


 





 Python Internals 
for Developers 
 
 Practice Python 3.x Fundamentals, Including Data 
Structures, Asymptotic Analysis, and Data Types 
 
 Sonam Chawla Bhatia 
 
 www.bpbonline.com 





FIRST EDITION 2022 
 Copyright © BPB Publications, India 
 ISBN: 978-93-91392-02-4 
 All Rights Reserved. No part of this publication may be reproduced, distributed or transmitted in any form or by any means or stored in a database or retrieval system, without the prior written permission of the publisher with the exception to the program listings which may be entered, stored and executed in a computer system, but they can not be reproduced by the means of publication, photocopy, recording, or by any electronic and mechanical means. 
 LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY 
 The information contained in this book is true to correct and the best of author’s and publisher’s knowledge. The author has made every effort to ensure the accuracy of these publications, but publisher cannot be held responsible for any loss or damage arising from any information in this book. 
 All trademarks referred to in the book are acknowledged as properties of their respective owners but BPB Publications cannot guarantee the accuracy of this information. 
 
 www.bpbonline.com 






 Dedicated to 
 My Husband, Vineet, 
My Son, Ekansh 
 





About the Author 
 Sonam Chawla Bhatia is an experienced developer, who has been working in product companies for last 10 years. Sonam has worked in product companies like Samsung Bangalore, Samsung Noida, and Microsoft. Sonam has worked on development of various tools and applications. Sonam has developed applications in Java, Python, Android. Sonam has worked on few research projects involving Artificial Intelligence, Blockchain, and IoT. Sonam has seven patents on her name (4 Global and 3 Indian). Outside work, Sonam volunteers to help, coach and mentor students for interviews. 





About the Reviewer 
 Nidhisha Shetty is a Software Developer with interests in web development, Artificial Intelligence, and Machine Learning. Currently, she is working on exploring and gaining more expertise in these areas by researching and working on a variety of side projects. She has a total of 5 years of industry work experience working with a few startups and product-based companies. She is currently architecting a FinTech product that helps users complete a financial transaction with ease, it aims to eliminate the rampant use of cash in emerging markets. In the past, she has also worked as a technical writer where she contributed in writing documentation for technical products to help users understand their working without ambiguity. She also documents her learnings and experiences by maintaining a blog. She completed her Masters in IT from Mumbai University in 2016. You can know more about her work here. 





Acknowledgements 
 There are a few people I want to thank for the continued and ongoing support they have given me during the writing of this book. First and foremost, I would like to thank my husband, Vineet, and son, Ekansh for putting up with me while I was spending many weekends and evenings on writing—I could have never completed this book without their support. 
 Finally, I would like to thank team at BPB Publications for giving me this opportunity to write my first book for them. 





Preface 
 Programming language world keeps changing with addition of new languages. Python language has proven to be a great language for beginners as well as expert programmers. Python was first released in 1991 as Python 0.9.0. Python 2.0 was released in 2000 and Python 3.0 was released in 2008. Python 2 was discontinued in 2020. Python language was designed on the philosophy of simplicity; thus, Python syntax is simple and easy to understand. Python is one of the most widely used programming languages. 
 Python is an easy to learn language and is widely being used in various applications. Python is an object oriented and interpreted high level language. It gives immense freedom to developers to implement their own data structure and define their functionalities. 
 Python applications include web development, machine learning, scientific computing, embedded software applications, information security, etc. A lot of programming languages like Go, Groovy, Ruby, Swift, etc. have been inspired by the simplicity and beauty of the Python language. 
 Learning data structures of Python is first step towards a great programming language. Developers can solve lot of problems using one single language known as Python. Library support for Python is increasing rapidly and thus applications of Python language is increasing. 
 
The primary goal of this book is to provide information and techniques that are necessary to write or solve problems using Python language. This book contains basic real-life problems implemented using Python data structures that will show you how to calculate time and space complexity and identify which data structure is best suited for your problem or application. Over the 16 chapters in this book, you will learn the following: 
 Chapter 1: Python 
 Description: This chapter gives recap of Python programming language. This chapter will cover variables, conditional statements, functions, and loops. 
 Chapter 2: Data types 
 Description: This chapter gives introduction to data types available in programming environment. You will learn primitive, composite, and abstract data types. 
 Chapter 3: Algorithm Analysis 
 Description: This chapter provides basic introduction to Algorithm Analysis. It explains asymptotic notation and analysis. 
 Chapter 4: Data Structure 
 Description: This chapter gives basic introduction and types of Data Structure and its usage. 
 Chapter 5: List 
 Description: This chapter provides description of List data structure with Python Implementation. This chapter will help developers understand applications of List data structure. 
 Chapter 6: Dictionary 
 Description: This chapter provides description of Dictionary with Python Implementation. This chapter will help developers understand applications of Dictionary data structure. 
 Chapter 7: Tuple 
 
Description: This chapter provides description of Tuple Data Structure with Python Implementation. This chapter will help developers understand applications of Tuple data structure. 
 Chapter 8: Sets 
 Description: This chapter provides description of Sets Data Structure with Python Implementation. This chapter will help developers understand applications of Sets data structure. 
 Chapter 9: Arrays 
 Description: This chapter gives description Strings Data Structure with Python implementation. This chapter will help developers understand applications of Arrays data structure. 
 Chapter 10: Stack 
 Description: This chapter gives description Stack Data Structure with Python implementation. This chapter will help developers understand applications of Stack data structure. 
 Chapter 11: Queue 
 Description: This chapter gives description Queue Data Structure with Python implementation. This chapter will help developers understand applications of Queue data structure. 
 Chapter 12: Trees 
 Description: This chapter gives description Trees Data Structure with Python implementation. This chapter will help developers understand applications of Trees data structure. 
 Chapter 13: Linked Lists 
 Description: This chapter gives description Linked Lists Data Structure with Python implementation. This chapter will help developers understand applications of Linked Lists data structure. 
 Chapter 14: Graphs 
 
Description: This chapter gives description Graphs Data Structure with Python implementation. This chapter will help developers understand applications of Graphs data structure. 
 Chapter 15: HashMaps 
 Description: This chapter gives description hash Maps Data Structure with Python implementation. This chapter will help developers understand applications of HashMaps data structure. 
 Chapter 16: Practical problem solutions 
 Description: This chapter gives everyday problems faced while developing software and how to find best-fit data structure based on time and space complexity. 





Code Bundle and Coloured Images 
 Please follow the link to download the 
Code Bundle and the Coloured Images of the book: 
 https://rebrand.ly/fe577d 
 The code bundle for the book is also hosted on GitHub at In case there's an update to the code, it will be updated on the existing GitHub repository. 
 We have code bundles from our rich catalogue of books and videos available at Check them out! 
 Errata 
 We take immense pride in our work at BPB Publications and follow best practices to ensure the accuracy of our content to provide with an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at : 
 errata@bpbonline.com 
 Your support, suggestions and feedbacks are highly appreciated by the BPB Publications’ Family. 
 

 Did you know that BPB offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.bpbonline.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at: business@bpbonline.com for more details. 
 At you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on BPB books and eBooks. 
 
 





 Piracy 
 If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at business@bpbonline.com with a link to the material. 
 If you are interested in becoming an author 
 If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please visit We have worked with thousands of developers and tech professionals, just like you, to help them share their insights with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea. 
 Reviews 
 Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions. We at BPB can understand what you think about our products, and our authors can see your feedback on their book. Thank you! 
 For more information about BPB, please visit 
 





Table of Contents 
 1. Python: A Quick Recap 
Introduction 
Structure 
Objectives 
Understanding Python 
Variables and expressions 
Variables 
Variable names 
Operators 
Arithmetic operators 
Comparison operators 
Logical operators 
Identity operators 
Membership operators 
Bitwise operators 
Assignment operators 
Operator precedence 
Expressions 
Comments 
Conditional statements 
The if statement 
if-else statement 
if-elif-else statement 
Nested conditional statements 
Loops and iterations 
The while loop 
The for loop 

break statement 
The continue statement 
Functions 
Pre-defined functions 
Conclusion 
Questions 
Answers 
 2. Data Types 
Introduction 
Structure 
Objectives 
Primitive data types 
Float 
Complex numbers 
String 
Accessing characters in String 
Escape sequence 
String operations 
Built-in methods 
Boolean 
Composite data type 
Arrays 
Lists 
Tuples 
Dictionary 
Sets 
Abstract data types 
Conclusion 
Points to remember 

Multiple-choice questions 
Answers 
Questions 
Answers 
 3. Asymptotic Analysis 
Introduction 
Structure 
Objectives 
Introducing asymptotic analysis 
Time complexity 
Space complexity 
Asymptotic notation 
Complexity calculation 
Big O notation 
Asymptotic notation summary 
Ω notation 
Θ notation 
Conclusion 
Points to remember 
Multiple-choice questions 
Answers 
Questions 
Answers 
 4. Data Structure 
Introduction 
Structure 
Objectives 
Introduction to data structures 

Advantages of data structures 
Data structure operations 
Python data structures 
Built-in data structures 
List 
Dictionary 
Tuple 
Set 
Array 
User-defined data structures 
Stack 
Queue 
Trees 
Linked List 
Graphs 
Hashmaps 
Conclusion 
Points to remember 
Multiple-choice questions 
Answers 
Questions 
Answers 
 5. List 
Introduction 
Structure 
Objectives 
List introduction 
List creation 
List data access 

List operations 
Traversing 
Insertion 
Deletion 
Searching 
Sorting 
Merging 
Count 
Reverse 
Copy 
Modifying list data 
List multiplication 
List length 
List compare 
Maximum and minimum 
Insert data in sorted list 
Help 
Conclusion 
Points to remember 
Multiple-choice questions 
Answers 
Questions 
Answers 
 6. Dictionary 
Introduction 
Structure 
Objectives 
Introduction to dictionary 
Dictionary creation 

Dictionary data access 
Dictionary operations 
Traversing 
Insertion 
Deletion 
Searching 
Sorting 
Merging 
Count 
Reverse 
Copy 
Dictionary multiplication 
Dictionary length 
Dictionary compare 
Maximum and minimum 
all() and any() 
str() 
Help 
Conclusion 
Points to remember 
Multiple-choice questions 
Answers 
Questions 
Answers 
 7. Tuple 
Introduction 
Structure 
Objectives 
Introduction to tuple 

Tuple creation 
Tuple data access 
Tuple operations 
Traversing 
Deletion 
Searching 
Sorting 
Merging 
Count 
Reverse 
Copy 
Tuple multiplication 
Tuple length 
Tuple comparison 
Maximum and minimum 
str() 
Help 
Tuple use cases 
Assigning multiple values 
Swap function 
Conclusion 
Points to remember 
Multiple-choice questions 
Answers 
Questions 
Answers 
 8. Set 
Introduction 
Structure 

Objectives 
Introduction to sets 
Creating set 
Set data access 
Set operations 
Traversing 
Insertion 
Deletion 
Searching 
Sorting 
Merging 
Count 
Reverse 
Copy 
Set multiplication 
Set length 
Set comparison 
Maximum and minimum 
str() 
all() 
any() 
sum() 
Help 
enumerate() 
Set concepts 
Union 
Intersection 
Difference 
Subset and superset 

Disjoint sets 
Conclusion 
Points to remember 
Multiple-choice questions 
Answers 
Questions 
Answers 
 9. Arrays 
Introduction 
Structure 
Objectives 
Introducing array 
Array creation 
Accessing array data 
Array operations 
Traversing 
Insertion 
Deletion 
Searching 
Sorting 
Merging 
Count 
Reverse 
Copy 
Array multiplication 
Array length 
Array comparison 
Maximum and minimum 
str() 

tolist() 
Help 
Use case 
Conclusion 
Points to remember 
Multiple choice questions 
Answers 
Questions 
Answers 
 10. Stack 
Introduction 
Structure 
Objectives 
Introducing stack 
Creating stack 
Stack operations 
Push 
Pop 
Peek 
isEmpty 
Stack using list 
Stack using deque 
Stack using LifoQueue 
Stack advantages 
Stack use cases 
Conclusion 
Points to remember 
Multiple-choice questions 
Answers 

Questions 
Answers 
 11. Queue 
Introduction 
Structure 
Objectives 
Queue introduction 
Creating queue 
Queue operations 
Enqueue 
Dequeue 
getFront 
isEmpty 
Queue using list 
Queue using deque 
Queue using queue 
queue classes 
queue methods 
empty() 
Queue implementation 
Queue advantages 
Queue use cases 
Conclusion 
Points to remember 
Multiple-choice questions 
Answers 
Questions 
Answers 
 
12. Tree 
Introduction 
Structure 
Objectives 
Creating tree 
Tree operations 
Insertion 
Deletion 
Traverse 
Searching 
Tree using list 
Tree using anytree 
Binary tree 
Binary tree operations 
Binary tree implementation 
Binary tree using binarytree 
Binary search tree 
BST operations 
Binary search tree implementation 
Binary search tree using binarytree 
Tree use cases 
Conclusion 
Points to remember 
Multiple choice questions 
Answers 
Questions 
Answers 
 13. Linked List 
Introduction 

Structure 
Objectives 
Introducing linked list 
Linked list creation 
Linked list operations 
Traversing 
Insertion 
Deletion 
Searching 
Sorting 
Merging 
Count 
Reverse 
Copy 
Linked list Length 
Maximum and minimum 
Help 
Use case 
Conclusion 
Points to remember 
Multiple choice questions 
Answers 
Questions 
Answers 
 14. Graph 
Introduction 
Structure 
Objectives 
Introducing graph 

Graph creation 
Graph operations 
Traversing 
Insertion 
Deletion 
Searching 
Merging 
Reverse 
Copy 
Help 
Use case 
Conclusion 
Points to remember 
Multiple choice questions 
Answers 
Questions 
Answers 
 15. HashMap 
Introduction 
Structure 
Objectives 
Introducing HashMap 
HashMap creation 
HashMap operations 
Traversing 
Insertion 
Deletion 
Searching 
Sorting 

Count 
Merging 
Reverse 
Copy 
HashMap length 
Maximum and minimum 
Help 
Conclusion 
Points to remember 
Questions 
Answers 
 16. Practical Problem Solutions 
Introduction 
Structure 
Objectives 
Calendar implementation 
Time and space complexity 
Map implementation 
Time and space complexity 
Friends network implementation 
Time and space complexity 
Text editor implementation 
Time and space complexity 
Conclusion 
Points to remember 
 Index 





CHAPTER 1 
 Python: A Quick Recap 





 Introduction 
 Python is one of many programming languages which exist in the software world to help developers solve real-time problems. Programming language is a formal language like English, Hindi, Spanish, and so on. Just like English or any other language used by humans to communicate with each other, the programming language is used for communication between humans and computers. 
 Many programming languages exist for human-computer communication. Now you must be wondering why we need so many programming languages for the same task, that is, communication. The following are some of the reasons why so many languages exist: 
  Some languages are easier to read and maintain than others. 
 All languages have different performance for different applications. 
 Different languages are suitable for solving different problems. For example, HTML can be used for developing websites and C language is best for embedded software development. 
 Languages differ in support of libraries to support common functions. 
 Some languages have fewer vulnerabilities than others, thus making them more secure. For example, Java is more secure than C. 
 Thus, developers choose the programming language based on the problem to be solved, the infrastructure to be used, and the type of software to be developed. 





 Structure 
 In this chapter, we will discuss the following topics: 
  Understanding Python 
 Variables and expressions 
  Variables 
  Variable names 
 Operators 
  Arithmetic operators 
 Comparison operators 
 Logical operators 
 Identity operators 
 Membership operators 
 Bitwise operators 
 Assignment operators 
 Operator precedence 
 Expressions 
 Comments 
 Conditional statements 
  The if statement 
 The if…else statement 
 The if…elif…else statement 
 The nested conditional statements 
 Loops and iterations 
  The while loop 
 The for loop 
 The break statement 
 The continue statement 
 Functions 
  Pre-defined functions 





 Objectives 
 By the end of this chapter, you will be able to install Python in your systems. You will be able to understand Python syntax and write basic programs in Python. You will get basic knowledge of interactive and script mod in Python. You will get an idea of how to write and run Python programs in both modes and also be able to understand the concept of functions in Python and how they are implemented. 





 Understanding Python 
 Python is a high-level language like C++, Java, and so on. High-level languages are more understandable by humans than low-level languages. High-level languages hide register, memory details from the developer. The computer understands low-level languages such as machine/assembly language. High-level languages convert solutions written in high-level languages to low-level languages. 
 
 Figure 1.1: Compiler takes source code and converts it into machine language code (executable file) 
 Python is an interpreted language. Table 1.1 shows the difference between Interpreted languages and Compiled languages. 
 languages. languages. 
languages. languages. languages. languages. languages. languages. languages. languages. languages. languages. languages. languages. 
languages. languages. languages. languages. languages. languages. languages. languages. languages. languages. languages. languages. languages. 
languages. languages. languages. languages. languages. languages. languages. languages. languages. languages. languages. 

languages. languages. 
 Table 1.1: Difference between Interpreted and Compiled languages. 
 The following figure shows how the interpreter takes source code and execute the output 
 
 Figure 1.2: Interpreter takes source code and executes directly 
 Python can be downloaded and installed by following the instructions available at Python code can be written in interactive mode or script mode. To run the Python code in interactive mode, open command prompt and then type If Python is successfully installed in your system, the command prompt will display as shown in Example 1.1. 
 Example 1.1: Run Python programs 
  py 
 
 Figure 1.3: Python prompt 
  Type the following commands in the command prompt: 
  x=3 
 
 

 Figure 1.4: Interactive Mode 
  The preceding commands are being run in an interactive mode and output “3”is printed. To exit the interactive mode the quit() or exit() functions can be used: 
  
 
 Figure 1.5: Exiting Interactive Mode 
  To run your Python program in script mode, open any text editor or IDE and type the instructions that you want to execute, and save the file with extension. To run the preceding instructions using script mode, type the following lines in the text editor or IDE: 
 x = 3 
print(x) 
 
Save the file with any name and ensure that the extension say, for example, Change the directory to the folder on the terminal where the .py file has been saved. In our case, the file is saved on the desktop, to change the directory, run the following command: 
  cd desktop 
 
 Figure 1.6: Change Directory 
  Run the program using the following command: 
  
 
 Figure 1.7: Executing Script 
  The script executes and prints the output “3” in command prompt, same as interactive mode. Script mode has the following benefits over interactive mode: 
  Scripts can be reused. They can be run again as many times as needed without the need to type all the instructions. 
 In case any error is encountered in the script, only the error code needs to be modified. In the case of interactive mode, correct instructions need to be typed again. 
 
Thus, it is better to use the script mode for developing programs. 





 Variables and expressions 
 This section explains what variables are and how they are declared and defined in Python. The following subsections give details about operators and expressions in Python. 





 Variables 
 Variables in programming languages are names given by the developers to store values while developing programs. Take a look at the following example: 
 x = 3 
 Here, “x” is a variable name given to store the value “3”. The preceding instruction is an assignment statement. It stores the value “3” in computer memory and names that memory as variable “x” as shown in figure 
 
 Figure 1.8: Computer memory portion. Value “3” is saved in one portion of memory and named as variable “x” 
 Naming a computer memory helps you to extract the value from the computer memory as and when required. The following instruction extracts the value of “x” stored in computer memory and prints the value on output: 
 print(x) 
 Example 1.2: Assigning values to different variables 
 
pi = 3.14 
greeting = “hello” 
i = 0 
isFound = True 





 Variable names 
 Python language has some pre-defined rules for defining the variable names. These rules are considered while writing the syntax of the Python programming language. The following rules have been defined for naming variables: 
  Variable names can contain both letters and numbers. 
 Variable name can’t contain any special character except underscore (_). 
 Variable name can either start from a letter or underscore. 
 Python is case-sensitive. Thus, and are three different variable names. But it is better to avoid defining similar variable names in the same file for better program readability. 
 Some developers define variable names in camel case for better understanding. Example: and so onIt is advisable to keep meaningful variable names such as count or name instead of c or 
 Python has some reserved words like if, else, and so on. These reserved words can’t be used as variable names. Reserved words for Python are given in table 
 




 Table 1.2: Python reserved words 
 
Using reserved words as variables causes syntax error as shown in figure 
 Example 1.3: Assigning values to reserved variables 
  elif = 1 
 nonlocal = 1 
 raise = 1 
 
 Figure 1.9: Reserved words usage as variable name causes a syntax error 





 Operators 
 Like any other programming language, Python also has operators which are used to perform various operations on different values and variables. Values and variables on which an operation is performed are known as Python has the following type of operators: 
  Arithmetic operators 
 Comparison operators 
 Logical operators 
 Identity operators 
 Membership operators 
 Bitwise operators 
 Assignment operators 





 Arithmetic operators 
 Arithmetic operators perform mathematical operations on operands such as addition, subtraction, and so on. Arithmetic operators are binary operators. Binary operators operate on two operands. Table 1.3 describes the various Python arithmetic operators: 
 operators: 
operators: operators: operators: operators: operators: 
operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: 
operators: operators: operators: operators: operators: 
operators: operators: operators: operators: operators: operators: operators: operators: 
operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: 
operators: operators: operators: operators: operators: operators: operators: operators: operators: 

operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: 
 Table 1.3: Python arithmetic operators 
 Example 1.4 shows few arithmetic operators and their output. 
 Example 1.4: Arithmetic operators 
  2+3 
//Output 
5 
 3-2 
//Output 
1 
 2*3 
//Output 
6 
 5/2 
//Output 
2.5 
 
//Output 
3 
 2**4 
//Output 
16 
 5//2 
//Output 
2 
 
The preceding example shows different outputs obtained while using arithmetic operators. As shown in the preceding example, the modulus operator (%) is the same as the mathematical remainder operator which outputs the remainder when 23 is divided by 5 (which is The exponentiation operator (**) is the same as the mathematical power operator which outputs the value of 24 (which is The floor division operator (//) divides the operand’s and the output’s floor value of division like in the preceding example, 5/2=2.5 but 5//2 outputs floor value of 2.5 which is 
 The addition and multiplication operators in Python can be used for strings too. Python addition operator adds two strings and merges them. Python multiplication operator can take one string and one integer as input. Example 1.5 gives examples of addition and multiplication operators on a string. 
 Example 1.5: Addition and Multiplication operators on a String 
  hello 
 //Output 
 ‘hello world’ 
 
 //Output 
 ‘abcdef’ 
 
 //Output 
 ‘aaa’ 
 
 //Output 
 ‘hellohello’ 





 Comparison operators 
 Comparison operators compare values of operands and outputs true or false based on comparison output. Comparison operators are also binary operators. Table 1.4 describes the various Python comparison operators: 
 operators: 
operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: 
operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: 
operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: 
operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: 
operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: 
operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: 
 Table 1.4: Python comparison operators 
 
Example 1.6: Comparison operators 
  2==3 
//Output 
False 
 “john”==”John” 
//Output 
False 
 “john”!=”John” 
//Output 
True 
 2!=3 
//Output 
True 
 2<3 
//Output 
True 
 ‘a’<’b’ 
//Output 
True 
 ‘a’>’b’ 
//Output 
False 
 5>2 
//Output 
True 
 2<=2 
//Output 
True 
 5>=2 

//Output 
True 
 The preceding example shows different outputs obtained while using comparison operators. Comparison operators can also be used to compare strings like in the preceding example comparison of with 





 Logical operators 
 Logical operators are used in making decisions for conditions in a program. Logical operators perform operations on True/False operands. The output of the logical operator is either true or Table 1.5 describes the various Python logical operators: 
 operators: 
operators: operators: operators: operators: operators: operators: operators: 
operators: operators: operators: operators: operators: operators: operators: operators: operators: 
operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: 
 Table 1.5: Python logical operators 
 
 Note: Unary operators operate on a single operand. The “not” operator requires only one operand as shown in Example 1.7. 
 
 Example 1.7: Logical operators 
  
//Output 
True 
 
//Output 
False 
 

//Output 
True 
 
//Output 
False 
 
//Output 
False 
 
//Output 
True 





 Identity operators 
 Identity operators are like comparison operators. They are used to compare the objects and gives output true if both objects are exactly the same and are stored in the same memory. Identity operators are binary operators. Table 1.6 describes various Python identity operators: 
 operators: 
operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: 
operators: operators: operators: operators: operators: operators: operators: operators: operators: 
 Table 1.6: Python identity operators 
 Example 1.8: Identity operators 
  name = 
 test = name 
 test 
//Output 
True 
 a = 20 
 b = 20 
 ais not b 
//Output 
False 





 Membership operators 
 Membership operators check if the left operand is a part of the right operand. Membership operators are binary operators. Table 1.7 describes the various Python membership operators: 
 operators: 
operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: 
operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: 
 Table 1.7: Python membership operators 
 Example 1.9: Membership operators 
  ’e’ in ‘hello’ 
//Output 
True 
 ‘z’ in ‘hello’ 
//Output 
False 
 ‘z’ not in ‘hello’ 
//Output 
True 
 ‘e’ not in ‘hello’ 
//Output 
False 





 Bitwise operators 
 Bitwise operators operate on each bit of number. Bitwise operator converts operands to a binary number, performs operations on each bit, converts the binary output to a decimal number, and outputs decimal number. Table 1.8 describes the various Python membership operators: 
 operators: 
operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: 
operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: 
operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: 
operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: 

operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: 
operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: 
 Table 1.8: Python bitwise operators 
 Example 1.10: Bitwise operators 
  3&6 
//Output 
2 
 
The preceding example shows the output of the Bitwise AND operator. The binary conversion of 3 is 011 and that of 6 is 110. Bitwise AND operator will take each bit of both the binary numbers and perform the AND operation as follows: 
 3&6 => 011 & 110 => 010 => 2 
 The decimal conversion of 010 is 2. 
  3|6 
//Output 
7 
 The preceding example shows the output of the Bitwise OR operator. The Bitwise OR operator will take each bit of both the binary numbers and perform the OR operation as follows: 
 3|6 => 011 | 110 => 111 => 7 
 The decimal conversion of 111 is 7. The following example shows the output of the Bitwise XOR operator: 
  3^6 
//Output 
5 
 The Bitwise XOR operator will take each bit of both the binary numbers and perform the XOR operation as follows: 
 3^6 => 011 ^ 110 => 101 => 5 
 The decimal conversion of 101 is 5. The following example shows the output of the Bitwise NOT operator: 
  ~3 
//Output 
-4 
 The Bitwise NOT operator will take each bit of the binary number and reverses the bits. NOT reverses the sign bit of binary number too. Thus, the positive number becomes negative and the negative number becomes positive. The digned binary number of 3 is 0011. 
 
~3 => ~0011 => 1100 => -4 
 The decimal conversion of 1100 is -4. 
 
 Note: In the case of a signed integer, the leftmost bit is the sign bit. For a positive number, the leftmost bit is 0 and for a negative number, the leftmost bit is 1. For 3, the signed binary representation is 0011. The first 0 represents that it is a positive number. Similarly, for -4, a signed binary representation is 1100, the first 1 represents that it is a negative number. 
 
  3<<1 
//Output 
6 
 3<<2 
//Output 
12 
 The preceding examples show the output of the left shift operator. It works as follows: 
 3<<1 => 0011<<1 => 0110 => 6 (shifted all bits by 1 position to the left) 
 3<<2 => 0011<<2 => 1100 => 12 (shifted all bits by 2 positions to the left) 
 The decimal conversion of 0110 is 6 and that of 1100 is 12. 
  6>>1 
//Output 
3 
 6>>2 
//Output 
1 
 
The preceding examples show the output of right shift operator. Right shift operator works as shown as follows: 
 6>>1 => 0110>>1 => 0011 => 3 (shifted all bits by 1 position to the right) 
 6>>2 => 0110>>2 => 0001 => 1 (shifted all bits by 2 positions to the right) 
 The decimal conversion of 0011 is 3 and that of 0001 is 1. 





 Assignment operators 
 Assignment operators are used to assigning values to a variable. Some assignment operators are compound operators which are a combination of simple assignment and arithmetic/bitwise operators. Table 1.9 describes the various Python assignment operators: 
 operators: 
operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: 
operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: 
operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: 
operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: 
operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: 
operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: 
operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: 

operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: 
operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: 
operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: 
operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: 
operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: 
operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: operators: 
 Table 1.9: Python assignment operators 
 Example 1.11: Assignment operators 
  x = 5 
 
//Output 
5 
 
 
//Output 

7 
 
 
//Output 
2 
 
 
//Output 
6 
 
 
//Output 
3.0 
 
 
//Output 
1.0 
 
 
 
//Output 
8 
 x//=3 
 
//Output 
2 
 
 
//Output 

2 
 
 
//Output 
3 
 
 
//Output 
5 
 
 
//Output 
20 
 
 
//Output 
5 
 The preceding examples show that the compound assignment operators perform the operation on the left and right operand and then assign the result to the left operand. 





 Operator precedence 
 Just like mathematical operations have precedence, Python language also has defined precedence for operators. Operator precedence means the order in which the operations will be performed if single instruction has more than one operator. Python operator precedence is shown in Table 1.10 from higher precedence to lower precedence. Operators in the same precedence are executed from left to right (except for exponentiation, which is executed from right to left). 
 left). 
left). 
left). 
left). left). left). left). 
left). left). left). left). left). 
left). left). 
left). left). left). left). 
left). left). 
left). left). 
left). left). 
left). left). left). left). left). left). left). left). left). left). left). left). left). left). left). left). left). left). left). left). 
left). left). 
left). left). 
left). left). 

left). left). 
 Table 1.10: Python operator precedence 
 Example 1.12: Order precedence 
  
//Output 
7.0 
 
//Output 
10.0 
 The preceding example shows the order precedence for arithmetic operators with and without parenthesis. The first example, 6-3+2*4/2, is executed as follows: 
 6-3+2*4/2 => 6-3+8/2 => 6-3+4.0 => 3+4.0 => 7.0 
 The second example, ((6-3) +2) *4/2, is executed as follows: 
 ((6-3) +2) *4/2 => (3+2) *4/2 => 5*4/2 => 20/2 => 10.0 





 Expressions 
 An expression is a combination of values, variables, and operators. A value or variable alone can also be considered as an expression. All the instructions shown in all the examples are expressions. Some other examples of expressions are shown in example 1.13. 
 Example 1.13: Expressions 
 X 
5 
X=5 
X+=2 
2+3 
False 
X=True 





 Comments 
 Comments help in the documentation of the solution being developed. As the program gets bigger and complex, comments help developers to understand the code. Comments start with # in a Python program. The Python interpreter ignores any statement starting with #. 
 Example 1.14: Comments 
  
 #Checks if x is divisible by 5 
 print (x, divisible 
 //Output 
10 is divisible by 5 
 Comments should be given only for non-obvious codes. The obvious code will be like “Assigning value 10 to variable x” as it can be easily interpreted from the expression: “x=10”. 





 Conditional statements 
 Conditional statements execute different instructions based on whether the Boolean expression evaluates to true or false. Boolean expression evaluates to either true or false. A conditional statement consists of Boolean expressions and logical operators. 





 The if statement 
 The syntax for the if statement is as follows: 
 if (Boolean expression): 
Expression1 
 Expression1 executes only when the Boolean expression evaluates to true. In case the Boolean expression evaluates to false, then Expression1 will not be executed. Figure 1.10 shows the flow of the if statement. 
 
 Figure 1.10: Flowchart of if-statement 
 Example 1.15: The if statement 
  
 
 divisible 
 0 

//Output 
10 is divisible by 5 
 
 
 divisible 
  The preceding example shows how the if statement works. The if statement checks whether x%5 is 0 or not. If it is 0 then it prints the statement below it, otherwise, it skips the statement. 
 
 Note: In the preceding example, the print statement is indented. Python does not have parenthesis to represent a block of code like other programming languages. A block of code in Python is represented by the same indentation. For example, the following code shows how a block of code can be written under the if statement: 
  x=10 
 if(x%5==0): 
     print(“Checking if x is divisible by 5”) 
     print(x, “is divisible by 5”) 
 //Output 
Checking if x is divisible by 5 
 10 is divisible by 5 
 In the preceding example, both the print statements represent a single block of code. 
 





 if-else statement 
 The syntax of the if…else statement is as follows: 
 if (Boolean expression): 
Expression1 
else: 
Expression2 
 Expression1 executes when the Boolean expression evaluates to true. In case the Boolean expression evaluates to false, then Expression2 will be executed. Figure 1.11 shows the flow of the if…else statement. 
 
 Figure 1.11: Flowchart of if-else statement 
 Example 1.16: The if-else statement 
  
 
 divisible 
 else: 
 divisible 
 //Output 

10 is divisible by 5 
 
 
 divisible 
 else: 
 divisible 
 //Output 
 11 is not divisible by 5 
  The preceding example shows how the if…else statement works. The if statement checks whether x%5 is 0 or not. If it is 0 then it prints the statement below the if statement, otherwise, it goes to the else statement and prints the statement. 





 if-elif-else statement 
 The syntax for the if…elif…else statement is as follows: 
 if (Boolean expression1): 
Expression1 
elif (Boolean expression2): 
Expression2 
else: 
Expression3 
 Expression1 executes when Boolean expression1 evaluates to true. In case Boolean expression1 evaluates to false, then Boolean expression2 is tested. Expression2 will be executed when Boolean expression2 evaluates to true. In case Boolean expression2 also evaluates to false, then Expression3 will be executed. Figure 1.12 shows the flow of if…elif…else statement. 
 
 Figure 1.12: Flowchart of if-elif-else statement 
 Example 1.17: The if…elif…else statement 
  
 
      print(x, 
 
      print(x, positive 
 

      print(x, negative 
  Figure 1.13 shows the output of Example If in Example 1.17 the value of the variable would have been -5 then the output would be is negative Take a look at the following screenshot: 
 
 Figure 1.13: Output of Example 1.17 





 Nested conditional statements 
 The nested conditional statement consists of one conditional statement in the block of another conditional statement. 
 Example 1.18: Nested conditional statement 
  
 
 
         print(x, 
 
         print(x, positive 
 
     print(x, negative 
  In the preceding example, x will be compared to 0 and as it checks if As in the preceding example thus, the output of the preceding example will be is positive 





 Loops and iterations 
 Loops and iterations execute the block of code multiple times. Loops and iterations are helpful in case we want to execute repetitive identical or similar tasks based on some condition. 





 The while loop 
 The syntax of while loop syntax is as shown as follows: 
 while(Boolean expression): 
Expression1 
 If Boolean expression is evaluated to true, Expression1 is executed. After Expression1 is executed, the Boolean expression is tested again. Expression1 is repeated until the Boolean expression is evaluated to be true. If Boolean expression is never evaluated to false, then loop never exits and runs infinitely thus consuming all the computer resources. Thus, developers need to make sure that while loop exits after a finite number of repetitions. Figure 1.15 shows the flow of the while loop. 
 Example 1.19: The while loop 
  n=10 
 
 
 n = n-1 
  
 Figure 1.14: Output of Example 1.19 
 
In the preceding example, the while loop exits after repeating 10 times because we have been decrementing the value of n for every loop. Skipping n=n-1 expression would have led to infinite while loop. 
 
 Figure 1.15: Flowchart of while loop 





 The for loop 
 The while loop is known as an indefinite loop as it keeps looping until the Boolean expression is evaluated as false, whereas the for loop loops through a known number of items so it runs the definite number of repetitions. The for loop syntax is as shown as follows: 
 for e in Elements: 
Expression1 
 Expression1 executes for the number of items in the Elements set. Figure 1.16 shows the flow of the for loop. 
 
 Figure 1.16: Flowchart of for loop 
 Example 1.20: The for loop 
  numbers = [1,2,3,4] 
 in numbers: 
 print(n) 
  Figure 1.17 shows the output of Example In the preceding example, the for loop exits after iterating over numbers set. Take a look at the following screenshot: 
 
 
Figure 1.17: Output of Example 1.20 





 break statement 
 The break statement is used to exit from the while or for loop for some conditions. 
 Example 1.21: The break statement 
  numbers = 
 for n in numbers: 
 
 
 break 
  Figure 1.18 shows the output of Example The preceding example checks if 2 is present in set or not. If 2 is present, it prints the statement and exits the loop. Take a look at the following screenshot: 
 
 Figure 1.18: Output of Example 1.21 





 The continue statement 
 The continue statement is used to stop the current iteration and continue to the next iteration of a while or for loop. 
 Example 1.22: The continue statement 
  numbers = 
 for n in numbers: 
 
 continue 
 even 
  
 Figure 1.19: Output of Example 1.22 
 The preceding example prints even numbers and skips printing for odd numbers. 





 Functions 
 A function is a block of code that is given a name. Functions help in reusing the code of common features. Maintaining single feature functionality in a single function helps developers to understand the code easily. The syntax for functions is as follows: 
 def name(): 
Expression1 
Expression2 
 The defining function will not execute the code. Function needs to be called to execute the expressions defined in the function. Function can be called using 
 Example 1.23 shows the definition of function which will execute only if we call the function using the test() statement. 
 Example 1.23: Functions 
  #function definition 
       numbers = 
 for n in numbers: 
 
 continue 
       print(n, even 
 test() #function call 
 //Output 
4 is even number 





 Pre-defined functions 
 Python language has various defined libraries which have pre-defined functions for common features. For example, the print() function which we have been using in our example is a pre-defined function in Python language. Similarly, various functions such as max, min, and so on. exists. 





 Conclusion 
 This chapter helps to recap the basic structure of the Python programming language. We covered variables, expressions, operators, conditional statements, and loops in detail. We covered functions in brief. In the next chapter, we will learn what is data structure and which data structures are available in Python. 





 Questions 
  Python language is ____________-level language. 
 ____________________ language is platform dependent. 
 Execution speed of ______________________ language is slower than ____________________. 
 Select correct variable names from the following options: 
  number 
 class 
 x 
 _abc 
 x12 
 12x 
 maxNumber 
 What will be the output of the following expression? 
 7-3+32/2*8-4 
 What will be the output of the following expression? 
 7-3+32/ (2*(8-4)) 
 What will be the output of the following expression? 
 8>>3 
 What will be the output of the following expression? 
 14<<2 
 What will be the output of the following program? 
 cities=[“Delhi”,”Noida”,”Gurugram”] 
for city in cities: 
print(“Welcome to“, city) 
 Write a program to identify leap years. 
 Write a program to calculate the sum of the first ten even numbers. 
 Write a function to convert temperature in °C to °F. 





 Answers 
  High 
 Compiled 
 Interpreted, Compiled 
 a, c, d, e, g 
 128.0 
 8.0 
 1 
 56 
 Welcome to Delhi 
 Welcome to Noida 
 Welcome to Gurugram 
 x=2020 
if(x%4==0): 
if(x%100==0): 
if(x%400==0): 
print(“Leap Year”) 
else: 
print(“Not a Leap Year”) 
else: 
print(“Leap Year”) 
else: 
print(“Not a Leap Year”) 
 y=2 
sum=0 
for x in range(0,10): 
sum+=y 
y+=2 
 print(“Sum =“, sum) 
 
def CtoF(celsius): 
return (celsius*9/5)+32 
 
 Note: In answer 11, a new pre-defined function range() has been used. range() returns the sequence of numbers. range(0,10) returns a sequence of numbers starting from 0 to 9 where 10 is not inclusive. Thus, we get 10 even numbers starting from 2 and adding 2 in every loop. 
 In answer 12, the return expression is used to return the calculation done by CtoF function. CtoF takes the input in Celsius, performs the operation on it, and returns output. The function will be called as: 
 CtoF(32) 
 The return value can either be directly printed using print(): 
 print(CtoF(32)) 
 or assigned to a variable: 
 faren=CtoF(32) 
 





CHAPTER 2 
 Data Types 





 Introduction 
 This chapter introduces data types, which exist in the Python language. A data type is a categorization of data used in programs. The data type of a variable defines the type of data, which can be stored in that variable. The data type defines which operations can be performed on the variable and the behavior of the operation performed. Like any other language, Python language also has three types of data types: 
  Primitive 
 Composite 
 Abstract 





 Structure 
 In this chapter, we will discuss the following topics: 
  Primitive data types 
  Integer 
 Float 
 Complex numbers 
 String 
  Accessing characters in String 
 Escape sequence 
 String operations 
  Built-in methods 
 Boolean 
 None 
  Composite data types 
  Arrays 
 Lists 
 Tuples 
 Dictionary 
 Sets 
 Abstract data types 
 In this chapter, we will discuss the preceding three data types in brief available in Python language. 





 Objectives 
 After studying this chapter, you will be able to write basic programs with different data types and String. You will also be able to use arrays, lists, and dictionaries to write programs. 





 Primitive data types 
 Primitive data types are the built-in data types available in the language. They are the building blocks of other data types. Every language defines its own primitive data types. Python has defined the following primitive data types: 
  Integer 
 Float 
 Complex numbers 
 String 
 Boolean 
 None 
 The following sections give a detailed description of primitive data types: 
 Integer 
 The Integer data type represents whole numbers and does not have any decimal point. The integer variable can hold both positive or negative numbers. The signed Integer range in 32-bit Python interpreter is -216 to 216 – 1 and -232 to 232 – 1 in 64-bit Python interpreter. Example 2.1 shows some examples of valid Integer values. 
 Example 2.1: Valid Integer values 
 x=3 
i = 0 
negativeNumber=-7 
highestNumber=2147483647 
minNumber=-2147483648 
 The Integer data types support the following operations: 
  Arithmetic operations 
 Bitwise operations 
 
Absolute value of an integer 
 Returns divisor and remainder of x and y. Returns the pair x/y and x%y 
 Returns x to the power of y. Similar to Exponential operator (**) 
 Returns the class of x 
 Returns True if x is an integer, otherwise, returns False. 
 Example 1.2 shows examples of arithmetic operations and Example 1.7 shows examples of Bitwise operations on integer data types. Example 2.2 shows the example of the divmod() and pow() functions. 
 Example 2.2: Integer Data Types operations 
 1. 
2. abs(x) 
//Output 
3 
3. 
//Output 
(5,3) 
4. 
//Output 
8 
 Example 2.3 shows some examples of the type() and isinstance() functions. 
 Example: 2.3 type() and isinstance() on integer Variables and Values 
 1. 
2. type(x) 

//Output 
‘int’> 
3. 
//Output 
True 
4. 
//Output 
‘int’> 
5. 
6. 
//Output 
‘int’> 
7. 
//Output 
True 
 Class ‘int’ defines integer data type and functions supported by integers. 





 Float 
 The float data type represents real numbers with decimal or floating-point. The float data type represents fractions. Float number consists of an integer and fractional (scientific) part separated by a floating-point. The float data type can hold positive or negative real numbers. In Python, the division of any two integer variables leads to a floating output (4/2 = 2.0). The float data type range supported in 64-bit Python is (±2.23 x 10-308 to ±1.80 x 10308). Example 2.4 shows some examples of float values. 
 Example 2.4: Float values 
 x=3.0 
3e8 
-7.12 
4e-5 
-3e6 
-3e-7 
 
 In the preceding example, 3e8 is the scientific representation. 3e8 is equivalent to 3.0x108 or 300000000.0. 
 Similarly, 4e-5 = 4.0x10-5. 
 
 Float data types support the following operations: 
  Arithmetic operations 
 Absolute value of float 
 Returns divisor and remainder of x and y. Returns the pair x/y and x%y 
 Returns x to the power of y similar to the Exponential operator (**) 
 
Rounds float number x to y number of decimal points, here, y is optional and the default value is 0. 
 Returns the class of x 
 Returns True if x is Float, otherwise, returns False 
 Returns the pair of integers whose ratio will be exactly the value x 
 Returns True if x can be converted to an integer without truncation 
 Example 2.5 shows examples of some functions supported by the Float data type. 
 Example 2.5: Functions supported by Float 
 1. 
2. type(x) 
//Output 
‘float’> 
3. 
//Output 
True 
4. 
//Output 
False 
5. 
//Output 
3.12 
6. 
//Output 
3 
7. 
//Output 

(1, 2) 
8. 
//Output 
(5404319552844595, 4503599627370496) 
9. 
//Output 
True 
10. 
//Output 
False 
 Class defines the Float data type and functions supported by float. 





 Complex numbers 
 Python language has the library that supports complex number functions. A complex number is represented by “x+yj”, where ‘j’ denotes that ‘y’ is an imaginary part and ‘x’ is the real part of a complex number. Example 2.6 shows some examples of complex numbers. 
 Example 2.6: Complex numbers 
 x=2+7j 
8j 
 Complex numbers support the following operations: 
  Arithmetic operations (except // and %) 
 Absolute value of complex number 
 Returns x to the power of y similar to the Exponential operator (**) 
 Returns the class of x 
 Returns True if x is a complex number, otherwise, returns False 
 Conjugate of a complex number, this returns an imaginary part with the opposite sign and the real part remains the same 
 Creates a complex number with x as the real part and y as the imaginary part 
 Example 2.7 shows examples of some functions supported by complex numbers. 
 Example 2.7: Functions supported by Complex numbers 
 1. 
2. type(x) 
//Output 
‘complex’> 

3. 
//Output 
True 
4. 
//Output 
False 
5. 
6. y 
//Output 
(1+2j) 
7. 
//Output 
(2-8j) 
8. 
//Output 
8.246211251235321 
9. 
//Output 
2.0 
10. 
//Output 
8.0 
11. 
//Output 
(3+10j) 
12. 
//Output 
(1+6j) 
13. 

//Output 
(-14+12j) 
14. 
//Output 
(3.6+0.8j) 
15. 
//Output 
(0.4303706981644371-0.39128136715396594j) 
16. 
//Output 
(0.4303706981644371-0.39128136715396594j) 
17. 
//Output 
(-60+32j) 
 Class ‘complex’ defines complex numbers and functions supported by them. 





 String 
 A String represents textual data in Python. The collection of characters in single, double, or triple quotes represents a String. Strings are immutable in Python, changing the value is not feasible after declaring the String. Example 2.8 shows some examples of valid String values. 
 
 Note: In Python, String allows us to embed a double-quoted string into a single quote string and vice-versa. As shown in Example 2.8, ‘World’ is embedded in a String surrounded by double-quotes “Hello ‘World’!!!”. Similarly, “World” is embedded in a String surrounded by single-quotes ‘Hello “World”!!!’ 
 
 Example 2.8: Valid String values 
 “Hello” 
‘World’ 
‘’’abc123’’’ 
“Hello ‘World’!!!” 
‘Hello “World”!!!’ 





 Accessing characters in String 
 Individual characters of String can be accessed using indexing. In Python, the index of a String starts at 0. Python allows integers (negative or positive) to access characters or group of characters. The -1 index refers to the last character of String, -2 represents the second last, and so on. Providing an index of a String greater than the last index of the string gives 
 The slicing technique extracts a group of characters from a string. The slicing operator (:) is used to extract a range or group of characters from the String. Slicing operator [x:y] returns: 
  Group of characters starting at index ‘x’ until index ‘y’. It does not include the character at ‘y’ index. 
 Group of characters up to the last character if ‘y’ exceeds the length of the String or is empty. 
 Group of characters starting from 0th index if ‘x’ is empty. 
 Whole string if both ‘x’ and ‘y’ are empty. 
 Example 2.9 shows how to access a character or group of characters from a String. 
 Example 2.9: Access a single or group of characters from String 
 1. str=”Hello World!!” 
2. 
//Output 
‘H’ 
3. 
//Output 
‘r’ 
4. 

//Output 
Traceback (most recent call last): 
File “”, line 1, in  
IndexError: string index out of range 
5. 
//Output 
‘!’ 
6. 
//Output 
‘W’ 
7. 
//Output 
‘H’ 
8. 
//Output 
‘llo Wo’ 
9. 
//Output 
‘ World’ 
10. 
//Output 
Traceback (most recent call last): 
File “”, line 1, in  
IndexError: string index out of range 
11. 
//Output 
‘Hello’ 
12. 
//Output 

‘rld!!’ 
13. 
//Output 
‘Hello’ 
14. 
//Output 
‘World!!’ 
15. str[:] 
//Output 
‘Hello World!!’ 
16. str 
//Output 
‘Hello World!!’ 
17. str[1]=’d’ 
//Output 
Traceback (most recent call last): 
File “”, line 1, in  
TypeError: ‘str’ object does not support item assignment 

str 
//Output 
‘check’ 
 
 Note: In Python, String is immutable. It means that String cannot be modified once declared. As shown in the preceding example, str[1]=’d’ throws TypeError as String does not support item assignment. 
 The whole String can be modified by str=”check”. It creates a new String object with “check” as value and assigns it to str. 
 





 Escape sequence 
 In Python, String is formatted using escape sequences. An escape sequence starts with a backslash followed by a sequence of characters. Python interprets the escape sequence according to the mapping given in table 
 





















 Table 2.1: Python Escape Sequences 
 Example 2.10: Escape sequence 
 1. \\ 
//Output 
Hello \ World 
2. 
//Output 
Hello’s World 
3. print(“Hello’s 
//Output 
Hello’s World 
4. print(“Hello 
//Output 
Hello “World” 
5. 
//Output 
Hello “World” 

6. \a 
//Output 
Hello World 
7. 
//Output 
Hello World 
8. \n 
//Output 
Hello 
World 
9. 
//Output 
Hello World 
10. are 
//Output 
How are you? 
11. \t 
//Output 
Hello World 
12. \v 
//Output 
Hello ♂ World 
13. 
//Output 
Q 
14. 
//Output 
Q 
15. 

//Output 
8 
16. 
//Output 
p 
 The preceding example shows different outputs obtained while using some escape sequences. 
 
 Note: As seen in the preceding example of “ \a” escape sequence, nothing extra is printed. “ \a” generates an alert sound when printed. While using “ \a” in print(), enable your speaker and you will be able to hear an alert sound. 
 





 String operations 
 In Python, the String data type supports a large number of operations. The operators section of Chapter 1 (Python: A Quick Recap) introduces some of the String operations. Table 2.2 shows other operations supported by Strings. 
 Strings. 
Strings. Strings. Strings. Strings. Strings. Strings. Strings. Strings. Strings. Strings. Strings. 
Strings. Strings. Strings. Strings. Strings. Strings. Strings. Strings. Strings. Strings. Strings. Strings. Strings. Strings. Strings. 
Strings. Strings. Strings. Strings. Strings. Strings. Strings. Strings. 
Strings. Strings. Strings. Strings. Strings. Strings. Strings. Strings. Strings. Strings. 
Strings. Strings. Strings. Strings. Strings. 
Strings. Strings. Strings. Strings. Strings. Strings. Strings. Strings. Strings. 
 Table 2.2: String operations 
 
Example 1.3 shows the output of applying the addition and multiplication operators on Strings. Strings also support comparison operators as shown in Example 
 Example 2.11: String operations 
 1. ‘e’ in ‘Hello’ 
//Output 
True 
2. ‘h’ in ‘Hello’ 
//Output 
False 
3. ‘h’ not in ‘Hello’ 
//Output 
True 
4. ‘e’ not in ‘Hello’ 
//Output 
False 
5. 
6. for c in str:print(c) 
7. 
//Output 
1 
2 
3 
8. 
//Output 
\n 
 The preceding example shows different outputs obtained while using String operations. 





 Built-in methods 
 Python language supports common String methods as built-in methods. Table 2.3 gives major functions supported by Strings along with the description and examples. 
 examples. examples. examples. 
examples.  examples. 
examples.  examples.  examples.  examples. 
examples.  examples. examples. examples.  examples.  examples.  examples.  examples. 

examples.  examples.  examples.  examples.  examples.  examples. 
examples.  examples.  examples.  examples.  examples.  examples.  examples. 

examples.  examples.  examples.  examples.  examples.  examples.  examples.  examples. 
examples.  examples. examples. examples.  examples.  examples. examples. examples. 
examples.  examples.  examples.  examples.  examples.  examples. 
examples. examples. examples. examples. examples. examples. examples. examples.  examples. examples. examples. examples. examples. examples. examples. examples.  examples. examples. examples. examples. examples. examples. examples. examples.  examples. examples. examples. examples. examples. examples. examples. examples. 

examples.  examples.  examples.  examples. examples. examples. examples. 
examples.  examples.  examples.  examples. 
examples.  examples.  examples.  examples. 
examples.  examples.  examples.  examples. 
examples.  examples.  examples.  examples. 

examples.  examples.  examples.  examples. 
examples.  examples.  examples.  examples.  examples.  examples. 
examples.  examples.  examples.  examples. 
examples.  examples.  examples.  examples. 

examples.  examples.  examples.  examples. 
examples. examples.  examples.  examples.  examples. 
examples.  examples.  examples.  examples.  examples.  examples.  examples.  examples. 

examples.  examples.  examples.  examples. 
examples.  examples.  examples.  examples.  examples. examples.  examples. examples. examples. 
examples.  examples.  examples.  examples. examples. 
examples.  examples.  examples.  examples. 

examples.  examples.  examples. examples.  examples.  examples. examples.  examples. examples.  examples. examples. examples.  examples.  examples. examples. examples.  examples. 
examples.  examples. examples. examples.  examples.  examples. examples. examples. 
examples.  examples.  examples.  examples. 

examples.  examples.  examples.  examples.  examples.  examples. 
examples.  examples.  examples.  examples. examples. 
examples.  examples. examples. examples. 

examples.  examples. examples. examples.  examples.  examples. examples.  examples.  examples. 
examples. examples.  examples.  examples.  examples.  examples. examples.  examples.  examples.  examples. 
examples.  examples. examples. examples.  examples.  examples.  examples.  examples. 

examples.  examples.  examples. examples. examples. examples.  examples.  examples.  examples. examples. examples. examples. 
examples.  examples.  examples.  examples.  examples.  examples.  examples.  examples.  examples. 

examples. examples. examples.  examples.  examples. examples. examples.  examples. examples. examples.  examples.  examples.  examples. examples. examples. examples.  examples. 
examples.  examples.  examples.  examples. 
examples.  examples.  examples. examples.  examples. examples. 
examples.  examples. 

examples.  examples.  examples.  examples.  examples.  examples. 
 Table 2.3: Python String Methods 
 
 Note: ‘{:n}’.format(number), can be used to convert a number to a different format (decimal (d), octal (o), hexa (x), binary (b)). 
 “The sum of 10 + 20 is 
 //Output 
 ‘The sum of 10 + 20 is 36’ 
 “The sum of 10 + 20 is 
 //Output 
 ‘The sum of 10 + 20 is 30’ 
 “The sum of 10 + 20 is 
 //Output 
 ‘The sum of 10 + 20 is 1e’ 
 “The sum of 10 + 20 is 
 //Output 
 
‘The sum of 10 + 20 is 11110’ 
 





 Boolean 
 Boolean data type takes true or false as values, which can also be represented as 1 or 0 in the integer data type. Booleans are mainly used for condition testing and comparison. Boolean data type supports Logical operators mentioned in table 
 Example 2.12 shows examples of Boolean data types and operations performed on them. 
 Example 2.12: Boolean data types 
 1. 
2. 
3. 
4. x or y 
//Output 
True 
5. x or z 
//Output 
False 
6. x and y 
//Output 
False 
7. not (x) 
//Output 
True 
8. x^y 
//Output 
True 
9. 
//Output 
False 

10. type(x) 
//Output 
‘bool’> 
 None 
 None data type represents a NULL object in Python, that is, object with no value. None data type does not support any operation. 
 Example 2.13: None data type 
 1. 
2. type(x) 
//Output 
‘NoneType’> 





 Composite data type 
 Composite data type, also known as non-primitive data type, which stores a collection of value. Python supports the following composite data types: 
  Arrays 
 Lists 
 Tuples 
 Dictionary 
 Sets 





 Arrays 
 Array data type is a collection of values having the same data type. Array can be a collection of integer values, float values, and so on. Values stored in an array can be accessed using indexing similar to String indexing. Array data type also supports slicing similar to String data type. Python developers prefer to use Lists instead of Arrays. Chapter 9 (Arrays) provides a detailed explanation and usage of Array data type. 
 Example 2.14 shows an example of Array initialization along with indexing and slicing. 
 Example 2.14: Array data type 
 1. import array as arr 
2. 
3. type(a) 
//Output 
‘array.array’> 
4. 
//Output 
1 
5. 
//Output 
2 
6. 
//Output 
Traceback (most recent call last): 
File “”, line 1, in  
IndexError: array index out of range 
7. 
//Output 

array(‘I’, [1]) 
8. a[:] 
//Output 
array(‘I’, [1, 2]) 





 Lists 
 List data type is a collection of heterogeneous data type values. A single list can contain an integer, float, string, and more such values. List data type is mutable unlike Strings and single or all elements of a list modification is possible without creating a new list object. Comma-separated elements in square brackets [and] represent list data type. Lists also support indexing and slicing operations. Chapter 5 (List) provides a detailed explanation of list data type and operations supported by List. Example 2.15 shows list creation, indexing, and slicing. 
 Example 2.15: List data type 
 1. 
2. type(x) 
//Output 
‘list’> 
3. 
//Output 
1 
4. 
//Output 
Traceback (most recent call last): 
File “”, line 1, in  
IndexError: list index out of range 
5. 
//Output 
[1] 





 Tuples 
 Tuples are similar to lists as they can contain heterogeneous data types. The only difference between tuple and list is that tuples are not mutable. Editing tuple is not possible in Python language. Comma-separated elements in round brackets (and) represent tuple data type. Tuples also support indexing and slicing operations. Chapter 7 (Tuple) provides a detailed explanation of tuple data type and the operations supported by them. 
 Example 2.16 shows tuple creation, indexing, and slicing. 
 Example 2.16: Tuple data type 
 1. 
2. type(x) 
//Output 
‘tuple’> 
3. 
//Output 
1 
4. 
//Output 
Traceback (most recent call last): 
File “”, line 1, in  
IndexError: tuple index out of range 
5. 
//Output 
(1,) 





 Dictionary 
 Dictionary data types represent key-value pairs. Key is a unique value, which identifies the item uniquely. Dictionary data type is mutable, that is, it is editable. Comma-separated key-value pair in curly brackets {and} represent dictionary data type. Dictionaries do not support indexing and slicing operations. Dictionary access values through the key. Chapter 6 (Dictionary) provides a detailed explanation of dictionary data type and the operations supported by them. 
 Example 2.17 shows Dictionary creation and accessing values using key.. 
 Example 2.17: Dictionary data type 
 1. 
2. type(x) 
//Output 
‘dict’> 
3. 
//Output 
Traceback (most recent call last): 
File “”, line 1, in  
KeyError: 0 
4. 
//Output 
‘a’ 
5. x.keys() 
//Output 
dict_keys([1, 2]) 
6. x.values() 
//Output 

dict_values([‘a’, ‘b’]) 





 Sets 
 Set data type is a collection of unique objects. It is similar to a list with all elements unique. It is a mutable data type. Slicing and indexing is not feasible in sets. Chapter 8 (Set) provides a detailed explanation of set data type and operations supported by them. 
 Example 2.18 shows Set creation. 
 Example 2.18: Set data type 
 1. 
2. x 
//Output 
{‘c’, ‘k’, ‘s’, ‘d’, ‘o’, ‘1’, ‘j’} 
3. 
4. x 
//Output 
{‘k’, ‘1’, ‘e’, ‘i’, ‘o’, ‘c’} 





 Abstract data types 
 Abstract data type is a type class, which defines the set of values and operations but does not define the behavior or implementation of operations. These are implementation-independent data types. Abstract data types are like a black box for the developer, which hides the inner working and design of data type. The developer will know what operations it performs but will not know the implementation. 





 Conclusion 
 This chapter details various types of data types available in the Python language. This chapter provided details of available primitive data types (Integer, Float, Complex Numbers, String, Boolean and None). This chapter gives brief description of available composite data types in Python. Each composite data type has dedicated chapter for detailed description. Chapter 3 (Asymptotic Analysis) helps you understand how time and space complexity can be calculated for a program or solution. 





 Points to remember 
  Python supports six primitive data types, which forms the basis for composite data types. 
 Arrays store homogeneous types of data. Arrays are not widely used in the Python language. 
 Python developers prefer Lists. Lists can save heterogeneous types of values. It can also save other composite data types like list, sets, dictionary, and so on. 
 Strings and Tuples are immutable, that is, once defined cannot be modified without creating a new object. Other data types defined in this chapter are mutable. 
 Dictionaries are used to store key-value pairs, where the key should have a unique value. 





 Multiple-choice questions 
  Select correct escape sequences from the following options: 
  \n 
 \j 
 \b 
 \s 
 \v 
 \p 
 Select correct primitive data type declaration in Python: 
  int a = 2 
 x=4 
 y = 3+4j 
 z = Hello 
 b = None 
 d = true 
 Select correct Strings functions used to split a String: 
  partition() 
 find() 
 split() 
 lpartition() 
 rsplit() 
 Boolean data type supports which type of operations: 
  Arithmetic operations 
 Assignment operations 
 Identity operations 
 Bit-wise operations 
 Logical operations 
 Which of the following are mutable data types: 
  Integer 
 
String 
 Lists 
 Tuple 
 Dictionaries 





 Answers 
  a, b, e 
 b, c, e 
 a, c, e 
 b, e 
 a, c, e 





 Questions 
  _________________data types are the built-in data types. 
 _________________is the representation of complex number. 
 Collection of characters in quotes represents_________________. 
 What will be the output of the following expression: 
 “xyz”.lower() 
 What will be the output of the following expression: 
 “xyz”.title() 
 What will be the output of the following expression: 
 x=set(“hello world!!”) 
x 
 What will be the output of the following expression: 
 x=[1,2,3,4] 
x[2:3] 
 What will be the output of the following program: 
 x={‘name’:’john’,’age’:’10’} 
x.keys() 
x.values() 





 Answers 
  Primitive 
 x+yj 
 String 
 ‘xyz’ 
 ‘Xyz’ 
 {‘h’, ‘o’, ‘ ‘, ‘d’, ‘!’, ‘e’, ‘w’, ‘l’} 
 [3] 
 dict_keys([‘name’, ‘age’]) 
 dict_values([‘john’, ‘10’]) 





CHAPTER 3 
 Asymptotic Analysis 





 Introduction 
 This chapter explains why asymptotic analysis is important for defining your program’s complexity. After completing this chapter, you will be able to calculate the time complexity of your programs easily. Measuring time and space complexity is important to identify the performance of your program or application. Asymptotic analysis depends on the program algorithm and is independent of the programming language. 





 Structure 
 In this chapter, we will be discussing the following topics: 
  Introducing asymptotic analysis 
  Time complexity 
 Space complexity 
 Asymptotic notation 
  Complexity calculation 
 Big O notation 
 Big Ω notation 
 Big Θ notation 





 Objectives 
 After studying this chapter, you will be able to analyze your programs. You will be able to calculate the time and space complexity of your program. You will also be able to determine the best algorithm to use out of more than one algorithms. 





 Introducing asymptotic analysis 
 Asymptotic analysis defines the boundaries of a program’s run-time performance. Asymptotic analysis helps to calculate the run-time performance of a program for best case, average case, and worst-case scenario. The performance of any program depends on the following factors: 
  System supports sequential or parallel processing 
 32-bit or 64-bit processor 
 Input of the program 
 Read and write speed of the system 
 Configuration of the system 
 Asymptotic analysis depends only on the input, that is, in the case of 0 or 1 input, the program runs in constant time. Asymptotic analysis of the program does not consider any other factor than input. Asymptotic analysis indicates computing the running time and memory requirement of any operation in a program. 
 Asymptotic analysis depends on the following three scenarios: 
  Best Minimum time/memory required for program execution. 
 Average Average time/memory required for program execution. 
 Worst Maximum time/memory required for program execution. 
 Asymptotic analysis is the combination of time complexity and space complexity, described in the following sections. 





 Time complexity 
 Time complexity of any application or program defines the amount of time required to run the program on a machine. Let us calculate the time complexities of a few algorithms to get an idea. Suppose, our algorithms are running on a machine with the following capabilities: 
  Sequential execution 
 32-bit system 
 1 unit of time for any operation and return statement 
 Examples 3.1 and 3.2 show time complexity calculation for a simple statement and a loop. 
 Example 3.1: Time complexity of a simple statement 
 a+b 
 The preceding line of code is a simple arithmetic statement which is adding two operands. As our machine consumes 1 unit of time for any operation, the preceding statement will be executed in 1 unit of time. 
 Example 3.2: Time complexity of the for loop 
 for i in range (0,10): 
print(i) 
 The preceding code is a loop, which is printing values from 0 to 9. The first statement will be executed 10 times, it will go to the next value in the list returned by The second statement prints numbers from 0 to 9 and thus runs 10 times. Thus, the total running time for both statements will be 10 + 10 = 20. 





 Space complexity 
 Space complexity defines the efficiency of your program in terms of memory usage. Calculation of space complexity depends on the maximum amount of memory used by a program at any instance. For example, if the memory consumption of a program is ‘n’ units at a particular time and ‘n2’ at another time, then the space complexity will be ‘n2’. Example 3.3 shows how to calculate space complexity for a program. 
 Example 3.3: Space complexity calculation 
 x=3 
y = [1,2,3,4,5] 
y.remove(1) 
 The first statement will consume 1 unit of memory, whereas, the second statement will consume 5 units of memory. The third statement deletes one item from list y but the maximum memory used by list y will remain 5. Thus, the preceding example has a space complexity of 5 +1 = 6 units. 





 Asymptotic notation 
 The exact calculation of the value of time and memory required to run any program is not feasible. Thus, asymptotic notations represent the time and space complexity of any program. Asymptotic notation provides mathematical bounds of time and space complexity. The following sections explain the most commonly used asymptotic notations in detail: 
  Big O notation 
 Ω notation 
 Θ notation 





 Complexity calculation 
 The Introduction section describes that complexity depends only on the input of the program. Let us dive into the calculation details of the complexity. The total time complexity of a program depends upon the time complexity of fragments of the program. Table 3.1 shows how to calculate the time complexity of a program given in Example 
 Example 3.4: Time complexity calculation a=10 
 n=30 
power = 1 
for i in range(0,n): 
power = power * a 
 ans = 1 
for i in range(1,a+1): 
for j in range(1,n+1): 
ans = ans * i * j 
 j 
j j j j j j j j j j j j j j j  j j j j j j j j j 
j j j j j j j j j j j j j j j j j j j j j j j 

j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j 
j j j j j j j  j j j j j 
 Table 3.1: Program complexity calculation 
 The total complexity of the program comes out to be ‘4 + n + n2’. We consider the highest-order term while mentioning the time complexity as the lower-order terms become negligible to the highest-order term. Example 3.5 shows how the lowest order terms become negligible as the number of input values increases. 
 Example 3.5: Increasing input 
 If n = 10, 4 + n + n2 = 114 
 If n=1000, 4 + n + n2 = 1,001,004 ~ 1,000,000 
 If n = 10,000, 4 + n + n2 = 100,010,004 ~ 100,000,000 
 The preceding example shows that, as ‘n’ increases, the significance of lower order terms decreases. Thus, the higher order term defines time complexity of any program. Thus, the preceding program has ‘n2’ complexity. 





 Big O notation 
 Big O notation is the most commonly used notation to represent the complexity of any program. It defines the upper bound of the complexity of any program. It tells about the maximum time or maximum space the program can take based on the input. Suppose a program takes ‘n’ time for the best-case scenario and ‘n2’ time for the worst-case scenario, then the time complexity of the program in Big O notation will be O(n2) as it covers both ‘n’ time and ‘n2’ time. In other words, Big O notation refers to worst-case scenario complexity. 
 
 Figure 3.1: Big O notation 
 Mathematically, the following equation holds true: 
 
T(n) ≤ O(f(n)) = for all n ≥ no, where c is a constant …(1) 
 Figure 3.1 shows the change in the value of T(n) and O(f(n)) as n increases. 
 Let us dive into some common time complexity along with description and example: 
  O(1): Constant 
 O(1) complexity means the given program will always execute with constant time and space. Example 3.6 takes constant time, that is, time to execute addition and constant space for two variables. It does not depend on the value of parameters ‘a’ and ‘b’. Thus, the time and space complexity of the sum function is O(1). Figure 3.2 shows how O(1) complexity changes with an increase in the input size. 
 Example 3.6: O(1) Complexity 
 def sum(a, b): 
return a+b 
 
 
Figure 3.2: O(1)Complexity 
  O(log n): Logarithmic 
 O(log n) complexity means the given program execution time increases logarithmically. Reducing the size of the input at each step helps to achieve complexity. Example 3.7 takes logarithmic time as it reduces the size of the list by half at each step. If the size of ‘numList’ is ’n’, then it will take O(log n) time in a worst-case scenario. Example 3.7 demonstrates the working of the binary search algorithm. A binary search algorithm needs the sorted list or array to work correctly. Input needs sorting before searching with binary search. 
 Example 3.7: O(log n) Complexity 
 def binarySearch(num, numList): 
n = len(numList) 
start = 0 
end = n-1 
while start<=end: 
middle = (start+end)//2 
if num < numList[middle]: 
end = middle - 1 
elif num > numList[middle]: 
start = middle + 1 
else: 
return middle 
return -1 
 
Figure 3.3 shows how the execution time increases for logarithmic time complexity with respect to an increase in the input size. 
 
 Figure 3.3: O(log n) Complexity 
  O(n): Linear 
 
O(n) complexity means the given program execution time or the space required increases linearly. The complexity of the program is dependent and in direct proportion to the size of the input. Example 3.8 takes linear time and space-dependent on the size of ‘numList’. If the size of ‘numList’ is ’n’, then it will take O(n) time in a worst-case scenario. As can be seen from example the number can be found in less than ’n’ iterations if ‘num’ is the second or third element of the list. However, Big O notation will always consider the upper limit or the worst-case scenario which can be ’n’ iterations if ‘num’ is the element or not present in the list. Example 3.8 demonstrates the working of the linear search algorithm. Unlike binary search algorithm, linear search does not require sorted input. However, the time complexity of the linear search is more than that of the binary search algorithm. 
 Figure 3.4 shows how linear execution time increases with an increase in the input size. 
 
 Figure 3.4: O(n) Complexity 
  Example: 3.8 O(n) Complexity 
 def linearSearch(num, numList): 
for x in numList: 
 if num==x: 
return num 
return -1 
  O(n log n): Log Linear 
 
O(n log n) time complexity means that each operation performed on every input element has logarithmic time complexity. O(n log n) time complexity is majorly seen in various sorting algorithms like mergesort, heapsort, and so on. Example 3.9 shows the program with time complexity O(n log n). Example 3.9 is searching each element of ‘numList1’ in ‘numList2’ using binary search. Looping on each element of ‘numList1’ takes ’n’ time. The binary search takes ‘log n’ time as shown in Example Thus, the total time complexity becomes ’n log n’. Figure 3.5 shows how time complexity increases with an increase in input size for O(n log n) complexity. 
 
 Figure 3.5: O(n log n) Complexity 
  Example 3.9: O(n log n) complexity 
 def containsDuplicate(numList1, numlist2): 
for num in numList1: 
if binarySearch(num, numList2): 
print(f”{num} found in numList2”) 
  Quadratic 
 
time complexity means the given program’s worst-case time complexity is dependent on the square of the size of the input. Nested iterations on input result in complexity. Increasing the nested iterations results in an increase of complexity to and so on. Example 3.10 takes time in a worst-case scenario. Example 3.10 is similar to Example the only difference is that the linear search replaces binary search. As linear search takes O(n) time, thus, Example 3.10 takes time. 
 Example 3.10: complexity 
 def containsDuplicate(numList1, numlist2): 
for num in numList1: 
 if linearSearch(num, numList2): 
print(f”{num} found in numList2”) 
 Figure 3.6 demonstrates how the execution time increases with an increase in the input size for quadratic functions. 
 space complexity means that the program needs variables with size for execution like a Matrix or nested lists. 
 

 Figure 3.6: Complexity 
  Exponential 
 time complexity means the given program’s worst-case time complexity doubles for each new element in input. Generally, Brute force algorithms have exponential time complexity. Example 3.11 shows the recursive calculation of Fibonacci numbers. Fibonacci numbers are a sequence of a list of numbers where each element is the sum of the previous two elements. 
 Example 3.11: time complexity 
 def fibonacci(n): 
if n <= 1: 
return n 
return fibonacci(n) + fibonacci(n-1) 
 Figure 3.7 shows how quickly the exponential execution time rises with an increase in one input data. 
 

 Figure 3.7: Complexity 
  O(n!): Factorial 
 O(n!) time complexity means the given program’s worst-case time complexity increases in a factorial way for each new element in input. It grows very fast for very small input. Example 3.12 shows the function to generate all possible permutations of input elements. It takes O(n!) time to generate all possible solutions. 
 Example 3.12: O(n!) time complexity 
 def permutation(list, n): 
if n == 1: 
print(list) 
return 
for i in range(n): 
permutation(list, n) 
if n%2 == 0: 
data[i], data[n-1] = data[n-1], data[i] 

else: 
data[0], data[n-1] = data[n-1], data[0] 
 Figure 3.8 shows the increase in execution time with an increase in each input data. As evident from figure the execution time increases drastically fast for every addition of input data. 
 
 Figure 3.8: O(n!) Complexity 





 Asymptotic notation summary 
 Big O notation helps to determine how fast a program executes. One of the criteria to choose an algorithm is Big O notation. O(n!) leads to the worst execution time as compared to other complexities. 
 
 Figure 3.9: Comparison of Big O Complexities 
 Figure 3.9 and figure 3.10 show a comparison of various time complexities. 
 
 
Figure 3.10: Comparison of Big O Complexities 
 Figure 3.11 shows the comparison of O(2n) and O(n!). 
 
 Figure 3.11: Comparison of O(2n) and O(n!) Complexities 
 From figures and the order of speed of various algorithms can be determined as follows: 
 O(1) < O(log n) < O(n) < O(n log n) < O(n2) < O(2n) < O(n!) 





 Ω notation 
 Big Omega (Ω) defines the lower bound of the complexity of any program. It tells about the minimum time the program will take based on input size. Time complexity Ω(n) indicates that the time complexity of the program is greater than c*f(n) for large values of n. Mathematically, the following equation holds true: 
 T(n) ≥ Ω(f(n)) = c*f(n),for all n ≥ no, where c1and c2are constants …(2) 
 Figure 3.12 shows the change in the value of T(n) and Ω(f(n)) as n increases. 
 
 Figure 3.12: Ω Notation 





 Θ notation 
 Big Theta (Θ) defines the upper and lower bound of the complexity of any program. Θ notation is a tight bound notation as it restricts the time complexity by defining upper and lower values of running time. It tells about the maximum and minimum time the program can take based on input. Suppose the time complexity of a program is Θ(n), it means the time complexity of the program lies between c1*f(n) and c2*f(n) for a larger value of n. Mathematically, the following equation holds true: 
 Θ(f(n)) ≤ T(n) ≥ Θ(f(n)) => c1*f(n) ≤ T(n) ≥ c2*f(n), (3) 
 for all n ≥ no, where c1and c2are constants. 
 Θ(f(n)) notation holds true if both O(f(n)) and Ω(f(n)) holds true. Figure 3.13 shows the change in value of T(n) and Θ(f(n)) as n increases. 
 

 Figure 3.13: Θ notation 





 Conclusion 
 This chapter explains asymptotic analysis and notations. It also describes how to calculate the time or space complexity of a given program or algorithm. This chapter helps you to analyze your program and make informed decisions about which algorithm to choose for implementation. 
 The next chapter will focus on the Data Structures introduction. We will get to know various data structures available in Python. 





 Points to remember 
  Asymptotic analysis means calculating the time and space complexity of a program. 
 Asymptotic analysis helps to make informed decisions about which algorithm to choose for implementation based on the requirements and resources available. 
 Time and Space Complexity of any program is majorly dependent on the input size of data. 
 Asymptotic notations are: 
 Big O Defines complexity upper bound. 
 Big Ω Defines complexity lower bound. 
 Big Θ Defines complexity tight (upper and lower) bound. 
 Majorly used notation is Big O notation to denote the time or space complexity of a program. 





 Multiple-choice questions 
  Calculate the time complexity of the program if the running time of the program is a function of n as given here: 
 f(n) = + 10n+ 30 
  
 O(log n) 
 O(n) 
 O(n log n) 
 Calculate the time complexity of the following code: 
def isEven(n): 
if n % 2 == 0: 
return true 
return false 
  
 O(log n) 
 O(n) 
 O(n log n) 
 Select the worst time complexities: 
  
 O(log n) 
 
 O(n!) 
 Select the best time complexities: 
  O(n) 
 O(log n) 
 O(n!) 
 O(n log n) 
 O(1) 





 Answers 
  a 
 c 
 c, d 
 b, e 





 Questions 
  Time Complexity measures the_________________ of the program. 
 Measuring space required by a program to run is _________________. 
 _________________ defines the upper bound on a program. 
 Big Θ notation defines _________________ on a program. 
 Find the time complexity of the following program: 
 def findMax(list): 
max = a[0] 
for item in a: 
if item>max: 
max = item 
return max 
 Find the time complexity of the following program: 
 def bubbleSort(arr): 
n = len(arr) 
for i in range(n): 
for j in range(0, n-i-1): 
if arr[j] > arr[j+1]: 
arr[j], arr[j+1] = arr[j+1], arr[j] 





 Answers 
  Running time 
 Space Complexity 
 Big O notation 
 Tight bound 
 O(n) 
 O(n) 





CHAPTER 4 
 Data Structure 





 Introduction 
 This chapter explains what is data structure. This chapter introduces data structures available in the Python programming language. A data structure is a building block of any programming language. Learning data structure is a major step in learning any language. Data structure helps in writing effective and efficient algorithms. 





 Structure 
 In this chapter, we will be discussing the following topics: 
  Introduction to data structures 
  Advantages of data structures 
 Data structure operations 
 Python data structures 
 Built-in data structures 
  List 
 Dictionary 
 Tuple 
 Set 
 Arrays 
 User-defined data structures 
  Stack 
 Queue 
 Trees 
 Linked List 
 Graphs 
 Hashmaps 





 Objectives 
 After studying this chapter, you will be able to understand the different data structures available in Python. You will be able to identify various built-in and user-defined data structures. 





 Introduction to data structures 
 A data structure is a method to store data in a computer. It is a format to store the data in a program such that it can be accessed easily. Data structures help in the easy organization and management of data in a program. 
 In other words, a data structure consists of data values and methods which can be applied to data values. Each data structure has its own set of methods that helps in accessing, organizing, and managing data values stored in the data structure. 
 Various data structures exist in the Python programming language. Different data structures have different methods and are suitable for different applications or tasks. Using efficient data structures based on the type of algorithm can lead to faster running algorithms. Examples of data structures are arrays, lists, stacks, dictionaries, and so on. 





 Advantages of data structures 
 The amount of data being used for applications is increasing on daily basis. An increasing amount of data causes many problems like decreased efficiency, data access speed, and so on. Data structures were introduced to overcome those problems. The following are some of the advantages of using data structures: 
  Choosing the correct data structure increases the efficiency of the program. 
 Data structures are reusable. Functions to access data in the data structure are written once and used many times in different programs. 
 Data structure provides an abstraction to the implementation details. The programmer just needs to know the function to add or remove data from the data structure. The programmer need not know the internal implementation details of the same. 





 Data structure operations 
 The data structure has different methods for data structure operations. Data structure operation helps to access or modify stored data. There are different operations for the different data structures. However, data structure operations can be broadly classified into the following major operations: 
  Data structure stores collection of data values. Accessing each data value in a data structure is known as traversing. 
 Insertion means to add a data value in a data structure. 
 Deletion operation deletes a data value from a data structure. 
 Operation to find the location of the existing data value in a data structure. If the data value does not exist, then it either returns an error or an undefined value. 
 Sorting means arranging all data values in the data structure in a specific order. 
 Combining two same types of data structures such that values of both data structures are stored in one single data structure. 





 Python data structures 
 Python supports various built-in data structures. Python also allows developers to create data structures. Following are the types of data structures that we will be learning in brief in this chapter. There is one dedicated chapter for each of the data structures mentioned as follows: 
  Built-in data structures 
 User-defined data structures 





 Built-in data structures 
 Python defines few data structures in its library. These data structures help programmers to create programs easily and efficiently. Following are the built-in data structures defined in Python language: 
  List 
 Dictionary 
 Tuple 
 Set 
 Arrays 
 The following sections give a brief description of each data structure: 





 List 
 The list data structure can be used to store a collection of data with different data types. It is a versatile data structure. List is a built-in data structure in Python, which helps programmers to develop programs faster and efficiently. The list data structure is widely used in the Python programming language. 
 List can store any type of data like integer, strings, even list. The data value stored in the list can be accessed directly using an index. The index is the position of data value stored in the list. The list data structure in Python has a variable length, thus, data values can be added or removed easily from the list. 
 List can be represented as: list = [value1, value2] 
 Example 4.1 shows the declaration of the list and some operations of the list data structure. 
 Example 4.1: List example 
 1. list = 
2. list 
//Output 
[1, 2, 3, 4, ‘string’, ‘c’] 
3. 
//Output 
4 
4. 
5. list 
//Output 
[1, 2, 3, 4, ‘string’, ‘c’, ‘test’] 





 Dictionary 
 Dictionary data structure can be used to store the collection of key and value pairs. Keys are unique objects in the dictionary. Keys are immutable and thus can not be modified in dictionary. The value mapped to a key can be accessed through the unique key. Values for a particular key can be modified. 
 Dictionary can store any type of data like integers, strings, and so on. Dictionary data structure in Python has a variable length, thus, key-value pair can be added or removed easily from the dictionary. 
 Dictionary can be represented as: dictionary = {“key1”:value1, “key2”:value2} 
 Example 4.2 shows the declaration of a dictionary and some operations of the dictionary data structure. 
 Example 4.2: Dictionary example 
 1. 
2. dict 
//Output 
{1: ‘a’, 2: ‘b’} 
3. dict[2] 
//Output 
‘b’ 
4. dict[1] = “c” 
5. dict 
//Output 
{1: ‘c’, 2: ‘b’} 
6. dict[3] = “d” 
7. dict 
//Output 

{1: ‘c’, 2: ‘b’, 3: ‘d’} 
8. dict[4] = 1 
9. dict 
//Output 
{1: ‘c’, 2: ‘b’, 3: ‘d’, 4: 1} 





 Tuple 
 Tuple data structure is like List data structure. The only difference between list and tuple data structure is that List can be modified, and tuple cannot be modified. Tuple data can be modified only if it contains nested mutable data types such as list or dictionary. 
 Tuple can store any type of data like integers, strings, and even tuples. The data value stored in a tuple can be accessed directly using an index. Tuple data structure in Python is immutable, and thus length is not variable. To add new values to an existing tuple, a new tuple object is created. 
 Tuple can be represented as: tuple = (value1, value2) 
 Example 4.3 shows the declaration of a Tuple and some operations of the tuple data structure. 
 Example 4.3: Tuple example 
 1. tuple = 
2. tuple 
//Output 
(1, 2, 3, ‘string’, ‘a’) 
3. tuple[3] 
//Output 
‘string’ 
4. new_tuple = 
5. new_tuple 
//Output 
(1, 2, 3, ‘string’, ‘a’, [1, 2, 3, ‘string’, ‘a’], ‘test’) 
6. new_tuple[5][2] = 7 
7. new_tuple 
//Output 

(1, 2, 3, ‘string’, ‘a’, [1, 2, 7, ‘string’, ‘a’], ‘test’) 





 Set 
 A set data structure is an unordered collection of unique objects. There is no repeated data in the set. Even if data is added more than once, it will be added once in the set. Unordered collection means the set does not maintain the order in which the element was added in the set. 
 Set can store any type of data like integer, strings, and so on. The data value stored in a set can not be accessed directly using an index. Union, intersection, and difference operations can be performed on a set data structure. 
 Tuple can be represented as: set = {value1, value2} 
 Example 4.4 shows declaration of Set and some operations of set data structure. 
 Example 4.4: Set example 
 1. set = {1,2,3,”string”,”a”} 
2. set 
//Output 
set([‘a’, 1, 2, 3, ‘string’]) 
3. set.add(“test”) 
4. set 
//Output 
set([‘a’, 1, 2, 3, ‘string’, ‘test’]) 
5. set[4] 
//Output 
Traceback (most recent call last): 
File “”, line 1, in  
TypeError: ‘set’ object does not support indexing 
6. set1 = {1,2,3,4,5} 
7. set1 

//Output 
set([1, 2, 3, 4, 5]) 
8. set.union(set1) 
//Output 
set([‘a’, 1, 2, 3, 4, ‘string’, ‘test’, 5]) 





 Array 
 An array data structure can be used to store a collection of values with the same data types. An array is a collection of items stored at a contiguous location. It is like a list except that the list can store values with heterogeneous data types whereas an array can store values with homogenous data types. 
 Array in Python is defined using the list data structure as a base. An array can store any type of data like integer, double, char, and so on. The data value stored in an array can be accessed directly using an index. An array data structure in Python has a variable length, thus, data values can be added or removed easily from the Array. 
 Array can be represented as: a = array(‘data type’, [value1, value2]) 
 Data type can be ‘i’ for Integer, ‘d’ for Double, ‘c’ for Character. 
 Example 4.5 shows the declaration of an array and some operations of the array data structure. 
 Example 4.5: Array example 
1. import array as arr 
2. a = 
3. a 
//Output 
array(‘i’, [1, 2, 3]) 
4. b = 
5. b 
//Output 
array(‘d’, [1.5, 2.0, 3.0]) 
6. 
//Output 

3 
7. 
//Output 
1.5 
8. 
9. a 
//Output 
array(‘i’, [1, 4, 2, 3]) 
10. 
11. b 
//Output 
array(‘d’, [1.5, 2.0, 5.0, 3.0]) 





 User-defined data structures 
 Python allows developers to define their own data structure. Defining own data structure gives full control to developers on the functionality of defined data structures. Following are the major user-defined data structures: 
  Stack 
 Queue 
 Trees 
 Linked lists 
 Graphs 
 HashMaps 
 The following sections give a brief description of each data structure. 





 Stack 
 A stack data structure can be used to store a collection of values with homogenous or the same data types. A stack data structure is based on Last-In-First-Out principle. LIFO means the last element to be inserted will be the first element to be removed. 
 Stack in Python is defined using the list data structure as a base. A stack can store any type of data like integer, double, char, and so on. The data value stored in a stack can be accessed directly using an index. A stack data structure in Python has a variable length, thus, data values can be added or removed easily from the Stack. 
 Stack can be represented as: stack = [value1, value2] 
 Example 4.6 shows the declaration of a stack and some operations of stack data structure using the list. 
 Example 4.6: Stack example 
 1. stack = [] 
2. stack 
//Output 
[] 
3. 
4. 
5. 
6. stack 
//Output 
[1, 2, 3] 
7. 
//Output 
3 

8. stack 
//Output 
[1, 2] 
9. 
//Output 
2 





 Queue 
 A queue is like a stack data structure. It can be used to store a collection of values with homogenous or the same data types. The main difference between the queue and stack data structures is that queue is based on the First-In-First-Out principle. FIFO means the first element to be inserted will be the first element to be removed. 
 Queue in Python is defined using the list data structure as base. A queue can store any type of data like integer, double, char, and so on. The data value stored in a queue can be accessed directly using an index. The queue data structure in Python has a variable length, thus, data values can be added or removed easily from the queue. 
 Queue can be represented as: queue = [value1, value2] 
 Example 4.7 shows the declaration of queue and some operations of the queue data structure using a list. 
 Example 4.7: Queue example 
 1. queue = [] 
2. queue 
//Output 
[] 
3. 
4. 
5. 
6. queue 
//Output 
[1, 2, 3] 
7. 
//Output 

1 
8. queue 
//Output 
[2, 3] 
9. 
//Output 
3 





 Trees 
 Trees are non-linear data structures. Trees have nodes, one of which is known as root. The root is the base of the tree; it is the point from where data originates. A tree is a hierarchical data structure. Nodes in the tree have a parent-child relationship. The preceding node is called the parent and the node which comes after the parent is called It can be used to store the collection of values with homogenous or the same data types. 
 Each node in the tree has a data value and pointer to the child. The node which does not have a child is called the leaf A tree node is defined as a class in Python. A binary tree is a majorly used data structure. In a binary tree, each node has one or two children. 
 Binary tree can be represented as: 
 
 Example 4.8 shows the declaration of the binary tree and its nodes. 
 Example 4.8: Binary tree example 
 class Node: 
def __init__(self, key): 
self.left = None 
self.right = None 
self.val = key 
 root = Node(1) 
root.left = Node(2); 
root.right = Node(3); 
root.left.left = Node(4); 





 Linked List 
 A linked list is a linear data structure like an array data structure. Data in the linked list is not stored in contiguous locations. The linked list data structure can be used to store a collection of values with the same data types. 
 A linked list consists of multiple nodes connected with pointers. It is easily extensible, to add new data, a new Node is created and linked to the list. Each node in the linked list has a data value and pointer to the next node. The linked list and its node is created using class in Python. A linked list can store any type of data like integer, double, char, and so on. The data value stored in a linked list cannot be accessed directly using an index, thus random access is not allowed. The linked list data structure in Python has a variable length, thus, data values can be added or removed easily from the linked list. 
 Linked list can be represented Node1 -> Node2 -> Node3 
 Example 4.9 shows the declaration of a linked list and its nodes. 
 Example 4.9: Linked list example 
 class Node: 
def __init__(self, data): 
self.data = data 
self.next = None 
 class LinkedList: 
def __init__(self): 
self.head = None 
 list = LinkedList() 
list.head = Node(1) 
second = Node(2) 
third = Node(3) 

list.head.next = second; 
second.next = third; 





 Graphs 
 Graphs are non-linear data structures. Graphs have nodes (vertices) and edges. Nodes in graphs are connected by edges. Graphs can be used to represent real-world maps or road networks. 
 Python supports graph data structure as a library. A graph in Python can also be implemented using a list and dictionary. While implementing a graph using dictionary, keys of dictionary are nodes of graph and values is the list of nodes to which key node is connected through edges. 
 Graphs can also be implemented using matrix or list of lists. 
 Graph using dictionary can be represented as: 
 graph = {1: [2, 4], 
2: [1, 3, 4], 
3: [2], 
4: [1, 2]} 
 Graph using matrix or lists of lists can be represented as: 
 graph = [[0, 1, 0, 1], 
[1, 0, 1, 1], 
[0, 1, 0, 0], 
[1, 1, 0, 0]] 
 Here, 1 means there is an edge between nodes, and 0 means no edge exists. 
 Example 4.10 shows the declaration of Graphs using the dictionary library. 
 Example 4.10: Graphs example 
 1. from collections import defaultdict 
2. graph = defaultdict() 
3. 

4. 
5. 
6. 
7. graph 





 Hashmaps 
 Hashmaps are like dictionary data structures. Hashmaps store key-value data pairs. Hashmap in Python can be implemented using List. Hashmap is implemented as a list of linked lists. Each linked list of Hashmap consists of multiple nodes connected with pointers. It is easily extensible, to add new data, a new node is created and linked to the list. 
 Each node in Hashmap’s linked list has a key, a data value, and a pointer to the next node. Each node is added to the index calculated as a hash from the key of the node. Hashmap and its node are created using class in Python. Hashmap can store any type of data like integer, double, char, and so on. Index of linked list where data value is stored in Hashmap can be accessed directly through index or hash. Hashmap data structure in Python has a variable length, thus, data values can be added or removed easily from the Hashmap. 
 Hashmap can be represented as: 
 [Node1 -> Node2 -> Node3, 
Node4 - > Node5, 
Node6, 
Node7 -> Node8 -> Node9] 
 According to the preceding representation, hash of key of Node1 mapped to index 0, hash of key of Node6 mapped to index 2, and so on. 
 Example 4.11 shows the declaration of Hashmap and its nodes. 
 Example 4.11: Hashmap example 
 class Node: 
def __init__(self, key, value): 
self.key = key 

self.value = value 
self.next = None 
 class HashMap: 
def __init__(self): 
self.store = [None for _ in range(16)] 
def get(self, key): 
index = hash(key) & 15 
if self.store[index] is None: 
return None 
n = self.store[index] 
while True: 
if n.key == key: 
return n.value 
else: 
if n.next: 
n = n.next 
else: 
return None 
def put(self, key, value): 
nd = Node(key, value) 
index = hash(key) & 15 
n = self.store[index] 
if n is None: 
self.store[index] = nd 
else: 
if n.key == key: 
n.value = value 
else: 
while n.next: 

if n.key == key: 
n.value = value 
return 
else: 
n = n.next 
n.next = nd 





 Conclusion 
 This chapter gives brief details about built-in and user-defined data structures available in Python. Each data structure’s basic description along with declaration has been provided in this chapter. The next chapter will focus on list which is the most used built-in data structure. The next chapter will provide details on how to implement list and operations available in Python’s list library. 





 Points to remember 
  Data structure is a way to store a collection of data to help developers write effective and efficient algorithms. 
 Python has five built-in data structures, namely, list, dictionary, tuple, set, and arrays. 
 Python library provides a wide range of in-built methods on built-in data structures. 
 List data structure is a majorly used data structure in Python. 
 Python supports user-defined data structures. It allows full control to the user over a defined data structure. 
 Majorly used user-defined data structures in Python are: stack, queue, trees, linked lists, graphs, and hashmaps. 





 Multiple-choice questions 
  Select built-in data structures among the following: 
  Tuple 
 Linked List 
 Set 
 Array 
 Graphs in Python can be implemented using the following methods: 
  Dictionary 
 List 
 Matrix 
 Stack 
 Linked List Node consists of the following data: 
  Key 
 Value 
 Pointer to Next Node 
 All the Above 
 Which data structure stores data values of homogeneous data type: 
  List 
 Array 
 Linked List 
 Tree 
 Stack 





 Answers 
  a, c, d 
 a, b, c 
 b, c 
 b, c, d, e 





 Questions 
  _________________ and _________________ are advantages of data structures. 
 Arranging all data values in the data structure in a specific order is _________________ 
 _________________ is a majorly used data structure in Python. 
 Dictionary can be represented as _________________. 
 Stack data structure is based on _________________ Principle. 
 Predecessor node in Tree is called _________________ and Successor node is called _________________. 





 Answers 
  Efficiency, Reusability, and Abstraction 
 Sorting 
 List Data Structure 
 {“key1”:value1, “key2”:value2} 
 Last-In-First-Out (LIFO) 
 Parent, Child 





CHAPTER 5 
 List 





 Introduction 
 Chapter 4, Data Structure gives a brief introduction of data structures available in Python. As we discussed in previous chapters, there are two types of data structures in Python: built-in data structure and user-defined data structure. This chapter gives details about one of the built-in data structures called the list data structure. The list data structure is widely used in the Python programming language to solve various real-time problems like maintaining a list of directories, a list of books in a library, a list of students in a class, and so on. This chapter gives details on various operations or methods applicable to the list data structure to solve those real-time problems. We will be taking basic examples of number or string lists to know how operations can be applied to list data structures to obtain the desired result. 





 Structure 
 In this chapter, we will be discussing the following topics: 
  List introduction 
  List creation 
 List data access 
 List operations 
  Traversing 
 Insertion 
 Deletion 
 Searching 
 Sorting 
 Merging 
 Count 
 Reverse 
 Copy 
 Modifying list data 
 List multiplication 
 List length 
 List compare 
 Maximum and minimum 
 Insert data in sorted list 
 List help 





 Objectives 
 After studying this chapter, you will be able to understand what is list, list operations available in Python, and write Python programs using lists. 





 List introduction 
 The list data structure is a built-in data structure. It is used to store heterogeneous data types in one collection. It is mutable and thus has a variable length. Duplicate data can be stored in the list. Data in the list is stored in sequential or contiguous locations. List is used majorly by developers in Python language. As heterogeneous data can be stored in a single list, it helps to keep related data together. Hence, helps in keeping the code condense and simple. 
 The data value stored in the list can be accessed directly through an index. The index value starts from 0 to n-1, where n is the number of elements or data values in the list. In Python, data stored in the list can be accessed through a positive index as well as a negative index. The positive index goes from 0 to n-1 and data is accessed from first to the last element. The negative index goes from -1 to -n and data is accessed from last to the first element. 
 Figure 5.1 shows how the list is created and stored in computer memory. 
 
 Figure 5.1: List data structure 





 List creation 
 A list in Python can be created using square brackets with data in square brackets. To create an empty list, do not mention any data value in the square bracket while creating the list. To check the type of any variable in Python, type() can be used. Example 5.1 shows various lists. 
 Example 5.1: List creation example 
 1. empty_list = [] 
2. empty_list 
//Output 
[] 
3. int_list=[1,2,3,4] 
4. int_list 
//Output 
[1, 2, 3, 4] 
5. string_list = 
6. string_list 
//Output 
[‘abc’, ‘xyz’] 
7. mixed_list = 
8. mixed_list 
//Output 
[1, 2, ‘a’, ‘abc’, 1.0] 
9. 
//Output 
‘list’> 
10. type(int_list) 
//Output 
‘list’> 





 List data access 
 As described in the Introduction section, the data value in a list can be accessed directly through the index. In case the index mentioned while accessing the data element is not available, IndexError is thrown by Python mentioning out of of the list. 
 The range of data values can also be accessed in the list data structure. Range of values can be accessed using syntax list[x:y], the search will start including x till y, y is excluded. Accessing data using range is called If x value is not specified then starting index is considered as 0. If the value of y is not specified then the ending index is taken as the length of the list. If x and y are not specified then the full list will be printed. The negative index can also be specified while accessing list data using Range Index. Slicing can also help to print data in reverse order with list[x:y:-1] syntax. 
 Example 5.2 shows how to access a single data value in a list. As shown in the following example, the list has size 9, and thus accessing elements beyond that length gives an error. Example 5.2 also shows how we can access data values using a negative index. Table 5.1 shows the positive and negative indexes for each value in the list defined in example 
 


 Table 5.1: Positive and Negative Index for list defined in Example 5.2 
 Example 5.2: List data access example 
 
1. list = [1,2,3,4,5,6,7,8,9] 
2. list[1] 
//Output 
2 
3. list[5] 
//Output 
6 
4. list[9] 
//Output 
Traceback (most recent call last): 
File “”, line 1, in  
IndexError: list index out of range 
5. list[-1] 
//Output 
9 
6. list[-3] 
//Output 
7 
7. list[-10] 
//Output 
Traceback (most recent call last): 
File “”, line 1, in  
IndexError: list index out of range 
8. list[-9] 
//Output 
1 
9. list[2:5] 
//Output 
[3, 4, 5] 

10. list[-6:-3] 
//Output 
[4, 5, 6] 
11. list[:] 
//Output 
[1, 2, 3, 4, 5, 6, 7, 8, 9] 
12. list[:3] 
//Output 
[1, 2, 3] 
13. list[2:] 
//Output 
[3, 4, 5, 6, 7, 8, 9] 
14. list[-6:] 
//Output 
[4, 5, 6, 7, 8, 9] 
15. list[:-3] 
//Output 
[1, 2, 3, 4, 5, 6] 
16. list[5:10] 
//Output 
[6, 7, 8, 9] 
17. list[::-1] 
//Output 
[9, 8, 7, 6, 5, 4, 3, 2, 1] 
18. list[2:5:-1] 
//Output 
[] 
19. list[5:2:-1] 
//Output 

[6, 5, 4] 





 List operations 
 Developers can perform basic data structure operations mentioned in Chapter 4 (Data Structure) on the list. In addition to basic data structure operations, Python supports other in-built operations which can be performed on the list. The following sub-sections give details about each operation which can be performed on a list data structure in Python. 





 Traversing 
 Traversing a list means accessing each data value of the list one by one and performing an operation or printing each data value. Example 5.3 shows an example to traverse list using the for loop in Python. The following example declares a list and then prints each value in the list. 
 Example 5.3: Traversing list example 
 1. list = 
2. for i in 

4. 
 Figure 5.2 shows the output of the program printed in the python console. 
 
 Figure 5.2: Traversing list output for example 5.3 





 Insertion 
 The list is an expandable collection of data values, thus, new values can be inserted into the list easily. The following functions are used to insert data in the list: 
  append(data) inserts data at the last index of the list. 
 insert(index, data) inserts data at a particular index. 
 Example 5.4 shows the example of data insertion in the list. Any type of data can be added to the list as can be seen from the following example. 
 Example 5.4: List data insertion example 
 1. list = [1,2,3,4,5,6,7,8,9,10] 
2. list 
//Output 
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 
3. list.append(“a”) 
4. list 
//Output 
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ‘a’] 
5. list.insert(0,”b”) 
6. list 
//Output 
[‘b’, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ‘a’] 
7. list.insert(5,”c”) 
8. list 
//Output 
[‘b’, 1, 2, 3, 4, ‘c’, 5, 6, 7, 8, 9, 10, ‘a’] 





 Deletion 
 A value can be deleted from the list easily as list is mutable data structure. The following functions can be used to remove data values from the list: 
  remove(data) removes specific data in the list. If duplicates exist, it removes only the first occurrence of the data value. 
 pop(index) removes data at a particular index. If no index value is specified, it removes data present at the last index. 
 del list[index] deletes the element at a particular index. 
 del list deletes the full list. 
 clear() clears all data values from the list and empties the list. 
 Example 5.5 shows the example of the list data deletion operations. 
 Example 5.5: List data deletion example 
 1. int_list = [1,2,3,4,5,6,1,2,3,4] 
2. int_list 
//Output 
[1, 2, 3, 4, 5, 6, 1, 2, 3, 4] 
3. int_list.remove(1) 
4. int_list 
//Output 
[2, 3, 4, 5, 6, 1, 2, 3, 4] 
5. int_list.remove(5) 
6. int_list 
//Output 
[2, 3, 4, 6, 1, 2, 3, 4] 

7. int_list.pop(3) 
//Output 
6 
8. int_list 
//Output 
[2, 3, 4, 1, 2, 3, 4] 
9. int_list.pop() 
//Output 
4 
10. int_list 
//Output 
[2, 3, 4, 1, 2, 3] 
del int_list[3] 
int_list 
//Output 
[2, 3, 4, 2, 3] 
11. int_list.clear() 
12. int_list 
//Output 
[] 
13. del int_list 
14. int_list 
//Output 
Traceback (most recent call last): 
File “”, line 1, in  
NameError: name ‘int_list’ is not defined 





 Searching 
 To check if data value exists in the list or not, the “in” keyword can be used. To check the index of the data value in the list, a linear or binary search algorithm can be used. 
 index(data[,start[,end]]) returns the first index of data in list. start and end are optional arguments and limit the search to the subsequence of the list. In case data does not exist in the list, index(data) returns ValueError. 
 Example 5.6 shows the example of list data searching. Example 5.6 shows how data can be searched in the list using linear search. 
 Example 5.6: List data search example 
 1. list = 
2. if 6 in 
3.     is present in 
4. 
5. if 7 in 
is present in 
7. 
is not present in 
9. 
 Figure 5.3 shows how to search an element in a list. Example shows how to implement linear search on a list. As we studied, using binary search gives faster results but it does not work on an unsorted list. 
 

 Figure 5.3: Linear search implementation and output 
 10. for i in 
11.     if 
12.         
13. 
 Figure 5.4 shows the implementation of retrieving the index of a particular element in a list. Example shows how to get the index of an element if it’s present in the list. In case an element is not present in the list, it does not do or print anything. 
 
 Figure 5.4: Implementation to get index of an element in the list 
 We can directly get the index of a particular element present in the list using index() as shown in the following code snippet. In case the element is not present in the list, it throws as shown in the following examples: 
 
14. 
//Output 
0 
15. 
//Output 
1 
16. 
//Output 
5 
17. 
//Output 
2 
18. 
//Output 
6 
19. list 
//Output 
[1, 3, 4, 5, 6, 1, 2, 3, 4] 
20. 
21. list 
//Output 
[1, 3, 4, 5, 1, 2, 3, 4] 
22. 
//Output 
Traceback (most recent call last): 
File “”, line 1, in  
ValueError: 6 is not in list 
23. 
//Output 

4 
24. 
//Output 
0 
25. 
//Output 
4 
26. 
//Output 
Traceback (most recent call last): 
File “”, line 1, in  
ValueError: 1 is not in list 





 Sorting 
 Python has inbuilt methods for sorting list elements in ascending or descending order. The following functions can be used for list sorting: 
  sort(key, reverse) sorts the list in ascending order if the reverse is false. If the reverse is true, sorts the list in descending order. Key mentions the function based on which sorting needs to be done. 
 sorted(list, key, reverse) is similar to The only difference is that sort() modifies the original list and sorted() does not modify the original list. sorted() creates a new sorted list and returns the same. 
 Example 5.7 shows an example of list sorting operations. 
 Example 5.7: List sorting example 
 1. list = [1,2,3,4,5,6,1,2,3,4] 
2. list 
//Output 
[1, 2, 3, 4, 5, 6, 1, 2, 3, 4] 
3. list.sort() 
4. list 
//Output 
[1, 1, 2, 2, 3, 3, 4, 4, 5, 6] 
5. list.sort(reverse=True) 
6. list 
//Output 
[6, 5, 4, 4, 3, 3, 2, 2, 1, 1] 
7. list = [1,2,3,4,5,6,1,2,3,4] 
8. list 
//Output 

[1, 2, 3, 4, 5, 6, 1, 2, 3, 4] 
9. sorted_list = sorted(list) 
10. sorted_list 
//Output 
[1, 1, 2, 2, 3, 3, 4, 4, 5, 6] 
11. list 
//Output 
[1, 2, 3, 4, 5, 6, 1, 2, 3, 4] 
12. sorted_list = sorted(list, reverse=True) 
13. sorted_list 
//Output 
[6, 5, 4, 4, 3, 3, 2, 2, 1, 1] 
14. list 
//Output 
[1, 2, 3, 4, 5, 6, 1, 2, 3, 4] 
15. list = [1,2,3,4,5,6,1,2,3,4] 
16. string_list = [“c”,”a”,”b”,”xy”,”ab”,”dfg”,”abc”] 
17. string_list 
//Output 
[‘c’, ‘a’, ‘b’, ‘xy’, ‘ab’, ‘dfg’, ‘abc’] 
18. string_list.sort() 
19. string_list 
//Output 
[‘a’, ‘ab’, ‘abc’, ‘b’, ‘c’, ‘dfg’, ‘xy’] 
20. string_list.sort(key=len) 
21. string_list 
//Output 
[‘a’, ‘b’, ‘c’, ‘ab’, ‘xy’, ‘abc’, ‘dfg’] 
22. mixed_list = [1,2,”a”,”b”,”ab”,”abc”,”def”] 

23. mixed_list 
//Output 
[1, 2, ‘a’, ‘b’, ‘ab’, ‘abc’, ‘def’] 
24. mixed_list.sort() 
//Output 
Traceback (most recent call last): 
File “”, line 1, in  
TypeError: ‘<’ not supported between instances of ‘str’ and ‘int’ 
25. mixed_list.sort(key=len) 
//Output 
Traceback (most recent call last): 
File “”, line 1, in  
TypeError: object of type ‘int’ has no len() 





 Merging 
 Python has inbuilt methods for merging two lists of data into a single list. The following functions can be used for list merging: 
  + joins two lists together and creates a new list. 
 list1.append(list) appends list to the end of list1. 
 list1.extend(list) add the list to the end of list1. extend() can also be used to add other data types or data structures at the end of list1. It can be used as 
 Example 5.8 shows an example of list merging operations. 
 Example 5.8: List merging example 
 1. list1 = [1,2,3,4] 
2. list2 = [2,3,4,5] 
3. list3 = list1+list2 
4. list3 
//Output 
[1, 2, 3, 4, 2, 3, 4, 5] 
5. list4 = list2+list1 
6. list4 
//Output 
[2, 3, 4, 5, 1, 2, 3, 4] 
7. list1.append(list2) 
8. list1 
//Output 
[1, 2, 3, 4, [2, 3, 4, 5]] 
9. list1 = [1,2,3,4] 
10. list2 = [2,3,4,5] 
11. list1.extend(list2) 
12. list1 

//Output 
[1, 2, 3, 4, 2, 3, 4, 5] 





 Count 
 Python has an inbuilt method for counting the number of data values in a list. Count(data) counts the number of data in the list. 
 Example 5.9 shows an example of data count in the list. 
 Example 5.9: Count example 
 1. list = [1,2,3,4,5,1,2,3,1,2,3,4,5] 
2. list 
//Output 
[1, 2, 3, 4, 5, 1, 2, 3, 1, 2, 3, 4, 5] 
3. list.count(1) 
//Output 
3 
4. list.count(4) 
//Output 
2 
5. list.count(6) 
//Output 
0 





 Reverse 
 Python has an inbuilt method for reversing the order of data values in a list. reverse() reverses the list. 
 Example 5.10 shows an example of reversing the list. 
 Example 5.10: Reverse list example 
 1. list = [1,2,3,4,5,1,2,3,1,2,3,4,5] 
2. list 
//Output 
[1, 2, 3, 4, 5, 1, 2, 3, 1, 2, 3, 4, 5] 
3. list.reverse() 
4. list 
//Output 
[5, 4, 3, 2, 1, 3, 2, 1, 5, 4, 3, 2, 1] 
5. list = [“a”,1,”b”,2] 
6. list.reverse() 
7. list 
//Output 
[2, ‘b’, 1, ‘a’] 





 Copy 
 Python has an inbuilt method for copying a list into another list. copy() creates a shallow copy. It creates a new list object and copies all data values from the source list to a new list. Any modification on the new list does not affect the source list. Thus, both lists are independent objects. 
 Example 5.11 shows an example of copying the list. 
 Example 5.11: Copy list example 
 1. list1=[1,2] 
2. list1 
//Output 
[1, 2] 
1. copy_list = list1.copy() 
4. copy_list 
//Output 
[1, 2] 
5. copy_list.append(3) 
6. copy_list 
//Output 
[1, 2, 3] 
7. list1 
//Output 
[1, 2] 





 Modifying list data 
 As we know, list data can be accessed through an index in Python. Modifying list data at a particular index is very simple in Python. 
 Example 5.12 shows an example of modifying the data in the list. As can be seen in the following example, we cannot add a new element to the list by accessing the index. 
 Example 5.12: Modify list data example 
 1. 
2. list 
//Output 
[2, ‘b’, 1, ‘a’] 
1. = “c” 
4. list 
//Output 
[2, ‘b’, ‘c’, ‘a’] 
1. = 4 
//Output 
Traceback (most recent call last): 
File “”, line 1, in  
IndexError: list assignment index out of range 
1. = 4 
7. list 
//Output 
[2, ‘b’, ‘c’, 4] 
1. = 0 
9. list 
//Output 
[2, ‘b’, ‘c’, 0] 





 List multiplication 
 In Python, a list can be multiplied by an integer. A new list object is created with repeated data of the original list. The original list is not modified. 
 Example 5.13 shows an example of list multiplication. 
 Example 5.13: List multiplication example 
 1. 
2. list 
//Output 
[2, ‘b’, ‘c’, 0] 
3. 
//Output 
[2, ‘b’, ‘c’, 0, 2, ‘b’, ‘c’, 0] 
4. list 
//Output 
[2, ‘b’, ‘c’, 0] 
5. 
//Output 
[2, ‘b’, ‘c’, 0, 2, ‘b’, ‘c’, 0, 2, ‘b’, ‘c’, 0, 2, ‘b’, ‘c’, 0] 
6. 
//Output 
[2, ‘b’, ‘c’, 0, 2, ‘b’, ‘c’, 0, 2, ‘b’, ‘c’, 0] 





 List length 
 In Python, len(list) returns the length of the list. Example 5.14 shows an example of the same. len(list) can also be used to calculate the length of the sub-list as shown in the following example: 
 Example 5.14: List length example 
 1. 
2. list 
//Output 
[2, ‘b’, ‘c’, 0] 
3. 
//Output 
4 
4. list = 
5. 
//Output 
9 
6. 
//Output 
3 





 List compare 
 In Python, comparison operators compare two lists. The following operators are used to compare two lists: 
  == It returns True if both lists are equal, otherwise it returns False. 
 > It returns True if list1 is greater than list2. It returns False if list1 is less than list2. 
 < It returns False if list1 is greater than list2. It returns True if list1 is less than list2. 
 Example 5.15 shows an example of the list comparison. As shown in the following example, comparison operators start comparing both lists element-wise. List which has greater data in the initial index is considered to be greater list. Comparison operators cannot compare integer and string elements. If list1 has an integer element at a particular index and list2 has a string element at that index, Python throws an error. 
 Example 5.15: List comparison example 
1. int_list=[1,2,3] 
2. number_list=[1,2,3.5,4.6] 
3. int_list==number_list 
//Output 
False 
4. int_list==int_list 
//Output 
True 
5. int_list1=[1,2,3] 
6. int_list==int_list1 
//Output 
True 

7. int_list1=[1,3] 
8. int_list==int_list1 
//Output 
False 
9. int_list>int_list1 
//Output 
False 
10. int_list
//Output 
True 
11. int_list1=[1,1,3] 
12. int_list==int_list1 
//Output 
False 
13. int_list>int_list1 
//Output 
True 
14. int_list
//Output 
False 
15. mixed_list = [1,2,’a’,”test”] 
16. int_list==mixed_list 
//Output 
False 
17. int_list
//Output 
Traceback (most recent call last): 
File “”, line 1, in  
TypeError: ‘<’ not supported between instances of ‘int’ and ‘str’ 

18. mixed_list = [1,2,3,’a’,”test”] 
19. int_list>mixed_list 
//Output 
False 
20. int_list
//Output 
True 





 Maximum and minimum 
 In Python, max(list) returns the maximum element of the list and min(list) returns the minimum element of the list. Example 5.16 shows an example of getting maximum and minimum data values. 
 Example 5.16: Maximum and minimum example 
 1. int_list = 
2. number_list = 
3. mixed_list = 
4. str_list = 
5. 
//Output 
3 
6. 
//Output 
1 
7. 
//Output 
4.6 
8. 
//Output 
1 
9. 
//Output 
Traceback (most recent call last): 
File “”, line 1, in  
TypeError: ‘>’ not supported between instances of ‘str’ and ‘int’ 
10. 
//Output 

Traceback (most recent call last): 
File “”, line 1, in  
TypeError: ‘>’ not supported between instances of ‘str’ and ‘int’ 
11. 
//Output 
‘abc’ 
12. 
//Output 
‘a’ 





 Insert data in sorted list 
 The bisect module in Python defines the function to insert data in the sorted list such that list remains sorted after insertion. Example 5.17 shows an example of inserting data in the sorted list such that the list remains sorted. insort(list, data) inserts data in the list. bisect(list, data) returns the index at which data will be inserted to keep the list sorted. bisect(list, data) does not add data to the list. 
 Example 5.17: Insert data in sorted list example 
 1. int_list = [5,8,3] 
1. int_list.sort() 
1. import bisect 
4. int_list 
//Output 
[3, 5, 8] 
5. bisect.insort(int_list,4) 
6. int_list 
//Output 
[3, 4, 5, 8] 
7. bisect.bisect(int_list,7) 
//Output 
3 
8. int_list 
//Output 
[3, 4, 5, 8] 
9. bisect.insort(int_list,7) 
10. int_list 
//Output 
[3, 4, 5, 7, 8] 





 Help 
 Python has help() to get operations available on a particular object. Example 5.19 shows an example of 
 Figure 5.6 and 5.7 shows the output of the help command for the list. As the list of operations available is long thus, they will not fit in one single console screen. To see more operations, press the spacebar key of your keyboard. Once the full list of operations is displayed after pressing the spacebar key, you can view all operations by scrolling up on the console. 
 Example 5.19: Help example 
 1. 
 

 Figure 5.5: First set of list of operations supported by list. Frequently used operations have been described in this chapter in detail 
 

 Figure 5.6: Second set of list of operations supported by list 
 

 Figure 5.7: Last set of list of operations supported by list 





 Conclusion 
 This chapter gives details about the list data structure and its operations in Python. Python library has a vast list of operations for the list which helps the user to write programs efficiently and effectively. The list data structure is widely used to solve real-time problems in Python. This chapter covers the operations which are applied on the list data structure to solve the real-time problem like designing a library system, and so on. In this chapter, we also discussed how to create and access the list elements which is the building block of any program. 
 The next chapter will focus on another built-in data structure available in Python known as Dictionary data structure. Dictionary data structure is used to store key-value pair data. The next chapter will provide details on how to implement Dictionary data structure and operations available in Python’s library which can be applied on Dictionary to get desired output. 





 Points to remember 
  The list data structure is a way to store a heterogeneous collection of data to help developers write effective and efficient algorithms. 
 List data structure stores values in sequential or contiguous locations. 
 List is a mutable data structure, that is, the value stored in the list can be modified without creating a new list object. 
 List can be created using square brackets like [1, 2, 3]. 
 List data structure is a majorly used data structure in Python. 
 Python supports a vast majority of operations to access list data structure. 
 Single list value can be accessed using the index. 
 Multiple list values can be accessed using a slicing index. 





 Multiple-choice questions 
  What is the output of the following program: 
 list = [3, 4, 5, 8] 
list [2:3] = [1, 9] 
print(list) 
  [3, 4, 1, 9] 
 [3, 4, 1, 9, 8] 
 [3, 4, 1, 8] 
 [3, 1, 9, 8] 
 What is the output of the following program: 
 list = [3, 4, 5, 8] 
print(list[-1]) 
print(list[-4]) 
  3 
8 
 4 
8 
 8 
3 
 8 
4 
 What is the output of the following program: 
 list = [3, 4, 5, 8] 
list.pop() 
print(list) 
list.pop(1) 
print(list) 
  [4, 5, 8] 
[4, 8] 
 [3, 4, 5] 

[3, 5] 
 What is the output of the following program: 
 list = [3, 4, 5, 8] 
list[5] = 9 
  [3, 4, 5, 8, 9] 
 [3, 4, 5, 8, None, 9] 
 IndexError 
 What is the output of the following program: 
 list = [3, 4, 5, 8] 
print(list[-6:-1]) 
  [3, 4, 5, 8] 
 [4, 5, 8] 
 IndexError 
 [3, 4, 5] 
 What is the output of the following program: 
 list = [‘hello’,’world’,’!’] 
print(‘!’.join(list)) 
  [‘!’, ‘hello’, ‘world’, ‘!’] 
 ‘!helloworld!’ 
 ‘hello!world!!’ 





 Answers 
  b 
 c 
 b 
 c 
 d 
 c 





 Questions 
  List data structure can be modified, thus it is _________________. 
 List data structure stores data in _________________location. 
 _________________is used to get the length of a list. 
 Copy of a list can be created using _________________. Any modification on newly created list _________________ the old list. 
 bisect.insert(value) is used to _________________. 
 List can be deleted by using _________________statement. 
 Given two lists with integer values, write a function to find all pairs whose sum is x. 
 Example: 
 list1=[1, 2, 3, 4, 5] 
 list2=[5, 4, 3, 2, 1] 
 Find all pairs whose sum is 6. 
 Output: 
 [1, 5] 
 [2, 4] 
 [3, 3] 
 [4, 2] 
 [5, 1] 
 Write a function to reverse a list in groups of a given size. 
 Example: 
 list=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 
 Reverse the list in groups of size 3 
 Output: 
 
[3, 2, 1, 6, 5, 4, 9, 8, 7, 10] 
 Given a list, write a function to print next greater element for every element. Print None if no greater element is present 
 Example: 
 list=[2, 1, 20, 15, 12, 30, 22] 
 Output: 
 2 —> 20 
1 —> 20 
20 —> 30 
15 —> 30 
12 —> 30 
30 —> None 
22 —> None 





 Answers 
  mutable 
 sequential or contiguous 
 len() 
 does not affect 
 insert value in sorted list 
 del list 
 def findPairs(list1, list2, sum): 
for x in list1: 
for y in list2: 
if (x + y == sum): 
print([x, y]) 
 def reverseList(list, size): 
n = len(list) 
start = 0 
while (start
end = start + size 
tempList = list[start:end] 
tempList.reverse() 
list[start:end] = tempList 
start = start + size 
print(list) 
 def printNextGreater(list): 
n = len(list) 
for i in range(0, n): 
next = None 
for j in range(i+1, n): 
if list[i] < list[j]: 
next = list[j] 

break 
print(str(list[i]) + “ --> “ + str(next)) 





CHAPTER 6 
 Dictionary 





 Introduction 
 As described in Chapter 4, Data Structure there are various built-in data structures available in Python. Chapter 5, List gives detail working of list data structure which is one of the built-in data structures in Python. This chapter gives a detailed description of another built-in data structure called This chapter gives details of various operations supported by the dictionary data structure in Python. We will be taking basic examples to know how operations can be applied to the dictionary data structure. 





 Structure 
 In this chapter, we will be discussing the following topics: 
  Introduction to dictionary 
  Dictionary creation 
 Dictionary data access 
 Dictionary operations 
  Traversing 
 Insertion 
 Deletion 
 Searching 
 Sorting 
 Merging 
 Count 
 Reverse 
 Copy 
 Modifying dictionary data 
 Dictionary multiplication 
 Dictionary length 
 Dictionary compare 
 Maximum and minimum 
 and 
 str() 
 Help 





 Objectives 
 This chapter will help to understand the details of dictionary data structure in Python. After completing this chapter, you will be able to know which operations are supported by Python for the dictionary data structure. You will be able to write Python programs that use the dictionary data structure. 





 Introduction to dictionary 
 Dictionary data structure is a built-in data structure. Following are the properties of Dictionary data structure: 
  Stores the key-value pair. 
 Stores heterogeneous data types in one collection. 
 Is mutable and thus has a variable length. 
 Is an unordered data structure, it does not keep the order in which data is added to the dictionary. 
 Dictionary has a unique set of key elements. Duplicate value data can be stored in the dictionary with each value having a different key. The data value stored in a dictionary can be accessed directly through a unique key. 
 Data in the dictionary is not stored in sequential or contiguous locations. Hash code is computed for each key stored in the dictionary using hash() built-in function. The calculated hash code is used to calculate the location of the value. This leads to an unordered nature of dictionary data structures. All keys might not generate a unique hash value; thus, the dictionary implements open addressing to resolve collision issues. In open addressing, collision is resolved by probing. Probing means searching for the next available free memory slot. The simplest probing mechanism used in Open addressing is linear probing, where the next free slot is checked linearly. Figure 6.1 shows an example of linear probing. 
 

 Figure 6.1: Linear Probing Open addressing 
 Dictionary in Python resolves conflict using random probing. In random probing, the next free memory slot is picked randomly from available memory slots. Figure 6.2 shows how a dictionary is created and stored in computer memory. It also demonstrates how dictionary implementation resolves collision while storing key-value pair in memory with existing hash value location. 
 

 Figure 6.2: Dictionary data structure 





 Dictionary creation 
 Dictionary in Python can be created using curly brackets with key-value pairs in curly brackets. Key-value pair is separated by colon ( operator. Key and value can have any data type. Dictionary can save heterogeneous data. To create an empty dictionary, do not mention any data value in the curly bracket while creating the dictionary. To check the type of any variable in Python, type() can be used. Example 6.1 shows examples of creating different dictionaries. 
 Example 6.1: Dictionary creation example 
 The following example also shows that mentioning the same key twice, will skip all values except the last value: 
 1. empty_dict = {} 
2. empty_dict 
//Output 
{} 
3. dict = 
4. dict 
//Output 
{1: ‘a’, 2: ‘b’, 3: ‘c’} 
5. string_key_dict = 
6. string_key_dict 
//Output 
{‘a’: 1, ‘b’: 2, ‘c’: 3} 
7. int_key_value_dict = {1:٢,٢:٣,٣:٤} 
8. int_key_value_dict 
//Output 
{1: 2, 2: 3, 3: 4} 
9. dict = name»: 

10. dict 
//Output 
{‘first name’: ‘Sonam’, ‘last name’: ‘Chawla’} 
11. heterogeneous_dict = 
12. heterogeneous_dict 
//Output 
{‘name’: ‘Sonam’, ‘age’: 30, 3: ‘test’} 
13. int_key_value_dict = {1:٢,٢:٣,٣:٤,٢:٥} 
14. int_key_value_dict 
//Output 
{1: 2, 2: 5, 3: 4} 
 Dictionary can also be created using key tuple using from keys(keys, [value]) as shown in the following example. Value is optional and is common for all keys. The value will be None if skipped. 
 15. x = (1,2) 
16. test = dict.fromkeys(x) 
17. test 
//Output 
{1: None, 2: None} 
18. test1 = dict.fromkeys(x,1) 
19. test1 
//Output 
{1: 1, 2: 1} 





 Dictionary data access 
 As described in the Introduction section, value in the dictionary can be accessed through a unique key. In case the key mentioned while accessing the data element is not available, KeyError is thrown by Python indicating the key is not present in the dictionary. Keys in the dictionary should be unique as the dictionary allows to access data value through a key. Keeping the same key for two different values might lead to ambiguity as to which data is being referred to. 
 Example 6.2 shows how data values can be accessed in a dictionary. Dictionary values can be accessed directly b mentioning the key in square brackets or using get() suppresses the KeyError thrown by Python. If the developer tries to access a key in the dictionary, which is not available, get() will return nothing as shown in example 
 Example 6.2: Dictionary data access example 
 1. dict = {1:1,٢:٢,٣:٣} 
2. dict[1] 
//Output 
1 
3. dict[3] 
//Output 
3 
4. dict = 
5. dict 
//Output 
{‘a’: 1, ‘b’: 2, ‘c’: 3, ‘d’: 4} 
6. 
//Output 

1 
7. 
//Output 
3 
8. 
//Output 
Traceback (most recent call last): 
File “”, line 1, in  
KeyError: ‘e’ 
9. 
//Output 
2 
10. 
 Dictionary values can also be accessed using setdefault(key, [defaultvalue]) as shown in the following example. In case key does not exist in dictionary, defaultvalue is returned. defaultvalue is optional and None is return in case it is skipped. 
 11. test = 
test 
//Output 
12. {1: ‘a’, 2: ‘b’, 3: ‘c’, 4: ‘d’} 
13. x = 
14. x 
//Output 
‘a’ 
15. x = 
16. x 
//Output 
‘e’ 





 Dictionary operations 
 Developers can perform basic data structure operations mentioned in Chapter 4 (Data Strucure) on Dictionary. In addition to basic data structure operations, Python supports other in-built operations which can be performed on a dictionary. The following sub-sections give details about each operation that can be performed on dictionary data structure in Python. 





 Traversing 
 Traversing a dictionary means accessing each data value of the dictionary one by one and performing an operation or printing each data value. Example 6.3 shows an example of traversing a dictionary using the for loop in Python. The following example shows different methods to access keys and values of the dictionary in a for loop: 
 Example 6.3: Traversing dictionary example 
 1. dict = 
2. dict 
3. for x in dict: 
4.     
5. 
 
 Figure 6.3: Dictionary key traversing 
 1. for x in dict: 
2.     
3. 
 
Figure 6.3 shows the program to traverse the keys present in the dictionary and prints each key of the dictionary. 
 
 Figure 6.4: Dictionary key traversing 
 1. for x in dict.values(): 
2.     
3. 
 Figure 6.4 shows the program to traverse the keys present in the dictionary and prints each value corresponding to the key of the dictionary. 
 
 
Figure 6.5: Dictionary value traversing 
 1. for x,y in dict.items(): 

3. 
 Figure 6.5 shows the program to traverse the values present in the dictionary and prints each value present in the dictionary. 
 
 Figure 6.6: Dictionary key-value pair traversing 
 1. for x in dict.keys(): 
2.     
3. 
 Figure 6.6 shows the program to traverse the key-value pairs present in the dictionary and prints each key-value pair of the dictionary. 
 

 Figure 6.7: Dictionary keys traversing 
 Figure 6.7 shows the program to traverse the keys present in the dictionary and prints each key of the dictionary. 





 Insertion 
 Dictionary is an expandable collection of key-value pairs; thus, new values can be inserted into the dictionary easily. 
 Example 6.4 shows an example of key-value pair insertion in a dictionary. Any type of data can be added to the dictionary as can be seen from the following example: 
 Example 6.4: Dictionary key-value pair insertion example 
 1. dict = {“a”:1,”b”:2,”c”:3,”d”:4} 
2. dict 
//Output 
{‘a’: 1, ‘c’: 3, ‘b’: 2, ‘d’: 4} 
3. dict[‘e’]=5 
4. dict 
//Output 
{‘a’: 1, ‘c’: 3, ‘b’: 2, ‘e’: 5, ‘d’: 4} 
5. dict[1]=’a’ 
6. dict 
//Output 
{‘a’: 1, 1: ‘a’, ‘c’: 3, ‘b’: 2, ‘e’: 5, ‘d’: 4} 
7. dict[“name”]=”test” 
8. dict 
//Output 
{‘a’: 1, 1: ‘a’, ‘c’: 3, ‘b’: 2, ‘e’: 5, ‘d’: 4, ‘name’: ‘test’} 





 Deletion 
 Dictionary is an expandable collection of key-value pairs; thus, a key-value pair can be deleted from the dictionary easily. The following functions can be used to remove data from the dictionary: 
  pop(key) removes the key-value pair corresponding to the provided key. Prints the value deleted from the dictionary. If the key does not exist in the dictionary, Python throws KeyError. 
 popitem() removes the last key-value pair of the dictionary. If the dictionary is empty, it throws KeyError mentioning that the dictionary is empty. 
 del dict[key] removes the key-value pair corresponding to the provided key. If the key does not exist in the dictionary, Python throws KeyError. 
 del dict deletes the full dictionary. If the dictionary does not exist, it throws NameError. 
 clear() clears all key-value pairs from the dictionary and empties the dictionary. 
 Example 6.5 shows an example of the dictionary data deletion operations. 
 Example 6.5: Dictionary data deletion example 
 1. test = 
2. test 
//Output 
{‘a’: 1, ‘b’: 2, ‘e’: 5, ‘c’: 3, ‘d’: 4} 
3. 
//Output 
2 

4. test 
//Output 
{‘a’: 1, ‘e’: 5, ‘c’: 3, ‘d’: 4} 
5. 
//Output 
Traceback (most recent call last): 
File “”, line 1, in  
KeyError: ‘b’ 
6. test.popitem() 
//Output 
(‘d’, 4) 
7. test 
//Output 
{‘a’: 1, ‘e’: 5, ‘c’: 3} 
8. test.popitem() 
//Output 
(‘c’, 3) 
9. test 
//Output 
{‘a’: 1, ‘e’: 5} 
10. del 
11. test 
//Output 
{‘e’: 5} 
12. del 
//Output 
Traceback (most recent call last): 
File “”, line 1, in  
KeyError: ‘a’ 

13. test.clear() 
14. test 
//Output 
{} 
15. test.popitem() 
//Output 
Traceback (most recent call last): 
File “”, line 1, in  
KeyError: ‘popitem(): dictionary is empty’ 
16. del test 
17. test 
//Output 
Traceback (most recent call last): 
File “”, line 1, in  
NameError: name ‘test’ is not defined 
18. del test 
//Output 
Traceback (most recent call last): 
File “”, line 1, in  
NameError: name ‘test’ is not defined 





 Searching 
 To check if data value exists in the dictionary or not, the keyword can be used. To check the index of the data value in the dictionary, the linear search algorithm can be used. 
 Example 6.6 shows an example of dictionary data searching. Example 6.6 shows how data can be searched in a dictionary using linear search. 
 Example 6.6: Dictionary data search example 
 1. test = 
2. test 
//Output 
{1: ‘a’, 2: ‘b’, 3: ‘c’} 
3. ‘a’ in test 
//Output 
False 
4. 1 in test 
//Output 
True 
5. 1 in test.keys() 
//Output 
True 
 To check if a key exists in the dictionary, the keyword can be directly used with the dictionary name or dictionary.keys() as shown in the preceding example. 
 6. ‘a’ in test.values() 
//Output 
True 
 To check if the value exists in the dictionary, the keyword can be used with 
 
7. in test.items() 
//Output 
True 
 To check for key-value pair, the keyword can be used with 
 8. in test 
//Output 
False 
9. for x in test.values(): 
10.     if x == ‹b›: 
11.         print(«Index of ‹b› is», 1) 
12.     else: 
13.         i=i+1 
 
 Figure 6.8: Dictionary value linear search 
 Figure 6.8 shows the linear search program to search the value in the dictionary. Similarly, keys and items can be searched linearly in the dictionary using test.keys() and 





 Sorting 
 Python has inbuilt methods for sorting dictionary elements in ascending or descending order. The following function can be used for dictionary sorting: 
  sorted(dictionary.data, reverse) sorts dictionary in ascending order if the reverse is False. If the reverse is True, it sorts the dictionary in descending order. Data mentions the data based on which sorting needs to be done. Data can be keys, items, or values. 
 Example 6.7 shows dictionary sorting examples based on keys, items, and values. 
 Example 6.7: Dictionary sorting example 
 1. test = 
2. test 
//Output 
{1: ‘a’, 4: ‘b’, 7: ‘c’, 2: ‘d’, 8: ‘e’, 3: ‘f’, 5: ‘g’} 
3. 
//Output 
[1, 2, 3, 4, 5, 7, 8] 
4. sorted(test.keys()) 
//Output 
[1, 2, 3, 4, 5, 7, 8] 
5. sorted(test.items()) 
//Output 
[(1, ‘a’), (2, ‘d’), (3, ‘f’), (4, ‘b’), (5, ‘g’), (7, ‘c’), (8, ‘e’)] 
 As can be seen in the preceding example, sorting on items will sort data based on the key of the dictionary. 
 6. sorted(test.values()) 
//Output 

[‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’, ‘g’] 
7. sorted(test.values(), 
//Output 
[‘g’, ‘f’, ‘e’, ‘d’, ‘c’, ‘b’, ‘a’] 
8. sorted(test.items(), 
//Output 
[(8, ‘e’), (7, ‘c’), (5, ‘g’), (4, ‘b’), (3, ‘f’), (2, ‘d’), (1, ‘a’)] 





 Merging 
 Python has inbuilt methods for merging the data of two dictionaries in a single dictionary. The following functions can be used for dictionary merging: 
  |joins two dictionaries together and creates a new dictionary. 
 {**dict1, **dict2} joins two dictionaries together and creates a new dictionary. 
 dict1.update(dict2) adds dict2 to the end of dict1. 
 Example 6.8 shows an example of dictionary merging operations. 
 Example 6.8: Dictionary merging example 
 1. test1 = 
2. test2 = 
3. test1 
//Output 
{1: ‘a’, 4: ‘b’, 7: ‘c’} 
4. test2 
//Output 
{2: ‘d’, 3: ‘e’, 5: ‘f’} 
5. test1|test2 
//Output 
{1: ‘a’, 4: ‘b’, 7: ‘c’, 2: ‘d’, 3: ‘e’, 5: ‘f’} 
6. test1 
//Output 
{1: ‘a’, 4: ‘b’, 7: ‘c’} 
7. test2 
//Output 
{2: ‘d’, 3: ‘e’, 5: ‘f’} 

8. {**test1,**test2} 
//Output 
{1: ‘a’, 4: ‘b’, 7: ‘c’, 2: ‘d’, 3: ‘e’, 5: ‘f’} 
9. test1 
//Output 
{1: ‘a’, 4: ‘b’, 7: ‘c’} 
10. test2 
//Output 
{2: ‘d’, 3: ‘e’, 5: ‘f’} 
11. test1.update(test2) 
12. test1 
//Output 
{1: ‘a’, 4: ‘b’, 7: ‘c’, 2: ‘d’, 3: ‘e’, 5: ‘f’} 
13. test2 
//Output 
{2: ‘d’, 3: ‘e’, 5: ‘f’} 





 Count 
 Python does not have an inbuilt method for counting the number of data values in a dictionary. To count the number of occurrences of a particular value in the dictionary, linear search is performed.. 
 Example 6.9 shows an example of value count in a dictionary. 
 Example 6.9: Dictionary count example 
 1. 
2. test 
//Output 
{1: ‘a’, 2: ‘b’, 3: ‘c’, 4: ‘a’, 5: ‘b’, 6: ‘a’} 
3. count=0 
4. for x in test.values(): 
x == 
6.          count=count+1 
7. 
8. count 
//Output 
3 
9. for x in test.values()) 
//Output 
2 





 Reverse 
 To reverse the order of the dictionary, the list of items is created and the new list is reversed. Python has an inbuilt method for reversing the order of data values. reversed() reverses the list. 
 Example 6.10 shows an example of reversing the dictionary. 
 Example 6.10: Reverse dictionary example 
 1. 
2. test 
//Output 
{1: ‘a’, 2: ‘b’, 3: ‘c’, 4: ‘d’} 
3. output = reversed(list(test.items())) 
4. output 
//Output 
object at 0x000001770E360F70> 
5. test 
//Output 
{1: ‘a’, 2: ‘b’, 3: ‘c’, 4: ‘d’} 
6. from collections import OrderedDict 
7. output = OrderedDict(reversed(list(test.items()))) 
8. output 
//Output 
OrderedDict([(4, ‘d’), (3, ‘c’), (2, ‘b’), (1, ‘a’)]) 
9. test 
//Output 
{1: ‘a’, 2: ‘b’, 3: ‘c’, 4: ‘d’} 





 Copy 
 Python has an inbuilt method for copying a dictionary into another dictionary. copy() creates a shallow copy. It creates a new dictionary object and copies all data values from the source dictionary to a new dictionary. Any modification to the new dictionary does not affect the source dictionary. Thus, both dictionaries are independent objects. 
 Example 6.11 shows an example of copying the dictionary. 
 Example 6.11: Copy dictionary example 
 1. 
2. test 
//Output 
{1: ‘a’, 2: ‘b’, 3: ‘c’, 4: ‘d’} 
3. newDict = test.copy() 
4. newDict 
//Output 
{1: ‘a’, 2: ‘b’, 3: ‘c’, 4: ‘d’} 
5. newDict[4] = ‘e’ 
6. newDict 
//Output 
{1: ‘a’, 2: ‘b’, 3: ‘c’, 4: ‘e’} 
7. test 
//Output 
{1: ‘a’, 2: ‘b’, 3: ‘c’, 4: ‘d’} 
8. = ‘e’ 
9. test 
//Output 
{1: ‘a’, 2: ‘b’, 3: ‘e’, 4: ‘d’} 
10. newDict 

//Output 
{1: ‘a’, 2: ‘b’, 3: ‘c’, 4: ‘e’} 





 Dictionary multiplication 
 In Python, a dictionary can be multiplied only using the for loop on dictionary values. A new dictionary object is created. The original dictionary is not modified. There is no function or operator available in Python for dictionary multiplication. Dictionary multiplication can be achieved using shorthand as shown in Example 6.12. Shorthand is applicable only if both dictionaries have the same keys. In case both dictionaries have different keys, dictionary multiplication can be achieved only through two for loops. 
 Example 6.12: Dictionary multiplication example 
 1. test = {‘a’: ‘b’: ‘c’: ‘d’: 
2. test 
//Output 
{‘a’: 1, ‘b’: 2, ‘c’: 3, ‘d’: 4} 
1. test1 = test.copy() 
4. test1 
//Output 
{‘a’: 1, ‘b’: 2, ‘c’: 3, ‘d’: 4} 
1. {test_value * test1[key] for key,test_value in test.items()} 
//Output 
{16, 1, 4, 9} 
6. {key: test[key] * test1.get(key,0) for key in test1.keys()} 
//Output 
{‘a’: 1, ‘b’: 4, ‘c’: 9, ‘d’: 16} 
 The following example shows dictionary multiplication with an integer: 
 1. {test[key]*2 for key in test.keys()} 
//Output 

{8, 2, 4, 6} 





 Dictionary length 
 In Python, len(dictionary) returns the length of the dictionary. Example 6.13 shows an example of the same. 
 Example 6.13: Dictionary length example 
 1. 
2. test 
//Output 
{1: ‘a’, 2: ‘b’, 3: ‘c’, 4: ‘d’} 
3. 
//Output 
4 





 Dictionary compare 
 In Python, no built-in method exists to compare two dictionaries. Equality (==) operator can be used to check if keys, values, or items are equal or not. 
 Example 6.14 shows an example of the dictionary comparison. 
 Example 6.14: Dictionary comparison example 
 1. test = 
2. test1 = 
3. test2 = 
4. test3 = 
5. test 
//Output 
{1: ‘a’, 2: ‘b’, 3: ‘c’, 4: ‘d’} 
6. test1 
//Output 
{5: ‘e’, 6: ‘f’, 7: ‘g’, 8: ‘h’} 
7. test2 
//Output 
{1: ‘a’, 2: ‘b’, 3: ‘c’, 4: ‘d’} 
8. test3 
//Output 
{1: ‘e’, 2: ‘f’, 3: ‘g’, 4: ‘h’} 
9. test == test1 
//Output 
False 
10. test.keys() == test1.keys() 
//Output 
False 
11. test == test2 

//Output 
True 
12. test == test3 
//Output 
False 
13. test.keys() == test3.keys() 
//Output 
True 
14. test.values() == test2.values() 
//Output 
False 
15. set(test.values()) == set(test2.values()) 
//Output 
True 
16. test.items() == test2.items() 
//Output 
True 
17. test.items() == test3.items() 
//Output 
False 





 Maximum and minimum 
 In Python, max(dictionary) returns the maximum key of dictionary and min(dictionary) returns the minimum key of dictionary. Similarly, max(dictionary.items()) and min(dictionary.items()) returns the key-value pair with maximum and minimum key. max(dictionary.values()) and min(dictionary.values()) returns the maximum and minimum values in the dictionary. Example 6.15 shows an example of getting maximum and minimum key and value. 
 Example 6.15: Maximum and minimum example 
 1. test = 
2. test 
//Output 
{1: ‘a’, 2: ‘b’, 3: ‘c’, 4: ‘d’} 
3. 
//Output 
‘d’ 
4. 
//Output 
‘a’ 
5. max(test) 
//Output 
4 
6. max(test.items()) 
//Output 
(4, ‘d’) 
7. test1 = 
8. test1 
//Output 

{1: ‘d’, 2: ‘c’, 3: ‘b’, 4: ‘a’} 
9. 
//Output 
(4, ‘a’) 
10. 
//Output 
1 
11. 
//Output 
(1, ‘d’) 





 all() and any() 
  all(dictionary) returns True if all keys of the dictionary are True or if the dictionary is empty. If a key is 0 then it is considered as False. 
 any(dictionary) returns True if any key of the dictionary is True. In case dictionary is empty, it returns False. 
 Example 6.16 shows the functionality of all() and 
 Example 6.16: all() and any() example 
 1. test = 
2. test 
//Output 
{1: ‘a’, 2: ‘b’} 
3. 
//Output 
True 
4. 
//Output 
True 
5. = ‘ ‘ 
6. test 
//Output 
{1: ‘a’, 2: ‘b’, 0: ‘ ‘} 
7. 
//Output 
False 
8. 
//Output 
True 

9. test = {} 
10. test 
//Output 
{} 
11. 
//Output 
True 
12. 
//Output 
False 





 str() 
 str(dictionary) returns a printable string representation of the dictionary. Converting dictionary to String format helps when concatenation with string is required. Example 6.17 shows the functionality of 
 Example 6.17: str() example 
 1. test = 
2. test 
//Output 
{1: ‘a’, 2: ‘b’} 
3. 
//Output 
“{1: ‘a’, 2: ‘b’}” 
4. + “ Dictionary String Example” 
//Output 
“{1: ‘a’, 2: ‘b’} Dictionary String Example” 
5. test + “ Dictionary String Example” 
//Output 
Traceback (most recent call last): 
File «», line 1, in  
TypeError: unsupported operand type(s) for +: ‘dict’ and ‘str’ 





 Help 
 Python has help() to get operations available on a particular object. Example 6.18 shows an example of Figure and 6.11 shows the output of 
 Example 6.18: Help example 
 1. 
 
 Figure 6.9: Dictionary help part 1 
 
Figure 6.9 shows the first part of the Help command in the command prompt for the dictionary. 
 
 Figure 6.10: Dictionary help part 2 
 Figure 6.10 shows the second part and figure 6.11 shows the third part of the Help command in the command prompt for the dictionary. 
 

 Figure 6.11: Dictionary help part 3 





 Conclusion 
 This chapter gives details about the dictionary data structure available in Python. Python library has a vast list of operations for dictionary creation, manipulation, and handling, which helps the user to write programs efficiently and effectively. The next chapter will focus on the next built-in data structure known as In the next chapter, we will dig into details on tuple creation and operations supported in Python’s Tuple library. 





 Points to remember 
  Dictionary data structure is a way to store heterogeneous collection of data to help developers write effective and efficient algorithms. 
 Dictionary stores data in form of key-value pairs. 
 Each key should be unique in the dictionary. 
 Data in the dictionary is not stored in sequential or contiguous locations. The hash value is calculated for each key to get the memory location to store the item (key-value pair). 
 Dictionary in python uses random probing to resolve conflicts. 
 Dictionary values can only be accessed using keys. There is no index in the dictionary. 
 Dictionary is a mutable data structure, that is, the value stored in the dictionary can be modified without creating a new object. 
 Dictionary can be created using curly brackets like {1:’a’,2:’b’}. 
 Dictionary in python can also be created using the dict() constructor. 
 Python supports a vast majority of operations for the dictionary data structure. 





 Multiple-choice questions 
  What is the output of the following program? 
 dict(1=’a’,2=’b’) 
dict 
  {‘1’:’a’, ‘2’:’b’} 
 {1:’a’, 2:’b’} 
 SyntaxError 
 None 
 What is the output of the following program? 
 dict = {1:’a’,2:’b’,3:’c’,1:’d’} 
dict 
  {1: ‘d’, 2: ‘b’, 3: ‘c’} 
 {1: ‘d’, 2: ‘b’, 3: ‘c’, 1: ‘d’} 
 KeyError 
 Which operation/operations can delete an item from the dictionary? 
  popitem(key) 
 pop(key) 
 del dictionary[key] 
 del key 
 clear(key) 
 Which operation/operations can merge two dictionaries without creating a new dictionary? 
  | operation 
 Dict2.update(Dict1) 
 merge(dict1, dict2) 
 {**dict1, **dict2} 
 Which operation/operations can be used to access values from a dictionary? 
  Dict.keys() 
 
Dict.values() 
 Dict.items() 
 Dict[index] 
 Which operation/operations can be used to create a dictionary? 
  Dict = {} 
 fromkeys() 
 () 
 [] 





 Answers 
  c 
 c 
 b, c 
 b 
 b, c 
 a, b 





 Questions 
  Value in the dictionary data structure can be accessed using_________________. 
 all() returns False if any_________________is False. 
 Dictionary can be reversed by creating the _________________ of items and using function. 
 Copy of a dictionary can be created using. Function creates _________________copy of the list. 
 Merge below dictionaries and update merged dictionary in dict1 
 Dict1 = {1:’a’,2:’b’} 
Dict2 = {3:’c’,4:’d’} 
 All items from the dictionary can be deleted using operation_________________. 
 Access the value of key “pincode” from below dictionary: 
 Dict = {“company” : “ABC”, 
“employee” : {“name”: “XYZ”, 
“address” : {“pincode”: 123} 
} 
} 
 Write a function to search a value in the dictionary. 
 Example: 
Dict = {1:’a’, 2:’b’, 3:’c’,4:’d’,5:’e’} 
Check if ‘e’ is present in dictionary 
Output: 
True 
 Given a dictionary, write a function to print key with minimum value. 
 Example: 

Dict = {1:’a’, 2:’b’, 3:’c’,4:’d’,5:’e’} 
Output: 
1 
 Write a function to print all unique values in the dictionary. 
 Example: 
 Dict = {1:’a’, 2:’b’, 3:’c’,4:’b’,5:’c’} 
 Output: 
{1:’a’,2:’b’,3:’c’} 
 Write a program to multiply all values in the dictionary. 
 What will be the output of following code: 
 Dict = {1:’a’, 2:’b’} 
Dict.popitem() 





 Answers 
  key 
 key 
 list, reverse() 
 shallow 
 Dict1.update(Dict2) 
 clear() 
 Dict[‘employee’][‘address’][‘pincode’] 
 ‘e’ in Dict.values() 
 min(Dict, key=Dict.get) 
 Dict = {1:’a’, 2:’b’, 3:’c’,4:’b’,5:’c’} 
output = {} 
for key, value in Dict.items(): 
if value not in output.values(): 
output[key] = value 
print(output) 
dict={1:1,2:2,3:3,4:4,5:5} 
result = 1 
for key in dict: 
result = result*dict[key] 
 print(result) 
 (2, ‘b’) 





CHAPTER 7 
 Tuple 





 Introduction 
 Let’s move on to the next built-in data structure defined in Chapter 4, Data Structure This chapter is dedicated to the tuple data structure. We have seen details of list and dictionary data structure in Chapter 5, List and Chapter 6, respectively. In this chapter, we will be diving into details regarding tuple data structures, how they are created, and what tuple operations are supported in the Python language. 





 Structure 
 In this chapter, we will be discussing the following topics: 
  Introduction to tuple 
  Tuple creation 
 Tuple data access 
 Tuple operations 
  Traversing 
 Deletion 
 Searching 
 Sorting 
 Merging 
 Count 
 Reverse 
 Copy 
 Tuple multiplication 
 Tuple length 
 Tuple comparison 
 Maximum and minimum 
 str() 
 Help 
 Tuple use cases 
  Assigning multiple values 
 Swap function 





 Objectives 
 This chapter will help to understand the details of the Tuple data structure in Python. After completing this chapter, you will be able to know which operations are supported by Python for the Tuple data structure. You will be able to write Python programs that use the tuple data structure. 





 Introduction to tuple 
 Tuple data structure is a sequence-like list data structure. Tuple and list data structures can hold heterogeneous data. Tuple data structure is different from list data structure as a tuple is immutable and cannot be modified. Thus, a tuple is used in a situation when we need a heterogeneous collection of data that cannot be modified. 
 Tuple data structure is ordered collection of data, unlike dictionary. Ordered collection means it keeps the order in which data is added in the tuple. Tuple data structure is stored sequentially in memory like list data structure as shown in figure 
 
 Figure 7.1: Tuple data structure 
 As we all know a list is a widely used data structure in Python. But tuples have some advantages over the list: 
  Tuple execution is faster than lists. 
 Tuples are immutable and thus protect data from modification by error. 





 Tuple creation 
 Tuple in Python can be created using parenthesis or just mention comma separate values. Tuple can save heterogeneous data. Empty tuple creation is done by assigning empty parenthesis to the variable. To check the type of any variable in Python, type() can be used. Example 7.1 shows examples of creating different tuples. To create a tuple with a single element, a comma is needed after a single element to let Python know that the tuple is being created. 
 Example 7.1: Tuple creation example 
 1. empty_tuple= () 
2. empty_tuple 
//Output 
() 
3. 
//Output 
‘tuple’> 
4. single_tuple = 
5. single_tuple 
//Output 
1 
6. 
//Output 
‘int’> 
 As can be seen from the preceding example, a variable is not considered a tuple if a single comma is not mentioned while declaring a single element tuple. The following example shows how a single element tuple can be created: 
 7. single_tuple = 

8. single_tuple 
//Output 
(1,) 
9. 
//Output 
‘tuple’> 
10. test_tuple1 = 
11. test_tuple1 
//Output 
(1, ‘a’, 3, ‘test’) 
12. 
//Output 
‘tuple’> 
 The following examples show tuple creation without parenthesis: 
 13. single_tuple = 
14. single_tuple 
//Output 
(1,) 
15. 
//Output 
‘tuple’> 
16. test_tuple = ‘test’ 
test_tuple 
//Output 
17. 
18. 
//Output 
‘tuple’> 





 Tuple data access 
 Tuple data can be accessed using an index-like list. Tuple indices start at 0. In case the index mentioned while accessing the data element is not available, IndexError is thrown by Python mentioning out of of the tuple. 
 Multiple elements in a tuple can be accessed using slicing of indices same as a list. Range of values can be accessed using syntax the search will start including x till y, y is excluded. If x value is not specified, then starting index is considered as 0. If the value of y is not specified, then the ending index is taken as the length of the tuple. If x and y ares not specified, then the full tuple will be printed. The negative index can also be specified while accessing tuple data using range index or single index. 
 Example 7.2 shows how to access a single data value in a tuple. As shown in the following example, a tuple has size 5, and thus accessing elements beyond that length gives an error. Example 7.2 also shows how we can access data values using a negative index. Table 7.1 shows the positive and negative index for each value in tuple defined in example 
 


 Table 7.1: Positive and Negative Index for tuple defined in example 7.2 
 Example 7.2: Tuple data access example 
 1. test_tuple=1,’a’,3,’test’,5 
2. test_tuple 

//Output 
(1, ‘a’, 3, ‘test’, 5) 
3. test_tuple[2] 
//Output 
3 
4. test_tuple[-2] 
//Output 
‘test’ 
5. test_tuple[6] 
//Output 
Traceback (most recent call last): 
File “”, line 1, in  
IndexError: tuple index out of range 
6. 
//Output 
Traceback (most recent call last): 
File “”, line 1, in  
IndexError: tuple index out of range 
 The following examples show that if we mention an index greater than the size of the tuple while slicing, there is no error thrown. Python returns data till the last index. 
 7. 
//Output 
(‘a’, 3, ‘test’, 5) 
8. 
//Output 
(1, ‘a’, 3) 
 The following examples show that if we skip starting or ending index, Python returns data from first or till the last index: 
 
9. 
//Output 
(‘a’, 3, ‘test’, 5) 
10. 
//Output 
(1, ‘a’, 3, ‘test’, 5) 
11. 
//Output 
(1, ‘a’, 3) 
12. 
//Output 
(1, ‘a’, 3) 
13. 
//Output 
(‘a’, 3, ‘test’, 5) 





 Tuple operations 
 Developers can perform many of the basic data structure operations mentioned in Chapter 4, Data Structure on tuple. Insertion is not supported in the tuple as a tuple is an immutable collection of elements. The only way to insert an element in a tuple is to merge a new tuple object to an existing tuple and create a new tuple. 
 Additional to basic data structure operations, Python supports other in-built operations which can be performed on tuples. The following sub-sections give details about each operation that can be performed on tuple data structure in Python. 
 
 Note: As we know, a tuple can contain heterogeneous data, thus, if a tuple contains a list or dictionary which is mutable, data stored in that list or dictionary can be modified as shown in the following example: 
 tuple = (1,2,3) 
tuple[1] = 1 
//Output 
Traceback (most recent call last): 
File “”, line 1, in  
TypeError: ‘tuple’ object does not support item assignment 
tuple = (1,[2,3],4) 

tuple 
//Output 
(1,[1,3],4) 
 As can be seen from the preceding example, modifying tuple directly provides TypeError. But modification of inner mutable object directly is feasible in tuple. 
 





 Traversing 
 Traversing tuple means accessing each data value of tuple one by one and performing an operation or printing each data value. Example 7.3 shows an example to traverse tuple using the for loop in Python. The following example declares a tuple, and then prints each value in the tuple. 
 Example 7.3: Traversing tuple example 
 1. 
2. test_tuple 
3. for val in test_tuple: 
4.     
5. 
 
 Figure 7.2: Tuple element traversing 





 Deletion 
 A tuple is an immutable collection of data; thus, an individual element cannot be deleted from the tuple easily. A full tuple can be deleted using the following operation: 
  del tuple deletes the full tuple. If a tuple does not exist, it throws 7.4 shows the example of the tuple deletion operation. 
 Example 7.4: Tuple deletion example 
 1. test_tuple=1,’a’,3,’test’,5 
2. test_tuple 
//Output 
(1, ‘a’, 3, ‘test’, 5) 
3. del test_tuple 
4. test_tuple 
//Output 
Traceback (most recent call last): 
File “”, line 1, in  
NameError: name ‘test_tuple’ is not defined 
5. del test_tuple 
//Output 
Traceback (most recent call last): 
File “”, line 1, in  
NameError: name ‘test_tuple’ is not defined 





 Searching 
 To check if data value exists in the tuple or not, the “in” keyword can be used. To check the index of the data value in the tuple, a linear search algorithm can be used. Index of any element in a tuple can be extracted using If an element is not present in the tuple, it will throw ValueError. 
 Example 7.5 shows the example of tuple data searching. 
 Example 7.5: Tuple data search example 
 1. test_tuple=1,’a’,3,’test’,5 
2. test_tuple 
//Output 
(1, ‘a’, 3, ‘test’, 5) 
3. ‘a’ in test_tuple 
//Output 
True 
4. 4 in test_tuple 
//Output 
False 
5. test_tuple.index(3) 
//Output 
2 
6. test_tuple.index(‘test’) 
//Output 
3 
7. test_tuple.index(4) 
//Output 
Traceback (most recent call last): 
File “”, line 1, in  
ValueError: tuple.index(x): x not in tuple 

8. for i in 
9.     if 
10.         
11. 
 The following figure shows how data can be searched in a tuple using linear search: 
 
 Figure 7.3: Tuple value linear search 





 Sorting 
 Python has inbuilt methods for sorting tuple elements in ascending or descending order. The following function can be used for tuple sorting: 
  sorted(tuple, reverse) sorts tuple in ascending order if the reverse is False. In case the reverse is True, it sorts tuple in descending order. Sorting can only be done with a similar type of data. If a tuple contains both String and Integer data, sorting throws an error. 
 Example 7.6 shows tuple sorting example. 
 Example 7.6: Tuple sorting example 
 1. test_tuple = 78 
2. test_tuple 
//Output 
(243, 45, 23, 67, 2, 78) 
3. sorted(test_tuple) 
//Output 
[2, 23, 45, 67, 78, 243] 
4. test_tuple 
//Output 
(243, 45, 23, 67, 2, 78) 
5. sorted(test_tuple, reverse = 
//Output 
[243, 78, 67, 45, 23, 2] 
6. test_tuple 
//Output 
(243, 45, 23, 67, 2, 78) 
 
As can be seen in the preceding example, sorting a tuple creates a new tuple object. It does not change the original tuple object. The following example shows that we cannot sort the tuple if it contains both string and integer data: 
 17. 
18. test_tuple 
//Output 
(1, ‘a’, 3, ‘test’, 5) 
19. sorted(test_tuple) 
//Output 
Traceback (most recent call last): 
File “”, line 1, in  
TypeError: ‘<’ not supported between instances of ‘str’ and ‘int’ 





 Merging 
 Tuple merging is as simple as string merging or concatenation. ‘+’operation merges two tuple objects into one. As tuple objects cannot be modified, thus updating in existing tuple objects is not feasible. 
 Example 7.7 shows an example of a tuple merging operation. 
 Example 7.7: Tuple merging example 
 1. tuple1 = 
2. tuple2 = ‘c’ 
3. tuple1+tuple2 
//Output 
(1, 2, 3, ‘a’, ‘b’, ‘c’) 
4. tuple2+tuple1 
//Output 
(‘a’, ‘b’, ‘c’, 1, 2, 3 





 Count 
 Python has an inbuilt method for counting the number of data values in a tuple. To count the number of occurrences of a particular value in a tuple, the following method can be used: 
  tuple.count(element) counts and returns the occurrences of an element in a tuple object. If the element does not exist in a tuple, it returns 0 value. 
 Example 7.8 shows an example of element count in a tuple. 
 Example 7.8: Tuple count example 
 1. test_tuple = 
2. test_tuple 
//Output 
(1, 2, 3, 4, 3, 2, 3, 1, 2, 4, 5, 2, 3) 
3. test_tuple.count(1) 
//Output 
2 
4. test_tuple.count(3) 
//Output 
4 
5. test_tuple.count(‘a’) 
//Output 
0 
6. test_tuple.count(8) 
//Output 
0 





 Reverse 
 To reverse the order of tuples, Python has the following inbuilt function: 
  reversed(tuple) returns a new iterator object with reverse order. To obtain reversed tuple, we need to iterate over the iterator and create a new tuple. 
 tuple[::-1] reverses the elements and returns a new tuple object. 
 Example 7.9 shows an example of reversing the tuple. 
 Example 7.9: Reverse tuple example 
 1. 
2. test_tuple 
3. 
4. new_tuple=() 
5. for x in 
6.      new_tuple=new_tuple+(x,) 
7. 
8. new_tuple 
9. test_tuple 
10. 
11. test_tuple 
 

 Figure 7.4: Reverse tuple example 





 Copy 
 Python has an inbuilt method for copying a tuple into another dictionary. deepcopy() creates a deep copy. It creates a new tuple object and copies all data from the source tuple to the new tuple. Any modification on the new tuple does not affect the source tuple. Thus, both tuples are independent objects. 
 Example 7.10 shows an example of copying the tuple. 
 Example 7.10: Copy tuple example 
 1. 
2. test_tuple 
3. from copy import deepcopy 
4. new_tuple=deepcopy(test_tuple) 
5. new_tuple 
6. newtuple1=test_tuple 
7. newtuple1 
 
 Figure 7.5: Copy tuple example 
 
As can be seen from the preceding example, a copy of the tuple object can also be created directly using the assignment operation. Any modification to the new object does not affect the original tuple object. 





 Tuple multiplication 
 In Python, there does not exist any in-built method for tuple multiplication. Tuple multiplication with a scalar can be done using the for loop as shown in figure A multiplying tuple with scalar using ‘*’ operator leads to repetition of tuple elements as shown in figure 
 Multiplication of two tuples can be achieved using various methods. Example 7.11 shows various methodologies through which tuple multiplication can be achieved. 
  It returns an object consisting of nth elements of both tuples. Figure 7.8 shows the functionality of zip() and how it can be used for the multiplication of two tuples. 
 map(function, iterator(s)) and mul operator: map() returns an iterator object after applying mentioned function on iterator(s). The mul operator multiplies two numbers and returns the multiplication. Figure 7.9 shows the functionality of map() and mul operator. Figure 7.10 shows how mul and map() achieves multiplication of two tuples. 
 Example 7.11: Tuple multiplication example 
 1. 
2. test_tuple 
3. for x in 
4. 
5. for x in 
 

 Figure 7.6: Scaler multiplication with tuple elements 
 As can be seen in figure the integer element is returned after multiplication with 10, and characters or strings are repeated 10 times. 
 6. test_tuple=1,2,3,4,5,6 
7. test_tuple 
8. test_tuple*3 
9. 
10. test_tuple 
11. test_tuple*2 
 
 Figure 7.7: Scaler multiplication with tuple 
 As can be seen in figure tuple elements are repeated the number of times equivalent to a scalar value. 
 1. 
2. 
3. zip(test_tuple1,test_tuple2) 

4. 
5. for x,y in 
6. 
7. test_tuple1 
8. test_tuple2 
9. for x,y in 
 
 Figure 7.8: Tuple multiplication using zip() 
 Figure 7.8 shows the functionality of As can be seen from the preceding figure, zip() returns the first element as a combination of the first elements of both tuples, the second element as a combination of the second elements of both tuples, and so on. 
 1. def 
2.     return x+x 
3. 
4. 
5. test_tuple 
6. map(add,test_tuple) 

1. from operator import mul 
8. 
 
 Figure 7.9: map() and mul example 
 As can be seen in figure each element of test_tuple is passed separately to add a function for processing. 
 1. 
2. 
3. from operator import mul 
1. test_tuple1, test_tuple2) 
5. 
6. test_tuple1 
7. test_tuple1, test_tuple2) 
 

 Figure 7.10: Tuple multiplication using map() and mul 
 As can be seen in figure each element of test_tuple1 and test_tuple2 are iterated over and passed to mul operator for multiplication. 





 Tuple length 
 In Python, len(tuple) returns the length of the tuple. Example 7.12 shows an example of the same. 
 Example 7.12: Tuple length example 
 1. test_tuple = 
2. test_tuple 
//Output 
(1, 2, 3, 4, 5, 6, 7) 
3. len(test_tuple) 
//Output 
7 





 Tuple comparison 
 In Python, tuple comparison can be done using comparison operators. Comparison operator (==, <, >) can be used to compare tuples. These operators return True or False based on the comparison result. 
 
 Note: Comparison operators compare nth elements of both tuples. As we all know that tuple can store heterogeneous elements, thus comparison done is rule-based explained as follows: 
  If nth elements of both tuples are the same data type, compare them directly. 
 If both tuples have different data types for nth then only the “==” operator returns False. “<” and “>” returns an error as comparison cannot be done between different data types. 
 The tuple having lesser elements is considered as less than the tuple having more elements. 
 If two elements are unequal, the tuple with less than the item is considered as less than the other tuple. The comparison stops after finding the first unequal element. 
 
 Example 7.13 shows an example of the tuple comparison. 
 Example 7.13: Tuple comparison example 
 1. test_tuple1 = 
2. test_tuple2 = 
3. test_tuple1 == test_tuple2 
//Output 
True 
4. test_tuple2 = 

5. test_tuple1 == test_tuple2 
//Output 
False 
6. test_tuple1 > test_tuple2 
//Output 
False 
7. test_tuple1 < test_tuple2 
//Output 
True 
8. test_tuple2 = 
9. test_tuple1 == test_tuple2 
//Output 
False 
10. test_tuple1 > test_tuple2 
//Output 
False 
11. test_tuple1 < test_tuple2 
//Output 
True 
12. test_tuple2 = ‘a’,’b’,’c’ 
13. test_tuple1 < test_tuple2 
//Output 
Traceback (most recent call last): 
File “”, line 1, in  
TypeError: ‘<’ not supported between instances of ‘int’ and ‘str’ 
14. test_tuple1 == test_tuple2 
//Output 
False 
15. test_tuple2 = ‘a’,’b’,’c’ 

16. test_tuple1 == test_tuple2 
//Output 
False 
17. test_tuple1 = ‘a’,’b’,’cd’ 
18. test_tuple1 == test_tuple2 
//Output 
False 
19. test_tuple1 < test_tuple2 
//Output 
False 
20. test_tuple1 > test_tuple2 
//Output 
True 
21. test_tuple1 = ‘a’,’b’,’c’,’d’ 
22. test_tuple1 == test_tuple2 
//Output 
False 
23. test_tuple1 < test_tuple2 
//Output 
False 
24. test_tuple1 > test_tuple2 
//Output 
True 
25. test_tuple1 = (1,2),2,3 
26. test_tuple1 
//Output 
((1, 2), 2, 3) 
27. test_tuple2 = (2,1),2,3 
28. test_tuple2 

//Output 
((2, 1), 2, 3) 
29. test_tuple1 > test_tuple2 
//Output 
False 
30. test_tuple1 < test_tuple2 
//Output 
True 
 
 Note: As can be seen from the preceding examples, as soon as Python finds the first unequal element, it exits the Comparison. Each element of both tuples can be compared using the following code: 
 1. test_tuple1 = 
2. test_tuple2 = 
3. all(xfor x,y in zip(test_tuple1, test_tuple2)) 
//Output 
True 
4. test_tuple2 = 
5. all(xfor x,y in zip(test_tuple1, test_tuple2)) 
//Output 
False 
 The preceding example shows that the comparison of each element is done and it returns true if all elements for test_tuple1 are less than all elements of test_tuple2. 
 





 Maximum and minimum 
 In Python, max(tuple) returns the maximum element of the tuple, and min(tuple) returns the minimum element of the tuple. Example 7.14 shows an example of getting the maximum and minimum elements of a tuple. 
 Example 7.14: Maximum and Minimum example 
 1. tuple = 
2. 
//Output 
4 
3. test_tuple = 
4. 
//Output 
4 
5. 
//Output 
1 
6. test_tuple = ‘d’ 
7. 
//Output 
‘d’ 
8. 
//Output 
‘a’ 
 max() and min() uses comparison operators to compare two elements. As can be seen from the following example, while comparing ‘abc’ and ‘c’, ‘c’ is greater as the first character of ‘abc’ is less than ‘c’. Comparison operator stops comparing after the first unequal character. 
 
1. test_tuple = 
2. 
//Output 
‘c’ 
3. 
//Output 
‘abc’ 
4. test_tuple = 
5. 
//Output 
(2, 3) 
6. 
//Output 
(1, 2) 
 As we know that comparison operators cannot compare heterogeneous data types, thus, a tuple with heterogeneous elements throws TypeError as shown in the following example: 
 1. test_tuple = ‘d’ 
2. max(test_tuple) 
//Output 
Traceback (most recent call last): 
File “”, line 1, in  
TypeError: ‘>’ not supported between instances of ‘str’ and ‘int’ 





 str() 
 In Python, str(tuple) returns the String of the tuple object as shown in example 
 Example 7.15: str() example 
 1. test_tuple = 
2. str(test_tuple) 
//Output 
‘(1, 2, 3)’ 





 Help 
 Python has help() to get operations available on a particular object. Example 7.16 shows an example of Figure 7.11 and 7.12 shows the output of 
 Example 7.16: Help example 
 1. help(tuple) 
 
 
Figure 7.11: Tuple help part 1 
 Figure 7.11 shows the first part of the help output and figure 7.12 shows the second part of the help output on the command prompt. 
 
 Figure 7.12: Tuple help part 2 





 Tuple use cases 
 Tuple can be useful in various aspects of programming. This section provides some of the use cases of tuples with examples. 





 Assigning multiple values 
 Tuples can help in assigning different values to multiple variables as shown in example 
 Example 7.17: Assigning multiple values 
 1. (x,y,z) = (1,2,3) 
2. x 
//Output 
1 
3. z 
//Output 
3 
4. (x,y,z) = range(3) 
5. x 
//Output 
0 
6. z 
//Output 
2 
7. test_tuple = 
8. test_tuple 
//Output 
(1, 2, 3) 
9. x,y,z = test_tuple 
10. x 
//Output 
1 
11. z 
//Output 
3 





 Swap function 
 Tuples can help in swapping values of two variables as shown in example 
 Example 7.18: Swap function example 
 1. x = 3 
2. y = 6 
3. (x,y) = (y,x) 
4. x 
//Output 
6 
5. y 
//Output 
3 





 Conclusion 
 This chapter gives details about the tuple data structure available in Python. Python library has a vast list of operations for handling tuple, which helps the user to write programs efficiently and effectively. A tuple is an immutable object, and thus cannot be manipulated which makes it a better data structure option if data security is needed. The next chapter will focus on the next built-in data structure known as Set. In the next chapter, we will dig into details on set creation and operations supported in Python’s Set library. 





 Points to remember 
  Tuple data structure is a way to store heterogeneous collection of data to help developers write effective and efficient algorithms. 
 Tuple stores data in sequential memory. 
 A tuple is immutable and cannot be modified. In case a tuple has a mutable data structure as its element, the mutable element can be modified directly. 
 A tuple can be created using round brackets or no brackets like (1,2,3) or 1,2,3. 
 Python supports a vast majority of operations for the tuple data structure. 
 Tuple data structure can be used for multiple variable assignment in a single line. 





 Multiple-choice questions 
  What is the type of variable created by the following program? 
 test = (1) 
  List 
 Tuple 
 Integer 
 None 
 Which option(s) creates a tuple object? 
  1,2,3 
 (1,2,3) 
 (1,) 
 (1) 
 Which operation(s) can delete an item from the Tuple? 
  pop(index) 
 del tuple[index] 
 None 
 What will be the output of the following program? 
 test = (1,2,3) 
del test 
  Tuple will be deleted. 
 TypeError: Tuple doesn’t support deletion. 
 element of tuple will be deleted. 
 Which method(s) can be used to reverse values of a tuple? 
  tuple.reverse() 
 reversed(tuple) 
 tuple[::-1] 
 tuple.sort(reverse=True) 
 Which option(s) will assign 1 value to x variable? 
 
 x = 1 
 test = 1,2,3 
 x,y,z = test 
 (x,y) = (1,2) 
 (x,y) = 1 
 What will be the output of the following program? 
 test1 = (1,2,3) 
test2 = (‘a’,’b’,’c’) 
test1
  True 
 False 
 TypeError 





 Answers 
  c 
 a, b, c 
 c 
 a 
 b, c 
 a, b, c 
 c 





 Questions 
  Count of a particular element in a tuple is returned by. 
 Write code to swap two variables using a tuple. 
 Write code to reverse a tuple named item. 
 Write code to count [1,2] in tuple item = (1, [1,2], 3, 4, [1,2], 5, 1, 2, [1,2]). 
 Write code to sort tuples in increasing order based on element of each tuple. 
 Eaxmple: 
 tuple1 = (1, 2, 3) 
tuple2 = (3, 6, 2) 
tuple3 = (4, 3, 1) 
 Sorting based on element: tuple1 < tuple2 < tuple3 
 Extend above function to sort tuples based on any element. 
 Example: Sorting based on element: tuple1 < tuple3 < tuple2 
 Write code to clone a tuple. 
 Write code to search a value in tuple. 
 Example: 
 tuple = 1, 2, 3 4 
 Check if 2 is present in tuple 
 Output: 
 True 
 Given a tuple with dictionary object. Write code to modify dictionaries element. 
 Example: 
 tuple = (1, 2, {1:’a’, 2: ‘c’}) 
 Modify ‘c’ to ‘b’ 
 
Output: 
 (1, 2, {1:’a’, 2:’b’}) 
 Write code to multiply tuple with list. 
 Write code to check if all items in a tuple are same. 
 Write code to find average of numbers in a tuple. 
 Write code to convert a tuple of numbers to a single number. 
 Example: 
 test_tuple = 1, 2, 3 
 Output: 
 123 





 Answers 
  count() 
 (x, y) = (y,x) 
 reversed(item) 
 item.count([1,2]) 
 sorted([tuple1,tuple2,tuple3]) 
 def elementAtIndex(test_tuple): return(test_tuple[n]) 
 n = 1 
sorted([tuple1,tuple2,tuple3],key=elementAtIndex) 
 from copy import deepcopy 
 new_tuple = deepcopy(test_tuple) 
 test_tuple = 1, 2, 3 4 
 2 in test_tuple 
 test_tuple = (1, 2, {‘x’:’a’, ‘y’: ‘c’}) 
 test_tuple[2][‘y’] = ‘b’ 
 test_tuple = 1, 2, 3, 4 
 test_list = [4, 3, 2, 1] 
[x * y for x, y in zip(test_tuple, test_list)] 
 test_tuple = 1, 1, 1, 1 
 all(x == test_tuple[0] for x in test_tuple) 
 test_tuple = 1, 2, 3, 4 
 sum(test_tuple)/len(test_tuple) 
 test_tuple = 1, 2, 3, 4 
 int(‘’.join(map(str,test_tuple))) 





CHAPTER 8 
 Set 





 Introduction 
 In the previous chapter, we learned about tuple data structure, how it’s created, and its use cases. Let’s move on to the next built-in data structure defined in Chapter 4, Data structure This chapter is dedicated to Set data structure. We have seen details of other built-in data structures like list, dictionary, and tuple in Chapter 5, Chapter 6, and Chapter 7, respectively. In this chapter, we will be diving into details regarding the Set data structure, how they are created and what set operations are supported in the Python language. 





 Structure 
 In this chapter, we will be discussing the following topics: 
  Introduction to sets 
  Creating set 
 Set data access 
 Set operations 
  Traversing 
 Insertion 
 Deletion 
 Searching 
 Sorting 
 Merging 
 Count 
 Reverse 
 Copy 
 Set multiplication 
 Set length 
 Set comparison 
 Maximum and minimum 
 str() 
 all() 
 any() 
 Help 
 enumerate() 
 sum() 
 Set concepts 
  Union 
 Intersection 
 Difference 
 Subset and superset 

 Disjoint sets 





 Objectives 
 This chapter will help you to understand the details of the set data structure in Python. After completing this chapter, you will get a clear understanding of the set in Python. You will get to explore various operations available in Python for the set data structure. You will be able to write Python programs using sets. 





 Introduction to sets 
 The set data structure is a collection of unique values. It can hold heterogeneous data types. It is an unordered and immutable data structure. 
 As the set data structure is unordered, its elements can appear in a different order every time. Set elements cannot be accessed using an index. It’s immutable, thus, elements cannot be modified easily. It is a unique collection of elements; thus, duplicates are not allowed. 
 Elements in a set are not stored in sequential or contiguous locations. Like the dictionary, hash code is computed for each element of a set using hash() built-in function. The calculated hash code is used to calculate the location of the value. This leads to the unordered nature of set data structures. All elements might not generate a unique hash value and thus collision resolution technique is used. 
 
 Tip: Set implementation differs in resolving collisions from Dictionary. Dictionary implements open addressing to resolve collision issues. In case of a collision, Set creates a list of elements with the same hash value as location as shown in figure 
 
 Figure 8.1 shows how a set is created and stored in computer memory. It also demonstrates how the set implementation resolves collision while storing a new element in memory with an existing hash value location. 
 

 Figure 8.1: Set Data Structure 





 Creating set 
 Set in Python can be created using curly braces {}. Set can save heterogeneous data types. Set cannot store composite data types like lists, dictionaries, or other sets. Set can only store basic data types like integer, strings, boolean, and so on. Empty set creation is done by using To check the type of any variable in Python, type() can be used. Example 8.1 shows examples of creating different sets. 
 Example 8.1: Set Creation Example 
 1. empty_set = 
2. empty_set 
//Output 
set() 
3. 
//Output 
‘set’> 
 As we can see from the following code, a variable is not considered set if empty curly braces are mentioned. In fact, it creates an empty dictionary. 
4. empty_set = {} 
5. empty_set 
//Output 
{} 
6. 
//Output 
‘dict’> 
7. test_set = 
8. test_set 
//Output 

{1, 2, 3, 4} 
9. 
//Output 
‘set’> 
 As can be seen from the preceding code, the set does not maintain the order of elements in which they were added. 
 10. test_set = 
11. test_set 
//Output 
{‘d’, 3, ‘b’, 1} 
12. type(test_set) 
//Output 
‘set’> 
13. test_set = 
//Output 
Traceback (most recent call last): 
File «», line 1, in  
TypeError: unhashable type: ‹set› 
 As can be seen from the preceding code, the set does not store composite data structure and throws TypeError. 





 Set data access 
 Set data cannot be accessed using indexing or slicing. Trying to access an element using index in set throws TypeError as shown in example There does not exist any operation in Python to directly access set values. To access a data element in a set, the set is traversed as shown in example 
 Example 8.2: Set Data Access Example 
 1. test_set = {1,2,3,4} 
2. test_set 
//Output 
{1, 2, 3, 4} 
3. test_set[2] 
//Output 
Traceback (most recent call last): 
File «», line 1, in  
TypeError: ‘set’ object is not subscriptable 





 Set operations 
 Developers can perform basic data structure operations mentioned in Chapter 4, Data structures introduction on sets. In addition to basic data structure operations, Python supports other in-built operations like and more which can be performed on sets. The following sub-sections give details about each operation that can be performed on the set data structure in Python. 





 Traversing 
 Traversing a set means accessing each data value of the set one by one and performing an operation or printing each data value. Example 8.3 shows an example of traversing a set using the for loop in Python. Example 8.3 declares the set and then prints each value in the set. 
 Example 8.3: Traversing set Example 
 1. test_set = 
2. test_set 
3. for val in test_set: 
4.     
5. 
 
 Figure 8.2: Set element Traversing 





 Insertion 
 Set is a mutable collection of data; thus, new elements can be inserted into the set easily. While adding new elements in the set, it removes duplicate values as the set is the a composition of unique elements only. The following methods can be used to insert new elements in the set: 
  set.add(element) adds a single element to the set. 
 set.update(element(s)) adds single or multiple elements to the set. It takes an iterator object like a list or set. Instead of taking a full list or set as a single element, the set takes individual elements of a list or set and adds them to the existing set. 
 Figure 8.4 shows the example of inserting new elements in a set. 
 Example 8.4: Set insertion example 
1. test_set = {1,2,3,4} 
2. test_set 
//Output 
{1, 2, 3, 4} 
3. test_set.add(“test”) 
4. test_set 
//Output 
{1, 2, 3, 4, ‘test’} 
5. test_set.add(2) 
6. test_set 
//Output 
{1, 2, 3, 4, ‘test’} 
7. test_set.update([1,2,5,6]) 
8. test_set 
//Output 

{1, 2, 3, 4, 5, 6, ‘test’} 
 As can be seen from the preceding code, if the value being updated is already present in the set then it is ignored. 
9. 
10. test_set 
//Output 
{1, 2, 3, 4, 5, 6, ‘a’, ‘test’} 
11. 
12. test_set 
//Output 
{1, 2, 3, 4, 5, 6, ‘a’, ‘1’, ‘test’, ‘2’} 
13. 
14. test_set 
//Output 
{1, 2, 3, 4, 5, 6, ‘a’, ‘1’, ‘t’, ‘e’, ‘n’, ‘test’, ‘g’, ‘i’, ‘s’, ‘2’} 
 As can be seen from the preceding code, if the element to be added using update() is a String then it is considered as iterable as each character or String is added as individual element of the set. 
 15. 
16. test_set 
//Output 
{1, 2, 3, 4, 5, 6, ‘a’, ‘1’, ‘t’, ‘e’, ‘n’, 8, 9, ‘test’, ‘g’, ‘i’, ‘s’, ‘2’} 
 As can be seen from the preceding code, adding dictionary adds only the keys as element of the set. 
 17. 
//Output 
Traceback (most recent call last): 
File «», line 1, in  

TypeError: ‘int’ object is not iterable 
 As can be seen from the preceding code, integers cannot be updated directly through Only iterables are supported in 





 Deletion 
 Set is a mutable collection of data; thus, individual, or multiple elements can be deleted from the set easily. Set element deletion can be done by the following operations: 
  set.remove(element) deletes the element specified. Throws KeyError if the element specified does not exist in the set. 
 set.discard(element) deletes the element specified. It differs from remove() as discard() does not throw an error if the element does not exist in the set. 
 set.pop() removes a random element from the set and returns the removed element. Throws KeyError if the set is empty. 
 set.difference_update(list_of_elements) deletes all elements mentioned in list_of_elements from the set. 
 set.clear() deletes all elements in the set. 
 Example 8.5 shows the example of the set deletion operations. 
 Example 8.5: Set deletion example 
 1. test_set = {1,2,3,4,5,6,7,8,9} 
2. test_set 
//Output 
{1, 2, 3, 4, 5, 6, 7, 8, 9} 
3. test_set.remove(2) 
4. test_set 
//Output 
{1, 3, 4, 5, 6, 7, 8, 9} 
5. test_set.remove(2) 
//Output 
Traceback (most recent call last): 

File «», line 1, in  
KeyError: 2 
6. test_set.discard(4) 
7. test_set 
//Output 
{1, 3, 5, 6, 7, 8, 9} 
8. test_set.discard(4) 
9. test_set.difference_update([1,2,3]) 
10. test_set 
//Output 
{5, 6, 7, 8, 9} 
11. test_set.pop() 
//Output 
5 
12. test_set 
//Output 
{6, 7, 8, 9} 
13. test_set.pop() 
//Output 
6 
14. test_set 
//Output 
{7, 8, 9} 
15. test_set.clear() 
16. test_set 
//Output 
set() 
17. test_set.pop() 
//Output 

Traceback (most recent call last): 
File «», line 1, in  
KeyError: ‘pop from an empty set’ 
 Multiple elements can also be removed from the set using the for loop or iterating over set elements as shown in figure Removing multiple elements using the for loop can be used for removing elements based on some condition. 
 18. test_set={1,2,3,4,5} 
19. test_set 
20. for val in list(test_set): 
21.   test_set.discard(val) 
22. 
23. test_set 
 
 Figure 8.3: Set Multiple Value deletion 





 Searching 
 To check if the data value exists in the Set or not, the “in” or “not in” keyword can be used. We know that a set cannot be indexed, thus, the index of an element cannot be searched. 
 Example 8.6 shows the example of set data searching. 
 Example 8.6: Set data search example 
 1. test_set = {‘a’,1,’b’,2} 
2. test_set 
//Output 
{‘a’, 2, 1, ‘b’} 
3. 1 in test_set 
//Output 
True 
4. 1 not in test_set 
//Output 
False 
5. 3 in test_set 
//Output 
False 
6. 3 not in test_set 
//Output 
True 
7. ‘b’ in test_set 
//Output 
True 
8. ‘bc’ in test_set 
//Output 
False 





 Sorting 
 Python has inbuilt methods for sorting set elements in ascending or descending order. The following function can be used for set sorting: 
  sorted(set, reverse) sorts the set in ascending order if the reverse is False. In case the reverse is True, it sorts the set in descending order. Sorting can only be done with a similar type of data. If a set contains both string and integer data, sorting throws an error. 
 Example 8.7 shows a set sorting example. 
 Example 8.7: Set sorting example 
 1. test_set = {1,234, 6786, 23324, 698778, 2342345, 67988, 42343, 3657856, 3242345, 665785, 325423675, 2345346, 23453546, 324564536} 
2. test_set 
//Output 
{3657856, 1, 6786, 2345346, 42343, 2342345, 234, 3242345, 23453546, 67988, 324564536, 665785, 698778, 325423675, 23324} 
3. sorted(test_set) 
//Output 
[1, 234, 6786, 23324, 42343, 67988, 665785, 698778, 2342345, 2345346, 3242345, 3657856, 23453546, 324564536, 325423675] 
4. sorted(test_set, reverse=True) 
//Output 
[325423675, 324564536, 23453546, 3657856, 3242345, 2345346, 2342345, 698778, 665785, 67988, 42343, 23324, 6786, 234, 1] 
5. test_set 
//Output 

{3657856, 1, 6786, 2345346, 42343, 2342345, 234, 3242345, 23453546, 67988, 324564536, 665785, 698778, 325423675, 23324} 
 As can be seen in the preceding code, sorting a set creates a new set object. It does not change the original set object. The following code shows that we cannot sort the set if it contains both string and integer data. 
 6. test_set = 
7. test_set 
//Output 
{‘dgfg’, ‘sd’, ‘aesrfed’, 232, 6767768, 5454} 
8. sorted(test_set) 
//Output 
 Traceback (most recent call last): 
 File «», line 1, in  
 TypeError: ‘<’ not supported between instances of ‘int’ and ‘str’ 





 Merging 
 Set merging is the same as the union of two sets. The following operations are used to merge two sets: 
  set1 | set2 merges two sets and creates a new set object. 
 set1 |= set2 merges two sets and updates set2 elements in set1. 
 set1.update(set2) is same as set1|=set2. It merges two sets and updates set2 elements in set1. 
 set1.union(set2) is same as set1|set2. It merges two sets and creates a new set object. 
 Merging two sets removes duplicates while creating a single set. 
 Example 8.8 shows an example of a set merging operation. 
 Example 8.8: Set merging example 
 1. set1={1,2,3,4} 
2. set2={6,7,8,9} 
3. set1 
//Output 
{1, 2, 3, 4} 
1. set2 
//Output 
{8, 9, 6, 7} 
5. set1|set2 
//Output 
{1, 2, 3, 4, 6, 7, 8, 9} 
6. set1 
//Output 
{1, 2, 3, 4} 
7. set1.union(set2) 

//Output 
{1, 2, 3, 4, 6, 7, 8, 9} 
8. set1 
//Output 
{1, 2, 3, 4} 
 As can be seen from the preceding code, set1 is not modified while merging as we used the union() and | operations. 
 9. set1|=set2 
10. set1 
//Output 
{1, 2, 3, 4, 6, 7, 8, 9} 
11. set1={1,2,3,4} 
12. set1 
//Output 
{1, 2, 3, 4} 
13. set1.update(set2) 
14. set1 
//Output 
{1, 2, 3, 4, 6, 7, 8, 9} 
 As can be seen from the preceding code, set1 is modified while merging as we used the update() and |= operations. 
 15. set3={2,3,9,10,23,56} 
16. set1|set3 
//Output 
{1, 2, 3, 4, 6, 7, 8, 9, 10, 23, 56} 
 As can be seen from the preceding code, duplicates are removed after merging. 





 Count 
 Set does not contain any duplicate value. Thus, each value in the set has always count as 1 (if the set contains the value) or 0 (if the set does not contain the value). An element is present in the set or not can be identified using operations explained in the searching section. 





 Reverse 
 We know that set does not support indexing due to the unordered nature of sets. Thus, the set does not support reversing. In case a user tries to reverse a set using Python’s inbuilt reversed function, Python throws the TypeError as shown in example 
 Example 8.9: Reverse Set Example 
 1. test_set = {23,45,56,257,6,34557,678,344,56676} 
2. test_set 
//Output 
{257, 56676, 678, 6, 45, 23, 344, 56, 34557} 
3. reversed(test_set) 
//Output 
Traceback (most recent call last): 
File «», line 1, in  
TypeError: ‘set’ object is not reversible 





 Copy 
 Python has an inbuilt method for copying a set into another set. The following operations can be used to copy a set into another set: 
  set2 = set1 assigns reference of set1 to Thus, both sets are pointing to the same object. If any value changes in set1 or set2 it is reflected in another set. 
 copy(set1) creates a shallow copy of set1 and creates a new object. Any modification in the original or copied set does not affect the other set. 
 Example 8.10 shows an example of copying the set. 
 Example 8.10: Copy Set Example 
 1. set1 = {1,2,3,4} 
2. set2 = set1 
3. set1 
//Output 
{1, 2, 3, 4} 
4. set2 
//Output 
{1, 2, 3, 4} 
5. set2.remove(3) 
6. set1 
//Output 
{1, 2, 4} 
7. set2 
//Output 
{1, 2, 4} 
8. set1.remove(4) 
9. set1 

//Output 
{1, 2} 
10. set2 
//Output 
{1, 2} 
11. set1 = {1,2,3,4} 
12. set2 = set.copy(set1) 
13. set1 
//Output 
{1, 2, 3, 4} 
14. set2 
//Output 
{1, 2, 3, 4} 
15. set1.remove(3) 
16. set1 
//Output 
{1, 2, 4} 
17. set2 
//Output 
{1, 2, 3, 4} 
18. set2.remove(4) 
19. set1 
//Output 
{1, 2, 4} 
20. set2 
//Output 
{1, 2, 3} 
 
As can be seen from the examples, in case a copy of the set object is created directly using the assignment operation, any modification in the original or copied set affects the other set. But in the case of any modification in the original or new object does not affect other set objects. 





 Set multiplication 
 In Python, a set cartesian product can be achieved by importing a library (itertools) available in Python. Sets cannot be multiplied using the ‘*’ operator. Using the multiplication operator on sets throws a TypeError. The following operation can be used to achieve a Cartesian product of any number of sets in Python: 
  It returns the cartesian product of sets mentioned as arguments. In case only one set is mentioned then the second set is considered as an empty set. 
 Example 8.11 shows the set multiplication example. 
 Example 8.11: Set Multiplication Example 
 1. set1 = 
2. set2 = 
3. 
//Output 
Traceback (most recent call last): 
File “”, line 1, in  
 TypeError: unsupported operand type(s) for *: ‘set’ and ‘int’ 
 As can be seen in the preceding code, set multiplication with scalar is not allowed in Python. 
 4. set1*set2 
//Output 
Traceback (most recent call last): 
File “”, line 1, in  
TypeError: unsupported operand type(s) for *: ‘set’ and ‘set’ 
 As can be seen in the preceding code, multiplying two sets is not allowed in Python. 
 5. import itertools 
 
We need to import the library to perform cartesian product on sets. 
 6. 
//Output 
object at 0x0000017E109C2A00> 
 product() returns an itertools.product object. We need to create a set from the object using the set() constructor. 
 7. set(itertools.product(set1,set2)) 
//Output 
{(4, 4), (2, 4), (1, 2), (2, 1), (3, 4), (4, 1), (3, 1), (4, 3), (1, 1), (1, 4), (4, 2), (2, 3), (3, 3), (2, 2), (3, 2), (1, 3)} 
8. set(itertools.product(set1,set1)) 
//Output 
{(4, 4), (2, 4), (1, 2), (2, 1), (3, 4), (4, 1), (3, 1), (4, 3), (1, 1), (1, 4), (4, 2), (2, 3), (3, 3), (2, 2), (3, 2), (1, 3)} 
9. set(itertools.product(set1,set1,set2)) 
//Output 
{(2, 2, 2), (4, 2, 4), (2, 1, 3), (4, 2, 1), (4, 4, 1), (4, 4, 4), (3, 2, 1), (1, 2, 2), (1, 3, 3), (3, 1, 2), (1, 4, 2), (3, 2, 4), (3, 4, 1), (3, 4, 4), (3, 3, 2), (4, 1, 2), (2, 4, 2), (4, 3, 2), (2, 3, 3), (1, 1, 3), (2, 2, 4), (2, 1, 2), (2, 2, 1), (4, 2, 3), (4, 4, 3), (1, 2, 4), (1, 4, 1), (3, 1, 1), (1, 2, 1), (3, 1, 4), (1, 4, 4), (1, 3, 2), (3, 2, 3), (3, 3, 1), (3, 3, 4), (3, 4, 3), (4, 1, 4), (4, 3, 1), (2, 3, 2), (4, 1, 1), (2, 4, 1), (4, 3, 4), (1, 1, 2), (2, 4, 4), (2, 1, 4), (4, 2, 2), (2, 2, 3), (2, 1, 1), (4, 4, 2), (3, 1, 3), (1, 3, 1), (1, 2, 3), (3, 2, 2), (3, 3, 3), (1, 3, 4), (3, 4, 2), (1, 4, 3), (2, 3, 4), (4, 1, 3), (2, 4, 3), (2, 3, 1), (1, 1, 4), (4, 3, 3), (1, 1, 1)} 
 As can be seen in the preceding code, any number of sets can be mentioned in 
 10. 

//Output 
{(1,), (2,), (3,), (4,)} 
 As can be seen in the preceding code, providing a single set to product() returns a cartesian product of provided set with an empty set. 
 11. 
//Output 
{()} 
 As can be seen in the preceding code, no arguments lead to the creation of an empty set. 





 Set length 
 In Python, len(set) returns the length of the set. Example 8.12 shows an example of the same. 
 Example 8.12: Set length Example 
 1. test_set = {1,2,3,4} 
2. test_set 
//Output 
{1, 2, 3, 4} 
3. len(test_set) 
//Output 
4 





 Set comparison 
 In Python, set comparison can be done using the comparison operators. Comparison operator (==, <, >) can be used to compare sets. 
  == operator returns True if both sets are equal, otherwise, it returns False. 
 < and > checks if one set is a subset of another set. 
 Example 8.13 shows an example of the set comparison. 
 Example 8.13: Set comparison Example 
 1. test_set = {1,2,3,4} 
2. test_set 
//Output 
{1, 2, 3, 4} 
3. test_set1 = {1,2,3,4} 
4. test_set1 
//Output 
{1, 2, 3, 4} 
5. test_set == test_set1 
//Output 
True 
6. test_set < test_set1 
//Output 
False 
7. test_set > test_set1 
//Output 
False 
 As can be seen in the preceding code, test_set and test_set1 are both equal, thus, the == operator returns True and the other comparison operators return False. 
 
8. test_set1 = {0,2,3,4} 
9. test_set1 
//Output 
{0, 2, 3, 4} 
10. test_set == test_set1 
//Output 
False 
11. test_set < test_set1 
//Output 
False 
12. test_set > test_set1 
//Output 
False 
13. test_set1 = {1,2,3,’sd’} 
14. test_set1 
//Output 
{1, 2, 3, ‘sd’} 
15. test_set == test_set1 
//Output 
False 
16. test_set < test_set1 
//Output 
False 
17. test_set > test_set1 
//Output 
False 
 As can be seen in the preceding code, test_set and test_set1 both have different elements, thus, all comparison operators return False. 
 
18. test_set1 = {2,3,4} 
19. test_set1 
//Output 
{2, 3, 4} 
20. test_set > test_set1 
//Output 
True 
21. test_set < test_set1 
//Output 
False 
22. test_set == test_set1 
//Output 
False 
 As can be seen in the preceding code, test_set1 is a subset of thus, > returns True. 





 Maximum and minimum 
 In Python, max(set) returns the maximum element of the set, and min(set) returns the minimum element of the set. Example 8.14 shows an example of getting the maximum and minimum elements of a set. 
 Example 8.14: Maximum and Minimum Example 
 1. test_set = 
2. test_set 
//Output 
{1, 34, 67, 56, 3435} 
3. 
//Output 
3435 
4. 
//Output 
1 
5. test_set = 
6. test_set 
//Output 
{‘a’, ‘bc’, ‘abc’, ‘ab’, ‘ac’} 
7. 
//Output 
‘bc’ 
8. 
//Output 
‘a’ 
 
max() and min() uses comparison operators to compare two elements. As can be seen from the followinmg code, while comparing ‘abc’ and ‘bc’, ‘bc’ is greater as 1st character of ‘abc’ is less than ‘bc’. Comparison operator stops comparing after 1st unequal character. 
 1. test_set = 
2. test_set 
//Output 
{1, 2, ‘s’, ‘c’} 
3. max(test_set) 
//Output 
Traceback (most recent call last): 
File “”, line 1, in  
TypeError: ‘>’ not supported between instances of ‘str’ and ‘int’ 
 As we know that comparison operators cannot compare heterogeneous data types, thus, a set with heterogeneous elements throws TypeError as shown in the preceding code. 





 str() 
 In Python, str(set) returns the string of the set object as shown in example 
 Example 8.15: str() Example 
 1. test_set = {1,2,3} 
2. test_set 
//Output 
{1, 2, 3} 
3. str(test_set) 
//Output 
‘{1, 2, 3}’ 





 all() 
 In Python, all(set) returns True if all elements of a set are True (>0) or if the set is empty as shown in example 
 Example 8.16: all() Example 
 1. test_set = {1,2,3} 
2. all(test_set) 
//Output 
True 
3. test_set = {0,1,2,3} 
4. all(test_set) 
//Output 
False 
5. test_set = {1,2,False} 
6. all(test_set) 
//Output 
False 
7. test_set = {1,2,True} 
8. all(test_set) 
//Output 
True 
9. test_set = set() 
10. all(test_set) 
//Output 
True 





 any() 
 In Python, any(set) returns True if any element of the set is True (>0) as shown in example If a set is empty, it returns False. 
 Example 8.17: any() Example 
 1. test_set={0,1,0} 
2. any(test_set) 
//Output 
True 
3. test_set={0,0,0} 
4. any(test_set) 
//Output 
False 
5. test_set={True,False} 
6. any(test_set) 
//Output 
True 
7. test_set={False} 
8. any(test_set) 
//Output 
False 
9. test_set=set() 
10. any(test_set) 
//Output 
False 





 sum() 
 In Python, sum(set[,start]) returns the sum of all elements of the set. start is an optional argument that specifies the starting number to add in the sum. If start is not specified, then nothing is added to the sum. Example 8.18 shows the sum() example. 
 Example 8.18: sum() Example 
 1. test_set = {1,2,3,4,5} 
2. sum(test_set) 
//Output 
15 
 As can be seen in the following code, start has been specified as 20 and the sum is returned by adding 20 to the total sum of the elements. 
 3. 
//Output 
35 





 Help 
 Python has help() to get operations available on a particular object. Example 8.19 shows an example of Figure and 8.7 shows the output of 
 Example 8.19: Help Example 
 1. 
 
 
Figure 8.4: Set Help Part 1 
 Figure 8.4 shows the first part of operations supported by Python for the set. Figure 8.5 shows the next part of operations. 
 
 
Figure 8.5: Set Help Part 2 
 Figure 8.6 shows the third part of operations supported by Python for the set. 
 
 Figure 8.6: Set Help Part 3 
 
Figure 8.7 shows the last part of operations supported by Python for the set. 
 
 Figure 8.7: Set Help Part 4 
 As can be seen from the preceding figures, there are many operations supported by Python. Some of which we have covered, and some other operations will be covered in the next sections. We will skip those operations which are not widely used in the set data structure. 





 enumerate() 
 In Python, enumerate(set[,start]) returns enumerate object with counters attached with each element of set. start is an optional argument that specifies the starting number of the counting. If start is not specified, then counting starts from 0. Example 8.20 shows the enumerate() example. 
 Example 8.20: enumerate() Example 
 1. test_set = 
2. enumerate(test_set) 
//Output 
object at 0x0000024D60869CC0> 
 As can be seen from the preceding code, enumerate(set) returns an enumerate object. To get the value we need to convert it into set or list using constructor as shown in the following code: 
 3. 
//Output 
{(0, ‘a’), (2, ‘d’), (1, ‘c’), (3, ‘b’)} 
 As can be seen in the following code, start has been specified as 20 and the counting starts from 20 for the set enumeration. 
 4. 
//Output 
{(21, ‘c’), (22, ‘d’), (20, ‘a’), (23, ‘b’)} 





 Set concepts 
 As we all know, the set is widely used in Mathematics and it has its own concepts and operations defined. Python provides built-in operations for set concepts to ease the programmer’s life while working on sets. The following subsections have a detailed explanation of Python’s built-in operations to support set concepts. 





 Union 
 Python has an in-built union() for sets union concept. Union of two sets creates a new set containing all elements present in both sets, removing the duplicates. It does not modify any of the sets. Example 8.21 shows an example of the union of two sets. 
 Example 8.21: union() Example 
 1. test_set1 = {1,2,3,4,5,6} 
2. test_set2 = {4,5,6,7,8,9} 
3. test_set1.union(test_set2) 
//Output 
{1, 2, 3, 4, 5, 6, 7, 8, 9} 
4. test_set1 
//Output 
{1, 2, 3, 4, 5, 6} 





 Intersection 
 Python has an in-built intersection() for sets intersection concept. The intersection of two sets creates a new set containing elements present in both sets. It does not modify any of the sets. Example 8.22 shows examples of the intersection of two sets. 
 Example 8.22: intersection() Example 
 1. = {1,2,3,4,5,6} 
2. test_set2 = {4,5,6,7,8,9} 
3. test_set1.intersection(test_set2) 
//Output 
{4, 5, 6} 
4. test_set1 
//Output 
{1, 2, 3, 4, 5, 6} 
5. test_set2 
//Output 
{4, 5, 6, 7, 8, 9} 
 As can be seen from the preceding code, intersection() does not change any of the sets. In case both sets have no common elements, intersection() returns an empty set as shown in the following code: 
 6. test_set1 = {1,2,3,4,5} 
7. test_set2 = 
8. test_set1.intersection(test_set2) 
//Output 
set() 





 Difference 
 Python has the following in-built operations to get the difference between two sets: 
  set1.difference(set2) returns a set of elements present in set1 but not present in set2. This operation is asymmetrical, which means it yields different results based on which set is placed as set1. 
 set1.symmetric_difference(set2) returns a set of symmetric difference between sets. It returns the set containing elements that are present only in one set. It is the difference between Union and Intersection of sets mentioned. 
 None of the previously-mentioned operations modify existing sets. Example 8.23 shows examples of the difference between the two sets. 
 Example 8.23: difference() Example 
 1. test_set1 = {1,2,3,4,5,6} 
2. test_set2 = {4,5,6,7,8,9} 
3. test_set1.difference(test_set2) 
//Output 
{1, 2, 3} 
4. test_set2.difference(test_set1) 
//Output 
{8, 9, 7} 
 
As can be seen from the preceding code, difference() yields different results based on which set is the first set. The first set is known as the base set, thus, in the first test_set1 is the base set, whereas, in the second test_set2 is the base set. As can be seen from the following code, symmetric_difference() yields the same result irrespective of the base set. 
 5. test_set1.symmetric_difference(test_set2) 
//Output 
{1, 2, 3, 7, 8, 9} 
6. test_set2.symmetric_difference(test_set1) 
//Output 
{1, 2, 3, 7, 8, 9} 
 In case there is no difference between both sets, difference() and symmetric_difference() returns an empty set as shown in the following code: 
 7. 
//Output 
set() 
8. 
//Output 
set() 





 Subset and superset 
 Python has the following in-built operations to check if one set is a Subset or Superset of another set: 
  set1.issubset(set2) returns True if set1 is subset of set2, otherwise, it returns False. This operation is asymmetrical and the return value changes if the base set changes. 
 set1.issuperset(set2) returns True if set1 is superset of set2, otherwise, it returns False. This operation is asymmetrical and the return value changes if the base set changes. 
 Example 8.24 shows examples of issubset() and 
 Example 8.24: issubset() and issuperset() Example 
 1. test_set1 = {1,2,3,4,5} 
2. test_set2 = {1,2,3} 
3. test_set1.issubset(test_set2) 
//Output 
False 
4. test_set2.issubset(test_set1) 
//Output 
True 
5. test_set1.issuperset(test_set2) 
//Output 
True 
6. test_set2.issuperset(test_set1) 
//Output 
False 
 
In case, both sets are equal then issubset() and issuperset() always return True, no matter which set is base set, as shown in the following code: 
 1. test_set1 = {1,2,3,4} 
2. test_set2 = {1,2,3,4} 
3. test_set1.issubset(test_set2) 
//Output 
True 
4. test_set2.issubset(test_set1) 
//Output 
True 
5. test_set1.issuperset(test_set2) 
//Output 
True 
6. test_set2.issuperset(test_set1) 
//Output 
True 





 Disjoint sets 
 Python has isdisjoint() in-built operations to check if two sets are disjoint sets as shown in example Two sets are disjoint sets if they have no element in common. It returns True if both sets are disjoint sets, otherwise, it returns False. isdisjoint() is symmetrical operation and the return value does not depend on the base set. 
 Example 8.25: isdisjoint() Example 
 1. test_set1 = {1,2,3,4} 
2. test_set2 = {1,2,3,4,5,6,7} 
3. test_set1.isdisjoint(test_set2) 
//Output 
False 
4. test_set2.isdisjoint(test_set1) 
//Output 
False 
5. test_set1 = {1,2,3,4} 
6. test_set2 = {5,6,7} 
7. test_set1.isdisjoint(test_set2) 
//Output 
True 
8. test_set2.isdisjoint(test_set1) 
//Output 
True 





 Conclusion 
 This chapter gives details about the set data structure available in Python. Python library has a vast list of operations for handling sets, which helps the user to write programs efficiently and effectively. Python has in-built functions for set mathematical concepts. The next chapter will focus on the first user-defined data structure known as In the next chapter, we will dig into details on array creation and operations supported in Python’s array library. 





 Points to remember 
  Set data structure is a collection of unique values. No duplicate value is allowed in sets. 
 Set can store heterogeneous data. 
 Set does not store data in sequential memory. It calculates the hash for the location. In case of hash collision, set stores data by creating a linked list at the memory location. 
 Sets are mutable and data can be modified easily. 
 Sets are created using set() constructor or curly braces like set(1,2,3) or {1,2,3}. 
 The empty set can only be created using the set() constructor. Empty curly braces create an empty dictionary. 
 Python supports a vast majority of operations for the set data structure. 
 Python has in-built functions for set Mathematical concepts like Union, Intersection, and so on. 





 Multiple-choice questions 
  What is the type of variable created by the following program? 
 {} 
  List 
 Dictionary 
 Set 
 Tuple 
 What will be the output of the following program? 
 test = {1,2,3} 
test[1] 
  2 
 1 
 TypeError 
 KeyError 
 What will be the output of the following program? 
 test = [1,2,3,4,1,3,4,6,3,2,6,2,7] 
set(test) 
  {1,2,3,4,1,3,4,6,3,2,6,2,7} 
 TypeError 
 {1, 2, 3, 4, 6, 7} 
 None 
 What will be the output of the following program? 
 test = {1,2,3,4} 
test.add(2) 
  {1,2,3,4} 
 {1,2,2,3,4} 
 Error: add not supported 
 KeyError: 2 already present 
 
Which operation(s) can be used to merge elements of two sets? 
  set1.update(set2) 
 set1.difference_update(set2) 
 set1 + set2 
 set1 | set2 
 Which operation(s) are asymmetric in nature? 
  set1.union(set2) 
 set1.difference(set2) 
 set1.isdisjoint(set2) 
 set1.issubset(set2) 
 set1.issuperset(set2) 
 What will be the output of the following program? 
 test = {1,2,3} 
test.discard(4) 
  KeyError 
 Error: Discard not supported 
 {1,2,3} 
 None 
 What will be the output of the following program? 
 set1 = {1,2,3,4} 
set2 = {3,4,5,6} 
set1.symmetric_difference(set2) 
  {1,2} 
 {5,6} 
 {1,2,5,6} 
 Error 





 Answers 
  b 
 c 
 c 
 a 
 a, d 
 b, d, e 
 c 
 c 





 Questions 
  isdisjoint() returns _________________if there are some common elements in both sets. 
 Write code to check if a particular element is present in the set or not. 
 Write code to get the index of a particular item in the set. 
 Write code to check if two given sets have any common element or not. If they have common elements, then print them. 
 Write code to remove the intersection of the second set from the first set. 
 Write code to check if the list has any duplicate elements. 
 Write a code to zip two sets. 
 Write a program to compare two sets. 





 Answers 
  False 
 test_set = {1,2,3,4} 
 1 in test_set 
 test_set = {1,2,3,4} 
 i=0 
for val in test_set: 
if val==4: 
break 
i+=1 
print(i) 
 if(set1.isdisjoint(set2)==False): 
 set1.intersection(set2) 
 set1.difference_update(set1.intersection(set2)) 
 if(len(list1)>len(set(list1))): 
print(“Duplicate values exist”) 
else: 
print(“Duplicate values do not exist”) 
 zip(set1,set2) 
 if(set1==set2): 
print(“Both sets are equal”) 
elif(set1
print(“set1 is subset of set2”) 
elif(set1>set2): 
print(“set1 is superset of set2”) 
else: 
print(“Sets has no relation”) 





CHAPTER 9 
 Arrays 





 Introduction 
 Chapters 5 to 8 give the implementation details and operations supported for various built-in data structures available in Python. Python has one more built-in data structure known as Arrays were a part of the user-defined data structure in Python 2. Python 3 defines a library for array data structure; thus, the array is considered as built-in data structure in Python 3. 





 Structure 
 In this chapter, we will be discussing following topics: 
  Introducing array 
  Array creation 
 Accessing array data 
 Array operations 
  Traversing 
 Insertion 
 Deletion 
 Searching 
 Sorting 
 Merging 
 Count 
 Reverse 
 Copy 
 Array multiplication 
 Array length 
 Array comparison 
 Maximum and minimum 
 str() 
 tolist() 
 Help 
 Use case 





 Objectives 
 This chapter will help you to understand the array data structure and how it can be implemented in Python. After completing this chapter, you will be able to know which Python operations/concepts help create array data structures. You will be able to write Python programs using the array and data structure. 





 Introducing array 
 In Python 2, the array was implemented using a list and thus defined as user-defined data structures. In Python 3, array library has been included and thus defined as a built-in data structure. Array data structure is sequenced like list data structure. The Arrays are mutable and can be modified easily. The Array data structure is different from a list data structure as an array cannot hold heterogeneous data, but list can. 
 The array data structure is the ordered collection of data. Ordered collection means it keeps the order in which data is added in the array. Array data structure is stored sequentially in memory-like list data structure as shown in figure 
 

 Figure 9.1: Array data structure 





 Array creation 
 Array in Python can be created by including an array library and using the array() function of the library. array() has following syntax: 
 array(data_type, here, data_type can be ‘i’ for integer, ‘d’ for double, ‘b’ for boolean, and so on. 
 The array can save only homogeneous data. Empty array creation is done by calling To check the type of any variable in Python, type() can be used. Example 9.1 shows examples of creating different arrays. Table 9.1 shows the data_type codes used while creating the array object. 
 object. object. 
object. 
object. 
object. 
object. 
object. 
object. 
object. 
object. 
object. 
object. 
object. 
object. 
object. 
 
Table 9.1: Data type and codes for array creation 
 
 Note: 
  The ‘u’ typecode corresponds to Python’s Unicode character. On narrow-builds this is 2-bytes and on wide builds this is 4-bytes. The ‘u’ typecode for Unicode characters is deprecated since version 3.3, will be removed in version 4.0. 
 The ‘q’ and ‘Q’ type code are only available if the platform C compiler used to build Python supports ‘long long’, or, ‘int_64’ on Windows. 
 
 Example 9.1: Array creation example 
 1. import array as arr 
2. empty_arr = 
3. empty_arr 
//Output 
array(‘i’) 
4. type(empty_arr) 
//Output 
‘array.array’> 
 The preceding example creates an empty integer array. The following example shows the creation of different types of arrays: 
 5. int_arr = 
6. int_arr 
//Output 
array(‘i’, [1, 2, 3]) 
7. double_arr = 
8. double_arr 

//Output 
array(‘d’, [1.2, 3.4, 5.6]) 
 Specifying heterogenous data type while creating array gives error as shown in the following example: 
 9. test_arr = arr.array(‘i’, [1,2,3,4.5]) 
//Output 
Traceback (most recent call last): 
File “”, line 1, in  
TypeError: integer argument expected, got float 





 Accessing array data 
 Array data can be accessed using index-like list. Array indices start at 0. In case the index mentioned while accessing the data element is not available, IndexError is thrown by Python mentioning out of of the array. 
 Multiple elements in the array can be accessed using slicing of indices same as a list. Range of values can be accessed using syntax array[x:y], the search will start including x till y, y is excluded. If x value is not specified, then the starting index is considered as 0. If the y value is not specified, then the ending index is taken as the length of the array. If x and y are not specified, then the full array will be printed. A Negative index can also be specified while accessing the array data using range index or single index. 
 Example 9.2 shows how to access a single data value in an array. As shown in the following example, an array has size 5 and thus accessing elements beyond that length gives an error. Example 9.2 also shows how we can access data values using a negative index. The Table 9.2 shows the positive and negative indexes for each value in array defined in example 
 


 Table 9.2: Positive and negative index for array defined in Example 9.2 
 Example 9.2: array data access example 
 1. import array as arr 

2. test_arr = arr.array(‘i’, [1,2,3,4,5]) 
3. test_arr 
//Output 
array(‘i’, [1, 2, 3, 4, 5]) 
4. test_arr[0] 
//Output 
1 
5. test_arr[5] 
//Output 
Traceback (most recent call last): 
File “”, line 1, in  
IndexError: array index out of range 
6. 
//Output 
5 
7. 
//Output 
4 
8. 
//Output 
Traceback (most recent call last): 
File “”, line 1, in  
IndexError: array index out of range 
9. 
//Output 
array(‘i’, [2, 3]) 
10. 
//Output 
array(‘i’, [3, 4]) 
 
The following examples show that if we mention an index greater than the size of an array while slicing, there is no error thrown. Python returns data till the last index. 
 11. 
//Output 
array(‘i’, [2, 3, 4, 5]) 
12. 
//Output 
array(‘i’, [1, 2]) 
 The following examples show that if we skip starting or ending index, the Python returns data from the first or till the last index: 
 13. 
//Output 
array(‘i’, [1, 2, 3]) 
14. 
//Output 
array(‘i’, [3, 4, 5]) 
15. 
//Output 
array(‘i’, [1, 2, 3, 4, 5]) 
16. 
//Output 
array(‘i’, [2, 3, 4, 5]) 
17. 
//Output 
array(‘i’, [1, 2, 3]) 
 The following examples show how existing array element can be modified: 
 18. import array as arr 

19. test_arr = 
20. 
21. test_arr 
//Output 
array(‘i’, [1, 2, 10, 4, 5]) 
22. = 
23. test_arr 
//Output 
array(‘i’, [11, 12, 13, 10, 4, 5]) 





 Array operations 
 Developers can perform many of the basic data structure operations mentioned in Chapter 4 (Data structure introduction) on an array. Additional to basic data structure operations, Python supports other in-built operations which can be performed on an array. The following sub-sections give details about each operation that can be performed on array data structure in Python. 





 Traversing 
 Traversing an array means accessing each data value of the array one by one and performing an operation or printing each data value. Example 9.3 shows an example on how to traverse array using for loop in Python. Following example declares array and then prints each value in the array: 
 Example 9.3: Traversing array example 
 1. import array as arr 
2. test_arr = arr.array(‘i’,[1,2,3,4,5]) 
3. test_arr 
//Output 
array(‘i’, [1, 2, 3, 4, 5]) 
4. for val in test_arr: 

6. 
//Output 
1 
2 
3 
4 
5 
 The previous example shows traversing using for loop and printing values of the array. Now the following example shows traversing using for loop and printing values at index of the array: 
 1. for i in range(0,5): 

3. 
//Output 

1 
2 
3 
4 
5 





 Insertion 
 An Array is mutable collection of data; thus, new elements can be inserted into an array easily. Following methods can be used to insert new elements in an array: 
  adds element at index in given array. 
 adds an element at the end of the array. 
 adds elements of the list to the end of the array. 
 adds elements of the list to the end of the array. 
 Example 9.4 shows the example of inserting new elements in n array. 
 Example 9.4: Array insertion example 
 1. import array as arr 
2. test_arr = arr.array(‘i’,[1,2,3,4]) 
3. test_arr 
//Output 
array(‘i’, [1, 2, 3, 4]) 
4. test_arr.insert(1,5) 
5. test_arr 
//Output 
array(‘i’, [1, 5, 2, 3, 4]) 
6. test_arr.insert(5,5) 
7. test_arr 
//Output 
array(‘i’, [1, 5, 2, 3, 4, 5]) 
 
As it can be seen from preceding example, if index is equivalent to array size, new element is added at the end of the array. Similarly, if index provided is greater than array size, new element is added at the end as shown in following example: 
 8. test_arr.insert(9,5) 
9. test_arr 
//Output 
array(‘i’, [1, 5, 2, 3, 4, 5, 5]) 
10. test_arr.append(10) 
11. test_arr 
//Output 
array(‘i’, [1, 5, 2, 3, 4, 5, 5, 10]) 
12. test_arr.extend([20,21,22,23]) 
13. test_arr 
//Output 
array(‘i’, [1, 5, 2, 3, 4, 5, 5, 10, 20, 21, 22, 23]) 
14. test_arr.fromlist([30,31]) 
15. test_arr 
//Output 
array(‘i’, [1, 5, 2, 3, 4, 5, 5, 10, 20, 21, 22, 23, 30, 31]) 





 Deletion 
 Array is mutable collection of data; thus, individual element can be deleted from the array easily. Following operations can delete array elements: 
  Removes the element from the array. If element does not exist, then returns ValueError. If multiple values exist, then removes 1st occurrence of the element. 
 Removes element at a given index of the array. It returns the value of the element removed. In case index does not lie within the size range of the array, it returns IndexError. Negative indexing can also be used to remove an element. 
 del Removes element at the given index of the array. In case index does not lie within the size range of array, it returns IndexError. Negative indexing can also be used to remove an element. 
 del Removes the array. In case array does not exist, it returns NameError. 
 Example 9.5 shows the example of the array deletion operations. 
 Example 9.5: Array deletion example 
 1. import array as arr 
2. test_arr = arr.array(‘i’,[1,2,3,4,5,1,3,5,1]) 
3. test_arr 
//Output 
array(‘i’, [1, 2, 3, 4, 5, 1, 3, 5, 1]) 
4. test_arr.remove(1) 
5. test_arr 
//Output 

array(‘i’, [2, 3, 4, 5, 1, 3, 5, 1]) 
6. test_arr.remove(4) 
7. test_arr 
//Output 
array(‘i’, [2, 3, 5, 1, 3, 5, 1]) 
8. test_arr.remove(7) 
//Output 
Traceback (most recent call last): 
File “”, line 1, in  
ValueError: array.remove(x): x not in array 
9. 
//Output 
5 
10. test_arr 
//Output 
array(‘i’, [2, 3, 1, 3, 5, 1]) 
11. 
//Output 
Traceback (most recent call last): 
File “”, line 1, in  
IndexError: pop index out of range 
12. 
//Output 
5 
13. test_arr 
//Output 
array(‘i’, [2, 3, 1, 3, 1]) 
14. del 
15. test_arr 

//Output 
array(‘i’, [3, 1, 3, 1]) 
16. del 
//Output 
Traceback (most recent call last): 
File “”, line 1, in  
IndexError: array assignment index out of range 
17. del 
18. test_arr 
//Output 
array(‘i’, [3, 1, 3]) 
19. del test_arr 
20. test_arr 
//Output 
Traceback (most recent call last): 
File “”, line 1, in  
NameError: name ‘test_arr’ is not defined 
21. del test_arr 
//Output 
Traceback (most recent call last): 
File “”, line 1, in  
NameError: name ‘test_arr’ is not defined 





 Searching 
 To check if data value exists in the array or not, “in” keyword can be used. To check the index of the data value in the array, a linear search algorithm can be used. Index of any element in an array can be extracted using If the element is not present in the array, it will throw ValueError. 
 Example 9.6 shows the example of array data searching. 
 Example 9.6: Array data search example 
 1. import array as arr 
2. test_arr = arr.array(‘i’, [1,2,3,4,5,6]) 
3. test_arr 
//Output 
array(‘i’, [1, 2, 3, 4, 5, 6]) 
4. 2 in test_arr 
//Output 
True 
5. 7 in test_arr 
//Output 
False 
6. test_arr.index(2) 
//Output 
1 
 The preceding example shows that the function returns the index of the element present in the array. The following example shows the error returned by the array.index(element) if the element provided does not exist in the array. 
 7. test_arr.index(7) 
//Output 
Traceback (most recent call last): 

File “”, line 1, in  
ValueError: array.index(x): x not in array 
 Following example shows the program to get the index of an element in an array without using 
 8. for i in range(0,len(test_arr)): 
test_arr[i] == 4: 

11. 
//Output 
3 





 Sorting 
 Python has inbuilt methods for sorting array elements in ascending or descending order. The following function can be used for array sorting: 
 sorted(array, reverse) sorts the array in ascending order if the reverse is False. In case the reverse is True, it sorts an array in descending order. 
 Example 9.7 shows array sorting example. 
 Example: 9.7 Array sorting example 
 1. import array as arr 
2. test_arr = arr.array(‘i’, [2,3,1,4,3,8]) 
3. sorted(test_arr) 
//Output 
[1, 2, 3, 3, 4, 8] 
4. test_arr 
//Output 
array(‘i’, [2, 3, 1, 4, 3, 8]) 
5. sorted(test_arr, reverse = 
//Output 
[8, 4, 3, 3, 2, 1] 
6. test_arr 
//Output 
array(‘i’, [2, 3, 1, 4, 3, 8]) 
 It can be seen in the previous example, sorting an array creates a new array object. It does not change the original array object. 





 Merging 
 Array merging is as simple as string merging or concatenation. ‘+’ operation merges two array objects into one. As array objects cannot have heterogeneous data, thus arrays with a different types of data types cannot be merged. 
 Example 9.8 shows example of array merging operation. 
 Example 9.8: Array merging example 
 1. import array as arr 
2. test_arr1 = 
3. test_arr2 = 
4. test_arr1 + test_arr2 
//Output 
array(‘i’, [1, 2, 3, 1, 2, 3]) 
 It can be seen in the following example that merging an array with different data types returns TypeError. 
 1. test_arr1 = 
2. test_arr2 = 
3. test_arr1 + test_arr2 
//Output 
Traceback (most recent call last): 
File “”, line 1, in  
TypeError: bad argument type for built-in operation 





 Count 
 Python has an inbuilt method for counting the number of data values in an array. To count the number of occurrences of a particular value in an array, the following method can be used: 
  array.count(element) counts and returns the occurrences of an element in an array object. If the element does not exist in the array, it returns 0 value. 
 Example 9.9 shows an example of element count in an array. 
 Example 9.9: Array count example 
 1. import array as arr 
2. test_arr = arr.array(‘i’,[1,2,3,4,1,3,4,2,4]) 
3. test_arr 
//Output 
array(‘i’, [1, 2, 3, 4, 1, 3, 4, 2, 4]) 
4. test_arr.count(1) 
//Output 
2 
5. test_arr.count(4) 
//Output 
3 
6. test_arr.count(6) 
//Output 
0 





 Reverse 
 To reverse the order of an array, Python has the following inbuilt functions: 
  Returns a new iterator object with reverse order. To obtain, reversed array, we need to iterate over iterator and create a new array. Or a new array can be created from iterator using arr.array(,iterator) method. 
 Reverses the array and changes the existing array. 
 Reverses the elements and returns a new array object. 
 Example 9.10 shows example of reversing the array. 
 Example 9.10: Reverse array example 
 1. import array as arr 
2. test_arr = 
3. test_arr 
//Output 
array(‘i’, [3, 54, 7, 2, 56, 8]) 
4. reversed(test_arr) 
//Output 
object at 0x000001B8006CD760> 
5. 
//Output 
array(‘i’, [8, 56, 2, 7, 54, 3]) 
6. test_arr 
//Output 
array(‘i’, [3, 54, 7, 2, 56, 8]) 
7. 

//Output 
array(‘i’, [8, 56, 2, 7, 54, 3]) 
8. test_arr 
//Output 
array(‘i’, [3, 54, 7, 2, 56, 8]) 
 The following code shows how to converts a reversed objects into an array iteratively. A list is created from reversed iterator object. Array can be created using list by arr.array(, 
 9. list = [] 
10. for x in reversed(test_arr): 

12. 
13. list 
//Output 
[8, 56, 2, 7, 54, 3] 
14. reversed_arr = arr.array(‘i’,list) 
15. reversed_arr 
//Output 
array(‘i’, [8, 56, 2, 7, 54, 3]) 
16. test_arr 
//Output 
array(‘i’, [3, 54, 7, 2, 56, 8]) 
 The following code shows reverse() reverses and modifies original array object. 
 17. test_arr.reverse() 
18. test_arr 
//Output 
array(‘i’, [8, 56, 2, 7, 54, 3]) 





 Copy 
 Python has an inbuilt method for copying an array into another array. The following methods can be used to create a copy of an array: 
  deepcopy() creates a deep copy. It creates a new array object and copies all data from the source array to the new array. Any modification on the new array does not affect the source array. Thus, both arrays are independent objects. 
 = creates a copy of an array and does not create a new object. Any modification on the new array affects the source array and vice-versa. Both arrays are not independent objects. 
 Example 9.11 shows an example of copying the array. 
 Example 9.11: Copy array example 
 1. import array as arr 
2. test_arr = 
3. test_arr 
//Output 
array(‘i’, [1, 2, 3, 4, 5]) 
4. from copy import deepcopy 
5. new_arr = deepcopy(test_arr) 
6. new_arr 
//Output 
array(‘i’, [1, 2, 3, 4, 5]) 
7. new_arr1 = test_arr 
8. new_arr1 
//Output 
array(‘i’, [1, 2, 3, 4, 5]) 

9. 
10. new_arr 
//Output 
array(‘i’, [1, 3, 4, 5]) 
11. test_arr 
//Output 
array(‘i’, [1, 2, 3, 4, 5]) 
 It can be seen from the previous example, removing element 2 from new_arr does not remove the element from 
 12. new_arr1 
//Output 
array(‘i’, [1, 2, 3, 4, 5]) 
13. 
14. new_arr1 
//Output 
array(‘i’, [1, 2, 4, 5]) 
15. test_arr 
//Output 
array(‘i’, [1, 2, 4, 5]) 
16. new_arr 
//Output 
array(‘i’, [1, 3, 4, 5]) 
 It can be seen from the previous example; removing the element 3 from new_arr1 removes the element from test_arr but does not affect 
 17. 
18. test_arr 
//Output 
array(‘i’, [1, 2, 4]) 

19. new_arr 
//Output 
array(‘i’, [1, 3, 4, 5]) 
20. new_arr1 
//Output 
array(‘i’, [1, 2, 4]) 
 It can be seen from previous example, removing element 5 from test_arr removes element from new_arr1 but does not affect 





 Array multiplication 
 In Python, there does not exist any in-built method for array multiplication. Multiplying array with scalar using ‘*’ operator leads to repetition of array elements as shown in example 
 Example 9.12: Array multiplication example 
 1. import array as arr 
2. test_arr = arr.array(‘i’,[1,2,3,4]) 
3. test_arr 
//Output 
array(‘i’, [1, 2, 3, 4]) 
4. test_arr*2 
//Output 
array(‘i’, [1, 2, 3, 4, 1, 2, 3, 4]) 
5. test_arr*3 
//Output 
array(‘i’, [1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4]) 





 Array length 
 In Python, len(array) returns the length of the array. Example 9.13 shows an example of the same. 
 Example 9.13: Array length example 
 1. import array as arr 
2. test_arr = 
3. test_arr 
//Output 
array(‘i’, [1, 2, 3, 4, 5]) 
4. len(test_arr) 
//Output 
5 





 Array comparison 
 In Python, tuple comparison can be done using comparison operators. Comparison operator (==, <, >) can be used to compare arrays. These operators return True or False based on the comparison result. If two elements are unequal, an array with 1st less value is considered as less than the other array. The comparison stops after finding 1st unequal element. 
 Example 9.14 shows example of the array comparison. 
 Example 9.14: Array comparison example 
 1. import array as arr 
2. test_arr = arr.array(‘i’,[1,2,3,4,5]) 
3. test_arr 
//Output 
array(‘i’, [1, 2, 3, 4, 5]) 
4. test_arr1 = arr.array(‘i’,[1,2,3,4,5]) 
5. test_arr1 
//Output 
array(‘i’, [1, 2, 3, 4, 5]) 
6. test_arr1 == test_arr 
//Output 
True 
7. test_arr1 > test_arr 
//Output 
False 
8. test_arr1 = arr.array(‘i’,[1,2,6,4,5]) 
9. test_arr1 
//Output 
array(‘i’, [1, 2, 6, 4, 5]) 
10. test_arr1 == test_arr 

//Output 
False 
11. test_arr1 > test_arr 
//Output 
True 
12. test_arr1 < test_arr 
//Output 
False 
13. test_arr = arr.array(‘i’,[1,2,3,4,8]) 
14. test_arr1 == test_arr 
//Output 
False 
15. test_arr1 > test_arr 
//Output 
True 
16. test_arr1 < test_arr 
//Output 
False 
17. test_arr1 = arr.array(‘i’,[1,2,6,4]) 
18. test_arr1 
//Output 
array(‘i’, [1, 2, 6, 4]) 
19. test_arr1 == test_arr 
//Output 
False 
20. test_arr1 > test_arr 
//Output 
True 
21. test_arr1 < test_arr 

//Output 
False 





 Maximum and minimum 
 In Python, max(array) returns the maximum element of the array, and min(array) returns the minimum element of the array. Example 9.15 shows an example of getting the maximum and minimum elements of an array. 
 Example 9.15: Maximum and Minimum example 
 1. import array as arr 
2. test_arr = arr.array(‘i’, [1,3,45,5,34,67,23,57,34]) 
3. test_arr 
//Output 
array(‘i’, [1, 3, 45, 5, 34, 67, 23, 57, 34]) 
4. max(test_arr) 
//Output 
67 
5. min(test_arr) 
//Output 
1 





 str() 
 In Python, str(array) returns the string of array object as shown in example 
 Example 9.16: str() example 
 1. import array as arr 
2. test_arr = 
3. test_arr 
//Output 
array(‘i’, [1, 2, 3, 4]) 
4. str(test_arr) 
//Output 
“array(‘i’, [1, 2, 3, 4])” 





 tolist() 
 In Python, array.tolist() returns the array by converting it into list data type as shown in example 
 Example 9.17: tolist() example 
 1. import array as arr 
2. test_arr = 
3. test_arr 
//Output 
array(‘i’, [1, 2, 3, 4]) 
4. test_arr.tolist() 
//Output 
[1, 2, 3, 4] 





 Help 
 Python has help() to get operations available on a particular object. Example 9.18 shows example of Figure 9.2 to 9.7 shows output of 
 Example 9.18: Help Example 
 1. import array as arr 
2. help(arr) 
 
 
Figure 9.2: Array Help Part 1 
 Figure 9.2 shows 1st part of the help output. It shows the supported data type for array creation. 
 
 Figure 9.3: Array Help Part 2 
 Figure 9.3 shows 2nd part of the help output on the command prompt. It shows the methods and attributes defined in the array library of Python. 
 

 Figure 9.4: Array Help Part 3 
 Figure 9.4 shows 3rd part of the help output on the command prompt. It shows the static methods and data descriptors defined in Python for array library. 
 

 Figure 9.5: Array Help Part 4 
 
Figure 9.5 shows 4th part of the help output on the command prompt. It shows the methods defined in Python for the array library. 
 
 Figure 9.6: Array Help Part 5 
 Figure 9.6 shows the 5th part of the help output on the command prompt. It shows the second set of methods defined in Python for the array library. 
 

 Figure 9.7: Array Help Part 6 
 Figure 9.7 shows the 6th part of the help output on the command prompt. It shows the third set of methods defined in Python for the array library. 





 Use case 
 It is a thin wrapper on C arrays that provides space-efficient storage of basic C-style data types. These arrays are faster and use less memory than lists if you don’t need to modify them. Python array module is not used popularly, they are mainly used if there is a need for interface with C code. 





 Conclusion 
 This chapter gives details about the array data structure available in Python. Python library has a vast list of operations for handling array, which helps the user to write a program efficiently and effectively. The Array is mutable object and thus can be manipulated easily. In the next chapter, we will focus on first user-defined data structure known as 
 We will dig into details on stack creation and operations supported in Python’s stack library. 





 Points to remember 
  Array data structure does not store heterogeneous data. 
 Array stores data in sequential memory. 
 Array is mutable and can be modified. 
 Array can be created by importing “array” module. 
 Python supports the vast majority of operations for array data structure. 
 Array module is not used popularly in Python. 
 Array module is a thin wrapper for C arrays and should only be used if there is a need for an interface with C Code. 





 Multiple choice questions 
  What typecode is supported for array creation? 
  c 
 b 
 s 
 i 
 What will be the output of the following program? 
 import array as arr 
arr.array(‘i’, [1.5,2,3,4.5]) 
  array(‘d’, [1.5,2,3,4.5]) 
 array(‘i’, [1.5,2,3,4.5]) 
 array(‘f’, [1.5,2,3,4.5]) 
 TypeError 
 Which operation(s) merge two arrays? 
  array1.update(array2) 
 array1.extend(array2) 
 array1+array2 
 None 
 Which operation can add an element at given index? 
  array.add(element, index) 
 array.add(index, element) 
 array.insert(element, index) 
 array.insert(index, element) 
 Which method(s) can be used to reverse values of an array? 
  array.reverse() 
 reversed(array) 
 array [::-1] 
 array.sort(reverse=True) 





 Answers 
  b, d 
 d 
 c 
 d 
 a, b, c 





 Questions 
  Write code to create a float array. 
 Write code to search an element in an array. 
 Write code to add an element to the end of array. 
 Write code to reverse an array without creating a new array object. 
 Write code to get occurrence of an element in an array. 
 Write code to find if array has duplicate element. 
 Write code to find maximum and minimum elements in unsorted array. 
 Write code to convert a list to an array. 





 Answers 
  import array as arr 
 test_arr = arr.array(‘d’,[1.2,3.4,5.6]) 
 .index() 
 import array as arr 
 test_arr = arr.array(‘i’,[1,2,3,4,5]) 
test_arr.append(6) 
 import array as arr 
 test_arr = arr.array(‘d’,[1.2,3.4,5.6]) 
test_arr.reverse() 
 .count() 
 if(len() != len(set())): 
print(“Duplicates present”) 
 max() 
 min() 
 import array as arr 
 list = [1,2,3] 
test_arr = arr.array(‘i’,list) 





CHAPTER 10 
 Stack 





 Introduction 
 Chapters 5 to 9 give implementation details and operations supported for built-in data structures available in Python. Python supports many user-defined data structures like stack, queue, and so on. User-defined data structures give more control to the programmer as the programmer can customize the data structure implementation and operations supported. 
 The stack data structure is like a pile of books, where you add or remove a book from the top of the pile. Stack is a linear data structure and is used in many real-time features like undo in a document editor. Stack in Python is majorly implemented using a list data structure. An understanding of stack can help you in writing programs that are time- and memory-efficient. You will be able to write programs like balancing parenthesis, checking palindromes, and so on. 





 Structure 
 In this chapter, we will be discussing the following topics: 
  Introducing stack 
 Creating stack 
 Stack operations 
 Push 
 Pop 
 Peek 
 isEmpty 
 Stack using list 
 Stack using deque 
 Stack using LifoQueue 
 Stack advantages 
 Stack use cases 





 Objectives 
 After completing this chapter, you will be able to implement and define stacks in Python. You will be able to write stack operations in Python and write efficient stack programs. 





 Introducing stack 
 This chapter will help you to understand the stack data structure and how it can be implemented in Python. The stack data structure is a linear data structure like the list data structure. It stores elements on Last-In-First-Out principle. LIFO means the last element to be added will be the first element to be removed. Thus, the addition and deletion of elements happen on a single end. Stack addition and removal operations are known as Push and respectively. LIFO can be explained easily using real-time examples of a stack of plates. Plates are added at the top of the stack, and to remove a plate, the user removes it from the top of the stack. Thus, the plate added in last is removed first. 
 
 Figure 10.1: Stack data structure 
 
Stacks are mutable and can be modified easily. It is an ordered collection of data; it keeps the order in which data is added. The list data structure is used to implement stacks in Python. As can be seen from figure Stack is like a list data structure with a slight change that the addition and removal of elements can be done at one end only. 





 Creating stack 
 Stack in Python can be created using the following data structures or libraries available in Python: 
  List data structure 
 collections.deque 
 queue.LifoQueue 
 The stack data structure is majorly implemented using a built-in data structure list. Stack implementation using the list is quite basic and easy. Let’s first discuss stack operations and their details, then we will see how to implement stack in Python using different implementations. 





 Stack operations 
 Stack data structures support the following operations in Python. It supports mainly two operations push() and Other operations are helper functions of the stack which may or may not be implemented in all scenarios. The following subsections explain different operations supported by the stack data structure: 





 Push 
 
 Figure 10.2: Push operation 
 Push operation in a stack represents the addition of an element. It pushes or adds the element at the top of the stack. push(element) pushes the element in the stack. Figure 10.2 shows how an element is pushed at the top of the stack. 





 Pop 
 Pop operation in a stack represents removing an element from the stack. It removes or pops the element at the top of the stack or the element at the end of the stack. pop() removes the top element from the stack. Figure 10.3 shows how an element is popped from the stack. 
 
 Figure 10.3: Pop operation 





 Peek 
 
 Figure 10.4: Peek operation 
 peek() returns the element saved at the top of the stack. Peek does not modify the stack object and just returns the top element. Figure 10.4 shows the peek functionality. 





 isEmpty 
 isEmpty() checks if the stack is empty or not. It returns True if the stack is empty and has no element in the stack. 





 Stack using list 
 In Python, stack is majorly implemented using the list data structure. The list implementation method for the stack can be easily achieved using list built-in operations. Example 10.1 shows how to implement or create a stack using a list. 
 Example 10.1: Stack using list 
 1. stack = [] 
2. stack 
//Output 
[] 
 The preceding code creates an empty stack using the list. As can be seen in the following example, the type of object stack is a list: 
 3. 
//Output 
‘list’> 
 Figure 10.5 shows the implementation of push() and its functionality. As can be seen in the following figure, append() of the list is used to add an element at the top of the stack. 
 4. def val): 
5.     
6. 
7. 
8. stack 
9. 
10. stack 
11. 
12. stack 
 

 Figure 10.5: Push operation using list 
 Figure 10.6 shows the implementation of peek() and its functionality. 
 13. def 
14.     return 
15. 
16. peek(stack) 
 
 
Figure 10.6: Peek operation using a list 
 Figure 10.7 shows the alternative implementation of peek() and its functionality. 
 17. def 
18.     return 
19. 
20. peek(stack) 
 
 Figure 10.7: Alternate implementation of the peek operation using a list 
 The following code shows the pop() functionality. As can be seen from here, pop() of list is used to remove the top element of stack. 
 21. stack 
//Output 
[1, 2, 3] 
22. 
//Output 
3 
23. 
//Output 
2 
24. stack 

//Output 
[1,2] 
25. 
//Output 
2 
26. stack.pop() 
//Output 
1 
27. stack 
//Output 
[] 
 Figure 10.8 shows the implementation of isEmpty() and its functionality. 
 28. def 
29.     return 
30. 
31. isEmpty(stack) 
 
 Figure 10.8: isEmpty operation using list 
 The following code shows the result of isEmpty() if the stack is not empty: 
 32. 
33. stack 
//Output 

[1] 
34. 
//Output 
False 
 Figure 10.9 shows Stack class creation using list. 
 
 Figure 10.9: Stack class 
 Peek in the preceding figure can also be implemented as follows: 
 36. def 
37.     return 
38. 
 The following code shows the usage of the Stack class created in figure 
 39. s = stack() 
40. s.print() 
//Output 
[] 
41. s.isEmpty() 
//Output 

True 
42. s.push(21) 
43.s.print() 
//Output 
[21] 
44. s.isEmpty() 
//Output 
False 
45. s.peek() 
//Output 
21 
46. s.push(12) 
47. s.print() 
//Output 
[21, 12] 
48. s.peek() 
//Output 
12 
49. s.pop() 
//Output 
12 
50. s.print() 
//Output 
[21] 
51. s.pop() 
//Output 
21 
52. s.print() 
//Output 

[] 
53. s.isEmpty() 
//Output 
True 





 Stack using deque 
 Deque is a double-ended queue, which is available as part of the Python collections library. Deque supports adding and removing elements at both ends of the queue. Thus, deque can be used to implement a stack. Deque in Python is implemented using a doubly-linked list. Example 10.2 shows stack implementation using deque. 
 Example 10.2: Stack using deque 
 1. from collections import deque 
2. s = 
3. s 
//Output 
deque([]) 
 The preceding code creates an empty stack using deque. As can be seen in the following example, the type of object stack is 
 4. 
//Output 
‘collections.deque’> 
 Figure 10.10 shows the implementation of push() and its functionality. As can be seen in the following figure, append() of deque is used to add an element at the top of the stack: 
 1. def 
2.     
3. 
4. 
5. s 
6. 
7. s 
 

 Figure 10.10: Push operation using deque 
 Figure 10.11 shows the implementation of peek() and its functionality. 
 1. def 
2.     return 
3. 
4. peek(s) 
 
 
Figure 10.11: Peek operation using deque 
 The following code shows the pop() functionality. As can be seen from the following code, pop() of deque is used to remove the top element of the stack: 
 16. 
//Output 
2 
17. s 
//Output 
deque([1]) 
18. 
//Output 
1 
 Figure 10.12 shows the implementation of isEmpty() and its functionality. 
 19. def 
20.     return 
21. 
22. isEmpty(s) 
 
 Figure 10.12: isEmpty operation using deque 
 The following code shows the result of isEmpty() if stack is not empty: 
 
23. 
24. s 
//Output 
deque([1]) 
25. 
//Output 
False 
 Figure 10.13 shows stack class creation using deque. 
 
 Figure 10.13: Stack class 
 The following code shows the usage of the stack class created in figure 
 26. s = Stack() 
27. s.print() 
//Output 
deque([]) 
28. s.isEmpty() 
//Output 
True 
29. s.push(1) 

30. s.print() 
//Output 
deque([1]) 
31. s.isEmpty() 
//Output 
False 
32. s.peek() 
//Output 
1 
33. s.pop() 
//Output 
1 
34. s.print() 
//Output 
deque([]) 





 Stack using LifoQueue 
LifoQueue is a queue that follows Last-In-First-Out principle. It is available as part of the Python queue library, which will be discussed in Chapter 11, Queue in detail. Thus, LifoQueue can be used to implement a stack. Example 10.3 shows stack implementation using 
 Example 10.3: Stack using LifoQueue 
 1. from queue import LifoQueue 
2. s = LifoQueue() 
3. s 
//Output 
object at 0x0000023578B6EA90> 
 The preceding code creates an empty stack using As can be seen in the following example, the type of object stack is 
 4. 
//Output 
‘queue.LifoQueue’> 
 Figure 10.14 shows the implementation of push() and its functionality. As can be seen in the following figure, put() of LifoQueue is used to add an element at the top of the stack. 
 1. def 
2.     
3. 
4. 
5. 
 

 Figure 10.14: Push operation using LifoQueue 
 Figure 10.15 shows the implementation of peek() and its functionality. LifoQueue is not iterable and thus elements cannot be accessed directly. To get the top element of the stack using the only option is to remove the element as shown in the following figure: 
 1. def 
2.     return s.get() 
3. 
4. peek(s) 
 
 Figure 10.15: Peek operation using LifoQueue 
 Figure 10.16 shows the implementation of pop() and its functionality. 
 
1. def 
2.     return s.get() 
3. 
4. pop(s) 
 
 Figure 10.16: Pop operation using LifoQueue 
 Figure 10.17 shows the implementation of isEmpty() and its functionality. 
 1. def 
2.     return s.empty() 
3. 
4. isEmpty(s) 
 
 Figure 10.17: isEmpty operation using LifoQueue 
 
The following code shows the result of isEmpty() if stack is not empty: 
 19. 
20. 
//Output 
False 
 Figure 10.18 shows the stack class creation using 
 
 Figure 10.18: Stack class 
 The following code shows the usage of the stack class created in figure 
 21. s = Stack() 
22. s.isEmpty() 
//Output 
True 
23. s.push(1) 
24. s.isEmpty() 
//Output 
False 
25. s.pop() 
//Output 

1 
26. s.isEmpty() 
//Output 
True 
27. s.push(1) 
28. s.isEmpty() 
//Output 
False 
29. s.peek() 
//Output 
1 
30. s.isEmpty() 
//Output 
True 





 Stack advantages 
 Stacks have many advantages over data structures available in Python. The major advantages of stacks are as follows: 
  Stacks can store and retrieve data sequentially. 
 Stack takes O(1) time for push and pop operations. 
 Stacks can solve many data storage problems easily and effectively. 





 Stack use cases 
 Stacks have many use cases in real-time scenarios, some of them are mentioned here: 
  “Undo” functionality of any IDE or document processing application. 
 Run-time memory management. 
 Language parsing algorithms. 
 Reversing the string. 
 Expression evaluation and expression conversion (infix to postfix, infix to prefix, postfix to infix, and prefix to infix). 
 Forward and backward features of web browsers. 
 Algorithms like Tower of Hanoi, tree traversals, histogram problem, and in-graph algorithms like topological sorting and Depth-First Search 
 Thread-safe programs in Python. 





 Conclusion 
 This chapter gives details about the stack data structure which can be implemented in Python. It can be implemented using the list data structure, dequeue collections, and LifoQueue collections. Python library has a vast list of operations for handling available data structures and collection. push() and pop() are the main functions supported by the stack data structure. In the next chapter, we will dig into details on queue creation and operations supported in Python. 





 Points to remember 
  Stack is a user-defined data structure that can be implemented using a list or dequeue or LifoQueue library of Python. 
 Stack data structure can store heterogeneous data. 
 It stores data in sequential memory like list. 
 It is mutable and can be modified. Modification in a stack can be done at a single end only known as “top”. 
 push() and pop() are main operations of stack. 
 Stack is used in various algorithm implementations like document editing, language parsing, and so on. 
 LifoQueue implementation must be chosen if stack is being implemented in a multithreading environment. 





 Multiple-choice questions 
  Stack is based on which principle? 
  FIFO 
 LIFO 
 FILO 
 LILO 
 Stack can be implemented in Python using which collection or data structure? 
  Array 
 List 
 Queue 
 Dequeue 
 What will be the output of the following program? 
 Stack = [] 
Stack.append(1) 
Stack.append(2) 
Stack.pop() 
  1 
 2 
 Nothing 
 Error 
 What are the use cases of Stack data structure? 
  Arithmetic Expression Evaluation 
 Balancing parentheses 
 Reverse a string 
 All the above 
 What elements will be in the stack after performing the following operations? 
 Stack = [] 

Stack.append(1) 
Stack.append(2) 
Stack.pop() 
Stack.append(‘a’) 
Stack.append(1) 
Stack.pop() 
Stack.pop() 
Stack.append(‘c’) 
  [1,’a’,’c’] 
 TypeError 
 [1,’c’] 
 [1] 
 Which stack implementation is best to use in multi-threaded environment? 
  List 
 deque 
 LifoQueue 
 None 





 Answers 
  b, c 
 b, d 
 b 
 d 
 c 
 c 





 Questions 
  Write code to create a stack using list. 
 Write code to evaluate a postfix expression using stack. 
 Eg: 956+*2- 
 Ans: 97 
 Write code to reverse a string using a stack. 
 Eg.: Hello 
 Ans: olleH 
 Write code to check if parentheses are balanced or not using stack. 
 E.g: {}[() 
 Ans: Unbalanced 





 Answers 
  class Stack: 
 def __init__(self): 
self.list = [] 
def isEmpty(self): 
return len(self.list) == 0 
def push(self,val): 
self.list.append(val) 
def pop(self): 
return self.list.pop() 
def peek(self): 
return self.list[-1] 
def print(self): 
return self.list 
 def cal(val1,val2,op): 
if(op==’*’): 
return val1*val2 
if(op==’/’): 
return val2/val1 
if(op==’+’): 
return val1+val2 
if(op==’-’): 
return val2-val1 
def eval_expression(exp): 
s = Stack() 
for i in exp: 
if i in ‘0123456789’: 
s.push(i) 
else: 

val1=int(s.pop()) 
val2=int(s.pop()) 
out=cal(val1,val2,i) 
s.push(out) 
return s.pop() 
 def reverse_string(input): 
n = len(input) 
s=Stack() 
for i in range(0,n): 
s.push(input[i]) 
output = “” 
while s.isEmpty()==False: 
output=output+s.pop() 
return output 
 def check_parenthesis(input): 
open_par_list = [‘[‘,’{‘,’(‘] 
close_par_list = [‘]’,’}’,’)’] 
s=Stack() 
for i in input: 
if i in open_par_list: 
s.push(i) 
elif i in close_par_list: 
index = close_par_list.index(i) 
if(s.isEmpty()): 
return “Unbalanced” 
elif open_par_list[index]==s.peek(): 
s.pop() 
if(s.isEmpty()): 
return “Balanced” 

else: 
return “Unbalanced” 





CHAPTER 11 
 Queue 





 Introduction 
 Chapter 10, Stack gave the description and implementation details of the first user-defined data structure known as a stack. It showed that stack could be implemented using list, deque, and queue. Python supports other user-defined data structures also. This chapter will focus on the next user-data structure known as a 
 A queue is like a list with a small difference that elements can be added at two ends only known as front and rear. Queues are majorly used in job scheduling and handling interruptions. 





 Structure 
 In this chapter, we will be discussing the following topics: 
  Queue introdnnnnnuction 
  Creating queue 
 Queue operations 
  Enqueue 
 Dequeue 
 getFront 
 isEmpty 
 Queue using list 
 Queue using deque 
 Queue using queue 
  queue classes 
 queue exceptions 
 queue methods 
 Queue implementation 
 Queue advantages 
 Queue use cases 





 Objectives 
 This chapter will help you to understand the queue data structure and how it can be implemented in Python. This chapter will explore various libraries available in Python to support queue data structure. After completing this chapter, you will be able to implement and define queues in Python. You will be able to write queue operations in Python and write efficient queue programs. 





 Queue introduction 
 The queue data structure is a linear data structure like the list data structure. It stores elements on First-In-First-Out principle. FIFO means the first element to be added will be the first element to be removed. Thus, the addition and deletion of elements happen on both ends. Queue addition and removal operations are known as Push and Pop respectively. FIFO can be explained easily using a real-time example of a queue of people in a bank or hospital. The first person to come to the bank or hospital is the first person to get the service. New people coming to get the service will have to stand last in the queue. Thus, the first person to come is the first person to go out. 
 Queues are mutable and can be modified easily. It is an ordered collection of data; it keeps the order in which data is added. The list data structure is used to implement stacks in Python. Python has introduced a queue library in its collection library to support queue operations. As can be seen from figure a queue is like list data structure with slight change that addition can be done at one end only and similarly removal of elements can be done at another end only. 
 

 Figure 11.1: Queue data structure 





 Creating queue 
 Queue in Python can be created using the following data structures or libraries available in Python: 
  List data structure 
 collections.deque 
 queue.Queue 
 The queue data structure is majorly implemented using a built-in data structure, list. Queue implementation using a list is quite basic and easy. Let’s first discuss the basic operations of a queue and their details and later learn how to implement queue and their operations in Python using different data structures or libraries. 





 Queue operations 
 Queue data structure mainly supports two operations in Python: enqueue() and Other operations are helper functions of the queue which may or may not be implemented in all scenarios. The following subsections explain different operations supported by the queue data structure. 





 Enqueue 
 The enqueue operation in a queue represents the addition of an element. It adds the element at the end or rear of the queue. enqueue(element) adds the element in the queue. Figure 11.2 shows how the element is added at the end of the queue. 
 
 Figure 11.2: Enqueue operation 





 Dequeue 
 The dequeue operation in a queue represents removing an element from the queue. It removes the element from the front of the queue. Dequeue() removes the first element of the queue. Figure 11.3 shows how the element is removed from the queue. 
 
 Figure 11.3: Dequeue operation 





 getFront 
getFront() returns the front element of the queue. The front element of the queue is the first element that was added to it. getFront does not modify the queue object but just returns the front element. Figure 11.4 shows its functionality. 
 
 Figure 11.4: Peek operation 





 isEmpty 
 isEmpty() checks if the queue is empty or not. It returns True if the queue is empty and has no element. 





 Queue using list 
 In Python, a queue can be implemented using the list data structure. The list implementation method for a queue can be easily achieved using list built-in operations. The following example shows how to implement or create a queue using a list: 
 1. queue = [] 
2. queue 
//Output 
[] 
 The preceding code creates an empty queue using a list. As can be seen in the following example, the type of object queue is the list: 
 3. type(queue) 
//Output 
‘list’> 
 Figure 11.5 shows the implementation of enqueue() and its functionality. As can be seen in the following figure, append() of list is used to add element at the rear or end of the queue. 
 4. def enqueue(queue, val): 
5. queue.append(val) 
6. 
7. enqueue(queue,2) 
8. queue 
9. enqueue(queue,6) 
10. queue 
 

 Figure 11.5: Enqueue operation using a list 
 Figure 11.6 shows the implementation of getFront() and its functionality. 
 11. def getFront(queue): 
12.    return queue[0] 
13. 
14. getFront(queue) 
15. enqueue(queue,8) 
16. queue 
17. getFront(queue) 
 

 Figure 11.6: getFront operation using a list 
 Figure 11.7 shows the implementation of getRear() and its functionality. 
 18. def getRear(queue): 
19.    return queue[-1] 
20. 
21. getRear(queue) 
22. enqueue(queue,10) 
23. queue 
24. getRear(queue) 
 

 Figure 11.7: getRear operation using a list 
 Figure 11.8 shows the implementation of dequeue() and its functionality. As can be seen from the following figure, dequeue() removes the first element from the queue. 
 25. def dequeue(queue): 
26.     return queue.pop(0) 
27. 
28. dequeue(queue) 
29. queue 
30. dequeue(queue) 
31. queue 
 

 Figure 11.8: dequeue operation using a list 
 Figure 11.9 shows the implementation of isEmpty() and its functionality. 
 32. def isEmpty(queue): 
33.     return (len(queue)==0) 
34. 
35. isEmpty(queue) 
36. dequeue(queue) 
37. dequeue(queue) 
38. queue 
39. isEmpty(queue) 
 

 Figure 11.9: isEmpty operation using a list 
 Figure 11.10 shows Queue class creation using a list. 
 
 
Figure 11.10: Queue class 
 The following code shows the usage of the Queue class created in figure 
 40. q = Queue() 
41. q.print() 
//Output 
[] 
42. q.isEmpty() 
//Output 
True 
43. 
44. q.print() 
//Output 

45. q.isEmpty() 
//Output 
False 
46. 
47. q.print() 
//Output 
[1, 2] 
48. q.getFront() 

1 
49. q.getRear() 
//Output 
2 
50. 
51. q.print() 

//Output 
[1, 2, 3] 
52. q.getRear() 
//Output 
3 
53. q.dequeue() 
//Output 
1 
54. q.print() 
//Output 
[2, 3] 
55. q.getFront() 
//Output 
2 





 Queue using deque 
 deque is a double-ended queue, which is available as a part of Python collections library. deque supports adding and removing elements at both ends of the queue. Thus, deque can be used to implement queue. deque in Python is implemented using doubly linked list. The following example shows queue implementation using deque: 
 1. from collections import deque 
2. q = deque() 
3. q 
//Output 
deque([]) 
 The preceding code creates an empty queue using deque. As can be seen in the following example, the type of object queue is 
 4. type(q) 
//Output 
‘collections.deque’> 
 Figure 11.11 shows the implementation of enqueue() and its functionality. As can be seen in the following figure, append() of deque is used to add an element at the rear of the queue. 
 4. def enqueue(queue, val): 
5.     queue.append(val) 
6. 
7. enqueue(q,1) 
8. q 
9. enqueue(q,2) 
10. q 
 

 Figure 11.11: Enqueue operation using deque 
 Figure 11.12 shows the implementation of getFront() and its functionality. 
 11. def getFront(queue): 
12.    return queue[0] 
13. 
14. getFront(q) 
15. enqueue(q,3) 
16. getFront(q) 
 

 Figure 11.12: getFront operation using deque 
 Figure 11.13 shows the implementation of getRear() and its functionality. 
 17. def getRear(queue): 
18.     return queue[-1] 
19. 
20. getRear(q) 
21. enqueue(q,4) 
22. getRear(q) 
 

 Figure 11.13: getRear operation using deque 
 Figure 11.14 shows the implementation of dequeue() and its functionality. As can be seen from the following example, popleft() of the deque is used to remove the front element of the queue. 
 23. def dequeue(queue): 
24.     return queue.popleft() 
25. 
26. dequeue(q) 
27. q 
28. dequeue(q) 
29. q 
 

 Figure 11.14: dequeue operation using deque 
 Figure 11.15 shows the implementation of isEmpty() and its functionality. 
 30. def isEmpty(queue): 
31.     return (len(queue)==0) 
32. 
33. isEmpty(q) 
34. dequeue(q) 
35. dequeue(q) 
36. q 
37. isEmpty(q) 
 

 Figure 11.15: isEmpty operation using deque 
 Figure 11.16 shows the Queue class creation using 
 
 
Figure 11.16: Queue class 
 The following code shows the usage of Queue class created in figure 
 1. q = Queue() 
2. q.print() 
//Output 
deque([]) 
3. q.isEmpty() 
//Output 
True 
4. 
5. q.print() 
//Output 
deque([1]) 
6. q.isEmpty() 
//Output 
False 
7. 
8. q.print() 
//Output 
deque([1, 2]) 
9. q.getFront() 
//Output 
1 
10. q.getRear() 
//Output 
2 
11. 
12. q.print() 

//Output 
deque([1, 2, 3]) 
13. q.getFront() 
//Output 
1 
14. q.getRear() 
//Output 
3 
15. q.dequeue() 
//Output 
1 
16. q.print() 
//Output 
deque([2, 3]) 
17. q.dequeue() 
//Output 
2 
18. q.print() 
//Output 
deque([3]) 
19. q.print() 
//Output 
deque([3]) 
20. q.dequeue() 
//Output 
3 
21. q.isEmpty() 
//Output 
True 

22. q.print() 
//Output 
deque([]) 





 Queue using queue 
 Queue follows the FIFO principle. It is available as part of the Python queue module which implements multi-producer, multi-consumer queues. Multi-threaded programming can be done easily with this module. It has an implementation of the following three types of queues: 
  Queue or Based on the FIFO principle 
 LIFOQueue: Based on the LIFO principle 
 PriorityQueue: Sorted queue 





 queue classes 
queue library has classes to support the creation of different types of queues available in the library. This section gives a brief description of available classes in the queue library. 
 queue.Queue(maxsize=0) 
 Creates FIFO Queue. maxsize defines the maximum size of the queue or the maximum number of elements that can be inserted in the queue. Adding new elements will not be allowed if the size of the queue is If maxsize is less than or equal to zero, then queue size is infinite. The default value of maxsize is zero. 
 queue.LifoQueue(maxsize=0) 
 Creates LIFO Queue. maxsize defines the maximum size of the queue or the maximum number of elements that can be inserted in the queue. Adding new elements will not be allowed if size of queue is If maxsize is less than or equal to zero, then queue size is infinite. Default value of maxsize is zero. 
 queue.PriorityQueue(maxsize=0) 
 Creates priority queue. maxsize defines the maximum size of the queue or the maximum number of elements that can be inserted in the queue. Adding a new element will not be allowed if the size of the queue is If maxsize is less than or equal to zero, then queue size is infinite. The default value of maxsize is zero. 
 The priority queue is sorted by the value of elements. The element with the lowest value is removed first. If the elements are not comparable, the data can be wrapped in a class that ignores the data item and only compares the priority number. 
 
queue.SimpleQueue 
 Creates FIFO Queue with maxsize as infinite. 
 queue exceptions 
 The queue library also defines two exception classes, namely, Empty and 
 queue.Empty 
 Exception raised when get() is called to get an element in an empty queue. 
 queue.Full 
 Exception raised when put() is called to add a new element in the full queue. 





 queue methods 
 The queue Python library classes support various built-in methods. The following sub-sections explain the functionality of each method available in the queue library: 
 qsize() 
 Returns the size of the queue. 





 empty() 
 Returns True if the queue is empty, False otherwise. 
 full() 
 Returns True if the queue is full, False otherwise. 
 put(element, block=True, timeout=None) 
 Adds an element into the queue. block and timeout are optional arguments. These are used in a multi-threaded environment. 
 If a block is set to True and timeout set to None, it indicates block the operation if necessary, until space is available to add the element. If the timeout is a positive number, it blocks for maximum timeout seconds and raises a full exception if the queue was full or no space was available to add the element within that time. If a block is set to False, it adds the element in queue if a free slot is immediately available, else raises the full exception (timeout is ignored in that case). 
 put_nowait(item) 
 This method works like put(item, It will add the element in queue if it’s not full, otherwise, it will raise the full exception. 
 get(block=True, timeout=None) 
 It removes and returns an element from the queue. block and timeout are optional arguments. These are used in a multi-threaded environment. 
 
If the block is True and timeout is None, it blocks the removing operation if necessary, until an element is present in the queue. If the timeout is a positive number, it blocks for maximum timeout seconds and raises the empty exception if no element was present in the queue or the queue was empty within that time. If the block is false, it returns an item if one is immediately available, else raises the empty exception (timeout is ignored in that case). 
 get_nowait() 
 This method works like It will remove the element from the queue if the queue is not empty, otherwise, it will raise an empty exception. 





 Queue implementation 
 The following example shows queue implementation using queue: 
 1. from queue import Queue 
2. q = Queue() 
3. q 
//Output 
object at 0x000001AB67DFEA90> 
 The preceding code creates an empty queue using a queue. As can be seen in the following example, the type of object Queue is 
 4. type(q) 
//Output 
‘queue.Queue’> 
 Figure 11.17 shows the implementation of enqueue() and its functionality. As can be seen in the following figure, put() of LifoQueue is used to add an element at the rear of the queue. 
 
 Figure 11.17: Enqueue operation using Queue 
 Figure 11.17 shows the implementation of enqueue() and its functionality. A queue is not iterable and thus elements cannot be accessed directly. To get the front element of the queue using a queue, the only option is to remove the element as shown in figure A rear element cannot be accessed in the queue. 
 5. def getFront(queue): 

6.     return queue.get() 
7. 
8. getFront(q) 
 
 Figure 11.18: getFront operation using queue 
 Figure 11.19 shows the implementation of dequeue() and its functionality. 
 9. enqueue(q,1) 
10. def dequeue(queue): 
11.     return queue.get() 
12. 
13. dequeue(q) 
 
 Figure 11.19: dequeue operation using Queue 
 Figure 11.20 shows the implementation of isEmpty() and its functionality. 
 14. def isEmpty(queue): 

15.     return queue.empty() 
16. 
17. isEmpty(q) 
18. enqueue(q,1) 
19. isEmpty(q) 
 
 Figure 11.20: isEmpty operation using Queue 
 Figure 11.21 shows Queue class creation using Queue. 
 
 Figure 11.21: Queue class 
 
The following code shows the usage of Queue class created in figure 
 1. q = Que() 
2. q.isEmpty() 
//Output 
True 
3. 
4. q.isEmpty() 
//Output 
False 
5. q.dequeue() 
//Output 
1 
6. q.isEmpty() 
//Output 
True 
7. 
8. q.isEmpty() 
//Output 
False 
9. q.getFront() 
//Output 
1 
10. q.isEmpty() 
//Output 
True 





 Queue advantages 
 The queue data structure has various advantages in Python and other programming languages. A few of them are as follows: 
  Queues are faster especially for inter-process communication. 
 Queues are helpful when multiple jobs or clients share the same processor or object. 
 Queues are flexible. 
 Queue data structure leads to better utilization of memory. 
 Queues facilitate the addition and removal of elements faster. 





 Queue use cases 
 A queue has a wide range of applications in the real world. Some of them are as follows: 
  Job/CPU/Disk scheduling uses priority queues to run job with highest priority first 
 Parallel programming 
 Breadth-First Search of tree or graph 
 Data transfer between IO Buffers, files, and so on 
 Handling interruptions 
 Queues in routers/switches 
 Handling congestion in networking 





 Conclusion 
 This chapter gives details about the queue data structure which can be implemented in Python. It can be implemented using the list data structure, dequeue collections, and queue collections. Python library has a vast list of operations for handling available data structures and collection. enqueue() and dequeue() are the main functions supported by queue data structure. In the next chapter, we will dig into details on Trees creation and operations supported in Python. 





 Points to remember 
  A queue is a user-defined data structure that can be implemented using a list, dequeue, or queue library of Python. 
 A queue data structure can store heterogeneous data. 
 It stores data in sequential memory like list. 
 It is mutable and can be modified. Modification in queue can be done at two ends only known as and 
 enqueue() and dequeue() are the main operations of queue. 
 A queue is used in various algorithm implementations like CPU scheduling, interruption handling, and so on. 
 Queue implementation must be chosen if a queue is being implemented in a multithreading environment. 





 Multiple-choice questions 
  A queue is based on which principle? 
  FIFO 
 LIFO 
 FILO 
 LILO 
 A queue can be implemented in Python using which collection or data structure? 
  Array 
 List 
 Queue 
 LifoQueue 
 What will be the output of the following program? 
 queue = [] 
queue.append(1) 
queue.append(2) 
queue.pop(0) 
  1 
 2 
 Nothing 
 Error 
 What are the use cases of Queue data structure? 
  Handling network congestions 
 BFS 
 Reverse a string 
 All the above 
 What elements will be in Queue after performing the following operations? 
 queue = [] 
queue.append(1) 

queue.append(2) 
queue.pop(0) 
queue.append(‘a’) 
queue.append(1) 
queue.pop(0) 
queue.pop(0) 
queue.append(‘c’) 
  [1,’a’,’c’] 
 TypeError 
 [1,’c’] 
 [1] 
 Which queue implementation is best to use in a multi-threaded environment? 
  List 
 deque 
 Queue 
 None 





 Answers 
  a, d 
 b, c, d 
 a 
 a, b 
 c 
 c 





 Questions 
  Write code to create a queue using a list. 
 Write code to create a priority queue without using PriorityQueue class. 





 Answers 
  class Queue: 
def 
self.list = [] 
def isEmpty(self): 
return len(self.list) == 0 
def enqueue(self,val): 
self.list.append(val) 
def dequeue(self): 
return self.list.pop(0) 
def getFront(self): 
return self.list[0] 
def getRear(self): 
return self.list[-1] 
def print(self): 
return self.list 
 priority_queue = [] 
priority_queue.append((4,’test1’)) 
priority_queue.append((2,’test2’)) 
priority_queue.append((5,’test3’)) 
priority_queue.append((3,’test4’)) 
priority_queue.append((1,’test4’)) 
priority_queue 
//Output 
[(4, ‘test1’), (2, ‘test2’), (5, ‘test3’), (3, ‘test4’), (1, ‘test4’)] 
 priority_queue.sort(reverse=True) 
priority_queue 
//Output 
[(5, ‘test3’), (4, ‘test1’), (3, ‘test4’), (2, ‘test2’), (1, ‘test4’)] 





CHAPTER 12 
 Tree 





 Introduction 
 Chapter 10, and Chapter 11, Queue gives the description and implementation details of the user-defined data structure known as stack and queue. We learned that stack and queue are similar with one main difference. Stack follows the LIFO principle and allows the addition and deletion of elements from only one end known as Queue follows the FIFO principle and allows the addition and deletion of elements from both ends known as Front and Python supports other user-defined data structures as well. This chapter will focus on the next user-defined data structure known as 
 The Tree data structure is the first non-linear data structure that we will be learning. A Tree is a collection of nodes, each node consists of values and reference of nodes (known as child It contains one root node. The Root node has zero or more child nodes. Each child node can have zero or more child nodes. A node with zero child is known as a leaf A Tree having nodes with 0 to n child nodes is known as n-ary tree. For Example, if all nodes in a tree has 0 to 2 child nodes, then the tree is called a binary tree. 
 All nodes in a tree are accessible through the root node of the tree. The New element can be easily added to the leaf node. To add a new element to a node that has maximum number of children, requires shifting of existing child nodes. Similarly deleting a leaf node is easy. Deleting a node with one or more child nodes requires shifting of the child nodes. 
 
Trees are mutable and can be modified easily. The List data structure can be used to store child nodes of a node in a single location. A Lot of open-source contributors have included tree libraries in Python to ease developers. We will be exploring some of the libraries or modules available for Python. In this chapter, we will also understand how we can implement trees in Python without using modules. Figure 12.1 shows the structure of the tree data structure. 
 
 Figure 12.1: Tree Data Structure 





 Structure 
 In this chapter, we will be discussing about following topics: 
  Creating tree 
 Tree operations 
 Insertion 
 Deletion 
 Traverse 
 Searching 
 Tree using list 
 Tree using anytree 
 Binary tree 
 Binary tree operations 
 Binary tree implementation 
 Binary tree using binarytree 
 Binary search tree 
 BST operations 
 BST implementation 
 BST using binarytree 
 Tree use cases 





 Objectives 
 This chapter will help you to understand the tree data structure and how it can be implemented in Python. This chapter will explore various libraries available in Python to support tree data structure. After completing this chapter, you will be able to implement and define tree in Python. You will be able to write tree operations in Python and write efficient tree programs. 





 Creating tree 
 Tree in Python can be created using the following data structures or libraries available in Python: 
  List data It maintains the list of child nodes for each node. Each parent node contains the list of its child nodes. 
 It is an open-source library that can be installed in Python and used to create trees. 
 The Tree data structure is majorly implemented using a built-in data structure list. Tree implementation using a list is quite basic and easy. Let’s first discuss tree, their basic operations and their details. Then we will understand how to implement tree and their operations in Python using different data structures or libraries. 





 Tree operations 
 Tree data structure support following operations in Python. Following subsections explain different operations supported by tree data structure: 





 Insertion 
 A new node can be inserted in the tree in various places as shown in figures 12.2 to 
  Child of a leaf node 
 Child of a node having other child nodes 
 Parent of a node which already has a parent 
 
 Figure 12.2: Insert as child of a leaf node 
 As shown in the preceding figure, if a node is inserted as the child of a leaf node, then it can easily be added without changing the existing structure of the tree. 
 
 Figure 12.3: Insert as child of node with other child nodes 
 
As shown in the preceding figure, if a node is inserted as the child of a node that has other child nodes, then it can be easily added without changing the existing structure of the tree. But as shown in the following figure, if the same node is being added as a parent of one of the child nodes, then the shifting of nodes takes place. 
 
 Figure 12.4: Insert as a parent of a node 





 Deletion 
 Node being deleted can be of two types: 
  Leaf node 
 Node with one or more child nodes 
 Figures 12.5 and 12.6 shows the tree structure after deleting the node from various positions. 
 
 Figure 12.5: Deleting leaf node 
 As can be seen from the preceding figure, deleting a leaf node is easy and does not affect the existing tree structure. 
 As can be seen from the following figure, deleting an element with one or more child nodes affects the original tree structure. One of the child nodes takes the place of the deleted node, depending on the policy of tree creation. For example, if a tree has a policy that parent should be less than or equal to all child nodes, then node with smallest value will become the parent of other child nodes, as shown in the following figure: 
 
 
Figure 12.6: Deleting node with one or more child node 





 Traverse 
 Traversing a tree means accessing each data value of the tree one by one and performing an operation or printing each data value. Tree traversing can be done using two methods as shown in figure 
  Pre-order traversal means traversing parent nodes before child nodes. 
 Post-order traversal means traversing child nodes before parent nodes. 
 
 Figure 12.7: Pre-order and Post-order Traversal 





 Searching 
 Elements or values in a tree can be searched by traversing the tree. There is no direct method to access a particular node in the tree. While traversing through the tree, the condition to test the value of node and value being searched returns the result. 





 Tree using list 
 In Python, tree can be implemented using the list data structure. The list implementation method for tree can be easily achieved using list built-in operations. Example 12.1 shows how to implement or create tree using list. 
 Example 12.1: Tree using List 
 1. class 

= val 
= [] 
node): 

 The above code defines the Node class which can add a child to a particular node. Please note that this is a basic implementation of a node. Adding a new child node will not change the existing structure of the tree. It will just add a new leaf node. Example 12.2 shows the usage of the Node class created in example 
 Example 12.2: Node class usage 
 1. root = 
2. root 
//Output 
<__main__.Node object at 0x0000020585DEECA0> 
3. root.child 
//Output 
[] 
4. child1 = 
5. child2 = 
6. root.add_child(child1) 
7. root.add_child(child2) 

8. root.child 
//Output 
[<__main__.Node object at 0x0000020585DEEB50>, <__main__.Node object at 0x0000020585DEED60>] 
9. for c in root.child: 

//Output 
2 
3 
11. 
//Output 
1 





 Tree using anytree 
 anytree is a Python library available to create and work with n-ary tree. To use this library, it should be installed by running the following command in the command prompt: 
 pip install anytree 
 After installing the anytree library, it can be used to create the tree as shown in example 
 Example 12.3: Tree using anytree 
 1. from anytree import Node, RenderTree 
2. node1 = 
3. node2 = 
4. node3 = 
5. node4 = 
6. node5 = 
7. node6 = 
8. node7 = 
9. 
//Output 
Node(‘/1’) 
10. 
//Output 
Node(‘/1/2/3/7’) 
11. for pre, fill, node in RenderTree(node1): 
12. …     % (pre, node.name)) 
13. … 
//Output 
1 
├── 2 
│   └── 3 

│       ├── 5 
│       ├── 6 
│       └── 7 
└── 4 
 The above example shows the creation of a tree with seven nodes. As can be seen from the preceding example, a node can be added as a child of another node by mentioning the parent argument while creating the node. The preceding example also shows how we can print the tree structure using anytree library. Example 12.4 shows how to append one tree to another. 
 Example 12.4: Append trees 
 1. newNode1 = 
2. newNode2 = 
3. newNode3 = 
4. newNode4 = 
5. 
//Output 
Node(‘/8’) 
├── Node(‘/8/9’) 
│   └── Node(‘/8/9/11’) 
└── Node(‘/8/10’) 
6. = node1 
7. 
//Output 
Node(‘/1’) 
├── Node(‘/1/2’) 
│   └── Node(‘/1/2/3’) 
│       ├── Node(‘/1/2/3/5’) 
│       ├── Node(‘/1/2/3/6’) 

│       └── Node(‘/1/2/3/7’) 
├── Node(‘/1/4’) 
└── Node(‘/1/8’) 
├── Node(‘/1/8/9’) 
│   └── Node(‘/1/8/9/11’) 
└── Node(‘/1/8/10’) 
 As shown in the preceding example, node 1 becomes the parent of Example 12.5 shows how we can print a subtree of a tree. 
 Example 12.5: Print subtree 
 1. print(RenderTree(node3)) 
//Output 
Node(‘/1/2/3’) 
├── Node(‘/1/2/3/5’) 
├── Node(‘/1/2/3/6’) 
└── Node(‘/1/2/3/7’) 
 Example 12.6 shows how a subtree can be cut from a tree. 
 Example 12.6: Cut subtree 
 1. node2.parent = None 
2. print(RenderTree(node2)) 
//Output 
Node(‘/2’) 
└── Node(‘/2/3’) 
├── Node(‘/2/3/5’) 
├── Node(‘/2/3/6’) 
└── Node(‘/2/3/7’) 
3. print(RenderTree(node1)) 
//Output 
Node(‘/1’) 

├── Node(‘/1/4’) 
└── Node(‘/1/8’) 
├── Node(‘/1/8/9’) 
│   └── Node(‘/1/8/9/11’) 
└── Node(‘/1/8/10’) 
 As can be seen from the preceding example, after cutting the subtree, the original tree does not show the nodes removed. More details for anytree can be found at 





 Binary tree 
 The binary tree is a special type of tree in which each node can have maximum of two child nodes namely left and right child. 
 Figure 12.8 shows an example of binary tree. 
 
 Figure 12.8: Binary tree Example 





 Binary tree operations 
 Insertion, deletion, and searching operations are the same as tree operations. Traversal operation is different in a binary tree. 
 Traverse 
 Traversing binary tree is the same as traversing tree except that binary tree traversing can be done using three methods as shown in figure 
  Pre-order traversal means traversing parent nodes before the child nodes. 
 Post-order traversal means traversing child nodes the parent node. 
 In-order traversal means traversing the left child before the parent node and the right child after the parent node. 
 

 Figure 12.9: Pre-order, Post-order and In-order Traversal 





 Binary tree implementation 
 A Binary tree can be implemented without using a list data structure as each node can have maximum of 2 child nodes. The List data structure can also be used with max list size as 2. The Binary tree can be implemented by creating a Node class. Example 12.7 shows how to implement or create the binary tree. 
 Example 12.7: Binary Tree implementation 
 1. class 
2.     def 
3.         = val 
4.         = None 
5.         = None 
6.     def 
7.         = node 
8.     def 
9.         = node 
 Preceding code defines the Node class which can add left/right child to the binary Tree. Please note that this is a basic implementation of Node. Adding a new child node will not change the existing structure of the tree. If left/right child already exists, then it will replace the existing child node. Example 12.8 shows the usage of the Node class created in Example 
 Example 12.8: Node class usage 
 1. root = 
2. 
//Output 
1 
3. 
4. 

//Output 
2 
5. 
6. 
//Output 
3 
7. 
8. 
//Output 
4 





 Binary tree using binarytree 
 binarytree is a Python library available to create and work with a binary tree. It also supports the creation of heaps and binary search tree. To use this library, it should be installed by running the following command in command prompt: 
 pip install binarytree 
 After installing the binarytree library, it can be used to create the binary tree as shown in example 
 Example 12.9: Tree using binarytree 
 1. from binarytree import Node 
2. root = Node(3) 
3. root.left = Node(6) 
4. root.right = Node(8) 
5. print(root) 
//Output 
3 
/ \ 
6   8 
6. list(root) 
//Output 
[Node(3), Node(6), Node(8)] 
7. root.inorder 
//Output 
[Node(6), Node(3), Node(8)] 
8. root.preorder 
//Output 
[Node(3), Node(6), Node(8)] 
9. root.postorder 
//Output 

[Node(6), Node(8), Node(3)] 
10. root.size 
//Output 
3 
11. root.height 
//Output 
1 
12. root.properties 
//Output 
{‘height’: 1, ‘size’: 3, ‘is_max_heap’: False, ‘is_min_heap’: True, ‘is_perfect’: True, ‘is_strict’: True, ‘is_complete’: True, ‘leaf_count’: 2, ‘min_node_value’: 3, ‘max_node_value’: 8, ‘min_leaf_depth’: 1, ‘max_leaf_depth’: 1, ‘is_balanced’: True, ‘is_bst’: False, ‘is_symmetric’: False} 
 The preceding example shows the creation of a binary tree with three nodes. It can be seen from the above example, a node can be added as a left/right child of another node by accessing the left or right variable of the parent node. The preceding example also shows various functions available in the binarytree library like inorder, size, and so on. Example 12.10 shows how binary tree can be created from a list using binarytree library. 
 Example 12.10: Binary tree from list 
 1. from binarytree import build 
2. tree_nodes = [1,2,3,4,5,None,6,7,8,None] 
3. tree = build(tree_nodes) 
4. print(tree) 
 //Output 
         __1 
        /   \ 
 
    __2     3 
    /   \     \ 
   4     5     6 
 / \ 
 7   8 
5. tree.values 
//Output 
[1, 2, 3, 4, 5, None, 6, 7, 8] 
6. tree.size 
//Output 
8 
7. tree.inorder 
//Output 
[Node(7), Node(4), Node(8), Node(2), Node(5), Node(1), Node(3), Node(6)] 
 As shown in the preceding example, a tree can be created from the list using Example 12.11 shows how binary trees can be created with random values of different heights. The tree(height, is_perfect) can be used to create a binary tree with random values. Height is an optional argument. If the height is not specified, then the height value is considered as 3. is_perfect is an optional argument, the default value is False. Setting is_perfect to True means that each node in the binary tree should have only 0 or 2 child nodes. Example 12.11 shows how the binary tree with random values and structure can be formed by specifying different values for both arguments. 
 Example 12.11: Random values in binary trees 
 1. from binarytree import tree 
2. root = tree() 

3. print(root) 
//Output 
______3_____ 
/            \ 
6___           10__ 
/    \         /    \ 
4     _11     _7      9 
/     /       /       / \ 
8     12      14      0   1 
4. root = tree() 
5. print(root) 
//Output 
______0____ 
/           \ 
__7           __13 
/   \         /    \ 
6     12      4      10 
/ \      \      \ 
9   5      11     3 
6. root=tree(height=2) 
7. print(root) 
//Output 
__1 
/   \ 
0     2 
/ \     \ 
4   3     6 
8. root=tree(height=2) 
9. print(root) 

//Output 
__6__ 
/     \ 
4       3 
\     / 
0   2 
10. root=tree(height=2,is_perfect=True) 
11. print(root) 
//Output 
__5__ 
/     \ 
2       0 
/ \     / \ 
3   1   6   4 
12. root=tree(height=2,is_perfect=True) 
13. print(root) 
//Output 
__5__ 
/     \ 
0       2 
/ \     / \ 
1   4   6   3 
 More details on binarytree can be found at 





 Binary search tree 
 The Binary search tree is a special type of binary tree. A tree is known as BST if it fulfills the following properties: 
  Each node has maximum two child nodes. 
 Left child has value less than parent node. 
 Right child has value more than parent node. 
 Figure 12.10 shows an example of a BST. 
 
 Figure 12.10: BST Example 





 BST operations 
 Traversal, deletion, and searching operations are the same as binary tree operations. Insertion operation is different in BST. 
 Insertion 
 Inserting a node in BST differs from normal tree due to properties or conditions required for BST. Insertion can be done at three positions in a tree as shown in example figures 12.12 to 
  Child of a leaf node 
 Child of a node having other child nodes 
 Parent of a node which already has a parent 
 As shown in figure if a node is inserted as the child of a leaf node, then it can be easily added without changing the existing structure of the tree. As can be seen, new node is added to left of the parent node as the value is less than the parent node. In case a new element is to be added had a value greater than parent node, then it would be added to the right of the parent node. 
 
 Figure 12.11: Insert as child of a leaf node 
 If a node is inserted as the child of a node which has other child nodes, then there can be following scenarios: 
  
If node value is greater than the parent node but less than the existing right child node. New node will be inserted as the parent of existing right child node as shown in figure As shown in the figure, existing structure of the tree has changed. 
 If the node value is greater than parent node and existing right child node, a new node will be inserted as child of the existing right child node. Existing structure of the tree does not change in this case. 
 If node value is less than the parent node and greater than the existing left child node, a new node is added as the child of the parent node and parent of the existing left child node. It changes the existing structure of the tree. 
 If node value is less than the parent node and the existing child nod, a new node is added as the right child of the left child node. This does not change the structure of the tree. 
 
 Figure 12.12: Insert as child of node with other child nodes 
 If a node is inserted as the parent of a node that has a parent, then there can be the following scenarios: 
  If the child node is left child of the existing parent: 
  
If the node value is less than the existing parent node. A new node will be inserted as left child of the existing parent node as shown in figure 
 If the node value is greater than the existing parent node. A New child will be added as the right child of the parent node. Left child of the existing parent node will become null. In case the existing parent node has right child then tree will be restructured completely to add new node. 
 If child node is right child of existing parent: 
  If the node value is greater than the existing parent node. A new node will be inserted as the right child of the existing parent node. 
 If the node value is less than the existing parent node. A new child will be added as the left child of the parent node. Right child of the existing parent node will become null. In case the existing parent node has left child then tree will be restructured completely to add new node. 
  
 Figure 12.13: Insert as a parent of a node 





 Binary search tree implementation 
 BST can be implemented without using the list data structure as each node can have maximum of 2 child nodes. The List data structure can also be used with max list size as 2. BST can be implemented by creating a Node class. Example 12.12 shows how to implement or create a BST. 
 Example 12.12: Binary Search Tree implementation 
 1. class 
2.     def 
3.         = val 
4.         = None 
5.         = None 

7.         
8.             is None): 
9.                 = Node(val) 
10.             else: 
11.                 
12.         else: 
13.             is None): 
14.                 = Node(val) 
15.             else: 
16.                 
 
Preceding code defines the Node class which can add a child to the BST based on the value to be added. As we know that left child should have a value less than the parent node and the right child should have a value greater than the parent node. add_child() checks the new value to be added and adds a new child node based on the new value and the parent node value. Please note that this is a basic implementation of the node. Adding a new child node will not change the existing structure of the tree. It will just add a new leaf node. Example 12.13 shows the usage of the Node class created in example 
 Example 12.13: Node class usage 
 1. root = 
2. root.val 
//Output 
2 
3. 
4. root.val 
//Output 
2 
5. 
6. 
//Output 
<__main__.Node object at 0x00000121D1B10E80> 
7. 
//Output 
1 
8. 
9. 
//Output 
6 
10. 
11. 
//Output 
0 
12. 

13. 
//Output 
5 





 Binary search tree using binarytree 
 Example 12.14 shows how BST can be created using binarytree library in Python. 
 Example 12.14: BST using binarytree 
 1. from binarytree import bst 
2. root = bst() 
3. print(root) 
//Output 
__6________ 
/           \ 
__4         ____12 
/   \       /      \ 
0     5     10       13 
\         /  \        \   
1       9    11       14 
4. root = bst(height=2) 
5. print(root) 
//Output 
__2__ 
/     \ 
0       5 
\     / \ 
1   4   6 
6. root = bst(height=2,is_perfect=True) 
7. print(root) 
//Output 
__3__ 
/     \ 
1       5 

/ \     / \ 
0   2   4   6 
 The preceding example shows the creation of a BST using binarytree library. It can be seen from the above example, BST can be created using The bst() creates tree with random values same as bst() also takes optional arguments height and is_perfect like The only difference between bst() and tree() is that bst() creates a tree with all nodes having a property that the left child is smaller than the parent node and the right child is greater than the parent node. 





 Tree use cases 
 The Tree has wide range of applications in the real world as follows: 
  File system The Directory structure in file system is represented by a tree internally. A directory contains many files and folders. It organizes files and folders in a hierarchical manner like tree. 
 Efficient search BST has a property that left child node has less value than the parent node and right child node has a value greater than the parent node. Thus, BST implementation leads to an efficient search algorithm implementation. 
 HTML Document Object model HTML or XML documents are represented as a tree, where each node of the tree represents a part of the document. For example:  element is one node of the tree which can have child nodes such as and so on. 
 Database BST can be used for indexing of the database. Database indexing means assigning a key value to the data being stored. Keys are stored in BST for faster searching of the data. 
 Decision trees in machine Decision trees are if-else trees that are implemented in the Machine Learning algorithms. Each node in the decision tree has some conditions and machine proceeds to one child node based on input and conditions of parent node. 
 
BST allows quicker searching, insertion, and deletion of data in a collection. 
 Syntax tree in Compilers create syntax trees of expressions to evaluate them. Operands are added as leaf nodes in the syntax tree whereas operators are added as interior nodes in syntax tree. 
 Dictionary implementation using Tries are a form of tree in which, the nodes are letters. Traversing from root node to each leaf node forms a word. Dictionary implementation using tries reduces memory consumption needed to store all the words. 
 Router and bridge implementation in computer A lot of research has been done which shows that creating a routing table based on BST is an efficient mechanism. It helps in searching for best/nearest router or bridge available to transfer the data. 





 Conclusion 
 This chapter gives details about the tree data structure which can be implemented in Python. It can be implemented using the list data structure and anytree library. You also learned tree data structure which is used mostly in different programs. Binary tree and binary search tree implementation and the supported functions have been explained in detail. binarytree library supports the implementation of both the trees. In the next chapter, we will dig into details on linked list creation and operations supported in Python. 





 Points to remember 
  Tree is a user-defined data structure that can be implemented using a list or anytree library of Python. 
 N-ary tree node can have up to n child nodes. 
 Majorly used trees are binary trees and binary search trees. 
 Binary and Binary Search trees can be implemented using the binarytree library available for Python. 
 Binary trees and BST nodes can have 0 to 2 child nodes. 
 Parent node in BST must have a value greater than the left child node and less value than the right child node. 
 Trees have major use case in hierarchical data like file system, syntax tree in compilation, and so on. 





 Multiple choice questions 
  Tree data structure is: 
  Linear data structure 
 Built-in data structure 
 User-defined data structure 
 Non-Linear data structure 
 BST follows which property/properties? 
  Each node can have a maximum of two nodes. 
 Left child node has greater value than the parent node. 
 Right child node has less value that the parent node. 
 All the above 
 What is the in-order traversal of following tree? 
 
  0 -> 3 -> 2 -> 1 -> 5 -> 9 -> 7 -> 6 -> 4 
 0 -> 1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7 -> 9 
 4 -> 1 -> 0 -> 3 -> 2 -> 6 -> 5 -> 7 -> 9 
 None of the above 
 What are the use cases of tree data structure? 
 
 Handling network congestions 
 File system 
 Reverse a string 
 HTML DOM 





 Answers 
  c, d 
 a 
 b 
 b, d 





 Questions 
  Write code to print binary tree in in-order. 
 Write code to find minimum depth of a binary tree. 





 Answers 
  class Node: 
def __init__(self, val): 
self.val = val 
self.left = None 
self.right = None 
def add_left_child(self,node): 
self.left = node 
def add_right_child(self,node): 
self.right = node 
 def inorder(node): 
if node is None: 
return 
inorder(node.left) 
print(node.val, end=’ ‘) 
inorder(node.right) 
 class Node: 
def __init__(self, val): 
self.val = val 
self.left = None 
self.right = None 
def add_left_child(self,node): 
self.left = node 
def add_right_child(self,node): 
self.right = node 
def findMinDepth(node): 
if node is None: 
return 0 
left = findMinDepth(node.left) 

right = findMinDepth(node.right) 
if node.left is None: 
return left + right 
if root.right is None: 
return left + 1 
return min(left, right) + 1 





CHAPTER 13 
 Linked List 





 Introduction 
 Chapters 10 to 12 give the implementation details and operations supported for the user-defined data structures available in Python. Chapter 10, Chapter 11, and Chapter 12, Trees explained how the user-defined data structures can be implemented in Python using the existing data structure or library. In this chapter, we will learn about another user-defined data structure known as Linked The linked list is a linear data structure like a List in which each element is linked via the next pointer to the next element. 





 Structure 
 In this chapter, we will be discussing the following topics: 
  Introducing linked list 
  Linked list creation 
 Linked list operations 
  Traversing 
 Insertion 
 Deletion 
 Searching 
 Sorting 
 Merging 
 Count 
 Reverse 
 Copy 
 Linked list length 
 Maximum and minimum 
 Help 
 Use case 





 Objectives 
 This chapter will help you to understand the linked list data structure and how it can be implemented in Python. After completing this chapter, you will be able to implement a linked list using the data structures available in Python. You will be able to implement operations on a linked list. You will be able to write Python programs using a linked list data structure. 





 Introducing linked list 
 A linked list is a linear data structure-like list. It is an ordered collection of data like the list. It does not store the data in a contiguous location like a list. It is a collection of nodes. Each node has the value and pointer to the next node. It can be considered as a tree in which each parent node has zero or one child node. Node with zero child is the last element of the list. 
 The linked list is mutable, thus, elements can be inserted or deleted from a linked list easily. Accessing an element in a linked list requires traversing from 1st node (also known as to the required node sequentially. Random access to the elements is not possible in the linked list. Linked lists can be implemented in two ways: 
  Singly linked Each node has only one pointer, pointing towards the next node as shown in figure 
 
 Figure 13.1: Singly linked list data structure 
 Doubly linked Each node has two pointers, one pointing to the next node and 2nd pointing to the previous node as shown in figure 
 
 Figure 13.2: Doubly linked list data structure 
  Singly linked list implementation is widely used instead of doubly linked list. The linked list is a list of elements in which elements are linked through pointers. 





 Linked list creation 
 A linked list in Python can be created using a Node class with data and the next pointer as its members. The next pointer of each node points to the next node. The next pointer of the last node points to In the case of a doubly linked list, Node class has a data member and two-pointer members (next and previous). 
 Node class for singly and doubly linked list is defined in examples 13.1 and 
 Example 13.1: Node class for singly linked list 
 1. class 

= val 
= None 
 As shown in the preceding example, the node has two members values and the next pointer. The following example shows that the node has three members values and two pointers namely the next and the previous: 
 Example 13.2: Node class for doubly linked list 
 1. class 

= val 
= None 
= None 
 Examples 13.3 and 13.4 shows how a singly linked list and a doubly linked list can be created using the Node class created in examples 13.1 and 
 Example 13.3: Singly linked list creation 
 1. class 

2.     def 
3.         = None 
4.     def 
5.         tempNode = 
6.         
7.            tempNode = tempNode.next 
8.        tempNode.next = node 
9. 
10. list1 = SLinkedList() 
11. list1.headVal = 
12. node1 = 
13. node2 = 
14. list1.add_node(node1) 
15. list1.add_node(node2) 
16. node2.val 
//Output 
‘3’ 
17. node1.val 
//Output 
‘2’ 
18. 
//Output 
‘3’ 
19. list1.headVal.val 
//Output 
‘1’ 
 The preceding example uses Node class of example 13.1 to create a singly linked list. The following example shows how a doubly linked list is created using the Node class of example 
 
Example 13.4: Doubly linked list creation 
 1. class 

= None 
4.      def 
5.          tempNode = 

7.             tempNode = tempNode.next 
8.         tempNode.next = node 
9.         node.previous = tempNode 
10. 
11. list1 = DLinkedList() 
12. list1.headVal = 
13. node1 = 
14. node2 = 
15. list1.add_node(node1) 
16. list1.add_node(node2) 
17. list1.headVal.val 
//Output 
‘1’ 
18. 
//Output 
‘2’ 
19. node1.val 
//Output 
‘2’ 
20. 
//Output 
‘3’ 

21. node1.previous.val 
//Output 
‘1’ 
22. 
23. node2.previous.val 
//Output 
‘2’ 
 Linked list data cannot be accessed using index like list. Thus, accessing linked list data directly is not feasible. 





 Linked list operations 
 Developers can perform many of the basic data structure operations mentioned in Chapter 4, Data on the linked list. The following sub-sections give details about each operation that can be performed on a linked list data structure in Python. 





 Traversing 
 Traversing a linked list means accessing each data value of the linked list one by one and performing an operation or printing each data value. Example 13.5 shows an example to traverse a linked list using a while loop in Python. The following example traverses linked lists with 3 nodes defined in examples 13.3 and 13.4 and prints each value. Traversing from head to end is the same for both singly and doubly linked lists. 
 Example 13.5: Traversing singly linked list example 
 1. tempNode = list1.headVal 
2. 

4.      tempNode = 
5. 
//Output 
1 
2 
3 





 Insertion 
 The linked list is a mutable collection of data; thus, new elements can be inserted into the linked list easily. The new nodes can be inserted at three places as follows: 
  Insert new node as the head Current head node becomes the next node of the new head node. Inserting a new node as a head node can be achieved in O(1) time. We don’t need to traverse the linked list to find the location of the new node for insertion. 
 
 Figure 13.3: Insertion as head node in singly linked list 
  Figure 13.3 and example 13.6 show how a new node can be inserted as a head node in the singly linked list created in example It can be seen from the preceding figure that inserting a new node as the head node changes only one pointer, a head pointer now points to the new node. 
 Example 13.6: Insertion as head node in singly linked list example 
 1. tempNode = list1.headVal 
2. node0 = 
3. node0.next = tempNode 

4. list1.headVal = node0 
5. 
//Output 
‘0’ 
6. 
//Output 
‘1’ 
 Figure 13.4 and example 13.7 show how a new node can be inserted as a head node in the doubly linked list created in example 
 Example 13.7: Insertion as head node in doubly linked list example 
 1. tempNode = list1.headVal 
2. node0 = 
3. tempNode.previous = node0 
4. node0.next = tempNode 
5. list1.headVal = node0 
6. 
//Output 
‘0’ 
7. 
//Output 
‘0’ 
 As can be seen from the preceding example, the previous pointer of the existing head node will point to the new node, and new node next pointer will point to the existing head node. 
 

 Figure 13.4: Insertion as head node in doubly linked list 
  Insert new node between two Inserting a new node between two nodes takes O(n) time. To insert a node after a node, we need to traverse that node and modify its next pointer such that it points to the new node. Figure 13.5 and example 13.8 show how a new node can be inserted between two nodes in singly linked list. 
 
 Figure 13.5: Insert node in two nodes in singly linked list 
  
Singly linked list created in example 13.3 is used in example 13.8 and the modified version of traversing of example 13.5 is used to traverse the node till the desired value. Once node with value ‘2’ is identified, its next pointer value is assigned to the new node’s next pointer. Node ‘2’ next pointer will point to the new node. When values of the linked list are printed by traversing as in example a new node with value ‘0’ has been added in between node ‘2’ and node ‘3’. 
 Example 13.8: Insert node in between two nodes in singly linked list example 
 1. tempNode = list1.headVal 
2. 
3.      tempNode = 
4. 
5. node0 = 
6. = 
7. = node0 
8. 
9. tempNode = list1.headVal 
10. while(tempNode!=None): 
11.      print(tempNode.val) 
12.      tempNode = tempNode.next 
13. 
//Output 
0 
0 
1 
2 
0 
3 
 Figure 13.6 and example 13.9 show how a new node can be inserted between two nodes in doubly linked list. 
 

 Figure 13.6: Insert node in between two nodes in doubly linked list 
 The process to insert new node is same as singly linked list with the following differences: 
  Doubly linked list created in example 13.4 is used. 
 Along with the next pointer of node ‘2’, the previous pointer of node ‘3’ is also modified and pointed to a new node. The new node’s next pointer will point to node ‘3’ and the previous pointer will point to node ‘2’. 
 Example 13.9: Insert node in between two nodes in doubly linked list example 
 1. tempNode = list1.headVal 
2. 
= 
4. 
5. node0 = 
6. 
7. node0.previous = tempNode 
8. = node0 
9. = node0 
10. 
11. tempNode = list1.headVal 

12. while(tempNode!=None): 
13.      print(tempNode.val) 
14.      tempNode = tempNode.next 
15. 
//Output 
0 
0 
1 
2 
0 
0 
3 
  Insert new node at the end of the linked 
 Inserting a new node at the end of the linked list takes O(n) time. We need to traverse the linked list till the end node and modify its next pointer such that it points to the new node. Figure 13.7 and example 13.10 show how a new node can be inserted at the end of singly linked list. 
 
 Figure 13.7: Insert node at the end of singly linked list 
  
Singly linked list created in example 13.3 is used in example Traversing in example 13.5 is used to traverse the node till the end. Once the end node is identified, its next pointer value is assigned to the new node’s next pointer. When values of the linked list are printed by traversing as in example a new node with the value ‘0’ has been added at the end. 
 Example 13.10: Insert node at the end of singly linked list example 
 1. tempNode = list1.headVal 
2. 
3.      tempNode = 
4. 
5. node0 = 
6. = node0 
7. tempNode = list1.headVal 
8. while(tempNode!=None): 
9.      print(tempNode.val) 
10.      tempNode = tempNode.next 
//Output 
0 
0 
1 
2 
0 
0 
3 
0 
 Figure 13.8 and example 13.11 shows how a new node can be inserted at the end of doubly linked list. 
 

 Figure 13.8: Insert node at the end of the doubly linked list 
 The process to insert new node is same as singly linked list with the following differences: 
  Doubly linked list created in example 13.4 is used. 
 Previous pointer of the new node will point to the end node. 
 Example 13.11: Insert node at the end of doubly linked list example 
 1. tempNode = list1.headVal 
2. 
3.      tempNode = 
4. node0 = 
5. node0.previous = tempNode 
6. = node0 
7. tempNode = list1.headVal 
8. while(tempNode!=None): 
9.      print(tempNode.val) 
10.      tempNode = tempNode.next 
11. 
//Output 
0 

0 
1 
2 
0 
0 
3 
0 
0 





 Deletion 
 The linked list is a mutable collection of data; thus, individual element can be deleted from the linked list easily. Elements can be deleted from three places as follows: 
  Deleting the head Next node of the current head node becomes the head node. Deleting the head node can be achieved in O(1) time. Figure 13.9 and example 13.12 show how the head node can be deleted in the singly linked list created in example 
 
 Figure 13.9: Deleting head node from singly linked list 
  Example 13.12: Deleting head node from singly linked list 
 1. tempNode = list1.headVal 
2. list1.headVal=tempNode.next 
3. tempNode = None 
4. 
//Output 
‘0’ 
list1.headVal.next.val 

//Output 
‘1’ 
 Figure 13.10 and example 13.13 show how the head node can be deleted from the doubly linked list created in example 
 
 Figure 13.10: Deleting head node from doubly linked list 
 Example 13.13: Deleting head node from doubly linked list example 
 1. tempNode = list1.headVal 
2. list1.headVal=tempNode.next 
3. list1.headVal.previous=None 
4. tempNode=None 
5. 
//Output 
‘1’ 
6. 
//Output 
‘2’ 
 It can be seen from the preceding example, the previous pointer of a new head node will point to 
  
Delete node between two Deleting a node between two nodes takes O(n) time. To delete a node after a node, we need to traverse that node and modify its next pointer such that it points to the next node of the node to be deleted. Figure 13.11 and example 13.13 show how a node can be deleted between two nodes in singly linked list. 
 
 Figure 13.11: Delete node between two nodes in singly linked list 
  Singly linked list created in example 13.3 is used in example The modified version of traversing of example 13.5 is used to traverse the node till the desired value. Once a node with value ‘1’ is identified, its next pointer value is assigned to the next node to the node to be deleted i.e., node ‘3’. When values of the linked list are printed by traversing as in example node ‘2’ is not printed as it has been removed from the linked list. 
 Example 13.14: Delete node between two nodes in singly linked list 
 1. tempNode = list1.headVal 

2. 
3.      tempNode = 
4. 
5. deletedNode = tempNode.next 
6. = deletedNode.next 
7. deletedNode = None 
8. 
9. tempNode = list1.headVal 
10. while(tempNode!=None): 
11.     print(tempNode.val) 
12.     tempNode = tempNode.next 
13. 
//Output 
1 
0 
0 
3 
0 
0 
 Figure 13.12 and example 13.15 show how a node can be deleted between two nodes in doubly linked list. 
 
 
Figure 13.12: Delete node between two nodes in doubly linked list 
 The process to delete the node is the same as singly linked list with the following differences: 
  Doubly linked list created in example 13.4 is used 
 Along with the next pointer of node ‘1’, the previous pointer of node ‘3’ is also modified and pointed to the previous node of deleted node i.e., node ‘1’. 
 Example 13.15: Delete node between two nodes in doubly linked list 
 1. tempNode = list1.headVal 
2. 
3.     tempNode = 
4. 
5. deletedNode = tempNode.next 
6. = deletedNode.next 
7. deletedNode.next.previous = tempNode 
8. deletedNode = None 
9. 
10. tempNode = list1.headVal 
11. while(tempNode!=None): 
12.      print(tempNode.val) 
13.      tempNode = tempNode.next 
14. 
//Output 
1 
0 
3 
0 
0 
 
 Delete node from the end of the linked 
 Deleting a node from the end of the linked list takes O(n) time. We need to traverse the linked list till the node before the end node and modify its next pointer such that it points to Figure 13.13 and example 13.16 show how a node can be deleted from the end of singly linked list. 
 
 Figure 13.13: Delete node from the end of singly linked list 
  Singly linked list created in example 13.3 is used in example Traversing in example 13.5 is used to traverse the node till the node before the end node. Once a node is identified, its next pointer is assigned as When values of the linked list are printed by traversing as in example the end node is not printed. 
 Example 13.16: Delete node from the end of singly Linked List 
 1. tempNode = list1.headVal 
2. 
3.      tempNode = 

4. deletedNode = tempNode.next 
5. = None 
6. deletedNode = None 
7. 
8. tempNode = list1.headVal 
9. while(tempNode!=None): 
10.      print(tempNode.val) 
11.      tempNode = tempNode.next 
12. 
//Output 
1 
0 
3 
0 
 Figure 13.14 shows how end node can be deleted from doubly linked list. 
 
 Figure 13.14: Delete node from the end of the doubly linked list 
 The process to delete a node is same as a singly linked list, the difference being doubly linked list created in example 13.4 is used instead of singly linked list. Thus, example 13.16 can be used to delete the end node from the doubly linked list too. 





 Searching 
 The modified version of traversing example checks if data value exists in the linked list or not. Example 13.17 shows the modified version along with how the index of the value can be retrieved. 
 Example 13.17 shows the example of the linked list data searching. Please note that the searching element is the same for both singly and doubly linked list. Any linked list defined in example 13.3 or 13.4 can be used for the following example: 
 Example 13.17: Linked List data search example 
 1. def val): 
2.     tempNode = list1.headVal 
3.     index = 0 
4.     isFound = False 
5.     
6.         
7.             isFound = True 
8.             break 
9.         index = 
10.         tempNode = tempNode.next 
11.     
12.         found at index: index) 
13.     
14.         not present in Linked 
15. 
16. search(list1, 
//Output 
Value found at index:  2 





 Sorting 
 Python does not have any inbuilt methods for sorting linked list elements as linked list does not use any built-in data structure. We can use sorting algorithms like insertion, sort, merge sort to sort the elements of the linked list. While sorting the linked list elements, the next and previous pointers are modified to point to the correct node. 
 
 Figure 13.15: Insertion sorting algorithm 
 
Example 13.18 shows the sorting linked list using the insertion sort algorithm. Insertion sort algorithm has time complexity. The time complexity of insertion sort is calculated in Big O notation as explained in Chapter 3, Asymptotic In insertion sort, the linked list is traversed in a nested loop, thus time complexity of linked list with size ‘n’ is In insertion sort, each element is checked with all the elements before and its placed accordingly. Figure 13.15 shows how insertion sort works. 
 Example 13.18: Singly linked list sorting example 
 1. def insertionSort(list1): 
2.     sortedList = SLinkedList() 
3.     currentNode = list1.headVal 
4.     while (currentNode != None): 
5.         nextNode = currentNode.next 
6.         sortedList.headVal = insert(sortedList.headVal, currentNode) 
7.         currentNode = nextNode   
8.     list1.headVal = sortedList.headVal 
 9. def insert(headVal, newNode): 
10.     currentNode = None 
11.     if (headVal == None or headVal.val >= newNode.val): 
12.         newNode.next = headVal 
13.         headVal = newNode 
14.     
15.         currentNode = headVal 
16.         while (currentNode.next != None and 
17.             currentNode.next.val < newNode.val): 
18.             currentNode = currentNode.next 
19.         newNode.next = currentNode.next 
20.         currentNode.next = newNode 
21.     return headVal 
22. 

23. list1 = SLinkedList() 
24. list1.headVal = Node(1) 
25. list1.add_node(Node(10)) 
26. list1.add_node(Node(2)) 
27. list1.add_node(Node(5)) 
28. list1.add_node(Node(8)) 
29. list1.add_node(Node(3)) 
30. list1.add_node(Node(0)) 
31. list1.add_node(Node(9)) 
32. tempNode = list1.headVal 
33. while(tempNode!=None): 
34.      print(tempNode.val) 
35.      tempNode = tempNode.next 
36. 
//Output 
1 
10 
2 
5 
8 
3 
0 
9 
37. //Insertion sort 
38. insertionSort(list1) 
39. tempNode = list1.headVal 
40. while(tempNode!=None): 
41.      print(tempNode.val) 
42.      tempNode = tempNode.next 

43. 
//Output 
0 
1 
2 
3 
5 
8 
9 
10 
 The linked list defined in example 13.3 is used to create singly linked list in the above example. Example 13.19 shows how an insertion sort can be implemented for doubly linked list defined in example The only difference being, the previous pointer of each node are also modified. 
 Example 13.19: Doubly linked list sorting example 
 1. def insertionSort(list1): 
2.     sortedList = DLinkedList() 
3.     currentNode = list1.headVal 
4.     while (currentNode != None): 
5.         nextNode = currentNode.next 
6.         sortedList.headVal = insert(sortedList.headVal, currentNode) 
7.         currentNode = nextNode 
8.     
9.     
10. 
11. def insert(headVal, newNode): 
12.     currentNode = None 

13.     if (headVal == None or headVal.val >= newNode.val): 
14.         currentNode = headVal 
15.         if(currentNode!=None): 
16.             newNode.previous = currentNode.previous 
17.             currentNode.previous = newNode 
18.         newNode.next = currentNode 
19.         headVal = newNode 
20.     else: 
21.         currentNode = headVal 
22.         while (currentNode.next != None and 
23.             currentNode.next.val < newNode.val): 
24.             currentNode = currentNode.next 
25.             newNode.previous = currentNode 
26.         if(currentNode.next!=None): 
27.             currentNode.next.previous = newNode 
28.         newNode.next = currentNode.next 
29.         currentNode.next = newNode 
30.     return headVal 
31. 
32. list1 = DLinkedList() 
33. list1.headVal = Node(1) 
34. list1.add_node(Node(10)) 
35. list1.add_node(Node(2)) 
36. list1.add_node(Node(5)) 
37. list1.add_node(Node(8)) 
38. list1.add_node(Node(3)) 
39. list1.add_node(Node(0)) 
40. list1.add_node(Node(9)) 
41. 

42. tempNode = list1.headVal 
43. while(tempNode!=None): 
44.      print(tempNode.val) 
45.      tempNode = tempNode.next 
46. 
//Output 
1 
10 
2 
5 
8 
3 
0 
9 
47. insertionSort(list1) 
48. tempNode = list1.headVal 
49. while(tempNode!=None): 
50.      print(tempNode.val) 
51.      tempNode = tempNode.next 
52. 
//Traversing with Example 13.5 
0 
1 
2 
3 
5 
8 
9 
10 





 Merging 
 The linked list merging is as simple as assigning the next pointer of a node. Example 13.20 show an example of singly linked list merging operation using singly linked list defined in example 
 Example 13.20: Singly linked list merging example 
 1. list1 = SLinkedList() 
2. list1.headVal = 
3. 
4. 
5. 
6. 
7. list2 = SLinkedList() 
8. list2.headVal = 
9. 
10. 
11. //Print list1 
12. node1 = list1.headVal 
13. 
14.     
15.     node1=node1.next 
16. 
//Output 
1 
10 
2 
5 
17. //Print list2 
18. node2 = list2.headVal 

19. 
20.     
21.     node2=node2.next 
22. 
//Output 
4 
6 
23. //Traverse to the end of list1 
24. node1=list1.headVal 
25. 
26.     node1=node1.next 
27. 
28. 
//Output 
5 
29. //Merge list1 and list2 
30. node1.next=list2.headVal 
31. 
32. //Print merged list 
33. node1 = list1.headVal 
34. 
35.     
36.     node1=node1.next 
37. 
//Output 
1 
10 
2 
5 

4 
6 
 As can be seen from the preceding example, we need to traverse to the end of the The Next pointer of the end node of list1 points to the head node of list2 after merging. Merging operations take O(n) time. Merging 2 singly linked list or 2 doubly linked list is similar with only one difference. In case of doubly linked list, previous pointer of list2 points to the end node of 
 Example 13.21: Doubly linked list merging example 
 1. list1 = DLinkedList() 
2. list1.headVal = 
3. 
4. 
5. 
6. 
7. list2 = DLinkedList() 
8. list2.headVal = 
9. 
10. 
11. //Print list1 
12. node1 = list1.headVal 
13. 
14.     
15.     
16. 
//Output 
1 
10 

2 
5 
17. //Print list2 
18. node2 = list2.headVal 
19. 
20.     
21.     
22. 
//Output 
4 
6 
23. //Traverse to the end of list1 
24. node1=list1.headVal 
25. 
26.     
27. 
28. node1.val 
//Output 
5 
29. 
30. //Merge list1 and list2 
31. 
32. 
33. 
34. //Print merged list 
35. node1 = list1.headVal 
36. 
37.     
38.     

39. 
//Output 
1 
10 
2 
5 
4 
6 
 One singly linked list and one doubly linked list can be merged in the same way as the above example. The only difference will be that the singly linked list part will not have the previous pointers. 





 Count 
 Python does not have an inbuilt method for counting the number of data values in a linked list. Data values can be counted by modifying the traverse algorithm of example 
 Example 13.22 shows an example of element count in singly or doubly linked list. 
 Example 13.22: linked list count the example 
 1. list1 = 
2. list1.headVal = 
3. 
4. 
5. 
6. 
7. 
8. 
9. //Print list1 
10. node1 = list1.headVal 
11. 
12.     
13.     node1=node1.next 
14. 
//Output 
1 
10 
5 
2 
5 
5 
15. //Count occurrence of 5 

16. node1 = list1.headVal 
17. 
18. 
19.     
20.         
21.    node1=node1.next 
22. 
23. count 
//Output 
3 





 Reverse 
 To reverse the order of a linked list, we can create an empty linked list and add nodes in reverse order. 
 Example 13.23 shows example of reversing the singly linked list. 
 Example 13.23: Reverse singly linked list example 
 1. list1 = SLinkedList() 
2. list1.headVal = Node(1) 
3. list1.add_node(Node(10)) 
4. list1.add_node(Node(2)) 
5. list1.add_node(Node(5)) 
6. list1.add_node(Node(8)) 
7. list1.add_node(Node(3)) 
8. list1.add_node(Node(0)) 
9. list1.add_node(Node(9)) 
10. 
11. //Print original linked list 
12. node1=list1.headVal 
13. while(node1!=None): 

= node1.next 
16. 
//Output 
1 
10 
2 
5 
8 
3 
0 

9 
17. //Reverse function 
18. reversedList = SLinkedList() 
19. currentNode = list1.headVal 
20. prevNode = None 
21. while(currentNode!=None): 
= currentNode.next 
= prevNode 
= currentNode 
= nextNode 
26. 
27. reversedList.headVal = prevNode 
28. 
29. 
30. //Print reversed linked list 
31. node2=reversedList.headVal 
32. while(node2!=None): 

= node2.next 
35. 
//Output 
9 
0 
3 
8 
5 
2 
10 
1 
 
The only difference between reversing a singly linked list and a doubly linked list is the need to take care of the previous pointer as well as while reversing the list. Example 13.24 shows how a doubly linked list can be reversed. 
 Example 13.24: Reverse doubly linked list example 
 1. list1 = DLinkedList() 
2. list1.headVal = Node(1) 
3. list1.add_node(Node(10)) 
4. list1.add_node(Node(2)) 
5. list1.add_node(Node(5)) 
6. list1.add_node(Node(8)) 
7. list1.add_node(Node(3)) 
8. list1.add_node(Node(0)) 
9. list1.add_node(Node(9)) 
10. 
11. //Print original linked list 
12. node1=list1.headVal 
13. while(node1!=None): 

= node1.next 
16. 
//Output 
1 
10 
2 
5 
8 
3 
0 

9 
17. 
18. //Reverse function 
19. reversedList = DLinkedList() 
20. currentNode = list1.headVal 
21. prevNode = None 
22. while(currentNode!=None): 
= currentNode.previous 
= currentNode.next 
= prevNode 
= currentNode.previous 
27. 
28. if(prevNode!=None): 
29.     reversedList.headVal = prevNode.previous 
30. 
31. //Print reversed linked list 
32. node2=reversedList.headVal 
33. while(node2!=None): 

= node2.next 
36. 
//Output 
9 
0 
3 
8 
5 
2 
10 

1 





 Copy 
 Python does not have an inbuilt method for copying a linked list into another linked list. We can create either a deep copy or a shallow copy of a linked list. 
  Creating a deep copy means creating a new object for each node. Any a change in new or old objects does not affect other objects. 
 Creating shallow copy means creating an object which points to the same node objects. Any change in the new or the old object affects the other object as well. 
 Example 13.25 shows an example of creating a deep copy of a linked list. Creating copies of singly or doubly linked lists does not have any difference. The following example shows how to create a deep copy of singly linked list. The same example can be used for a doubly linked list by changing line number 2 to = 
 Example 13.25: Deep copy of linked list 
 1. list1 = SLinkedList() 
2. list1.headVal = Node(1) 
3. list1.add_node(Node(10)) 
4. list1.add_node(Node(2)) 
5. list1.add_node(Node(5)) 
6. list1.add_node(Node(8)) 
7. list1.add_node(Node(3)) 
8. list1.add_node(Node(0)) 
9. list1.add_node(Node(9)) 
10. 
11. tempNode1 = list1.headVal 
12. list2 = SLinkedList() 

13. list2.headVal = 
14. 
15.     tempNode1 = tempNode1.next 
16.     
17. 
18. //Traversing using example 13.5 
19. tempNode2 = list2.headVal 
20. 
21.     
22.     tempNode2 = tempNode2.next 
23. 
//Output 
1 
10 
2 
5 
8 
3 
0 
9 
24. 
25. 
//Output 
0 
26. 
//Output 
1 
 
It can be seen from the previous example, modifying the value of the list2 head node does not modify the value of the list1 head node. Example 13.26 shows how a shallow copy of linked list can be created. 
 Example 13.26: Shallow copy of linked list 
 1. list3 = list1 
2. 
//Output 
1 
3. 
//Output 
1 
4. = 0 
5. 
//Output 
0 
6. 
//Output 
0 
 It can be seen from the previous example that modifying list3 head node value affected the head node value of list1 too. 





 Linked list Length 
 Linked list length can be calculated by traversing it and counting the number of elements. The Example 13.27 shows how to calculate the length of linked list defined in example 13.3 or 
 Example 13.27: Linked List length example 
 1. tempNode = list1.headVal 
2. 
3. 
4.     
5.     tempNode=tempNode.next 
6. 
7. count 
//Output 
8 





 Maximum and minimum 
 Maximum and minimum values can be calculated by traversing the linked list. Example 13.28 shows how to get maximum and minimum from the linked list. 
 Example 13.28: Maximum and Minimum example 
 1. list1 = SLinkedList() 
2. list1.headVal = 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. tempNode = list1.headVal 
11. min = list1.headVal.val 
12. max = list1.headVal.val 
13. 
14.     
15.     
16.         max = tempNode.val 
17.     
18.         min = tempNode.val 
19. 
20. max 
//Output 
10 
min 
//Output 

0 





 Help 
 Python does not have the help() for linked list as it is not implemented using any built-in data structure or library of Python. 





 Use case 
 Linked lists are used in applications where insertion and deletion operations are frequently used. A few of the use cases are as follows: 
  Adjacency list of Graph can be represented as an array of linked lists. Array index represents a vertex of the graph. Each index of the array has a linked list of vertexes that are connected to the vertex through an edge. 
 Music Music playlists are stored in a doubly linked list for easy insertion or deletion of a song. The doubly linked list helps keep track of the previous items in the playlist. 
 Blockchain is implemented using a linked list to store information. Each blockchain element contains data and hash value of the next element along with the next pointer to the next element. 





 Conclusion 
 This chapter gives details about a linked list data structure which can be created by a user in Python. Python library does not have any built-in operations for handling linked lists. Users can define methods based on their use case. The linked list is a mutable object and thus can be manipulated easily. In the next chapter, we will focus on the next user-defined data structure known as We will dig into details on graph creation and operations. 





 Points to remember 
  Linked list data structure stores the heterogeneous data. 
 Linked list does not store data in sequential memory. 
 The linked list is mutable and can be modified. 
 linked list can be created using classes and objects. 
 There are two types of linked lists that are majorly used: Singly and Doubly Linked List. 
 The linked list is a collection of nodes. Singly contains data with next pointer. Doubly contains data with next and previous pointers. 
 Python does not have built-in function support for a linked list. The user has control over function definitions for the linked list. 





 Multiple choice questions 
  What is the time complexity to count the number of elements in a linked list? 
  O(1) 
 O(n) 
 O(logn) 
 None of the above 
 Which of the following implementation of linked list can achieve merging of two lists with O(1) time complexity? 
  Singly linked list 
 Doubly linked list 
 Circular doubly linked list 
 Array of linked lists 
 Which operation is performed better by using doubly linked list instead of singly linked list? 
  Deleting node with pointer to given location 
 Traversing 
 Searching for element in unsorted list 
 Insert a node after a given location 
 Linked List in which next pointer of end node points to the head node is: 
  Doubly linked list 
 Singly linked list 
 Circular linked list 
 None of the above 
 In singly linked list, traversal can be done in: 
  Both directions 
 Only in forward direction 
 Only in reverse direction 
 None of the above 





 Answers 
  b 
 c 
 a 
 c 
 b 





 Questions 
  Write code to modify element in singly linked list at a particular index. 
 Write code to add element at any index in singly linked list. 
 Write code to traverse doubly linked list if pointer to end node is given. 
 Write code to print middle element of doubly linked list. 





 Answers 
  class Node(): 
def __init__(self,val): 
self.val = val 
self.next = None 
class SLinkedList(): 
def __init__(self): 
self.headVal = None 
def add_node(self,node): 
tempNode = self.headVal 
while(tempNode.next!=None): 
tempNode = tempNode.next 
tempNode.next = node 
 list1 = SLinkedList() 
list1.headVal = Node(1) 
list1.add_node(Node(10)) 
list1.add_node(Node(2)) 
list1.add_node(Node(5)) 
list1.add_node(Node(8)) 
list1.add_node(Node(3)) 
list1.add_node(Node(0)) 
list1.add_node(Node(9)) 
 //Modify element at index 3 to 7 
index = 0 
tempNode = list1.headVal 
while(tempNode!=None): 
if(index==3): 
tempNode.val = 7 
break 

else: 
index=index+1 
tempNode = tempNode.next 
 class Node(): 
def __init__(self,val): 
self.val = val 
self.next = None 
class SLinkedList(): 
def __init__(self): 
self.headVal = None 
def add_node(self,node): 
tempNode = self.headVal 
while(tempNode.next!=None): 
tempNode = tempNode.next 
tempNode.next = node 
 list1 = SLinkedList() 
list1.headVal = Node(1) 
list1.add_node(Node(10)) 
list1.add_node(Node(2)) 
list1.add_node(Node(5)) 
list1.add_node(Node(8)) 
list1.add_node(Node(3)) 
list1.add_node(Node(0)) 
list1.add_node(Node(9)) 
 //Add element at index 3 with value 7 
index = 0 
tempNode = list1.headVal 
prevNode = list1.headVal 
while(tempNode!=None): 

if(index==3): 
newNode = Node(7) 
newNode.next = tempNode 
prevNode.next = newNode 
break 
else: 
index=index+1 
prevNode = tempNode 
tempNode = tempNode.next 
 class 
def __init__(self,val): 
self.val = val 
self.next = None 
self.previous = None 
 class DLinkedList(): 
def __init__(self): 
self.headVal = None 
def add_node(self,node): 
tempNode = self.headVal 
while(tempNode.next!=None): 
tempNode = tempNode.next 
tempNode.next = node 
node.previous = tempNode 
 list1 = DLinkedList() 
list1.headVal = Node(“1”) 
node1 = Node(“2”) 
node2 = Node(“3”) 
list1.add_node(node1) 
list1.add_node(node2) 

tailNode=node2 
 tempNode = tailNode 
while(tempNode!=None): 
print(tempNode.val) 
tempNode=tempNode.previous 
 class Node(): 
def __init__(self,val): 
self.val = val 
self.next = None 
self.previous = None 
class DLinkedList(): 
def __init__(self): 
self.headVal = None 
def add_node(self,node): 
tempNode = self.headVal 
while(tempNode.next!=None): 
tempNode = tempNode.next 
tempNode.next = node 
node.previous = tempNode 
 list1 = DLinkedList() 
list1.headVal = Node(“1”) 
node1 = Node(“2”) 
node2 = Node(“3”) 
list1.add_node(node1) 
list1.add_node(node2) 
 slowPointer=list1.headVal 
fastPointer=list1.headVal 
while(slowPointer!=None and fastPointer!=None and fastPointer.next!=None): 

slowPointer=slowPointer.next 
fastPointer=fastPointer.next.next 
print(“The middle element is “, slowPointer.val) 





CHAPTER 14 
 Graph 





 Introduction 
 Chapters 10 to 13 give implementation details and operations supported for user-defined data structures available in Python. Chapter 10, Chapter 11, and Chapter 12, Trees explained how user-defined data structures can be implemented in Python using existing data structures or libraries. Chapter 13, Linked List explained how a linked list can be implemented in Python without any built-in data structure or library. In this chapter, we will learn about another user-defined data structure known as The Graph is a non-linear data structure like A Graph is a collection of vertices and edges, where vertices are connected through edges. 





 Structure 
 In this chapter, we will be discussing following topics: 
  Introducing graph 
  Graph creation 
 Graph operations 
  Traversing 
 Insertion 
 Deletion 
 Searching 
 Sorting 
 Merging 
 Count 
 Reverse 
 Copy 
 Graph length 
 Maximum and minimum 
 Help 
 Use case 





 Objectives 
 This chapter will help you to understand the graph data structure, how it can be implemented in Python. After completing this chapter, you will be able to implement graph using classes or data structures available in Python. You will be able to implement operations on graphs. You will be able to write Python programs using the graph data structure. 





 Introducing graph 
 The graph is a non-linear data structure like a tree. It is a collection of vertices or nodes and edges. Two vertices are connected through an edge. There are two types of graphs: directed and undirected graphs. 
  Directed The edge between vertices is directed edge as shown in figure The directed edge means we can reach 2nd node from 1st node but vice-versa is not possible. 
 
 Figure 14.1: Directed Graph data structure 
 
Undirected The edge between vertices is the undirected edge as shown in figure This means both nodes are accessible from each other. 
 
 Figure 14.2: Undirected Graph data structure 





 Graph creation 
 The graph in Python can be created using a dictionary data structure, adjacency matrix, or adjacency list. Figures 14.3 and 14.4 shows how directed and undirected graph can be represented both as a dictionary data structure, adjacency matrix, or adjacency list. 
 
 Figure 14.3: Directed Graph representation 
  Dictionary data Vertices are represented as keys. Each key has a value which refers to the array of vertices to which each key is connected. 
 Adjacency 2D array with values 0 and 1. The numbers of rows and columns in the matrix is equal to number of vertices of graph. In an undirected graph, matrix[V1][V2] and matrix [V2][V1] are 1 if vertex V1 is connected to vertex V2 through the edge, the otherwise it is 0. In directed graph, matrix[V1][V2] is 1 if there is an edge between V1 and V2, and direction of edge is from V1 to V2. 
 
Adjacency It is list of linked lists, where each index of list has a linked list as an object. 
 
 Figure 14.4: Undirected Graph representation 
  Adjacency list representation use the Node class defined in examples 13.1 and Singly or a doubly linked lists defined in examples 13.3 and 13.4 can be used to create a linked list of connected vertices. 
 Example 14.1 shows how the directed graph shown in figure 14.3 can be created using the adjacency list. 
 Example 14.1: Directed Graph creation using adjacency list 
 1. class 
2.     def 
3.         self.val = val 
4.         self.next = None 
5. 
6. class 
7.     def 

8.         self.headVal = None 
9.     def 
10.         tempNode = self.headVal 
11.         
12.             tempNode = tempNode.next 
13.         tempNode.next = node 
14. 
15. V1 = SLinkedList() 
16. V1.headVal=Node(1) 
17. V1.add_node(Node(2)) 
18. V2 = SLinkedList() 
19. V2.headVal=Node(2) 
20. V2.add_node(Node(3)) 
21. V2.add_node(Node(6)) 
22. V3 = SLinkedList() 
23. V3.headVal=Node(3) 
24. V3.add_node(Node(1)) 
25. V4 = SLinkedList() 
26. V4.headVal=Node(4) 
27. V4.add_node(Node(3)) 
28. V5 = SLinkedList() 
29. V5.headVal=Node(5) 
30. V5.add_node(Node(4)) 
31. V6 = SLinkedList() 
32. V6.headVal=Node(6) 
33. V6.add_node(Node(5)) 
34. 
35. adjList = [V1,V٢,V٣,V٤,V٥,V٦] 
36. adjList 

//Output 
[<__main__.SLinkedList object at 0x000001CCB3720070>, <__main__.SLinkedList object at 0x000001CCB3720B20>, <__main__.SLinkedList object at 0x000001CCB3720BB0>, <__main__.SLinkedList object at 0x000001CCB3720A30>, <__main__.SLinkedList object at 0x000001CCB3720A90>, <__main__.SLinkedList object at 0x000001CCB3720F40>] 
37. 
38. for i in 
39.     tempNode = adjList[i].headVal 
40.     tempNode.val) 
41.     
42.         tempNode = tempNode.next 
43.         tempNode.val) 
44. 
//Output 
Vertex: 1 
Connected Vertex: 3 
Vertex: 2 
Connected Vertex: 1 
Connected Vertex: 3 
Connected Vertex: 6 
Vertex: 3 
Vertex: 4 
Connected Vertex: 3 
Vertex: 5 
Connected Vertex: 4 
Vertex: 6 
Connected Vertex: 5 
 
Similarly, the undirected graph can also be created. The only difference would be the length of the linked list for each vertex would be longer. 





 Graph operations 
 Developers can perform many of the basic data structure operations mentioned in Chapter 4, Data on Graph. The following sub-sections give details about each operation that can be performed on graph data structure in Python. 





 Traversing 
 Traversing a graph means accessing each data edge of the graph is traversed one by one and performing an operation or printing each data value. The Graph can be traversed in two different ways as follows: 
  Breadth First Search BFS means traversing graph breadthwise. In BFS, we start traversing from one vertex. 
 
 Figure 14.5: Directed Graph BFS Traversal 
  
We traverse all adjacent nodes to the starting vertex, then traverse the adjacent vertex to one of the traversed vertices. Traversing continues until all vertices are traversed once. To keep track of vertices that have been traversed, we keep a Boolean array which maintains if a particular vertex was visited or not. A queue is maintained to keep track of nodes that are adjacent to the current node. Figures 14.5 and 14.6 show how directed and undirected graphs can be traversed with BFS. 
 
 Figure 14.6: Undirected Graph BFS Traversal 
 
Examples 14.2 to 14.4 shows BFS can be implemented for directed and undirected graphs using different representations of the graph as shown in figures 14.3 and 
 Example 14.2: BFS traversing Graph with Dictionary representation 
 1. //Directed Graph 
2. graph = {1:[2],2:[3,6],3:[1],4:[3],5:[4],6:[5]} 
3. graph 
//Output 
{1: [2], 2: [3, 6], 3: [1], 4: [3], 5: [4], 6: [5]} 
4. 
5. def bfs(startVertex): 
6.     visited=[] 
7.     q=[] 
8.     visited.append(startVertex) 
9.     q.append(startVertex) 
10.     while (len(q)>0): 
11.         val=q.pop(0) 
12.         print(val) 
13.         for nextVal in graph[val]: 
14.             if nextVal not in visited: 
15.                 visited.append(nextVal) 
16.                 q.append(nextVal) 
17. 
18. bfs(1) 
//Output 
1 
2 
3 
6 

5 
4 
19. 
20. bfs(2) 
//Output 
2 
3 
6 
1 
5 
4 
21. //Undirected Graph 
22. graph={1:[2,3],2:[1,3,6],3:[1,2,4],4:[3,5],5:[4,6],6:[2,5]} 
23. graph 
//Output 
1{1: [2,3], 2: [1,3,6], 3: [1,2,4], 4: [3,5], 5: [4,6], 6: [2,5]} 
24. bfs(1) 
//Output 
1 
2 
3 
6 
4 
5 
25. bfs(2) 
//Output 
2 
1 
3 

6 
4 
5 
 The preceding example shows the implementation of BFS traversal for dictionary representation. As can be seen from the above example, the same function can be used to traverse directed and undirected graphs. 
 Example 14.3: BFS traversing Graph with adjacency matrix representation 
 1. def bfs(startIndex): 
2.     visited=[] 
3.     q=[] 
4.     visited.append(startIndex) 
5.     q.append(startIndex) 
6.     while (len(q)>0): 
7.         current=q.pop(0) 
8.         print(current+1) 
9.         for i in range(0,6): 
10.             if(graph[current][i]==1): 
11.                 if i not in visited: 
12.                     visited.append(i) 
13.                     q.append(i) 
14. 
15. //Directed Graph 
16. graph = [[0,1,0,0,0,0],[0,0,1,0,0,1],[1,0,0,0,0,0],[0,0,1,0,0,0], 
[0,0,0,1,0,0],[0,0,0,0,1,0]] 
17. graph 
//Output 
[[0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 1], [1, 0, 0, 0, 0, 0], 

[0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0]] 
18. bfs(0) 
//Output 
1 
2 
3 
6 
5 
4 
19. bfs(1) 
//Output 
2 
3 
6 
1 
5 
4 
20. //Undirected Graph 
21. graph = [[0,1,1,0,0,0],[1,0,1,0,0,1],[1,1,0,1,0,0],[0,0,1,0,1,0], 
[0,0,0,1,0,1],[0,1,0,0,1,0]] 
22. graph 
//Output 
[[0, 1, 1, 0, 0, 0], [1, 0, 1, 0, 0, 1], [1, 1, 0, 1, 0, 0], 
[0, 0, 1, 0, 1, 0], [0, 0, 0, 1, 0, 1], [0, 1, 0, 0, 1, 0]] 
23. bfs(0) 
//Output 
1 
2 
3 

6 
4 
5 
24. bfs(1) 
//Output 
2 
1 
3 
6 
4 
5 
 The preceding example shows the implementation of BFS traversal for adjacency matrix representation. It can be seen from above example, the same function can be used to traverse directed and undirected graph. 
 Example 14.4: BFS traversing Graph with adjacency list representation 
 1. V1 = SLinkedList() 
2. V1.headVal=Node(1) 
3. V1.add_node(Node(2)) 
4. V2 = SLinkedList() 
5. V2.headVal=Node(2) 
6. V2.add_node(Node(3)) 
7. V2.add_node(Node(6)) 
8. V3 = SLinkedList() 
9. V3.headVal=Node(3) 
10. V3.add_node(Node(1)) 
11. V4 = SLinkedList() 
12. V4.headVal=Node(4) 

13. V4.add_node(Node(3)) 
14. V5 = SLinkedList() 
15. V5.headVal=Node(5) 
16. V5.add_node(Node(4)) 
17. V6 = SLinkedList() 
18. V6.headVal=Node(6) 
19. V6.add_node(Node(5)) 
20. graph = [V1,V2,V3,V4,V5,V6] 
21. def bfs(startIndex): 
22.     visited=[] 
23.     q=[] 
24.     visited.append(graph[startIndex].headVal.val) 
25.     q.append(startIndex) 
26.     while(len(q)>0): 
27.         current=graph[q.pop(0)].headVal 
28.         print(current.val) 
29.         while(current.next!=None): 
30.             if current.next.val not in visited: 
31.                 visited.append(current.next.val) 
32.                 q.append(current.next.val-1) 
33.             current = current.next 
34. 
35. bfs(0) 
//Output 
1 
2 
3 
6 
5 

4 
36. bfs(1) 
//Output 
2 
3 
6 
1 
5 
4 
 Preceding example shows the implementation of BFS traversal for directed adjacency list representation. The same function can be used to traverse directed and undirected graphs. The only difference being that the undirected graph will have the larger list for each vertex. 
  Depth First Search DFS means traversing graph depth wise. In DFS, we start traversing from one vertex. 
 

 Figure 14.7: Directed Graph DFS Traversal 
 We traverse one connection of the vertex, then traverse the connection of the new vertex and so on until there is no next connection node. To keep track of vertices that have been traversed, we keep a Boolean array-like BFS which maintains if a particular vertex was visited or not. Figures 14.7 and 14.8 shows how directed and undirected graphs can be traversed with BFS. 
 

 Figure 14.8: Undirected Graph DFS Traversal 
  Examples 14.5 to 14.7 shows DFS can be implemented for directed and undirected graphs using different representations of the graph. 
 Example 14.5: DFS traversing Graph with Dictionary representation 
 1. //Directed Graph 
2. graph = {1:[2],2:[3,6],3:[1],4:[3],5:[4],6:[5]} 
3. graph 

//Output 
{1: [2], 2: [3, 6], 3: [1], 4: [3], 5: [4], 6: [5]} 
4. 
5. def dfs(vertex): 
6.     if vertex not in visited: 
7.         print(vertex) 
8.         visited.append(vertex) 
9.         for nextVal in graph[vertex]: 
10.             dfs(nextVal) 
11. 
12. visited=[] 
13. dfs(1) 
//Output 
1 
2 
3 
6 
5 
4 
14. visited=[] 
15. dfs(2) 
//Output 
2 
3 
1 
6 
5 
4 
16. //Undirected Graph 

17. graph={1:[2,3],2:[1,3,6],3:[1,2,4],4:[3,5],5:[4,6],6:[2,5]} 
18. graph 
//Output 
{1: [2,3], 2: [1,3,6], 3: [1,2,4], 4: [3,5], 5: [4,6], 6: [2,5]} 
19. visited=[] 
20. dfs(1) 
//Output 
1 
2 
3 
4 
5 
6 
21. 
22. visited=[] 
23. dfs(2) 
//Output 
2 
1 
3 
4 
5 
6 
 The preceding example shows the implementation of DFS traversal for dictionary representation. As can be seen from the preceding example, the same function can be used to traverse directed and undirected graphs. 
 Example 14.6: DFS traversing Graph with adjacency matrix representation 
 
1. def dfs(index): 
2.     if index not in visited: 
3.         print(index+1) 
4.         visited.append(index) 
5.         for i in range(0,6): 
6.             if(graph[index][i]==1): 
7.                 dfs(i) 
8. 
9. //Directed Graph 
10. graph = [[0,1,0,0,0,0],[0,0,1,0,0,1],[1,0,0,0,0,0],[0,0,1,0,0,0], 
[0,0,0,1,0,0],[0,0,0,0,1,0]] 
11. visited=[] 
12. dfs(0) 
//Output 
1 
2 
3 
6 
5 
4 
13. visited=[] 
14. dfs(1) 
//Output 
2 
3 
1 
6 
5 
4 

15. //Undirected graph 
16. graph = [[0,1,1,0,0,0],[1,0,1,0,0,1],[1,1,0,1,0,0],[0,0,1,0,1,0], 
[0,0,0,1,0,1],[0,1,0,0,1,0]] 
17. visited=[] 
18. dfs(0) 
//Output 
1 
2 
3 
4 
5 
6 
19. visited=[] 
20. dfs(1) 
//Output 
2 
1 
3 
4 
5 
6 
 The preceding example shows the implementation of DFS traversal for adjacency matrix representation. As can be seen from preceding example, the same function can be used to traverse directed and undirected graph. 
 Example 14.7: DFS traversing Graph with adjacency list representation 
 1. V1 = SLinkedList() 
2. V1.headVal=Node(1) 

3. V1.add_node(Node(2)) 
4. V2 = SLinkedList() 
5. V2.headVal=Node(2) 
6. V2.add_node(Node(3)) 
7. V2.add_node(Node(6)) 
8. V3 = SLinkedList() 
9. V3.headVal=Node(3) 
10. V3.add_node(Node(1)) 
11. V4 = SLinkedList() 
12. V4.headVal=Node(4) 
13. V4.add_node(Node(3)) 
14. V5 = SLinkedList() 
15. V5.headVal=Node(5) 
16. V5.add_node(Node(4)) 
17. V6 = SLinkedList() 
18. V6.headVal=Node(6) 
19. V6.add_node(Node(5)) 
20. graph = [V1,V2,V3,V4,V5,V6] 
21. def dfs(index): 
22.     if index not in visited: 
23.         print(index+1) 
24.         visited.append(index) 
25.         current = graph[index].headVal 
26.         while(current.next!=None): 
27.             dfs(current.next.val-1) 
28.             current = current.next 
29. 
30. visited=[] 
31. dfs(0) 

//Output 
1 
2 
3 
6 
5 
4 
32. 
33. visited=[] 
34. dfs(1) 
//Output 
2 
3 
1 
6 
5 
4 
 Preceding example shows the implementation of DFS traversal for directed adjacency list representation. The same function can be used to traverse directed and undirected graph. The only difference being that undirected graph will have larger list for each vertex. 





 Insertion 
 Graph is a mutable collection of data; thus, new vertices or edges can be inserted into the graph easily. 
  Insert new Example 14.1 shows how we can insert new vertex in adjacency list representation of the graph. Using function a new vertex can be added and connected to the existing vertex. Adding a new node in the dictionary and adjacency matrix is as shown in example 
 Example 14.8: Insert new vertex in Graph 
 1. //Dictionary representation 
2. graph = {1:[2],2:[3,6],3:[1],4:[3],5:[4],6:[5]} 
3. graph 
//Output 
{1: [2], 2: [3, 6], 3: [1], 4: [3], 5: [4], 6: [5]} 
4. graph[4] = [3,7] 
5. 
6. graph[7] = [1] 
7. graph 
//Output 
{1: [2], 2: [3, 6], 3: [1], 4: [3, 7], 5: [4], 6: [5], 7: [1]} 
8. 
9. //Adjacency matrix representation 
10. graph = [[0,1,0,0,0,0],[0,0,1,0,0,1],[1,0,0,0,0,0],[0,0,1,0,0,0], 
[0,0,0,1,0,0],[0,0,0,0,1,0]] 
11. graph 
//Output 
12. [[0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 1], [1, 0, 0, 0, 0, 0], 
[0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0]] 

13. graph = [[0,1,0,0,0,0,0],[0,0,1,0,0,1,0],[1,0,0,0,0,0,1], 

graph 
//Output 
[[0, 1, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 1, 0], 
[1, 0, 0, 0, 0, 0, 1], [0, 0, 1, 0, 0, 0, 0], 
[0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], [1, 0, 0, 0, 0, 0, 0]] 
 As can be seen from the preceding example, inserting a vertex in the dictionary can be easily done by modifying values for new and existing node. Inserting a vertex in an adjacency matrix requires modification in the whole matrix. 
  Add a new edge between existing add_node function of example 14.1 can be used to add a new edge between existing nodes. Example 14.9 shows how we can add a new edge in different representations of the graph. 
 Example 14.9: Add edge between vertices 
 1. //Dictionary representation. 
2. graph = {1:[2],2:[3,6],3:[1],4:[3],5:[4],6:[5]} 
3. graph 
//Output 
{1: [2], 2: [3, 6], 3: [1], 4: [3], 5: [4], 6: [5]} 
4. graph[4]=[3,6] 
5. 
6. graph 
//Output 
{1: [2], 2: [3, 6], 3: [1], 4: [3, 6], 5: [4], 6: [5]} 
7. 
8. //Adjacency matrix representation. 

9. graph = [[0,1,0,0,0,0],[0,0,1,0,0,1],[1,0,0,0,0,0], 
[0,0,1,0,0,0], [0,0,0,1,0,0],[0,0,0,0,1,0]] 
10. graph 
//Output 
[[0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 1], [1, 0, 0, 0, 0, 0], 
[0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0]] 
11. graph[3]=[0,0,1,0,0,1] 
12. graph 
//Output 
[[0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 1], [1, 0, 0, 0, 0, 0], 
[0, 0, 1, 0, 0, 1], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0]] 
13. 
14. //Adjacency list representation. 
15. V1 = SLinkedList() 
16. V1.headVal=Node(1) 
17. V1.add_node(Node(2)) 
18. V2 = SLinkedList() 
19. V2.headVal=Node(2) 
20. V2.add_node(Node(3)) 
21. V2.add_node(Node(6)) 
22. V3 = SLinkedList() 
23. V3.headVal=Node(3) 
24. V3.add_node(Node(1)) 
25. V4 = SLinkedList() 
26. V4.headVal=Node(4) 
27. V4.add_node(Node(3)) 
28. V5 = SLinkedList() 
29. V5.headVal=Node(5) 
30. V5.add_node(Node(4)) 

31. V6 = SLinkedList() 
32. V6.headVal=Node(6) 
33. V6.add_node(Node(5)) 
34. graph= [V1,V2,V3,V4,V5,V6] 
35. V4.add_node(Node(V6.headVal.val)) 
 As can be seen from the preceding example, adding an edge in the dictionary can be easily done by modifying the values of the existing node. Inserting a vertex in an adjacency matrix can also be done by modifying the lists at the index of the existing node. 





 Deletion 
 The graph is a mutable collection of data; thus, vertex or edge can be deleted from the graph easily. 
  Deleting a Deleting a vertex leads to the deletion of edges connected to the vertex. Example 14.10 shows how a vertex and its edges are deleted from the graph in different representations. 
 Example 14.10: Deleting a vertex 
 1. //Dictionary representation 
2. def delete(vertex): 
3.     for i in range(1,7): 
4.         if(vertex in graph[i]): 
5.             graph[i].remove(vertex) 
6.     graph.pop(vertex) 
7. 
8. graph = {1:[2],2:[3,6],3:[1],4:[3],5:[4],6:[5]} 
9. graph 
10. //Output 
11. {1: [2], 2: [3, 3: [1], 4: [3], 5: [4], 6: [5]} 
12. delete(6) 
13. graph 
//Output 
{1: [2], 2: [3], 3: [1], 4: [3], 5: [4]} 
14. 
15. //Adjacency matrix representation 
16. def delete(vertex): 
17.     for i in range(0, len(graph)): 
18.         graph[i].pop(vertex-1) 
19.     graph.pop(vertex-1) 

20. 
21. graph = [[0,1,0,0,0,0],[0,0,1,0,0,1],[1,0,0,0,0,0],[0,0,1,0,0,0], 
[0,0,0,1,0,0],[0,0,0,0,1,0]] 
22. graph 
//Output 
[[0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 1], [1, 0, 0, 0, 0, 0], 
[0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0]] 
23. 
24. delete(6) 
25. graph 
//Output 
[[0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [1, 0, 0, 0, 0], [0, 0, 1, 0, 0], 
[0, 0, 0, 1, 0]] 
26. 
27. //Adjacency list representation 
28. V1 = SLinkedList() 
29. V1.headVal=Node(1) 
30. V1.add_node(Node(2)) 
31. V2 = SLinkedList() 
32.V2.headVal=Node(2) 
33. V2.add_node(Node(3)) 
34. V2.add_node(Node(6)) 
35. V3 = SLinkedList() 
36. V3.headVal=Node(3) 
37. V3.add_node(Node(1)) 
38. V4 = SLinkedList() 
39. V4.headVal=Node(4) 
40. V4.add_node(Node(3)) 
41. V5 = SLinkedList() 

42. V5.headVal=Node(5) 
43. V5.add_node(Node(4)) 
44. V6 = SLinkedList() 
45. V6.headVal=Node(6) 
46. V6.add_node(Node(5)) 
47. graph= [V1,V2,V3,V4,V5,V6] 
48. def delete(index): 
49.     for i in range(0, len(graph)): 
50.         current = graph[i].headVal 
51.         while(current.val!= (index+1) and current.next!=None): 
52.             prev = current 
53.             current=current.next 
54.             if(current.val==(index+1)): 
55.                 if(current.next!=None): 
= current.next 

58.                     prev.next = None 
59.     graph.pop(index) 
60. 
61. for i in range(0, len(graph)): 
62.     tempNode = graph[i].headVal 
63.     print(‘Vertex:’, tempNode.val) 
64.     while(tempNode.next!=None): 
65.         tempNode = tempNode.next 
66.         print(‘Connected Vertex:’, tempNode.val) 
67. 
//Output 
Vertex: 1 

Connected Vertex: 2 
Vertex: 2 
Connected Vertex: 3 
Connected Vertex: 6 
Vertex: 3 
Connected Vertex: 1 
Vertex: 4 
Connected Vertex: 3 
Vertex: 5 
Connected Vertex: 4 
Vertex: 6 
Connected Vertex: 5 
68. 
69. delete(5) 
70. for i in range(0, len(graph)): 
71.     tempNode = graph[i].headVal 
72.     print(‘Vertex:’, tempNode.val) 
73.     while(tempNode.next!=None): 
74.         tempNode = tempNode.next 
75.         print(‘Connected Vertex:’, tempNode.val) 
76. 
//Output 
Vertex: 1 
Connected Vertex: 2 
Vertex: 2 
Connected Vertex: 3 
Vertex: 3 
Connected Vertex: 1 
Vertex: 4 

Connected Vertex: 3 
Vertex: 5 
Connected Vertex: 4 
 As can be seen from the preceding example, the 6th element in adjacency list representation is not printed as the 6th element has been deleted. 
 Deleting an Deleting an edge means deleting a connection between two vertices. Example 14.11 shows how an edge can be deleted from the graph in different representations. 
 Example 14.11: Deleting an edge 
 1. //Dictionary representation 
2. def delete(startVertex, endVertex): 

4. 
5. graph = {1:[2],2:[3,6],3:[1],4:[3],5:[4],6:[5]} 
6. graph 
//Output 
{1: [2], 2: [3, 6], 3: [1], 4: [3], 5: [4], 6: [5]} 
7. delete(2,6) 
8. graph 
//Output 
{1: [2], 2: [3], 3: [1], 4: [3], 5: [4], 6: [5]} 
9. //Adjacency matrix representation 
10. def delete(startVertex, endVertex): 
11.         graph[startVertex-1][endVertex-1]=0 
12. 
13. graph = [[0,1,0,0,0,0],[0,0,1,0,0,1],[1,0,0,0,0,0],[0,0,1,0,0,0], 
[0,0,0,1,0,0],[0,0,0,0,1,0]] 
14. graph 

//Output 
[[0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 1], [1, 0, 0, 0, 0, 0], 
[0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0]] 
15. delete(2,6) 
16. graph 
//Output 
[[0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0], [1, 0, 0, 0, 0, 0], 
[0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0]] 
17. //Adjacency list representation 
18. V1 = SLinkedList() 
19. V1.headVal=Node(1) 
20. V1.add_node(Node(2)) 
21. V2 = SLinkedList() 
22. V2.headVal=Node(2) 
23. V2.add_node(Node(3)) 
24. V2.add_node(Node(6)) 
25. V3 = SLinkedList() 
26. V3.headVal=Node(3) 
27. V3.add_node(Node(1)) 
28. V4 = SLinkedList() 
29. V4.headVal=Node(4) 
30. V4.add_node(Node(3)) 
31. V5 = SLinkedList() 
32. V5.headVal=Node(5) 
33. V5.add_node(Node(4)) 
34. V6 = SLinkedList() 
35. V6.headVal=Node(6) 
36. V6.add_node(Node(5)) 
37. 

38. graph= [V1,V2,V3,V4,V5,V6] 
39. def delete(startVertex,endVertex): 
40.     current = graph[startVertex-1].headVal 
41.     while(current.next!=None): 
42.         prev = current 
43.         current=current.next 
44.         if(current.val==endVertex): 
45.             if(current.next!=None): 
46.                 prev.next = current.next 

48.                 prev.next = None 
49. 
50. for i in range(0,6): 
51.     tempNode = graph[i].headVal 
52.     print(‘Vertex:’, tempNode.val) 
53.     while(tempNode.next!=None): 
54.         tempNode = tempNode.next 
55.         print(‘Connected Vertex:’, tempNode.val) 
56. 
//Output 
Vertex: 1 
Connected Vertex: 2 
Vertex: 2 
Connected Vertex: 3 
Connected Vertex: 6 
Vertex: 3 
Connected Vertex: 1 
Vertex: 4 
Connected Vertex: 3 

Vertex: 5 
Connected Vertex: 4 
Vertex: 6 
Connected Vertex: 5 
57. delete(2,6) 
58. for i in range(0,6): 
59.     tempNode = graph[i].headVal 
60.     print(‘Vertex:’, tempNode.val) 
61.     while(tempNode.next!=None): 
62.         tempNode = tempNode.next 
63.         print(‘Connected Vertex:’, tempNode.val) 
64. 
//Output 
Vertex: 1 
Connected Vertex: 2 
Vertex: 2 
Connected Vertex: 3 
Vertex: 3 
Connected Vertex: 1 
Vertex: 4 
Connected Vertex: 3 
Vertex: 5 
Connected Vertex: 4 
Vertex: 6 
Connected Vertex: 5 





 Searching 
 Example 14.12 to 14.14 shows the example of graph data searching in different representations. Please note that the searching element is the same for both directed and undirected graphs. Please note that we can only check if a value exists in graph or not because indexing is not available in the graph. 
 Example 14.12: Graph data search in Dictionary representation 
 1. graph = {1:[2],2:[3,6],3:[1],4:[3],5:[4],6:[5]} 
2. graph 
//Output 
{1: [2], 2: [3, 6], 3: [1], 4: [3], 5: [4], 6: [5]} 
3. 2 in graph 
//Output 
True 
4. 1 in graph 
//Output 
True 
5. 0 in graph 
//Output 
False 
6. 10 in graph 
//Output 
False 
 Preceding example searches value in dictionary representation using Python’s built-in member test functionality. In the case of adjacency matrix graph representation, it does not have a value of graph vertices. To keep track of graph vertices and index of adjacency matrix, we can create a list of graph vertices as shown in example 
 
Example 14.13: Graph data search in adjacency matrix representation 
 1. graph = [[0,1,0,0,0,0],[0,0,1,0,0,1],[1,0,0,0,0,0],[0,0,1,0,0,0], 
[0,0,0,1,0,0],[0,0,0,0,1,0]] 
2. graph 
//Output 
[[0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 1], [1, 0, 0, 0, 0, 0], 
[0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0]] 
3. vertexList=[1,2,3,4,5,6] 
4. 0 in vertexList 
//Output 
False 
5. 5 in vertexList 
//Output 
True 
6. 9 in vertexList 
//Output 
False 
7. 2 in vertexList 
//Output 
True 
 The preceding example implements search function in adjacency representation using the list data structure. Example 14.14 implements a search function for adjacency list representation created in Example 
 Example 14.14: Graph data search in adjacency list representation 
 1. V1 = SLinkedList() 
2. V1.headVal=Node(1) 

3. V1.add_node(Node(2)) 
4. V2 = SLinkedList() 
5. V2.headVal=Node(2) 
6. V2.add_node(Node(3)) 
7. V2.add_node(Node(6)) 
8. V3 = SLinkedList() 
9. V3.headVal=Node(3) 
10. V3.add_node(Node(1)) 
11. V4 = SLinkedList() 
12. V4.headVal=Node(4) 
13. V4.add_node(Node(3)) 
14. V5 = SLinkedList() 
15. V5.headVal=Node(5) 
16. V5.add_node(Node(4)) 
17. V6 = SLinkedList() 
18. V6.headVal=Node(6) 
19. V6.add_node(Node(5)) 
20. graph= [V1,V2,V3,V4,V5,V6] 
21. def 
22.     isFound = False 
23.     for i in 
24.         tempNode = graph[i].headVal 
25.         
26.             isFound = True 
27.             break 
28.     
29.         is present in 
30.     
31.         is not present in 

32. 
33. 
//Output 
Value is present in graph 
34. 
//Output 
Value is not present in graph 
35. 
//Output 
Value is not present in graph 
36. 
//Output 
Value is present in graph 





 Merging 
 Graph merging will require creating a new graph with old values and at least one new edge between vertices of both graphs. Merging two graphs is like creating a new graph and thus we will be skipping examples of merging and it will be left as an exercise for you. 





 Reverse 
 Reversing a graph implies reversing the direction of edges in the graph. Thus, undirected graphs cannot be reversed as there is no direction for edges. To reverse the direction of the directed graph, a new graph is created in reversed direction. 
 Examples 14.15 to 14.17 show examples of reversing the graph for different representations. 
 Example 14.15: Reverse dictionary representation of Graph 
 1. graph = {1:[2],2:[3,6],3:[1],4:[3],5:[4],6:[5]} 
2. graph 
//Output 
{1: [2], 2: [3, 6], 3: [1], 4: [3], 5: [4], 6: [5]} 
3. 
4. reversedGraph={} 
5. def reverse(): 
6.     for k in graph.keys(): 
7.         list=[] 
8.         for k1 in graph.keys(): 
9.             if k in graph[k1]: 
10.                 list.append(k1) 
11.         reversedGraph[k]=list 
12. 
13. reverse() 
14. reversedGraph 
//Output 
{1: [3], 2: [1], 3: [2, 4], 4: [5], 5: [6], 6: [2]} 
 The preceding example iterates over dictionary twice to reverse the order of direction in graph. 
 
Example 14.16: Reverse adjacency matrix representation of Graph 
 1. graph = [[0,1,0,0,0,0],[0,0,1,0,0,1],[1,0,0,0,0,0],[0,0,1,0,0,0], 
[0,0,0,1,0,0],[0,0,0,0,1,0]] 
2. graph 
//Output 
[[0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 1], [1, 0, 0, 0, 0, 0], 
[0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0]] 
3. 
4. reversedGraph=[] 
5. for i in range(0,len(graph)): 
6.     list=[] 
7.     for j in range(0,len(graph)): 
8.         list.append(0) 
9.     reversedGraph.append(list) 
10. 
11. reversedGraph 
//Output 
[[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], 
[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]] 
12. def reverse(): 
13.     for i in range(0,len(graph)): 
14.         for j in range(0,len(graph)): 
15.             if(graph[i][j]==1): 
16.                 reversedGraph[j][i]=1 
17. 
18. reverse() 
19. reversedGraph 
//Output 
[[0, 0, 1, 0, 0, 0], [1, 0, 0, 0, 0, 0], [0, 1, 0, 1, 0, 0], 

[0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1], [0, 1, 0, 0, 0, 0]] 
 The following example shows how the adjacency list created in example 14.1 can be reversed through the searching and insertion algorithm. 
 Example 14.17: Reverse adjacency list representation of Graph 
 1. class 
2.     def 
3.         = val 
4.         = None 
5. 
6. class 
7.     def 
8.         = None 
9.     def 
10.         tempNode = 
11.         
12.             tempNode = 
13.         = node 
14. 
15. V1 = SLinkedList() 
16. 
17. 
18. V2 = SLinkedList() 
19. 
20. 
21. 
22. V3 = SLinkedList() 
23. 
24. 

25. V4 = SLinkedList() 
26. 
27. 
28. V5 = SLinkedList() 
29. 
30. 
31. V6 = SLinkedList() 
32. 
33. 
34. 
35. graph = [V1,V2,V3,V4,V5,V6] 
36. 
37. for i in 
38.     tempNode = graph[i].headVal 
39.     tempNode.val) 
40.     
41.         tempNode = 
42.         tempNode.val) 
43. 
//Output 
Vertex: 1 
Connected Vertex: 2 
Vertex: 2 
Connected Vertex: 3 
Connected Vertex: 6 
Vertex: 3 
Connected Vertex: 1 
Vertex: 4 
Connected Vertex: 3 

Vertex: 5 
Connected Vertex: 4 
Vertex: 6 
Connected Vertex: 5 
44. def 
45.     for i in 
46.         vertex = SLinkedList() 
47.        vertex.headVal = Node(graph[i].headVal.val) 
48.         for j in 
49.             tempNode = graph[j].headVal 

51.                 
52.                 
53.                     vertex.add_node(Node(graph[j].headVal.val)) 
54.         reversedGraph.append(vertex) 
55. 
56. reversedGraph=[] 
57. reverse() 
58. for i in 
59.     tempNode = reversedGraph[i].headVal 
60.     tempNode.val) 
61.     
62.         tempNode = 
63.         tempNode.val) 
64. 
//Output 
Vertex: 1 
Connected Vertex: 3 

Vertex: 2 
Connected Vertex: 1 
Vertex: 3 
Connected Vertex: 2 
Connected Vertex: 4 
Vertex: 4 
Connected Vertex: 5 
Vertex: 5 
Connected Vertex: 6 
Vertex: 6 
Connected Vertex: 2 





 Copy 
 Copying a graph into another graph is just iterating over the values and writing the same values in a new graph object. It will be left as an exercise for you. 





 Help 
 Python does not have help() for the graph as it does not exist as a built-in data structure or library of Python. 





 Use case 
 Graphs are used in many real-time applications. A few of the use cases are as follows: 
  Road It can be represented as a graph data structure. Vertex is the intersection point and edge is the road connecting two intersections. 
 Navigation As road network can be represented as graph data structure, thus, the navigation system also uses graph data structure to calculate the shortest path between two destinations. Destinations can be represented as vertices along with intersections. 
 World Wide Each webpage of a website is considered as vertex and the link between two webpages is considered as a directional edge. 
 Social Each user can be considered as vertex and two users or friends are connected through an edge. 
 Flight Each destination is considered as vertex and flight path form one destination to another destination is considered as an edge. 





 Conclusion 
 This chapter gives details about a graph data structure which can be created by user in Python. Python library does not have any built-in operations for handling graphs. A user can define methods based on their use case. The graph is a mutable object and thus can be manipulated easily. In the next chapter, we will focus on the next user-defined data structure known as HashMap. We will dig into details on HashMap creation and operations. 





 Points to remember 
  Graph data structure is a collection of vertices connected through edges. 
 Graph data structure can store heterogeneous data. 
 Graph can store data in sequential or non-sequential memory depending on the representations used to implement graph. 
 Graph is mutable and can be modified. 
 There are two types of graphs that are majorly used: Directed and Undirected. 
 Edges in directed graphs have direction from one vertex to another. Directed graph edges are like a one-way road. 
 Edges in directed graphs do not have any direction. Undirected graph edges are like a two-way road. 
 Graphs can be implemented using three types of representations: Dictionary, Adjacency matrix, and Adjacency list. 
 Traversal of a graph can be done breadthwise known as Breadth-First Search traversal or depth-wise known as Depth-First Search traversal. 
 Python does not have built-in function support for the graph. The user has control over function definitions for graphs. 





 Multiple choice questions 
  What is the correct way to create a Graph? 
  graph={1:2,2:5,3:6,4:2,5:3,6:1} 
 graph=[[0,1,0],[1,0,0],[1,0,0]] 
 graph=[1:[2,3],2:[1],3:[2]} 
 graph=[1,2,3,4] 
 Which of the type of Graph can be used to implement World Wide Web? 
  Undirected Graph 
 Directed Graph 
 Both a and b 
 None of the above 
 What will be the output of following Graph when traversed through BFS starting from vertex 1? 
 graph={1:[2,4],2:[1,6],3:[5],4:[3],5:[1],6:[3]} 
  1 -> 2 -> 3 -> 4 -> 5 -> 6 
 1 -> 4 -> 2 -> 6 -> 3 -> 5 
 1 -> 2 -> 6 -> 3 -> 5 -> 4 
 1 -> 2 -> 4 -> 6 -> 3 -> 5 
 What will be the output of following Graph when traversed through DFS starting from vertex 1? 
 graph={1:[2,4],2:[1,6],3:[5],4:[3],5:[1],6:[3]} 
  1 -> 2 -> 3 -> 4 -> 5 -> 6 
 1 -> 4 -> 2 -> 6 -> 3 -> 5 
 1 -> 2 -> 6 -> 3 -> 5 -> 4 
 1 -> 2 -> 4 -> 6 -> 3 -> 5 





 Answers 
  b, c 
 b 
 d 
 c 





 Questions 
  Write to code to identify number of paths possible in given directed graph. You can use any representation of graph. 
 Write code to copy one graph to another graph such that modification in one graph affects another graph. 
 Write code to copy one graph to another graph such that modification in one graph does not affect another graph. 





 Answers 
  def noOfPaths(src,dest,visited,count): 
visited.append(src) 
 if(src==dest): 
count[0]+=1 
else: 
for val in graph[src]: 
if val not in visited: 
noOfPaths(val,dest,visited,count) 
visited.remove(src) 
 visited = [] 
graph = {1: [2, 4], 2: [1, 6], 3: [5], 4: [3, 6], 5: [1], 6: [3]} 
count = [0] 
noOfPaths(1,6,visited,count) 
print(count[0]) 
 graph1 = graph 
 graph1={} 
for key in graph.keys(): 
 list=[] 
for val in graph[key]: 
list.append(val) 
graph1[key] = list 





CHAPTER 15 
 HashMap 





 Introduction 
 Chapters 10 to 14 give implementation details and operations support for user-defined data structures available in Python. Chapter 10, Chapter 11, Chapter 12, Chapter 13, Linked and Chapter 14, Graph explained how user-defined data structures can be implemented in Python. In this chapter, we will learn about another user-defined data structure known as HashMap is a linear data structure like a list. HashMap is a list of linked lists. 





 Structure 
 In this chapter, we will be discussing the following topics: 
  Introducing HashMap 
  HashMap creation 
 Access HashMap data 
 HashMap operations 
  Traversing 
 Insertion 
 Deletion 
 Searching 
 Sorting 
 Merging 
 Count 
 Reverse 
 Copy 
 HashMap length 
 Maximum and Minimum 
 Help 





 Objectives 
 This chapter will help you to understand the HashMap data structure and how it can be implemented in Python. After completing this chapter, you will be able to implement HashMap using the data structures available in Python. You will be able to implement operations on HashMap. You will be able to write Python programs using HashMap data structure. 





 Introducing HashMap 
 HashMap is a linear data structure like a list. HashMap can be implemented as a list of linked lists. Each index of HashMap has a linked list. A hash of data is calculated to get the index where data can be stored. The new data can be added as the head of the linked list or at the end of the linked list. Adding new data as head has O(1) time complexity. Adding new data at the end of the linked list has O(n) time complexity, as we need to traverse the linked list till the end to add the data. 
 Hash values can be calculated through hash functions. The same hash function will always generate the same hash for the same data. The hash function can be as simple as dividing the data value by the size of the list where the data is to be stored. The hash function can be as complex as applying different operations on different characters or bits of the data to be stored. Figure 15.1 shows how HashMap is stored in memory. 
 
 Figure 15.1: HashMap implementation 





 HashMap creation 
 HashMap in Python can be created using a list and linked list data structure. Example 15.1 shows how HashMap shown in figure 15.1 can be created using a list. 
 Example 15.1: HashMap creation using a list 
 1. class 
2.     def 
3.         = val 
4.         = None 
5. 
6. class 
7.     def 
8.         = None 
9.     def 
10.         tempNode = 
11.         
12.             tempNode = 
13.         = node 
14. 
15. class 
16.     def 
17.         = size 
18.         
19.         for i in 
20.             
21.     def 
22.         
23.         
24.             

25.             
26.         else: 
27.             
28. 
29. 
30. map 
//Output 
<__main__.HashMap object at 0x000001C1BF49D760> 
 31. 
32. map.list 
//Output 
[None, None, None, None, None, None, None, None, <__main__.SLinkedList object at 0x000001C1BF4E3BB0>] 
 33. 
34. map.list 
//Output 
[<__main__.SLinkedList object at 0x000001C1BF4E3CA0>, None, None, None, None, None, None, None, <__main__.SLinkedList object at 0x000001C1BF4E3BB0>] 
 35. 
36. map.list 
//Output 
[<__main__.SLinkedList object at 0x000001C1BF4E3CA0>, None, None, None, None, None, None, None, <__main__.SLinkedList object at 0x000001C1BF4E3BB0>] 
 37. 
//Output 
8 
38. 

//Output 
17 
39. 
//Output 
9 
40. 
41. 
//Output 
18 





 HashMap operations 
 Developers can perform many of the basic data structure operations mentioned in Chapter 4, Data on HashMap. The following sub-sections give details about each operation that can be performed on HashMap data structure in Python. 





 Traversing 
 Traversing HashMap means accessing each data of HashMap one by one and performing an operation or printing each data value. HashMap traversing can be done by traversing each linked list separately. The following example 15.2 shows traversing HashMap declared and defined in Example 
 Example 15.2: Traversing HashMap 
 1. for key in map.list: 
2.     if key!=None: 
= key.headVal 
4.         
5.             print(tempNode.val) 
6.             
7. 
//Output 
9 
18 
8 
17 





 Insertion 
 HashMap is a mutable collection of data; thus, new data can be inserted into HashMap easily. Example 15.1 shows how data can be inserted in the HashMap. insert_data(val) inserts new data in HashMap based on hash function which is % in example 





 Deletion 
 HashMap is a mutable collection of data; thus, data elements can be deleted from the HashMap easily. To delete an element, the index is calculated using the same hash function used to insert the data. The deletion functionality of the linked list is used to delete the data from HashMap. Example 15.3 shows how delete_data(val) is implemented for HashMap. 
 Example 15.3: Deleting an element 
 1. class 
2.     def 
3.         = size 
4.         
5.         for i in 
6.             
7.     def 
8.         
9.         
10.             
11.             
12.         else: 
13.             
14.     def 
15.         
16.         
17.             
18.             return 
19.         prevNode = 
20.         

21.         
22.             
23.                 = 
24.             prevNode = tempNode 
25.             tempNode = 
26. 
27. 
28. map 
//Output 
<__main__.HashMap object at 0x000001C1BF4E8C10> 
 29. 
30. map.list 
//Output 
[None, None, None, None, None, None, None, None, <__main__.SLinkedList object at 0x000001C1BF49D760>] 
 31. 
32. map.list 
//Output 
[<__main__.SLinkedList object at 0x000001C1BF4E8D30>, None, None, None, None, None, None, None, <__main__.SLinkedList object at 0x000001C1BF49D760>] 
 33. 
34. map.list 
//Output 
[<__main__.SLinkedList object at 0x000001C1BF4E8D30>, None, None, None, None, None, None, None, <__main__.SLinkedList object at 0x000001C1BF49D760>] 
 35. 
//Output 

8 
36. 
//Output 
17 
37. 
//Output 
9 
38. 
39. 
//Output 
18 
40. 
41. 
//Output 
17 
42. 
//Output 
Traceback (most recent call last): 
File “”, line 1, in  
AttributeError: ‘NoneType’ object has no attribute ‘val’ 
43. 
44. 
//Output 
9 
45. 
//Output 
Traceback (most recent call last): 
File “”, line 1, in  
AttributeError: ‘NoneType’ object has no attribute ‘val’ 
 
As can be seen from the preceding example, deleting head data 8, the next element becomes the head value. 





 Searching 
 Searching an element in HashMap is a modified version of the traversal algorithm shown in example Index for the element to be searched is calculated using the hash function. The data element is searched in the linked list of the index. 
 Example 15.4 shows the implementation of the search function in HashMap. 
 Example 15.4: Searching an element 
 1. class 
2.     def 
3.         = size 
4.         
5.         for i in 
6.             
7.     def 
8.         
9.         
10.             
11.             
12.         else: 
13.             
14.     def 
15.         
16.         
17.             
18.         prevNode = 
19.         
20.         

21.             print(tempNode.val) 
22.             
23.                 = 
24.             prevNode = tempNode 
25.             tempNode = 
26.     def 
27.         
28.         tempNode=None 
29.         
30.             
31.         isFound=False 
32.         
33.             
34.                 isFound=True 
35.                 break 

37.         
38.             found at index) 
39.         else: 
40.             not present in 
41. 
42. 
43. map 
//Output 
<__main__.HashMap object at 0x000001C1BEFB0F70> 
 44. 
45. map.list 
//Output 

[None, None, None, None, None, None, None, None, <__main__.SLinkedList object at 0x000001C1BF49D760>] 
 46. 
47. map.list 
//Output 
[<__main__.SLinkedList object at 0x000001C1BEFC8550>, None, None, None, None, None, None, None, <__main__.SLinkedList object at 0x000001C1BF49D760>] 
 48. 
49. map.list 
//Output 
[<__main__.SLinkedList object at 0x000001C1BEFC8550>, None, None, None, None, None, None, None, <__main__.SLinkedList object at 0x000001C1BF49D760>] 
 50. 
//Output 
8 
51. 
//Output 
17 
52. 
//Output 
9 
53. 
54. 
//Output 
18 
55. 
//Output 
Value found at 8 

56. 
//Output 
Value found at 0 
57. 
//Output 
Value not present in HashMap 





 Sorting 
 Only linked lists of HashMap can be sorted as the index of values are obtained through the hash function. Example 13.18 of Chapter 13, Linked List shows how a linked list can be sorted. The same insertion algorithm can be applied to each linked list to sort them. 
 Example 15.5 shows how insertionSort(list1) can be used to sort linked lists in HashMap. 
 Example 15.5: Sorting HashMap 
 1. def insertionSort(list1): 
2.     sortedList = SLinkedList() 
3.     currentNode = list1.headVal 
4.     while (currentNode != None): 
5.         nextNode = currentNode.next 
6.         sortedList.headVal = insert(sortedList.headVal, currentNode) 
7.         currentNode = nextNode 
8.     list1.headVal = sortedList.headVal 
9. 
10. def insert(headVal, newNode): 
11.     currentNode = None 
12.     if (headVal == None or headVal.val >= newNode.val): 
13.         newNode.next = headVal 
14.         headVal = newNode 
15.     
16.         currentNode = headVal 
17.         while (currentNode.next != None and 
18.             currentNode.next.val < newNode.val): 
19.             currentNode = currentNode.next 

20.         newNode.next = currentNode.next 
21.         currentNode.next = newNode 
22.     return headVal 
23. 
24. 
25. map.insert_data(18) 
26. map.insert_data(17) 
27. map.insert_data(9) 
28. map.insert_data(8) 
29. 
30. for key in map.list: 
31.     if key!=None: 
32.         tempNode = key.headVal 
33.         
34.             print(tempNode.val) 

36. 
//Output 
18 
9 
17 
8 
 37.for list1 in map.list: 
38.     if list1!=None: 

40. 
41. for key in map.list: 
42.     if key!=None: 
43.         tempNode = key.headVal 

44.         
45.             print(tempNode.val) 

47. 
//Output 
9 
18 
8 
17 





 Count 
 Counting the number of times a data element exists can be implemented by modifying the searching algorithm implemented in example Example 15.6 shows the implementation of the count function. 
 Example 15.6: Count data elements 
 1. class 
2.     def 
3.         = size 
4.         
5.         for i in 
6.             
7.     def 
8.         
9.         
10.             
11.             
12.         else: 
13.             
14.     def 
15.         
16.         
17.             
18.         prevNode = 
19.         
20.         
21.             print(tempNode.val) 
22.             

23.                 = 
24.             prevNode = tempNode 
25.             tempNode = 
26.     def 
27.         
28.         tempNode=None 
29.         
30.             
31.         isFound=False 
32.         
33.             
34.                 isFound=True 
35.                 break 
36.             
37.         
38.             found at index) 
39.         else: 
40.             not present in 
41.     def 
42.         
43.         
44.         tempNode=None 
45.         
46.             
47.         
48.             
49.                 
50.             
51.         exists count, “ times in 

52. 
53. 
54. 
55. 
56. 
57. 
58. 
59. 
//Output 
8 exists 2 times in HashMap. 
60. 
//Output 
17 exists 1 times in HashMap. 





 Merging 
 Merging two HashMaps means combining data elements of both HashMaps into a single HashMap. There can be two cases for merging two HashMaps as given as follows: 
  A hash function is the same for both HashMaps: In this case, merging is easier to achieve. It would be like merging two linked lists at index. Example 15.7 shows the implementation of merging HashMaps with the same hash function. 
 Example 15.7: Merge HashMap with the same hash function 
 1. class 
2.     def 
3.         = size 
4.         
5.         for i in 
6.             
7.     def 
8.         
9.         
10.             
11.             
12.         else: 
13.             
14.     def 
15.         
16.         
17.             
18.         prevNode = 

19.         
20.         
21.             print(tempNode.val) 
22.             
23.                 = 
24.             prevNode = tempNode 
25.             tempNode = 
26.     def 
27.         
28.         tempNode=None 
29.         
30.             
31.         isFound=False 
32.         
33.             
34.                 isFound=True 
35.                 break 
36.             
37.         
38.             found at index) 
39.         else: 
40.             not present in 
41.     def 
42.         
43.         
44.         tempNode=None 
45.         
46.             
47.         

48.             
49.                 
50.             
51.         exists count, “ times in 
52.     def 
53.         
54.         
55.             size = 
56.         else: 
57.             size=map.size 
58.         for index in 
59.             or map.list[index]==None): 
60.                 continue 
61.             
62.                 
63.             
64.                 
65.             else: 
66.                 tempNode = 
67.                 
68.                     tempNode = 
69.                 = map.list[index].headVal 
70. 
71. 
72. 
73. 
74. 
75. 

76. 
77. 
78. 
79. map.merge(map1) 
80. for key in 
81.     if 
82.         tempNode = key.headVal 
83.         
84.             print(tempNode.val) 
85.             
86. 
//Output 
9 
18 
10 
8 
17 
8 
  The hash function is different: In this case, the index of elements of the second HashMap is changed based on the hash function of the first HashMap. Example 15.8 shows the implementation of merging HashMaps with different hash functions. 
 Example 15.8: Merge HashMap with different hash functions 
 1. class 
2.     def 
3.         = size 
4.         
5.         for i in 

6.             
7.     def 
8.         
9.         
10.             
11.             
12.         else: 
13.             
14.     def 
15.         
16.         
17.             
18.         prevNode = 
19.         
20.         
21.             print(tempNode.val) 
22.             
23.                 = 
24.             prevNode = tempNode 
25.             tempNode = 
26.     def 
27.         
28.         tempNode=None 
29.         
30.             
31.         isFound=False 
32.         
33.             

34.                 isFound=True 
35.                 break 
36.             
37.         
38.             found at index) 
39.         else: 
40.             not present in 
41.     def 
42.         
43.         
44.         tempNode=None 
45.         
46.             
47.         
48.             
49.                 

51.     def 
52.         for list1 in 
53.             
54.                 tempNode = list1.headVal 
55.                 
56.                     
57.                     tempNode = 
58. 
59. 
60. 
61. 
62. 

63. 
64. 
65. 
66. 
67. map.merge(map1) 
68. for key in 
69.     if 
70.         tempNode = key.headVal 
71.         
72.             print(tempNode.val) 
73.             
74. 
//Output 
9 
18 
10 
8 
17 
8 
75. 
//Output 
Value found at 1 





 Reverse 
 Reversing a HashMap implies reversing the linked lists in HashMap as index calculation is done using a hash function. Example 13.23 of Chapter 13, Linked List can be used to reverse each linked list of the HashMap. Traversing to each linked list will be like example As this has already been implemented in example 15.2 and example will keep this as an exercise for the readers. 





 Copy 
 Copying a HashMap means creating a new object with the same values as the existing HashMap. HashMap copy can be done in two ways as follows: 
  Shallow copy: Shallow copy assigns the same reference of HashMap to the new object. Any modification in one HashMap affects the other. Example 15.9 shows the implementation of a shallow copy. 
 Example 15.9: Shallow copy of HashMap 
 1. for key in map.list: 
2.     if key!=None: 
3.         tempNode = key.headVal 
4.         
5.             print(tempNode.val) 
6.             
7. 
//Output 
9 
18 
10 
8 
17 
8 
8. 
9. for key in map1.list: 
10.     if key!=None: 
11.         tempNode = key.headVal 
12.         
13.             print(tempNode.val) 

14.             
15.   
//Output 
9 
18 
10 
8 
17 
8 
16. 
17. map1.insert_data(10) 
18. for key in map.list: 
19.     if key!=None: 
20.         tempNode = key.headVal 
21.         
22.             print(tempNode.val) 
23.             
24. 
//Output 
9 
18 
10 
10 
8 
17 
8 
25. for key in map1.list: 
26.     if key!=None: 
27.         tempNode = key.headVal 

28.         

30.             
31. 
//Output 
9 
18 
10 
10 
8 
17 
8 
 As can be seen from the preceding example, modification in map1 affects map HashMap too. 
  Deep copy: Deep copy means copying each element of HashMap separately to a new element through traversing. Any modification in one HashMap does not affect the other. Example 15.10 shows the implementation of a deep copy. 
 Example 15.10: Deep copy of HashMap 
 1. 
2. for key in map.list: 
3.     if key!=None: 
4.         tempNode = key.headVal 
5.         
6.             map1.insert_data(tempNode.val) 
7.             
8. 
9. for key in map1.list: 

10.     if key!=None: 
11.         tempNode = key.headVal 
12.         
13.             print(tempNode.val) 
14.             
15. 
//Output 
9 
18 
10 
10 
8 
17 
8 
16. map1.insert_data(10) 
17. 
18. for key in map1.list: 
19.     if key!=None: 
20.         tempNode = key.headVal 
21.         
22.             print(tempNode.val) 
23.             
24. 
//Output 
9 
18 
10 
10 
10 

8 
17 
8 
25. for key in map.list: 
26.     if key!=None: 
27.         tempNode = key.headVal 
28.         
29.             print(tempNode.val) 
30.             
31. 
//Output 
9 
18 
10 
10 
8 
17 
8 
 As can be seen from the preceding example, modification in map1 does not affect map HashMap. 





 HashMap length 
 Calculating the length of HashMap can be easily done by counting the number of elements while traversing the HashMap. Example 15.11 shows an implementation of length calculation by modifying the traversing algorithm of example 
 Example 15.11: HashMap length 
 1. 
2. for key in 
3.     if 
4.         tempNode = key.headVal 
5.         
6.             
7.             tempNode=tempNode.next 
8. 
9. number of elements 
//Output 
Total number of elements are: 7 





 Maximum and minimum 
 The maximum and minimum elements in a HashMap can be obtained by modifying the traversing algorithm. Example 15.12 shows how maximum and minimum elements are calculated in a HashMap. 
 Example 15.12: Maximum and minimum 
 1. 
2. 
3. 
4. for key in 
5.     if 
6.         tempNode = key.headVal 
7.         
8.             
9.                 
10.             
11.                 
12.             tempNode=tempNode.next 
13. 
14. max 
//Output 
18 
15. min 
//Output 
8 





 Help 
 Python does not have help() for HashMap as it does not exist as a built-in data structure or library of Python. 





 Conclusion 
 This chapter gives details about HashMap data structure which can be created by a user in Python. Python library does not have any built-in operations for handling HashMap. A user can define methods based on their use case. HashMap is a mutable object and thus can be manipulated easily. In the next chapter, we will learn how to use various data structures in real-life situations. The next chapter will focus on understanding, how to identify which data structure to use based on problem definition. 





 Points to remember 
  HashMap is a linear data structure like a list. 
 HashMap data structure can store heterogeneous data. 
 HashMap is mutable and can be modified. 
 HashMap can be stored as a list of linked lists. 
 HashMap gets the index of an element by calculating hash from the hash function. 
 Hash function selection should be done in such a way that each element generates a unique hash. 
 In case each element generates a unique hash, then the time complexity to retrieve an element becomes 
 In case of collision, a new element is added in the head or end of the linked list. 





 Questions 
  How HashMap resolve collision for index? 
  No resolution is done 
 Add a new element to the next index of collision 
 Add a new element to the linked list of the index 
 Is it possible to have duplicate elements in HashMap? 
  True 
 False 
 Write to code to reverse HashMap linked list. 
 Write code to implement HashMap through nested lists instead of a list of linked lists. 





 Answers 
  c 
 a 
 for key in map.list: 
if key!=None: 
currentNode = key.headVal 
prevNode = None 
while(currentNode!=None): 
nextNode = currentNode.next 
currentNode.next = prevNode 
prevNode = currentNode 
currentNode = nextNode 
key.headVal = prevNode 
 map=[None,None,None,None,None,None,None,None,None] 
size=9 
def insert(val,map): 
index=val%size 
if(map[index]!=None): 
map[index].append(val) 
else: 
map[index]=[val] 





CHAPTER 16 
 Practical Problem Solutions 





 Introduction 
 This is the last chapter of this book. In this chapter, we will be working on solving some of the real-time problems with our learnings from Chapters 1 to 15 of this book. Chapters 1 to 4 give an introduction to Python and data structures. Chapters 5 to 9 give an introduction to built-in data structures. Chapters 10 to 15 give an introduction to user-defined data structures. 
 In this chapter, we will work on problems through data structures by following steps: 
  Understand the problem and requirements. 
 Identify the data structures which can be used to implement the solution for the problem. 
 Implement the solution. 
 Identify time and space complexity for the problem. 





 Structure 
 In this chapter, we will be discussing the following topics: 
  Calculator implementation 
 Map implementation 
 Friends network implementation 
 Text editor implementation 





 Objectives 
 This chapter will help you to understand how you can solve real-time problems in your daily life using the data structures learned in this book. You will be able to understand the procedure to solve the problem and identify which data structure is more suitable for which kind of problem. After completing this chapter, you will be able to implement solutions for various problems and analyze the time and space complexity of the solution. 





 Calendar implementation 
 We will be taking the basic implementation of the calendar application. The following are the requirements of the application that will be creating: 
  Print month calendar. 
 Print year calendar. 
 Add an event to the calendar. 
 Get event data for a day. 
 To implement the preceding requirements of the calendar application, we need a data structure: 
  Which can be used to access data at O(1) time complexity. We can use Dictionary or HashMap data structure. In the case of the HashMap data structure, we can use the hash function which generates a unique hash for each month name. 
 Can hold month name as a unique value. Dictionary can be used to keep month name as a unique value. 
 Events can be added to date easily without the need for traversing the existing data. Dictionary can be used to achieve the same. A list of events can be added to each date. 
 From the preceding points, it can be concluded that dictionary data structure is appropriate for the implementation of the calendar application which can achieve the mentioned requirements. Example 16.1 shows the implementation of the Calendar class. 
 Example 16.1: Calendar class implementation 
 1. class 
2.     def 

3.         
 As can be seen from the preceding example, self.cal has month names as keys and dictionary objects as the value for each key. Each dictionary has two keys: ndays (number of days in that month), events (dictionary of events with the date as keys and details of event). In the preceding example, February has ndays as 28 but in the case of leap year, we will change it to 29 days while printing the calendar. Example 16.2 shows how a one-month calendar can be printed in Python. Please note that currently, we will be taking the start day of the month as we do not have any method to get the day mapping with the date. 
 Example 16.2: Print month calendar 
 1. class 
2.     def 

3.         
4.         
5.     def 
6.         dayIndex = self.weekDays.index(startDay) 
7.         
8.         
9.             
10.                 
11.         
12.         for w in self.weekDays])) 
13.         
14.         for day in 
15.             
16.             if 
17.                 
18.         
19.     def 
20.         if year % 400 == 
21.             return True 
22.         elif year % 100 == 
23.             return False 
24.         elif year % 4 == 
25.             return True 
26.         
27.             return False 
28. 
29. newCal = Calendar() 

30. newCal.cal 
//Output 
{‘January’: {‘ndays’: 31, ‘events’: {}}, ‘February’: 
{‘ndays’: 28, ‘events’: {}}, ‘March’: {‘ndays’: 31, ‘events’: {}}, 
‘April’: {‘ndays’: 30, ‘events’: {}}, ‘May’: 
{‘ndays’: 31, ‘events’: {}}, ‘June’: {‘ndays’: 30, ‘events’: {}},‘July’: 
{‘ndays’: 31, ‘events’: {}}, ‘August’: {‘ndays’: 31, ‘events’: {}}, 
‘September’: {‘ndays’: 30, ‘events’: {}}, ‘October’: 
{‘ndays’: 31, ‘events’: {}}, ‘November’: {‘ndays’: 30, ‘events’: {}}, 
‘December’: {‘ndays’: 31, ‘events’: {}}} 
31. newCal.weekDays 
//Output 
32. [‘Su’, ‘Mo’, ‘Tu’, ‘We’, ‘Th’, ‘Fr’, ‘Sa’] 

 Figure 16.1 shows the output of line number 32. It prints the calendar of September 2021. 
 

 Figure 16.1: Month calendar of September 2021 
 33. 
 Figure 16.2 shows the output of line number 33. It prints the calendar of February 2021. 
 

 Figure 16.2: Month calendar of February 2021 
 34. 
 Figure 16.3 shows the output of line number 34. It prints the calendar of February 2020. 
 

 Figure 16.3: Month calendar of February 2020 
 As can be seen from the preceding example, while printing month dates, print() uses formatting such that all dates and day names take a maximum of three spaces. This helps to print the calendar in a human-readable format. As can be seen from the preceding example, 2020 was a leap year and thus February month shows 29 days in output. Example 16.3 shows the definition of the function which will print the full year calendar. Please note that here also we will be taking the start day of the year as an input. 
 Example 16.3: Print year calendar 
 
1. class 
2.     def 
3.         
4.         
5.     def 
6.         dayIndex = 
7.         
8.         and 
9.                 
10.         
11.         for w in 
12.         
13.         for day in 
14.             
15.             if 
16.                 
17.         
18.     def 
19.         if year % 400 == 
20.             return True 

21.         elif year % 100 == 
22.             return False 
23.         elif year % 4 == 
24.             return True 
25.         else: 
26.             return False 
27.     def 
28.         
29.         for month in 
30.             
31.             dayIndex = (dayIndex + 
32.             and 
33.                 
34. 
35. newCal = Calendar() 
36. newCal.cal 
//Output 
{‘January’: {‘ndays’: 31, ‘events’: {}}, ‘February’: 
{‘ndays’: 28, ‘events’: {}}, ‘March’: {‘ndays’: 31, ‘events’: {}}, 
‘April’: {‘ndays’: 30, ‘events’: {}}, ‘May’: {‘ndays’: 31, ‘events’: {}}, 
‘June’: {‘ndays’: 30, ‘events’: {}}, ‘July’: {‘ndays’: 31, ‘events’: {}}, 
‘August’: {‘ndays’: 31, ‘events’: {}}, ‘September’: 
{‘ndays’: 30, ‘events’: {}}, ‘October’: {‘ndays’: 31, ‘events’: {}}, 
‘November’: {‘ndays’: 30, ‘events’: {}}, ‘December’: 
{‘ndays’: 31, ‘events’: {}}} 

37. newCal.weekDays 
//Output 
[‘Su’, ‘Mo’, ‘Tu’, ‘We’, ‘Th’, ‘Fr’, ‘Sa’] 
38. 
 Figure 16.4 shows the output of line number 38. It prints the calendar of the year 2021. 
 

 Figure 16.4: Year calendar of 2021 
 39. 
 
Figure 16.5 shows the output of line number 39. It prints the calendar of the year 2020. 
 
 
Figure 16.5: Year calendar of 2020 
 Example 16.4 shows the definition of functions that can add an event, get event details of one date, month, or year. Please note that for the sake of simplicity, we will be adding events for a single year. 
 Example 16.4: Add and retrieve events 
 1. class 
2.     def 
3.       


6.        dayIndex = 

and 

10.         
11.         for w in 
12.         
13.         for day in 
14.             

15.             if 
16.                 
17.         
18.     def 
19.         if year % 400 == 
20.             return True 
21.         elif year % 100 == 
22.             return False 
23.         elif year % 4 == 
24.             return True 
25.         else: 
26.             return False 
27.     def 
28.         
29.         for month in 
30.             
31.            dayIndex = (dayIndex + 
32.             and 
33.                 
34.     def 
35.        eventList = 
36.         if date in eventList.keys(): 
37.             eventList.get(date).append(eventDetails) 
38.         else: 
39.             eventList[date]=[eventDetails] 
40.     def 

41.         eventList = 
42.         in eventList): 
43.             print(eventList[date]) 
44.         else: 
45.             event for given 
46.     def 
47.         
48.     def 
49.         for month in 

51. 
52. newCal = Calendar() 
53. newCal.cal 
//Output 
{‘January’: {‘ndays’: 31, ‘events’: {}}, ‘February’: {‘ndays’: 28, ‘events’: {}}, ‘March’: {‘ndays’: 31, ‘events’: {}}, ‘April’: {‘ndays’: 30, ‘events’: {}}, ‘May’: {‘ndays’: 31, ‘events’: {}}, ‘June’: {‘ndays’: 30, ‘events’: {}}, ‘July’: {‘ndays’: 31, ‘events’: {}}, ‘August’: {‘ndays’: 31, ‘events’: {}}, ‘September’: {‘ndays’: 30, ‘events’: {}}, ‘October’: {‘ndays’: 31, ‘events’: {}}, ‘November’: {‘ndays’: 30, ‘events’: {}}, ‘December’: {‘ndays’: 31, ‘events’: {}}} 
55. 
56. 
57. 
58. 
59. Year 
60. 

61. 
//Output 
{6: [‘Birthday’], 26: [‘Republic Day’], 1: [‘New Year’]} 
54. 
//Output 
{15: [‘Independence Day’]} 
55. 
//Output 
{} 
56. 
//Output 
{31: [‘New Year Eve’]} 
57. 
//Output 
[‘Gandhi Jayanti’] 
58. 
//Output 
No event for given date 
59. newCal.getAllEventList() 
//Output 
January Event List: {6: [‘Birthday’], 26: [‘Republic Day’], 1: 
[‘New Year’]} 
February Event List: {} 
March Event List: {} 
April Event List: {} 
May Event List: {} 
June Event List: {} 
July Event List: {} 
August Event List: {15: [‘Independence Day’]} 

September Event List: {} 
October Event List: {2: [‘Gandhi Jayanti’]} 
November Event List: {} 
December Event List: {31: [‘New Year Eve’]} 





 Time and space complexity 
 Now let’s discuss the performance of the solution created. We have used Dictionary data structure, which has O(1) time complexity for most of the operations. Space complexity remains constant for this solution as we are not creating any major variable or data. Let’s calculate the time complexity of each function separately: 
  This function prints the dates of the month as per days of the week. For this function, we need to iterate to the number of days in the month. Thus, it iterates 28, 29, 30, or 31 times depending on the year and the month. Thus, the maximum time complexity of this function is constant O(31) ~ as we remove constant from the calculation of Big-O notation. 
 printYear(): This function calls printMonth() for all month in an year. Thus, it iterates 12 times. As time complexity of printMonth() is time complexity of printYear() is constant too, i.e., O(12*31) = O(372) ~ 
 It performs few if-else conditions on year value and returns true or false based on that. It does not loop and thus takes O(1) time complexity. 
 It checks if the date to be added exists before or not. If it exists then it adds new eventDetails in the existing key, otherwise, it adds new key and value pair in the dictionary. Thus, the time complexity of this function is also 
 
As we need to get details of events added for a particular date, that can be done by directly looking up in the dictionary for that date. Thus, it takes O(1) time complexity for this function. 
 We can directly get event details for a particular month by just getting value for the events key. Thus, it takes O(1) time complexity for this function. 
 We need to iterate for each month to get the event details of each month, which gives us constant time complexity of O(12) ~ 
 Thus, the time complexity for each function implemented to fulfill mentioned requirements is In case we would have chosen another data structure that does not have O(1) time complexity for retrieving or adding operations, our time complexity would have increased based on that. Thus, it’s really important to think about all data structures and functions needed to be implemented in our application before finalizing any data structure. 





 Map implementation 
 Like calculator implementation, we will be taking the basic implementation of map application. The following are the requirements of the application which will be creating: 
  Add new city. 
 Add new path/way between 2 existing cities. 
 Modify distance for a path/way. 
 The shortest path between two cities is based on distance. 
 To implement the preceding requirements of the map application, we need a data structure: 
  Which can hold cities, paths, and distance between them. We can use graph data structure here with a dictionary or adjacency matrix representation. 
 Can retrieve and add data in O(1) time complexity. We can use graph data structure here with a dictionary or adjacency matrix representation. 
 The shortest distance can be calculated between two cities. The graph data structure can be used for the same. 
 From the preceding points, it can be concluded that the graph data structure with a dictionary or adjacency matrix representation is appropriate for the implementation of the map application that can achieve mentioned requirements. Example 16.5 shows the implementation of a map using a dictionary representation of a graph. 
 Example 16.5: Map implementation through dictionary representation of Graph. 
 
1. map={‘city1’:{‘city2’:23,’city4’:54},’city2’:{‘city1’:23,’city3’:34,’city4’:78},’city3’:{‘city2’:34,’city5’:32},’city4’:{‘city1’:54,’city2’:78},’city5’:{‘city3’:32}} 
2. map 
//Output 
{‘city1’: {‘city2’: 23, ‘city4’: 54}, ‘city2’: {‘city1’: 23, ‘city3’ 
: 34, ‘city4’: 78}, ‘city3’: {‘city2’: 34, ‘city5’: 32}, ‘city4’: 
{‘city1’: 54, ‘city2’: 78}, ‘city5’: {‘city3’: 32}} 
3. def addPath(city1,city2,distance): 
4.     
5.     
6. 
7. 
8. map 
//Output 
{‘city1’: {‘city2’: 23, ‘city4’: 54, ‘city5’: 76}, ‘city2’: {‘city1’: 23, ‘city3’: 34, ‘city4’: 78}, ‘city3’: {‘city2’: 34, ‘city5’: 32}, ‘city4’: {‘city1’: 54, ‘city2’: 78}, ‘city5’: {‘city3’: 32, ‘city1’: 76}} 
9. def addCity(newCity): 
10.     
11. 
12. 
13. map 
//Output 
{‘city1’: {‘city2’: 23, ‘city4’: 54, ‘city5’: 76}, ‘city2’: {‘city1’: 23, ‘city3’: 34, ‘city4’: 78}, ‘city3’: {‘city2’: 34, ‘city5’: 32}, ‘city4’: {‘city1’: 54, ‘city2’: 78}, ‘city5’: {‘city3’: 32, ‘city1’: 76}, ‘city6’: {}} 
14. 
15. map 

//Output 
{‘city1’: {‘city2’: 23, ‘city4’: 54, ‘city5’: 76}, 
‘city2’: {‘city1’: 23, ‘city3’: 34, ‘city4’: 78}, 
‘city3’: {‘city2’: 34, ‘city5’: 32}, ‘city4’: {‘city1’: 54, 
‘city2’: 78, ‘city6’: 45}, ‘city5’: {‘city3’: 32, ‘city1’: 76}, 
‘city6’: {‘city4’: 45}} 
16. def modifyPath(city1,city2,distance): 
17.     
18.     
19. 
20. 
21. map 
//Output 
{‘city1’: {‘city2’: 23, ‘city4’: 54, ‘city5’: 76}, 
‘city2’: {‘city1’: 23, ‘city3’: 34, ‘city4’: 78}, 
‘city3’: {‘city2’: 34, ‘city5’: 32}, ‘city4’: {‘city1’: 54, 
‘city2’: 78, ‘city6’: 54}, ‘city5’: {‘city3’: 32, ‘city1’: 76}, 
‘city6’: {‘city4’: 54}} 
22. def shortestPath(src,dest): 
23.     not in map or dest not in 
24.         or destination not in 
25.         return 
26.     
27.     currentCity = src 
28.     visited=[] 
29.     while currentCity!=dest: 
30.         
31.         
32.         

33.         for nextCity in neighbouringCities: 
34.             distance = + currentDistance 
35.             if nextCity not in pathList: 
36.                 pathList[nextCity]=[currentCity,distance] 
37.             
38.                 if > distance: 
39.                     pathList[nextCity]=[currentCity,distance] 
40.        nextCities={} 
city in pathList: 
city not in visited: 
43.                nextCities[city] = pathList[city] 
44.        currentCity = min(nextCities, key = lambda 
45.    path=[] 
46.    while currentCity!= None: 

48.        nextCity = 
49.        currentCity = nextCity 

51. 
52. 
//Output 
[‘city1’, ‘city4’, ‘city6’] 
53. 
54. map 
//Output 
{‘city1’: {‘city2’: 23, ‘city4’: 54, ‘city5’: 76}, ‘city2’: 

{‘city1’: 23, ‘city3’: 34, ‘city4’: 1}, ‘city3’: {‘city2’: 34, 
‘city5’: 32}, ‘city4’: {‘city1’: 54, ‘city2’: 1, ‘city6’: 54}, 
‘city5’: {‘city3’: 32, ‘city1’: 76}, ‘city6’: {‘city4’: 54}} 
55. 
//Output 
[‘city1’, ‘city2’, ‘city4’, ‘city6’] 
 As can be seen from the preceding example, on changing the distance between ‘city2’ and ‘city4’ to 1, the shortest path changed. Example 16.6 shows an implementation of the map application through graph adjacent matrix representation. 
 Example 16.6: Map implementation through adjacency matrix representation of Graph. 
 1. map = 




6. map 
//Output 
[[0, 23, 0, 54, 0], [23, 0, 34, 78, 0], [0, 34, 0, 0, 32], [54, 78, 0, 0, 0], [0, 0, 32, 0, 0]] 
7. def 
8.     
9.     
10. 
11. 
12. map 
//Output 

[[0, 23, 0, 54, 76], [23, 0, 34, 78, 0], [0, 34, 0, 0, 32], [54, 78, 0, 0, 0], [76, 0, 32, 0, 0]] 
13. def addCity(): 
14.     for list in 
15.         
16.     list=[] 
17.     for i in 
18.         
19.     
20. 
21. addCity() 
22. map 
//Output 
[[0, 23, 0, 54, 76, 0], [23, 0, 34, 78, 0, 0], [0, 34, 0, 0, 32, 0], 
[54, 78, 0, 0, 0, 0], [76, 0, 32, 0, 0, 0], [0, 0, 0, 0, 0, 0]] 
23. def 
24.     
25.     
26. 
27. 
28. map 
//Output 
[[0, 23, 0, 54, 76, 0], [23, 0, 34, 78, 0, 0], [0, 34, 0, 0, 32, 0], 
[54, 78, 0, 0, 0, 54], [76, 0, 32, 0, 0, 0], [0, 0, 0, 54, 0, 0]] 
29. def shortestPath(src,dest): 
30.     
31.     currentCity=src 
32.     visited=[] 
33.     while currentCity!=dest: 
34.         visited.append(currentCity) 

35.         neighbouringCities=[] 
36.         for i in 
37.             if 
38.                 neighbouringCities.append(i) 
39.         
40.         for nextCity in neighbouringCities: 
41.             
42.             if nextCity not in pathList: 
43.                 
44.             
45.                 if 
46.                     
47.         nextCities={} 
48.         for city in pathList: 
49.             if city not in visited: 
50.                 nextCities[city]=pathList[city] 
51.         key=lambda 
52.    path=[] 
53.     while 
54.         path.append(currentCity) 
55.         
56.         currentCity=nextCity 
57.     
58. 
59. 
//Output 

[0,3,5] 
60. 
61. map 
//Output 
[[0, 23, 0, 54, 76, 0], [23, 0, 34, 1, 0, 0], [0, 34, 0, 0, 32, 0], 
[54, 1, 0, 0, 0, 54], [76, 0, 32, 0, 0, 0], [0, 0, 0, 54, 0, 0]] 
62. 
//Output 
[0, 1, 3, 5] 





 Time and space complexity 
 Now let’s discuss the performance of the solution created. We have used Graph data structure through the dictionary and adjacency matrix representation, which has O(1) time complexity for most of the operations. Space complexity remains constant for this solution as we are not creating any big variable or data. Let’s calculate the time complexity of each function separately: 
  This function updates the existing distance between two cities. In the case of dictionary or adjacency matrix representation, this method takes just assigns new values to existing variables. Thus, this function takes O(1) time to execute. 
 This function adds a new city to the map. Adding a new city in the dictionary is just like assigning an empty value to a new index. It takes O(1) time to execute. To add a new city in the adjacency matrix representation, we need to add distance between the new city and all existing cities. Thus, we need to traverse the number of cities available on the map. Thus, the time complexity of adding a city in the adjacency matrix is 
 This function is same as addPath(); thus, it also takes O(1) time to execute. 
 
Both representations have the same algorithm to get the shortest path in the map. Thus, time complexity will be the same for both. In the shortest path algorithm, the number of cities is traversed twice in nested loops. Thus, the time complexity of the function is where n is the number of cities. 
 As can be seen from the preceding time complexity analysis, it can be concluded that the dictionary representation of a graph is more suitable for map implementation. 





 Friends network implementation 
 Like preceding implementations, we will be taking the basic implementation of the friends network application. The following are the requirements of the application that will be creating: 
  Add new user 
 Delete user 
 Add new friend 
 Delete a friend 
 Find mutual friends 
 Search friends of a friend 
 To implement the preceding requirements of the application, we need a data structure: 
  Which can hold friends and their network. We can use the Graph data structure here with the dictionary or adjacency matrix representation. 
 Can retrieve, delete, and add data in O(1) time complexity. We can use graph data structure here with the dictionary or adjacency matrix representation. 
 From the preceding points, it can be concluded that the graph data structure with the dictionary or adjacency matrix representation is appropriate for the implementation of the application which can achieve mentioned requirements. Example 16.7 shows the implementation of friendsNetwork using dictionary representation of a graph. 
 Example 16.7: Friend network implementation through dictionary representation of Graph. 
 1. friendsNet 


2. friendsNetwork 
//Output 
{1: [2, 3], 2: [1, 4], 3: [1, 7], 4: [2, 5, 6], 5: [4], 6: [3, 7], 7: [3, 6]} 
3. def 
4.     friendsNetwork[newUser]=[] 
5. 
6. 
7. friendsNetwork 
//Output 
{1: [2, 3], 2: [1, 4], 3: [1, 7], 4: [2, 5, 6], 5: [4], 6: [3, 7], 
7: [3, 6], 8: []} 
8. def 
9.     friendsNetwork[user1].append(user2) 
10.     friendsNetwork[user2].append(user1) 
11. 
12. 
13. friendsNetwork 
//Output 
{1: [2, 3, 8], 2: [1, 4], 3: [1, 7], 4: [2, 5, 6], 5: [4], 6: [3, 7], 
7: [3, 6], 8: [1]} 
14. def 
15.     friendsNetwork[user1].remove(user2) 
16.     friendsNetwork[user2].remove(user1) 
17. 
18. 
19. friendsNetwork 
//Output 
{1: [2, 3, 8], 2: [1], 3: [1, 7], 4: [5, 6], 5: [4], 6: [3, 7], 
7: [3, 6], 8: [1]} 

20. def 
21.     for friend in friendsNetwork[user]: 
22.         removeFriend(user,friend) 
friendsNetwork[user] 
24. 
25. 
26. friendsNetwork 
//Output 
{1: [2, 3, 8], 2: [1], 3: [1, 7], 5: [], 6: [3, 7], 7: [3, 6], 8: [1]} 
27. def 
28.     friendSet1=set(friendsNetwork[user1]) 
29.     friendSet2=set(friendsNetwork[user2]) 
30.     friendSet=friendSet1.intersection(friendSet2) 
31.     mutual 
32.     
33. 
34. 
//Output 
Total mutual friends 0 
Mutual Friends set() 
35. 
//Output 
Total mutual friends 1 
Mutual Friends {3} 
36. def 
37.     if user2 in friendsNetwork[user1]: 
38.         
39.     

40.         are not friend 
41. 
42. 
//Output 
You are not friend of 5 
43. 
//Output 
Friends of 3 are [1, 7] 
 The preceding example shows the implementation of friendsNetwork using dictionary representation of a graph. Example 16.8 shows an implementation of the application through graph adjacent matrix representation. 
 Example 16.8: Friend network implementation through adjacency matrix representation of Graph. 
 1. 
2.                 
3.                 
4.                 
5.                 
6.                 
7.                 
8. friendsNetwork 
//Output 
[[0, 1, 1, 0, 0, 0, 0], [1, 0, 0, 1, 0, 0, 0], [1, 0, 0, 0, 0, 0, 1] 
, [0, 1, 0, 0, 1, 1, 0], [0, 0, 0, 1, 0, 0, 0], [0, 0, 1, 0, 0, 0, 1 
], [0, 0, 1, 0, 0, 1, 0]] 
9. def 
10.     for friendList in friendsNetwork: 
11.         

12.     newUserList=[] 
13.     for i in 
14.         
15.     friendsNetwork.append(newUserList) 
16. 
17. 
18. friendsNetwork 
//Output 
[[0, 1, 1, 0, 0, 0, 0, 0], [1, 0, 0, 1, 0, 0, 0, 0], [1, 0, 0, 0, 
0, 0, 1, 0], [0, 1, 0, 0, 1, 1, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0], 
[0, 0, 1, 0, 0, 0, 1, 0], [0, 0, 1, 0, 0, 1, 0, 0], [0, 0, 0, 0, 
0, 0, 0, 0]] 
19. def 
20.     friendsNetwork[user1][user2] = 1 
21.     friendsNetwork[user2][user1] = 1 
22. 
23. 
24. friendsNetwork 
//Output 
[[0, 1, 1, 0, 0, 0, 0, 1], [1, 0, 0, 1, 0, 0, 0, 0], [1, 0, 0, 0, 
0, 0, 1, 0], [0, 1, 0, 0, 1, 1, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0], 
[0, 0, 1, 0, 0, 0, 1, 0], [0, 0, 1, 0, 0, 1, 0, 0], [1, 0, 0, 0, 
0, 0, 0, 0]] 
25. def 
26.    friendsNetwork[user1][user2] = 0 
27.    friendsNetwork[user2][user1] = 0 
28. 
29. 
30. friendsNetwork 

//Output 
[[0, 1, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 
0, 0, 1, 0], [0, 0, 0, 0, 1, 1, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0], 
[0, 0, 1, 0, 0, 0, 1, 0], [0, 0, 1, 0, 0, 1, 0, 0], [1, 0, 0, 0, 
0, 0, 0, 0]] 
31. def 
32.     for friend in 
33.        removeFriend(user,friend) 
34. 
35. 
36. friendsNetwork 
//Output 
[[0, 1, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 
0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 
0, 0], [0, 0, 1, 0, 0, 0, 1, 0], [0, 0, 1, 0, 0, 1, 0, 0], 
[1, 0, 0, 0, 0, 0, 0, 0]] 
37. def 
38.     friendSet=set() 
user in 
friendsNetwork[user1][user] == 1 and friendsNetwork[user2] 
[user] == 
41.            friendSet.add(user) 
mutual 

44. 
45. 
//Output 
Total mutual friends 0 

Mutual Friends set() 
46. 
//Output 
Total mutual friends 1 
Mutual Friends {2} 
47. def 
48.     if friendsNetwork[user1][user2] == 
49.         friendList=[] 
50.         for user in 
51.             if friendsNetwork[user2][user] == 
52.                 friendList.append(user) 
53.         

55.         are not friend 
56. 
57. 
//Output 
You are not friend of 4 
58. 
//Output 
Friends of 2 are [0, 6] 





 Time and space complexity 
 Now let’s discuss the performance of the solution created. We have used Graph data structure through the dictionary and adjacency matrix representation, which has O(1) time complexity for most of the operations. Space complexity remains constant for this solution as we are not creating any big variable or data. Let’s calculate the time complexity of each function separately: 
  This function adds a new user to the network with no friends. Adding a new user in the dictionary is just like assigning an empty value to a new index. It takes O(1) time to execute. To add a new user in adjacency matrix representation, we need to add value for each user. Thus, we need to traverse the number of users available in the network. Thus, the time complexity of adding a new user in the adjacency matrix is 
 This function adds two existing users as friends. This function either adds a new friend to the friend’s list of the user or changes the value from 0 to 1 in the adjacency matrix. Thus, this function takes O(1) time to execute. 
 This function removes the friend network between two users. This function either removes a friend from the friend’s list of the user or changes the value from 1 to 0 in the adjacency matrix. Thus, this function takes O(1) time to execute. 
 
In the case of dictionary representation, this function removes the user from the dictionary and friend list of all users. Removing a user in dictionary representation takes O(1) execution time. In the case of the adjacency matrix, this function removes it as a friend of all other users, but user entry remains in the matrix. To remove all friends, traversing is done for all other users and thus execution time for the adjacency matrix is 
 In the case of dictionary representation, friends of a particular user can be easily retrieved in O(1) time. Mutual friends can be identified by creating sets for a friend list of both users and applying intersection on them. Intersection takes O(n) time, where n is the size of the smallest set. In the case of an adjacency matrix, we must traverse each user and check if the user is friends with both users. Time complexity is O(n) in adjacency matrix representation too. 
 In the case of dictionary representation, the friend’s list is the value of the key which is a user. Thus, it takes O(1) time to get the friend’s list of a friend. In the case of an adjacency matrix, traversing is done to identify the friend list. Thus, time is taken by adjacency matrix representation for this function in 
 As can be seen from the preceding time complexity analysis, it can be concluded that the dictionary representation of a graph is more suitable for implementation. 





 Text editor implementation 
 Like preceding implementations, we will be taking the basic implementation of text editor application. The following are the requirements of the application which we will be creating: 
  Write text 
 Erase text 
 Undo 
 Redo 
 Prints text 
 To implement the preceding requirements of the application, we need a data structure that can hold text and undo or redo previous steps. As we have studied that stack data structure follows Last-In-First-Out principle, the Stack data structure will fit undo and redo implementations. Stack data structure using List gives a lot of flexibility to developers to implement functions based on the requirement. Thus we will be implementing text editor using list implementation of stack data structure. Example 16.9 shows the implementation of text editor using the Stack class. 
 Example 16.9: Text editor implementation 
 1. class 
2.     def 
3.         = [] 
4.     def 
5.         return == 0 
6.     def 
7.         
8.     def 
9.         return 

10.     def 
11.         return 
12.     def 
13.         
14.         for i in 
15.              text = text + “ “ + 
16.         return text.strip() 
17.     def 
18.         
19. 
20. textData=Stack() 
21. redoText=Stack() 
22. def 
23.     textData.push(text) 
24.     if (redoText.isEmpty()==False): 
25.         redoText.setEmpty() 
26. 
27. def 
28.     
29.         return “Nothing to erase” 
30.     else: 
31.        redoText.push(textData.pop()) 
32. 
33. def 
34.     
35.         return “Nothing to undo” 
36.     else: 
37.         redoText.push(textData.pop()) 
38. 

39. def 
40.     
41.         return “Nothing to redo” 
42.     else: 
43.         textData.push(redoText.pop()) 
44. 
45. def 
46.     
47.         return “Empty file” 
48.     else: 
49.         return textData.get() 
50. 
51. 
52. print() 
//Output 
‘abc’ 
53. 
54. print() 
//Output 
‘abc def’ 
55. eraseText() 
56. print() 
//Output 
‘abc’ 
57. eraseText() 
58. print() 
//Output 
‘Empty file’ 
59. eraseText() 

//Output 
‘Nothing to erase’ 
60. 
61. 
62. 
63. print() 
//Output 
‘abc def ghi’ 
64. undo() 
65. print() 
//Output 
‘abc def’ 
66. 
67. print() 
//Output 
‘abc def ghi’ 
68. undo() 
69. undo() 
70. print() 
//Output 
‘abc’ 
71. 
72. print() 
//Output 
‘abc def’ 
73. 
74. print() 
//Output 
‘abc def abc’ 

75. 
//Output 
‘Nothing to redo’ 





 Time and space complexity 
 Now let’s discuss the performance of the solution created. We have used stack data structure through List, which has O(1) time complexity for most of the operations. Space complexity remains constant for this solution as we are not creating any big variable or data. Let’s calculate the time complexity of each function separately: 
  This function adds new text to existing list. It appends the text at the end of the list and thus it takes O(1) time complexity. 
 This function adds erases last text written. It just pops the last item in the list, thus time complexity is O(1) for this function. 
 This function is same as thus, time complexity is O(1) for this function too. 
 This function writes data again which was erased. It just appends the text at the end of the list like Thus, the time complexity of this function is 
 To print the list as text, traversing is needed on the list. Thus, the time complexity of this function is 





 Conclusion 
 This chapter gives a brief description of how to choose a data structure for implementation. The same application might use different types of data structures. For example, in the case of friends’ network implementation, we used the graph and set data structures. Data structure selection also differs based on the requirements of the application. 
 While selecting a data structure based on current requirements, the developer should always keep in mind that requirements can change anytime. Thus, the data structure chosen should be flexible enough to handle those changes. In case chosen data structure is not flexible, then the developer might have to write the whole application again or change a lot of code to accommodate a single requirement change. 
 Using a user-defined data structure gives a lot of flexibility to the developer to define their functions based on the requirements. In case of requirement change, the developer can easily add or remove custom functionalities of user-defined data structures. 
 With this chapter, you have gained knowledge of built-in and user-defined data structures. You know how to calculate complexity and how to identify which data structure to use for an application based on its requirements. You are ready to implement small applications of your own. Try implementing calculator app, file system app, and so on. to get your hands dirty with Python code. Hop on to a new journey of building applications!! 





 Points to remember 
  Time complexity estimates how long it will take for a program to execute. Big-O notation is used frequently for the maximum execution time of a program. 
 Python supports a lot of built-in and user-defined data structures. 
 Some user-defined data structures are based on built-in data structures. 
 Some user-defined data structures are more flexible and are created using classes in Python. 
 While implementing applications, user-defined structures are widely used. They provide more flexibility to developers to create functionality based on requirements. 
 Choosing a data structure for an application is very critical. Choosing the wrong data structure can lead to more maintenance costs. It can also lead to rewriting of the code to include new or changing requirements. 
 While selecting a data structure, the developer must keep in mind its flexibility, supported functionality, time, and space complexity required to execute the application. 
 Developers should consider all advantages and disadvantages of the available data structures for provided requirements. 





Index 
 A 
 Abstract data types 62 
anytree 315 
arithmetic operators 8 
example 10 
Array 236 
creation 
data access 
Array operations 
Array comparison 255 
Array length 254 
Array multiplication 253 
copying 
counting 249 
deletion 245 
help 
insertion 243 
maximum and minimum 256 
merging 249 
reversing 251 
searching 247 
sorting 248 
str() 257 
tolist() 257 
traversing 242 
use case 261 
assignment operators 17 

example 19 
asymptotic analysis 68 
space complexity 69 
time complexity 69 
asymptotic notation 70 
Big Omega (Ω) notation 80 
Big O notation 71 
Big Theta (Θ) notation 80 
complexity calculation 71 
summary 79 
 B 
 Big Omega (Ω) notation 80 
Big O notation 
O(1) complexity 73 
time complexity 77 
O(log n) complexity 74 
complexity 76 
O(n) complexity 75 
O(n log n) complexity 75 
O(n!) time complexity 77 
Big Theta (Θ) notation 80 
Binary search tree (BST) 330 
binarytree, using 
implementation 333 
insertion 
operations 330 
binary tree 323 
binarytree, using 
creating, from list 328 

implementation 325 
operations 323 
random values 
traversing 324 
bitwise operators 14 
example 
Boolean data type 56 
examples 57 
break statement 28 
built-in data structures 88 
Array 92 
Dictionary 89 
list 88 
Set 91 
Tuple 90 
built-in methods, String 48 
 C 
 calendar implementation 
space complexity, calculating 469 
time complexity, calculating 469 
child node 313 
comments 21 
comparison operators 10 
example 11 
complex numbers 38 
examples 40 
operations 39 
composite data types 58 
Abstract 62 

Arrays 58 
Dictionary 61 
Lists 59 
Sets 62 
Tuples 60 
conditional statements 21 
if-elif-else statement 25 
if-else statement 24 
if statement 22 
nested conditional statement 26 
continue statement 29 
 D 
 data structures 86 
advantages 87 
Python data structures 87 
data structures operations 
deletion 87 
insertion 87 
merging 87 
searching 87 
sorting 87 
traversing 87 
deque 274 
using, for stack implementation 
dequeue operation 290 
Dictionary 134 
Dictionary creation 137 
Dictionary data access 138 
linear probing 135 

Dictionary operations 139 
all() 155 
any() 155 
copying 150 
counting 148 
deletion 143 
Dictionary compare 152 
Dictionary length 152 
Dictionary multiplication 152 
help 158 
insertion 142 
maximum and minimum 154 
merging 147 
reversing 149 
searching 
sorting 147 
str() 156 
traversing 
 E 
 enqueue operation 290 
escape sequences 
using 
expressions 20 
examples 21 
 F 
 First-In-First-Out (FIFO) 288 
float data type 36 
operations 38 
for loop 27 

example 28 
friends network implementation 
space complexity, calculating 483 
time complexity, calculating 483 
functions 29 
example 30 
pre-defined functions 30 
 G 
 getFront 291 
graph 386 
Adjacency list representation 388 
Adjacency matrix representation 388 
creation 
Dictionary data structure 388 
directed graph 386 
undirected graph 387 
use case 422 
graph operations 391 
copying 422 
deletion 
help 422 
insertion 
merging 417 
reversing 
searching 415 
traversing 391 
 H 
 HashMap 428 
creating, list used 429 

HashMap operations 431 
copying 
counting 440 
deletion 435 
help 454 
insertion 432 
length, calculating 452 
maximum and minimum 453 
merging 445 
reversing 448 
searching 435 
sorting 438 
traversing 431 
 I 
 identity operators 13 
if-elif-else statement 24 
example 25 
if-else statement 23 
example 24 
flowchart 23 
if statement 21 
example 22 
flowchart 22 
Integer data type 35 
examples 36 
operations 35 
interpreted language 
versus compiled languages 3 
iterations 26 
 
L 
 Last-In-First-Out (LIFO) 266 
leaf node 313 
LifoQueue 
using, for stack implementation 
linked list 343 
creating 
use case 378 
linked list operations 346 
copying 
count 370 
deletion 
help 378 
insertion 
linked list length 377 
maximum and minimum 377 
merging 
reversing 372 
searching 360 
sorting 
traversing 346 
list creation 105 
list data access 106 
list operations 108 
copy 119 
count 117 
data inserting, in sorted list 125 
deletion 110 
help 126 

insertion 109 
list comparison 122 
list data, modifying 119 
list length 121 
list multiplication 120 
maximum and minimum 123 
merging 117 
reverse 118 
searching 113 
sorting 115 
traversing 109 
Lists 315 
creating 105 
logical operators 12 
loops 26 
for loop 27 
while loop 26 
 M 
 map implementation 
space complexity, calculating 476 
time complexity, calculating 476 
membership operators 13 
 N 
 n-ary tree 313 
nested conditional statement 26 
non-primitive data type. See composite data type 
 O 
 operands 8 
operators 8 

arithmetic operators 8 
assignment operators 17 
bitwise operators 14 
comparison operators 10 
identity operators 13 
logical operators 12 
membership operators 13 
precedence 20 
 P 
 parent node 95 
peek operation 269 
pop operation 268 
primitive data types 34 
Boolean data type 56 
complex numbers 38 
float 36 
Integer 36 
none data type 58 
String 41 
push operation 268 
Python 3 
download link 4 
script, executing 5 
Python data structures 87 
built-in data structures 88 
user-defined data structures 93 
Python programs 
running 5 
 Q 
 
queue 
creating 289 
deque, using 
implementation 
list, using 
use cases 308 
using 302 
queue classes 
queue.Empty 303 
queue.Full 304 
queue.LifoQueue(maxsize=0) 303 
queue.PriorityQueue(maxsize=0) 303 
queue.Queue(maxsize=0) 303 
queue.SimpleQueue 303 
queue methods 
empty() 304 
full() 304 
get(block=True, timeout=None) 305 
get_nowait() 305 
put(element, block=True, timeout=None) 304 
put_nowait(item) 304 
qsize() 304 
queue operations 
dequeue operation 290 
enqueue operation 290 
getFront 291 
isEmpty 292 
 R 
 reserved variables 

values, assigning 7 
root node 313 
 S 
 Set concepts 224 
difference 227 
disjoint sets 228 
intersection 225 
subset 228 
superset 228 
union 225 
Set operations 201 
all() 219 
any() 219 
copying 212 
counting 210 
deletion 
enumerate() 224 
help 
insertion 
maximum and minimum 218 
merging 
reversing 210 
searching 206 
Set comparison 
Set length 214 
Set multiplication 
sorting 208 
str() 218 
sum() 220 

traversing 202 
Sets 199 
creating 200 
data access 201 
slicing operator 41 
slicing technique 41 
stack 267 
advantages 281 
creating 267 
deque, using 
LifoQueue, using 
list, using 
use cases 282 
Stack operations 
peek 269 
pop 268 
push 268 
String data type 41 
built-in methods 
characters 
escape sequences 
operations 47 
 T 
 text editor implementation 484 
space complexity, calculating 487 
time complexity, calculating 487 
Tree 
anytree, using 
creating 315 

list, using 319 
use cases 336 
Tree operations 315 
deletion 317 
insertion 316 
searching 319 
traversing 318 
Tuple 167 
creation 168 
data access 170 
Tuple operations 171 
copying 178 
counting 176 
deletion 172 
help 189 
maximum and minimum 187 
merging 175 
reversing 177 
searching 174 
sorting 175 
str() 188 
traversing 172 
Tuple comparison 183 
Tuple length 182 
Tuple multiplication 
Tuple use cases 
multiple values, assigning 189 
swap function 190 
 U 
 
user-defined data structures 93 
graphs 98 
Hashmaps 98 
linked list 96 
Queue 94 
Stack 93 
Trees 95 
 V 
 valid Integer values 
examples 35 
variable names 
defining 7 
variables 6 
values, assigning 6 
 W 
 while loop 26 
example 27 















































































































































































































































































































































