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Preface

This book is a practical guide to Python programming and artificial intelligence,
written by Dr. Teoh Teik Toe. It contains many articles, notes, and lessons learnt
on Python programming, artificial intelligence, and deep learning during Dr. Teoh’s
career as a deep learning practitioner and a trusted advisor.

Dr. Teoh has been pursuing research in big data, deep learning, cybersecurity,
artificial intelligence, machine learning, and software development for more than
25 years. His works have been published in more than 50 journals, conference pro-
ceedings, books, and book chapters. His qualifications include a PhD in computer
engineering from the NTU, Doctor of Business Administration from the University
of Newcastle, Master of Law from the NUS, LLB and LLM from the UoL, and
CFA, ACCA and CIMA. He has more than 15 years’ experience in data mining,
quantitative analysis, data statistics, finance, accounting, and law and is passionate
about the synergy between business and technology. He believes that artificial
intelligence should be made easy for all to understand and is eager to share his
knowledge of the field.

Zheng Rong is a software engineer with 4 years of experience. He embraces the
ambiguity of data and enjoys the challenges presented by business problems. He has
3 years of teaching experience in data mining and data science, and coauthored three
journal publications on artificial intelligence and deep learning. He is interested in
making artificial intelligence programming and technology easy to understand for
all, including those from a non-technical background.

The field of artificial intelligence is very broad. It focuses on creating systems
capable of executing tasks which would require some form of human intelligence.
In-depth knowledge and understanding of the field is required to be able to
develop good artificial intelligence programs. The concepts used in self-driving cars
and virtual assistants like Amazon’s Alexa may seem very complex and difficult
to grasp. Entering the field of artificial intelligence and data science can seem
daunting to beginners with little to no prior background, especially those with no
programming experience.

Throughout his career, Dr. Teoh has delivered many lectures to students from all
walks of life about artificial intelligence. There were many students who had limited
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experience in programming and began with no knowledge of artificial intelligence.
However, under his guidance, they eventually gained confidence in writing their own
artificial intelligence programs. Through the materials compiled in this book, he
hopes to empower more beginners who are eager to study artificial intelligence and
enrich their learning process. Hence, the aim of Artificial Intelligence in Python is to
make AI accessible and easy to understand for people with little to no programming
experience through practical exercises. By going through the materials covered in
this book, newcomers will gain the knowledge they need on how to create such
systems, which are capable of executing tasks that require some form of human-like
intelligence.

This book will begin by introducing readers to various topics and examples of
programming in Python, as well as key concepts in artificial intelligence. Python
will be introduced, and programming skills will be imparted as we go along.
Concepts and code snippets will be covered in a step-by-step manner to guide
and instill confidence in beginners. Complex subjects in deep learning and machine
learning will be broken down into easy-to-digest content and examples. Basics of
artificial intelligence, such as classification and regression, will be imparted to build
a solid foundation for beginners beforemoving to more advanced chapters. Artificial
intelligence implementations will also be shared, allowing beginners to generate
their own artificial intelligence algorithms for reinforcement learning, style transfer,
chatbots, and speech and natural language processing.

Singapore, Singapore Teik Toe Teoh
Zheng Rong
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Chapter 1
Python for Artificial Intelligence

Abstract Python is a very popular programming languagewith many great features
for developing Artificial Intelligence. Many Artificial Intelligence developers all
around the world use Python. This chapter will provide an introduction to the Python
Programming Language before covering its history and common uses and explain
why it is so popular among Artificial Intelligence developers.

Learning outcomes:

• Introduce the Python programming language.

“Python has gotten sufficiently weapons grade that we don’t descend into R
anymore. Sorry, R people. I used to be one of you but we no longer descend into
R.” – Chris Wiggins

Python is a general-purpose programming language conceived in 1989 by Dutch
programmer Guido van Rossum.

Python is free and open source, with development coordinated through the
Python Software Foundation.

Python has experienced rapid adoption in the last decade and is now one of the
most commonly used programming languages.

1.1 Common Uses

Python is a general-purpose language used in almost all application domains such
as

• Communications
• Web development (Flask and Django covered in the future chapters)
• CGI and graphical user interfaces
• Game development
• AI and data science (very popular)

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
T. T. Teoh, Z. Rong, Artificial Intelligence with Python,
Machine Learning: Foundations, Methodologies, and Applications,
https://doi.org/10.1007/978-981-16-8615-3_1
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4 1 Python for Artificial Intelligence

• Multimedia, data processing, security, etc.

Python is beginner-friendly and routinely used to teach computer science and
programming in the top computer science programs.

Python is particularly popular within the scientific and data science communities.
It is steadily replacing familiar tools like Excel in the fields of finance and

banking.

1.1.1 Relative Popularity

The following chart, produced using Stack Overflow Trends, shows one measure of
the relative popularity of Python.

The figure indicates not only that Python is widely used but also that adoption of
Python has accelerated significantly since 2012.

This is driven at least in part by uptake in the scientific domain, particularly in
rapidly growing fields like data science.

For example, the popularity of pandas, a library for data analysis with Python,
has exploded, as seen here.

(The corresponding time path for MATLAB is shown for comparison.)

https://news.efinancialcareers.com/us-en/3002556/python-replaced-excel-banking
http://pandas.pydata.org/
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Note that pandas takes off in 2012, which is the same year that we see Python’s
popularity begins to spike in the first figure.

Overall, it is clear that

• Python is one of the most popular programming languages worldwide.
• Python is a major tool for scientific computing, accounting for a rapidly rising

share of scientific work around the globe.

1.1.2 Features

Python is a high-level language suitable for rapid development.
It has a relatively small core language supported by many libraries.
Multiple programming styles are supported (procedural, object-oriented, func-

tional, etc.)
Python is interpreted rather than compiled.

1.1.3 Syntax and Design

One nice feature of Python is its elegant syntax—we will see many examples later
on.

http://spectrum.ieee.org/computing/software/the-2017-top-programming-languages
https://en.wikipedia.org/wiki/High-level_programming_language
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Elegant code might sound superfluous, but in fact it is highly beneficial because
it makes the syntax easy to read and easy to remember.

Remembering how to read from files, sort dictionaries, and other such routine
tasks means that you do not need to break your flow in order to hunt down correct
syntax.

Closely related to elegant syntax is an elegant design.
Features like iterators, generators, decorators, and list comprehensions make

Python highly expressive, allowing you to get more done with less code.
Namespaces improve productivity by cutting down on bugs and syntax errors.

1.2 Scientific Programming

Python has become one of the core languages of scientific computing.
It is either the dominant player or a major player in

• Machine learning and data science
• Astronomy
• Artificial intelligence
• Chemistry
• Computational biology
• Meteorology

Its popularity in economics is also beginning to rise.

1.3 Why Python for Artificial Intelligence

Python is very popular for Artificial Intelligence developers for a few reasons:

1. It is easy to use:

• Python is easy to use and has a fast learning curve. New data scientists can easily
learn Python with its simple to utilize syntax and better comprehensibility.

• Python additionally gives a lot of data mining tools that help in better handling
of the data, for example, Rapid Miner, Weka, Orange, and so on.

• Python is significant for data scientists since it has many useful and easy to use
libraries like Pandas, NumPy, SciPy, TensorFlow, and many more concepts that
a skilled Python programmer must be well acquainted with.

2. Python is flexible:

• Python not only lets you create software but also enables you to deal with the
analysis, computing of numeric and logical data, and web development.

https://en.wikipedia.org/wiki/Namespace
http://scikit-learn.org/stable/
http://www.astropy.org/
https://wiki.python.org/moin/PythonForArtificialIntelligence
http://chemlab.github.io/chemlab/
http://biopython.org/wiki/Main_Page
https://pypi.org/project/meteorology/
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• Python has additionally become ubiquitous on the web, controlling various
prominent websites with web development frameworks like TurboGears, Django,
and Tornado.

• It is perfect for developers who have the talent for application and web develop-
ment. No big surprise, most data scientists favor this to the next programming
alternatives available in the market.

3. Python builds better analytics tools:

• Data analytics is a necessary part of data science. Data analytics tools give infor-
mation about different frameworks that are important to assess the performance
in any business. Python programming language is the best choice for building
data analytics tools.

• Python can easily provide better knowledge, get examples, and correlate data
from big datasets. Python is additionally significant in self-service analytics.
Python has likewise helped the data mining organizations to all the more likely
to handle the data for their sake.

4. Python is significant for deep learning:

• Python has a lot of packages like TensorFlow, Keras, and Theano that are
assisting data scientists with developing deep learning algorithms. Python gives
superior help with regard to deep learning algorithms.

• Deep learning algorithms were inspired by the human brain architecture. It
manages to build artificial neural networks that reenact the conduct of the human
mind. Deep learning neural networks give weight and biasing to different input
parameters and give the desired output.

5. Huge community base:

• Python has a gigantic community base of engineers and data scientists like
Python.org, Fullstackpython.com, realpython.com, etc. Python developers can
impart their issues and thoughts to the community. Python Package Index is an
extraordinary place to explore the different skylines of the Python programming
language. Python developers are continually making enhancements in the lan-
guage that is helping it to turn out to be better over time.

http://Python.org
http://Fullstackpython.com
http://realpython.com


Chapter 2
Getting Started

Abstract In order to write Python code effectively, this chapter will introduce
various software development tools that will aid the learning and development
process. Jupyter Notebook and Anaconda are very useful tools that will make
programming in Python simpler for learners and are commonly used in the industry.
Setting up your development environment will be simple to achieve through
following our step-by-step guide.

In this chapter, we will be focusing on setting up our Python environment.

2.1 Setting up Your Python Environment

In this lecture, you will learn how to

1. Set up your very own Python environment and get it up and running.
2. Execute simple Python commands.
3. Run a sample program.
4. Install the code libraries that are needed for our lecture.

2.2 Anaconda

The core Python package is easy to install but not what you should choose for these
lectures.

We require certain libraries and the scientific programing eco system, which

• The core installation (e.g., Python 3.7) does not provide.
• Is painful to install one piece at a time (concept of a package manager).

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
T. T. Teoh, Z. Rong, Artificial Intelligence with Python,
Machine Learning: Foundations, Methodologies, and Applications,
https://doi.org/10.1007/978-981-16-8615-3_2
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-8615-3_2&domain=pdf
https://www.python.org/downloads/
https://doi.org/10.1007/978-981-16-8615-3_2
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Hence, we will be using a distribution with the following features:

1. The core Python language and
2. Compatible versions of the most popular scientific libraries.

And, we are using Anaconda.
Anaconda is

• Very popular
• Cross-platform
• Comprehensive
• Completely unrelated to the Nicki Minaj song of the same name

Anaconda also comes with a great package management system to organize your
code libraries.

Note All of what follows assumes that you adopt this recommendation.

2.2.1 Installing Anaconda

To install Anaconda, download the binary and follow the instructions.
Important points:

• Install the latest version.
• If you are asked during the installation process whether you would like to make

Anaconda your default Python installation, say yes.

2.2.2 Further Installation Steps

Choose the version corresponding to your operating system (Fig. 2.1).
Choose Python 3.6 or higher (for newer versions; Fig. 2.2).

Fig. 2.1 Anaconda installation page

https://www.anaconda.com/what-is-anaconda/
https://www.anaconda.com/download/
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Fig. 2.2 Python version

Fig. 2.3 After you have downloaded your installer

Fig. 2.4 Continue installation

Open the installer after you have downloaded it. Double click on it to open
installer (Fig. 2.3).

Click next (Fig. 2.4).
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Accept the terms and click next (Fig. 2.5).
Use this setting (Fig. 2.6).
Use start menu and find anaconda prompt (Figs. 2.7 and 2.8).
Congratulations! You have successfully installed anaconda.

Fig. 2.5 Continue installation

Fig. 2.6 Continue installation
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Fig. 2.7 Use start menu and find anaconda prompt

Fig. 2.8 Anaconda prompt—used for installing packages

2.2.3 Updating Anaconda

Anaconda supplies a tool called conda to manage and upgrade your Anaconda
packages.

One conda command you should execute regularly is the one that updates the
whole Anaconda distribution.

As a practice run, please execute the following:

1. Open up a terminal.
2. Type conda update anaconda.

For more information on conda, type conda help in a terminal.



14 2 Getting Started

2.3 Installing Packages

Open up anaconda prompt.
Use start menu and find anaconda prompt (Fig. 2.9).
Command: pip install \<package-name\>

2.4 Virtual Environment

A virtual environment is a Python environment such that the Python interpreter,
libraries, and scripts installed into it are isolated from those installed in other virtual
environment (Fig. 2.10).

Command: python -m venv \<name of env\>
Once you have created a virtual environment, you may activate it (Fig. 2.11).
On Windows, run:
\<name of env\>\Scripts\activate.bat
On Unix or MacOS, run:
source \<name of env\>/bin/activate
After which we can pip install any libraries using the command above

Fig. 2.9 Anaconda prompt—used for installing packages

Fig. 2.10 Create virtual environment
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Fig. 2.11 Activate virtual environment

2.5 Jupyter Notebooks

Jupyter notebooks are one of the many possible ways to interact with Python and
the scientific libraries.

They use a browser-based interface to Python with

• The ability to write and execute Python commands.
• Formatted output in the browser, including tables, figures, animation, etc.
• The option to mix in formatted text and mathematical expressions.

Because of these features, Jupyter is now a major player in the scientific
computing ecosystem (Fig. 2.12).

While Jupyter is not the only way to code in Python, it is great for when you wish
to

• Get started.
• Test new ideas or interact with small pieces of code.
• Share scientific ideas with students or colleagues.

2.5.1 Starting the Jupyter Notebook

Once you have installed Anaconda, you can start the Jupyter Notebook. Either

• Search for Jupyter in your applications menu, or
• Open up a terminal and type jupyter notebook.
• Windows users should substitute “Anaconda command prompt” for “terminal” in

the previous line.

http://jupyter.org/
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Fig. 2.12 A Jupyter Notebook viewed in the browser

If you use the second option, you will see something like this:
The output tells us the notebook is running at http://localhost:

8888/.

• localhost is the name of the local machine.
• 8888 refers to port number 8888 on your computer.

https://en.wikipedia.org/wiki/Port_%28computer_networking%29
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Thus, the Jupyter kernel is listening for Python commands on port 8888 of our
local machine.

Hopefully, your default browser has also opened up with a web page that looks
something like this:

What you see here is called the Jupyter dashboard.
If you look at the URL at the top, it should be localhost:8888 or similar,

matching the message above.
Assuming all this has worked OK, you can now click on New at the top right and

select Python 3 or similar.
Here is what shows up on our machine:
The notebook displays an active cell, into which you can type Python commands.

2.5.2 Notebook Basics

Let us start with how to edit code and run simple programs.

Running Cells

Notice that, in the previous figure, the cell is surrounded by a green border.
This means that the cell is in edit mode.
In this mode, whatever you type will appear in the cell with the flashing cursor.
When you are ready to execute the code in a cell, hit Shift-Enter instead of

the usual Enter.
(Note: There are also menu and button options for running code in a cell that you

can find by exploring.)

Modal Editing

The next thing to understand about the Jupyter Notebook is that it uses a modal
editing system.

This means that the effect of typing at the keyboard depends on which mode
you are in.

The two modes are

1. Edit mode

• It is indicated by a green border around one cell, plus a blinking cursor.
• Whatever you type appears as is in that cell.

2. Command mode
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• The green border is replaced by a gray (or gray and blue) border.
• Keystrokes are interpreted as commands—for example, typing b adds a new

cell below the current one.

To switch to

• Command mode from edit mode, hit the Esc key or Ctrl-M.
• Edit mode from command mode, hit Enter or click in a cell.

The modal behavior of the Jupyter Notebook is very efficient when you get used
to it.

Inserting Unicode (e.g., Greek Letters)

Python supports unicode, allowing the use of characters such as α and β as names
in your code.

In a code cell, try typing \alpha and then hitting the tab key on your keyboard.

https://docs.python.org/3/howto/unicode.html
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A Test Program

Let us run a test program.
Here is an arbitrary program we can use: http://matplotlib.org/3.1.1/gallery/pie_

and_polar_charts/polar_bar.html.
On that page, you will see the following code:

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

# Fixing random state for reproducibility
np.random.seed(19680801)

# Compute pie slices
N = 20
T = np.linspace(0.0, 2 * np.pi, N, endpoint=False)
radii = 10 * np.random.rand(N)
width = np.pi / 4 * np.random.rand(N)
colors = plt.cm.viridis(radii / 10.)

ax = plt.subplot(111, projection='polar')
ax.bar(T, radii, width=width, bottom=0.0, color=colors, alpha=0.
↪→5)

plt.show()

Do not worry about the details for now—let us just run it and see what happens.
The easiest way to run this code is to copy and paste it into a cell in the notebook.
Hopefully, you will get a similar plot.

2.5.3 Working with the Notebook

Here are a few more tips on working with Jupyter Notebooks.

Tab Completion

In the previous program, we executed the line import numpy as np.

• NumPy is a numerical library we will work with in depth.

After this import command, functions in NumPy can be accessed with
np.function_name type syntax.

• For example, try np.random.randn(3).

We can explore these attributes of np using the Tab key.

http://matplotlib.org/3.1.1/gallery/pie_and_polar_charts/polar_bar.html
http://matplotlib.org/3.1.1/gallery/pie_and_polar_charts/polar_bar.html
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For example, here we type np.ran and hit Tab.
Jupyter offers up the two possible completions, random and rank.
In this way, the Tab key shows you available completion options and can reduce

the amount of typing required.

On-Line Help

To get help on np, say, we can execute np?. However, do remember to import
numpy first.

import numpy as np
?np

Documentation appears in a split window of the browser, like so:
Clicking on the top right of the lower split closes the on-line help.

Other Content

In addition to executing code, the Jupyter Notebook allows you to embed text,
equations, figures, and even videos in the page.

For example, here we enter a mixture of plain text and LaTeX instead of code.
Next, we press the Esc button to enter command mode and then type m to

indicate that we are writing Markdown, a markup language similar to (but simpler
than) LaTeX.

(You can also use your mouse to select Markdown from the Code drop-down
box just below the list of menu items.)

Now we Shift+Enter to produce this:

2.5.4 Sharing Notebooks

Notebook files are just text files structured in JSON and typically ending with
.ipynb.

You can share them in the usual way that you share files—or by using web
services such as nbviewer.

The notebooks you see on that site are static html representations.
To run one, download it as an ipynb file by clicking on the download icon.
Save it somewhere, navigate to it from the Jupyter dashboard, and then run as

discussed above.

http://daringfireball.net/projects/markdown/
https://en.wikipedia.org/wiki/JSON
http://nbviewer.jupyter.org/
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Chapter 3
An Introductory Example

Abstract A few introduction scripts are provided here as we break down the
components written in a standard Python script. Introductory concepts such as
importing packages, code syntax, and variable names will be covered in this chapter.
Basic topics such as lists, loops, and conditions would be touched on to get readers
with no Python programming experience started.

Learning outcomes:

• Learn how to import files and packages into Python.
• Learn about lists in Python.
• Learn how to use various loops in Python.

3.1 Overview

We are now ready to start learning the Python language itself.
In this lecture, we will write and then pick apart small Python programs.
The objective is to introduce you to basic Python syntax and data structures.
Deeper concepts will be covered in later lectures.
You should have read the chapter on getting started with Python before beginning

this one.

3.2 The Task: Plotting a White Noise Process

Suppose we want to simulate and plot the white noise process ε0, ε1, . . . , εT , where
each draw εt is independent standard normal.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
T. T. Teoh, Z. Rong, Artificial Intelligence with Python,
Machine Learning: Foundations, Methodologies, and Applications,
https://doi.org/10.1007/978-981-16-8615-3_3
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In other words, we want to generate figures that look something like this:
(Here t is on the horizontal axis and εt is on the vertical axis.)
We will do this in several different ways, each time learning something more

about Python.
We run the following command first, which helps ensure that plots appear in the

notebook if you run it on your own machine.

3

2

1

0

–1

–2

–3
0 20 40 60 80 100

3.3 Our First Program

Here are a few lines of code that perform the task we set:

import numpy as np
import matplotlib.pyplot as plt

ε_values = np.random.randn(100)
plt.plot(ε_values)
plt.show()

Let us break this program down and see how it works.

3.3.1 Imports

The first two lines of the program import functionality from external code libraries.
The first line imports NumPy, a favorite Python package for tasks like

• Working with arrays (vectors and matrices)
• Common mathematical functions like cos and sqrt
• Generating random numbers
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• Linear algebra, etc.

After import numpy as np, we have access to these attributes via the
syntax np.attribute.

Here are two more examples:

np.sqrt(4)

np.log(4)

We could also use the following syntax:

import numpy

numpy.sqrt(4)

But the former method (using the short name np) is convenient and more
standard.

Why So Many Imports?

Python programs typically require several import statements.
The reason is that the core language is deliberately kept small, so that it is easy

to learn and maintain.
When you want to do something interesting with Python, you almost always need

to import additional functionality.

Packages

As stated above, NumPy is a Python package.
Packages are used by developers to organize code they wish to share.
In fact, a package is just a directory containing

1. Files with Python code—calledmodules in Python speak.
2. Possibly some compiled code that can be accessed by Python (e.g., functions

compiled from C or FORTRAN code).
3. A file called __init__.py that specifies what will be executed when we type

import package_name.

In fact, you can find and explore the directory for NumPy on your computer
easily enough if you look around.

On this machine, it is located in

anaconda3/lib/python3.7/site-packages/numpy
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Subpackages

Consider the line ε_values = np.random.randn(100).
Here np refers to the package NumPy, while random is a subpackage of

NumPy.
Subpackages are just packages that are subdirectories of another package.

3.3.2 Importing Names Directly

Recall this code that we saw above:

import numpy as np

np.sqrt(4)

Here is another way to access NumPy’s square root function

from numpy import sqrt

sqrt(4)

This is also fine.
The advantage is less typing if we use sqrt often in our code.
The disadvantage is that, in a long program, these two lines might be separated

by many other lines.
Then, it is harder for the readers to know where sqrt came from, should they

wish to.

3.3.3 Random Draws

Returning to our program that plots white noise, the remaining three lines after the
import statements are

ε_values = np.random.randn(100)
plt.plot(ε_values)
plt.show()

The first line generates 100 (quasi) independent standard normals and stores them
in ε_values.

The next two lines generate the plot.
We can and will look at various ways to configure and improve this plot below.
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3.4 Alternative Implementations

Let us try writing some alternative versions of our first program, which plotted
Independent and Identically Distributed draws from the normal distribution.

The programs below are less efficient than the original one and hence somewhat
artificial.

But they do help us illustrate some important Python syntax and semantics in a
familiar setting.

3.4.1 A Version with a for Loop

Here is a version that illustrates for loops and Python lists.

ts_length = 100
ε_values = [] # empty list

for i in range(ts_length):
e = np.random.randn()
ε_values.append(e)

plt.plot(ε_values)
plt.show()

In brief,

• The first line sets the desired length of the time series.
• The next line creates an empty list called ε_values that will store the εt values

as we generate them.
• The statement # empty list is a comment and is ignored by Python’s

interpreter.
• The next three lines are the for loop, which repeatedly draws a new random

number εt and appends it to the end of the list ε_values.
• The last two lines generate the plot and display it to the user.

Let us study some parts of this program in more detail.

3.4.2 Lists

Consider the statement ε_values = [], which creates an empty list.
Lists are a native Python data structure used to group a collection of objects.
For example, try

x = [10, 'foo', False]
type(x)
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The first element of x is an integer, the next is a string, and the third is a Boolean
value.

When adding a value to a list, we can use the syntax list_name.
append(some_value).

x

x.append(2.5)
x

Here append() is what is called a method, which is a function “attached to” an
object—in this case, the list x.

We will learn all about methods later on, but just to give you some idea,

• Python objects such as lists, strings, etc. all have methods that are used to
manipulate the data contained in the object.

• String objects have string methods, list objects have list methods, etc.

Another useful list method is pop()

x

x.pop()

x

Lists in Python are zero-based (as in C, Java, or Go), so the first element is
referenced by x[0].

x[0] # first element of x

x[1] # second element of x

3.4.3 The for Loop

Now let us consider the for loop from the program above, which was

for i in range(ts_length):
e = np.random.randn()
ε_values.append(e)

Python executes the two indented lines ts_length times before moving on.
These two lines are called a code block, since they comprise the “block” of

code that we are looping over.
Unlike most other languages, Python knows the extent of the code block only

from indentation.

https://en.wikipedia.org/wiki/Integer_%28computer_science%29
https://en.wikipedia.org/wiki/String_%28computer_science%29
https://en.wikipedia.org/wiki/Boolean_data_type
https://docs.python.org/3/library/stdtypes.html#string-methods
https://docs.python.org/3/tutorial/datastructures.html#more-on-lists
https://www.docs/part1/python_by_example:firstloopprog
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In our program, indentation decreases after line ε_values.append(e),
telling Python that this line marks the lower limit of the code block.

More on indentation below—for now, let us look at another example of a for
loop

animals = ['dog', 'cat', 'bird']
for animal in animals:

print("The plural of " + animal + " is " + animal + "s")

This example above helps to illustrate how the for loop works: When we
execute a loop of the form

for variable_name in sequence:
<code block>

The Python interpreter performs the following:

• For each element of the sequence, it “binds” the name variable_name to
that element and then executes the code block.

The sequence object can in fact be a very general object, as we will see soon
enough.

3.4.4 A Comment on Indentation

In discussing the for loop, we explained that the code blocks being looped over are
delimited by indentation.

In fact, in Python, all code blocks (i.e., those occurring inside loops, if clauses,
function definitions, etc.) are delimited by indentation.

Thus, unlike most other languages, whitespace in Python code affects the output
of the program.

Once you get used to it, this is a good thing. It

• Forces clean, consistent indentation, improving readability.
• Removes clutter, such as the brackets or end statements used in other languages.

On the other hand, it takes a bit of care to get right, so please remember:

• The line before the start of a code block always ends in a colon

– for i in range(10):
– if x > y:
– while x < 100:
– etc.

• All lines in a code blockmust have the same amount of indentation.
• The Python standard is 4 spaces and that is what you should use.
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3.4.5 While Loops

The for loop is the most common technique for iteration in Python.
But, for the purpose of illustration, let us modify the program above to use a

while loop instead.

ts_length = 100
ε_values = []
i = 0
while i < ts_length:

e = np.random.randn()
ε_values.append(e)
i = i + 1

plt.plot(ε_values)
plt.show()

Note that

• The code block for the while loop is again delimited only by indentation.
• The statement i = i + 1 can be replaced by i += 1.

3.5 Another Application

Let us do one more application before we turn to exercises.
In this application, we plot the balance of a bank account over time.
There are no withdraws over the time period, the last date of which is denoted by

T .
The initial balance is b0 and the interest rate is r .
The balance updates from period t to t + 1 according to

bt+1 = (1 + r)bt (3.1)

In the code below, we generate and plot the sequence b0, b1, . . . , bT generated by
(3.1).

Instead of using a Python list to store this sequence, we will use a NumPy array.

r = 0.025 # interest rate
T = 50 # end date
b = np.empty(T+1) # an empty NumPy array, to store all b_t
b[0] = 10 # initial balance

for t in range(T):
b[t+1] = (1 + r) * b[t]

plt.plot(b, label='bank balance')
plt.legend()
plt.show()

https://www.docs/part1/python_by_example:firstloopprog
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The statement b = np.empty(T+1) allocates storage in memory for T+1
(floating point) numbers.

These numbers are filled in by the for loop.
Allocating memory at the start is more efficient than using a Python list and

append, since the latter must repeatedly ask for storage space from the operating
system.

Notice that we added a legend to the plot—a feature you will be asked to use in
the exercises.

3.6 Exercises

Now we turn to exercises. It is important that you complete them before continuing,
since they present new concepts we will need.

3.6.1 Exercise 1

Your first task is to simulate and plot the correlated time series

xt+1 = α xt + εt+1 where x0 = 0 and t = 0, . . . , T

The sequence of shocks {εt } is assumed to be IID and standard normal.
In your solution, restrict your import statements to

import numpy as np
import matplotlib.pyplot as plt

Set T = 200 and α = 0.9.

3.6.2 Exercise 2

Starting with your solution to exercise 2, plot three simulated time series, one for
each of the cases α = 0, α = 0.8, and α = 0.98.

Use a for loop to step through the α values.
If you can, add a legend, to help distinguish between the three time series.
Hints:

• If you call the plot() function multiple times before calling show(), all of
the lines you produce will end up on the same figure.

• For the legend, note that the expression ’foo’ + str(42) evaluates to
’foo42’.
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3.6.3 Exercise 3

Similar to the previous exercises, plot the time series

xt+1 = α |xt | + εt+1 where x0 = 0 and t = 0, . . . , T

Use T = 200, α = 0.9 and {εt } as before.
Search online for a function that can be used to compute the absolute value |xt |.

3.6.4 Exercise 4

One important aspect of essentially all programming languages is branching and
conditions.

In Python, conditions are usually implemented with an if–else syntax.
Here is an example that prints −1 for each negative number in an array and 1 for

each nonnegative number

numbers = [-9, 2.3, -11, 0]

for x in numbers:
if x < 0:

print(-1)
else:

print(1)

Now, write a new solution to Exercise 3 that does not use an existing function to
compute the absolute value.

Replace this existing function with an if–else condition.

3.6.5 Exercise 5

Here is a harder exercise that takes some thought and planning.
The task is to compute an approximation to π using Monte Carlo.
Use no imports besides

import numpy as np

Your hints are as follows:

• If U is a bivariate uniform random variable on the unit square (0, 1)2, then the
probability that U lies in a subset B of (0, 1)2 is equal to the area of B.

https://en.wikipedia.org/wiki/Monte_Carlo_method
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• If U1, . . . , Un are IID copies of U , then, as n gets large, the fraction that falls in
B converges to the probability of landing in B.

• For a circle, area = π ∗ radius2.

3.7 Solutions

3.7.1 Exercise 1

Here is one solution.

a = 0.9
T = 200
x = np.empty(T+1)
x[0] = 0

for t in range(T):
x[t+1] = a * x[t] + np.random.randn()

plt.plot(x)
plt.show()

3.7.2 Exercise 2

a_values = [0.0, 0.8, 0.98]
T = 200
x = np.empty(T+1)

for a in a_values:
x[0] = 0
for t in range(T):

x[t+1] = a * x[t] + np.random.randn()
plt.plot(x, label=f'$\\alpha = {a}$')

plt.legend()
plt.show()
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3.7.3 Exercise 3

Here’s one solution:

a = 0.9
T = 200
x = np.empty(T+1)
x[0] = 0

for t in range(T):
x[t+1] = a * np.abs(x[t]) + np.random.randn()

plt.plot(x)
plt.show()

3.7.4 Exercise 4

Here is one way:

a = 0.9
T = 200
x = np.empty(T+1)
x[0] = 0

for t in range(T):
if x[t] < 0:

abs_x = - x[t]
else:

abs_x = x[t]
x[t+1] = a * abs_x + np.random.randn()

plt.plot(x)
plt.show()

Here is a shorter way to write the same thing:

a = 0.9
T = 200
x = np.empty(T+1)
x[0] = 0

for t in range(T):
abs_x = - x[t] if x[t] < 0 else x[t]
x[t+1] = a * abs_x + np.random.randn()

plt.plot(x)
plt.show()
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3.7.5 Exercise 5

Consider the circle of diameter 1 embedded in the unit square.
Let A be its area, and let r = 1/2 be its radius.
If we know π , then we can compute A via A = πr2.
But here the point is to compute π , which we can do by π = A/r2.
Summary: If we can estimate the area of a circle with diameter 1, then dividing

by r2 = (1/2)2 = 1/4 gives an estimate of π .
We estimate the area by sampling bivariate uniforms and looking at the fraction

that falls into the circle.

n = 100000

count = 0
for i in range(n):

u, v = np.random.uniform(), np.random.uniform()
d = np.sqrt((u - 0.5)**2 + (v - 0.5)**2)
if d < 0.5:

count += 1

area_estimate = count / n

print(area_estimate * 4) # dividing by radius**2



Chapter 4
Basic Python

Abstract Basic Python programming begins with an understanding of the fun-
damental variables, types, and operators used in the language, as well as how to
respond to errors. Basic types introduced will include Numbers, Lists, Strings,
Sets, and Dictionaries. Different operations can be applied to the different data
types. Learn the rules of Python programming and perform simple tasks with
variables, types, and operators through the exercises provided. Learning error
handling concepts will help to capture and respond to exceptions efficiently.

Learning outcomes:

• Write your first line of code.
• Learn and apply the core Python variables, data types, and operators.
• Employ variables, data types, and operators in loops and logical conditions to perform

simple tasks.
• Capture and respond efficiently to exceptions.
• Use sets to extract unique data from lists.

After a brief introduction in Chap. 3, let us do a recap of what we have learnt in
this chapter. We will be deep diving into features in Python in the next chapter.

Python is an interpreted language with a very simple syntax. The first step in
learning any new language is producing “Hello, World!”.

You will have opened a new notebook in Jupyter Notebook:

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
T. T. Teoh, Z. Rong, Artificial Intelligence with Python,
Machine Learning: Foundations, Methodologies, and Applications,
https://doi.org/10.1007/978-981-16-8615-3_4
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Note two things:

• The drop-down menu item that says code.
• The layout of the text entry box below that (which starts with In []:).

This specifies that this block is to be used for code. You can also use it for
structured text blocks like this one by selecting markdown from the menu list.
This tutorial will not teach markdown, but you can learn more here.

The tutorial that follows is similar to Learn Python’s, although here you will run
the examples on your own computer.

4.1 Hello, World!

For now, let us start with “Hello, World!”.
Type the below text into the code block in your notebook and hit Ctrl-Enter

to execute the code:
print(“Hello, World!)

print("Hello, World!")

Hello, World!

You just ran your first program. See how Jupyter performs code highlighting for
you, changing the colors of the text depending on the nature of the syntax used.
print is a protected term and gets highlighted in green.

This also demonstrates how useful Jupyter Notebook can be. You can treat this
just like a document, saving the file and storing the outputs of your program in
the notebook. You could even email this to someone else and, if they have Jupyter
Notebook, they could run the notebook and see what you have done.

From here on out, we will simply move through the Python coding tutorial and
learn syntax and methods for coding.

4.2 Indentation

Python uses indentation to indicate parts of the code that needs to be executed
together. Both tabs and spaces (usually four per level) are supported, and my
preference is for tabs. This is the subject of mass debate, but do not worry about
it. Whatever you decide to do is fine, but do not—under any circumstances—mix
tab indentation with space indentation.

In this exercise, you will assign a value to a variable, check to see if a comparison
is true, and then—based on the result—print.

https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://www.learnpython.org/
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First, spot the little + symbol on the menu bar just after the save symbol. Click
that and you will get a new box to type the following code into. When you are done,
press Ctrl-Enter or the Run button.

x = 1
if x == 1:

# Indented ... and notice how Jupyter Notebook
↪→automatically indented for you

print("x is 1")

x is 1

Any non-protected text term can be a variable. Please take note of the naming
convention for Python’s variable. x could just have easily been rewritten as your
name. Usually, it is good practice to name our variables as descriptively as possible.
This allows us to read algorithms/code like text (i.e., the code describes itself). It
helps other people to understand the code you have written as well.

• To assign a variable with a specific value, use =.
• To test whether a variable has a specific value, use the Boolean operators:

– equal: ==
– not equal: !=
– greater than: >
– less than: <

• You can also add helpful comments to your code with the # symbol. Any line
starting with a # is not executed by the interpreter. Personally, I find it very useful
to make detailed notes about my thinking since, often, when you come back to
code later you cannot remember why you did, what you did, or what your code is
even supposed to do. This is especially important in a team setting when different
members are contributing to the same codebase.

4.3 Variables and Types

Python is not “statically-typed.” This means you do not have to declare all your
variables before you can use them. You can create new variables whenever you
want. Python is also “object-oriented,” which means that every variable is an object.
That will become more important the more experience you get.
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Let us go through the core types of variables:

4.3.1 Numbers

Python supports two data types for numbers: integers and floats. Integers are whole
numbers (e.g., 7), while floats are fractional (e.g., 7.321). You can also convert
integers to floats, and vice versa, but you need to be aware of the risks of doing
so.

Follow along with the code:

integer = 7
print(integer)
# notice that the class printed is currently int
print(type(integer))

7
<class 'int'>

float_ = 7.0
print(float_)
# Or you could convert the integer you already have
myfloat = float(integer)
# Note how the term `float` is green. It's a protected term.
print(myfloat)

7.0
7.0

# Now see what happens when you convert a float to an int
myint = int(7.3)
print(myint)

7

Note how you lost precision when you converted a float to an int? Always
be careful, since that could be the difference between a door that fits its frame and
the one that is far too small.

4.3.2 Strings

Strings are the Python term for text. You can define these in either single or double
quotes. I will be using double quotes (since you often use a single quote inside text
phrases).
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Try these examples:

mystring = "Hello, World!"
print(mystring)
# and demonstrating how to use an apostrophe in a string
mystring = "Let's talk about apostrophes..."
print(mystring)

Hello, World!
Let's talk about apostrophes...

You can also apply simple operators to your variables or assign multiple variables
simultaneously.

one = 1
two = 2
three = one + two
print(three)

hello = "Hello,"
world = "World!"
helloworld = hello + " " + world
print(helloworld)

a, b = 3, 4
print(a, b)

3
Hello, World!
3 4

Note, though, that mixing variable data types causes problems.

print(one + two + hello)

---------------------------------------------------------------
↪→------------
TypeError Traceback (most
↪→recent call last)
<ipython-input-8-a2961e4891f2> in <module>
----> 1 print(one + two + hello)

TypeError: unsupported operand type(s) for +: 'int' and 'str'

Python will throw an error when you make a mistake like this and the error will
give you as much detail as it can about what just happened. This is extremely useful
when you are attempting to “debug” your code.

In this case, you are told: TypeError: unsupported operand
type(s) for +: ’int’ and ’str’.

And the context should make it clear that you tried to combine two integer
variables with a string.
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You can also combine strings with placeholders for variables:

• Add variables to a string with format, e.g., "Variable {}".format(x)
will replace the {} in the string with the value in the variable x.

• Floating point numbers can get out of hand (imagine including a number with
30 decimal places in a string), and you can format this with "Variable
{:10.4f}".format(x), where 10 is the amount of space allocated to the
float (useful if you need to align a column of numbers; you can also leave this
out to include all significant digits) and the .4f is the number of decimals after
the point. Vary these as you need.

variable = 1/3 * 100
print("Unformated variable: {}%".format(variable))
print("Formatted variable: {:.3f}%".format(variable))
print("Space formatted variable: {:10.1f}%".format(variable))

Unformated variable: 33.33333333333333%
Formatted variable: 33.333%
Space formatted variable: 33.3%

4.3.3 Lists

Lists are an ordered list of any type of variable. You can combine as many
variables as you like, and they could even be of multiple data types. Ordinarily,
unless you have a specific reason to do so, lists will contain variables of one type.

You can also iterate over a list (use each item in a list in sequence).
A list is placed between square brackets: [].

mylist = []
mylist.append(1)
mylist.append(2)
mylist.append(3)
# Each item in a list can be addressed directly.
# The first address in a Python list starts at 0
print(mylist[0])
# The last item in a Python list can be addressed as -1.
# This is helpful when you don't know how long a list is
↪→likely to be.
print(mylist[-1])
# You can also select subsets of the data in a list like this
print(mylist[1:3])

# You can also loop through a list using a `for` statement.
# Note that `x` is a new variable which takes on the value of
↪→each item in the list in order.

(continues on next page)
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(continued from previous page)

for x in mylist:
print(x)

1
3
[2, 3]
1
2
3

If you try to access an item in a list that is not there, you will get an error.

print(mylist[10])

---------------------------------------------------------------
↪→------------
IndexError Traceback (most
↪→recent call last)
<ipython-input-11-46c3ae90a572> in <module>
----> 1 print(mylist[10])

IndexError: list index out of range

Let us put this together with a slightly more complex example. But first, some
new syntax:

• Check what type of variable you have with isinstance, e.g.,
isinstance(x, float) will be True if x is a float.

• You have already seen for, but you can get the loop count by wrapping your list
in the term enumerate, e.g., for count, x in enumerate(mylist)
will give you a count for each item in the list.

• Sorting a list into numerical or alphabetical order can be done with sort.
• Getting the number of items in a list is as simple as asking len(list).
• If you want to count the number of times a particular variable occurs in a list, use

list.count(x) (where x is the variable you are interested in).

Try this for yourself.

# Let's imagine we have a list of unordered names that somehow
↪→got some random numbers included.
# For this exercise, we want to print the alphabetised list of
↪→names without the numbers.
# This is not the best way of doing the exercise, but it will
↪→illustrate a whole bunch of techniques.
names = ["John", 3234, 2342, 3323, "Eric", 234, "Jessica",
↪→734978234, "Lois", 2384]
print("Number of names in list: {}".format(len(names)))
# First, let's get rid of all the weird integers.
new_names = []

(continues on next page)
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(continued from previous page)

for n in names:
if isinstance(n, str):

# Checking if n is a string
# And note how we're now indented twice into this new

↪→component
new_names.append(n)

# We should now have only names in the new list. Let's sort
↪→them.
new_names.sort()
print("Cleaned-up number of names in list: {}".format(len(new_
↪→names)))
# Lastly, let's print them.
for i, n in enumerate(new_names):

# Using both i and n in a formated string
# Adding 1 to i because lists start at 0
print("{}. {}".format(i+1, n))

Number of names in list: 10
Cleaned-up number of names in list: 4
1. Eric
2. Jessica
3. John
4. Lois

4.3.4 Dictionaries

Dictionaries are one of the most useful and versatile data types in Python. They are
similar to arrays but consist of key:value pairs. Each value stored in a dictionary
is accessed by its key, and the value can be any sort of object (string, number, list,
etc.).

This allows you to create structured records. Dictionaries are placed within {}.

phonebook = {}
phonebook["John"] = {"Phone": "012 794 794",

"Email": "john@email.com"}
phonebook["Jill"] = {"Phone": "012 345 345",

"Email": "jill@email.com"}
phonebook["Joss"] = {"Phone": "012 321 321",

"Email": "joss@email.com"}
print(phonebook)

{'John': {'Phone': '012 794 794', 'Email': 'john@email.com'},
↪→'Jill': {'Phone': '012 345 345', 'Email': 'jill@email.com'},
↪→'Joss': {'Phone': '012 321 321', 'Email': 'joss@email.com'}}

Note that you can nest dictionaries and lists. The above shows you how you can
add values to an existing dictionary or create dictionaries with values.
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You can iterate over a dictionary just like a list, using the dot term .items().
In Python 3, the dictionary maintains the order in which data were added, but older
versions of Python do not.

for name, record in phonebook.items():
print("{}'s phone number is {}, and their email is {}".

↪→format(name, record["Phone"], record["Email"]))

John's phone number is 012 794 794, and their email is
↪→john@email.com
Jill's phone number is 012 345 345, and their email is
↪→jill@email.com
Joss's phone number is 012 321 321, and their email is
↪→joss@email.com

You add new records as shown above, and you remove records with del or pop.
They each have a different effect.

# First `del`
del phonebook["John"]
for name, record in phonebook.items():

print("{}'s phone number is {}, and their email is {}".
↪→format(name, record["Phone"], record["Email"]))

# Pop returns the record, and deletes it
jill_record = phonebook.pop("Jill")
print(jill_record)
for name, record in phonebook.items():

# You can see that only Joss is still left in the system
print("{}'s phone number is {}, and their email is {}".

↪→format(name, record["Phone"], record["Email"]))

# If you try and delete a record that isn't in the dictionary,
↪→you get an error
del phonebook["John"]

Jill's phone number is 012 345 345, and their email is
↪→jill@email.com
Joss's phone number is 012 321 321, and their email is
↪→joss@email.com
{'Phone': '012 345 345', 'Email': 'jill@email.com'}
Joss's phone number is 012 321 321, and their email is
↪→joss@email.com

---------------------------------------------------------------
↪→------------
KeyError Traceback (most
↪→recent call last)
<ipython-input-15-24fe1d3ad744> in <module>

12
13 # If you try and delete a record that isn't in the

↪→dictionary, you get an error (continues on next page)
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(continued from previous page)

---> 14 del phonebook["John"]

KeyError: 'John'

One thing to get into the habit of doing is to test variables before assuming they
have characteristics you are looking for. You can test a dictionary to see if it has a
record and return some default answer if it does not have it.

You do this with the .get("key", default) term. Default can be
anything, including another variable, or simply True or False. If you leave
default blank (i.e., .get("key")), then the result will automatically be
False if there is no record.

# False and True are special terms in Python that allow you to
↪→set tests
jill_record = phonebook.get("Jill", False)
if jill_record: # i.e. if you got a record in the previous step

print("Jill's phone number is {}, and their email is {}".
↪→format(jill_record["Phone"], jill_record["Email"]))
else: # the alternative, if `if` returns False

print("No record found.")

No record found.

4.4 Basic Operators

Operators are the various algebraic symbols (such as +, -, *, /, %, etc.). Once ’you
have learned the syntax, programming is mostly mathematics.

4.4.1 Arithmetic Operators

As you would expect, you can use the various mathematical operators with numbers
(both integers and floats).

number = 1 +2 * 3 / 4.0
# Try to predict what the answer will be ... does Python
↪→follow order operations hierarchy?
print(number)

# The modulo (%) returns the integer remainder of a division
remainder = 11 % 3
print(remainder)

(continues on next page)
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(continued from previous page)

# Two multiplications is equivalent to a power operation
squared = 7 ** 2
print(squared)
cubed = 2 ** 3
print(cubed)

2.5
2
49
8

4.4.2 List Operators

even_numbers = [2, 4, 6, 8]
# One of my first teachers in school said, "People are odd.
↪→Numbers are uneven."
# He also said, "Cecil John Rhodes always ate piles of
↪→unshelled peanuts in parliament in Cape Town."
# "You'd know he'd been in parliament by the huge pile of
↪→shells on the floor. He also never wore socks."
# "You'll never forget this." And I didn't. I have no idea if
↪→it's true.
uneven_numbers = [1, 3, 5, 7]
all_numbers = uneven_numbers + even_numbers
# What do you think will happen?
print(all_numbers)

# You can also repeat sequences of lists
print([1, 2 , 3] * 3)

[1, 3, 5, 7, 2, 4, 6, 8]
[1, 2, 3, 1, 2, 3, 1, 2, 3]

We can put this together into a small project.

x = object() # A generic Python object
y = object()

# Change this code to ensure that x_list and y_list each have
↪→10 repeating objects
# and concat_list is the concatenation of x_list and y_list
x_list = [x]
y_list = [y]
concat_list = []

print("x_list contains {} objects".format(len(x_list)))

(continues on next page)
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(continued from previous page)

print("y_list contains {} objects".format(len(y_list)))
print("big_list contains {} objects".format(len(concat_list)))

# Test your lists
if x_list.count(x) == 10 and y_list.count(y) == 10:

print("Almost there...")
if concat_list.count(x) == 10 and concat_list.count(y) == 10:

print("Great!")

x_list contains 1 objects
y_list contains 1 objects
big_list contains 0 objects

4.4.3 String Operators

You can do a surprising amount with operators on strings.

# You've already seen arithmetic concatenations of strings
helloworld = "Hello," + " " + "World!"
print(helloworld)

# You can also multiply strings to form a repeating sequence
manyhellos = "Hello " * 10
print(manyhellos)

# But don't get carried away. Not everything will work.
nohellos = "Hello " / 10
print(nohellos)

Hello, World!
Hello Hello Hello Hello Hello Hello Hello

---------------------------------------------------------------
↪→------------
TypeError Traceback (most
↪→recent call last)
<ipython-input-20-b66f17ae47c7> in <module>

8
9 # But don't get carried away. Not everything will work.

---> 10 nohellos = "Hello " / 10
11 print(nohellos)

TypeError: unsupported operand type(s) for /: 'str' and 'int'

Something to keep in mind is that strings are lists of characters. This means you
can perform a number of list operations on strings. Additionally, there are a few
more new operations that you can perform on strings compared to lists.
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• Get the index for the first occurrence of a specific letter with
string.index("l"), where l is the letter ’you are looking for.

• As in lists, count the number of occurrences of a specific letter with
string.count("l").

• Get slices of strings with string[start:end], e.g., string[3:7]. If
’you are unsure of the end of a string, remember you can use negative numbers
to count from the end, e.g., string[:-3] to get a slice from the first character
to the third from the end.

• You can also “step” through a string with string[start:stop:step],
e.g., string[2:6:2], which will skip a character between the characters 2
and 5 (i.e., 6 is the boundary).

• You can use a negative “step” to reverse the order of the characters, e.g.,
string[::-1].

• You can convert strings to upper- or lower-case with string.upper() and
string.lower().

• Test whether a string starts or ends with a substring with:

– string.startswith(substring)which returns True or False
– string.endswith(substring)which returns True or False

• Use in to test whether a string contains a substring, so substring in
string will return True or False.

• You can split a string into a genuine list with .split(s), where s is the specific
character to use for splitting, e.g., s = "," or s = " ". You can see how this
might be useful to split up text which contains numeric data.

a_string = "Hello, World!"
print("String length: {}".format(len(a_string)))
# You can get an index of the first occurrence of a specific
↪→letter
# Remember that Python lists are based at 0; the first letter
↪→is index 0
# Also note the use of single quotes inside the double quotes
print("Index for first 'o': {}".format(a_string.index("o")))
print("Count of 'o': {}".format(a_string.count("o")))
print("Slicing between second and fifth characters: {}".
↪→format(a_string[2:6]))
print("Skipping between 3rd and 2nd-from-last characters: {}".
↪→format(a_string[3:-2:2]))
print("Reverse text: {}".format(a_string[::-1]))
print("Starts with 'Hello': {}".format(a_string.startswith(
↪→"Hello")))
print("Ends with 'Hello': {}".format(a_string.endswith("Hello
↪→")))
print("Contains 'Goodbye': {}".format("Goodby" in a_string))
print("Split the string: {}".format(a_string.split(" ")))
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String length: 13
Index for first 'o': 4
Count of 'o': 2
Slicing between second and fifth characters: llo,
Skipping between 3rd and 2nd-from-last characters: l,Wr
Reverse text: !dlroW ,olleH
Starts with 'Hello': True
Ends with 'Hello': False
Contains 'Goodbye': False
Split the string: ['Hello,', 'World!']

4.5 Logical Conditions

In the section on Indentation, you were introduced to the if statement and the set
of boolean operators that allow you to test different variables against each other.

To that list of Boolean operators are added a new set of comparisons: and, or,
and in.

# Simple boolean tests
x = 2
print(x == 2)
print(x == 3)
print(x < 3)

# Using `and`
name = "John"
print(name == "John" and x == 2)

# Using `or`
print(name == "John" or name == "Jill")

# Using `in` on lists
print(name in ["John", "Jill", "Jess"])

True
False
True
True
True
True

These can be used to create nuanced comparisons using if. You can use a series
of comparisons with if, elif, and else.

Remember that code must be indented correctly or you will get unexpected
behavior.

https://www.docs/part1/basic_python:Indentation
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# Unexpected results
x = 2
if x > 2:

print("Testing x")
print("x > 2")
# Formated correctly
if x == 2:

print("x == 2")

x > 2
x == 2

# Demonstrating more complex if tests
x = 2
y = 10
if x > 2:

print("x > 2")
elif x == 2 and y > 50:

print("x == 2 and y > 50")
elif x < 10 or y > 50:

# But, remember, you don't know WHICH condition was True
print("x < 10 or y > 50")

else:
print("Nothing worked.")

x < 10 or y > 50

Two special cases are not and is.

• not is used to get the opposite of a particular Boolean test, e.g., not(False)
returns True.

• is would seem, superficially, to be similar to ==, but it tests for whether the
actual objects are the same, not whether the values which the objects reflect are
equal.

A quick demonstration:

# Using `not`
name_list1 = ["John", "Jill"]
name_list2 = ["John", "Jill"]
print(not(name_list1 == name_list2))

# Using `is`
name2 = "John"
print(name_list1 == name_list2)
print(name_list1 is name_list2)

False
True
False
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4.6 Loops

Loops iterate over a given sequence, and—here—it is critical to ensure your
indentation is correct or ’you will get unexpected results for what is considered
inside or outside the loop.

• For loops, for, which loop through a list. There is also some new syntax to use
in for loops:

– In Lists you saw enumerate, which allows you to count the loop number.
– Range creates a list of integers to loop, range(start, stop) creates a

list of integers between start and stop, or range(num) creates a zero-based
list up to num, or range(start, stop, step) steps through a list in
increments of step.

• While loops, while, which execute while a particular condition is True. And
some new syntax for while is:

– while is a conditional statement (it requires a test to return True), which
means we can use else in a while loop (but not for)

# For loops

for i, x in enumerate(range(2, 8, 2)):
print("{}. Range {}".format(i+1, x))

# While loops
count = 0
while count < 5:

print(count)
count += 1 # A shorthand for count = count + 1

else:
print("End of while loop reached")

1. Range 2
2. Range 4
3. Range 6
0
1
2
3
4
End of while loop reached

Pay close attention to the indentation in that while loop. What would happen if
count += 1 were outside the loop?

What happens if you need to exit loops early or miss a step?

• break exits a while or for loop immediately.
• continue skips the current loop and returns to the loop conditional.

https://www.docs/part1/basic_python:Lists
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# Break and while conditional
print("Break and while conditional")
count = 0
while True:

# You may think this would run forever, but ...
print(count)
count += 1
if count >= 5:

break

# Continue
print("Continue")
for x in range(8):

# Check if x is uneven
if (x+1) % 2 == 0:

continue
print(x)

Break and while conditional
0
1
2
3
4
Continue
0
2
4
6

4.7 List Comprehensions

One of the common tasks in coding is to go through a list of items, edit or apply
some form of algorithm, and return a new list.

Writing long stretches of code to accomplish this is tedious and time-consuming.
List comprehensions are an efficient and concise way of achieving exactly that.

As an example, imagine we have a sentence where we want to count the length
of each word but skip all the “the”s:

sentence = "for the song and the sword are birthrights sold to
↪→an usurer, but I am the last lone highwayman and I am the
↪→last adventurer"
words = sentence.split()
word_lengths = []
for word in words:

if word != "the":
word_lengths.append(len(word))

(continues on next page)
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print(word_lengths)

# The exact same thing can be achieved with a list
↪→comprehension
word_lengths = [len(word) for word in sentence.split(" ") if
↪→word != "the"]
print(word_lengths)

[3, 4, 3, 5, 3, 11, 4, 2, 2, 7, 3, 1, 2, 4, 4, 10, 3, 1, 2, 4,
↪→10]
[3, 4, 3, 5, 3, 11, 4, 2, 2, 7, 3, 1, 2, 4, 4, 10, 3, 1, 2, 4,
↪→10]

4.8 Exception Handling

For the rest of this section of the tutorial, ’we are going to focus on some more
advanced syntax and methodology.

In [Python basics: Strings](02—Python basics.ipynb#Strings), you say how the
instruction to concatenate a string with an integer using the + operator resulted in
an error:

print(1 + "hello")

---------------------------------------------------------------
↪→------------
TypeError Traceback (most
↪→recent call last)
<ipython-input-29-778236ccec55> in <module>
----> 1 print(1 + "hello")

TypeError: unsupported operand type(s) for +: 'int' and 'str'

In Python, this is known as an exception. The particular exception here is
a TypeError. Getting exceptions is critical to coding, because it permits you to
fix syntax errors, catch glitches where you pass the wrong variables, or your code
behaves in unexpected ways.

However, once your code goes into production, errors that stop your program
entirely are frustrating for the user. More often than not, there is no way to exclude
errors and sometimes the only way to find something out is to try it and see if the
function causes an error.

Many of these errors are entirely expected. For example, if you need a user to
enter an integer, you want to prevent them typing in text, or—in this era of mass
hacking—you want to prevent a user trying to include their own code in a text field.
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When this happens what you want is to way to try to execute your code and then
catch any expected exceptions safely.

• Test and catch exceptions with try and except.
• Catch specific errors, rather than all errors, since you still need to know about

anything unexpected; otherwise, you can spend hours trying to find a mistake
which is being deliberately ignored by your program.

• Chain exceptions with, e.g., except (IndexError, TypeError):.
Here is a link to all the common exceptions.

# An `IndexError` is thrown when you try to address an index
↪→in a list that does not exist
# In this example, let's catch that error and do something else

def print_list(l):
"""
For a given list `l`, of unknown length, try to print out

↪→the first
10 items in the list.

If the list is shorter than 10, fill in the remaining
↪→items with `0`.

"""
for i in range(10):

try:
print(l[i])

except IndexError:
print(0)

print_list([1,2,3,4,5,6,7])

1
2
3
4
5
6
7
0
0
0

You can also deliberately trigger an exception with raise. To go further and
write your own types of exceptions, consider this explanation.

def print_zero(zero):
if zero != 0:

raise ValueError("Not Zero!")
print(zero)

print_zero(10)

https://docs.python.org/3/library/exceptions.html
https://stackoverflow.com/a/26938914
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---------------------------------------------------------------
↪→------------
ValueError Traceback (most
↪→recent call last)
<ipython-input-1-a5b85de8b30c> in <module>

4 print(zero)
5

----> 6 print_zero(10)

<ipython-input-1-a5b85de8b30c> in print_zero(zero)
1 def print_zero(zero):
2 if zero != 0:

----> 3 raise ValueError("Not Zero!")
4 print(zero)
5

ValueError: Not Zero!

4.8.1 Sets

Sets are lists with no duplicate entries. You could probably write a sorting algorithm,
or dictionary, to achieve the same end, but sets are faster and more flexible.

# Extract all unique terms in this sentence

print(set("the rain is wet and wet is the rain".split()))

{'rain', 'and', 'is', 'the', 'wet'}

• Create a unique set of terms with set.
• To get members of a set common to both of two sets, use

set1.intersection(set2).
• Get the unique members of each of one set and another, use

set1.symmetric_difference(set2).
• To get the unique members from the asking set (i.e., the one calling the dot

function), use set1.difference(set2).
• To get all the members of each of two lists, use set1.union(set2).

set_one = set(["Alice", "Carol", "Dan", "Eve", "Heidi"])
set_two = set(["Bob", "Dan", "Eve", "Grace", "Heidi"])

# Intersection
print("Set One intersection: {}".format(set_one.
↪→intersection(set_two)))
print("Set Two intersection: {}".format(set_two.
↪→intersection(set_one)))

(continues on next page)
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# Symmetric difference
print("Set One symmetric difference: {}".format(set_one.
↪→symmetric_difference(set_two)))
print("Set Two symmetric difference: {}".format(set_two.
↪→symmetric_difference(set_one)))

# Difference
print("Set One difference: {}".format(set_one.difference(set_
↪→two)))
print("Set Two difference: {}".format(set_two.difference(set_
↪→one)))

# Union
print("Set One union: {}".format(set_one.union(set_two)))
print("Set Two union: {}".format(set_two.union(set_one)))

Set One intersection: {'Dan', 'Heidi', 'Eve'}
Set Two intersection: {'Dan', 'Heidi', 'Eve'}
Set One symmetric difference: {'Carol', 'Grace', 'Alice', 'Bob
↪→'}
Set Two symmetric difference: {'Grace', 'Carol', 'Alice', 'Bob
↪→'}
Set One difference: {'Alice', 'Carol'}
Set Two difference: {'Bob', 'Grace'}
Set One union: {'Carol', 'Grace', 'Heidi', 'Dan', 'Alice', 'Eve
↪→', 'Bob'}
Set Two union: {'Grace', 'Carol', 'Heidi', 'Dan', 'Alice', 'Eve
↪→', 'Bob'}



Chapter 5
Intermediate Python

Abstract Codes covered in Basic Python were generally limited to short snippets.
Intermediate Python will cover concepts that will allow codes to be reused such
as developing functions, classes, objects, modules, and packages. Functions are
callable modules of code that are written to take in parameters to perform a task
and return a value. Decorators and closures can be applied to modify function
behaviors. Objects encapsulate both variables and functions into a single entity
which are defined in classes. A module in Python is a set of classes or functions
that encapsulate a single, and related, set of tasks. Packages are a set of modules
collected together into a single focused unit.

Learning outcomes:

• Develop and use reusable code by encapsulating tasks in functions.
• Package functions into flexible and extensible classes.
• Apply closures and decorators to functions to modify function behavior.

The code from the previous chapter (Python syntax (basic)) was limited to short
snippets. Solving more complex problems means more complex code stretching
over hundreds, to thousands, of lines, and—if you want to reuse that code—it is not
convenient to copy and paste it multiple times. Worse, any error is magnified, and
any changes become tedious to manage.

Imagine that you have a piece of code that you have written, and it has been used
in many different files. It would be troublesome to modify every single files when
we have to change the function. If the code used is critical for the application, it
would be disastrous to miss out changes to the code. It would be far better to write
a discrete module to contain that task, get it absolutely perfect, and call it whenever
you want the same problem solved or task executed.

In software, this process of packaging up discrete functions into their own
modular code is called “abstraction.” A complete software system consists of a
number of discrete modules all interacting to produce an integrated experience.

In Python, these modules are called functions and a complete suite of
functions grouped around a set of related tasks is called a library or module.
Libraries permit you to inherit a wide variety of powerful software solutions
developed and maintained by other people.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
T. T. Teoh, Z. Rong, Artificial Intelligence with Python,
Machine Learning: Foundations, Methodologies, and Applications,
https://doi.org/10.1007/978-981-16-8615-3_5
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Python is open source, which means that its source code is released under a
license which permits anyone to study, change, and distribute the software to anyone
and for any purpose.Many of the most popular Python libraries are also open source.
There are thousands of shared libraries for you to use and—maybe, when you feel
confident enough—to contribute to with your own code.

5.1 Functions

Functions are callable modules of code, some with parameters or arguments
(variables you can pass to the function), which performs a task and may return a
value. They are a convenient way to package code into discrete blocks, making your
overall program more readable, reusable, and saving time.

You can also easily share your functions with others, saving them time as well.

• You structure a function using def, like so: def
function_name(parameters): code return response.

• return is optional but allows you to return the results of any task performed by
the function to the point where the function was called.

• To test whether an object is a function (i.e., callable), use callable, e.g.,
callable(function) will return 1.

# A simple function with no arguments
def say_hello():

print("Hello, World!")

# Calling it is as simple as this
say_hello()

# And you can test that it's a callable
print(callable(say_hello))

# () <- means calling a function and thus callable checks if
↪→something is callable

Hello, World!
True

An argument can be any variable, such as integers, strings, lists, dictionaries, or
even other functions. This is where you start realizing the importance of leaving
comments and explanations in your code because you need to ensure that anyone
using a function knows what variables the function expects and in what order.

Functions can also perform calculations and return these to whatever called them.

# A function with two string arguments
def say_hello_to_user(username, greeting):

(continues on next page)

https://en.wikipedia.org/wiki/Open-source_software
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# Returns a greeting to a username
print("Hello, {}! I hope you have a great {}.".

↪→format(username, greeting))

# Call it
say_hello_to_user("Jill", "day")

# Perform a calculation and return it
def sum_two_numbers(x, y):

# Returns the sum of x + y
return x + y

sum_two_numbers(5, 10)

Hello, Jill! I hope you have a great day.

15

You can see that swapping username and greeting in the
say_hello_to_user function would be confusing, but swapping the numbers
in sum_two_numbers would not cause a problem.

Not only can you call functions from functions, but you can also create variables
that are functions or the result of functions.

def number_powered(number, exponent):
# Returns number to the power of exponent
return number ** exponent

# Jupyter keeps functions available that were called in other
↪→cells
# This means `sum_two_numbers` is still available
def sum_and_power(number1, number2, exponent):

# Returns two numbers summed, and then to an exponent
summed = sum_two_numbers(number1, number2)
return number_powered(summed, exponent)

# Call `sum_and_power`
print(sum_and_power(2, 3, 4))

625

With careful naming and plenty of commentary, you can see how you can make
your code extremely readable and self-explanatory.

A better way of writing comments in functions is called docstrings.

• Docstrings are written as structured text between three sets of inverted commas,
e.g., """ This is a docstring """.

• You can access a function’s docstring by calling function.__doc__.
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def docstring_example():
"""
An example function which returns `True`.
"""
return True

# Printing the docstring
print(docstring_example.__doc__)

# Calling it
print(docstring_example())

An example function which returns `True`.

True

5.2 Classes and Objects

A complete Python object is an encapsulation of both variables and functions into a
single entity. Objects get their variables and functions from classes.

Classes are where most of the action happens in Python and coding consists,
largely, of producing and using classes to perform tasks.

A very basic class would look like this:

class myClass:
"""
A demonstration class.
"""
my_variable = "Look, a variable!"

def my_function(self):
"""
A demonstration class function.
"""
return "I'm a class function!"

# You call a class by creating a new class object
new_class = myClass()

# You can access class variables or functions with a dotted
↪→call, as follows
print(new_class.my_variable)
print(new_class.my_function())

# Access the class docstrings
print(myClass.__doc__)
print(myClass.my_function.__doc__)
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Look, a variable!
I'm a class function!

A demonstration class.

A demonstration class function.

Let us unpack the new syntax.

• You instantiate a class by calling it as class(). If you only called class,
without the brackets, you would gain access to the object itself. This is useful as
you can pass classes around as you would for variables.

• All variables and functions of a class are reached via the dotted call,
.function() or .variable. You can even add new functions and variables
to a class you created. Remember, though, these will not exist in new classes you
create since you have not changed the underlying code.

• Functions within a class require a base argument that, by convention, is called
self. There is a complex explanation as to why self is needed, but—
briefly—think of it as the instance of the object itself. So, inside the class,
self.function is the way the class calls its component functions.

• You can also access the docstrings as you would before.

# Add a new variable to a class instance
new_class1 = myClass()
new_class1.my_variable2 = "Hi, Bob!"
print(new_class1.my_variable2, new_class1.my_variable)

# But, trying to access my_variable2 in new_class causes an
↪→error
print(new_class.my_variable2)

Hi, Bob! Look, a variable!

---------------------------------------------------------------
↪→------------
AttributeError Traceback (most
↪→recent call last)
<ipython-input-6-544fecdbf014> in <module>()

5
6 # But, trying to access my_variable2 in new_class

↪→causes an error
----> 7 print(new_class.my_variable2)

AttributeError: 'myClass' object has no attribute 'my_variable2
↪→'
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Classes can initialize themselves with a set of available variables. This makes
the self referencing more explicit and also permits you to pass arguments to your
class to set the initial values.

• Initialize a class with the special function def __init__(self).
• Pass arguments to your functions with __init__(self, arguments).
• We can also differentiate between arguments and keyword arguments:

– arguments: these are passed in the usual way, as a single term, e.g.,
my_function(argument).

– keyword arguments: these are passed the way you would think of a
dictionary, e.g., my_function(keyword_argument = value). This
is also a way to initialize an argument with a default. If you leave out the
argument when it has a default, it will apply without the function failing.

– Functions often need to have numerous arguments and keyword arguments
passed to them, and this can get messy. You can also think of a list of
arguments like a list and a list of keyword arguments like a dictionary. A tidier
way to deal with this is to reference your arguments and keyword arguments
like this, my_function(*args, **kwargs), where *args will be
available to the function as an ordered list and **kwargs as a dictionary.

# A demonstration of all these new concepts

class demoClass:
"""
A demonstration class with an __init__ function, and a

↪→function that takes args and kwargs.
"""

def __init__(self, argument = None):
"""
A function that is called automatically when the

↪→demoClass is initialised.
"""
self.demo_variable = "Hello, World!"
self.initial_variable = argument

def demo_class(self, *args, **kwargs):
"""
A demo class that loops through any args and kwargs

↪→provided and prints them.
"""
for i, a in enumerate(args):

print("Arg {}: {}".format(i+1, a))
for k, v in kwargs.items():

print("{} - {}".format(k, v))
if kwargs.get(self.initial_variable):

print(self.demo_variable)

(continues on next page)
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return True

demo1 = demoClass()
demo2 = demoClass("Bob")

# What was initialised in each demo object?
print(demo1.demo_variable, demo1.initial_variable)
print(demo2.demo_variable, demo2.initial_variable)

# A demo of passing arguments and keyword arguments
args = ["Alice", "Bob", "Carol", "Dave"]
kwargs = {"Alice": "Engineer",

"Bob": "Consultant",
"Carol": "Lawyer",
"Dave": "Doctor"

}
demo2.demo_class(*args, **kwargs)

Hello, World! None
Hello, World! Bob
Arg 1: Alice
Arg 2: Bob
Arg 3: Carol
Arg 4: Dave
Alice - Engineer
Bob - Consultant
Carol - Lawyer
Dave - Doctor
Hello, World!

True

Using *args and **kwargs in your function calls while you are developing
makes it easier to change your code without having to go back through every line of
code that calls your function and bug-fix when you change the order or number of
arguments you are calling.

This reduces errors, improves readability, and makes for a more enjoyable and
efficient coding experience.

At this stage, you have learned the fundamental syntax, as well as how to create
modular code. Now we need to make our code reusable and shareable.

5.3 Modules and Packages

A module in Python is a set of classes or functions that encapsulate a single, and
related, set of tasks. Packages are a set of modules collected together into a single
focused unit. This can also be called a library.
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Creating a module is as simple as saving your class code in a file with the .py
extension (much as a text file ends with .txt).

5.3.1 Writing Modules

A set of modules in a library have a specific set of requirements. Imagine we wish
to develop a ping pong game. We can place the game logic in one module and
the functionality for drawing the game in another. That leads to a folder with the
following file structure:

pingpong/
pingpong/game.py
pingpong/draw.py

Within each file will be a set of functions. Assume that, within draw.py, there
is a function called draw_game. If youwanted to import the draw_game function
into the game.py file, the convention is as follows:

import draw

This will import everything in the draw.py file. After that, you access functions
from the file by making calls to, for example, draw.draw_game.

Or, you can access each function directly and only import what you need (since
some files can be extremely large and you do not necessarily wish to import
everything):

from draw import draw_game

You are not always going to want to run programs from an interpreter (like
Jupyter Notebook). When you run a program directly from the command-line, you
need a special function called main, which is then executed as follows:

if __name__ == '__main__':
main()

Putting that together, the syntax for calling game.py from the command-line
would be:

• Python functions and classes can be saved for reuse into files with the extension
.py.

• You can import the functions from those files using either import filename
(without the .py extension) or specific functions or classes from that file with
from filename import class, function1, function2.

• You may notice that, after you run your program, Python automatically creates
a file with the same name, but with .pyc as an extension. This is a compiled
version of the file and happens automatically.
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• If you intend to run a file from the command-line, you must insert a main
function and call it as follows: if __name__ == ’__main__’: main().

• If a module has a large number of functions you intend to use throughout your
own code, then you can specify a custom name for use. For example, a module
we will learn about in the next section is called pandas. The convention is to
import it as import pandas as pd. Now you would access the functions in
pandas using the dot notation of pd.function.

• You can also import modules based on logical conditions. If you import these
options under the same name, your code is not affected by logical outcomes.

Putting all of this together in a pseudocode example (i.e., this code does not work,
so do not try executing it):

# game.py
# Import the draw module
visual_mode = True
if visual_mode:

# in visual mode, we draw using graphics
import draw_visual as draw

else:
# In textual mode, we print out text
import draw_textual as draw

def main():
result = play_game()
# this can either be visual or textual depending on visual_

↪→mode
draw.draw_game(result)

---------------------------------------------------------------
↪→------------
ModuleNotFoundError Traceback (most
↪→recent call last)
<ipython-input-15-caaebde59de2> in <module>

4 if visual_mode:
5 # in visual mode, we draw using graphics

----> 6 import draw_visual as draw
7 else:
8 # In textual mode, we print out text

ModuleNotFoundError: No module named 'draw_visual'

Using the following pseudocode, the program will break. Note, though, that this
shows how “safe” it is to experiment with code snippets in Jupyter Notebook. There
is no harm done.
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5.4 Built-in Modules

There are a vast range of built-in modules. Jupyter Notebook comes with an even
larger list of third-party modules you can explore.

• After you have imported a module, dir(module) lets you see a list of all the
functions implemented in that library.

• You can also read the help from the module docstrings with help(module).

Let us explore a module you will be using and learning about in future sessions
of this course, pandas.

We will print the top 1000 characters of pandas docstring.

import pandas as pd

help(pd)

Help on package pandas:

NAME
pandas

DESCRIPTION
pandas - a powerful data analysis and manipulation library

↪→for Python

↪→============================================================

**pandas** is a Python package providing fast, flexible,
↪→and expressive data

structures designed to make working with "relational" or
↪→"labeled" data both

easy and intuitive. It aims to be the fundamental high-
↪→level building block for

doing practical, **real world** data analysis in Python.
↪→Additionally, it has

the broader goal of becoming **the most powerful and
↪→flexible open source data

analysis / manipulation tool available in any language**.
↪→It is already well on

its way toward this goal.

Main Features
-------------
Here are just a few of the things that pandas does well:

- Easy handling of missing data in floating point as
↪→well as non-floating

point data.
- Size mutability: columns can be inserted and deleted

↪→from DataFrame and (continues on next page)
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higher dimensional objects
- Automatic and explicit data alignment: objects can be

↪→explicitly aligned
to a set of labels, or the user can simply ignore the

↪→labels and let
`Series`, `DataFrame`, etc. automatically align the

↪→data for you in
computations.

- Powerful, flexible group by functionality to perform
↪→split-apply-combine

operations on datasets, for both aggregating and
↪→transforming data.

- Make it easy to convert ragged, differently-indexed
↪→data in other Python

and NumPy data structures into DataFrame objects.
- Intelligent label-based slicing, fancy indexing, and

↪→subsetting of large
datasets.

- Intuitive merging and joining datasets.
- Flexible reshaping and pivoting of datasets.
- Hierarchical labeling of axes (possible to have

↪→multiple labels per tick).
- Robust IO tools for loading data from flat files (CSV

↪→and delimited),
Excel files, databases, and saving/loading data from

↪→the ultrafast HDF5
format.

- Time series-specific functionality: date range
↪→generation and frequency

conversion, moving window statistics, date shifting
↪→and lagging.

PACKAGE CONTENTS
_config (package)
_libs (package)
_testing
_typing
_version
api (package)
arrays (package)
compat (package)
conftest
core (package)
errors (package)
io (package)
plotting (package)
testing
tests (package)
tseries (package)
util (package)

(continues on next page)
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SUBMODULES
_hashtable
_lib
_tslib
offsets

FUNCTIONS
__getattr__(name)

DATA
IndexSlice = <pandas.core.indexing._IndexSlice object>
NA = <NA>
NaT = NaT
__docformat__ = 'restructuredtext'
__git_version__ = 'db08276bc116c438d3fdee492026f8223584c477

↪→'
describe_option = <pandas._config.config.

↪→CallableDynamicDoc object>
get_option = <pandas._config.config.CallableDynamicDoc

↪→object>
options = <pandas._config.config.DictWrapper object>
reset_option = <pandas._config.config.CallableDynamicDoc

↪→object>
set_option = <pandas._config.config.CallableDynamicDoc

↪→object>

VERSION
1.1.3

FILE
c:\users\zheng_\anaconda3_\envs\qe-mini-example\lib\site-

↪→packages\pandas\__init__.py

Similar to docstring, as the list of functions and attributes in pandas can be
overwhelmingly huge. We would truncate to the top 15 in the library. To help with
development, we can always open another shell and open python in interactive
mode and try out some of the functions and atrribute in different modules.

dir(pd)[:15]

['BooleanDtype',
'Categorical',
'CategoricalDtype',
'CategoricalIndex',
'DataFrame',
'DateOffset',
'DatetimeIndex',
'DatetimeTZDtype',
'ExcelFile',
'ExcelWriter',

(continues on next page)
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'Float64Index',
'Grouper',
'HDFStore',
'Index',
'IndexSlice']

Also, notice that the directory is sorted in alphabetical order. To look for any
variables, we can always do a list comprehension and filter. For example, to look for
all the attributes starting with “d,” we can:

[i for i in dir(pd) if i.lower().startswith('d')]

['DataFrame',
'DateOffset',
'DatetimeIndex',
'DatetimeTZDtype',
'date_range',
'describe_option']

Alternatively, we can use filter to help us to get to the attributes we are looking
for:

list(filter(lambda x: x.lower().startswith('d'), dir(pd)))

['DataFrame',
'DateOffset',
'DatetimeIndex',
'DatetimeTZDtype',
'date_range',
'describe_option']

5.5 Writing Packages

Packages are libraries containing multiple modules and files. They are stored in
directories and have one important requirement: each package is a directory which
must contain an initialisation file called (unsurprisingly) __init__.py.

The file can be entirely empty, but it is imported and executed with the import
function. This permits you to set some rules or initial steps to be performed with the
first importation of the package.

You may be concerned that—with the modular nature of Python files and code—
you may import a single library multiple times. Python keeps track and will only
import (and initialize) the package once.

One useful part of the __init__.py file is that you can limit what is imported
with the command from package import *.
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#__init__.py

__all__ = ["class1", "class2"]

This means that from package import * actually only imports class1
and class2

The next two sections are optional since, at this stage of your development
practice, you are far less likely to need to produce code of this nature, but it can
be useful to see how Python can be used in a slightly more advanced way.

5.6 Closures

Python has the concept of scopes. The variables created within a class or a
function are only available within that class or function. The variables are available
within the scope of the place they are called. If you want variables to be available
within a function, you pass them as arguments (as you have seen previously).

Sometimes you want to have a global argument available to all functions, and
sometimes you want a variable to be available to specific functions without being
available more generally. Functions that can do this are called closures, and
closures start with nested functions.

A nested function is a function defined inside another function. These
nested functions gain access to the variables created in the enclosing scope.

def transmit_to_space(message):
"""
This is the enclosing function
"""
def data_transmitter():

"""
The nested function
"""
print(message)

# Now the enclosing function calls the nested function
data_transmitter()

transmit_to_space("Test message")

Test message

It is useful to remember that functions are also objects, so we can simply return
the nested function as a response.

def transmit_to_space(message):
"""
This is the enclosing function
"""

(continues on next page)
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def data_transmitter():
"""
The nested function
"""
print(message)

# Return an object of the nested function (i.e. without
↪→brackets)

return data_transmitter

msg = transmit_to_space("Into the sun!")
msg()

Into the sun!

5.7 Decorators

Closures may seem a little esoteric. Why would you use them?
Think in terms of the modularity of Python code. Sometimes you want to pre-

process arguments before a function acts on them. You may have multiple different
functions, but you want to validate your data in the same way each time. Instead of
modifying each function, it would be better to enclose your function and only return
data once your closure has completed its task.

One example of this is in websites. Some functions should only be executed if
the user has the rights to do so. Testing for that in every function is tedious.

Python has syntax for enclosing a function in a closure. This is called the
decorator, which has the following form:

@decorator
def functions(arg):

return True

This is equivalent to function = decorator(function), which is
similar to the way the closures are structured in the previous section.

As a silly example, we have

def repeater(old_function):
"""
A closure for any function which, passed as `old_function`
returns `new_function`
"""
def new_function(*args, **kwds):

"""
A demo function which repeats any function in the

↪→outer scope.
"""

(continues on next page)
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old_function(*args, **kwds)
old_function(*args, **kwds)

return new_function

# We user `repeater` as a decorator like this
@repeater
def multiply(num1, num2):

print(num1 * num2)

# And execute
multiply(6,7)

42
42

You can modify the output as well as the input.

def exponent_out(old_function):
"""
This modification works on any combination of args and

↪→kwargs.
"""
def new_function(*args, **kwargs):

return old_function(*args, **kwargs) ** 2
return new_function

def exponent_in(old_function):
"""
This modification only works if we know we have one

↪→argument.
"""
def new_function(arg):

return old_function(arg ** 2)
return new_function

@exponent_out
def multiply(num1, num2):

return num1 * num2

print(multiply(6,7))

@exponent_in
def digit(num):

return num

print(digit(6))

# And, let's trigger an error
@exponent_in
def multiply(num1, num2):

return num1 * num2

(continues on next page)
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print(multiply(6,7))

1764
36

---------------------------------------------------------------
↪→------------
TypeError Traceback (most
↪→recent call last)
<ipython-input-15-2f68e5a397d0> in <module>()

32 return num1 * num2
33

---> 34 print(multiply(6,7))

TypeError: new_function() takes 1 positional argument but 2
↪→were given

You can use decorators to check that an argumentmeets certain conditions before
running the function.

class ZeroArgError(Exception):
pass

def check_zero(old_function):
"""
Check the argument passed to a function to ensure it is

↪→not zero.
"""
def new_function(arg):

if arg == 0:
raise ZeroArgError ("Zero is passed to argument")

old_function(arg)
return new_function

@check_zero
def print_num(num):

print(num)

print_num(0)

---------------------------------------------------------------
↪→------------
ZeroArgError Traceback (most
↪→recent call last)
<ipython-input-22-b35d37f4e5e4> in <module>

16 print(num)
17

---> 18 print_num(0)

(continues on next page)
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<ipython-input-22-b35d37f4e5e4> in new_function(arg)
8 def new_function(arg):
9 if arg == 0:

---> 10 raise ZeroArgError ("Zero is passed to
↪→argument")

11 old_function(arg)
12 return new_function

ZeroArgError: Zero is passed to argument

Sometimes, though, you want to pass new arguments to a decorator so that
you can do something before executing your function. That rests on doubly nested
functions.

def multiply(multiplier):
"""
Using the multiplier argument, modify the old function to

↪→return
multiplier * old_function
"""
def multiply_generator(old_function):

def new_function(*args, **kwds):
return multiplier * old_function(*args, **kwds)

return new_function
return multiply_generator

@multiply(3)
def return_num(num):

return num

return_num(5)

15



Chapter 6
Advanced Python

Abstract Advanced Python will cover concepts in Python to allow a deeper
understanding of its behavior. Topics covered are Magic Methods, Comprehension,
Functional Parts, Iterables, Decorators, Object Oriented Programming, Properties,
and Metaclasses. Magic methods are special methods that can enrich class designs
by giving access to Python built-in syntax features. Comprehension, Functional
Parts, Iterables, and Decorators are useful features that can help make code writing
simpler and cleaner. Learning about Properties and Metaclasses work helps write
better structured code using the Object Oriented Programming Paradigm.

Learning outcomes:

• Understand python magic methods and what is Pythonic code.
• Learn and apply object oriented concepts in python.
• Understand how MRO is done in python.
• Explore advanced tips and tricks.

Now we will try to cover some advanced features of the language.

6.1 Python Magic Methods

Before we look at magic methods, here is a quick overview of the different types of
method naming conventions:

1. _method : To prevent automatic import due to a "from xyz
↪→import *" statement.
2. __method : To mark as a private method.
3. method_ : To deal with reserved words
4. __method__ : magic functions, hooks that are triggered on
↪→various builtin operators and functions.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
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class A(object):
def __foo(self):

print("A foo")
def class_(self):

self.__foo()
print(self.__foo.__name__)

def __doo__(self):
print("doo")

a = A() # instantiate A and assign to object a
print(hasattr(a, '__foo')) # where has this gone?
a.class_()
a.__doo__()

False
A foo
__foo
doo

So we can see here that we cannot access the private method outside the class,
this is due to name mangling. The members can be inspected using the built-in dir
method.

print(dir(a))

['_A__foo', '__class__', '__delattr__', '__dict__', '__dir__',
↪→'__doc__', '__doo__', '__eq__', '__format__', '__ge__', '__
↪→getattribute__', '__gt__', '__hash__', '__init__', '__init_
↪→subclass__', '__le__', '__lt__', '__module__', '__ne__', '__
↪→new__', '__reduce__', '__reduce_ex__', '__repr__', '__
↪→setattr__', '__sizeof__', '__str__', '__subclasshook__', '__
↪→weakref__', 'class_']

As we see, the name has changed to _A_foo and that is the only reason it is
“private”; if we explicitly call it by its mangled name, it is very much accessible.

a._A__foo()

A foo

It is worth noting that the __magic_method__ format does not do anything
special unless we use the predefined names. It is also strongly advised that you only
override the built-in magic methods and not redefine your own as I had just done
previously.

class P(object):
def __init__(self, x, y):

self.x = x
self.y = y

(continues on next page)
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def __add__(self, other):
return P(self.x + other.x, self.y + other.y)

def __gt__(self, other):
#if both x and y component is greater than the other

↪→object's x and y
return (self.x > other.x) and (self.y > other.y)

def __str__(self):
return "x : %s, y : %s" % (self.x, self.y)

p1 = P(0,0)
p2 = P(3,4)
p3 = P(1,3)

print(p3 + p2)
print(p1 > p2)
print(p2 > p1)

x : 4, y : 7
False
True

You can even add stuff like slicing capabilities

class Seq(object):
def __getitem__(self, i):

if type(i) is slice:
# this has edge case issues, but just a demo!
return list(range(i.start, i.stop))

else:
return i

s = Seq()
print(s[5])
print(s[-4])
print(s[2:5])

5
-4
[2, 3, 4]

Note We have covered a very small subset of all the “magic” functions. Please do
have a look at the official Python docs for the exhaustive reference.
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6.1.1 Exercise

In this exercise, we will practice how to use magic method in Python.
Task: The exchange rate between SGD and Euro is 1 to 1.8. Do some arithmetic

operations with SGD and Euro.

• Add 20 SGD to 40 EURO and give your answer in SGD.
• Subtract 20 SGD from 40 EURO and give your answer in SGD.
• Subtract 20 Euro from 100 SGD and give your answer in Euro.

## First way

print(20 + 40 * 1.8)
print(40 * 1.8 - 20)
print(100/1.8 - 20)

92.0
52.0
35.55555555555556

The answer does not look good.
A clearer and more understandable approach is to use OOP.
Task: Implement the following tasking using class and OO.

6.1.2 Solution

exchange = {"SGD":{"Euro":1.8}}

class Money:
def __init__(self, amount,currency):

self.amt =amount
self.currency = currency

def __add__(self, money):
if isinstance(money,self.__class__):

if self.currency == money.currency:
return Money(self.amount+money.amt,self.

↪→currency)
else:

converted_rate = exchange[self.currency][money.
↪→currency]*money.amt

return Money(self.amt+converted_rate,self.
↪→currency)

def __sub__(self,money):
money.amt*=-1
return self.__add__(money)

(continues on next page)
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def convert(self, currency):
converted_rate = exchange[self.

↪→currency][currency]*self.amt
return Money(converted_rate,currency)

def __repr__(self):
return "The amount is {} in {}".format(round(self.amt,

↪→2),self.currency)

Money(20,'SGD') + Money(40,'Euro')

The amount is 92.0 in SGD

Money(20,'SGD') - Money(10, 'Euro')

The amount is 2.0 in SGD

m = Money(100,'SGD') - Money(20, 'Euro')
m.convert('Euro')

The amount is 115.2 in Euro

6.2 Comprehension

Python comprehensions give us interesting ways to populate built-in data structures,
in terms of expressions, as mathematicians would do. Comprehensions are a
paradigm borrowed from functional languages and provide a great deal of syntactic
sugar.

l = [i for i in range(0,5)]
l2 = [i*i for i in range(0,5)]

We can also define slightly more complex expressions with the use of if
statements and nested loops.

l = [i for i in range(0,5) if i % 2 ==0]
print(l)

[0, 2, 4]
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# get all combinations where x > y and x, y < 5
xy = [ (x, y) for x in range (0,5) for y in range (0, 5) if x >
↪→ y]
print(xy)

[(1, 0), (2, 0), (2, 1), (3, 0), (3, 1), (3, 2), (4, 0), (4,
↪→1), (4, 2), (4, 3)]

# we can even call functions
l = [x.upper() for x in "hello"]
print(l)

['H', 'E', 'L', 'L', 'O']

# creating lists of lists is also a synch
gre = "hello how are you doing?"
[[s.lower(), s.upper(), len(s)] for s in gre.split()]

[['hello', 'HELLO', 5],
['how', 'HOW', 3],
['are', 'ARE', 3],
['you', 'YOU', 3],
['doing?', 'DOING?', 6]]

# nested comprehensions - we can do it, but it may not be very
↪→readable
matrix = [[i+x for i in range(3)] for x in range(3)]
print (matrix)

[[0, 1, 2], [1, 2, 3], [2, 3, 4]]

# we can also have a comprehension for dicts
d = {x : x**2 for x in range(5)}
print (d)

{0: 0, 1: 1, 2: 4, 3: 9, 4: 16}

6.3 Functional Parts

There are a lot of concepts borrowed from functional languages to make the code
look more elegant. List comprehension was just scratching the surface. We have
built-in helpers such as lambda, filter, zip, map, all, any to help
us write cleaner code. Other than the built-in components, we have functools (which
I will not be covering) which even helps us with partial functions and currying.
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# lambda is used when you need anonymous functions defined as
↪→an expression
# in this example you could define a function and pass it to
↪→foo, or use the lambda
# in this case the lambda is neater.
# lambdas can take in n number of params, and the body is a
↪→single expression that is also the return value

def foo(list_, func):
l = []
for i in list_:

l.append(func(i))
return l

def sq(i):
return i**2

l = [i for i in range(5)]
print (foo(l, sq))
print (foo(l, lambda x : x**2))

[0, 1, 4, 9, 16]
[0, 1, 4, 9, 16]

class P(object):
def __init__(self, x,y):

self.x = x
self.y = y

def __str__(self):
return "x : %s" % self.x

l = [P(5,5), P(2,2), P(1,1), P(4,4), P(3,3)]
l.sort(key=lambda x: (x.x)**2 + (x.y)**2)
for p in l : print (p) # [str(p) for p in l]

# there are many more complex and cryptic ways to use
↪→(exploit) lambdas,
# you can search for it online if you are interested
# check lambda with multiple args
# lambda *x : sys.stdout.write(" ".join(map(str, x)))

x : 1
x : 2
x : 3
x : 4
x : 5

# filter is a function that takes an interable and a callable
# applies the function to each element, i.e., ret =
↪→func(element)

(continues on next page)
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# and returns a list with elements for which 'ret' was true

l = range(0,10)
l = filter(lambda x : x%2==0, l)
print (l, type(l))

<filter object at 0x000001EDD08B9548> <class 'filter'>

# zip is to sew together a bunch of iterables
# the list generated is of the minimum size of all the
↪→iterators that have gone in!

a = [1,2,3,4,5]
b = (0,4,6,7)
c = {1:'a', 7:'b', 'm':'v'}

print (zip(a,b,c))

<zip object at 0x000001EDD0755C48>

Though zip looks trivial, it is a fairly important operation for mathematical
algorithms—matrices, curve fitting, interpolation, pattern recognition, that sort
of thing. It is also very important in engineering applications like digital signal
processing where much of what you do is combine multiple signals or apply linear
transforms to them—both are based on the sample index, hence, zip it.

It would be a pain to reimplement it every time taking care of all edge cases, etc.

# map - takes in an iterable and callable - applies the
↪→callable to each element of the iterable
# returns a new list with each element being the return value
↪→of "callable(elem)"

print (map(lambda x: x**2, range(10)))

<map object at 0x000001EDD0755108>

# map is extremely useful as a shorthand for "applying" a
↪→function across an iterable,
# especially in conjunction with lambda
import sys
my_print = lambda *x : sys.stdout.write(" ".join(map(str, x)))
my_print("hello", "how are you", 1234)

hello how are you 1234
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6.4 Iterables

Lists, dicts, and tuples are iterables. That is, we can “iterate” through them. Any
object that supports the iterator protocol is an iterator. The iterator protocol states
that the object should override the __iter__ magic method that returns an object
that has a .next() method and raises a StopIteration exception.

There are 4 key ways to create an iterable:

1. Iterators - classes that override __iter__ and next()
2. Generator functions - functions that yield
3. Generator expressions
4. overriding the __getitem__ magic method.

# 1. Iterators

class myitr:
def __init__(self, upper_limit=5):

self.limit=upper_limit
def __iter__(self):

self.index = 0
return self

def __next__ (self):
if self.index < self.limit:

self.index += 1
return self.index

else:
raise StopIteration

for i in myitr(5):
print (i)

1
2
3
4
5

# 2. Generators

def gen(lim):
i = 0
while i < lim:

yield i
i = i + 1

for i in gen(5):
print (i)



90 6 Advanced Python

0
1
2
3
4

# 3. Generator expression

def seq(num):
return (i**2 for i in range(num))

for i in seq(5):
print (i)

0
1
4
9
16

# 4. Overriding __getitem__

class Itr(object):
def __init__(self, x):

self.x = x

def __getitem__(self, index):
if index < self.x:

return index
else:

raise StopIteration

for i in Itr(5):
print (i)

0
1
2
3
4

6.5 Decorators

Before we start with decorators, we need to know a bit about closures. A closure is
a function object that remembers values in enclosing scopes regardless of whether
those scopes are still present in memory. The most common case is when we define
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a function within a function and return the inner function. If the inner function
definition uses variables/values in the outer function, it maintains the references
to those even after it is returned (and no longer in the scope of the outer function).

# closure example - raised_to_power returns a fn that takes a
↪→variable and raises to the power 'n'
# 'n' is passed only once - while defining the function!

def raised_to_power(n):
def fn(x):

return x**n
return fn

p2 = raised_to_power(2)
p3 = raised_to_power(3)

print (p2(2), p2(3)) # still remembers that n=2
print (p3(2), p3(3)) # still remembers that n=3

4 9
8 27

# have to be cautious!

def power_list(n):
'''returns list of fn, each raises to power i, where i : 0

↪→--> n'''
fn_list = []

def fn(x):
return x**i

for i in range(n):
# doesn't matter if fn was defined here either
fn_list.append(fn)

return fn_list

for j in power_list(4):
print (j(2)) # prints 2 power 3, 4 times

8
8
8
8
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# decorator is just a nicer way of defining a closure - more
↪→syntactic sugar

def deco(fn):
def new_fn(*args, **kwargs):

print ("entering function", fn.__name__)
ret = fn(*args, **kwargs)
print ("exiting function", fn.__name__)

return new_fn

@deco
def foo(x):

print("x : ", x)

foo(4)

entering function foo
x : 4
exiting function foo

# Another example

def add_h1(fn):
def nf(pram):

return "<h1> " + fn(pram) + " </h1>"
return nf

@add_h1
def greet(name):

return "Hello {0}!".format(name)

print greet("Nutanix")

<h1> Hello Nutanix! </h1>

# decorator that takes parameter

def add_h(num):
def deco(fn):

# this is the decorator for a specific 'h'
def nf(pram):

return "<h%s> "%num + fn(pram) + " </h%s>"%num
return nf

return deco

@add_h(3)
def greet(name):

return "Hello {0}!".format(name)
print (greet("Nutanix"))

(continues on next page)
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# we can have multiple decorators as well
@add_h(2)
@add_h(4)
def greet2(name):

return "Hello {0}!".format(name)

print (greet2("Nutanix"))

<h3> Hello Nutanix! </h3>
<h2> <h4> Hello Nutanix! </h4> </h2>

6.6 More on Object Oriented Programming

Let us take another look at classes and OO in python. We will start with multiple
inheritance (or mixins).

6.6.1 Mixins

Let us start with this inheritance model:

A
/ \

B C
\ /
D

class A(object):
def __init__(self):

print ("A.init")
def foo(self):

print ("A.foo")

class B(A):
def __init__(self):

print ("B.init")
def foo(self):

print ("B.foo")

class C(A):
def __init__(self):

print ("C.init")

(continues on next page)
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def foo(self):
print ("C.foo")

class D(B, C):
def __init__(self):

print ("D.init")
#def foo(self):
# print "D.foo"

class E(C, B):
def __init__(self):

print ("E.init")

d = D()
d.foo()

e = E()
e.foo()

# we see that fn lookup's happen in the order of declaration
↪→of parent in the child's definition.

D.init
B.foo
E.init
C.foo

What if the mixin is slightly more complex? (Note, no matter how complex stuff
gets—which it should not, Python will never let you create a circular dependency!)

A
/ \
B C
| /|
D/ |
| |
\ |
E

class A(object):
def __init__(self):

print ("A.init")
def foo(self):

print ("A.foo")

class B(A):
def __init__(self):

print ("B.init")
def foo(self):

print ("B.foo")

(continues on next page)
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class C(A):
def __init__(self):

print ("C.init")
def foo(self):

print ("C.foo")

class D(C):
def __init__(self):

print ("D.init")
def foo(self):

print ("D.foo")

class E(D, C): # you can't have (C, D) - TypeError: Cannot
↪→create a consistent MRO

def __init__(self):
print ("E.init")

e = E()
e.foo()
E.__mro__

# so what's mro - (explain in live session)

E.init
D.foo

(__main__.E, __main__.D, __main__.C, __main__.A, object)

Note MRO is also the reason why super() is called in the manner it is. You need
both the class and the object to traverse the next parent in the MRO.

6.6.2 Attribute Access Hooks

Next let us have a look at two magic functions which deal with object variable
access, __getattr__ and __setattr__. The __getattr__method returns
the value of the named attribute of an object. If not found, it returns the default value
provided to the function. __setattr__ is called when an attribute assignment is
attempted.

This allows us to hook into attribute setting and assignment conveniently.

class A(object):
def __init__(self, x):

self.x = x
def __getattr__(self, val):

(continues on next page)
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print ("getattr val :", val, type(val))
return val

a = A(3)
print "X :", a.x # getattr not called for x
ret = a.y
print ("Y :", ret)

X : 3
getattr val : y <type 'str'>
Y : y

Here are some uses cases. __getattr__ can help us refactor and clean up our
code. This is handy in lots of places and avoids having to wrap things in try/except
blocks. Consider the following:

class settings:
pass

try:
foo = settings.FOO

except AttributeError:
foo = None

The code can be replaced by
foo = getattr(settings, ‘FOO’, None)

class A(object):
def __init__(self, x):

self.x = x
def __getattr__(self, val):

print ("getattr")
return val

def __setattr__(self, name, val):
print ("setattr")
if name == 'x':

self.__dict__[name] = val

a = A(3)
print (a.x)
print (a.y)

# setattr is called for both
a.y = 5
a.x = 5



6.6 More on Object Oriented Programming 97

setattr
3
getattr
y
setattr
setattr

6.6.3 Callable Objects

You can make an object callable (a functor) by overriding the magic __call__
method. You can call the object like a function and the __call__ method will be
called instead. This is useful when you want to have more complex functionality
(like state) plus data but want to keep the syntactic sugar/simplicity of a function.

class MulBy(object):
def __init__(self, x):

self.x = x
def __call__(self, n):

print ("here!")
return self.x * n

m = MulBy(5)
print (m(3))

here!
15

6.6.4 _new_ vs _init_

Until now we never bothered to see how/when the Python objects were created. The
__init__ function just deals with handling the initialization of the object, and the
actual creation happens within __new__, which can be overridden.

From the Python mailing list, we have

Use __new__ when you need to control the creation of a new
↪→instance.
Use __init__ when you need to control initialization of a new
↪→instance.

__new__ is the first step of instance creation. It's called
↪→first,
and is responsible for returning a new instance of your class.
↪→ In

(continues on next page)
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(continued from previous page)

contrast, __init__ doesn't return anything; it's only
↪→responsible for
initializing the instance after it's been created.

class X(object):
def __new__(cls, *args, **kwargs):

print ("new")
print (args, kwargs)
return object.__new__(cls)

def __init__(self, *args, **kwargs):
print ("init")
print (args, kwargs)

x = X(1,2,3,a=4)

new
(1, 2, 3) {'a': 4}
init
(1, 2, 3) {'a': 4}

This approach is useful for the factory design pattern.

class WindowsVM(object):
def __init__(self, state="off"):

print ("New windows vm. state : %s" %state)
def operation(self):

print ("windows ops")

class LinuxVM(object):
def __init__(self, state="off"):

print ("New linux vm. state : %s" %state)
def operation(self):

print ("linux ops")

class VM(object):
MAP = {"Linux" : LinuxVM, "Windows": WindowsVM}

def __new__(self, vm_type, state="off"):
# return object.__new__(VM.MAP[vm_type]) #--doesn't

↪→call init of other class
vm = object.__new__(VM.MAP[vm_type])
vm.__init__(state)
return vm

vm1 = VM("Linux")
print (type(vm1))
vm1.operation()
print ()

(continues on next page)
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vm2 = VM("Windows", state="on")
print (type(vm2))
vm2.operation()

New linux vm. state : off
<class '__main__.LinuxVM'>
linux ops

New windows vm. state : on
<class '__main__.WindowsVM'>
windows ops

6.7 Properties

Properties are ways of adding behavior to instance variable access, i.e., trigger a
function when a variable is being accessed. This is most commonly used for getters
and setters.

# simple example
class C(object):

def __init__(self):
self._x = None

def getx(self):
print ("getx")
return self._x

def setx(self, value):
print ("setx")
self._x = value

def delx(self):
print ("delx")
del self._x

x = property(getx, setx, delx, "I'm the 'x' property.")

c = C()
c.x = 5 # so when we use 'x' variable of a C object, the
↪→getters and setters are being called!
print (c.x)
del c.x

#print (C.x) error
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setx
getx
5
delx

# the same properties can be used in form of decorators!
class M(object):

def __init__(self):
self._x = None

@property
def x(self):

print ("getx")
return self._x

@x.setter
def x(self, value):

print ("setx")
self._x = value

@x.deleter
def x(self):

print ("delx")
del self._x

m = C()
m.x = 5
print (m.x)
del m.x

setx
getx
5
delx

So how does this magic happen? how do properties work? It so happens that
properties are data descriptors. Descriptors are objects that have a __get__,
__set__, __del__ method. When accessed as a member variable, the corre-
sponding function gets called. Property is a class that implements this descriptor
interface, there is nothing more to it.

# This is a pure python implementation of property

class Property(object):
"Emulate PyProperty_Type() in Objects/descrobject.c"

def __init__(self, fget=None, fset=None, fdel=None,
↪→doc=None):

self.fget = fget
self.fset = fset

(continues on next page)
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self.fdel = fdel
if doc is None and fget is not None:

doc = fget.__doc__
self.__doc__ = doc

def __get__(self, obj, objtype=None):
if obj is None:

return self
if self.fget is None:

raise AttributeError("unreadable attribute")
return self.fget(obj)

def __set__(self, obj, value):
if self.fset is None:

raise AttributeError("can't set attribute")
self.fset(obj, value)

def __delete__(self, obj):
if self.fdel is None:

raise AttributeError("can't delete attribute")
self.fdel(obj)

def getter(self, fget):
return type(self)(fget, self.fset, self.fdel, self.__

↪→doc__)

def setter(self, fset):
return type(self)(self.fget, fset, self.fdel, self.__

↪→doc__)

def deleter(self, fdel):
return type(self)(self.fget, self.fset, fdel, self.__

↪→doc__)

# during the live session, explain how this maps to the
↪→previous decorator version of property.

6.8 Metaclasses

Metaclasses are classes that create new classes (or rather a class whose instances
are classes themselves). They are useful when you want to dynamically create your
own types. For example, when you have to create classes based on a description file
(XML)—like in the case of some libraries built over WSDL (PyVmomi) or in the
case when you want to dynamically mix two or more types of classes to create a new
one (e.g., a VM type, an OS type, and an interface type—used in NuTest framework
developed by the automation team).
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Another reason is to enforce some checking/have restrictions in the user-defined
classes. Like in the case of Abstract Base Class (ABCMeta). The metaclass that
creates the user-defined class can run some pre-checks (whether certain functions
are defined, etc.) and some preprocessing (adding new methods, etc.) if required.

class MyMet(type):
"""Here we see that MyMet doesn't inherit 'object' but

↪→rather 'type' class - the builtin metaclass
"""
def __new__(cls, name, bases, attrs):

"""
Args:

name (str) : name of the new class being created
bases (tuple) : tuple of the classes which are the

↪→parents of cls
attrs (dict) : the attributes that belong to the

↪→class
"""
print ("In new")
print (name)
print (bases)
print (attrs)
return super(MyMet, cls).__new__(cls, name, bases,

↪→attrs)

def __init__(self, *args, **kwargs):
print ("In init")
print (self)
print (args)
print (kwargs)

class Me(object):
__metaclass__ = MyMet

def foo(self):
print ("I'm foo")

m = Me()
m.foo()

I'm foo

In this case, we see that “m” which is an instance of “Me” works as expected.
Here we are using the metaclass to just print out the flow, but we can do much more.

Also if you note, we see that the args to __init__ are the same as args to
__new__, which is again as expected.

class MyMet(type):
"""Here we see that MyMet doesn't inherit 'object' but

↪→rather 'type' class - the builtin metaclass
"""

(continues on next page)
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def __new__(cls, name, bases, attrs):
"""
Args:

name (str) : name of the new class being created
bases (tuple) : tuple of the classes which are the

↪→parents of cls
attrs (dict) : the attributes that belong to the

↪→class
"""
print ("In new")
print (name)
print (bases)
print (attrs)
def foo(self):

print ("I'm foo")
attrs['foo'] = foo
return super(MyMet, cls).__new__(cls, name, bases,

↪→attrs)

def __init__(self, name, bases, attrs):
print ("In init")
print (self) # actually the object being created
print (name)
print (bases)
print (attrs)
def bar(self):

print ("I'm bar")
setattr(self, "bar", bar)

def test(self):
print ("in test")

#def __call__(self):
# print "self :", self
# Note : If I override call here, then I have to

↪→explicitly call self.__new__
# otherwise it is completely skipped. Normally a

↪→class calls type's __call__
# which re-routes it to __new__ of the class

class Me(object):
__metaclass__ = MyMet

def foo(self):
pass

def bar(self):
pass

(continues on next page)
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print ("\n-------------------------------\n")

m = Me()
print (type(Me)) # not of type 'type' anymore!
m.foo()
m.bar()
print (type(m))

-------------------------------

<class 'type'>
<class '__main__.Me'>

Note What the __metaclass__ does is it tells the interpreter to parse the class
in question, get the name, the attribute dictionary, and the base classes, and create
it using a “type” type, in this case, the MyMet class. In its most primitive form
that is how classes are created, using the “type” inbuilt class. We use this a lot to
dynamically mix classes in NuTest.

class A(object):
def __init__(self):

print ("init A")
def foo(self):

print ("foo A")
def bar(self):

print ("bar A")

class B(object):
def __init__(self):

print ("init B")
def doo(self):

print ("doo B")
def bar(self):

print ("bar B")

def test(self):
print ("Self : ", self)

Cls = type("C", (A,B), {"test": test})

c = Cls()
print (Cls)
print (Cls.__name__, type(Cls))
print (c)
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init A
<class '__main__.C'>
C <class 'type'>
<__main__.C object at 0x000002C3C0855448>

c.foo()
c.bar()
c.doo()
c.test()

foo A
bar A
doo B
Self : <__main__.C object at 0x000002C3C0855448>



Chapter 7
Python for Data Analysis

Abstract This chapter will introduce Ethics in algorithm development and com-
mon tools that are used for data analysis. Ethics is an important consideration in
developing Artificial Intelligence algorithms. The outputs of computers are derived
from the data that are provided as input and the algorithms developed by Artificial
Intelligence developers who must be held accountable in their analysis. Tools such
as Numpy, Pandas, and Matplotlib are covered to aid in the data analysis process.
Numpy is a powerful set of tools to work with complete data lists efficiently. Pandas
is a package designed to make working with “relational” or “labeled” data both easy
and intuitive. Finally, Matplotlib is a powerful Python plotting library used for data
visualization.

Learning outcomes:

• Identify concepts in ethical reasoning, which may influence our analysis and results from
data.

• Learn and apply a basic set of methods from the core data analysis libraries of Numpy,
Pandas, and Matplotlib.

Data has become the most important language of our era, informing every-
thing from intelligence in automated machines to predictive analytics in medical
diagnostics. The plunging cost and easy accessibility of the raw requirements for
such systems—data, software, distributed computing, and sensors—are driving the
adoption and growth of data-driven decision-making.

As it becomes ever-easier to collect data about individuals and systems, a diverse
range of professionals—who have never been trained for such requirements—
grapple with inadequate analytic and data management skills, as well as the ethical
risks arising from the possession and consequences of such data and tools.

Before we go on with the technical training, consider the following on the ethics
of the data we use.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
T. T. Teoh, Z. Rong, Artificial Intelligence with Python,
Machine Learning: Foundations, Methodologies, and Applications,
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7.1 Ethics

Computers cannot make decisions. Their output is an absolute function of the
data provided as input, and the algorithms applied to analyze that input. The
aid of computers in decision-making does not override human responsibility and
accountability.

It should be expected that both data and algorithms should stand up to scrutiny so
as to justify any and all decisions made as a result of their output. “Computer says
no,” is not an unquestionable statement.

Our actions—as data scientists—are intended to persuade people to act or think
other than the way they currently do based on nothing more than the strength of our
analysis, and informed by data.

The process by which we examine and explain why what we consider to be right
or wrong is considered right or wrong in matters of human conduct belongs to the
study of ethics.

Case-study: Polygal was a gel made from beet and apple pectin. Administered to a
severely wounded patient, it was supposed to reduce bleeding. To test this hypothesis,
Sigmund Rascher administered a tablet to human subjects who were then shot or—without
anesthesia—had their limbs amputated.

During the Second World War, and under the direction of senior Nazi officers, medical
experiments of quite unusual violence were conducted on prisoners of war and civilians
regarded by the Nazi regime as sub-human. After the war, twenty medical doctors were
tried for war crimes and crimes against humanity at the Doctor’s Trial held in Nuremberg
from 1946 to 1949.

In 1947 Kurt Blome—Deputy Reich Health Leader, a high-ranking Nazi scientist—was
acquitted of war crimes on the strength of intervention by the USA. Within two months,
he was being debriefed by the US military who wished to learn everything he knew about
biological warfare.

Do you feel the USA was “right” or “wrong” to offer Blome immunity from prosecution
in exchange for what he knew?

There were numerous experiments conducted by the Nazis that raise ethical dilemmas,
including: immersing prisoners in freezing water to observe the result and test hypothermia
revival techniques; high altitude pressure and decompression experiments; sulfanilamide
tests for treating gangrene and other bacterial infections.

Do you feel it would be “right” or “wrong” to use these data in your research and
analysis?

Whereas everything else we do can describe human behavior as it is, ethics
provides a theoretical framework to describe the world as it should, or should not
be. It gives us full range to describe an ideal outcome, and to consider all that we
know and do not know, which may impede or confound our desired result.

Case-study: A Nigerian man travels to a conference in the USA. After one of the sessions,
he goes to the bathroom to wash his hands. The electronic automated soap dispenser does
not recognize his hands beneath the sensor. A white American sees his confusion and places
his hands beneath the device. Soap is dispensed. The Nigerian man tries again. It still does
not recognize him.

How would something like this happen? Is it an ethical concern?

https://en.wikipedia.org/wiki/Sigmund_Rascher
https://en.wikipedia.org/wiki/Doctors%27_trial
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When we consider ethical outcomes, we use the terms good or bad to describe
judgments about people or things, and we use right or wrong to refer to the
outcome of specific actions. Understand, though, that—while right and wrong may
sometimes be obvious—we are often stuck in ethical dilemmas.

How we consider whether an action is right or wrong comes down to the tension
between what was intended by an action, and what the consequences of that action
were. Are only intensions important? Or should we only consider outcomes? And
how absolutely do you want to judge this chain: the right motivation, leading to the
right intention, performing the right action, resulting in only good consequences.
How do we evaluate this against what it may be impossible to know at the time,
even if that information will become available after a decision is made?

We also need to consider competing interests in good and bad outcomes. A good
outcome for the individual making the decision may be a bad decision for numerous
others. Conversely, an altruistic person may act only for the benefit of others even
to their own detriment.

Ethical problems do not always require a call to facts to justify a particular
decision, but they do have a number of characteristics:

• Public: the process by which we arrive at an ethical choice is known to all
participants.

• Informal: the process cannot always be codified into law like a legal system.
• Rational: despite the informality, the logic used must be accessible and defensi-

ble.
• Impartial: any decision must not favor any group or person.

Rather than imposing a specific set of rules to be obeyed, ethics provides a
framework in which we may consider whether what we are setting out to achieve
conforms to our values, and whether the process by which we arrive at our decision
can be validated and inspected by others.

No matter how sophisticated our automated machines become, unless our
intention is to construct a society “of machines, for machines”, people will always
be needed to decide on what ethical considerations must be taken into account.

There are limits to what analysis can achieve, and it is up to the individuals
producing that analysis to ensure that any assumptions, doubts, and requirements are
documented along with their results. Critically, it is also each individual’s personal
responsibility to raise any concerns with the source data used in the analysis,
including whether personal data are being used legitimately, or whether the source
data are at all trustworthy, as well as the algorithms used to process those data and
produce a result.
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7.2 Data Analysis

This will be a very brief introduction to some tools used in data analysis in Python.
This will not provide insight into the approaches to performing analysis, which is
left to self-study, or to modules elsewhere in this series.

7.2.1 Numpy Arrays

Data analysis often involves performing operations on large lists of data. Numpy is
a powerful suite of tools permitting you to work quickly and easily with complete
data lists. We refer to these lists as arrays, and—if you are familiar with the term
from mathematics—you can think of these as matrix methods.

By convention, we import Numpy as np: import numpy as np.
We’re also going to want to be generating a lot of lists of random floats for these

exercises, and that’s tedious to write. Let’s get Python to do this for us using the
randommodule.

import numpy as np
import random

def generate_float_list(lwr, upr, num):
"""
Return a list of num random decimal floats ranged between

↪→lwr and upr.

Range(lwr, upr) creates a list of every integer between
↪→lwr and upr.

random.sample takes num integers from the range list,
↪→chosen randomly.

"""
int_list = random.sample(range(lwr, upr), num)
return [x/100 for x in int_list]

# Create two lists
height = generate_float_list(100, 220, 10)
weight = generate_float_list(5000, 20000, 10)

# Convert these to Numpy arrays
np_height = np.array(height)
np_weight = np.array(weight)

print(np_height)
print(np_weight)

[1.54 1.75 1.43 2.03 1.51 1.59 1.19 1.72 1.13 2.09]
[ 70.08 166.31 170.51 174.34 89.29 69.13 137.76 96.66 123.
↪→97 95.73]
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There is a useful timer function built in to Jupyter Notebook. Start any line of
code with %time and you’ll get output on how long the code took to run.

This is important when working with data-intensive operations where you want
to squeeze out every drop of efficiency by optimizing your code.

We can now perform operations directly on all the values in these Numpy arrays.
Here are two simple methods to use.

• Element-wise calculations: you can treat Numpy arrays as you would individual
floats or integers. Note, they must either have the same shape (i.e. number or
elements), or you can perform bitwise operations (operate on each item in the
array) with a single float or int.

• Filtering: You can quickly filter Numpy arrays by performing boolean operations,
e.g. np_array[np_array > num], or, for a purely boolean response,
np_array > num.

# Calculate body-mass index based on the heights and weights
↪→in our arrays
# Time the calculation ... it won't be long
%time bmi = np_weight / np_height ** 2

print(bmi)

# Any BMI > 35 is considered severely obese. Let's see who in
↪→our sample is at risk.

# Get a boolean response
print(bmi > 35)

# Or print only BMI values above 35
print(bmi[bmi > 35])

Wall time: 0 ns
[29.54967111 54.30530612 83.38305052 42.30629231 39.16056313
↪→27.34464618
97.28126545 32.67306652 97.08669434 21.91570706]

[False True True True True False True False True False]
[54.30530612 83.38305052 42.30629231 39.16056313 97.28126545
↪→97.08669434]

7.2.2 Pandas

We briefly experimented with Pandas back in [Built-in modules](03 - Python
intermediate.ipynb#Built-in-modules).

The description given for Pandas there was:
pandas is a Python package providing fast, flexible, and expressive data struc-

tures designed to make working with “relational” or “labeled” data both easy and



112 7 Python for Data Analysis

intuitive. It aims to be the fundamental high-level building block for doing practical,
real world data analysis in Python. Additionally, it has the broader goal of becoming
the most powerful and flexible open source data analysis / manipulation tool
available in any language.

Pandas was developed by Wes McKinney and has a marvelous and active
development community. Wes prefers Pandas to be written in the lower-case (I’ll
alternate).

Underneath Pandas is Numpy, so they are closely related and tightly integrated.
Pandas allows you to manipulate data either as a Series (similarly to Numpy, but
with added features) or in a tabular form with rows of values and named columns
(similar to the way you may think of an Excel spreadsheet).

This tabular form is known as a DataFrame. Pandas works well with Jupyter
Notebook and you can output nicely formatted dataframes (just make sure the last
line of your code block is the name of the dataframe).

The convention is to import pandas as pd: import pandas as pd.
The following tutorial is taken directly from the “10 minutes to pandas” section

of the Pandas documentation. Note, this isn’t the complete tutorial, and you can
continue there.

Object Creation in Pandas
The following code will be on object creation in Pandas.

Create a Series by passing a list of values, and letting pandas create a default
integer index.

import pandas as pd
import numpy as np

s = pd.Series([1,3,5,np.nan,6,8])
s

0 1.0
1 3.0
2 5.0
3 NaN
4 6.0
5 8.0
dtype: float64

Note that np.nan is Numpy’s default way of presenting a value as “not-
a-number.” For instance, divide-by-zero returns np.nan. This means you can
perform complex operations relatively safely and sort out the damage afterward.

Create a DataFrame by passing a Numpy array, with a datetime index and labeled
columns.

# Create a date range starting at an ISO-formatted date
↪→(YYYYMMDD)
dates = pd.date_range('20130101', periods=6)
dates

http://wesmckinney.com/
https://pandas.pydata.org/pandas-docs/stable/10min.html
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DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-
↪→01-04',

'2013-01-05', '2013-01-06'],
dtype='datetime64[ns]', freq='D')

# Create a dataframe using the date range we created above as
↪→the index
df = pd.DataFrame(np.random.randn(6,4), index=dates,
↪→columns=list('ABCD'))
df

A B C D
2013-01-01 1.175032 -2.245533 1.196393 -1.896230
2013-01-02 0.211655 -0.931049 0.339325 -0.991995
2013-01-03 1.541121 0.709584 1.321304 0.715576
2013-01-04 -0.180625 -1.332144 -0.503592 -0.458643
2013-01-05 1.024923 -1.356436 -2.661236 0.765617
2013-01-06 -0.209474 -0.739143 0.076423 2.346696

We can also mix text and numeric data with an automatically generated index.

dict = {"country": ["Brazil", "Russia", "India", "China",
↪→"South Africa"],

"capital": ["Brasilia", "Moscow", "New Delhi", "Beijing
↪→", "Pretoria"],

"area": [8.516, 17.10, 3.286, 9.597, 1.221],
"population": [200.4, 143.5, 1252, 1357, 52.98] }

brics = pd.DataFrame(dict)
brics

country capital area population
0 Brazil Brasilia 8.516 200.40
1 Russia Moscow 17.100 143.50
2 India New Delhi 3.286 1252.00
3 China Beijing 9.597 1357.00
4 South Africa Pretoria 1.221 52.98

The numbers down the left-hand side of the table are called the index. This
permits you to reference a specific row. However, Pandas permits you to set your
own index, as we did where we set a date range index. You could set one of the
existing columns as an index (as long as it consists of unique values) or you could
set a new custom index.

# Set the ISO two-letter country codes as the index
brics.index = ["BR", "RU", "IN", "CH", "SA"]

brics



114 7 Python for Data Analysis

country capital area population
BR Brazil Brasilia 8.516 200.40
RU Russia Moscow 17.100 143.50
IN India New Delhi 3.286 1252.00
CH China Beijing 9.597 1357.00
SA South Africa Pretoria 1.221 52.98

Pandas can work with exceptionally large datasets, including millions of rows.
Presenting that takes up space and, if you only want to see what your data looks
like (since, most of the time, you can work with it symbolically), then that can be
painful. Fortunately, Pandas comes with a number of ways of viewing and reviewing
your data.

• See the top and bottom rows of your dataframe with df.head() or
df.tail(num) where num is an integer number of rows.

• See the index, columns, and underlying Numpy data with df.index,
df.columns, and df.values, respectively.

• Get a quick statistical summary of your data with df.describe().
• Transpose your data with df.T.
• Sort by an axis with df.sort_index(axis=1, ascending=False)

where axis=1 refers to columns, and axis=0 refers to rows.
• Sort by values with df.sort_values(by=column).

# Head
df.head()

A B C D
2013-01-01 1.175032 -2.245533 1.196393 -1.896230
2013-01-02 0.211655 -0.931049 0.339325 -0.991995
2013-01-03 1.541121 0.709584 1.321304 0.715576
2013-01-04 -0.180625 -1.332144 -0.503592 -0.458643
2013-01-05 1.024923 -1.356436 -2.661236 0.765617

# Tail
df.tail(3)

A B C D
2013-01-04 -0.180625 -1.332144 -0.503592 -0.458643
2013-01-05 1.024923 -1.356436 -2.661236 0.765617
2013-01-06 -0.209474 -0.739143 0.076423 2.346696

# Index
df.index
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DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-
↪→01-04',

'2013-01-05', '2013-01-06'],
dtype='datetime64[ns]', freq='D')

# Values
df.values

array([[ 1.17503197, -2.2455333 , 1.19639255, -1.89623003],
[ 0.21165485, -0.93104948, 0.33932534, -0.99199535],
[ 1.54112107, 0.70958415, 1.32130367, 0.71557556],
[-0.18062483, -1.33214427, -0.50359153, -0.45864285],
[ 1.02492346, -1.35643648, -2.66123573, 0.76561735],
[-0.20947413, -0.73914306, 0.07642315, 2.34669621]])

# Statistical summary
df.describe()

A B C D
count 6.000000 6.000000 6.000000 6.000000
mean 0.593772 -0.982454 -0.038564 0.080170
std 0.749951 0.977993 1.457741 1.507099
min -0.209474 -2.245533 -2.661236 -1.896230
25% -0.082555 -1.350363 -0.358588 -0.858657
50% 0.618289 -1.131597 0.207874 0.128466
75% 1.137505 -0.787120 0.982126 0.753107
max 1.541121 0.709584 1.321304 2.346696

# Transpose
df.T

2013-01-01 2013-01-02 2013-01-03 2013-01-04 2013-01-05
↪→2013-01-06
A 1.175032 0.211655 1.541121 -0.180625 1.024923
↪→ -0.209474
B -2.245533 -0.931049 0.709584 -1.332144 -1.356436
↪→ -0.739143
C 1.196393 0.339325 1.321304 -0.503592 -2.661236
↪→ 0.076423
D -1.896230 -0.991995 0.715576 -0.458643 0.765617
↪→ 2.346696

# Sort by an axis
df.sort_index(axis=1, ascending=False)
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D C B A
2013-01-01 -1.896230 1.196393 -2.245533 1.175032
2013-01-02 -0.991995 0.339325 -0.931049 0.211655
2013-01-03 0.715576 1.321304 0.709584 1.541121
2013-01-04 -0.458643 -0.503592 -1.332144 -0.180625
2013-01-05 0.765617 -2.661236 -1.356436 1.024923
2013-01-06 2.346696 0.076423 -0.739143 -0.209474

# Sort by values
df.sort_values(by="B")

A B C D
2013-01-01 1.175032 -2.245533 1.196393 -1.896230
2013-01-05 1.024923 -1.356436 -2.661236 0.765617
2013-01-04 -0.180625 -1.332144 -0.503592 -0.458643
2013-01-02 0.211655 -0.931049 0.339325 -0.991995
2013-01-06 -0.209474 -0.739143 0.076423 2.346696
2013-01-03 1.541121 0.709584 1.321304 0.715576

Selections

One of the first steps in data analysis is simply to filter your data and get slices you’re
most interested in. Pandas has numerous approaches to quickly get only what you
want.

• Select a single column by addressing the dataframe as you would a dictionary,
with df[column] or, if the column name is a single word, with df.column.
This returns a series.

• Select a slice in the way you would a Python list, with df[], e.g. df[:3], or
by slicing the indices, df["20130102":"20130104"].

• Use .loc to select by specific labels, such as:

– Get a cross-section based on a label, with e.g. df.loc[index[0]].
– Get on multi-axis by a label, with df.loc[:, ["A", "B"]] where the

first : indicates the slice of rows, and the second list ["A", "B"] indicates
the list of columns.

• As you would with Numpy, you can get a boolean-based selection, with e.g.
df[df.A > num].

There are a lot more ways to filter and access data, as well as methods to set data
in your dataframes, but this will be enough for now.

# By column
df.A
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2013-01-01 1.175032
2013-01-02 0.211655
2013-01-03 1.541121
2013-01-04 -0.180625
2013-01-05 1.024923
2013-01-06 -0.209474
Freq: D, Name: A, dtype: float64

# By slice
df["20130102":"20130104"]

A B C D
2013-01-02 0.211655 -0.931049 0.339325 -0.991995
2013-01-03 1.541121 0.709584 1.321304 0.715576
2013-01-04 -0.180625 -1.332144 -0.503592 -0.458643

# Cross-section
df.loc[dates[0]]

A 1.175032
B -2.245533
C 1.196393
D -1.896230
Name: 2013-01-01 00:00:00, dtype: float64

# Multi-axis
df.loc[:, ["A", "B"]]

A B
2013-01-01 1.175032 -2.245533
2013-01-02 0.211655 -0.931049
2013-01-03 1.541121 0.709584
2013-01-04 -0.180625 -1.332144
2013-01-05 1.024923 -1.356436
2013-01-06 -0.209474 -0.739143

# Boolean indexing
df[df.A > 0]

A B C D
2013-01-01 1.175032 -2.245533 1.196393 -1.896230
2013-01-02 0.211655 -0.931049 0.339325 -0.991995
2013-01-03 1.541121 0.709584 1.321304 0.715576
2013-01-05 1.024923 -1.356436 -2.661236 0.765617
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7.2.3 Matplotlib

In this last section, you get to meet Matplotlib, a fairly ubiquitous and powerful
Python plotting library. Jupyter Notebook has some “magic” we can use in the
line %matplotlib inline, which permits us to draw charts directly in this
notebook.

Matplotlib, Numpy, and Pandas form the three most important and ubiquitous
tools in data analysis.

Note that this is the merest slither of an introduction to what you can do with
these libraries.

import matplotlib.pyplot as plt
# This bit of magic code will allow your Matplotlib plots to
↪→be shown directly in your Jupyter Notebook.
%matplotlib inline

# Produce a random time series
ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/
↪→2000', periods=1000))

# Get the cumulative sum of the random numbers generated to
↪→mimic a historic data series
ts = ts.cumsum()

# And magically plot
ts.plot()

<matplotlib.axes._subplots.AxesSubplot at 0x1f537de6860>

# And do the same thing with a dataframe
df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,

columns=['A', 'B', 'C', 'D'])

df = df.cumsum()

# And plot, this time creating a figure and adding a plot and
↪→legend to it
plt.figure()
df.plot()
plt.legend(loc='best')
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<matplotlib.legend.Legend at 0x1f538166c50>

<Figure size 432x288 with 0 Axes>

7.3 Sample Code

print("hello")

a=1

print(a)

b="abc"

print(b)

print("Please input your name")
x = input()
print("Your name is : ", x)

hello
1
abc
Please input your name
Your name is : tom
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if a == 1:
print("a is equal to 1")

else:
print("a is not equal to 1")

for i in range (2,6):
print(i)

# compute area
print("please input the radius : ")
x = float(input())
area = 3.142 * (x ** 2)
print("the area is ", area)

def cal_area(r):
a = 3.142 * (r ** 2)
return a

print("please input the radius : ")
radius = float(input())
area = cal_area(radius)
print("the area is ", area)

a is equal to 1
2
3
4
5
please input the radius :
the area is 28.278
please input the radius :
the area is 12.568
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# Class
class Basic:

x=3

y = Basic()
print(y.x)

class Computation:
def area(self):

return 3.142*self.radius**2
def parameter(self):

return 3.142*self.radius*2
def __init__(self, radius):

self.radius = radius

a = Computation(3)
print("Area is : ", a.area())

print("Parameter is : ", a.parameter())

3
Area is : 28.278
Parameter is : 18.852

def adder(*num):
sum = 0

for n in num:
sum = sum + n

print("Sum:",sum)

adder(3,5)
adder(4,5,6,7)
adder(1,2,3,5,6)

def intro(**data):
print("Data type of argument: ",type(data), "\n")

for key, value in data.items():
print("{} is {}".format(key,value))

intro(Firstname="Sita", Lastname="Sharma", Age=22,
↪→Phone=1234567890)
intro(Firstname="John", Lastname="Wood", Email=
↪→"johnwood@nomail.com", Country="Wakanda", Age=25,
↪→Phone=9876543210)
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Sum: 8
Sum: 22
Sum: 17
Data type of argument: <class 'dict'>

Firstname is Sita
Lastname is Sharma
Age is 22
Phone is 1234567890
Data type of argument: <class 'dict'>

Firstname is John
Lastname is Wood
Email is johnwood@nomail.com
Country is Wakanda
Age is 25
Phone is 9876543210

And that’s it for this quick introduction to Python and its use in data analysis.



Part II
Artificial Intelligence Basics



Chapter 8
Introduction to Artificial Intelligence

Abstract Humans can accomplish tasks that scientists are still trying to fathom,
and such tasks are hard to write algorithms for. Artificial Intelligence programs
are thus written in a way that allows these algorithms to learn from data. This
makes data quality crucial to the performance of the algorithm. Data exploration and
investigation are a must for Artificial Intelligence developers to identify appropriate
charts, present data to visualize its core characteristics, and tell stories observed.

Learning outcomes:

• Investigate and manipulate data to learn its metadata, shape, and robustness.
• Identify an appropriate chart and present data to illustrate its core characteristics.
• Aggregate and present data-driven analysis using NumPy, Pandas, and Matplotlib.

In the 1950s, Artificial Intelligence was viewed as a futuristic, theoretical part
of computer science. Now, due to increases in computing capacity and extensive
research into algorithms, Artificial Intelligence is now a viable reality. So much
so that many of the products we use every day have some variations of Artificial
Intelligence built into them.

Artificial Intelligence is a program for a machine in order to execute tasks
that a human could do. Writing algorithms for tasks that humans can do can be
very challenging. The human mind can do many things that scientists could not
understand, much less approximate. For example, how would we write algorithms
for these tasks?

1. A song comes on the radio, and most listeners of music can quickly identify the
genre, maybe the artist, and probably the song.

2. An art critic sees a painting he has never seen before, yet he could most likely
identify the era, the medium, and probably the artist.

3. A baby can recognize her mom’s face at a very early age.

The simple answer is that you cannot write algorithms for these. Algorithms use
mathematics. Humans who accomplish these tasks could not explainmathematically
how they drew these conclusions. They were able to achieve these results because
they learned to do these things over time. Artificial Intelligence was designed to
simulate human learning on a computer.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
T. T. Teoh, Z. Rong, Artificial Intelligence with Python,
Machine Learning: Foundations, Methodologies, and Applications,
https://doi.org/10.1007/978-981-16-8615-3_8
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In fact, during the early stages of Artificial Intelligence research, the researchers
began with developing algorithms to try to approximate human intuition. This
code could be viewed as a huge if/else statement which produces the answer. This
turned out to be an incredibly inefficient approach due to the complexity of the
human mind. The rules are very rigid and are most likely to become obsolete as
circumstances change over time.

Instead of trying to program amachine to act as a brain, why do not we just feed it
a bunch of data so that it can figure out the best algorithm on its own? That is where
machine learning algorithms would come into play. Machine learning algorithms
are the engine of practically every Artificial Intelligence system.

Machine learning is what enables smart systems to get smarter. These algorithms
are designed to equip Artificial Intelligence with the power to self-educate and
improve its own accuracy over time, learning from the data it is steadily taking
in. This means the Artificial Intelligence is always adjusting to interactions between
data points, providing living, breathing data analysis as the data quality changes.

And because machine learning is an iterative process, the data quality, partic-
ularly early on, is crucial to performance. AI that gets trained on datasets with
anomalies or incorrectly tagged information will lead to false positives and less
effective machine learning.

Therefore, the quality of the data used must be good in order to create good
artificial intelligence programs. Both Artificial Intelligence engineers and data
scientists have to be very data-savvy for data processing. Hence, the skills required
often overlap.

There are a number of tools used by Artificial Intelligence engineers and data
scientists to understand and analyze data. We will get to those, but one of the
fundamentals is simply exploring a new dataset.

8.1 Data Exploration

Usually, in data courses, you are presented with a nice clean dataset and run some
algorithms on it and get some answers. That is not helpful to you. Except for data
you collect, you are unlikely to know the shape and contents of a dataset you import
from others, no matter how good their research.

Especially for large datasets, it can be difficult to know how many unique terms
you may be working with and how they relate to each other.

Open your own Jupyter Notebook and follow along with the code:

# Comments to code are not executed and are flagged with this '
↪→#' symbol.
# First we'll import the pandas library.
# We use 'as' so that we can reference it as 'pd', which is
↪→shorter to type.
import pandas as pd

(continues on next page)
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(continued from previous page)

# In Python, we can declare our variables by simply naming
↪→them, like below
# 'data_url' is a variable name and the url is the text
↪→reference we're assigning to it
data_url = "https://docs.google.com/spreadsheets/d/
↪→1P0ob0sfz3xqG8u_dxT98YcVTMwzPSnya_qx6MbX-_Z8/pub?gid=0&
↪→single=true&output=csv"

# We import our data as a 'dataframe' using this simple
↪→instruction.
# How did I know it was a CSV file? If you look at the end of
↪→the urls (above), you'll see 'output=csv'.
# A variable in Python can be anything. Here our variable is a
↪→Pandas dataframe type.
data = pd.read_csv(data_url)

# Let us see what that looks like (I limit the number of rows
↪→printed by using '[:10]',
# and Python is '0' indexed, meaning the first term starts at
↪→'0'):
data[:10]

These are the first ten rows of the Pandas dataframe. You can think of a dataframe
as being like a database table allowing you to do bulk operations, or searches and
filters, on the overall data.

The top bolded row of the dataframe contains the terms which describe the data in
each column. Not all of those terms will be familiar, and—even when familiar—the
units may not be obvious. These headers are another form of metadata.
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The data about the overall dataset is called descriptive metadata. Now we need
information about the data within each dataset. That is called structural metadata,
a grammar describing the structure and definitions of the data in a table.

Sometimes the data you are working with has no further information and you
need to experiment with similar data to assess what the terms mean, or what unit
is being used, or to gap-fill missing data. Sometimes there is someone to ask.
Sometimes you get a structural metadata definition to work with.

This process, of researching a dataset, of exploration and tremendous frustration,
is known as munging or data wrangling.

In this case, the publisher has helpfully provided another table containing the
definitions for the structural metadata.

# First we set the url for the metadata table
metadata_url = "https://docs.google.com/spreadsheets/d/
↪→1P0ob0sfz3xqG8u_dxT98YcVTMwzPSnya_qx6MbX-_Z8/pub?
↪→gid=771626114&single=true&output=csv"
# Import it from CSV
metadata = pd.read_csv(metadata_url)
# Show the metadata:
metadata

Column
↪→ Description
0 Date Date when the figures
↪→were reported.
1 Governorate The Governorate name as reported
↪→in the WHO ep...
2 Cases Number of cases recorded in the
↪→governorate si...
3 Deaths Number of deaths recorded in the
↪→governorate s...
4 CFR (%) The case fatality rate in
↪→governorate since 27...
5 Attack Rate (per 1000) The attack rate per 1,000 of the
↪→population in...
6 COD Gov English The English name for the
↪→governorate according...
7 COD Gov Arabic The Arabic name for the
↪→governorate according ...
8 COD Gov Pcode The PCODE name for the governorate
↪→according t...
9 Bulletin Type The type of bulletin from which
↪→the data was e...
10 Bulletin URL The URL of the bulletin from which
↪→the data wa...

The column widths are too narrow to read the full text. There are two ways we
can widen them. The first is to adjust the output style of the dataframe. The second
is to pull out the text from each cell and iterate through a list. The first is easier (one
line), but the second is an opportunity to demonstrate how to work with dataframes.
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We can explore each of these metadata terms, but rows 2 to 5 would appear the
most relevant.

# First, the one-line solution
metadata[2:6].style.set_properties(subset=['Description'], **{
↪→'width': '400px', 'text-align': 'left'})

<pandas.io.formats.style.Styler at 0x1a22e3fbef0>

The second approach is two lines and requires some new coding skills. We
address an individual cell from a specific dataframe column as follows:

dataframe.column_name[row_number]

We have four terms and it would be tedious to type out each term we are
interested in this way, so we will use a loop. Python uses whitespace indentation
to structure its code.

for variable in list:
print(variable)

This will loop through the list of variables you have, giving the name variable
to each item. Everything indented (using either a tab or four spaces to indent) will
be executed in order in the loop. In this case, the loop prints the variable.

We are also going to use two other code terms:

• ’{}{}’.format(var1, var2)—used to add variables to text; {} braces
will be replaced in the order the variables are provided

• range—a way to create a numerical list (e.g., range(2,6) creates a list of
integers like this [2,3,4,5])

for i in range(2, 6):
print('{} - {}'.format(i, metadata.Description[i]))

2 - Number of cases recorded in the governorate since 27 April
↪→2017.
3 - Number of deaths recorded in the governorate since 27
↪→April 2017.
4 - The case fatality rate in governorate since 27 April 2017.
5 - The attack rate per 1,000 of the population in the
↪→governorate since 27 April 2017.

Unless you work in epidemiology, “attack rate” may still be unfamiliar. The US
Centers for Disease Control and Prevention has a self-study course which covers
the principles of epidemiology and contains this definition: “In the outbreak setting,
the term attack rate is often used as a synonym for risk. It is the risk of getting the
disease during a specified period, such as the duration of an outbreak.”

An “Attack rate (per 1000)” implies the rate of new infections per 1,000 people
in a particular population.

https://www.cdc.gov/ophss/csels/dsepd/ss1978/
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There are two more things to find out: how many governorates are there in
Yemen, and over what period do we have data?

# Get the unique governorates from the 'Governorate' column:
# Note the way we address the column and call for 'unique()'
governorates = data.Governorate.unique()
print("Number of Governorates: {}".format(len(governorates)))
print(governorates)

Number of Governorates: 26
['Amran' 'Al Mahwit' "Al Dhale'e" 'Hajjah' "Sana'a" 'Dhamar'
↪→'Abyan'
'Al Hudaydah' 'Al Bayda' 'Amanat Al Asimah' 'Raymah' 'Al Jawf

↪→' 'Lahj'
'Aden' 'Ibb' 'Taizz' 'Marib' "Sa'ada" 'Al Maharah' 'Shabwah'

↪→'Moklla'
"Say'on" 'Al-Hudaydah' 'Al_Jawf' "Ma'areb" 'AL Mahrah']

# We can do the same for the dates, but we also want to know
↪→the start and end
# Note the alternative way to address a dataframe column
date_list = data["Date"].unique()
print("Starting on {}, ending on {}; with {} periods.".
↪→format(min(date_list), max(date_list), len(date_list)))

Starting on 2017-05-22, ending on 2018-02-18; with 136 periods.

We can now summarize what we have learned: data covering a daily update of
cholera infection and fatality rates for 131 days, starting on 22 May till 14 January
2018 for the 26 governorates in Yemen.

Mostly this confirms what was in the description on HDX, but we also have some
updates and additional data to consider.

Before we go any further, it is helpful to check that the data presented are in the
format we expect. Are those integers and floats defined that way, or are they being
interpreted as text (because, for example, someone left commas in the data)?

# This will give us a quick summary of the data, including
↪→value types and the number or rows with valid data
data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2914 entries, 0 to 2913
Data columns (total 9 columns):
Date 2914 non-null object
Governorate 2914 non-null object
Cases 2914 non-null object
Deaths 2914 non-null int64
CFR (%) 2914 non-null float64
Attack Rate (per 1000) 2914 non-null float64

(continues on next page)
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COD Gov English 2713 non-null object
COD Gov Arabic 2713 non-null object
COD Gov Pcode 2713 non-null float64
dtypes: float64(3), int64(1), object(5)
memory usage: 205.0+ KB

Immediately we notice a problem. Our “Dates” are not of a date-type, and
“Cases” are not integers. This will cause us problems as we get deeper into our
analysis. Thankfully, conversion is quick and easy.

Pandas will attempt to figure out what type of object each value is and assign
it appropriately. If it cannot figure it out, then the default is to convert it to a text
string. There are a number of ways in which numbers and dates can be formatted
confusingly, and the most common for integers is when commas are included.

Ordinarily—especially if we intend to download each update of these data and
use the series regularly—we can specify transformations on load. We did not know
about these problems when we started, so we will fix it directly now.

These sorts of transformations—converting dates, integers, and floats—are
common requirements and it is useful to get a grasp of them at the beginning. In
later modules, we will consider more complex transformations and gap-filling.

# Removing commas for an entire column and converting to
↪→integers
data["Cases"] = [int(x.replace(",","")) for x in data["Cases"]]
# And converting to date is even simpler
data["Date"] = pd.to_datetime(data["Date"])
# And let's check the overview again
data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2914 entries, 0 to 2913
Data columns (total 9 columns):
Date 2914 non-null datetime64[ns]
Governorate 2914 non-null object
Cases 2914 non-null int64
Deaths 2914 non-null int64
CFR (%) 2914 non-null float64
Attack Rate (per 1000) 2914 non-null float64
COD Gov English 2713 non-null object
COD Gov Arabic 2713 non-null object
COD Gov Pcode 2713 non-null float64
dtypes: datetime64[ns](1), float64(3), int64(2), object(3)
memory usage: 205.0+ KB

The code used to transform “Cases” (the bit to the right of = and between the [])
is called a list comprehension. These are very efficient, taking little time to execute.

The time it takes code to run is not a major concern right now, with only 2,803
rows, but it becomes a major factor once we work with larger datasets and is
something addressed in later modules.

https://www.datacamp.com/community/tutorials/python-list-comprehension


132 8 Introduction to Artificial Intelligence

Our data are a time series and our analysis will focus on attempting to understand
what is happening and where. We are continuing to explore the shape of it and
assessing how we can best present the human story carried by that data.

We know that the cholera epidemic is getting worse, since more governorates
were added in since the time series began. To get a rough sense of how the disease
and humanitarian response has progressed, we will limit our table only to the
columns we are interested in and create two slices at the start and end of the series.

# First, we limit our original data only to the columns we
↪→will use,
# and we sort the table according to the attack rate:
data_slice = data[["Date", "Governorate", "Cases", "Deaths",
↪→"CFR (%)", "Attack Rate (per 1000)"]

].sort_values("Attack Rate (per 1000)",
↪→ascending=False)
# Now we create our two slices, and set the index to
↪→Governorate
ds_start = data_slice.loc[data_slice.Date == "2017-05-22"].set_
↪→index("Governorate")
ds_end = data_slice.loc[data_slice.Date == "2018-01-14"].set_
↪→index("Governorate")
# And print
print(ds_start)
print(ds_end)

Date Cases Deaths CFR (%) Attack
↪→Rate (per 1000)
Governorate
Al Mahwit 2017-05-22 2486 34 1.4
↪→ 3.27
Sana'a 2017-05-22 3815 39 1.0
↪→ 3.05
Amanat Al Asimah 2017-05-22 9216 33 0.4
↪→ 2.79
Amran 2017-05-22 3743 45 1.2
↪→ 2.45
Hajjah 2017-05-22 4664 42 0.9
↪→ 2.10
Al Bayda 2017-05-22 1498 6 0.4
↪→ 1.95
Al Dhale'e 2017-05-22 1401 8 0.6
↪→ 1.86
Abyan 2017-05-22 1068 10 0.9
↪→ 1.75
Raymah 2017-05-22 549 4 0.7
↪→ 0.87
Dhamar 2017-05-22 1617 33 2.0
↪→ 0.76
Taizz 2017-05-22 1791 23 1.3
↪→ 0.59
Aden 2017-05-22 489 12 2.5
↪→ 0.51 (continues on next page)
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Ibb 2017-05-22 1378 37 2.7
↪→ 0.45
Al-Hudaydah 2017-05-22 1397 32 2.3
↪→ 0.42
Al_Jawf 2017-05-22 189 3 1.6
↪→ 0.29
Lahj 2017-05-22 168 0 0.0
↪→ 0.16
Ma'areb 2017-05-22 2 0 0.0
↪→ 0.01

Date Cases Deaths CFR (%) Attack
↪→Rate (per 1000)
Governorate
Amran 2018-01-14 102231 175 0.17
↪→ 88.088
Al Mahwit 2018-01-14 61097 149 0.24
↪→ 83.671
Al Dhale'e 2018-01-14 47132 81 0.17
↪→ 64.432
Hajjah 2018-01-14 118468 420 0.35
↪→ 50.850
Sana'a 2018-01-14 74103 123 0.17
↪→ 50.398
Dhamar 2018-01-14 99766 160 0.16
↪→ 49.579
Abyan 2018-01-14 28241 35 0.12
↪→ 49.473
Al Hudaydah 2018-01-14 150965 280 0.19
↪→ 46.620
Al Bayda 2018-01-14 28730 34 0.12
↪→ 37.833
Amanat Al Asimah 2018-01-14 99452 70 0.07
↪→ 35.169
Al Jawf 2018-01-14 15827 22 0.14
↪→ 27.355
Raymah 2018-01-14 16403 120 0.73
↪→ 27.033
Lahj 2018-01-14 24341 22 0.09
↪→ 24.127
Aden 2018-01-14 20868 62 0.30
↪→ 22.609
Ibb 2018-01-14 64536 286 0.44
↪→ 21.824
Taizz 2018-01-14 62371 187 0.30
↪→ 20.802
Marib 2018-01-14 7285 7 0.10
↪→ 20.318
Sa'ada 2018-01-14 10703 5 0.05
↪→ 11.825
Al Maharah 2018-01-14 1168 1 0.09
↪→ 7.866

(continues on next page)
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Shabwah 2018-01-14 1399 3 0.21
↪→ 2.315
Moklla 2018-01-14 568 2 0.35
↪→ 1.417
Say'on 2018-01-14 22 0 0.00
↪→ 0.100

There is a great deal of data to process here, but the most important is that the
attack rate has risen exponentially, and cholera has spread to more areas.

However, there are also a few errors in the data. Note that Al Jawf appears twice
(as “Al Jawf” and as “Al_Jawf”). It is essential to remember that computers are
morons. They can only do exactly what you tell them to do. Different spellings, or
even different capitalizations, of words are different words.

You may have hoped that the data munging part was complete, but we need to fix
this. We should also account for the introduction of “Moklla” and “Say’on,” which
are two districts in the governorate of “Hadramaut” so that we do only have a list of
governorates (and you may have picked this up if you’d read through the comments
in the metadata earlier).

We can now filter our dataframe by the groups of governorateswe need to correct.
This introduces a few new concepts in Python. The first of these is that of a function.
This is similar to the libraries we have been using, such as Pandas. A function
encapsulates some code into a reusable object so that we do not need to repeat
ourselves and can call it whenever we want.

def fix_governorates(data, fix_govs):
"""
This is our function _fix_governorates_; note that we must

↪→pass it
two variables:

- data: the dataframe we want to fix;
- fix_govs : a dictionary of the governorates we need

↪→to correct.

The function will do the following:
For a given dataframe, date list, and dictionary of

↪→Governorates
loop through the keys in the dictionary and combine

↪→the list
of associated governorates into a new dataframe.
Return a new, corrected, dataframe.

"""
# Create an empty list for each of the new dataframes we

↪→'ll create
new_frames = []
# And an empty list for all the governorates we'll need to

↪→remove later
remove = []
# Create our list of dates

(continues on next page)
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date_list = data["Date"].unique()
# Loop through each of the governorates we need to fix
for key in fix_govs.keys():

# Create a filtered dataframe containing only the
↪→governorates to fix

ds = data.loc[data_slice.Governorate.isin(fix_
↪→govs[key])]

# New entries for the new dataframe
new_rows = {"Date": [],

"Cases": [],
"Deaths": [],
"CFR (%)": [],
"Attack Rate (per 1000)": []

}
# Divisor for averages (i.e., there could be more than

↪→2 govs to fix)
num = len(fix_govs[key])
# Add the governorate values to the remove list
remove.extend(fix_govs[key])
# For each date, generate new values
for d in date_list:

# Data in the dataframe is stored as a Timestamp
↪→value

r = ds[ds["Date"] == pd.Timestamp(d)]
new_rows["Date"].append(pd.Timestamp(d))
new_rows["Cases"].append(r.Cases.sum())
new_rows["Deaths"].append(r.Deaths.sum())
new_rows["CFR (%)"].append(r["CFR (%)"].sum()/num)
new_rows["Attack Rate (per 1000)"].append(r[

↪→"Attack Rate (per 1000)"].sum()/num)
# Create a new dataframe from the combined data
new_rows = pd.DataFrame(new_rows)
# And assign the values to the key governorate
new_rows["Governorate"] = key
# Add the new dataframe to our list of new frames
new_frames.append(new_rows)

# Get an inverse filtered dataframe from what we had before
ds = data_slice.loc[~data_slice.Governorate.isin(remove)]
new_frames.append(ds)
# Return a new concatenated dataframe with all our

↪→corrected data
return pd.concat(new_frames, ignore_index=True)

Now we can run our function on our data and reproduce the two tables from
before.

fix = {"Hadramaut": ["Moklla","Say'on"],
"Al Hudaydah": ["Al Hudaydah", "Al-Hudaydah"],
"Al Jawf": ["Al Jawf", "Al_Jawf"],
"Al Maharah": ["Al Maharah", "AL Mahrah"],
"Marib": ["Marib", "Ma'areb"]

(continues on next page)
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}
# Using %time to see how long this takes
%time data_slice = fix_governorates(data_slice, fix).sort_
↪→values("Attack Rate (per 1000)", ascending=False)
# Now we recreate our two slices, and set the index to
↪→Governorate
ds_start = data_slice.loc[data_slice.Date == "2017-05-22"].set_
↪→index("Governorate")
ds_end = data_slice.loc[data_slice.Date == "2018-01-14"].set_
↪→index("Governorate")
# And print
print(ds_start)
print(ds_end)

Wall time: 750 ms
Attack Rate (per 1000) CFR (%) Cases

↪→Date Deaths
Governorate
Al Mahwit 3.270 1.40 2486 2017-
↪→05-22 34
Sana'a 3.050 1.00 3815 2017-
↪→05-22 39
Amanat Al Asimah 2.790 0.40 9216 2017-
↪→05-22 33
Amran 2.450 1.20 3743 2017-
↪→05-22 45
Hajjah 2.100 0.90 4664 2017-
↪→05-22 42
Al Bayda 1.950 0.40 1498 2017-
↪→05-22 6
Al Dhale'e 1.860 0.60 1401 2017-
↪→05-22 8
Abyan 1.750 0.90 1068 2017-
↪→05-22 10
Raymah 0.870 0.70 549 2017-
↪→05-22 4
Dhamar 0.760 2.00 1617 2017-
↪→05-22 33
Taizz 0.590 1.30 1791 2017-
↪→05-22 23
Aden 0.510 2.50 489 2017-
↪→05-22 12
Ibb 0.450 2.70 1378 2017-
↪→05-22 37
Al Hudaydah 0.210 1.15 1397 2017-
↪→05-22 32
Lahj 0.160 0.00 168 2017-
↪→05-22 0
Al Jawf 0.145 0.80 189 2017-
↪→05-22 3
Marib 0.005 0.00 2 2017-
↪→05-22 0 (continues on next page)
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Hadramaut 0.000 0.00 0 2017-
↪→05-22 0
Al Maharah 0.000 0.00 0 2017-
↪→05-22 0

Attack Rate (per 1000) CFR (%) Cases
↪→ Date Deaths
Governorate
Amran 88.0880 0.170 102231 2018-
↪→01-14 175
Al Mahwit 83.6710 0.240 61097 2018-
↪→01-14 149
Al Dhale'e 64.4320 0.170 47132 2018-
↪→01-14 81
Hajjah 50.8500 0.350 118468 2018-
↪→01-14 420
Sana'a 50.3980 0.170 74103 2018-
↪→01-14 123
Dhamar 49.5790 0.160 99766 2018-
↪→01-14 160
Abyan 49.4730 0.120 28241 2018-
↪→01-14 35
Al Bayda 37.8330 0.120 28730 2018-
↪→01-14 34
Amanat Al Asimah 35.1690 0.070 99452 2018-
↪→01-14 70
Raymah 27.0330 0.730 16403 2018-
↪→01-14 120
Lahj 24.1270 0.090 24341 2018-
↪→01-14 22
Al Hudaydah 23.3100 0.095 150965 2018-
↪→01-14 280
Aden 22.6090 0.300 20868 2018-
↪→01-14 62
Ibb 21.8240 0.440 64536 2018-
↪→01-14 286
Taizz 20.8020 0.300 62371 2018-
↪→01-14 187
Al Jawf 13.6775 0.070 15827 2018-
↪→01-14 22
Sa'ada 11.8250 0.050 10703 2018-
↪→01-14 5
Marib 10.1590 0.050 7285 2018-
↪→01-14 7
Al Maharah 3.9330 0.045 1168 2018-
↪→01-14 1
Shabwah 2.3150 0.210 1399 2018-
↪→01-14 3
Hadramaut 0.7585 0.175 590 2018-
↪→01-14 2
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C:\Users\turuk\Anaconda3\envs\calabar\lib\site-packages\
↪→ipykernel_launcher.py:54: FutureWarning: Sorting because non-
↪→concatenation axis is not aligned. A future version
of pandas will change to not sort by default.

To accept the future behavior, pass 'sort=False'.

To retain the current behavior and silence the warning, pass
↪→'sort=True'.

We can also create a line chart to see how the number of cases has progressed
over time. This will be our first use of Matplotlib, a fairly ubiquitous and powerful
Python plotting library. Jupyter Notebook has some “magic” we can use in the
line %matplotlib inline, which permits us to draw charts directly in this
notebook.

# Matplotlib for additional customization
from matplotlib import pyplot as plt
%matplotlib inline

# First we create a pivot table of the data we wish to plot.
↪→Here only the "Cases", although you
# should experiment with the other columns as well.
drawing = pd.pivot_table(data_slice, values="Cases", index=[
↪→"Date"], columns=["Governorate"])
# Then we set a plot figure size and draw
drawing.plot(figsize=(20,15), grid=False)

<matplotlib.axes._subplots.AxesSubplot at 0x1a22efee4e0>
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These are not glamorous charts or tables. This last is what I call a spaghetti chart
because of the tangle of lines that make it difficult to track what is happening.

However, they are useful methods for investigating what the data tell us and
contextualizing it against the events behind the data.

Perhaps, given where we are, you feel some confidence that you could begin to
piece together a story of what is happening in the Yemen cholera epidemic?

8.2 Problems with Data

We will be exploring the data and the trouble with accuracy.
Sitting at your computer in comfortable surroundings—whether in a quiet office

or the clatter and warmth of your favorite coffee shop—it is tempting to place
confidence in a neat table of numbers and descriptions. You may have a sense that
data are, in some reassuring way, truthy.

They are not.
All data are a reflection of the time when they were collected, the methodology

that produced it, and the care with which that methodology was implemented. It is
a sample of a moment in time and it is inherently imperfect.

Medical data, produced by interviewing patient volunteers, is reliant on self-
reported experiences and people—even when they are trying to be honest and
reporting on something uncontroversial—have imperfect memories. Blood or tissue
samples depend on the consistency with which those samples were acquired, and
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the chain that stretches from patient, to clinic, to courier, to laboratory, and to
data analyst. Anything can go wrong, from spillage to spoilage to contamination
to overheating or freezing.

Even data generated autonomously via sensors or computational sampling is
based on what a human thought was important to measure and implemented by
people who had to interpret instructions on what to collect and apply it to the
tools at hand. Sensors can be in the wrong place, pointing in the wrong direction,
miscalibrated, or based on faulty assumptions from the start.

Data carry the bias of the people who constructed the research and the hopes of
those who wish to learn from it.

Data are inherently uncertain and any analysis must be absolutely cognizant of
this. It is the reason we start with ethics. We must, from the outset, be truthful to
ourselves.

In future lessons, we will consider methods of assessing the uncertainty in our
data and how much confidence we can have. For this lesson, we will develop a
theoretical understanding of the uncertainty and which data we can use to tell a
story about events happening in Yemen.

In the space of six months (from May to November 2017), Yemen went from
35,000 cholera cases to almost 1 million. Deaths now exceed 2000 people per month
and the attack rate per 1000 has gone from an average of 1 to 30. This reads like an
out-of-control disaster.

At the same time, however, the fatality rate has dropped from 1% to 0.2%.
Grounds for optimism, then? Somehow medical staff are getting on top of the

illness even as infection spreads?
Consider how these data are collected. Consider the environment in which it is

being collected.

Background: reading on what is happening in Yemen (December 2017):

• Yemen: Coalition Blockade Imperils Civilians—Human Rights Watch, 7 December
2017

• What is happening in Yemen and how are Saudi Arabia’s airstrikes affecting civilians—
Paul Torpey, Pablo Gutiérrez, Glenn Swann and Cath Levett, The Guardian, 16
September 2016

• Saudi “should be blacklisted” over Yemen hospital attacks—BBC, 20 April 2017
• Process Lessons Learned in Yemen’s National Dialogue—Erica Gaston, USIP, February

2014. According to UNICEF, as of November 2017, “More than 20 million people,
including over 11 million children, are in need of urgent humanitarian assistance. At
least 14.8 million are without basic healthcare and an outbreak of cholera has resulted in
more than 900,000 suspected cases.”

Cholera incidence data are being collected in an active war zone where genocide
and human rights violations committed daily. Hospital staff are stretched thin, and
many have been killed. Islamic religious law requires a body to be buried as soon as
possible, and this is even more important in a conflict zone to limit further spread of
disease.

The likelihood is that medical staff are overwhelmed and that the living and ill
must take precedence over the dead. They see as many people as they can, and it is
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a testament to their dedication and professionalism that these data continue to reach
the WHO and UNICEF.

There are human beings behind these data. They have suffered greatly to bring it
to you.

In other words, all we can be certain of is that the Cases and Deaths are the
minimum likely and that attack and death rates are probably extremely inaccurate.
The undercount in deaths may lead to a false sense that the death rate is falling
relative to infection, but one should not count on this.

Despite these caveats, humanitarian organizations must use these data to prepare
their relief response. Food, medication, and aid workers must be readied for the
moment when fighting drops sufficiently to get to Yemen. Journalists hope to stir
public opinion in donor nations (and those outside nations active in the conflict),
using these data to explain what is happening.

The story we are working on must accept that the infection rate is the only data
that carry a reasonable approximation of what is happening and that these data
should be developed to reflect events.

A good artificial intelligence engineer is confident across a broad range of
expertise and against a rapidly changing environment in which the tools and
methods used to pursue our profession are in continual flux. Most of what we do
is safely hidden from view.

The one area where what we do rises to the awareness of the lay public is in
the presentation of our results. It is also an area with continual development of new
visualization tools and techniques.

This is to highlight that the presentation part of this course may date the fastest
and you should take from it principles and approaches to presentation and not
necessarily the software tools.

Presentation is everything from writing up academic findings for publication
in a journal, to writing a financial and market report for a business, to producing
journalism on a complex and fast-moving topic, and to persuading donors and
humanitarian agencies to take a particular health or environmental threat seriously.

It is, first and foremost, about organizing your thoughts to tell a consistent and
compelling story.

8.3 A Language and Approach to Data-Driven Story-Telling

There are “lies, damned lies, and statistics,” as Mark Twain used to say. Be very
careful that you tell the story that is there, rather than one which reflects your own
biases.

According to Edward Tufte, professor of statistics at Yale, graphical displays
should:

• Show the data

https://www.edwardtufte.com/tufte/books_be
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• Induce the viewer to think about the substance, rather than about the methodol-
ogy, graphic design, the technology of graphic production, or something else

• Avoid distorting what the data have to say
• Present many numbers in a small space
• Make large datasets coherent
• Encourage the eye to compare different pieces of data
• Reveal the data at several levels of detail, from a broad overview to the fine

structure
• Serve a reasonably clear purpose: description, exploration, tabulation, or decora-

tion
• Be closely integrated with the statistical and verbal descriptions of a dataset

There are a lot of people with a great many opinions about what constitutes good
visual practice. Manual Lima, in his Visual Complexity blog, has even come up with
an Information Visualization Manifesto.

Any story has a beginning, a middle, and a conclusion. The story-telling form
can vary, but the best and most memorable stories have compelling narratives easily
retold.

Throwing data at a bunch of charts in the hopes that something will stick does not
promote engagement anymore than randomly plunking at an instrument produces
music.

Story-telling does not just happen.
Sun Tzu said, “There are not more than five musical notes, yet the combinations

of these five give rise to more melodies than can ever be heard.”
These are the fundamental chart-types which are used in the course of our

careers:

• Line chart
• Bar chart
• Stacked / area variations of bar and line
• Bubble-charts
• Text charts
• Choropleth maps
• Tree maps

In addition, we can use small multiple versions of any of the above to enhance
comparisons. Small multiples are simple charts placed alongside each other in a
way that encourages analysis while still telling an engaging story. The axes are the
same throughout and extraneous chart guides (like dividers between the charts and
the vertical axes) have been removed. The simple line chart becomes both modern
and information-dense when presented in this way.

There are numerous special types of charts (such as Chernoff Faces), but you are
unlikely to have these implemented in your charting software.

Here is a simple methodology for developing a visual story:

• Write a flow-chart of the narrative encapsulating each of the components in a
module.

http://www.visualcomplexity.com/vc/blog/?p=644
https://en.wikipedia.org/wiki/Chernoff_face
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• Each module will encapsulate a single data-driven thought and the type of chart
will be imposed by the data:

– Time series can be presented in line charts or by small multiples of other plots
– Geospatial data invites choropleths
– Complex multivariate data can be presented in tree maps

• In all matters, be led by the data and by good sense.
• Arrange those modules in a series of illustrations.
• Revise and edit according to the rules in the previous points.

Writing a narrative dashboard with multiple charts can be guided by George
Orwell’s rules from Politics and the English Language:

1. Never use a pie chart; use a table instead.
2. Never use a complicated chart where a simple one will do.
3. Never clutter your data with unnecessary grids, ticks, labels, or detail.
4. If it is possible to remove a chart without taking away from your story, always

remove it.
5. Never mislead your reader through confusing or ambiguous axes or visualiza-

tions.
6. Break any of these rules sooner than draw anything outright barbarous.

8.4 Example: Telling Story with Data

Our example would be to telling the story of an epidemic in Yemen.
We have covered a great deal in this first lesson and now we come to the final

section. Before we go further, we need two new libraries. GeoPandas is almost
identical to Pandas but permits us to work with geospatial data (of which, more in
a moment). Seaborn is similar to Matplotlib (and is a simplified wrapper around
Matplotlib) but looks better, is designed for statistical data, and is simpler to use.

Our first step is to improve the line chart drawn at the end of the initial
exploration. I mentioned the notion of small multiples earlier, and here is our first
opportunity to draw it. Notice howmuch can be achieved in only a few lines of code,
most of which (below) is about formatting the charts themselves.

# Seaborn for plotting and styling
import seaborn as sns

# Everything you need to know about Seaborn FacetGrid
# https://seaborn.pydata.org/generated/seaborn.FacetGrid.html
↪→#seaborn.FacetGrid
sm = sns.FacetGrid(data_slice, col="Governorate", col_wrap=5,
↪→size=3, aspect=2, margin_titles=True)
sm = sm.map(plt.plot, "Date", "Cases")

(continues on next page)

http://www.orwell.ru/library/essays/politics/english/e_polit/
https://www.docs/part2/data_as_a_science:Initial-exploration
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# And now format the plots with appropriate titles and font
↪→sizes
sm.set_titles("{col_name}", size=22).set_ylabels(size=20).set_
↪→yticklabels(size=15).set_xlabels(size=20).set_
↪→xticklabels(size=12)

C:\Users\turuk\Anaconda3\envs\calabar\lib\site-packages\
↪→seaborn\axisgrid.py:230: UserWarning: The `size` parameter
↪→has been renamed to `height`; please update your code.
warnings.warn(msg, UserWarning)

<seaborn.axisgrid.FacetGrid at 0x1a22f3e5b70>

Notice how, even with the condensed format, it is still straightforward to
understand what is happening and the overall display makes for a compelling and
engaging visual.

Unfortunately, unless you know Yemen well, this story is incomplete. It is
difficult to see where these changes are taking place, or how each governorate is
related to the others in physical space. For that we need to plot our data onto a map.
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There are a number of limits for publishing data on maps:

• A choropleth map is really a type of bar chart where the height of the bars is
reflected by a color gradient in 2D space.

• Boundaries that make up regions, districts (or governorates) are of wildly
different sizes and can mislead into prioritizing size over color scale.

Despite these limitations, map-based charts are useful for grounding data in a
physical place. When used in combination with other charts (such as the line charts
above), one can build a complete narrative.

To draw a map, we need a shapefile. These are a collection of several files
developed according to a standard created by Esri that contain information shapes
defined by geographic points, polylines, or polygons, as well as additional files with
metadata or attributes.

HDX has exactly what we need as Yemen—Administrative Boundaries. Down-
load the shapefile zip files to a folder and unzip all the files.

Now we are going to create a GeoPandas dataframe to open the shapefile and
then join this dataframe to our existing data so that we can draw maps.

# Import our GeoPandas library
import geopandas as gpd
# Open the shapefile called "yem_admin1.shp" and note that -
↪→if you're doing this on your home
# computer, you'll need to load the file from where-ever you
↪→saved it
shape_data = gpd.GeoDataFrame.from_file("data/yem_admin1.shp")
# We have no data for Socotra island, so we can drop this row
shape_data = shape_data.loc[~shape_data.name_en.isin(["Socotra
↪→"])]
# And now we can merge our existing data_slice to produce our
↪→map data
map_data = pd.merge(shape_data, data_slice, how="outer", left_
↪→on="name_en", right_on="Governorate", indicator=False)

# Let's draw a map

# First, define a figure, axis and plot size
fig, ax = plt.subplots(figsize=(25,14))
# We'll look at one specific date, the last entry in the series
md = map_data.loc[map_data.Date == "2018-01-14"]
# And plot
md.plot(ax=ax, column='Cases', cmap='OrRd')

<matplotlib.axes._subplots.AxesSubplot at 0x1cb20727cc0>

And here we hit a fundamental limit of a map; it would be nice to show a time
series of how events progressed.

Well, remember the small multiple. So, to end this first lesson, here is what a
small multiple map looks like.

http://wiki.openstreetmap.org/wiki/Shapefiles
https://www.esri.com/en-us/home
https://data.humdata.org/dataset/yemen-admin-boundaries
https://data.humdata.org/dataset/6b2656e2-b915-4671-bfed-468d5edcd80a/resource/1574d33c-c002-4294-a7c4-89433728c9b3/download/yemen_admin_20171007_shape.zip
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# This is a bit more complex than you may expect ... but think
↪→of it like this:
# We're going to create a figure and then iterate over the
↪→time-series to progressively
# add in new subplots. Since there are 125 dates - and that's
↪→rather a lot - we'll
# deliberately limit this to the first date in each month, and
↪→the final date.

# Create a datetime format data series
dates = pd.Series([pd.Timestamp(d) for d in map_data["Date"].
↪→unique()])
# Sort dates in place
dates.sort_values(inplace = True)
dl = {}
for d in dates:

# A mechanism to get the last day of each year-month
k = "{}-{}".format(d.year, d.month)
dl[k] = d

# Recover and sort the unique list of dates
dates = list(dl.values())
dates.sort()

# Create our figure
fig = plt.figure(figsize=(18,10))
# Set two check_sums, first_date and sub_count
first_date = 0
sub_count = 1
# Loop through the dates, using "enumerate" to count the
↪→number of times we loop
for i, d in enumerate(dates[:]):

(continues on next page)
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# Get a dataframe for the subplot at this date
subplot = map_data.loc[map_data.Date == d]
# Add the appropriate subplot in a frame structured as 3

↪→items in 3 rows
# If you get errors here, it's probably because Matplotlib

↪→was expecting
# a different number of images that you are creating.

↪→Check and adjust.
ax = fig.add_subplot(3, 3, sub_count)
# Increment the count
sub_count+=1
# Do some visual fixes to ensure we don't distort the maps,

↪→ and provide titles
ax.set_aspect('equal')
ax.set_axis_off()
ax.title.set_text(d.date())
# And plot
subplot.plot(ax=ax, column='Cases', cmap='OrRd')

2017-05-30 2017-06-30 2017-07-31

2017-08-31 2017-09-30 2017-10-30

2017-11-26 2017-12-31 2018-01-14
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That brings us to the end of this lesson and this case-study. You can play around
with the code, pick a different column to visualize (perhaps “Deaths”), and can learn
more in the libraries about how to present these charts.



Chapter 9
Data Wrangling

Abstract Often, data collected from the source are messy and incomplete, which
cannot be fed directly into Artificial Intelligence Programs. Data Wrangling skills
are needed to create efficient ETL pipelines for usable data. There are many
functions in Pandas that allow us to deal with a wide variety of circumstances. This
chapter will illustrate how to handle Missing Data Values, Duplicates, Mapping
Values, Outliers, Permutations, Merging and Combining, Reshaping, and Pivoting.

Learning outcomes:

• Learn how to use pandas to perform data cleaning and data wrangling.
• Apply data cleaning and data wrangling techniques on real life examples.

Suppose you are working on a machine learning project. You decide to use your
favorite classification algorithm only to realize that the training dataset contains a
mixture of continuous and categorical variables and you’ll need to transform some
of the variables into a suitable format. You realize that the raw data you have can’t
be used for your analysis without some manipulation—what you’ll soon know as
data wrangling. You’ll need to clean this messy data to get anywhere with it.

It is often the case with data science projects that you’ll have to deal with messy
or incomplete data. The raw data we obtain from different data sources is often
unusable at the beginning. All the activity that you do on the raw data to make it
“clean” enough to input to your analytical algorithm is called data wrangling or
data munging. If you want to create an efficient ETL pipeline (extract, transform,
and load) or create beautiful data visualizations, you should be prepared to do a lot
of data wrangling.

As most statisticians, data analysts, and data scientists will admit, most of
the time spent implementing an analysis is devoted to cleaning or wrangling the
data itself, rather than to coding or running a particular model that uses the data.
According to O’Reilly’s 2016 Data Science Salary Survey, 69% of data scientists
will spend a significant amount of time in their day-to-day dealing with basic
exploratory data analysis, while 53% spend time cleaning their data. Data wrangling
is an essential part of the data science role—and if you gain data wrangling skills
and become proficient at it, you’ll quickly be recognized as somebody who can
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contribute to cutting-edge data science work and who can hold their own as a data
professional.

In this chapter, we will be implementing and showing some of the most common
data wrangling techniques used in the industry. But first, let us import the required
libraries.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

9.1 Handling Missing Data

9.1.1 Missing Data

string_data = pd.Series(['aardvark', 'artichoke', np.nan,
↪→'avocado'])
string_data
string_data.isnull()

0 False
1 False
2 True
3 False
dtype: bool

string_data[0] = None
string_data.isnull()

0 True
1 False
2 True
3 False
dtype: bool

9.1.2 Removing Missing Data

from numpy import nan as NA
data = pd.Series([1, NA, 3.5, NA, 7])
data.dropna()
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0 1.0
2 3.5
4 7.0
dtype: float64

data[data.notnull()]

0 1.0
2 3.5
4 7.0
dtype: float64

data = pd.DataFrame([[1., 6.5, 3.], [1., NA, NA],
[NA, NA, NA], [NA, 6.5, 3.]])

cleaned = data.dropna()
print(data)
print(cleaned)

0 1 2
0 1.0 6.5 3.0
1 1.0 NaN NaN
2 NaN NaN NaN
3 NaN 6.5 3.0

0 1 2
0 1.0 6.5 3.0

data.dropna(how='all')

0 1 2
0 1.0 6.5 3.0
1 1.0 NaN NaN
3 NaN 6.5 3.0

data[4] = NA
data
data.dropna(axis=1, how='all')

0 1 2
0 1.0 6.5 3.0
1 1.0 NaN NaN
2 NaN NaN NaN
3 NaN 6.5 3.0

df = pd.DataFrame(np.random.randn(7, 3))
df.iloc[:4, 1] = NA
df.iloc[:2, 2] = NA
df

(continues on next page)
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df.dropna()
df.dropna(thresh=2)

0 1 2
2 -0.185468 NaN -1.250882
3 -0.250543 NaN -0.038900
4 -1.658802 -1.346946 0.962846
5 0.439124 -1.433696 -0.169313
6 1.531410 -0.172615 0.203521

9.2 Transformation

9.2.1 Duplicates

data = pd.DataFrame({'k1': ['one', 'two'] * 3 + ['two'],
'k2': [1, 1, 2, 3, 3, 4, 4]})

data

k1 k2
0 one 1
1 two 1
2 one 2
3 two 3
4 one 3
5 two 4
6 two 4

data.duplicated()

0 False
1 False
2 False
3 False
4 False
5 False
6 True
dtype: bool

data.drop_duplicates()

k1 k2
0 one 1
1 two 1

(continues on next page)
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2 one 2
3 two 3
4 one 3
5 two 4

data['v1'] = range(7)
data.drop_duplicates(['k1'])

k1 k2 v1
0 one 1 0
1 two 1 1

data.drop_duplicates(['k1', 'k2'], keep='last')

k1 k2 v1
0 one 1 0
1 two 1 1
2 one 2 2
3 two 3 3
4 one 3 4
6 two 4 6

9.2.2 Mapping

data = pd.DataFrame({'food': ['bacon', 'pulled pork', 'bacon',
'Pastrami', 'corned beef', 'Bacon

↪→',
'pastrami', 'honey ham', 'nova

↪→lox'],
'ounces': [4, 3, 12, 6, 7.5, 8, 3, 5, 6]})

data

food ounces
0 bacon 4.0
1 pulled pork 3.0
2 bacon 12.0
3 Pastrami 6.0
4 corned beef 7.5
5 Bacon 8.0
6 pastrami 3.0
7 honey ham 5.0
8 nova lox 6.0
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meat_to_animal = {
'bacon': 'pig',
'pulled pork': 'pig',
'pastrami': 'cow',
'corned beef': 'cow',
'honey ham': 'pig',
'nova lox': 'salmon'

}

lowercased = data['food'].str.lower()
lowercased
data['animal'] = lowercased.map(meat_to_animal)
data

food ounces animal
0 bacon 4.0 pig
1 pulled pork 3.0 pig
2 bacon 12.0 pig
3 Pastrami 6.0 cow
4 corned beef 7.5 cow
5 Bacon 8.0 pig
6 pastrami 3.0 cow
7 honey ham 5.0 pig
8 nova lox 6.0 salmon

data['food'].map(lambda x: meat_to_animal[x.lower()])

0 pig
1 pig
2 pig
3 cow
4 cow
5 pig
6 cow
7 pig
8 salmon
Name: food, dtype: object

9.3 Outliers

data = pd.DataFrame(np.random.randn(1000, 4))
data.describe()

0 1 2 3
count 1000.000000 1000.000000 1000.000000 1000.000000

(continues on next page)
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mean 0.046326 0.025065 -0.020071 0.028721
std 0.998348 0.985165 0.995451 1.032522
min -3.422314 -3.266015 -2.954779 -3.222582
25% -0.589264 -0.659314 -0.667673 -0.652942
50% 0.022320 0.034156 -0.019490 0.035827
75% 0.705115 0.700335 0.615950 0.709712
max 3.455663 3.191903 2.767412 3.355966

col = data[2]
col[np.abs(col) > 3]

Series([], Name: 2, dtype: float64)

data[(np.abs(data) > 3).any(1)]

0 1 2 3
193 -0.051466 -1.147485 0.704028 -3.222582
263 2.092650 -3.266015 0.249550 1.422404
509 -0.552704 -1.032550 -0.980024 3.355966
592 1.297188 3.191903 -0.459355 1.490715
612 -3.422314 -1.407894 -0.076225 -2.017783
640 -3.254393 -0.378483 -1.233516 0.040324
771 3.167948 -0.128717 -0.809991 -1.400584
946 3.455663 -1.112744 -1.017207 1.736736
973 2.014649 0.441878 -1.071450 -3.103078
983 -1.566632 -3.011891 0.161519 -0.468655

data[np.abs(data) > 3] = np.sign(data) * 3
data.describe()

0 1 2 3
count 1000.000000 1000.000000 1000.000000 1000.000000
mean 0.046380 0.025151 -0.020071 0.028690
std 0.994186 0.983675 0.995451 1.030448
min -3.000000 -3.000000 -2.954779 -3.000000
25% -0.589264 -0.659314 -0.667673 -0.652942
50% 0.022320 0.034156 -0.019490 0.035827
75% 0.705115 0.700335 0.615950 0.709712
max 3.000000 3.000000 2.767412 3.000000

np.sign(data).head()

0 1 2 3
0 1.0 -1.0 1.0 1.0
1 -1.0 1.0 -1.0 1.0
2 1.0 -1.0 1.0 1.0

(continues on next page)
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3 -1.0 -1.0 1.0 -1.0
4 1.0 -1.0 -1.0 -1.0

9.4 Permutation

df = pd.DataFrame(np.arange(5 * 4).reshape((5, 4)))
sampler = np.random.permutation(5)
sampler

array([2, 0, 3, 1, 4])

df
df.take(sampler)

0 1 2 3
2 8 9 10 11
0 0 1 2 3
3 12 13 14 15
1 4 5 6 7
4 16 17 18 19

df.sample(n=3)

0 1 2 3
3 12 13 14 15
1 4 5 6 7
0 0 1 2 3

choices = pd.Series([5, 7, -1, 6, 4])
draws = choices.sample(n=10, replace=True)
draws

2 -1
0 5
3 6
3 6
2 -1
0 5
0 5
2 -1
0 5
1 7
dtype: int64
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9.5 Merging and Combining

df1 = pd.DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'a', 'b'],
'data1': range(7)})

df2 = pd.DataFrame({'key': ['a', 'b', 'd'],
'data2': range(3)})

df1
df2

key data2
0 a 0
1 b 1
2 d 2

pd.merge(df1, df2)

key data1 data2
0 b 0 1
1 b 1 1
2 b 6 1
3 a 2 0
4 a 4 0
5 a 5 0

pd.merge(df1, df2, on='key')

key data1 data2
0 b 0 1
1 b 1 1
2 b 6 1
3 a 2 0
4 a 4 0
5 a 5 0

df3 = pd.DataFrame({'lkey': ['b', 'b', 'a', 'c', 'a', 'a', 'b
↪→'],

'data1': range(7)})
df4 = pd.DataFrame({'rkey': ['a', 'b', 'd'],

'data2': range(3)})
pd.merge(df3, df4, left_on='lkey', right_on='rkey')

lkey data1 rkey data2
0 b 0 b 1
1 b 1 b 1
2 b 6 b 1
3 a 2 a 0
4 a 4 a 0
5 a 5 a 0
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pd.merge(df1, df2, how='outer')

key data1 data2
0 b 0.0 1.0
1 b 1.0 1.0
2 b 6.0 1.0
3 a 2.0 0.0
4 a 4.0 0.0
5 a 5.0 0.0
6 c 3.0 NaN
7 d NaN 2.0

df1 = pd.DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'b'],
'data1': range(6)})

df2 = pd.DataFrame({'key': ['a', 'b', 'a', 'b', 'd'],
'data2': range(5)})

df1
df2
pd.merge(df1, df2, on='key', how='left')

key data1 data2
0 b 0 1.0
1 b 0 3.0
2 b 1 1.0
3 b 1 3.0
4 a 2 0.0
5 a 2 2.0
6 c 3 NaN
7 a 4 0.0
8 a 4 2.0
9 b 5 1.0
10 b 5 3.0

pd.merge(df1, df2, how='inner')

key data1 data2
0 b 0 1
1 b 0 3
2 b 1 1
3 b 1 3
4 b 5 1
5 b 5 3
6 a 2 0
7 a 2 2
8 a 4 0
9 a 4 2

left = pd.DataFrame({'key1': ['foo', 'foo', 'bar'],
'key2': ['one', 'two', 'one'],

(continues on next page)
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'lval': [1, 2, 3]})
right = pd.DataFrame({'key1': ['foo', 'foo', 'bar', 'bar'],

'key2': ['one', 'one', 'one', 'two'],
'rval': [4, 5, 6, 7]})

pd.merge(left, right, on=['key1', 'key2'], how='outer')

key1 key2 lval rval
0 foo one 1.0 4.0
1 foo one 1.0 5.0
2 foo two 2.0 NaN
3 bar one 3.0 6.0
4 bar two NaN 7.0

pd.merge(left, right, on='key1')
pd.merge(left, right, on='key1', suffixes=('_left', '_right'))

key1 key2_left lval key2_right rval
0 foo one 1 one 4
1 foo one 1 one 5
2 foo two 2 one 4
3 foo two 2 one 5
4 bar one 3 one 6
5 bar one 3 two 7

9.6 Reshaping and Pivoting

data = pd.DataFrame(np.arange(6).reshape((2, 3)),
index=pd.Index(['Ohio', 'Colorado'], name=

↪→'state'),
columns=pd.Index(['one', 'two', 'three'],
name='number'))

data

number one two three
state
Ohio 0 1 2
Colorado 3 4 5

result = data.stack()
result

state number
Ohio one 0

(continues on next page)
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two 1
three 2

Colorado one 3
two 4
three 5

dtype: int32

result.unstack()

number one two three
state
Ohio 0 1 2
Colorado 3 4 5

result.unstack(0)
result.unstack('state')

state Ohio Colorado
number
one 0 3
two 1 4
three 2 5

s1 = pd.Series([0, 1, 2, 3], index=['a', 'b', 'c', 'd'])
s2 = pd.Series([4, 5, 6], index=['c', 'd', 'e'])
data2 = pd.concat([s1, s2], keys=['one', 'two'])
data2
data2.unstack()

a b c d e
one 0.0 1.0 2.0 3.0 NaN
two NaN NaN 4.0 5.0 6.0

9.7 Wide to Long

df = pd.DataFrame({'key': ['foo', 'bar', 'baz'],
'A': [1, 2, 3],
'B': [4, 5, 6],
'C': [7, 8, 9]})

df

key A B C
0 foo 1 4 7

(continues on next page)
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1 bar 2 5 8
2 baz 3 6 9

melted = pd.melt(df, ['key'])
melted

key variable value
0 foo A 1
1 bar A 2
2 baz A 3
3 foo B 4
4 bar B 5
5 baz B 6
6 foo C 7
7 bar C 8
8 baz C 9

reshaped = melted.pivot('key', 'variable', 'value')
reshaped

variable A B C
key
bar 2 5 8
baz 3 6 9
foo 1 4 7

reshaped.reset_index()

variable key A B C
0 bar 2 5 8
1 baz 3 6 9
2 foo 1 4 7

pd.melt(df, id_vars=['key'], value_vars=['A', 'B'])

key variable value
0 foo A 1
1 bar A 2
2 baz A 3
3 foo B 4
4 bar B 5
5 baz B 6

pd.melt(df, value_vars=['A', 'B', 'C'])
pd.melt(df, value_vars=['key', 'A', 'B'])
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variable value
0 key foo
1 key bar
2 key baz
3 A 1
4 A 2
5 A 3
6 B 4
7 B 5
8 B 6



Chapter 10
Regression

Abstract Regression estimates the relationship between dependent variables and
independent variables. Linear regression is an easily understood, popular basic
technique, which uses historical data to produce an output variable. Decision Tree
regression arrives at an estimate by applying conditional rules on the data, narrowing
possible values until a single prediction is made. Random Forests are clusters of
individual decision trees that produce a prediction by selecting a vote by majority
voting. Neural Networks are a representation of the brain and learns from the
data through adjusting weights to minimize the error of prediction. Proper Data
Processing techniques can further improve a model’s prediction such as ranking
feature importance and outlier removal.

Learning outcomes:

• Learn and apply basic models for regression tasks using sklearn and keras.
• Learn data processing techniques to achieve better results.
• Learn how to use simple feature selection techniques to improve our model.
• Data cleaning to help improve our model’s RMSE

Regression looks for relationships among variables. For example, you can
observe several employees of some company and try to understand how their salaries
depend on the features, such as experience, level of education, role, city they work
in, and so on.

This is a regression problem where data related to each employee represent one
observation. The presumption is that the experience, education, role, and city are the
independent features, and the salary of the employee depends on them.

Similarly, you can try to establish a mathematical dependence of the prices of
houses on their areas, numbers of bedrooms, distances to the city center, and so on.

Generally, in regression analysis, you usually consider some phenomenon of
interest and have a number of observations. Each observation has two or more
features. Following the assumption that (at least) one of the features depends on
the others, you try to establish a relation among them.

The dependent features are called the dependent variables, outputs, or responses.
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The independent features are called the independent variables, inputs, or predic-
tors.

Regression problems usually have one continuous and unbounded dependent
variable. The inputs, however, can be continuous, discrete, or even categorical data
such as gender, nationality, brand, and so on.

It is a common practice to denote the outputs with x and inputs with y. If there
are two or more independent variables, they can be represented as the vector x =
(x1, . . . , xr ), where r is the number of inputs.

When Do You Need Regression?
Typically, you need regression to answer whether and how some phenomenon
influences the other or how several variables are related. For example, you can use
it to determine if and to what extent the experience or gender impacts salaries.

Regression is also useful when you want to forecast a response using a new set
of predictors. For example, you could try to predict electricity consumption of a
household for the next hour given the outdoor temperature, time of day, and number
of residents in that household.

Regression is used in many different fields: economy, computer science, social
sciences, and so on. Its importance rises every day with the availability of large
amounts of data and increased awareness of the practical value of data.

It is important to note is that regression does not imply causation. It is easy to find
examples of non-related data that, after a regression calculation, do pass all sorts of
statistical tests. The following is a popular example that illustrates the concept of
data-driven “causality.”

It is often said that correlation does not imply causation, although, inadvertently,
we sometimes make the mistake of supposing that there is a causal link between two
variables that follow a certain common pattern
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Dataset: “Alumni Giving Regression (Edited).csv”
You can obtain the dataset from this link:

https://www.dropbox.com/s/veak3ugc4wj9luz/Alumni%20Giving
↪→%20Regression%20%28Edited%29.csv?dl=0.

Also, you may run the following code in order to download the dataset in
google colab:

!wget https://www.dropbox.com/s/veak3ugc4wj9luz/Alumni%20Giving
↪→%20Regression%20%28Edited%29.csv?dl=0 -O
--quiet "./Alumni Giving Regression (Edited).csv"

!wget https://www.dropbox.com/s/veak3ugc4wj9luz/Alumni%20Giving
↪→%20Regression%20%28Edited%29.csv?dl=0 -O -quiet "./Alumni
↪→Giving Regression (Edited).csv"

# Importing libraries needed
# Note that keras is generally used for deep learning as well
from keras.models import Sequential
from keras.layers import Dense, Dropout
from sklearn.metrics import classification_report, confusion_
↪→matrix
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
import numpy as np
from sklearn import linear_model
from sklearn import preprocessing
from sklearn import tree
from sklearn.ensemble import RandomForestRegressor,
↪→GradientBoostingRegressor
import pandas as pd
import csv

Using TensorFlow backend.

In general, we will import dataset for structured dataset using pandas. We will
also demonstrate the code for loading dataset using NumPy to show the differences
between both libraries. Here, we are using a method in pandas call read_csv,
which takes the path of a csv file. ’CS’ in CSV represents comma separated. Thus,
if you open up the file in excel, you would see values separated by commas.

# fix random seed for reproducibility
np.random.seed(7)
df = pd.read_csv("Alumni Giving Regression (Edited).csv",
↪→delimiter="," )
df.head()
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A B C D E F
0 24 0.42 0.16 0.59 0.81 0.08
1 19 0.49 0.04 0.37 0.69 0.11
2 18 0.24 0.17 0.66 0.87 0.31
3 8 0.74 0.00 0.81 0.88 0.11
4 8 0.95 0.00 0.86 0.92 0.28

In pandas, it is very convenient to handle numerical data. Before doing any
model, it is good to take a look at some of the dataset’s statistics to get a “feel”
of the data. Here, we can simple call df.describe, which is a method in pandas
dataframe

df.describe()

A B C D
↪→ E F
count 123.000000 123.000000 123.000000 123.000000 123.
↪→000000 123.000000
mean 17.772358 0.403659 0.136260 0.645203 0.
↪→841138 0.141789
std 4.517385 0.133897 0.060101 0.169794 0.
↪→083942 0.080674
min 6.000000 0.140000 0.000000 0.260000 0.
↪→580000 0.020000
25% 16.000000 0.320000 0.095000 0.505000 0.
↪→780000 0.080000
50% 18.000000 0.380000 0.130000 0.640000 0.
↪→840000 0.130000
75% 20.000000 0.460000 0.180000 0.785000 0.
↪→910000 0.170000
max 31.000000 0.950000 0.310000 0.960000 0.
↪→980000 0.410000

Furthermore, pandas provides a helpful method to calculate the pairwise correla-
tion between two variables. What is correlation?

The term “correlation” refers to a mutual relationship or association between
quantities (numerical number). In almost any business, it is very helping to express
one quantity in terms of its relationship with others. We are concerned with
this because business plans and departments are not isolated! For example, sales
might increase when the marketing department spends more on advertisements,
or a customer’s average purchase amount on an online site may depend on his
or her characteristics. Often, correlation is the first step to understanding these
relationships and subsequently building better business and statistical models.

For example: “D” and “E” have a strong correlation of 0.93, which means that
when D moves in the positive direction E is likely to move in that direction too.
Here, notice that the correlation of A and A is 1. Of course, A would be perfectly
correlated with A.
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corr=df.corr(method ='pearson')
corr

A B C D E F
A 1.000000 -0.691900 0.414978 -0.604574 -0.521985 -0.549244
B -0.691900 1.000000 -0.581516 0.487248 0.376735 0.540427
C 0.414978 -0.581516 1.000000 0.017023 0.055766 -0.175102
D -0.604574 0.487248 0.017023 1.000000 0.934396 0.681660
E -0.521985 0.376735 0.055766 0.934396 1.000000 0.647625
F -0.549244 0.540427 -0.175102 0.681660 0.647625 1.000000

In general, we would need to test our model. train_test_split is a func-
tion in Sklearnmodel selection for splitting data arrays into two subsets for train-
ing data and for testing data.With this function, you do not need to divide the dataset
manually. You can use from the function train_test_split using the follow-
ing code sklearn.model_selection import train_test_split.
By default, Sklearn train_test_split will make random partitions for the two subsets.
However, you can also specify a random state for the operation.

Here, take note that we will need to pass in the X and Y to the function. X refers
to the features while Y refers to the target of the dataset.

Y_POSITION = 5
model_1_features = [i for i in range(0,Y_POSITION)]
X = df.iloc[:,model_1_features]
Y = df.iloc[:,Y_POSITION]
# create model
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_
↪→size=0.20, random_state=2020)

10.1 Linear Regression

Linear regression is a basic predictive analytics technique that uses historical data to
predict an output variable. It is popular for predictive modeling because it is easily
understood and can be explained using plain English.

The basic idea is that if we can fit a linear regression model to observed data, we
can then use the model to predict any future values. For example, let us assume that
we have found from historical data that the price (P) of a house is linearly dependent
upon its size (S)—in fact, we found that a house’s price is exactly 90 times its size.
The equation will look like this: P = 90*S

With this model, we can then predict the cost of any house. If we have a
house that is 1,500 square feet, we can calculate its price to be: P = 90*1500
= $135,000
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There are two kinds of variables in a linear regression model:

• The input or predictor variable is the variable(s) that help predict the value of the
output variable. It is commonly referred to as X.

• The output variable is the variable that we want to predict. It is commonly
referred to as Y.

To estimate Y using linear regression, we assume the equation: Ye = α + β X
where Ye is the estimated or predicted value of Y based on our linear equation. Our
goal is to find statistically significant values of the parameters α and β that minimize
the difference between Y and Ye. If we are able to determine the optimum values of
these two parameters, then we will have the line of best fit that we can use to predict
the values of Y, given the value of X. So, how do we estimate α and β? We can use
a method called ordinary least squares.

The objective of the least squares method is to find values of α and β that
minimize the sum of the squared difference between Y and Ye. We will not delve
into the mathematics of least squares in our book.

Here, we notice that when E increases by 1, our Y increases by 0.175399. Also,
when C increases by 1, our Y falls by 0.044160.

#Model 1 : linear regression

model1 = linear_model.LinearRegression()
model1.fit(X_train, y_train)
y_pred_train1 = model1.predict(X_train)
print("Regression")
print("================================")
RMSE_train1 = mean_squared_error(y_train,y_pred_train1)

print("Regression Train set: RMSE {}".format(RMSE_train1))

(continues on next page)
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print("================================")
y_pred1 = model1.predict(X_test)
RMSE_test1 = mean_squared_error(y_test,y_pred1)
print("Regression Test set: RMSE {}".format(RMSE_test1))
print("================================")

coef_dict = {}
for coef, feat in zip(model1.coef_,model_1_features):

coef_dict[df.columns[feat]] = coef

print(coef_dict)

Regression
================================
Regression Train set: RMSE 0.0027616933222892287
================================
Regression Test set: RMSE 0.0042098240263563754
================================
{'A': -0.0009337757382417014, 'B': 0.16012156890162915, 'C': -
↪→0.04416001542534971, 'D': 0.15217907817100398, 'E': 0.
↪→17539950794101034}

10.2 Decision Tree Regression

A decision tree is arriving at an estimate by asking a series of questions to the data,
each question narrowing our possible values until the model gets confident enough
to make a single prediction. The order of the question and their content are being
determined by the model. In addition, the questions asked are all in a True/False
form.

This is a little tough to grasp because it is not how humans naturally think, and
perhaps the best way to show this difference is to create a real decision tree from. In
the above problem x1, x2 are two features that allow us to make predictions for the
target variable y by asking True/False questions.

The decision of making strategic splits heavily affects a tree’s accuracy. The
decision criteria are different for classification and regression trees. Decision trees
regression normally use mean squared error (MSE) to decide to split a node into
two or more sub-nodes. Suppose we are doing a binary tree; the algorithm will first
pick a value and split the data into two subsets. For each subset, it will calculate the
MSE separately. The tree chooses the value with results in smallest MSE value.

Let us examine how is Splitting Decided for Decision Trees Regressor in more
detail. The first step to create a tree is to create the first binary decision. How are
you going to do it?
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1. We need to pick a variable and the value to split on such that the two groups are
as different from each other as possible.

2. For each variable, for each possible value of the possible value of that variable
see whether it is better.

3. Take weighted average of two new nodes (mse*num_samples).

To sum up, we now have:

• A single number that represents how good a split is, which is the weighted
average of the mean squared errors of the two groups that create.

• A way to find the best split, which is to try every variable and to try every possible
value of that variable and see which variable and which value gives us a split with
the best score.

Training of a decision tree regressor will stop when some stopping condition is
met:

1. When you hit a limit that was requested (for example: max_depth).
2. When your leaf nodes only have one thing in them (no further split is possible,

MSE for the train will be zero but will overfit for any other set—not a useful
model).

#Model 2 decision tree
model2 = tree.DecisionTreeRegressor()
model2.fit(X_train, y_train)
print("Decision Tree")
print("================================")
y_pred_train2 = model2.predict(X_train)
RMSE_train2 = mean_squared_error(y_train,y_pred_train2)
print("Decision Tree Train set: RMSE {}".format(RMSE_train2))
print("================================")

(continues on next page)
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y_pred_test2 = model2.predict(X_test)
RMSE_test2 = mean_squared_error(y_test,y_pred_test2)
print("Decision Tree Test set: RMSE {}".format(RMSE_test2))
print("================================")

Decision Tree
================================
Decision Tree Train set: RMSE 1.4739259778473743e-36
================================
Decision Tree Test set: RMSE 0.008496
================================

10.3 Random Forests

What is a Random Forest? And how does it differ from a Decision Tree?
The fundamental concept behind random forest is a simple but powerful one—

the wisdom of crowds. In data science speak, the reason that the random forest
model works so well is: A large number of relatively uncorrelated models (trees)
operating as a committee will outperform any of the individual constituent models.

The low correlation between models is the key. Just like how investments with
low correlations (like stocks and bonds) come together to form a portfolio that
is greater than the sum of its parts, uncorrelated models can produce ensemble
predictions that are more accurate than any of the individual predictions. The reason
for this wonderful effect is that the trees protect each other from their individual
errors (as long as they do not constantly all err in the same direction). While some
trees may be wrong, many other trees will be right, so as a group the trees are able
to move in the correct direction. So the prerequisites for random forest to perform
well are:

1. There needs to be some actual signals in our features so that models built using
those features do better than random guessing.

2. The predictions (and therefore the errors) made by the individual trees need to
have low correlations with each other.

So how does random forest ensure that the behavior of each individual tree is not
too correlated with the behavior of any of the other trees in the model? It uses the
following two methods:

1. Bagging (Bootstrap Aggregation)—Decision trees are very sensitive to the data
they are trained on—small changes to the training set can result in significantly
different tree structures. Random forest takes advantage of this by allowing each
individual tree to randomly sample from the dataset with replacement, resulting
in different trees. This process is known as bagging.
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2. Feature Randomness—In a normal decision tree, when it is time to split a node,
we consider every possible feature and pick the one that produces the most
separation between the observations in the left node vs. those in the right node.
In contrast, each tree in a random forest can pick only from a random subset
of features. This forces even more variation among the trees in the model and
ultimately results in lower correlation across trees and more diversification.

As Random Forest is actually a collection of Decision Trees, this makes the
algorithm slower and less effective for real-time predictions. In general, Random
Forest can be fast to train, but quite slow to create predictions once they are trained.
This is due to the fact that it has to run predictions on each individual tree and then
average their predictions to create the final prediction.

Each individual tree in the random forest splits out a class prediction and the class
with the most votes becomes our model’s prediction. Decision Trees do suffer from
overfittingwhile Random Forest can prevent overfitting resulting in better prediction
most of the time.

#Model 3 Random Forest
model3 = RandomForestRegressor()
model3.fit(X_train, y_train)
print("Random Forest Regressor")
print("================================")
y_pred_train3 = model3.predict(X_train)
RMSE_train3 = mean_squared_error(y_train,y_pred_train3)
print("Random Forest Regressor TrainSet: RMSE {}".format(RMSE_
↪→train3))
print("================================")
y_pred_test3 = model3.predict(X_test)
RMSE_test3 = mean_squared_error(y_test,y_pred_test3)
print("Random Forest Regressor TestSet: RMSE {}".format(RMSE_
↪→test3))
print("================================")

Random Forest Regressor
================================
Random Forest Regressor TrainSet: RMSE 0.0004964972448979589
================================
Random Forest Regressor TestSet: RMSE 0.004843255999999997
================================

10.4 Neural Network

Neural networks are the representation we make of the brain: neurons intercon-
nected to other neurons, which forms a network. A simple information transits in
a lot of them before becoming an actual thing, like “move the hand to pick up this
pencil.”
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The operation of a complete neural network is straightforward : one enters
variables as inputs (for example, an image if the neural network is supposed to tell
what is on an image), and after some calculations, an output is returned (probability
of whether an image is a cat).

x1

x2

x3

Layer L1 Layer L2

Layer L3

Layer L4

hw,b(x)

+1 +1

+1

When an input is given to the neural network, it returns an output. On the first try,
it cannot get the right output by its own (except with luck) and that is why, during the
learning phase, every input comes with its label, explaining what output the neural
network should have guessed. If the choice is the good one, actual parameters are
kept and the next input is given. However, if the obtained output does not match the
label, weights are changed. Those are the only variables that can be changed during
the learning phase. This process may be imagined as multiple buttons that are turned
into different possibilities every time an input is not guessed correctly. To determine
which weight is better to modify, a particular process, called “backpropagation” is
done.

Below is the code to create a simple neural network in python:
The following code is telling python to add a layer of 64 neurons into the neural

network. We can stack the models by adding more layers of neuron. Or we can
simply increase the number of neurons. This can be thought of as to increase the
number of “neurons” in one’s brain and thereby improving one’s learning ability.

#Model 5: neural network
print("Neural Network")
print("================================")
model = Sequential()
model.add(Dense(64, input_dim=Y_POSITION, activation='relu'))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(1, activation='relu'))
# Compile mode

(continues on next page)
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# https://www.tensorflow.org/guide/keras/train_and_evaluate
model.compile(loss='MSE', optimizer='Adamax', metrics=[
↪→'accuracy'])
# Fit the model
model.fit(X_train, y_train, epochs=300, batch_size=5,
↪→verbose=0)
# evaluate the model
predictions5 = model.predict(X_train)
RMSE_train5 = mean_squared_error(y_train,predictions5)
print("Neural Network TrainSet: RMSE {}".format(RMSE_train5))
print("==================================")
predictions5 = model.predict(X_test)
RMSE_test5 = mean_squared_error(y_test,predictions5)
print("Neural Network TestSet: RMSE {}".format(RMSE_test5))
print("================================")

Neural Network
================================
Neural Network TrainSet: RMSE 0.02496122448979592
==================================
Neural Network TestSet: RMSE 0.032824
================================

10.5 How to Improve Our Regression Model

10.5.1 Boxplot

A boxplot is a standardized way of displaying the distribution of data based on a
five number summary (“minimum,” first quartile (Q1), median, third quartile (Q3),

Outliers Outliers

“Minimum”
(Q1 – 1.5*IQR)

–4 –3 –2 –1 43210

“Maximum”
(Q3 + 1.5*IQR)

Interquartile Range
(IQR)

Q1 Q3Median

(25th Percentile) (75th Percentile)
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and “maximum”). It tells you about your outliers and what their values are. It can
also tell you if your data is symmetrical, how tightly your data is grouped, and if
and how your data is skewed.

Here is an image that shows normal distribution on a boxplot:
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As seen, a boxplot is a great way to visualize your dataset. Now, let us try to
remove the outliers using our boxplot plot. This can be easily achieved with pandas
dataframe. But do note that the dataset should be numerical to do this.

Code for boxplot:

boxplot = pd.DataFrame(dataset).boxplot()

import seaborn as sns
import pandas as pd
boxplot = pd.DataFrame(dataset).boxplot()
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As shown in the plot, there are values in column 0 that are outliers, which are
values that are extremely large or small. This can skew our dataset. A consequence
of having outliers in our dataset is that our model cannot learn the right parameters.
Thus, it results in a poorer prediction.

10.5.2 Remove Outlier

The code removes outlier that is more than 99th percentile. Next, let us apply this
on values lower than 1st percentile.

quantile99 = df.iloc[:,0].quantile(0.99)
df1 = df[df.iloc[:,0] < quantile99]
df1.boxplot()

<matplotlib.axes._subplots.AxesSubplot at 0x1af88e4f108>

Here, we have removed the outliers from the data successfully.

quantile1 = df.iloc[:,0].quantile(0.01)
quantile99 = df.iloc[:,0].quantile(0.99)
df2 = df[(df.iloc[:,0] > quantile1) & (df.iloc[:,0] <
↪→quantile99)]
df2.boxplot()

<matplotlib.axes._subplots.AxesSubplot at 0x1af8c38d308>

df2.shape
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(118, 6)

10.5.3 Remove NA

To drop all the rows with the NaN values, you may use :

df.dropna()

df1 = df1.dropna()
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10.6 Feature Importance

Apart from data cleaning, we can apply use variables that we deem to be important
to us. One way of doing so is via feature importance of random forest trees. In many
use cases it is equally important to not only have an accurate but also an interpretable
model. Oftentimes, apart from wanting to know what our model’s house price
prediction is, we also wonder why it is this high/low and which features are
most important in determining the forecast. Another example might be predicting
customer churn—it is very nice to have a model that is successfully predictingwhich
customers are prone to churn, but identifying which variables are important can help
us in early detection and maybe even improving the product/service.

Knowing feature importance indicated by machine learning models can benefit
you in multiple ways, for example:

1. By getting a better understanding of the model’s logic you can not only verify
it being correct but also work on improving the model by focusing only on the
important variables.

2. The above can be used for variable selection—you can remove x variables that
are not that significant and have similar or better performance in much shorter
training time.

3. In some business cases it makes sense to sacrifice some accuracy for the sake
of interpretability. For example, when a bank rejects a loan application, it must
also have a reasoning behind the decision, which can also be presented to the
customer.

We can obtain the feature importance using this code:

importances = RF.feature_importances_

Then, we can sort the feature importance for ranking and indexing.

indices = numpy.argsort(importances)[::-1]

import numpy
RF = model3
importances = RF.feature_importances_
std = numpy.std([tree.feature_importances_ for tree in RF.
↪→estimators_],axis=0)
indices = numpy.argsort(importances)[::-1]

# Print the feature ranking
print("Feature ranking:")

for f in range(X.shape[1]):
print("%d. feature (Column index) %s (%f)" % (f + 1,

↪→indices[f], importances[indices[f]]))
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Feature ranking:
1. feature (Column index) 3 (0.346682)
2. feature (Column index) 1 (0.217437)
3. feature (Column index) 0 (0.174081)
4. feature (Column index) 4 (0.172636)
5. feature (Column index) 2 (0.089163)

Let us use the top 3 features and retrain another model. Here, we took a shorter
time to train the model, yet the RMSE does not suffer due to fewer features.

indices_top3 = indices[:3]
print(indices_top3)
dataset=df
df = pd.DataFrame(df)

Y_position = 5
TOP_N_FEATURE = 3

X = dataset.iloc[:,indices_top3]
Y = dataset.iloc[:,Y_position]
# create model
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_
↪→size=0.20, random_state=2020)
#Model 1 : linear regression

model1 = linear_model.LinearRegression()
model1.fit(X_train, y_train)
y_pred_train1 = model1.predict(X_train)
print("Regression")
print("================================")
RMSE_train1 = mean_squared_error(y_train,y_pred_train1)

print("Regression TrainSet: RMSE {}".format(RMSE_train1))
print("================================")
y_pred1 = model1.predict(X_test)
RMSE_test1 = mean_squared_error(y_test,y_pred1)
print("Regression Testset: RMSE {}".format(RMSE_test1))
print("================================")

[3 1 0]
Regression
================================
Regression TrainSet: RMSE 0.0027952079052752685
================================
Regression Testset: RMSE 0.004341758028139643
================================
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10.7 Sample Code

import pandas as pd

df=pd.read_csv("C:/Users/User/Dropbox/TT Library/AI Model/
↪→Python/Treynor (Regression).csv")
print(df)

df=df.dropna()
print(df)

# Split X, Y

X=df.iloc[:,0:len(df.columns)-1]
Y=df.iloc[:,len(df.columns)-1]

print(X)
print(Y)

#split train test

from sklearn.model_selection import train_test_split

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_
↪→size=0.3)

print(X_train)
print(X_test)
print(Y_train)
print(Y_test)

from sklearn import linear_model
from sklearn.metrics import mean_squared_error

model=linear_model.LinearRegression()
model.fit(X_train, Y_train)
pred=model.predict(X_train)
print(mean_squared_error(pred, Y_train))

pred=model.predict(X_test)
print(mean_squared_error(pred, Y_test))

model= linear_model.Ridge()
model.fit(X_train, Y_train)
pred=model.predict(X_train)
print(mean_squared_error(pred, Y_train))

(continues on next page)
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pred=model.predict(X_test)
print(mean_squared_error(pred, Y_test))

model= linear_model.Lasso()
model.fit(X_train, Y_train)
pred=model.predict(X_train)
print(mean_squared_error(pred, Y_train))

pred=model.predict(X_test)
print(mean_squared_error(pred, Y_test))

from sklearn import tree

model=tree.DecisionTreeRegressor()
model.fit(X_train, Y_train)
pred=model.predict(X_train)
print(mean_squared_error(pred, Y_train))

pred=model.predict(X_test)
print(mean_squared_error(pred, Y_test))



Chapter 11
Classification

Abstract Generally classification is about predicting a label whereas regression is
usually used to predict a quantity. Classification models approximate a mapping
function from inputs to produce a class or category. Logistic regression is used
instead of linear regression for binary classification problems. It produces a value
ranging from 0 to 1, which can be interpreted as a probability that an event occurred.
Decision Trees, Random Forests, and Neural Networks can also be used for
classification tasks, similar to that in regression. Support vector machines calculate
a hyperplane that maximizes the distance between classes. Naive Bayes uses Bayes’
Theorem to predict classes under the assumption of independence. Similarly, Data
processing techniques can further improve classification performance as well.

Learning outcomes:

• Learn the difference between classification and regression. Be able to differentiate
between classification and regression problems.

• Learn and apply basic models for classification tasks using sklearn and keras.
• Learn data processing techniques to achieve better classification results.

We have learnt about regression previously. Now, let us take a look at classifica-
tion. Fundamentally, classification is about predicting a label and regression is about
predicting a quantity.

Classification predictive modeling is the task of approximating a mapping
function (f) from input variables (X) to discrete output variables (y). The output
variables are often called labels or categories. The mapping function predicts the
class or category for a given observation.

For example, an email of text can be classified as belonging to one of two classes:
“spam” and “not spam.” A classification can have real-valued or discrete input
variables.

Here are different types of classification problem:

• A problem with two classes is often called a two-class or binary classification
problem.
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• A problem with more than two classes is often called a multi-class classification
problem.

• A problem where an example is assigned multiple classes is called a multi-label
classification problem.

It is common for classification models to predict a continuous value as the
probability of a given example belonging to each output class. The probabilities
can be interpreted as the likelihood or confidence of a given example belonging to
each class. A predicted probability can be converted into a class value by selecting
the class label that has the highest probability.

For example, a specific email of text may be assigned the probabilities of 0.1
as being “spam” and 0.9 as being “not spam.” We can convert these probabilities
to a class label by selecting the “not spam” label as it has the highest predicted
likelihood.

There are many ways to estimate the skill of a classification predictive model,
but perhaps the most common is to calculate the classification accuracy.

The classification accuracy is the percentage of correctly classified examples out
of all predictions made.

For example, if a classification predictive model made 5 predictions and 3 of
them were correct and 2 of them were incorrect, then the classification accuracy of
the model based on just these predictions would be

accuracy = correct predictions / total predictions * 100
accuracy = 3 / 5 * 100
accuracy = 60%

An algorithm that is capable of learning a classification predictivemodel is called
a classification algorithm.

Dataset: “Diabetes (Edited).csv”
You can obtain the dataset from this link

https://www.dropbox.com/s/ggxo241uog06yhj/Diabetes (Edited).csv?dl=0
Also, you may run the following code in order to download the dataset in

google colab:

!wget https://www.dropbox.com/s/ggxo241uog06yhj/Diabetes%20
↪→%28Edited%29.csv?dl=0 -O --quiet "Diabetes (Edited).csv"

from keras.models import Sequential
from keras.layers import Dense, Dropout
from sklearn.metrics import classification_report, confusion_
↪→matrix
from sklearn.model_selection import train_test_split
import numpy
from sklearn import linear_model
from sklearn import preprocessing

(continues on next page)
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from sklearn import tree
from sklearn.ensemble import RandomForestClassifier,
↪→GradientBoostingClassifier
import pandas as pd
import csv

Firstly, we will work on preprocessing the data. For numerical data, often we
would preprocess the data by scaling it. In our example, we apply standard scalar, a
popular preprocessing technique.

Standardization is a transformation that centers the data by removing the mean
value of each feature and then scale it by dividing (non-constant) features by their
standard deviation. After standardizing data the mean will be zero and the standard
deviation one.

Standardization can drastically improve the performance of models. For instance,
many elements used in the objective function of a learning algorithm assume that all
features are centered around zero and have variance in the same order. If a feature
has a variance that is orders of magnitude larger than others, it might dominate
the objective function and make the estimator unable to learn from other features
correctly as expected.

Here the code that does the scaling is as follows:

scaler = preprocessing.StandardScaler().fit(X_train)
scaled_X_train = scaler.transform(X_train)
scaled_X_test = scaler.transform(X_test)

Notice that we are using the scalar fitted on our X_train to transform values in
X_test. This is to ensure that our model does not learn from the testing data. Usually,
we would split our data before applying scaling. It is a bad practice to do scaling on
the full dataset.

Apart from standard scaling we can use other scalar such as MinMaxScalar.
feature_range refers to the highest and lowest values after scaling. By default,
“feature_range” is −1 to 1. However, this range may prove to be too small as
changes in our variable would be compressed to maximum of −1 to 1.

from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler(feature_range=(-3,3))
scaled_X_train = scaler.transform(X_train)
scaled_X_test = scaler.transform(X_test)

Y_position = 8

# fix random seed for reproducibility
numpy.random.seed(7)

df = pd.read_csv('Diabetes (Edited).csv')
print(df)
# summary statistics

(continues on next page)
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print(df.describe())

X = df.iloc[:,0:Y_position]
Y = df.iloc[:,Y_position]

# create model
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_
↪→size=0.40, random_state=2020)

#scaling to around -2 to 2 (Z)
scaler = preprocessing.StandardScaler().fit(X_train)
scaled_X_train = scaler.transform(X_train)
scaled_X_test = scaler.transform(X_test)

A B C D E F G H I
0 6 148 72 35 0 33.6 0.627 50 1
1 1 85 66 29 0 26.6 0.351 31 0
2 8 183 64 0 0 23.3 0.672 32 1
3 1 89 66 23 94 28.1 0.167 21 0
4 0 137 40 35 168 43.1 2.288 33 1
.. .. ... .. .. ... ... ... .. ..
763 10 101 76 48 180 32.9 0.171 63 0
764 2 122 70 27 0 36.8 0.340 27 0
765 5 121 72 23 112 26.2 0.245 30 0
766 1 126 60 0 0 30.1 0.349 47 1
767 1 93 70 31 0 30.4 0.315 23 0

[768 rows x 9 columns]
A B C D

↪→ E F \
count 768.000000 768.000000 768.000000 768.000000 768.
↪→000000 768.000000
mean 3.845052 120.894531 69.105469 20.536458 79.
↪→799479 31.992578
std 3.369578 31.972618 19.355807 15.952218 115.
↪→244002 7.884160
min 0.000000 0.000000 0.000000 0.000000 0.
↪→000000 0.000000
25% 1.000000 99.000000 62.000000 0.000000 0.
↪→000000 27.300000
50% 3.000000 117.000000 72.000000 23.000000 30.
↪→500000 32.000000
75% 6.000000 140.250000 80.000000 32.000000 127.
↪→250000 36.600000
max 17.000000 199.000000 122.000000 99.000000 846.
↪→000000 67.100000

G H I
count 768.000000 768.000000 768.000000
mean 0.471876 33.240885 0.348958
std 0.331329 11.760232 0.476951

(continues on next page)
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min 0.078000 21.000000 0.000000
25% 0.243750 24.000000 0.000000
50% 0.372500 29.000000 0.000000
75% 0.626250 41.000000 1.000000
max 2.420000 81.000000 1.000000

In order to reduce code duplication as seen in the chapter on Regression. We
can abstract the model and create a function to help us train and predict. Here is the
explanation for the code:

model.fit(scaled_X_train, y_train)

We train the model using scaled_X_train and provide its label y_train

y_predicted = model3.predict(scaled_X_test)

We predict the model on our testing data and store its result in the variable
y_predicted

cm_test = confusion_matrix(y_test,y_pred)

We create a confusion matrix given our y_test and y_pred. And what is a
confusion matrix?

A Confusion matrix is an N x N matrix used for evaluating the performance of a
classification model, where N is the number of target classes. The matrix compares
the actual target values with those predicted by the model. This gives us a holistic
view of how well our classification model is performing and what kinds of errors it
is making.

• Expected down the side: Each row of the matrix corresponds to a predicted class.
• Predicted across the top: Each column of the matrix corresponds to an actual

class.

acc_test = (cm_test[0,0] + cm_test[1,1]) / sum(sum(cm_test))

Lastly, this code calculates the accuracy for us. Accuracy is the number of
correctly predicted data points out of all the data points. More formally, it is defined
as the number of true positives and true negatives divided by the number of true
positives, true negatives, false positives, and false negatives. These values are the
outputs of a confusion matrix.

Here, we are assuming a binary classification problem. For multi-class classifica-
tion problem, I would highly recommend using sklearn’s accuracy function for
its calculation.

def train_and_predict_using_model(model_name= "",model=None):
model.fit(scaled_X_train, y_train)
y_pred_train = model.predict(scaled_X_train)
cm_train = confusion_matrix(y_train,y_pred_train)

(continues on next page)
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(continued from previous page)

print(model_name)
print("================================")
print("Training confusion matrix: ")
print(cm_train)
acc_train = (cm_train[0,0] + cm_train[1,1]) / sum(sum(cm_

↪→train))
print("TrainSet: Accurarcy %.2f%%" % (acc_train*100))
print("================================")
y_pred = model.predict(scaled_X_test)
cm_test = confusion_matrix(y_test,y_pred)
print(cm_test)
acc_test = (cm_test[0,0] + cm_test[1,1]) / sum(sum(cm_

↪→test))
print("Testset: Accurarcy %.2f%%" % (acc_test*100))
print("================================")

11.1 Logistic Regression

Why not use linear regression?
Suppose we have a data of tumor size vs. its malignancy. As it is a classification

problem, if we plot, we can see, all the values will lie on 0 and 1. And if we fit
best found regression line, by assuming the threshold at 0.5, we can do line pretty
reasonable job.

Tumor Size

(Yes) 1

(No) 0

Malignant ?

We can decide the point on the x axis from where all the values lying to its left
side are considered as negative class and all the values lying to its right side are
positive class.

But what if there is an outlier in the data. Things would get pretty messy. For
example, for 0.5 threshold,

If we fit best found regression line, it still will not be enough to decide any point
by which we can differentiate classes. It will put some positive class examples into
negative class. The green dotted line (Decision Boundary) is dividing malignant
tumors from benign tumors, but the line should have been at a yellow line that
is clearly dividing the positive and negative examples. So just a single outlier
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Tumor Size

Threshold : 0.5

Negative Class Positive Class

(Yes) 1

(No) 0

Malignant ?

Tumor Size

Negative Class Positive Class

(Yes) 1

(No) 0

Malignant ?

is disturbing the whole linear regression predictions. And that is where logistic
regression comes into a picture.

As discussed earlier, to deal with outliers, Logistic Regression uses Sigmoid
function. An explanation of logistic regression can begin with an explanation of
the standard logistic function. The logistic function is a Sigmoid function, which
takes any real value between zero and one. It is defined as

σ(t) = et

et + 1
= 1

1 + e−t

And if we plot it, the graph will be S curve.
Now, when logistic regression model come across an outlier, it will take care

of it.
Another way of looking at logistic regression:
Consider the case where we are looking at a classification problem and our output

is probability. Our output is from 0 to 1, which represents the probability that the
event has occurred. Using linear regression would result in output from 1 to infinity,
which when mapped to a sigmoid function goes very well into 0 to 1 depending
on the output of linear regression.

#https://scikit-learn.org/stable/modules/generated/sklearn.
↪→linear_model.LogisticRegression.html
linear_classifier = linear_model.LogisticRegression(random_
↪→state=123)
linear_classifier.fit(scaled_X_train, y_train)

(continues on next page)
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y_pred_train1 = linear_classifier.predict(scaled_X_train)
cm1_train = confusion_matrix(y_train,y_pred_train1)
print("Regression")
print("================================")
print(cm1_train)
acc_train1 = (cm1_train[0,0] + cm1_train[1,1]) / sum(sum(cm1_
↪→train))
print("Regression TrainSet: Accurarcy %.2f%%" % (acc_
↪→train1*100))
print("================================")
y_pred1 = linear_classifier.predict(scaled_X_test)
cm1 = confusion_matrix(y_test,y_pred1)
print(cm1)
acc1 = (cm1[0,0] + cm1[1,1]) / sum(sum(cm1))
print("Regression Testset: Accurarcy %.2f%%" % (acc1*100))
print("================================")

Regression
================================
[[274 31]
[ 62 93]]

Regression TrainSet: Accurarcy 79.78%
================================
[[172 23]
[ 53 60]]

Regression Testset: Accurarcy 75.32%
================================
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Sample result:

================================
[[274 31]
[ 62 93]]

Regression TrainSet: Accurarcy 79.78%
================================

[[274 31]
[ 62 93]]

Here is an example of a confusion matrix in python.

• 274 is when the Actual class is True and Predicted class is True.
• 31 is when the Actual class is True and Predicted class is False.
• 62 is when the Actual class is False and Predicted class is True.
• 93 is when the Actual class is False and Predicted class is False.

Improvement to Our Code
Recall we have written a helper function to help us to capture the logic of training
the model, predicting the output and printing the train and test accuracy as well as
confusion matrix? Let us put it to use here!

train_and_predict_using_model('Logistic Regression', linear_
↪→classifier)

Logistic Regression
================================
Training confusion matrix:
[[274 31]
[ 62 93]]

TrainSet: Accurarcy 79.78%
================================
[[172 23]
[ 53 60]]

Testset: Accurarcy 75.32%
================================

We have managed to reduce multiple lines of code to a succinct function call.
This is a huge improvement in terms of code maintenance and code changes.
If we need to change any of our code, we only have to apply it on our
train_and_predict_using_model function.

11.2 Decision Tree and Random Forest

The code and intuition behind Decision Tree and Random Forest is similar to that
in regression. Thus, we will not be delving deeper into both models.
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The code is as follows:

decision_tree_clf = tree.DecisionTreeClassifier()
train_and_predict_using_model('Decision Tree Classifier',
↪→linear_classifier)

print(
'\n\n'

)

rf_clf = RandomForestClassifier(n_estimators=100, max_depth=2,
↪→random_state=0)
train_and_predict_using_model('Random Forest Classifier', rf_
↪→clf)

Decision Tree Classifier
================================
Training confusion matrix:
[[274 31]
[ 62 93]]

TrainSet: Accurarcy 79.78%
================================
[[172 23]
[ 53 60]]

Testset: Accurarcy 75.32%
================================

Random Forest Classifier
================================
Training confusion matrix:
[[290 15]
[ 96 59]]

TrainSet: Accurarcy 75.87%
================================
[[184 11]
[ 80 33]]

Testset: Accurarcy 70.45%
================================

11.3 Neural Network

Lastly, we have neural network. Similar to logistic regression, we have to map our
output from -inf to inf to 0 to 1. Here, we will have to add a Dense layer
with a sigmoid activation function. For multi-class, we should use a softmax
activation function.
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model.add(Dense(1, activation='sigmoid'))

Here, we added a last layer mapping to a sigmoid function. Notice that we have
1 neuron in this layer as we would like to have 1 prediction. This might be different
for multi-class, and we should always check out the documentation.

model.compile(loss='binary_crossentropy', optimizer='Adamax',
↪→metrics=['accuracy'])

Also, we would need to tell the model that we need to use a different loss func-
tion. Here, for binary classification problem (Yes/No). binary_crossentropy
is the way to go. For multi-class classification problem, we might need to use
categorical_crossentropy as the loss function.

#Neural network
#https://www.tensorflow.org/guide/keras/train_and_evaluate
model = Sequential()
model.add(Dense(5, input_dim=Y_position, activation='relu'))
model.add(Dense(1, activation='sigmoid'))

# Compile model
# https://www.tensorflow.org/guide/keras/train_and_evaluate
model.compile(loss='binary_crossentropy', optimizer='Adamax',
↪→metrics=['accuracy'])

# Fit the model
model.fit(scaled_X_train, y_train, epochs=1, batch_size=20,
↪→verbose=0)

# evaluate the model
scores = model.evaluate(scaled_X_train, y_train)

print("Neural Network Trainset: \n%s: %.2f%%" % (model.metrics_
↪→names[1], scores[1]*100))

predictions = model.predict(scaled_X_test)

y_pred = (predictions > 0.5)
y_pred = y_pred*1 #convert to 0,1 instead of True False
cm = confusion_matrix(y_test, y_pred)
print("==================================")
print("==================================")
print("Neural Network on testset confusion matrix")
print(cm)

## Get accurary from Confusion matrix
## Position 0,0 and 1,1 are the correct predictions
acc = (cm[0,0] + cm[1,1]) / sum(sum(cm))
print("Neural Network on TestSet: Accuracy %.2f%%" % (acc*100))
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460/460 [==============================] - 0s 63us/step
Neural Network Trainset:
accuracy: 71.09%
==================================
==================================
Neural Network on testset confusion matrix
[[177 18]
[ 78 35]]

Neural Network on TestSet: Accuracy 68.83%

From above, notice that the training accuracy is at 71%, which might be a
case of underfitting. To improve our model, we can always increase the number
of neurons/layer or increase the epoch for training.

#Neural network
#https://www.tensorflow.org/guide/keras/train_and_evaluate
model = Sequential()
model.add(Dense(10, input_dim=Y_position, activation='relu'))
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.1))
model.add(Dense(256, activation='tanh'))
model.add(Dropout(0.1))
model.add(Dense(1, activation='sigmoid'))

# Compile model
# https://www.tensorflow.org/guide/keras/train_and_evaluate
model.compile(loss='binary_crossentropy', optimizer='RMSprop',
↪→metrics=['accuracy'])

# Fit the model
model.fit(scaled_X_train, y_train, epochs=200, batch_size=20,
↪→verbose=0)

# evaluate the model
scores = model.evaluate(scaled_X_train, y_train)

print("Neural Network Trainset: \n%s: %.2f%%" % (model.metrics_
↪→names[1], scores[1]*100))

predictions = model.predict(scaled_X_test)

y_pred = (predictions > 0.5)
y_pred = y_pred*1 #convert to 0,1 instead of True False
cm = confusion_matrix(y_test, y_pred)
print("==================================")
print("==================================")
print("Neural Network on testset confusion matrix")
print(cm)

## Get accurary from Confusion matrix
## Position 0,0 and 1,1 are the correct predictions

(continues on next page)
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(continued from previous page)

acc = (cm[0,0] + cm[1,1]) / sum(sum(cm))
print("Neural Network on TestSet: Accuracy %.2f%%" % (acc*100))

460/460 [==============================] - 0s 126us/step
Neural Network Trainset:
accuracy: 99.57%
==================================
==================================
Neural Network on testset confusion matrix
[[152 43]
[ 43 70]]

Neural Network on TestSet: Accuracy 72.08%

Now, our accuracy on training has reached 99%. However, accuracy of test is
still lower. This might be because of testing dataset differing from training dataset
or overfitting. For overfitting, we will look at some regularization techniques. For
now, adding Dropout layer and reducing training epoch would work just fine.

11.4 Logistic Regression

• https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.
LogisticRegression.html

class sklearn.linear_model.LogisticRegression(penalty='l2', *,
↪→dual=False, tol=0.0001, C=1.0, fit_intercept=True,
intercept_scaling=1, class_weight=None, random_state=None,
↪→solver='lbfgs', max_iter=100, multi_class='auto',
verbose=0, warm_start=False, n_jobs=None, l1_ratio=None)

11.5 Decision Tree

• https://scikit-learn.org/stable/modules/generated/sklearn.tree.
DecisionTreeClassifier.html

class sklearn.tree.DecisionTreeClassifier(*, criterion='gini',
↪→splitter='best', max_depth=None, min_samples_split=2,
min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_
↪→features=None, random_state=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None, class_
↪→weight=None, presort='deprecated', ccp_alpha=0.0)

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
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11.6 Feature Importance

RF = model3
importances = RF.feature_importances_
std = numpy.std([tree.feature_importances_ for tree in RF.
↪→estimators_],

axis=0)
indices = numpy.argsort(importances)[::-1]

# Print the feature ranking
print("Feature ranking:")

for f in range(X.shape[1]):
print("%d. feature (Column index) %s (%f)" % (f + 1,

↪→indices[f], importances[indices[f]]))

Feature ranking:
1. feature (Column index) 1 (0.307004)
2. feature (Column index) 7 (0.237150)
3. feature (Column index) 0 (0.129340)
4. feature (Column index) 5 (0.129255)
5. feature (Column index) 6 (0.069927)
6. feature (Column index) 4 (0.055137)
7. feature (Column index) 2 (0.044458)
8. feature (Column index) 3 (0.027729)

import seaborn as sns
import pandas as pd
boxplot = pd.DataFrame(dataset).boxplot()

11.7 Remove Outlier

df = pd.DataFrame(dataset)
quantile = df[4].quantile(0.99)
df1 = df[df[4] < quantile]
df.shape, df1.shape

((768, 9), (760, 9))

df1 = df1.dropna()
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11.8 Use Top 3 Features

indices_top3 = indices[:3]
print(indices_top3)

# fix random seed for reproducibility
numpy.random.seed(7)
# load pima indians dataset
dataset = numpy.loadtxt("Diabetes (Edited).csv", delimiter=",")

df = pd.DataFrame(dataset)

Y_position = 8
TOP_N_FEATURE = 3

X = dataset[:,indices_top3]
Y = dataset[:,Y_position]
# create model
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_
↪→size=0.20, random_state=2020)

#scaling to around -2 to 2 (Z)
scaler = preprocessing.StandardScaler().fit(X_train)
scaled_X_train = scaler.transform(X_train)

(continues on next page)
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scaled_X_test = scaler.transform(X_test)

#Model 1 : linear regression
#https://scikit-learn.org/stable/modules/generated/sklearn.
↪→linear_model.LogisticRegression.html
#class sklearn.linear_model.LogisticRegression(penalty='l2', *,
↪→ dual=False, tol=0.0001, C=1.0, fit_intercept=True,
#intercept_scaling=1, class_weight=None, random_state=None,
↪→solver='lbfgs', max_iter=100, multi_class='auto',
#verbose=0, warm_start=False, n_jobs=None, l1_ratio=None)

linear_classifier = linear_model.LogisticRegression(random_
↪→state=123)
linear_classifier.fit(scaled_X_train, y_train)
y_pred_train1 = linear_classifier.predict(scaled_X_train)
cm1_train = confusion_matrix(y_train,y_pred_train1)
print("Regression")
print("================================")
print(cm1_train)
acc_train1 = (cm1_train[0,0] + cm1_train[1,1]) / sum(sum(cm1_
↪→train))
print("Regression TrainSet: Accurarcy %.2f%%" % (acc_
↪→train1*100))
print("================================")
y_pred1 = linear_classifier.predict(scaled_X_test)
cm1 = confusion_matrix(y_test,y_pred1)
print(cm1)
acc1 = (cm1[0,0] + cm1[1,1]) / sum(sum(cm1))
print("Regression Testset: Accurarcy %.2f%%" % (acc1*100))
print("================================")
print("================================")
print("================================")

#Model 2: decision tree
#https://scikit-learn.org/stable/modules/generated/sklearn.
↪→tree.DecisionTreeClassifier.html
#class sklearn.tree.DecisionTreeClassifier(*, criterion='gini',
↪→ splitter='best', max_depth=None, min_samples_split=2,
#min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_
↪→features=None, random_state=None, max_leaf_nodes=None,
#min_impurity_decrease=0.0, min_impurity_split=None, class_
↪→weight=None, presort='deprecated', ccp_alpha=0.0)

clf = tree.DecisionTreeClassifier()
clf = clf.fit(scaled_X_train, y_train)
y_pred_train2 = clf.predict(scaled_X_train)
cm2_train = confusion_matrix(y_train,y_pred_train2)
print("Decision Tree")
print("================================")
print(cm2_train)

(continues on next page)
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acc_train2 = (cm2_train[0,0] + cm2_train[1,1]) / sum(sum(cm2_
↪→train))
print("Decsion Tree TrainSet: Accurarcy %.2f%%" % (acc_
↪→train2*100))
print("================================")
y_pred2 = clf.predict(scaled_X_test)
cm2 = confusion_matrix(y_test,y_pred2)
acc2 = (cm2[0,0] + cm2[1,1]) / sum(sum(cm2))
print(cm2)
print("Decision Tree Testset: Accurarcy %.2f%%" % (acc2*100))
print("================================")
print("================================")
print("================================")

#Model 3 random forest
#https://scikit-learn.org/stable/modules/generated/sklearn.
↪→ensemble.RandomForestClassifier.html
#class sklearn.ensemble.RandomForestClassifier(n_
↪→estimators=100, *, criterion='gini', max_depth=None,
#min_samples_split=2, min_samples_leaf=1, min_weight_fraction_
↪→leaf=0.0, max_features='auto',
#max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_
↪→split=None, bootstrap=True, oob_score=False,
#n_jobs=None, random_state=None, verbose=0, warm_start=False,
↪→class_weight=None, ccp_alpha=0.0, max_samples=None)[source]

model3 = RandomForestClassifier(n_estimators=100, max_depth=2,
↪→random_state=0)
model3.fit(scaled_X_train, y_train)
y_predicted3 = model3.predict(scaled_X_test)

y_pred_train3 = model3.predict(scaled_X_train)
cm3_train = confusion_matrix(y_train,y_pred_train3)
print("Random Forest")
print("================================")
print(cm3_train)
acc_train3 = (cm3_train[0,0] + cm3_train[1,1]) / sum(sum(cm3_
↪→train))
print("Random Forest TrainSet: Accurarcy %.2f%%" % (acc_
↪→train3*100))
print("================================")
y_pred3 = model3.predict(scaled_X_test)
cm_test3 = confusion_matrix(y_test,y_pred3)
print(cm_test3)
acc_test3 = (cm_test3[0,0] + cm_test3[1,1]) / sum(sum(cm_
↪→test3))
print("Random Forest Testset: Accurarcy %.2f%%" % (acc_
↪→test3*100))
print("================================")
print("================================")

(continues on next page)
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print("================================")

#Model 4: XGBoost

print("Xgboost")
print("================================")
#class sklearn.ensemble.GradientBoostingClassifier(*, loss=
↪→'deviance', learning_rate=0.1, n_estimators=100,
#subsample=1.0, criterion='friedman_mse', min_samples_split=2,
↪→min_samples_leaf=1, min_weight_fraction_leaf=0.0,
#max_depth=3, min_impurity_decrease=0.0, min_impurity_
↪→split=None, init=None, random_state=None, max_features=None,
#verbose=0, max_leaf_nodes=None, warm_start=False, presort=
↪→'deprecated', validation_fraction=0.1,
#n_iter_no_change=None, tol=0.0001, ccp_alpha=0.0)[source]
#https://scikit-learn.org/stable/modules/generated/sklearn.
↪→ensemble.GradientBoostingClassifier.html

model4 = GradientBoostingClassifier(random_state=0)
model4.fit(scaled_X_train, y_train)
y_pred_train4 = model4.predict(scaled_X_train)
cm4_train = confusion_matrix(y_train,y_pred_train4)
print(cm4_train)
acc_train4 = (cm4_train[0,0] + cm4_train[1,1]) / sum(sum(cm4_
↪→train))
print("Xgboost TrainSet: Accurarcy %.2f%%" % (acc_train4*100))
predictions = model4.predict(scaled_X_test)
y_pred4 = (predictions > 0.5)
y_pred4 =y_pred4*1 #convert to 0,1 instead of True False
cm4 = confusion_matrix(y_test, y_pred4)
print("==================================")
print("Xgboost on testset confusion matrix")
print(cm4)
acc4 = (cm4[0,0] + cm4[1,1]) / sum(sum(cm4))
print("Xgboost on TestSet: Accuracy %.2f%%" % (acc4*100))
print("==================================")

#Model 5: neural network
#https://www.tensorflow.org/guide/keras/train_and_evaluate

model = Sequential()
model.add(Dense(10, input_dim=TOP_N_FEATURE, activation='relu
↪→'))
#model.add(Dense(10, activation='relu'))
#model.add(Dropout(0.2))
model.add(Dense(1, activation='sigmoid'))
# Compile mode
# https://www.tensorflow.org/guide/keras/train_and_evaluate

model.compile(loss='binary_crossentropy', optimizer='Adamax',
↪→metrics=['accuracy'])

(continues on next page)
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# Fit the model
model.fit(X_train, y_train, epochs=100, batch_size=5,
↪→verbose=0)
# evaluate the model
scores = model.evaluate(X_train, y_train)
#print(scores)
print("Neural Network Trainset: \n%s: %.2f%%" % (model.metrics_
↪→names[1], scores[1]*100))

predictions5 = model.predict(X_test)
#print(predictions)
#print('predictions shape:', predictions.shape)

y_pred5 = (predictions5 > 0.5)
y_pred5 = y_pred5*1 #convert to 0,1 instead of True False
cm5 = confusion_matrix(y_test, y_pred5)
print("==================================")
print("==================================")
print("Neural Network on testset confusion matrix")
print(cm5)

## Get accurary from Confusion matrix
## Position 0,0 and 1,1 are the correct predictions
acc5 = (cm5[0,0] + cm5[1,1]) / sum(sum(cm5))
print("Neural Network on TestSet: Accuracy %.2f%%" %
↪→(acc5*100))

[1 7 0]
Regression
================================
[[361 46]
[105 102]]

Regression TrainSet: Accurarcy 75.41%
================================
[[82 11]
[30 31]]

Regression Testset: Accurarcy 73.38%
================================
================================
================================
Decision Tree
================================
[[407 0]
[ 0 207]]

Decsion Tree TrainSet: Accurarcy 100.00%
================================
[[68 25]
[32 29]]

Decision Tree Testset: Accurarcy 62.99%
================================
================================

(continues on next page)
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(continued from previous page)

================================
Random Forest
================================
[[377 30]
[128 79]]

Random Forest TrainSet: Accurarcy 74.27%
================================
[[87 6]
[40 21]]

Random Forest Testset: Accurarcy 70.13%
================================
================================
================================
Xgboost
================================
[[389 18]
[ 58 149]]

Xgboost TrainSet: Accurarcy 87.62%
==================================
Xgboost on testset confusion matrix
[[80 13]
[29 32]]

Xgboost on TestSet: Accuracy 72.73%
==================================
20/20 [==============================] - 0s 1ms/step - loss: 0.
↪→5480 - accuracy: 0.7671
Neural Network Trainset:
accuracy: 76.71%
==================================
==================================
Neural Network on testset confusion matrix
[[81 12]
[29 32]]

Neural Network on TestSet: Accuracy 73.38%

11.9 SVM

from sklearn import svm

clf = svm.SVC()
train_and_predict_using_model("SVM (Classifier)", clf)

SVM (Classifier)
================================
Training confusion matrix:
[[361 46]

(continues on next page)
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[101 106]]
TrainSet: Accurarcy 76.06%
================================
[[84 9]
[31 30]]

Testset: Accurarcy 74.03%
================================

11.9.1 Important Hyper Parameters

For Support Vector Machines (SVM) here are some important parameters to take
note of:

Kernel
Kernel Function generally transforms the training set of data so that a non-linear
decision surface is able to transformed to a linear equation in a higher number of
dimension spaces. Some of the possible parameters are as follows:

• Radial basis function
• Polynomial
• Sigmoid

Here is an illustrated use of a radial basis function (rbf) kernel.
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Another important parameter would be class_weight. Here, it is mainly used for
unbalanced dataset.

rbf_svc = svm.SVC(kernel='rbf')
train_and_predict_using_model("SVM (RBF kernel)", rbf_svc)

SVM (RBF kernel)
================================
Training confusion matrix:
[[361 46]
[101 106]]

TrainSet: Accurarcy 76.06%
================================
[[84 9]
[31 30]]

Testset: Accurarcy 74.03%
================================

rbf_svc = svm.SVC(kernel='poly')
train_and_predict_using_model("SVM (polynomial kernel)", rbf_
↪→svc)

SVM (polynomial kernel)
================================
Training confusion matrix:
[[393 14]
[148 59]]

TrainSet: Accurarcy 73.62%
================================
[[89 4]
[47 14]]

Testset: Accurarcy 66.88%
================================

rbf_svc = svm.SVC(kernel='sigmoid')
train_and_predict_using_model("SVM (sigmoid kernel)", rbf_svc)

SVM (sigmoid kernel)
================================
Training confusion matrix:
[[320 87]
[112 95]]

TrainSet: Accurarcy 67.59%
================================
[[68 25]
[35 26]]

Testset: Accurarcy 61.04%
================================
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# fit the model and get the separating hyperplane using
↪→weighted classes
wclf = svm.SVC(kernel='linear', class_weight={1:2})
train_and_predict_using_model('SVM uneven class weight', wclf)

SVM uneven class weight
================================
Training confusion matrix:
[[316 91]
[ 75 132]]

TrainSet: Accurarcy 72.96%
================================
[[71 22]
[18 43]]

Testset: Accurarcy 74.03%
================================

11.10 Naive Bayes

It is a classification technique based on Bayes’ Theorem with an assumption of
independence among predictors. In simple terms, a Naive Bayes classifier assumes
that the presence of a particular feature in a class is unrelated to the presence of any
other feature.

For example, a fruit may be considered to be an apple if it is red, round, and
about 3 inches in diameter. Even if these features depend on each other or upon the
existence of the other features, all of these properties independently contribute to
the probability that this fruit is an apple and that is why it is known as “Naive.”

Naive Bayes model is easy to build and particularly useful for very large
datasets. Along with simplicity, Naive Bayes is known to outperform even highly
sophisticated classification methods.

Bayes’ theorem provides a way of calculating posterior probability P(c|x)
from P(c), P(x), and P(x|c)
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from sklearn.naive_bayes import GaussianNB

# maximum likelihood

gnb = GaussianNB()
train_and_predict_using_model("Naive Bayes", gnb)

Naive Bayes
================================
Training confusion matrix:
[[337 70]
[ 93 114]]

TrainSet: Accurarcy 73.45%
================================
[[78 15]
[28 33]]

Testset: Accurarcy 72.08%
================================

import numpy as np
from sklearn.datasets import make_classification
from sklearn.naive_bayes import GaussianNB

X, y = make_classification(n_samples=1000, weights=[0.1, 0.9])
# your GNB estimator
gnb = GaussianNB()
gnb.fit(X, y)

print("model prior {} close to your defined prior of {}".
↪→format(gnb.class_prior_, [0.1,0.9]))

model prior [0.105 0.895] close to your defined prior of [0.1,
↪→0.9]

11.11 Sample Code

import pandas as pd

df=pd.read_csv("C:/Users/User/Dropbox/TT Library/AI Model/
↪→Python/Treynor (Classification).csv")

print(df)

df=df.dropna()
print(df)

(continues on next page)
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(continued from previous page)

for i in df.columns:
df=df[pd.to_numeric(df[i], errors='coerce').notnull()]

↪→#make it to null then remove null
print(df)

import seaborn as sns

sns.barplot(x="Class", y="size_type", data=df)

import matplotlib.pyplot as plt

df.hist()
plt.show()

sns.barplot(x="Class", y= "Blend", data=df)

import numpy as np
from scipy import stats

print(df)
z_scores = stats.zscore(df.astype(np.float))
print(z_scores)
abs_z_scores = np.abs(z_scores)
filtered_entries = (abs_z_scores < 3).all(axis=1)
print(filtered_entries)
df = df[filtered_entries]

print(df)

df.describe()

df.corr()

import seaborn as sns

sns.heatmap(df.corr())

#Split X and Y

X=df.iloc[:,0:len(df.columns)-1]
print(X)
Y=df.iloc[:,len(df.columns)-1]
print(Y)

dummy=pd.get_dummies(X["Blend"])
dummy.head()
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X=X.merge(dummy, left_index=True, right_index=True)
X.head()

X=X.drop("Blend", axis="columns")
X.head()

#Normalization

X["return_rating"]=stats.zscore(X["return_rating"].astype(np.
↪→float))

print(X)

#split train test

from sklearn.model_selection import train_test_split

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_
↪→size=0.3)
print(X_train)
print(X_test)
print(Y_train)
print(Y_test)

from sklearn import linear_model
from sklearn.metrics import confusion_matrix

model = linear_model.LogisticRegression(max_iter=1000)
model.fit(X_train, Y_train)
pred=model.predict(X_train)
cm=confusion_matrix(pred, Y_train)
print(cm)

accuracy=(cm[0,0]+cm[1,1])/sum(sum(cm))
print(accuracy)

pred=model.predict(X_test)
cm=confusion_matrix(pred, Y_test)
print(cm)

accuracy=(cm[0,0]+cm[1,1])/sum(sum(cm))
print(accuracy)

import statsmodels.api as sm
logit_model=sm.Logit(Y,X)
result=logit_model.fit()
print(result.summary2())
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from sklearn.tree import DecisionTreeClassifier

model = DecisionTreeClassifier()
model.fit(X_train, Y_train)
pred=model.predict(X_train)
cm=confusion_matrix(pred, Y_train)
print(cm)
accuracy=(cm[0,0]+cm[1,1])/sum(sum(cm))
print(accuracy)

pred=model.predict(X_test)
cm=confusion_matrix(pred, Y_test)
print(cm)
accuracy=(cm[0,0]+cm[1,1])/sum(sum(cm))
print(accuracy)

# random forest
from sklearn.ensemble import RandomForestClassifier
model=RandomForestClassifier()
model.fit(X_train,Y_train)
Y_predict=model.predict(X_train)
cm=confusion_matrix(Y_train, Y_predict)
print(cm)

accuracy=(cm[0,0]+cm[1,1])/sum(sum(cm))
print(accuracy)
pred=model.predict(X_test)
cm=confusion_matrix(pred, Y_test)
print(cm)
accuracy=(cm[0,0]+cm[1,1])/sum(sum(cm))
print(accuracy)

from sklearn.ensemble import GradientBoostingClassifier

model=GradientBoostingClassifier()
model.fit(X_train, Y_train)
pred = model.predict(X_train)
cm=confusion_matrix(Y_train, pred)
print(cm)

accuracy=(cm[0,0]+cm[1,1])/sum(sum(cm))
print(accuracy)
pred=model.predict(X_test)
cm=confusion_matrix(Y_test, pred)
print(cm)

accuracy=(cm[0,0]+cm[1,1])/sum(sum(cm))
print(accuracy)
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from keras.models import Sequential
from keras.layers import Dense, Dropout

model=Sequential()
model.add(Dense(10, input_dim=len(X_train.columns), activation=
↪→'relu'))
model.add(Dropout(0.2))
model.add(Dense(10, activation="relu"))
model.add(Dropout(0.2))
model.add(Dense(1, activation='sigmoid'))

model.compile(loss = 'binary_crossentropy', optimizer = 'Adamax
↪→', metrics = ['accuracy'])

model.fit(X_train, Y_train, epochs=100, batch_size=10,
↪→verbose=0)

score=model.evaluate(X_train, Y_train)
print(score[1])
score=model.evaluate(X_test, Y_test)
print(score[1])

pred=model.predict(X_train)
pred=np.where(pred>0.5,1,0)
cm=confusion_matrix(pred, Y_train)
print(cm)
accuracy=(cm[0,0]+cm[1,1])/sum(sum(cm))
print(accuracy)

pred=model.predict(X_test)
pred=np.where(pred>0.5,1,0)
cm=confusion_matrix(pred, Y_test)
print(cm)
accuracy=(cm[0,0]+cm[1,1])/sum(sum(cm))
print(accuracy)
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Clustering

Abstract Supervised algorithms use labeled data as an input for developing a
predictionmodel. However, the amount of unlabeled data collected often far exceeds
that of labeled data. Unsupervised algorithms, such as clustering algorithms, are
algorithms that are able to make use of these unlabeled data to extract useful
insights. One example is the K-means algorithm which clusters the data into K
different clusters. The elbow method will be used to select a suitable number of
clusters to select the value of K.

Learning outcomes:

• Understand the difference between supervised and unsupervised algorithms.
• Learn and apply the K-means algorithm for clustering tasks using sklearn.
• Learn the elbow method to select a suitable number of clusters.

12.1 What Is Clustering?

Clustering is the task of dividing the population or data points into a number of
groups, such that data points in the same groups are more similar to other data points
within the group and dissimilar to the data points in other groups. Clustering is a
form of unsupervised algorithm. This means that unlike classification or regression,
clustering does not require ground truth labeled data. Such algorithms are capable
of finding groups that are not explicitly labeled and identify underlying patterns that
might appear in the dataset. One of the simplest, yet effective clustering algorithm
is the K-means algorithm.
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12.2 K-Means

K-means is used for a variety of cases, such as:

• Customer profiling
• Market segmentation
• Computer vision
• Geo-statistics
• Astronomy

The K-means algorithm clusters data by trying to separate samples in n groups of
equal variance, minimizing a criterion known as the inertia or within-cluster sum-of-
squares. The K-means algorithm aims to choose centroid that minimizes the inertia
or within-cluster sum-of-squares criterion:

The steps for the K-means algorithm are as follows:

1. Ask user how many clusters they would like (e.g., k=5).
2. Randomly guess k cluster center locations.
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3. Each data point identifies which center is closest to according to the sum-of-
squares criterion. (Thus, each center “owns” a set of data points.)

4. Reposition the k cluster center locations by minimizing the sum-of-squares
criterion. This can be achieved by setting the new locations as the average of
all the points in a cluster.

5. Repeat steps 3 and 4 until no new data points are added or removed from all
clusters or the predefined maximum number of iterations has been reached.

12.3 The Elbow Method

As you can see in the first step of the K-means algorithm, the user has to specify
the number of clusters to be used for the algorithm. We can do this by attempting
the K-means for various values of K and visually selecting the K-value using the
elbow method. We would like a small sum-of-squares error, and however, the sum-
of-squares error tends to decrease toward 0 as we increase the value of k. Sum-of-
squares will decrease toward 0 with increasing k, because when k is equal to the
number of data points, each data point is its own cluster, and there will be no error
between it and the center of its cluster.
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The following code example shows the K-means algorithm and the elbow
visualization using the Iris dataset which can be obtained from: https://www.kaggle.
com/uciml/iris:

import numpy as np
import pandas as pd

df = pd.read_csv("iris.csv")
print(df)
df["Species"].unique()
df = df.replace("Iris-setosa", 0)
df=df.replace("Iris-versicolor", 1)
df = df.replace("Iris-virginica", 2)

X=df.loc[:, ["SepalLengthCm","SepalWidthCm","PetalLengthCm",
↪→"PetalWidthCm"]]
Y=df['Species']
print(X)
print(Y)

from sklearn.cluster import KMeans
model=KMeans(n_clusters=3, random_state=2021)
model.fit(X,Y)
pred=model.predict(X)

from sklearn.metrics import confusion_matrix
cm=confusion_matrix(pred, Y)
print(cm)

accuracy=(cm[0,0]+cm[1,1]+cm[2,2])/sum(sum(cm)) #cm[rows,
↪→columns]
print(accuracy)

(continues on next page)

https://www.kaggle.com/uciml/iris
https://www.kaggle.com/uciml/iris


12.3 The Elbow Method 217

(continued from previous page)

from yellowbrick.cluster import KElbowVisualizer

visualizer = KElbowVisualizer(model, k=(2,15))

visualizer.fit(X)
visualizer.show()

SepalLength SepalWidth PetalLength PetalWidth
↪→ Iris
0 5.1 3.5 1.4 0.2 Iris-
↪→setosa
1 4.9 3.0 1.4 0.2 Iris-
↪→setosa
2 4.7 3.2 1.3 0.2 Iris-
↪→setosa
3 4.6 3.1 1.5 0.2 Iris-
↪→setosa
4 5.0 3.6 1.4 0.2 Iris-
↪→setosa
.. ... ... ... ...
↪→ ...
145 6.7 3.0 5.2 2.3 Iris-
↪→virginica
146 6.3 2.5 5.0 1.9 Iris-
↪→virginica
147 6.5 3.0 5.2 2.0 Iris-
↪→virginica
148 6.2 3.4 5.4 2.3 Iris-
↪→virginica
149 5.9 3.0 5.1 1.8 Iris-
↪→virginica

[150 rows x 5 columns]
SepalLength SepalWidth PetalLength PetalWidth

0 5.1 3.5 1.4 0.2
1 4.9 3.0 1.4 0.2
2 4.7 3.2 1.3 0.2
3 4.6 3.1 1.5 0.2
4 5.0 3.6 1.4 0.2
.. ... ... ... ...
145 6.7 3.0 5.2 2.3
146 6.3 2.5 5.0 1.9
147 6.5 3.0 5.2 2.0
148 6.2 3.4 5.4 2.3
149 5.9 3.0 5.1 1.8

[150 rows x 4 columns]
0 0
1 0
2 0
3 0

(continues on next page)
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(continued from previous page)

4 0
..

145 2
146 2
147 2
148 2
149 2
Name: Iris, Length: 150, dtype: int64
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Chapter 13
Association Rules

Abstract Association rule analysis is a technique which discovers the association
between various items within large datasets in different types of databases and can
be used as a form of feature engineering. The Apriori algorithm covered, mines for
frequent itemsets and association rules in a database. Support, Lift, Conviction, and
Confidence are important values that represent the strength of an association.

Learning outcomes:

• Learn the general concept of association rule mining.
• Understand concepts of support, lift, and confidence in a rules.
• Learn the Apriori algorithm for association rule mining.

13.1 What Are Association Rules

Association rules are “if-then” statements that help to show the probability of
relationships between data items, within large datasets in various types of databases.

Association rule mining is the process of engineering data into a predictive
feature in order to fit the requirements or to improve the performance of a model.
The Apriori Algorithm is an algorithm used to perform association rule mining over
a structured dataset.

Concepts in Association Rules:

• Transaction Record. A Transaction record is a record of all the purchases made
in one transaction. For example, Receipt from NTUC supermarket, Invoice for
mobile phone contract, Invoice of software purchase, etc.

• Transactional Data Binary Format:

– Each row is a transaction record.
– Each column represents a unique item.
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– Each row then records a sequence of 0 or 1 (the item in that column was
purchased).

Note: Some software require the dataset to be in transactional data binary
format in order to perform association analysis. Not SAS EM. An example of a
Transactional Data Binary Format:

Database TDB

Min. support 50% (i.e., 2tx’s) BE=>C conf.:66%

C1Tid Items

10
20
30
40

A, C, D
B, C, E

A, B, C, E
B, E

1st scan

{A}
{B}
{C}
{D}
{E}

{A, C}
{B, C}
{B, E}
{C, E}

{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

{A}
{B}
{C}
{E}

2
3
3
1

2
3
3
3

3

L1

Itemset sup

Itemset sup

Itemset

Itemset

Itemset
sup

Itemset sup

Itemset sup

L2

C2 C2

2nd scan

3rd scanC3 L3

2
2
3
2

1
2
1
2
3
2

2{B, C, E} {B, C, E}

In the image above, each row (transaction ID) shows the items purchased in
that single transaction (aka receipt).If there are many possible items, dataset is
likely to be sparse, i.e. many zeros or NAs.

• Itemset. A Itemset is a set of items in a transaction. An itemset of size 3 means
there are 3 items in the set. In general, it can be of any size, unless specified
otherwise.

• Association Rule

– Forms: X => Y
– X associated with Y.
– X is the “antecedent” itemset; Y is the “consequent” itemset.
– There might be more than one item in X or Y.

13.2 Apriori Algorithm

Apriori Algorithm Steps

1. Candidate itemsets are generated using only the large itemsets of the previous
pass without considering the transactions in the database.
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2. The large itemset of the previous pass is joined with itself to generate all itemsets
whose size is higher by 1.

3. Each generated itemset that has a subset which is not large is deleted. The
remaining itemsets are the candidate ones.

Database TDB

Min. support 50% (i.e., 2tx’s) BE=>C conf.:66%

C1Tid Items

10
20
30
40

A, C, D
B, C, E

A, B, C, E
B, E

1st scan

{A}
{B}
{C}
{D}
{E}

{A, C}
{B, C}
{B, E}
{C, E}

{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

{A}
{B}
{C}
{E}

2
3
3
1

2
3
3
3

3

L1

Itemset sup

Itemset sup

Itemset

Itemset

Itemset
sup

Itemset sup

Itemset sup

L2

C2 C2

2nd scan

3rd scanC3 L3

2
2
3
2

1
2
1
2
3
2

2{B, C, E} {B, C, E}

The Apriori algorithm assumes all subsets of a frequent itemset to be frequent.
Similarly, for any infrequent itemset, all its supersets must also be infrequent.

13.3 Measures for Association Rules

In order to select the interesting rules out of multiple possible rules from this small
business scenario, we will be using the following measures:

• Support
• Confidence
• Lift
• Conviction

1. Support is an indication of how frequently the item appears in the dataset. For
example, how popular a product is in a shop. The support for the combination A
and B would be,- P(AB) or P(A) for Individual A.

2. Confidence is an indication of how often the rule has been found to be true.
It indicates how reliable the rule is. For example, how likely is it that someone
would buy toothpaste when buying a toothbrush. In other words, confidence is the
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conditional probability of the consequent given the antecedent,- P(B|A), where
P(B|A) = P(AB)/P(A).

3. Lift is a metric to measure the ratio of the confidence of products occurring
together if they were statistically independent. For example, how likely is another
product purchased when purchasing a product, while controlling how popular the
other product is.

A lift score that is close to 1 indicates that the antecedent and the consequent
are independent and occurrence of antecedent has no impact on occurrence of
consequent. A Lift score that is greater than 1 indicates that the antecedent and
consequent are dependent to each other, and the occurrence of antecedent has
a positive impact on occurrence of consequent. A lift score that is smaller than
1 indicates that the antecedent and the consequent are substitute each other that
means the existence of antecedent has a negative impact to consequent or vice
versa.

Consider an association rule “if A then B.” The lift for the rule is defined as-
P(B|A)/P(B), which is also P(AB)/(P(A)*P(B)).As shown in the formula, lift is
symmetric in that the lift for “if A then B” is the same as the lift for “if B then
A.”

4. Conviction score is a ratio between the probability that one product occurs
without another while they were dependent and the actual probability of one
products’ existence without another. It measures the implied strength of the
rule from statistical independence. For example, if the (oranges) → (apples)
association has a conviction score of 1.5; the rule would be incorrect 1.5 times
more often (50% more often) if the association between the two were totally
independent.

The Conviction score of A -> B would be defined as:
−(1−Support(B))/(1−Confidence(A -> B))

By using the earlier shown dataset we can calculate the support, confidence, and
lift of a rule.

For example, for the rule {milk, bread} => Butter, we can calculate the following
measures:

• Support ({milk}) = 2/5 = 0.4
• Support ({milk, bread}) = 2/5 = 0.4
• Confidence ({milk, bread} => Butter)= 1/2 = 0.5
• Lift ({milk, bread} => Butter) = (1/2) / (2/5) = 1.25

We have generated a sample dataset consisting of nine transactions in an hour.
Each transaction is a combination of 0s and 1s, where 0 represents the absence of
an item and 1 represents the presence of it.

We can find multiple rules from this scenario. For example, in a transaction of
milk and bread, if milk is bought, then customers also buy bread.

transactions = [["milk", "bread"],
["butter"],

(continues on next page)
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Database TDB

Min. support 50% (i.e., 2tx’s) BE=>C conf.:66%

C1Tid Items

10
20
30
40

A, C, D
B, C, E

A, B, C, E
B, E

1st scan

{A}
{B}
{C}
{D}
{E}

{A, C}
{B, C}
{B, E}
{C, E}

{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

{A}
{B}
{C}
{E}

2
3
3
1

2
3
3
3

3

L1

Itemset sup

Itemset sup

Itemset

Itemset

Itemset
sup

Itemset sup

Itemset sup

L2

C2 C2

2nd scan

3rd scanC3 L3

2
2
3
2

1
2
1
2
3
2

2{B, C, E} {B, C, E}

(continued from previous page)

["beer", "diapers"],
["milk", "bread", "butter"],
["bread"],
["beer"],
["beer", "diapers"],
["diapers"],
["beer", "diapers"]]

import pandas as pd
from mlxtend.preprocessing import TransactionEncoder

te = TransactionEncoder()
te_ary = te.fit(transactions).transform(transactions)
df = pd.DataFrame(te_ary, columns=te.columns_).astype(int)
df

beer bread butter diapers milk
0 0 1 0 0 1
1 0 0 1 0 0
2 1 0 0 1 0
3 0 1 1 0 1
4 0 1 0 0 0
5 1 0 0 0 0
6 1 0 0 1 0
7 0 0 0 1 0
8 1 0 0 1 0
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item = apriori(df, use_colnames=True, min_support=0.2)
print(item)
print("=========")
rules1 = association_rules(item, metric = 'confidence', min_
↪→threshold=0.7)
print(rules1)

support itemsets
0 0.444444 (beer)
1 0.333333 (bread)
2 0.222222 (butter)
3 0.444444 (diapers)
4 0.222222 (milk)
5 0.333333 (beer, diapers)
6 0.222222 (milk, bread)
=========

antecedents consequents antecedent support consequent
↪→support support \
0 (beer) (diapers) 0.444444 0.
↪→444444 0.333333
1 (diapers) (beer) 0.444444 0.
↪→444444 0.333333
2 (milk) (bread) 0.222222 0.
↪→333333 0.222222

confidence lift leverage conviction
0 0.75 1.6875 0.135802 2.222222
1 0.75 1.6875 0.135802 2.222222
2 1.00 3.0000 0.148148 inf
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Chapter 14
Text Mining

Abstract Text mining is the process of extracting meaning from unstructured text
documents using bothmachine learning and natural language processing techniques.
It enables the process of converting reviews into specific recommendations that can
be used. Text data would be represented in structured formats through converting
text into numerical representations. Structured text data can then be ingested by
Artificial Intelligence algorithms for various tasks such as sentence topic classifica-
tion and keyword extraction.

Learning outcomes:

• Represent text data in structured and easy-to-consume formats for text mining.
• Perform sentence classification tasks on text data.
• Identify important keywords for sentence classification.

Text mining combines both machine learning and natural language processing
(NLP) to draw meaning from unstructured text documents. Text mining is the
driving force behind how a business analyst turns 50,000 hotel guest reviews into
specific recommendations, how a workforce analyst improves productivity and
reduces employee turnover, and how companies are automating processes using
chatbots.

A very popular and current strategy in this field is Vectorized Term Frequency
and Inverse Document Frequency (TF-IDF) representation. In fact, Google search
engine also uses this technique when a word is searched. It is based on unsupervised
learning technique. TF-IDF converts your document text into a bag of words and
then assigns a weighted term to each word. In this chapter, we will discuss how to
use text mining techniques to get meaningful results for text classification.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
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14.1 Read Data

import pandas as pd

#this assumes one json item per line in json file
df=pd.read_json("TFIDF_news.json", lines=True)

df.dtypes

short_description object
headline object
date datetime64[ns]
link object
authors object
category object
dtype: object

#number of rows (datapoints)
len(df)

124989

# Take sample of 3 to view the data
df.sample(3)

short_description \
100659 The hardest battles are not fault in the stree...
74559 Mizzou seems to have catalyzed years of tensio...
48985 But also hilariously difficult.

headline
↪→ date \
100659 American Sniper Dials in on the Reality of War 2015-
↪→01-23
74559 Campus Racism Protests Didn't Come Out Of Nowh... 2015-
↪→11-16
48985 These People Took On Puerto Rican Slang And It... 2016-
↪→09-02

link \
100659 https://www.huffingtonpost.com/entry/american-...
74559 https://www.huffingtonpost.com/entry/campus-ra...
48985 https://www.huffingtonpost.com/entry/these-peo...

authors
↪→ category
100659 Zachary Bell, Contributor United States Marine ...
↪→ENTERTAINMENT

(continues on next page)
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(continued from previous page)

74559 Tyler Kingkade, Lilly Workneh, and Ryan Grenoble
↪→ COLLEGE
48985 Carolina Moreno
↪→LATINO VOICES

14.2 Date Range

Articles are between July 2014 and July 2018.

df.date.hist(figsize=(12,6),color='#86bf91',)

<matplotlib.axes._subplots.AxesSubplot at 0x1a695a80508>
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14.3 Category Distribution

In our data, there are a total of 31 categories.

len(set(df['category'].values))

31

Most of the articles are related to politics. Education related articles have the
lowest volume.
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import matplotlib
import numpy as np
cmap = matplotlib.cm.get_cmap('Spectral')
rgba = [cmap(i) for i in np.linspace(0,1,len(set(df['category
↪→'].values)))]
df['category'].value_counts().plot(kind='bar',color =rgba)

<matplotlib.axes._subplots.AxesSubplot at 0x1a6942753c8>
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14.4 Texts for Classification

In our example, we will only use the headline to predict category. Also, we will
only be using 2 categories, sports and crime, for simplicity. Notice that we are using
CRIME and COMEDY categories from our dataset.

df_orig=df.copy()
df = df_orig[df_orig['category'].isin(['CRIME','COMEDY'])]
print(df.shape)
df.head()
df = df.loc[:, ['headline','category']]
df['category'].value_counts().plot(kind='bar',color =['r','b'])

(6864, 6)
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<matplotlib.axes._subplots.AxesSubplot at 0x1a695c76388>
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14.5 Vectorize

Text Vectorization is the process of converting text into numerical representation.

• Binary Term Frequency
• Bag of Words (BoW) Term Frequency
• (L1) Normalized Term Frequency
• (L2) Normalized TF-IDF
• Word2Vec

Binary Term Frequency
Binary Term Frequency captures presence (1) or absence (0) of term in document.

Bag of Words (BoW) Term Frequency
Bag ofWords (BoW) Term Frequency captures frequency of a term in the document.
This is unlike Binary Term Frequency, which only captures whether a term is in the
document or is not in the document.

The following code is an example of Bag of Words Term Frequency:

from sklearn.feature_extraction.text import CountVectorizer

sample_doc = ["Hello I am a boy", "Hello I am a student", "My
↪→name is Jill"]

(continues on next page)
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(continued from previous page)

cv=CountVectorizer(max_df=0.85)
word_count_vector=cv.fit_transform(sample_doc)
word_count_vector_arr = word_count_vector.toarray()
pd.DataFrame(word_count_vector_arr,columns=sorted(cv.
↪→vocabulary_, key=cv.vocabulary_.get))

am boy hello is jill my name student
0 1 1 1 0 0 0 0 0
1 1 0 1 0 0 0 0 1
2 0 0 0 1 1 1 1 0

An important note is the vocabulary is placed in a dictionary and python
dictionaries are unsorted. Notice that the header in the following code is different
from the first example.

## Wrong example
pd.DataFrame(word_count_vector_arr,columns=cv.vocabulary_)

hello am boy student my name is jill
0 1 1 1 0 0 0 0 0
1 1 0 1 0 0 0 0 1
2 0 0 0 1 1 1 1 0

This is because of dictionary in python. See below:

cv.vocabulary_

{'hello': 2,
'am': 0,
'boy': 1,
'student': 7,
'my': 5,
'name': 6,
'is': 3,
'jill': 4}

14.6 CountVectorizer

Let’s move on to our code example. Now, let’s look at 10 words from our vocabulary.
We have also removed words that appear in 95% of documents. In text analytics,
such words (stop words) are not meaningful. An intuitive approach to understanding
removal of stop words is that in a sentence, many words are present because of
grammatical rules and do not add extra content or meaning. Ignoring such words
would allow us to distill the key essence of a document and sentence. Sweet, after
removing stop words by having maxdf=0.95, our key words are mostly crime and
comedy related.
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from sklearn.feature_extraction.text import CountVectorizer
docs=df['headline'].tolist()
# create a vocabulary of words,
# ignore words that appear in 85% of documents,
# eliminate stop words
cv=CountVectorizer(max_df=0.95)
word_count_vector=cv.fit_transform(docs)
list(cv.vocabulary_.keys())[:10]

['there',
'were',
'mass',
'shootings',
'in',
'texas',
'last',
'week',
'but',
'only']

We can also use machine learning models learnt previously to classify our
headlines! See code below:

from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix

df['category_is_crime'] = df['category']=='CRIME'
X_train, X_test, y_train, y_test = train_test_split(word_count_
↪→vector, df['category_is_crime'], test_size=0.2, random_
↪→state=42)

Wow, we achieve 95.19% in classifying headlines. This is a remarkable feat for
our machine!

model1 = LogisticRegression()
model1.fit(X_train, y_train)

y_pred = model1.predict(X_test)
cm=confusion_matrix(y_test, y_pred)
print(cm)
acc=(cm[0,0]+cm[1,1])/sum(sum(cm))
print('Accuracy of a simple linear model with CountVectorizer
↪→is .... {:.2f}%'.format(acc*100))

[[766 26]
[ 40 541]]

Accuracy of a simple linear model with CountVectorizer is ....
↪→95.19%
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14.7 TF-IDF

We implement a L2 Normalized TF-IDF transformation on the Word counts
provided, as shown below in this example.

tfidf_transformer=TfidfTransformer(smooth_idf=True,use_
↪→idf=True)
tfidf_x_train = tfidf_transformer.fit_transform(X_train)
model1 = LogisticRegression()
model1.fit(tfidf_x_train, y_train)
tfidf_x_test = tfidf_transformer.transform(X_test)
y_pred = model1.predict(tfidf_x_test)
cm=confusion_matrix(y_test, y_pred)
print(cm)
acc=(cm[0,0]+cm[1,1])/sum(sum(cm))
print('Accuracy of a simple linear model with TFIDF is .... {:.
↪→2f}%'.format(acc*100))

[[777 15]
[ 57 524]]

Accuracy of a simple linear model with TFIDF is .... 94.76%

For L1 Normalized Term Frequency, it can be done by passing: norm =′ l1′,
useidf = False, and smoothidf = False into TfidfTransformer.

14.8 Feature Extraction with TF-IDF

Apart from text classification, we can use TF-IDF to discover “important” keywords.
Here is a few example that shows the importance of each individual word. Such
technique is simple and easy to use. But on a cautionary note, using TF-IDF is
heavily dependent on the input data and the importance of the text is closely related
to the frequency in the document and across the entire data.

## Important keywords extraction using tfidf
print(df.iloc[1].headline)
vector = cv.transform([df.iloc[1].headline])
tfidf_vector = tfidf_transformer.transform(vector)
coo_matrix = tfidf_vector.tocoo()
tuples = zip(coo_matrix.col, coo_matrix.data)
sorted_tuple = sorted(tuples, key=lambda x: (x[1], x[0]),
↪→reverse=True)
[(cv.get_feature_names()[i[0]],i[1]) for i in sorted_tuple]

Rachel Dolezal Faces Felony Charges For Welfare Fraud
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[('welfare', 0.413332601468908),
('felony', 0.413332601468908),
('dolezal', 0.413332601468908),
('rachel', 0.3885287853920158),
('fraud', 0.3599880238280249),
('faces', 0.3103803916742406),
('charges', 0.2954500640160872),
('for', 0.15262948420298186)]

## Important keywords extraction using tfidf
print(df.iloc[5].headline)
vector = cv.transform([df.iloc[5].headline])
tfidf_vector = tfidf_transformer.transform(vector)
coo_matrix = tfidf_vector.tocoo()
tuples = zip(coo_matrix.col, coo_matrix.data)
sorted_tuple = sorted(tuples, key=lambda x: (x[1], x[0]),
↪→reverse=True)
[(cv.get_feature_names()[i[0]],i[1]) for i in sorted_tuple]

Man Faces Charges After Pulling Knife, Stun Gun On Muslim
↪→Students At McDonald's

[('stun', 0.37604716794652987),
('pulling', 0.3658447343442784),
('knife', 0.32581708572483403),
('mcdonald', 0.32215742177499496),
('students', 0.30480662832662847),
('faces', 0.2922589939460096),
('muslim', 0.28707744879148683),
('charges', 0.27820036570239326),
('gun', 0.24718607863715278),
('at', 0.17925932409191916),
('after', 0.17428789091260877),
('man', 0.17199120825269787),
('on', 0.15323370190782204)]

comedy_1 = df[~df['category_is_crime']].iloc[0].headline
print(comedy_1)

Trump's New 'MAGA'-Themed Swimwear Sinks On Twitter

## Important keywords extraction using tfidf
vector = cv.transform([comedy_1])
tfidf_vector = tfidf_transformer.transform(vector)
coo_matrix = tfidf_vector.tocoo()
tuples = zip(coo_matrix.col, coo_matrix.data)
sorted_tuple = sorted(tuples, key=lambda x: (x[1], x[0]),
↪→reverse=True)
[(cv.get_feature_names()[i[0]],i[1]) for i in sorted_tuple]
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[('swimwear', 0.4735563110982704),
('sinks', 0.4735563110982704),
('maga', 0.4735563110982704),
('themed', 0.37841071080711314),
('twitter', 0.2770106227768904),
('new', 0.22822300865931006),
('on', 0.17796879475963143),
('trump', 0.15344404805174222)]

14.9 Sample Code

import requests
from bs4 import BeautifulSoup

page = requests.get("http://www.facebook.com")
soup = BeautifulSoup(page.content, "html.parser")

print(soup)

from nltk.tokenize import TweetTokenizer
tknzr = TweetTokenizer()
s0 = "This is a cooool #dummysmiley: :-) :-P <3 and some
↪→arrows < > -> <--"
tknzr.tokenize(s0)

from nltk.stem import PorterStemmer

ps = PorterStemmer()

sample_words = ["marketing", "markets", "marketed", "marketer"]

print(sample_words)

for each in sample_words:
print("{:s} -> {:s}".format(each, ps.stem(each)))

from nltk.stem import WordNetLemmatizer
import nltk
nltk.download('wordnet')
wnl = WordNetLemmatizer()

print(wnl.lemmatize("beaten"))
print(wnl.lemmatize("beaten", "v"))
print(wnl.lemmatize("women", "n"))
print(wnl.lemmatize("happiest", "a"))
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import nltk
nltk.download('averaged_perceptron_tagger')
nltk.download("tagsets")
from nltk.tokenize import TweetTokenizer
tknzr = TweetTokenizer()
s0 = "This is a cooool #dummysmiley: :-) :-P <3 and some
↪→arrows < > -> <--"
tokens=tknzr.tokenize(s0)
tagged = nltk.pos_tag(tokens)
print(tagged)

import nltk.classify.util
from nltk.classify import NaiveBayesClassifier
from nltk.corpus import names

nltk.download("names")
def gender_features(word):

return {'last_letter': word[-1]}

# Load data and training
names = ([(name, 'male') for name in names.words('male.txt')] +

[(name, 'female') for name in names.words('female.txt
↪→')])

#we will be using the last letter of each name as a feature
↪→for training the model
featuresets = [(gender_features(n), g) for (n, g) in names]
train_set = featuresets
classifier = nltk.NaiveBayesClassifier.train(train_set)

print(names)
print("Anny")
print(classifier.classify(gender_features('Anny')))



Chapter 15
Image Processing

Abstract Image processing is a process of applying various operations on image
data to extract useful information or produce an enhanced output. OpenCV, Scikit-
image, and Pillow are useful tools that make image processing simpler. Techniques
covered include generating histograms, extracting contours, grayscale transforma-
tion, histogram equalization, Fourier transformation, high pass filtering, and pattern
recognition. A template matching example shown will be used to find and locate
numbers and letters on a car plate.

Learning outcomes:

• Learn and apply basic image processing techniques.
• Write image processing pipeline with OpenCV in Python.
• Perform object detection through template matching.

This chapter provides an introduction to basic image processing techniques using
the OpenCV computer vision library and some standard data analysis libraries in
Python.

15.1 Load the Dependencies

This chapter requires the following libraries: numpy, pandas, cv2, skimage, PIL,
matplotlib

import numpy as np
import pandas as pd
import cv2 as cv
#from google.colab.patches import cv2_imshow # for image
↪→display
from PIL import Image
import matplotlib.pylab as plt
from skimage import data
from skimage.feature import match_template
from skimage.draw import circle

(continues on next page)
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(continued from previous page)

from skimage import io
from skimage import color

15.2 Load Image from urls

In this step we will read images from urls, and display them using openCV, please
note the difference when reading image in RGB and BGR format. The default input
color channels are in BGR format for openCV.

The following code allows us to show images in a Jupyter notebook and here is
a brief walk through of what each step does:

• io.imread

– read the picture as numerical array/matrixes

• cv.cvtColor

– convert BGR into RGB
– image when loaded by OpenCV is in BGR by default

• cv.hconcat

– display images (BGR version and RGB version) and concatenate them
horizontally

• cv2_imshow (for google colab). On local please use matplotlib

– display images on our screen

# Create a list to store the urls of the images
urls = ["https://iiif.lib.ncsu.edu/iiif/0052574/full/800,/0/
↪→default.jpg",

"https://iiif.lib.ncsu.edu/iiif/0016007/full/800,/0/
↪→default.jpg",

"https://placekitten.com/800/571"]
# Read and display the image
# loop over the image URLs, you could store several image urls
↪→in the list

for n, url in enumerate(urls):
plt.figure()
image = io.imread(url)
image_2 = cv.cvtColor(image, cv.COLOR_BGR2RGB)
final_frame = cv.hconcat((image, image_2))
plt.imshow(final_frame)
print('\n')
plt.savefig(f'image_processing/img{n}.png')
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# Using Colab

# Create a list to store the urls of the images
urls = ["https://iiif.lib.ncsu.edu/iiif/0052574/full/800,/0/
↪→default.jpg",

"https://iiif.lib.ncsu.edu/iiif/0016007/full/800,/0/
↪→default.jpg",

"https://placekitten.com/800/571"]
# Read and display the image

(continues on next page)
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(continued from previous page)

# loop over the image URLs, you could store several image urls
↪→in the list

for n, url in enumerate(urls):
plt.figure()
image = io.imread(url)
image_2 = cv.cvtColor(image, cv.COLOR_BGR2RGB)
final_frame = cv.hconcat((image, image_2))
# cv2_imshow(final_frame) // uncomment for colab
print('\n')

plt.show()

<Figure size 432x288 with 0 Axes>

<Figure size 432x288 with 0 Axes>

<Figure size 432x288 with 0 Axes>

15.3 Image Analysis

Here we will analyze the image’s contours and histograms. Firstly, let us take a look
at some of the image’s data.

Notice that a RGB image is 3 dimension in nature? Let us make sense of its shape
and what the numbers represent.

# Check the image matrix data type (could know the bit depth
↪→of the image)
io.imshow(image)
print(image.shape)
print(image.dtype)
# Check the height of image
print(image.shape[0])
# Check the width of image
print(image.shape[1])
# Check the number of channels of the image
print(image.shape[2])
plt.savefig(f'image_processing/img3.png')

(571, 800, 3)
uint8
571
800
3
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15.4 Image Histogram

Sometimes you want to enhance the contrast in your image or expand the contrast
in a particular region while sacrificing the detail in colors that do not vary much, or
do not matter. A good tool to find interesting regions is the histogram. To create a
histogram of our image data, we use the matplot.pylab hist() function.

Display the histogram of all the pixels in the color image.

plt.hist(image.ravel(),bins = 256, range = [0,256])
plt.savefig(f'image_processing/img4.png')
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Display the histogram of R, G, B channel. We could observe that the green
channel has many pixels in 255, which represents the white patch in the image.

color = ('b','g','r')
for i,col in enumerate(color):

histr = cv.calcHist([image],[i],None,[256],[0,256])
plt.plot(histr,color = col)
plt.xlim([0,256])

plt.savefig(f'image_processing/img5.png')

gray_image = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
plt.imshow(gray_image)
plt.savefig(f'image_processing/img6.png')

# Plot the histogram of the gray image. We could observe that
↪→the frequency of
# the image hist has decreased ~ 1/3 of the histogram of color
↪→image

(continues on next page)
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(continued from previous page)

plt.hist(gray_image.ravel(),bins = 256, range = [0, 256])
plt.savefig(f'image_processing/img7.png')
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15.5 Contour

Contours can be explained simply as a curve joining all the continuous points (along
the boundary), having same color or intensity. The contours are a useful tool for
shape analysis and object detection and recognition.

Here is one method: Use the matplotlib contour. Refer to
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.
contour.html for more details.

Notice that the edges of the cat is being highlighted here. matplotlib takes in
the NumPy array and is able to return you the contours based on the origin.

plt.contour(gray_image, origin = "image")
plt.savefig(f'image_processing/img8.png')
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Another way would be to use opencv for contour finding. In OpenCV, finding
contours is like finding white object from black background. So remember, object
to be found should be white and background should be black.

See, there are three arguments in cv.findContours() function, first one is source
image, second is contour retrieval mode, third is contour approximation method.
And it outputs a modified image, contours, and hierarchy. Contours is a Python list
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of all the contours in the image. Each individual contour is a NumPy array of (x,y)
coordinates of boundary points of the object.

ret, thresh = cv.threshold(gray_image,150,255,0)
contours, hierarchy = cv.findContours(thresh, cv.RETR_TREE, cv.
↪→CHAIN_APPROX_SIMPLE)
image = cv.drawContours(image, contours, -1, (0, 255, 0), 3)

result = Image.fromarray((image).astype(np.uint8))
result.save('image_processing/img9.png')

15.6 Grayscale Transformation

The following section provides some examples of conducting mathematical trans-
formations of the grayscale image.

This is an inverse operation of the grayscale image; you could see that the bright
pixels become dark, and the dark pixels become bright.

im2 = - gray_image + 255
result = Image.fromarray((im2).astype(np.uint8))
result.save('image_processing/img10.png')

Another transform of the image, after adding a constant, all the pixels become
brighter and a hazing-like effect of the image is generated.

• The lightness level of the gray_image decreases after this step.

im3 = gray_image + 50
result = Image.fromarray((im3).astype(np.uint8))
result.save('image_processing/img11.png')
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15.7 Histogram Equalization

This section demonstrates histogram equalization on a dark image. This transform
flattens the gray-level histogram so that all intensities are as equally common as
possible. The transform function is a cumulative distribution function (cdf) of the
pixel values in the image (normalized to map the range of pixel values to the desired
range). This example uses image 4 (im4).

def histeq(im, nbr_bins = 256):
""" Histogram equalization of a grayscale image. """
# get the image histogram
imhist, bins = np.histogram(im.flatten(), nbr_bins, [0, 256])
cdf = imhist.cumsum() # cumulative distribution function
cdf = imhist.max()*cdf/cdf.max() #normalize
cdf_mask = np.ma.masked_equal(cdf, 0)

(continues on next page)
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(continued from previous page)

cdf_mask = (cdf_mask - cdf_mask.min())*255/(cdf_mask.max()-
↪→cdf_mask.min())
cdf = np.ma.filled(cdf_mask,0).astype('uint8')
return cdf[im.astype('uint8')]

# apply the function on your dark image to increase the
↪→contrast
# we could observe that the contrast of the black background
↪→has increased
im5 = histeq(im3)
plt.imshow(im5)
plt.show()
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15.8 Fourier Transformation

A Fourier transform is used to find the frequency domain of an image. You can
consider an image as a signal which is sampled in two directions. So taking a Fourier
transform in both X and Y directions gives you the frequency representation of
image. For the sinusoidal signal, if the amplitude varies so fast in short time, you
can say it is a high frequency signal. If it varies slowly, it is a low frequency signal.
Edges and noises are high frequency contents in an image because they change
drastically in images.

• Blur the grayscale image by a Gaussian filter with kernel size of 10

– imBlur = cv.blur(gray_image,(5,5))

• Transform the image to frequency domain

– f = np.fft.fft2(imBlur)

• Bring the zero-frequency component to the center

– fshift = np.fft.fftshift(f)
– magnitude_spectrum = 30*np.log(np.abs(fshift))

imBlur = cv.blur(gray_image,(5,5))
f = np.fft.fft2(imBlur)
fshift = np.fft.fftshift(f)
magnitude_spectrum = 30*np.log(np.abs(fshift))

plt.subplot(121),plt.imshow(imBlur, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(magnitude_spectrum, cmap = 'gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()

Input Image Magnitude Spectrum
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Input Image Magnitude Spectrum

15.9 High pass Filtering in FFT

This section demonstrates conducting a high pass filter to remove the low frequency
component, resulting in a sharpened image which contains the edges. Such tech-
nique allows us to find edges in the image.

rows, cols = imBlur.shape
crow,ccol = round(rows/2) , round(cols/2)
# remove low frequencies with a rectangle size of 10
fshift[crow-10:crow+10, ccol-10:ccol+10] = 0
f_ishift = np.fft.ifftshift(fshift)
img_back = np.fft.ifft2(f_ishift)
img_back = np.abs(img_back)

plt.figure(figsize=([20, 20]))
plt.subplot(131),plt.imshow(imBlur, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(132),plt.imshow(img_back, cmap = 'gray')
plt.title('Image after HPF'), plt.xticks([]), plt.yticks([])
plt.show()

Input Image Image after HPF
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Input Image Image after HPF

15.10 Pattern Recognition

In the following section, we are going to go through pattern matching. Notice
the below is a car plate number from this url: https://www.hdm-stuttgart.de/~
maucher/Python/ComputerVision/html/_images/template.png. A copy of the image
is available in dropbox as well. We would try to find individual alphabets. A
common use case that is already widely implemented would be car plate number
tracking.

from skimage import color
from skimage import io

full = color.rgb2gray(io.imread('./image_processing/platine.jpg
↪→'))
plt.imshow(full,cmap = plt.cm.gray)
plt.title("Search pattern in this image")

ipykernel_launcher:5: FutureWarning: Non RGB image conversion
↪→is now deprecated. For RGBA images, please use
↪→rgb2gray(rgba2rgb(rgb)) instead. In version 0.19, a
↪→ValueError will be raised if input image last dimension
↪→length is not 3.

Text(0.5, 1.0, 'Search pattern in this image')

The following code crops out a portion of the image: template =
full[240:370,190:250]. The numbers correspond to the width and height
of the image. We are plotting the segment out. Here is what it looks like:

template = full[240:370,190:250]
plt.imshow(template,cmap = plt.cm.gray)
plt.figure()
plt.subplot(1,2,1)
plt.imshow(full,cmap = plt.cm.gray)
plt.title("Search pattern in this image")

https://www.hdm-stuttgart.de/~maucher/Python/ComputerVision/html/_images/template.png
https://www.hdm-stuttgart.de/~maucher/Python/ComputerVision/html/_images/template.png
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correlation=match_template(full,template)

xcoords=[]
ycoords=[]
for row in range(correlation.shape[0]):

for col in range(correlation.shape[1]):
if correlation[row,col]>0.9:

#print(row,col,correlation[row,col])
xcoords.append(col)
ycoords.append(row)

(continues on next page)



15.10 Pattern Recognition 257

(continued from previous page)

plt.imshow(full,cmap = plt.cm.gray)
plt.title("Found patterns")
plt.plot(xcoords,ycoords,'om',ms=8,label="found matches")
plt.legend(loc=2,numpoints=1)
plt.legend()
plt.show()
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Notice that there is a mark at the top left hand corner of L in the image. This
is because the L is being moved across the entire image and when there is a match
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it will be captured. You can try to change the shape and size of L, by rotating and
resizing. The result might be different depending on the correlation between the
template and the original image.

15.11 Sample Code

from skimage import io

image = io.imread("C:/Users/User/Dropbox/TT Library/AI Model/
↪→Image & CNN/Pug.jpg")

io.imshow(image)
image.shape

import matplotlib.pylab as plt
plt.hist(image.flatten())

from skimage import color

imageGray = color.rgb2gray(image)
io.imshow(imageGray)

plt.contour(imageGray, origin = "image") #origin = "image",
↪→else inverted

from skimage.transform import rescale

image_rescaled = rescale(imageGray, 0.25)
io.imshow(image_rescaled)

from skimage import filters
edges = filters.sobel(imageGray)
io.imshow(edges)
io.show()

import numpy as np

f = np.fft.fft2(imageGray)
# Bring the zero-frequency component to the center
fshift = np.fft.fftshift(f)
magnitude_spectrum = np.log(np.abs(fshift))

plt.imshow(imageGray, cmap = "gray")
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plt.imshow(magnitude_spectrum)
plt.show()

import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
import numpy as np

(x_train, y_train), (x_test, y_test) = mnist.load_data()

from skimage import io
io.imshow(x_train[0])

print(y_train[0])

print(x_train.shape)
print(x_train[0][0])
x_train = x_train.reshape(60000,28,28,1)
print("after", x_train[0][0])
x_test = x_test.reshape(10000,28,28,1)

print(y_train)
y_train = keras.utils.to_categorical(y_train, 10)
print("after", y_train[0])
y_test = keras.utils.to_categorical(y_test, 10)

model = Sequential()
model.add(Conv2D(32, (3,3), input_shape=(28,28,1)))
model.add(Conv2D(32, (3, 3)))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128))
model.add(Dense(10))
model.summary()

model.compile(loss=keras.losses.categorical_crossentropy,
↪→metrics=['accuracy'])

model.fit(x_train, y_train, batch_size=5000, epochs=1)
score = model.evaluate(x_train, y_train)
print(score)
score = model.evaluate(x_test, y_test)
print(score)



Chapter 16
Convolutional Neural Networks

Abstract Convolutional Neural Networks are neural networks with convolution
layers which perform operations similar to image processing filters. Convolutional
Neural Networks are applied in a variety of tasks related to images such as
image classification, object detection, and semantic segmentation. Popular Network
architectures include ResNet, GoogleNet, and VGG. These networks are often
trained on very large datasets, can be downloaded in Keras and Tensorflow, and
can be later used for finetuning on other tasks.

Learning outcomes:

• Understand how convolution, pooling, and flattening operations are performed.
• Perform an image classification task using Convolutional Neural Networks.
• Familiarize with notable Convolution Neural Network Architectures.
• Understand Transfer Learning and Finetuning.
• Perform an image classification task through finetuning a Convolutional Neural Network

previously trained on a separate task.
• Exposure to various applications of Convolutional Neural Networks.

A fully connected neural network consists of a series of fully connected layers
that connect every neuron in one layer to every neuron in the other layer. The
main problem with fully connected neural networks is that the number of weights
required is very large for certain types of data. For example, an image of 224x224x3
would require 150528 weights in just the first hidden layer and will grow quickly
for even bigger images. You can imagine how computationally intensive things
would become once the images reach dimensions as large as 8K resolution images
(7680×4320), training such a network would require a lot of time and resources.

However, for image data, repeating patterns can occur in different places. Hence
we can train many smaller detectors, capable of sliding across an image, to take
advantage of the repeating patterns. This would reduce the number of weights
required to be trained.

A Convolutional Neural Network is a neural network with some convolutional
layers (and some other layers). A convolutional layer has a number of filters that
does the convolutional operation.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
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Machine Learning: Foundations, Methodologies, and Applications,
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16.1 The Convolution Operation

The convolution operation is very similar to image processing filters such as the
Sobel filter and Gaussian Filter. The Kernel slides across an image and multiplies
the weights with each aligned pixel, element-wise across the filter. Afterwards the
bias value is added to the output.

There are three hyperparameters deciding the spatial of the output feature map:
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• Stride (S) is the step each time we slide the filter. When the stride is 1 then we
move the filters one pixel at a time. When the stride is 2 (or uncommonly 3 or
more, though this is rare in practice) then the filters jump 2 pixels at a time as we
slide them around. This will produce smaller output volumes spatially.

• Padding (P): The inputs will be padded with a border of size according to the
value specified. Most commonly, zero-padding is used to pad these locations. In
neural network frameworks (caffe, TensorFlow, PyTorch, MXNet), the size of
this zero-padding is a hyperparameter. The size of zero-padding can also be used
to control the spatial size of the output volumes.

• Depth (D): The depth of the output volume is a hyperparameter too; it corre-
sponds to the number of filters we use for a convolution layer.

Given w as the width of input, and F is the width of the filter, with P and S as
padding, the output width will be: (W+2P−F)/S+1. Generally, set P=(F−1)/2 when
the stride is S=1 ensures that the input volume and output volumewill have the same
size spatially.
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For an input of 7 × 7 × 3 and an output depth of 2, we will have 6 kernels as
shown below. Three for the first depth output and another 3 for the second depth
output. The outputs of each filter are summed up to generate the output feature map.

In the example below, the output from each Kernel of Filter W1 is as follows:
Output of Kernel 1 = 1 Output of Kernel 2 = −2 Output of Kernel 3 = 2

Output of Filter W1 = Output of Kernel 1 + Output of Kernel 2 + Output of Kernel
3 + bias= 1 − 2 + 2 + 0 = 1.

16.2 Pooling

Nowadays, a CNN always exploits extensive weight-sharing to reduce the degrees
of the freedom of models. A pooling layer helps reduce computation time and
gradually build up spatial and configural invariance. For image understanding,
pooling layer helps extract more semantic meaning. The max pooling layer simply
returns the maximum value over the values that the kernel operation is applied on.
The example below illustrates the outputs of a max pooling and average pooling
operation, respectively, given a kernel of size 2 and stride 2.

16.3 Flattening

Adding a Fully Connected layer is a (usually) cheap way of learning non-linear
combinations of the high-level features as represented by the output of the convolu-
tional layer. The Fully Connected layer is learning a possibly non-linear function in
that space.
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By flattening the image into a column vector, we have converted our input image
into a suitable form for our Multi-Level Perceptron. The flattened output is fed
to a feed-forward neural network and backpropagation applied to every iteration
of training. Over a series of epochs, the model is able to distinguish between
dominating and certain low-level features in images and classify them using the
Softmax Classification technique.

Inuput Volume
32x32x1

Convolution
layer Stride 1

Max Pool
layer Stride 2

Flatten layer
Fully connected
Layer ReLU Activation
Fn.

Soft-max Layer

Class 5
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Volume-28x28x3
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16.4 Exercise

We will build a small CNN using Convolution layers, Max Pooling layers, and
Dropout layers in order to predict the type of fruit in a picture.

The dataset we will use is the fruits 360 dataset. You can obtain the dataset from
this link: https://www.kaggle.com/moltean/fruits

import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.
↪→read_csv)
import os

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Flatten
from tensorflow.keras.layers import Conv2D, MaxPooling2D
from tensorflow.keras import optimizers
import numpy as np
import pandas as pd

(continues on next page)

https://www.kaggle.com/moltean/fruits
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(continued from previous page)

from tensorflow.keras.preprocessing.image import
↪→ImageDataGenerator

import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import pathlib

train_root =pathlib.Path("D:/Programming Stuff/Teoh's Slides/
↪→book-ai-potato (docs)/fruits-360_dataset/fruits-360/Training
↪→")
test_root = pathlib.Path("D:/Programming Stuff/Teoh's Slides/
↪→book-ai-potato (docs)/fruits-360_dataset/fruits-360/Test")

batch_size = 10

from skimage import io
image = io.imread("D:/Programming Stuff/Teoh's Slides//book-ai-
↪→potato (docs)/fruits-360_dataset/fruits-360/Training/Apple
↪→Braeburn/101_100.jpg")
print(image.shape)
print(image)
io.imshow(image)

(100, 100, 3)
[[[253 255 250]

[255 255 251]
[255 254 255]
...
[255 255 255]
[255 255 255]
[255 255 255]]

[[251 255 252]
[253 255 252]
[255 254 255]
...
[255 255 255]
[255 255 255]
[255 255 255]]

[[249 255 253]
[251 255 254]
[255 255 255]
...
[255 255 255]
[255 255 255]
[255 255 255]]

...

(continues on next page)
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(continued from previous page)

[[255 255 255]
[255 255 255]
[255 255 255]
...
[255 255 255]
[255 255 255]
[255 255 255]]

[[255 255 255]
[255 255 255]
[255 255 255]
...
[255 255 255]
[255 255 255]
[255 255 255]]

[[255 255 255]
[255 255 255]
[255 255 255]
...
[255 255 255]
[255 255 255]
[255 255 255]]]

<matplotlib.image.AxesImage at 0x1543232f070>
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Generator = ImageDataGenerator()
train_data = Generator.flow_from_directory(train_root, (100,
↪→100), batch_size=batch_size)
test_data = Generator.flow_from_directory(test_root, (100,
↪→100), batch_size=batch_size)
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Found 67692 images belonging to 131 classes.
Found 22688 images belonging to 131 classes.

num_classes = len([i for i in os.listdir(train_root)])
print(num_classes)

131

model = Sequential()

model.add(Conv2D(16, (5, 5), input_shape=(100, 100, 3),
↪→activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=2))
model.add(Dropout(0.05))

model.add(Conv2D(32, (5, 5), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=2))
model.add(Dropout(0.05))

model.add(Conv2D(64, (5, 5),activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=2))
model.add(Dropout(0.05))

model.add(Conv2D(128, (5, 5), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=2))
model.add(Dropout(0.05))

model.add(Flatten())

model.add(Dense(1024, activation='relu'))
model.add(Dropout(0.05))

model.add(Dense(256, activation='relu'))
model.add(Dropout(0.05))

model.add(Dense(num_classes, activation="softmax"))

model.compile(loss=keras.losses.categorical_crossentropy,
↪→optimizer=optimizers.Adam(), metrics=['accuracy'])
model.fit(train_data, batch_size = batch_size, epochs=2)

Epoch 1/2
6770/6770 [==============================] - 160s 24ms/step -
↪→loss: 1.2582 - accuracy: 0.6622
Epoch 2/2
6770/6770 [==============================] - 129s 19ms/step -
↪→loss: 0.5038 - accuracy: 0.8606
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<tensorflow.python.keras.callbacks.History at 0x154323500a0>

score = model.evaluate(train_data)
print(score)
score = model.evaluate(test_data)
print(score)

6770/6770 [==============================] - 105s 15ms/step -
↪→loss: 0.2151 - accuracy: 0.9366
[0.21505890786647797, 0.9366099238395691]
2269/2269 [==============================] - 34s 15ms/step -
↪→loss: 0.8411 - accuracy: 0.8114
[0.8410834670066833, 0.8113980889320374]

16.5 CNN Architectures

There are various network architectures being used for image classification tasks.
VGG16, Inception Net (GoogLeNet), and Resnet are some of the more notable
ones.

16.5.1 VGG16

The VGG16 architecture garnered a lot of attention in 2014. It makes the improve-
ment over its predecessor, AlexNet, through replacing large kernel-sized filters (11
and 5 in the first and second convolutional layer, respectively) with multiple 3×3
kernel-sized filters stacked together.

16.5.2 Inception Net

Before the Dense layers (which are placed at the end of the network), each time we
add a new layer we face two main decisions:

1. Deciding whether we want to go with a Pooling or Convolutional operation;
2. Deciding the size and number of filters to be passed through the output of the

previous layer.

Google researchers developed the Inception module allows us to apply different
options all together in one single layer.

The main idea of the Inception module is that of running multiple operations
(pooling, convolution) with multiple filter sizes (3x3, 5x5. . . ) in parallel so that we
do not have to face any trade-off.
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16.5.3 ResNet

Researchers thought that increasing more layers would improve the accuracy of the
models. But there are two problems associated with it.

1. Vanishing gradient problem—Somewhat solved with regularization like batch
normalization, etc. Gradients become increasingly smaller as the network
becomes deeper, making it harder to train deep networks.

2. The authors observed that addingmore layers did not improve the accuracy. Also,
it is not over-fitting also as the training error is also increasing.

The basic intuition of the Residual connections is that, at each conv layer the
network learns some features about the data F(x) and passes the remaining errors
further into the network. So we can say the output error of the conv layer is H(x) =
F(x) -x.

This solution also helped to alleviate the vanishing gradient problem as gradients
can flow through the residual connections.

weight layer

weight layer

relu

relu

identity

X

X

+

F(x)

F(x) + x
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16.6 Finetuning

Neural networks are usually initialized with random weights. These weights will
converge to some values after training for a series of epochs, to allow us to
properly classify our input images. However, instead of a random initialization, we
can initialize those weights to values that are already good to classify a different
dataset.

Transfer Learning is the process of training a network that already performs
well on one task, to perform a different task. Finetuning is an example of transfer
learning, where we use another network trained on a much larger dataset to initialize
and simply train it for classification. In finetuning, we can keep the weights of earlier
layers as it has been observed that the Early layers contain more generic features,
edges, color blobs and are more common to many visual tasks. Thus we can just
Finetune the later layers which are more specific to the details of the class.

Through Transfer Learning, we would not require a dataset as big compared
to having to train a network from scratch. We can reduce the required number of
images from hundreds of thousands or even millions of images down to just a few
thousands. Training Time is also sped up during the retraining process as it is much
easier due to the initialization.

In the exercise below, we will finetune a ResNet50, pretrained on ImageNet
(more than 14 million images, consisting of 1000 classes) for the same fruit
classification task. In order to speed up the training process, we will freeze ResNet
and simply train the last linear layer.

from tensorflow.keras.applications.resnet import ResNet50
resnet_model = ResNet50(include_top=False, weights='imagenet',
↪→input_shape=(100,100,3))
resnet_model.trainable = False

from tensorflow.keras.layers import Conv2D, MaxPooling2D,
↪→Flatten, Dense, Dropout, InputLayer, GlobalAveragePooling2D
from tensorflow.keras.models import Sequential
from tensorflow.keras import optimizers
model = Sequential()
model.add(resnet_model)
model.add(GlobalAveragePooling2D())
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,
↪→optimizer=optimizers.Adam(), metrics=['accuracy'])

model.summary()

Model: "sequential_1"
_______________________________________________________________
↪→__

(continues on next page)
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(continued from previous page)

Layer (type) Output Shape Param #
=================================================================
resnet50 (Model) (None, 4, 4, 2048) 23587712
_______________________________________________________________
↪→__
global_average_pooling2d_1 ( (None, 2048) 0
_______________________________________________________________
↪→__
dense_1 (Dense) (None, 131) 268419
=================================================================
Total params: 23,856,131
Trainable params: 268,419
Non-trainable params: 23,587,712
_______________________________________________________________
↪→__

model.fit(train_data, epochs=1)

6770/6770 [==============================] - 388s 57ms/step -
↪→loss: 0.1312 - accuracy: 0.9728

<tensorflow.python.keras.callbacks.History at 0x15420d63490>

score = model.evaluate(train_data)
print(score)
score = model.evaluate(test_data)
print(score)

6770/6770 [==============================] - 387s 57ms/step -
↪→loss: 0.0214 - accuracy: 0.9927
[0.021364932879805565, 0.9926578998565674]
2269/2269 [==============================] - 132s 58ms/step -
↪→loss: 0.3093 - accuracy: 0.9347
[0.3093399107456207, 0.9346791505813599]

16.7 Other Tasks That Use CNNs

CNNs are used in many other tasks apart from Image classification.
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16.7.1 Object Detection

Classification tasks only tell us what is in the image and not where the object is.
Object detection is the task of localizing objects within an image. CNNs, such as
ResNets, are usually used as the feature extractor for object detection networks.

16.7.2 Semantic Segmentation

Using Fully Convolutional Nets, we can generate output maps which tell us which
pixel belongs to which classes. This task is called Semantic Segmentation.
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Chapter 17
Chatbot, Speech, and NLP

Abstract Chatbots are programs that are capable of conversing with people trained
for their specific tasks, such as providing parents with information about a school.
This chapter will provide the skills required to create a basic chatbot that can
converse through speech. Speech to text tools will be used to convert speech data
into text data. An encoder-decoder architecture model will be trained using Long-
Short Term Memory units for a question and answer task for conversation.

Learning outcomes:

• Explore into speech to text capabilities in python.
• Represent text data in structured and easy-to-consume formats for chatbots.
• Familiarize with the Encoder-Decoder architecture.
• Develop a chatbot to answer questions.

In this chapter, we will explore the speech to text capabilities with python, then
we will assemble a seq2seq LSTM model using Keras Functional API to create a
working Chatbot which would answer questions asked to it. You can try integrating
both programs together. However, do note that the code we have provided does not
integrate both component.

Chatbots have become applications themselves. You can choose the field or
stream and gather data regarding various questions. We can build a chatbot for an
e-commerce website or a school website where parents could get information about
the school.

Messaging platforms like Allo have implemented chatbot services to engage
users. The famous Google Assistant, Siri, Cortana, and Alexa may have been build
using similar models.

So, let us start building our Chatbot.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
T. T. Teoh, Z. Rong, Artificial Intelligence with Python,
Machine Learning: Foundations, Methodologies, and Applications,
https://doi.org/10.1007/978-981-16-8615-3_17
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17.1 Speech to Text

#pip install SpeechRecognition
#pip install pipwin
#pipwin install pyaudio
import speech_recognition as sr
import sys
r = sr.Recognizer()

print("please say something in 4 seconds... and wait for 4
↪→seconds for the answer.....")
print("Accessing Microphone..")

try:
with sr.Microphone() as source:

r.adjust_for_ambient_noise(source, duration=2)
# use the default microphone as the audio source, duration

↪→higher means environment noisier
print("Waiting for you to speak...")
audio = r.listen(source) # listen

↪→for the first phrase and extract it into audio data

except (ModuleNotFoundError,AttributeError):
print('Please check installation')
sys.exit(0)

try:
print("You said " + r.recognize_google(audio)) #

↪→recognize speech using Google Speech Recognition
except LookupError: # speech is
↪→unintelligible

print("Could not understand audio")

except:
print("Please retry...")

The following code requiresSpeechRecognition,pipwin, and pyaudio.
Please install first before carrying out the code. The code adjusts according to the
ambient noise which help to capture what we have said. If there is an error, try
adjusting the duration parameter in adjust_for_ambient_noise. Now
we have managed to capture what is said in r.recognize_google(audio).
We will be able to use this can pass it to our chatbot.

17.2 Importing the Packages for Chatbot

We will import TensorFlow and our beloved Keras. Also, we import other modules
which help in defining model layers.

https://www.tensorflow.org
https://www.tensorflow.org/guide/keras
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import numpy as np
import tensorflow as tf
import pickle
from tensorflow.keras import layers , activations , models ,
↪→preprocessing

17.3 Preprocessing the Data for Chatbot

17.3.1 Download the Data

The dataset hails from chatterbot/english on Kaggle.com by kausr25. It contains
pairs of questions and answers based on a number of subjects like food, history, AI,
etc.

The raw data could be found from this repo -> https://github.com/shubham0204/
Dataset_Archives

!wget https://github.com/shubham0204/Dataset_Archives/blob/
↪→master/chatbot_nlp.zip?raw=true -O chatbot_nlp.zip
!unzip chatbot_nlp.zip

17.3.2 Reading the Data from the Files

We parse each of the .yaml files.

• Concatenate two or more sentences if the answer has two or more of them.
• Remove unwanted data types which are produced while parsing the data.
• Append <START> and <END> to all the answers.
• Create a Tokenizer and load the whole vocabulary ( questions +

answers ) into it.

from tensorflow.keras import preprocessing , utils
import os
import yaml

dir_path = 'chatbot_nlp/data'
files_list = os.listdir(dir_path + os.sep)

questions = list()
answers = list()

for filepath in files_list:
stream = open( dir_path + os.sep + filepath , 'rb')

(continues on next page)

https://www.kaggle.com/kausr25/chatterbotenglish
https://www.kaggle.com/kausr25
https://github.com/shubham0204/Dataset_Archives
https://github.com/shubham0204/Dataset_Archives
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(continued from previous page)

docs = yaml.safe_load(stream)
conversations = docs['conversations']
for con in conversations:

if len( con ) > 2 :
questions.append(con[0])
replies = con[ 1 : ]
ans = ''
for rep in replies:

ans += ' ' + rep
answers.append( ans )

elif len( con )> 1:
questions.append(con[0])
answers.append(con[1])

answers_with_tags = list()
for i in range( len( answers ) ):

if type( answers[i] ) == str:
answers_with_tags.append( answers[i] )

else:
questions.pop( i )

answers = list()
for i in range( len( answers_with_tags ) ) :

answers.append( '<START> ' + answers_with_tags[i] + ' <END>
↪→' )

tokenizer = preprocessing.text.Tokenizer()
tokenizer.fit_on_texts( questions + answers )
VOCAB_SIZE = len( tokenizer.word_index )+1
print( 'VOCAB SIZE : {}'.format( VOCAB_SIZE ))

17.3.3 Preparing Data for Seq2Seq Model

Our model requires three arrays, namely encoder_input_data,
decoder_input_data, and decoder_output_data.

For encoder_input_data :

• Tokenize the questions. Pad them to their maximum length.

For decoder_input_data :

• Tokenize the answers. Pad them to their maximum length.

For decoder_output_data :

• Tokenize the answers. Remove the first element from all the
tokenized_answers. This is the <START> element which we added
earlier.
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from gensim.models import Word2Vec
import re

vocab = []
for word in tokenizer.word_index:

vocab.append( word )

def tokenize( sentences ):
tokens_list = []
vocabulary = []
for sentence in sentences:

sentence = sentence.lower()
sentence = re.sub( '[^a-zA-Z]', ' ', sentence )
tokens = sentence.split()
vocabulary += tokens
tokens_list.append( tokens )

return tokens_list , vocabulary

#p = tokenize( questions + answers )
#model = Word2Vec( p[ 0 ] )

#embedding_matrix = np.zeros( ( VOCAB_SIZE , 100 ) )
#for i in range( len( tokenizer.word_index ) ):

#embedding_matrix[ i ] = model[ vocab[i] ]

# encoder_input_data
tokenized_questions = tokenizer.texts_to_sequences( questions )
maxlen_questions = max( [ len(x) for x in tokenized_questions
↪→] )
padded_questions = preprocessing.sequence.pad_sequences(
↪→tokenized_questions , maxlen=maxlen_questions , padding='post
↪→' )
encoder_input_data = np.array( padded_questions )
print( encoder_input_data.shape , maxlen_questions )

# decoder_input_data
tokenized_answers = tokenizer.texts_to_sequences( answers )
maxlen_answers = max( [ len(x) for x in tokenized_answers ] )
padded_answers = preprocessing.sequence.pad_sequences(
↪→tokenized_answers , maxlen=maxlen_answers , padding='post' )
decoder_input_data = np.array( padded_answers )
print( decoder_input_data.shape , maxlen_answers )

# decoder_output_data
tokenized_answers = tokenizer.texts_to_sequences( answers )
for i in range(len(tokenized_answers)) :

tokenized_answers[i] = tokenized_answers[i][1:]
padded_answers = preprocessing.sequence.pad_sequences(
↪→tokenized_answers , maxlen=maxlen_answers , padding='post' )
onehot_answers = utils.to_categorical( padded_answers , VOCAB_
↪→SIZE )
decoder_output_data = np.array( onehot_answers )
print( decoder_output_data.shape )
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tokenized_questions[0],tokenized_questions[1]

padded_questions[0].shape

17.4 Defining the Encoder-Decoder Model

The model will have Embedding, LSTM, and Dense layers. The basic configuration
is as follows.

• 2 Input Layers : One for encoder_input_data and another for
decoder_input_data.

• Embedding layer : For converting token vectors to fix sized dense vectors. (Note
: Do not forget the mask_zero=True argument here )

• LSTM layer : Provide access to Long-Short Term cells.

Working :

1. The encoder_input_data comes in the Embedding layer (
encoder_embedding ).

2. The output of the Embedding layer goes to the LSTM cell which produces 2 state
vectors ( h and c which are encoder_states ).

3. These states are set in the LSTM cell of the decoder.
4. The decoder_input_data comes in through the Embedding layer.
5. The Embeddings goes in LSTM cell ( which had the states ) to produce

seqeunces.

Image credits to Hackernoon.

encoder_inputs = tf.keras.layers.Input(shape=( maxlen_
↪→questions , ))
encoder_embedding = tf.keras.layers.Embedding( VOCAB_SIZE, 200
↪→, mask_zero=True ) (encoder_inputs)
encoder_outputs , state_h , state_c = tf.keras.layers.LSTM(
↪→200 , return_state=True )( encoder_embedding )
encoder_states = [ state_h , state_c ]

decoder_inputs = tf.keras.layers.Input(shape=( maxlen_answers ,
↪→ ))
decoder_embedding = tf.keras.layers.Embedding( VOCAB_SIZE, 200
↪→, mask_zero=True) (decoder_inputs)
decoder_lstm = tf.keras.layers.LSTM( 200 , return_state=True ,
↪→return_sequences=True )
decoder_outputs , _ , _ = decoder_lstm ( decoder_embedding ,
↪→initial_state=encoder_states )
decoder_dense = tf.keras.layers.Dense( VOCAB_SIZE ,
↪→activation=tf.keras.activations.softmax )

(continues on next page)

https://hackernoon.com/tutorial-3-what-is-seq2seq-for-text-summarization-and-why-68ebaa644db0
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(continued from previous page)

output = decoder_dense ( decoder_outputs )

model = tf.keras.models.Model([encoder_inputs, decoder_inputs],
↪→ output )
model.compile(optimizer=tf.keras.optimizers.RMSprop(), loss=
↪→'categorical_crossentropy')

model.summary()

17.5 Training the Model

We train the model for a number of epochs with RMSprop optimizer and
categorical_crossentropy loss function.

model.fit([encoder_input_data , decoder_input_data], decoder_
↪→output_data, batch_size=50, epochs=150, verbose=0 )
model.save( 'model.h5' )

output = model.predict([encoder_input_data[0,np.newaxis],
↪→decoder_input_data[0,np.newaxis]])

output[0][0]

np.argmax(output[0][0])

tokenizer_dict = { tokenizer.word_index[i]:i for i in
↪→tokenizer.word_index}
tokenizer_dict

tokenizer_dict[np.argmax(output[0][1])]

tokenizer_dict[np.argmax(output[0][2])]

output = model.predict([encoder_input_data[0,np.newaxis],
↪→decoder_input_data[0,np.newaxis]])
sampled_word_indexes = np.argmax(output[0],1)
sentence = ""
maxlen_answers = 74
for sampled_word_index in sampled_word_indexes:

sampled_word = None
sampled_word = tokenizer_dict[sampled_word_index]
sentence += ' {}'.format( sampled_word )
if sampled_word == 'end' or len(sentence.split()) > maxlen_

↪→answers:
(continues on next page)
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(continued from previous page)

break
sentence

def print_train_result(index):
print(f"Question is : {questions[index]}")
print(f"Answer is : {answers[index]}")
output = model.predict([encoder_input_data[index,np.

↪→newaxis], decoder_input_data[index,np.newaxis]])
sampled_word_indexes = np.argmax(output[0],1)
sentence = ""
maxlen_answers = 74
for sampled_word_index in sampled_word_indexes:

sampled_word = None
sampled_word = tokenizer_dict[sampled_word_index]
sentence += ' {}'.format( sampled_word )
if sampled_word == 'end' or len(sentence.split()) >

↪→maxlen_answers:
break

print(f"Model prediction: {sentence}")

print_train_result(4)

print_train_result(55)

print_train_result(32)

17.6 Defining Inference Models

We create inference models which help in predicting answers.
Encoder inference model: Takes the question as input and outputs LSTM states

( h and c ).
Decoder inference model: Takes in 2 inputs, one is the LSTM states ( Output

of encoder model ), second is the answer input sequences ( ones not having the
<start> tag ). It will output the answers for the question which we fed to the
encoder model and its state values.

def make_inference_models():

encoder_model = tf.keras.models.Model(encoder_inputs,
↪→encoder_states)

decoder_state_input_h = tf.keras.layers.Input(shape=( 200 ,
↪→))

decoder_state_input_c = tf.keras.layers.Input(shape=( 200 ,
↪→))

(continues on next page)
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(continued from previous page)

decoder_states_inputs = [decoder_state_input_h, decoder_
↪→state_input_c]

decoder_outputs, state_h, state_c = decoder_lstm(
decoder_embedding , initial_state=decoder_states_

↪→inputs)
decoder_states = [state_h, state_c]
decoder_outputs = decoder_dense(decoder_outputs)
decoder_model = tf.keras.models.Model(

[decoder_inputs] + decoder_states_inputs,
[decoder_outputs] + decoder_states)

return encoder_model , decoder_model

17.7 Talking with Our Chatbot

First, we define a method str_to_tokens which converts str questions to
Integer tokens with padding.

def str_to_tokens( sentence : str ):
words = sentence.lower().split()
tokens_list = list()
for word in words:

tokens_list.append( tokenizer.word_index[ word ] )
return preprocessing.sequence.pad_sequences( [tokens_list]

↪→, maxlen=maxlen_questions , padding='post')

1. First, we take a question as input and predict the state values using enc_model.

2. We set the state values in the decoder’s LSTM.
3. Then, we generate a sequence which contains the <start> element.
4. We input this sequence in the dec_model.
5. We replace the <start> element with the element which was predicted by the

dec_model and update the state values.
6. We carry out the above steps iteratively until we hit the <end> tag or the

maximum answer length.

enc_model , dec_model = make_inference_models()

for _ in range(10):
states_values = enc_model.predict( str_to_tokens( input(

↪→'Enter question : ' ) ) )
empty_target_seq = np.zeros( ( 1 , 1 ) )
empty_target_seq[0, 0] = tokenizer.word_index['start']

(continues on next page)
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(continued from previous page)

stop_condition = False
decoded_translation = ''
while not stop_condition :

dec_outputs , h , c = dec_model.predict([ empty_target_
↪→seq ] + states_values )

sampled_word_index = np.argmax( dec_outputs[0, -1, :] )
sampled_word = None
for word , index in tokenizer.word_index.items() :

if sampled_word_index == index :
decoded_translation += ' {}'.format( word )
sampled_word = word

if sampled_word == 'end' or len(decoded_translation.
↪→split()) > maxlen_answers:

stop_condition = True

empty_target_seq = np.zeros( ( 1 , 1 ) )
empty_target_seq[ 0 , 0 ] = sampled_word_index
states_values = [ h , c ]

print( decoded_translation )

17.8 Sample Code

from IPython.display import Audio

#https://cloudconvert.com/m4a-to-wav
Path = "C:/Users/User/Dropbox/TT Library/AI Model/Speech &
↪→Chatbot & NLP/Recording.wav"

Audio(Path)

import wave

audio = wave.open(Path)

from scipy.io import wavfile

fs, x = wavfile.read(Path)
print('Reading with scipy.io.wavfile.read:', x)

import speech_recognition as sr

r = sr.Recognizer()
audio1 = sr.AudioFile(Path)
with audio1 as source:

(continues on next page)
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(continued from previous page)

audio = r.record(source)

print("Speech to text : " + r.recognize_google(audio))



Chapter 18
Deep Convolutional Generative
Adversarial Network

Abstract Deep convolutional generative adversarial networks consist of two mod-
els that are trained simultaneously by an adversarial process. A generator network
learns to produce images that look real, while a discriminator network learns to tell
real images apart from fakes. This process trains the generator network to generate
real images that may not be found in the original dataset.

Learning outcomes:

• Understand the difference between generative and discriminative models.
• Understand the roles of the generator and discriminator in a GAN system.
• Train a GAN to generate new images.

18.1 What Are GANs?

Generative Adversarial Networks (GANs) are one of the most interesting ideas in
computer science today. Two models are trained simultaneously by an adversarial
process. A generator (“the artist”) learns to create images that look real, while a
discriminator (“the art critic”) learns to tell real images apart from fakes.

During training, the generator progressively becomes better at creating images
that look real, while the discriminator becomes better at telling them apart. The
process reaches equilibrium when the discriminator can no longer distinguish real
images from fakes.

This notebook demonstrates this process on the MNIST dataset. The following
animation shows a series of images produced by the generator as it was trained
for 50 epochs. The images begin as random noise and increasingly resemble
handwritten digits over time.

To learn more about GANs, we recommendMIT’s Intro to Deep Learning course.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
T. T. Teoh, Z. Rong, Artificial Intelligence with Python,
Machine Learning: Foundations, Methodologies, and Applications,
https://doi.org/10.1007/978-981-16-8615-3_18
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18.2 Setup

The following code represents the setup stage for dcgan.

import tensorflow as tf

tf.__version__

'2.3.0'

# To generate GIFs
!pip install -q imageio
!pip install -q git+https://github.com/tensorflow/docs

WARNING: You are using pip version 20.2.2; however, version 20.
↪→2.3 is available.
You should consider upgrading via the '/tmpfs/src/tf_docs_env/
↪→bin/python -m pip install --upgrade pip' command.
WARNING: You are using pip version 20.2.2; however, version 20.
↪→2.3 is available.
You should consider upgrading via the '/tmpfs/src/tf_docs_env/
↪→bin/python -m pip install --upgrade pip' command.

import glob
import imageio
import matplotlib.pyplot as plt
import numpy as np
import os
import PIL
from tensorflow.keras import layers
import time

from IPython import display

18.2.1 Load and Prepare the Dataset

You will use the MNIST dataset to train the generator and the discriminator. The
generator will generate handwritten digits resembling the MNIST data.

(train_images, train_labels), (_, _) = tf.keras.datasets.mnist.
↪→load_data()
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train_images = train_images.reshape(train_images.shape[0], 28,
↪→28, 1).astype('float32')
train_images = (train_images - 127.5) / 127.5 # Normalize the
↪→images to [-1, 1]

BUFFER_SIZE = 60000
BATCH_SIZE = 256

# Batch and shuffle the data
train_dataset = tf.data.Dataset.from_tensor_slices(train_
↪→images).shuffle(BUFFER_SIZE).batch(BATCH_SIZE)

18.3 Create the Models

Both the generator and discriminator are defined using the Keras Sequential API.

18.3.1 The Generator

The generator uses tf.keras.layers.Conv2DTranspose (upsampling)
layers to produce an image from a seed (random noise). Start with a Dense layer
that takes this seed as input, then upsample several times until you reach the desired
image size of 28x28x1. Notice the tf.keras.layers.LeakyReLU activation
for each layer, except the output layer, which uses tanh.

def make_generator_model():
model = tf.keras.Sequential()
model.add(layers.Dense(7*7*256, use_bias=False, input_

↪→shape=(100,)))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())

model.add(layers.Reshape((7, 7, 256)))
assert model.output_shape == (None, 7, 7, 256) # Note:

↪→None is the batch size

model.add(layers.Conv2DTranspose(128, (5, 5), strides=(1,
↪→1), padding='same', use_bias=False))

assert model.output_shape == (None, 7, 7, 128)
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())

model.add(layers.Conv2DTranspose(64, (5, 5), strides=(2,
↪→2), padding='same', use_bias=False))

(continues on next page)

https://www.tensorflow.org/guide/keras#sequential_model


292 18 Deep Convolutional Generative Adversarial Network

(continued from previous page)

assert model.output_shape == (None, 14, 14, 64)
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())

model.add(layers.Conv2DTranspose(1, (5, 5), strides=(2, 2),
↪→ padding='same', use_bias=False, activation='tanh'))

assert model.output_shape == (None, 28, 28, 1)

return model

Use the (as yet untrained) generator to create an image.

generator = make_generator_model()

noise = tf.random.normal([1, 100])
generated_image = generator(noise, training=False)

plt.imshow(generated_image[0, :, :, 0], cmap='gray')

<matplotlib.image.AxesImage at 0x7f2729b9f6d8>

18.3.2 The Discriminator

The discriminator is a CNN-based image classifier.

def make_discriminator_model():
model = tf.keras.Sequential()
model.add(layers.Conv2D(64, (5, 5), strides=(2, 2),

↪→padding='same',
input_shape=[28, 28, 1]))

model.add(layers.LeakyReLU())
model.add(layers.Dropout(0.3))

model.add(layers.Conv2D(128, (5, 5), strides=(2, 2),
↪→padding='same'))

model.add(layers.LeakyReLU())
model.add(layers.Dropout(0.3))

model.add(layers.Flatten())
model.add(layers.Dense(1))

return model
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Use the (as yet untrained) discriminator to classify the generated images as real
or fake. The model will be trained to output positive values for real images, and
negative values for fake images.

discriminator = make_discriminator_model()
decision = discriminator(generated_image)
print (decision)

tf.Tensor([[0.0003284]], shape=(1, 1), dtype=float32)

18.4 Define the Loss and Optimizers

Define loss functions and optimizers for both models.

# This method returns a helper function to compute cross
↪→entropy loss
cross_entropy = tf.keras.losses.BinaryCrossentropy(from_
↪→logits=True)
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18.4.1 Discriminator Loss

This method quantifies how well the discriminator is able to distinguish real images
from fakes. It compares the discriminator’s predictions on real images to an array of
1s, and the discriminator’s predictions on fake (generated) images to an array of 0s.

def discriminator_loss(real_output, fake_output):
real_loss = cross_entropy(tf.ones_like(real_output), real_

↪→output)
fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_

↪→output)
total_loss = real_loss + fake_loss
return total_loss

18.4.2 Generator Loss

The generator’s loss quantifies how well it was able to trick the discriminator.
Intuitively, if the generator is performing well, the discriminator will classify the
fake images as real (or 1). Here, we will compare the discriminator’s decisions on
the generated images to an array of 1s.

def generator_loss(fake_output):
return cross_entropy(tf.ones_like(fake_output), fake_

↪→output)

The discriminator and the generator optimizers are different since we will train
two networks separately.

generator_optimizer = tf.keras.optimizers.Adam(1e-4)
discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)

18.5 Save Checkpoints

This notebook also demonstrates how to save and restore models, which can be
helpful in case a long running training task is interrupted.

checkpoint_dir = './training_checkpoints'
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")
checkpoint = tf.train.Checkpoint(generator_optimizer=generator_
↪→optimizer,

discriminator_
↪→optimizer=discriminator_optimizer,

generator=generator,
discriminator=discriminator)
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18.6 Define the Training Loop

EPOCHS = 50
noise_dim = 100
num_examples_to_generate = 16

# We will reuse this seed overtime (so it's easier)
# to visualize progress in the animated GIF)
seed = tf.random.normal([num_examples_to_generate, noise_dim])

The training loop begins with generator receiving a random seed as input. That
seed is used to produce an image. The discriminator is then used to classify real
images (drawn from the training set) and fake images (produced by the generator).
The loss is calculated for each of these models, and the gradients are used to update
the generator and discriminator.

# Notice the use of `tf.function`
# This annotation causes the function to be "compiled".
@tf.function
def train_step(images):

noise = tf.random.normal([BATCH_SIZE, noise_dim])

with tf.GradientTape() as gen_tape, tf.GradientTape() as
↪→disc_tape:

generated_images = generator(noise, training=True)

real_output = discriminator(images, training=True)
fake_output = discriminator(generated_images,

↪→training=True)

gen_loss = generator_loss(fake_output)
disc_loss = discriminator_loss(real_output, fake_output)

gradients_of_generator = gen_tape.gradient(gen_loss,
↪→generator.trainable_variables)

gradients_of_discriminator = disc_tape.gradient(disc_loss,
↪→discriminator.trainable_variables)

generator_optimizer.apply_gradients(zip(gradients_of_
↪→generator, generator.trainable_variables))

discriminator_optimizer.apply_gradients(zip(gradients_of_
↪→discriminator, discriminator.trainable_variables))

def train(dataset, epochs):
for epoch in range(epochs):

start = time.time()

for image_batch in dataset:
train_step(image_batch)

(continues on next page)
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(continued from previous page)

# Produce images for the GIF as we go
display.clear_output(wait=True)
generate_and_save_images(generator,

epoch + 1,
seed)

# Save the model every 15 epochs
if (epoch + 1) % 15 == 0:

checkpoint.save(file_prefix = checkpoint_prefix)

print ('Time for epoch {} is {} sec'.format(epoch + 1,
↪→time.time()-start))

# Generate after the final epoch
display.clear_output(wait=True)
generate_and_save_images(generator,

epochs,
seed)

Generate and save images.

def generate_and_save_images(model, epoch, test_input):
# Notice `training` is set to False.
# This is so all layers run in inference mode (batchnorm).
predictions = model(test_input, training=False)

fig = plt.figure(figsize=(4,4))

for i in range(predictions.shape[0]):
plt.subplot(4, 4, i+1)
plt.imshow(predictions[i, :, :, 0] * 127.5 + 127.5, cmap=

↪→'gray')
plt.axis('off')

plt.savefig('image_at_epoch_{:04d}.png'.format(epoch))
plt.show()

18.6.1 Train the Model

Call the train() method defined above to train the generator and discriminator
simultaneously. Note, training GANs can be tricky. It’s important that the generator
and discriminator do not overpower each other (e.g. that they train at a similar rate).

At the beginning of the training, the generated images look like random noise. As
training progresses, the generated digits will look increasingly real. After about 50



18.6 Define the Training Loop 297

epochs, they resemble MNIST digits. This may take about one minute/epoch with
the default settings on Colab.

train(train_dataset, EPOCHS)

Restore the latest checkpoint.

checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir))

<tensorflow.python.training.tracking.util.CheckpointLoadStatus
↪→at 0x7f2729bc3128>

18.6.2 Create a GIF

# Display a single image using the epoch number
def display_image(epoch_no):

return PIL.Image.open('image_at_epoch_{:04d}.png'.
↪→format(epoch_no))

display_image(EPOCHS)
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Use imageio to create an animated gif using the images saved during training.

anim_file = 'dcgan.gif'

with imageio.get_writer(anim_file, mode='I') as writer:
filenames = glob.glob('image*.png')
filenames = sorted(filenames)
for filename in filenames:

image = imageio.imread(filename)
writer.append_data(image)

image = imageio.imread(filename)
writer.append_data(image)

import tensorflow_docs.vis.embed as embed
embed.embed_file(anim_file)

<IPython.core.display.HTML object>
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Final Output
Epoch 0:
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Epoch 10:

Epoch 30:
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Epoch 50:

Notice after around 40 epochs the model learns how to generate digits.



Chapter 19
Neural Style Transfer

Abstract Neural style transfer takes in a content image and a style image to blend
them together so that the output looks like the content image, but is painted in the
style of the reference image. This can be done by using the features present in a
previously trained network and well defined loss functions. A style loss is defined
to represent how close the image is in terms of style to the reference. The content
loss is defined to ensure important features of the original image is preserved.

Learning outcomes:

• Familiarize with Neural style transfer.
• Generate Style and Content representations.
• Perform style transfer.
• Reduce high frequency artifacts through regularization.

This tutorial uses deep learning to compose one image in the style of another
image (ever wish you could paint like Picasso or Van Gogh?). This is known as
neural style transfer, and the technique is outlined in A Neural Algorithm of Artistic
Style (Gatys et al.).

Note: This tutorial demonstrates the original style-transfer algorithm. It opti-
mizes the image content to a particular style. Modern approaches train a model to
generate the stylized image directly (similar to cycleGAN). This approach is much
faster (up to 1000×).

For a simple application of style transfer check out this tutorial to learn more
about how to use the pretrainedArbitrary Image Stylization model from TensorFlow
Hub or how to use a style-transfer model with TensorFlow Lite.

Neural style transfer is an optimization technique used to take two images—
a content image and a style reference image (such as an artwork by a famous
painter)—and blend them together so the output image looks like the content image,
but “painted” in the style of the style reference image.

This is implemented by optimizing the output image to match the content
statistics of the content image and the style statistics of the style reference image.
These statistics are extracted from the images using a convolutional network.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
T. T. Teoh, Z. Rong, Artificial Intelligence with Python,
Machine Learning: Foundations, Methodologies, and Applications,
https://doi.org/10.1007/978-981-16-8615-3_19
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For example, let us take an image of this dog and Wassily Kandinsky’s
Composition 7:

Yellow Labrador Looking, from Wikimedia Commons by Elf. License CC
BY-SA 3.0

Now how would it look like if Kandinsky decided to paint the picture of this Dog
exclusively with this style? Something like this?

19.1 Setup

19.1.1 Import and Configure Modules

import os
import tensorflow as tf
# Load compressed models from tensorflow_hub
os.environ['TFHUB_MODEL_LOAD_FORMAT'] = 'COMPRESSED'

import IPython.display as display

import matplotlib.pyplot as plt
import matplotlib as mpl
mpl.rcParams['figure.figsize'] = (12,12)
mpl.rcParams['axes.grid'] = False

import numpy as np
import PIL.Image
import time
import functools

def tensor_to_image(tensor):
tensor = tensor*255
tensor = np.array(tensor, dtype=np.uint8)
if np.ndim(tensor)>3:

assert tensor.shape[0] == 1
tensor = tensor[0]

return PIL.Image.fromarray(tensor)

Download images and choose a style image and a content image:

content_path = tf.keras.utils.get_file('YellowLabradorLooking_
↪→new.jpg', 'https://storage.googleapis.com/download.
↪→tensorflow.org/example_images/YellowLabradorLooking_new.jpg')
style_path = tf.keras.utils.get_file('kandinsky5.jpg','https://
↪→storage.googleapis.com/download.tensorflow.org/example_
↪→images/Vassily_Kandinsky%2C_1913_-_Composition_7.jpg')

https://commons.wikimedia.org/wiki/File:YellowLabradorLooking_new.jpg
https://en.wikipedia.org/wiki/User:Elf
https://creativecommons.org/licenses/by-sa/3.0/deed.en
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19.2 Visualize the Input

Define a function to load an image and limit its maximum dimension to 512 pixels.

def load_img(path_to_img):
max_dim = 512
img = tf.io.read_file(path_to_img)
img = tf.image.decode_image(img, channels=3)
img = tf.image.convert_image_dtype(img, tf.float32)

shape = tf.cast(tf.shape(img)[:-1], tf.float32)
long_dim = max(shape)
scale = max_dim / long_dim

new_shape = tf.cast(shape * scale, tf.int32)

img = tf.image.resize(img, new_shape)
img = img[tf.newaxis, :]
return img

Create a simple function to display an image:

def imshow(image, title=None):
if len(image.shape) > 3:

image = tf.squeeze(image, axis=0)

plt.imshow(image)
if title:

plt.title(title)

content_image = load_img(content_path)
style_image = load_img(style_path)

plt.subplot(1, 2, 1)
imshow(content_image, 'Content Image')

plt.subplot(1, 2, 2)
imshow(style_image, 'Style Image')

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500

Content Image

0

50

100

150

200

250

300

0 100 200 300 400 500

Style Image



306 19 Neural Style Transfer

19.3 Fast Style Transfer Using TF-Hub

This tutorial demonstrates the original style-transfer algorithm, which optimizes the
image content to a particular style. Before getting into the details, let us see how the
TensorFlow Hub model does this:

import tensorflow_hub as hub
hub_model = hub.load('https://tfhub.dev/google/magenta/
↪→arbitrary-image-stylization-v1-256/2')
stylized_image = hub_model(tf.constant(content_image), tf.
↪→constant(style_image))[0]
tensor_to_image(stylized_image)

19.4 Define Content and Style Representations

Use the intermediate layers of the model to get the content and style representations
of the image. Starting from the network’s input layer, the first few layer activations
represent low-level features like edges and textures. As you step through the
network, the final few layers represent higher-level features—object parts like
wheels or eyes. In this case, you are using the VGG19 network architecture, a
pretrained image classification network. These intermediate layers are necessary
to define the representation of content and style from the images. For an input
image, try to match the corresponding style and content target representations at
these intermediate layers.

https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2
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Load a VGG19 and test run it on our image to ensure it is used correctly:

x = tf.keras.applications.vgg19.preprocess_input(content_
↪→image*255)
x = tf.image.resize(x, (224, 224))
vgg = tf.keras.applications.VGG19(include_top=True, weights=
↪→'imagenet')
prediction_probabilities = vgg(x)
prediction_probabilities.shape

TensorShape([1, 1000])

predicted_top_5 = tf.keras.applications.vgg19.decode_
↪→predictions(prediction_probabilities.numpy())[0]
[(class_name, prob) for (number, class_name, prob) in
↪→predicted_top_5]

Downloading data from https://storage.googleapis.com/download.
↪→tensorflow.org/data/imagenet_class_index.json
40960/35363 [==================================] - 0s 0us/step

[('Labrador_retriever', 0.49317262),
('golden_retriever', 0.23665187),
('kuvasz', 0.036357313),
('Chesapeake_Bay_retriever', 0.024182774),
('Greater_Swiss_Mountain_dog', 0.018646035)]

Now load a VGG19 without the classification head, and list the layer names

vgg = tf.keras.applications.VGG19(include_top=False, weights=
↪→'imagenet')

print()
for layer in vgg.layers:

print(layer.name)

Downloading data from https://storage.googleapis.com/
↪→tensorflow/keras-applications/vgg19/vgg19_weights_tf_dim_
↪→ordering_tf_kernels_notop.h5
80142336/80134624 [==============================] - 2s 0us/
↪→step

input_2
block1_conv1
block1_conv2
block1_pool
block2_conv1
block2_conv2
block2_pool
block3_conv1

(continues on next page)

https://keras.io/applications/#vgg19
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(continued from previous page)

block3_conv2
block3_conv3
block3_conv4
block3_pool
block4_conv1
block4_conv2
block4_conv3
block4_conv4
block4_pool
block5_conv1
block5_conv2
block5_conv3
block5_conv4
block5_pool

Choose intermediate layers from the network to represent the style and content
of the image:

content_layers = ['block5_conv2']

style_layers = ['block1_conv1',
'block2_conv1',
'block3_conv1',
'block4_conv1',
'block5_conv1']

num_content_layers = len(content_layers)
num_style_layers = len(style_layers)

19.4.1 Intermediate Layers for Style and Content

So why do these intermediate outputs within our pretrained image classification
network allow us to define style and content representations?

At a high level, in order for a network to perform image classification (which this
network has been trained to do), it must understand the image. This requires taking
the raw image as input pixels and building an internal representation that converts
the raw image pixels into a complex understanding of the features present within
the image.

This is also a reason why convolutional neural networks are able to generalize
well: they are able to capture the invariances and defining features within classes
(e.g. cats vs. dogs) that are agnostic to background noise and other nuisances. Thus,
somewhere between where the raw image is fed into the model and the output
classification label, the model serves as a complex feature extractor. By accessing
intermediate layers of the model, you are able to describe the content and style of
input images.
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19.5 Build the Model

The networks in tf.keras.applications are designed so you can easily
extract the intermediate layer values using the Keras functional API.

To define a model using the functional API, specify the inputs and outputs:
model = Model(inputs, outputs)
This following function builds a VGG19 model that returns a list of intermediate

layer outputs:

def vgg_layers(layer_names):
""" Creates a vgg model that returns a list of intermediate

↪→output values."""
# Load our model. Load pretrained VGG, trained on imagenet

↪→data
vgg = tf.keras.applications.VGG19(include_top=False, weights=

↪→'imagenet')
vgg.trainable = False

outputs = [vgg.get_layer(name).output for name in layer_
↪→names]

model = tf.keras.Model([vgg.input], outputs)
return model

And to create the model:

style_extractor = vgg_layers(style_layers)
style_outputs = style_extractor(style_image*255)

#Look at the statistics of each layer's output
for name, output in zip(style_layers, style_outputs):

print(name)
print(" shape: ", output.numpy().shape)
print(" min: ", output.numpy().min())
print(" max: ", output.numpy().max())
print(" mean: ", output.numpy().mean())
print()

block1_conv1
shape: (1, 336, 512, 64)
min: 0.0
max: 835.5255
mean: 33.97525

block2_conv1
shape: (1, 168, 256, 128)
min: 0.0
max: 4625.8867
mean: 199.82687

(continues on next page)
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(continued from previous page)

block3_conv1
shape: (1, 84, 128, 256)
min: 0.0
max: 8789.24
mean: 230.78099

block4_conv1
shape: (1, 42, 64, 512)
min: 0.0
max: 21566.133
mean: 791.24005

block5_conv1
shape: (1, 21, 32, 512)
min: 0.0
max: 3189.2532
mean: 59.179478

19.6 Calculate Style

The content of an image is represented by the values of the intermediate feature
maps.

It turns out, the style of an image can be described by the means and correlations
across the different feature maps. Calculate a Gram matrix that includes this
information by taking the outer product of the feature vector with itself at each
location, and averaging that outer product over all locations. This Gram matrix can
be calculated for a particular layer as

Gl
cd =

∑
ij F l

ijc(x)F l
ijd (x)

IJ

This can be implemented concisely using the tf.linalg.einsum function:

def gram_matrix(input_tensor):
result = tf.linalg.einsum('bijc,bijd->bcd', input_tensor,

↪→input_tensor)
input_shape = tf.shape(input_tensor)
num_locations = tf.cast(input_shape[1]*input_shape[2], tf.

↪→float32)
return result/(num_locations)



19.7 Extract Style and Content 311

19.7 Extract Style and Content

Build a model that returns the style and content tensors.

class StyleContentModel(tf.keras.models.Model):
def __init__(self, style_layers, content_layers):

super(StyleContentModel, self).__init__()
self.vgg = vgg_layers(style_layers + content_layers)
self.style_layers = style_layers
self.content_layers = content_layers
self.num_style_layers = len(style_layers)
self.vgg.trainable = False

def call(self, inputs):
"Expects float input in [0,1]"
inputs = inputs*255.0
preprocessed_input = tf.keras.applications.vgg19.

↪→preprocess_input(inputs)
outputs = self.vgg(preprocessed_input)
style_outputs, content_outputs = (outputs[:self.num_style_

↪→layers],
outputs[self.num_style_

↪→layers:])

style_outputs = [gram_matrix(style_output)
for style_output in style_outputs]

content_dict = {content_name:value
for content_name, value
in zip(self.content_layers, content_

↪→outputs)}

style_dict = {style_name:value
for style_name, value
in zip(self.style_layers, style_outputs)}

return {'content':content_dict, 'style':style_dict}

When called on an image, this model returns the gram matrix (style) of the
style_layers and content of the content_layers:

extractor = StyleContentModel(style_layers, content_layers)

results = extractor(tf.constant(content_image))

print('Styles:')
for name, output in sorted(results['style'].items()):

print(" ", name)
print(" shape: ", output.numpy().shape)
print(" min: ", output.numpy().min())
print(" max: ", output.numpy().max())
print(" mean: ", output.numpy().mean())

(continues on next page)
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print()

print("Contents:")
for name, output in sorted(results['content'].items()):

print(" ", name)
print(" shape: ", output.numpy().shape)
print(" min: ", output.numpy().min())
print(" max: ", output.numpy().max())
print(" mean: ", output.numpy().mean())

Styles:
block1_conv1
shape: (1, 64, 64)
min: 0.005522847
max: 28014.559
mean: 263.79025

block2_conv1
shape: (1, 128, 128)
min: 0.0
max: 61479.49
mean: 9100.949

block3_conv1
shape: (1, 256, 256)
min: 0.0
max: 545623.44
mean: 7660.9766

block4_conv1
shape: (1, 512, 512)
min: 0.0
max: 4320501.0
mean: 134288.86

block5_conv1
shape: (1, 512, 512)
min: 0.0
max: 110005.38
mean: 1487.0381

Contents:
block5_conv2
shape: (1, 26, 32, 512)
min: 0.0
max: 2410.8796
mean: 13.764152
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19.8 Run Gradient Descent

With this style and content extractor, you can now implement the style-transfer
algorithm. Do this by calculating the mean square error for your image’s output
relative to each target, then take the weighted sum of these losses.

Set your style and content target values:

style_targets = extractor(style_image)['style']
content_targets = extractor(content_image)['content']

Define a tf.Variable to contain the image to optimize. To make this quick,
initialize it with the content image (the tf.Variablemust be the same shape as
the content image):

image = tf.Variable(content_image)

Since this is a float image, define a function to keep the pixel values between 0
and 1:

def clip_0_1(image):
return tf.clip_by_value(image, clip_value_min=0.0, clip_

↪→value_max=1.0)

Create an optimizer. The paper recommends LBFGS, but Adam works okay, too:

opt = tf.optimizers.Adam(learning_rate=0.02, beta_1=0.99,
↪→epsilon=1e-1)

To optimize this, use a weighted combination of the two losses to get the total
loss:

style_weight=1e-2
content_weight=1e4

def style_content_loss(outputs):
style_outputs = outputs['style']
content_outputs = outputs['content']
style_loss = tf.add_n([tf.reduce_mean((style_outputs[name]-

↪→style_targets[name])**2)
for name in style_outputs.keys()])

style_loss *= style_weight / num_style_layers

content_loss = tf.add_n([tf.reduce_mean((content_
↪→outputs[name]-content_targets[name])**2)

for name in content_outputs.
↪→keys()])

content_loss *= content_weight / num_content_layers
loss = style_loss + content_loss
return loss
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Use tf.GradientTape to update the image.

@tf.function()
def train_step(image):

with tf.GradientTape() as tape:
outputs = extractor(image)
loss = style_content_loss(outputs)

grad = tape.gradient(loss, image)
opt.apply_gradients([(grad, image)])
image.assign(clip_0_1(image))

Now run a few steps to test:

train_step(image)
train_step(image)
train_step(image)
tensor_to_image(image)

Since it is working, perform a longer optimization:

import time
start = time.time()

epochs = 10
steps_per_epoch = 100

step = 0
for n in range(epochs):

for m in range(steps_per_epoch):
step += 1

(continues on next page)
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(continued from previous page)

train_step(image)
print(".", end='')

display.clear_output(wait=True)
display.display(tensor_to_image(image))
print("Train step: {}".format(step))

end = time.time()
print("Total time: {:.1f}".format(end-start))

Train step: 1000
Total time: 20.3

19.9 Total Variation Loss

One downside to this basic implementation is that it produces a lot of high frequency
artifacts. Decrease these using an explicit regularization term on the high frequency
components of the image. In style transfer, this is often called the total variation
loss:

def high_pass_x_y(image):
x_var = image[:,:,1:,:] - image[:,:,:-1,:]
y_var = image[:,1:,:,:] - image[:,:-1,:,:]

return x_var, y_var
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x_deltas, y_deltas = high_pass_x_y(content_image)

plt.figure(figsize=(14,10))
plt.subplot(2,2,1)
imshow(clip_0_1(2*y_deltas+0.5), "Horizontal Deltas: Original")

plt.subplot(2,2,2)
imshow(clip_0_1(2*x_deltas+0.5), "Vertical Deltas: Original")

x_deltas, y_deltas = high_pass_x_y(image)

plt.subplot(2,2,3)
imshow(clip_0_1(2*y_deltas+0.5), "Horizontal Deltas: Styled")

plt.subplot(2,2,4)
imshow(clip_0_1(2*x_deltas+0.5), "Vertical Deltas: Styled")

This shows how the high frequency components have increased.
Also, this high frequency component is basically an edge detector. You can get

similar output from the Sobel edge detector, for example:

plt.figure(figsize=(14,10))

sobel = tf.image.sobel_edges(content_image)
plt.subplot(1,2,1)
imshow(clip_0_1(sobel[...,0]/4+0.5), "Horizontal Sobel-edges")
plt.subplot(1,2,2)
imshow(clip_0_1(sobel[...,1]/4+0.5), "Vertical Sobel-edges")

The regularization loss associated with this is the sum of the squares of the
values:

def total_variation_loss(image):
x_deltas, y_deltas = high_pass_x_y(image)
return tf.reduce_sum(tf.abs(x_deltas)) + tf.reduce_sum(tf.

↪→abs(y_deltas))
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total_variation_loss(image).numpy()

149362.55

That demonstrated what it does. But there is no need to implement it yourself,
TensorFlow includes a standard implementation:
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tf.image.total_variation(image).numpy()

array([149362.55], dtype=float32)

19.10 Re-run the Optimization

Choose a weight for the total_variation_loss:

total_variation_weight=30

Now include it in the train_step function:

@tf.function()
def train_step(image):

with tf.GradientTape() as tape:
outputs = extractor(image)
loss = style_content_loss(outputs)
loss += total_variation_weight*tf.image.total_

↪→variation(image)

grad = tape.gradient(loss, image)
opt.apply_gradients([(grad, image)])
image.assign(clip_0_1(image))

Reinitialize the optimization variable:

image = tf.Variable(content_image)

And run the optimization:

import time
start = time.time()

epochs = 10
steps_per_epoch = 100

step = 0
for n in range(epochs):

for m in range(steps_per_epoch):
step += 1
train_step(image)
print(".", end='')

display.clear_output(wait=True)
display.display(tensor_to_image(image))
print("Train step: {}".format(step))

end = time.time()
print("Total time: {:.1f}".format(end-start))
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Train step: 1000
Total time: 21.4

Finally, save the result:

file_name = 'stylized-image.png'
tensor_to_image(image).save(file_name)

try:
from google.colab import files

except ImportError:
pass

else:
files.download(file_name)



Chapter 20
Reinforcement Learning

Abstract Reinforcement learning consists of developing an algorithm capable of
achieving a particular objective through reward and punishment. A state is defined
to allow the algorithm to understand its current circumstance and choose specific
actions that it can take. Q-learning is the process of updating a Q-table to record
the maximum expected future rewards. The algorithm will have to balance between
exploration and exploitation in the learning process.

Learning outcomes:

• Introduction to the theories of reinforcement learning.
• Exploration of how Q-learning works.
• What is the next step after Q-learning.

Most of us would probably have heard of AI learning to play computer games on
its own. A very popular example would be Deepmind. Deepmind took the world by
surprise when its AlphaGo program won the Go world champion. In recent times,
AI have been able to defeat human players in strategy game. One such example
would be OpenAI’s AlphaStar. Here, the difficulty is compounded as such game
requires long term strategic planning.

Dario “TLO” Wünsch, a professional StarCraft player, remarked “I’ve found
AlphaStar’s gameplay incredibly impressive—the system is very skilled at assessing
its strategic position, and knows exactly when to engage or disengage with its
opponent. And while AlphaStar has excellent and precise control, it doesn’t feel
superhuman—certainly not on a level that a human couldn’t theoretically achieve.
Overall, it feels very fair—like it is playing a ‘real’ game of StarCraft.”

20.1 Reinforcement Learning Analogy

Consider the scenario of teaching a dog new tricks. The dog doesn’t understand
human language, so we can’t tell him what to do. Instead, we can create a situation
or a cue, and the dog tries to behave in different ways. If the dog’s response is
desired, we reward them with their favorite snack. Now guess what, the next time
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the dog is exposed to the same situation, the dog executes a similar action with even
more enthusiasm in expectation of more food. That’s like learning “what to do” from
positive experiences. Similarly, dogs will tend to learn what not to do when face
with negative experiences. For example, whenever the dog behaves undesirably, we
would admonish it. This helps the dog to understand and reinforce behavior that is
desirable. At the same time, the dog would avoid undesirable behavior.

That’s exactly how Reinforcement Learning works in a broader sense:

• Your dog is an “agent” that is exposed to the environment. The environment could
in your house, with you.

• The situations they encounter are analogous to a state. An example of a state
could be your dog standing and you use a specific word in a certain tone in your
living room.

• Our agents react by performing an action to transition from one “state” to another
“state,” your dog goes from standing to sitting, for example. After the transition,
they may receive a reward or penalty in return. You give them a treat! Or a “No”
as a penalty. The policy is the strategy of choosing an action given a state in
expectation of better outcomes.

Here are some points to take note of:

• Greedy (pursuit of current rewards) is not always good.

– There are things that are easy to do for instant gratification, and there’s things
that provide long term rewards. The goal is to not be greedy by looking for the
quick immediate rewards, but instead to optimize for maximum rewards over
the whole training.

• Sequence matters in Reinforcement Learning

– The reward agent does not just depend on the current state but the entire
history of states. Unlike supervised, timestep and sequence of state–action–
reward is important here.

20.2 Q-learning

In our example below, we will be using OpenAI Gym’s Taxi environment.

import sys
sys.tracebacklimit = 0
import gym
import numpy as np
import random
from IPython.display import clear_output
from IPython.display import Markdown, display
def printmd(string):

display(Markdown(string))
(continues on next page)
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(continued from previous page)

# Init Taxi-V2 Env
env = gym.make("Taxi-v3").env

# Init arbitrary values
q_table = np.zeros([env.observation_space.n, env.action_space.
↪→n])

# Hyperparameters
alpha = 0.7 # Momentum 0.2, Current 0.8 Greedy, 0.2 is to
↪→reduce volatility and flip flop
gamma = 0.2 # Learning Rate 0.1 Greediness is 10%
epsilon = 0.4 # explore 10% exploit 90%

all_epochs = []
all_penalties = []
training_memory = []

for i in range(1, 50000):
state = env.reset()

# Init Vars
epochs, penalties, reward, = 0, 0, 0
done = False

#training
while not done:

if random.uniform(0, 1) < epsilon:
# Check the action space
action = env.action_space.sample() # for explore

else:
# Check the learned values
action = np.argmax(q_table[state]) # for exploit

next_state, reward, done, info = env.step(action) #gym
↪→generate, the environment already setup for you

old_value = q_table[state, action]
next_max = np.max(q_table[next_state]) #take highest

↪→from q table for exploit

# Update the new value
new_value = (1 - alpha) * old_value + alpha * \

(reward + gamma * next_max)
q_table[state, action] = new_value

# penalty for performance evaluation
if reward == -10:

penalties += 1

(continues on next page)
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(continued from previous page)

state = next_state
epochs += 1

if i % 100 == 0:
training_memory.append(q_table.copy())
clear_output(wait=True)
print("Episode:", i)
print("Saved q_table during training:", i)

print("Training finished.")
print(q_table)

Episode: 49900
Saved q_table during training: 49900
Training finished.
[[ 0. 0. 0. 0. 0.

0. ]
[ -1.24999956 -1.24999782 -1.24999956 -1.24999782 -1.

↪→24998912
-10.24999782]

[ -1.249728 -1.24864 -1.249728 -1.24864 -1.2432
-10.24864 ]

...
[ -1.2432 -1.216 -1.2432 -1.24864 -10.2432
-10.2432 ]

[ -1.24998912 -1.2499456 -1.24998912 -1.2499456 -10.
↪→24998912
-10.24998912]

[ -0.4 -1.08 -0.4 3. -9.4
-9.4 ]]

** There are four designated locations in the grid world indicated by R(ed),
B(lue), G(reen), and Y(ellow). When the episode starts, the taxi starts off at a
random square and the passenger is at a random location. The taxi drives to the
passenger’s location, picks up the passenger, drives to the passenger’s destination
(another one of the four specified locations), and then drops off the passenger. Once
the passenger is dropped off, the episode ends. There are 500 discrete states since
there are 25 taxi positions, 5 possible locations of the passenger (including the case
when the passenger is the taxi), and 4 destination locations. Actions: There are 6
discrete deterministic actions: **

0: move south
1: move north
2: move east
3: move west
4: pickup passenger
5: dropoff passenger
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Rewards: There is a reward of −1 for each action and an additional reward of
+20 for delivering the passenger. There is a reward of −10 for executing actions
“pickup” and “dropoff” illegally. Rendering:

blue: passenger
magenta: destination
yellow: empty taxi
green: full taxi
other letters: locations

State space is represented by: (taxi_row, taxi_col, passenger_location, destina-
tion).

Here, the highest number in the array represents the action that the Taxi agent
would take.

# At state 499 i will definitely move west
state = 499
print(training_memory[0][state])
print(training_memory[20][state])
print(training_memory[50][state])
print(training_memory[200][state])

[-1.008 -1.0682761 -1.1004 2.72055 -9.2274 -9.1
↪→ ]
[-0.40000039 -1.07648283 -0.40000128 3. -9.39958914 -
↪→9.39998055]
[-0.4 -1.08 -0.4 3. -9.4 -9.4 ]
[-0.4 -1.08 -0.4 3. -9.4 -9.4 ]

# At state 77 i will definitely move east
state = 77
print(training_memory[0][state])
print(training_memory[20][state])
print(training_memory[50][state])
print(training_memory[200][state])

[-1.07999095 -1.008 3. -1.08309178 -9.1 -
↪→9.18424273]
[-1.08 -0.4 3. -1.08 -9.4 -9.4 ]
[-1.08 -0.4 3. -1.08 -9.4 -9.4 ]
[-1.08 -0.4 3. -1.08 -9.4 -9.4 ]

# To show that at state 393, how the move evolved
from IPython.display import Markdown, display
def printmd(string):

display(Markdown(string))

action_dict = {0: "move south"
,1: "move north"

(continues on next page)
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(continued from previous page)

,2: "move east"
,3: "move west"
,4: "pickup passenger"
,5: "dropoff passenger"
}

ENV_STATE = env.reset()
print(env.render(mode='ansi'))
state_memory = [i[ENV_STATE] for i in training_memory]
printmd("For state **{}**".format(ENV_STATE))
for step, i in enumerate(state_memory):

if step % 200==0:
choice = np.argmax(i)
printmd("for episode in {}, q table action is {} and

↪→it will ... **{}**".format(step*100, choice, action_
↪→dict[choice]))

print(i)
print()

+---------+
|R: | : :G|
| : | : : |
| : : : : |
| | : | : |
|Y| : |B: |
+---------+

For state 369
For episode in 0, q table action is 0 and it will ...move south.

[ -1.24999822 -1.24999945 -1.24999867 -1.24999849 -10.
↪→22355492
-10.24977275]

For episode in 20000, q table action is 1 and it will ...move north.

[ -1.25 -1.25 -1.25 -1.25 -10.25 -10.25]

For episode in 40000, q table action is 1 and it will ...move north.

[ -1.25 -1.25 -1.25 -1.25 -10.25 -10.25]

20.3 Running a Trained Taxi

This is a clearer view of the transition between states and the reward that will be
received. Notice that, as the reward is consistently high for a trained model.
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import time
def print_frames(frames):

for i, frame in enumerate(frames):
clear_output(wait=True)
print(frame['frame'])
print(f"Episode: {frame['episode']}")
print(f"Timestep: {i + 1}")
print(f"State: {frame['state']}")
print(f"Action: {frame['action']}")
print(f"Reward: {frame['reward']}")
time.sleep(0.8)

total_epochs, total_penalties = 0, 0
episodes = 10 # Try 10 rounds
frames = []

for ep in range(episodes):
state = env.reset()
epochs, penalties, reward = 0, 0, 0

done = False

while not done:
action = np.argmax(q_table[state]) # deterministic

↪→(exploit), not stochastic (explore), only explore in training
env
state, reward, done, info = env.step(action) #gym

if reward == -10:
penalties += 1

# Put each rendered frame into dict for animation, gym
↪→generated

frames.append({
'frame': env.render(mode='ansi'),
'episode': ep,
'state': state,
'action': action,
'reward': reward
}

)
epochs += 1

total_penalties += penalties
total_epochs += epochs

print_frames(frames)

print(f"Results after {episodes} episodes:")
print(f"Average timesteps per episode: {total_epochs /
↪→episodes}")
print(f"Average penalties per episode: {total_penalties /
↪→episodes}")
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+---------+
|R: | : :G|
| : | : : |
| : : : : |
| | : | : |
|Y| : |B: |
+---------+

(Dropoff)

Episode: 9
Timestep: 123
State: 475
Action: 5
Reward: 20
Results after 10 episodes:
Average timesteps per episode: 12.3
Average penalties per episode: 0.0

Here, we looked at how Q-table is being used in Q-learning. However, it is a
primitive example as we are dealing with finite states. For infinite states, we would
have to rely on a deep learning model instead of a table. This is called Deep Q-
learning, which is not covered here.



Bibliography

1. Brownlee J (2019) A gentle introduction to generative adversarial networks (gans).
In: Machine learning mastery. https://machinelearningmastery.com/what-are-generative-
adversarial-networks-gans/. Accessed 8 Oct 2021

2. Chollet F (2017) The keras blog. In: The Keras Blog ATOM. https://blog.keras.io/a-ten-
minute-introduction-to-sequence-to-sequence-learning-in-keras.html. Accessed 8 Oct 2021

3. Chonyy (2020) Apriori: Association rule mining in-depth explanation and python
implementation. In: Medium. https://towardsdatascience.com/apriori-association-rule-
mining-explanation-and-python-implementation-290b42afdfc6. Accessed 8 Oct 2021

4. Dugar P (2021) Attention seq2seq models. In: Medium. https://towardsdatascience.com/day-
1-2-attention-seq2seq-models-65df3f49e263. Accessed 8 Oct 2021

5. eastWillow (2016a) Feature detection and description. In: OpenCV. https://opencv24-python-
tutorials.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_table_of_contents_feature2d/
py_table_of_contents_feature2d.html#py-table-of-content-feature2d. Accessed 8 Oct 2021

6. eastWillow (2016b) Image processing in opencv. In: OpenCV. https://opencv24-python-
tutorials.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_table_of_contents_imgproc/py_
table_of_contents_imgproc.html. Accessed 8 Oct 2021

7. eastWillow (2016c) Python tutorials. In: OpenCV. https://opencv24-python-tutorials.
readthedocs.io/en/latest/py_tutorials/py_tutorials.html. Accessed 8 Oct 2021

8. eugeneh101 (2021) Eugeneh101/advanced-python: Code like a pro! In: GitHub. https://github.
com/eugeneh101/Advanced-Python. Accessed 8 Oct 2021

9. Folsom R (2019) But, what exactly is ai? In: Medium. https://towardsdatascience.com/but-
what-exactly-is-ai-59454770d39b. Accessed 8 Oct 2021

10. Foundation PS (2021) The python standard library. In: The Python Standard Library - Python
3.10.0 documentation. https://docs.python.org/3/library/. Accessed 8 Oct 2021

11. Hurwitt S (2018) Classification in python with scikit-learn and pandas. In: Stack Abuse. https://
stackabuse.com/classification-in-python-with-scikit-learn-and-pandas/. Accessed 8 Oct 2021

12. Inc A (2017) In: Conda. https://docs.conda.io/en/latest/. Accessed 8 Oct 2021
13. Inc A (2021) The world’s most popular data science platform. In: Anaconda. https://www.

anaconda.com/. Accessed 8 Oct 2021
14. Li S (2017) Solving a simple classification problem with python - fruits lovers’ edi-

tion. In: Medium. https://towardsdatascience.com/solving-a-simple-classification-problem-
with-python-fruits-lovers-edition-d20ab6b071d2. Accessed 8 Oct 2021

15. Madushan D (2017) Introduction to k-means clustering. In: Medium. https://medium.com/
@dilekamadushan/introduction-to-k-means-clustering-7c0ebc997e00. Accessed 8 Oct 2021

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
T. T. Teoh, Z. Rong, Artificial Intelligence with Python,
Machine Learning: Foundations, Methodologies, and Applications,
https://doi.org/10.1007/978-981-16-8615-3

329

https://machinelearningmastery.com/what-are-generative-adversarial-networks-gans/
https://machinelearningmastery.com/what-are-generative-adversarial-networks-gans/
https://blog.keras.io/a-ten-minute-introduction-to-sequence-to-sequence-learning-in-keras.html
https://blog.keras.io/a-ten-minute-introduction-to-sequence-to-sequence-learning-in-keras.html
https://towardsdatascience.com/apriori-association-rule-mining-explanation-and-python-implementation-290b42afdfc6
https://towardsdatascience.com/apriori-association-rule-mining-explanation-and-python-implementation-290b42afdfc6
https://towardsdatascience.com/day-1-2-attention-seq2seq-models-65df3f49e263
https://towardsdatascience.com/day-1-2-attention-seq2seq-models-65df3f49e263
https://opencv24-python-tutorials.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_table_of_contents_feature2d/py_table_of_contents_feature2d.html#py-table-of-content-feature2d
https://opencv24-python-tutorials.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_table_of_contents_feature2d/py_table_of_contents_feature2d.html#py-table-of-content-feature2d
https://opencv24-python-tutorials.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_table_of_contents_feature2d/py_table_of_contents_feature2d.html#py-table-of-content-feature2d
https://opencv24-python-tutorials.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_table_of_contents_imgproc/py_table_of_contents_imgproc.html
https://opencv24-python-tutorials.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_table_of_contents_imgproc/py_table_of_contents_imgproc.html
https://opencv24-python-tutorials.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_table_of_contents_imgproc/py_table_of_contents_imgproc.html
https://opencv24-python-tutorials.readthedocs.io/en/latest/py_tutorials/py_tutorials.html
https://opencv24-python-tutorials.readthedocs.io/en/latest/py_tutorials/py_tutorials.html
https://github.com/eugeneh101/Advanced-Python
https://github.com/eugeneh101/Advanced-Python
https://towardsdatascience.com/but-what-exactly-is-ai-59454770d39b
https://towardsdatascience.com/but-what-exactly-is-ai-59454770d39b
https://docs.python.org/3/library/
https://stackabuse.com/classification-in-python-with-scikit-learn-and-pandas/
https://stackabuse.com/classification-in-python-with-scikit-learn-and-pandas/
https://docs.conda.io/en/latest/
https://www.anaconda.com/
https://www.anaconda.com/
https://towardsdatascience.com/solving-a-simple-classification-problem-with-python-fruits-lovers-edition-d20ab6b071d2
https://towardsdatascience.com/solving-a-simple-classification-problem-with-python-fruits-lovers-edition-d20ab6b071d2
https://medium.com/@dilekamadushan/introduction-to-k-means-clustering-7c0ebc997e00
https://medium.com/@dilekamadushan/introduction-to-k-means-clustering-7c0ebc997e00
https://doi.org/10.1007/978-981-16-8615-3


330 Bibliography

16. Pietro MD (2021) Machine learning with python: classification (complete tutorial).
In: Medium. https://towardsdatascience.com/machine-learning-with-python-classification-
complete-tutorial-d2c99dc524ec. Accessed 8 Oct 2021

17. Rother K (2018) Krother advanced python: Examples of advanced python programming
techniques. In: GitHub. https://github.com/krother/advanced_python. Accessed 8 Oct 2021

18. Saha S (2018) A comprehensive guide to convolutional neural networks the eli5
way. In: Medium. https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-
neural-networks-the-eli5-way-3bd2b1164a53. Accessed 8 Oct 2021

19. Scikit-Learn (2021a) 1. supervised learning. In: scikit. https://scikit-learn.org/stable/
supervised_learning.html#supervised-learning. Accessed 8 Oct 2021

20. Scikit-Learn (2021b) 1.1. linear models. In: scikit. https://scikit-learn.org/stable/modules/
linear_model.html#ordinary-least-squares. Accessed 8 Oct 2021

21. Scikit-Learn (2021c) 1.10. decision trees. In: scikit. https://scikit-learn.org/stable/modules/
tree.html#classification. Accessed 8 Oct 2021

22. Scikit-Learn (2021d) 1.11. ensemble methods. In: scikit. https://scikit-learn.org/stable/
modules/ensemble.html#forests-of-randomized-trees. Accessed 8 Oct 2021

23. Scikit-Learn (2021e) 1.11. ensemble methods. In: scikit. https://scikit-learn.org/stable/
modules/ensemble.html#gradient-tree-boosting. Accessed 8 Oct 2021

24. Scikit-Learn (2021f) 1.13. feature selection. In: scikit. https://scikit-learn.org/stable/modules/
feature_selection.html#feature-selection-as-part-of-a-pipeline. Accessed 8 Oct 2021

25. Scikit-Learn (2021g) 1.13. feature selection. In: scikit. https://scikit-learn.org/stable/modules/
feature_selection.html#removing-features-with-low-variance. Accessed 8 Oct 2021

26. Scikit-Learn (2021h) 1.17. neural network models (supervised). In: scikit. https://scikit-learn.
org/stable/modules/neural_networks_supervised.html#multi-layer-perceptron. Accessed 8 Oct
2021

27. Scikit-Learn (2021i) 1.4. support vector machines. In: scikit. https://scikit-learn.org/stable/
modules/svm.html#classification. Accessed 8 Oct 2021

28. Scikit-Learn (2021j) 1.4. support vector machines. In: scikit. https://scikit-learn.org/stable/
modules/svm.html#regression. Accessed 8 Oct 2021

29. Singh P (2020) Seq2seq model: Understand seq2seq model architecture. In: Analytics
Vidhya. https://www.analyticsvidhya.com/blog/2020/08/a-simple-introduction-to-sequence-
to-sequence-models/. Accessed 8 Oct 2021

30. Stojiljkovic M (2021) Linear regression in python. In: Real Python. https://realpython.com/
linear-regression-in-python/. Accessed 8 Oct 2021

31. Tensorflow (2021a) Basic classification: Classify images of clothing : Tensorflow core. In:
TensorFlow. https://www.tensorflow.org/tutorials/keras/classification. Accessed 8 Oct 2021

32. Tensorflow (2021b) Basic regression: predict fuel efficiency: tensorflow core. In: TensorFlow.
https://www.tensorflow.org/tutorials/keras/regression. Accessed 8 Oct 2021

33. Tensorflow (2021c) Basic text classification: tensorflow core. In: TensorFlow. https://www.
tensorflow.org/tutorials/keras/text_classification. Accessed 8 Oct 2021

34. Tensorflow (2021d) Classification on imbalanced data: tensorflow core. In: TensorFlow. https://
www.tensorflow.org/tutorials/structured_data/imbalanced_data. Accessed 8 Oct 2021

35. Tensorflow (2021e) Deep convolutional generative adversarial network: Tensorflow core. In:
TensorFlow. https://www.tensorflow.org/tutorials/generative/dcgan. Accessed 8 Oct 2021

36. Tensorflow (2021f) Neural style transfer: Tensorflow core. In: TensorFlow. https://www.
tensorflow.org/tutorials/generative/style_transfer. Accessed 8 Oct 2021

37. Tensorflow (2021g) Overfit and underfit: tensorflow core. In: TensorFlow. https://www.
tensorflow.org/tutorials/keras/overfit_and_underfit. Accessed 8 Oct 2021

38. Teoh TT (2021) Ai model. In: Dropbox. https://www.dropbox.com/sh/qi7lg59s3cal94q/
AACQqaB6mGVSz13PD42oiFzia/AI%20Model?dl=0&amp;subfolder_nav_tracking=1.
Accessed 8 Oct 2021

39. vansjaliya M (2020) Market basket analysis using association rule-mining. In: Medium.
https://medium.com/analytics-vidhya/market-basket-analysis-using-association-rule-mining-
64b4f2ae78cb. Accessed 8 Oct 2021

https://towardsdatascience.com/machine-learning-with-python-classification-complete-tutorial-d2c99dc524ec
https://towardsdatascience.com/machine-learning-with-python-classification-complete-tutorial-d2c99dc524ec
https://github.com/krother/advanced_python
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://scikit-learn.org/stable/supervised_learning.html#supervised-learning
https://scikit-learn.org/stable/supervised_learning.html#supervised-learning
https://scikit-learn.org/stable/modules/linear_model.html#ordinary-least-squares
https://scikit-learn.org/stable/modules/linear_model.html#ordinary-least-squares
https://scikit-learn.org/stable/modules/tree.html#classification
https://scikit-learn.org/stable/modules/tree.html#classification
https://scikit-learn.org/stable/modules/ensemble.html#forests-of-randomized-trees
https://scikit-learn.org/stable/modules/ensemble.html#forests-of-randomized-trees
https://scikit-learn.org/stable/modules/ensemble.html#gradient-tree-boosting
https://scikit-learn.org/stable/modules/ensemble.html#gradient-tree-boosting
https://scikit-learn.org/stable/modules/feature_selection.html#feature-selection-as-part-of-a-pipeline
https://scikit-learn.org/stable/modules/feature_selection.html#feature-selection-as-part-of-a-pipeline
https://scikit-learn.org/stable/modules/feature_selection.html#removing-features-with-low-variance
https://scikit-learn.org/stable/modules/feature_selection.html#removing-features-with-low-variance
https://scikit-learn.org/stable/modules/neural_networks_supervised.html#multi-layer-perceptron
https://scikit-learn.org/stable/modules/neural_networks_supervised.html#multi-layer-perceptron
https://scikit-learn.org/stable/modules/svm.html#classification
https://scikit-learn.org/stable/modules/svm.html#classification
https://scikit-learn.org/stable/modules/svm.html#regression
https://scikit-learn.org/stable/modules/svm.html#regression
https://www.analyticsvidhya.com/blog/2020/08/a-simple-introduction-to-sequence-to-sequence-models/
https://www.analyticsvidhya.com/blog/2020/08/a-simple-introduction-to-sequence-to-sequence-models/
https://realpython.com/linear-regression-in-python/
https://realpython.com/linear-regression-in-python/
https://www.tensorflow.org/tutorials/keras/classification
https://www.tensorflow.org/tutorials/keras/regression
https://www.tensorflow.org/tutorials/keras/text_classification
https://www.tensorflow.org/tutorials/keras/text_classification
https://www.tensorflow.org/tutorials/structured_data/imbalanced_data
https://www.tensorflow.org/tutorials/structured_data/imbalanced_data
https://www.tensorflow.org/tutorials/generative/dcgan
https://www.tensorflow.org/tutorials/generative/style_transfer
https://www.tensorflow.org/tutorials/generative/style_transfer
https://www.tensorflow.org/tutorials/keras/overfit_and_underfit
https://www.tensorflow.org/tutorials/keras/overfit_and_underfit
https://www.dropbox.com/sh/qi7lg59s3cal94q/AACQqaB6mGVSz13PD42oiFzia/AI%20Model?dl=0&amp;subfolder_nav_tracking=1
https://www.dropbox.com/sh/qi7lg59s3cal94q/AACQqaB6mGVSz13PD42oiFzia/AI%20Model?dl=0&amp;subfolder_nav_tracking=1
https://medium.com/analytics-vidhya/market-basket-analysis-using-association-rule-mining-64b4f2ae78cb
https://medium.com/analytics-vidhya/market-basket-analysis-using-association-rule-mining-64b4f2ae78cb


Bibliography 331

40. Whittle M (2021) Shop order analysis in python. In: Medium. https://towardsdatascience.com/
tagged/association-rule?p=ff13615404e0. Accessed 8 Oct 2021

41. Yin L (2019) A summary of neural network layers. In: Medium. https://medium.com/machine-
learning-for-li/different-convolutional-layers-43dc146f4d0e. Accessed 8 Oct 2021

https://towardsdatascience.com/tagged/association-rule?p=ff13615404e0
https://towardsdatascience.com/tagged/association-rule?p=ff13615404e0
https://medium.com/machine-learning-for-li/different-convolutional-layers-43dc146f4d0e
https://medium.com/machine-learning-for-li/different-convolutional-layers-43dc146f4d0e


Index

A
Access Hooks, 95
Activation function, 193, 291
Adam, 313
Agent, 322, 325
AlexNet, 269
AlphaGo, 321
AlphaStar, 321
Anaconda, 9, 10, 12–15
Antecedent, 220, 222, 224
Apriori algorithm, 219–221, 224
Arguments, 64, 68, 69, 76, 77, 80, 249
Arithmetic operators, 50
Association rules, 219–222
Automatic import, 81

B
Backpropagation, 173, 265
Bagging, 171
Bag of words, 227, 231
Batch normalization, 271
Bayes’ Theorem, 206
Binary classification, 183, 187, 194
Binary Term Frequency, 231
Blur, 252
Boolean, 32, 43, 54, 55, 111, 116
Boolean operators, 43, 54, 111
Boxplot, 174–176, 197
Built-in modules, 72, 111

C
Callable, 64, 88, 97
Chatbot, 227, 277–279, 285

Classes, 63, 66–70, 93, 101, 102, 104, 183,
184, 187, 189, 272, 274, 308

Classification, 149, 165, 169, 183, 184,
187–189, 206, 213, 227, 230, 234,
261, 265, 269, 272, 273, 306–308

Classification accuracy, 184
Closures, 63, 76, 77, 91
Clustering, 213, 218
Comments, 43, 64, 65, 134
Confidence, 184, 219, 221, 222, 224
Confusion matrix, 187, 188, 192
Consequent, 220, 222, 224
Content representation, 303, 306, 308
Contours, 243, 247–249
Conviction, 221, 222, 224
Convolution, 261–265, 269, 274, 289, 303, 308
Convolutional neural networks, 261, 264, 265,

273, 274, 289, 292, 303, 308
Correlation, 164, 166, 171, 172, 257, 258, 310
Crossentropy, 194, 196, 202, 211, 259, 268,

272, 283, 293
Cumulative distribution function, 250, 251
CycleGAN, 303

D
Data analysis, 4, 72, 107, 110, 112, 116, 118,

122, 126, 150, 239
Data cleaning, 149, 150, 163, 178
Data types, 41, 44–46, 48, 279
Data visualization, 149
Data wrangling, 128, 149, 150
DCGAN, 290
Decision tree, 170–172, 192, 193, 196, 203

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
T. T. Teoh, Z. Rong, Artificial Intelligence with Python,
Machine Learning: Foundations, Methodologies, and Applications,
https://doi.org/10.1007/978-981-16-8615-3

333

https://doi.org/10.1007/978-981-16-8615-3


334 Index

Decision tree regression, 169, 170
Decoder, 277, 280, 282–285
Decorators, 6, 63, 77, 79, 91, 93, 100
Deep learning, 7, 165, 289, 303, 328
Deepmind, 321
Deep Q-Learning, 328
Dense layer, 269, 282
Descriptors, 100
Dictionary, 48–50, 60, 68, 104, 116, 232
Discriminator, 289–296
Docstrings, 65, 67, 72
Dropout, 196, 265
Duplicates, 152, 153

E
Edges, 247, 252, 253, 272, 306
Elbow method, 215–217
Embedding, 281–283, 285
Encoder, 277, 280–285
Environment, 9, 14, 140, 141, 322, 324
Epoch, 195, 196, 297
Exceptions, 41, 58, 59

F
False negative, 187
False positive, 126, 187
Feature importance, 178, 197
Finetuning, 261, 272
Flattening, 261, 264, 265
Floats, 44, 50, 110, 111, 130, 131
Fourier transform, 252
Frequency domain, 252
Functions, 21, 28, 63–72, 74, 76, 77, 80, 83,

86, 95, 293

G
Gaussian filter, 252, 262
Generalize, 308
Generative adversarial network, 289, 296
Generators, 6, 89, 289–292, 294–296
Getter, 99, 101
Gram matrix, 310, 311

H
Headers, 127, 232
High frequency signal, 252
High pass filter, 253
Histogram equalization, 250, 251
Hyperparameters, 262, 263

I
Image classification, 261, 269, 273, 292, 306,

308
Image histograms, 243–246
Image processing, 239, 262
Inception Net, 269
Indentation, 32–34, 42, 43, 54, 56, 129
Inference, 284–286, 296
Integers, 44, 50, 56, 64, 111, 129–131
Invariance, 264, 308
Iterables, 88, 89

J
Jupyter Notebook, 15, 17, 20–22, 41–43,

70–72, 111, 112, 118, 126, 138, 240

K
Keyword arguments, 68
Keyword extraction, 234, 235
K-means, 213–215

L
LBFGS, 196, 313
LeakyReLu, 291
Lift, 219, 221, 222, 224
Linear regression, 167–169, 188, 189
List comprehensions, 6, 57, 75, 86, 131
List operators, 51, 52
Lists, 27, 31, 32, 41, 46, 48, 52, 53, 60, 64, 110
Logical conditions, 36, 41, 54, 71
Logistic regression, 188, 189, 192, 193, 196
Long short term memory, 277, 282–285
Loops, 56, 85
Loss function, 194, 283, 293–295, 316
Low frequency signal, 252

M
Machine learning, 6, 126, 149, 187, 227, 233
Magic functions, 95
Magic Methods, 82
Magic methods, 81
Mapping, 153, 183, 194
Mean squared error, 163, 169–172, 174, 179,

313
Merging, 157
Metaclasses, 101, 102, 104
Metadata, 125, 127–129, 134, 145
Missing data, 72, 128, 150
Mixins, 93, 94



Index 335

Modules, 29, 63, 64, 69–72, 74, 75, 110, 111,
131, 143, 278

Multi-class classification, 184, 187, 193, 194
Multi-label classification, 184
Multiple inheritance, 93

N
Naive Bayes, 206, 207
Natural language processing, 227, 277
Nested functions, 76, 80
Neural network, 7, 172–174, 193–196, 202,

203, 261, 263, 265, 272, 308
Neural network architecture, 7, 261, 269, 277,

306

O
Object detection, 239, 247, 274
Object Oriented Programming, 81, 84, 93
Objects, 31, 32, 55, 66, 76, 97, 100, 274
Operators, 41, 43, 45, 50–52, 54, 58
Optimizer, 283, 293, 294, 313
Outliers, 154, 175, 176, 188, 189, 197
Overfitting, 172, 196

P
Packages, 7, 13, 14, 27, 29, 30, 69, 75
Padding, 263, 280, 285
Parameters, 7, 64, 168, 173, 176, 204, 262
Pattern recognition, 254
Penalty, 322, 324
Perceptron, 265
Permutation, 156
Pivoting, 159
Plotting, 27, 118, 138, 144, 254
Policy, 322
Pooling, 261, 264, 265, 269
Private method, 81, 82
Properties, 99, 100, 129, 206

Q
Q-learning, 321, 322, 328
Q-table, 328

R
Random forest, 171, 172, 178, 192, 193, 203,

211
Regression, 163, 164, 167–169, 174, 183, 188,

189, 192, 193, 196, 213
Regularization, 196, 271, 303, 315, 316

Reinforcement learning, 321, 322
Reserved words, 81
Reshaping, 159
Residual connections, 271
Resnet, 269, 271, 272, 274
Reward, 322, 324–328
RMSprop, 196, 283

S
Scopes, 76, 91
Semantic segmentation, 274
Sentence classification, 227
Seq2Seq, 277, 280
Sets, 41, 60
Setter, 99–101
Sigmoid, 189, 193, 194
Sobel filter, 262, 316
Softmax, 193, 265
Speech, 277
Speech to text, 277, 278
Standardization, 185
State, 167, 282, 284, 285, 322,

324–328
Story-telling, 141, 142
Stride, 263, 264
String operators, 52
Strings, 32, 44, 46, 52, 53, 58, 64
Style representation, 303, 306, 308
Style transfer, 303, 306, 313, 315
Subpackages, 30
Substring, 53
Supervised, 213, 322
Support, 219, 221, 222, 224
Support vector machine, 204–206

T
tanh, 291
Template matching, 239
Term Frequency and Inverse Document

Frequency, 227, 231, 234
Text classification, 227, 234
Text mining, 227
Time-series, 132, 143, 145
Tokenize, 280–284, 286
Total variation loss, 315, 318
Transactional Data Binary Format,

219, 220
Transaction record, 219
Transfer learning, 261, 272
True negative, 187
True positive, 187



336 Index

U
Underfitting, 195
Unsupervised, 213, 227
Upsampling, 291

V
Vanishing gradient, 271
Variables, 41, 43–46, 50, 54, 58, 64–68, 75, 76,

91, 129, 149, 163, 164, 168, 173,
178, 183

VGG, 269, 306, 307, 309


	Preface
	Acknowledgments
	Contents
	Part I Python
	1 Python for Artificial Intelligence
	1.1 Common Uses
	1.1.1 Relative Popularity
	1.1.2 Features
	1.1.3 Syntax and Design

	1.2 Scientific Programming
	1.3 Why Python for Artificial Intelligence

	2 Getting Started
	2.1 Setting up Your Python Environment
	2.2 Anaconda
	2.2.1 Installing Anaconda
	2.2.2 Further Installation Steps
	2.2.3 Updating Anaconda

	2.3 Installing Packages
	2.4 Virtual Environment
	2.5 Jupyter Notebooks
	2.5.1 Starting the Jupyter Notebook
	2.5.2 Notebook Basics
	Running Cells
	Modal Editing
	Inserting Unicode (e.g., Greek Letters)
	A Test Program

	2.5.3 Working with the Notebook
	Tab Completion
	On-Line Help
	Other Content

	2.5.4 Sharing Notebooks


	3 An Introductory Example
	3.1 Overview
	3.2 The Task: Plotting a White Noise Process
	3.3 Our First Program
	3.3.1 Imports
	Why So Many Imports?
	Packages
	Subpackages

	3.3.2 Importing Names Directly
	3.3.3 Random Draws

	3.4 Alternative Implementations
	3.4.1 A Version with a for Loop
	3.4.2 Lists
	3.4.3 The for Loop
	3.4.4 A Comment on Indentation
	3.4.5 While Loops

	3.5 Another Application
	3.6 Exercises
	3.6.1 Exercise 1
	3.6.2 Exercise 2
	3.6.3 Exercise 3
	3.6.4 Exercise 4
	3.6.5 Exercise 5

	3.7 Solutions
	3.7.1 Exercise 1
	3.7.2 Exercise 2
	3.7.3 Exercise 3
	3.7.4 Exercise 4
	3.7.5 Exercise 5


	4 Basic Python
	4.1 Hello, World!
	4.2 Indentation
	4.3 Variables and Types
	4.3.1 Numbers
	4.3.2 Strings
	4.3.3 Lists
	4.3.4 Dictionaries

	4.4 Basic Operators
	4.4.1 Arithmetic Operators
	4.4.2 List Operators
	4.4.3 String Operators

	4.5 Logical Conditions
	4.6 Loops
	4.7 List Comprehensions
	4.8 Exception Handling
	4.8.1 Sets


	5 Intermediate Python
	5.1 Functions
	5.2 Classes and Objects
	5.3 Modules and Packages
	5.3.1 Writing Modules

	5.4 Built-in Modules
	5.5 Writing Packages
	5.6 Closures
	5.7 Decorators

	6 Advanced Python
	6.1 Python Magic Methods
	6.1.1 Exercise
	6.1.2 Solution

	6.2 Comprehension
	6.3 Functional Parts
	6.4 Iterables
	6.5 Decorators
	6.6 More on Object Oriented Programming
	6.6.1 Mixins
	6.6.2 Attribute Access Hooks
	6.6.3 Callable Objects
	6.6.4 _new_ vs _init_

	6.7 Properties
	6.8 Metaclasses

	7 Python for Data Analysis
	7.1 Ethics
	7.2 Data Analysis
	7.2.1 Numpy Arrays
	7.2.2 Pandas
	Selections

	7.2.3 Matplotlib

	7.3 Sample Code


	Part II Artificial Intelligence Basics
	8 Introduction to Artificial Intelligence
	8.1 Data Exploration
	8.2 Problems with Data
	8.3 A Language and Approach to Data-Driven Story-Telling
	8.4 Example: Telling Story with Data

	9 Data Wrangling
	9.1 Handling Missing Data
	9.1.1 Missing Data
	9.1.2 Removing Missing Data

	9.2 Transformation
	9.2.1 Duplicates
	9.2.2 Mapping

	9.3 Outliers
	9.4 Permutation
	9.5 Merging and Combining
	9.6 Reshaping and Pivoting
	9.7 Wide to Long

	10 Regression
	10.1 Linear Regression
	10.2 Decision Tree Regression
	10.3 Random Forests
	10.4 Neural Network
	10.5 How to Improve Our Regression Model
	10.5.1 Boxplot
	10.5.2 Remove Outlier
	10.5.3 Remove NA

	10.6 Feature Importance
	10.7 Sample Code

	11 Classification
	11.1 Logistic Regression
	11.2 Decision Tree and Random Forest
	11.3 Neural Network
	11.4 Logistic Regression
	11.5 Decision Tree
	11.6 Feature Importance
	11.7 Remove Outlier
	11.8 Use Top 3 Features
	11.9 SVM
	11.9.1 Important Hyper Parameters

	11.10 Naive Bayes
	11.11 Sample Code

	12 Clustering
	12.1 What Is Clustering?
	12.2 K-Means
	12.3 The Elbow Method

	13 Association Rules
	13.1 What Are Association Rules
	13.2 Apriori Algorithm
	13.3 Measures for Association Rules


	Part III Artificial Intelligence Implementations
	14 Text Mining
	14.1 Read Data
	14.2 Date Range
	14.3 Category Distribution
	14.4 Texts for Classification
	14.5 Vectorize
	14.6 CountVectorizer
	14.7 TF-IDF
	14.8 Feature Extraction with TF-IDF
	14.9 Sample Code

	15 Image Processing
	15.1 Load the Dependencies
	15.2 Load Image from urls
	15.3 Image Analysis
	15.4 Image Histogram
	15.5 Contour
	15.6 Grayscale Transformation
	15.7 Histogram Equalization
	15.8 Fourier Transformation
	15.9 High pass Filtering in FFT
	15.10 Pattern Recognition
	15.11 Sample Code

	16 Convolutional Neural Networks
	16.1 The Convolution Operation
	16.2 Pooling
	16.3 Flattening
	16.4 Exercise
	16.5 CNN Architectures
	16.5.1 VGG16
	16.5.2 Inception Net
	16.5.3 ResNet

	16.6 Finetuning
	16.7 Other Tasks That Use CNNs
	16.7.1 Object Detection
	16.7.2 Semantic Segmentation


	17 Chatbot, Speech, and NLP
	17.1 Speech to Text
	17.2 Importing the Packages for Chatbot
	17.3 Preprocessing the Data for Chatbot
	17.3.1 Download the Data
	17.3.2 Reading the Data from the Files
	17.3.3 Preparing Data for Seq2Seq Model

	17.4 Defining the Encoder-Decoder Model
	17.5 Training the Model
	17.6 Defining Inference Models
	17.7 Talking with Our Chatbot
	17.8 Sample Code

	18 Deep Convolutional Generative Adversarial Network
	18.1 What Are GANs?
	18.2 Setup
	18.2.1 Load and Prepare the Dataset

	18.3 Create the Models
	18.3.1 The Generator
	18.3.2 The Discriminator

	18.4 Define the Loss and Optimizers
	18.4.1 Discriminator Loss
	18.4.2 Generator Loss

	18.5 Save Checkpoints
	18.6 Define the Training Loop
	18.6.1 Train the Model
	18.6.2 Create a GIF


	19 Neural Style Transfer
	19.1 Setup
	19.1.1 Import and Configure Modules

	19.2 Visualize the Input
	19.3 Fast Style Transfer Using TF-Hub
	19.4 Define Content and Style Representations
	19.4.1 Intermediate Layers for Style and Content

	19.5 Build the Model
	19.6 Calculate Style
	19.7 Extract Style and Content
	19.8 Run Gradient Descent
	19.9 Total Variation Loss
	19.10 Re-run the Optimization

	20 Reinforcement Learning
	20.1 Reinforcement Learning Analogy
	20.2 Q-learning
	20.3 Running a Trained Taxi


	Bibliography
	Index

