left += 1

 right -= 1

 return original

Python shortcut Please keep in mind that in real projects, the standard functionality

reverse() should be used, which works inplace:

values.reverse()

 Solution 3c: List Reverse Without Performant Index
Access (★★✩✩✩)

Now let’s assume that no performant random index access is available. What happens

if you want to reverse the order and any position-based access will result in O(n) and

therefore O(n2) for the complete reversal process. How do you avoid this?

Tip use a stack.

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

230

Algorithm In the case that no performant indexed-based access is available and

you still have to reverse the order with running time complexity of O(n), a stack comes

into play—just as for various other algorithms, including this one. You traverse the list

from front to back and put the current element on the stack each time. Afterwards, you

iteratively remove the top element from the stack and add it to a result list until the stack

is empty.

def list_reverse_with_stack(values):

 # Go through the list from front to back and fill a stack

 all_values = Stack()

 for element in values:

 all_values.push(element)

 # Empty the stack and fill a result list

 result = []

 while not all_values.is_empty():

 result.append(all_values.pop())

 return result

 Verification

Let’s experiment with the input values from the example and invoke the function you

created earlier— in the accompanying project all variants will of course be tested:

def list_reverse_inputs_and_expected():

 return [([1, 2, 3, 4], [4, 3, 2, 1]),

 (["A", "BB", "CCC", "DDDD"], ["DDDD", "CCC", "BB", "A"])]

@pytest.mark.parametrize("inputs, expected",

 list_reverse_inputs_and_expected())

def test_reverse(inputs, expected):

 result = reverse(inputs)

 assert result == expected

@pytest.mark.parametrize("inputs, expected",

 list_reverse_inputs_and_expected())

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

231

def test_reverse_inplace(inputs, expected):

 modifiable_inputs = list(inputs)

 reverse_inplace(modifiable_inputs)

 assert modifiable_inputs == expected

5.3.4 Solution 4: Remove Duplicates (★★✩✩✩)
You are supposed to remove duplicate entries from a list. The constraint is that the

original order should be preserved. Write function remove_duplicates(values).

 Examples

Input Result

[1, 1, 2, 3, 4, 1, 2, 3] [1, 2, 3, 4]

[7, 5, 3, 5, 1] [7, 5, 3, 1]

[1, 1, 1, 1] [1]

Algorithm Traverse the list from front to back and successively fill a set with the

entries contained in the list. For each element of the list, check whether it is already

contained in the set of entries found. If not, it will be included and also added to the

result. Otherwise, the next element gets checked.

def remove_duplicates(values):

 result = []

 already_found_numbers = set()

 for elem in values:

 if elem not in already_found_numbers:

 already_found_numbers.add(elem)

 result.append(elem)

 return result

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

232

Optimized algorithm While implementing you might get the idea of simply

deleting the duplicates by refilling them into a set. This works but potentially messes

up the order of the elements. A workaround is to use a dictionary. Calling fromkeys()

creates a dictionary based on the passed list and automatically removes duplicate keys.

In addition, since Python 3.6, the insertion order is preserved. With this knowledge,

implementing the removal of duplicates is a snap.

list_with_duplicates = ["a", "b", "a", "c", "d", "c", "d"]

order may change

no_duplicates1 = list(set(list_with_duplicates))

stable order

no_duplicates2 = list(dict.fromkeys(list_with_duplicates))

Python shortcut With this knowledge, create the following implementation of the

removal of duplicates as a function:

def remove_duplicates_with_dict(values):

 return list(dict.fromkeys(values))

 Verification

Again, you use the introductory example’s values to verify the implementation. The tests

for the two optimized versions are not shown below because they are, apart from the

function call, identical.

def inputs_and_expected():

 return [([1, 1, 2, 3, 4, 1, 2, 3], [1, 2, 3, 4]),

 ([7, 5, 3, 5, 1], [7, 5, 3, 1]),

 ([1, 1, 1, 1], [1])]

@pytest.mark.parametrize("inputs, expected",

 inputs_and_expected())

def test_remove_duplicates(inputs, expected):

 result = remove_duplicates(inputs)

 assert result == expected

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

233

@pytest.mark.parametrize("inputs, expected",

 inputs_and_expected())

def test_remove_duplicates_with_dict(inputs, expected):

 result = remove_duplicates_with_dict(inputs)

 assert result == expected

5.3.5 Solution 5: Maximum Profit (★★★✩✩)
Imagine that you have a sequence of prices ordered by time and you want to calculate

the maximum profit. The challenge is to determine at which time (or value in this case) it

would be ideal to buy and to sell. Write function max_revenue(prices) for this purpose,

where the temporal order is expressed by the index in the list.

 Examples

Input Result

[250, 270, 230, 240, 222, 260, 294, 210] 72

[0, 10, 20, 30, 40, 50, 60, 70] 70

[70, 60, 50, 40, 30, 20, 10, 0] 0

[] 0

Algorithm Initially, you may be tempted to determine the minimum and the

maximum and simply return the difference. After a short reflection, it becomes clear that

a time dimension has to be considered in this case. First, a purchase and then a sale at a

higher price must take place to realize a profit.

The next idea is to run through the list twice. First, all minimum values are

determined by looking to see if the current value is less than the current minimum.

This is then added to the list of minimum values valid for the time. In the second run,

you determine the largest difference by comparing element by element. If the current

value is greater than the currently valid minimum value, then the profit thus obtained

is the difference between the current value and the minimum value determined at the

position. Finally, the maximum profit is calculated from the maximum of the current

maximum and the current profit. For the above example 1, the result is as follows:

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

234

Value 255 260 250 240 228 270 300 210 245

Minimum 255 255 250 240 228 228 228 210 210

Difference 0 5 0 0 0 42 72 0 35

Max. Difference 0 5 5 5 5 42 72 72 72

According to this idea, you express the whole thing in Python by first determining all

relevant minimum values and then, based on that, the maximum:

def max_revenue(prices):

 relevant_mins = calc_relevant_mins(prices)

 return calc_max_revenue(prices, relevant_mins)

The actual work happens in the following two helper functions:

def calc_relevant_mins(prices):

 relevant_mins = []

 current_min = sys.maxsize

 for current_price in prices:

 current_min = min(current_min, current_price)

 relevant_mins.append(current_min)

 return relevant_mins

def calc_max_revenue(prices, relevant_mins):

 max_revenue = 0

 for i, price in enumerate(prices):

 if price > relevant_mins[i]:

 current_revenue = price - relevant_mins[i]

 max_revenue = max(max_revenue, current_revenue)

 return max_revenue

Optimized algorithm The variation just shown requires two passes. As long as the

accesses are made in memory, this hardly plays a crucial role in the performance. The

situation is somewhat different if the data is determined each time, for example, via a

REST call or from a database.

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

235

In fact, the number of necessary calls and loop iterations can be reduced. However,

this optimization can probably only be achieved if the previous implementation has

been completed first.

def max_revenue_optimized(prices):

 current_min = sys.maxsize

 max_revenue = 0

 for current_price in prices:

 current_min = min(current_min, current_price)

 current_revenue = current_price - current_min

 max_revenue = max(max_revenue, current_revenue)

 return max_revenue

 Verification

For testing, you again use the values from the introductory example:

def prices_and_expected():

 return [([0, 10, 20, 30, 40, 50, 60, 70], 70),

 ([70, 60, 50, 40, 30, 20, 10], 0),

 ([], 0)]

@pytest.mark.parametrize("prices, expected", prices_and_expected())

def test_max_revenue(prices, expected):

 result = max_revenue(prices)

 assert result == expected

5.3.6 Solution 6: Longest Sequence (★★★✩✩)
Suppose you are modeling stock prices or altitudes of a track by a list of numbers. Find

the longest sequence of numbers whose values ascend or at least stay the same. Write

function find_longest_growing_sequence(values).

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

236

 Examples

Input Result

[7, 2, 7, 1, 2, 5, 7, 1] [1, 2, 5, 7]

[7, 2, 7, 1, 2, 3, 8, 1, 2, 3, 4, 5] [1, 2, 3, 4, 5]

[1, 1, 2, 2, 2, 3, 3, 3, 3] [1, 1, 2, 2, 2, 3, 3, 3, 3]

Algorithm Here a so-called greedy algorithm is used. The idea is to collect the

subsequent elements starting from one element until the next element is smaller than

the current one. A temporary list and a result list are used for this purpose. Both are

initially empty and are successively filled: the temporary list at each element read that is

greater than or equal to the predecessor and the result list whenever a smaller successor

value is found. If a value is smaller, the temporary list is cleared and starts as a one-

element list with the current value. If the result list at a flank change is shorter than the

temporary list with the previously collected elements, then the temporary list becomes

the new result list. This procedure is repeated until you reach the end of the initial list.

Let’s look at a procedure for the input 1272134572:

Input Current character Temporary list Result list

1272134572 1 1

1272134572 2 12

1272134572 7 127

1272134572 2 2 127

1272134572 1 1 127

1272134572 3 13 127

1272134572 4 134 127

1272134572 5 1345 127

1272134577 7 13457 127

1272134572 2 2 13457

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

237

def find_longest_growing_sequence(values):

 longest_subsequence = []

 current_subsequence = []

 last_value = sys.maxsize

 for current_value in values:

 if current_value >= last_value:

 last_value = current_value

 current_subsequence.append(current_value)

 else:

 # end of this sequence, start new sequence

 if len(current_subsequence) >= len(longest_subsequence):

 longest_subsequence = current_subsequence

 current_subsequence = []

 last_value = current_value

 current_subsequence.append(current_value)

 # important, because otherwise the last sequence might not be considered

 if len(current_subsequence) >= len(longest_subsequence):

 longest_subsequence = current_subsequence

 return longest_subsequence

Be sure to note the additional check after the for loop—otherwise, a final sequence

would not be correctly returned as a result.

Mini optimization The check should be optimized a bit further. As you can see,

assigning the value and adding it to the current temporary list happens in every case.

Thus, these actions can be separated from the condition and written as follows:

for current_value in values:

 if current_value < last_value:

 # end of this sequence, start new sequence

 if len(current_subsequence) >= len(longest_subsequence):

 longest_subsequence = current_subsequence

 current_subsequence = []

 last_value = current_value

 current_subsequence.append(current_value)

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

238

Procedure for sections of equal length When checking for the longest sequence,

you can either compare with > or >=. If there are two or more sequences of the same

length, in the first case with > the first one is taken as a result, with >= always the last one.

Alternative and optimized algorithm Sometimes creating temporary data

structures can be rather undesirable, for example, when the subsections can become

huge. In such a case, it offers itself to determine only the respective index borders. As a

final step, you extract the appropriate part.

def find_longest_growing_sequence_optimized(values):

 if len(values) == 0:

 return values

 longest = (0, 0)

 start_current = 0

 end_current = 0

 for end_current in range(1, len(values)):

 # flank change

 if values[end_current] < values[end_current - 1]:

 if end_current - start_current > len(longest):

 longest = (start_current, end_current)

 start_current = end_current

 if end_current - start_current > len(longest):

 longest = (start_current, end_current)

 return values[longest[0] : longest[1]]

 Verification

Use the sequences of values from the introduction to compare the computed results with

your expectations:

@pytest.mark.parametrize("values, expected",

 [([7, 2, 7, 1, 2, 5, 7, 1], [1, 2, 5, 7]),

 ([7, 2, 7, 1, 2, 3, 8, 1, 2, 3, 4, 5],

 [1, 2, 3, 4, 5]),

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

239

 ([1, 1, 2, 2, 2, 3, 3, 3, 3],

 [1, 1, 2, 2, 2, 3, 3, 3, 3]),

 ([], [])])

def test_find_longest_growing_sequence(values, expected):

 result = find_longest_growing_sequence(values)

 assert result == expected

5.3.7 Solution 7: Well-Formed Braces (★★✩✩✩)
Write function check_parentheses(braces_input) that checks whether a sequence

of braces is neatly nested in each case. This should accept any round, square and curly

braces but no other characters.

 Examples

Input Result Comment

“(())” true

“({[]})” true

“((())” False odd number of braces

“((a)” False Wrong character, no braces

“((])” False no matching braces

Algorithm Traverse the string from front to back. If the current character is an

opening brace (that is, one of the characters (, [, or {), store it in a stack. If it is a closing

brace, try to match it with the last opening brace. If there is no opening brace yet, or if

the brace types do not match, False is returned. If they match, the next character is read.

If it is an opening brace, proceed as before. If it is a closing brace, get the top element

from the stack and compare it to the character just read. Check for matching the type of

braces, which are (), [], and { }. Let’s look at a flow for the input (()]:

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

240

Input Current character Stack Comment

(()] start

(()] ((store

(()] (((store

[()]) (Match

(()]] (Mismatch

The implementation uses a stack and performs the checks and actions

described above:

def check_parentheses(braces_input):

 # odd length cannot be a well-formed bracing

 if len(braces_input) % 2 != 0:

 return False

 opening_parentheses = Stack()

 for char in braces_input:

 if is_opening_parenthesis(char):

 opening_parentheses.push(char)

 elif is_closing_parenthesis(char):

 if opening_parentheses.is_empty():

 # closing before opening brace

 return False

 last_opening_parens = opening_parentheses.pop()

 if not is_matching_parenthesis_pair(last_opening_parens, char):

 # different pairs of braces

 return False

 else:

 # invalid character

 return False

 return opening_parentheses.is_empty()

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

241

Once again, it is recommended to extract helper functions such as is_opening_

parenthesis() to be able to implement the actual algorithm at a higher level of

abstraction and thus more clearly. Finally, let’s take an examining look at the three

helper functions—for the closing braces, here is an elegant Python variant with in for a

list of characters instead of a character-by-character check with or and :

def is_opening_parenthesis(ch):

 return ch == '(' or ch == '[' or ch == '{'

def is_closing_parenthesis(ch):

 return ch in [")", "]", "}"]

def is_matching_parenthesis_pair(opening, closing):

 return (opening == '(' and closing == ')') or \

 (opening == '[' and closing == ']') or \

 (opening == '{' and closing == '}')

Checking for matching pair of braces can also be written more elegantly using a list

of tuples containing the opening and closing braces:

Alternative variant using tuple notation

def is_matching_parenthesis_pair(opening, closing):

 return (opening, closing) in [('(', ')'), ('[', ']'), ('{', '}')]

 Verification

Use the values from the introduction to see your just-implemented functionality

in action:

@pytest.mark.parametrize("values, expected",

 [("()", True), ("()[]{}", True),

 ("[((()[]{}))]", True),

 ("(()", False), ("((})", False),

 ("(()}", False), (")()(", False),

 ("()((", False), ("()A(", False)])

def test_check_parentheses(values, expected):

 result = check_parentheses(values)

 assert result == expected

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

242

Let’s look again at the implementation of the check and the return values. Several

comments exist why True or False is returned. Wouldn’t it be more intuitive to express

this with a suitable enumeration as a return? Let’s take a look at that now in the bonus.

 Bonus

Extend the solution so that a clear assignment of error causes becomes possible. Start

with the following enumeration:

from enum import Enum, auto

class CheckResult(Enum):

 OK = auto()

 ODD_LENGTH = auto()

 CLOSING_BEFORE_OPENING = auto()

 MISMATCHING_PARENTHESIS = auto()

 INVALID_CHAR = auto()

 REMAINING_OPENING = auto()

By using the enumeration, possible error causes may be communicated more

clearly. Besides, you can omit the comments on the return values in the source code

since the enumeration values adequately describe them.

def check_parentheses_v2(braces_input):

 # odd length cannot be well-formed braces

 if len(braces_input) % 2 != 0:

 return CheckResult.ODD_LENGTH

 opening_parentheses = Stack()

 for current_char in braces_input:

 if is_opening_parenthesis(current_char):

 opening_parentheses.push(current_char)

 elif is_closing_parenthesis(current_char):

 if opening_parentheses.is_empty():

 return CheckResult.CLOSING_BEFORE_OPENING

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

243

 last_opening_parens = opening_parentheses.pop()

 if not is_matching_parenthesis_pair(last_opening_parens,

 current_char):

 return CheckResult.MISMATCHING_PARENTHESIS

 else:

 return CheckResult.INVALID_CHAR

 if opening_parentheses.is_empty():

 return CheckResult.OK

 return CheckResult.REMAINING_OPENING

 Verification

Using enumeration not only increases the readability of the application’s source code

but also adds clarity and conciseness to the unit test. As usual, use the values from the

introductory example to see your just implemented functionality in action:

@pytest.mark.parametrize("values",

 [("()"), ("()[]{}"), ("[((()[]{}))]")])

def test_check_parentheses_v2(values):

 result = check_parentheses_v2(values)

 assert result == CheckResult.OK

@pytest.mark.parametrize("values, expected",

 [("(()", CheckResult.ODD_LENGTH),

 ("((})", CheckResult.MISMATCHING_PARENTHESIS),

 ("(()}", CheckResult.MISMATCHING_PARENTHESIS),

 (")()(", CheckResult.CLOSING_BEFORE_OPENING),

 ("()((", CheckResult.REMAINING_OPENING),

 ("()A(", CheckResult.INVALID_CHAR)])

def test_check_parentheses_v2_errors(values, expected):

 result = check_parentheses_v2(values)

 assert result == expected

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

244

5.3.8 Solution 8: Pascal’s Triangle (★★★✩✩)
Write function pascal(n) that computes Pascal’s triangle in terms of nested lists. As you

know, each new line results from the previous one. If there are more than two elements

in it, two values are added, and the sums build the values of the new line. In each case, a

1 is appended to the front and back.

Example

For the value 5, the desired representation is as follows:

[1]

[1, 1]

[1, 2, 1]

[1, 3, 3, 1]

[1, 4, 6, 4, 1]

Algorithm The determination of the individual lines is done recursively. For the

first line, a one-element list with the value 1 is generated. For all others, you calculate

the values by invoking helper function calc_line(previous_line) based on the

predecessor line and then add the intermediate result to the overall result. It might be a

bit irritating that the call is 1-based, but the list index is, of course, 0-based.

def pascal(n):
 result = []

 __pascal_helper(n, result)

 return result

def __pascal_helper(n, results):
 if n == 1:
 # recursive termination
 results.append([1])

 else:
 # recursive descent
 previous_line = __pascal_helper(n - 1, results)

 # calculate based on previous line
 current_line = __calc_line(previous_line)

 results.append(current_line)

 return results[n - 1]

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

245

Computing a row’s values based on the predecessor row is performed for all rows

with n ≥ 2 as follows: If there is more than one value stored in the predecessor row list,

iterate through it and sum each. To complete the computation, the value 1 is appended

at the front and the back.

Somewhat more formally it can be written as follows, where the index of the rows

and columns starts from 1 and not as in Python from 0:

The implementation is done directly and is much more understandable than the

purely recursive definition for each value already presented in section 3.3.9.

each row is calculated from the values of the row above it,
flanked in each case by a 1
def __calc_line(previous_line):
 current_line = [previous_line[i] + previous_line[i + 1]

 for i in range(len(previous_line) - 1)]

 return [1] + current_line + [1]

 Verification

To test the implementation, define a function where you compute Pascal’s triangle for

the passed value and then print it appropriately:

def print_pascal(n):
 for line in pascal(n):
 print(line)

Let’s try it out:

>>> print_pascal(4)

...

[1]

[1, 1]

[1, 2, 1]

[1, 3, 3, 1]

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

246

If you like it a bit more formal, a matching unit test is provided:

@pytest.mark.parametrize("n, expected",

 [(1, [[1]]),

 (2, [[1], [1, 1]]),

 (3, [[1], [1, 1], [1, 2, 1]]),

 (4, [[1], [1, 1], [1, 2, 1], [1, 3, 3, 1]])])

def test_pascal(n, expected):

 result = pascal(n)

 assert result == expected

5.3.9 Solution 9: Check Magic Triangle (★★★✩✩)
Write function is_magic_triangle(values) that checks whether a sequence of

numbers forms a magic triangle. Such a triangle is defined as one where the respective

sums of the three sides’ values must all be equal.

Examples

The following shows this for one triangle each of side length three and side length four:

 1 2

 6 5 8 5

2 4 3 4 9

 3 7 6 1

This results in the following sides and sums:

Input Values 1 Values 2

side 1 1 + 5 + 3 = 9 2 + 5 + 9 + 1 = 17

side 2 3 + 4 + 2 = 9 1 + 6 + 7 + 3 = 17

side 3 2 + 6 + 1 = 9 3 + 4 + 8 + 2 = 17

Tip Model the individual sides of the triangle as sublists.

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

247

HINT: PROBLEM SOLVING STRATEGIES FOR THE JOB INTERVIEW

if the problem is initially unclear, it is advisable to reduce the problem to one or two concrete

value assignments and to find the appropriate abstractions based on these.

using the triangle of side length three as an example, you can build the sides shown above. if

you think for a while, you will find that the sides can be expressed as sublists. however, the

last side requires special treatment. For closing the figure again, the value of position 0 has to

be taken into account. still, it is not part of the sublist. here two tricks offer themselves. the

first one is to duplicate the list and extend it by the 0th element:

values_with_loop = list(values)
close the triangle
values_with_loop.append(values[0])

side1 = values_with_loop[0:3]
side2 = values_with_loop[2:5]
side3 = values_with_loop[4:7]

alternatively, create three slices and add the 0th element in the third to fit:

side1 = values[0:3]
side2 = values[2:5]
side3 = values[4:6]
close the triangle
side3.append(values[0])

Algorithm: For triangles with side length three With the previous knowledge

gathered, you start implementing the check for the special case of a triangle of side

length three. Therefore, you first determine the sides and then build and compare the

partial sums of the numbers contained there:

def is_magic6(values):

 values_with_loop = list(values)

 values_with_loop.append(values[0]) # close the triangle

 side1 = values_with_loop[0:3]

 side2 = values_with_loop[2:5]

 side3 = values_with_loop[4:7]

 return compare_sum_of_sides(side1, side2, side3)

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

248

You extract the summing of the values of the sides as well as their comparison into

the following function:

def compare_sum_of_sides(side1, side2, side3):

 sum1 = sum(side1)

 sum2 = sum(side2)

 sum3 = sum(side3)

 return sum1 == sum2 and sum2 == sum3

Intermediate inspection Now you should at least check the implementation with

some values before you move on to the generalization:

>>> is_magic6([1, 5, 3, 4, 2, 6])

True

>>> is_magic6([1, 2, 3, 4, 5, 6])

False

Algorithm, general variant With the knowledge gained from the concrete example,

a general variant can be created. The variance resides in calculating the indices for

the sides of the triangle. Additionally, you add a sanity check at the beginning of the

function. This prevents you from working on potentially invalid data constellations.

def is_magic_triangle(values):

 if len(values) % 3 != 0:

 raise ValueError("Not a triangle!", len(values), "must be a

factor of 3")

 side_length = 1 + len(values) // 3

 values_with_loop = list(values)

 # close the triangle

 values_with_loop.append(values[0])

 side1 = values_with_loop[0: side_length]

 side2 = values_with_loop[side_length - 1: side_length * 2 - 1]

 side3 = values_with_loop[(side_length - 1) * 2: side_length * 3 - 2]

 return compare_sum_of_sides(side1, side2, side3)

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

249

 Verification

Let’s check the implementation with the following unit test:

@pytest.mark.parametrize("values, expected",

 [([1, 5, 3, 4, 2, 6], True),

 ([1, 2, 3, 4, 5, 6], False),

 ([2, 5, 9, 1, 6, 7, 3, 4, 8], True),

 ([1, 2, 3, 4, 5, 6, 7, 8, 9], False)])

def test_is_magic_triangle(values, expected):

 result = is_magic_triangle(values)

 assert result == expected

Alternative algorithm Based on the generalization already done, it is possible to

omit the extraction of the sublists. Therefore, you once again use the idea of a position

counter and traverse the original list in two loops. The outer loop represents the current

side; in an inner loop, the respective position is handled. Two tricks are used:

 1. The variable pos models the current position within the list. The

new position is determined by adding 1. However, you need to

reaccess the list’s first value at the end of the list, so a modulo

operation is used here.

 2. After adding up the values for one side, you must go back by one

position since the end value of one side of the triangle is also the

start value of the next side.

As usual, add a sanity check at the beginning of the method. This will prevent you

from potentially invalid data constellations.

def is_magic_triangle_v2(values):

 if len(values) % 3 != 0:

 raise ValueError("Not a triangle: " + len(values))

 side_length = 1 + len(values) // 3

 pos = 0

 sum_of_sides = [0, 0, 0]

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

250

 for current_side in range(3):

 for _ in range(side_length):

 sum_of_sides[current_side] += values[pos]

 # trick 1: with modulo => no special treatment

 pos = (pos + 1) % len(values)

 # trick 2: The sides overlap, end field = next start field

 pos -= 1

 return sum_of_sides[0] == sum_of_sides[1] and \

 sum_of_sides[1] == sum_of_sides[2]

 Verification

The verification is performed with a unit test analogous to the previous one and

therefore not shown again.

5.3.10 Solution 10: Most Frequent Elements (★★✩✩✩)
Write function value_count(values) that determines a histogram (i. e., the distribution

of the frequencies of the numbers in the given list). Also, write function sort_dict_by_

value(dictionary) to sort the dictionary by its values instead of by keys. Thereby a

descending sorting is realized, so that smaller values are listed at the beginning.

 Examples

Input Result Most frequent(s)

[1, 2, 3, 4, 4, 4, 3, 3, 2, 4] {4=4, 3=3, 2=2, 1=1} 4=4

[1, 1, 1, 2, 2, 2, 3, 3, 3] {1=3, 2=3, 3=3} Depending on query, logically all

Algorithm Based on the input values, you compute a histogram as a dictionary with

frequency values:

def value_count(values):

 value_to_count = {}

 for elem in values:

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

251

 if elem not in value_to_count:

 value_to_count[elem] = 0

 value_to_count[elem] += 1

 return value_to_count

As a final step, you still need to sort the resulting dictionary by value. Conveniently,

this can be done with sorted() and specifying how the values are accessed and inverted.

However, this returns a list of value pairs that you transfer to a dictionary with dict().

def sort_dict_by_value(dictionary):

 return dict(sorted(dictionary.items(), key=itemgetter(1),

reverse=True))

 Verification

As usual, use the values from the introduction to check your just implemented

functionality with unit tests:

@pytest.mark.parametrize("values, expected",

 [([1, 2, 3, 4, 4, 4, 3, 3, 2, 4],

 {1: 1, 2: 2, 3: 3, 4: 4}),

 ([1, 1, 1, 2, 2, 2, 3, 3, 3],

 {1: 3, 2: 3, 3: 3})])

def test_value_count(values, expected):

 result = value_count(values)

 assert result == expected

@pytest.mark.parametrize("dictionary, expected",

 [({1: 1, 2: 2, 3: 3, 4: 4},

 {4: 4, 3: 3, 2: 2, 1: 1})])

def test_sort_dict_by_value(dictionary, expected):

 result = sort_dict_by_value(dictionary)

 assert result == expected

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

252

5.3.11 Solution 11: Addition of Digits (★★★✩✩)
Consider two decimal numbers that are to be added. Sounds simple, but for this

assignment, the numbers are interestingly represented as a list of digits. Write function

list_add(values1, values2). Also, consider the special case where there is an

overflow.

 Solution 11a: Addition (★★★✩✩)

In the first part of the task, the digits are to be stored in the order of their occurrence in

the list.

 Examples

Input 1 Input 2 Result

123 = [1, 2, 3] 456 = [4, 5, 6] 579 = [5, 7, 9]

927 = [9, 2, 7] 135 = [1, 3, 5] 1062 = [1, 0, 6, 2]

Algorithm Start with a simplification, namely that the numbers have the same

amount of digits. Analogous to adding on the blackboard, you go from back to front from

position to position and add the digits in each case. There may be a carry, which you

must take into account in the following addition. If there is also a carry at the end of the

processing (so for you at the front-most position), you must add the value 1 to the result

at the front position. See Figure 5-1.

Figure 5-1. Example of an addition with carries

You apply this procedure to two lists of digits and traverse them from back to front—

at the beginning still simplifying lists of equal length, which avoids special treatments.

def list_add(values1, values2):

 result = []

 carry = 0

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

253

 for i in range(len(values1) - 1, -1, -1):

 sum = values1[i] + values2[i] + carry

 result.insert(0, sum % 10)

 carry = 1 if sum >= 10 else 0

 # add a 1 at the front of a carryover

 if carry == 1:

 result.insert(0, 1)

 return result

A deviating implementation would be to use iterators, here not the forward variant

with iter(), but the backward variant with reversed(). However, this implementation

struggles with the same problem as before with input data of different lengths.

def list_add_with_iter(values1, values2):

 result = []

 carry = 0

 backiterator1 = reversed(values1)

 backiterator2 = reversed(values2)

 while True:

 try:

 value1 = next(backiterator1)

 value2 = next(backiterator2)

 sum = value1 + value2 + carry

 result.insert(0, sum % 10)

 carry = 1 if sum >= 10 else 0

 except StopIteration:

 break

 # consider carryover

 if carry == 1:

 result.insert(0, 1)

 return result

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

254

HINT: POSSIBLE ALTERNATIVE WITH ZIP()?

You could also come up with the idea of combining the two sequences of values with zip()

and traversing them backwards. however, then you still need a wrapping with list(), since

zip() is not reversible. however, this variant also fails since zip() restricts the combination

to the smallest length of the sequences passed. thus, again, you cannot add sequences of

numbers of different lengths.

Improved algorithm If you want to provide a generally valid addition, you have to

add the digits again starting from the back. However, with unequal length, it is then at

some point no longer possible to access any digits because one number has fewer digits

than the other. The auxiliary function safe_get_at() helps to handle a potentially failing

access and provides a fallback of 0 in this case.

def list_add_improved(values1, values2):

 result = []

 carry = 0

 idx1 = len(values1) - 1

 idx2 = len(values2) - 1

 while idx1 >= 0 or idx2 >= 0:

 value1 = safe_get_at(values1, idx1)

 value2 = safe_get_at(values2, idx2)

 sum = value1 + value2 + carry

 result.insert(0, sum % 10)

 carry = 1 if sum >= 10 else 0

 idx1 -= 1

 idx2 -= 1

 # add a 1 at the front of a carryover

 if carry == 1:

 result.insert(0, 1)

 return result

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

255

Let’s take a quick look at the implementation of the safe indexed access, which maps

accesses outside the allowed index range to the value 0. I use the Python feature of two

comparison operators.

def safe_get_at(values, pos):

 if 0 <= pos < len(values):

 return values[pos]

 return 0

In the implementation, my Java origin can be spotted.

In Python, it is stylistically nicer to handle expected index exceptions as follows:

def safe_get_at(values, pos):

 try:

 return values[pos]

 except IndexError:

 return 0

 Verification

Use unit tests to verify that the implementation produces the desired result for a given

sequence of numbers:

@pytest.mark.parametrize("values1, values2, expected",

 [([1, 2, 3], [4, 5, 6], [5, 7, 9]),

 ([9, 2, 7], [1, 3, 5], [1, 0, 6, 2])])

def test_list_add_improved(values1, values2, expected):

 result = list_add_improved(values1, values2)

 assert result == expected

Let’s also consider the special case of unequal lengths of numbers for both

implementations—only the second improved variant handles this correctly:

>>> list_add([7,2,1], [1,2,7,0,0,0])

[8, 4, 8]

>>> list_add_improved([7, 2, 1], [1, 2, 7, 0, 0, 0])

[1, 2, 7, 7, 2, 1]

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

256

 Solution 11b: Addition Inverse (★★★✩✩)

What changes if the digits are stored in reverse order in the list?

 Examples

Input 1 Input 2 Result

123 = [3, 2, 1] 456 = [6, 5, 4] 579 = [9, 7, 5]

927 = [7, 2, 9] 135 = [5, 3, 1] 1062 = [2, 6, 0, 1]

Algorithm If the order of the digits in the list is reversed to that within the number,

things get simpler. You can then add directly, and the handling of numbers with unequal

amounts of digits becomes easier. Again, you use the function safe_get_at(). Moreover,

in case of an overflow, it is only necessary to add in the natural direction.

def list_add_inverse(values1, values2):

 result = []

 carry = 0

 idx = 0

 while idx < len(values1) or idx < len(values2):

 value1 = safe_get_at(values1, idx)

 value2 = safe_get_at(values2, idx)

 sum = value1 + value2 + carry

 carry = 1 if sum >= 10 else 0

 result.append(sum % 10)

 idx += 1

 # add a 1 as carry to the "front"

 if carry == 1:

 result.append(1)

 return result

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

257

 Verification

Consider two numbers in the form of lists with single digits—the values are written the

other way around than in the number. In particular, this variant allows the addition of

numbers of different lengths without having to deal with two index values.

@pytest.mark.parametrize("values1, values2, expected",

 [([3, 2, 1], [6, 5, 4], [9, 7, 5]),

 ([7, 2, 9], [5, 3, 1], [2, 6, 0, 1])])

def test_list_add_inverse(values1, values2, expected):

 result = list_add_inverse(values1, values2)

 assert result == expected

5.3.12 Solution 12: List Merge (★★✩✩✩)
Given two lists of numbers, each sorted in ascending order, merge them into a result list

according to their order. Write function merge(values1, values2).

 Examples

Input 1 Input 2 Result

1, 4, 7, 12, 20 10, 15, 17, 33 1, 4, 7, 10, 12, 15, 17, 20, 33

2, 3, 5, 7 11, 13, 17 2, 3, 5, 7, 11, 13, 17

2, 3, 5, 7, 11 7, 11, 13, 17 2, 3, 5, 7, 7, 11, 11, 13, 17

[1, 2, 3] ∅ = [] [1, 2, 3]

Algorithm At first, the problem seems quite easy to solve. You start at the beginning

of both lists. Then you compare the respective position’s values, insert the smaller one

into the result, and increase the position in the list from which the element originates.

This looks like the following:

def merge_first_try(values1, values2):

 pos1 = 0

 pos2 = 0

 result = []

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

258

 while pos1 < len(values1) or pos2 < len(values2):

 value1 = values1[pos1]

 value2 = values2[pos2]

 if value1 < value2:

 result.append(value1)

 pos1 += 1

 else:

 result.append(value2)

 pos2 += 1

 return result

Although this solution seems to be intuitive and good, it still contains problems. To

identify them, let’s try the function once for the second combination of values:

>>> merge_first_try([2, 3, 5, 7], [11, 13, 17])

...

IndexError: list index out of range

As a quick fix, you could replace the or with an and, which eliminates problems

with exceptions. But this leads to another problem: Not all of the elements of both lists

are processed any longer, usually depending on the value distribution even different

numbers. So this is not a universal solution, but still a good start. You only have to cover

the special needs of the elements remaining in a list appropriately. They are added to the

result for this purpose.

def merge(values1, values2):

 pos1 = 0

 pos2 = 0

 result = []

 while pos1 < len(values1) and pos2 < len(values2):

 value1 = values1[pos1]

 value2 = values2[pos2]

 if value1 < value2:

 result.append(value1)

 pos1 += 1

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

259

 else:

 result.append(value2)

 pos2 += 1

 add_remaining(result, values1, pos1)

 add_remaining(result, values2, pos2)

 return result

You move the functionality of appending the remaining elements into function

add_remaining(). Interestingly, no special checks are required before calling it. This is

indirectly given by supplying the respective index as well as the termination condition in

the for loop.

def add_remaining(result, values, idx):

 for i in range(idx, len(values)):

 result.append(values[i])

Python shortcut for add_remaining() In fact, adding the remaining elements is

done in a shorter and more understandable way using slicing, as follows:

def add_remaining(result, values, idx):

 result += values[idx:]

Python shortcut The sorted merging of two lists can be easily implemented using

the + operator and with the help of sorted():

def merge(values1, values2):

 return sorted(values1 + values2)

Alternative algorithm One variant is to generate the result data structure in

advance. However, this leads to more index variables, and the entire thing becomes

confusing. How can you avoid index access?

Instead of the potentially error-prone index accesses, try a variant with iterators. You

run through the two lists from front to back and insert the elements as usual. Also, the

appending of the remaining part can be transferred quite easily to iterators.

def merge_with_iter(values1, values2):

 result = []

 iterator1 = iter(values1)

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

260

 iterator2 = iter(values2)

 while True:

 try:

 value1, iterator1 = peek(iterator1)

 value2, iterator2 = peek(iterator2)

 if value1 < value2:

 result.append(value1)

 next(iterator1)

 else:

 result.append(value2)

 next(iterator2)

 except StopIteration:

 break

 add_remaining_with_iter(result, iterator1)

 add_remaining_with_iter(result, iterator2)

 return result

The last thing you implement is the addition of the remaining elements. However,

this is a little bit more complex with iterators than the two variants shown before.

def add_remaining_with_iter(result, it):

 while True:

 try:

 value = next(it)

 result.append(value)

 except StopIteration:

 break

Another difficulty is that you cannot simply read out both elements via next(),

since only one element is transferred to the result at a time. Therefore, you use a trick

and create the function peek(), which first determines the next element and then

reconstructs the iterator. In the above algorithm, you first take a look at the respective

elements, and after comparing the value, you consume the element from the matching

input data.

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

261

def peek(it):

 first = next(it)

 return first, itertools.chain([first], it)

The built-in function chain() is used here, which links two iterables together (i.e.,

make one out of two). Here it is used to restore the original dataset of the iterator.

 Verification

Test the functionality with the value combinations from the introduction:

def inputs_and_expected():

 return [([1, 4, 7, 12, 20], [10, 15, 17, 33],

 [1, 4, 7, 10, 12, 15, 17, 20, 33]),

 ([2, 3, 5, 7], [11, 13, 17],

 [2, 3, 5, 7, 11, 13, 17]),

 ([2, 3, 5, 7, 11], [7, 11, 13, 17],

 [2, 3, 5, 7, 7, 11, 11, 13, 17]),

 ([1, 2, 3], [], [1, 2, 3])]

@pytest.mark.parametrize("values1, values2, expected",

 inputs_and_expected())

def test_merge(values1, values2, expected):

 result = merge(values1, values2)

 assert result == expected

@pytest.mark.parametrize("values1, values2, expected",

 inputs_and_expected())

def test_merge_with_iter(values1, values2, expected):

 result = merge_with_iter(values1, values2)

 assert result == expected

5.3.13 Solution 13: Excel Magic Select (★★✩✩✩)
If you have worked a little with Excel, then you have probably used the Magic Selection.

It continuously populates a selected area with values based on the previous values.

This works for numbers, weekdays, or dates, for example. To achieve something

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

262

similar on your own, write function generate_following_values(current_value,

sequence_length) that implements this for numbers. Create a variation suitable

for weekdays and with the following signature: generate_following_values_for_-

predefined(predefined_values, current_value, sequence_length).

 Examples

Initial value Count Result

1 7 [1, 2, 3, 4, 5, 6, 7]

5 4 [5, 6, 7, 8]

FriDaY 8 [FriDaY, saturDaY, sunDaY, MonDaY, tuesDaY,

WeDnesDaY, thursDaY, FriDaY]

Algorithm At first, you might think that this is based on something very

sophisticated. But when thinking a second time about the algorithm, you quickly realize

that all you need is a list as the result data structure and a loop to populate it:

def generate_following_values(current_value, sequence_length):

 result = []

 while sequence_length > 0:

 result.append(current_value)

 current_value += 1

 sequence_length -= 1

 return result

Python shortcut With list comprehension, you write it briefly as follows:

def generate_following_values_v2(start_value, sequence_length):

 return [value for value in range(start_value,

 start_value + sequence_length)]

Alternatively, this can be implemented by combining various functionalities from

the itertools module. However, I like the two previous variants much better in terms of

readability and comprehensibility.

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

263

def generate_following_values_built_in(start_value, sequence_length):

 return list(itertools.islice(itertools.count(start_value), sequence_

length))

Modified algorithm It is similarly easy to fill in with days of the week or via a list of

predefined values, which, unlike numerical values, always repeat according to the length

of the sequence.

With this knowledge, you minimally modify the previously used algorithm:

def generate_following_values_for_predefined(predefined_values,

 current_value, sequence_

length):

 result = []

 current_pos = predefined_values.index(current_value)

 while sequence_length > 0:

 result.append(current_value)

 current_value, current_pos = next_cyclic(predefined_values,

current_pos)

 sequence_length -= 1

 return result

This function is intended to allow the cyclical traversal of a list in the forward

direction by starting again at the beginning after the last element:

def next_cyclic(values, current_pos):

 next_pos = (current_pos + 1) % len(values)

 return values[next_pos], next_pos

 Verification

To track completion, you use a parameterized test, among other things one starting on a

Friday, to generate eight values:

@pytest.mark.parametrize("start_value, sequence_length, expected",

 [(1, 7, [1, 2, 3, 4, 5, 6, 7]),

 (5, 4, [5, 6, 7, 8])])

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

264

def test_generate_following_values(start_value, sequence_length, expected):

 result = generate_following_values(start_value, sequence_length)

 assert result == expected

def predefined_values():

 return ["Monday", "Tuesday", "Wednesday", "Thursday",

 "Friday", "Saturday", "Sunday"]

@pytest.mark.parametrize("predefined_values, current_value, "

 "sequence_length, expected",

 [(predefined_values(), "Monday", 3,

 ["Monday", "Tuesday", "Wednesday"]),

 (predefined_values(), "Friday", 8,

 ["Friday", "Saturday", "Sunday", "Monday",

 "Tuesday", "Wednesday", "Thursday",

"Friday"])])

def test_generate_following_values_for_predefined(predefined_values,

 current_value,

 sequence_length,

expected):

 result = generate_following_values_for_predefined(predefined_values,

 current_value,

 sequence_length)

 assert result == expected

5.3.14 Solution 14: Stack-Based Queue (★★✩✩✩)
You learned about stack and queue data structures in the introduction and implemented

a queue based on a list. Then in exercise 2, you implemented a stack itself. Now you are

asked to build a queue based on the stack data structure.

 Example

Please check the functionality with the following procedure:

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

265

def main():

 waiting_persons = Queue()

 waiting_persons.enqueue("Marcello")

 waiting_persons.enqueue("Michael")

 waiting_persons.enqueue("Karthi")

 while not waiting_persons.is_empty():

 if waiting_persons.peek() == "Michael":

 # reprocess at the end

 waiting_persons.enqueue("Michael again")

 next_person = waiting_persons.dequeue()

 print("Processing " + next_person)

The small sample program should produce the following output:

Processing Marcello

Processing Michael

Processing Karthi

Processing Michael again

Algorithm You have already learned that a stack is suitable for reversing a list’s

order. Suppose you combine two stacks appropriately, one as an input buffer and one

as an output buffer. In this case, you can implement a queue quite easily as follows. The

only thing that’s a bit tricky is that you just transfer the data from the input buffer to the

output buffer when the latter is empty.

class Queue:

 def __init__(self):

 self._inbox = Stack()

 self._outbox = Stack()

 def enqueue(self, elem):

 self._inbox.push(elem)

 def dequeue(self):

 if self.is_empty():

 raise QueueIsEmptyException()

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

266

 self._transfer_inbox_to_outbox()

 return self._outbox.pop()

 def peek(self):

 if self.is_empty():

 raise QueueIsEmptyException()

 self.__transfer_inbox_to_outbox()

 return self._outbox.peek()

 def is_empty(self):

 return self._inbox.is_empty() and self._outbox.is_empty()

 def _transfer_inbox_to_outbox(self):

 if self._outbox.is_empty():

 # transfer inbox to outbox

 while not self._inbox.is_empty():

 self._outbox.push(self._inbox.pop())

 Verification

To test your implementation of the stack-based queue, execute the main() function and

see if the output is as expected.

5.4 Summary: What You Learned
This chapter deepened your knowledge of basic data structures like lists, sets, and

dictionaries. This knowledge is essential in business applications. These structures are

useful for solving many tasks, not only individually but also in combination, such as

the deletion of duplicates from lists. In addition, the exercise of the magic triangle, for

example, trained abstract thinking. A small delicacy was to program the auto-completion

of Excel itself. It is quite surprising what an elegant implementation this results in.

Finally, you developed some functionality for merging lists. This is an elementary

component for Merge Sort.

Chapter 5 BasiC Data struCtures: Lists, sets, anD DiCtionaries

267
© Michael Inden 2022
M. Inden, Python Challenges, https://doi.org/10.1007/978-1-4842-7398-2_6

CHAPTER 6

Arrays
Arrays are data structures that store values of the same data type in a contiguous

memory area. Thus, arrays are more memory-optimal and perform better than lists but

are not supported natively in Python. However, they are supported by the array and

numpy modules. In the following, you will look at the processing of data with the help of

additional modules and deepen it with the help of exercises.

6.1 Introduction
While arrays are basic building blocks in many other programming languages, they

exist in Python only as extensions, such as in the array and numpy modules. Because the

former has only one-dimensional arrays and a cryptic syntax like

>>> import array

>>> ints = array.array('i', [2, 4, 6, 8])

>>> ints

array('i', [2, 4, 6, 8])

the choice for the following descriptions falls on numpy,1 whose array implementation

is more elegant and more pleasant to handle. In particular, arrays can be created quite

easily from lists, even multidimensional ones:

import numpy as np

numbers = np.array([1, 2, 3, 4, 5, 6, 7])

primes = np.array([2, 3, 5, 7, 11, 13, 17])

1 1Please remember to install numpy using the pip tool: pip install numpy (on Mac, use pip3
instead of pip).

https://doi.org/10.1007/978-1-4842-7398-2_6

268

twodim = np.array([["A1", "A2"],

 ["B1", "B2"],

 ["C1", "C2"]])

NumPy almost feels like a built-in data type since many operations like slicing

and index accesses or the standard function len() are possible. You’ll look at what to

consider for multidimensional arrays later.

By providing arrays as a stand-alone module, an import is necessary. But arrays,

unlike many built-in data types in other languages, are not just simple data containers

but can do much more in terms of functionality than in Java or C++, for example.

NumPy offers various mathematical functionalities. I will go into more detail

about NumPy specialties later. Upfront you will investigate one-dimensional and

multidimensional arrays in this introduction and build a basic understanding of arrays.

6.1.1 One-Dimensional Arrays
As an introduction to processing data with arrays and to build knowledge of possible

interview questions, let’s look at some examples.

 Textual Output

Arrays provide an appealing textual output, which is greatly beneficial for following the

upcoming examples, especially the two-dimensional ones.

>>> grades = np.array(["A1", "A2", "B1", "B2", "C1", "C2"])

>>> grades

array(['A1', 'A2', 'B1', 'B2', 'C1', 'C2'], dtype='<U2')

 Example 1: Swapping Elements

A common functionality is swapping elements at two positions. This can be achieved

in a simple and readable way by providing function swap(values, first, second) as

follows:

def swap(values, first, second):

 value1 = values[first]

 value2 = values[second]

Chapter 6 arrays

269

 values[first] = value2

 values[second] = value1

Of course, you can also solve this with only three assignments and a temporary

variable. Still, I think the previous version is a bit more comprehensible.

def swap(values, first, second):

 tmp = values[first]

 values[first] = values[second]

 values[second] = tmp

In Python, there is the following variant based on a tuple assignment:

def swap_with_tuple(values, first, second):

 values[second], values[first] = values[first], values[second]

HINT: PREFER READABILITY AND COMPREHENSIBILITY

please keep in mind that readability and understandability are the keys to correctness and

maintainability. Besides, this often facilitates testability.

While the helper variable to save one assignment is pretty catchy here, there are definitely

more elaborate traceable low-level optimizations in other use cases. they are usually more

difficult to read and less comprehensible.

 Example 2: Basic Functionality for Arrays

Now let’s write the function find(values, search_for) to search for a value in a one-

dimensional array or a list and return the position or -1 for not found:

def find(values, search_for):

 for i, current_value in enumerate(values):

 if current_value == search_for:

 return i

 return -1

Chapter 6 arrays

270

This can be solved as a typical search problem with a while loop where the condition

is given as a comment at the end of the loop:

def find(values, search_for):

 pos = 0

 while pos < len(values) and not values[pos] == search_for:

 pos += 1

 # i >= len(values) or values[i] == search_for

 return -1 if pos >= len(values) else pos

Please note the following: The Python built-in function len() returns the length

of a list, so also for arrays, as long as they are one-dimensional. Alternatively, NumPy

provides the attribute size on the array. For two-dimensional arrays, the values differ,

but more about this later.

Pythonic variant with enumerate() Indexed accesses can hardly be avoided when

working on array elements and are often quite intuitive. However, such accesses via the

index in combination with range(len(values)) do not necessarily correspond to good

style in Python. Sometimes there are more elegant ways, like the following one with

enumerate():

def find_with_enumerate(values, search_for):

 for i, value in enumerate(values):

 if value == search_for:

 return i

 return -1

 Example 3: Remove Duplicates

The following shows a sorted array of positive numbers, but with duplicate values.

Removing the duplicates should provide the following result:

 [1, 2, 2, 3, 3, 3, 4, 4, 4, 4] => [1, 2, 3, 4]

Chapter 6 arrays

271

JOB INTERVIEW TIPS: PROBLEM-SOLVING STRATEGIES

For assignments like this, you should always ask a few questions to clarify the context and

gain a better understanding. For this example, possible questions include the following:

 1. Is it necessary to keep the order/sorting of the numbers?

 2. May a new array be created or must the actions be processed inplace—within

the original array?

 3. For inplace there are further questions:

 a. What exactly should happen when removing/deleting?

 b. What value represents no entry?

Solution 1 for Example 3: New array and sorted input Suppose you are to return a

new array as a result when eliminating duplicates.

Maybe when you implement it you get the idea to remove the duplicates simply by

refilling in a set. However, this does not guarantee that the original order is preserved.

To be on the safe side, it is recommended to use a dictionary to ensure that the insertion

order of the keys is preserved. Using fromkeys(), a dictionary is created based on the

passed list and duplicate keys are automatically removed. As a second step, you prepare

a new array based on the keys. This procedure can be implemented as follows:

def remove_duplicates_new_array(sorted_numbers):

 # order may change

 # unique_values = list(set(sorted_numbers))

 # stable order

 unique_values = list(dict.fromkeys(sorted_numbers))

 return np.array(unique_values)

Solution 2 for Example 3: Unsorted/arbitrary numbers The previous task of

removing duplicates in sorted numbers was easy to solve with Python on-board facilities.

But how should you proceed with non-sorted data, assuming that the original order has

to be maintained? Specifically, the result shown on the right should then result from the

left sequence of values.

[1, 4, 4, 2, 2, 3, 4, 3, 4] => [1, 4, 2, 3]

Chapter 6 arrays

272

Interestingly, a set would not make sense as a result data structure in this case

because it would mess up the original order. If you think for a moment, ask an

experienced colleague, or browse through a good book, you might discover that you

can use a set as an auxiliary data structure for already discovered numbers. To store

the result, you use a list. This variant (combination) works just as well with already

sorted data.

def remove_duplicates_stable(numbers):

 return np.array(collect_unique_values_stable(numbers))

def collect_unique_values_stable(numbers):

 result = []

 unique_values = set()

 for value in numbers:

 if value not in unique_values:

 unique_values.add(value)

 result.append(value)

 return result

This example illustrates the advantages of programming small functionalities that

are self-contained and follow the SRP (Single Responsibility Principle). Even more:

Keeping public methods understandable and moving details to (preferably private)

helper methods often allows you to keep subsequent changes as local as possible. By the

way, I discuss the SRP in detail in my book Der Weg zum Java-Profi [Ind20].

As a special feature since Python 3.6, the order of the keys when creating a dictionary

with fromkeys() corresponds to the later iteration order, so the collection can be written

even shorter as follows:

def collect_unique_values_stable_shorter(numbers):

 return list(dict.fromkeys(numbers))

Solution 3 for Example 3: Inplace Given this sorted array again

sortedNumbers = [1, 2, 2, 3, 3, 3, 4, 4, 4, 4]

Chapter 6 arrays

273

all duplicates are to be removed, but this time you’re not allowed to create a new

array. This implementation is a little bit more difficult. The algorithm is as follows: Run

through the array, check for each element, whether it already exists, and whether it is

a duplicate. This check can be performed by comparing the current element with its

predecessor. This simplification is possible because sorting exists; without it, it would

be much more complicated to solve. You start the processing at the frontmost position

and proceed step by step. Thereby you collect all numbers without duplicates on the left

side of the array. To know where to read or write in the array, you use position pointers

named read_pos and write_pos, respectively. If you find a duplicate number, the read

pointer moves on and the write pointer stays in place.

def remove_duplicates_inplace_first_try(sorted_numbers):

 prev_value = sorted_numbers[0]

 write_pos = 1

 read_pos = 1

 while read_pos < len(sorted_numbers):

 current_value = sorted_numbers[read_pos]

 if prev_value != current_value:

 sorted_numbers[write_pos] = current_value

 write_pos += 1

 prev_value = current_value

 read_pos += 1

Let’s call this function once:

>>> sorted_numbers = np.array([1, 2, 2, 3, 3, 3, 4, 4, 4, 4])

>>> remove_duplicates_inplace_first_try(sorted_numbers)

>>> print(sorted_numbers)

This variant is functionally correct, but the result is confusing:

[1 2 3 4 3 3 4 4 4 4]

Chapter 6 arrays

274

This is because you are working inplace here. There is no hint how the result can be

separated, up to where the values are valid and where the invalid, removed values start.

Accordingly, two things are recommended:

 1. You should return the length of the valid range.

 2. You should delete the following positions with a special value,

like -1 for primitive number types or for reference types often

None. This value must not be part of the value set. Otherwise,

irritations and inconsistencies are inevitable.

The following modification solves both issues and also uses a for loop, which makes

everything a bit more elegant and shorter:

def remove_duplicates_inplace_improved(sorted_numbers):

 write_index = 1

 for i in range(1, len(sorted_numbers)):

 current_value = sorted_numbers[i]

 prev_value = sorted_numbers[write_index - 1]

 if prev_value != current_value:

 sorted_numbers[write_index] = current_value

 write_index += 1

 # delete the positions that are no longer needed

 for i in range(write_index, len(sorted_numbers)):

 sorted_numbers[i] = -1

 return write_index

An invocation of this function returns the length of the valid range (additionally,

after the last valid index in the modified array, all values are set to -1). Let’s check this by

running the following lines:

>>> sorted_numbers = np.array([1, 2, 2, 3, 3, 3, 4, 4, 4, 4])

>>> pos = remove_duplicates_inplace_improved(sorted_numbers)

>>> print("pos:", pos, " / values:", sorted_numbers)

pos: 4 / values: [1 2 3 4 -1 -1 -1 -1 -1 -1]

Chapter 6 arrays

275

Interim conclusion The example illustrates several problematic issues. First, that it

is often more complex to work inplace—that is, without creating new arrays, but directly

within the original array. Second, to handle changes when values remain in the array

but are no longer part of the result, you can either return a counter or erase the values

with a neutral, special value. However, it is often more understandable and therefore

recommended to use the variants shown, which create a new array.

JOB INTERVIEW TIPS: ALTERNATIVE WAYS OF LOOKING AT THINGS

as simple as the assignment may have sounded at first, it does hold some potential for

different approaches and solution strategies. When removing duplicates, you could also come

up with the idea of replacing elements by no entry—for object references the value None:

["Tim", "Tim", "Jim", "Tom", "Jim", "Tom"]

=>

["Tim", None, "Jim", "Tom", None, None]

For a non-sorted array, it is also possible to retain the values in the order of their original

occurrence:

[1, 2, 2, 4, 4, 3, 3, 3, 2, 2, 3, 1] => [1, 2, 4, 3]

alternatively, it is possible to remove only consecutive duplicates at a time:

[1, 2, 2, 4, 4, 3, 3, 3, 2, 2, 3, 1] => [1, 2, 4, 3, 2, 3, 1]

as you can see, there is more to consider, even for apparently simple tasks. this is why

requirements engineering and the correct coverage of requirements are a real challenge.

 Example 4: Rotation by One or More Positions

Let’s look at another problem, namely rotating an array by n positions to the left or to the

right, where the elements are then to be shifted cyclically at the beginning or the end,

respectively, as visualized below, where the middle array is the starting point:

Chapter 6 arrays

276

The algorithm for a rotation by one element to the right is simple: Remember the

last element and then repeatedly copy the element that is one ahead in the direction of

rotation to the one behind it. Finally, the cached last element is inserted at the foremost

position.

Please note that the following two functions work inplace (on the passed array) so

they do not return a value:

def rotate_right(values):

 if len(values) < 2:

 return

 end_pos = len(values) - 1

 temp = values[end_pos]

 for i in range(end_pos, 0, -1):

 values[i] = values[i - 1]

 values[0] = temp

The rotation to the left works analogously:

def rotate_left(values):

 if len(values) < 2:

 return

 end_pos = len(values) - 1

 temp = values[0]

 for i in range(end_pos):

 values[i] = values[i + 1]

 values[end_pos] = temp

Let’s try the whole thing out in the Python command line:

>>> numbers = np.array([1, 2, 3, 4])

>>> rotate_right(numbers)

>>> numbers

array([4, 1, 2, 3])

>>>

Chapter 6 arrays

277

>>> numbers = np.array([1, 2, 3, 4])

>>> rotate_left(numbers)

>>> print(numbers)

[2 3 4 1]

In case you are wondering about the different console outputs, it should be noted

that there is a difference between the formatting with __repr__() and __str__(). In the

first case, you get the type info and then the values are comma-separated as output. In

the second case, the output is the same as the standard of lists.

Rotation around n positions (simple) An obvious extension is to rotate by a certain

number of positions. This can be solved using brute force by calling the just-developed

functionality n times:

def rotate_right_by_n_simple(values, n):

 for i in range(n):

 rotate_right(values)

This solution is acceptable in principle, although not performant due to the frequent

copy actions. How can it be more efficient?

HINT: OPTIMIZATION OF LARGE VALUES FOR n

there is one more small feature to consider. Namely, if n is larger than the length of the array,

you don’t have to rotate all the time; you can limit this to what is actually needed by using the

modulo operation i < n % len(values).

Rotation around n positions (tricky) Alternatively, imagine that n positions are

added to the original array. This is accomplished by using an independent buffer that

caches the last n elements. It is implemented in the function fill_temp_with_last_n().

This first creates a suitably sized array and puts the last n values there. Then you copy

the values as before, but with an offset of n. Finally, you just need to copy the values back

from the buffer using copy_temp_buffer_to_start().

def rotate_right_by_n(values, n):

 adjusted_n = n % len(values)

 temp_buffer = fill_temp_with_last_n(values, adjusted_n)

Chapter 6 arrays

278

 # copy n positions to the right

 for i in range(len(values) - 1, adjusted_n - 1, -1):

 values[i] = values[i - adjusted_n]

 copy_temp_buffer_to_start(temp_buffer, values)

 return values

def fill_temp_with_last_n(values, n):

 temp_buffer = np.arange(n)

 for i in range (n):

 temp_buffer[i] = values[len(values) - n + i]

 return temp_buffer

def copy_temp_buffer_to_start(temp_buffer, values):

 for i in range(len(temp_buffer)):

 values[i] = temp_buffer[i]

Here’s another hint: The function just presented for rotation can be suboptimal in

terms of memory, especially if the value of n is very large and the array itself is also huge,

but for our examples, this does not matter. Interestingly, the simple version would then

be better in terms of memory, although probably rather slow due to the frequent copy

actions.

6.1.2 Multidimensional Arrays
In this section, I will briefly discuss multidimensional arrays. Because it is more common

in practice and easy to imagine visually, I will just discuss two-dimensional arrays.2

Using a two-dimensional rectangular array, you can model a playfield, such as a

Sudoku puzzle or a landscape represented by characters. For a better understanding

and an introduction, let’s consider an example. Suppose # represents a boundary wall, $

stands for an item to be collected, P stands for the player, and X stands for the exit from a

level. These characters are used to describe a playfield as follows:

2 In other languages, multidimensional arrays are often implemented as arrays of arrays and thus
do not necessarily have to be rectangular. In Python, this is equally true for nested lists, but not for
NumPy arrays, which are always rectangular.

Chapter 6 arrays

279

################

P

$ X

$

################

In Python, a two-dimensional array can be used for processing, which you can

construct based on strings converted to lists as follows:

def main():

 world = np.array([list("################"),

 list("## P ##"),

 list("#### $ X ####"),

 list("###### $ ######"),

 list("################")])

 print_array(world)

def print_array(values):

 max_y, max_x = get_dimension(values)

 for y in range(max_y):

 for x in range(max_x):

 value = values[y][x]

 print(value, end=" ")

 print()

def get_dimension(values):

 if isinstance(values, list):

 return len(values), len(values[0])

 if isinstance(values, np.ndarray):

 return values.shape

 raise ValueError("unsupported type", type(values))

In the code above, you can see the helper function get_dimension(values) to

determine the dimensions for both lists and NumPy arrays. This allows using one or the

other without worrying. See subsection 6.1.4 for a broader explanation.

Chapter 6 arrays

280

Let’s run the module TWO_DIM_ARRAY_WORLD_EXAMPLE.PY to see the

output functionality in action. In the following, I will refer to similar things from

time to time. Besides debugging, the console output is quite helpful, especially for

multidimensional arrays.

#

P #

$ X # # #

$ # # # # #

#

Accessing values There are two variants of how to specify the coordinates when

accessing: one is [x][y] and the other is [y][x] if you think in a more line-oriented way.

Between different developers, this can lead to misunderstandings and discussions.

A small remedy can be achieved if you write an access function, like get_at(values,

x, y), and consider the respective preference there. I will use this access function in the

introduction and later switch over to direct array accesses:

def get_at(values, x, y) :

 return values[y][x];

 Introductory Example

Your task is to rotate an array by 90 degrees to the left or right. Let’s take a look at this for

two rotations to the right:

1111 4321 4444

2222 => 4321 => 3333

3333 4321 2222

4444 4321 1111

Let’s try to formalize the procedure a bit. The easiest way to implement the rotation

is to create a new array and then populate it appropriately. For the determination of the

formulas, let’s use concrete example data, which facilitates the understanding (xn and yn

stand for the new coordinates; in the following, the rotation to the left and the rotation to

the right is shown on the left/right):

Chapter 6 arrays

281

 x 0123

 y ----

 0 ABCD

 1 EFGH

 xn 01 xn 01

yn -- yn --

 0 DH 0 EA

 1 CG 1 FB

 2 BF 2 GC

 3 AE 3 HD

You see that a 4 × 2 array turns into a 2 × 4 array.

The rotation is based on the following calculation rules, where max_x and max_y are

the respective maximum coordinates:

 Orig -> new_x new_y

rotate_left: (x,y) -> y max_x - x

rotate_right: (x,y) -> max_y - y x

You proceed to the implementation with this knowledge: You first create a suitably

large array by calling np.empty() and traverse the original array line by line and then

position by position. Based on the formulas above, the rotation can be implemented as

follows:

class RotationDirection(Enum):

 LEFT_90 = auto()

 RIGHT_90 = auto()

def rotate(values, dir):

 orig_length_y, orig_length_x = values.shape

 rotated_array = np.empty((orig_length_x, orig_length_y), values.dtype)

 for y in range(orig_length_y):

 for x in range(orig_length_x):

 max_x = orig_length_x - 1

 max_y = orig_length_y - 1

 orig_value = values[y][x]

Chapter 6 arrays

282

 if dir == RotationDirection.LEFT_90:

 new_x = y

 new_y = max_x - x

 rotated_array[new_y][new_x] = orig_value

 if dir == RotationDirection.RIGHT_90:

 new_x = max_y - y

 new_y = x

 rotated_array[new_y][new_x] = orig_value

 return rotated_array

Let’s take a look at the operations in the Python command line:

def main():

 letters = np.array([["A", "B", "C", "D"],

 ["E", "F", "G", "H"]])

 left_rotated = rotate(letters, RotationDirection.LEFT_90)

 print(left_rotated)

 right_rotated = rotate(letters, RotationDirection.RIGHT_90)

 print(right_rotated)

Finally, the call to print() shows the arrays rotated by 90 degrees to the left and to

the right:

[['D' 'H']

 ['C' 'G']

 ['B' 'F']

 ['A' 'E']]

[['E' 'A']

 ['F' 'B']

 ['G' 'C']

 ['H' 'D']]

Chapter 6 arrays

283

 Modeling Directions

You will encounter directions in a variety of use cases. They can, of course, be modeled

simply using an enumeration. In the context of two-dimensional arrays, it is extremely

convenient and contributes significantly to readability and comprehensibility to define

all essential cardinal directions in the enumeration and, moreover, offsets in x- and

y- directions. For better manageability of the delta values, I offer a to_dx_dy() function:

class Direction(Enum):

 N = (0, -1)

 NE = (1, -1)

 E = (1, 0)

 SE = (1, 1)

 S = (0, 1)

 SW = (-1, 1)

 W = (-1, 0)

 NW = (-1, -1)

 def to_dx_dy(self):

 return self.value

 @classmethod

 def provide_random_direction(cls):

 random_index = randrange(len(list(Direction)))

 return list(Direction)[random_index]

HINT: RANDOM NUMBERS

In the example, you see the function randrange(), which generates random numbers in

the range 0 to the specified boundary exclusive. an alternative is random.randint(). to

get a random number greater than or equal to 0.0 and less than 1.0, use the call random.

random(). For example, if you want to simulate the numbers of a dice, you could implement

this as follows:

dice_eyes = random.randint(1, 6)

Chapter 6 arrays

284

Example: Random traversal To go a little deeper on processing with directions, let’s

develop a traversal for a playfield. Whenever you hit array boundaries, you randomly

choose a new direction not equal to the old one:

def main():

 world = np.array([list("ABCDEF"),

 list("GHIJKL"),

 list("MNOPQR"),

 list("abcdef"),

 list("ghijkl")])

 dir = Direction.provide_random_direction()

 print("Direction:", dir.name)

 pos_x = 0

 pos_y = 0

 steps = 0

 while steps < 25:

 print(world[pos_y][pos_x], " ", end="")

 dx, dy = dir.to_dx_dy()

 if not is_on_board(world, pos_x + dx, pos_y + dy):

 dir = select_new_dir(world, dir, pos_x, pos_y)

 dx, dy = dir.to_dx_dy()

 print("\nNew Direction:", dir.name)

 pos_x += dx

 pos_y += dy

 steps += 1

def select_new_dir(world, dir, pos_x, pos_y):

 old_dir = dir

 while True:

 dir = Direction.provide_random_direction()

 dx, dy = dir.to_dx_dy()

 if old_dir != dir and is_on_board(world, pos_x + dx, pos_y + dy):

 break

 return dir

Chapter 6 arrays

285

In this assignment, you immediately get in touch with another useful function

named is_on_board(). Its task is to check whether a passed x-y value is valid for the

array, here assuming that the array is rectangular.3

def is_on_board(values, next_pos_x, next_pos_y):

 max_y, max_x = values.shape

 return 0 <= next_pos_x < max_x and 0 <= next_pos_y < max_y

If you start the module RANDOM_TRAVERSAL_DIRECTION_EXAMPLE.PY, you will get

output like the following, which shows the direction changes very well. The output

is limited by the maximum number of 25 steps. Therefore, only 3 letters are found at

the end.

Direction: SE

A H O d k

New Direction: N

e Q K E

New Direction: SW

J O b g

New Direction: N

a M G A

New Direction: E

B C D E F

New Direction: SW

K P c

3 While this is always true for NumPy array, this is not always given when simulating an array
using nested lists.

Chapter 6 arrays

286

HINT: VARIATION WITH BUFFER FIELDS AT THE BORDER

especially for two-dimensional arrays and accesses to adjacent cells, it may be useful to add

an unused element at each border field to avoid special cases, indicated below with a X:

XXXXXXXXX

X X

X X

X X

XXXXXXXXX

Using this trick, you always have eight adjacent cells. this helps to avoid special treatments

in your programs. this is also true, for example, when walking through the array. Instead

of checking for the array boundaries, you can restrict yourself to checking if you reach a

boundary field. sometimes it is handy to use a neutral element, such as the value 0, since this

does not affect computations.

6.1.3 Typical Errors
Not only when accessing arrays, but especially there, you find a multiplicity of potential

sources of errors, in particular, the following:

• Off-by-one: Sometimes you are off by one element when accessing

because, for example, the index calculation contains an error, such as

adding or subtracting 1 to correct the index or comparing positions

with <, <=, >, or >=.

• Array bounds: Similarly, the bounds of the array are sometimes

inadvertently disregarded, for example, by incorrect use of <, <= or >,

>= when comparing length or lower or upper bounds.4

• Dimensions: As mentioned, how x and y are represented depends on

the chosen flavor. This quickly causes x and y to be interchanged for

two-dimensional arrays.

4 Therefore, thorough testing and a good selection of test cases are recommended in both cases.
How to achieve this is described in my book Der Weg zum Java-Profi [Ind20].

Chapter 6 arrays

287

• Rectangular property: Although an n × m array is assumed to be

rectangular, this need not be the case in Python when using nested

lists. You can specify a different length for each new row, but many of

the examples below use rectangular arrays,5 especially because they

are only supported by NumPy. The reason lies in the arrangement in

memory for maximum performance.

• Neutral element: What represents no value. Is it -1 or None? How do

you deal with this if these are possible values?

6.1.4 Special Features
I would like to point out something extraordinary. Practically, almost all of our

developed program modules can be used for NumPy arrays and lists without

changing much in the algorithmic part of the functions. Often, all that is needed is the

determination of the sizes shown below. This is a significant advantage in contrast to

algorithms in, say, Java and C++, which must be developed specifically for lists and

other types.

For many algorithms for two-dimensional arrays, you can use the function

get_dimension(values) to determine the dimensions for both lists and NumPy

arrays. A few examples require some manual work but rarely a completely new

implementation.

def get_dimension(values):

 if isinstance(values, list):

 return len(values), len(values[0])

 if isinstance(values, np.ndarray):

 return values.shape

 raise ValueError("unsupported type", type(values))

5 In job interviews, you should clarify this by asking a question.

Chapter 6 arrays

288

For nested lists, it returns the number of lines and the length of the first line. This

corresponds exactly to the dimensions that can be obtained from NumPy via the shape

attribute as a tuple:

nested_lists = [[0, 1, 2, 3],

 [4, 5, 6, 7],

 [8, 9, 10, 10]]

nested_lists_array = np.array(nested_lists)

print(get_dimension(nested_lists))

print(get_dimension(nested_lists_array))

This results in the following output:

(3, 4)

(3, 4)

 Special Treatment for Generalizations

Sometimes you want to apply functionalities not only for special types but in general. In

doing so, you occasionally need to initialize arrays with an empty value or query whether

an array is empty. You will look at this in more detail in the solution part of exercise 6,

where you want to be able to use arrays with letters in addition to arrays with numbers to

model a playfield. An empty field is then indicated by, for example, the numerical value

0, a single space character, or an empty string. You could formulate this general-purpose

check as function is_empty_cell(values2dim, x, y) as follows:

def is_empty_cell(values2dim, x, y):

 return is_empty(values2dim[y][x])

def is_empty(value):

 if type(value) is str:

 return value == " " or len(value) == 0

 return value == 0

Chapter 6 arrays

289

6.1.5 Recapitulation: NumPy
So far, you have used NumPy in various examples without it being remarkably different

in handling than lists. This is a big plus. Nevertheless, I would like to introduce a few

things explicitly and point out others.

What is NumPy? NumPy stands for Numerical Python and is a module for processing

arrays. Besides basic functionalities, there are mathematical extensions for linear algebra

and matrices.

 Creating NumPy Arrays Based on Lists

Let’s take a quick look at how easy it is to create a corresponding NumPy array from a list:

numbers = [1, 2, 3, 4, 5, 6, 7]
numbers_array = np.array(numbers)

firstprimes = [2, 3, 5, 7, 11, 13, 17]
firstprimes_array = np.array(firstprimes)

print(numbers_array)
print(firstprimes_array)

You receive the following output:

[1 2 3 4 5 6 7]
[2 3 5 7 11 13 17]

The whole thing also works without problems with two-dimensional nested lists:

twodim = np.array([["A1", "A2"],
 ["B1", "B2"],
 ["C1", "C2"]])
print(twodim)
print(len(twodim)) # 3
print(twodim.size) # 6
print(twodim.shape) # (3, 2)

You get the following output of the array (lengths are not shown here):

[['A1' 'A2']

 ['B1' 'B2']

 ['C1' 'C2']]

Chapter 6 arrays

290

 Creating NumPy Arrays with Particular Values

Sometimes you want to preinitialize arrays with a special value; for numbers this is often

the value 0 or the 1. NumPy offers specific functions for this purpose:

• zeros()

• ones()

• empty()

Let’s call these functions to create arrays. Note that the first value corresponds

to the number of rows and the second one corresponds to the number of columns.

Additionally, you can optionally specify a data type.

array_with_zeros = np.zeros((2, 4), dtype='int')

print(array_with_zeros)

array_with_ones = np.ones((5, 10))

print(array_with_ones)

empty_strings_array = np.empty((3, 3), dtype="str")

print(empty_strings_array)

This leads to the following output, which illustrates that by default (here for the ones)

float is chosen as the data type:

[[0 0 0 0]

 [0 0 0 0]]

[[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]

 [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]

 [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]

 [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]

 [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]

[['' '' '']

 ['' '' '']

 ['' '' '']]

Chapter 6 arrays

291

Such initializations can also be achieved with Python on-board tools as follows but

the NumPy variant feels more comprehensible for me:

zeros_with_lists = [[0 for x in range(4)] for y in range(2)]

print(zeros_with_lists)

ones_with_lists = [[1 for x in range(10)] for y in range(5)]

print(ones_with_lists)

empty_string_with_list = [["" for x in range(3)] for y in range(3)]

print(empty_string_with_list)

ATTENTION: FAULTY VARIANT WITH LIST COMPREHENSION

please note the following pitfall: you might like to create something similar to the above using

list comprehensions:

width = 10

height = 5

generates non-independent references board = [[0] * width] * height

print(board)

Attention: modification happens in all lines! board[1][1] = 1

print(board)

the lists created in this way are not independent of each other, and changes have effects on

the other lines.

 Other Functionalities of NumPy Arrays

Previously I indicated that NumPy offers some mathematical functionalities out of

the box. But not only that. There are various others, which you can explore in detail in

https://numpy.org/doc/stable/reference/routines.array- manipulation.html. As

an example, I’ll demonstrate the vertical and horizontal flipping of the contents of an

array, which you are supposed to rebuild by hand in exercise 2.

Chapter 6 arrays

https://numpy.org/doc/stable/reference/routines.array-manipulation.html

292

Let’s look at how this works using two arrays, where the 1 stands for horizontal and 0

for vertical:

import numpy as np

numbers = np.array([[1, 2, 3, 4],

 [1, 2, 3, 4],

 [1, 2, 3, 4]])

print(np.flip(numbers, 1))

numbers2 = np.array([[1, 1, 1, 1],

 [2, 2, 2, 2],

 [3, 3, 3, 3]])

print(np.flip(numbers2, 0))

This results in the following output:

[[4 3 2 1]

 [4 3 2 1]

 [4 3 2 1]]

 [[3 3 3 3]

 [2 2 2 2]

 [1 1 1 1]]

 Advantages of NumPy

As is well known, lists in Python are very convenient and provide an ordered

and changeable sequence of values. The values stored can be of different types

(heterogeneous) or contain only the same types (homogeneous). Multidimensional

structures are possible by nesting lists. NumPy allows only homogeneous value

assignments, which is often an advantage rather than a disadvantage.

What are the indisputable advantages of using NumPy instead of the built-in lists?

• NumPy arrays fit seamlessly and are easy to use.

• NumPy arrays use (slightly) less memory.

• NumPy arrays are (much) faster than lists for various use cases.

Chapter 6 arrays

293

However, the last point only applies when processing enormous amounts of data,

especially when performing mathematical operations such as matrix multiplication.

Normal array accesses are sometimes even slower than indexed list accesses. I will show

this with an example later.

 Memory Consumption

To compare the memory consumption of lists and NumPy arrays, I created a list and

an array with 100,000 elements each. To determine the used memory, I used the

getsizeof() functionality from the sys module.

import numpy as np

import sys

numbers = [i for i in range(100_000)]

print("Size of each element:", sys.getsizeof(numbers[0]))

print("Size of the list:", sys.getsizeof(numbers))

numbers_array = np.arange(100_000)

print("Size of each element:", numbers_array.itemsize)

print("Size of the Numpy array:", sys.getsizeof(numbers_array))

The following output occurred:

Size of each element: 24

Size of the list: 824456

Size of each element: 8

Size of the Numpy array: 800096

You can see that (on my machine6) each element in a list occupied 24 bytes, but in

NumPy, only 8 bytes. With NumPy the total size resulted from the number of elements,

their size in bytes, and the number of bytes for the NumPy array as management:

100.000 ∗ 8 + 96 = 800.096

With lists, the output confused me. According to the number for a single element

100.000 ∗ 24 + x = 2.400.000

should be occupied, but surprisingly I got around 824.000.

6 Please note that this may vary from system to system.

Chapter 6 arrays

294

 Performance Comparison

Finally, let’s compare lists and arrays concerning their performance. I started with the

basic functionality of indexed access to recognize that lists have a slight advantage here.

However, when it comes to actions on all elements of an array, particularly complex

mathematical operations like matrix multiplication, the picture reversed massively.

NumPy clearly showed its strengths. Let’s have a closer look at this through examples in

more detail.

Index based accesses For indexed accesses, NumPy was a bit slower than the

built- in lists. This can be observed in the first example, the flipping of the content by

single assignments:

for size in (100, 1000, 10000, 100000, 1_000_000):

 print("performing idx assign for ", size, "elements")

 orig_values = range(size)

 array = np.asarray(orig_values)

 result_list = list(orig_values)

 result_array = array[:]

 start = time.process_time()

 for i in range(size):

 result_list[i] = orig_values[size - 1 - i]

 end = time.process_time()

 print("list idx assign took %.2f ms" % ((end - start) * 1000))

 start = time.process_time()

 for i in range(size):

 result_array[i] = array[size - 1 - i]

 end = time.process_time()

 print("array idx assign took %.2f ms" % ((end - start) * 1000))

Here, indexed reads and writes are especially in demand. I looked at the outputs and

saw that in this case, the lists were about 20% faster on my iMac:

performing idx assign for all 100 elements

list idx assign took 0.02 ms

array idx assign took 0.03 ms

performing idx assign for all 1000 elements

Chapter 6 arrays

295

list idx assign took 0.26 ms

array idx assign took 0.33 ms

performing idx assign for all 10000 elements

list idx assign took 2.75 ms

array idx assign took 3.44 ms

performing idx assign for all 100000 elements

list idx assign took 27.81 ms

array idx assign took 35.23 ms

performing idx assign for all 1000000 elements

list idx assign took 273.67 ms

array idx assign took 354.75 ms

I modified it slightly and added a constant value to each element in the data

container as an action. In that case, NumPy provided a nice shorthand and was a

bit faster from about 1.000 elements. The more elements I managed, the clearer the

differences for these actions.

result_list = [i + 5 for i in range(size)]

result_array = array1 + 5

Matrix multiplication Let’s look at one example where performance improvements

are noticeable (more accurately, drastic) when using NumPy: the common

matrix multiplication. This consists of row-by-row and then element-by-element

multiplication (the mathematical details are not relevant here, as I only want to compare

performance here):

def python_implementation(arr1, arr2):

 result = [[0 for _ in range(len(arr1))] for _ in range(len(arr2[0]))]

 for row in range(len(arr1)):

 for x1_y2 in range(len(arr2[0])):

 for y2 in range(len(arr2)):

 result[row][x1_y2] += arr1[row][y2] * arr2[y2][x1_y2]

 return result

def numpy_implementation(arr1, arr2):

 return np.array(arr1).dot(arr2)

Chapter 6 arrays

296

I ran the two variants with the following source code snippet once:

max_x = 100

max_y = 50

arr1 = [[random.randrange(1, 100) for _ in range(max_x)] for _ in

range(max_y)]

arr2 = [[random.randrange(1, 100) for _ in range(max_y)] for _ in

range(max_x)]

start = time.process_time()

python_implementation(arr1, arr2)

end = time.process_time()

print("list perform dot product took %.2f ms" % ((end - start) * 1000))

start = time.process_time()

numpy_implementation(arr1, arr2)

end = time.process_time()

print("array perform dot product took %.2f ms" % ((end - start) * 1000))

Thus, I obtained the following output, which shows the clear speed advantages of

NumPy by a factor of about 50–60%:

list perform dot product took 86.52 ms

array perform dot product took 1.85 ms

6.2 Exercises
6.2.1 Exercise 1: Even Before Odd Numbers (★★✩✩✩)
Write function order_even_before_odd(numbers). This is supposed to rearrange a given

array or a list of int values so that the even numbers appear first, followed by the odd

numbers. The order within the even and odd numbers is not of relevance.

Chapter 6 arrays

297

 Examples

Input Result

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] [2, 4, 6, 8, 10, 3, 7, 1, 9, 5]

[2, 4, 6, 1, 8] [2, 4, 6, 8, 1]

[2, 4, 6, 8, 1] [2, 4, 6, 8, 1]

6.2.2 Exercise 2: Flip (★★✩✩✩)
Write generic functions for flipping a two-dimensional array horizontally with flip_

horizontally(values2dim) and vertically with flip_vertically(values2dim). The

array should be rectangular, so no line should be longer than another.

Examples

The following illustrates how this functionality should work:

flip_horizontally() flip_vertically()

------------------- -----------------

123 321 1144 3366

456 => 654 2255 => 2255

789 987 3366 1144

6.2.3 Exercise 3: Palindrome (★★✩✩✩)
Write function is_palindrome(values) that checks an array of strings for whether its

values form a palindrome.

 Examples

Input Result

[“One”, “test”, “ – ”, “test”, “One”] true

[“Max”, “Mike”, “Mike”, “Max”] true

[“tim”, “tom”, “Mike”, “Max”] False

Chapter 6 arrays

298

6.2.4 Exercise 4: Inplace Rotate (★★★✩✩)
 Exercise 4a: Iterative (★★★✩✩)

In the introductory section, I showed how to rotate arrays. Now try this inplace without

creating a new array. Your task is to rotate a two-dimensional, square-shaped array by 90

degrees clockwise. Write generic function rotate_inplace(values2dim) that iteratively

implements this.

Example

For a 6 × 6 array, this is visualized below:

1 2 3 4 5 6 F G H I J 1

J K L M N 7 E T U V K 2

I V W X O 8 => D S Z W L 3

H U Z Y P 9 C R Y X M 4

G T S R Q 0 B Q P O N 5

F E D C B A A 0 9 8 7 6

 Exercise 4b: Recursive (★★★✩✩)

Write recursive function rotate_inplace_recursive(values2dim) that implements the

desired 90-degree clockwise rotation.

6.2.5 Exercise 5: Jewels Board Init (★★★✩✩)
 Exercise 5a: Initialize (★★★✩✩)

Initialize a two-dimensional rectangular array with random-based numbers

representing various types of diamonds or jewels as numerical values. The constraint

is that initially there must not be three diamonds of the same type placed horizontally

or vertically in direct sequence. Write function init_jewels_board(width, height,

num_of_colors) to generate a valid array of the given size and quantity of different types

of diamonds.

Chapter 6 arrays

299

Example

A random distribution of diamonds represented by digits may look like this for four

different colors and shapes:

2 3 3 4 4 3 2

1 3 3 1 3 4 4

4 1 4 3 3 1 3

2 2 1 1 2 3 2

3 2 4 4 3 3 4

To illustrate this, Figure 6-1 shows another example.

Bonus: Diagonal Check (★★★✩✩) Add a check for diagonals. This should make

the constellation from the example invalid, among other things, because of the diagonals

marked in bold with the number 3 at the bottom right.

 Exercise 5b: Validity Check (★★★✩✩)

In this subtask, you want to validate an existing playfield. As a challenge, a list of

violations must be returned. Implement function check_board_validity(board2dim)

for a rectangular array.

Figure 6-1. Graphical representation of a Jewels board

Chapter 6 arrays

300

Example

To try out the validity check, use the playfield from the introduction, specially

marked here:

values_with_errors = [[2, 3, 3, 4, 4, 3, 2],
 [1, 3, 3, 1, 3, 4, 4],
 [4, 1, 4, 3, 3, 1, 3],
 [2, 2, 1, 1, 2, 3, 2],
 [3, 2, 4, 4, 3, 3, 4]]

This should produce the following errors due to its diagonals:

['Invalid at x=3 y=2 hor=False, ver=False, dia=True',

 'Invalid at x=2 y=3 hor=False, ver=False, dia=True',

 'Invalid at x=4 y=4 hor=False, ver=False, dia=True']

6.2.6 Exercise 6: Jewels Board Erase
Diamonds (★★★★✩)

The challenge is to delete all chains of three or more horizontally, vertically, or

diagonally connected diamonds from the rectangular playfield and subsequently to fill

the resulting empty spaces with the diamonds lying above them, (i.e., roughly in the

same way gravity works in nature). The following is an example of how the erasing and

then dropping is repeated several times until no more change occurs (spaces are shown

as _ for better visibility):

Iteration 1:

1 1 1 2 4 4 3 erase _ _ _ _ 4 4 _ fall down _ _ _ _ _ _ _

1 2 3 4 2 4 3 => 1 2 3 4 _ 4 _ => 1 2 3 4 4 4 _

2 3 3 1 2 2 3 2 3 3 1 2 _ _ 2 3 3 1 2 4 _

Iteration 2:

_ _ _ _ _ _ _ erase _ _ _ _ _ _ _ fall down _ _ _ _ _ _ _

1 2 3 4 4 4 _ => 1 2 3 _ _ _ _ => 1 2 3 _ _ _ _

2 3 3 1 2 4 _ 2 3 3 1 2 4 _ 2 3 3 1 2 4 _

Chapter 6 arrays

301

 Exercise 6a: Erase (★★★★✩)

Write function erase_chains(values2dim) that erases all rows of three or more

contiguous diamonds in horizontal, vertical, and diagonal orientations from a

rectangular playfield array.

Examples

An invocation of the method transforms the output array given on the left into the result

shown on the right:

All chains without overlap Special case: overlaps

1 2 3 3 3 4 0 0 0 0 0 0 1 1 1 2 0 0 0 2

1 3 2 4 2 4 0 3 0 4 2 0 1 1 3 4 => 0 0 3 4

1 2 4 2 4 4 => 0 0 4 0 4 0 1 2 1 3 0 2 0 3

1 2 3 5 5 5 0 0 3 0 0 0

1 2 1 3 4 4 0 0 1 3 4 4

 Exercise 6b: Falling Down (★★★✩✩)

Write function fall_down(values2dim) working inplace that drops the diamonds from

top to bottom, provided there is a space below their position.

Example

An invocation of the method transforms the output array given on the left into the result

shown on the right:

0 1 3 3 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 3 3 0 0 => 0 0 3 3 0 0

0 0 0 3 3 4 0 1 3 3 0 0

0 0 3 0 0 0 0 1 3 3 3 4

Chapter 6 arrays

302

6.2.7 Exercise 7: Spiral Traversal (★★★★✩)
Write generic method spiral_traversal(values2dim) that traverses a two-dimensional

rectangular array (or a nested list) in the form of a spiral and prepares it as a list. The start

is in the upper left corner. First the outer layer is traversed and then the next inner layer.

Example

An example is shown in Figure 6-2.

1 2 3 4
12 13 14 5
11 16 15 6
10 9 8 7

Figure 6-2. Basic procedure for the spiral traversal

For the following two arrays, the number or letter sequences listed below should be

the results of a spiral traversal:

numbers = [[1, 2, 3, 4],

 [12, 13, 14, 5],

 [11, 16, 15, 6],

 [10, 9, 8, 7]]

letterPairs = [["AB", "BC", "CD", "DE"],

 ["JK", "KL", "LM", "EF"],

 ["IJ", "HI", "GH", "FG"]]

=>

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]

[AB, BC, CD, DE, EF, FG, GH, HI, IJ, JK, KL, LM]

Chapter 6 arrays

303

6.2.8 Exercise 8: Add One to an Array as a
Number (★★✩✩✩)

Consider an array or a list of numbers representing the digits of a decimal number. Write

function add_one(digits) that performs an addition by the value 1 and is only allowed

to use arrays as a data structure for the solution.

 Examples

Input Result

[1, 3, 2, 4] [1, 3, 2, 5]

[1, 4, 8, 9] [1, 4, 9, 0]

[9, 9, 9, 9] [1, 0, 0, 0, 0]

6.2.9 Exercise 9: Sudoku Checker (★★★✩✩)
In this challenge, a Sudoku puzzle is examined to see if it is a valid solution. Let’s assume

a 9 × 9 array with int values. According to the Sudoku rules, each row and each column

must contain all numbers from 1 to 9. Besides, all numbers from 1 to 9 must, in turn,

occur in each 3 × 3 subarray. Write function is_sudoku_valid(board)for checking.

Example

The following is a valid solution:

Chapter 6 arrays

304

Bonus While it is nice to be able to check a Sudoku board that is completely filled

with digits for its validity, it is even better to be able to predict for a board with gaps (i.e.,

missing digits) whether a valid solution can emerge from it. This is of particular interest

if you want to develop an algorithm for solving a Sudoku puzzle.

Example

Based on the example of the valid Sudoku playfield given above, I deleted the digits in

random places. This surely results in a valid solution.

6.2.10 Exercise 10: Flood Fill (★★✩✩✩)
 Exercise 10a (★★✩✩✩)

Write function flood_fill(values2dim, start_x, start_y) that fills all free fields in

an array or a two-dimensional nested list with a specified value.

Example

The following shows the filling process for the character *. The filling starts at a given

position, such as the upper left corner. It then continues in all four compass directions

until the boundaries of the array or a boundary represented by another character

are found.

Chapter 6 arrays

305

" # " "***# " " # # " " #******# "

" #" "****#" " # #" " #******#"

"# #" => "#***#" "# # # " => "# #*****# "

" # # " " #*# " " # # # " " # #*****# "

" # " " # " " # # " " #*****# "

 Exercise 10b (★★✩✩✩)

Extend the function to fill any pattern passed as a rectangular array. However, spaces are

not allowed in the pattern specification.

 Example

The following is an impression of how a flood fill with a pattern could look. The pattern

consists of several lines with characters:

.|.

-*-

.|.

If the filling starts at the bottom center, you get the following result:

 x .|..|.x

 # # -*--#--#

 ### # .|.###.|#

=> #|.###.|#

#*--#--*#

 # # # #.#|..#

 # # #.|.#

6.2.11 Exercise 11: Array Min and Max (★★✩✩✩)
 Exercise 11a: Min and Max (★✩✩✩✩)

Write two functions find_min(values) and find_max(values) that search for the

minimum and maximum, respectively, of a given non-empty array using a self-

implemented search, thus eliminating the usage of built-ins like min() and sort(). :-)

Chapter 6 arrays

306

 Example

Input Minimum Maximum

[2, 3, 4, 5, 6, 7, 8, 9, 1, 10] 1 10

 Exercise 11b: Min und Max Pos (★★✩✩✩)

Implement two helper functions find_min_pos(values, start, end) and find- _

max_pos(values, start, end) that seek and return the position of the minimum and

maximum, respectively. Again, assume a non-empty array and additionally an index

range of left and right boundaries. In the case of several identical values for minimum or

maximum, the first occurrence should be returned.

To find the minimum and maximum values, respectively, write two functions find_

min_by_pos(values, start, end) and find_max_by_pos(values, start, end) that

use the helper function.

 Examples

Method Input Range Result Position

find_min_xyz() [5, 3, 4, 2, 6, 7, 8, 9, 1, 10] 0, 10 1 8

find_min_xyz() [5, 3, 4, 2, 6, 7, 8, 9, 1, 10] 0, 7 2 3

find_min_xyz() [5, 3, 4, 2, 6, 7, 8, 9, 1, 10] 2, 7 2 3

find_max_xyz() [1, 22, 3, 4, 5, 10, 7, 8, 9, 49] 0, 10 49 9

find_max_xyz() [1, 22, 3, 4, 5, 10, 7, 8, 9, 49] 0, 7 22 1

find_max_xyz() [1, 22, 3, 4, 5, 10, 7, 8, 9, 49] 2, 7 10 5

6.2.12 Exercise 12: Array Split (★★★✩✩)
Say you have an array (or list) of arbitrary integers. For this task, the data structure is

to be reordered so that all values less than a special reference value are placed on the

left. All values greater than or equal to the reference value are placed on the right. The

ordering within the subranges is not relevant and may vary.

Chapter 6 arrays

307

 Examples

Input Reference element Sample result

[4, 7, 1, 20] 9 [1, 4, 7, 9, 20]

[3, 5, 2] 7 [2, 3, 5, 7]

[2, 14, 10, 1, 11, 12, 3, 4] 7 [2, 1, 3, 4, 7, 14, 10, 11, 12]

[3, 5, 7, 1, 11, 13, 17, 19] 11 [1, 3, 5, 7, 11, 11, 13, 17, 19]

 Exercise 12a: Array Split (★★✩✩✩)

Write function array_split(values, reference_element) to implement the

functionality described above. In this first part of the exercise, it is allowed to create new

data structures, such as lists.

 Exercise 12b: Array Split Inplace (★★★✩✩)

Write function array_split_inplace(values, reference_element) that implements

the functionality described inside the source array (i.e., inplace). It is explicitly not

desirable to create new data structures. To be able to include the reference element in

the result, the creation of an array is allowed once for the result. Because this has to be

returned, it is permitted to return a value for an inplace function; indeed, it operates only

partially inplace here.

 Exercise 12c: Array Split Quick Sort Partition (★★★✩✩)

For sorting according to Quick Sort, you need a partitioning functionality similar to the

one just developed. However, often the foremost element of the array is used as the

reference element.

Based on the two previously developed implementations that use an explicit

reference element, your task is to create corresponding alternatives such as the functions

array_split_qs(values) and array_split_qs_inplace(values).

Chapter 6 arrays

308

 Examples

Input Reference element Sample result

[9, 4, 7, 1, 20] 9 [1, 4, 7, 9, 20]

[7, 3, 5, 2] 7 [2, 3, 5, 7]

[7, 2, 14, 10, 1, 11, 12, 3, 4] 7 [2, 1, 3, 4, 7, 14, 10, 11, 12]

[11, 3, 5, 7, 1, 11, 13, 17, 19] 11 [1, 3, 5, 7, 11, 11, 13, 17, 19]

6.2.13 Exercise 13: Minesweeper Board (★★★✩✩)
The chances are high that you’ve played Minesweeper in the past. To remind you, it’s

a nice little quiz game with a bit of puzzling. What is it about? Bombs are placed face

down on a playfield. The player can choose any field on the board. If a field is uncovered,

it shows a number. This indicates how many bombs are hidden in the neighboring

fields. However, if you are unlucky, you hit a bomb field and you lose. Your task is about

initializing such a field and preparing it for a subsequent game.

 Solution 13a (★★✩✩✩)

Write function place_bombs_randomly(width, height, probability) that creates

a playfield specified in size via the first two parameters, randomly filled with bombs,

respecting the probability from 0.0 to 1.0 passed in.

Example

The following is a playfield of size 16 × 7 with bombs placed randomly. Bombs are

represented by asterisks (*) and spaces by dots (.):

* * * . * * . * . * * . * . . .
. * * . * . . * . * *
. . * * * * *
. . . * . * * . * * . * * . . .
* * * . * . . * . . . *
. . * . . * . * * . . * . * * *
. * . * * . * . * * * . . * * .

Chapter 6 arrays

309

 Exercise 13b (★★★✩✩)

Write function calc_bomb_count(bombs) that computes the number of adjacent fields

based on the bomb fields passed in and returns a corresponding array.

Examples

A calculation for playfields of size 3 × 3 as well as size 5 × 5, including randomly

distributed bombs results, is the following:

* . . B 2 1 . * * . . 2 B B 3 1

. . * => 1 3 B * . * * . B 6 B B 1

. . * 0 2 B * * . . . => B B 4 3 2

 * . . * . B 6 4 B 1

 * * * . . B B B 2 1

 Exercise 13c (★★✩✩✩)

Write function print_board(bombs, bomb_symbol, bomb_counts) that allows you to

display a board as points and stars as well as numbers and B.

Example

The following is the above playfield of size 16 × 7 with all the calculated values for bomb

neighbors:

B B B 4 B B 3 B 4 B B 3 B 1 0 0

3 B B 5 B 3 3 B 4 B B 4 3 4 3 2

1 3 B 4 3 3 3 3 4 4 4 4 B B B B

2 3 3 B 2 B B 4 B B 3 B B 4 4 3

B B 3 2 3 4 B 6 B 4 4 B 5 3 4 B

3 4 B 3 3 B 4 B B 5 4 B 4 B B B

1 B 3 B B 3 B 4 B B B 2 3 B B 3

Chapter 6 arrays

310

6.3 Solutions
6.3.1 Solution 1: Even Before Odd Numbers (★★✩✩✩)
Write function order_even_before_odd(numbers). This is supposed to rearrange a given

array or a list of int values so that the even numbers appear first, followed by the odd

numbers. The order within the even and odd numbers is not of relevance.

 Examples

Input Result

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] [2, 4, 6, 8, 10, 3, 7, 1, 9, 5]

[2, 4, 6, 1, 8] [2, 4, 6, 8, 1]

[2, 4, 6, 8, 1] [2, 4, 6, 8, 1]

Algorithm Traverse the array from the beginning. Skip even numbers. As soon as an

odd number is found, search for an even number in the part of the array that follows. If

such a number is found, swap it with the current odd number. The procedure is repeated

until you reach the end of the array.

def order_even_before_odd(numbers):

 i = 0

 while i < len(numbers):

 value = numbers[i]

 if is_even(value):

 # even number, so continue with next number

 i += 1

 else:

 # odd number, jump over all odd ones, until the first even

 j = i + 1

 while j < len(numbers) and not is_even(numbers[j]):

 j += 1

 if j < len(numbers):

 swap(numbers, i, j)

Chapter 6 arrays

311

 else:

 # no further numbers

 break

 i += 1

The helper functions for checking and swapping elements have already been

implemented in earlier chapters or sections. They are shown here again to make it easier

to try out the examples in the Python command line:

def is_even(n):

 return n % 2 == 0

def is_odd(n):

 return n % 2 != 0

def swap(values, first, second):

 tmp = values[first]

 values[first] = values[second]

 values[second] = tmp

NOTE: VARIATION OF ODD BEFORE EVEN

a variation is to arrange all odd numbers before the even ones. therefore, it is possible to write

function order_odd_before_even(numbers) where again the ordering within the odd and

even numbers is not important.

the algorithm is identical to that shown except for minimal differences in an inverted test. this

modification is so simple that the function is not shown again here.

 Optimized Algorithm: Improved Running Time

You recognize that your checks have quadratic running time, here O(n · m), because

you should aim to reduce the running time of an algorithm to O(1) in the best

case, preferably O(n) or at least O(n · log(n)), ideally without reducing readability,

so nested loops are used. This is not quite so dramatic for pure computations and

comprehensibility. For an introduction to the O-notation, please consult Appendix C.

Chapter 6 arrays

312

In this case, reducing the running time to O(n) is actually fairly straightforward. As in

many solutions to other problems, two position markers are used, here next_even and

next_odd. In the beginning, it is assumed that the first element is even and the last odd.

Now it is checked if the front number is really even, and the position marker is moved

to the right. If the first odd number is encountered, it is swapped with the last element.

Even if the last element were odd, it would be swapped again in the next step.

In contrast to the previous solution, this solution does not preserve the order of the

even numbers; it also potentially shuffles the odd numbers to a greater extent.

def order_even_before_odd_optimized(numbers):

 next_even = 0

 next_odd = len(numbers) - 1

 while next_even < next_odd:

 current_value = numbers[next_even]

 if is_even(current_value):

 next_even += 1

 else:

 swap(numbers, next_even, next_odd)

 next_odd -= 1

Let’s take a look at the algorithm for the following unsorted numbers (2, 4, 3, 6, 1).

Here e and o represent the position pointers for next_even and next_odd, respectively.

2 4 3 6 1

^ ^

e o

 ^ ^

 e o

 ^ ^

 e o

--------- swap

 1 6 3

 ^ ^

 e o

--------- swap

Chapter 6 arrays

313

 6 1 3

 ^

 eo

Finally, let’s have a look at what happens for already sorted numbers. Let’s use 1, 2,

3, 4 as examples.

1 2 3 4

^ ^

e o

-------- swap

4 2 3 1

^ ^

E o

 ^ ^

 e o

 ^

 eo

 Optimized Algorithm: Less Copying

The previous optimization can be taken a little further. Instead of just skipping the even

numbers from the left until you encounter an odd number, you can skip values starting

two additional while loops. However, you still preserve a O(n) running time from both

sides as long as they are even in the front and odd in the back. This is required since you

are traversing the same elements and not performing steps more than once (this insight

requires some experience).

The following implementation applies what has been said and swaps elements only

when it is unavoidable:

def order_even_before_odd_optimized_v2(numbers):

 left = 0

 right = len(numbers) - 1

 while left < right:

 # run to the first odd number or to the end of the array

 while left < len(numbers) and is_even(numbers[left]):

 left += 1

Chapter 6 arrays

314

 # run to the first even number or to the beginning of the array

 while right >= 0 and is_odd(numbers[right]):

 right -= 1

 if left < right:

 swap(numbers, left, right)

 left += 1

 right -= 1

 Verification

To try it out, use the following inputs that show how it works:

>>> import numpy as np

>>> values = np.array([1, 2, 3, 4, 5, 6, 7])

... order_even_before_odd(values)

... print(values)

[2 4 6 1 5 3 7]

>>> values = np.array([1, 2, 3, 4, 5, 6, 7])

... order_even_before_odd_optimized(values)

... print(values)

[6 2 4 5 3 7 1]

>>> values = np.array([1, 2, 3, 4, 5, 6, 7])

... order_even_before_odd_optimized_v2(values)

... print(values)

[6 2 4 3 5 1 7]

6.3.2 Solution 2: Flip (★★✩✩✩)
Write generic functions for flipping a two-dimensional array horizontally with flip_

horizontally(values2dim) and vertically with flip_vertically(values2dim). The

array should be rectangular (i.e., no line should be longer than another).

Chapter 6 arrays

315

Examples

The following illustrates how this functionality should work:

flip_horizontally() flip_vertically()

------------------- -----------------

123 321 1144 3366

456 => 654 2255 => 2255

789 987 3366 1144

Horizontal flipping algorithm Traverse inwards from the left and right side of the

array. To do this, use two position markers leftIdx and rightIdx. At each step, swap the

values referenced by these positions and move inward until the positions overlap. The

termination occurs at leftIdx >= rightIdx. Repeat the procedure for all lines.

The following sequence shows the described actions for one line, where l represents

leftIdx and r represents rightIdx:

Step Array values

1 1 2 3 4

 ^ ^

 l r

2 4 2 3 1

 ^ ^

 L r

3 4 3 2 1

 ^ ^

 R l

Algorithm for vertical flipping Move from the top and bottom towards the center

until both positions overlap. Swap the values and repeat this for all columns. The

implementation traverses the array in the x-direction and operates with two position

markers on the vertical. After each swap, these position markers are moved towards each

other until they cross. You then proceed with the next x-position.

Chapter 6 arrays

316

The implementation uses two position pointers and swaps the respective values until

the position pointers cross:

def flip_horizontally(values2dim):

 max_y, max_x = get_dimension(values2dim)

 for y in range(max_y):

 left_idx = 0

 right_idx = max_x - 1

 while left_idx < right_idx:

 left_value = values2dim[y][left_idx]

 right_value = values2dim[y][right_idx]

 # swap

 values2dim[y][left_idx] = right_value

 values2dim[y][right_idx] = left_value

 left_idx += 1

 right_idx -= 1

Let’s now take a look at the corresponding implementation of vertical flipping:

def flip_vertically(values2dim):

 max_y, max_x = get_dimension(values2dim)

 for x in range(max_x):

 top_idx = 0

 bottom_idx = max_y - 1

 while top_idx < bottom_idx:

 top_value = values2dim[top_idx][x]

 bottom_value = values2dim[bottom_idx][x]

 # swap

 values2dim[top_idx][x] = bottom_value

 values2dim[bottom_idx][x] = top_value

 top_idx += 1

 bottom_idx -= 1

Chapter 6 arrays

317

Here is the function for determining the dimensions of the two-dimensional array

that returns the correct data for both nested lists and NumPy arrays, listed once again as

a reminder:

def get_dimension(values2dim):

 if isinstance(values2dim, list):

 return (len(values2dim), len(values2dim[0]))

 if isinstance(values2dim, np.ndarray):

 return values2dim.shape

 raise ValueError("unsupported type", type(values2dim))

Modified algorithm In fact, the implementation for flipping may be simplified a

little bit. The number of steps can be directly computed in both cases: it is width/2 or

height/2. For odd lengths, the middle element is not taken into account, resulting in a

correct flip.

With these preliminary considerations, here’s the implementation for horizontal

flipping with a for loop as an example. In doing so, you make use of the auxiliary

method developed in the introduction, swap(), for swapping two elements.

def flip_horizontally_v2(values2dim):

 max_y, max_x = get_dimension(values2dim)

 for y in range(max_y):

 row = values2dim[y]

 for x in range(max_x // 2):

 swap(row, x, max_x - x - 1)

Optimized algorithm (only for lists) While the solutions shown so far have each

made the swaps at the level of individual elements, you can benefit from reassigning

entire lines for vertical flipping. This is significantly simpler both in terms of complexity

and effort as well as in terms of the amount of source code and it also increases

comprehensibility enormously.

def flip_vertically_just_for_lists(values2dim):

 max_y, _ = get_dimension(values2dim)

 for y in range(max_y // 2):

 swap(values2dim, y, max_y - y - 1)

Chapter 6 arrays

318

HINT: LIMITATION

this optimization is not possible for Numpy arrays since they operate purely on a contiguous

piece of memory. you can read therein row by row, but you can’t swap the references to these

rows with each other. On the other hand, you can quickly turn a 4 × 4 array into a 2 × 8 array

or 8 × 2 array with reshape().

 Verification

To test the functionality, use the inputs from the introductory example, which show the

correct operation:

def test_flip_horizontally():

 hori_values = [[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]]

 flip_horizontally(hori_values)

 expected = [[3, 2, 1],

 [6, 5, 4],

 [9, 8, 7]]

 assert hori_values == expected

def test_flip_vertically():

 vert_values = [[1, 1, 4, 4],

 [2, 2, 5, 5],

 [3, 3, 6, 6]]

 flip_vertically(vert_values)

 expected = [[3, 3, 6, 6],

 [2, 2, 5, 5],

 [1, 1, 4, 4]]

 assert vert_values == expected

Chapter 6 arrays

319

Both other functions are tested in exactly the same way as the previous ones so the

associated test functions are not shown here again.

6.3.3 Solution 3: Palindrome (★★✩✩✩)
Write function is_palindrome(values) that checks an array of strings for whether its

values form a palindrome.

 Examples

Input Result

[“One”, “test”, “ – ”, “test”, “One”] true

[“Max”, “Mike”, “Mike”, “Max”] true

[“tim”, “tom”, “Mike”, “Max”] False

Algorithm The palindrome check can easily be expressed recursively. Again, two

position pointers are used, which are initially located at the beginning and end of the

array. It is checked whether the two values referenced by them are the same. If so, you

continue to check recursively and move one position further to the middle on both sides

with each recursion step until the positions overlap.

def is_palindrome_rec(values):

 return is_palindrome_rec_in_range(values, 0, len(values) - 1)

def is_palindrome_rec_in_range(values, left, right):

 # recursive termination

 if left >= right:

 return True

 # check if left == right

 if values[left] == values[right]:

 # recursive descent

 return is_palindrome_rec_in_range(values, left + 1, right - 1)

 return False

Chapter 6 arrays

320

Optimized algorithm The palindrome check can be converted to an iterative variant

based on the recursive solution without much effort:

def is_palindrome_iterative(values):

 left = 0

 right = len(values) - 1

 same_value = True

 while left <= right and same_value:

 # check left == right and repeat until difference occurs

 same_value = values[left] == values[right]

 left += 1

 right -= 1

 return same_value

Besides this variant, you can also take advantage of the fact that the maximum

number of steps is known, and you can terminate the loop directly in case of a violation

of the palindrome property:

def is_palindrome_short(values):

 for i in range(len(values) // 2):

 if values[i] != values[len(values) - 1 - i]:

 return False

 return True

Python shortcut Of course, the whole thing can be achieved a lot easier by calling

the built-in functionality [::-1]:

def is_palindrome_shorter(values):

 return values == values[::-1]

Please keep in mind that for this approach in the presumably rare case of very large

amounts of data, an inverse variant of the original data is generated here and thus the

memory is required twice.

Chapter 6 arrays

321

 Verification

For unit testing (again, shown only in excerpts for the recursive variant), use the inputs

from the above example. The input and expected values are extracted as a function

because they also serve as parameterization for the other two variants.

def values_and_expected():

 return [(["A", "Test", " -- ", "Test", "A"], True),

 (["Max", "Mike", "Mike", "Max"], True),

 (["Tim", "Tom", "Mike", "Max"], False)]

@pytest.mark.parametrize("values, expected", values_and_expected())

def test_is_palindrome_rec(values, expected):

 result = is_palindrome_rec(values)

 assert result == expected

6.3.4 Solution 4: Inplace Rotate (★★★✩✩)
 Solution 4a: Iterative (★★★✩✩)

In the introductory section, I showed how to rotate arrays. Now try this inplace (i.e.,

without creating a new array). Your task is to rotate a two-dimensional square shaped

array by 90 degrees clockwise. Write generic function rotate_inplace(values2dim) that

iteratively implements this.

Example

For a 6 × 6 array, this is visualized as follows:

1 2 3 4 5 6 F G H I J 1

J K L M N 7 E T U V K 2

I V W X O 8 => D S Z W L 3

H U Z Y P 9 C R Y X M 4

G T S R Q 0 B Q P O N 5

F E D C B A A 0 9 8 7 6

Chapter 6 arrays

322

Algorithm Define four corner positions TL, TR, BL, and BR corresponding to the

respective corners. Move from left to right and from top to bottom and copy logically as

shown in Figure 6-3.

TL

BL BR

TR

copy

move

Figure 6-3. Procedure for inplace rotation

Repeat the procedure layer by layer for all neighbors of TL until TR is reached

(analogously for the neighbors of the other corners). Then move one position inwards at

a time until BL and BR intersect. Let’s clarify the procedure again step by step.

Starting point Given the following array:

1 2 3 4 5 6

J K L M N 7

I V W X O 8

H U Z Y P 9

G T S R Q 0

F E D C B A

Step 1: First, the outer layer is rotated by copying all values to the respective target

position as shown here:

F G H I J 1

E K L M N 2

D V W X O 3

C U Z Y P 4

B T S R Q 5

A 0 9 8 7 6

Chapter 6 arrays

323

Step 2: Continue with one layer further inwards:

F G H I J 1

E T U V K 2

D S W X L 3

C R Z Y M 4

B Q P O N 5

A 0 9 8 7 6

Step 3: This continues until the innermost level is reached:

F G H I J 1

E T U V K 2

D S Z W L 3

C R Y X M 4

B Q P O N 5

A 0 9 8 7 6

For the processing steps shown, variable offset determines which layer you are

in, so width/2 steps are required. Based on the layer, the number of positions to copy is

obtained, for which an inner loop is used. The corresponding positions in the array are

calculated based on their location, as indicated in the figure. Copying is also made easy

by the use of helper variables.

def rotate_inplace(values2dim):
 max_y, max_x = get_dimension(values2dim)

 height = max_y - 1

 width = max_x - 1

 offset = 0

 while offset <= width // 2:
 current_width = width - offset * 2

 for idx in range(current_width):
 # top, right, bottom, left

 lo_x = offset + idx

 lo_y = offset

 ro_x = width - offset

 ro_y = offset + idx

Chapter 6 arrays

324

 ru_x = width - offset - idx

 ru_y = height – offset

 lu_x = offset

 lu_y = height - offset – idx

 lo = values2dim[lo_y][lo_x]

 ro = values2dim[ro_y][ro_x]

 ru = values2dim[ru_y][ru_x]

 lu = values2dim[lu_y][lu_x]

 # copy over

 values2dim[ro_y][ro_x] = lo

 values2dim[ru_y][ru_x] = ro

 values2dim[lu_y][lu_x] = ru

 values2dim[lo_y][lo_x] = lu

 offset += 1

Alternatively, you can omit helper variables and only cache the value of the upper

left position. However, copying then becomes somewhat tricky because the order in the

implementation must be exactly the other way around. This variant of the ring-shaped

swap is implemented by the function rotate_elements(). To my taste, the previous

variant is more understandable.

def rotate_inplace_v2(values2dim):

 side_length, _ = get_dimension(values2dim)

 start = 0

 while side_length > 0:

 for i in range(side_length):

 rotate_elements(values2dim, start, side_length, i)

 side_length = side_length - 2

 start += 1

def rotate_elements(values2dim, start, len, i):

 end = start + len - 1

 tmp = values2dim[start][start + i]

Chapter 6 arrays

325

 values2dim[start][start + i] = values2dim[end - i][start]

 values2dim[end - i][start] = values2dim[end][end - i]

 values2dim[end][end - i] = values2dim[start + i][end]

 values2dim[start + i][end] = tmp

 Solution 4b: Recursive (★★★✩✩)

Write recursive function rotate_inplace_recursive(values2dim) that implements the

desired 90-degree clockwise rotation.

Algorithm You have already seen that you rotate layer by layer, going from the outer

layer further to the inner layer. This literally screams for a recursive solution:

def rotate_inplace_recursive(values2dim):

 _, max_x = get_dimension(values2dim)

 __rotate_inplace_recursive_helper(values2dim, 0, max_x - 1)

The component layer copy is identical as before. Recursive calls replace only the

while loop.

def __rotate_inplace_recursive_helper(values2dim, left, right):

 if left >= right:

 return

 current_width = right - left

 for i in range(current_width):

 lo = values2dim[left + i][left]

 ro = values2dim[right][left + i]

 ru = values2dim[right - i][right]

 lu = values2dim[left][right - i]

 values2dim[left + i][left] = ro

 values2dim[right][left + i] = ru

 values2dim[right - i][right] = lu

 values2dim[left][right - i] = lo

 __rotate_inplace_recursive_helper(values2dim, left + 1, right - 1)

Chapter 6 arrays

326

 Verification

You define the two-dimensional array shown at the beginning. Then you perform the

rotation and compare the result with the expectation.

def test_rotation():

 values = [['1', '2', '3', '4', '5', '6'],

 ['J', 'K', 'L', 'M', 'N', '7'],

 ['I', 'V', 'W', 'X', 'O', '8'],

 ['H', 'U', 'Z', 'Y', 'P', '9'],

 ['G', 'T', 'S', 'R', 'Q', '0'],

 ['F', 'E', 'D', 'C', 'B', 'A']]

 rotate_inplace(values)

 expected = [to_list("F G H I J 1"),

 to_list("E T U V K 2"),

 to_list("D S Z W L 3"),

 to_list("C R Y X M 4"),

 to_list("B Q P O N 5"),

 # this is how it would look by hand

 list("A 0 9 8 7 6".replace(" ", ""))]

 assert values == expected

def to_list(text):

 return list(text.replace(" ", ""))

I deliberately show several variants of how to convert a textual representation into

a two-dimensional array. I prefer the second variant, especially if using the function

to_list(text), which removes the spaces and then formats the string as a list.

6.3.5 Solution 5: Jewels Board Init (★★★✩✩)
 Solution 5a: Initialize (★★★✩✩)

Initialize a two-dimensional rectangular array with random-based numbers

representing various types of diamonds or jewels as numerical values. The constraint is

that initially there must not be three diamonds of the same type placed horizontally or

Chapter 6 arrays

327

vertically in direct sequence. Write function init_jewels_board(width, height,

num_of_colors), which will generate a valid array of the given size and quantity of

different types of diamonds.

Example

A random distribution of diamonds represented by digits may look like this for four

different colors and shapes:

2 3 3 4 4 3 2

1 3 3 1 3 4 4

4 1 4 3 3 1 3

2 2 1 1 2 3 2

3 2 4 4 3 3 4

To illustrate this, Figure 6-4 shows another example.

Figure 6-4. Graphical representation of a Jewels board

Chapter 6 arrays

328

Algorithm First, you create a suitably sized array. Then you fill it row by row and

position by position with random-based values using function select_valid_jewel(),

which returns the numerical value for the type of diamond. In this method, you have

to make sure that the random number just selected does not create a row of three

horizontally or vertically.

def init_jewels_board(width, height, num_of_colors):

 board = [[0 for x in range(width)] for y in range(height)]

 for y in range(height):

 for x in range(width):

 board[y][x] = select_valid_jewel(board, x, y, num_of_colors)

 return board

def select_valid_jewel(board, x, y, num_of_colors):

 next_jewel_nr = -1

 is_valid = False

 while not is_valid:

 next_jewel_nr = random.randint(1, num_of_colors)

 is_valid = not check_horizontally(board, x, y, next_jewel_nr) and \

 not check_vertically(board, x, y, next_jewel_nr)

 return next_jewel_nr

ATTENTION: THINGS TO KNOW ABOUT INITIALIZATION

the function select_valid_jewel() still needs optimization. at the moment, you can’t

determine that a valid number can be found for a position, for example, for the following

constellation with only two types and the position *, for which neither 1 nor 2 is valid as a

value, because both would lead to a row of three:

1221

2122

11*

Chapter 6 arrays

329

however, the fact that a valid distribution is also available even for only two values gets

obvious by the alternating distribution of the white and black squares of a chessboard. One

way to fix the just-mentioned weakness is to choose a more powerful algorithm, such as one

that uses backtracking.

there is another weak point: the generation of random numbers out of a small range of values

often produces the same number several times, but this number has probably already been

checked. this must be avoided. For this purpose, all previously selected random numbers

can be stored in a set. Besides, you would have to check whether all expected and possible

numbers have already been tried. this short list shows that it is much more complex than you

might initially expect.

Now let’s move on to checking the horizontal and vertical. At first, you could assume

that starting from the current position, you would have to check to the left and right as

well as up and down. However, if you reread the assignment more carefully, it says that

no chains of length three or longer are allowed. Because you fill the playfield from top

to bottom and from left to right, no diamonds to be checked can exist on the right and

below the current position. Thus, you can limit yourself to checking to the left and to the

top. Furthermore, you do not need to check for longer chains since they cannot occur if

you have identified a chain of three.

With these preliminary considerations, you can use the two helper functions to

check the respective neighboring fields horizontally and vertically by simply verifying

that all of them have the same value as the initial field.

def check_horizontally(board, x, y, jewel_nr):

 top1 = get_at(board, x, y - 1)

 top2 = get_at(board, x, y - 2)

 return top1 == jewel_nr and top2 == jewel_nr

def check_vertically(board, x, y, jewel_nr):

 left1 = get_at(board, x - 1, y)

 left2 = get_at(board, x - 2, y)

 return left1 == jewel_nr and left2 == jewel_nr

Chapter 6 arrays

330

When accessing the array, the negative offsets may result in invalid array indices.

Therefore, you implement function get_at(), which is mainly responsible for checking

the boundaries and returns the value -1 for no longer being on the playfield. This value

can never occur on the playfield, and thus it is counted as no chain when comparing.

Furthermore, you use the function get_dimension() again.

def get_at(values, x, y):

 max_y, max_x = get_dimension(values)

 if x < 0 or y < 0 or y >= max_y or x >= max_x:

 return -1

 return values[y][x]

def get_dimension(values2dim):

 if isinstance(values2dim, list):

 return (len(values2dim), len(values2dim[0]))

 if isinstance(values2dim, np.ndarray):

 return values2dim.shape

 raise ValueError("unsupported type", type(values2dim))

ATTENTION: LITTLE SOURCE CODE VS. SMALL BUT MANY METHODS

In this example, I follow the strategy of defining small helper functions, which on the one hand

increases the amount of source code. On the other hand, functionalities can be described and

tested very well in isolation. Moreover, this approach often allows expressing the source code

on a comprehensible and conceptual level. In many cases, this allows extensions to be easily

integrated.

 Solution to the Bonus Task: Checking Diagonals (★★★✩✩)

Add a check for diagonals. This should make the constellation from the example invalid,

among other things, because of the diagonals marked in bold with the number 3 at the

bottom right.

Chapter 6 arrays

331

Algorithm Checking the four diagonals from one position seems much more time-

consuming than checking the horizontal and the vertical. Theoretically, there would be

four directions for each position. As (almost) always, it is a good idea to think about a

problem a little longer. If you follow this advice, you may come to the solution where in

this case, starting from one position, it is sufficient to check only diagonally to the top left

and right because, from the point of view of the positions above, this one corresponds to

a check diagonally left and right below, as is indicated in the following:

X X

 X X

 X X

Thus, the diagonal check with two helper variables each for the positions of the

compass directions northwest and northeast can be implemented as follows and

invoked in the function select_valid_jewel():

def check_diagonally(board, x, y, jewel_nr):

 up_left1 = get_at(board, x - 1, y - 1)

 up_left2 = get_at(board, x - 2, y - 2)

 up_right1 = get_at(board, x + 1, y - 1)

 up_right2 = get_at(board, x + 2, y - 2)

 return (up_left1 == jewel_nr and up_left2 == jewel_nr) or \

 (up_right1 == jewel_nr and up_right2 == jewel_nr)

def select_valid_jewel(board, x, y, num_of_colors):

 next_jewel_nr = -1

 is_valid = False

 while not is_valid:

 next_jewel_nr = random.randint(1, num_of_colors)

 is_valid = not check_horizontally(board, x, y, next_jewel_nr) and \

 not check_vertically(board, x, y, next_jewel_nr) and \

 not check_diagonally(board, x, y, next_jewel_nr)

 return next_jewel_nr

Chapter 6 arrays

332

 Verification

To verify that the correct playfields are being created now, let’s generate and output one

of size 5 × 3 with four types of diamonds as follows:

>>> import random

>>> import numpy as np

>>> board = init_jewels_board(5, 3, 4)

>>> np.array(board)

array([[3, 4, 3, 3, 2],

 [4, 4, 1, 2, 3],

 [1, 1, 3, 3, 2]])

 Solution 5b: Validity Check (★★★✩✩)

In this subtask, you want to validate an existing playfield. As a challenge, a list of

violations must be returned. Implement function check_board_validity(board2dim)

for a rectangular array.

Example

To try out the validity check, use the playfield from the introduction, specially

marked here:

values_with_errors = [[2, 3, 3, 4, 4, 3, 2],

 [1, 3, 3, 1, 3, 4, 4],

 [4, 1, 4, 3, 3, 1, 3],

 [2, 2, 1, 1, 2, 3, 2],

 [3, 2, 4, 4, 3, 3, 4]]

This should produce the following errors due to its diagonals:

['Invalid at x=3 y=2 hor=False, ver=False, dia=True',

 'Invalid at x=2 y=3 hor=False, ver=False, dia=True',

 'Invalid at x=4 y=4 hor=False, ver=False, dia=True']

Chapter 6 arrays

333

Algorithm The validity check can be easily developed based on your previously

implemented functions. You check for horizontal, vertical, and diagonal rows of three

for each playfield position. If such a violation is found, you generate an appropriate error

message.

def check_board_validity(board2dim):

 errors = []

 max_y, max_x = get_dimension(board2dim)

 for y in range(max_y):

 for x in range(max_x):

 current_jewel = board2dim[y][x]

 has_chain_hor = check_horizontally(board2dim, x, y, current_jewel)

 has_chain_ver = check_vertically(board2dim, x, y, current_jewel)

 has_chain_dia = check_diagonally(board2dim, x, y, current_jewel)

 if has_chain_hor or has_chain_ver or has_chain_dia:

 error_msg = "Invalid at x={} y={} hor={}, ver={}, dia={}". \

 format(x, y, has_chain_hor, has_chain_ver, has_chain_dia)

 errors.append(error_msg)

 return errors

 Verification

To try out the validity check, you first use the playfield from the introduction and create a

NumPy array from it:

>>> values_with_errors = [[2, 3, 3, 4, 4, 3, 2],

 [1, 3, 3, 1, 3, 4, 4],

 [4, 1, 4, 3, 3, 1, 3],

 [2, 2, 1, 1, 2, 3, 2],

 [3, 2, 4, 4, 3, 3, 4]]

>>> array_with_errors = np.array(values_with_errors)

Chapter 6 arrays

334

Your functionality should produce the following error messages due to the three

faulty diagonals. This is the case for both calls.

>>> check_board_validity(values_with_errors)

['Invalid at x=3 y=2 hor=False, ver=False, dia=True',

'Invalid at x=2 y=3 hor=False, ver=False, dia=True',

'Invalid at x=4 y=4 hor=False, ver=False, dia=True']

>>> check_board_validity(array_with_errors)

['Invalid at x=3 y=2 hor=False, ver=False, dia=True',

'Invalid at x=2 y=3 hor=False, ver=False, dia=True',

'Invalid at x=4 y=4 hor=False, ver=False, dia=True']

Subsequently, you replace the problematic digits with a yet unused digit, such as

number 5, and retest the function, expecting no conflicts:

def test_check_board_validity_no_conflicts():

 values = [[2, 3, 3, 4, 4, 3, 2],

 [1, 3, 3, 1, 3, 4, 4],

 [4, 1, 4, 5, 3, 1, 3],

 [2, 2, 5, 1, 2, 3, 2],

 [3, 2, 4, 4, 5, 3, 4]]

 errors = check_board_validity(values)

 assert errors == []

6.3.6 Solution 6: Jewels Board Erase
Diamonds (★★★★✩)

The challenge is to delete all chains of three or more horizontally, vertically, or

diagonally connected diamonds from the rectangular playfield and subsequently to fill

the resulting empty spaces with the diamonds lying above them (i.e., roughly in the same

way as gravity works in nature). The following is an example of how the erasing and then

dropping is repeated several times until no more change occurs. Spaces are shown as _

for better visibility.

Chapter 6 arrays

335

Iteration 1:

1 1 1 2 4 4 3 erase _ _ _ _ 4 4 _ fall down _ _ _ _ _ _ _

1 2 3 4 2 4 3 => 1 2 3 4 _ 4 _ => 1 2 3 4 4 4 _

2 3 3 1 2 2 3 2 3 3 1 2 _ _ 2 3 3 1 2 4 _

Iteration 2:

_ _ _ _ _ _ _ erase _ _ _ _ _ _ _ fall down _ _ _ _ _ _ _

1 2 3 4 4 4 _ => 1 2 3 _ _ _ _ => 1 2 3 _ _ _ _

2 3 3 1 2 4 _ 2 3 3 1 2 4 _ 2 3 3 1 2 4 _

 Solution 6a: Erase (★★★★✩)

Write function erase_chains(values2dim) that erases all rows of three or more

contiguous diamonds in horizontal, vertical, and diagonal orientations from a

rectangular playfield array.

Examples

An invocation of the method transforms the output array given on the left into the result

shown on the right:

All chains without overlap Special case: overlaps

1 2 3 3 3 4 0 0 0 0 0 0 1 1 1 2 0 0 0 2

1 3 2 4 2 4 0 3 0 4 2 0 1 1 3 4 => 0 0 3 4

1 2 4 2 4 4 => 0 0 4 0 4 0 1 2 1 3 0 2 0 3

1 2 3 5 5 5 0 0 3 0 0 0

1 2 1 3 4 4 0 0 1 3 4 4

Algorithm: Preliminary considerations As a first brute force variant, you could

erase the values directly when finding them. In this case, you search for a chain of length

3 or more and then directly erase these fields. However, this has a crucial weakness:

Single diamonds can be part of several chains, as shown in the example above. If you

delete immediately, not all occurrences may be found; depending on which of the

checks is done first, the other two fail in the following constellation.

XXX

XX

X X

Chapter 6 arrays

336

A second idea is to modify the algorithm minimally by choosing an intermediate

representation that symbolizes the deletion request, such as negative numbers, instead

of deletion. After all entries in the array have been processed, the deletion takes place in

a separate pass. Specifically, you remove all negative values from the array by replacing

them with the numerical value 0.

Algorithm The second idea is implemented by function erase_

chains(values2dim). It starts with marking all the fields to be deleted using the function

mark_elements_for_removal(values2dim). Then they are deleted using the function

erase_all_marked(values2dim). For both methods you work position by position.

First you have to detect chains of length 3 or more. Function find_chains(values2dim,

x, y) is responsible for this. Once a chain has been found, it is marked by calling

mark_chains_for_removal(values2dim, x, y, dirs_with_chains). The next action

is to determine whether each field is marked for deletion. In this case, the stored value

is replaced with the value 0 (here by calling the function blank_value(values2dim);

details about this seemingly superfluous indirection will be considered later).

def erase_chains(values2dim):
 mark_elements_for_removal(values2dim)

 return erase_all_marked(values2dim)

def mark_elements_for_removal(values2dim):
 max_y, max_x = get_dimension(values2dim)

 for y in range(max_y):
 for x in range(max_x):
 dirs_with_chains = find_chains(values2dim, x, y)

 mark_chains_for_removal(values2dim, x, y, dirs_with_chains)

def erase_all_marked(values2dim):

 erased_something = False

 max_y, max_x = get_dimension(values2dim)

 for y in range(max_y):

 for x in range(max_x):

 if is_element_marked_for_removal(values2dim[y][x]):

 values2dim[y][x] = blank_value(values2dim)

 erased_something = True

 return erased_something

Chapter 6 arrays

337

def is_element_marked_for_removal(value):

 return value < 0

def blank_value(values2dim):

 return 0

Now let’s move on to the two trickier implementations and start picking up and

recognizing chains of three or more similar diamonds. For this, you check for all relevant

directions if there is a chain (again with the optimization that you must check diagonally

only to the lower right and left). For this, you traverse the fields, count the similar

elements, and stop at a deviation. If you find three or more equal values, then that

direction is included in the list dirs_with_chains. As a special feature, you check at the

beginning of the function if the current field is empty; you don’t want to collect chains

of blanks.

def find_chains(values2dim, start_x, start_y):

 orig_value = values2dim[start_y][start_x]

 if orig_value == 0: # ATTENTION to think of such special cases

 return []

 dirs_with_chains = []

 relevant_dirs = (Direction.S, Direction.SW, Direction.E, Direction.SE)

 for current_dir in relevant_dirs:

 length = 1

 dx, dy = current_dir.value

 next_pos_x = start_x + dx

 next_pos_y = start_y + dy

 while is_on_board(values2dim, next_pos_x, next_pos_y) and \

 is_same(orig_value, values2dim[next_pos_y][next_pos_x]):

 length += 1

 next_pos_x += dx

 next_pos_y += dy

 if length >= 3:

 dirs_with_chains.append(current_dir)

 return dirs_with_chains

Chapter 6 arrays

338

def is_on_board(values2dim, next_pos_x, next_pos_y):

 max_y, max_x = get_dimension(values2dim)

 return 0 <= next_pos_x < max_x and 0 <= next_pos_y < max_y

def is_same(val1, val2):

 return abs(val1) == abs(val2)

In fact, you are almost there. The only thing missing is the function for marking for

deletion. Did you think at the beginning that this assignment is so complex? Probably

not :-) Let’s get to work. You now traverse all chains and convert the original values into

one marked for deletion. To accomplish this, you rely on helper function mark_element_

for_removal(orig_value), which for the sake of simplicity converts the value to a

negative value (with type str, for example, you can use a conversion to lowercase).

def mark_chains_for_removal(values, start_x, start_y, dirs_with_chains):

 orig_value = values[start_y][start_x]

 for current_dir in dirs_with_chains:

 dx, dy = current_dir.value

 next_x = start_x

 next_y = start_y

 while is_on_board(values, next_x, next_y) and \

 is_same(orig_value, values[next_y][next_x]):

 values[next_y][next_x] = mark_element_for_removal(orig_value)

 next_x += dx

 next_y += dy

def mark_element_for_removal(value):

 return -value if value > 0 else value

I want to point out that the functionalities are solved using side effects. Here, you are

operating directly on the passed data, so this is not bad because the data is not passed

further out. Instead, it is all internal functionalities.

Chapter 6 arrays

339

 Verification

After this exhausting implementation, let’s test the deletion as well:

def test_erase_chains():

 values2dim = [[1, 1, 1, 2, 4, 4, 3],

 [1, 1, 3, 4, 2, 4, 3],

 [1, 3, 1, 1, 2, 2, 3]]

 deleted = erase_chains(values2dim)

 expected_board = [[0, 0, 0, 0, 4, 4, 0],

 [0, 0, 3, 4, 0, 4, 0],

 [0, 3, 0, 1, 2, 0, 0]]

 assert deleted is True

 assert values2dim == expected_board

def test_erase_chains_example_1():

 values2dim = [[1, 2, 3, 3, 3, 4],

 [1, 3, 2, 4, 2, 4],

 [1, 2, 4, 2, 4, 4],

 [1, 2, 3, 5, 5, 5],

 [1, 2, 1, 3, 4, 4]]

 deleted = erase_chains(values2dim)

 expected_board = [[0, 0, 0, 0, 0, 0],

 [0, 3, 0, 4, 2, 0],

 [0, 0, 4, 0, 4, 0],

 [0, 0, 3, 0, 0, 0],

 [0, 0, 1, 3, 4, 4]]

 assert deleted is True

 assert values2dim == expected_board

Chapter 6 arrays

340

 Solution 6b: Falling Down (★★★✩✩)

Write function fall_down(values2dim) working inplace that drops the diamonds from

top to bottom, provided there is a space below their position.

Example

An invocation of the function transforms the output array given on the left into the result

shown on the right:

0 1 3 3 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 3 3 0 0 => 0 0 3 3 0 0

0 0 0 3 3 4 0 1 3 3 0 0

0 0 3 0 0 0 0 1 3 3 3 4

Algorithm At first, the task seems to be relatively easy to solve. However, the

complexity increases due to a few special characteristics.

As one possible implementation, let’s begin with a brute force solution. From left to

right, the following is checked for all x-positions in the vertical: Starting from the lowest

row to the second highest one, you test whether they represent a blank in each case. If

this is the case, the value from the line above is used. In this case, the value from the line

above is exchanged with the blank (symbolized here as _, represented in the model with

the value 0).

1 1 _

2 => _ => 1

_ 2 2

The procedure can be implemented as follows:

def fall_down_first_try(values2dim):

 max_y, max_x = get_dimension(values2dim)

 for x in range(max_x):

 for y in range(max_y - 1, 0, -1):

 value = values2dim[y][x]

Chapter 6 arrays

341

 if is_blank(value):

 # fall down

 values2dim[y][x] = values2dim[y - 1][x]

 values2dim[y - 1][x] = blank_value(values2dim)

def is_blank(value):

 return value == 0

This works pretty passably, but unfortunately not quite for the following special case:

1 _

_ => 1

_ _

You recognize that propagation is missing, and thus the numbers do not continue to

fall all the way down, even if there is an empty place below.

As a next idea, you could start falling from the top, but this doesn’t work in every case

either! While with this procedure the previously problematic case

1 _

_ => _

_ 1

is solved, problems occur now for the first constellation. These problems do not

occur with the variant before.

1 1

2 => _

_ 2

You now know that both of the variants discussed do not yet work quite correctly.

Moreover, it was crucial to use the right set of test data to uncover just these specific

problems.

To correct this, you need to implement continuous falling of stones to always move

all values per column. The while loop is used for this:

Chapter 6 arrays

342

def fall_down(values2dim):
 max_y, max_x = get_dimension(values2dim)

 for x in range(max_x):
 for y in range(max_y - 1, 0, -1):
 current_y = y

 # fall down until there is no more empty space under it

 while current_y < len(values2dim) and \
 is_blank(values2dim[current_y][x]):

 # fall down

 values2dim[current_y][x] = values2dim[current_y - 1][x]

 values2dim[current_y - 1][x] = blank_value(values2dim)

 current_y += 1

 Verification

Let’ take the previously obtained result of the deletion as the starting point for the falling:

def test_fall_down():
 values2dim = [[0, 1, 3, 3, 0, 0],
 [0, 1, 0, 0, 0, 0],
 [0, 0, 3, 3, 0, 0],
 [0, 0, 0, 3, 3, 4],
 [0, 0, 3, 0, 0, 0]]

 fall_down(values2dim)

 expected_board = [[0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0],
 [0, 0, 3, 3, 0, 0],
 [0, 1, 3, 3, 0, 0],
 [0, 1, 3, 3, 3, 4]]

 assert values2dim == expected_board

 Overall Verification

To experience your functions all together in action, use the example you used for

deleting:

Chapter 6 arrays

343

def main():

 example_board = [[1, 1, 1, 2, 4, 4, 3],

 [1, 1, 3, 4, 2, 4, 3],

 [1, 3, 1, 1, 2, 2, 3]]

 print_array(example_board)

 while erase_chains(example_board):

 print("---------------------------------")

 fall_down(example_board)

 print_array(example_board)

Using the following helper function print_array(values) developed in the

introduction

def print_array(values2dim):

 max_y, max_x = get_dimension(values2dim)

 for y in range(max_y):

 for x in range(max_x):

 value = values2dim[y][x]

 print(str(value) + " ", end='')

 print()

gives the expected output:

1 1 1 2 4 4 3

1 1 3 4 2 4 3

1 3 1 1 2 2 3

0 0 0 0 0 0 0

0 0 0 4 4 4 0

0 3 3 1 2 4 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 3 3 1 2 4 0

Chapter 6 arrays

344

Modification to characters Now let’s go one step further and use letters as an

alternative to digits for modeling. You perform the actions on a prepared array of letters,

which allows you to see different deletions and iterations very nicely. However, you must

adapt some of the functions for the type str appropriately (see the following practical

tip). Add the following lines to the above main() function as indicated by the comment:

main as before

 jewels_test_deletion = [list("AACCDE"),
 list("AA DE"),
 list("ABCCDE"),
 list("AB CCD"),
 list("ABCDDD")]

 print_array(jewels_test_deletion)

 while erase_chains(jewels_test_deletion):
 print("---------------------------------")
 fall_down(jewels_test_deletion)
 print_array(jewels_test_deletion)

The desired and expected result should then look like this:

A A C C D E
A A D E
A B C C D E
A B C C D
A B C D D D

 C C
 A C C
 A C C C D

 A
 A D

Implementing the supplementary processing based on characters is the subject of

the following practical tip. You will probably also suddenly realize why a few seemingly

unimportant auxiliary functions were created in the previous implementation.

Chapter 6 arrays

345

HINT: VARIANTS WITH TYPE STR

some readers may have wondered why I implement various helper functions when the

functionality seems very simple. the reason is that this way it gets easier to use the

algorithms almost unchanged for other types instead just by redefining the corresponding

helper functions, for example these:

def blank_value(values2dim):
 if type(values2dim[0][0]) is str:
 return " "

 return 0

def is_blank(value):
 if type(value) is str:
 return value == " " or value == "_" or len(value) == 0

 return value == 0

 def is_same(val1, val2):
 if type(val1) is str:
 return val1.lower() == val2.lower()
 return abs(val1) == abs(val2)

def mark_element_for_removal(value):
 if type(value) is str:
 return value.lower()
 return -value if value > 0 else value

def is_element_marked_for_removal(value):
 if type(value) is str:
 return value.islower()
 return value < 0

Using the approach described ensures that the higher-level functions for determining which chains

to delete, the actual deletion, and the falling of the diamonds don’t even need to be adjusted.

Chapter 6 arrays

346

6.3.7 Solution 7: Spiral Traversal (★★★★✩)
Write generic method spiral_traversal(values2dim) that traverses a two-dimensional

rectangular array (or a nested list) in the form of a spiral and prepare it as a list. The start

is in the upper left corner. First, the outer layer is traversed, and then the next inner layer.

Example

An example is shown in Figure 6-5.

1 2 3 4
12 13 14 5
11 16 15 6
10 9 8 7

Figure 6-5. Basic procedure for the spiral traversal

For the following two nested lists of number and letter sequences, the results of a

spiral traversal are shown:

numbers = [[1, 2, 3, 4],

 [12, 13, 14, 5],

 [11, 16, 15, 6],

 [10, 9, 8, 7]]

letter_pairs = [["AB", "BC", "CD", "DE"],

 ["JK", "KL", "LM", "EF"],

 ["IJ", "HI", "GH", "FG"]]

=>

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]

[AB, BC, CD, DE, EF, FG, GH, HI, IJ, JK, KL, LM]

JOB INTERVIEW TIPS: CLARIFY ASSUMPTIONS

Before proceeding with a solution, be sure to clarify any constraints or special requirements by

asking questions. In this case, ask if the original data should be a rectangular. assume that to

be the case here.

Chapter 6 arrays

347

Algorithm Let’s start with an idea. For a spiral movement, you start going to the

right until you reach the boundary, then change direction downward, and advance

again until you reach the boundary. Then turn to the left and finally up to the

boundary. For the spiral to narrow, the respective limits must be suitably reduced at

each change of direction. Formulating the termination condition correctly is not quite

easy when operating. The following observation helps: The total number of steps

is given by width ∗ height − 1 for a 4 × 3 sized data set, thus 4 ∗ 3 − 1 = 12 − 1 = 11.

With these preliminary considerations, we implement the spiral traversal as follows:

class Direction(Enum):

 RIGHT = (1, 0)

 DOWN = (0, 1)

 LEFT = (-1, 0)

 UP = (0, -1)

def spiral_traversal(values2dim):

 pos_x = 0

 pos_y = 0

 min_x = 0

 min_y = 1

 max_y, max_x = get_dimension(values2dim)

 results = []

 dir = Direction.RIGHT

 steps = 0

 all_steps = max_y * max_x

 while steps < all_steps:

 # action

 results.append(values2dim[pos_y][pos_x])

 if dir == Direction.RIGHT:

 if pos_x < max_x - 1:

 pos_x += 1

 else:

 dir = Direction.DOWN

 max_x -= 1

Chapter 6 arrays

348

 if dir == Direction.DOWN:

 if pos_y < max_y - 1:

 pos_y += 1

 else:

 dir = Direction.LEFT

 max_y -= 1

 if dir == Direction.LEFT:

 if pos_x > min_x:

 pos_x -= 1

 else:

 dir = Direction.UP

 min_x += 1

 if dir == Direction.UP:

 if pos_y > min_y:

 pos_y -= 1

 else:

 dir = Direction.RIGHT

 min_y += 1

 # possible mistake: You now have to start one

 # position further to the right!

 pos_x += 1

 steps += 1

 return results

After a complete traversal of one layer, you have to move the position pointer one

position towards the center. This gets easily forgotten.

The algorithm presented works, but it requires quite a few special treatments.

Optimized algorithm Look at the figure again and then think a bit. You know that

initially the whole array is a valid movement area. At each iteration, the outer layer is

processed and you continues inwards. Now you can specify the valid range by four

position markers as before. However, you proceed more cleverly when updating.

You notice that after moving to the right, the top line is processed so that you

can increase the counter min_y by one. If you move down, then the rightmost side is

traversed, and the counter max_x is decreased by one. Moving to the left, the bottom row

Chapter 6 arrays

349

is processed, and the counter max_y is decreased by one. Finally, when moving upwards,

the counter min_x is increased by one. To detect when to increment, you implement

utility function is_outside() or range checking.

Additionally, you can still take advantage of defining the direction constants

according to the order in the spiral traversal and then implementing function next() in

the enum that specifies the subsequent direction in each case. Likewise, you define there

the offset values dx and dy as a tuple.

class Direction(Enum):

 RIGHT = (1, 0)

 DOWN = (0, 1)

 LEFT = (-1, 0)

 UP = (0, -1)

 def next(self):

 keys = list(Direction.__members__.keys())

 pos = keys.index(self.name)

 return list(Direction)[(pos + 1) % len(keys)]

With these thoughts and preliminaries, you are now able to implement the spiral

traversal in a readable and understandable way as follows:

def spiral_traversal_optimized(values2dim):

 pos_x = 0

 pos_y = 0

 min_x = 0

 min_y = 0

 max_y, max_x = get_dimension(values2dim)

 results = []

 dir = Direction.RIGHT

 steps = 0

 all_steps = max_y * max_x

 while steps < all_steps:

 # action

 results.append(values2dim[pos_y][pos_x])

Chapter 6 arrays

350

 dx, dy = dir.value

 if is_outside(pos_x + dx, pos_y + dy, min_x, max_x, min_y, max_y):

 if dir == Direction.RIGHT:

 min_y += 1

 if dir == Direction.DOWN:

 max_x -= 1

 if dir == Direction.LEFT:

 max_y -= 1

 if dir == Direction.UP:

 min_x += 1

 dir = dir.next()

 dx, dy = dir.value

 pos_x += dx

 pos_y += dy

 steps += 1

 return results

def is_outside(x, y, min_x, max_x, min_y, max_y):

 return x < min_x or x >= max_x or y < min_y or y >= max_y

 Verification

Check if your algorithm as well as its optimized variant and really performs the expected

traversal through the array or nested list for the inputs from the above example:

def values_and_expected():

 return [([["A", "B", "C", "D"],

 ["J", "K", "L", "E"],

 ["I", "H", "G", "F"]],

 list("ABCDEFGHIJKL")),

 ([[1, 2, 3, 4],

 [12, 13, 14, 5],

 [11, 16, 15, 6],

 [10, 9, 8, 7]],

 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16])]

Chapter 6 arrays

351

@pytest.mark.parametrize("values, expected", values_and_expected())
def test_spiral_traversal(values, expected):
 result = spiral_traversal(values)

 assert result == expected

@pytest.mark.parametrize("values, expected", values_and_expected())
def test_spiral_traversal_optimized(values, expected):
 result = spiral_traversal_optimized(values)

 assert result == expected

6.3.8 Solution 8: Add One to an Array
as a Number (★★✩✩✩)

Consider an array or a list of numbers representing the digits of a decimal number. Write

function add_one(digits) that performs an addition by the value 1 and is only allowed

to use arrays as data structure for the solution.

 Examples

Input Result

[1, 3, 2, 4] [1, 3, 2, 5]

[1, 4, 8, 9] [1, 4, 9, 0]

[9, 9, 9, 9] [1, 0, 0, 0, 0]

Algorithm You may remember back to your school days and use digit-oriented

processing: traverse the values from back to front and then add the overflow value of the

last addition to the respective digit value. Initially, you start with the assumption that

there is an overflow. If the value 10 is reached again, the overflow must be propagated

further. In the special case that the overflow propagates to the very front, the array must

be increased by one position to accommodate the new leading 1.

def add_one(digits):
 if len(digits) == 0:
 raise ValueError("must be a valid non empty array / list")

 result = []

Chapter 6 arrays

352

 # run from back to front and add, check for overflow

 overflow = 1

 for current_digit in reversed(digits):

 current_digit += overflow

 overflow = 1 if current_digit >= 10 else 0

 result.insert(0, current_digit % 10)

 if overflow == 1:

 result.insert(0, 1)

 return result

In the special case that the carry propagates all the way to the front, the array must be

enlarged by one position to accommodate the new leading 1.

 Verification

To check your implementation, use the three combinations of values from the

introductory examples, which cover the three main cases of no propagation, propagation

by one digit, and propagation over all digits. Additionally, add a test case for the

propagation for two digits.

def values_and_expected():

 return [([1, 3, 2, 4], [1, 3, 2, 5]),

 ([1, 4, 8, 9], [1, 4, 9, 0]),

 ([1, 3, 9, 9], [1, 4, 0, 0]),

 ([9, 9, 9, 9], [1, 0, 0, 0, 0])]

@pytest.mark.parametrize("values, expected", values_and_expected())

def test_add_one(values, expected):

 result = add_one(values)

 assert result == expected

Chapter 6 arrays

353

6.3.9 Solution 9: Sudoku Checker (★★★✩✩)
In this challenge, a Sudoku puzzle is examined to see if it is a valid solution. Let’s assume

a 9 × 9 array with int values. According to the Sudoku rules, each row and each column

must contain all numbers from 1 to 9. Besides, all numbers from 1 to 9 must, in turn,

occur in each 3 × 3 subarray. Write function is_sudoku_valid(board)for checking.

Example

The following is a valid solution:

Algorithm In Sudoku, three different types of checks have to be performed. They can

be divided into three corresponding functions very well. First are the functions check_

horizontally() and check_vertically(), which ensure horizontally and vertically that

all digits from 1 to 9 always occur exactly once in a row or column, respectively. To check

this, you collect all digits stored in the respective alignment in a list and compare them in

the function all_desired_numbers() to see if they contain the desired numbers.

def check_horizontally(board):

 for row in range(9):

 # collect all values of a row in a list

 row_values = [board[row][x] for x in range(9)]

 if not all_desired_numbers(row_values):

 return False

 return True

Chapter 6 arrays

354

def check_vertically(board):

 for x in range(9):

 # collect all values of a column in a list

 column_values = [board[row][x] for row in range(9)]

 if not all_desired_numbers(column_values):

 return False

 return True

You might wonder whether it’s preferable to collect the values in a set. Although

this is obvious and works well for fully filled Sudoku puzzles, collecting data in a set

complicates subsequent checking if you permit empty fields as well.

Regardless, both checks rely on the following helper function:

def all_desired_numbers(all_collected_values):

 if len(all_collected_values) != 9:

 raise ValueError("not 9 values to process")

 one_to_nine = {1, 2, 3, 4, 5, 6, 7, 8, 9}

 values_set = set(all_collected_values)

 return one_to_nine == values_set

I would like to explicitly point out the elegance of the helper function all_desired- _

numbers(). It unifies various things in its brevity: actually, you need to check that the

collected values do not contain duplicates and that there are exactly nine different digits.

Due to your implementation, you don’t need to check the length. Still, you do it anyway

to guard against careless errors with an exception. By converting the values into a set and

comparing it to the set from the expected values, the process is nice and short.

Next, you need to check each of the nine subfields of size 3 × 3. This doesn’t sound

easy at first. But think a bit: You can use two nested loops to run off the 3 × 3 boxes. Two

more nested loops run the respective x and y values for the boxes. Simple multiplications

and additions are used to derive the corresponding index values in the original array.

By following the previously presented idea of collecting the values into a list, which is

finally checked against the expected target set of digits 1 to 9, the implementation loses

its initial horror.

Chapter 6 arrays

355

def check_boxes(board):

 # 3 x 3 box

 for y_box in range(3):

 for x_box in range(3):

 # values per box

 box_values = collect_box_values(board, y_box, x_box)

 if not all_desired_numbers(box_values):

 return False

 return True

The picking up of digits within a 3 x 3 box is implemented as follows:

def collect_box_values(board, y_box, x_box):

 box_values = []

 # inside the boxes each 3 x 3

 for y in range(3):

 for x in range(3):

 # actual index values

 real_y = y_box * 3 + y

 real_x = x_box * 3 + x

 box_values.append(board[real_y][real_x])

 return box_values

For a complete Sudoku check, you then need to combine these values all

together by and:

def is_sudoku_valid(board):

 return check_horizontally(board) and \

 check_vertically(board) and \

 check_boxes(board)

Chapter 6 arrays

356

 Verification

You first define the Sudoku playfield as shown in the introduction and then you test all

three variants.

def main():

 board = [[1, 2, 3, 4, 5, 6, 7, 8, 9],

 [4, 5, 6, 7, 8, 9, 1, 2, 3],

 [7, 8, 9, 1, 2, 3, 4, 5, 6],

 [2, 1, 4, 3, 6, 5, 8, 9, 7],

 [3, 6, 5, 8, 9, 7, 2, 1, 4],

 [8, 9, 7, 2, 1, 4, 3, 6, 5],

 [5, 3, 1, 6, 4, 2, 9, 7, 8],

 [6, 4, 2, 9, 7, 8, 5, 3, 1],

 [9, 7, 8, 5, 3, 1, 6, 4, 2],]

 print("H: ", check_horizontally(board))

 print("V: ", check_vertically(board))

 print("B: ", check_boxes(board))

 print("S: ", is_sudoku_valid(board))

As expected, you get four times the value True as a result.

 Bonus

While it is nice to be able to check a Sudoku board that is completely filled with digits for

its validity, it is even better to be able to predict for a board with gaps (i.e., still missing

digits) whether a valid solution can emerge from it. This is of particular interest if you

want to develop an algorithm for solving a Sudoku puzzle.

Example

Based on the example of the valid Sudoku playfield given above, I deleted the digits in

random places. This surely results in a valid solution.

Chapter 6 arrays

357

Algorithm A partially filled playfield can be checked for validity fairly easily if

you take the previous implementation as a basis. First, you need modeling for the

blank fields. In this case, the value 0 is a good choice. Based on this, you can leave the

implementation for collecting the values horizontally, vertically, and in the boxes as

it is. You only have to slightly modify the final check whether all values from 1 to 9 are

included. First, you remove the value 0 from the collected values, if any. Then you make

sure that there are no duplicates. Finally, you check whether the collected values are a

subset of 1 to 9.

def all_desired_numbers(all_collected_values):

 # remove irrelevant empty fields

 relevant_values = remove_all_occurences(all_collected_values, 0)

 # no duplicates?

 values_set = set(relevant_values)

 if len(relevant_values) != len(values_set):

 return False

 # only 1 to 9?

 one_to_nine = {1, 2, 3, 4, 5, 6, 7, 8, 9}

 return one_to_nine.issuperset(values_set)

def remove_all_occurences(values, item):

 return list(filter(lambda x: x != item, values))

The very best comes at the end. This function works for completely filled Sudoku

puzzles and those containing blanks!

Chapter 6 arrays

358

 Verification

Again you define the Sudoku playfield with blanks, as shown before. After that, you check

a slightly modified playfield, where the value 2 is inserted in the first line at position 3.

Due to this, the playfield becomes invalid.

def create_initialized_board():

 return [[1, 2, 0, 4, 5, 0, 7, 8, 9],

 [0, 5, 6, 7, 0, 9, 0, 2, 3],

 [7, 8, 0, 1, 2, 3, 4, 5, 6],

 [2, 1, 4, 0, 6, 0, 8, 0, 7],

 [3, 6, 0, 8, 9, 7, 2, 1, 4],

 [0, 9, 7, 0, 1, 4, 3, 6, 0],

 [5, 3, 1, 6, 0, 2, 9, 0, 8],

 [6, 0, 2, 9, 7, 8, 5, 3, 1],

 [9, 7, 0, 0, 3, 1, 6, 4, 2]]

def test_is_sudoku_valid():

 board = create_initialized_board()

 is_valid_sudoku = is_sudoku_valid(board)

 assert is_valid_sudoku is True

def test_is_sudoku_valid_for_invalid_board():

 board = create_initialized_board()

 # change it and make it invalid

 board[0][2] = 2

 is_valid_sudoku = is_sudoku_valid(board)

 assert is_valid_sudoku is False

The faulty playfield of the second test case looks like this and the problematic value

is marked in bold:

Chapter 6 arrays

359

1 2 2 4 5 0 7 8 9

0 5 6 7 0 9 0 2 3

7 8 0 1 2 3 4 5 6

2 1 4 0 6 0 8 0 7

3 6 0 8 9 7 2 1 4

0 9 7 0 1 4 3 6 0

5 3 1 6 0 2 9 0 8

6 0 2 9 7 8 5 3 1

9 7 0 0 3 1 6 4 2

6.3.10 Solution 10: Flood Fill (★★✩✩✩)
 Exercise 10a (★★✩✩✩)

Write function flood_fill(values2dim, start_x, start_y) that fills all free fields in

an array or a two-dimensional nested list with a specified value.

Example

The following shows the filling process for the character *. The filling starts at a given

position, such as the upper left corner. It continues in all four compass directions until

the boundaries of the array or a boundary represented by another character are found.

" # " "***# " " # # " " #******# "

" #" "****#" " # #" " #******#"

"# #" => "#***#" "# # # " => "# #*****# "

" # # " " #*# " " # # # " " # #*****# "

" # " " # " " # # " " #*****# "

Algorithm Recursively check the neighboring cells in the four cardinal directions. If

a field is empty, it gets filled and the check it repeated. If you reach the array boundaries

or a filled cell, you stop. This can be expressed recursively in an elegant way.

Chapter 6 arrays

360

def flood_fill(values2dim, x, y):

 max_y, max_x = get_dimension(values2dim)

 # recursive termination

 if x < 0 or y < 0 or x >= max_x or y >= max_y:

 return

 if values2dim[y][x] == ' ':

 values2dim[y][x] = '*'

 # recursive descent: fill all 4 directions

 flood_fill(values2dim, x, y - 1)

 flood_fill(values2dim, x + 1, y)

 flood_fill(values2dim, x, y + 1)

 flood_fill(values2dim, x - 1, y)

 Verification

Now let’s define the array shown in the introduction as a starting point and then perform

a flood fill with different starting locations.

def create_world_and_expected_fills():

 first_world = [list(" # "),

 list(" #"),

 list("# #"),

 list(" # # "),

 list(" # ")]

 first_filled = [list("***# "),

 list("****# "),

 list("#***# "),

 list(" #*# "),

 list(" # ")]

 second_world = [list(" # # "),

 list(" # #"),

 list("# # # "),

 list(" # # # "),

 list(" # # ")]

Chapter 6 arrays

361

 second_filled = [list(" #******#"),

 list(" #******#"),

 list("# #*****# "),

 list(" # #*****# "),

 list(" #*****# ")]

 return [(first_world, first_filled, 0, 0,),

 (second_world, second_filled, 4, 4)]

@pytest.mark.parametrize("world, expected, start_x, start_y",

 create_world_and_expected_fills())

def test_flood_fill(world, expected, start_x, start_y):

 flood_fill(world, start_x, start_y)

 assert world == expected

 Solution 10b (★★✩✩✩)

Extend the function to fill any pattern passed as a rectangular array. Spaces are not

allowed in the pattern specification.

 Example

The following is an impression of how a flood fill with a pattern could look. The pattern

consists of several lines with characters:

.|.

-*-

.|.

If the filling starts at the bottom center, you get the following result:

 X .|..|.x

 # # -*--#--#

 ### # .|.###.|#

=> #|.###.|#

#*--#--*#

 # # # #.#|..#

 # # #.|.#

Chapter 6 arrays

362

Algorithm What needs to be changed to support a pattern? First of all, you must

pass the desired pattern to the function. Interestingly, the fill algorithm remains almost

the same and is only modified concerning the fill character’s determination. Instead of

a fixed value, the helper function find_fill_char() is invoked here, which determines

the fill character relevant for the position. The recursive descent is expressed elegantly

by using an enumeration for the directions as an alternative to the four individual calls

show before.

def flood_fill_with_pattern(values2dim, x, y, pattern):

 max_y, max_x = get_dimension(values2dim)

 # recursive termination

 if x < 0 or y < 0 or x >= max_x or y >= max_y:

 return

 if values2dim[y][x] == ' ':

 # determine appropriate fill character

 values2dim[y][x] = find_fill_char(y, x, pattern)

 # recursive descent in 4 directions

 for dir in Direction:

 dy, dx = dir.value

 flood_fill_with_pattern(values2dim, x + dx, y + dy, pattern)

class Direction(Enum):

 UP = (-1, 0)

 DOWN = (1, 0)

 LEFT = (0, -1)

 RIGHT = (0, 1)

Now let’s determine the fill character based on the current position in relation to the

width or the height of the playfield array using a simple modulo calculation:

def find_fill_char(y, x, pattern):

 max_y, max_x = get_dimension(pattern)

 return pattern[y % max_y][x % max_x]

Chapter 6 arrays

363

 Verification

Analogous to before, you would like to fill the array with delimiters presented in the

introduction with the pattern shown before. Therefore, you provide functions to generate

patterns:

def generate_pattern():

 return [list(".|."),

 list("-*-"),

 list(".|.")]

def generate_big_world():

 return [[" ", " ", " ", " ", " ", " ", "x", " ", " "],

 [" ", " ", " ", " ", "#", " ", " ", "#", " "],

 [" ", " ", " ", "#", "#", "#", " ", " ", "#"],

 ["#", " ", " ", "#", "#", "#", " ", " ", "#"],

 ["#", " ", " ", " ", "#", " ", " ", " ", "#"],

 [" ", "#", " ", "#", " ", " ", " ", "#", " "],

 [" ", " ", "#", " ", " ", " ", "#", " ", " "]]

For testing, you generate the initial pattern and call the flood fill with the pattern:

>>> world = generate_big_world()

>>> flood_fill_with_pattern(world, 1, 1, generate_pattern())

For control purposes, you now print out the array. This allows you to examine the

filling with the respective pattern.

>>> print_array(world)

.|..|.x

-*--#--#

.|.###.|#

#|.###.|#

#*--#--*#

 #.#|..#

 #.|.#

Chapter 6 arrays

364

def print_array(values2dim):

 max_y, max_x = get_dimension(values2dim)

 for y in range(max_y):

 for x in range(max_x):

 value = values2dim[y][x]

 print(str(value) + " ", end='')

 print()

6.3.11 Solution 11: Array Min and Max (★★✩✩✩)
 Solution 11a: Min and Max (★✩✩✩✩)

Write two functions find_min(values) and find_max(values) that search for the

minimum and maximum, respectively, of a given non-empty array using a self-

implemented search, thus eliminating the usage of built-ins like min() and sort(). :-)

 Example

Input Minimum Maximum

[2, 3, 4, 5, 6, 7, 8, 9, 1, 10] 1 10

Algorithm Loop through the array from the beginning. In both cases, assume that

the first element is the minimum or maximum. The array is traversed from front to back,

searching for a smaller or larger element. If such a candidate is found, the minimum or

maximum gets reassigned.

def find_min(values):

 if len(values) == 0:

 raise ValueError("find_min not supported for empty input")

 min = values[0]

 for i in range(1, len(values)):

 if values[i] < min:

 min = values[i]

 return min

Chapter 6 arrays

365

def find_max(values):

 if len(values) == 0:

 raise ValueError("find_max not supported for empty input")

 max = values[0]

 for i in range(1, len(values)):

 if values[i] > max:

 max = values[i]

 return max

Due to the boundary condition of a non-empty output array, you can always start

with the first element as minimum or maximum.

 Solution 11b: Min und Max Pos (★★✩✩✩)

Implement two helper functions find_min_pos(values, start, end) and find- _

max_pos(values, start, end) that seek and return the position of the minimum and

maximum, respectively. Again, assume a non-empty array and additionally an index

range of left and right boundaries. In the case of several identical values for minimum or

maximum, the first occurrence should be returned.

To find the minimum and maximum values, respectively, write two functions find_

min_by_pos(values, start, end) and find_max_by_pos(values, start, end) that

use the helper function.

 Examples

Method Input Range Result Position

find_min_xyz() [5, 3, 4, 2, 6, 7, 8, 9, 1, 10] 0, 10 1 8

find_min_xyz() [5, 3, 4, 2, 6, 7, 8, 9, 1, 10] 0, 7 2 3

find_min_xyz() [5, 3, 4, 2, 6, 7, 8, 9, 1, 10] 2, 7 2 3

find_max_xyz() [1, 22, 3, 4, 5, 10, 7, 8, 9, 49] 0, 10 49 9

find_max_xyz() [1, 22, 3, 4, 5, 10, 7, 8, 9, 49] 0, 7 22 1

find_max_xyz() [1, 22, 3, 4, 5, 10, 7, 8, 9, 49] 2, 7 10 5

Chapter 6 arrays

366

Algorithm Based on the determined position of the minimum or maximum, the

appropriate return of the corresponding element can be implemented trivially:

def find_min_by_pos(values, start, end):

 min_pos = find_min_pos(values, start, end)

 return values[min_pos]

def find_max_by_pos(values, start, end):

 max_pos = find_max_pos(values, start, end)

 return values[max_pos]

To complete the process, you still need to determine the position of the minimum

and maximum. For this, proceed as follows: To find the respective position of minimum

and maximum, go through all elements, compare with the current value for minimum or

maximum, and update the position if the value is smaller or larger.

def find_min_pos(values, start, end):

 if len(values) == 0:

 raise ValueError("find_min_pos not supported for empty input")

 if start < 0 or start > end or end > len(values):

 raise ValueError("invalid range")

 min_pos = start

 for i in range(start + 1, end):

 if values[i] < values[min_pos]:

 min_pos = i

 return min_pos

def find_max_pos(values, start, end):

 if len(values) == 0:

 raise ValueError("find_max_pos not supported for empty input")

 if start < 0 or start > end or end > len(values):

 raise ValueError("invalid range")

 max_pos = start

 for i in range(start + 1, end):

 if values[i] > values[max_pos]:

 max_pos = i

 return max_pos

Chapter 6 arrays

367

 Verification

Test the functionality as usual with the inputs from the introduction:

def test_find_min_and_max():

 values = [2, 3, 4, 5, 6, 7, 8, 9, 1, 10]

 assert find_min(values) == 1

 assert find_max(values) == 10

@pytest.mark.parametrize("lower, upper, expected_pos, expected_value",

 [(0, 10, 8, 1), (2, 7, 3, 2), (0, 7, 3, 2)])

def test_find_min_pos(lower, upper, expected_pos, expected_value):

 values = [5, 3, 4, 2, 6, 7, 8, 9, 1, 10]

 result_pos = find_min_pos(values, lower, upper)

 assert result_pos == expected_pos

 assert values[result_pos] == expected_value

@pytest.mark.parametrize("lower, upper, expected_pos, expected_value",

 [(0, 10, 9, 49), (2, 7, 5, 10), (0, 7, 1, 22)])

def test_find_max_pos(lower, upper, expected_pos, expected_value):

 values = [1, 22, 3, 4, 5, 10, 7, 8, 9, 49]

 result_pos = find_max_pos(values, lower, upper)

 assert result_pos == expected_pos

 assert values[result_pos] == expected_value

6.3.12 Solution 12: Array Split (★★★✩✩)
Say you have an array (or list) of arbitrary integers. The data structure must be reordered

so that all values less than a special reference value are placed on the left. All values

greater than or equal to the reference value are placed on the right. The ordering within

the subranges is not relevant and may vary.

Chapter 6 arrays

368

 Examples

Input Reference element Sample result

[4, 7, 1, 20] 9 [1, 4, 7, 9, 20]

[3, 5, 2] 7 [2, 3, 5, 7]

[2, 14, 10, 1, 11, 12, 3, 4] 7 [2, 1, 3, 4, 7, 14, 10, 11, 12]

[3, 5, 7, 1, 11, 13, 17, 19] 11 [1, 3, 5, 7, 11, 11, 13, 17, 19]

 Solution 12a: Array Split (★★✩✩✩)

Write function array_split(values, reference_element) to implement the

functionality described above. In this first part of the exercise, it is allowed to create new

data structures, such as lists.

Algorithm To split an array according to a reference element into two halves with

values less than or greater than or equal to the reference value, you define two result

lists called lesser and bigger_or_equal. Afterwards, you iterate through the array.

Depending on the comparison of the current element with the reference element,

you populate one of the two lists. Finally, you only need to combine the lists and the

reference element into one result list.

def array_split(values, reference_element):

 lesser = []

 bigger_or_equal = []

 for current in values:

 if current < reference_element:

 lesser.append(current)

 else:

 bigger_or_equal.append(current)

 return lesser + [reference_element] + bigger_or_equal

Pythonic algorithm In the solution shown, the for loop with the if and else is

stylistically somewhat disturbing. With list comprehensions, this could be implemented

a bit nicer as follows. In this alternative, however, the lists are traversed twice.

Chapter 6 arrays

369

def array_split_nicer(values, reference_element):

 lesser = [value for value in values

 if value < reference_element]

 bigger_or_equal = [value for value in values

 if value >= reference_element]

 return lesser + [reference_element] + bigger_or_equal

 Solution 12b: Array Split Inplace (★★★✩✩)

Write function array_split_inplace(values, reference_element) that implements

the functionality described inside the source array (i.e., inplace). It is explicitly not

desirable to create new data structures. To be able to include the reference element in

the result, the creation of an array is allowed once for the result. Because this has to be

returned, it is permitted to return a value for an inplace function; indeed, it operates only

partially inplace here.

Algorithm After you perform the simpler version, which improves your

understanding of the processes, dare to try the inplace version! Here you cannot use

auxiliary data structures. Rather, you implement the logic by swapping elements several

times. Two position markers indicate which elements are to be swapped. The first

position marker is increased as long as you encounter smaller values than the reference

element, starting from the beginning. You do the same with the position marker for the

upper part. As long as the values are larger than or equal to the reference element, you

decrease the position. Finally, you swap the two values at the index positions found,

but only if the position markers have not yet crossed. When crossing, you find no more

mismatching elements. The last thing to do is to integrate the reference element at the

correct position based on the newly arranged values. Some care has to be taken if the

sequence of the higher elements is empty.

def array_split_inplace(values, reference_element):

 low = 0

 high = len(values) - 1

 while low < high:

 while low < high and values[low] < reference_element:

 low += 1

Chapter 6 arrays

370

 while high > low and values[high] >= reference_element:

 high -= 1

 if low < high:

 swap(values, low, high)

 if len(values[high + 1:]) == 0:

 return values[:high + 1] + [reference_element]

 else:

 return values[:high] + [reference_element] + values[high:]

 Solution 12c: Array Split Quick Sort Partition (★★★✩✩)

For sorting according to Quick Sort, you need a partitioning functionality similar to the

one just developed. However, often the foremost element of the array is used as the

reference element.

Based on the two previously developed implementations that use an explicit

reference element, your task is to create corresponding alternatives such as the functions

array_split_qs(values) and array_split_qs_inplace(values).

 Examples

Input Reference element Sample result

[9, 4, 7, 1, 20] 9 [1, 4, 7, 9, 20]

[7, 3, 5, 2] 7 [2, 3, 5, 7]

[7, 2, 14, 10, 1, 11, 12, 3, 4] 7 [2, 1, 3, 4, 7, 14, 10, 11, 12]

[11, 3, 5, 7, 1, 11, 13, 17, 19] 11 [1, 3, 5, 7, 11, 11, 13, 17, 19]

Algorithm 1 When the element at position 0 acts as reference element, this is the

only thing that must be taken into account in the implementation. Thus, the processing

starts at index 1.

def array_split_qs(values):

 reference_value = values[0]

 lesser = [values[i] for i in range(1, len(values))

 if values[i] < reference_value]

Chapter 6 arrays

371

 bigger_or_equal = [values[i] for i in range(1, len(values))

 if values[i] >= reference_value]

 return lesser + [reference_value] + bigger_or_equal

Algorithm 2 The inplace variant also works with two position markers as before

and swaps elements several times if necessary. This is repeated as long as the position

markers have not yet crossed. In this particular situation, you no longer find any

unsuitable elements. The last thing to do is to move the reference element from its

position 0 to the crossover point (i.e., the matching position).

def array_split_qs_inplace(values):

 reference_value = values[0]

 low = 1

 high = len(values) - 1

 while low < high:

 while values[low] < reference_value and low < high:

 low += 1

 while values[high] >= reference_value and high >= low:

 high -= 1

 if low < high:

 swap(values, low, high)

 # important for two elements with values 1, 2 = > then 1 would be

pivot, do

 not swap!

 if reference_value > values[high]:

 swap(values, 0, high)

Please remember that this function works inplace (meaning it operates directly on

the passed data) and therefore does not return a result.

 Verification

Test the functionality as usual with the inputs from the introduction:

Chapter 6 arrays

372

>>> values = [2, 14, 10, 1, 11, 12, 3, 4]

>>> array_split(values, 7)

[2, 1, 3, 4, 7, 14, 10, 11, 12]

>>> array_split_inplace(values, 7)

[2, 4, 3, 1, 7, 12, 10, 14]

Let’s have a look at the Quick Sort variants in action:

>>> values2 = [7, 2, 14, 10, 1, 11, 3, 12, 4]

>>> array_split_qs(values2)

[2, 1, 3, 4, 7, 14, 10, 11, 12]

>>> array_split_qs_inplace(values2)

>>> values2

[1, 2, 4, 3, 7, 11, 10, 12, 14]

Due to the slightly different algorithm, the elements in the first variant remain in the

order in which they appear in the original array. The inplace variants swap elements,

and thus there is a reshuffle. However, all smaller values are still found to the left of the

reference element and all larger ones to the right.

6.3.13 Solution 13: Minesweeper Board (★★★✩✩)
Chances are high that you’ve played Minesweeper in the past. To remind you, it’s a nice

little quiz game with a bit of puzzling. What is it about? Bombs are placed face down on a

playfield. The player can choose any field on the board. If a field is uncovered, it shows a

number. This indicates how many bombs are hidden in the neighboring fields. However,

if you are unlucky, you hit a bomb field and lose the game. Your task is about initializing

such a field and preparing it for a subsequent game.

 Solution 13a (★★✩✩✩)

Write function place_bombs_randomly(width, height, probability) that creates

a playfield specified in size via the first two parameters, randomly filled with bombs,

respecting the probability from 0.0 to 1.0 passed in.

Chapter 6 arrays

373

Example

The following is a playfield of size 16 × 7 with bombs placed randomly. Bombs are

represented by asterisks (*) and spaces by dots (.).

* * * . * * . * . * * . * . . .

. * * . * . . * . * *

. . * * * * *

. . . * . * * . * * . * * . . .

* * * . * . . * . . . *

. . * . . * . * * . . * . * * *

. * . * * . * . * * * . . * * .

Algorithm Placing bombs randomly distributed in a playfield works as follows.

For each position, a random number generated with random.random() and a given

probability are used to determine whether a bomb should be placed on the playfield.

As a result, a suitable nested list is generated. Here, a peculiarity is found, namely the

playfield extends in all directions by one position each, as is covered in the following

practical tip.

def place_bombs_randomly(width, height, probability):

 bombs = [[False for x in range(width + 2)] for y in range(height + 2)]

 for y in range(1, len(bombs) - 1):

 for x in range(1, len(bombs[0]) - 1):

 bombs[y][x] = random.random() < probability

 return bombs

NOTE: PLAYFIELD WITH BORDER

For many two-dimensional algorithms, it is necessary to perform special checks at the

borders. In some cases, it is helpful to place a special artificial border of one position around

the actual playfield. In particular, this often simplifies calculations with neighboring cells in all

compass directions, as is the case here with the bombs. But you have to assign a neutral value

to the border cells. here this is simply the value 0. sometimes, however, special characters

like # can be used with str-based playfields.

Chapter 6 arrays

374

some calculations become easier with this artificial boundary cell. however, you must then

note that the bounds range from 1 to len() - 1—an additional stumbling block to the

treacherous off-by-one errors commonly made with arrays.

Verification

Let’s omit explicit testing here because, on the one hand, you are dealing with random

numbers, and a unit test does not directly make sense for this. On the other hand, the

algorithm is quite simple and the functionality is tested indirectly later.

 Solution 13b (★★★✩✩)

Write function calc_bomb_count(bombs) that computes the number of adjacent fields

based on the bomb fields passed and returns a corresponding array.

Examples

A calculation for playfields of size 3 × 3 as well as size 5 × 5, including randomly

distributed bombs, results in the following:

* . . B 2 1 . * * . . 2 B B 3 1

. . * => 1 3 B * . * * . B 6 B B 1

. . * 0 2 B * * . . . => B B 4 3 2

 * . . * . B 6 4 B 1

 * * * . . B B B 2 1

Algorithm To calculate the number of neighboring cells with bombs, you again

consider each cell in turn. Here you take advantage of the special margin, so you don’t

have to do range checks or special handling. First, you initialize a two-dimensional array

of appropriate size with a value of 0 as an assumption that there are no bombs in the

neighborhood. If a cell represents a bomb, you use the value 9 as an indicator. If it does

not contain one, you must check all eight neighboring cells to see if they are home to a

bomb. In this case, the bomb counter is increased by one. The calculation is facilitated

by the use of the already known enumeration for the compass directions and their delta

values in the x- and y-directions.

Chapter 6 arrays

375

def calc_bomb_count(bombs):

 max_y, max_x = get_dimension(bombs)

 bomb_count = [[0 for x in range(max_x)] for y in range(max_y)]

 for y in range(1, max_y - 1):

 for x in range(1, max_x - 1):

 if not bombs[y][x]:

 for current_dir in Direction:

 dx, dy = current_dir.to_dx_dy()

 if bombs[y + dy][x + dx]:

 bomb_count[y][x] += 1

 else:

 bomb_count[y][x] = 9

 return bomb_count

For better comprehension, the enumeration Direction is shown here again:

from enum import Enum

class Direction(Enum):

 N = (0, -1)

 NE = (1, -1)

 E = (1, 0)

 SE = (1, 1)

 S = (0, 1)

 SW = (-1, 1)

 W = (-1, 0)

 NW = (-1, -1)

 def to_dx_dy(self):

 return self.value

 Verification

To check the implementation, use the 3 × 3 distribution, but you must consider the

boundary cells accordingly. Until now, modeling of bombs was based on a two-

dimensional nested list of bool. Wouldn’t it be more practical to work on graphical

representations and have them convert appropriately? Let’s consider this as a unit test.

Chapter 6 arrays

376

def create_bomb_array_and_expected():

 bombs1 = ["*..",

 "..*",

 "..*"]

 result1 = ["B21",

 "13B",

 "02B"]

 bombs2 = [".**..",

 "*.**.",

 "**...",

 "*..*.",

 "***.."]

 result2 = ["2BB31",

 "B6BB1",

 "BB432",

 "B64B1",

 "BBB21"]

 return [(to_bool_array(bombs1), to_int_array(result1)),

 (to_bool_array(bombs2), to_int_array(result2))]

@pytest.mark.parametrize("bombs, expected",

 create_bomb_array_and_expected())

def test_calc_bomb_count(bombs, expected):

 result = calc_bomb_count(bombs)

 assert result == expected

Let’s look again at the helper functions. First, you have a textual representation of

the distribution of bombs, which is converted into the required array data structure

using to_bool_array(). In doing so, you don’t have to worry about generating the

boundary fields. The helper function to_int_array() goes one step further and

converts the textual digits into the corresponding int values and takes into account the

representation of bombs as B specifically.

Chapter 6 arrays

377

The helper functions look like this:

hiding the border field logic and conversion

def to_bool_array(bombs):

 width = len(bombs[0])

 height = len(bombs)

 result = [[False for _ in range(width + 2)] for _ in range(height + 2)]

 for y in range(height):

 for x in range(width):

 if bombs[y][x] == '*':

 result[y + 1][x + 1] = True

 return result

def to_int_array(values):

 width = len(values[0])

 height = len(values)

 result = [[0 for _ in range(width + 2)] for _ in range(height + 2)]

 for y in range(height):

 for x in range(width):

 current_char = values[y][x]

 if current_char == 'B':

 result[y + 1][x + 1] = 9

 else:

 result[y + 1][x + 1] = int(current_char)

 return result

HINT: READABILITY AND COMPREHENSIBILITY IN TESTING

these two helper functions enable the creation of test cases to be kept simple and

understandable. this makes it more likely that someone will extend the tests. If writing unit

tests is rather tedious or even difficult, hardly anyone will bother to extend them.

Chapter 6 arrays

378

 Solution 13c (★★✩✩✩)

Write function print_board(bombs, bomb_symbol, bomb_counts) that allows you to

display a board as points and stars as well as numbers and B.

Example

The following is the above playfield of size 16 × 7 with all the calculated values for bomb

neighbors:

B B B 4 B B 3 B 4 B B 3 B 1 0 0

3 B B 5 B 3 3 B 4 B B 4 3 4 3 2

1 3 B 4 3 3 3 3 4 4 4 4 B B B B

2 3 3 B 2 B B 4 B B 3 B B 4 4 3

B B 3 2 3 4 B 6 B 4 4 B 5 3 4 B

3 4 B 3 3 B 4 B B 5 4 B 4 B B B

1 B 3 B B 3 B 4 B B B 2 3 B B 3

Algorithm For rendering, you use position-based processing. Since you want to

implement both an output based on the bool model and, if passed, the values of the

number of bomb neighbors in this function, a few cases have to be provided in addition

to the loops nested for the x-direction and the y-direction.

def print_board(bombs, bomb_symbol, solution):

 for y in range(1, len(bombs) - 1):

 for x in range(1, len(bombs[0]) - 1):

 if bombs[y][x]:

 print(bomb_symbol, end=" ")

 elif solution is not None and len(solution) != 0:

 print(solution[y][x], end=" ")

 else:

 print(".", end=" ")

 print()

 print()

Chapter 6 arrays

379

 Verification

Let’s combine the three functions to experience the functionality in its entirety:

>>> import random

>>> from enum import Enum

>>> bombs = place_bombs_randomly(16, 7, 0.4)

>> print_board(bombs, '*', None)

. * * * * . * . * . * . * * . .

. . * . * * . . . * * * . . * *

. . * . . . * . * * * *

* . . * . . . * * * . * * . * .

. . * . * * * * . *

* * * * . . * . . * * .

* * * . * . * * * * *

>>> solution = calc_bomb_count(bombs)

>>> print_board(bombs, 'B', solution)

1 B B B B 4 B 2 B 4 B 4 B B 3 2

1 4 B 6 B B 3 4 4 B B B 4 3 B B

1 3 B 4 3 3 B 4 B B B B 4 3 3 3

B 3 3 B 2 2 2 B B B 6 B B 4 B 2

2 3 B 3 B 3 4 4 4 3 4 B B B 5 B

B 5 3 4 3 B B B 4 3 B 3 4 B B 3

B B B 2 B 4 B B B B 2 1 1 2 3 B

 Summary: What You Learned

Just like strings, arrays are basic building blocks in many programming languages. In

Python, lists are often favored, since arrays are not nicely supported in the language.

However, there is a valid alternative with NumPy, with which arrays can be easily defined

and which can offer significant performance improvements compared to lists. Anyway,

it is important to avoid tricky off-by-one errors. In this chapter, you created small helper

functions that, when used appropriately, can make algorithms more understandable. For

two-dimensional arrays or nested lists, you learned, among other things, how to model

Chapter 6 arrays

380

directions and how this helps fill areas with patterns. More challenging tasks were the

spiral traversal as well as the deletion and filling of a Jewels or Minesweeper playfield.

This chapter concludes the treatment of essential Python language tools and data

structures. Now you turn to more complex topics and start with advanced techniques for

recursion.

Chapter 6 arrays

PART II

More Advanced and
Tricky Topics

383
© Michael Inden 2022
M. Inden, Python Challenges, https://doi.org/10.1007/978-1-4842-7398-2_7

CHAPTER 7

Advanced Recursion
In this chapter, you will explore some advanced aspects around recursion. You’ll

start with the optimization technique called memoization. After that, you’ll look at

backtracking as a problem-solving strategy that relies on trial and error and tries out

possible solutions. Although this is not optimal in terms of performance, it can keep

various implementations comprehensible.

7.1 Memoization
In Chapter 3, you saw that recursion is feasible for describing many algorithms and

calculations in an understandable and, at the same time, elegant way. However, you also

noticed that recursion sometimes leads to many self calls, which can harm performance.

This applies, for example, to the calculation of Fibonacci numbers or of Pascal’s triangle.

How can this problem be overcome?

For this purpose, there is a useful technique called memoization. It follows the

same ideas as the caching or buffering of previously calculated values. It avoids multiple

executions by reusing already calculated results for subsequent actions.

7.1.1 Memoization for Fibonacci Numbers
Conveniently, memoization can often be easily added to an existing algorithm and only

requires minimal modification. Let’s do this for the calculation of Fibonacci numbers.

Let’s briefly repeat the recursive definition of Fibonacci numbers:

fib n

n

n

fib n fib n n

� � �
�
�

�� �� �� � � �

�

�
�

�
�

1 1

1 2

1 2 2

,

,

,

https://doi.org/10.1007/978-1-4842-7398-2_7

384

The recursive implementation in Python follows the mathematical definition exactly:

def fib_rec(n):

 if n <= 0:

 raise ValueError("n must be >= 1")

 # recursive termination

 if n == 1 or n == 2:

 return 1

 # recursive descent

 return fib_rec(n - 1) + fib_rec(n - 2)

So how do you add memoization? In fact, it is not too difficult. You need a helper

function that calls the actual calculation function, and most importantly, a data structure

to store intermediate results. In this case, you use a dictionary that is passed to the

computation function.

def fibonacci_optimized(n):

 return fibonacci_memo(n, {})

In the original function, you surround the actual computation with the actions for

memoization. For every computation step, you first look in the dictionary to see if a

suitable result already exists and return it if it does. Otherwise, you execute the algorithm

as before, with the minimal modification that you store the computation result in a

variable, to be able to deposit it at the end suitably in the lookup dictionary.

def fibonacci_memo(n, lookup_map):

 if n <= 0:

 raise ValueError("n must be > 0")

 # MEMOIZATION: check if there is a suitable pre-calculated result

 if n in lookup_map:

 return lookup_map.get(n)

 # normal algorithm with helper variable for storing the result

 result = 0

 if n == 1 or n == 2:

 # recursive termination

 result = 1

Chapter 7 advanCed reCursion

385

 else:

 # recursive descent

 result = fibonacci_memo(n - 1, lookup_map) + \

 fibonacci_memo(n - 2, lookup_map)

 # MEMOIZATION: store calculated result

 lookup_map[n] = result

 return result

Performance comparison If you run both variants for the fortieth Fibonacci

number, the purely recursive variant on my iMac 4GHz delivers a result after about

25 seconds, but the calculation of the forty-seventh Fibonacci number takes over 800

seconds, which corresponds to about 13 minutes! With memoization, on the other hand,

you receive a result for both after a few milliseconds.

Notes it should be noted that there is a variant of the Fibonacci calculation that
starts at the value 0. then fib (0) = 0 holds as well as fib (1) = 1 and afterwards
recursively fib (n) = fib (n − 1) + fib (n − 2). this produces the same sequence of
numbers as the initial definition, only with the value for 0 added.

Furthermore, there are the following points to consider:

• Data type: The calculated Fibonacci numbers can get huge quite

quickly. Conveniently, the Python number types scale, so unlike

other languages, it should not be necessary to define a special type

yourself so soon if necessary.

• Recursive termination: For implementation purposes, it’s

worth considering recursive termination before processing with

memoization. This would probably be minimally more performant,

but then the algorithm can’t be reformulated that clearly from the

existing one. Especially if you are not familiar with memoization yet,

the shown variant seems a bit more catchy.

Chapter 7 advanCed reCursion

386

7.1.2 Memoization for Pascal’s Triangle
Pascal’s triangle is defined recursively, as are the Fibonacci numbers:

Let’s first look at the purely recursive implementation again:

def pascal_rec(row, col):

 # recursive termination: top

 if col == 1 and row == 1:

 return 1

 # recursive termination: borders

 if col == 1 or col == row:

 return 1

 # recursive descent

 return pascal_rec(row - 1, col) + pascal_rec(row - 1, col - 1)

For the computation of Pascal’s triangle by using memoization, the original

algorithm hardly changes. You merely surround it with the accesses to the lookup

dictionary and the storage:

def pascal_optimized(row, col):

 return calc_pascal_memo(row, col, {})

def calc_pascal_memo(row, col, lookup_map):

 # MEMOIZATION

 key = (row, col)

 if key in lookup_map:

 return lookup_map[key]

Chapter 7 advanCed reCursion

387

 result = 0

 # recursive termination: top

 if col == 1 and row == 1:

 return 1

 # recursive termination: borders

 if col == 1 or col == row:

 return 1

 else:

 # recursive descent

 result = calc_pascal_memo(row - 1, col, lookup_map) + \

 calc_pascal_memo(row - 1, col - 1, lookup_map)

 # MEMOIZATION

 lookup_map[key] = result

 return result

A closer look reveals that you cannot use a basic type like int or str for the key but

rather need a more special variant consisting of a row and a column due to the two-

dimensional layout. For this purpose, you use a tuple consisting of row and column.

Performance comparison To compare the performance, I chose a call with the

parameters for line 36 and column 12. The purely recursive variant requires a rather long

running time of about 80 seconds for the selected values on an iMac with 4GHz. The

optimized variant completes after a few milliseconds.

 Conclusion

For the two examples presented here, the purely recursive definition results in many self

calls. Without memoization, they cause the same intermediate results to be calculated

and discarded over and over again. This is unnecessary and costs performance.

Memoization is a remedy that is as simple as it is ingenious and efficient.

Additionally, many problems may still be solved elegantly with the help of a recursive

algorithm, but without the need to accept the disadvantages in terms of performance. All

in all, memoization can often reduce the running time (very) significantly.

Chapter 7 advanCed reCursion

388

NOTE: BACKGROUND KNOWLEDGE ON MEMOIZATION

the term “memoization,” which seems a bit strange, goes back to donald Michie (https://

en.wikipedia.org/wiki/Memoization). as described earlier, it is a technique to optimize

the processing of computations by caching partial results. in such a way, nested calls with

the same input can be accelerated significantly. however, for memoization to be used, the

wrapped recursive functions must be pure functions. this means that such a function returns

the same value if it is called with a particular input. in addition, these functions must be free of

any side effects.

7.1.3 Memoization with Python On-Board Tools
You know that memoization leads to a vast speedup of recursive computations.

When implemented directly according to the purely recursive definition, there is

exponential growth for the Fibonacci numbers in running time. In combination with

the implementation of memoization, you can achieve enormous speed gains. For this

purpose, data from previous calculations are cached, and each call is first checked to

see if a result is already available. You use a dictionary to store the data. The explicit

wrapping and subsequent calling of the actual functionality can be programmed by

hand. However, the whole thing has the following (cosmetic) disadvantages:

 1. Separation of concerns: Application code and auxiliary code are

slightly interwoven. Although the two are quite easy to separate

visually, clarity and elegance are somewhat lost.

 2. Source code duplication: Memoization is actually a cross-cutting

concern that should be solved in a general way. If, on the other

hand, a separate implementation is made in each case, careless

errors may creep in—even if this is unlikely due to the low

complexity.

Python permits memoization to be implemented with less effort and in a

standardized way. You will briefly look at the following techniques:

• Memoization using a decorator

• Built-in memoization with lru_cache from the module functools

Chapter 7 advanCed reCursion

https://en.wikipedia.org/wiki/Memoization
https://en.wikipedia.org/wiki/Memoization

389

The nice thing about these variants is that to implement memoization, you don’t

mix the application code with the source code. Better yet, this allows you to provide

memoization as a cross-cutting concern. The prerequisite is an import as follows:

import functools

 Memoization with a Decorator

As for the manual implementation, you again use an additional function, here decorate_

with_memo(func), which defines a data store. In contrast to the manual implementation,

a helper function helper implements the memoization here. For this purpose, a function

is returned, which is identical to the function func but enriched with memoization, or

more precisely, which retrieves or stores its results in the dictionary. Here is a variant

that is closer to the completely manual implementation as well as a slightly modified one

where memoization is less visible.

hand knitted

def decorate_with_memo(func):

 lookup_map = dict()

 @functools.wraps(func)

 def helper(n):

 # MEMOIZATION: check if precalculated result exists

 if n in lookup_map:

 return lookup_map[n]

 result = func(n)

 # MEMOIZATION: store calculated result

 lookup_map[n] = result

 return result

 return helper

memoization not so obvious

def decorate_with_memo_shorter_one_param(func):

 lookup_map = dict()

 @functools.wraps(func)

 def helper(n):

Chapter 7 advanCed reCursion

390

 if n not in lookup_map:

 lookup_map[n] = func(n)

 return lookup_map[n]

 return helper

The example uses the concept of decorators, which is briefly introduced in

Appendix B. In general, decorators work like aspect-oriented programming or proxies,

wrapping the original functionality with some functionality of their own. Therefore, the

original function is passed to the decorator, and the decorator returns a modified function.

NOTE: USABLE TYPES

since you use a dictionary to manage data, the keys stored there must be immutable. thus,

the arguments may only use immutable types, such as numbers, strings, or tuples.

Decorator for Fibonacci numbers In Appendix B I explain how to use decorators for

argument checks, leaving the actual function code unaffected. Therefore, the problem to

be solved is reflected as closely as possible without special treatments.

With the knowledge gained, you can implement the memoization-optimized version

as follows—the source code reflects the mathematical (recursive) definition. The cross-

cutting concern of parameter checking and memoization are implemented separately as

independent decorators.

@check_argument_is_positive_integer

@decorate_with_memo_shorter_one_param

def fib_rec(n):

 # recursive termination

 if n == 1 or n == 2:

 return 1

 # recursive descent

 return fib_rec(n - 1) + fib_rec(n - 2)

Decorator for Pascal’s triangle Your memoization decorator has been designed so far

to accept one parameter. But how do you proceed if you need to support two parameters

for Pascal’s triangle computation and possibly even more for other functionalities?

Chapter 7 advanCed reCursion

391

It would be awkward and time-consuming to define a decorator with a suitable

number of parameters each time. Conveniently, in Python, parameters can be evaluated

and passed as tuples. Thus, you can implement the decorator in a general manner with

the parameters (*args) as follows:

def decorate_with_memo_shorter(func):

 lookup_map = dict()

 @functools.wraps(func)

 def helper(*args):

 if args not in lookup_map:

 lookup_map[args] = func(*args)

 return lookup_map[args]

 return helper

Let’s take a quick look at the usage for Pascal’s triangle:

@decorate_with_memo_shorter

def pascal_rec(row, col):

 # recursive termination: top

 if col == 1 and row == 1:

 return 1

 # recursive termination: borders

 if col == 1 or col == row:

 return 1

 # recursive descent

 return pascal_rec(row - 1, col) + pascal_rec(row - 1, col - 1)

 Built-in Memoization with lru_cache from the functools Module

You have seen wrapping with a decorator before. By using a LRU cache (Least Recently

Used) from the functools module, the whole thing can be written even more elegantly

and shorter. Moreover, there is no longer the danger of erroneous calls because the

memoization functionality is not realized by yourself.

Chapter 7 advanCed reCursion

392

LRU cache for Fibonacci numbers As usual, you use the calculation of Fibonacci

numbers as an example. They are also used in the description of the module functools

online (https://docs.python.org/3/library/functools.html), here minimally adapted.

By marking a function with @lru_cache, the caching of previous calculation results can be

activated. Here the number may be limited by the argument maxsize. By default, the value is

128. Specifying None makes the size unlimited but also disables the LRU functionality.

>>> @functools.lru_cache(maxsize=None)
... @check_argument_is_positive_integer
... def fib_rec(n):
... if n == 1 or n == 2:
... return 1
...
... return fib_rec(n-1) + fib_rec(n-2)

Let’s try a few things. With cache_info() it is possible to output information about

the cache. This is done before calling the function and after the calculation.

>>> fib.cache_info()
CacheInfo(hits=0, misses=0, maxsize=None, currsize=0)

>>> [fib(n) for n in range(1, 19)]
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584]

>>> fib.cache_info()
CacheInfo(hits=32, misses=18, maxsize=None, currsize=18)

LRU cache for Pascal’s triangle Memoization can also be added to Pascal’s triangle

calculation very easily as follows:

@functools.lru_cache(maxsize=None)
def pascal_rec(row, col):
 # recursive termination: top
 if col == 1 and row == 1:
 return 1

 # recursive termination: borders
 if col == 1 or col == row:
 return 1

 # recursive descent
 return pascal_rec(row - 1, col) + pascal_rec(row - 1, col - 1)

Chapter 7 advanCed reCursion

https://docs.python.org/3/library/functools.html

393

7.2 Backtracking
Backtracking is a problem-solving strategy based on trial and error, and it investigates

all possible solutions. When detecting an error, previous steps are reset, hence the name

backtracking. The goal is to reach a solution step by step. When an error occurs, you try

another path to the solution. Thus, potentially all possible (and therefore perhaps also

a lot of) ways are followed. However, this also has a disadvantage, namely a rather long

running time until the problem is solved.

To keep the implementation manageable, backtracking is often used in combination

with recursion for the following problems:

• Solving the n-Queens Problem

• Finding a solution to a Sudoku puzzle

• Finding a way out of a maze given as a 2D array or nested lists

7.2.1 The n-Queens Problem
The n-Queens Problem is a puzzle to be solved on an n × n board. Queens (from the

chess game) must be placed so that no two queens can beat each other according to

the chess rules. Thus, other queens may not be placed on the same row, column, or

diagonals. As an example, here is the solution for a 4 × 4 board, where the queens are

symbolized by a Q (for queen):

| |Q| | |

| | | |Q|

|Q| | | |

| | |Q| |

Chapter 7 advanCed reCursion

394

 Algorithm

You start with a queen in row 0 and position 0 (upper left corner). After each

placement, a check is made to ensure that there are no collisions in the vertical

and diagonal left and right directions upwards with already placed queens. A check

downwards is not necessary because no queens can be placed there yet since the

filling is done from top to bottom. This is also the reason why a check in the horizontal

direction is not necessary.

Provided the position is valid, move to the next row, trying all positions from 0 to n

− 1. This procedure is repeated until you have finally placed the queen in the last row.

If there is a problem in positioning a queen, use backtracking: remove the last placed

queen and try again at the next possible position. If the end of the row is reached without

a solution, this is an invalid situation, and the preceding queen must also be placed

again. You can observe that backtracking sometimes goes back up one row, in extreme

cases up to the first row.

Backtracking by example Let’s look at the steps to the solution, where on the

horizontal level, some intermediate steps are partly omitted and invalid positions are

marked with x:

--------------- --------------- ---------------

 Q | | | Q | | | Q | | |

--------------- --------------- ---------------

 | | | x | x | Q | | | Q |

--------------- => --------------- => ---------------

 | | | | | | x | x | x | x

--------------- --------------- ---------------

 | | | | | | | | |

--------------- --------------- ---------------

=> Backtracking

No correct placement of a queen in the second row can be found with a queen in the

first row and second position. So, a solution is tried at the following position in the first

row like so:

Chapter 7 advanCed reCursion

395

--------------- --------------- ---------------

 Q | | | Q | | | Q | | |

--------------- --------------- ---------------

 x | x | x | Q | | | Q | | | Q

--------------- => --------------- => ---------------

 | | | x | Q | | | Q | |

--------------- --------------- ---------------

 | | | | | | x | x | x | x

--------------- --------------- ---------------

=> Backtracking

Even with the queen in the third position in the first row, no valid position for a

queen in the second row can be found. So, you have to go back not only one row but two

rows and start the search again with the queen in row zero in position one:

--------------- --------------- --------------- ---------------

 | Q | | | Q | | | Q | | | Q | |

--------------- --------------- --------------- ---------------

 x | x | x | Q | | | Q | | | Q | | | Q

--------------- => --------------- => --------------- => ---------------

 | | | | | | Q | | | Q | | |

--------------- --------------- --------------- ---------------

 | | | | | | | | | x | x | Q |

--------------- --------------- --------------- ---------------

=> Solution found

Notice that you arrive at a solution through a few trial-and-error steps.

In the following, you will now take a rough look at the implementation of the

algorithm.

Implementation of backtracking You again subdivide the previously described

algorithm for solving the n-Queens Problem into a couple of functions so that one

subproblem can be solved at a time.

First, think about how you want to model the playfield. A list of lists as a two-

dimensional data model offers itself formally. Here, a Q represents a queen, and a blank

means an empty board. To initially create a blank board, write function initialize_

board(). Then you call the actual recursive backtracking function solve_n_queens(),

Chapter 7 advanCed reCursion

396

which determines the solution inplace on the data model. If one is found, the helper

function returns True, otherwise False. To allow callers to evaluate easily, you return a

tuple with a solution flag and the playfield.

def solve_n_queens(size):

 board = initialize_board(size)

 # Start the recursive solution finding

 solved = solve_n_queens_helper(board, 0)

 return solved, board # (solved, board)

def initialize_board(size):

 return [[' ' for col in range(size)] for row in range(size)]

Now let’s get back to the main task of finding a solution using recursion and

backtracking. As described, the algorithm proceeds row by row and then tries the

respective columns.

def solve_n_queens_helper(board, row):

 max_row, max_col = get_dimension(board)

 # recursive termination

 if row >= max_row:

 return True

 solved = False

 col = 0

 while col < max_col and not solved:

 if is_valid_position((board, col, row):

 place_queen(board, col, row)

 # recursive descent

 solved = __solve_n_queens_helper(board, row + 1)

 # Backtracking, if no solution found

 if not solved:

 remove_queen(board, col, row)

 col += 1

 return solved

Chapter 7 advanCed reCursion

397

To keep the algorithm as free of details and list accesses as possible as well as thereby

understandable, you define two helper functions place_queen() und remove_queen().

def place_queen(board, col, row):

 board[row][col] = 'Q'

def remove_queen(board, col, row):

 board[row][col] = ' '

Additionally, I want to mention how to process modifications in algorithms with

backtracking. As one variation (used here), modifications made before the recursion

steps are reverted. As a second variation, you can pass copies during the recursion step

and perform the modification in the copy. Then no undo or delete is necessary anymore.

For the sake of completeness, the implementation of the initialization of the playfield

is shown here:

def get_dimension(values2dim):

 if (isinstance(values2dim, list)):

 return (len(values2dim), len(values2dim[0]))

 if (isinstance(values2dim, np.ndarray)):

 return values2dim.shape

 raise Exception("unsupported type", type(values2dim)) '

 What Is Still Missing in the Implementation? What Is
the Next Step?

As an exercise in Section 7.3.9 you are left with the task of implementing the is_valid_

position(board, col, row) function. This is to check whether a playfield is valid. Due

to the chosen algorithm of the line-by-line approach and because only one queen can be

placed per line, possible collisions may be excluded only vertically and diagonally.

Chapter 7 advanCed reCursion

398

7.3 Exercises
7.3.1 Exercise 1: Towers of Hanoi (★★★✩✩)
In the Towers of Hanoi problem, there are three towers or sticks named A, B, and C. At

the beginning, several perforated discs are placed on stick A in order of size, with the

largest at the bottom. The goal is now to move the entire stack (i. e., all the discs) from A

to C. The discs must be placed on the top of the stack. The goal is to move one disk at a

time and never place a smaller disc below a larger one. That’s why you need the helper

stick B. Write function solve_tower_of_hanoi(n) that prints the solution on the console

in the form of the movements to be executed.

Example

The whole thing looks something like Figure 7-1.

A B C

Figure 7-1. Task definition for the Towers of Hanoi problem

The following solution should be provided for three slices:

Tower Of Hanoi 3

A -> C

A -> B

C -> B

A -> C

B -> A

B -> C

A -> C

Chapter 7 advanCed reCursion

399

Bonus Create a console-based graphical format. For two slices, this would look

something like this:

Tower Of Hanoi 2

 A B C

 | | |

 #|# | |

 ##|## | |

------- ------- -------

Moving slice: 1 : Tower [A] -> Tower [B]

 A B C

 | | |

 | | |

 ##|## #|# |

------- ------- -------

Moving slice: 2 : Tower [A] -> Tower [C]

 A B C

 | | |

 | | |

 | #|# ##|##

------- ------- -------

Moving slice: 1 : Tower [B] -> Tower [C]

 A B C

 | | |

 | | #|#

 | | ##|##

------- ------- -------

7.3.2 Exercise 2: Edit Distance (★★★★✩)
For two strings, compute how many changes they are—case-insensitive—apart; that is,

how to transition one string to the other by applying any of the following actions one or

more times:

• Add a character (+),

• Delete a character (−), or

• Change a character (⤳).

Chapter 7 advanCed reCursion

400

Write function edit_distance(str1, str2) that tries the three actions character by

character and checks the other part recursively.

Examples

The following modifications are required for the inputs shown:

Input 1 Input 2 Result Actions

“Micha” “Michael” 2 Micha Michae Michael
e l

� �
� �

“rapple” “tables” 4

Bonus (★★★✩✩) Optimize Edit Distance with Memoization

7.3.3 Exercise 3: Longest Common
Subsequence (★★★✩✩)

The previous exercise was about how many changes are needed to transform two given

strings into each other. Another interesting problem is to find the longest common but

not necessarily contiguous sequence of letters in two strings that occurs in two strings in

the same sequence. Write function lcs(str1, str2) that recursively processes the strings

from the back. In case of two parts of the same length, it uses the second one.

 Examples

Input 1 Input 2 Result

“aBCe” “ZaCeF” “aCe”

“aBCXY” “XYaCB” “aB”

“aBCMiXChXaeL” “MiChaeL” “MiChaeL”

“sunday-Morning” “saturday-night-party” “suday-ig”

Bonus Use Memoization for Longest Common Subsequence

Chapter 7 advanCed reCursion

401

7.3.4 Exercise 4: Way Out of a Labyrinth (★★★✩✩)
In this assignment, you are asked to find the way out of a maze. Assume a maze is

given as a two-dimensional array or nested lists with walls symbolized by # and target

positions (exits) symbolized by X. From any position, a path to all exits is supposed to be

determined. If there are two exits in a row, only the first of the two has to be supplied. It is

only allowed to move in the four compass directions, but not diagonally. Write function

find_way_out(values, x, y) that logs each found exit with FOUND EXIT at

Example

A larger playfield with four target fields is shown below. The bottom figure shows each of

the paths indicated by a dot (.). In between you see the logging of the found positions of

the exits. For this example, the search starts from the upper left corner with coordinates

x=1, y=1.ons of the exits. The search starts from the upper left corner with coordinates

x=1, y=1.

##################################

X#X#

#

#

#

#

#

#

X X####X # # # ###

##################################

FOUND EXIT: x: 30, y: 1

FOUND EXIT: x: 17, y: 8

FOUND EXIT: x: 10, y: 8

Chapter 7 advanCed reCursion

402

##################################

#.# #....#.....# #...X#X#

#..##### ####.##...##..# #.### #

.## # #..## ## .# #.. #

...# ###..#.## ## ..#...### #

..####.....## ##.... ### #

..#... ##### # ####

######...#########...## # ### #

#..X X####X.# # # ###

##################################

Based on the output, it is also clear that two of the target fields marked with X are not

detected from the start position. One is the X at the very top right corner, which cannot be

reached due to a missing link. The other is the lower middle X, which is behind another exit.

7.3.5 Exercise 5: Sudoku Solver (★★★★✩)
Write function solve_sudoku(board) that determines a valid solution, if any, for a

partially initialized playfield passed as a parameter.

Example

A valid playfield with some blanks is shown here:

Chapter 7 advanCed reCursion

403

This should be completed to the following solution:

7.3.6 Exercise 6: Math Operator Checker (★★★★✩)
This assignment is about a mathematically inclined puzzle. For a set of digits and

another set of possible operators, you want to find all combinations that result in the

desired value. The order of the digits cannot be changed. Still, it is possible to insert any

operator from the possible operators between the digits, except before the first digit.

Write function all_combinations_with_value(n) that determines all combinations that

result in the value passed as parameter. Check this for the digits 1 to 9 and the operations

+ and −, and combining the digits. Start with function find_all_combinations(values),

which is passed the corresponding digits.

Examples

Let’s consider two combinations only for the digits 1, 2, and 3:

1 + 2 + 3 = 6

1 + 23 = 24

In total, these digits allow the following different combinations to be formed:

Input Result (all_combinations())

[1, 2, 3] {12−3=9, 123=123, 1+2+3=6, 1+2−3=0, 1−2+3=2, 1−23=−22,

1−2−3=−4, 1+23=24, 12+3=15}

Chapter 7 advanCed reCursion

404

Suppose you wanted to generate the value 100 from the given digits 1 to 9 and the set

of available operators (+, −, and combining the digits). This is possible, for example, as

follows:

1 + 2 + 3 − 4 + 5 + 6 + 78 + 9 = 100

In total, the following variants should be determined:

Input Result (allCombinationsWithValue())

100 [1+23−4+5+6+78−9, 123+4−5+67−89, 123−45−67+89, 12+3−4+5+67+8+9,

1+23− 4+56+7+8+9, 12−3−4+5−6+7+89, 123−4−5−6−7+8−9,

1+2+34−5+67−8+9, 12+3+4+5−6− 7+89, 123+45−67+8−9, 1+2+3−4+5+6+78+9]

7.3.7 Exercise 7: Water Jug Problem (★★★✩✩)
Let’s say you have two jugs with capacities of m and n liters. Unfortunately, these jugs

have no markings or indications of their fill level. The challenge is to measure x liters,

where x is less than m or n. At the end of the procedure, one jug should contain x liters

and the other should be empty. Write function solve_water_jugs(size1, size2,

desired_liters), which displays the solution on the console. If successful, it returns

True, otherwise False.

Examples

For two jugs, one with a capacity of 4 liters and one with a capacity of 3 liters, you can

measure 2 liters in the following way:

State Action

Jug 1: 0/Jug 2: 0 Both jugs initial empty

Jug 1: 4/Jug 2: 0 Fill jug 1 (unnecessary, but due to the algorithm)

Jug 1: 4/Jug 2: 3 Fill jug 2

Jug 1: 0/Jug 2: 3 empty jug 1

Jug 1: 3/Jug 2: 0 pour jug 2 into jug 1

(continued)

Chapter 7 advanCed reCursion

405

State Action

Jug 1: 3/Jug 2: 3 Fill jug 2

Jug 1: 4/Jug 2: 2 pour jug 2 in jug 1

Jug 1: 0/Jug 2: 2 empty jug 1

solved

On the other hand, measuring 2 liters is impossible with two jugs of 4 liters capacity each.

7.3.8 Exercise 8: All Palindrome Substrings (★★★★✩)
In this assignment, you want to determine for a given word whether it contains

palindromes and, if so, which ones. Write recursive function all_palindrome_parts_

rec(input) that determines all palindromes with at least two letters in the passed string

and returns them sorted alphabetically.1

 Examples

Input Result

“BCdedCB” [“BCdedCB”, “CdedC”, “ded”]

“aBaLottoLL” [“aBa”, “LL”, “LottoL”, “otto”, “tt”]

“racecar” [“aceca”, “cec”, “racecar”]

Bonus Find the longest of all palindrome substrings. This time there is no

requirement for maximum performance.

7.3.9 Exercise 9: The n-Queens Problem (★★★✩✩)
In the n-Queens Problem, n queens are to be placed on an n × n board in such a way that

no two queens can beat each other according to chess rules. Thus, other queens must

not be placed on the same row, column, or diagonal. To do this, extend the solution

1 Of course, you are not interested in empty strings and single characters in this assignment,
although of course, strictly speaking, they are also palindromes by definition.

Chapter 7 advanCed reCursion

406

shown in Section 7.2.1 and implement function is_valid_position(board, col,

row). Also write function print_board(board) to display the board as well as output the

solution to the console.

Example

For a 4 × 4 playfield, there is the following solution, with the queens symbolized by a Q.

| |Q| | |

| | | |Q|

|Q| | | |

| | |Q| |

7.4 Solutions
7.4.1 Solution 1: Towers of Hanoi (★★★✩✩)
In the Towers of Hanoi problem, there are three towers or sticks named A, B, and C.

At the beginning, several perforated discs are placed on stick A in order of size, with the

largest at the bottom. The goal is now to move the entire stack (i. e., all the discs) from

A to C. The discs must be placed on the top of the stack. The goal is to move one disk at

a time and never place a smaller disc below a larger one. That’s why you need the helper

stick B. Write function solve_tower_of_hanoi(n) that prints the solution on the console

in the form of the movements to be executed.

Example

The whole thing looks something like Figure 7-2.

Chapter 7 advanCed reCursion

407

A B C

Figure 7-2. Task definition for the Towers of Hanoi problem

The following solution should be provided for three slices:

Tower Of Hanoi 3

A -> C

A -> B

C -> B

A -> C

B -> A

B -> C

A -> C

Algorithm The movement of the disks is implemented in function move_tower

(n, source, helper, destination), which gets the number of slices to be moved, the

initial source stick, the auxiliary stick, and the target stick. Initially you use n and ‘A’, ‘B ‘,

and ‘C’ as initial parameters. The function move_tower() splits the problem into three

smaller problems:

 1. First, the tower, which is smaller by one slice, is transported from

the source to the auxiliary stick.

 2. Then, the last and largest slice is moved from the source to the

target stick.

 3. Finally, the remaining tower must be moved from the auxiliary to

the target stick.

The action move source to target serves as a recursive termination when the height

is 1. It gets a little tricky by swapping the source, target, and auxiliary stick during the

actions.

Chapter 7 advanCed reCursion

408

def move_tower(n, source, helper, destination):

 if n == 1:

 print(source + " -> " + destination)

 else:

 # move all but last slice from source to auxiliary stick

 # destination thus becomes the new auxiliary stick

 move_tower(n - 1, source, destination, helper)

 # move the largest slice from source to target

 print(source + " -> " + destination)

 # move_tower(1, source, helper, destination); // unverständlicher

 # move tower reduced by one from auxiliary staff to target

 move_tower(n - 1, helper, source, destination)

In order to show fewer details, it is advisable to use the definition of the following

function:

def solve_tower_of_hanoi(n):

 print("Tower Of Hanoi", n)

 move_tower(n, 'A', 'B', 'C')

To solve the problem, the function must be called with the desired number of slices,

like this:

>>> solve_tower_of_hanoi(3)

Tower Of Hanoi 3

A -> C

A -> B

C -> B

A -> C

B -> A

B -> C

A -> C

Chapter 7 advanCed reCursion

409

HINT: RECURSION AS A TOOL

although the problem sounds rather tricky at first, it can be solved quite easily with recursion.

this assignment shows again that recursion is useful to reduce the difficulty by decomposing

a problem into several smaller subproblems that are not so difficult to solve.

 Bonus: Create a Console-Based Graphical Format

For two slices, this would look something like this:

Tower Of Hanoi 2

 A B C

 | | |

 #|# | |

 ##|## | |

------- ------- -------

Moving slice: 1 : Tower [A] -> Tower [B]

 A B C

 | | |

 | | |

 ##|## #|# |

------- ------- -------

Moving slice: 2 : Tower [A] -> Tower [C]

 A B C

 | | |

 | | |

 | #|# ##|##

------- ------- -------

Moving slice: 1 : Tower [B] -> Tower [C]

 A B C

 | | |

 | | #|#

 | | ##|##

------- ------- -------

Chapter 7 advanCed reCursion

410

First, let’s look at how the graphical output algorithm changes. This part for

finding the solution remains absolutely the same. You just add class Tower to your

implementation and an action that you pass as a lambda expression when solving.

You modify the function solve_tower_of_hanoi(n) in such a way that three Tower

objects are created there, and the desired number of disks is placed on the output tower

accordingly.

def solve_tower_of_hanoi_v2(n):

 print("Tower Of Hanoi", n)

 source = Tower("A")

 helper = Tower("B")

 destination = Tower("C")

 # Attention: reverse order: largest slice first

 for i in range(n, 0, -1):

 source.push(i)

 action = lambda: print_towers(n + 1, source, helper, destination)

 action()

 move_tower_v2(n, source, helper, destination, action)

The realization of move_tower_v2() only gets an action as another parameter. This

allows an action to be executed at the recursive termination.

def move_tower_v2(n, source, helper, destination, action):

 if n == 1:

 elem_to_move = source.pop()

 destination.push(elem_to_move)

 print("Moving slice:", elem_to_move, ":", source, "->", destination)

 action()

 else:

 move_tower_v2(n - 1, source, destination, helper, action)

 move_tower_v2(1, source, helper, destination, action)

 move_tower_v2(n - 1, helper, source, destination, action)

The class Tower Let’s set about creating the Tower class, which uses a string for

identification and a Stack to store the slices:

Chapter 7 advanCed reCursion

411

class Tower:

 def __init__(self, name):

 self.name = name

 self.__values = Stack()

 def __str__(self):

 return "Tower [" + self.name + "]"

 def push(self, item):

 self.__values.push(item)

 def pop(self):

 return self.__values.pop()

Additions in the class Stack You can reuse the class Stack built in Section 5.3.2, but

you still have to add two functions:

def size(self):

 return len(self.__values)

def get_at(self, pos):

 return self.__values[pos]

Console output of towers In Chapter 4 on strings, you learned about a first variant

for drawing towers in Section 4.2.16 in Exercise 16. Taking advantage of the knowledge

gained there, you modify the implementation appropriately. First, you draw the top part

of the tower with draw_top(). Then you draw the slices with draw_slices() and finally a

bottom boundary line with draw_bottom().

 def print_tower(self, max_height):

 height = self.values.size() - 1

 visual = self.draw_top(max_height, height)

 visual += self.draw_slices(max_height, height)

 visual += self.draw_bottom(max_height)

 return visual

 def draw_top(self, max_height, height):

 visual = [" " * max_height + self.name + " " * max_height]

Chapter 7 advanCed reCursion

412

 for i in range(max_height - height - 1, 0, -1):

 visual.append(" " * max_height + "|" + " " * max_height)

 return visual

 def draw_slices(self, max_height, height):

 visual = []

 for i in range(height, -1, -1):

 value = self.values.get_at(i)

 padding = max_height - value

 visual.append(" " * padding + "#" * value + "|" +

 "#" * value + " " * padding)

 return visual

 def draw_bottom(self, height):

 return ["-" * (height * 2 + 1)]

Output all towers Finally, you combine the output functionality in the following

function to print the towers represented as three lists side by side:

def print_towers(max_height, source, helper, destination):

 tower1 = source.print_tower(max_height)

 tower2 = helper.print_tower(max_height)

 tower3 = destination.print_tower(max_height)

 for (a,b,c) in zip(tower1, tower2, tower3):

 print(a + " " + b + " " + c)

 Verification

For testing, invoke the function. The output shows the correct operation:

>>> solve_tower_of_hanoi_v2(2)

Tower Of Hanoi 2

 A B C

 | | |

 #|# | |

 ##|## | |

------- ------- -------

Chapter 7 advanCed reCursion

413

Moving slice: 1: Tower [A] -> Tower [B]

 A B C

 | | |

 | | |

 ##|## #|# |

------- ------- -------

Moving slice: 2: Tower [A] -> Tower [C]

 A B C

 | | |

 | | |

 | #|# ##|##

------- ------- -------

Moving slice: 1: Tower [B] -> Tower [C]

 A B C

 | | |

 | | #|#

 | | ##|##

------- ------- -------

7.4.2 Solution 2: Edit Distance (★★★★✩)
For two strings, compute how many changes they are—case-insensitive—apart; that is,

how to transition one string to the other by applying any of the following actions one or

more times:

• Add a character (+),

• Delete a character (−), or

• Change a character (~).

Write function edit_distance(str1, str2) that tries the three actions character by

character and checks the other part recursively.

Chapter 7 advanCed reCursion

414

Examples

The following modifications are required for the inputs shown:

Input 1 Input 2 Result Actions

“Micha” “Michael” 2 Micha Michae Michael
e l

� �
� �

“rapple” “tables” 4

Algorithm Let’s start to consider how you can proceed here. If both strings match,

then the edit distance is 0. If one of the two strings contains no (more) characters, then

the distance to the other is the number of characters remaining in the other string. This

means inserting the corresponding characters several times. This defines the recursive

termination.

Otherwise, you check both strings from their beginning and compare them character

by character. If they are the same, you go one position further towards the end of the

string. If they are different, you check three different modifications:

 1. Insert: Recursive call for the next characters

 2. Remove: Recursive call for the next characters

 3. Replace: Recursive call for the next characters

You examine three possible paths and then calculate the minimum from these

three values.

Here’s how you implement this:

def edit_distance(str1, str2):

 return __edit_distance_helper(str1.lower(), str2.lower(),

 len(str1) - 1, len(str2) - 1)

def __edit_distance_helper(str1, str2, pos1, pos2):

 # recursive termination

 # if one of the strings is at the beginning and the other is

 # not yet, then take the length of the remaining string

 if pos1 < 0:

 return pos2 + 1

Chapter 7 advanCed reCursion

415

 if pos2 < 0:

 return pos1 + 1

 # check if the characters match and then advance to the next one

 if str1[pos1] == str2[pos2]:

 # recursive descent

 return __edit_distance_helper(str1, str2, pos1 - 1, pos2 - 1)

 else:

 # recursive descent: check for insert, delete, change

 insert_in_first = __edit_distance_helper(str1, str2, pos1,

pos2 - 1)

 delete_in_first = __edit_distance_helper(str1, str2, pos1 - 1,

pos2)

 change = __edit_distance_helper(str1, str2, pos1 - 1, pos2 - 1)

 # minimum from all three variants + 1

 return 1 + min(insert_in_first, delete_in_first, change)

 Verification

For testing, you use the following inputs, which show the correct functionality:

@pytest.mark.parametrize("value1, value2, expected",

 [("Micha", "Michael", 2),

 ("rapple", "tables", 4)])

def test_edit_distance(value1, value2, expected):

 result = edit_distance(value1, value2)

 assert result == expected

Performance Test You also want to check the performance—because it is only

a rough classification that matters, no sophisticated profiling is needed here, but the

accuracy of time.process_time() is sufficient:

def main():

 inputs_tuples = [["Micha", "Michael"],

 ["rapple", "tables"],

 ["sunday-Morning", "saturday-Night"],

 ["sunday-Morning-Breakfast", "saturday-Night-Party"]]

Chapter 7 advanCed reCursion

416

 for inputs in inputs_tuples:

 start = time.process_time()

 result = edit_distance(inputs[0], inputs[1])

 end = time.process_time()

 print(inputs[0] + " -> " + inputs[1] + " edits:", result)

 print("editDistance() took %.2f ms" % ((end - start) * 1000))

If you run the above lines with (a lot of) patience, you get approximately the

following output. In fact, I stopped the last calculation after a few minutes, which is why

it is not shown here.

Micha -> Michael edits: 2

editDistance() took 0.26 ms

rapple -> tables edits: 4

editDistance() took 0.35 ms

sunday-Morning -> saturday-Night edits: 10

editDistance() took 137443.89 ms

The running times increase significantly the more the two inputs differ. So how can

you make it work better? The solution of the bonus task shows this.

 Bonus: Optimize Edit Distance with Memoization (★★★✩✩)

At the beginning of the chapter, I described memoization as a technique and mentioned

that one often uses a dictionary as a cache—so also here:

def edit_distance_optimized(str1, str2):

 return __edit_distance_memo(str1.lower(), str2.lower(),

 len(str1) - 1, len(str2) - 1, {})

def __edit_distance_memo(str1, str2, pos1, pos2, values):

 # recursive termination

 # if one of the strings is at the beginning and the other one

 # not yet, then take the length of the remaining string

 if pos1 < 0:

 return pos2 + 1

 if pos2 < 0:

 return pos1 + 1

Chapter 7 advanCed reCursion

417

 # MEMOIZATION

 if (pos1, pos2) in values:

 return values.get((pos1, pos2))

 result = 0

 # check if the characters match and then advance to the next one

 if str1[pos1] == str2[pos2]:

 # recursive descent

 result = __edit_distance_memo(str1, str2, pos1 - 1, pos2 - 1, values)

 else:

 # recursive descent: check for insert, delete, change

 insert = __edit_distance_memo(str1, str2, pos1, pos2 - 1, values)

 delete = __edit_distance_memo(str1, str2, pos1 - 1, pos2, values)

 change = __edit_distance_memo(str1, str2, pos1 - 1, pos2 - 1, values)

 # minimum from all three variants + 1

 result = 1 + min(insert_in_first, delete_in_first, change)

 # MEMOIZATION

 values[(pos1, pos2)] = result

Suppose you perform the same checks as before. Even with the last calculation of the

Edit Distance of 16, only a minimum running time of less than one millisecond can be

determined.

Using the memoization decorator In Section 7.1.3, you learned how to add

memoization by using decorators to recursive functions to optimize running time.

For both the calculation of Fibonacci numbers and Pascal’s triangle, it felt natural to

annotate the decorator directly to the function calling itself. However, for Edit Distance,

you have to think a bit. Here you have a two-step procedure, and it is not the initial

function that must be annotated, but the one that performs the actual calculation.

@decorate_with_memo_shorter

def edit_distance(str1, str2):

 return __edit_distance_helper(str1.lower(), str2.lower(),

 len(str1) - 1, len(str2) - 1)

@decorate_with_memo_shorter

def __edit_distance_helper(str1, str2, pos1, pos2):

Chapter 7 advanCed reCursion

418

Let’s recap: An initial parameterization is done by the construct with the helper

function. For all calls to edit_distance_helper(), the two inputs str1 and str2 remain

unchanged. The variance is in the positions. Therefore, in the manual implementation,

the key in the dictionary consists only of the positions. However, the universal variant

cannot distinguish this and therefore uses a key consisting of all four parameter values.

7.4.3 Solution 3: Longest Common Subsequence
(★★★✩✩)

The previous exercise was about how many changes are needed to transform two given

strings into each other. Another interesting problem is to find the longest common but

not necessarily contiguous sequence of letters in two strings that occurs in two strings in

the same sequence. Write function lcs(str1, str2) to recursively process the strings

from the back. In case of two parts of the same length, it uses the second one.

 Examples

Input 1 Input 2 Result

“aBCe” “ZaCeF” “aCe”

“aBCXY” “XYaCB” “aB”

“aBCMiXChXaeL” “MiChaeL” “MiChaeL”

“sunday-Morning” “saturday-night-party” “suday-ig”

Algorithm You move from the back to the front. If the characters match, the

character is included in the result. If the characters differ, the check has to be repeated

recursively for the strings shortened by one character.

def lcs(str1, str2):

 return __lcs_helper(str1, str2, len(str1) - 1, len(str2) - 1)

def __lcs_helper(str1, str2, pos1, pos2):

 # recursive termination

 if pos1 < 0 or pos2 < 0:

 return ""

Chapter 7 advanCed reCursion

419

 # are the characters the same?

 if str1[pos1] == str2[pos2]:

 # recursive descent

 return __lcs_helper(str1, str2, pos1 - 1, pos2 - 1) + str1[pos1]

 else:

 # otherwise take away one of both letters and try it

 # again, but neither letter belongs in the result

 lcs1 = __lcs_helper(str1, str2, pos1, pos2 - 1)

 lcs2 = __lcs_helper(str1, str2, pos1 - 1, pos2)

 return lcs1 if len(lcs1) > len(lcs2) else lcs2

Modified algorithm Alternatively, you can run from front to back until the end of the

strings is reached. Interestingly, the same results are almost always produced because

with the variant from the end, only for the second input combination, you get XY instead

of AB as a result.

In this variant, if the letters are the same, you have to add them in front. In addition,

the skipping of non-matching characters must now be simulated by increasing the

respective position. All in all, the implementation changes as follows:

def lcs_from_start(str1, str2):

 return __lcs__from_start_helper(str1, str2, 0, 0)

def __lcs__from_start_helper(str1, str2, pos1, pos2):

 # recursive termination: one input is a the end

 if pos1 >= len(str1) or pos2 >= len(str2):

 return ""

 # are both character the same?

 if str1[pos1] == str2[pos2]:

 # recursive descent

 return str1[pos1] + \

 __lcs__from_start_helper(str1, str2, pos1 + 1, pos2 + 1)

 else:

 # otherwise take away one of both letters and try it

 # again, but neither letter belongs in the result

 lcs1 = __lcs__from_start_helper(str1, str2, pos1, pos2 + 1)

 lcs2 = __lcs__from_start_helper(str1, str2, pos1 + 1, pos2)

 return lcs1 if len(lcs1) > len(lcs2) else lcs2

Chapter 7 advanCed reCursion

420

 Verification

For testing, you use the following inputs, which show the correct operation:

@pytest.mark.parametrize("value1, value2, expected",

 [("ABCE", "ZACEF", "ACE"),

 ("ABCXY", "XYACB", "AB"),

 ("ABCMIXCHXAEL", "MICHAEL", "MICHAEL")])

def test_lcs(value1, value2, expected):

 result = lcs(value1, value2)

 assert result == expected

In the accompanying project, for the sake of completeness, you also test the variant

with the LCS determination from the start (not shown here).

Performance test Again, you want to look at the performance. Here it is also true

that time.process_time() is sufficient for classification.

def main():

 inputs_tuples = [["ABCMIXCHXAEL", "MICHAEL"],

 ["sunday-Morning", "saturday-Night-Party"],

 ["sunday-Morning-Wakeup", "saturday-Night"]]

 for inputs in inputs_tuples:

 start = time.process_time()

 result = lcs(inputs[0], inputs[1])

 end = time.process_time()

 print(inputs[0] + " -> " + inputs[1] + " lcs:", result)

 print("lcs() took %.2f ms" % ((end - start) * 1000))

Measure the following execution times (they will vary slightly for you):

ABCMIXCHXAEL -> MICHAEL lcs: MICHAEL

lcs() took 0.03 ms

sunday-Morning -> saturday-Night-Party lcs: suday-ig

lcs() took 141523.38 ms

sunday-Morning-Wakeup -> saturday-Night lcs: suday-ig

lcs() took 280070.26 ms

Chapter 7 advanCed reCursion

421

 Bonus: Use Memoization for Longest Common Subsequence

This results in long running times for more significant differences in the two inputs since

many possible subsequences exist. Therefore, pure recursion is not performant. So how

do you do it better? Again, you use memoization for performance optimization. This

time you use two-dimensional nested lists of strings for data storage.

def lcs_optimized(str1, str2):

 values = [[None for _ in range(len(str2))] for _ in range(len(str1))]

 return __lcs_with_memo(str1, str2, len(str1) - 1, len(str2) - 1, values)

The actual implementation uses memoization as follows:

def __lcs_with_memo(str1, str2, pos1, pos2, values):

 # recursive termination

 if pos1 < 0 or pos2 < 0:

 return ""

 # MEMOIZATION

 if values[pos1][pos2] is not None:

 return values[pos1][pos2]

 lcs = ""

 # are the characters the same?

 if str1[pos1] == str2[pos2]:

 # recursive descent

 lcs = __lcs_with_memo(str1, str2, pos1 - 1, pos2 - 1, values) + \

 str1[pos1]

 else:

 # otherwise take away one of both letters and try it

 # again, but neither letter belongs in the result

 lcs1 = __lcs_with_memo(str1, str2, pos1, pos2 - 1, values)

 lcs2 = __lcs_with_memo(str1, str2, pos1 - 1, pos2, values)

 lcs = lcs1 if len(lcs1) > len(lcs2) else lcs2

 # MEMOIZATION

 values[pos1][pos2] = lcs

 return lcs

Chapter 7 advanCed reCursion

422

With this optimization, the running times can be reduced to a few milliseconds. For

evaluation, start the module EX03_LCS_TIMING_MEMO.PY and compare your execution

times with these values:

ABCMIXCHXAEL -> MICHAEL lcs: MICHAEL

lcs_optimized() took 0.03 ms

sunday-Morning -> saturday-Night-Party lcs: suday-ig

lcs_optimized() took 0.21 ms

sunday-Morning-Wakeup -> saturday-Night lcs: suday-ig

lcs_optimized() took 0.31 ms

Use of the memoization decorator As already described for Edit Distance, the two-

step procedure of LCS requires you to annotate not the initial function but the one that

performs the actual computation:

@decorate_with_memo_shorter

def lcs(str1, str2):

 return __lcs_helper(str1, str2, len(str1) - 1, len(str2) - 1)

@decorate_with_memo_shorter

def __lcs_helper(str1, str2, pos1, pos2):

7.4.4 Solution 4: Way Out of a Labyrinth (★★★✩✩)
In this assignment, you are asked to find the way out of a maze. Assume a maze is

given as a two-dimensional array or nested lists with walls symbolized by # and target

positions (exits) symbolized by X. From any position, a path to all exits is supposed to be

determined. If there are two exits in a row, only the first of the two has to be supplied. It is

only allowed to move in the four compass directions, but not diagonally. Write function

find_way_out(values, x, y) that logs each found exit with FOUND EXIT at

Example

A larger playfield with four target fields is shown below. The bottom part shows each of

the paths indicated by a dot (.). In between you see the logging of the found positions of

the exits. For this example, the search starts from the upper left corner with coordinates

x=1, y=1.

Chapter 7 advanCed reCursion

423

##################################

X#X#

#

#

#

#

#

#

X X####X # # # ###

##################################

FOUND EXIT: x: 30, y: 1

FOUND EXIT: x: 17, y: 8

FOUND EXIT: x: 10, y: 8

##################################

#.# #....#.....# #...X#X#

#..##### ####.##...##..# #.### #

.## # #..## ## .# #.. #

...# ###..#.## ## ..#...### #

..####.....## ##.... ### #

..#... ##### # ####

######...#########...## # ### #

#..X X####X.# # # ###

##################################

Based on the outputs, it is also clear that two of the target fields marked with X are

not detected from the start position. One is the X at the very top right corner, which

cannot be reached due to a missing link. The other is the lower middle X, which is

behind another exit.

Algorithm The algorithm for finding a way out of a labyrinth checks whether there

is a way in the four compass directions, starting from the current position. To do this,

neighboring fields that have already been visited are marked with the . character, just as

you would do in reality with small stones, for example. The trial and error continues until

you come to a X as a solution, a wall in the form of a #, or an already visited field (marked

by .). If there is no possible direction left for a position, you use backtracking, resume the

last chosen path, and try the remaining paths from there. This is implemented as follows:

Chapter 7 advanCed reCursion

424

def find_way_out(values, x, y):

 if x < 0 or y < 0 or x > len(values[0]) or y >= len(values):

 return False

 # recursive termination

 if get_at(values, x, y) == 'X':

 print("FOUND EXIT: x: {}, y: {}".format(x, y))

 return True

 # wall or already visited?

 if get_at(values, x, y) in '#.':

 return False

 # recursive descent

 if get_at(values, x, y) == ' ':

 # mark as visited

 values[y][x] = '.'

 # try all 4 cardinal directions

 up = find_way_out(values, x, y - 1)

 left = find_way_out(values, x + 1, y)

 down = find_way_out(values, x, y + 1)

 right = find_way_out(values, x - 1, y)

 found_a_way = up or left or down or right

 # backtracking because no valid solution

 if not found_a_way:

 values[y][x] = ' ' # wrong path, thus delete field marker

 return found_a_way

 raise ValueError("wrong char in labyrinth")

Note that you use the natural alignment of x and y coordinates in the functions. Still,

when accessing the array or nested lists, the order is [y][x] because you are working in

rows, as discussed in the introductory section of the chapter on arrays in Section 6.1.2.

Chapter 7 advanCed reCursion

425

 Verification

To try it out, you define the maze from the introduction. Next, you call the function find_

way_out(), which logs the previously shown exits from the maze and finally visualizes

the ways with dots (.). Here you use a version of print_array() that leaves no white

space between characters to make the maze more recognizable.

def main():

 world_big = [list("##################################"),

 list("# # # # # # X#X#"),

 list("# ##### #### ## ## # # ### #"),

 list("# ## # # ## ## # # # #"),

 list("# # ### # ## ## # ### # #"),

 list("# # #### ## ## ### # #"),

 list("#### # #### #### # #### #"),

 list("###### ######### ## # ### #"),

 list("## # X X####X # # # ### ##"),

 list("##################################")]

 print_array(world_big)

 if find_way_out(world_big, 1, 1):

 print_array(world_big)

 Alternative

The implementation shown nicely prepares the paths to the target fields graphically.

However, it has two minor disadvantages. On the one hand, it breaks off directly when an

exit is encountered and thus does not find an exit behind it. On the other hand, if there

are several paths to a target field, the program also logs the finding of an exit several

times. The latter could be solved quite easily by collecting all solution paths in a set.

If you want to find all reachable exits, it is possible to modify the function shown

before so that visited fields are marked with a #. However, this way, the field is quite filled

up at the end and does not show the way anymore, which was an advantage of the initial

variant.

def find_way_out_v2(board, x, y):

 if board[y][x] == '#':

 return False

Chapter 7 advanCed reCursion

426

 found = board[y][x] == 'X'

 if found:

 print("FOUND EXIT: x: {}, y: {}".format(x, y))

 board[y][x] = '#'

 right = find_way_out_v2(board, x + 1, y)

 left = find_way_out_v2(board, x - 1, y)

 down = find_way_out_v2(board, x, y + 1)

 up = find_way_out_v2(board, x, y - 1)

 return found or right or left or down or up

Although the playing field is unrecognizable after that, four exits are found:

FOUND EXIT: x: 10, y: 8

FOUND EXIT: x: 12, y: 8

FOUND EXIT: x: 30, y: 1

FOUND EXIT: x: 17, y: 8

7.4.5 Solution 5: Sudoku Solver (★★★★✩)
Write function solve_sudoku(board) that determines a valid solution, if any, for a

partially initialized playfield passed as a parameter.

Example

A valid playfield with some blanks is shown here:

Chapter 7 advanCed reCursion

427

This should be completed to the following solution:

Algorithm To solve Sudoku, you use backtracking. As with other backtracking

problems, Sudoku can be solved by step-by-step trial and error. In this case, that means

trying different numbers for each of the empty squares. According to the Sudoku rules,

the current digit must not already exist horizontally, vertically, or in a 3 × 3 block. If

you find a valid value assignment, you can continue recursively at the next position to

test whether you arrive at a solution. If none is found, then you try the procedure with

the next digit. However, if none of the digits from 1 to 9 lead to a solution, you need

backtracking to examine other possible paths to the solution.

You proceed as follows in the implementation:

 1. Check if all rows have been processed; then you have a solution.

 2. Find the next empty field. To do this, skip all fields that are already

filled. This can also change lines.

 3. If no empty field exist until the last row, you have found the solution.

 4. Otherwise you try out the digits from 1 to 9.

 a. Is there a conflict? Then you have to try the next digit.

 b. The digit is a possible candidate. You call your function recursively

for the following position (next column or even next row).

 c. If the recursion returns False, this digit does not lead to a solution

and you use backtracking.

def solve_sudoku(board):

 return __solve_sudoku_helper(board, 0, 0)

Chapter 7 advanCed reCursion

428

def __solve_sudoku_helper(board, start_row, start_col):

 # 1) check if all rows have been processed, then you have a solution.

 if start_row > 8:

 return True

 row = start_row

 col = start_col

 # 2) skip fields with numbers until you reach the next empty field

 while board[row][col] != 0:

 col += 1

 if col > 8:

 col = 0

 row += 1

 # 3) already processed all lines?

 if row > 8:

 return True

 solved = False

 # 4) try for the current field all digits from 1 to 9 through

 for num in range(1, 10):

 board[row][col] = num

 # 4a) check if the whole field with the digit is still valid

 if is_valid_position(board):

 # 4b) recursive descent for the following field

 if col < 8:

 # recursive descent: next field in x-direction

 solved = __solve_sudoku_helper(board, row, col + 1)

 else:

 # recursive descent: next field in new line

 solved = __solve_sudoku_helper(board, row + 1, 0)

 # 4c) backtracking if recursion is not successful

 if not solved:

 # backtracking: no solution found

 board[row][col] = 0

Chapter 7 advanCed reCursion

429

 else:

 return True

 else:

 # try next digit

 board[row][col] = 0

 return False

def is_valid_position(board):

 return check_horizontally(board) and \

 check_vertically(board) and \

 check_boxes(board)

Looking at this implementation, you might already doubt whether this variant is

really optimal, even without knowing the details of the helper functions shown in the

following. Why? You keep checking the entire playfield for validity at every step, and even

worse, doing that in combination with backtracking! I’ll go into this in more detail later.

Let’s first consider the three functions check_horizontally(board), check_

vertically(board), and check_boxes(board). You implemented them in Exercise 9 in

Section 6.3.9. They are shown again here for completeness:

def check_horizontally(board):
 for row in range(9):
 # collect all values of a row in a list
 row_values = [board[row][x] for x in range(9)]

 if not all_desired_numbers(row_values):
 return False

 return True

def check_vertically(board):
 for x in range(9):
 # collect all values of a column in a list
 column_values = [board[row][x] for row in range(9)]

 if not all_desired_numbers(column_values):
 return False

 return True

Chapter 7 advanCed reCursion

430

def check_boxes(board):
 for y_box in range(3):
 for x_box in range(3):
 box_values = collect_box_values(board, y_box, x_box)

 if not all_desired_numbers(box_values):
 return False

 return True

The following auxiliary functions still play an important role:

def collect_box_values(board, y_box, x_box):

 box_values = []

 for y in range(3):

 for x in range(3):

 real_y = y_box * 3 + y

 real_x = x_box * 3 + x

 box_values.append(board[real_y][real_x])

 return box_values

def all_desired_numbers(all_collected_values):

 relevant_values = list(all_collected_values)

 # remove empty fields

 relevant_values = remove_all_occurences(relevant_values, 0)

 # check that there are no duplicates

 values_set = set(relevant_values)

 if len(relevant_values) != len(values_set):

 return False

 # only 1 to 9?

 return {1, 2, 3, 4, 5, 6, 7, 8, 9}.issuperset(values_set)

def remove_all_occurences(values, val):

 return [value for value in values if value != val]

Chapter 7 advanCed reCursion

431

def print_array(values):

 for y in range(len(values)):

 for x in range(len(values[y])):

 print(values[y][x], end=" ")

 print()

 Verification

Test this implementation with the example from the introduction:

def main():

 board = [[1, 2, 0, 4, 5, 0, 7, 8, 9],

 [0, 5, 6, 7, 0, 9, 0, 2, 3],

 [7, 8, 0, 1, 2, 3, 4, 5, 6],

 [2, 1, 4, 0, 6, 0, 8, 0, 7],

 [3, 6, 0, 8, 9, 7, 2, 1, 4],

 [0, 9, 7, 0, 1, 4, 3, 6, 0],

 [5, 3, 1, 6, 0, 2, 9, 0, 8],

 [6, 0, 2, 9, 7, 8, 5, 3, 1],

 [9, 7, 0, 0, 3, 1, 6, 4, 2]]

 if solve_sudoku(board):

 print("Solved!")

 print_array(board)

This provides the following result:

Solved!

1 2 3 4 5 6 7 8 9

4 5 6 7 8 9 1 2 3

7 8 9 1 2 3 4 5 6

2 1 4 3 6 5 8 9 7

3 6 5 8 9 7 2 1 4

8 9 7 2 1 4 3 6 5

5 3 1 6 4 2 9 7 8

6 4 2 9 7 8 5 3 1

9 7 8 5 3 1 6 4 2

Chapter 7 advanCed reCursion

432

The solution is displayed within a few fractions of a second. So far, everything has

worked really well. But what happens if the given playfield contains hardly any digits but

lots of empty fields?

Playfields with more blanks When you tackle the challenge of trying to solve playfields

with only a few given digits, there are many variations to be tried and a lot of backtracking

comes into play. Suppose you wanted to solve something like the following playfield:

board2 = [

 [6, 0, 2, 0, 5, 0, 0, 0, 0],

 [0, 0, 0, 0, 0, 4, 0, 3, 0],

 [0, 0, 0, 0, 0, 0, 0, 0, 0],

 [4, 3, 0, 0, 0, 8, 0, 0, 0],

 [0, 1, 0, 0, 0, 0, 2, 0, 0],

 [0, 0, 0, 0, 0, 0, 7, 0, 0],

 [5, 0, 0, 2, 7, 0, 0, 0, 0],

 [0, 0, 0, 0, 0, 0, 0, 8, 1],

 [0, 0, 0, 6, 0, 0, 0, 0, 0],

]

In principle, this is already possible with your algorithm, but it takes several minutes.

Although this is quite long, you probably couldn’t solve difficult puzzles by hand in this

time span—but with the computer, it should be even faster. So what can you improve?

 Reasonable Optimizations

Idea 1: Optimization of the check Checking the entire playfield for validity in every step

is neither useful, necessary, nor performant. As an optimization, you modify the check

so that only a single column, row, and the relevant box are checked at a time. To do this,

you first modify the function is_valid_position() slightly so that it receives a column

and row as parameters:

def is_valid_position(board, row, col):

 return check_single_horizontally(board, row) and \

 check_single_vertically(board, col) and \

 check_single_box(board, row, col)

Chapter 7 advanCed reCursion

433

Then you create specific test methods such as the following:

def check_single_horizontally(board, row):

 column_values = [board[row][col] for col in range(9)]

 return all_desired_numbers(column_values)

def check_single_vertically(board, col):

 row_values = [board[row][col] for row in range(9)]

 return all_desired_numbers(row_values)

This optimization results in running times in the range of a few seconds—between

20 and 50 seconds for complicated playfields. This is already much better, but it can still

be much more performant.

Idea 2: More clever testing If you look at the processes, you notice that you try all

digits—this violates a bit of common sense. Wouldn’t it make more sense to only use

potentially valid paths, and to do so, check in advance whether the current digit is even

usable in the context? You can then directly exclude all those digits that already exist in

a row, column, or box. To do this, you need to modify the check as follows and pass the

potential digit as parameter.

def is_valid_position(board, row, col, num):

 return check_num_not_in_column(board, col, num) and \

 check_num_not_in_row(board, row, num) and \

 check_num_not_in_box(board, row, col, num)

def check_num_not_in_column(board, col, num):

 for row in range(9):

 if board[row][col] == num:

 return False

 return True

def check_num_not_in_row(board, row, num):

 for col in range(9):

 if board[row][col] == num:

 return False

 return True

Chapter 7 advanCed reCursion

434

def check_num_not_in_box(board, row, col, num):

 adjusted_row = row // 3 * 3

 adjusted_col = col // 3 * 3

 for y in range(3):

 for x in range(3):

 if board[adjusted_row + y][adjusted_col + x] == num:

 return False

 return True

Idea 3: Optimized sequence of setting and checking Finally, you modify the trial

and error so that only after determining that the digit is valid is it placed on the playfield.

So far, in the solve_sudoku() function as step 4, you have tried all the digit as follows:

def __solve_sudoku_helper(board, start_row, start_col):

 ...

 solved = False

 # 4) for the current field, try all digits from 1 to 9

 for num in range(1, 10):

 board[row][col] = num

 # 4a) check if the whole playfield containing the digit is

still valid

 if is_valid_position(board, row, col, num):

 ...

You optimized this test twice. First, you changed the initial function is_valid_

position(board) to is_valid_position(board, row, col) so that it also gets the

row and column as parameters. As a further improvement, you pass the number to be

checked is_valid_position(board, row, col, num).

Now you go one step further and change the order of inserting the value and

checking. Therefore you switch only two lines, namely the assignment and the if with

the call of the optimized variant of the validity check:

4) for the current field, try all digits from 1 to 9

for num in range(1, 10):

Chapter 7 advanCed reCursion

435

 # 4a) check if the whole playfield containing the digit is still valid

 if is_valid_position(board, row, col, num)

 board[row][col] = num

Results of the optimizations made Due to your optimizations—which, by the way,

do not lead to any restrictions in readability or comprehensibility—you can save yourself

from trying out many solution paths that never lead to the goal. The solutions were

always determined in about 1 minute on my iMac (i7 4Ghz), even for more complex

playing fields.

The naive way of implementation with the overall check of the board at each step

led to running times of more than 20 minutes for more complex boards. While the first

optimization finds a solution after about 3.5 minutes, the combination of ideas 2 and 3

leads to a running time of about 1 minute.

7.4.6 Solution 6: Math Operator Checker (★★★★✩)
This assignment is about a mathematically inclined puzzle. For a set of digits and

another set of possible operators, you want to find all combinations that result in the

desired value. The order of the digits cannot be changed. Still, it is possible to insert any

operator from the possible operators between the digits, except before the first digit.

Write function all_combinations_with_value(n) that determines all combinations that

result in the value passed as parameter. Check it for the digits 1 to 9 and the operations +, −,

and combining the digits. Start with function find_all_combinations(values) which is

passed the corresponding digits.

Examples

Let’s consider two combinations only for the digits 1, 2, and 3:

1 + 2 + 3 = 6

1 + 23 = 24

In total, these digits allow the following different combinations:

Input Result (all_combinations())

[1, 2, 3] {12−3=9, 123=123, 1+2+3=6, 1+2−3=0, 1−2+3=2, 1−23=−22, 1−2−3=−4,

1+23=24, 12+3=15}

Chapter 7 advanCed reCursion

436

Suppose you want to generate the value 100 from the given digits 1 to 9 and the set of

available operators (+, −, and combining the digits). This is possible, for example, as follows:

1 + 2 + 3 − 4 + 5 + 6 + 78 + 9 = 100

In total, the following variants should be determined:

Input Result (allCombinationsWithValue())

100 [1+23−4+5+6+78−9, 123+4−5+67−89, 123−45−67+89, 12+3−4+5+67+8+9,

1+23− 4+56+7+8+9, 12−3−4+5−6+7+89, 123−4−5−6−7+8−9, 1+2+34−5+67−8+9,

12+3+4+5−6− 7+89, 123+45−67+8−9, 1+2+3−4+5+6+78+9]

Algorithm First, you subdivide the problem at a high level by computing all possible

combinations by calling the function all_combinations() and then using find_by_

value() to search for those combinations whose evaluation yields the desired value:

def all_combinations_with_value(base_values, desired_value):

 all_combinations = find_all_combinations(base_values)

 return find_by_value(all_combinations, desired_value)

def find_by_value(all_combinations, desired_value):

 return {key for key, value in all_combinations.items()

 if value == desired_value}

To calculate the combinations, the input is split into a left part and a right part. This

results in three subproblems to be solved, namely l + r, l − r, and lr, where l and r stand

for the left and right parts of the input. You compute the result with the function eval().

If there is only one digit left, this is the result and it constitutes the recursive termination.

def find_all_combinations(digits):

 # recursive termination

 if len(digits) == 0:

 return {}

 if len(digits) == 1:

 last_digit = digits[0]

 return {last_digit: last_digit}

 # recursive descent

 left = digits[0]

Chapter 7 advanCed reCursion

437

 right = digits[1:]

 results = find_all_combinations(right)

 # create all combinations

 solutions = {}

 for expression, value in results.items():

 right_expr = str(expression)

 solutions[str(left) + "+" + right_expr] = \

 eval(str(left) + "+" + right_expr)

 solutions[str(left) + "-" + right_expr] = \

 eval(str(left) + "-" + right_expr)

 solutions[str(left) + right_expr] = \

 eval(str(left) + right_expr)

 return solutions

This variant is quite understandable but has the disadvantage that here again various

partial lists are generated. Since the list with the digits is probably rather short, this does

not matter. Nevertheless, as a mini-optimization, let’s take a look at a variant that works

with a position pointer.

def find_all_combinations(digits):

 return __all_combinations_helper(digits, 0)

def __all_combinations_helper(digits, pos):

 # recursive termination: last digit

 # no calculation needed, just digit

 if pos == len(digits) - 1:

 last_digit = digits[len(digits) - 1]

 return {last_digit: last_digit}

 # recursive descent

 results = __all_combinations_helper(digits, pos + 1)

 # create all combinations

 solutions = {}

 current_digit = digits[pos]

 left = str(current_digit)

 for expression, value in results.items():

 right = str(expression)

Chapter 7 advanCed reCursion

438

 solutions[left + "+" + right] = eval(left + "+" + right)

 solutions[left + "-" + right] = eval(left + "-" + right)

 solutions[left + right] = eval(left + right)

 return solutions

 Verification

First, you write a unit test that checks the values shown in the introduction, namely the

inputs 1 to 3, and which combinations can be built upon them.

@pytest.mark.parametrize("digits, expected",

 [([1, 2, 3],

 {"12-3": 9,

 "123": 123,

 "1+2+3": 6,

 "1+2-3": 0,

 "1-2+3": 2,

 "1-23": -22,

 "1-2-3": -4,

 "1+23": 24,

 "12+3": 15})])

def test_all_combinations(digits, expected):

 result = find_all_combinations(digits)

 assert result == expected

Additionally, you want to verify the functionality for the result value 100.

@pytest.mark.parametrize("digits, value, expected",

 [([1, 2, 3, 4, 5, 6, 7, 8, 9], 100,

 {"1+23-4+5+6+78-9",

 "12+3+4+5-6-7+89",

 "123-45-67+89",

 "123+4-5+67-89",

 "123-4-5-6-7+8-9",

 "123+45-67+8-9",

 "1+2+3-4+5+6+78+9",

Chapter 7 advanCed reCursion

439

 "12+3-4+5+67+8+9",

 "1+23-4+56+7+8+9",

 "1+2+34-5+67-8+9",

 "12-3-4+5-6+7+89"})])

def test_all_combinations_with_value(digits, value, expected):

 result = all_combinations_with_value(digits, value)

 assert result == expected

7.4.7 Solution 7: Water Jug Problem (★★★✩✩)
Say you have two jugs with capacities of m and n liters. Unfortunately, these jugs

have no markings or indications of their fill level. The challenge is to measure x liters,

where x is less than m or n. At the end of the procedure, one jug should contain x liters

and the other should be empty. Write function solve_water_jugs(size1, size2,

desired_liters) to display the solution on the console and, if successful, return True,

otherwise False.

Examples

For two jugs, one with a capacity of 4 liters and one with a capacity of 3 liters, you can

measure 2 liters in the following way:

State Action

Jug 1: 0/Jug 2: 0 Both jugs initial empty

Jug 1: 4/Jug 2: 0 Fill jug 1 (unnecessary, but due to the algorithm)

Jug 1: 4/Jug 2: 3 Fill jug 2

Jug 1: 0/Jug 2: 3 empty jug 1

Jug 1: 3/Jug 2: 0 pour jug 2 into jug 1

Jug 1: 3/Jug 2: 3 Fill jug 2

Jug 1: 4/Jug 2: 2 pour jug 2 in jug 1

Jug 1: 0/Jug 2: 2 empty jug 1

solved

Chapter 7 advanCed reCursion

440

On the other hand, measuring 2 liters is impossible with two jugs of 4 liters

capacity each.

Algorithm To solve the water jug problem, you use recursion with a greedy algorithm.

Here, at each point in time, you have the following next actions as possibilities:

• Empty jug 1 completely.

• Empty jug 2 completely.

• Fill jug 1 completely.

• Fill jug 2 completely.

• Fill jug 1 from jug 2 until the source jug is empty or the jug to be filled

is full.

• Fill jug 2 from jug 1 until the source jug is empty or the jug to be filled

is full.

Try these six variants step by step until one of them succeeds. To do this, you need

to test each time whether there is the desired number of liters in one of the jugs and

whether the other is empty.

def is_solved(current_jug1, current_jug2, desired_liters):

 return (current_jug1 == desired_liters and current_jug2 == 0) or \

 (current_jug2 == desired_liters and current_jug1 == 0)

Because trying out many solutions can be quite time-consuming, you remember

for optimization the combinations you have already tried out. This speeds up the

calculation by lengths but makes the implementation only minimally more complicated

if you model the already calculated levels in the form of a tuple. To find the solution, you

start with two empty jugs.

def solve_water_jugs(size1, size2, desired_liters):

 return __solve_water_jugs_rec(size1, size2, desired_liters, 0, 0, {})

def __solve_water_jugs_rec(size1, size2, desired_liters,

 current_jug1, current_jug2, already_tried):

 if is_solved(current_jug1, current_jug2, desired_liters):

 print("Solved Jug 1:", current_jug1, " / 2:", current_jug2)

 return True

Chapter 7 advanCed reCursion

441

 key = (current_jug1, current_jug2)

 if key not in already_tried:

 already_tried[key] = True

 # try all 6 variants

 print("Jug 1:", current_jug1, " / 2: ", current_jug2)

 min_2_1 = min(current_jug2, (size1 - current_jug1))

 min_1_2 = min(current_jug1, (size2 - current_jug2))

 result = __solve_water_jugs_rec(size1, size2, desired_liters,

 0, current_jug2, already_tried) or \

 __solve_water_jugs_rec(size1, size2, desired_liters,

 current_jug1, 0, already_tried) or \

 __solve_water_jugs_rec(size1, size2, desired_liters,

 size1, current_jug2, already_tried) or \

 __solve_water_jugs_rec(size1, size2, desired_liters,

 current_jug1, size2, already_tried) or \

 __solve_water_jugs_rec(size1, size2, desired_liters,

 current_jug1 + min_2_1,

 current_jug2 - min_2_1,

 already_tried) or \

 __solve_water_jugs_rec(size1, size2, desired_liters,

 current_jug1 - min_1_2,

 current_jug2 + min_1_2,

 already_tried)

 already_tried[key] = result

 return result

 return False

Chapter 7 advanCed reCursion

442

ATTENTION: POSSIBLE PITFALL

When implementing this, you might get the idea of simply examining all six variants

independently, as you would do to determine all exits from a maze, for example. however, i’m

afraid that’s not right because it would allow multiple actions in one step. therefore, only one

step has to be examined at a time. only in case of a failure do you proceed with another one.

thus, the following variant shown is not correct— it detects the solution, but additional, partly

confusing steps are executed:

// Intuitive, BUT WRONG, because 2 or more steps possible

action_empty1 = __solve_water_jugs_rec(size1, size2, desired_liters,

 0, current_jug2, already_tried);

action_empty2 = __solve_water_jugs_rec(size1, size2, desired_liters,

 current_jug1, 0, already_tried);

action_fill1 = __solve_water_jugs_rec(size1, size2, desired_liters,

 size1, current_jug2, already_tried);

action_fill2 = __solve_water_jugs_rec(size1, size2, desired_liters,

 current_jug1, size2, already_tried);

min_2_1 = min(current_jug2, (size1 - current_jug1))

action_fillup1_from2 = __solve_water_jugs_rec(size1, size2, desired_liters,

 current_jug1 + min_2_1),

 current_jug2 - min_2_1,

already_tried);

min_1_2 = min(current_jug1, (size2 - current_jug2))

action_fillup2_from1 = __solve_water_jugs_rec(size1, size2, desired_liters,

 current_jug1 - min_1_2),

 current_jug2 + min_1_2,

already_tried);

 Verification

Let’s determine the solution for the combination from the example in the Python

command line:

>>> print(solve_water_jugs(4, 3, 2))

Jug 1: 0 / 2: 0

Chapter 7 advanCed reCursion

443

Jug 1: 4 / 2: 0

Jug 1: 4 / 2: 3

Jug 1: 0 / 2: 3

Jug 1: 3 / 2: 0

Jug 1: 3 / 2: 3

Jug 1: 4 / 2: 2

Solved Jug 1: 0 / 2: 2

True

Let’s try the counterexample with two 4-liter buckets and the target of 2 liters:

>>> print(solve_water_jugs(4, 4, 2))

Jug 1: 0 / 2: 0

Jug 1: 4 / 2: 0

Jug 1: 4 / 2: 4

Jug 1: 0 / 2: 4

False

7.4.8 Exercise 8: All Palindrome Substrings (★★★★✩)
In this assignment, you want to determine for a given word whether it contains

palindromes and, if so, which ones. Write recursive function all_palindrome_parts_

rec(input) that determines all palindromes with at least two letters in the passed string

and returns them sorted alphabetically.2

 Examples

Input Result

“BCdedCB” [“BCdedCB”, “CdedC”, “ded”]

“aBaLottoLL” [“aBa”, “LL”, “LottoL”, “otto”, “tt”]

“racecar” [“aceca”, “cec”, “racecar”]

2 Of course, you are not interested in empty strings and single characters in this assignment,
although of course, strictly speaking, they are also palindromes by definition.

Chapter 7 advanCed reCursion

444

Algorithm This problem is broken down into three subproblems for texts of at least

length 2:

 1. Is the entire text a palindrome?

 2. Is the part shortened on the left a palindrome (for all positions

from the right)?

 3. Is the right-shortened part a palindrome (for all positions from

the left)?

For a better understanding, look at the procedure for the initial value LOTTOL:

1) LOTTOL
2) OTTOL, TTOL, TOL, OL
3) LOTTO, LOTT, LOT, LO

After that, you move both left and right inwards by one character and repeat the

checks and this procedure until the positions overlap. For the example, the checks

continue as follows:

1) OTTO
2) TTO, TO
3) OTT, OT

And finally, in the last step, only one check remains because the other substrings

consist of only one character:

1) TT
2) T
3) T

As previously applied several times, a two-step variant is used here. In this case,

the first method primarily initializes the result object and then starts the recursive call

appropriately.

Based on this step-by-step procedure, let’s implement the check for palindrome

substrings as follows:

def all_palindrome_parts_rec(input):
 results = set()

 __all_palindrome_parts_rec(input, 0, len(input) - 1, results)

 return results

Chapter 7 advanCed reCursion

445

def __all_palindrome_parts_rec(input, left, right, results):

 # recursive termination

 if left >= right:

 return

 # 1) check if the whole string is a palindrome

 complete_is_palindrome = is_palindrome_rec_in_range(input, left, right)

 if complete_is_palindrome:

 new_candidate = input[left:right + 1]

 results.add(new_candidate)

 # 2) check text shortened from left

 for i in range(left + 1, right):

 left_part_is_palindrome = is_palindrome_rec_in_range(input, i,

right)

 if left_part_is_palindrome:

 new_candidate = input[i:right + 1]

 results.add(new_candidate)

 # 3) check text shortened from right

 for i in range(right - 1, left, -1):

 right_part_is_palindrome = is_palindrome_rec_in_range

(input, left, i)

 if right_part_is_palindrome:

 new_candidate = input[left:i + 1]

 results.add(new_candidate)

 # recursive descent

 __all_palindrome_parts_rec_in_range(input, left + 1, right - 1,

results)

Here you use the function is_palindrome_rec_in_range(input, left, right)

created in Section 4.2.4 in Exercise 4 to check for palindromes on ranges of a string. This

is shown again here for completeness:

def is_palindrome_rec_in_range(input, left, right):

 # recursive termination

 if left >= right:

 return True

Chapter 7 advanCed reCursion

446

 if input[left] == input[right]:

 # recursive descent

 return is_palindrome_rec_in_range(input, left + 1, right - 1)

 return False

Although the algorithm is quite comprehensible, it seems rather awkward with all

the loops and index accesses. In fact, an exquisite solution exists.

Optimized algorithm Instead of painstakingly trying through all the shortened

substrings, you can do much better by recursively invoking your function for a

shortened part:

def all_palindrome_parts_rec_optimized(input):

 results = set()

 __all_palindrome_parts_rec_optimized(input, 0, len(input) - 1, results)

 return results

def __all_palindrome_parts_rec_optimized(input, left, right, results):

 # recursive termination

 if left >= right:

 return

 # 1) check if the whole string is a palindrome

 if is_palindrome_rec(input, left, right):

 results.add(input[left: right + 1])

 # recursive descent: 2) + 3) check from left / right

 __all_palindrome_parts_rec_optimized(input, left + 1, right, results)

 __all_palindrome_parts_rec_optimized(input, left, right - 1, results)

This can be made a bit more readable, but the performance is (slightly) worse due to

the creation of substrings:

def all_palindrome_parts_rec_optimized_v3(input):

 results = set()

 __all_palindrome_parts_rec_optimized_v3(input, results)

 return results

Chapter 7 advanCed reCursion

447

def __all_palindrome_parts_rec_optimized_v3(input, results):

 # recursive termination

 if len(input) < 2:

 return

 # 1) check if the whole string is a palindrome

 if is_palindrome_rec(input, 0, len(input) - 1):

 results.add(input)

 # recursive descent: 2) + 3) check from left / right

 __all_palindrome_parts_rec_optimized_v3(input[1:], results)

 __all_palindrome_parts_rec_optimized_v3(input[0:len(input) - 1],

results)

 Verification

For testing, you use the following inputs, which show the correct operation:

def input_and_expected():

 return [("BCDEDCB",

 {"BCDEDCB", "CDEDC", "DED"}),

 ("ABALOTTOLL",

 {"ABA", "LL", "LOTTOL", "OTTO", "TT"}),

 ("racecar",

 {"aceca", "cec", "racecar"})]

@pytest.mark.parametrize("input, expected",

 input_and_expected())

def test_all_palindrome_parts_recs(input, expected):

 result = all_palindrome_parts_rec(input)

 assert result == expected

@pytest.mark.parametrize("input, expected",

 input_and_expected())

def test_all_palindrome_parts_recs_optimized(input, expected):

 result = all_palindrome_parts_rec_optimized(input)

 assert result == expected

Chapter 7 advanCed reCursion

448

@pytest.mark.parametrize("input, expected",

 input_and_expected())

def test_all_palindrome_parts_recs_optimized_v3(input, expected):

 result = all_palindrome_parts_rec_optimized_v3(input)

 assert result == expected

 Bonus: Find the Longest of All Palindrome Substrings

This time there is no requirement for maximum performance.

Algorithm After calculating all the palindrome substrings, finding the longest one is

just a matter of traversing the values and using len() to find the longest one as follows:

def longest_palindrome_part(input):

 all_palindrome_parts = all_palindrome_parts_rec(input)

 longest = ''

 for word in all_palindrome_parts:

 if len(word) > len(longest):

 longest = word

 return longest

 Verification

For testing, you use the following inputs, which show the correct operation:

@pytest.mark.parametrize("input, expected",

 [("ABALOTTOLL", "LOTTOL"),

 ("dreh_malam_herd", "dreh_malam_herd"),

 ("abc_XYZYX_def", "_XYZYX_")])

def test_longest_palindrome(input, expected):

 longest = longest_palindrome_part(input)

 assert longest == expected

Chapter 7 advanCed reCursion

449

7.4.9 Solution 9: The n-Queens Problem (★★★✩✩)
In the n-Queens Problem, n queens are to be placed on an n × n board in such a way

that no two queens can beat each other according to chess rules—thus, other queens

must not be placed in the same row, column, or diagonal. To do this, extend the solution

shown in Section 7.2.1 and implement the function is_valid_position(board, col,

row). Also write function print_board(board) to display the board as well as output the

solution to the console.

Example

For a 4 × 4 playfield, here is the following solution, with the queens symbolized by a Q:

| |Q| | |

| | | |Q|

|Q| | | |

| | |Q| |

Algorithm Let’s recall and repeat the algorithm presented in the introduction.

You attempt to place the queens one after the other at different positions. You start

with a queen in row 0 and position 0 (upper left corner). After each placement, a check

is made to ensure that there are no collisions in the vertical and diagonal left and right

directions upwards with queens that have already been placed. A check downwards is

logically not necessary in any case because no queens can be placed there yet. After all,

the filling is done from top to bottom. Since you also proceed line by line, a check in the

horizontal direction is unnecessary.

Provided the position is valid, move to the next row, trying all positions from 0 to n − 1.

This procedure is repeated until you have finally placed the queen in the last row. If there

is a problem positioning a queen, use backtracking: remove the last-placed queen and try

again at the next possible position. If the end of the row is reached without a solution, this

is an invalid situation, and the previous queen must also be placed again. You can see that

backtracking sometimes goes back up one row, in extreme cases to the first row.

Chapter 7 advanCed reCursion

450

Let’s start with the easy part, namely recapping the introduction and creating the

playfield and invoking the function to solve it:

def solve_n_queens(size):

 board = initialize_board(size)

 # start the recursive solution finding

 solved = __solve_n_queens_helper(board, 0)

 return solved, board

def initialize_board(size):

 return [[' ' for col in range(size)] for row in range(size)]

To model the playfield, you use a nested list. A Q represents a queen, a space a free

field. To keep the algorithm understandable, you extract the two functions, shown next,

place_queen() and remove_queen() for placing and deleting the queens:

def __solve_n_queens_helper(board, row):

 max_row, max_col = get_dimension(board)

 # recursive termination

 if row >= max_row:

 return True

 solved = False

 col = 0

 while col < max_col and not solved:

 if is_valid_position((board, col, row):

 place_queen(board, col, row)

 # recursive descent

 solved = __solve_n_queens_helper(board, row + 1)

 # Backtracking, if no solution found

 if not solved:

 remove_queen(board, col, row)

 col += 1

 return solved

Chapter 7 advanCed reCursion

451

The extraction of the following two functions leads to a better readability:

def place_queen(board, col, row):

 board[row][col] = 'Q'

def remove_queen(board, col, row):

 board[row][col] = ' '

As a reminder, get_dimension(values2dim) is shown again:

def get_dimension(values2dim):

 if (isinstance(values2dim, list)):

 return (len(values2dim), len(values2dim[0]))

 if (isinstance(values2dim, np.ndarray)):

 return values2dim.shape

 raise Exception("unsupported type", type(values2dim)) '

Start your own implementation Let’s now get down to implementing the helper

function. First, the one that checks whether a constellation is valid:

def is_valid_position(board, col, row):

 max_row, max_col = get_dimension(board)

 return check_horizontally(board, row, max_col) and \

 check_vertically(board, col, max_row) and \

 check_diagonally_left_up(board, col, row) and \

 check_diagonally_right_up(board, col, row, max_col)

Actually, the horizontal check is superfluous since you are just checking a new row

where no other queen can be placed yet—for the sake of illustration, you implement and

call the function anyway.

In the implementation, you use the following helper function to check in the x and y

directions:

def check_horizontally(board, row, max_col):

 col = 0

 while col < max_col and board[row][col] == ' ':

 col += 1

 return col >= max_col

Chapter 7 advanCed reCursion

452

def check_vertically(board, col, max_row):

 row = 0

 while row < max_row and board[row][col] == ' ':

 row += 1

 return row >= max_roy

Since you fill the board from top to bottom, no queen can be placed below the

current position yet. Thus, you limit yourself to the relevant diagonals to the top left

and right:

def check_diagonally_right_up(board, col, row, max_col):

 diag_ru_free = True

 while col < max_col and row >= 0:

 diag_ru_free = diag_ru_free and board[row][col] == ' '

 row -= 1

 col += 1

 return diag_ru_free

def check_diagonally_left_up(board, col, row):

 diag_lu_free = True

 while col >= 0 and row >= 0:

 diag_lu_free = diag_lu_free and board[row][col] == ' '

 row -= 1

 col -= 1

 return diag_lu_free

The output of the stylized chessboard with n × n squares is implemented as follows—

somewhat special is the calculation of the grid and of the cross lines:

def print_board(values):

 line = "-" * (len(values[0]) * 2 + 1)

 print(line)

 for y in range(len(values)):

 print("|", end='')

Chapter 7 advanCed reCursion

453

 for x in range(len(values[y])):

 print(values[y][x], end='|')

 print()

 print(line)

 Verification

For two different sized playfields, you compute the solution to the n-Queens Problem

using solve_n_queens(). Finally, you display the playfield determined as the solution in

each case on the console.

def solve_and_print(size):

 solved_and_board = solve_n_queens(size)

 if solved_and_board[0]:

 print_board(solved_and_board[1])

def main():

 solve_and_print(4)

 solve_and_print(8)

For the playing fields of sizes 4 × 4 and 8 × 8 you get the following output (only the

second one is shown):

|Q| | | | | | | |

| | | | |Q| | | |

| | | | | | | |Q|

| | | | | |Q| | |

| | |Q| | | | | |

| | | | | | |Q| |

Chapter 7 advanCed reCursion

454

| |Q| | | | | | |

| | | |Q| | | | |

 Alternative Solution Approach

Although the previously chosen representation as a two-dimensional array (or more

precisely as two-dimensional nested lists) is absolutely catchy, there is an optimization.

Because only one queen may be placed per row, it is possible to use a list for modeling

the playfield and the queens’ positioning, which simplifies a lot. Sounds strange at first.

How is it supposed to work?

For the solution of the n-Queens Problem, you need in each case x- and y-

coordinates. You reconstruct them by the following trick: The y-coordinate results from

the position in the list. For the x-coordinate, you store a corresponding numerical value

in the list. The presence of a queen, previously indicated by the character Q, can now be

determined indirectly. If the list contains a numerical value greater than or equal to 0 at

the position of the y-coordinate, then a queen is present.

With this knowledge, you can adjust the implementation of the algorithm in the

appropriate places. In fact, the basic logic does not change, but the function signatures

and position processing do. Conveniently, you also no longer need to generate a two-

dimensional model of the playfield in advance. But let’s look at the actual algorithm first:

def solve_n_queens(size):

 board = []

 solved = __solve_n_queens_helper(board, 0, size)

 return solved, board # (solved, board)

def __solve_n_queens_helper(board, row, size):

 # recursive termination

 if row >= size:

 return True

 solved = False

 col = 0

Chapter 7 advanCed reCursion

455

 while col < size and not solved:

 if __is_valid_position(board, col, row, size):

 __place_queen(board, col, row)

 # recursive descent

 solved = __solve_n_queens_helper(board, row + 1, size)

 # backtracking, if no solution

 if not solved:

 __remove_queen(board, col, row)

 col += 1

 return solved

For better readability, you modify the following functions appropriately:

def __placeQueen(board, col, row):

 if len(board) != row:

 raise ValueError("invalid row" + str(row) + " col: " + str(col))

 board.append(col)

def __removeQueen(board, col, row):

 if board[row] != col:

 raise ValueError("invalid col" + str(col) + " row: " + str(row))

 board.remove(col)

The implementation of the check whether a constellation is valid becomes

enormously simplified. For the vertical, it is checked whether the list already

contains the same column. Only the check of the diagonals is still done in a separate

helper method.

def __is_valid_position(board, col, row, size):

 yfree = col not in board

 return yfree and __check_diagonally(board, col, row, size)

Chapter 7 advanCed reCursion

456

Again, with the diagonals, you can apply the following trick: The difference in the x-

direction must correspond to the difference in the y-direction for the queens located on

a diagonal. For this, starting from the current position, only the coordinates have to be

computed and compared:

(x - 2, y - 2) X X (x + 2, y - 2)

 \ /

(x - 1, y - 1) X X (x + 1, y - 1)

 \ /

 X

 (x,y)

You implement the whole thing as follows:

def __check_diagonally(board, col, row, size):

 diag_lu_free = True

 diag_ru_free = True

 for y in range(row):

 x_pos_lu = col - (row - y)

 x_pos_ru = col + (row - y)

 if x_pos_lu >= 0:

 diag_lu_free = diag_lu_free and board[y] != x_pos_lu

 if x_pos_ru < size:

 diag_ru_free = diag_ru_free and board[y] != x_pos_ru

 return diag_ru_free and diag_lu_free

The output of the stylized chessboard with n × n squares is minimally adapted to the

new data structure:

def print_board(board, size):

 line = "-" * (size * 2 + 1)

 print(line)

 for y in range(size):

 print("|", end='')

 for x in range(size):

Chapter 7 advanCed reCursion

457

 value = 'Q' if x == board[y] else ' '

 print(value, end='|')

 print("\n" + line)

 Verification

Again, for two playfields, you compute the solution to the n-Queens Problem using

solve_n_queens(), which is supplied as a tuple, namely in the form of a bool variable as

an indicator whether there is a solution, and as a list with the solution, if it exists. This is

then output to the console:

def solve_and_print(size):

 solved_and_board = solve_n_queens(size)

 if solved_and_board[0]:

 print_board(solved_and_board[1], size)

def main():

 solve_and_print(4)

 solve_and_print(8)

The results are identical to the previous ones and are therefore not shown again.

7.5 Summary: What You Learned
Basic recursion is a very nice technique. When using it a bit more intensively, you see

that simple recursion, besides the advantages, sometimes requires some patience due to

long running times.

In this advanced chapter on recursion, you have significantly expanded your toolbox

with memoization and backtracking. Memoization allows you to increase performance,

and backtracking helps solve entertaining and amusing puzzles, such as Sudoku puzzles

or the n-Queens problem. It is also possible to find a way out of a maze.

Now that you are fluent in recursion, you are well prepared to expand and use your

knowledge for various algorithms on trees, which are special, very helpful, and exciting

data structures suitable for various kinds of challenges. Let’s get in touch.

Chapter 7 advanCed reCursion

459
© Michael Inden 2022
M. Inden, Python Challenges, https://doi.org/10.1007/978-1-4842-7398-2_8

CHAPTER 8

Binary Trees
While Python provides list, sets, and dictionaries as a rich variety of real-world data

structures, it unfortunately does not include trees for direct use. However, they are

helpful for various use cases and therefore desirable. Because the topic of trees is quite

extensive and not to go beyond the scope of this book, I will deal mainly with binary

trees and binary search trees as special cases.

Before you look at trees in more detail, I would like to mention some fields of usage:

• A file system is hierarchically structured and can be modeled as a

tree. Here the nodes correspond to the directories and the leaves to

the files.

• Mathematical calculations can be represented by trees. You will

explore this in an exercise later.

• In the area of databases, B-trees1 are used for efficient storage

and search.

• In compiler construction, you can use an abstract syntax tree (AST) to

represent the source code.2

8.1 Introduction
In this introduction, you’ll first learn some terminology before briefly exploring binary

tree and binary search trees. After that, I’ll discuss traversal and some properties of trees.

Finally, I’ll introduce three trees that are used repeatedly in the text and the assignments.

1 Please consult textbooks or the Internet for more info about B-trees. A good start is the following
page: www.geeksforgeeks.org/introduction-of-b-tree-2/
2 To be more precise, it’s used to represent the abstract syntax structure of the source code—not
the source code itself.

https://doi.org/10.1007/978-1-4842-7398-2_8
http://www.geeksforgeeks.org/introduction-of-b-tree-2/

460

8.1.1 Structure, Terminology, and Examples of Use
Trees allow both structured storage and efficient access to data managed there. For this

purpose, trees are strictly hierarchical and, as in real trees, no branch grows back into the

trunk. A branching point is called node and stores a value. A node at the end of a branch

is called leaf —values are also found there. The connecting branch pieces are called

edges. Figure 8-1 gives a first impression.

Figure 8-1. A tree with some nodes and leaves

The figure illustrates that trees consist of hierarchically organized nodes. They start

from a root (which, interestingly enough, is located at the top in computer science),

branch out into several children, which in turn can have any number of child nodes.

Thus, they are parents and represent the roots of subtrees. Each node is referenced by

exactly one other node.

8.1.2 Binary Trees
A binary tree is a special tree in which each node stores one value, and each node

possesses at most two successors, often called left and right. This restriction makes it

easier to express many algorithms. As a result, the binary tree is widely used in computer

science. It also forms the basis for the binary search tree presented in the following.

Binary tree, homemade A binary tree can be realized with little effort by the

following class called BinaryTreeNode:

class BinaryTreeNode:

 def __init__(self, item):

 self.left = None

 self.right = None

 self.item = item

Chapter 8 Binary trees

461

 def is_leaf(self):

 return self.left is None and self.right is None

 def __str__(self):

 return "BinaryTreeNode [item=%s, left=%s, right=%s]" %

 (self.item, self.left, self.right)

For the examples in this book, you do not need to model the binary tree as a

standalone class called BinaryTree, but you will always use a special node as a root of

the above type BinaryTreeNode. However, to further simplify the handling in your own

and especially more complex business applications, the definition of a class BinaryTree

is a good idea. There you can also provide various useful functionalities.

8.1.3 Binary Trees with Order: Binary Search Trees
Sometimes the terms “binary tree” and “binary search tree” (BST for short) are used

interchangeably, but this is not correct. A binary search tree is indeed a binary tree,

but one with the additional property that the nodes are arranged according to their

values. The constraint is that the root’s value is greater than that of the left successor and

less than that of the right successor. This constraint applies recursively to all subtrees,

as illustrated by Figure 8-2. Consequently, a BST does not contain any value more

than once.

CA

B

E

D

X

G

Figure 8-2. Example of a binary search tree with letters

Search in a BST A search in a BST can be performed in logarithmic time due to the

ordering of the values. You implement the function find(startNode, searchFor) for

this purpose. Depending on the comparison of the value with the current node’s value,

the search continues in the appropriate part of the tree until the value is found. If it is not

found, None is returned.

def find(current_node, search_for):

 # recursive termination

Chapter 8 Binary trees

462

 if current_node is None:

 return None

 # recursive descent to the left or right depending on the comparison

 if current_node.item < search_for:

 return find(current_node.right, search_for)

 if current_node.item > search_for:

 return find(current_node.left, search_for)

 return current_node

Insertion into a BST The insertion into a BST may be expressed recursively as well.

The insertion has to start at the root so that the ordering of values within the BST can be

ensured.

def insert(current_node, value):

 # recursive termination

 if current_node is None:

 return BinaryTreeNode(value)

 # recursive descent: to the left or right depending on the comparison

 if value < current_node.item:

 current_node.left = insert(current_node.left, value)

 elif value > current_node.item:

 current_node.right = insert(current_node.right, value)

 return current_node

Example of a BST The functions shown earlier are also part of the utility module

for this chapter called tree_utils. With it, BSTs can be constructed quite easily and

readably. In the following, you use the trick underscore as a prefix to keep the names of

the nodes as speaking as possible. Besides, you only need the assignment to a variable

if you want to continue working with the node. In particular, however, the root is always

returned.

_3 = BinaryTreeNode(3)

insert(_3, 1)

insert(_3, 2)

insert(_3, 4)

Chapter 8 Binary trees

463

TreeUtils.nice_print(_3)

print("tree contains 2?", find(_3, 2))

print("tree contains 13?", find(_3, 13))

This generates the following output:

 3

 |-----+-----|

 1 4

 +--|

 2

tree contains 2? BinaryTreeNode [item=2, left=None, right=None]

tree contains 13? None

Problematic insertion order Please note that the sequence in which elements are

added can greatly impact the performance of subsequent actions such as searches. I

cover this briefly in Section 8.1.5. The following example demonstrates how quickly a

tree degenerates into something like a list:

_4 = BinaryTreeNode(4)

insert(_4, 3)

insert(_4, 2)

insert(_4, 1)

TreeUtils.nice_print(_4)

This generates the following output:

 4

 |-----------+

 3

 |-----+

 2

 |--+

 1

Chapter 8 Binary trees

464

HINT: ASCII OUTPUT OF TREES

For the output of trees in the examples and exercises i call function nice_print(). its

implementation is developed in exercise 13.

8.1.4 Traversals
When traversing a tree, a distinction is made between depth-first and breadth-first

searches. Figure 8-3 illustrates both.

ed

b

f

a

g

c

h i j k

depth-first search

ed

b

f

a

g

c

h i j k

breadth-first search

Figure 8-3. Procedure for a depth-first search and a breadth-first search

In a depth-first search, you traverse the tree as deeply as possible. With the breadth-

first search, you move from the root node level by level through the tree. This is why it is

also called level order or breadth-first.

 Breadth-First/Level Order

The following sequence results for the tree from the example when traversing the levels

from the root node downwards—the implementation is the subject of Exercise 5.

a b c d e f g h i j k

Conversion from tree to list A great advantage of the level order traversal is its good

traceability and comprehensibility. If you have a tree in mind, you can easily predict this

traversal and its result. This is an important and useful feature, especially when testing.

Chapter 8 Binary trees

465

Let’s assume that you have already solved Exercise 5 and thus have access to the

implementation. Based on it, you can convert a tree into a list as follows:

def convert_to_list(node):

 result = []

 levelorder(node, lambda item: result.append(item))

 return result

 Depth-First Searches

The three known depth-first search methods are preorder, inorder, and postorder.

Preorder first processes the node itself and then those from the left and then the right

subtree. For inorder, the processing order is first the left subtree, then the node itself,

and then the right subtree. Postorder processes first the subtrees on the left, then on the

right, and finally the node itself. The three depth-first search methods iterate through the

previously shown values as follows:

Preorder: a b d h e i j c f k g

Inorder: h d b i e j a f k c g

Postorder: h d i j e b k f g c a

The outputs are not quite as intuitive. In the case of a BST, the inorder traversal

returns the nodes’ values according to the order of their values. This yields 1 2 3 4 5 6 7

for the following tree:

 4

 |-----+----|

 2 6

 |--+--| |--+--|

 1 3 5 7

Interestingly, these traversals can be easily implemented recursively. The action is

highlighted in bold in each case:

def preorder(node):

 if node is None:

 return

Chapter 8 Binary trees

466

 print(node.item)

 preorder(node.left)

 preorder(node.right)

def inorder(node):

 if node is None:

 return

 inorder(node.left)

 print(node.item)

 inorder(node.right)

def postorder(node):

 if node is None:

 return

 postorder(node.left)

 postorder(node.right)

 print(node.item)

NOTE: PRACTICAL RELEVANCE OF POSTORDER

postorder is an important type of tree traversal for the following use cases:

• Delete: When deleting a root node of a subtree, you must always ensure that

the child nodes are also deleted correctly. a postorder traversal is a good way to

do this.

• Calculations of sizes: to determine the size of a directory or a hierarchical

project’s duration, postorder is best suited.

8.1.5 Balanced Trees and Other Properties
One speaks of balanced trees if in a binary tree the heights of the two subtrees differ by

at most 1 (sometimes by some other constant value). The opposite is a degenerated tree,

which arises from, among other things, inserting data in ways that are awkward for the

Chapter 8 Binary trees

467

tree, specifically when numbers are added in an ordered fashion into a binary search

tree. This causes the tree to degenerate into a linear list, as you saw in an example in

section 8.1.3.

Sometimes one or more rotation(s) restores the balance. For the tree from the

introduction, a rotation to the left and one to the right is visualized in Figure 8-4. In the

middle, you can see the balanced starting position.

a1

b2 e5

d4

f6

c3

g7

a1 c3

b2

d4

f6

e5 g7

g7

f6c3

d4

b2

e5

a1

Figure 8-4. Rotation to the left, original, rotation to the right

 The Properties Level and Height

As indicated in the introduction, trees are hierarchically structured and consist of nodes,

which optionally have child nodes and may be nested arbitrarily deep. To describe this,

the two terms level and height exist. The level is usually counted from 0 and starts at the

root and then goes down to the lowest leaf. For height, the following applies. For a single

node, it is 1. It is determined by the number of nodes on the way down to the lowest leaf

for a subtree. This is visualized in Figure 8-5 where some nodes labeled as a child are, in

fact, also the parent of others.

Child

Child Leaf

Root

Parent Parent

Leaf

Child Child

Leaf Leaf

level 0

level 1

level 2

level 3

level 4

height 5

height 4

height 3

height 2

height 1

Figure 8-5. Level and height of a tree

Chapter 8 Binary trees

468

 The Properties Completeness and Perfectness

A complete binary tree is characterized by the fact that all levels must be completely

filled, except for the last level. Moreover, all nodes have to be as far to the left as possible

in the last level, so there are no gaps or all nodes are present.

In a complete binary tree, values may be missing on the right side (in algorithmics

this is also called left-full):

 4

 / \

 2 6

 / \ /

1 3 5

If all positions are occupied, this is called a perfect tree.

 4

 / \

 2 6

 / \ / \

 1 3 5 7

The following constellation (here the missing 5 from the upper tree) is not allowed in

a binary tree in the context of completeness (because the tree is then not left-full):

 4

 / \

 2 6

 / \ \

 1 3 7

Let’s try something more formal:

• A perfect binary tree is one in which all leaves are on the same level

and all nodes have two successors each.

• A complete binary tree is one in which all levels are completely

filled—except for the last one, where nodes may be missing, but only

as far to the right as possible.

Chapter 8 Binary trees

469

• A full binary tree means that each node has either no children or two

children, as shown in the following diagram:

 4

 / \

 2 6

 / \

 5 7

This is the weakest requirement.

A graphical illustration for these definitions can be found online at www.programiz.

com/dsa/complete- binary- tree.

8.1.6 Trees for the Examples and Exercises
Because you will repeatedly refer to some typical tree structures in the following, you

implement three creation functions in the utility module example_trees.

 Tree with Letters and Numbers

To try out tree traversal and other actions, construct a tree of seven nodes. Therefore you

define objects of type BinaryTreeNode, which still have to be connected appropriately

after their creation. For simplicity, the examples here are implemented without

information hiding. Consequently, you directly access the attributes left and right.

def create_example_tree():

 a1 = BinaryTreeNode("a1")

 b2 = BinaryTreeNode("b2")

 c3 = BinaryTreeNode("c3")

 d4 = BinaryTreeNode("d4")

 e5 = BinaryTreeNode("e5")

 f6 = BinaryTreeNode("f6")

 g7 = BinaryTreeNode("g7")

 d4.left = b2

 d4.right = f6

 b2.left = a1

Chapter 8 Binary trees

http://www.programiz.com/dsa/complete-binary-tree
http://www.programiz.com/dsa/complete-binary-tree

470

 b2.right = c3

 f6.left = e5

 f6.right = g7

 return d4

This results in the following tree with root d4:

 d4

 |-----+-----|

 b2 f6

 |--+--| |--+--|

a1 c3 e5 g7

You may be surprised about the combination of letters and numbers. I chose this

intentionally because it allows understanding some algorithms a bit easier—for example,

to check traversals’ order.

 Trees with Textual and Real Digits

For some exercises, you also need a tree where the nodes’ values consist only of digits

(but textually as string). Because it is impossible to name the variables for the individual

nodes with digits, let’s use the trick of starting the variable name with an underscore.

To construct the tree, utilize the function insert(), which puts the value to be

inserted in the appropriate place for it—this is only possible if you work with a BST

and its order. As you can easily see, this will be much easier than the manual linking

shown before.

def create_number_tree():

 _4 = BinaryTreeNode("4")

 insert(_4, "2")

 insert(_4, "1")

 insert(_4, "3")

 insert(_4, "6")

 insert(_4, "5")

 insert(_4, "7")

 return _4

Chapter 8 Binary trees

471

This results in the following tree:

 4

 |-----+-----|

 2 6

|--+--| |--+--|

1 3 5 7

Variant with integers The tree shown is generated as a variant for integers as

follows:

def create_integer_number_tree():

 _4 = BinaryTreeNode(4)

 insert(_4, 2)

 insert(_4, 1)

 insert(_4, 3)

 insert(_4, 6)

 insert(_4, 5)

 insert(_4, 7)

 return _4

8.2 Exercises
8.2.1 Exercise 1: Tree Traversal (★★✩✩✩)
Extend the functions presented in the introduction for the traversing trees so that they

can perform any action on the current node during the traversal. To do this, add an

action to the respective signature, such as for inorder: inorder(node, action).

Bonus: Fill up a Tree into a List Build a representation of the values of the nodes

in the form of a list. To do this, write function to_list(node) that returns the values

based on an inorder traversal, and functions to_list_preorder(node) and to_list_

postorder(node) that are based on a preorder and postorder traversal, respectively.

Chapter 8 Binary trees

472

Example

When using the following tree

 d4

 |-----+-----|

 b2 f6

 |--+--| |--+--|

 a1 c3 e5 g7

the conversions should result in something similar to

to_list: ['a1', 'b2', 'c3', 'd4', 'e5', 'f6', 'g7']

to_list_preorder: ['d4', 'b2', 'a1', 'c3', 'f6', 'e5', 'g7']

to_list_postorder: ['a1', 'c3', 'b2', 'e5', 'g7', 'f6', 'd4']

8.2.2 Exercise 2: Inorder, Preorder, and Postorder
Iterative (★★★★✩)

In the introduction, you learned about inorder, preorder, and postorder as recursive

variants. Now implement these types of traversals iteratively.

Example

Again, you use the following tree:

 d4

 |-----+-----|

 b2 f6

 |--+--| |--+--|

a1 c3 e5 g7

The three depth-first search methods traverse this tree as follows:

Preorder: d4 b2 a1 c3 f6 e5 g7

Inorder: a1 b2 c3 d4 e5 f6 g7

Postorder: a1 c3 b2 e5 g7 f6 d4

Chapter 8 Binary trees

473

8.2.3 Exercise 3: Tree Height (★★✩✩✩)
Implement function get_height(node) to determine the height for a tree and for

subtrees with a single node as root.

Example

The following tree of height 4 is used as a starting point:

 E

 |-----------+-----------|

 C G

 |-----| |-----+-----|

 A F H

 |--|

 I

8.2.4 Exercise 4: Lowest Common Ancestor (★★★✩✩)
Compute the lowest common ancestor (LCA) for two nodes, A and B, hosted in an

arbitrary binary search tree. The LCA denotes the node that is the ancestor of both A and

B and is located as deep as possible in the tree—the root is always the ancestor of both

A and B. Write function find_lca(start_node, value1, value2), which, in addition

to the start node of the search (usually the root), also receives lower and upper limits,

which indirectly describe the nodes that are closest to these values. If the values for the

limits are outside the range of values, then there is no LCA and it returns None.

Example

The following binary tree is shown. If the lowest common ancestor is determined for the

nodes with the values 1 and 5, this is the node with the value 4. In the tree, the respective

nodes are circled and the ancestor is additionally marked in bold.

 6

 |-----------+-----------|

 ➃ 7

Chapter 8 Binary trees

474

 |-----+-----|

 2 ➄
 |--+--|

 ➀ 3

8.2.5 Exercise 5: Breadth-First (★★★✩✩)
In this exercise, you are asked to implement the breadth-first search, also called level

order, using the function levelorder(start_node, action). The breadth-first search

starts at the given node—usually the root—and then works its way through the tree level

by level.

Note Use a queue to store data on the nodes yet to be visited. the iterative
variant is a bit easier to implement than the recursive one.

Examples

For the following two trees, the sequence 1 2 3 4 5 6 7 (for the left) and M I C H A E L (for

the right) are to be determined as the result.

 1 M

 |-----+-----| |-----+-----|

 2 3 I C

 |--+--| |--+--| |--+--| |---+--|

 4 5 6 7 H A E L

8.2.6 Exercise 6: Level Sum (★★★★✩)
In the previous exercise, you implemented the breadth-first search. Now you want to

sum up the values per level of a tree. For this purpose, let’s assume that the values are

natural numbers of type int. Write function level_sum(start_node).

Chapter 8 Binary trees

475

Example

For the tree shown, the sums of the values of the nodes per level should be calculated

and return the following result: {0=4, 1=8, 2=17, 3=16}.

 4

 |-----------+-----------|

 2 6

 |-----+-----| |-----+-----|

 1 3 5 8

 |--+--|

 7 9

Level Value(s) Result

0 4 4

1 2, 6 8

2 1, 3, 5, 8 17

3 7, 9 16

8.2.7 Exercise 7: Tree Rotate (★★★✩✩)
Binary trees, especially binary search trees, may degenerate into lists if values are

inserted only in ascending or descending order. An unbalance can be addressed

by rotating parts of the tree. Write the functions rotate_left(node) and rotate_

right(node) that rotate the tree around the node passed as parameter to the left or right,

respectively.

Chapter 8 Binary trees

476

Example

Figure 8-6 visualizes a rotation to the left and a rotation to the right with the balanced

starting position in the middle.

a1

b2 e5

d4

f6

c3

g7

a1 c3

b2

d4

f6

e5 g7

g7

f6c3

d4

b2

e5

a1

Figure 8-6. Rotation to the left, original, rotation to the right

8.2.8 Exercise 8: Reconstruction (★★★✩✩)
 Exercise 8a: Reconstruction from a List (★★✩✩✩)

In this exercise, you want to reconstruct a binary search tree that is as balanced as

possible from an ascending sorted list of natural numbers.

Example

For example, let these values be given:

\begin{lstlisting}

values = [1, 2, 3, 4, 5, 6, 7]

Then the following tree should be reconstructed from them:

 4

 |-----+-----|

 2 6

 |--+--| |--+--|

 1 3 5 7

 Exercise 8b: Reconstruction from Inorder/Preorder (★★★✩✩)

Suppose the sequence of values in preorder and inorder is given, each prepared as a

list. This information about an arbitrary binary tree should be used to reconstruct the

corresponding tree. Write function reconstruct(preorder_values, inorder_values).

Chapter 8 Binary trees

477

Example

Two sequences of values of the traversals are as follows. Based on these values, you

should reconstruct the tree shown in the previous part of the exercise.

preorder_values = [4, 2, 1, 3, 6, 5, 7]

inorder_values = [1, 2, 3, 4, 5, 6, 7]

8.2.9 Exercise 9: Math Evaluation (★★✩✩✩)
Consider using a tree to model mathematical expressions with the four operators +, −, /,

and ∗. It is your task to compute the value of individual nodes, including in particular the

value of the root node. For this purpose, write function evaluate(node).

Example

Represent the expression 3 + 7 ∗ (7 − 1) by the following tree to compute the value 45 for

the root node:

 +

 |-----------+-----------|

 3 *

 |-----+-----|

 7 -

 |--+--|

 7 1

8.2.10 Exercise 10: Symmetry (★★✩✩✩)
Check if an arbitrary binary tree is symmetric in its structure. Therefore, write function

is_symmetric(node). In addition to the structural examination, you can also check for

equality of values.

Chapter 8 Binary trees

478

Examples

To check for symmetry, you use a binary tree that is symmetric in structure (left) and a

binary tree that is also symmetric concerning values (right).

 4 1

 |-----+-----| / \

 2 6 2 2

 |--+--| |--+--| / \

 1 3 5 7 3 3

NOTE: THE SYMMETRY PROPERTY

in a symmetric binary tree, the left and right subtree are mirrored through the root along an

imaginary vertical line (indicated by |):

 1

 / | \

 2 | 2

 / | \

 3 | 3

Depending on the definition, a comparison of the values can be omitted for the symmetry. in

this case, only the structural organization can be counted as relevant.

Bonus: Mirror tree In the hint box, I indicated a mirror axis through the root. Create

function invert(node) that mirrors the nodes of a tree at this implied line through

the root.

Example

A mirroring looks like this:

 4 4

 |-----+-----| |-----+-----|

 2 6 => 6 2

|--+--| |--+--| |--+--| |--+--|

1 3 5 7 7 5 3 1

Chapter 8 Binary trees

479

8.2.11 Exercise 11: Check Binary Search
Tree (★★✩✩✩)

In this exercise, you are to check whether an arbitrary binary tree fulfills the property

of a binary search tree (BST), so if the values in the left subtree are smaller than the

root node’s value and those in the right subtree are larger—and this holds for each

subtree starting from the root. For simplification, assume int values. Write function

is_bst(node).

Example

Use the following binary tree, which is also a binary search tree. For example, if you

replace the number 1 with a larger number on the left side, it is no longer a binary search

tree. However, the right subtree under the 6 is still a binary search tree.

 4

 |-----+-----|

 2 6

|--+--| |--+--|

1 3 5 7

8.2.12 Exercise 12: Completeness (★★★★★)
Check the completeness of a tree. To do this, you initially solve the basics in the first two

parts of the exercise and then proceed to the trickier completeness check.

 Exercise 12a: Number of Nodes (★✩✩✩✩)

Count how many nodes are contained in any binary tree. To do this, write function

count_nodes(node).

Chapter 8 Binary trees

480

Example

For the binary tree shown, the value 7 should be determined. If you remove the right

subtree, the tree consists of only 4 nodes.

 4

 |-----+-----|

 2 6

 |--+--| |--+--|

 1 3 5 7

 Exercise 12b: Check for Full/Perfect (★★✩✩✩)

For an arbitrary binary tree, check if all nodes have two successors or leaves each, and

thus the tree is full. For perfection, all leaves must be at the same height. Write functions

is_full(node) and is_perfect(node).

Example

The binary tree shown is both perfect and full. If you remove the two leaves below the 2,

it is no longer perfect but still full.

Full and perfect Full but not perfect

 4 4

 |-----+-----| |-----+-----|

 2 6 2 6

 |--+--| |--+--| |--+--|

 1 3 5 7 5 7

 Exercise 12c: Completeness (★★★★✩)

In this subtask, you are asked to check if a tree is complete as defined in the introduction,

so a binary tree with all levels fully filled, with the allowed exception on the last level

where nodes may be missing, but only with gaps as far to the right as possible.

Example

In addition to the perfect tree used so far, the following tree is also complete by definition.

However, if you remove the children from node H, the tree is no longer complete.

Chapter 8 Binary trees

481

 F

 |-----------+-----------|

 D H

 |-----+-----| |-----+-----|

 B E G I

 |--+--|

 A C

 Exercise 12d: Completeness Recursive (★★★★★)

In this last subtask, the following challenge remains to be mastered as a special treat. The

check is to be solved without additional data structures and purely recursively. At first,

this sounds hardly feasible, so I’ll give a hint.

Tip Develop the solution step by step. Create an auxiliary data structure that
models whether or not a node exists for a certain position. then traverse the tree
and mark the positions appropriately. afterwards, convert this implementation to a
purely recursive one without the auxiliary data structure.

Example

As before, the following tree is complete by definition:

 F

 |-----------+-----------|

 D H

 |-----+-----| |-----+-----|

 B E G I

 |--+--|

 A C

8.2.13 Exercise 13: Tree Printer (★★★★★)
In this exercise, you are to implement a binary tree’s graphical output, as you have seen

before in the examples. Therefore, you initially solve the basics in the first three parts of

the assignment and then proceed to the trickier graphical presentation of trees.

Chapter 8 Binary trees

482

Tip Use a fixed grid of blocks of width three. this significantly contributes to a
balanced representation and reduces complexity.

Example

The following tree should cover various special cases:

 F

 |-----------+-----------|

 D H

 |-----+ +-----|

 B I

 |--+--|

 A C

 Exercise 13a: Width of a Subtree (★★✩✩✩)

In this part of the exercise, you are asked to find the maximum width of a subtree of a

given height using the function subtree_width(height). For simplicity, you assume that

a maximum of three characters represents the nodes. Besides, there is a distance of at

least three characters between them. This is true for the leaves when the tree is full. On

higher levels, there is naturally more space between the nodes of two subtrees.

Examples

On the left in Figure 8-7, you see a tree of height 2, and on the right, a tree of height 3.

Based on the grid of 3, you get 9 and 21 as widths.

A

CB

9

tree

width

A

CB

B2B1 C2C1

9 93
=21

Figure 8-7. Tree width

Chapter 8 Binary trees

483

Height Total width Width of subtree

1 3 0 (no subtree existing)

2 9 3

3 21 9

4 45 21

 Exercise 13b: Draw Node (★★✩✩✩)

Write function draw_node(current_node, line_length) that creates a graphical output

of a node, generating the given set of spaces appropriately. The node value should have a

maximum of three characters and be placed in the middle.

Tip remember that if the current node has a left successor, the representation of
the layer below starts on the left with the string ‘ |-’.

Example

The example in Figure 8-8 shows a single node with a spacing of five characters. Besides,

the node value is center-aligned in a three-character box.

draw_node (“A“, 5)
A

initial
 spacing

node value

spacing
 (line_length)

Figure 8-8. Dimensions when drawing nodes

 Exercise 13c: Draw Connection Lines (★★✩✩✩)

Write function draw_connections(node, line_length) for building a graphical output

of the connection lines of a node to its two successors. Missing successors have to be

handled correctly.

Chapter 8 Binary trees

484

Tip the line length refers to the characters between the node representations.
the parts representing the ends are still to be appended appropriately in each
case, as well as the middle connector.

Example

The following figure visualizes all cases relevant in drawing, so with none, one, and two

successor(s):

 F

 |-----------+-----------|

 D H

 |-----+ +-----|

 B I

 |--+--|

 A C

A schematic representation is shown again in Figure 8-9.

draw_connections (node, line_length)

line_length line_length
junctionleft

start
right
end

Figure 8-9. Schematic representation of the connecting lines

 Exercise 13d: Tree Representation (★★★★★)

Combine all solutions of the parts of the exercise and complete the necessary steps to be

able to print an arbitrary binary tree suitably on the console. To do this, write function

nice_print(node).

Chapter 8 Binary trees

485

Example

The output of the tree shown in the introductory example should look something like

this through nice_print():

 F

 |-----------+-----------|

 D H

 |-----+ +-----|

 B I

 |--+--|

 A C

Also, check your algorithm with a real monster of a tree, which you can find in the

sources. Here is a much-slimmed-down representative:

 BIG

 |-----------------------+-----------------------|

 b2 f6

 |-----------+-----------| |-----------+-----------|

 a1 d4 d4 g7

 |-----+-----| |-----+-----|

 c3 f6 b2 e5

 |--+--| |--+--|

 e5 g7 a1 c3

8.3 Solutions
8.3.1 Solution 1: Tree Traversal (★★✩✩✩)
Extend the functions already presented in the introduction for the traversing trees so that

they can perform any action on the current node during the traversal. To do this, add an

action to the respective signature, such as for inorder: inorder(node, action).

Algorithm With this extension, each method for traversing the tree receives an

additional parameter to define an action. Then this is called at the appropriate place

instead of the console output.

Chapter 8 Binary trees

486

def inorder(node, action):

 if node is None:

 return

 inorder(node.left, action)

 action(node.item)

 inorder(node.right, action)

def preorder(node, action):

 if node is None:

 return

 action(node.item)

 preorder(node.left, action)

 preorder(node.right, action)

def postorder(node, action):

 if node is None:

 return

 postorder(node.left, action)

 postorder(node.right, action)

 action(node.item)

 Bonus: Fill up a Tree into a List

Build a representation of the values of the nodes in the form of a list. To do this, write

function to_list(node) that returns the values based on an inorder traversal, and

functions to_list_preorder(node) and to_list_postorder(node) that are based on a

preorder and postorder traversal, respectively.

Example

When using the following tree

 d4

 |-----+-----|

 b2 f6

 |--+--| |--+--|

 a1 c3 e5 g7

Chapter 8 Binary trees

487

the conversions should result in something similar to

to_list: ['a1', 'b2', 'c3', 'd4', 'e5', 'f6', 'g7']

to_list_preorder: ['d4', 'b2', 'a1', 'c3', 'f6', 'e5', 'g7']

to_list_postorder: ['a1', 'c3', 'b2', 'e5', 'g7', 'f6', 'd4']

Algorithm Instead of the console output used so far as an action, the current value is

added depending on the chosen traversal strategy. For the recursive descent, you use += to

add the partial results and the method append() from list for the value of the current node.

def to_list(start_node):

 if start_node is None:

 return []

 result = []

 result += to_list(start_node.left)

 result.append(startNode.item)

 result += to_list(start_node.right)

 return result

def to_list_preorder(start_node):

 if start_node is None:

 return []

 result = []

 result.append(start_node.item)

 result += to_list_preorder((start_node.left)

 result += to_list_preorder((start_node.right)

 return result

def to_list_postorder(start_node):

 if start_node is None:

 return []

 result = []

 result += to_list_postorder(start_node.left)

Chapter 8 Binary trees

488

 result += to_list_postorder(start_node.right)

 result.append(start_node.item)

 return result

 Verification

Define a tree, perform an inorder traversal with the action passed, and finally populate

two more lists from the tree:

def main():

 def myprint(item):

 print(item, end=' ')

 root = example_trees.create_example_tree()

 TreeUtils.nice_print(root)

 print("\ninorder with action:")

 inorder(root, myprint)

 print("\npreorder with action:")

 preorder(root, myprint)

 print("\npostorder with action:")

 postorder(root, myprint)

 print("\nto_list:", to_list(root))

 print("to_list_preorder:", to_list_preorder(root))

 print("to_list_postorder:", to_list_postorder(root))

If you execute this main() function, you get the following output, which shows that

your implementation works as expected:

 d4

 |-----+-----|

 b2 f6

 |--+--| |--+--|

 a1 c3 e5 g7

inorder with action:

a1 b2 c3 d4 e5 f6 g7

preorder with action:

Chapter 8 Binary trees

489

d4 b2 a1 c3 f6 e5 g7

postorder with action:

a1 c3 b2 e5 g7 f6 d4

to_list: ['a1', 'b2', 'c3', 'd4', 'e5', 'f6', 'g7']

to_list_preorder: ['d4', 'b2', 'a1', 'c3', 'f6', 'e5', 'g7']

to_list_postorder: ['a1', 'c3', 'b2', 'e5', 'g7', 'f6', 'd4']

8.3.2 Solution 2: Inorder, Preorder, and Postorder
Iterative (★★★★✩)

In the introduction, you learned about inorder, preorder, and postorder as recursive

variants. Now implement these types of traversals iteratively.

Example

Again, you use the following tree:

 d4

 |-----+-----|

 b2 f6

 |--+--| |--+--|

 a1 c3 e5 g7

The three depth-first search methods traverse this tree as follows:

Preorder: d4 b2 a1 c3 f6 e5 g7

Inorder: a1 b2 c3 d4 e5 f6 g7

Postorder: a1 c3 b2 e5 g7 f6 d4

Preliminary considerations for the algorithms For each of the iterative

implementations, you need an auxiliary data structure. This is what I will now discuss in

detail for the three variants.

Algorithm for inorder (★★★✩✩) When implementing an inorder traversal, you

use a stack to temporarily store nodes that have to be processed later and variable

current_node to store the current node. The basic idea is to start from the root, move

to the bottom left of the tree, and put the current node on the stack until no successor

is left. Then you take the uppermost node from the stack and process it (here by a

simple console output). Now you continue with the right successor. Again, if there is no

successor, process the top node from the stack.

Chapter 8 Binary trees

490

The following sequence results for the tree of the example:

current_node Stack Action(s) Direction of descent

d4 [] push d4 ↙

b2 [d4] push b2 ↙

a1 [b2, d4] push a1 ↙

none [a1, b2, d4] pop + action a1 ↘

none [b2, d4] pop + action b2 ↘

c3 [d4] push c3 ↙

none [c3, d4] pop + action c3 ↘

none [d4] pop + action d4 ↘

f6 [] push f6 ↙

e5 [f6] push e5 ↙

none [e5, f6] pop + action e5 ↘

none [f6] pop + action f6 ↘

g7 [] push g7 ↙

none [g7] pop + action g7 ↘

none [] end

Based on this, the iterative implementation of inorder looks like this:

def inorder_iterative(start_node, action):

 if start_node is None:

 return

 nodes_to_process = Stack()

 current_node = start_node

 # are there still nodes on the stack or is the current node not None?

 while not nodes_to_process.is_empty() or current_node is not None:

 if current_node is not None:

 # recursive descent to the left

 nodes_to_process.push(current_node)

 current_node = current_node.left

Chapter 8 Binary trees

491

 else:

 # no left successor, then process current node

 current_node = nodes_to_process.pop()

 action(current_node.item)

 # continue with right successor

 current_node = current_node.right

Algorithm for preorder (★★✩✩✩) Interestingly, preorder is quite simple because

the root of a subtree is always processed first. Then the left and right subtree are processed.

For this, you again use a stack, which you fill initially with the current node. As long as the

stack is not empty, you determine the top element and execute the desired action. Then

you place the left and right successor nodes on the stack if they exist. It is important to note

that the order of adding is opposite to that of reading. For the left subtree to be processed

first, you must put the right node on the stack before the left one. This is repeated until the

stack is empty. The following sequence results for the tree of the example:

current_node Stack Action(s)

[d4] start: push d4

d4 [b2, f6] pop + action d4, push f6, push b2

b2 [a1, c3, f6] pop + action b2, push c3, push a1

a1 [c3, f6] pop + action a1

c3 [f6] pop + action c3

f6 [e5, g7] pop + action f6, push g7, push e5

e5 [g7] pop + action e5

g7 [] pop + action g7

none [] end

This results in the following iterative preorder implementation, which is structurally

very similar to the recursive variant:

def preorder_iterative(start_node, action):

 if start_node is None:

 return

Chapter 8 Binary trees

492

 nodes_to_process = Stack()

 nodes_to_process.push(start_node)

 while not nodes_to_process.is_empty():

 current_node = nodes_to_process.pop()

 if current_node is not None:

 action(current_node.item)

 # so that left is processed first, here order is reversed

 nodes_to_process.push(current_node.right)

 nodes_to_process.push(current_node.left)

To keep the analogy as strong as possible, it is helpful that collections can also store

None values. This allows you to perform the None check once when extracting from the

stack and otherwise keep the source code free of special handling.

Algorithm for postorder (★★★★✩) With postorder, you also use a stack for the

intermediate storage of the nodes to be processed later. Of the three, however, this

algorithm is the one with the greatest challenges and is tricky to implement because with

postorder, although the traversal starts at the root, the action has to be executed after

visiting the left and right subtree. Therefore, you have an interesting change compared

to the previous two algorithms. In them, if an element is taken from the stack, then it is

processed and not touched again. With the postorder implementation, an element is

potentially inspected twice or more with peek() and later on removed only after that.

This time, you’ll look at the source code first, and then I’ll give further explanations:

def postorder_iterative(start_node, action):

 if start_node is None:

 return

 nodes_to_process = Stack()

 current_node = start_node

 last_node_visited = None

 while not nodes_to_process.is_empty() or current_node is not None:

 if current_node is not None:

 # descent to the left

 nodes_to_process.push(current_node)

 current_node = current_node.left

Chapter 8 Binary trees

493

 else:

 peek_node = nodes_to_process.peek()

 # descent to the right

 if peek_node.right is not None and \

 last_node_visited != peek_node.right:

 current_node = peek_node.right

 else:

 # sub root or leaf processing

 last_node_visited = nodes_to_process.pop()

 action(last_node_visited.item)

This is how the process works.: You start with the root node, put it on the stack, and

continue in the left subtree. You repeat this until you no longer find a left successor. Now

you have to move to the right successor. Only after that may the root be processed. Since

you have saved all nodes on the stack, you now inspect the node from the stack. If this

one has no right children and you have not just visited it, then you execute the passed

action and remember this node as the last visited. For the other case, that there is a right

subtree, you also traverse it as just described. This procedure is repeated until the stack

is empty.

current_node Stack peek_node Action

d4 [d4] push d4

b2 [b2, d4] push b2

a1 [a1, b2, d4] push a1

none [a1, b2, d4] a1 action a1

none [b2, d4] b2 peek + right

c3 [c3, b2, d4] push c3

none [c3, b2, d4] c3 action c3

none [b2, d4] b2 action b2

f6 [f6, d4] push f6

e5 [e5, f6, d4] push e5

(continued)

Chapter 8 Binary trees

494

current_node Stack peek_node Action

none [f6, d4] e5 action e5

none [f6, d4] f6 peek + right

g7 [g7, f6, d4] push g7

none [g7, f6, d4] g7 action g7

none [f6, d4] f6 action f6

none [d4] d4 action d4

none []

NOTE: ITERATIVE IMPLEMENTATION OF POSTORDER

While the implementations of the three traversals’ recursive variants are all equally easy, and

each is not very complex, this does not apply to the iterative implementations in any way.

preorder and inorder can still be implemented with a little thinking without major difficulties.

With postorder, however, you really have to fight. therefore, it is no shame to need a couple of

attempts and to apply error corrections.

Don’t worry. it’s not always that tricky. even the breadth-first traversal discussed later, which

traverses level by level, is in my estimation much less complex to implement than the iterative

postorder.

recursion can be the key to simplicity in some cases. sometimes, however, this comes at

the expense of runtime. For optimization, you learned about memoization. however, very

understandable iterative variants can also be found for some problems.

 Verification

You define the tree from the introductory example and then traverse it each time using

the desired procedure:

def main():

 def myprint(item):

 print(item, end=' ')

Chapter 8 Binary trees

495

 root = example_trees.create_example_tree()

 TreeUtils.nice_print(root)

 print("inorder iterative:")

 inorder_iterative(root, myprint)

 print("\npreorder iterative:")

 preorder_iterative(root, myprint)

 print("\npostorder iterative:")

 postorder_iterative(root, myprint)

If you execute the above main() function, you get the following output, which shows

that your implementation does what it is supposed to do:

 d4

 |-----+-----|

 b2 f6

 |--+--| |--+--|

 a1 c3 e5 g7

inorder iterative:

a1 b2 c3 d4 e5 f6 g7

preorder iterative:

d4 b2 a1 c3 f6 e5 g7

postorder iterative:

a1 c3 b2 e5 g7 f6 d4

Verification with unit test As an example, and because the implementation has

already demanded quite a bit from you, I show the test for postorder. The other two tests

are analogous and can be found in the sources of the companion project. For the test,

iteratively the current value is filled into a list. After processing all values, the resulting

list is then checked against the expected values.

def test_postorder_iterative():

 root = example_trees.create_example_tree()

 result = []

 postorder_iterative(root, lambda item: result.append(item))

 assert result == ["a1", "c3", "b2", "e5", "g7", "f6", "d4"]

Chapter 8 Binary trees

496

 Surprise Algorithm

While preorder was quite easy to design iteratively, it became a bit more difficult with

inorder and even really tricky with postorder.

But then I got a tip from Prof. Dr. Dominik Gruntz on how to simplify the entire

process iteratively. Many thanks to Dominik for this great algorithm suggestion. You

keep the sequences analogous to the recursive ones, however, in reverse order, since you

work with a stack. Besides, you integrate artificial new tree nodes.

def inorder_iterative_v2(root):

 stack = Stack()

 stack.push(root)

 while not stack.is_empty():

 current_node = stack.pop()

 if not current_node is None:

 if current_node.is_leaf():

 print(current_node.item, end=" ")

 else:

 stack.push(current_node.right)

 stack.push(BinaryTreeNode(current_node.item))

 stack.push(current_node.left)

 print()

And better yet, you can turn it into a general-purpose function that allows all three

traversal variations. To do this, you first define an enumeration and then the function

traverse() that creates an artificial entry with a tree node at each appropriate point in

the sequence. As mentioned, these special nodes ensure that the processing occurs at

the right place.

class Order(Enum):

 PREORDER = auto()

 INORDER = auto()

 POSTORDER = auto()

def traverse(root, order):

 stack = Stack()

 stack.push(root)

Chapter 8 Binary trees

497

 while not stack.is_empty():

 current_node = stack.pop()

 if not current_node is None:

 if current_node.is_leaf():

 print(current_node.item, end = " ")

 else:

 if order == Order.POSTORDER:

 stack.push(BinaryTreeNode(current_node.item))

 stack.push(current_node.right)

 if order == Order.INORDER:

 stack.push(BinaryTreeNode(current_node.item))

 stack.push(current_node.left)

 if order == Order.PREORDER:

 stack.push(BinaryTreeNode(current_node.item))

 print()

HINT: INSIGHT

With the help of this example, it is easy to grasp that thorough thinking about a problem can

lead to simpler, more comprehensible, and less complex source code. Besides, it is always

good to get a second or third opinion if a solution is more complex than desired.

8.3.3 Solution 3: Tree Height (★★✩✩✩)
Implement function get_height(node) to determine the height for both a tree and for

subtrees with a single node as root.

Chapter 8 Binary trees

498

Example

The following tree of height 4 is used as a starting point:

 E

 |-----------+-----------|

 C G

 |-----| |-----+-----|

 A F H

 |--|

 I

Algorithm The tree height calculation uses a recursive algorithm, which determines

the height of the left and the right subtree. Finally, you must compute the maximum

from this and then add the value 1 for the current level.

def get_height(parent):

 # recursive termination

 if parent is None:

 return 0

 # recursive descent

 left_height = get_height(parent.left)

 right_height = get_height(parent.right)

 return 1 + max(left_height, right_height)

 Verification

You construct the tree from the example and then have the heights computed for some

selected nodes:

def main():

 e = BinaryTreeNode("E")

 insert(e, "C")

 insert(e, "A")

 insert(e, "G")

 insert(e, "F")

 insert(e, "H")

 insert(e, "I")

Chapter 8 Binary trees

499

 TreeUtils.nice_print(e);

 print_infos(e.left, e, e.right, e.right.right.right)

def print_infos(c, e, g, i):

 print("\nHeight of root E:", get_height(e))

 print("Height from left parent C: ", get_height(c))

 print("Height from right parent G:", get_height(g))

 print("Height from right child I: ", get_height(i))

The following output occurs:

 E

 |-----------+-----------|

 C G

 |-----+ |-----+-----|

 A F H

 +--|

 I

Height of root E: 4

Height from left parent C: 2

Height from right parent G: 3

Height from right child I: 1

8.3.4 Solution 4: Lowest Common Ancestor (★★★✩✩)
Compute the lowest common ancestor (LCA) for two nodes, A and B, hosted in an

arbitrary binary search tree. The LCA denotes the node that is the ancestor of both A and

B and is located as deep as possible in the tree—the root is always the ancestor of both A

and B. Write function find_lca(start_node, value1, value2) that, in addition to the

start node of the search (usually the root), also receives lower and upper limits, which

indirectly describe the nodes that are closest to these values. If the values for the limits

are outside the range of values, then there is no LCA and it is supposed to return None.

Chapter 8 Binary trees

500

Example

The following is a binary tree. If the lowest common ancestor is determined for the

nodes with the values 1 and 5, this is the node with the value 4. In the figure, the

respective nodes are circled and the ancestor is additionally marked in bold.

 6

 |-----------+-----------|

 ➃ 7

 |-----+-----|

 2 ➄
 |--+--|

 ➀ 3

Algorithm Intuitively, you may be tempted to go up from the two nodes until the

paths cross. Nevertheless, this is impossible whenever no backward direction exists

in the node to the parent—like here. However, in your modeling of trees using the

BinaryTreeNode class, you only use references to children, not to the parent node.

But there is a straightforward implementation starting from the root. From there,

you proceed as follows: Let current_value be the value of the current node. In addition,

let value1 and value2 be the passed node values (i. e. those of the two nodes of the

potential successors). If value1 and value2 are smaller than current_value, then due

to the sorting property within the binary search tree, both must be located in the left

subtree—continue searching there. If both value1 and value2 are greater than current_

value, then continue searching on the right. Otherwise for the cases value1 < current_

value < value2 or value2 < current_value < value1, you have found the LCA; it is

the current node.

def find_lca(start_node, value1, value2):

 # recursive termination

 if start_node is None:

 return None

 current_value = start_node.item

 # recursive descent

 if value1 < current_value and value2 < current_value:

 return find_lca(start_node.left, value1, value2)

Chapter 8 Binary trees

501

 if value1 > current_value and value2 > current_value:

 return find_lca(start_node.right, value1, value2)

 # Here is value1 < current_value < value2 or

 # value2 < current_value < value1

 return start_node

 Verification

You construct the tree shown in the example and invoke your method:

@pytest.mark.parametrize("value1, value2, expected",

 [(1, 3, 2), (1, 5, 4), (2, 5, 4),

 (3, 5, 4), (1, 7, 6)])

def test_find_lca(value1, value2, expected):

 root = create_lca_example_tree()

 result = find_lca(root, value1, value2)

 assert result.item == expected

def test_find_lca_special():

 root = create_lca_example_tree()

 result = find_lca(root, 1, 2)

 assert result.item == 2

If you only check the quite obvious cases, everything works fine. If you consider

checking two nodes in a parent-child relationship, namely the nodes with the values

1 and 2, you intuitively expect the node with the value 4. However, the node with the

value 2 is calculated. According to the definition (among others in Wikipedia (https://

en.wikipedia.org/wiki/Lowest_common_ancestor)), each node is also considered a

successor of itself. Thus, the node with the value 2 is indeed the LCA in this case.

For the sake of completeness, the construction of the tree is shown:

def create_lca_example_tree():

 _6 = BinaryTreeNode(6)

 insert(_6, 7)

 insert(_6, 4)

 insert(_6, 5)

Chapter 8 Binary trees

https://en.wikipedia.org/wiki/Lowest_common_ancestor
https://en.wikipedia.org/wiki/Lowest_common_ancestor

502

 insert(_6, 2)

 insert(_6, 1)

 insert(_6, 3)

 return _6

8.3.5 Solution 5: Breadth-First (★★★✩✩)
In this exercise, you are asked to implement the breadth-first search, also called level

order, using the function levelorder(start_node, action). The breadth-first search

starts at the given node—usually the root—and then works its way through the tree level

by level.

Note Use a queue to store data on the nodes yet to be visited. the iterative
variant is a bit easier to implement than the recursive one.

Examples

For the following two trees, the sequence 1 2 3 4 5 6 7 (for the left) and M I C H A E L (for

the right) are to be determined as the result.

 1 M

 |-----+-----| |-----+-----|

 2 3 I C

 |--+--| |--+--| |--+--| |--+--|

 4 5 6 7 H A E L

Algorithm For the breadth-first search, you use a queue as a cache for nodes to be

processed later. First, you insert the root into the queue. Then you process elements

as long as there are elements in the queue. This processing is divided into steps. First,

perform the desired action for each element. Then put the left and right successor nodes

into the queue if such a node exists. The algorithm checks in the processing whether

the value in the queue is not equal to None. This avoids the special handling of missing

successors when adding them.

Chapter 8 Binary trees

503

def levelorder(start_node, action):

 if start_node is None:

 return

 to_process = Queue()

 to_process.enqueue(start_node)

 while not to_process.is_empty():

 current = to_process.dequeue()

 if current is not None:

 action(current.item)

 to_process.enqueue(current.left)

 to_process.enqueue(current.right)

To avoid special handling and None checks in the source code as much as possible,

you benefit from the fact that None values can be stored in containers. This allows you to

run the None check once when removing from the queue and not check it when adding

the child nodes.

Instead of the while loop, you can also solve this by using recursive calls. If you are

interested, study the source code in the companion project.

Let’s clarify how the processes are in detail.

Queue Action

[1] 1

[3, 2] 2

[5, 4, 3] 3

[7, 6, 5, 4] 4

[7, 6, 5] 5

[7, 6] 6

[7] 7

[] end

Chapter 8 Binary trees

504

 Verification

You construct the tree with the numbers (the left one of the examples) and call your just

created function to perform the level-order traversal:

def create_level_order_example_tree():

 _1 = BinaryTreeNode("1")

 _2 = BinaryTreeNode("2")

 _3 = BinaryTreeNode("3")

 _4 = BinaryTreeNode("4")

 _5 = BinaryTreeNode("5")

 _6 = BinaryTreeNode("6")

 _7 = BinaryTreeNode("7")

 _1.left = _2

 _1.right = _3

 _2.left = _4

 _2.right = _5

 _3.left = _6

 _3.right = _7

 return _1

def main():

 root = create_level_order_example_tree()

 tree_utils.nice_print(root)

 print("Levelorder: ")

 levelorder(root, lambda item: print(item, end=' '))

 print("\nlevelorder_recursive: ")

 levelorder_recursive(root, lambda item: print(item, end=' '))

Then you get the following output—please note that the project sources contain a

recursive implementation of level-order too:

 1

 |-----+-----|

 2 3

 |--+--| |--+--|

 4 5 6 7

Chapter 8 Binary trees

505

Levelorder:

1 2 3 4 5 6 7

levelorder_recursive:

1 2 3 4 5 6 7

Verification with unit test This can also be expressed quite simply as a unit test:

def test_levelorder():

 root = create_level_order_example_tree()

 result = []

 levelorder(root, lambda item: result.append(item))

 assert result == ["1", "2", "3", "4", "5", "6", "7"]

8.3.6 Solution 6: Level Sum (★★★★✩)
In the previous exercise, you implemented the breadth-first search. Now you want to

sum up the values per level of a tree. For this purpose, let’s assume that the values are

natural numbers of type int. Write function level_sum(start_node).

Example

For the tree shown, the sums of the values of the nodes per level should be calculated

and return the following result: {0=4, 1=8, 2=17, 3=16}.

 4

 |-----------+-----------|

 2 6

|-----+-----| |-----+-----|

1 3 5 8

 |--+--|

 7 9

Chapter 8 Binary trees

506

Level Value(s) Result

0 4 4

1 2, 6 8

2 1, 3, 5, 8 17

3 7, 9 16

Algorithm The breadth-first search provides a good basis. You are still missing a

suitable data structure and a way to determine the current level to complete the solution.

With a bit of thought, you come up with using a dictionary as the result data structure.

The current level serves as the key. The value is formed by a tuple. You traverse the tree

as you did with level order. To determine the levels, you cheat. Since you start from

the root (of a subtree), you can assume level 0. Each change to a lower level increases

the value. For this you use the second value from the tuple. This way, you always know

on which level the currently processed node is located. With this information the

summation can be formulated easily:

def level_sum(start_node):

 if start_node is None:

 return {}

 result = {}

 to_process = Queue()

 # pretty cool, tuple (node, level)

 to_process.enqueue((start_node, 0))

 while not to_process.is_empty():

 current_node_and_level = to_process.dequeue()

 current_node = current_node_and_level[0]

 level = current_node_and_level[1]

 if level not in result:

 result[level] = 0

 result[level] += current_node.item

Chapter 8 Binary trees

507

 if current_node.left is not None:

 to_process.enqueue((current_node.left, level + 1))

 if current_node.right is not None:

 to_process.enqueue((current_node.right, level + 1))

 return result

Algorithm with depth-first search Interestingly, the same can be easily

implemented using depth-first search, regardless of the type of traversal. In the

following, it is implemented with inorder, and the variants for preorder and postorder

are indicated as comments:

def level_sum_depth_first(root):

 results = {}

 traverse_depth_first(root, 0, results)

 return dict(sorted(results.items()))

def traverse_depth_first(current_node, level, results):

 if current_node:

 # PREORDER

 # results[level] = results.get(level, 0) + current_node.item

 traverse_depth_first(current_node.left, level + 1, results)

 # INORDER

 results[level] = results.get(level, 0) + current_node.item

 traverse_depth_first(current_node.right, level + 1, results)

 # POSTORDER

 # results[level] = results.get(level, 0) + current_node.item

As before, you use a dictionary as a data structure, whose key is the level. If there is

already an entry for the level, the value of the current node is added. Otherwise, the trick

of specifying a default value in the call get(level, 0) ensures a starting value of 0.

Chapter 8 Binary trees

508

 Verification

Let’s construct the tree from the example as usual and invoke the function you just

implemented:

def main():

 root = create_example_level_sum_tree()

 result = level_sum(root)

 print("\nlevel_sum:", result)

def create_example_level_sum_tree():

 _4 = BinaryTreeNode(4)

 insert(_4, 2)

 insert(_4, 1)

 insert(_4, 3)

 insert(_4, 6)

 insert(_4, 5)

 insert(_4, 8)

 insert(_4, 7)

 insert(_4, 9)

 return _4

Then you get the following output:

 4

 |-----------+-----------|

 2 6

 |-----+-----| |-----+-----|

 1 3 5 8

 |--+--|

 7 9

level_sum: {0=4, 1=8, 2=17, 3=16}

Verification with unit test This can also be expressed quite simply as a unit test:

def test_level_sum():

 root = create_example_level_sum_tree()

Chapter 8 Binary trees

509

 result = level_sum(root)

 assert result == {0: 4, 1: 8, 2: 17, 3: 16}

def test_level_sum_depth_first():

 root = create_example_level_sum_tree()

 result = level_sum_depth_first(root)

 assert result == {0: 4, 1: 8, 2: 17, 3: 16}

8.3.7 Solution 7: Tree Rotate (★★★✩✩)
Binary trees, especially binary search trees, may degenerate into lists if values are

inserted only in ascending or descending order. A dysbalance can be addressed by

rotating parts of the tree. Write functions rotate_left(node) and rotate_right(node)

that will rotate the tree around the node passed as parameter to the left or right,

respectively.

Example

Figure 8-10 visualizes a rotation to the left and a rotation to the right with the balanced

starting position in the middle.

a1

b2 e5

d4

f6

c3

g7

a1 c3

b2

d4

f6

e5 g7

g7

f6c3

d4

b2

e5

a1

Figure 8-10. Rotation to the left, original, rotation to the right

Algorithm At first, you might be frightened by the expected, but in fact only

supposed, complexity of the undertaking. In general, it is a good idea to mentally go

through the process using a simple example, such as the one above. Quite quickly you

will realize that far fewer nodes are involved and actions are necessary than probably

expected. To execute the respective rotation, you actually only have to consider the

root and the left or right neighbor as well as a node from the level below, as shown in

Figure 8-11.

Chapter 8 Binary trees

510

LC

LLC LRC

RC

Root RRC

RLC

LC

LLC LRC

Root

RC

RLC RRC LRC

RLC RRC

LC

RootLLC

RC

rotate left rotate right

Figure 8-11. Nodes affected during rotations

Figure 8-11 illustrates that you just need to reassign two links in the tree to complete

the rotation. To gain a better understanding of this, the relevant nodes are named

accordingly. In the figure, LC and RC stand for Left Child and Right Child, LLC and LRC

for Left Left Child and Left Right Child, and RLC and RRC for Right Left Child and Right

Right Child.

With these preliminary considerations, the implementation of the rotations exactly

follows the sequence illustrated in the diagrams:

def rotate_left(node):

 if node.right is None:

 raise ValueError("can't rotate left, no valid root")

 rc = node.right

 rlc = node.right.left

 rc.left = node

 node.right = rlc

 return rc

def rotate_right(node):

 if node.left is None:

 raise ValueError("can't rotate right, no valid root")

 lc = node.left

 lrc = node.left.right

 lc.right = node

 node.left = lrc

 return lc

Chapter 8 Binary trees

511

Please keep in mind that these functions change the subtrees’ references and thus

may affect previously cached nodes. The root is suddenly no longer the root but located

one level below.

 Verification

First, you define the tree in the middle, like the example. Then you rotate it first to the

left and then twice to the right, which should correspond to a simple rotation to the right

starting from the tree in the middle.

def main():

 root = example_trees.create_example_tree()

 TreeUtils.nice_print(root)

 print("\nRotate left")

 left_rotated_root = rotate_left(root)

 TreeUtils.nice_print(left_rotated_root)

 print("\nRotate right")

 right_rotated_root = rotate_right(rotate_right(left_rotated_root))

 TreeUtils.nice_print(right_rotated_root)

Execute the program to see that the rotations work correctly:

 d4

 |-----+-----|

 b2 f6

 |--+--| |--+--|

 a1 c3 e5 g7

Rotate left

 f6

 |-----------+-----------|

 d4 g7

 |-----+-----|

 b2 e5

|--+--|

a1 c3

Chapter 8 Binary trees

512

Rotate right

 b2

 |-----------+-----------|

 a1 d4

 |-----+-----|

 c3 f6

 |--+--|

 e5 g7

Verification with unit test Let’s consider how you could test this using unit tests.

Again, it depends on the appropriate idea and data structure. It would be difficult and

costly to check the resulting trees for consistency structurally. It is much easier if you

compare the result of a traversal with the expected values. But pay attention. When doing

this, you have to avoid using the inorder traversal since it always produces the same node

order for an arbitrary binary search tree, regardless of the tree’s structure! Here either a

preorder or a postorder or, better still, a level order traversal is suitable. The latter has the

great advantage that the order can be easily derived from a graphical representation of

the tree and is, therefore, best suited for the unit test because it remains comprehensible

and understandable. You already implemented the conversion at the beginning in

Section 8.1.4 as method convert_to_list().

def test_rotate_left():

 root = example_trees.create_example_tree()

 result = rotate_left(root)

 as_list = convert_to_list(result)

 assert as_list == ["f6", "d4", "g7", "b2", "e5", "a1", "c3"]

def test_rotate_right():

 root = example_trees.create_example_tree()

 result = rotate_right(root)

 as_list = convert_to_list(result)

 assert as_list == ["b2", "a1", "d4", "c3", "f6", "e5", "g7"]

As a reminder, the function for converting a tree into a list based on a level order is

shown here again.

Chapter 8 Binary trees

513

def convert_to_list(node):

 result = []

 levelorder(node, lambda item: result.append(item))

 return result

8.3.8 Solution 8: Reconstruction (★★★✩✩)
 Solution 8a: Reconstruction from a List (★★✩✩✩)

In this exercise, you want to reconstruct a binary search tree that is as balanced as

possible from an ascending sorted list of natural numbers.

Example

For example, use these values:

values = [1, 2, 3, 4, 5, 6, 7]

Then the following tree should be reconstructed from them:

 4

 |-----+-----|

 2 6

 |--+--| |--+--|

 1 3 5 7

Algorithm Reconstructing a binary search tree from a sorted list in ascending order

is not that difficult. Due to the sorting, you can split the list in half and use the value

in the middle as the base for the new node. You construct the left and right subtree

recursively from the list’s left and right parts, respectively. You continue the bisection

until the sublist has only the size 0 or 1.

def reconstruct(values):

 # recursive termination

 if not values: # len(values) == 0 not recommended by PEP 8

 return None

 mid_idx = len(values) // 2

 mid_value = values[mid_idx]

 new_node = BinaryTreeNode(mid_value)

Chapter 8 Binary trees

514

 # recursive termination

 if len(values) == 1:

 return new_node

 # recursive descent

 left_part = values[0: mid_idx]

 right_part = values[mid_idx + 1:len(values)]

 new_node.left = reconstruct(left_part)

 new_node.right = reconstruct(right_part)

 return new_node

You could omit the query on length 1 in the middle of the function without changing

the functionality. The function would then simply be called twice for an empty list and

thus terminate directly. For me, this special treatment was a bit more understandable,

but that’s a matter of taste.

 Verification

Let’s see the implementation in action and supply an arbitrary but suitably sorted list

of int values. With this, you invoke your function, which returns the root of the tree as

a result. Finally, you verify that the tree is indeed correctly reconstructed by printing

various information to the console.

def main():

 inputs = [[1, 2, 3, 4, 5, 6, 7],

 [1, 2, 3, 4, 5, 6, 7, 8]]

 for values in inputs:

 root = reconstruct(values)

 print_info(root)

The output function is simple to implement:

def print_info(root):

 TreeUtils.nice_print(root)

 print("Root: ", root)

 print("Left: ", root.left)

Chapter 8 Binary trees

515

 print("Right:", root.right)

 print()

The following abbreviated output shows that the two trees are correctly

reconstructed:

 4

 |-----+-----|

 2 6

 |--+--| |--+--|

 1 3 5 7

Root: BinaryTreeNode [item=4, left=BinaryTreeNode [item=2, ..

Left: BinaryTreeNode [item=2, left=BinaryTreeNode [item=1, ...

Right: BinaryTreeNode [item=6, left=BinaryTreeNode [item=5, ...

 5

 |-----------+-----------|

 3 7

 |-----+-----| |-----+-----|

 2 4 6 8

 |--|

 1

Root: BinaryTreeNode [item=5, left=BinaryTreeNode [item=3, ...

Left: BinaryTreeNode [item=3, left=BinaryTreeNode [item=2, ...

Right: BinaryTreeNode [item=7, left=BinaryTreeNode [item=6, ...

Verification with unit test Once again you use a level order traversal for the unit test

to verify the reconstruction:

def test_reconstruct_from_list():

 inputs = [1, 2, 3, 4, 5, 6, 7]

 result_root = reconstruct(inputs)

 result = convert_to_list(result_root)

 assert result == [4, 2, 6, 1, 3, 5, 7]

Chapter 8 Binary trees

516

 Solution 8b: Reconstruction from Inorder/Preorder (★★★✩✩)

Suppose the sequence of values in preorder and inorder is given, each prepared as a

list. This information about an arbitrary binary tree should be used to reconstruct the

corresponding tree. Write function reconstruct(preorder_values, inorder_values).

Example

Two sequences of values of the traversals are given below. Based on these values, you

should reconstruct the tree shown in the previous part of the exercise.

preorder_values = [4, 2, 1, 3, 6, 5, 7]

inorder_values = [1, 2, 3, 4, 5, 6, 7]

Algorithm For a better understanding of the need for two inputs and the algorithm,

let’s take another look at the values of a preorder and inorder traversal with the value of

the root highlighted in bold as an example:

Preorder 4 2 1 3 6 5 7

Inorder 1 2 3 4 5 6 7

The preorder traversal always starts with the root, so based on the first value, you can

create the root first. By searching for the value of the root in the value sequence of the

inorder traversal, you determine how the values are divided into left and right subtrees.

Everything in the inorder to the left of the value of the root represents the values of the

left subtree. Analogously, this applies to the values to the right of it and the right subtree.

This results in the following sublists:

Left: 1 2 3

Right: 5 6 7

To call your function recursively, you need to find the corresponding value

sequences for preorder. How do you do this?

Let’s take a detailed look at the values of a preorder and an inorder traversal. By

looking closely, you can see the following pattern:

Preorder

Inorder

root left right

left root rig

4 213 657

123 4 567

� ��

��
hht
�

Chapter 8 Binary trees

517

With this knowledge, you can implement the algorithm as follows, taking advantage

of slicing to generate the appropriate chunks from the original and use them for the

recursive descent:

def reconstruct_clearer(preorder_values, inorder_values):

 # recursive termination

 # len(values) == 0 not recommended by PEP 8

 if not preorder_values or not inorder_values:

 return None

 root_value = preorder_values[0]

 root = BinaryTreeNode(root_value)

 # recursive termination

 if len(preorder_values) == 1 and len(inorder_values) == 1:

 return root

 # recursive descent

 index = inorder_values.index(root_value)

 # left and right part for inorder

 left_inorder = inorder_values[0: index]

 right_inorder = inorder_values[index + 1: len(inorder_values)]

 # left and right part for preorder

 left_preorder = preorder_values[1: 1 + index]

 right_preorder = preorder_values[index + 1: len(preorder_values)]

 root.left = reconstruct_clearer(left_preorder, left_inorder)

 root.right = reconstruct_clearer(right_preorder, right_inorder)

 return root

 Verification

To understand the reconstruction, you provide the appropriate value sequences as three

nested lists. As usual, Pytest automatically extracts the preorder and inorder values from

each of these inputs. The result is given in the form of a level order traversal. This offers

good traceability based on the graphical representation.

Chapter 8 Binary trees

518

@pytest.mark.parametrize("preorder_values, inorder_values, expected",

 [([4, 2, 1, 3, 6, 5, 7], [1, 2, 3, 4, 5, 6, 7],

 [4, 2, 6, 1, 3, 5, 7]),

 ([5, 4, 2, 1, 3, 7, 6, 8], [1, 2, 3, 4, 5, 6, 7, 8],

 [5, 4, 7, 2, 6, 8, 1, 3])])

def test_reconstruct_from_pre_in_order(preorder_values, inorder_values,

 expected):

 result_root = reconstruct_clearer(preorder_values, inorder_values)

 result = convert_to_list(result_root)

 assert result == expected

HINT: THINGS TO KNOW ABOUT RECONSTRUCTION

interestingly, using the algorithm shown, any binary tree can be reconstructed, regardless of

whether it is also a binary search tree (for which its nodes follow an order). But it gets even

more remarkable. if the values of the preorder traversal originate from a binary search tree, it

is possible to reconstruct it based only on that, as follows:

def reconstruct_from_preorder_bst(preorder_values):

 # recursive termination

 if not preorder_values:

 return None

 root_value = preorder_values[0]

 root = BinaryTreeNode(root_value)

 # splitting

 left_values = [value for value in preorder_values if value < root_value]

 right_values = [value for value in preorder_values if value > root_value]

 # recursive descent

 root.left = reconstruct_from_preorder_bst(left_values)

 root.right = reconstruct_from_preorder_bst(right_values)

 return root

this is possible since, in a binary search tree, the values of the preorder traversal are first

the value of the root, then the values smaller than the root, and finally the values of the right

Chapter 8 Binary trees

519

subtree, which are also larger than the value of the root. this condition also applies recursively.

With the help of two filter conditions, all left and right subtree values can be easily extracted—

as shown above—and used as input for the recursive call.

try the reconstruction with the following dataset:

inputs = [[4, 2, 1, 3, 6, 5, 7],

 [5, 4, 2, 1, 3, 7, 6, 8]]

for values in inputs:

 root = reconstruct_from_preorder_bst(values)

 TreeUtils.nice_print(root)

the first input data generates the following tree:

 4

 |-----+-----|

 2 6

 |--+--| |--+--|

 1 3 5 7

8.3.9 Solution 9: Math Evaluation (★★✩✩✩)
Consider using a tree to model mathematical expressions with the four operators +, −, /,

and ∗. It is your task to compute the value of individual nodes, including in particular the

value of the root node. For this purpose, write function evaluate(node).

Example

Represent the expression 3 + 7 ∗ (7 − 1) by the following tree to compute the value 45 for

the root node:

 +

 |-----------+-----------|

 3 *

 |-----+-----|

 7 -

 |--+--|

 7 1

Chapter 8 Binary trees

520

Algorithm The problem can be solved simply and clearly by a recursive call in

combination with the appropriate operators as follows. It’s a bit clumsy due to the fact

that there is no switch in Python up to Python 3.9.

def evaluate(node):
 value = node.item;

 if value == "+":
 return evaluate(node.left) + evaluate(node.right)
 if value == "-":
 return evaluate(node.left) - evaluate(node.right)
 if value == "*":
 return evaluate(node.left) * evaluate(node.right)
 if value == "/":
 return evaluate(node.left) / evaluate(node.right)
 else:
 return int(value)

Python 3.10 introduces match as a new keyword, which is more powerful than switch

known from other programming languages. In combination with a dynamic evaluation,

you can write the whole thing as follows:

def evaluate_v2(node):

 value = node.item

 match value:

 case "+" | "-" | "*" | "/":

 val1 = evaluate_v2(node.left)

 val2 = evaluate_v2(node.right)

 return eval(str(val1) + value + str(val2))

 case _:

 return int(value)

 Verification

Let’s construct the tree from the example and invoke the above function:

def main():

 plus = BinaryTreeNode("+")

 _3 = BinaryTreeNode("3")

Chapter 8 Binary trees

521

 mult = BinaryTreeNode("*")

 _7 = BinaryTreeNode("7")

 minus = BinaryTreeNode("-")

 _1 = BinaryTreeNode("1")

 plus.left = _3

 plus.right = mult

 mult.left = _7

 mult.right = minus

 minus.left = _7

 minus.right = _1

 tree_utils.nice_print(plus)

 print("+:", evaluate(plus))

 print("*:", evaluate(mult))

 print("-:", evaluate(minus))

 print("+:", evaluate_v2(plus))

 print("*:", evaluate_v2(mult))

 print("-:", evaluate_v2(minus))

If you execute this main() function, you get on the output of the tree as well as the

results of the selected individual nodes:

 +

 |-----------+-----------|

 3 *

 |-----+-----|

 7 -

 |--+--|

 7 1

+: 45

*: 42

-: 6

+: 45

*: 42

-: 6

Chapter 8 Binary trees

522

8.3.10 Solution 10: Symmetry (★★✩✩✩)
Check if an arbitrary binary tree is symmetric in its structure. Write function

is_symmetric(node). In addition to the structural examination, you can also check for

equality of values.

Examples

To check for symmetry, you use a binary tree that is symmetric in structure (left) and a

binary tree that is also symmetric concerning values (right).

 4 1

 |-----+-----| / \

 2 6 2 2

 |--+--| |--+--| / \

 1 3 5 7 3 3

NOTE: THE SYMMETRY PROPERTY

in a symmetric binary tree, the left and right subtree are mirrored through the root along an

imaginary vertical line (indicated by |):

 1

 /|\

 2 | 2

 / | \

 3 | 3

Depending on the definition, a comparison of the values can be omitted for the symmetry. in

this case, only the structural organization can be counted as relevant.

Algorithm Once again, you benefit from a good basic knowledge of recursion.

Starting from the root, you check the two opposite successor nodes. The simplest case

is that for a node, no successor nodes exist. This constellation is always symmetrical.

If, however, only one of the two successor nodes exists, then the tree is not symmetric.

Accordingly, only the case for two successor nodes is to be considered. Here the

Chapter 8 Binary trees

523

respective left and right subtrees must be mirror-inverted. For this, you check recursively

whether the right subtree of the left and the left subtree of the right node structurally fit

each other, as well as the left subtree of the right and the right subtree of the left node.

def is_symmetric(node):

 if node is None:

 return True

 return check_if_nodes_are_symmetric(node.left, node.right)

def check_if_nodes_are_symmetric(left, right):

 if left is None and right is None:

 return True

 if left is None or right is None:

 return False

 # descend both subtrees

 return check_if_nodes_are_symmetric(left.right, right.left) and \

 check_if_nodes_are_symmetric(left.left, right.right)

Advanced algorithm: Value symmetry In fact, the extension to value checking

is simple if you have implemented the previous exercise correctly. Only a Boolean

parameter check_value has to be added to the signature and evaluated at the

appropriate place before the recursive descent:

def check_if_nodes_and_values_are_symmetric(left, right, check_value):

 if left is None and right is None:

 return True

 if left is None or right is None:

 return False

 # check values

 if check_value and not left.item == right.item:

 return False

 # descend both subtrees

 return check_if_nodes_and_values_are_symmetric(left.right, right.left,

 check_value) and \

 check_if_nodes_and_values_are_symmetric(left.left, right.right,

 check_value)

Chapter 8 Binary trees

524

 Verification

You construct the two trees from the introduction and invoke the function you just

created. The first tree is already known. The other one is explicitly created for this

example with create_symmetric_number_tree(): After that, you add the node with the

value 4, which deliberately breaks the symmetry.

def main():

 root = example_trees.create_number_tree()

 TreeUtils.nice_print(root)

 print("symmetric:", is_symmetric(root))

 root2 = create_symmetric_number_tree()

 TreeUtils.nice_print(root2)

 print("symmetric:", is_symmetric(root2))

 # modified tree: add a 4

 root2.right.left = BinaryTreeNode("4")

 TreeUtils.nice_print(root2)

 print("symmetric:", is_symmetric((root2))

In create_symmetric_number_tree() you create a root and then the symmetric

structure with nodes with the values 2 and 3.

def create_symmetric_number_tree():

 root = BinaryTreeNode("1")

 root.left = BinaryTreeNode("2")

 root.right = BinaryTreeNode("2")

 root.left.left = BinaryTreeNode("3")

 root.right.right = BinaryTreeNode("3")

 return root

If you execute this main() function, you get the expected results:

 4

 |-----+-----|

 2 6

 |--+--| |--+--|

 1 3 5 7

Chapter 8 Binary trees

525

symmetric: True

 1

 |-----+-----|

 2 2

 |--+ +--|

 3 3

symmetric: True

 1

 |-----+-----|

 2 2

 |--+ |--+--|

 3 4 3

symmetric: False

 Bonus: Mirror Tree

In the hint box, I indicated a mirror axis through the root. Create function invert(node)

that mirrors the nodes of a tree at this implied line through the root.

Example

A mirroring looks like this:

 4 4

 |-----+-----| |-----+-----|

 2 6 => 6 2

 |--+--| |--+--| |--+--| |--+--|

 1 3 5 7 7 5 3 1

Algorithm At first, you might once again assume that the challenge is difficult to

solve. But in fact, it is much easier to implement with the help of recursion than you

initially think.

The algorithm proceeds from the root downwards and swaps the left and right

subtrees. To do this, you store these subtrees in temporary variables and then assign

them to the other side. That’s really all there is to it!

Chapter 8 Binary trees

526

You implement this in Python as follows:

def invert(root):

 if root is None:

 return None

 inverted_right = invert(root.right)

 inverted_left = invert(root.left)

 root.left = inverted_right

 root.right = inverted_left

 return root

Python shortcut Using the tuple notation, you can implement the whole thing even

more compactly as follows:

def invert_clearer(root):

 if root is None:

 return None

 root.left, root.right = invert(root.right), invert(root.left)

 return root

 Verification

You construct the left tree from the introduction and invoke the function you just

created:

def main():

 root = example_trees.create_number_tree()

 newroot = invert(root)

 TreeUtils.nice_print(newroot)

 newroot = invert_clearer(newroot)

 TreeUtils.nice_print(newroot)

Chapter 8 Binary trees

527

If you execute this main() function, you get the expected mirroring and another one

results again in the original:

 4

 |-----+-----|

 6 2

 |--+--| |--+--|

 7 5 3 1

 4

 |-----+-----|

 2 6

 |--+--| |--+--|

 1 3 5 7

8.3.11 Solution 11: Check Binary Search Tree (★★✩✩✩)
In this exercise, you check whether an arbitrary binary tree fulfills the property of a

binary search tree (BST), so the values in the left subtree are smaller than the root node’s

value and those in the right subtree are larger—and this holds for each subtree starting

from the root. For simplification, assume int values. Write function is_bst(node).

Example

Use the following binary tree, which is also a binary search tree. For example, if you

replace the number 1 with a larger number on the left side, it is no longer a binary search

tree. However, the right subtree under the 6 is still a binary search tree.

 4

 |-----+-----|

 2 6

 |--+--| |--+--|

 1 3 5 7

Chapter 8 Binary trees

528

Algorithm From the assignment, you recognize a recursive design. A tree with

only one node is always a binary search tree. If there is a left or right successor or even

both, you check their values for compliance with the value relation and perform this

recursively for their successors, if they exist.

def is_bst(node):

 # recursive termination

 if node is None:

 return True

 if node.is_leaf():

 return True

 # recursive descent

 is_left_bst = True

 is_right_bst = True

 if node.left is not None:

 is_left_bst = node.left.item < node.item and is_bst(node.left)

 if node.right is not None:

 is_right_bst = node.right.item > node.item and is_bst(node.right)

 return is_left_bst and is_right_bst

 Verification

You construct the tree from the example and invoke the function you just created. You

also apply two modifications and check again.

def main():

 _4 = create_integer_number_tree()

 _2 = _4.left

 _6 = _4.right

 TreeUtils.nice_print(_4)

 print("is_bst(_4):", is_bst(_4))

 print("is_bst(_2):", is_bst(_2))

 print("is_bst(_6):", is_bst(_6))

Chapter 8 Binary trees

529

 # change the tree on the left in a wrong and on the right in a correct way

 _2.left = BinaryTreeNode(13)

 _6.right = None

 TreeUtils.nice_print(_4)

 print("is_bst(_4):", is_bst(_4))

 print("is_bst(_2):", is_bst(_2))

 print("is_bst(_6):", is_bst(_6))

If you execute this main() function, you get both the output of the tree and the results

for selected individual nodes, whether these nodes themselves (but of course with their

successors) represent a binary search tree.

However, if you carelessly store a larger value in the left subtree (e. g., 13), neither the

whole tree nor the part with node 2 as root is a BST. For the right subtree, if you delete

the node with the value 7, the right subtree with the node with the value 6 remains a BST.

 4

 |-----+-----|

 2 6

 |--+--| |--+--|

 1 3 5 7

is_bst(_4): True

is_bst(_2): True

is_bst(_6): True

 4

 |-----+-----|

 2 6

 |--+--| |--|

 13 3 5

is_bst(_4): False

is_bst(_2): False

is_bst(_6): True

Chapter 8 Binary trees

530

8.3.12 Solution 12: Completeness (★★★★★)
In this exercise, you check the completeness of a tree. To do this, you initially solve

the basics in the first two parts of the exercise and then proceed to the trickier

completeness check.

 Solution 12a: Number of Nodes (★✩✩✩✩)

Count how many nodes are contained in any binary tree. To do this, write function

count_nodes(node).

Example

For the binary tree shown, the value 7 should be determined. If you remove the right

subtree, the tree consists of only 4 nodes.

 4

 |-----+-----|

 2 6

 |--+--| |--+--|

 1 3 5 7

Algorithm The algorithm is really extremely straightforward if you express it

recursively. Each node counts as 1, and then you continue counting in both its left and

right subtrees and add their results until you hit a leaf.

def count_nodes(node):

 if node is None:

 return 0

 return 1 + count_nodes(node.left) + count_nodes(node.right)

 Solution 12b: Check for Full/Perfect (★★✩✩✩)

For an arbitrary binary tree, check if all nodes have two successors or leaves each, and

thus the tree is full. For perfection, all leaves must be at the same height. Write functions

is_full(node) and is_perfect(node).

Chapter 8 Binary trees

531

Example

The binary tree shown is both perfect and full. If you remove the two leaves below the 2,

it is no longer perfect but still full.

 Full and perfect Full but not perfect

 4 4

 |-----+-----| |-----+-----|

 2 6 2 6

|--+--| |--+--| |--+--|

1 3 5 7 5 7

Algorithm The check whether a tree is full is not that difficult if it is implemented

recursively. Attention: Please do not confuse full and complete (see the introduction for

definitions). A tree is full if it has no or two successors. Otherwise, it cannot be a full tree.

def is_full(node):

 if node is None:

 return True

 return __is_full_helper(node.left, node.right)

def __is_full_helper(left_node, right_node):

 if left_node is None and right_node is None:

 return True

 if left_node is not None and right_node is not None:

 return is_full(left_node) and is_full(right_node)

 return False

This is a good start. Based on this, you need some smaller extensions to be able to

check the perfectness. First, you must determine the height of the whole tree, starting

from the root. This can easily be achieved, as you implemented it as solution of Exercise

8.3.3. After that, you proceed quite similar to is_full(), but now every node must

have two successors. On the level of the leaves, you additionally have to check if they

are at the correct level. You might stumble over the fact that the height of a leaf is 1.

Therefore you still need the level on which they are located. For this, you cheat with

an additional parameter current_level in your function. This results in the following

implementation:

Chapter 8 Binary trees

532

def is_perfect(node):

 if node is None:

 return True

 height = get_height(node)

 return is_perfect_helper(node.left, node.right, height, 1)

def is_perfect_helper(left_node, right_node, height, current_level):

 if left_node is None or right_node is None:

 return False

 if left_node.is_leaf() and right_node.is_leaf():

 return on_same_height(left_node, right_node, height, current_level)

 return is_perfect_helper(left_node.left, left_node.right, height,

 current_level + 1) and \

 is_perfect_helper(right_node.left, right_node.right, height,

 current_level + 1)

def on_same_height(left_node, right_node, height, current_level):

 # problem: height of the node is 1, therefore you must

 # take into account the current level here

 return get_height(left_node) + current_level == height and \

 get_height(right_node) + current_level == height

 Verification

You construct the tree with numbers from the introduction and invoke the methods

you just created. In addition, you modify the tree by deleting the reference to the right

subtree. Then you invoke the functions again.

def main():

 _4 = example_trees.create_number_tree()

 TreeUtils.nice_print(_4)

 print("#nodes:", count_nodes(_4))

 print("is_full?:", is_full(_4))

 print("is_perfect?:", is_perfect(_4))

 print()

Chapter 8 Binary trees

533

 # delete nodes with values 1, 3

 _2 = _4.left

 _2.left = None

 _2.right = None

 TreeUtils.nice_print(_4)

 print("#nodes:", count_nodes(_4))

 print("is_full?:", is_full(_4))

 print("is_perfect?:", is_perfect(_4))

 print()

If you run this main() function, you get the expected results:

 4

 |-----+-----|

 2 6

 |--+--| |--+--|

 1 3 5 7

#nodes: 7

is_full?: True

is_perfect?: True

 4

 |-----+-----|

 2 6

 |--+--|

 5 7

#nodes: 5

is_full?: True

is_perfect?: False

 Solution 12c: Completeness (★★★★✩)

In this subtask, you check if a tree is complete as defined in the introduction—as a binary

tree with all levels fully filled, with the allowed exception on the last level where nodes

may be missing, but only with gaps as far to the right as possible.

Chapter 8 Binary trees

534

Example

In addition to the perfect tree used so far, the following tree is also complete by

definition. However, if you remove the children from node H, the tree is no longer

complete.

 F

 |-----------+-----------|

 D H

 |-----+-----| |-----+-----|

 B E G I

 |--+--|

 A C

Algorithm At first, this seems to be a rather tricky task, much more complicated

than the checks shown before. If you study the definition again, the tree is supposed to

contain successors in pairs. Moreover, there must be no gaps in the tree, so no node with

a missing left successor but with a right successor. If the tree is not fully filled, then only

leaves from the right may be missing. On closer visual inspection, it is noticeable that

you can traverse level by level, but nodes may be missing only in the last level.

Now the level order traversal comes to mind. You use this here and just add a few

checks. For each node there must be no right successor without a left one. Besides,

you check whether you have discovered a missing node in the meantime. How can this

happen? This is possible whenever you want to add a node’s successors to the queue, but

there is only one left or right successor. This is expressed by the flag missing_node. So,

if a missing successor has been detected, then the nodes processed afterwards must be

leaves only.

def levelorder_is_complete(start_node):

 if start_node is None:

 return False

 to_process = Queue()

 to_process.enqueue(start_node)

 # indicates that a node does not have two successors

 missing_node = False

Chapter 8 Binary trees

535

 while not to_process.is_empty():

 current = to_process.dequeue()

 # only descendants on the right side

 if current.left is None and current.right is not None:

 return False

 # if a missing node was previously detected,

 # then the next may be only a leaf

 if missing_node and not current.is_leaf():

 return False

 # include sub-elements, mark if not complete

 if current.left is not None:

 to_process.enqueue(current.left)

 else:

 missing_node = True

 if current.right is not None:

 to_process.enqueue(current.right)

 else:

 missing_node = True

 # all nodes successfully tested

 return True

 Verification

You construct the tree from the example and invoke the function you just created. In

addition, you modify the tree by removing the leaves below the H node and check again.

def main():

 F = create_completness_example_tree()

 TreeUtils.nice_print(F)

 print("levelorder_is_complete?", levelorder_is_complete(F))

 # remove leaves under H

 H = F.right

 H.left = None

 H.right = None

Chapter 8 Binary trees

536

 TreeUtils.nice_print(F)

 print("levelorder_is_complete?", levelorder_is_complete(F))

def create_completness_example_tree():

 F = BinaryTreeNode("F")

 TreeUtils.insert(F, "D")

 TreeUtils.insert(F, "H")

 TreeUtils.insert(F, "B")

 TreeUtils.insert(F, "E")

 TreeUtils.insert(F, "A")

 TreeUtils.insert(F, "C")

 TreeUtils.insert(F, "G")

 TreeUtils.insert(F, "I")

 return F

If you execute this main() function, you get the expected results:

 F

 |-----------+-----------|

 D H

 |-----+-----| |-----+-----|

 B E G I

 |--+--|

 A C

levelorder_is_complete? True

 F

 |-----------+-----------|

 D H

 |-----+-----|

 B E

 |--+--|

 A C

levelorder_is_complete? False

Chapter 8 Binary trees

537

 Solution 12d: Completeness Recursive (★★★★★)

In this last subtask, the following challenge remains to be mastered as a special treat. The

check is to be solved without additional data structures and purely recursively. At first,

this sounds hardly feasible, so I’ll give a hint.

Tip Develop the solution step by step. Create an auxiliary data structure that
models whether or not a node exists for a certain position. then traverse the tree
and mark the positions appropriately. afterwards, convert this implementation to a
purely recursive one without the auxiliary data structure.

Example

As before, the following tree is complete by definition:

 F

 |-----------+-----------|

 D H

 |-----+-----| |-----+-----|

 B E G I

 |--+--|

 A C

Algorithm In fact, the assignment sounds hardly manageable, but that is why it is

a tough challenge. As like so often, it is worthwhile to start by developing a version that

does not yet meet all the required properties and gradually refine it. You start with the

ideas from the tip.

The idea is this: You traverse the tree, and for each node that exists, you mark exactly

that in a list of bools When doing so, you number the positions according to level order

from left to right and top to bottom. To determine the position of the current node in

Chapter 8 Binary trees

538

the list, you perform the following computation: For the position i, the left successor

has the position i ∗ 2 + 1 and the right successor has position i ∗ 2 + 2.3 Figure 8-12

illustrates this.

F0

D1 H2

B3 E4 G5 I6

A7 C8 index:

F D H B E G I A C

0 1 2 3 4 5 6 7 8

R
L L

L L

R

R R

Figure 8-12. Map a tree node to a position in the list/array

Now you still need to know how large the result list needs to be. Theoretically, at

most, it can contain 2height elements. However, for very deep and thus expanding trees,

many leaves might not exist at all. To optimize the memory consumption, you count the

number of nodes to determine the actual size needed. This is where Exercise 12a helps

you. Then you traverse all the tree elements using the traverse_and_mark() function.

Finally, you summarize the data using all_assigned().

def is_complete(start_node):

 node_count = count_nodes(start_node)

 node_exists = [False] * node_count

 # now you traverse the tree from the root downwards

 traverse_and_mark(start_node, node_exists, 0)

 return all_assigned((node_exists)

Let’s move on to traversing the tree and filling the list. Interestingly, it doesn’t matter

whether you use preorder, inorder, or postorder here. The only important thing is that

the positions are determined according to the mentioned computation rule.

3 The computation gets a little bit easier if you assign the index 1 to the root. Then the children
have positions 2i and 2i + 1.

Chapter 8 Binary trees

539

def traverse_and_mark(start_node, node_exists, pos):

 # recursive termination

 if start_node is None:

 return

 if pos >= len(node_exists):

 return

 # action

 node_exists[pos] = True

 # recursive descent

 traverse_and_mark(start_node.left, node_exists, pos * 2 + 1)

 traverse_and_mark(start_node.right, node_exists, pos * 2 + 2)

Finally, you need to check if there is a position in the list that is not occupied by True.

In this case, you detect that the tree is not complete. This is implemented as follows:

def all_assigned(node_exists):

 for exists in node_exists:

 if not exists:

 return False

 return True

If you remember the built-in function all() you can shorten the implementation—I

keep the helper function because it communicates the algorithm more clearly.

def all_assigned(node_exists):

 return all(node_exists)

Phew, that was quite a bit of work so far, and you needed several tricks. On a positive

note, this algorithm works. I’ll show that later along with the algorithm converted purely

to recursive processing based on these ideas.

On the negative side, however, you need quite a bit of additional memory depending

on the tree’s size. Let’s see how you can avoid this by using the purely recursive variant.

Recursive algorithm The goal is to eliminate the use of the list and work only

recursively. Therefore, the previously created traverse_and_mark() function is a good

starting point. Since you’re not allowed to use a list as a data store, you need the number

of nodes as a parameter.

Chapter 8 Binary trees

540

def is_complete_rec(start_node):

 return __is_complete_rec_helper(start_node, 0, count_nodes(start_node))

def __is_complete_rec_helper(start_node, pos, node_count):

 if start_node is None:

 return True

 if pos >= node_count:

 return False

 if not __is_complete_rec_helper(start_node.left, 2 * pos + 1,

node_count):

 return False

 if not __is_complete_rec_helper(start_node.right, 2 * pos + 2,

node_count):

 return False

 return True

Without the intermediate steps, it would have been challenging—at least for me—to

formulate the task recursively since the trick of the logic in the position calculation can

hardly be derived without the list in mind. It is quite impressive what these few lines

accomplish.

 Verification

Again, you construct the tree and modify it after testing. If you take away the node H or I

individually or both, then completeness is no longer given.

def main():

 F = create_completness_example_tree()

 TreeUtils.nice_print(F)

 print("is_complete?", is_complete(F))

 print("is_complete_rec?", is_complete_rec(F))

 # modification: remove leaves under H

 H = F.right

 H.left = None

 H.right = None

 TreeUtils.nice_print(F)

Chapter 8 Binary trees

541

 print("is_complete?", is_complete(F))

 print("is_complete_rec?", is_complete_rec(F))

def create_completness_example_tree():

 F = BinaryTreeNode("F")

 TreeUtils.insert(F, "D")

 TreeUtils.insert(F, "H")

 TreeUtils.insert(F, "B")

 TreeUtils.insert(F, "E")

 TreeUtils.insert(F, "A")

 TreeUtils.insert(F, "C")

 TreeUtils.insert(F, "G")

 TreeUtils.insert(F, "I")

 return F

If you run this main() function, you get the expected results—moreover, they are

consistent for the function variations:

 F

 |-----------+-----------|

 D H

 |-----+-----| |-----+-----|

 B E G I

 |--+--|

 A C

is_complete? True

is_complete_rec? True

 F

 |-----------+-----------|

 D H

 |-----+-----|

 B E

 |--+--|

 A C

is_complete? False

is_complete_rec? False

Chapter 8 Binary trees

542

8.3.13 Solution 13: Tree Printer (★★★★★)
In this exercise, you implement a binary tree’s graphical output, as you have seen before

in the examples. Therefore, you initially solve the basics in the first three parts of the

assignment and then proceed to the trickier graphical presentation of trees.

Tip Use a fixed grid of blocks of width three. this significantly contributes to a
balanced representation and reduces complexity.

Example

The following tree should cover various special cases:

 F
 |-----------+-----------|
 D H
 |-----+ +-----|
 B I
 |--+--|
 A C

 Solution 13a: Width of a Subtree (★★✩✩✩)

In this part of the exercise, you are asked to find the maximum width of a subtree of a

given height using the function subtree_width(height). For simplicity, you assume that

a maximum of three characters represents the nodes. Besides, there is a distance of at

least three characters between them. This is true for the leaves when the tree is full. On

higher levels, there is naturally more space between the nodes of two subtrees.

Examples

Examples On the left, you see a tree of height 2, and on the right, a tree of height 3. Based

on the grid of three, you get 9 and 21 as widths. See Figure 8-13.

Chapter 8 Binary trees

543

A

CB

9

tree

width

A

CB

B2B1 C2C1

9 93
=21

Figure 8-13. Tree width

Height Total width Width of subtree

1 3 0 (no subtree existing)

2 9 3

3 21 9

4 45 21

Algorithm In the diagram, you recognize that the lowest level of a binary tree can

contain at most 2n nodes, with n as the height of the tree. In order not to exceed the scope

you want to ignore variable widths of the nodes. To determine the maximum width for a

height, the total width is as follows:

max_num_of _leaves ∗ leaf _width + (max_num_of _leaves − 1) ∗ spacing

This is the basis for the following implementation. Perhaps the last computation is

a bit tricky. You have to subtract the spacing and divide by two since you only want to

determine the maximum width of a subtree.

def subtree_width(height):

 if height <= 0:

 return 0

 leaf_width = 3

 spacing = 3

Chapter 8 Binary trees

544

 max_num_of_leaves = pow(2, height - 1)

 width_of_tree = max_num_of_leaves * leaf_width + \

 (max_num_of_leaves - 1) * spacing

 width_of_subtree = (width_of_tree - spacing) // 2

 return width_of_subtree

 Solution 13b: Draw Node (★★✩✩✩)

Write function draw_node(current_node, line_length) that creates a graphical output

of a node, generating the given set of spaces appropriately. The node value should have a

maximum of three characters and be placed in the middle.

Tip remember that if the current node has a left successor, the representation of
the layer below starts on the left with the string ‘ |-’.

Example

The example shows a single node with a spacing of five characters. Besides, the node

value is center-aligned in a three-character box. See Figure 8-14.

draw_node (“A“, 5)
A

initial
 spacing

node value

spacing
 (line_length)

Figure 8-14. Dimensions when drawing nodes

Algorithm As usual, it is a good idea to reduce the complexity by subdividing an

assignment into several smaller subtasks. Using function spacing() you create the

required spacing both to the left and right of the node representation. Its preparation

first checks for the special cases of no existence or no value in the node. Then this

corresponds graphically to a free space of three characters. Otherwise, you pad the

value converted to a string with spaces if it is shorter than three characters. If it is longer,

Chapter 8 Binary trees

545

you truncate the text to three characters. This is done in the function stringify_node_

value(node). Because subsequent lines start with the text ‘|-’ if a left successor exists,

you add three more spaces to the front of your string representation.

def draw_node(current_node, line_length):

 str_node = " "

 str_node += spacing(line_length)

 str_node += stringify_node_value(current_node)

 str_node += spacing(line_length)

 return str_node

def stringify_node_value(node):

 if node is None:

 return " "

 if node.item is None:

 return " "

 node_value = str(node.item)

 if len(node_value) == 1:

 return " " + node_value + " "

 if len(node_value) == 2:

 return node_value + " "

 return node_value[0:3]

def spacing(line_length):

 return " " * line_length

 Solution 13c: Draw Connection Lines (★★✩✩✩)

Write function draw_connections(node, line_length) to build a graphical output of

the connection lines of a node to its two successors. Missing successors must be handled

correctly.

Tip the line length refers to the characters between the node representations.
the parts representing ends are still to be appended appropriately in each case, as
well as the middle connector.

Chapter 8 Binary trees

546

Example

The following figure visualizes all cases relevant in drawing, with none, one, and two

successor(s).

 F

 |-----------+-----------|

 D H

 |-----+ +-----|

 B I

 |--+--|

 A C

A schematic representation is shown again in Figure 8-15.

draw_connections (node, line_length)

line_length line_length
junctionleft

start
right
end

Figure 8-15. Schematic representation of the connecting lines

Algorithm When drawing the connecting lines below a node, all three variants with

and without left or right successor are to be covered. Even a little more interesting is the

fact that a non-existent node must also produce a corresponding output of blanks. This

is needed if there are no children on the left side. Otherwise, the nodes on the right side

would not be indented correctly.

You subdivide the drawing into three parts. First, you prepare the left part of the

output with draw_left_connection_part(). After that, in draw_junction(node) you

create the connection point respecting all special cases. Finally, with draw_right_

connection_part() you prepare the right part.

def draw_connections(node, line_length):

 if node is None:

 return " " + spacing(line_length) + \

 " " + spacing(line_length) + " "

Chapter 8 Binary trees

547

 connection = draw_left_connection_part(node, line_length)

 connection += draw_junction(node)

 connection += draw_right_connection_part(node, line_length)

 return connection

def draw_left_connection_part(node, line_length):

 if node.left is None:

 return " " + spacing(line_length)

 else:

 return " |-" + draw_line(line_length)

def draw_right_connection_part(node, line_length):

 if node.right is None:

 return spacing(line_length) + " "

 else:

 return draw_line(line_length) + "-| "

def draw_junction(node):

 if node.left is None and node.right is None:

 return " "

 elif node.left is None:

 return " +-"

 elif node.right is None:

 return "-+ "

 else:

 return "-+-"

def draw_line(line_length):

 return "-" * line_length

 Solution 13d: Tree Representation (★★★★★)

Combine all solutions of the parts of the exercise and complete the necessary steps to be

able to print an arbitrary binary tree suitably on the console. To do this, write function

nice_print(node).

Chapter 8 Binary trees

548

Example

The output of the tree shown in the introductory example should also look something

like this through nice_print():

 F

 |-----------+-----------|

 D H

 |-----+ +-----|

 B I

 |--+--|

 A C

Also, check your algorithm with a real monster of a tree, which you can find in the

sources. Here is a much-slimmed-down representative:

 BIG

 |-----------------------+-----------------------|

 b2 f6

|-----------+-----------| |-----------+-----------|

a1 d4 d4 g7

 |-----+-----| |-----+-----|

 c3 f6 b2 e5

 |--+--| |--+--|

 e5 g7 a1 c3

Algorithm In the previous task, you learned how to map binary trees to lists or

arrays. Here, this has to be slightly modified because in the tree nodes can be missing at

arbitrary places in contrast to completeness. For computing the size of the list, you need

the height of the tree. This is also important for computing the corresponding distances

and line lengths. In this case, the trick also helps determine the maximum width of a

subtree and use it appropriately.

These ideas mentioned earlier may be picked up to create a suitable list in which the

nodes are stored in a scattered manner. The following function will assist you in doing so:

def fill_nodes_into_list(start_node):

 height = get_height(start_node)

 nodes = [None] * pow(2, height)

Chapter 8 Binary trees

549

 traverse_and_mark(start_node, nodes, 0)

 return nodes

def traverse_and_mark(start_node, nodes, pos):

 if start_node is None:

 return

 if pos >= len(nodes):

 return

 # action

 nodes[pos] = start_node

 # recursive descent

 traverse_and_mark(start_node.left, nodes, pos * 2 + 1)

 traverse_and_mark(start_node.right, nodes, pos * 2 + 2)

For drawing, the tree and the list are traversed level by level and the graphical

representation is prepared. However, this has the disadvantage that very extensive trees

also require quite a lot of additional memory when drawing since they are kept as an

array or list.

There are still a few challenges waiting for you:

• As you start drawing at the top, you need to move the previously

prepared lines for each new level by appropriate positions to

the right.

• The distances between the nodes and the lengths of the connecting

lines have to be computed and kept depending on the total height,

the current level, and position. Thereby the lowest level still needs

special treatment.

Figure 8-16 illustrates the grid and the different distances between the nodes per

level and from one level to the next.

Chapter 8 Binary trees

550

A

E F

G

C

I JM

B

D

9

21

9 9

3 3 3

9

3

0

distance

Figure 8-16. Spacing between nodes

The associated implementation benefits from the use of the helper functions:

def nice_print_v1(node):

 if node is None:

 return

 tree_height = get_height(node)

 all_nodes = fill_nodes_into_list(node)

 # traverse level by level

 offset = 0

 lines = []

 for level in range(tree_height):

 line_length = subtree_width(tree_height - 1 - level)

 # indent predecessor lines to the right

 for i in range(len(lines)):

 lines[i] = " " + spacing(line_length) + lines[i]

 nodes_per_level = pow(2, level)

 node_line = ""

 connection_line = ""

 for pos in range(nodes_per_level):

 current_node = all_nodes[offset + pos]

 node_line += draw_node(current_node, line_length)

 node_line += spacing_between_nodes(tree_height, level)

Chapter 8 Binary trees

551

 connection_line += draw_connections(current_node, line_length)

 connection_line += spacing_between_connections

(tree_height, level)

 lines.append(node_line)

 lines.append(connection_line)

 # jump forward in the list

 offset += nodes_per_level

 for line in lines:

 print(line)

def spacing_between_nodes(tree_height, level):

 spacing_length = subtree_width(tree_height - level)

 spacing = " " * spacing_length

 if spacing_length > 0:

 spacing += " "

 return spacing

def spacing_between_connections(tree_height, level):

 spacing_length = subtree_width(tree_height - level)

 return " " * spacing_length

Memory-optimized algorithm In the following, I would like to present a

modification that does not need any additional memory. Instead, it renders the graphical

representation of the tree with a level order traversal. You use a list with single lines,

wherein those with nodes and connecting lines alternate. In my opinion, the previously

shown version is somewhat clearer. The following version needs the special treatment of

changing levels, which is performed more naturally in the first version.

Overall, however, it is still a clear level order traversal, whose action is a bit more

extensive in this case.

def nice_print(start_node):

 if start_node is None:

 return

 to_process = Queue()

 # very cool: tuple (node, level)

 to_process.enqueue((start_node, 0))

Chapter 8 Binary trees

552

 tree_height = get_height(start_node)

 lines = []

 level = 0

 node_line = ""

 connection_line = ""

 additional_left_spacing = ""

 while not to_process.is_empty() and level < tree_height:

 # levelorder

 current_node_and_level = to_process.dequeue()

 current_node = current_node_and_level[0]

 node_level = current_node_and_level[1]

 line_length = subtree_width(tree_height - 1 - level)

 # change in level

 if level != node_level:

 level = node_level

 line_length = subtree_width(tree_height - 1 - level)

 lines.append(node_line)

 lines.append(connection_line)

 for i in range(len(lines)):

 lines[i] = " " + additional_left_spacing + \

 spacing(line_length) + lines[i]

 node_line = ""

 connection_line = ""

 node_line += draw_node(current_node, line_length)

 node_line += spacing_between_nodes(tree_height, level)

 connection_line += draw_connections(current_node, line_length)

 connection_line += spacing_between_connections(tree_height, level)

 # levelorder

 if current_node is not None:

 to_process.enqueue((current_node.left, level + 1))

 to_process.enqueue((current_node.right, level + 1))

Chapter 8 Binary trees

553

 else:

 # artificial placeholders

 to_process.enqueue((None, level + 1))

 to_process.enqueue((None, level + 1))

 for line in lines:

 print(line)

 Verification

You have developed quite a bit. Now you want to see the fruits of your labor. For this

purpose, you use the trees from the introductory example. The first tree shows well the

principle way of working. The second is a combination of the previous example trees, but

rotated to the left and right and united under a new root with the value BIG.

def create_tree_print_example_tree():

 F = BinaryTreeNode("F")

 TreeUtils.insert(F, "D")

 TreeUtils.insert(F, "H")

 TreeUtils.insert(F, "B")

 TreeUtils.insert(F, "A")

 TreeUtils.insert(F, "C")

 TreeUtils.insert(F, "I")

 return F

def create_big_tree():

 d4a = example_trees.create_example_tree()

 d4b = example_trees.create_example_tree()

 BIG = BinaryTreeNode("BIG")

 BIG.left = rotate_right(d4a)

 BIG.right = rotate_left(d4b)

 return BIG

Chapter 8 Binary trees

554

These functions result in the following trees:

 F

 |-----------+-----------|

 D H

 |-----+ +-----|

 B I

 |--+--|

 A C

 BIG

 |-----------------------+-----------------------|

 b2 f6

 |-----------+-----------| |-----------+-----------|

 a1 d4 d4 g7

 |-----+-----| |-----+-----|

 c3 f6 b2 e5

 |--+--| |--+--|

 e5 g7 a1 c3

If you want to see how beautifully really expansive trees are rendered, call the

function for the following construct:

def create_monster_tree():

 mon = BinaryTreeNode("MON")

 mon.left = create_big_tree()

 mon.right = create_big_tree()

 return mon

In the companion project, you will find a double combination of this monster tree,

which for fun I have named King Kong.

8.4 Summary: What You Learned
This chapter covered probably the most complex topic in this book, which is binary

trees. As in many other languages, they are not part of standard Python. However, binary

trees are suitable for solving numerous problems elegantly. Therefore, this chapter

Chapter 8 Binary trees

555

gave an introduction. Besides things like rotation, even mathematical calculations, for

example, can be represented and processed very smartly using binary trees. Something

challenging and to puzzle over was certainly the check for completeness and the

graphical output of a binary tree.

In the next chapter, you continue with searching and sorting, which are essential

topics in computer science like binary trees.

Chapter 8 Binary trees

557
© Michael Inden 2022
M. Inden, Python Challenges, https://doi.org/10.1007/978-1-4842-7398-2_9

CHAPTER 9

Searching and Sorting
Searching and sorting are two elementary topics of computer science in the field of

algorithms and data structures. Python provides efficient implementations for both

of them and thus takes a lot of work off your shoulders. However, understanding the

underlying algorithms helps in choosing the most suitable variant for a particular use

case. I only skim over the topic of searching here since it is built in and does not offer a

lot of variations, except for binary search, which is covered in section 9.1.1.

In this chapter, you will primarily dedicate yourself to some essential sorting

algorithms because you will learn some algorithmic tricks in the meantime.

9.1 Introduction Search
When managing data, sometimes you need to search for items, such as customers

with the first name “Carsten” or an invoice with specific order date. Conveniently, all

containers like lists, sets and dictionaries offer various methods or functions, such as

those with which you can search for elements.

9.1.1 Search with in(), index(), and count()
Sometimes you just need to check if certain data is present in a container. The keyword

in helps with this. Occasionally you may also want to get the position of the element.

Then you use index(), which triggers a ValueError in case of non-existence:

3 in [1, 2, 3] # => True

[1, 2, 3].index(2) # => 1

[1, 2, 3].index(4) # => ValueError

https://doi.org/10.1007/978-1-4842-7398-2_9

558

Furthermore, it is important to remember that index() always returns the index of

the first occurrence. If there are several identical elements and all their occurrences are

to be determined, then you can help yourself with a combination of in and enumerate().

If necessary, count() returns the number of identical elements.

print([1, 2, 3, 2].index(2)) # => 1

print([i for i, val in enumerate([1, 2, 3, 2, 4, 2]) if val == 2]) # =>

[1, 3, 5]

print([1, 2, 3, 2, 4, 2].count(2)) # => 3

For dictionaries you can get the keys (keys()), the values (values()), or their

combination with items(). For queries, there is another short form for the keys:

programmers = {"Michael": "Python",

 "Tim": "C++",

 "Karthi": "Java"}

if "Karthi" in programmers.keys():

 print("Karthi is here")

Python Shortcut

if "Karthi" in programmers:

 print("Karthi is here II")

if "C++" in programmers.values():

 print("someone knows C++")

if ("Michael", "Python") in programmers.items():

 print("Michael knows Python")

In addition, all() can be used to check whether a set of elements is included. With

any() you can determine if there is a match.

print(all(elem in [2, 3, 5, 7, 9] for elem in [7, 2])) # => True

print(any(elem in [2, 3, 5, 7, 9] for elem in [7, 2])) # => True

print(any(elem in [2, 3, 5, 7, 9] for elem in [4])) # => False

Chapter 9 SearChing and Sorting

559

9.1.2 Search with rindex() and rfind()
For strings, there are functions rindex() and rfind() to find the position of a desired

element from the end of the string:

print("Hello".rindex("l")) # => 3

print("Hello".rfind("l")) # => 3

print("Hello".rfind("x")) # => -1

print("Hello".rindex("x")) # => ValueError: substring not found

Unfortunately, there is no such thing for lists. However, you can program this quite

easily yourself using the function named last_index_of(), which is known from

Java and, in my opinion, is better understandable. If no element is found, the return

value is -1.

def last_index_of(values, search_for):

 for pos in range(len(values) - 1, -1, -1):

 if values[pos] == search_for:

 return pos

 return -1

print(last_index_of([1, 2, 3, 2, 4, 2, 5, 2], 2)) # => 7

9.1.3 Binary Search
A brute-force way to search is to iterate over all elements until the desired element is

found or you reach the end of the dataset, like this:

def find(values, search_for):

 for i, current_value in enumerate(values):

 if current_value == search_for:

 return i

 return -1

The same applies to the search methods just mentioned. Even if not directly visible,

all of them iteratively look at all elements of the data structure until they find what they

are looking for. They search all result in a linear running time. In contrast, there is an

efficient search called binary search, which offers logarithmic running time. But there

Chapter 9 SearChing and Sorting

560

is a prerequisite: binary search requires sorted data. If you have to sort data explicitly

first, then the advantage over a linear search is hardly given, especially with small

datasets.

For larger volumes of data, however, the logarithmic running time of a binary search

is significantly better than that of a linear search. The low running time is achieved by

the algorithm splitting the parts to be processed in half in each case and then continuing

the search in the appropriate chunk. Figure 9-1 illustrates the principle procedure, with

discarded parts marked in gray.

binary_search(7)

step 12 3 5 7 11 13

step 22 3 5 7 11 13

step 32 3 5 7 11 13

step 42 3 5 7 11 13return: 3

= search range

Figure 9-1. Schematic sequence for binary search

In the figure, the arrow points between the elements in the first step—depending on

the implementation of binary_search(), the left or right element directly adjacent to the

center is used for comparison if the number is even.

9.2 Introduction Sort
In this section, I introduce some sorting algorithms that form the basis for the later

exercises.

9.2.1 Insertion Sort
Insertion Sort is illustrated the best by sorting a deck of cards in your hand. Typically,

you start on the left side, then take the next card to the right, and insert it appropriately

into the already sorted left part, which usually causes some cards to move to the right.

Chapter 9 SearChing and Sorting

561

With this procedure, you can skip the first card since it is sorted by itself and start with

the second card. Let’s look at this for the number sequence 4, 2, 7, 9, 1. For this purpose,

the respective new element to be sorted in is marked. The already sorted part on the left

is separated with || from the unsorted part on the right.

4 || ➁ 7 9 1

2 4 || ➆ 9 1

2 4 7 || ➈ 1

2 4 7 9 || ➀

1 2 4 7 9

In the example, you start with the value 2. For each number, you have to determine

the correct insertion position. There are two ways to do this, as described below.

 Determine Insertion Position

Starting from the current position, move to the left as long as the compared values are

larger. Alternatively, you can also start from the beginning and move one position to the

right as long as the compared values are smaller.

def find_insert_pos_from_current(values, current_pos):

 insert_pos = current_pos

 while insert_pos > 0 and values[insert_pos - 1] > values[current_pos]:

 insert_pos -= 1

 return insert_pos

def find_insert_pos_from_start(values, current_pos):

 insert_pos = 0

 while insert_pos < current_pos and values[insert_pos] <

values[current_pos]:

 insert_pos += 1

 return insert_pos

Chapter 9 SearChing and Sorting

562

HINT: STABLE SORTING

When sorting elements of the same value, keeping their original order in the collection is

referred to as a Stable Sort . this is often a preferable behavior because it prevents data

associated with the elements from getting out of order.

For the example, find_insert_pos_from_current() results in a stable sorting, but the

second one does not. however, if you replace the < with <=, the resulting sorting algorithm

also becomes stable:

while insert_pos < current_pos and \

 values[insert_pos] <= values[current_pos]:

this is due to the fact that a most recently found element of the same value is always placed

behind all elements of the same value.

 Implementation of Insertion Sort

After identifying the correct insertion position for a value, all values (up to the currently

considered value) have to be shifted by one position to the right. Finally, the value is

inserted at the determined position.

def insertion_sort(values):

 for current_pos in range(1, len(numbers)):

 current_val = numbers[current_pos]

 insert_pos = find_insert_pos_from_current(values, current_pos)

 move_right(values, current_pos, insert_pos)

 numbers[insert_pos] = current_val

def move_right(values, current_pos, insert_pos):

 move_pos = current_pos

 while move_pos > insert_pos:

 values[move_pos] = values[move_pos - 1]

 move_pos -= 1

Chapter 9 SearChing and Sorting

563

This code shows a well-understandable implementation that focuses on

comprehensibility and not on speed. In fact, it is possible to combine some actions

cleverly and thus avoid multiple runs. Later, in Exercise 4, you will deal with exactly this

optimization.

Let’s try out the implementation on the command line:

>>> values = [4, 2, 7, 9, 1]

>>> insertion_sort(values)

>>> print(values)

[1, 2, 4, 7, 9]

9.2.2 Selection Sort
Selection Sort is another intuitive method for sorting. It offers two variations, one based

on the minimum and the other on the maximum. In the minimum version, the values

to be sorted are traversed from front to back. In each step, the minimum is determined

from the section that is still unsorted. This is moved forward by swapping it with the

current element. This causes the sorted area to grow from the front and the remaining

unsorted section to shrink. For the version based on the maximum, the data to be sorted

is processed from the back to the front. The respective maximum is placed at the end so

that the sorted area grows from the back.

To gain a better understanding, let’s reproduce this for a small set of values. For this

purpose, the respective current minimum or maximum is specially marked. The sorted

part is separated from the unsorted part with ||. You can easily observe how the sorted

part grows.

 Min Max

 -> <-

 || 4 2 7 9 ➀ 4 2 7 ➈ 1 ||

1: 1 || ➁ 7 9 4 4 2 ➆ 1 || 9

2: 1 2 || 7 9 ➃ ➃ 2 1 || 7 9

3: 1 2 4 || 9 ➆ 1 ➁ || 4 7 9

4: 1 2 4 7 || 9 1 || 2 4 7 9

Chapter 9 SearChing and Sorting

564

The implementation of the version concerning the minimum is as follows:

def selection_sort_min(values):

 for i in range(len(values) - 1):

 min_idx = i

 # find minimum

 for j in range(i + 1, len(values)):

 if values[j] < values[min_idx]:

 min_idx = j

 # swap current value with minimum

 tmp = values[min_idx]

 values[min_idx] = values[i]

 values[i] = tmp

If you only look at algorithms at this low level, it is usually difficult to understand

and comprehend them. Of course, the final algorithms used in frameworks must be

as optimal as possible. This requires estimations with the O-notation. This is easier

to perform on the low level than on the high level since then all constructs, including

invoked functions or methods, must be considered. However, to learn and get started,

it is much more suitable to program comprehensively first and then optimize in

further steps.

Let’s execute the sorting in the following main():

def main():

 values = [4, 2, 7, 9, 1]

 selection_sort_min(values)

 print(values)

We get the expected output:

[1, 2, 4, 7, 9]

Chapter 9 SearChing and Sorting

565

OPINION: START WITH COMPREHENSIBILITY

how can Selection Sort be described on a higher level of abstraction? to do this, let’s

use some auxiliary functions that you created for arrays. in the corresponding chapter’s

introduction, you learned about the method swap() for swapping elements and the function

find_min_pos() for finding the position of the smallest element, which was created as

solution for exercise 11 in Section 6.3.11. Conveniently, they can also be used for lists without

modification.

By using these functions, the actual procedure becomes almost immediately apparent. You

traverse the values from the beginning and, in each case, find the minimum of the remaining

part and swap it with the value of the current position:

def selection_sort_min_readable(values):

 for cur_idx in range(len(values) - 1):

 min_idx = find_min_pos(values, cur_idx, len(values))

 swap(values, min_idx, cur_idx)

in the code, the two helper functions from the module array_utils marked in bold are used.

as usual, the module array_utils bundles several helper functions developed in Chapter 6.

the two helper functions called in the code above are shown again here to ease trying out the

example with the command line:

def find_min_pos(values, start_pos, end_pos):

 min_pos = start_pos

 for i in range(start_pos + 1, end_pos):

 if values[i] < values[min_pos]:

 min_pos = i

 return min_pos

def swap(values, pos1, pos2):

 temp = values[pos1]

 values[pos1] = values[pos2]

 values[pos2] = temp

Chapter 9 SearChing and Sorting

566

9.2.3 Merge Sort
Merge Sort is based on a divide-and-conquer approach. It recursively splits the values

to be sorted into smaller and smaller subparts of about half the original size until they

consist of only one or possibly no element. Afterwards, the subparts are combined

again. In this merging step, the sorting is done by the appropriate merging based on the

respective values. The processes can be illustrated as shown in Figure 9-2.

 1 9

2 4 7

2 4
merge

merge

1 2 4 7 9

merge

recursive
split

merge
steps

merge

merge_sort (4 2 7 9 1)
split

merge_sort (4 2 7)

merge_sort (4 2) merge_sort (7)

split

74 2

split

merge_sort (4) merge_sort (2)

merge_sort (9 1)

merge_sort (9) merge_sort (1)

split

19

Figure 9-2. Merge Sort procedure

The splitting algorithm can be implemented recursively and well comprehensibly—

though also somewhat inefficiently—as long as you are allowed to create new lists. The

implementation of the function merge(values1, values2) was already presented as the

solution to Exercise 12 in Section 5.3.12. It is used here:

def merge_sort(to_sort):

 # recursive termination: length 0 (only if initially empty array) or 1

 if len(to_sort) <= 1:

 return to_sort

Chapter 9 SearChing and Sorting

567

 # recursive descent: divide into two halves

 mid_pos = len(to_sort) // 2

 left = to_sort[0: mid_pos]

 result_left = merge_sort(left)

 right = to_sort[mid_pos: len(to_sort)]

 result_right = merge_sort(right)

 # combine the partial results into larger sorted data set

 return merge(result_left, result_right)

Let’s execute the sorting in the following main():

def main():

 unsorted_values = [4, 2, 7, 9, 1]

 sorted_values = merge_sort(unsorted_values)

 print(sorted_values)

You get the expected output:

[1, 2, 4, 7, 9]

HINT: ANALOGY FROM REAL LIFE LEADS TO OPTIMIZATION

the analogy to sorting a deck of cards is suitable for Merge Sort as well. if you need to sort a

fairly large pile of cards, you can divide it into many, much smaller piles, sort them separately,

and then merge them successively. however, instead of reducing the piles down to one card,

it is a good idea to sort the smaller piles using another method, often insertion Sort, which has

a running time of O(n) for small, ideally nearly ordered values. this is useful for fine-tuning.

ingeniously, Merge Sort makes this easy as pie:

def merge_sort_with_insertion_sort(to_sort):

 # recursive termination including mini-optimization

 if len(to_sort) < 5:

 insertion_sort(to_sort)

 return to_sort

 # recursive descent: divide into two halves

 mid_pos = len(to_sort) // 2

 left = to_sort[0: mid_pos]

Chapter 9 SearChing and Sorting

568

 result_left = merge_sort(left)

 right = to_sort[mid_pos: len(to_sort)]

 result_right = merge_sort(right)

 # combine the partial results into larger sorted data set

 return merge(result_left, result_right)

Finally, i would like to point out that the limit at which one should switch to insertion Sort has

been set here quite arbitrarily to the value 5. presumably, values between 10 and 20 elements

are quite practical. however, it would be best if you rely on the knowledge of algorithm

professionals who create mathematically sound estimates for running times.

9.2.4 Quick Sort
Just like Merge Sort, Quick Sort is based on a divide-and-conquer approach and splits

the values to be sorted into smaller and smaller subparts. A special element (called a

pivot) is chosen that determines the grouping or processing. For simplicity, you can

choose the first element of the subparts to be sorted as the pivot element, but other ways

are conceivable. In Quick Sort, sorting is done based on this pivot element by arranging

all elements of the parts according to their value to the left (less than or equal to) or to

the right (greater than) of the pivot. This way, the pivot element is placed in the correct

position. The whole process is repeated recursively for the left and right parts until the

parts consist of only one element. The processes are shown in Figure 9-3.

quick_sort (4 2 7 9 1)
partition

partition

4 2 7 9 1

4quick_sort (2 1) quick_sort (7 9)

1 2 7 94

= Pivot

7 9partition 2 1

Figure 9-3. Quick Sort

Chapter 9 SearChing and Sorting

569

Let’s start with an implementation for lists since this is more easily accessible

and understandable. As a result, breaking down the contents of a list into smaller and

larger elements is easy to implement. Later, combining the results of the recursive

computations is also straightforward. The whole implementation is intentional, not

optimized for speed but for comprehensibility.

For partitioning, you collect all elements that are less than or equal to or greater than

the value of the pivot element in respectively one separate result list. You skip the first

element because it is the pivot element and then apply the appropriate filter condition

within a list comprehension.

def quick_sort(values):

 # recursive termination

 if len(values) <= 1:

 return values

 # collect less than or equal to / greater than pivot

 pivot = values[0]

 below_or_equals = [value for value in values[1:] if value <= pivot]

 aboves = [value for value in values[1:] if value > pivot]

 # recursive descent

 sorted_lowers_part = quick_sort(below_or_equals)

 sorted_uppers_part = quick_sort(aboves)

 # assemble

 return sorted_lowers_part + [pivot] + sorted_uppers_part

The whole thing is quite intuitive for lists and when not optimized for performance.

It becomes considerably more awkward if you want to realize the partitioning for inplace

(i. e., directly in the original array or list itself). You can see this for yourself later when

solving Exercise 6. You will now take a look at the basic procedure.

Let’s execute the sorting in the following main():

def main():

 unsorted_values = [4, 2, 7, 9, 1]

 sorted_values = quick_sort(unsorted_values)

 print(sorted_values)

Chapter 9 SearChing and Sorting

570

We get the expected output:

[1, 2, 4, 7, 9]

 Inplace Implementation

The basic algorithm can be implemented as follows, although the realization of the

partitioning, as already mentioned, will be a practice exercise:

def quick_sort_inplace(values):

 quick_sort_in_range(values, 0, len(values) - 1)

def quick_sort_in_range(values, left, right):

 # recursive termination

 if left >= right:

 return

 partition_index = partition(values, left, right)

 # recursive descent

 quick_sort_in_range(values, left, partition_index - 1)

 quick_sort_in_range(values, partition_index + 1, right)

HINT: AVOIDING SIDE EFFECTS BY COPYING

if the original data set should be left unchanged, you can first create a copy of it and then call

the inplace function:

def quick_sort_with_copy(values):

 copied_values = values.copy()

 quick_sort_inplace(copied_values);

 return copied_values

9.2.5 Bucket Sort
Bucket Sort is an interesting sorting method whose algorithm is only outlined below

since the implementation is the subject of Exercise 7.

Chapter 9 SearChing and Sorting

571

Bucket Sort is a two-step procedure for sorting data. First, the values are collected in

special containers called buckets. Then, these values are transferred appropriately into a

sorted list. For the algorithm to be feasible, the elements to be sorted must have a limited

set of values. For example, this applies to the age information of persons, where you can

assume a range of values from 0 to 150.

ages = [10, 50, 22, 7, 42, 111, 50, 7]

This definition of a maximum number of different values means that a

corresponding number of containers, the buckets, can store the values or, more

precisely, their frequency. One bucket is provided for each possible value.

Step 1: Distribution to buckets At first, the initial set of data is traversed, and their

occurrence is recorded in the buckets. For the age information above, the distribution is

as follows:

bucket[7] = 2

bucket[10] = 1

bucket[22] = 1

bucket[42] = 1

bucket[50] = 2

bucket[111] = 1

All other buckets store the value 0.

Step 2: Preparation of the sorted result In a final step, the buckets are traversed

from the beginning. The respective values are inserted into the result as many times as

their number is stored in the bucket. This produces this sorting:

result = [7, 7, 10, 22, 42, 50, 50, 111]

9.2.6 Final Thoughts
Many of the more intuitive algorithms, such as Insertion Sort and Selection Sort, possess

the disadvantage of having a running time of O(n2). However, Insertion Sort has a

positive and remarkable feature: As long as the output data is (nearly) sorted, Insertion

Sort becomes extremely performant with O(n).

Chapter 9 SearChing and Sorting

572

Quick Sort and Merge Sort are usually very efficient with a running time of O(n

. log(n)).1 Still, they also have higher complexity of the source code, especially when

working inplace. For frameworks and larger datasets, performance is essential.

Potentially unfavorable for Merge Sort, on the other hand, is the creation of many copies

of subranges. The same applies to Quick Sort and its partitioning. For both, however,

some variants do this inplace. Interestingly, the respective divisions of the subranges to

be sorted are quite easy to express by recursion, but the partitioning or merging part is

then more complex and more difficult to implement. This holds in particular if you work

inplace. For Merge Sort, you will find an example in the provided PyCharm project. For

Quick Sort, you may try it in Exercise 6.

Bucket Sort remains. This algorithm sometimes runs even in linear running time,

which is O(n). However, in contrast to the other sorting algorithms presented, it is not

generally applicable since it has the already mentioned restriction concerning the

number of allowed values.

9.3 Exercises
9.3.1 Exercise 1: Contains All (★★✩✩✩)
The task is to create function contains_all(values, search_values) that checks if

all passed values are present in the given list. Explicitly do not use the Python standard

functionality of all(). Program this yourself.

 Examples

Input Search values Result

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] [7, 2] true

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] [5, 11] False

1 Strictly speaking and very formal, Quick Sort gets a running time of O(n2) assigned since for very
rare special cases its running time can get quadratic.

Chapter 9 SearChing and Sorting

573

9.3.2 Exercise 2: Partitioning (★★★★✩)
The challenge is to suitably sort or arrange a mixed sequence of the letters A and B in a

single pass so that all As occur before the Bs. This can also be extended to three letters.

 Examples

Input Result

“aBaaBBBaaaBBBa” “aaaaaaaBBBBBBB”

“aBaCCBBCaaCCBBa” “aaaaaBBBBBCCCCC”

 Exercise 2a: Partitioning Two Letters (★★★✩✩)

Write function partition2(text) that takes a given sequence built out of the two letters

A and B and turns it into an ordered sequence where all As occur before the Bs.

 Exercise 2b: Partitioning Three Letters (★★★★✩)

Write function partition3(text) that partitions a sequence built of the three letters A,

B, and C given as str into an ordered sequence where all As occur before Bs and they

in turn before Cs. Instead of letters, this can be thought of for colors of a flag. Then it is

known as the Dutch Flag Problem.

9.3.3 Exercise 3: Binary Search (★★✩✩✩)
 Exercise 3a: Binary Search Recursive (★★✩✩✩)

Write recursive function binary_search(values, search_for) that performs a search

for the desired value in a sorted list.

 Examples

Input Search values Result

[1, 2, 3, 4, 5, 7, 8, 9] 5 true

[1, 2, 3, 4, 5, 7, 8, 9] 6 False

Chapter 9 SearChing and Sorting

574

 Exercise 3b: Binary Search Iterative (★★✩✩✩)

Your task is to convert the recursive function into an iterative one. As a modification

it should return the position of the search value or -1 for not found instead of True

or False. Additionally, it should be named binary_search_iterative(values,

search_value).

 Examples

Input Search values Result

[1, 2, 3, 4, 5, 7, 8, 9] 5 4

[1, 2, 3, 4, 5, 7, 8, 9] 6 -1

9.3.4 Exercise 4: Insertion Sort (★★✩✩✩)
The introductory Section 9.2.1 showed a simplified, easy-to-follow realization of

Insertion Sort. In this exercise, the goal is to optimize the whole thing by now finding the

insertion position and performing the necessary swapping and insertion in one go. Write

an optimized version of insertion_sort(values).

 Example

Input Result

[7, 2, 5, 1, 6, 8, 9, 4, 3] [1, 2, 3, 4, 5, 6, 7, 8, 9]

9.3.5 Exercise 5: Selection Sort (★★✩✩✩)
Write a variation of Selection Sort that uses the maximum instead of the minimum and

has the following signature: selection_sort_max_inplace(values).

What needs to be modified so that the sort algorithm leaves the original data

unchanged and returns a new sorted list? Implement this requirement in function

selection_sort_max_copy(values).

Chapter 9 SearChing and Sorting

575

 Example

Input Result

[7, 2, 5, 1, 6, 8, 9, 4, 3] [1, 2, 3, 4, 5, 6, 7, 8, 9]

9.3.6 Exercise 6: Quick Sort (★★★✩✩)
I described Quick Sort in the introductory Section 9.2.4. Whereas the splitting into two

ranges with values less than or equal to the pivot elements can be implemented very

easily when creating new lists, this is more challenging for lists when performing inplace.

You need to implement the partitioning with the function partition(values, left,

right). In the following, the already existing source code is shown once again:

def quick_sort_inplace(values):

 quick_sort_in_range(values, 0, len(values) - 1)

def quick_sort_in_range(values, left, right):

 # recursive termination

 if left >= right:

 return

 partition_index = partition(values, left, right)

 # recursive descent

 quick_sort_in_range(values, left, partition_index - 1)

 quick_sort_in_range(values, partition_index + 1, right)

 Examples

Input Result

[5, 2, 7, 1, 4, 3, 6, 8] [1, 2, 3, 4, 5, 6, 7, 8]

[5, 2, 7, 9, 6, 3, 1, 4, 8] [1, 2, 3, 4, 5, 6, 7, 8, 9]

[5, 2, 7, 9, 6, 3, 1, 4, 2, 3, 8] [1, 2, 2, 3, 3, 4, 5, 6, 7, 8, 9]

Chapter 9 SearChing and Sorting

576

9.3.7 Exercise 7: Bucket Sort (★★✩✩✩)
In the introductory Section 9.2.5, a Bucket Sort algorithm was described. In this exercise,

you want to create function bucket_sort(values, expected_max) that implements this

sorting algorithm for a list of values and an expected maximum value.

 Example

Input Maximum value Result

[10, 50, 22, 7, 42, 111, 50, 7] 150 [7, 7, 10, 22, 42, 50, 50, 111]

9.3.8 Exercise 8: Search in Rotated Data (★★★★✩)
In this exercise, your task is to implement an efficient binary search in a sorted sequence

of integer values. The challenge is that the values are ordered but rotated within

themselves. According to that, the smallest element may not be at the front of the data.

Additionally, the largest element does often not reside at the end of the data (except in

the special case of a rotation by 0 positions).

Tip Be careful also to check the special case of a rotation of 0 or a multiple of
the length of the data set that would again correspond to a rotation for the value 0.

 Exercise 8a: Flank Change Efficient (★★★★✩)

Write function find_flank_pos(values) that efficiently finds the position of a flank

change in a given sorted sequence of n integer values, say 25, 33, 47, 1, 2, 3, 5, 11 in

logarithmic time, which is O(log(n)). Write two functions min_value(values) and

max_value(values) based on find_flank_pos(values) that, according to their names,

determine the minimum and maximum, respectively, from the given sorted but rotated

sequence of values.

Chapter 9 SearChing and Sorting

577

 Examples

Input Flank position Minimum Maximum

[25, 33, 47, 1, 2, 3, 5, 11] 3 1 47

[5, 11, 17, 25, 1, 2] 4 1 25

[6, 1, 2, 3, 4, 5] 1 1 6

[1, 2, 3, 4, 5, 6] 0 (special case) 1 6

 Exercise 8b: Binary Search in Rotated Data (★★★★✩)

Write function binary_search_rotated(values, search_for) that efficiently searches

in a sorted sequence of integer values, say the number sequence 25, 33, 47, 1, 2, 3, 5, 11,

for a given value and returns its position or -1 if not found.

 Examples

Input Flank position Search value Result

[25, 33, 47, 1, 2, 3, 5, 11] 3 47 2

[25, 33, 47, 1, 2, 3, 5, 11] 3 3 5

[25, 33, 47, 1, 2, 3, 5, 11] 3 13 -1

[1, 2, 3, 4, 5, 6, 7] 0 (special case) 5 4

[1, 2, 3, 4, 5, 6, 7] 0 (special case) 13 -1

9.4 Solutions
9.4.1 Solution 1: Contains All (★★✩✩✩)
The task is to create function contains_all(values, search_values) that checks if

all passed values are present in the given list. Explicitly do not use the Python standard

functionality of all(). Program this yourself.

Chapter 9 SearChing and Sorting

578

 Examples

Input Search values Result

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] [7, 2] true

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] [5, 11] False

Algorithm For your implementation, you call the test with in repeatedly, for all

elements passed to be checked for containment:

def contains_all(values, search_values):

 for current in search_values:

 if current not in values:

 return False

 return True

Python shortcut Of course this can be written more compactly with the help of

all(). Nevertheless, a helper function is probably useful to keep the calling source code

as understandable as possible.

def contains_all_v2(values, search_values):

 return all(elem in values for elem in search_values)

 Verification

Let’s define a list with the numbers from 0 to 9 and check if the values 7 and 2, as well as

5 and 11, are present there:

@pytest.mark.parametrize("values, search_values, expected",

 [([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [7, 2], True),

 ([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [5, 11], False)])

def test_contains_all(values, search_values, expected):

 assert contains_all(values, search_values) == expected

@pytest.mark.parametrize("values, search_values, expected",

 [([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [7, 2], True),

 ([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [5, 11], False)])

def test_contains_all_v2(values, search_values, expected):

 assert contains_all_v2(values, search_values) == expected

Chapter 9 SearChing and Sorting

579

9.4.2 Solution 2: Partitioning (★★★★✩)
The challenge is to suitably sort or arrange a mixed sequence of the letters A and B in a

single pass so that all As occur before the Bs. This can also be extended to three letters.

 Examples

Input Result

“aBaaBBBaaaBBBa” “aaaaaaaBBBBBBB”

“aBaCCBBCaaCCBBa” “aaaaaBBBBBCCCCC”

 Solution 2a: Partitioning Two Letters (★★★✩✩)

Write function partition2(text) that takes a given sequence built out of the two letters

A and B and turns it into an ordered sequence where all As occur before the Bs.

Algorithm Although you may be initially tempted to compare all possible positions,

an ingenious and performant solution exists that solves the task in one pass. Work with

two position pointers, low and high, which mark the front and back positions, in this

case, the valid range given by the rearmost A and the foremost B. This area is initially

empty and grows until you reach the end of the text. The following procedure is used:

When an A is found, its position pointer (low) is incremented. When a B is found, it is

swapped to the back. Afterwards, the position pointer of the Bs (high) is decreased,

expanding the already correctly divided area.

def partition2(char_values):

 low = 0

 high = len(char_values) - 1

 while low <= high:

 if char_values[low] == 'A':

 low += 1

 else:

 swap_positions(char_values, low, high)

 high -= 1

 # low must remain, because theoretically also a

 # B can be exchanged to the front

Chapter 9 SearChing and Sorting

580

 return "".join(char_values)

def swap_positions(list, pos1, pos2):

 list[pos1], list[pos2] = list[pos2], list[pos1]

Because a B may also move to the front when swapping, the lower position pointer

must stay unchanged. In one of the next steps, the B will then move to the back again.

This tricky algorithm makes it possible to arrange all As in front of the Bs in a single pass.

 Solution 2b: Partitioning Three Letters (★★★★✩)

Write function partition3(text) that partitions a sequence built of the three letters A,

B, and C given as str into an ordered sequence where all As occur before Bs and they

in turn before Cs. Instead of letters, this can be thought of for colors of a flag. Then it is

known as the Dutch Flag Problem.

Algorithm The extension from two to three letters (or colors) employs similar

ideas as before, but with a few more tricks and special treatments. You start again at

the beginning of the array or list but use the three position markers low, mid, and high.

Initially, they are located for the first and middle character at position 0, the one for high

at the end position. If an A is found, the positions for low and mid shift by one to the right.

Before that, the last character from the lower range is swapped with the current (middle)

one. If you read a B, only the middle position is shifted towards the end. If the current

character is a C, this is swapped to the back. The position marker for the upper area is

then reduced by 1.

def partition3(char_values):

 low = 0

 mid = 0

 high = len(char_values) - 1

 while mid <= high:

 if char_values[mid] == 'A':

 swap_positions(char_values, low, mid)

 low += 1

 mid += 1

 elif char_values[mid] == 'B':

 mid += 1

Chapter 9 SearChing and Sorting

581

 else:

 swap_positions(char_values, mid, high)

 high -= 1

 # low, mid must remain unchanged, because also a B or C

 # can be swapped to the front

 return "".join(char_values)

 Verification

To check functionality, you use two strings consisting of a shuffled sequence of the letters

A and B or A, B, and C, respectively:

def test_partition2():

 assert partition2(list("ABAABBBAAABBBA")) == "AAAAAAABBBBBBB"

def test_partition3():

 assert partition3(list("ABACCBBCAACCBBA")) == "AAAAABBBBBCCCCC"

9.4.3 Solution 3: Binary Search (★★✩✩✩)
 Solution 3a: Binary Search Recursive (★★✩✩✩)

Write recursive function binary_search(values, search_for) that performs a search

for the desired value in a sorted list.

 Examples

Input Search values Result

[1, 2, 3, 4, 5, 7, 8, 9] 5 true

[1, 2, 3, 4, 5, 7, 8, 9] 6 False

Algorithm Divide the list into two halves. Determine the value in the middle and

see if you need to search further in the top or bottom half. This can be easily determined

based on the given sort order.

Chapter 9 SearChing and Sorting

582

Valuecenter == search_for ⇒ found, end

Valuecenter < search_for ⇒ continue searching in lower part

Valuecenter > search_for ⇒ continue searching in upper part

The implementation in Python strictly follows the description. As usual, be

especially careful at the boundaries of the list or array to avoid making careless mistakes.

def binary_search(sorted_values, search_for):

 mid_pos = len(sorted_values) // 2

 # recursive termination

 if search_for == sorted_values[mid_pos]:

 return True

 # there are still at least 2 numbers

 if len(sorted_values) > 1:

 if search_for < sorted_values[mid_pos]:

 # recursive descent: search further in the lower part

 lower_half = sorted_values[0: mid_pos]

 return binary_search(lower_half, search_for)

 if search_for > sorted_values[mid_pos]:

 # recursive descent: continue search in the upper part

 upper_half = sorted_values[mid_pos + 1: len(sorted_values)]

 return binary_search(upper_half, search_for)

 return False

To try it out, execute the following code:

def main():

 sorted_values = [1, 2, 3, 4, 5, 7, 8, 9]

 print("Given: ", sorted_values)

 print("search for 5:", binary_search(sorted_values, 5))

 print("search for 6:", binary_search(sorted_values, 6))

Chapter 9 SearChing and Sorting

583

The expected result is as follows:

Given: [1, 2, 3, 4, 5, 7, 8, 9]

search for 5: True

search for 6: False

Optimized algorithm The solution shown is not really optimal because parts of the

original data are permanently copied to perform further searches. The entire process can

be done completely without potentially time-consuming copying with the help of two

index variables. The following solution is certainly preferable:

def binary_search_optimized(values, search_value):

 return binary_search_in_range(values, search_value, 0, len(values) - 1)

def binary_search_in_range(values, search_for, left, right):

 if right >= left:

 mid_idx = (left + right) // 2

 if search_for == values[mid_idx]:

 return True

 # recursive descent: search in the lower / upper part further

 if search_for < values[mid_idx]:

 return binary_search_in_range(values, search_for,

 left, mid_idx - 1)

 else:

 return binary_search_in_range(values, search_for,

 mid_idx + 1, right)

 return False

 Solution 3b: Binary Search Iterative (★★✩✩✩)

Your task is to convert the recursive function into an iterative one. As a modification

it should return the position of the search value or -1 for not found instead of True

or False. Additionally, it should be named binary_search_iterative(values,

search_value).

Chapter 9 SearChing and Sorting

584

 Examples

Input Search values Result

[1, 2, 3, 4, 5, 7, 8, 9] 5 4

[1, 2, 3, 4, 5, 7, 8, 9] 6 -1

Algorithm Based on the recursive version just shown, the iterative implementation

may be derived quite easily. Use two position markers left and right for left and right,

which initially start at the beginning and end (position 0 and len(values) − 1). These

two markers determine the respective index boundaries in which further searching is

performed. At first, you compare the value in the middle with the one you are searching

for. If the values are equal, you return the index. Otherwise, you divide the search area

into two parts and continue until either the search is successful or the left and right

position markers cross each other.

def binary_search_iterative(values, search_for):

 left = 0

 right = len(values) - 1

 while right >= left:

 mid_idx = (left + right) // 2

 if search_for == values[mid_idx]:

 return mid_idx

 if search_for < values[mid_idx]:

 right = mid_idx - 1

 else:

 left = mid_idx + 1

 return -1

Chapter 9 SearChing and Sorting

585

 Verification

For testing, you use the following inputs, which show the correct operation:

@pytest.mark.parametrize("sorted_values, search_for, expected",

 [([1, 2, 3, 4, 5, 7, 8, 9], 5, True),

 ([1, 2, 3, 4, 5, 7, 8, 9],6, False)])

def test_binary_search(sorted_values, search_for, expected):

 assert binary_search(sorted_values, search_for) == expected

@pytest.mark.parametrize("sorted_values, search_for, expected",

 [([1, 2, 3, 4, 5, 7, 8, 9], 5, True),

 ([1, 2, 3, 4, 5, 7, 8, 9], 6, False)])

def test_binary_search_optimized(sorted_values, search_for, expected):

 assert binary_search_optimized(sorted_values, search_for) == expected

@pytest.mark.parametrize("sorted_values, search_for, expected",

 [([1, 2, 3, 4, 5, 7, 8, 9], 5, 4),

 ([1, 2, 3, 4, 5, 7, 8, 9], 6, -1)])

def test_binary_search_iterative(sorted_values, search_for, expected):

 assert binary_search_iterative(sorted_values, search_for) == expected

9.4.4 Solution 4: Insertion Sort (★★✩✩✩)
Section 9.2.1 showed a simplified, easy-to-follow realization of Insertion Sort. In this

exercise, the goal is to optimize the whole thing by now finding the insertion position

and performing the necessary swapping and insertion in one go. Write an optimized

version of insertion_sort(values).

 Example

Input Result

[7, 2, 5, 1, 6, 8, 9, 4, 3] [1, 2, 3, 4, 5, 6, 7, 8, 9]

Algorithm For all elements, you perform the following procedure, which is

described exemplarily for the value sequence 24317. Let’s consider 3 as a value to be

sorted in. You must swap with the left neighbor starting from its position as long as the

Chapter 9 SearChing and Sorting

586

neighbor’s value is greater than the current one. You have not yet reached the very front

in the list. In this case, you swap the 3 only with the 4. Next, you need to swap the 1 all the

way to the front. Finally, the 7 is already in the right position.

def insertion_sort(values):

 for i in range(1, len(values)):

 # check if current element is larger than predecessor

 current_idx = i

 while current_idx > 0 and values[current_idx - 1] >

values[current_idx]:

 swap_positions(values, current_idx - 1, current_idx)

 current_idx -= 1

def swap_positions(values, pos1, pos2):

 values[pos1], values[pos2] = values[pos2], values[pos1]

The function to swap the values of two positions can be written very compactly in

Python using the tuple notation and also still without parentheses.

 Verification

Verify that the implementation produces the desired result for the given sequence of

numbers using a unit test:

def test_insertion_sort():

 values = [7, 2, 5, 1, 6, 8, 9, 4, 3]

 insertion_sort(values)

 assert values == [1, 2, 3, 4, 5, 6, 7, 8, 9]

9.4.5 Solution 5: Selection Sort (★★✩✩✩)
Write a variation of Selection Sort that uses the maximum instead of the minimum and

has the following signature: selection_sort_max_inplace(values).

What needs to be modified so that the sort algorithm leaves the original data

unchanged and returns a new sorted list? Implement this requirement in function

selection_sort_max_copy(values).

Chapter 9 SearChing and Sorting

587

 Example

Input Result

[7, 2, 5, 1, 6, 8, 9, 4, 3] [1, 2, 3, 4, 5, 6, 7, 8, 9]

Algorithm The list to be sorted is traversed from back to front while the largest

element in each case is moved back to the current position. By calling the function find_

max_pos(), you determine the position of the maximum from the remaining unsorted

subrange. This function was created as a solution to Exercise 11 in Section 6.3.11 for

arrays; it can also be used for lists without modification. Subsequently, the element is

moved to the back accordingly by swapping it with the current element. This reduces the

size of the remaining, not-yet-sorted part until it consists only of the foremost element.

def selection_sort_max_inplace(values):

 for i in range(len(values) - 1, 0, -1):

 max_pos = find_max_pos(values, 0, i + 1)

 swap_positions(values, max_pos, i)

The function with the copy functionality is trivial to implement if you have created

the previous function:

def selection_sort_max_copy(values):

 copy = list(values)

 selection_sort_max_inplace(copy)

 return copy

 Verification

Verify that the implementation produces the desired result for the given sequence of

numbers using a unit test:

def test_selection_sort_max_inplace():

 values = [7, 2, 5, 1, 6, 8, 9, 4, 3]

 selection_sort_max_inplace(values)

 assert values == [1, 2, 3, 4, 5, 6, 7, 8, 9]

Chapter 9 SearChing and Sorting

588

9.4.6 Solution 6: Quick Sort (★★★✩✩)
I described Quick Sort in the introductory Section 9.2.4. Whereas the splitting into

two ranges with values less than or equal to the pivot elements can be implemented

very easily when creating new lists, this is more challenging for a list when

performing inplace. Now the partitioning is to be implemented with the function

partition(values, left, right). The already existing source code is shown

once again:

def quick_sort_inplace(values):

 quick_sort_in_range(values, 0, len(values) - 1)

def quick_sort_in_range(values, left, right):

 # recursive termination

 if left >= right:

 return

 partition_index = partition(values, left, right)

 # recursive descent

 quick_sort_in_range(values, left, partition_index - 1)

 quick_sort_in_range(values, partition_index + 1, right)

 Examples

Input Result

[5, 2, 7, 1, 4, 3, 6, 8] [1, 2, 3, 4, 5, 6, 7, 8]

[5, 2, 7, 9, 6, 3, 1, 4, 8] [1, 2, 3, 4, 5, 6, 7, 8, 9]

[5, 2, 7, 9, 6, 3, 1, 4, 2, 3, 8] [1, 2, 2, 3, 3, 4, 5, 6, 7, 8, 9]

Algorithm Your goal is to subdivide an array or a list (or a range of them) into two

parts by passing the lower start and upper end index and choosing a value at a special

position (e. g., foremost element) as the pivot element. Now the two parts are rearranged.

All elements with values smaller than or equal to the pivot element should reside in the

lower part. Furthermore, all elements with a value larger than the pivot element should

reside in the upper part. Here, the two indices left_index and right_index each move

inward as long as the conditions values[left_index] <= pivot hold for left and pivot

Chapter 9 SearChing and Sorting

589

< values[right_index] for right. If an inappropriately ordered element is found on the

left side, the examination starts on the right side. If an inappropriately ordered element is

found here as well, the two are swapped. This process is repeated as long as the position

markers do not cross each other. Finally, the element from the right_index position is

swapped with the pivot element. There is also the special case that the array or list has

only two elements. In this case, you also have to make sure that the right value is actually

larger than that of the pivot.

def partition(values, left, right):

 pivot = values[left]

 left_index = left + 1

 right_index = right

 while left_index < right_index:

 # move the position left_index to the right, as long as value

 # less than or equal to pivot and left limit less than right limit

 while values[left_index] <= pivot and left_index < right_index:

 left_index += 1

 # move the position right_index to the left, as long as

value greater

 # than pivot and right limit greater than or equal to left limit

 while pivot < values[right_index] and right_index >= left_index:

 right_index -= 1

 if left_index < right_index:

 swap_positions(values, left_index, right_index)

 # special case 2-element list with wrong sorting, but no

 # pass (left_index == right_index) as well as normal case at the

very end

 if values[right_index] < pivot:

 swap_positions(values, left, right_index)

 return right_index

Chapter 9 SearChing and Sorting

590

 Verification

Let’s define the three lists from the introductory examples and use them to check the

implementation of Quick Sort:

@pytest.mark.parametrize("values, expected",

 [([5, 2, 7, 1, 4, 3, 6, 8],

 [1, 2, 3, 4, 5, 6, 7, 8]),

 ([5, 2, 7, 9, 6, 3, 1, 4, 8],

 [1, 2, 3, 4, 5, 6, 7, 8, 9]),

 [[5, 2, 7, 9, 6, 3, 1, 4, 2, 3, 8],

 [1, 2, 2, 3, 3, 4, 5, 6, 7, 8, 9]]])

def test_quick_sort_inplace(values, expected):

 quick_sort_inplace(values)

 assert values == expected

9.4.7 Solution 7: Bucket Sort (★★✩✩✩)
In the introductory Section 9.2.5, a Bucket Sort algorithm was described. In this exercise,

you want to create function bucket_sort(values, expected_max) that implements this

sorting algorithm for a list of values and an expected maximum value.

 Example

Input Maximum value Result

[10, 50, 22, 7, 42, 111, 50, 7] 150 [7, 7, 10, 22, 42, 50, 50, 111]

Algorithm Bucket Sort is one of the most straightforward sorting algorithms

to implement and also one of the fastest with linear running time—but with the

prerequisite of a limited range of values.

Chapter 9 SearChing and Sorting

591

First, you create buckets that store the counts of values. Afterwards, Bucket Sort is

implemented in two steps:

 1. Traverse all input values and assign them to the corresponding

buckets. If there are several same elements, you have to increment

the counter.

 2. The final step is to reconstruct the values based on the

counter values.

The described procedure is implemented in Python as follows:

def bucket_sort(values, expected_max):

 buckets = [0] * (expected_max + 1)

 collect_into_buckets(values, buckets)

 results = [0] * len(values)

 fill_result_from_buckets(buckets, results)

 return results

The algorithm is thereby described in its basic characteristics. Only the

implementation of the two helper functions remains, which is also done

straightforwardly. To calculate the count of the respective numbers, you have to iterate

through the original values and increment the counter in the bucket corresponding to

the current value.

def collect_into_buckets(values, buckets):

 for current in values:

 buckets[current] += 1

Based on the quantities in the buckets, the generation of the result is just a little bit

more complex. For this purpose, you traverse all buckets. If index i contains a quantity

greater than 0, this index value has to be copied to the target as often as specified there—

in this case, solved by the while loop. You only have to carry the position in the target list

separately.

Chapter 9 SearChing and Sorting

592

def fill_result_from_buckets(buckets, results):

 result_pos = 0

 for i, count in enumerate(buckets):

 while count > 0:

 results[result_pos] = i

 count -= 1

 result_pos += 1

 Verification

Write a short test function to check your implementation of Bucket Sort with

some values:

@pytest.mark.parametrize("values, max, expected",

 [([10, 50, 22, 7, 42, 111, 50, 7], 150,

 [7, 7, 10, 22, 42, 50, 50, 111]),

 ([10, 50, 22, 7, 42, 111, 50, 7], 120,

 [7, 7, 10, 22, 42, 50, 50, 111]),

 [[5, 2, 7, 9, 6, 3, 1, 4, 2, 3, 8], 10,

 [1, 2, 2, 3, 3, 4, 5, 6, 7, 8, 9]]])

def test_bucket_sort(values, max, expected):

 result = bucket_sort(values, max)

 assert result == expected

9.4.8 Solution 8: Search in Rotated Data (★★★★✩)
In this exercise, your task is to implement an efficient binary search in a sorted sequence

of integer values. The challenge is that the values are ordered but rotated within

themselves. According to that, the smallest element may not be at the front of the data.

Additionally, the largest element does often not reside at the end of the data (except in

the special case of a rotation by 0 positions).

Tip Be careful also to check the special case of a rotation of 0 or a multiple of
the length of the data set that would again correspond to a rotation for the value 0.

Chapter 9 SearChing and Sorting

593

 Solution 8a: Flank Change Efficient (★★★★✩)

Write function find_flank_pos(values) that efficiently finds the position of a flank

change in a given sorted sequence of n integer values, say 25, 33, 47, 1, 2, 3, 5, 11, in

logarithmic time, which is O(log(n)). Write two functions min_value(values) and

max_value(values) based on find_flank_pos(values) that, according to their names,

determine the minimum and maximum, respectively, from the given sorted but rotated

sequence of values.

 Examples

Input Flank position Minimum Maximum

[25, 33, 47, 1, 2, 3, 5, 11] 3 1 47

[5, 11, 17, 25, 1, 2] 4 1 25

[6, 1, 2, 3, 4, 5] 1 1 6

[1, 2, 3, 4, 5, 6] 0 (special case) 1 6

Preliminary considerations for the algorithm Let’s start with the brute-force

version of linear search to check your optimized version against it later on. For the

search, you only need to check each element from front to back to determine if the

successor of a value is smaller than the current element:

def find_flank_pos_simple(values):

 for i, value in enumerate(values):

 next_idx = (i + 1) % len(values)

 if value > values[next_idx]:

 return next_idx

 raise Exception("should never reach here!")

Of course, when traversing, you also have to consider the special case that the flank

change takes place at the very end of the list. Then you have a non-rotated list as a base.

Algorithm So, how can you proceed to achieve logarithmic running time? In this

case, you take advantage of the fact that the value sequence is sorted. The search ranges

can always be divided in half, following the idea of binary search. Because there is a

rotation, however, you must be careful concerning the indices.

Chapter 9 SearChing and Sorting

594

There are three comparisons to be made:

• Case A: With the predecessor: If it is larger, you have found the

flank change.

• Case B: With the leftmost element: If it is larger than the current

element, then the flank change must happen somewhere in between.

So, you can exclude the right half.

• Case C: With the rightmost element: If this is smaller, the flank

change must happen on the right side. You can exclude the left half.

At the very beginning, it is crucial to check for the special case of the non-rotated

initial dataset. This can be determined by the fact that the far left value is smaller than

that on the far right.

With these preliminary considerations, the following implementation emerges:

def find_flank_pos(values):

 return find_flank_pos_in_range(values, 0, len(values) - 1)

def find_flank_pos_in_range(values, left, right):

 mid_pos = left + (right - left) // 2

 mid_value = values[mid_pos]

 # special case no rotation

 if values[left] < values[right]:

 return 0

 prev_index = mid_pos - 1

 if prev_index < 0:

 prev_index = len(values) - 1

 # case A: value to the left of this is larger, then you got a

 # flank change

 if values[prev_index] > mid_value:

 return mid_pos

 if values[left] > mid_value:

 # case B: flank change must be on the left, since first value

 # larger than in the middle

 return find_flank_pos_in_range(values, left, mid_pos + 1)

Chapter 9 SearChing and Sorting

595

 if values[right] < mid_value:

 # case C: flank change must be on the right, as last value

 # smaller than in the middle

 return find_flank_pos_in_range(values, mid_pos + 1, right)

 raise Exception("should not reach here")

Based on this method, it is possible to write the functions for determining minimum

and maximum quite simply as follows with the knowledge that the position of the flank

change contains the minimum and the position of the maximum is a position to the

left of it.

Due to the convenient Python characteristic of supporting negative indexes for

access from the end of the data structure, no correction needs to be made for a rotation

around 0.

def min_value(values):

 flank_pos = find_flank_pos(values)

 return values[flank_pos]

def max_value(values):

 flank_pos = find_flank_pos(values)

 return values[(flank_pos - 1) % len(values)]

 Verification

Test the determination of the flank change using the following parameterized test— in

particular, also the special case of non-rotated input values is verified:

@pytest.mark.parametrize("values, expected",

 [([25, 33, 47, 1, 2, 3, 5, 11], 3),

 ([6, 7, 1, 2, 3, 4, 5], 2),

 ([1, 2, 3, 4, 5, 6, 7], 0)])

def test_find_flank_pos(values, expected):

 flank_pos = find_flank_pos(values)

 assert flank_pos == expected

Chapter 9 SearChing and Sorting

596

 Solution 8b: Binary Search in Rotated Data (★★★★✩)

Write function binary_search_rotated(values, search_for) that efficiently searches

in a sorted sequence of integer values, say the number sequence 25, 33, 47, 1, 2, 3, 5, 11,

for a given value and returns its position or -1 if not found.

 Examples

Input Flank position Search value Result

[25, 33, 47, 1, 2, 3, 5, 11] 3 47 2

[25, 33, 47, 1, 2, 3, 5, 11] 3 3 5

[25, 33, 47, 1, 2, 3, 5, 11] 3 13 -1

[1, 2, 3, 4, 5, 6, 7] 0 (special case) 5 4

[1, 2, 3, 4, 5, 6, 7] 0 (special case) 13 -1

Algorithm After being able to efficiently determine the flank change in O(log(n)),

one possibility is to enlarge the list. Thereby you cut out the front part of the list and

appends it at the end (this is feasible for medium-sized lists). Afterwards, you can invoke

a binary search, which was developed in Exercise 3:

25 | 27 | 33 | 2 | 3 | 5 => | 2 | 3 | 5 | 25 | 27 | 33

However, this procedure causes quite a bit of effort. So how can you improve it?

For this purpose, you adapt the binary search to specify a lower and upper bound.

You pick up the idea of the list expansion but make it virtual. Let’s take a look at the

example of the search for the 47 in the number sequence shown in the exercise, shown

in Figure 9-4.

Chapter 9 SearChing and Sorting

597

= logical search range334725 1 2533 47112 3 5

334725 1 2533 47112 3 5

334725 1 2533 47112 3 5

334725 1 2533 47112 3 5

step 1

step 2

step 3

start
3

mid
6

end
10

start
7

mid
8

end
10

start
mid
9

end
10

Figure 9-4. Rotated binary search procedure

Based on these preliminary ideas, you proceed with the binary search. First, you

determine the position of the flank change and use it to specify your search value range.

Next, you perform a normal binary search, but you use the modulo operator to bring

the extended value range back into the list’s boundaries and determine the comparison

value based on this.

def binary_search_rotated(values, search_for):

 flank_pos = find_flank_pos(values)

 return binary_search_rotated_in_range(values, search_for, flank_pos,

 flank_pos - 1 + len(values))

def binary_search_rotated_in_range(values, search_for, start, end):

 if start > end:

 return -1

 mid_pos = start + (end - start) // 2

 adjusted_mid = mid_pos % len(values)

 mid_value = values[adjusted_mid]

 if mid_value == search_for:

 return adjusted_mid

Chapter 9 SearChing and Sorting

598

 if search_for < mid_value:

 return binary_search_rotated_in_range(values, search_for,

 start, mid_pos - 1)

 if search_for > mid_value:

 return binary_search_rotated_in_range(values, search_for,

 mid_pos + 1, end)

Python-specific algorithm I have just described a general algorithm. In Python,

you can take advantage of the fact that the indices can also be negative and then operate

from the end of the list or array.

As before, you take up the idea of performing the binary search with shifted index.

Instead of the virtual extension of the output data and the mapping back by modulo to

the real value range, you simply use that the value range is shifted by n positions. Thus,

instead of searching between 0 and n, you can search in the range between flankpos−n

and flankpos − 1. Then, to make it work with the termination condition, you need to

move it after checking for value equality. Additionally, you need to check for matching

start and end. In the actual call, you need to calculate the start and end positions

appropriately and cover the special case of no rotation.

def binary_search_rotated2(values, search_for):

 flank_pos = find_flank_pos(values)

 start = flank_pos - len(values)

 end = flank_pos - 1

 if flank_pos == 0:

 start = 0

 end = len(values) - 1

 return binary_search_rotated_helper2(values, search_for, start, end)

def binary_search_rotated_helper2(values, search_for, start, end):

 mid_pos = start + (end - start) // 2

 mid_value = values[mid_pos]

 if mid_value == search_for:

 return mid_pos % len(values)

 if start == end:

 return -1

Chapter 9 SearChing and Sorting

599

 if search_for < mid_value:

 return binary_search_rotated_helper2(values, search_for,

 start, mid_pos - 1)

 if search_for > mid_value:

 return binary_search_rotated_helper2(values, search_for,

 mid_pos + 1, end)

 Verification

To check the functionality, you use the value combinations from the introductory

example:

@pytest.mark.parametrize("values, search_for, expected",

 [([25, 33, 47, 1, 2, 3, 5, 11], 47, 2),

 ([25, 33, 47, 1, 2, 3, 5, 11], 3, 5),

 ([25, 33, 47, 1, 2, 3, 5, 11], 13, -1),

 ([1, 2, 3, 4, 5, 6, 7], 5, 4),

 ([1, 2, 3, 4, 5, 6, 7], 13, -1)])

def test_binary_search_rotated(values, search_for, expected):

 pos = binary_search_rotated(values, search_for)

 assert pos == expected

9.5 Summary: What You Learned
Even if you will hardly ever program a search or sorting algorithm nowadays yourself, it

is still helpful for algorithmic understanding to have done this once.

Simple implementations of (linear) searches tend to have a running time of O(n).

You learned how you can benefit from sorted data sets helping you to use binary search

as a trickier search and reducing the running time down to O(log(n)).

Similar observations apply for sorting: While naive implementations often have a

running time of O(n2), this can usually be reduced to O(n × log(n)) with Merge Sort and

Quick Sort. It is fascinating to see how a fixed range of values can have a significant effect.

Bucket Sort with a running time of O(n) plays out its strengths with these constraints.

As a nice challenge for the end, you solved a binary search in rotated data sets, where

the values are sorted but shifted by some positions.

Chapter 9 SearChing and Sorting

601
© Michael Inden 2022
M. Inden, Python Challenges, https://doi.org/10.1007/978-1-4842-7398-2_10

CHAPTER 10

Conclusion and
Supplementary Literature
Now, having reached the end of this exercise book, let me conclude. Additionally, I will

present two logic puzzles before we have a look at the supplementary literature.

10.1 Conclusion
By reading this book, and especially by solving and implementing the exercises, you

should have gained good experience. With this knowledge, various tasks from daily

practice should now be somewhat easier to complete. Of course, you will profit most if

you don’t just follow the solutions presented but also experiment and modify them.

10.1.1 Lessons Learned Per Chapter
Let’s recap about what was taught in each chapter and what you should have learned.

Mathematical: The chapter on basic mathematical knowledge introduced the

modulo operator, which is quite essential, for example, for the extraction of digits and

in the calculation of checksums. The exercises on combinatorics showed how small

tricks can easily reduce the running time by an order of magnitude. Also, prime numbers

offer some interesting facets, for example, variants to their calculation. In retrospect,

this turns out to be much easier than perhaps first thought. In general, when trying

to find a solution for a problem, the algorithm and the approach should be roughly

understood, because then, for example, even decomposition into prime factors loses its

possible horror.

https://doi.org/10.1007/978-1-4842-7398-2_10

602

Recursion: The introductory chapter on recursion laid the foundation for a good

understanding. The exercises expanded your knowledge. Additionally, you were able

to use the acquired basic knowledge profitably in the following chapters. A prime

example is various algorithms on trees, which can often be easily expressed recursively—

iteratively, for example, a postorder traversal is already challenging, whereas with

recursion it is effortless.

However, you recognized that simple recursion does not only possess advantages,

but also sometimes requires some patience due to long running times. In the advanced

chapter on recursion, you significantly expanded your toolbox with memoization and

backtracking. This allowed you to increase performance and to solve entertaining and

amusing puzzles, such as Sudoku puzzles or the n-Queens problem. It was also possible

to find a way out of a maze. All this required a bit more programming effort but could be

implemented without too much complexity.

Strings: Strings are an integral part of almost every program. Besides simple tasks

for palindrome checking or string reversing, some tasks could be significantly simplified

using suitable auxiliary data structures, such as sets or dictionaries. These helped when

checking for well-formed braces, converting a word into Morse code, and other tasks. In

general, solving problems is easier the more basic knowledge you have in different areas.

Basic data structures: This chapter deepened your knowledge of basic data

structures like lists, sets, and dictionaries. This knowledge is essential in business

applications. Not only individually but also in combination, they are useful for solving

many tasks, such as the deletion of duplicates from lists. In addition, the exercise of the

magic triangle, for example, trains abstract thinking. A small delicacy was to program

the auto-completion of Excel itself. It is quite surprising what an elegant implementation

this results in. Finally, you developed some functionality for merging lists. This is an

elementary component for Merge Sort.

Arrays: Just like strings, arrays are basic building blocks in many programming

languages. In Python, lists are often favored, since arrays are not nicely supported in the

language. However, there is a valid alternative with NumPy, with which arrays can be

easily defined and which can offer significant performance improvements compared

to lists.

In particular, it is important to avoid tricky off-by-one errors. In this chapter, you

created small helper functions that, when used appropriately, can make algorithms

more understandable. For two-dimensional arrays, you learned, among other things,

how to model directions and how this helps with filling areas with patterns. More

Chapter 10 ConClusion and supplementary literature

603

challenging tasks were the spiral traversal as well as the deletion and filling of a Jewels or

Minesweeper playfield.

Binary trees: The most complex topic in this book is probably binary trees. Since

Python does not provide them, they are presumably not familiar to every Python

developer. However, because binary trees are suitable to solve many problems elegantly,

this chapter gave an introduction. The exercises helped you get to know binary trees

and their possibilities. Besides things like rotation, even mathematical calculations, for

example, can be represented and processed very smartly using binary trees. Something

to puzzle over was certainly the determination of the least common ancestor. This is

especially true for the check for completeness and the graphical output of a binary tree.

Search and sort: Nowadays, you will hardly program a search or sorting algorithm

yourself. Still, it is helpful for algorithmic understanding to have dealt with it once. While

naive implementations often have a running time of O(n2), this can usually be reduced to

O(n . log(n)) with Merge Sort and Quick Sort. It is fascinating to see how a fixed range of

values can have a significant effect. Bucket Sort with a running time of O(n) plays out its

strengths with these constraints.

10.1.2 Noteworthy
When presenting the solutions, I have sometimes deliberately shown a wrong way or a

suboptimal brute force variant to demonstrate the learning effect when working on an

improvement. In everyday work, too, it is often preferable to proceed iteratively because

the requirements may not be 100 % precise, new requests arise, etc. Therefore, it is a

good idea to start with a comprehensible implementation of the task, which allows it to

be modified afterward without any problems. It is often even acceptable to take a not-

yet- optimal solution that handles the problem in a conceptually correct way.

 Thoughts on Maintainability

One also observes the following: Source code is usually read much more often than it is

written. Think about your daily work routine. Usually, you do not start on the greenfield

but extend an existing system with some functionality or fix a bug. You appreciate it if the

original program author has chosen comprehensible solutions and program constructs.

Ideally, even unit tests exist as a safety net.

Let’s get back to development. Make sure that you think about the problem in

advance instead of starting directly with the implementation. The more structured and

Chapter 10 ConClusion and supplementary literature

604

precisely you have thought through a problem, the clearer your implementation will

be. Once the penny has dropped, it is often not too big of a step to create or improve

an understandable, well-structured solution. However, if you start too early with an

implementation simply as source code, this unfortunately too often ends in a disaster

and a failure. As a result, some things remain rather half-baked, and it gets harder to add

functionality in a meaningful way.

I like to point out that especially traceability and later simplified maintainability

are very important in programming. This is achieved in general by creating small and

comprehensible building blocks. With the potentially (and presumably only) minimally

poorer performance as well as the lower compactness, they are often easier to live with

than with a fairly certain poor maintainability.

 Thoughts on Performance

Keep in mind that in today’s world of distributed applications, the impact of individual

instructions or unoptimized methods on performance is negligible. By contrast, too

frequent or too fine-grained REST calls or database accesses may have a much more

serious impact on execution time over an algorithm that has not been optimized

down to the last detail. Please note that my statements apply primarily to self-written

functionalities in business applications. For frameworks and algorithms that experience

millions of calls (or more), however, the inner beauty is potentially less important than

the performance. There will probably always be a certain trade-off between the two

poles: either compact and performance-optimized or understandable, but sometimes a

bit slower.

 Advantages of Unit Tests

Even when creating only simple programs, you may notice the following fact over and

over again: If you test implementations of algorithms purely based on console output,

errors often remain unnoticed—mainly for special cases, limits, and so on. Moreover,

without supporting unit tests, people tend to think less about the interfaces of classes

and methods’ signatures. But this is exactly what helps to increase manageability for

others. With pytest, writing unit tests is really fun and smooth. This is mainly due to the

pleasant and helpful parameterized tests.

Chapter 10 ConClusion and supplementary literature

605

By reading this book and reviewing the solutions, you should have gained a good

understanding of unit testing in addition to your skills in the topics covered. Even more,

when developing solutions, there is a sense of security when the unit tests pass.

10.2 Logic Puzzles
You have dealt with a wide variety of programming puzzles in this book. I present two

logic puzzles to you, which have nothing to do with programming. Still, you can learn a

lot about problem-solving strategies by answering them. From time to time, something

seems impossible at first, and then there is a straightforward solution. If you like, try your

hand at the following puzzles:

• Gold Bags–Detect the Fake

• Horse Race–Determine Fastest Three Horses

10.2.1 Gold Bags–Detect the Fake
This puzzle is about 10 gold bags, each filled with 10 coins, each of which weighs 10 g.

Thus, each gold bag should weigh 100 g (Figure 10-1).

Figure 10-1. Gold bags

An impostor has exchanged the gold coins in a bag for fakes, which, at 9 g instead of

10 g per coin, are somewhat lighter. Find the gold bag containing the fakes with only one

weighing. However, you may take different numbers of coins from any bag and weigh

them together.

 Solution

At first, this task sounds almost impossible since multiple weighing and comparing are

not allowed. You might come up with the following trick with a bit of pondering: Line up

Chapter 10 ConClusion and supplementary literature

606

the bags and number them from 1 to 10. Now work position-based and place as many

coins from each corresponding bag as matches its position, and then weigh them all

together, as shown in Figure 10-2.

1 5 10

Figure 10-2. Weighing gold pieces

Without fakes, the result would be as follows:

1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10

10 20 3

� � � � � � � � � � � � � � � � � � �
� � � 00 40 50 60 70 80 90 100

550

� � � � � � �
�

Let’s assume that bag 5 contains the fakes and look at the result:

1 10 2 10 3 10 4 10 6 10 7 10 8 10 9 10 10 10

10 20 30

� � � � � � � � � � � � � � � � � � �
� � �

5 9

�� � � � � � �
�

40 60 70 80 90 100

545

45

Let’s now assume that bag 2 contains the fakes and determine the result:

1 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10

10 30

� � � � � � � � � � � � � � � � � � �
� � �

2 9

18 �� � � � � � �
�

40 50 60 70 80 90 100

548

According to this, you can identify the corresponding bag based on the

difference to 550:

 550� �weighed weight position

10.2.2 Horse Race–Determine Fastest Three Horses
This puzzle is about solving the following: 25 racehorses are offered for sale, and

you want to buy the three fastest. There is a racetrack with space for a maximum of

Chapter 10 ConClusion and supplementary literature

607

five horses. Still, you have neither a stopwatch nor any other way of measuring time.

However, the horses can compete against each other in races, and you may note the

order. Under these restrictions, how do you determine the fastest three, and how do you

proceed? How many races with which horses do you have to organize at best?

As a simplification, let’s assume here that the horses are not exhausted by the races,

run exactly the same speed in each race, and also that no two horses are the same speed

(just like in a photo finish, there is always an order and a winner).

 Solution

Again, you have to think quite a bit at first to arrange the right races by a clever exclusion

procedure and additionally perform as few of them as possible. In fact, only seven races

are necessary to determine the fastest three horses. How do you go about it?

Step 1: You let five horses compete against each other in any five races and thus

determine the winners of these races. For better traceability, all horses get a number

between 1 and 25, which normally says nothing about the placement. In the following,

the number is used for better distinguishability. It is possible to label the horses just as

well with A, B, C, ... but then you need further distinctions for the races’ winners.

You thus determine the winners from all five races and can directly remove all horses

in the respective fourth and fifth places from your selection for the next races by the

exclusion procedure shown in Figure 10-3.

race

position

race 1

race 2

race 3

race 4

race 5

1 2 3 4 5
 1 2 3 4 5

 6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

 1 2 3 4 5

 6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

exclusion

Figure 10-3. Races 1 to 5

As a result, 15 horses remain, and if you would like to compare them with each

other, at least three races would yet be necessary after these five races. According to my

Chapter 10 ConClusion and supplementary literature

608

statement, however, a total of seven races is enough, so only two races are still allowed.

Consequently, you nevertheless have to reduce the number of horses to be compared to

suitably.

Step 2: To have significantly less than 15 horses left for further selection, you need

to run another race, one with all the winners. Why? So far, you only know something

about the horses within the groups themselves, but not between the groups. To get some

information about the relative speeds of the winners, you let them race against each

other. Again, the last two cannot be among the fastest three horses. See Figure 10-4.

race

position

race 6
1 2 3 4 5
 1 6 11 16 21

Figure 10-4. Race of winners

However, this will automatically eliminate the horses with numbers 17 and 18

(slower than the horse with number 16) and the horses with numbers 22 and 23 (slower

than the horse with number 21) as candidates.

Step 3: You mark the exclusions in a matrix, and then you combine the gained

knowledge to proceed with the next exclusion. To do this, you insert a > notation for

faster than into the matrix of horses. Because horse 1 also won in the winner’s race, you

are sure that horse 1 is definitely the fastest. See Figure 10-5.

 1 2 3 4 5

 6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Figure 10-5. Best nine at horse racing

However, there are still nine horses left—actually only eight candidates, since horse

1 is the fastest. That would indicate at least two more races. Let’s now consider a bit.

Chapter 10 ConClusion and supplementary literature

609

You know the orders by the previous races. Since you want to determine only the fastest

three, the horses numbered 8, 12, and 13 are eliminated, and five horses now remain,

namely those numbered 2, 3, 6, 7, and 11. See Figure 10-6.

 1 2 3 4 5

 6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

exclusion
 1 2 3

 6 7 8

11 12 13

Figure 10-6. Final exclusion at horse racing

Thus, you only have to let the other horses (i.e., 2, 3, 6, 7, and 11) compete against

each other. The winner and runner-up of this race are the overall second and third horse.

This results in the following possible combinations as the final result:

• 1, 2, 3

• 1, 2, 6

• 1, 6, 2

• 1, 6, 7

• 1, 6, 11

10.3 Supplementary Literature
In this book, my main intention was to provide a couple of programming and brainteaser

exercises and an entertaining time in solving them. If the exercises are easily solvable for

you most of the time, you will find various books below as supplementary reading.

Interestingly, when dealing with a topic, one always comes across previously

unknown literature. Some books inspired me, and so I recommend them to you. I group

the books thematically, and this should serve as a good starting point for further steps.

Chapter 10 ConClusion and supplementary literature

610

10.3.1 Introduction to Algorithms and Data Structures
There are various books for getting started with algorithms and data structures. Let me

recommend the following for completion or a different point of view:

• Grokking Algorithms [Bha16] by Aditya Y. Bhargava

A small but fine book, which offers a readable, comprehensible,

and entertaining introduction, which is enriched by many

illustrations. The examples are in Python.

• A Common-Sense Guide to Data Structures and Algorithms [Wen17]

by Jay Wengrow

A wonderful, easy-to-follow book to get started with algorithms and

data structures. The extensive illustrations make it easy to understand

the steps of the algorithms. Again, the examples are in Python.

• Problem Solving in Data Structures and Algorithms Using Python

[Jai19] by Hemant Jain

Of the three books listed here, this is the most comprehensive. It

goes far beyond the previous ones in terms of the topics presented.

However, it offers fewer explanatory illustrations and is not written

as intuitively as the others.

10.3.2 Basic Books
If you want to take a deep dive scientifically into the subject of algorithms and data

structures, and you like to learn things from scratch, and you like it a bit more formal,

then take a look at one of the following books:

• Algorithms [Sed11] by Robert Sedgewick

This book provides you with an easy-to-read and comprehensible

introduction to the subject. An older edition accompanied me in

my university studies back in the 1990s. However, this book uses

Java as the explanatory language.

• Data Structures and Algorithms with Object-Oriented Design Patterns

in Java [Pre00] by Bruno R. Preiss

Chapter 10 ConClusion and supplementary literature

611

This book provides a solid overview of common data structures and

shows how to implement them with Java. Because it was written

in 2000, it does not use generics. Nevertheless, it is my favorite

concerning Java and data structures. However, this book uses Java

as the explanatory language.

• Data Structures and Problem Solving Using Java [Wei10] by Mark

Allen Weiss

This book by Mark Allen Weiss offers a slightly more practical

approach than the previously mentioned one. Due to the

publication year of 2010, it uses more modern concepts like

generics for the implementation of the data structures. However,

this book uses Java as the explanatory language.

10.3.3 Specializing in Interview Questions
In addition to the basic books mentioned earlier, there are some that focus primarily on

interview questions or small programming tasks:

• Top 30 Java Interview Coding Tasks [Urb18] by Matthew Urban

If you don’t have a lot of time and if you are not that interested in

background information, this short booklet is definitely something

for you. However, this book uses Java as the explanatory language.

This book uses unit tests to check the implementation, but they

are based on the somewhat outdated JUnit 4 instead of the newer

JUnit 5.

• Daily Coding Problem [MW19] by Alex Miller and Lawrence Wu

This is another book that provides a lot of information and also

exercises including solutions for algorithms and data structures.

It focuses on small programming tasks for every day and is based

on Python.

Chapter 10 ConClusion and supplementary literature

612

10.3.4 Supplements for Job Interviews at Top Companies
To prepare for a job interview at one of the top companies, namely Amazon, Apple,

Facebook, Google, and Microsoft, I recommend the following books as a supplement

to my book. Some of them go into more depth and offer even trickier tasks or more

background knowledge. In addition, all of them also describe the interview process itself

and how to prepare for it.

• Cracking the Coding Interview [McD16] by Gayle Laakmann

McDowell

This is a great book by an extremely competent author. However, it

is advisable to read a book on algorithms beforehand, so that it is

easier for you to follow the explanations. The degree of difficulty of

some tasks is challenging in parts.

• Programming Interviews Exposed [MKG18] by John Mongan, Noah

Kindler, and Eric Giguère

In addition to algorithms and data structures, this book also covers

topics such as concurrency, design patterns, and databases. It

contains fewer exercises but very good explanations. The solutions

are presented in different programming languages.

• Elements of Programming Interviews in Python [ALP16] by Adnan

Aziz, Tsung-Hsien Lee, and Amit Prakash

This book covers many different topics, especially data structures

and algorithms. It offers a lot of exercises and programming

challenges.

Chapter 10 ConClusion and supplementary literature

PART III

Appendix

615
© Michael Inden 2022
M. Inden, Python Challenges, https://doi.org/10.1007/978-1-4842-7398-2_11

APPENDIX A

Short Introduction
to pytest
pytest is a framework written in Python that helps in creating and automating test cases.

It is easy to learn and takes a lot of the work out of writing and managing test cases. In

particular, only the logic for the test cases itself needs to be implemented. Unlike some

other frameworks, there is no need to learn a large number of functions to set up test

assertions; one is enough.

The module unittest, which is integrated in Python, is less easy to handle than

pytest and therefore less common. Details about both can be found at https://

knapsackpro.com/testing_frameworks/difference_between/unittest/vs/pytest.

Conveniently, pytest also allows you to use a possibly existing test base, created with

unittest, permitting a step-by-step migration from unittest to pytest.

A.1 Writing and Executing Tests
A.1.1 Installing pytest
Before you can use pytest, you need to install it. This can be done using the pip tool,

which is simply called pip for Linux and Windows but pip3 for Mac OS.

Open a console and type the following command (in the following text, and this

book in general, I always use $ to indicate input on the console, which is the terminal on

MacOS or the Windows command prompt):

$ pip install -U pytest

In addition, a few plugins are quite useful, such as this one for parameterized tests

$ pip install parameterized

https://doi.org/10.1007/978-1-4842-7398-2_11
https://knapsackpro.com/testing_frameworks/difference_between/unittest/vs/pytest
https://knapsackpro.com/testing_frameworks/difference_between/unittest/vs/pytest

616

and this one for formatting an HTML page

$ pip install pytest-html

For configuring pytest in PyCharm, please read the online documentation:

www.jetbrains.com/help/pycharm/pytest.html#9.

A.1.2 First Unit Test
To test a module, a corresponding test module is usually written. To be recognized by

pytest, it should end with the postfix test or _test, such as ex03_palindrome_test.

Often, to validate important functionality, you start by testing a few key functions. This

should be extended step by step. Test cases are expressed as special test functions, which

must be marked with the prefix test_. Otherwise, pytest does not consider them as test

cases and ignores them during test execution.

Let’s have a look at an introductory example:

def test_index():

 # ARRANGE

 name = "Peter"

 # ACT

 pos = name.index("t")

 expected = 2

 # ASSERT

 assert pos == expected

Interestingly, there’s no dependency on pytest. In fact, the whole thing is

automatically linked to pytest, and the execution standard assert is varied in such a way

that pytest hooks in and produces test results.

Also worth mentioning is the three-way split with ARRANGE-ACT-ASSERT for preparing

the actions, executing them, and evaluating the results. This structure helps to write

clean and understandable tests. There is not always an ARRANGE part and the comments

can be omitted if you are more experienced. This is described in much more detail in my

book Der Weg zum Java-Profi [Ind20].

Appendix A Short introduction to pyteSt

http://www.jetbrains.com/help/pycharm/pytest.html#9

617

A.1.3 Executing Tests
To run the unit test with pytest, you can either use

• the command line or

• the IDE.

 Executing Tests on the Console

Running the unit tests with pytest can be done from the console in the root directory of

your project. In the following code, use python3 and the module specification with -m.

This is the only way the tests always run cleanly for me.

$ python3 -m pytest

This will start all tests and log the result on the console. For this book, it is shortened

as follows:

$ python3 -m pytest

================= test session starts ===================

platform darwin -- Python 3.10.1, pytest-7.1.1, pluggy-1.0.0

rootdir: /Users/michaeli/PycharmProjects/PythonChallenge

plugins: metadata-2.0.1, html-3.1.1

collected 645 items

tests/appendix/example_test.py . [0%]

tests/ch02_math/ex01_basiscs_test.py [2%]

tests/ch02_math/ex02_number_as_text_test.py [4%]

tests/ch02_math/ex03_perfectnumber_test.py [6%]

tests/ch02_math/ex04_primes_test.py [10%]

...

tests/ch08_binary_trees/ex08_reconstruction_test.py ... [95%]

tests/ch09_search_and_sort/ex01_contains_test.py [95%]

tests/ch09_search_and_sort/ex02_partition_test.py .. [96%]

tests/ch09_search_and_sort/ex03_binary_search_test.py [96%]

tests/ch09_search_and_sort/ex04_insertion_sort_test.py . [97%]

tests/ch09_search_and_sort/ex05_selection_sort_test.py . [97%]

tests/ch09_search_and_sort/ex06_quick_sort_test.py ... [97%]

Appendix A Short introduction to pyteSt

618

tests/ch09_search_and_sort/ex07_bucket_sort_test.py ... [98%]

tests/ch09_search_and_sort/ex08_search_rotated_sorted_test.py [100%]

=============== 645 passed in 1.97s ====================

When getting started with the following parameters,

$ python3 -m pytest --html=pytest-report.html

an additional HTML report of the test results gets generated. This can be examined with

the browser of your choice. An example is shown in Figure A-1.

Figure A-1. HTML representation of a test report

 Executing Tests from the IDE

Alternatively, it is a bit more convenient to start test execution directly in the IDE. Before

doing so, however, pytest must be configured correctly. Conveniently, pytest is integrated

with the popular IDE PyCharm. Tests can be executed either via a context menu or via

buttons in the GUI. This produces output similar to that shown in Figure A-2.

Appendix A Short introduction to pyteSt

619

Figure A-2. Test run from the GUI of the IDE

A.1.4 Handling Expected Exceptions
Sometimes test cases are supposed to check for the occurrence of exceptions during

processing, and an absence would constitute an error. An example is deliberately

accessing a non-existent position of a string. An IndexError should be the result.

To handle expected exceptions in the test case in such a way that they represent a

test success and not a failure, the executing functionality must be called specifically

surrounded by with pytest.raises():

def test_str_to_number_invalid_input():

 with pytest.raises(ValueError):

 str_to_number("ABC")

def test_str_to_number_bonus_invalid_input():

 with pytest.raises(ValueError) as excinfo:

 str_to_number_bonus("0o128")

 assert str(excinfo.value).find("found digit >= 8") != -1

def test_fib_rec_wrong_input():

 with pytest.raises(ValueError) as excinfo:

 fib_rec(0)

 assert "n must be >= 1" in str(excinfo.value)

In the second and third test case, you see how easy it is to access the contents of the

thrown exceptions, for example to check the text or other details.

Appendix A Short introduction to pyteSt

620

A.1.5 Parameterized Tests with pytest
Sometimes you need to test a large number of value sets. Creating a separate test

function for each of them would make the test module quite bloated and confusing.

To solve this more elegantly, there are several variants. All of them have their specific

strengths and weaknesses.

In the following, assume that calculations are to be checked for fixed ranges of values

or a selected set of inputs.1

A parameterized test allows you to do just that: write the test function and define a

set of inputs and expected results. Based on this, the testing framework automatically

executes the test function for all specified combinations of values.

 Introduction to Parameterized Tests

With pytest, defining parameterized tests is very simple. All you need to do is apply a

suitable import and then specify the desired values as follows:

import pytest

@pytest.mark.parametrize("value1, value2, expected",

 [("Micha", "Michael", 2),

 ("rapple", "tables", 4)])

def test_edit_distance(value1, value2, expected):

 result = edit_distance(value1, value2)

 assert result == expected

@pytest.mark.parametrize("sorted_values, search_value, expected",

 [([1, 2, 3, 4, 5, 7, 8, 9], 5, True),

 ([1, 2, 3, 4, 5, 7, 8, 9], 6, False)])

def test_binary_search(sorted_values, search_value, expected):

 assert binary_search(sorted_values, search_value) == expected

1 If the number of values is huge, it is not a good idea to perform a check for all of them, since this
often significantly increases the execution time of the unit tests, without providing any real added
value. Especially here, it is recommended to use representatives from equivalence classes, which
should drastically reduce the number of test cases. For details, refer to my book Der Weg zum
Java-Profi [Ind20].

Appendix A Short introduction to pyteSt

621

In the code, you see that the parameterized test must be annotated with @

pytest.mark.parametrize. The first parameter specifies the parameter names and

the evaluation of the values. These values are passed as a list of tuples. For each

parameterization specified as a tuple, a separate test case is created and executed.

 Other Possibilities in Parameterized Tests

Ingeniously, all collection literals (i.e., tuples, lists, sets, and dictionaries) can be used

when specifying test inputs and results:

@pytest.mark.parametrize("digits, value, expected",

 [([1, 2, 3, 4, 5, 6, 7, 8, 9], 100,

 {"1+23-4+5+6+78-9",

 "12+3+4+5-6-7+89",

 "123-45-67+89",

 "123+4-5+67-89",

 "123-4-5-6-7+8-9",

 "123+45-67+8-9",

 "1+2+3-4+5+6+78+9",

 "12+3-4+5+67+8+9",

 "1+23-4+56+7+8+9",

 "1+2+34-5+67-8+9",

 "12-3-4+5-6+7+89"})])

def test_all_combinations_with_value(digits, value, expected):

 result = all_combinations_with_value(digits, value)

 assert result == expected

Appendix A Short introduction to pyteSt

622

A.2 Further Reading on pytest
This appendix just provided a first introduction to testing with pytest so you can follow

the examples more easily. Of course, there is much more to discover, such as various

plugins. More information on how to use pytest appropriately can be found in the

following books:

• Python Testing with pytest: Simple, Rapid, Effective, and Scalable by

Brian Okken [Okk17]

• pytest Quick Start Guide: Write better Python code with simple and

maintainable tests by Bruno Oliveira [Oli18]

Appendix A Short introduction to pyteSt

623
© Michael Inden 2022
M. Inden, Python Challenges, https://doi.org/10.1007/978-1-4842-7398-2_12

APPENDIX B

Short Introduction
to Decorators
In this appendix, I would like to introduce decorators, another topic that allows us

to express solutions to cross-cutting functionalities elegantly. Decorators are useful

for parameter checks, for example, and are used primarily in this book for advanced

recursion topics.

Decorators allow you to add already existing functionality to new functionality

transparently, without extensions in the implementation of a function itself. Although

writing decorators is pretty straightforward, there are a few specifics to keep in mind.

Let’s look at this a little more closely when examining parameters for functions.

B.1 Argument Checks by Decorator
Previously, you performed various argument checks, such as to ensure a valid range of

values. In Python, these sanity checks can be outsourced to a decorator. Consequently,

the actual function code can stay as close as possible to the problem to be solved,

without special treatment.

A function to check for positive integers can be implemented as follows where you

pass a function as a parameter and use a function as a return:

def check_argument_is_positive_integer(unary_func):

 def helper(n):

 if type(n) == int and n > 0:

 return unary_func(n)

 else:

 raise ValueError("n must be positive and of type int")

 return helper

https://doi.org/10.1007/978-1-4842-7398-2_12

624

As a simple example of usage, let’s consider the calculation of the factorial where the

parameter check is still included:

def factorial(n):

 if n <= 0:

 raise ValueError("n must be >= 1")

 if n == 1:

 return 1

 return n * factorial(n - 1)

To activate the check, you can wrap the above function with the argument check as

follows:

factorial = check_argument_is_positive_integer(factorial)

It is also possible to define a new function as follows:

wrapping results in new function

checked_factorial = check_argument_is_positive_integer(factorial)

print(checked_factorial(5))

print(checked_factorial(-5)) # => ValueError

NOTE: HIGHER ORDER FUNCTIONS

In this example, the decorator is created using functions or nested functions. There are also

higher order functions, which are when a function receives another function as a parameter

and returns a function as a result.

B.2 Syntactic Sugar for Decorators
In Python, there is the variant with @. This allows you to place the decorator name

directly on top of the function definition:

@check_argument_is_positive_integer

def factorial(n):

AppendIx B ShorT InTroducTIon To decorATorS

625

 if n <= 0:

 raise ValueError("n must be >= 1")

 if n == 1:

 return 1

 return n * factorial(n - 1)

Now you can omit the two lines

 if n <= 0:

 raise ValueError("n must be >= 1")

and write the function in a shorter and clearer way, as follows:

@check_argument_is_positive_integer

def factorial(n):

 if n == 1:

 return 1

 return n * factorial(n - 1)

NOTE: DIFFERENCE BETWEEN TYPES OF DECORATION

For @<decorator>, the decoration is always done. If you call <decorator>(function)

you can also call the function regularly and later switch on the decorator explicitly. For this

example, you call the check as follows, where the second call produces a ValueError:

invocation with "factorial" as parameter

print(check_argument_is_positive_integer(factorial)(5))

print(check_argument_is_positive_integer(factorial)(-5))

B.3 Checking Multiple Parameters
The check for positive integers can also be extended to multiple parameters (two, in the

following code). For example, this may be used for simple arithmetic operations like +

and − for natural numbers:

AppendIx B ShorT InTroducTIon To decorATorS

626

def check_arguments_are_positive_integers(binary_func):

 def helper(param1, param2):

 if type(param1) == int and param1 > 0 and \

 type(param2) == int and param2 > 0:

 return binary_func(param1, param2)

 else:

 raise ValueError("both params must be positive and of type int")

 return helper

@check_arguments_are_positive_integers

def add(value1, value2):

 return value1 + value2

@check_arguments_are_positive_integers

def subtract(value1, value2):

 return value1 - value2

NOTE: EXPLICIT CHECKS OR DECORATOR?

consider the following: As the number of parameters increases, the complexity of the

checks also increases, and the comprehensibility potentially decreases. Thus, from about

three parameters to be checked, an explicit examination within the respective functions or

methods is probably more appropriate. This helps to maintain or even increase traceability and

maintainability.

B.4 Logging Function Calls and Parameter Passing
Previously, you considered the somewhat simplified cases of one or two parameters.

However, for various decorators, it is important to be able to be called for an arbitrary

number of parameters, such as for logging calls or for measuring execution times. For

this purpose, the decorator can be defined more generally as follows:

def audit_decorator(func):

 def wrapper(*args, **kwargs):

 print("Before calling " + func.__name__)

AppendIx B ShorT InTroducTIon To decorATorS

627

 result = func(*args, **kwargs)

 print("After calling " + func.__name__)

 return result

 return wrapper

Let’s use this decorator once for logging. You write the following as a combination of

two decorators:

@audit_decorator

@check_arguments_are_positive_integers

def add(value1, value2):

 return value1 + value2

When executing

>>> print("add", add(2, 7))

You get, however, the name of the inner decorator, here helper, instead of the

original function add, which was probably of interest:

Before calling helper

After calling helper

add 9

Based on these issues, I would like to address one more point explicitly: Decorating

has worked quite smoothly so far, but you should consider that in this way, the following

attributes of the function are lost:

• __name__ (the name of the function),

• __doc__ (the documentation, the docstring) and

• __module__ (the module where the function was defined).

AppendIx B ShorT InTroducTIon To decorATorS

628

B.5 Improvement with wraps from the
functools Module

Previously, you saw the somewhat irritating output of the wrapping instead of the

wrapped function. A workaround is to use wraps from the module functools as follows:

def check_arguments_are_positive_integers(binary_func):

 @wraps(binary_func)

 def helper(param1, param2):

 if type(param1) == int and param1 > 0 and \

 type(param2) == int and param2 > 0:

 return binary_func(param1, param2)

 else:

 raise ValueError("both params must be positive and of type int")

 return helper

As a result, the output is as expected:

Before calling add

After calling add

add 9

In addition, you should add @wraps in audit_decorator.

Let’s finish the short introduction with profiling and the measurement of the execution

time of functions. For this purpose, you define the following decorator on yourself:

def timed_execution(func):

 @wraps(func)

 def timed_execute(*args, **kwargs):

 start_time = time.process_time()

 result = func(*args, **kwargs)

 end_time = time.process_time()

 run_time = end_time - start_time

 print(f"'{func.__name__}' took {run_time * 1000:.2f} ms")

 return result

 return timed_execute

AppendIx B ShorT InTroducTIon To decorATorS

629
© Michael Inden 2022
M. Inden, Python Challenges, https://doi.org/10.1007/978-1-4842-7398-2_13

APPENDIX C

Quick Start O-Notation
In this book, the so-called O-notation is used to classify the running time of algorithms.

This allows a more formal classification of the complexity of algorithms.

C.1 Estimations with O-Notation
To estimate and describe the complexity of algorithms and classify their running

time behavior, it would be impractical to always take measurements. In addition,

measurements only reflect the running time behavior under certain restrictions of the

hardware (processor clock, memory, etc.). To be able to classify the consequences of

design decisions independently of such details and on a more abstract level, computer

science uses the so-called O-notation, which indicates the upper bound for the

complexity of an algorithm. To do so, you are able to answer the following question:

how does a program perform when instead of 1,000 input values, for example, 10,000 or

100,000 input values are processed? To answer this question, the individual steps of an

algorithm must be considered and classified. The aim is to formalize the calculation of

complexity to estimate the effects of changes in the number of input data on the program

running time.

Consider the following while loop as an introductory example:

i = 0 // O(1)

while i < n: // O(n)

 create_person_in_db(i) // O(1)

 i += 1 // O(1)

https://doi.org/10.1007/978-1-4842-7398-2_13

630

Any single instruction is assigned a complexity of O(1). The loop itself is assigned

the complexity O(n) due to the n executions of the loop body.1 Adding these values

together, the cost of running the program is thus O(1) + O(n) ∗ (O(1) + O(1)) = O(1)

+ O(n) ∗ 2. For an estimation of complexity, constant summands and factors do not

matter. Only the highest power of n is of interest. Thus, we get a complexity of O(n) for

the program’s illustrated piece. This simplification is permissible since, for larger values

of n, the influence of factors and smaller complexity classes is insignificant. For the

understanding of the considerations in the following sections, this informal definition

should be sufficient.

I would like to quote two sentences by Robert Sedgewick that characterize the

O-notation, from his standard work Algorithms [Sed92]: “[...] the O-notation is a useful

tool for specifying upper bounds on the running time, which are independent of the

input data’s details and the implementation. […] The O-notation proves extremely useful

in helping analysts to classify algorithms according to their performance, and by helping

algorithms in their search for the ‘best’ algorithms.” (translated from the German book).

C.1.1 Complexity Classes
To be able to compare the running time behavior of different algorithms with each other,

seven different complexity classes are usually sufficient. The following bullet points

names the respective complexity class and some examples:

• O(1): The constant complexity results in a complexity that is

independent of the number of input data n. This complexity often

represents an instruction or a simple computation that consists of a

few computational steps.

• O(log(n)): With logarithmic complexity, the running time doubles

when the input data set n is squared. A well-known example of this

complexity is binary search.

• O(n): In the case of linear complexity, the running time grows

proportionally to the number of elements n. This is the case for

simple loops and iterations, such as a search in an array or a list.

1 The meaning of the notation becomes more understandable on the next page with the
presentation of examples for other complexity classes.

Appendix C QuiCk StArt O-nOtAtiOn

631

• O(n x log(n)): This complexity is a combination of linear and

logarithmic growth. Some of the fastest sorting algorithms (e. g.

Merge Sort) show this complexity.

• O(n2): When doubling the amount of input data n, the quadratic

complexity leads to a quadrupling of the running time. A tenfold

increase in the input data already leads to a hundredfold increase in

running time. In practice, this complexity is found with two nested

for or while loops. Simple sorting algorithms usually have this

complexity.

• O(n3): With cubic complexity, a doubling of n already leads to an

eightfold increase of the running time. The naive multiplication of
matrices is an example of this complexity class.

• O(2n): The exponential complexity results for a doubling of n in a

squaring of the running time. At first, this does not sound like much.

But with a tenfold increase, the running time increases by a factor

of 20 billion! The exponential complexity occurs frequently with

optimization problems such as the Traveling Salesman Problem,

where the goal is to find the shortest path between different cities

while visiting all cities.

To cope with the problem of exorbitant running time, the program

uses heuristics, which may not find the optimal solution, just

an approximation of it, but have much lower complexity and a

significantly shorter running time.

Table 13-1 shows impressively which effects the mentioned complexity classes have

for different sets of input data n.2

2 The time complexity O(2n) is not shown because its growth is too strong to be expressed
meaningfully without the use of powers of 10.

Appendix C QuiCk StArt O-nOtAtiOn

632

Table 13-1. Effects of Different Time Complexities

n O(log(n)) O(n) O(n x log(n)) O(n2) O(n3)

10 1 10 10 100 1.000

100 2 100 200 10.000 1.000.000

1.000 3 1.000 3.000 1.000.000 1.000.000.000

10.000 4 10.000 40.000 100.000.000 1.000.000.000.000

100.000 5 100.000 500.000 10.000.000.000 1.000.000.000.000.000

1.000.000 6 1.000.000 6.000.000 1.000.000.000.000 1.000.000.000.000.000.000

Based on the values shown, you get a feeling for the effects of different complexities.

Up to about O(n x log(n)) the complexity classes are favorable. Optimal and desirable,

although not achievable for many algorithms, are the complexities O(1) and O(log(n)).

Already O(n2) is usually not favorable for larger input sets, but it can be used for simple

computations and smaller values for n without any problems.

NOTE: INFLUENCE OF INPUT DATA

Some algorithms behave differently depending on the input data. For Quick Sort, the average

case results in a complexity of n x log(n), but this can increase to n2 in the extreme case. Since

the O-notation describes the “worst case,” Quick Sort is assigned a complexity of O(n2).

C.1.2 Complexity and Program Running Time
The numbers calculated by a special O-complexity for a set of input values n may

sometimes be daunting. Still, they say nothing about the actual execution time, only

about its growth when the input set increases. Based on the introductory example, the

O-notation makes no statement about the duration of individual calculation steps: The

increment i += 1 and the database access create_person_in_db(i) were both rated

O(1), even though the database access is several orders of magnitude more expensive

than the increment concerning execution time.

Appendix C QuiCk StArt O-nOtAtiOn

633

For “normal” instructions without accesses to external systems, such as file systems,

networks or databases (i.e., additions, assignments, etc.), the impact of n is in many

cases not decisive for today’s computers for typical business applications with user

interactions. The impact on actual runtime hardly really matters for small n (< 1000) at

complexities O(n) or O(n2) and even sometimes at O(n3) nowadays—but this does not

mean that you should not use algorithms that are as optimal as possible. Rather, the

reverse is true: You can also start with a functionally correct implementation and put it

into production. The optimized version may be rolled out sometime later.

All in all, I would like to emphasize once again that even multiple nested loops

with the complexity O(n2) or O(n3) are often executed much faster in absolute terms

than some database queries over a network with complexity O(n). Similar is true for a

search in an array (O(n)) and access to an element of a hash-based data structure (O(1)).

For small n, the computation of the hash values can take longer than a linear search.

However, the larger n gets, the more the impact of the worse complexity class affects the

actual running time.

Appendix C QuiCk StArt O-nOtAtiOn

635
© Michael Inden 2022
M. Inden, Python Challenges, https://doi.org/10.1007/978-1-4842-7398-2_14

APPENDIX D

Short Introduction
to Python 3.10
This appendix presents some of the enhancements implemented in Python 3.10, which

was released in October 2021. Therein are features that may be relevant to you. I start

with improvements to error messages. Then I briefly look at match for convenient

design and formulation of case distinctions. Finally, I briefly touch on performance

improvements as well as type checks and other details.

D.1 Error Messages
Sometimes errors occur in a Python program. Various types of errors can be observed.

When creating programs, SyntaxError or IndentationError arise from time to time.

These errors can be fixed easily with the context information and accurate line numbers

provided by Python. Let’s take a look at two short examples.

D.1.1 Assignment Error Messages
For the sake of demonstrating the improvements in error messages, let’s assume you

accidentally specified an assignment (=) instead of a comparison (==) in an if.

 Python 3.9.x

With Python 3.9.x, the error is detected, of course, but gets reported rather unspecifically

as invalid syntax, as follows:

>>> if x = 6:

 File "<stdin>", line 1

https://doi.org/10.1007/978-1-4842-7398-2_14

636

 if x = 6:

 ^

SyntaxError: invalid syntax

Unfortunately, there is no hint of what is wrong with the syntax. Depending on your

programming experience, the underlying problem is either quickly found or you are left

guessing.

 Improvement with Python 3.10

Let’s look at how the error message for the same lines changes with Python version 3.10,

in particular becoming much more understandable:

>>> if x = 6:

 File "<stdin>", line 1

 if x = 6:

 ^^^^^

SyntaxError: invalid syntax. Maybe you meant '==' or ':=' instead of '='?

As you can see, not only is the problem’s cause mentioned directly, but two possibilities

for remedial action are suggested at once.

D.1.2 Error Messages for Incomplete Strings
Sometimes you might overlook delimiting a string at the beginning or the end with

quotation marks. Let’s take a look at the error messages generated by different Python

versions.

 Python 3.9.x

You define a set with some names, but the last one does not end correctly with a

quotation mark.

>>> data = { "Tim", "Tom", "Mike}

 File "<stdin>", line 1

 data = { "Tim", "Tom", "Mike}

 ^

SyntaxError: EOL while scanning string literal

Appendix d Short introduction to python 3.10

637

 Improvement with Python 3.10

With Python 3.10, the problem is directly apparent from the error message, namely the

missing quotation mark at the end of the string:

>>> data = { "Tim", "Tom", "Mike}

 File "<stdin>", line 1

 data = { "Tim", "Tom", "Mike}

 ^

SyntaxError: unterminated string literal (detected at line 1)

D.2 Case Distinctions with match
In many languages, case distinctions may be expressed using the if statement as well

as the switch statement. The latter was missing in Python for a long time. With Python

3.10 comes match, an even more powerful variant for case discrimination with which

we can now finally also realize the switch statement. In addition, match enables pattern

matching, a method that is used in functional languages such as Erlang/Elixir or Scala,

but also makes its way into the current Java 17 (in a trimmed-down form).

Let’s look at some possibilities of match again a few examples.

D.2.1 Python 3.9.x
Suppose you want to map HTTP status codes to their meaning. This can be solved with

an if cascade as follows (shown here only in excerpts):

http_code = 201

if http_code == 200:

 print("OK")

elif http_code == 201:

 print("CREATED")

elif http_code == 404:

 print("NOT FOUND")

elif http_code == 418:

 print("I AM A TEAPOT")

else:

 print("UNMATCHED CODE")

Appendix d Short introduction to python 3.10

638

However, it is noticeable that this is not easy to read.

 Improvement with Python 3.10

Let’s look at how much clearer the above construct becomes with the use of match. In

particular, with _ you can also include a wildcard case that is jumped to whenever the

other cases don’t match.

match http_code:

 case 200:

 print("OK")

 case 201:

 print("CREATED")

 case 404:

 print("NOT FOUND")

 case 418:

 print("I AM A TEAPOT")

 case _:

 print("UNMATCHED CODE")

 Combination of Values

By using the pipe operator (|), it is possible to specify multiple values for which the

following action should be executed. This is shown here for Thursday and Friday in

combination and Saturday and Sunday:

def get_info(day):

 match day:

 case 'Monday':

 return "I don't like..."

 case 'Thursday' | 'Friday':

 return 'Nearly there!'

 case 'Saturday' | 'Sunday':

 return 'Weekend!!!'

 case _:

 return 'In Between...'

Appendix d Short introduction to python 3.10

639

 More Complex Matching I

You have just seen that you can specify values with the pipe operator as alternatives.

However, it is also possible to check iterables for a match:

values = (2,3,4)

match values:

 case [1,2,3,4]:

 print("4 in a row")

 case [1,2,3] | [2,3,4]:

 print("3 in a row")

 case [1,2,4] | [1,3,4]:

 print("3 but not connected")

 case _:

 print("SINGLE OR DOUBLE")

 More Complex Matching II

The capabilities of match are even more powerful, however, which I’ll just hint at here.

Please note that you can specify matching patterns and additional conditions after the

values in case.

class Gender(Enum):

 MALE = auto()

 FEMALE = auto()

def classify(person):

 match person:

 case (name, age, "male" | Gender.MALE):

 print(f"{name} is a man and {age} years old")

 case (name, age, "female" | Gender.FEMALE):

 print(f"{name} is a woman and {age} years old")

 case (name, _, gender) if gender is not None:

 print(f"no age specified: {name} is {gender}")

 case (name, age, _) if age is not None:

 print(f"no gender specified: {name} is {age} years old.")

Appendix d Short introduction to python 3.10

640

Here the already mentioned pattern matching takes place. In case, it is checked

whether there is a match with the pattern, but additionally the specified variables are

assigned corresponding values. Details can be found in PEP 622 at www.python.org/

dev/peps/pep- 0622/. Again, _ serves as a wildcard operator and matches with

everything.

Let’s call this classification once as follows:

classify(("Micha", 50, "male"))

classify(("Lili", 42, Gender.FEMALE))

classify(("NO GENDER", 42, None))

classify(("NO AGE", None, "ALL"))

This results in the following outputs:

Micha is a man and 50 years old

Lili is a woman and 42 years old

no gender specified: NO GENDER is 42 years old.

no age specified: NO AGE is ALL

D.3 Miscellaneous
D.3.1 Improvements in Context Managers
Context managers are helpful for resource management when opening or closing files.

But they are also useful for managing database connections and many other resources.

 Improvement with Python 3.10

With Python 3.10, their syntax becomes a tiny bit more pleasant when using multiple

context managers within one with statement:

with (

 open("input1.txt") as input_file1,

 open("input2.txt") as input_file2,

):

Appendix d Short introduction to python 3.10

http://www.python.org/dev/peps/pep-0622/
http://www.python.org/dev/peps/pep-0622/

641

D.3.2 Performance Improvements
Python has been improved internally concerning performance in several places. This

mainly applies for constructors like str(), bytes(), and bytearray(). They have become

faster by about 30 %. Please consult https://bugs.python.org/issue41334 for details.

D.3.3 Extension at zip()
 Python 3.9.x

Python provides a built-in function called zip() that allows you to combine two (or

more precisely, multiple) iterables into a single unit. This may be used to combine, for

example, two lists, one of programming languages and another of version numbers:

>>> languages = ['Java', 'Python']

>>> versions = [17.0, 3.10]

>>>

>>> print(list(zip(languages, versions)))

[('Java', 17.0), ('Python', 3.10)]

If one dataset contains more elements than the other, the merge will be aborted as

soon as all elements of the shorter dataset have been processed:

>>> number_list = [1, 2, 3, 4, 5, 6]

>>> str_list = ['one', 'two', 'three']

>>>

>>> print(list(zip(number_list, str_list)))

[(1, 'one'), (2, 'two'), (3, 'three')]

This is often really a very good default setting to be able to work fault-tolerantly.

However, sometimes you want to merge the two datasets only if both can provide the

same amount of elements. With Python 3.9.x this was only achievable by the help of

additional programming efforts.

Appendix d Short introduction to python 3.10

https://bugs.python.org/issue41334

642

 Improvement with Python 3.10

Since Python 3.10, zip() supports the parameter strict. Use the value True to specify

that an exception should be thrown if one of the iterables is exhausted before the others:

>>> number_list = [1, 2, 3, 4, 5, 6]

>>> str_list = ['one', 'two', 'three']

>>>

>>> print(list(zip(number_list, str_list, strict=True)))

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

ValueError: zip() argument 2 is shorter than argument 1

D.3.4 Typechecking Improvements
I have not shown type checks in this book so far, as this is a rather advanced feature of

Python. Furthermore, these specifications are optional and only help while coding but are

not evaluated at runtime. For clarification, let’s assume the following function initially:

def identity(value):

 return value

 Python 3.9.x

To specify for a function that it expects parameters of either type int or float as input

and also returns them, you can add the following specifications:

def identity(value: Union[int, float]) -> Union[int, float]:

 return value

 Improvement with Python 3.10

The union of types just shown does get a bit clumsy by explicitly specifying Union. With

Python 3.10, the notation looks quite natural and is also shorter and more readable:

def identity(value: int | float) -> int | float:

 return value

Appendix d Short introduction to python 3.10

643

This is described as PEP 604 at www.python.org/dev/peps/pep- 0604/.

HINT: INTERESTING VIDEO ABOUT WHAT’S NEW IN PYTHON 3.10

to see the new features live in action, i recommend an instructive video available on youtube

at www.youtube.com/watch?v=5- A435hIYio).

Appendix d Short introduction to python 3.10

http://www.python.org/dev/peps/pep-0604/
http://www.youtube.com/watch?v=5-A435hIYio

645
© Michael Inden 2022
M. Inden, Python Challenges, https://doi.org/10.1007/978-1-4842-7398-2

 Bibliography

[ALP16] Adnan Aziz, Tsung-Hsien Lee, and Amit Prakash,

Elements Of Programming Interviews in Python (CreateSpace

Independent Publishing Platform, 2016).

[Bad17] Dan Bader, Python Tricks: A Buffet of Awesome Python

Features (Dan Bader, 2017).

[Bha16] Aditya Y. Bhargava, Grokking Algorithms (Manning, 2016).

[Ind20] Michael Inden, Der Weg zum Java-Profi 5th edition

(dpunkt.verlag, 2020).

[Jai19] Hemant Jain, Problem Solving in Data Structures and

Algorithms Using Python 2nd edition (2019).

[McD16] Gayle Laakmann McDowell, Cracking the Coding

Interview 6th edition (CareerCup, 2016).

[MKG18] John Mongan, Noah Kindler, and Eric Giguère,

Programming Interviews Exposed 4th edition (Wrox, 2018).

[MW19] Alex Miller and Lawrence Wu, Daily Coding

Problem (2019).

[Okk17] Brian Okken, Python Testing with pytest: Simple, Rapid,

Effective, and Scalable (O’Reilly, 2017).

[Oli18] Bruno Oliveira, pytest Quick Start Guide: Write better

Python code with simple and maintainable tests (Packt

Publishing, 2018).

[Pre00] Bruno R. Preiss, Data Structures and Algorithms with

Object-Oriented Design Patterns in Java (Wiley, 2000).

[Sed92] Robert Sedgewick, Algorithmen (Addison-Wesley, 1992).

[Sed11] Robert Sedgewick, Algorithms 4th edition (Addison

Wesley, 2011).

https://doi.org/10.1007/978-1-4842-7398-2

646

[Urb18] Matthew Urban, Top 30 Java Interview Coding Tasks (net-

boss, 2018).

[vH16] Rick van Hattern, Mastering Python. (Packt

Publishing, 2016).

[Wei10] Mark Allen Weiss, Data Structures and Problem Solving

Using Java 4th edition (Pearson, 2010).

[Wen17] Jay Wengrow, A Common-Sense Guide to Data Structures

and Algorithms (The Pragmatic Programmers, 2017).

BIBLIOGRAPHY

647
© Michael Inden 2022
M. Inden, Python Challenges, https://doi.org/10.1007/978-1-4842-7398-2

Index

A
Abstract syntax tree (AST), 459
Arrays

add_one(digits)
algorithm, 351
data structure, 303, 351
verification, 352

building blocks, 267
erase diamonds

algorithm, 336–338
erase_chains(values2dim), 301
erases, 335
fall_down(values2dim) 301
falling down, 340–342
helper functions, 345
implementation, 300
modification, 344, 345
preliminary considerations, 335
solution, 334
verification, 339, 342, 343

errors, 286
even/odd numbers

algorithm, 310
helper functions, 311
implementation, 296
less copying, 313
optimization, 311–313
solution, 310
variation, 311
verification, 314

features, 287, 288

flip
horizontal flipping algorithm, 315
implementation, 297
limitation, 318
modification, 317
optimization, 317
solution, 314
verification, 318
vertical flipping mode, 315, 316

flood filling process
algorithm, 359
filling process, 304
pattern specification, 305, 361, 362
solution, 359
verification, 360, 363, 364

generalizations, 288
inplace rotation

algorithm, 322
helper variables, 323, 324
innermost level, 323
inwards, 323
iterative, 298, 321
outer layer, 322
procedure layer, 322
recursive, 298, 325
verification, 326

jewels board init
check validation, 332, 333
diagonals, 299, 300, 330, 332
get_dimension() function, 330
graphical representation, 299, 327
initialization, 298, 326, 328, 329

https://doi.org/10.1007/978-1-4842-7398-2

648

little source code vs. small
method, 330

validity check, 299
verification, 332–334

minimum and maximum
algorithm, 364, 366
helper functions, 306, 365
implementation, 305
solution, 364
verification, 367

multidimensional array, 267
NumPy, 289–296
one-dimensional (see

One- dimensional arrays)
palindrome

advantage, 320
algorithm, 319
is_palindrome(values)

function, 297
iterative variant, 320
Python shortcut, 320
solution, 319
unit testing, 321
verification, 321

split
algorithm, 368
arbitrary integers, 306, 367
inplace, 369
inplace function, 307
lists, 307
Pythonic algorithm, 368
quick sort partition, 370, 371
Quick Sort variants, 372
sorting partition, 307
verification, 372

B
Backtracking, 393–397

n-Queens problem, 449
Sudoku solver, 427

Binary trees/binary search trees (BST)
ASCII output, 464
BinaryTreeNode class, 460
breadth-first search

algorithm, 503
implementation, 474
level-order, 502
verification, 504, 505

checking process, 479
algorithm, 528
solution, 527
verification, 528, 529

completeness
completeness, 480, 534–536
full/perfect checking, 480, 531–533
implementation, 479
nodes, 479, 530
recursive, 481, 537–539
solution, 530
verification, 532, 540–542

inorder/preorder/postorder
inorder solution, 489–491
insight, 497
iterative implementations, 472, 494
postorder, 492–494
preorder, 491, 492
surprise algorithm, 496, 497
verification, 494, 495

insertion, 462
integers, 471
letters/numbers, 469, 470

Arrays (cont.)

Index

649

level sum
algorithm, 506, 507
implementation, 474
solution, 505
verification, 508

math evaluation
algorithm, 520
implementation, 477
solution, 519
verification, 520

meaning, 459
mirroring tree, 478
node/edges, 460
postorder, 466
printer

connecting lines, 484, 545–547
drawing node, 483, 544, 545
implementation, 481
representation, 485
solution, 542
tree width, 482, 542–544

problematic insertion order, 463
properties

completeness/perfectness, 468, 469
level and height, 467
rotation, 467

reconstruction
algorithm, 513
lists, 476, 513
preorder and inorder, 476, 516, 517
verification, 514–519

rotation
algorithm, 509
implementation, 476
nodes, 510
preliminary considerations, 510
solution, 509
verification, 511, 512

search, 461
structure storage/terminology, 460
supplementary

literature, 603
symmetry

algorithm, 522, 523
imaginary vertical line, 522
mirror tree, 525, 526
solution, 522
verification, 524, 526

symmetry property, 477–479
textual/real digits, 470, 471
traversals

breadth-first/depth-first
searches, 464

depth-first search methods,
465, 466

level order/breadth-first, 464
tree height

algorithm, 498, 499
implementation, 473
solution, 497
verification, 498, 499

tree representation
algorithm, 548, 549
helper functions, 550, 551
memory optimization, 551, 552
solution, 548
spacing node, 550
verification, 553, 554

utility module, 462
Bucket sort algorithm, 570, 571

solution, 590–592
verification, 592

C
Container classes, 197

Index

650

D
Data structure

braces
algorithm, 239, 241
enumeration, 242
solution, 239
verification, 241, 243

check magic triangle
algorithm, 247, 248
intermediate inspection, 248
problem solving strategies, 247
solution, 246
verification, 249, 250

common elements
algorithm, 223, 224
matching functions, 214
Python shortcut, 224
solution, 222
stack class, 215
verification, 224

digits
addition, 220, 252, 253
inverse, 220, 256, 257
safe_get_at() function, 254
verification, 255
ZIP() method, 254

Excel magic select (see Excel
magic select)

FIFO (see First In, First Out (FIFO))
frequent elements

algorithm, 250
histogram, 219
solution, 250
verification, 251

list merge
algorithm, 257–261

implementation, 220
Python shortcut, 259
solution, 257
verification, 261

list reverse
algorithm, 228
elements, 229
inplace, 229
order inplace, 215
performant random index, 229
Python shortcut, 228, 229
random index access, 216
reverse() function, 215, 228
verification, 230

longest sequence
greedy algorithm, 236, 237
mini optimization, 237
modeling stock prices/

altitudes, 217
optimized algorithm, 238
solution, 235
verification, 238

magic triangle, 219
maximum profit

algorithm, 233–235
max_revenue(prices) function, 216
solution, 233
verification, 235

Pascal’s triangle
algorithm, 244, 245
representation, 218
solution, 244
verification, 245, 246

remove duplication
algorithm, 231
Python shortcut, 232

Index

651

remove_duplicates(values), 216
solution, 231
verification, 232

stack class
algorithm, 225
requirements, 225
StackIsEmptyException, 225
verification, 227
visibilities, 226

stack/queue
algorithm, 265
check procedures, 222
implementation, 221
solution, 264
verification, 266

well-formed braces, 217
Data structures, supplementary

literature, 602
Decorators

argument checks, 623, 624
checking multiple parameters, 625, 626
explicit checks, 626
functools module, 628
logging function calls/parameter

passing, 626, 627
syntactic sugar, 624, 625
wrapped function, 628

E
Excel magic selection

algorithm, 262
implementation, 221
modification, 263
Python shortcut, 262
solution, 261
verification, 263

F
First In, First Out (FIFO)

elements, 211, 212
emulate stack and queue, 213, 214
implementation, 211, 212

G, H, I, J, K
Greatest common divisor (GCD),

86, 87, 98

L
Last-In-First-Out (LIFO), 209, 210, 213
Least common multiplier (LCM), 86, 100
LIFO data structure, 209, 210
Lists/sets/key-value mappings

(dictionaries), 197
Lowest common ancestor (LCA), 473

algorithm, 500
solution, 499
verification, 501, 502

M
Mathematical operations, 17

arithmetic operations
algorithm, 36
blank lines, 38
built-in function, 37
even/odd number, 29, 38
function, 28
statistics, 29, 36, 37
verification, 38, 39

Armstrong numbers
algorithm, 61
equation, 61

Index

652

formulas, 62
generic version, 33, 34
verification, 62, 63

checksum
algorithm, 50
calculation, 31
verification, 51

combinatorics
algorithm, 57
computation, 33, 57, 59–61
Python shortcut, 57
solve_quadratic() function, 58
transformation, 58, 60
verification, 58, 61

decimal number, 53–55
divider, 19
lambda expressions

functional programming, 26
len() method, 28
sort() method, 27
syntax, 26

max change calculator
algorithm, 64
coins/numbers, 34
maximum value, 64
verification, 65

modulo operation (%)/division, 17, 18
number_as_text(n), 29, 30
number games, 24, 25
pair prime numbers

algorithm, 47
optimization, 48, 49
principles, 48
program structure, 49
results, 31, 46
verification, 50

perfect number, 41–43

prime factorization
algorithm, 68
multiplication, 35
optimized algorithm, 69
solution, 68
verification, 70

prime numbers, 20–22
algorithm, 30, 44
Python shortcut, 45
results, 43, 44
verification, 46

related numbers
algorithm, 66
calc_friends(max_exclusive), 34
equations, 66
verification, 67

roman numbers
algorithm, 52
decimal numbers, 32, 52
verification, 55

roman numeral system, 22, 23
Sieve of Eratosthenes, 21
supplementary literature, 601
text numbers, 39–41

Memoization
edit distances, 400
Fibonacci numbers, 383–385
Pascal’s triangle, 386–388
pure functions, 388
Python on-board tools

cross-cutting concern, 390
decorator, 389–391
disadvantages, 388
LRU cache, 391–393
Pascal’s triangle, 390
techniques, 388

recursive implementation, 384
Merge Sort, 566–568

Mathematical operations (cont.)

Index

653

Minesweeper board
algorithm, 373–375
artificial border, 373
bombs, 373, 374

calc_bomb_count(bombs), 309
initialization, 308
place_bombs_randomly(), 308
position-based processing, 378
print_board(), 309, 378, 379
solution, 372
verification, 374, 376, 377

Multidimensional arrays
accessing values, 280
definition, 278
get_dimension(values)

function, 279
implementation, 281
is_on_board(), 285
modeling directions, 283
np.empty(), 281
print(), 282
Python command line, 282
random numbers, 283, 284
rotations, 280, 281
strings conversion, 279
variation, 286

N
n-Queens problem

algorithm, 394–397, 449–451
approach, 454–457
diagonals, 452
get_dimension(), 451
helper function, 451
implementation, 395, 405, 451, 452
queens, 393–397
solution, 449

task implementation, 397
verification, 453, 457

Numerical Python (NumPy)
advantage, 292
comprehensions, 291
functionalities, 291, 292
getsizeof() function, 293
index based access, 294
lists, 289
matrix multiplication, 295
memory consumption, 293
particular value, 290, 291
performance comparison, 294–296
recapitulation, 289

O
One-dimensional arrays

enumerate() function, 270
functionality, 269
interim, 275
optimization, 277
problem-solving strategies, 270
readability/comprehensibility, 269
remove duplication, 270
rotation, 276–279
sorted input, 271
swapping elements, 268
textual output, 268
tuple assignment, 269
unsorted/arbitrary numbers, 271,

273, 274
O-notation, 629

algorithms, 630
complexity classes, binary

search, 630
definition, 629
estimations, 629

Index

654

input data, 632
normal instructions, 633
sorting algorithms, 631
time complexities, 632

P
Palindrome property

algorithm, 77
iterative variant, 79, 80
optimized algorithm, 78
position pointers, 78
recursive variant, 77

Programming style, 5
block comments, 8
count_substrings() function, 7
decorators and sanity checks, 8
information, 12
PEP 8 coding standard, 9
recursive termination and descent, 6
source code compactness, 6
Zen, 9–11

PyCharm project
pip tool, 4
sources, 3
tests, 4
utility functions, 4

pytest
handle expected exceptions, 619
installation, 615, 616
parameterized test

collection literals, 621
source code, 620

test execution, 617
console, 617, 618
HTML representation, 618

IDE PyCharm, 618, 619
unit test, 616

Python
checks, 11
project sources, 11
shortcut, 2
solution, 13
tooling, 10
Zen, 9, 10

Python 3.10, 635
case distinctions

pipe operator (|), 638
combination, 638
match, 637
matching patterns and

conditions, 639
Python 3.9.x, 637
wildcard case, 638

context managers, 640
error messages, 635

assignment (=), 635, 636
possibilities, 636
string, 636, 637

type checks, 642
zip() extension, 641

Q
Quick sort, 568–570, 588–590

R
Recursion

backtracking, 393–397
edit distance, 399, 400

algorithm, 414
case-insensitive, 413

O-notation (cont.)

Index

655

memoization, 416–418
modifications, 414
performance test, 415, 416
verification, 415

Labyrinth
advantages, 425
algorithm, 423
implementation, 401, 402
solution, 422
verification, 425

longest common subsequence
algorithm, 418
implementation, 400
memoization, 421, 422
modification, 419
performance test, 420, 421
solution, 418
verification, 420

math operator checker
algorithm, 436
combinations, 403, 404, 435–437
verification, 438

memorization (see Memoization)
n-Queens problem

implementation, 405
solution, 449–457

palindromes
algorithm, 446
longest substrings, 448, 449
LOTTOL, 444
step-by-step procedure, 444
strings, 443
subproblems, 444
substrings, 405
verification, 447, 448

Sudoku solver
algorithm, 427
auxiliary function, 430, 431

backtracking problems, 427
checking modification, 434
clever testing, 433
digits, 427, 428, 430
implementation, 427
reasonable optimizations, 432–435
solve_sudoku(board), 402, 403
valid solution, 426
verification, 431, 432

supplementary literature, 602
Towers of Hanoi problem

algorithm, 407
execution, 398
graphical format, 399, 409, 410, 412
recursion, 409
solution, 406
task definition, 398, 407
verification, 412

water jug problem
algorithm, 440, 442
implementation, 404
solution, 439
verification, 442

Recursive functions, 71
algorithmic tasks, 77

draw_snowflake(), 81
fractal implementation, 80–82
iterative variant, 79, 80
palindrome property, 77, 78
stylized representation, 81

complexity reduction, 84
conversion

algorithm, 107
octal and hexadecimal numbers,

88, 107–109
optimization, 109
to_binary(n), 88, 106
verification, 110

Index

656

count_substrings, 92
implementation, 128
optimization, 128
solution, 126–130
variation, 127
verification, 129

endless calls/stack frame, 83, 84
exponential function

exponentiation, 89
is_power_of_2(n), 89, 111
iterative version, 89, 113
power_of(value, exponent),

111, 113
verification, 114

Fibonacci numbers, 84
iterative, 94, 95
mathematical definition, 93
optimization, 94
recursive, 93
value progression, 93
verification, 95

GCD
iterative version, 86, 99
LCM, 86, 100
natural numbers, 86, 87
solution, 98
verification, 100, 101

iterative, 85
mathematical operation

calculation formula, 72
clarification, 72
restricted call depth, 76
factorial, 71–73
Fibonacci numbers, 75, 76
Python shortcut, 73
sum of numbers (n), 74, 75
tail-recursive, 76

min_rec(values), 88, 105, 106
multiplication, 82, 83
number palindromes

solution, 118–122
string functionalities, 118
verification, 122

Pascal’s triangle, 90, 114–118
permutations, 91

computation, 123
solution, 122–126

process digits
count_digits(value), 85, 95
cross sum, 85, 97
divmod() function, 97
built-in function len(), 97
sanity checks, 96
verification, 98

RecursionError, 83
reverse string, 87

algorithm, 102
reverse_string(text), 102
verification, 102

ruler, 92
draw_interval() function, 130
draw_ruler() function, 131
solution, 130–132
verification, 131

sum_rec(values), 87
algorithm, 104
solution, 103–105
verification, 104

termination condition, 84

S
Search/sorting algorithm

binary search, 559, 560
iterative, 574, 583, 584

Recursive functions (cont.)

Index

657

recursive, 581–583
recursive function, 573
verification, 585

bucket sort algorithm
implementation, 576
solution, 590–592
verification, 592

contains all
algorithm, 578
contains_all() function, 572
Python shortcut, 578
solution, 577
verification, 578

in()/index()/count(), 557, 558
insertion sort

implementation, 574
solution, 585
verification, 586

partitioning
algorithm, 579, 580
solution, 579
three letters, 580
two letters, 579
verification, 581

partitioning, 573
quick sort

implementation, 575
solution, 588, 589
verification, 590

rindex() and rfind(), 559
rotated data

binary search, 577, 596–599
comparisons, 594
flank change efficient, 576, 593
implementation, 576
preliminary considerations,

593, 594

solution, 592
verification, 595

schematic sequence, 560
selection sort

implementation, 574
solution, 586–588
verification, 587

sorting (see Sorting algorithms)
supplementary literature, 603

Sequential data types
data structure (see Data structure)
key-value mappings (dictionaries)

definition, 206
filtering elements, 208
functions and

operations, 206
implementation, 207

LIFO data structure, 209, 210
lists

check implementation, 204
collect_all(), 204
comprehension, 201, 202
elements, 200
improved variants, 203
inplace variants, 202, 203
operations, 199
remove_all(), 202

operations, 197, 198
sets

operations, 205
single elements, 205

solving tasks, 198
Slicing operations

conversion, 138
individual characters/substrings, 137
iteration, 138
output, 138

Index

658

Sorting algorithms
analogy, 567
bucket sort, 570, 571
comprehensibility, 565
insertion

definition, 560
implementation, 562, 563
position, 561
stable sort, 562

merging process, 566–568
quick

copying option, 570
inplace implementation, 570
main(), 569
pivot, 568–570

selection, 563–566
splitting algorithm, 566

Spiral traversal
algorithm, 347–349
assumption, 346
basic procedure, 302
generic method, 346
procedure, 346
results, 302
verification, 350

Strings, 133
anagram

algorithm, 175
implementation, 147
Python shortcut, 176
solution, 175
verification, 176

braces
algorithm, 174
check_braces(text), 146
solution, 173
verification, 175

capitalization

capitalize(text), 145
modification, 145, 170
solution, 167, 168
special treatment variant, 145, 168,

170, 171
split() method, 169
verification, 171
whitespace, 169

character sequences, 133
conversion

algorithm, 188, 189
octal numbers, 190
solution, 188
str_to_number(text), 150
verification, 189, 191

conversions and
extractions, 135

duplicate letters
implementation, 144
Python shortcut, 165
solution, 164, 165
verification, 166

equality, 136, 137
filled frame

algorithm, 194
print_box(width, height,

fillchar), 151
solution, 193, 194
verification, 194

formatting output, 139, 140
functions, 133–135
guessing vowels

algorithm, 195
Python shortcut, 195
solution, 194
translate_vowel(text,

replacement), 151
verification, 196

Index

659

histogram, 140
joiner

implementation, 142
solution, 156, 157

morse code
algorithm, 177
bonus, 179
Python/match, 178
solution, 177
to_morse_code(text), 147
verification, 179

number conversions
binary numbers, 141, 142
is_binary_number(number), 152
solution, 152–156

palindrome
algorithm, 161, 162
implementation, 143
iterative solution, 164
regular expression, 163
solution, 160, 161
verification, 163

pattern checker
algorithm, 180
matches_pattern(pattern,

text), 148
problem solving strategies, 180
solution, 179
verification, 181

print tower
algorithm, 192
print_tower(n), 151
recursion, 192
solution, 191, 192
verification, 193

processing, 140
process single characters, 140, 141

remove duplication
remove_duplicates(text), 144
solution, 166
verification, 167

reverses
implementation, 142
solution, 157–160
verification, 160

rotation
algorithm, 173
implementation, 146
solution, 172
verification, 173

slicing (see Slicing operations)
supplementary literature, 602
tennis score

algorithm, 182–184
counting rules, 182
solution, 182
tennis_score() function, 148
verification, 184, 185

version numbers
algorithm, 186
compare_versions(version1,

version2), 149
solution, 185
verification, 187

Structure, 1
algorithm, 2
examination, 2
task structure, 1

Sudoku checker
algorithm, 353–355, 357
bonus, 304, 356
puzzle, 303, 353
valid solution, 353
verification, 356, 358, 359

Index

660

Supplementary literature, 601
algorithms/data structures, 610
arrays, 602
binary trees, 603
books, 610, 611
data structures, 602
gold bags, fake detection, 605
horse race

exclusion procedure, 607, 609
matrix, 608
simplification, 606
solution, 607

interview, 612
maintainability, 604
mathematical knowledge, 601
performance, 604
programming puzzles, 605
programming tasks, 611

recursion, 602
search/sorting algorithm, 603
strings, 602
unit tests, 604

T
Traversing trees

algorithm, 485
append() method, 487
implementation, 471, 472
list, 486
solution, 485
verification, 488

U, V, W, X, Y, Z
Unit test, Pytest, 5

Index

	Table of Contents
	About the Author
	About the Technical Reviewers
	Preface
	Chapter 1: Introduction
	1.1 Structure of the Chapters
	1.1.1 Introduction
	1.1.2 Exercises
	1.1.3 Solutions

	1.2 Basic Structure of the PyCharm Project
	1.3 Basic Framework for Unit Tests with Pytest
	1.4 Note on Programming Style
	1.4.1 Thoughts on Source Code Compactness
	1.4.2 Example 1
	1.4.3 Example 2
	1.4.4 Decorators and Sanity Checks at the Beginning of Functions
	1.4.5 Block Comments in Listings
	1.4.6 PEP 8 and the Zen of Python
	PEP 8 Coding Standard
	The Zen of Python

	1.4.7 More Information

	1.5 Note on the Exercises
	1.6 Trying Out the Examples and Solutions
	1.7 Let’s Go: Discovering the Python Challenge

	Part I: Fundamentals
	Chapter 2: Mathematical Problems
	2.1 Introduction
	2.1.1 Short Introduction to Division and Modulo
	2.1.2 Short Introduction to Divider
	2.1.3 Short Introduction to Prime Numbers
	2.1.4 Roman Numbers
	Rules
	Examples
	Noteworthy

	2.1.5 Number Games
	Perfect Numbers
	Armstrong Numbers
	Algorithm for a Simple Checksum

	2.1.6 Getting Started with Lambdas
	Lambda Syntax
	Lambdas in Action with sort()

	2.2 Exercises
	2.2.1 Exercise 1: Basic Arithmetic (★✩✩✩✩)
	Exercise 1a: Basic Arithmetic Operations (★✩✩✩✩)
	Examples
	Exercise 1b: Statistics (★★✩✩✩)
	Examples
	Exercise 1c: Even or Odd Number (★✩✩✩✩)

	2.2.2 Exercise 2: Number as Text (★★✩✩✩)
	Examples

	2.2.3 Exercise 3: Perfect Numbers (★★✩✩✩)
	Examples

	2.2.4 Exercise 4: Prime Numbers (★★✩✩✩)
	Examples

	2.2.5 Exercise 5: Prime Number Pairs (★★✩✩✩)
	Examples

	2.2.6 Exercise 6: Checksum (★★✩✩✩)
	Examples

	2.2.7 Exercise 7: Roman Numbers (★★★★✩)
	Exercise 7a: Roman Numbers ➤ Decimal Numbers (★★★✩✩)
	Exercise 7b: Decimal Numbers ➤ Roman Numbers (★★★★✩)
	Examples

	2.2.8 Exercise 8: Combinatorics (★★✩✩✩)
	Exercise 8a: Computation of a2 + b2 = c2
	Exercise 8b: Computation of a2 + b2 = c2 + d2

	2.2.9 Exercise 9: Armstrong Numbers (★★✩✩✩)
	Examples

	2.2.10 Exercise 10: Max Change Calculator (★★★★✩)
	Examples

	2.2.11 Exercise 11: Related Numbers (★★✩✩✩)
	Examples

	2.2.12 Exercise 12: Prime Factorization (★★★✩✩)
	Examples

	2.3 	 Solutions
	2.3.1 Solution 1: Basic Arithmetic (★✩✩✩✩)
	Solution 1a: Basic Arithmetic Operations (★✩✩✩✩)
	Examples
	Solution 1b: Statistics (★★✩✩✩)
	Examples
	Solution 1c: Even or Odd Number (★✩✩✩✩)
	Verification

	2.3.2 Solution 2: Number as Text (★★✩✩✩)
	Examples
	Verification

	2.3.3 Solution 3: Perfect Numbers (★★✩✩✩)
	Examples
	Verification
	Implementation Optimization

	2.3.4 Solution 4: Prime Numbers (★★✩✩✩)
	Examples
	Verification

	2.3.5 Solution 5: Prime Number Pairs (★★✩✩✩)
	Examples
	Optimization of the Implementation
	Verification

	2.3.6 Solution 6: Checksum (★★✩✩✩)
	Examples
	Verification

	2.3.7 Solution 7: Roman Numbers (★★★★✩)
	Solution 7a: Roman Numbers ➤ Decimal Numbers (★★★✩✩)
	Examples
	Solution 7b: Decimal Numbers ➤ Roman Numbers (★★★★✩)
	Verification

	2.3.8 Solution 8: Combinatorics (★★✩✩✩)
	Solution 8a: Computation of a2 + b2 = c2
	Bonus: Reduce the Running Time of O(n3) to O(n2) (★★★✩✩)

	Verification
	Solution 8b: Computation of a2 + b2 = c2 + d2
	Bonus: Reduce the Running Time of O(n 4) to O(n 3) (★★★✩✩)
	Verification

	2.3.9 Solution 9: Armstrong Numbers (★★✩✩✩)
	Examples
	Verification
	Bonus (★★★✩✩)
	Verification

	2.3.10 Solution 10: Max Change Calculator (★★★★✩)
	Examples
	Verification

	2.3.11 Solution 11: Related Numbers (★★✩✩✩)
	Examples
	Verification

	2.3.12 Solution 12: Prime Factorization (★★★✩✩)
	Examples
	Verification

	2.4 Summary: What You Learned

	Chapter 3: Recursion
	3.1	 Introduction
	3.1.1 Mathematical Examples
	Example 1: Factorial
	Example 2: Calculation of the Sum of Numbers Up to n
	Example 3: Fibonacci Numbers

	3.1.2 Algorithmic Examples
	Example 1: Palindrome—Recursive Variant
	Example 1: Palindrome—Iterative Variant
	Example 2: Fractal Generation

	3.1.3 Steps When Multiplying the Digits of a Number
	3.1.4 Typical Problems: Endless Calls and RecursionError

	3.2	 Exercises
	3.2.1 Exercise 1: Fibonacci (★★✩✩✩)
	Exercise 1a: Fibonacci Recursive (★✩✩✩✩)
	Example
	Exercise 1b: Fibonacci Iterative (★★✩✩✩)

	3.2.2 Exercise 2: Process Digits (★★✩✩✩)
	Exercise 2a: Count Digits (★★✩✩✩)
	Exercise 2b: Cross Sum (★★✩✩✩)
	Examples

	3.2.3 Exercise 3: GCD (★★✩✩✩)
	Exercise 3a: GCD Recursive (★✩✩✩✩)
	Examples
	Exercise 3b: GCD Iterative (★★✩✩✩)
	Exercise 3c: LCM (★✩✩✩✩)
	Examples

	3.2.4 Exercise 4: Reverse String (★★✩✩✩)
	Examples

	3.2.5 Exercise 5: List Sum (★★✩✩✩)
	Examples

	3.2.6 Exercise 6: List Min (★★✩✩✩)
	Examples

	3.2.7 Exercise 7: Conversions (★★✩✩✩)
	Exercise 7a: Binary (★★✩✩✩)
	Examples
	Exercise 7b: Octal and Hexadecimal Numbers (★★✩✩✩)
	Examples

	3.2.8 Exercise 8: Exponential Function (★★✩✩✩)
	Exercise 8a: Power of Two (★★✩✩✩)
	Examples
	Exercise 8b: Exponentiation Recursive (★★✩✩✩)
	Exercise 8c: Exponentiation Iterative (★★✩✩✩)
	Examples

	3.2.9 Exercise 9: Pascal’s Triangle (★★✩✩✩)
	3.2.10 Exercise 10: Number Palindromes (★★★★✩)
	Examples

	3.2.11 Exercise 11: Permutations (★★★✩✩)
	Examples

	3.2.12 Exercise 12: Count Substrings (★★✩✩✩)
	Examples

	3.2.13 Exercise 13: Ruler (★★✩✩✩)
	Example

	3.3	 Solutions
	3.3.1 Solution 1: Fibonacci (★★✩✩✩)
	Solution 1a: Fibonacci Recursive (★✩✩✩✩)
	Example
	Solution 1b: Fibonacci Iterative (★★✩✩✩)
	Verification

	3.3.2 Solution 2: Process Digits (★★✩✩✩)
	Solution 2a: Count Digits (★★✩✩✩)
	Examples
	Solution 2b: Cross Sum (★★✩✩✩)
	Verification

	3.3.3 Solution 3: GCD (★★✩✩✩)
	Solution 3a: GCD Recursive (★✩✩✩✩)
	Examples
	Solution 3b: GCD Iterative (★★✩✩✩)
	Verification
	Solution 3c: LCM (★✩✩✩✩)
	Examples
	Verification

	3.3.4 Solution 4: Reverse String (★★✩✩✩)
	Examples
	Verification

	3.3.5 Solution 5: List Sum (★★✩✩✩)
	Examples
	Verification

	3.3.6 Solution 6: List Min (★★✩✩✩)
	Examples
	Verification

	3.3.7 Solution 7: Conversions (★★✩✩✩)
	Solution 7a: Binary (★★✩✩✩)
	Examples
	Solution 7b: Octal and Hexadecimal Numbers (★★✩✩✩)
	Examples
	Verification

	3.3.8 Solution 8: Exponential Function (★★✩✩✩)
	Solution 8a: Power of Two (★★✩✩✩)
	Examples
	Solution 8b: Exponentiation Recursive (★★✩✩✩)
	Solution 8c: Exponentiation Iterative (★★✩✩✩)
	Examples
	Verification

	3.3.9 Solution 9: Pascal’s Triangle (★★✩✩✩)
	Verification

	3.3.10 Solution 10: Number Palindromes (★★★★✩)
	Examples
	Verification

	3.3.11 Solution 11: Permutations (★★★✩✩)
	Examples
	Verification

	3.3.12 Solution 12: Count Substrings (★★✩✩✩)
	Examples
	Verification

	3.3.13 Solution 13: Ruler (★★✩✩✩)
	Example
	Verification

	3.4	 Summary: What You Learned

	Chapter 4: Strings
	4.1	 Introduction
	4.1.1 Practically Relevant Functions
	4.1.2 Example Conversions and Extractions
	4.1.3 Equality
	4.1.4 Slicing—Access to Individual Characters and Substrings
	4.1.5 Converting a String into a List of Characters
	4.1.6 Iteration
	4.1.7 Formatted Output
	4.1.8 Character Processing
	4.1.9 Example: String Processing

	4.2	 Exercises
	4.2.1 Exercise 1: Number Conversions (★★✩✩✩)
	Examples
	Exercise 1a (★✩✩✩✩)
	Exercise 1b (★★✩✩✩)
	Exercise 1c (★★✩✩✩)

	4.2.2 Exercise 2: Joiner (★✩✩✩✩)
	Example

	4.2.3 Exercise 3: Reverse String (★★✩✩✩)
	Examples

	4.2.4 Exercise 4: Palindrome (★★★✩✩)
	Exercise 4a (★★✩✩✩)
	Examples
	Exercise 4b (★★★✩✩)

	4.2.5 Exercise 5: No Duplicate Chars (★★★✩✩)
	Examples

	4.2.6 Exercise 6: Remove Duplicate Letters (★★★✩✩)
	Examples

	4.2.7 Exercise 7: Capitalize (★★✩✩✩)
	Exercise 7a (★★✩✩✩)
	Examples
	Exercise 7b: Modification (★★✩✩✩)
	Exercise 7c: Special treatment (★★✩✩✩)
	Example

	4.2.8 Exercise 8: Rotation (★★✩✩✩)
	Examples

	4.2.9 Exercise 9: Well Formed Braces (★★✩✩✩)
	Examples

	4.2.10 Exercise 10: Anagram (★★✩✩✩)
	Examples

	4.2.11 Exercise 11: Morse Code (★★✩✩✩)
	Examples

	4.2.12 Exercise 12: Pattern Checker (★★★✩✩)
	Examples

	4.2.13 Exercise 13: Tennis Score (★★★✩✩)
	Examples

	4.2.14 Exercise 14: Version Numbers (★★✩✩✩)
	Examples

	4.2.15 Exercise 15: Conversion str_to_number (★★✩✩✩)
	Examples

	4.2.16 Exercise 16: Print Tower (★★★✩✩)
	Example

	4.2.17 Exercise 17: Filled Frame (★★✩✩✩)
	Examples

	4.2.18 Exercise 18: Guessing Vowels (★★✩✩✩)

	4.3	 Solutions
	4.3.1 Solution 1: Number Conversions (★★✩✩✩)
	Examples
	Solution 1a (★✩✩✩✩)
	Solution 1b (★★✩✩✩)
	Solution 1c (★★✩✩✩)
	Verification

	4.3.2 Solution 2: Joiner (★✩✩✩✩)
	Example
	Verification

	4.3.3 Solution 3: Reverse String (★★✩✩✩)
	Examples
	Verification

	4.3.4 Solution 4: Palindrome (★★★✩✩)
	Solution 4a (★★✩✩✩)
	Examples
	Solution 4b (★★★✩✩)
	Verification

	4.3.5 Solution 5: No Duplicate Chars (★★★✩✩)
	Examples
	Verification

	4.3.6 Solution 6: Remove Duplicate Letters (★★★✩✩)
	Examples
	Verification

	4.3.7 Solution 7: Capitalize (★★✩✩✩)
	Exercise 7a (★★✩✩✩)
	Examples
	Exercise 7b: Modification (★★✩✩✩)
	Exercise 7c: Special treatment (★★✩✩✩)
	Example
	Verification

	4.3.8 Solution 8: Rotation (★★✩✩✩)
	Examples
	Verification

	4.3.9 Solution 9: Well Formed Braces (★★✩✩✩)
	Examples
	Verification

	4.3.10 Solution 10: Anagram (★★✩✩✩)
	Examples
	Verification

	4.3.11 Solution 11: Morse Code (★★✩✩✩)
	Examples
	Bonus
	Verification

	4.3.12 Solution 12: Pattern Checker (★★★✩✩)
	Examples
	Verification

	4.3.13 Solution 13: Tennis Score (★★★✩✩)
	Examples
	Verification

	4.3.14 Solution 14: Version Numbers (★★✩✩✩)
	Examples
	Verification

	4.3.15 Solution 15: Conversion str_to_number (★★✩✩✩)
	Examples
	Verification
	Bonus: Enable the Parsing of Octal Numbers
	Verification

	4.3.16 Solution 16: Print Tower (★★★✩✩)
	Example
	Verification

	4.3.17 Solution 17: Filled Frame (★★✩✩✩)
	Examples
	Verification

	4.3.18 Solution 18: Guessing Vowels (★★✩✩✩)
	Verification

	4.4	 Summary: What You Learned

	Chapter 5: Basic Data Structures: Lists, Sets, and Dictionaries
	5.1	 Introduction
	5.1.1 Sequential Data Types
	Example

	5.1.2 Lists
	Example
	List Comprehension
	Example: Custom Implementation of remove_all()
	Example: Custom Implementation of collect_all()
	Check Implementations

	5.1.3 Sets
	Example

	5.1.4 Key-Value Mappings (Dictionaries)
	Example
	Example: Filtering Elements of a Dictionary in a General Way

	5.1.5 The Stack as a LIFO Data Structure
	Example

	5.1.6 The Queue as a FIFO Data Structure
	Implementation
	Example

	5.2	 Exercises
	5.2.1 Exercise 1: Common Elements (★★✩✩✩)
	Examples

	5.2.2 Exercise 2: Your Own Stack (★★✩✩✩)
	5.2.3 Exercise 3: List Reverse (★★✩✩✩)
	Exercise 3a: List Reverse (★✩✩✩✩)
	Examples
	Exercise 3b: List Reverse Inplace (★★✩✩✩)
	Exercise 3c: List Reverse Without Performant Index Access (★★✩✩✩)

	5.2.4 Exercise 4: Remove Duplicates (★★✩✩✩)
	Examples

	5.2.5 Exercise 5: Maximum Profit (★★★✩✩)
	Examples

	5.2.6 Exercise 6: Longest Sequence (★★★✩✩)
	Examples

	5.2.7 Exercise 7: Well-Formed Braces (★★✩✩✩)
	Examples

	5.2.8 Exercise 8: Pascal’s Triangle (★★★✩✩)
	Example

	5.2.9 Exercise 9: Check Magic Triangle (★★★✩✩)
	Examples

	5.2.10 Exercise 10: Most Frequent Elements (★★✩✩✩)
	Examples

	5.2.11 Exercise 11: Addition of Digits (★★★✩✩)
	Exercise 11a: Addition (★★★✩✩)
	Examples
	Exercise 11b: Addition Inverse (★★★✩✩)
	Examples

	5.2.12 Exercise 12: List Merge (★★✩✩✩)
	Examples

	5.2.13 Exercise 13: Excel Magic Select (★★✩✩✩)
	Examples

	5.2.14 Exercise 14: Stack-Based Queue (★★✩✩✩)
	Example

	5.3	 Solutions
	5.3.1 Solution 1: Common Elements (★★✩✩✩)
	Examples
	Verification

	5.3.2 Solution 2: Your Own Stack (★★✩✩✩)
	Verification

	5.3.3 Solution 3: List Reverse (★★✩✩✩)
	Solution 3a: List Reverse (★✩✩✩✩)
	Examples
	Solution 3b: List Reverse Inplace (★★✩✩✩)
	Solution 3c: List Reverse Without Performant Index Access (★★✩✩✩)
	Verification

	5.3.4 Solution 4: Remove Duplicates (★★✩✩✩)
	Examples
	Verification

	5.3.5 Solution 5: Maximum Profit (★★★✩✩)
	Examples
	Verification

	5.3.6 Solution 6: Longest Sequence (★★★✩✩)
	Examples
	Verification

	5.3.7 Solution 7: Well-Formed Braces (★★✩✩✩)
	Examples
	Verification
	Bonus
	Verification

	5.3.8 Solution 8: Pascal’s Triangle (★★★✩✩)
	Example
	Verification

	5.3.9 Solution 9: Check Magic Triangle (★★★✩✩)
	Examples
	Verification
	Verification

	5.3.10 Solution 10: Most Frequent Elements (★★✩✩✩)
	Examples
	Verification

	5.3.11 Solution 11: Addition of Digits (★★★✩✩)
	Solution 11a: Addition (★★★✩✩)
	Examples
	Verification
	Solution 11b: Addition Inverse (★★★✩✩)
	Examples
	Verification

	5.3.12 Solution 12: List Merge (★★✩✩✩)
	Examples
	Verification

	5.3.13 Solution 13: Excel Magic Select (★★✩✩✩)
	Examples
	Verification

	5.3.14 Solution 14: Stack-Based Queue (★★✩✩✩)
	Example
	Verification

	5.4	 Summary: What You Learned

	Chapter 6: Arrays
	6.1 Introduction
	6.1.1 One-Dimensional Arrays
	Textual Output
	Example 1: Swapping Elements
	Example 2: Basic Functionality for Arrays
	Example 3: Remove Duplicates
	Example 4: Rotation by One or More Positions

	6.1.2 Multidimensional Arrays
	Introductory Example
	Modeling Directions

	6.1.3 Typical Errors
	6.1.4 Special Features
	Special Treatment for Generalizations

	6.1.5 Recapitulation: NumPy
	Creating NumPy Arrays Based on Lists
	Creating NumPy Arrays with Particular Values
	Other Functionalities of NumPy Arrays
	Advantages of NumPy
	Memory Consumption
	Performance Comparison

	6.2 Exercises
	6.2.1 Exercise 1: Even Before Odd Numbers (★★✩✩✩)
	Examples

	6.2.2 Exercise 2: Flip (★★✩✩✩)
	Examples

	6.2.3 Exercise 3: Palindrome (★★✩✩✩)
	Examples

	6.2.4 Exercise 4: Inplace Rotate (★★★✩✩)
	Exercise 4a: Iterative (★★★✩✩)
	Example
	Exercise 4b: Recursive (★★★✩✩)

	6.2.5 Exercise 5: Jewels Board Init (★★★✩✩)
	Exercise 5a: Initialize (★★★✩✩)
	Example
	Exercise 5b: Validity Check (★★★✩✩)
	Example

	6.2.6 Exercise 6: Jewels Board Erase Diamonds (★★★★✩)
	Exercise 6a: Erase (★★★★✩)
	Examples
	Exercise 6b: Falling Down (★★★✩✩)
	Example

	6.2.7 Exercise 7: Spiral Traversal (★★★★✩)
	Example

	6.2.8 Exercise 8: Add One to an Array as a Number (★★✩✩✩)
	Examples

	6.2.9 Exercise 9: Sudoku Checker (★★★✩✩)
	Example
	Example

	6.2.10 Exercise 10: Flood Fill (★★✩✩✩)
	Exercise 10a (★★✩✩✩)
	Example
	Exercise 10b (★★✩✩✩)
	Example

	6.2.11 Exercise 11: Array Min and Max (★★✩✩✩)
	Exercise 11a: Min and Max (★✩✩✩✩)
	Example
	Exercise 11b: Min und Max Pos (★★✩✩✩)
	Examples

	6.2.12 Exercise 12: Array Split (★★★✩✩)
	Examples
	Exercise 12a: Array Split (★★✩✩✩)
	Exercise 12b: Array Split Inplace (★★★✩✩)
	Exercise 12c: Array Split Quick Sort Partition (★★★✩✩)
	Examples

	6.2.13 Exercise 13: Minesweeper Board (★★★✩✩)
	Solution 13a (★★✩✩✩)
	Example
	Exercise 13b (★★★✩✩)
	Examples
	Exercise 13c (★★✩✩✩)
	Example

	6.3 Solutions
	6.3.1 Solution 1: Even Before Odd Numbers (★★✩✩✩)
	Examples
	Optimized Algorithm: Improved Running Time
	Optimized Algorithm: Less Copying
	Verification

	6.3.2 Solution 2: Flip (★★✩✩✩)
	Examples
	Verification

	6.3.3 Solution 3: Palindrome (★★✩✩✩)
	Examples
	Verification

	6.3.4 Solution 4: Inplace Rotate (★★★✩✩)
	Solution 4a: Iterative (★★★✩✩)
	Example
	Solution 4b: Recursive (★★★✩✩)
	Verification

	6.3.5 Solution 5: Jewels Board Init (★★★✩✩)
	Solution 5a: Initialize (★★★✩✩)
	Example
	Solution to the Bonus Task: Checking Diagonals (★★★✩✩)
	Verification
	Solution 5b: Validity Check (★★★✩✩)
	Example
	Verification

	6.3.6 Solution 6: Jewels Board Erase Diamonds (★★★★✩)
	Solution 6a: Erase (★★★★✩)
	Examples
	Verification
	Solution 6b: Falling Down (★★★✩✩)
	Example
	Verification
	Overall Verification

	6.3.7 Solution 7: Spiral Traversal (★★★★✩)
	Example
	Verification

	6.3.8 Solution 8: Add One to an Array as a Number (★★✩✩✩)
	Examples
	Verification

	6.3.9 Solution 9: Sudoku Checker (★★★✩✩)
	Example
	Verification
	Bonus
	Example
	Verification

	6.3.10 Solution 10: Flood Fill (★★✩✩✩)
	Exercise 10a (★★✩✩✩)
	Example
	Verification
	Solution 10b (★★✩✩✩)
	Example
	Verification

	6.3.11 Solution 11: Array Min and Max (★★✩✩✩)
	Solution 11a: Min and Max (★✩✩✩✩)
	Example
	Solution 11b: Min und Max Pos (★★✩✩✩)
	Examples
	Verification

	6.3.12 Solution 12: Array Split (★★★✩✩)
	Examples
	Solution 12a: Array Split (★★✩✩✩)
	Solution 12b: Array Split Inplace (★★★✩✩)
	Solution 12c: Array Split Quick Sort Partition (★★★✩✩)
	Examples
	Verification

	6.3.13 Solution 13: Minesweeper Board (★★★✩✩)
	Solution 13a (★★✩✩✩)
	Example
	Verification

	Solution 13b (★★★✩✩)
	Examples
	Verification
	Solution 13c (★★✩✩✩)
	Example
	Verification
	Summary: What You Learned

	Part II: More Advanced and Tricky Topics
	Chapter 7: Advanced Recursion
	7.1 Memoization
	7.1.1 Memoization for Fibonacci Numbers
	7.1.2 Memoization for Pascal’s Triangle
	Conclusion

	7.1.3 Memoization with Python On-Board Tools
	Memoization with a Decorator
	Built-in Memoization with lru_cache from the functools Module

	7.2 Backtracking
	7.2.1 The n-Queens Problem
	Algorithm
	What Is Still Missing in the Implementation? What Is the Next Step?

	7.3 Exercises
	7.3.1 Exercise 1: Towers of Hanoi (★★★✩✩)
	Example

	7.3.2 Exercise 2: Edit Distance (★★★★✩)
	Examples

	7.3.3 Exercise 3: Longest Common Subsequence (★★★✩✩)
	Examples

	7.3.4 Exercise 4: Way Out of a Labyrinth (★★★✩✩)
	Example

	7.3.5 Exercise 5: Sudoku Solver (★★★★✩)
	Example

	7.3.6 Exercise 6: Math Operator Checker (★★★★✩)
	Examples

	7.3.7 Exercise 7: Water Jug Problem (★★★✩✩)
	Examples

	7.3.8 Exercise 8: All Palindrome Substrings (★★★★✩)
	Examples

	7.3.9 Exercise 9: The n-Queens Problem (★★★✩✩)
	Example

	7.4 Solutions
	7.4.1 Solution 1: Towers of Hanoi (★★★✩✩)
	Bonus: Create a Console-Based Graphical Format
	Verification

	7.4.2 Solution 2: Edit Distance (★★★★✩)
	Examples
	Verification
	Bonus: Optimize Edit Distance with Memoization (★★★✩✩)

	7.4.3 Solution 3: Longest Common Subsequence (★★★✩✩)
	Examples
	Verification
	Bonus: Use Memoization for Longest Common Subsequence

	7.4.4 Solution 4: Way Out of a Labyrinth (★★★✩✩)
	Example
	Verification
	Alternative

	7.4.5 Solution 5: Sudoku Solver (★★★★✩)
	Example
	Verification
	Reasonable Optimizations

	7.4.6 Solution 6: Math Operator Checker (★★★★✩)
	Examples
	Verification

	7.4.7 Solution 7: Water Jug Problem (★★★✩✩)
	Examples
	Verification

	7.4.8 Exercise 8: All Palindrome Substrings (★★★★✩)
	Examples
	Verification
	Bonus: Find the Longest of All Palindrome Substrings
	Verification

	7.4.9 Solution 9: The n-Queens Problem (★★★✩✩)
	Example
	Verification
	Alternative Solution Approach
	Verification

	7.5 Summary: What You Learned

	Chapter 8: Binary Trees
	8.1 Introduction
	8.1.1 Structure, Terminology, and Examples of Use
	8.1.2 Binary Trees
	8.1.3 Binary Trees with Order: Binary Search Trees
	8.1.4 Traversals
	Breadth-First/Level Order
	Depth-First Searches

	8.1.5 Balanced Trees and Other Properties
	The Properties Level and Height
	The Properties Completeness and Perfectness

	8.1.6 Trees for the Examples and Exercises
	Tree with Letters and Numbers
	Trees with Textual and Real Digits

	8.2 Exercises
	8.2.1 Exercise 1: Tree Traversal (★★✩✩✩)
	Example

	8.2.2 Exercise 2: Inorder, Preorder, and Postorder Iterative (★★★★✩)
	Example

	8.2.3 Exercise 3: Tree Height (★★✩✩✩)
	Example

	8.2.4 Exercise 4: Lowest Common Ancestor (★★★✩✩)
	Example

	8.2.5 Exercise 5: Breadth-First (★★★✩✩)
	Examples

	8.2.6 Exercise 6: Level Sum (★★★★✩)
	Example

	8.2.7 Exercise 7: Tree Rotate (★★★✩✩)
	Example

	8.2.8 Exercise 8: Reconstruction (★★★✩✩)
	Exercise 8a: Reconstruction from a List (★★✩✩✩)
	Example
	Exercise 8b: Reconstruction from Inorder/Preorder (★★★✩✩)
	Example

	8.2.9 Exercise 9: Math Evaluation (★★✩✩✩)
	Example

	8.2.10 Exercise 10: Symmetry (★★✩✩✩)
	Examples
	Example

	8.2.11 Exercise 11: Check Binary Search Tree (★★✩✩✩)
	Example

	8.2.12 Exercise 12: Completeness (★★★★★)
	Exercise 12a: Number of Nodes (★✩✩✩✩)
	Example
	Exercise 12b: Check for Full/Perfect (★★✩✩✩)
	Example
	Exercise 12c: Completeness (★★★★✩)
	Example
	Exercise 12d: Completeness Recursive (★★★★★)
	Example

	8.2.13 Exercise 13: Tree Printer (★★★★★)
	Example
	Exercise 13a: Width of a Subtree (★★✩✩✩)
	Examples
	Exercise 13b: Draw Node (★★✩✩✩)
	Example
	Exercise 13c: Draw Connection Lines (★★✩✩✩)
	Example
	Exercise 13d: Tree Representation (★★★★★)
	Example

	8.3 Solutions
	8.3.1 Solution 1: Tree Traversal (★★✩✩✩)
	Bonus: Fill up a Tree into a List
	Example
	Verification

	8.3.2 Solution 2: Inorder, Preorder, and Postorder Iterative (★★★★✩)
	Example
	Verification
	Surprise Algorithm

	8.3.3 Solution 3: Tree Height (★★✩✩✩)
	Example
	Verification

	8.3.4 Solution 4: Lowest Common Ancestor (★★★✩✩)
	Example
	Verification

	8.3.5 Solution 5: Breadth-First (★★★✩✩)
	Examples
	Verification

	8.3.6 Solution 6: Level Sum (★★★★✩)
	Example
	Verification

	8.3.7 Solution 7: Tree Rotate (★★★✩✩)
	Example
	Verification

	8.3.8 Solution 8: Reconstruction (★★★✩✩)
	Solution 8a: Reconstruction from a List (★★✩✩✩)
	Example
	Verification
	Solution 8b: Reconstruction from Inorder/Preorder (★★★✩✩)
	Example
	Verification

	8.3.9 Solution 9: Math Evaluation (★★✩✩✩)
	Example
	Verification

	8.3.10 Solution 10: Symmetry (★★✩✩✩)
	Examples
	Verification
	Bonus: Mirror Tree
	Example
	Verification

	8.3.11 Solution 11: Check Binary Search Tree (★★✩✩✩)
	Example
	Verification

	8.3.12 Solution 12: Completeness (★★★★★)
	Solution 12a: Number of Nodes (★✩✩✩✩)
	Example
	Solution 12b: Check for Full/Perfect (★★✩✩✩)
	Example
	Verification
	Solution 12c: Completeness (★★★★✩)
	Example
	Verification
	Solution 12d: Completeness Recursive (★★★★★)
	Example
	Verification

	8.3.13 Solution 13: Tree Printer (★★★★★)
	Example
	Solution 13a: Width of a Subtree (★★✩✩✩)
	Examples
	Solution 13b: Draw Node (★★✩✩✩)
	Example
	Solution 13c: Draw Connection Lines (★★✩✩✩)
	Example
	Solution 13d: Tree Representation (★★★★★)
	Example
	Verification

	8.4 Summary: What You Learned

	Chapter 9: Searching and Sorting
	9.1	 Introduction Search
	9.1.1 Search with in(), index(), and count()
	9.1.2 Search with rindex() and rfind()
	9.1.3 Binary Search

	9.2	 Introduction Sort
	9.2.1 Insertion Sort
	Determine Insertion Position
	Implementation of Insertion Sort

	9.2.2 Selection Sort
	9.2.3 Merge Sort
	9.2.4 Quick Sort
	Inplace Implementation

	9.2.5 Bucket Sort
	9.2.6 Final Thoughts

	9.3	 Exercises
	9.3.1 Exercise 1: Contains All (★★✩✩✩)
	Examples

	9.3.2 Exercise 2: Partitioning (★★★★✩)
	Examples
	Exercise 2a: Partitioning Two Letters (★★★✩✩)
	Exercise 2b: Partitioning Three Letters (★★★★✩)

	9.3.3 Exercise 3: Binary Search (★★✩✩✩)
	Exercise 3a: Binary Search Recursive (★★✩✩✩)
	Examples
	Exercise 3b: Binary Search Iterative (★★✩✩✩)
	Examples

	9.3.4 Exercise 4: Insertion Sort (★★✩✩✩)
	Example

	9.3.5 Exercise 5: Selection Sort (★★✩✩✩)
	Example

	9.3.6 Exercise 6: Quick Sort (★★★✩✩)
	Examples

	9.3.7 Exercise 7: Bucket Sort (★★✩✩✩)
	Example

	9.3.8 Exercise 8: Search in Rotated Data (★★★★✩)
	Exercise 8a: Flank Change Efficient (★★★★✩)
	Examples
	Exercise 8b: Binary Search in Rotated Data (★★★★✩)
	Examples

	9.4	 Solutions
	9.4.1 Solution 1: Contains All (★★✩✩✩)
	Examples
	Verification

	9.4.2 Solution 2: Partitioning (★★★★✩)
	Examples
	Solution 2a: Partitioning Two Letters (★★★✩✩)
	Solution 2b: Partitioning Three Letters (★★★★✩)
	Verification

	9.4.3 Solution 3: Binary Search (★★✩✩✩)
	Solution 3a: Binary Search Recursive (★★✩✩✩)
	Examples
	Solution 3b: Binary Search Iterative (★★✩✩✩)
	Examples
	Verification

	9.4.4 Solution 4: Insertion Sort (★★✩✩✩)
	Example
	Verification

	9.4.5 Solution 5: Selection Sort (★★✩✩✩)
	Example
	Verification

	9.4.6 Solution 6: Quick Sort (★★★✩✩)
	Examples
	Verification

	9.4.7 Solution 7: Bucket Sort (★★✩✩✩)
	Example
	Verification

	9.4.8 Solution 8: Search in Rotated Data (★★★★✩)
	Solution 8a: Flank Change Efficient (★★★★✩)
	Examples
	Verification
	Solution 8b: Binary Search in Rotated Data (★★★★✩)
	Examples
	Verification

	9.5	 Summary: What You Learned

	Chapter 10: Conclusion and Supplementary Literature
	10.1 Conclusion
	10.1.1 Lessons Learned Per Chapter
	10.1.2 Noteworthy
	Thoughts on Maintainability
	Thoughts on Performance
	Advantages of Unit Tests

	10.2 Logic Puzzles
	10.2.1 Gold Bags–Detect the Fake
	Solution

	10.2.2 Horse Race–Determine Fastest Three Horses
	Solution

	10.3 Supplementary Literature
	10.3.1 Introduction to Algorithms and Data Structures
	10.3.2 Basic Books
	10.3.3 Specializing in Interview Questions
	10.3.4 Supplements for Job Interviews at Top Companies

	Part III: Appendix
	Appendix A: Short Introduction to pytest
	A.1 Writing and Executing Tests
	A.1.1 Installing pytest
	A.1.2 First Unit Test
	A.1.3 Executing Tests
	Executing Tests on the Console
	Executing Tests from the IDE

	A.1.4 Handling Expected Exceptions
	A.1.5 Parameterized Tests with pytest
	Introduction to Parameterized Tests
	Other Possibilities in Parameterized Tests

	A.2 Further Reading on pytest

	Appendix B: Short Introduction to Decorators
	B.1 Argument Checks by Decorator
	B.2 Syntactic Sugar for Decorators
	B.3 Checking Multiple Parameters
	B.4 Logging Function Calls and Parameter Passing
	B.5 Improvement with wraps from the functools Module

	Appendix C: Quick Start O-Notation
	C.1 Estimations with O-Notation
	C.1.1 Complexity Classes
	C.1.2 Complexity and Program Running Time

	Appendix D: Short Introduction to Python 3.10
	D.1 Error Messages
	D.1.1 Assignment Error Messages
	Python 3.9.x
	Improvement with Python 3.10

	D.1.2 Error Messages for Incomplete Strings
	Python 3.9.x
	Improvement with Python 3.10

	D.2 Case Distinctions with match
	D.2.1 Python 3.9.x
	Improvement with Python 3.10
	Combination of Values
	More Complex Matching I
	More Complex Matching II

	D.3 Miscellaneous
	D.3.1 Improvements in Context Managers
	Improvement with Python 3.10

	D.3.2 Performance Improvements
	D.3.3 Extension at zip()
	Python 3.9.x
	Improvement with Python 3.10

	D.3.4 Typechecking Improvements
	Python 3.9.x
	Improvement with Python 3.10

	Bibliography
	Index

