

[image: Core Python 3.8 Programming Rajan Chattamvelli]

Core Python 3.8 Programming

Rajan Chattamvelli

Amazon

Contents

Title Page

Preface

Why a New Book?

Audience

What it covers

CHAPTER 1

1.2 Why Learn Python?

1.2.1 Availability

1.2.2 Salient Features

1.3 Installing Python

1.3.1 Python Versions

1.3.2 Using PIP

1.3.3 Using Conda

1.3.4 Using Virtual Environment

1.4 Python Interpretation

1.4.1 Python Source Files

1.4.2 Creating Source Files

1.4.3 Arranging Source Files

1.4.4 Python Virtual Machine (PVM)

1.5 Python Execution Basics

1.5.1 Starting and Stopping Python

1.5.2 Python Command-line Options

1.5.3 Python Interactive Console

1.5.4 Python Console as Calculator

1.5.5 Python Startup Program

1.5.6 Frozen Binary Files

1.6 Print Statement

1.6.1 Line continuation

1.7 Python Comments

1.7.1 Multi-line Comments

1.7.2 Python Comments as Scripts

1.8 Docstrings

1.9 Whitespace

1.10 Reserved Words in Python

1.11 Constants

1.12 Identifiers

1.13 Input Command

1.13.1 Inputting Strings

1.13.2 Inputting Numbers

1.14 Coding Standards

1.14.1 Camel-case

1.14.2 Snake-case

1.14.3 King-case

1.14.4 Kinder-case

1.15 Statements

1.15.1 Assignment Statements

1.15.2 Walrus Assignment Operator

1.15.3 Priority of Operators

1.15.4 Multiple Assignments

1.16 Escape Sequences

1.17 Writing Simple Programs

1.17.1 Python Bytecode File

1.17.2 Creating Bytecode Files

1.18 Summary

2

Data Types in Python

2.1 Fundamental Data Types

2.1.1 Strongly typed vs Weakly typed

2.2 Standard Data Types

2.2.1 Bool Type

2.3 Constant Literals

2.3.1 Binary Literals

2.3.2 Octal Literals

2.3.3 Hexadecimal Literals

2.3.4 String Literals

2.4 Mutable vs Immutable Types

2.5 Bytes Type

2.5.1 Creating Bytes Type

2.5.2 Converting Bytes Type

2.6 Bytearray Type

2.6.1 Creating Bytearrays

2.6.2 Modifying Bytearrays

2.6.3 Modifying Bytearrays using Slices

2.6.4 Clearing Bytearrays

2.6.5 Combining Bytearrays

2.6.6 Converting Bytearrays

2.7 Number Type

2.7.1 Integer Type

2.7.2 Float Type

2.7.3 Complex Type

2.7.4 Type-casting

2.8 Extended Types

2.9 Date and Time

2.10 Scope

2.11 Modules

2.11.1 Importing Modules

2.12 Aliasing

2.13 Summary

3

Python Operators

3.1.1 Precedence and Associativity of Operators

3.1.2 Arithmetic Operators

3.1.3 Assignment Operators

3.1.4 Shorthand Assignment Operators

3.1.5 Relational Operators

3.1.6 Equality Operators

3.1.7 Inequality Operators

3.1.8 Other Comparison Operators

3.1.9 Chained Relational Operators

3.1.10 Logical Operators

3.2 Bitwise Operators

3.2.1Complement Operator

3.3 Membership-test Operators

3.4 Summary

4

If Statement

4.1 Introduction

4.2 Simple if Statement

4.2.1 Continuing if Statement

4.2.2 Indentation Levels

4.2.3 Forming Conditions

4.3 Variants of IF Statement

4.3.1 IF Statement with else Branch

4.3.2 IF statement with elif branches

4.3.3 Compound Conditions

4.4 Short-circuit Evaluation

4.5 Conditional (Trailing) IF statements

4.5.1 Multi-variable Decisions

4.5.2 Nested IF statements

4.6 Summary

5

Loops

5.1L oops in Python

5.1.1 Loop Condition

5.2 For Loops

5.2.1 Exiting Loops

5.2.2 Namespaces

5.2.3 Scope in Python

5.2.4 For Loop Variable

5.3 Range function

5.4 Generator Loops

5.5 Enumerated For Loops

5.5.1 Enumerated Loop Variables

5.6 While Loops

5.7 Infinite Loops

5.7.1 Conditional exit of Infinite Loops

5.7.2 Interactive While Loops

5.8 Nested Loops

5.8.1 Nested Loop Variables

5.9 Zip() Command

5.9.1 Zipping Equal-length Objects

5.9.2 Zipping Unequal-length Objects

5.9.3 Zipping Heterogeneous Objects

5.9.4 Unzipping Zipped Objects

5.10 Garbage Collection

5.10.1 The del Keyword

5.11 Summary

6

Strings

6.1 Strings Basics

6.1.1 Creating Strings

6.1.2 Creating Strings From Collections

6.1.3 Special Prefixes

6.1.4 String Input and Output

6.1.5 Escape Sequences

6.1.6 Testing String for Null

6.1.7 String Indexing

6.1.8 String Slicing

6.2 Iteration

6.2.1 Enumeration

6.3 Command-line Arguments

6.4 String Operations

6.4.1 Concatenation

6.4.2 Replication

6.4.3 String Containment

6.4.4 String comparison

6.5 String Functions

6.5.1 String Centering

6.5.2 String Padding

6.5.3 Boolean String Methods

6.6 String Formatting

6.7 String Modification Methods

6.7.1 String Matching

6.8 Summary

7

Files and Directories

7.2 File Operations

7.2.1 Opening Files

7.2.2 Creating Temporary Files

7.2.3 Opening Binary Files

7.2.4 File Opening Modes

7.2.5 Renaming Files and Directories

7.2.6 Access Permissions of Files and Directories

7.2.7 Deleting Files and Directories

7.2.8 Closing Files

7.2.9 Checking for File and Directory Existence

7.2.10 Reading from Files

7.2.11 Writing to File

7.2.12 Copying Files and Directories

7.3 Pickle

7.3.1 Serializing Objects

7.4 The StringIO Class

7.4.1 File Filters

7.5 Standard Input/Output

7.6 CSV Files

7.6.1 Reading CSV Files

7.7 Formatted File I/O

7.8 Directories

7.8.1 Current and Parent Directories

7.8.2 Listing Directory Contents

7.8.3 Creating and Deleting Directories

7.8.4 Access Directory Tree

7.9 Summary

8

Functions

8.1 What is a Function

8.2 Creating Functions

8.2.1 Structure of Functions

8.2.2 The Main Function

8.2.3 Return Values

8.2.4 Void (None Type) Functions

8.2.5 Aliasing Functions

8.3 Built-in Functions

8.3.1 Built-in Mathematical Functions

8.4 Global Command

8.5 Function Parameters

8.5.1 Pass by Value vs Reference

8.5.2 Positional Arguments

8.5.3 Positional Only Function Arguments

8.5.4 Keyword Arguments

8.5.5 Variable Arguments

8.6 Generator Functions

8.7 Inner Functions

8.7.1 Closure

8.7.2 Lambda functions

8.8 Summary

Subject Index

CORE PYTHON 3.8 PROGRAMMING

Rajan Chattamvelli

Preface

This book grew out of a course on Python programming that I taught to computer science majors. It is intended for beginning students in Python programming courses who already have some exposure to programming (all of my students had done C programming). No prerequisites are needed except familiarity with an IDE or editor. First-time learners will find enough information on the basics in the first chapter.

Why a New Book?

Although there are many excellent books on Python programming written by several experts with different perspectives, most of them are either narrowly focused, less informative than online documentations, or too advanced. Some of the books even spend several chapters on less important things like background and history, installation and setup, getting started with Python prompt etc. This information is already available at dozens of sites on the web, which anyone with a net connection can look-up. A clear advantage of this book over others in the market is that it explores several concepts in-depth that are not to be found elsewhere, including online documentations. This ‘new-found’ knowledge will help the readers to apply it with advantage in solving several practical problems with ease.

The book helps beginners to grasp the topics faster than using other textbooks in the market. Several concepts are explained thoroughly and practical examples are used wherever possible to instill a genuine interest in the reader to learn Python and apply what they have learned in practical situations. Examples are drawn from a wide variety of fields. This will benefit a large number of students in various fields of study. Some topics have been presented in an intuitive way different from most of the available online materials or in books. Readers will appreciate this classroom tested book for its clarity, comprehensive coverage, and the correct balance between theory and applications.

Audience

The primary users of this book are undergraduate students in computer science (first- or second semester introductory computer science (CS1) course). Typical courses include “Introduction to Programming with Python”, “Introduction to computer science using Python”, “Python Programming” etc. Students in engineering and mathematical sciences, business and management, and researchers in various fields who need to grasp a new programming language quickly will also find this book to be immensely useful. The secondary users include self-study professionals, and Python certification aspirants. It is also useful for self-learners and programmers experienced in other languages who need to quickly learn Python language. This book will make those developers who have experience with at least one higher level programming language exposure up to speed with the language in a very short time. The tangible reader benefits are as follows: 1) Students could definitely get a much better grasp of the nitty-gritty details of the fundamentals of Python programming through this book than through most other books in the market. 2)

Researchers get hands-on experience in applying the core ideas through the illustrative examples given throughout. 3) Software developers can equip themselves with practical ways to solve problems. 4) Scientists will find the insightful results and programs to be of compelling value in practical applications. 5) Teachers will be able to deepen their understanding of core Python concepts 6) Certification aspirants will find the book to be of immense value due to the right amount of theory and practical examples mixed together.

This book can be used for class-room teaching of undergraduate level courses in Python programming
, Introduction to computer science using Python
 etc. Some of the chapters can also be used as supplementary reading for courses on fundamentals of programming.

What it covers

This book covers the core Python. The first chapter briefly reviews the history of Python, salient features, and its availability on various platforms. Installation instructions are briefly mentioned, followed by interpretation and running of Python programs by transforming source code into bytecode. Python interactive console is discussed next, followed by source file naming. The Python comments are next explored and code snippets given to illustrate its use. A discussion of docstring and their uses can be found in chapter 1. This is followed by reserved words, constants, identifier naming, Input and Output statements, assignment statements and priority of operators. The end-of-chapter exercises selected from a variety of fields help the students to write simple program statements which can be tried at the Python prompt or from source files. Chapter 2 discusses data types and conversions between types. A discussion on standard data types (Boolean, integer, long, float, complex and compound types), date and time data types. Chapter 3 on Python operators gives an in-depth insight into various operators including arithmetic, assignment, relational, chained relational, logical and bit-wise operators and shorthand operators like += etc. The chapter ends with a discussion of operator overloading.

Decisions (If statements) are discussed in chapter 4. Topics covered include simple if statement, if with else and elif branches, compound conditions, short-circuit evaluations, nested if, trailing if statements etc.

Chapter 5 is about for loops, while loops, nested loops, range function, enumerated loops, and zip command in loops.

Chapter 6 on strings discusses creating strings, string prefixes, accessing characters, string slicing, string functions, formatting, and command line argument processing.

Common file operations, file creation, and special type of files like CSV-files, directory operations and formatted files are discussed in Chapter 7.

Chapter 8 is on functions. It describes function creation, invocation, default arguments, built-in functions, recursive functions, positional and keyword arguments, variable number of parameters, generator functions, inner functions and lambda functions.

Any queries or suggestions should be sent to dmmbook@gmail.com
 and will be acknowledged.

Rajan Chattamvelli

February 2020

List of Figures

1.1
Available Installation Files .
1-2

1.2
Save Installation File .
1-4

List of Tables

1.1
Interpreted vs Compiled Languages .1-9

1.2
Popular Python Virtual Machines 1-10

1.3
Python Reserved words
. 1-23

1.4
Priority of Python Operators1-31

1.5
Escape Sequences 1-32

2.1
Language Type Categories2-2

2.2
The Integer Family2-3

2.3
Mutable vs Immutable Types in Python 2-6

3.1
Standard Arithmetic Operators 3-2

3.2
Common Shorthand Operators .
. 3-5

3.3
Membership and Relational Operators . 3-9

3.4
Logical Operators . 3-11

3.5
Logical ‘AND’ and ‘OR’ Table
. 3-11

3.6
Bitwise Operators
. 3-12

3.7
Priority of Logical and Bitwise Operators . 3-12

3.8
1’s and 2’s complement
. 3-13

3.9
Example of Bitwise Operators .3-14

4.1
Energy Burning Multipliers for Males and Females in Treadmill 4-7

4.2
Short-Circuit Evaluation . 4-13

6.1
Python String Constants .6-3

6.2
String and List Slicing Operation .6-7

6.3
String Boolean Functions
.6-15

6.4
Table of Format Specifiers 6-18

7.1
File Open Modes vs Python Class Used .7-2

7.2
Common File Open Modes in Python
. .7-2

7.3
Common File Operations in Python
. .7-19

7.4
Common Directory Operations in Python7-24

8.1
Common Built-in Functions .. 8-10

8.2
Common Mathematical Functions
. 8-12

xi

CHAPTER 1

Introduction to Python

	
Chapter Objectives

•

Introduce basic concepts in Python programming

•

Understand Interactive Console

•

Outline Comments and docstrings

•

Discuss keywords and Identifiers

•

Introduce Assignment and Print Statements

•

Explain Walrus Assignment Operator

•

Describe Popular Coding Standards

•

Review Priority of Operators

1.1
Python Language

Python is an open source, general-purpose, object-oriented, dynamically typed language with a short learning curve. Guido van Rossum introduced it in 1990. The first public release version written in C, often referred to as CPython1
, appeared in February 1991 on USENET. Several other implementations have appeared subsequently. The notable among them are Jython (also known as JPython) written completely in Java (so that it integrates well with Java applications), IronPython for the Microsoft .NET platform written in C#, etc. (see table 1.1). PyPy is a significantly important implementation in which the Python virtual machine (see §1.4.4) itself is written in Python (http://www.pypy.org). It offers several advanced features like stack-less support and a Just in Time (JIT) compiler.

1.2 Why Learn Python?

What makes Python a good choice for developing scientific and engineering applications? Python is popular because (a) it is an easy to learn, easy to read, interactive, robust and general purpose high-level language and not just a particular numerical programming language (b) it is scalable and extensible and has an extensive set of libraries both built-in, and community contributed that cover almost every important domain of interest, (c) it is of course open source and available[image:]

So called because it is written in ANSI C language. New language features first appear in CPython

on major platforms, (d) it has object-oriented features, and (e) its interactive console is really valuable for folks interested in numerical work, and for beginners. These points are not in any particular order of priority. All of them have contributed to make the language a huge success.

For beginners, it is of course the simple syntax, readability and maintainability along with dynamic typing capabilities that makes it popular. The meaning of dynamic typing is that the type of a variable is determined by the value assigned to it (at run-time) so that compile-time type checking is not done (as in Java or C++). This has great implications. You can dynamically change a variable’s type throughout the program, as shown below. Not only swapping, but simple assignments, function calls etc. can also change a variable’s type dynamically.

Python has several special language constructs that can substantially reduce the coding time and code size. As the software size is much smaller than to be expected if the same system was to be developed in C++ or Java, less time is needed for coding, testing and debugging. This in turn results in good developer productivity. As it is interpreted, the lengthy compile-link-execute
 cycle can be avoided. Python programs are highly portable across a multitude of environments. Inter-language communication is possible between C++, Java, Perl, PHP and C# (Thus Python can act as a glue). In addition, it can use DotNet, COM and Corba as well as RMI. It offers multi-threading and multi-processing capabilities as well. There are a large number of modules (collection of functions) for specific applications like natural language processing (NLP), numerical computing (numpy), digital signal processing (SciPy), imaging (PIL, Pillow), graphics (matplotlib), graphical user interfaces (GUI) (Tkinter), etc. Several standard libraries, Operating System (OS) interfaces, and a rich set of supporting third-party libraries are already available and the list is growing continuously. It is portable to most of the platforms with a C compiler. It can also be integrated with many other programming languages. As the Python interpreter itself is rather small, it can be embedded as a binary component and executed in other machines without even a Python installation, or with other versions of Python on them. Maintenance costs of systems developed in Python are in general much less than an equivalent system developed in other languages like C, C++ or Java. All these nice features have added up to make Python the primary programming language for millions of developers worldwide. Python is an excellent choice when portability, productivity and interoperability of software systems or components developed in different programming languages are of paramount importance.

Figure 1.1: Available Installation Files

[image:]

1.2.1 Availability

Python is available on a variety of hardware and software platforms. As of this writing, it is available on Intel and AMD based 32-bit and 64-bit processors, SPARC etc.
[1]
 It has been ported to Amiga, Windows, Linux, HP-UX, Debian, Ubuntu, Mac OS, AS/400 (iSeries; now called IBM i), OS/390, OS/2, Solaris, VMS, iOS, PalmOS, PocketPC, CE and many other OS. This helps developers to write code in one environment, and deploy it in multiple platforms with either no change or minimal changes.

1.2.2 Salient Features

As it is an open-source project, developers could even modify existing features to adapt to individual environments and applications. In addition, Python uses indentation level to demarcate blocks of code (see discussion of whitespace in page 1-22). In the words of its creator (Guido van Rossum) Python’s indentation feature derived from the ABC programming language is perhaps the most controversial feature. Python has several special features that suit well for novice students, parallel programmers and other professional developers. As a simple example,

x, y = y, x

is a valid statement in Python, but not in most other languages
[2]
. This single statement swaps the values stored in x and y irrespective of whether the values are integers, reals, complex numbers, strings or user-defined types. For example, let x=3 and y=5. Then x,y = y,x swaps these values so that x becomes 5 and y becomes 3. Suppose both x and y are strings with initial values x=“Python” and y=“Java”. Then x,y = y,x results in x=“Java” and y=“Python”. In both these examples, x and y were of the same type (either integers or strings). Even if they are of different types, Python will still swap the values and automatically change the types because Python is a dynamically typed language. Let x=“Python” and y=3.14. Then x,y = y,x results in x=3.14 and y=“Python”. This can be verified by entering type(x) at the Python prompt. This is very important because whenever you wish to swap two values, you must ensure that both variables store data of the same type. Other languages exist that have an arguably equivalent, if not better syntax, but other features mentioned above combined with dynamic typing makes it more feature rich. It allows us to do a variety of things, and choose from a variety of programming paradigms. The fact that we can “change the type of a variable” at run-time is just a convenience and is discussed below.

Salient Features of Python

•

Interactive

•

Cross-platform

•

Modular

•

Object-Oriented

•

Dynamically typed

•

Automatic garbage collection

•

Robust

•

Scalable and Extensible

•

Extensive third-party modules

It is useful as a rapid prototyping tool. As an object model abstraction is used for data storage, scalable and extensible systems are easy to develop in Python. All these points have contributed to the immense popularity of Python. This is why it is being used by Google, Yahoo, Amazon, CERN, NASA and many others.

1.3 Installing Python

Python is an open-source software which can be downloaded from many sites. The official site is https://www.python.org/download/
. Automatic installers (like pip) described in page 1-6 can also be used to install Python. You can choose either the latest (beta) version or one of the stable versions for your OS of choice. Separate versions are available for 32-bit and 64- bit OS. The installation program comes in various forms like executable files, zip file etc. You can download either the binary files alone or binary plus source files (Figure 1.1). While installing it, you will be prompted for the directory name where you want it to be installed. You may choose a directory name that matches the version number. Thus to install Python 3.8 version, you may give the directory name as C:\Python38 (replace the drive letter by whatever drive you wish to install on; directory separator depends on the OS). This choice of directory name allows you to install multiple versions of future releases in the same system (see discussion on virtualenv in page 1-8.). If you have an Internet connection, the best way to install is by downloading the executable installer for your OS (Figure 1.2). This is a small executable file which you may save in your downloads directory.

Figure 1.2: Save Installation File

[image:]

Clicking on Save File creates a python-3.8.0-amd64.exe.part temporary file, and an initially empty python-3.8.0-amd64.exe file. The ‘part file’ will be renamed as ‘exe’ file when the download is complete. You should double-click on the exe file only after completion of download. Depending on your net connection speed, it may take anywhere from a few seconds to several minutes for the download to be complete. As there is no progress bar, the best way to check the progress of download is by comparing the file size in column 5 of the web page (The Windows x86-64 executable installer is approximately 26 Mega Bytes (MB)) with size of saved ‘.part’ file. Alternatively, you may press CTRL+J in Windows to display the progress of ongoing downloads. The web-based installer is smaller in size, but installation time may be more.
[3]
 There are many sites where you can get additional information including tutorials, libraries, utilities etc. This includes planetPython.org
, Pythonexample.com
, etc. Available online resources discussed above are more up-to-date on how to install Python.

1.3.1 Python Versions

Python is an evolving language. You can get the version of your installed Python by typing either of the following commands at the OS prompt.

python - V

python -- version

If py.exe is in your PATH, you may also give py -V or py --version.

The import
 statement of Python works similar to the import
 statement of Java, include
 statement of C/C++, PHP, or using
 statement of C#. The following discussion is for beginners and for those who are unfamiliar with other high-level programming languages. It is almost impractical to keep all the program code in a few source files. Python has a feature called a module
 which is nothing but a logical grouping of code intended to do a particular task. Modules make it possible to develop large programs in a structured way. The names of modules are usually in lowercase. As an example, there is a module called sys
 which provides access to some data used or maintained by the Python interpreter such as command-line arguments passed to a program, version information, details of paths, etc. This is very useful because the path-name separator depends on the OS (usually ‘/’ or ‘\\’). Thus the sys
 module is implemented differently for each OS in which Python runs. Similarly there is an os
 module that contains OS specific data and information. Python programs that import the os module and use the features in it stand a better chance of being portable across different platforms, provided that functions that are defined by all platforms are used, and all path-name manipulations are left to os.path module (which is a sub-module within os module). Therefore, if you write a Python program that uses the sys
 module in Windows, your program can be executed in Linux or Ubuntu.

The sys
 and os
 are examples of system modules (that come free with Python). User-defined modules are those that you write or obtain from third-party vendors. These usually have .py or .pyc (compiled Python file) extension. Every program that you write may not need such modules. Several related modules can be arranged or grouped into packages. A Python package is technically a folder (directory) that contains one or more modules along with a special file called init .py and is discussed later. For the time being it is enough to understand that the import sys
 statement brings in all the program code in the sys module.

Replace python by python3 or whatever version has been installed on your machine. It is assumed in the rest of the book that the executable file is “python.exe”. You may modify the environment variable PATH such that latest version comes first. Alternatively, use the virtualenv to demarcate multiple installation of Python and supporting libraries and frameworks.

You can also see the Python version when you start the Python interpreter by entering just python at the command prompt. As some of the Python modules need a minimum version installation, you may have to check the version you are using in later chapters. If you want the version data as a named tuple, execute the following two commands:

>>> import sys

>>> sys.version_info

Output:

sys.version_info(major=3, minor=8, micro=0, releaselevel=‘final’, serial=0).

This is called a named tuple because each element is of the form “key=val”. The system variable sys.version can be used when the version information is needed as an encoded integer.

>>> import sys

>>> sys.version Output:

‘3.8.0 (tags/v3.8.0:fa919fd, Oct 14 2019, 19:37:50)

[MSC v.1916 64 bit (AMD64)]’

A print
 statement (discussed below) is not used to display the information because Python shell will display the value when a variable is given on a line by itself. Multiple comma separated variables could also be given on the command line to display the current values onto the console. Typing the following command displays 2 sets of values:

>>> import sys

>>> sys.int_info, sys.float_info

Output in Python 3.7:

(sys.int_info(bits_per_digit=15, sizeof_digit=2), sys.float_info(max=1.7976931348623157e+308, max_exp=1024, max_10_exp=308, min=2.2250738585072014e-308, min_exp=-1021, min_10_exp=-307, dig=15, mant_dig=53, epsilon=2.220446049250313e-16, radix=2, rounds=1)

Output in Python 3.8:

(sys.int_info(bits_per_digit=30, sizeof_digit=4), sys.float_info(max=1.7976931348623157e+308, max_exp=1024, max_10_exp=308, min=2.2250738585072014e-308,min_exp=-1021, min_10_exp=-307, dig=15, mant_dig=53,epsilon=2.220446049250313e-16, radix=2, rounds=1))

The output may vary depending on whether you have installed the 32-bit version or 64- bit version.

1.3.2 Using PIP

PIP is a package management system
[4]
 available at https://pypi.python.org/pypi/pip
 site
[5]
. It is a recursive acronym that stands for “Pip Installs Packages”. It comes pre-installed with latest versions of Python. Look in your Python/Scripts directory for file names like pip.exe, pip3.exe, pip3.7.exe or something similar. If it is not on your system or if it is an outdated version, you need to first download get-pip.py installer script from one of the public domain sites like https://bootstrap.pypa.io/get-pip.py
 or the correct version from a sub-directory. After saving it, you may give python get-pip.py. It can be used to install, uninstall, update and manage software packages written in Python. In addition it can also show which packages, if any, have already been installed. An advantage of PIP is that it can install either the latest available version (default) or one of the prior versions identified by version numbers (major.minor order). New packages can be installed or simply downloaded (without installing it). For this, you may either open a command window to the Python/Scripts directory (which means the Scripts subdirectory under the directory where you have installed Python) and issue the PIP command from there. Alternatively, it can be executed by giving the full path of the exe file from a command window opened anywhere. If you wish to install many packages, it is a good idea to add the Python/Scripts directory to your PATH environmental variable so that it can be executed from anywhere. The most frequently used options that follow pip command are shown below:

install
Install packages

download Download packages

uninstall Uninstall packages

list
List installed packages

show
Show information about installed packages

check
Verify if package dependencies are compatible

search
Search PyPI site for packages

hash
Compute hashes of package archives

As an example, suppose you wish to install pillow
 library, which is a Python package used for image processing. You may give

pip install pillow

at the OS command prompt. If you wish to see the progress, you may add the -v (–verbose) flag to display messages as installation progresses. To install specific versions, give a relational operator (== or >
=) after the package name followed by the version number in major.minor order without quotes (eg: pip install pillow>=1.2). To upgrade an installed package give

pip install --upgrade pkgname

where pkgname is the name of an installed package. In Windows, give the following command

py -m pip -- version

to get installed version of pip, and

py -m pip install --upgrade pip

to upgrade PIP to the latest version. Equivalent commands for MacOS and *NIX is python3 -m pip install --user --upgrade pip

where it is assumed that python3 is the executable file name.

1.3.3 Using Conda

Conda is a package and environment manager. Anaconda and Miniconda are the most popular. Anaconda is available at https://www.anaconda.com/download
 and Miniconda is available at https://conda.io/miniconda.html
. These are entirely different tools. Anaconda also has an enterprise version https://www.anaconda.com/enterprise/
. Anaconda comes with 150+ packages and may need more than 300 MB of disk space. Miniconda lets you install a selected subset of the packages. Command line installers as well as GUI installers are available for Windows, macOS and Linux. Conda and PIP have very similar syntax. Enter conda -- version to get version number. To install numpy you type:

conda install numpy

Conda can create named “conda environments”. Any number of packages can be created either during creation of Conda environment or post creation.

conda create --name numeric python=3.8 numpy scipy

The general syntax to activate or enter a named environment is

[source] [activate|deactivate] envname

where [source] without square brackets is needed for MacOS but not for Windows.

1.3.4 Using Virtual Environment

As the name implies, it is a software tool to create isolated or independent Python virtual environments in a computer system. It can be used to manage Python packages for projects with different (and often incompatible) needs in terms of versions, and inter-dependencies among packages. It creates an environment that has its own installation directories, that does not share libraries with other virtualenv environments (and optionally does not access the globally installed libraries either). Examples include Virtual Environment created by virtualenv (https://virtualenv.pypa.io
) or pyvenv. This is extremely useful for developers working on multiple projects that needs different (and sometimes incompatible) versions of software like Python 2.7, Python 3.7, Django 1.8, etc. Instead of mangling with OS environmental variables and Python specific environmental settings like PYTHONPATH, the virtualenv tool provides a simplified solution to tackle incompatibility issues. On macOS and Linux type the command python3 -m pip install --user virtualenv

and on Windows type the command

py -m pip install --user virtualenv

Virtual environments must be activated first (run the activate executable in Scripts directory). Then pip or Conda can be used to install packages specific to that environment.

1.4 Python Interpretation

There are two types of languages known as compiled
 and interpreted
 languages. Examples of compiled languages include C, C++, Java, C#, etc. (see table 1.1). Compiled languages use two distinct stages called compilation step and linking step. A compiler is a system program that takes a source file as input and produces either an intermediate form (as in .class file of Java or Groovy) or directly creates an object file (files with .o extension in C). The linker then combines all needed object files and libraries (if any), does optimizations and produces an executable file. Compiled languages produce code that runs faster than interpreted languages because depending on the compiler used, code is generated for specific hardware architectures.

Table 1.1: Interpreted vs Compiled Languages

[image:]

C, C++, Java, C#, LISP, Ruby

 Compiled

Python, PHP, MATLAB, Mathematica, PERL, Javascript
 Interpreted

[image:]

Interpreted languages take one logical line as input and immediately executes it. Programs written in these languages in general run slower than those in compiled languages. Nevertheless, interpreted languages have advantages, especially for beginners. Python, PHP, PERL, Javascript and Visual Basic are examples of interpreted languages. Python is a high-level interpreted language used for programming digital devices. One of the disadvantages of Python is that as it is interpreted, the source code often ends up in the hands of clients who may modify it creating unexpected problems to the developer of the original code (third-party software exist to convert .pyc files to .py files).

1.4.1 Python Source Files

Python programs are saved as pure text files with a .py extension (both upper and lower case extension can be used in Windows like first.py or FIRST.PY). The Python interpreter (python.exe in your installation directory) accepts any file name extension. Thus you can give the extension like .p10, .pit, .pyt, .ptn, for different purposes if your directory is cluttered with source files, or as p27, p38 etc. if you have source entirely in Python 2.7, 3.8 version etc. But the Python interpreter by default looks for files with .py extension only. Hence we will stick with the general convention and name all our Python source files with a .py (lowercase) extension irrespective of the OS. Note that the file extension cannot be .pyc because Python uses .pyc extension for already compiled source files. Similarly .pyo are optimal Python files.

Apparently if you name a source file as first.py.py, with multiple “.py” at the end, Python will still accept it as valid. Now if you dare to rename the file to just ‘.py’ (with no file name, but only an extension) and then type the command “python .py” you will be surprised that Python still executes the program!. Python identifies it as a valid file name and compiles it. The name of a file cannot be anything you wish. There are some restrictions on file names. For example, you cannot name a Python file as os.py or sys.py because these are system specific files
[6]
. In general, you cannot give a name to a user written file that matches a file name in the “Lib” directory of Python installation. Thus abc.py, bisect.py, calendar.py, cgi.py, cmd.py, code.py, csv.py etc. are all forbidden names. If your Python program does not work as expected, you must check if there are any name collisions between your source file and files in the Lib directory.

Some of the operating systems (OS) allow blank characters in file names. But the Python interpreter will not accept file names containing blanks unless you enclose such file names in quotation marks. For example, suppose you get a file named “star wars.py” from elsewhere. To run it, you should supply the quote marks as python “star wars.py”

Similarly, some characters are forbidden in specific OS like Windows (which does not allow file names to contain characters \, /, :, *, ?, ", <,>,
| because they have special meanings). This must be kept in mind when you are porting a Python application from one OS to another.

1.4.2 Creating Source Files

As source files are pure text files, they can be created either using a favorite text-editor or IDEs (Integrated Development Environment). Examples of text editors include Notepad, Notepad++, sublime text (www.sublimetext.com
), SciTE (scintilla.org), wordpad, etc. Python comes with a builtin IDE. The IDE by default saves all Python files with a .py extension. Third-party IDEs are also available. The popular among them include PyCharm (jetbrains.com/pycharm), Pyzo (pyzo.org), Wing IDE (wingware.com), etc.

The biggest advantage of an IDE is that the “create-modify-execute” cycle can be done entirely from within it, as well as debug your code. In addition, some IDEs have syntax checking option builtin (Check module under Run menu or Alt+x). Even before running a program, you could check for syntax errors and fix them using this option. This is especially useful in large programs that use multiple indentation levels.

1.4.3 Arranging Source Files

If the Python installation directory is on the PATH, you can keep all project specific source files in their own directory, then change directory to the source files and execute “python filename.py” from there. If source files are scattered in multiple directories, you may have to supply the path to the main source directory and use import commands to bring-in other source files. It is a good practice to keep multiple source files structured according to functionality. The import statements can be used to import other modules as and when needed.

Python uses its own PYTHONPATH environmental variable to point to the installation directory. If you have multiple versions of Python installed on your machine, you may set it to the appropriate directory to invoke desired versions. The environment variable PYTHONPATH contains a list of semi-colon separated directory paths where Python source files are kept.

Table 1.2: Popular Python Virtual Machines

	
Name

	
Written in

	
Generates

	
CPython

	
ANSI-C

	
Python bytecode

	
Jython

	
Java

	
Java bytecode

	
IronPython

	
C#

	
IL(.Net) bytecode

	
PyPy

	
Python

	
Python bytecode

1.4.4 Python Virtual Machine (PVM)

The PVM is the run-time engine of Python. It gets its name from the fact that it acts as a virtual environment to run byte code
[7]
. It uses a regular stack as the primitive data structure. PyPy is an implementation of PVM in Python itself. Jython is a PVM written in Java that generates ‘.class’ files (instead of bytecode) as output from Python source files (see table 1.2). Note that the PVM depends on the Python version. It may differ among the various versions. This must be kept in mind when the PVM is embedded for execution in other environments.

Usually only one PVM runs in a computer. But there is no limitation on starting multiple copies of PVM to run independently within a computer. This may be needed to simulate network communication programs that use sockets or for other purposes discussed below.

1.5 Python Execution Basics

Python programs can be executed in many ways. Executing the program means running it using Python to produce some meaningful output. Although execute and run are synonyms in programming, execute has a broader meaning in frozen binary files, executable files (eg: .exe) produced in compiled languages and in embedded systems. If the entire program is saved as a valid source file, it may be executed by entering the name of the source file after the “python” command. This scans the source file for tokens. Some errors like inappropriate indentation, wrong syntax, some misspellings etc. are caught at this stage. Behind the scenes, the source program is broken down into tokens, parsed into a logical tree structure, transformed into bytecode and interpreted line by line. A program runs to completion if no errors (and no infinite looping) are encountered. Otherwise it may be aborted with one or more error messages (and call-stack) displayed for the user to pin-point the first line where an error occurred. A running program can also be interrupted by a user using some special keys on the keyboard (like CTRL+c). The following discussion is meant for absolute beginners to acquaint them with basics and bring them up to speed.

1.5.1 Starting and Stopping Python

Python can be started in many ways. The easiest way is to add the installation directory to your PATH and then give either python by itself or python followed by the source file name. Giving Python without any arguments takes us to the shell prompt (which is >>>
 by default). This is called the “Python prompt” or “Python shell” to distinguish it from command prompt which are specific to the OS. You can give any valid Python command at the prompt. If the command expects a block (like a for or while loop or an if statement) the interpreter will print 3 dots (called Ellipsis, discussed below) and wait for you to enter the rest of the code. You can exit the command prompt at any time by typing CTRL+Z in Windows or CRL+D in UNIX and related OS
[8]
 and Mac OS. Alternatively type exit() at the >>>
 prompt to go back to the OS prompt. Use raise SystemExit or exit() commands to terminate a program from within it when an abnormal condition is encountered.

Stand-alone applications can be run either from the command prompt or from an IDE. For example, you may associate compiled Python files with an application (python.exe or pythonw.exe) and execute them by double-clicking in the user interface.

1.5.2 Python Command-line Options

There are a large number of command-line options available. This depends on the version of Python. You may obtain the available options in your installation by issuing one of the commands at the OS prompt:

python - h

python - ?

There must be at least one whitespace character between python and the option that follows it. In Windows, python/? also works (but not python/h). The most frequently used ones are -E to ignore Python environmental variables, -t (-tt) issue warnings (or errors) about inconsistent tab usage, -d for debugging, -O to create optimized files (.pyo files) or -OO to discard docstrings from namespace and create further optimized files, -u for unbuffered binary stdout and stderr etc. It is a good idea to provide a function (chapter 8) named usage() whenever your program expects command line parameters.

1.5.3 Python Interactive Console

Simply typing python at the OS command prompt takes you to the interpreter command called Python Interactive Console (PIC) >>>
 prompt. It is also simply called the interpreter or the Python prompt). This is the default primary prompt. You may change the default prompt >>>
 as follows:

>>> import sys

>>> sys.ps1=‘$$ ’

or whatever string you like (where ps1 is case sensitive). All import
 statements by convention appear at the beginning of a Python program, but it can be given anywhere including inside the body of functions. They are used to bring in modules (external code that reside in files usually with .py or .pyc extension) into the currently running application at the point of import. There are many different ways to import modules. These are discussed in upcoming chapters. The above code used the dotted notation “sys.version” where sys is the module name and version is one of the attributes (defined later) in it. If you give “version” without the “sys.” prefix, Python will display “NameError: name ‘version’ is not defined”.

You must enclose the new string in single, double or triple quotes (spaces in between are allowed)
[9]
. Thus sys.ps1=“Command me>
” will immediately change the Python prompt
[10]
. From here you can execute any Python command or call functions.

Any command that is typed at the Python prompt is immediately interpreted. Python immediately comes back with the next prompt if it is an assignment statement without errors. If your statement produces an output, it is displayed immediately below the current prompt and a new prompt is displayed. Python indefinitely waits for you to enter some input value if it is an input command. Thus all input commands should have a display string so that a user can guess that Python is waiting for input (see page 1-25).

>>> Fahrenheit = input(‘Enter Fahrenheit temperature: ’)

If the typed command is incomplete (say closing parenthesis is missing, command is continued, etc.), Python prints three dots (...) (called ellipsis) and waits for you to complete the statement. This is called the secondary prompt. Most of the discussions about the primary prompt are applicable here also. Thus you could have either a beep or some voice instruction to indicate that the computer is expecting continuation command. The line continuation character (\) discussed in §1.6.1 (pp.1-18) works even in the Python prompt. Thus

>>> Fahrenheit = \

prints ... and waits for you to enter the Right Hand Side (RHS) of the assignment statement (which can be either a constant, an expression or function call etc.). You may keep on extending a statement in the Python prompt using continuation character as long as there are no syntax errors, as shown above.

>>> Fahrenheit = \

Celsius *9 \

/ 5.0 \

+ 32

If a variable in your expression is undefined, you get an error

Traceback (most recent call last):

File "<stdin>", line 2, in < module >

NameError: name ‘Celsius’ is not defined

If the Enter key is pressed by mistake when Python expects some value, you get

File "<stdin>", line 2

SyntaxError: invalid syntax

There is another way to type long commands without using line continuation character. This is done by putting a simple opening bracket after the assignment operator and putting a matching closing bracket on the very last line as shown below:

>>> Fahrenheit = (Celsius * 9/ 5.0+ 32

The continuation indicator (...) called secondary prompt can also be changed using the following command:

>>> import sys >>> sys.ps2=‘~~ ’

where ∼∼ (or “—”, “<>
”) denotes the characters to be used in place of triple-quotes.

Note that ps1 and ps2 may be available only at the Python command prompt depending on your system and version. One advantage of Python prompt is that it can be used to test equations, formulas and algorithms before you put them in a source code file. Small code snippets can be tried and tested first and then copied to program files that results in bottom-up development. It would be hard to capture all the successfully tested commands into a program file, however. A solution is to use the IDLE (installed in \PythonDir
\Lib
\idlelib
 directory (in Windows) where PythonDir denotes the directory where it is installed; usually /usr/bin or /usr/local/bin in *NIX) or IPython from iPython.scipy.org/. These Integrated Development Environments (IDE) can directly save your commands, compile and debug programs, restart shells, interrupt execution and do much more. You could even use auto-completion to complete names of functions, classes, attributes of classes etc. IDLEx is an extension of IDLE which is available at https://sourceforge.net/projects/idlex/
.

1.5.4 Python Console as Calculator

Python prompt also works as a calculator where you may use any of the standard arithmetic operators (+, -, *, /, //
, **, %), relational operators (<,<
=,>,>
=,
==,
! =) and logical operators (and, or, not).

Why should the default primary prompt be changed? Because people have their own likes and dislikes for command prompts. This may not be so important to professionals or gurus, but it does save screen space (by setting it to a single character prompt) and is liked a lot by beginners and enthusiasts (the popular choices are “? ”,“$ ”,“Command me: ”,“Ready:”,“Hi:”, etc.). Moreover, when a user needs to work simultaneously in two or more different software systems or games that run in different Python consoles, it is a good idea to set the Python prompt to abbreviations or acronyms to distinguish them. As an example, if a tic-tac-toe program has to to be run in one PIC, and a chess game in another PIC, set the first prompt to “Tic:” and the second prompt to “Chess: ” so that one can switch back and forth among them at will. In contrast, multiple primary prompts can be a nuisance when developers do copy and paste of tested code snippets (multiple lines of working code; also called codelets, cmdlets (pronounced commandlets) which are one or more commands) from the Python prompt to editors or to one of the IDEs. Changing the primary prompt to the null string (at least temporarily) is a great way to save valuable time in this situation. If the Python prompt is to be changed to a special character, you have to “escape” that character as shown below. Suppose you wish to use \ as the Python prompt. Then you give

>>>
 import sys >>>
 sys.ps1 = ‘\\ ’ so that the prompt now becomes a single \. You may even combine special characters with other prompts. If you want the computer to beep
 each time the prompt is displayed to inform you that your long instruction has finished execution, you set the prompt as

>>>
 import sys

>>>
 sys.ps1=‘\a
\\ ’ where \a denotes a single beep (give multiple \a for multiple beeps) and what follows is taken as the prompt. As extended ASCII characters are allowed in these prompts, users could also have native language specific Python prompts in different countries or languages.

Third party modules exist to create fancy Python prompts like prompt toolkit (which can create colored prompts, has auto-completion option, input command validation, history recall (of previously typed commands), multi-line input, mouse support, etc.(pypi.org/project/prompt toolkit)), Python REPL (ptpython at github.com), colorama (https://pypi.python.org/pypi/colorama) etc. The termcolor package is an excellent choice (https://pypi.python.org/pypi/termcolor) when you are interested only in multiple colors.

>>> 2**3

8

>>> 8//3. # integer division

2.0

>>> 8 / 3

2

>>> 8 / 3.

2.6666666666666665

>>> 8/3. > 3 # relational operator

False

>>> 2< 8/3. < 3 # chained conditional operator

True

>>> 8%5 # modulus operator 3

Here the # sign is a comment (discussed in-depth below), False and True are built-in Boolean constants. The builtins True and False are the only two instances of Python class bool. For the time being assume that everything that appear after the # sign up to the End Of Line (EOL) is ignored by Python interpreter. All floating point arithmetic use double precision (results carry 16 decimal places). If both operands are integers, you can force it to be floating point by putting a decimal point on one of them as shown above. Special built-in functions like sum() , min(), max() may also be used on numeric data. If you wish to use square-root, mathematical functions

(like log, cos, exp etc.), and other features (like ceil, floor, mod, pow, etc.) you need to import the math module as shown below.

>>> import math as m

>>> x = 40

>>> y = m.log(x)

>>> z = m.sin(y)

>>> x, y, z

(40, 3.6888794541139363, -0.52037223881504)

Here an alias is given to the math module as ‘m’. An alias is a short name to make it easy to call member functions of the module. Had it not been aliased math as m one should have typed math.log(x), math.sin(y) and so on. Multiple variables can be given initial values as u = v = w = 0 (a discussion of this appears in a later chapter). If you need to do lots of calculations in-between program coding and debugging, you may even start a new Python prompt, change the prompt to “Calc:” or something similar and switch back and forth between these PICs. The help command is one level deep from the PIC. When you type

>>> help() you are taken to the help>

prompt. You can get the list of keywords by typing “keywords” at the help prompt. You may also give “topics” at this prompt to get a list of topics on which help is available. Please note that the commands are case sensitive at this prompt. If you wish to get help on files, you have to give

help> FILES

in capital letters. Here help() is case sensitive. If you type HELP() instead, you get “NameError: name ‘HELP’ is not defined”.

Use exit(), quit() or CTRL+z to exit the interactive console to the OS. As exit and quit are functions, they need the parentheses as shown. They are also case sensitive. Use up arrow key to recall previous commands issued at the interpreter prompt. But this does not work in the IDLE prompt. Even the pageUp and pageDown keys work in the interactive shell. If IPython shell is used instead, previous commands are recalled using up arrow key or CTRL+p and succeeding commands using down arrow or CTRL+n key. This permits a simpler edit-execute
 cycle which is especially useful for beginners. In addition, Python prompt supports a complete debugging and diagnostic environment to rapidly develop small size programs. The interpreter can even be embedded in other applications which allows customers to deploy Python applications developed elsewhere without worrying about version numbers.

The reload command is used to reload a source file. It is actually a function that accepts a module name without the .py extension. The module must have been successfully imported before. When your terminal (or screen) get cluttered with commands, you may want to clear your screen. There are multiple ways to do this. For the time being, you may use the following simple commands:

>>> import os

>>> os.system(‘‘cls’’)
in Windows >>> os.system(‘‘clear’’) # in *NIX

where the second line is used in Windows and third line in *NIX systems. It clears the Python console and prints a 0 indicating that it was a success. This does not clear the IDLE prompt window (If you execute the above from IDLE, it instantaneously brings up a window, closes it and prints 0 on the next line).

1.5.5 Python Startup Program

Suppose you want to run a Python program each time you start the interpreter. Examples are automatically generating some standard reports, calculating overdue accounts, backing up files, etc. This can be done by first defining an environment variable called PYTHONSTARTUP and setting the value to the name of the Python program to be executed. In Windows this can be done through System Properties ⇒ Advanced Tab ⇒ Environmental variables. If PYTHONSTARTUP is not already defined, click on new tab to define a new variable and in the top line give PYTHONSTARTUP and in the bottom line give the name of the program to be executed.

1.5.6 Frozen Binary Files

Python programs can be converted into executable files using third party software like Py2exe (for Windows), Installer (Linux) and freeze (the original). They run byte code through a virtual machine. These are called frozen binary executables because they combine program’s byte code files and the Python interpreter (which is rather small) into a single executable program (like .exe in Windows). Freeze creates a portable version of Python scripts that has the interpreter embedded in it. A disadvantage is that sometimes the size of the frozen file can become very large when bytecode is bundled with PVM along with any needed supporting files.

1.6. PRINT STATEMENT

1.6 Print Statement

The print statement is used to output values from a Python program to the output device (which is the console by default).
[11]
 The complete syntax is print(value, ..., sep=‘ ’, end=‘\n’, file = sys.stdout, flush=False) where any number of values to be printed can be followed by output modifiers (discussed below).

program to print ‘Hello world’

print (‘Hello ’+ ‘world’)

print (‘Hello ’, ‘world’) # versions > Python 3.6

Here the # sign denotes a comment line discussed in §1.7. Both prints the supplied string to the console. As discussed below, the + operator is overloaded in Python to concatenate strings.

The difference between the above statements is that the + operator expects operands of the same type so that if you wish to output a string and an integer, you will have to convert the integer to a string using str() function. But if you stick with the comma delimited operands of print(), you could mix and match all data types in a single print statement. Moreover, as the + operator takes more CPU cycles, its use is discouraged in heavy loops (where the concatenation may have to be executed millions of times). Note also that comma prints an extra blank whereas + operator does not add extra blanks in the output. If multiple string arguments appear in a print statement in Python 3, all of them are concatenated together into a single string. Thus print(‘Hello’ ‘Python’ ‘World’) prints ‘HelloPythonWorld’.

Python print() command sends output to sys.stdout, which is the standard output device (screen or console). Output could be redirected to the error device or disk files by modifying the file = argument of print().

import sys

print(‘Hello World’, sep=‘, ’, file=sys.stderr)

To redirect output to disk files, you need to create a file like object
, which is discussed later. Output buffers are not flushed by default (flush=False) when output is redirected to files. This is to reduce frequent I/O operations. Changing this to flush=True forcibly flushes the stream. The end= argument decides end-of-line behaviour. It denotes the string (or character) that is appended after the last value is printed. The default is a single newline. To print two blank lines after the current line, you give ‘\n\n\n’. Printing may be continued on the same line using end=‘’.

Comments are not generally put on statements typed in Python command prompt because these are discarded once they finish execution. But if you wish to test one statement at a time and copy those into a source file, you may put comments on statements. Any expression with a supplied left parenthesis ‘(’ but without a matching right bracket ‘)’ at the PIC or IDLE causes Python to print three ... which is an indication that the interpreter is waiting for you to supply the missing parentheses.

There are two common arguments to the print() command. One called sep (short for separator) is used to change the separator character to be used in output stream. By default Python 3.x uses a blank (single space). One could specify any other character as sep=‘, ’ that results in comma separated output:

print(‘Hello’ ‘World’, sep=‘, ’)

print(‘Hello’, ‘World’, sep=‘, ’) Output:

HelloWorld

Hello, World

The separator is not applied for the first print statement, but the second one uses a comma followed by a blank as separator.

1.6.1 Line continuation

Line continuation on program statements was briefly mentioned in 1-12. Long statements are encountered in scientific programs (like numerical solution of differential equations, interpolation etc.) that does not fit on a line by itself. Placing a \ (backward slash or backslash) as the last character on a line is an indication that the line is continued to the next line (Python ignores the newline character and assumes that the line is continued to the next). Thus Python will keep on scanning such lines until it reaches the EOL of a line without a continuation character. Concatenation (joining together) is carried out on all such lines to form a big logical line. Thus any number of adjacent lines can have \ as the last character to have multi-line statements. This can be used on executable statements, string literals
[12]
, function definitions, function invocation etc. This not only improves readability, but also avoids code cluttering, and aids in debugging in various IDE and editors.

There are two common situations in which line-continuation is needed on executable statements :– (i) when user defined variable names are too long (ii) when dealing with long expressions (like mathematical formulas in differential equations, weather prediction models etc.). Similarly long string literals are encountered in complex SQL queries with multiple joins or unions, in natural language processing applications, etc. Long function definitions occur when there are either too many formal parameters or they have too long names (or both). Similar is the case with function invocation where there are either too many actual parameters or their names are too long. Some editors allow us to create lines with a large number of characters. A good rule to keep in mind is to have maximum 80 characters per line in Python programs, and use line continuation characters at fixed columns if possible (say at column 80).

print (‘Hello \

Python\

Programmer’)

Tokens other than strings cannot be continued to multiple lines using line-continuation character. An important point to note is that expressions in simple parentheses, square brackets or curly braces can be split over multiple physical lines without using backslashes, as these represent tuples, lists, and maps (sets and dictionaries). This is known as implicit line joining. End of line comments are allowed on such lines.

1.7 Python Comments

Comments are non-executable statements in a program that are used for documentation purposes. They may appear anywhere within a program. Python comments use the # sign. Everything after this character (up to EOL) is treated as a comment. Thus you can put it at the end of executable statements as well, as shown below.

F = C*(9/5.)+32 # Alternately F = 1.8 * C + 32

As a line ending in a backslash character is an indication that it is continued to the next line, such lines cannot carry a comment. If a comment appears on such lines, you get “SyntaxError: unexpected character after line continuation character”. But comments are allowed before the continuation character.

print (‘Hello \ # no comments here

Python\ # or here

Programmer’) # but here it is OK

If a line starts with # symbol, then the entire line is a comment. You can form multiple comment lines by putting # symbol as first non-blank character on those lines
[13]
. Sometimes this is inconvenient to code. Python has another way for multi-line comments (see discussion on docstrings below §1.8, pp.1-20). It uses 3 consecutive quote marks at the beginning and end of multi-line comment as shown below.

program to print

Hello world

"""

This program prints Hello world to the console """

print(‘‘‘ Hello world ’’’)

Save the above program to some Python file (say hello.py). Then open a command prompt in Windows or go to the shell prompt in *NIX. Now give python hello.py

You will see the message in the print statement displayed on your screen.

1.7.1 Multi-line Comments

Multi-line comment can be used to document program code. Some people prefer to make it more fancy looking as shown below:

###############################

Program to print Hello world

Programmer:

Date-written:

Date last modified:

Compatibility: Python 3.6 or above

###############################

print(‘‘‘ Hello world!’’’)

Note that if multi-line argument is given to the print command, the ending triple-quotes must be followed by closing parenthesis of print function. It is not necessary to give the triple-quotes on a line by itself as shown above (in which case it prints an extra blank line). So the ending triple-quotes can be placed on the second line also. If the first character on a line is #, it does not mean that you have to put some comments on that line. A comment line can have a singleton # on a line by itself. This can be used to improve readability of Python source programs. For example, you may put a blank comment line before every function in a source file that has multiple functions to improve readability. A # at the end of a line does not continue a comment to next line (an exception is triple quote strings).

Comments on executable statements should not repeat (re-word) what the program statement already expresses or implies, but should be more informative. Consider the statement to convert Celsius to Fahrenheit temperature. One programmer wrote it as:

F = C*(9/5.)+32 # Convert Celsius to Fahrenheit

and another coded it as

F = C * (9 / 5.) + 32 # F is a real number even if C is integer

The former statement repeats what the mathematical equation implies, whereas the second one provides more intuitive information. Hence the second statement is the preferred choice. Alternately, you may put a comment on the immediately preceding line as shown below:

F is a real number even if C is

F = C * (9 / 5.)+32

Good comments along with well-chosen identifier names make programs much better. This is especially important in projects involving multiple persons, systems that need to be maintained on an ongoing basis or systems that may run in multiple environments. As comments are totally ignored by the interpreter, putting extra comments will not impact execution speed. But too much of unwanted comments can also have a negative impact. Hence depending on each situation, you have to strike a balance between program code and comments.

1.7.2 Python Comments as Scripts

Some of the POSIX-compliant operating systems permit scripting of source programs using comment characters. For example, a line #!/path/to/interpreter as the first one in a Python source file will be used as scripts by the POSIX-compliant OS. In *NIX, this could be done as below.

#!/usr/local/bin/python

This tells the interpreter that Python is installed in /usr/local/bin/ directory. You must then make all your Python source executable using chmod +x filename.py or chmod +x *.py command. Windows has another way to associate source files with applications. Right click on a Python source file, go to Properties, and in the General tab change “Opens with” to the Python executable (Windows will then remember to open all Python files using python.exe and .pyw files with pythonw.exe) and click on “Apply” to save it.

#!/usr/bin/env python

which executes the env program that looks for the installation path of Python. This line can be skipped using the -x option allowing use of non-Unix forms of #!cmd on Python command. They are needed when you wish to run a source file by just clicking on the filename (or icon) in the OS window. It is also used in earlier versions.

1.8 Docstrings

Every program that you write must be properly documented. The most common industry practice is to put comments at the beginning of source files, before classes, after the declaration of member functions etc. to describe the code in a few sentences. Python has a different way to document programs. If a module, class or function definition is followed immediately by a string literal, it is taken as documentation for the class or function and referred to as docstring. The string literal can be enclosed in single quote, double quote or triple quotes (these are called quoting options). The level of indentation of the first triple-quoted line determines the code section to which the whole string literal belongs to. Subsequent lines can have any amount of indentation because the entire string is considered as a logical line.

You cannot put two or more string literals line by line after a class or function and assume that all of them together will form the docstring. As of this writing, Python takes just the first of such string literals unless the line continuation character occurs as the last one on those lines. This means that you can use multiple lines of single quoted strings as docstring if the line continuation character (\) is the last one on each line except the last line. The recommended industry practice is to use triple-quote strings described below. Triple-quote strings can appear anywhere in a Python program. If they are not the first line after a function or a class definition or at the top of a module, they are simply garbage collected when the program finishes execution. Quote based multi-line comments subsume the # based normal comments. Thus inside the quote based multi-line comment, you can have # based comments also as shown below.

‘‘‘ program to print

Hello world

this line also is comment ’’’

The entire string is then considered as a single triple-quoted string. Multi-line string literals can be formed by enclosing them in brackets as shown below.

If a string literal appears immediately after a def block (eg. class or function definition), it will be taken as documentation (description of the function or docstring) by the Python help system (just like /** some text */ comments are taken as documentation by JavaDoc). The command print (funcname. doc) prints any documentation information associated with the specified function. Alternately use help(srcfile.funcname)
[14]
. Thus docstrings if present in function and class definitions are available at run-time for display or introspection. These are usually meant for end-users and useful for debugging and code maintenance purposes. As they are stored in the local namespace, and stored in the parse tree, these strings can be considered as executable16
. Python command line option -O generates optimal bytecode (as also PYTHONOPTIMIZE environment var) files with .pyo extension, and -OO even removes doc-strings from namespace to produce highly optimized pyo files. Python has an easy way to create HTML documentation files when there are docstrings in a program. The pydoc (under Python Lib directory) is a documentation generator and online help system for Python programs (http:// docs.Python.org/lib/modulepydoc.html). Your Python file should be error free for this to work. Simply add the string “-m pydoc -w” after the Python command and before any source file name as follows:

python -m pydoc -w filename

where pydoc is the name of a Python module to generate documentation. It extracts not only docstrings, but global constants and data values as well.

def main():

(‘This is a very long docstring ’

‘that describe my function on multiple lines, ’

‘by enclosing them in parentheses’)

Here continuation character is not used at all. This technique can be used when your editor or IDE allows you to type well beyond the recommended 80 characters per line limit
[15]
. It must be kept in mind that docstrings cannot be assigned to a variable (in which case it becomes a string variable and not a string literal).

def main():

helpstr = (‘This is a very long string ’

‘ on multiple lines, but not a docstring ’

‘ as it is no longer a string literal!’)

If you print type(helpstr) you will see that it is stored as a string variable. Python 3.6 and later versions allow type-hinting commands to be a part of docstring. For example, a function docstring can describe data type of each parameter as

@param str parm1: a string

where str denotes that parm1 is a string. Program documentations are usually long, and sometimes running into multiple paragraphs. This is the reason why triple-quoted strings are used as docstrings. Stylistically, it is not considered a good practice for beginning Python programmers to abuse a triple-quoted string and treat it as a multi-line comment. Although the differences between them are subtle, too many triple-quoted strings in a program looks clumsy and should be avoided by beginners. It is a wise choice to always use triple-quoted strings as docstrings and multiple comment lines for other purposes.

Programmers put extra print statements during the development stage. These can be commented out during production run by placing a # mark as the first character (or first non-space character) on those lines. Uncommenting is the process of removing such # characters to make that line an executable statement.

1.9 Whitespace

Whereas most of the programming languages like Java, C, C++ etc. use curly brackets to group a set of statements, Python uses indentation
[16]
. Thus the statement if(a<b) {min=a; max=b;}

is valid in all those languages. As Python does not use curly brackets for grouping, this will flag as a syntax error. The solution is to either remove the curly brackets and write the above as:

if(a<b): min=a; max=b

or to use multi-line statements with whitespace indentation as

if(a<b): min=a max=b

Table 1.3: Python Reserved words

[image:]

	
and

	
as

	
assert

	
async

	
await

	
break

	
class

	
continue

	
def

	
del

	
elif

	
else

	
except

	
exec

	
False

	
finally

	
for

	
from

	
global

	
if

	
import

	
in

	
is

	
lambda

	
None

	
nonlocal

	
not

	
or

	
pass

	
print

	
raise

	
return

	
True

	
try

	
while

	
with

	
yield

	
	
	

[image:]

exec and print are now functions in builtins module in Python 3.7 and later versions.

The block of statements that are part of the if statement is indented by two spaces to the right. The indentation level is user dependent. You may use blanks, tabs or a mixture of them for indenting, so long as they are uniform and consistent. There are several characters called whitespace in programming languages. You can get a list of all whitespace characters by the following statements:

>>> import string

>>> print (string.whitespace)

The white space characters include a space, tab (\t), newline (\n), carriage return (\r), 0x0b (vertical tab, hexadecimal 11) and 0x0c (formfeed, hexa-decimal 12). Tab width depends on the editor settings. It can be set to any desired positive integer in some editors. Note however that the indentation rule does not apply to comment lines. Comments (using #) can start at any desired indentation even in indented blocks. But it looks much nicer if the comments are also indented at the same level as the surrounding block.

Statements are automatically indented inside control structures like class, def, if, for, or while statement when you are either in the Python prompt, or using the IDE (Choose the menu selection “Options ⇒ ConfigureIDLE ⇒ Fonts/Tabs ⇒ Indentation Width” to set the desired level of indentation in IDLE. Four spaces is the recommended indentation, but it could be too much in scientific programs with lots of nested blocks where 2 spaces is preferred)
[17]
. Indentation is not an issue (even in source files) when statements span multiple lines using parentheses as shown below. The level of indentation of the opening bracket determines the code section to which the whole statement belongs to. Long lists can be created without using line continuation character by putting an opening “[” after the assignment operator on the RHS of first line and a matching “]” on the last line. Similar reasoning holds for creating long sets and dictionaries using curly brackets. These are discussed in subsequent chapters.

1.10 Reserved Words in Python

You can get a list of keywords in Python from the interactive prompt as follows:

>>> import keyword

>>> keyword.kwlist

See table 1.3 for a list. If you wish to know how many keywords are there in the current version, you may replace the second statement as len(keyword.kwlist), which will print the number of keywords. This count will vary for various releases as deprecated keywords will be dropped and new keywords added in future versions. In Python 3.7 and later versions, exec is a function in builtins module with signature

exec(source, globals = None, locals = None)

where source is either a string representing one or more Python statements or a code object as returned by compile() command, globals is a dictionary and locals is a mapping that default to current globals and locals.

1.11 Constants

As the name implies, constants are values that cannot change. Scientific programmers make use of various constants like pi, E, etc. Most of the commonly used constants are already available in various modules. As an example:

import math

PI = math.pi # 3.141592653589793

E = math.e
2.718281828459045

stores the respective constants in program variables on the Left Hand Side (LHS). Both of them are stored as double precision (16 decimal places).

1.12 Identifiers

Every programming language has its own variable naming rules. These variable names can be programmer-defined or system-defined. An identifier is a token comprised of letters (lower and upper case), digits and special characters (like underscore) where the leftmost character is either an underscore or a letter. A Python identifier can symbolically be denoted as

identifier := {|letter}1
{|digit|letter}0+

(1.1)

which means that an identifier always start either with an underscore or alphabet and can be followed by underscores, digits or letters. Most programming languages have a limit on the number of characters appearing in an identifier. These include program variables, function names, object names, structures, collections and so on. Special identifiers reserved by the language are known as keywords. They are not supposed to be used as programmer-defined identifiers (although some languages do permit their use). Identifiers do not always have memory locations (e.g., classes as opposed to objects). This section discusses only program variables. They are so called because they may store different values during the program execution. An example is a variable used for looping. They are identified by a unique name without spaces. Variable names can contain characters a-z, A-Z, 0-9 and underscore. They must start with an alphabet or underscore character. Even the underscore character by itself is a valid variable. Thus = “Hello”,

=“world” are valid assignment statements. By convention, all identifier names including functions start with a lower-case letter, and Class names start with a capital letter. All identifiers have memory locations. Two or more variables can share the same location as discussed below. Hence reserved words given above cannot be used as identifier names as such. But you can always prepend the reserved words by an underscore character (break, and, etc.) and use it as variable names.

An identifier name starting with a single underscore character indicates a private variable for internal use by a module or class which will generally be accessible by calling code. An identifier name starting with two underscore characters indicate that a value is actually private and is not accessible. Identifier names that start and end with double underscores are reserved for magic variables described in later chapters. It is a good practice not to start identifier names with underscores. The underscore character also has a special meaning in the interpreter prompt where it denotes the last value computed. For example, if you type:

>>> x = 0

>>> x + 2

>>> _ + 5

You will get 7 because the underscore gets replaced by the last value computed. This works not only for numbers, but for other types as well. Thus

>>>
“Hello”

>>>
 + “ Python”

will print “Hello Python” This works only in the immediate mode of the interpreter. Suppose you give >>>
x=“Hello” >>>
 +“ Python”

you will get an error that underscore is undefined. But if you give

>>>
 x=“Hello”

>>>
 x

>>>
 + “ Python”

[image:]

it will work as expected. As Python is case sensitive, py, PY, pY and Py are all different variables. Thus all of them can be used as different identifiers within a program.

1.13 Input Command

An input command is used to get values from the keyboard to program variables.

print(‘Please enter a string’)

x = input()

A user should press the <
Enter>
 key to indicate that the input is over. If the user presses CTRL+d, Python throws an EOFError as:

Traceback (most recent call last):

File "<pyshell#0>", line 1, in < module > x=input()

EOFError: EOF when reading a line

A KeyboardInterrupt is thrown instead when the user presses CTRL+c. The input command accepts a string (called prompt string) as the only parameter. It is displayed as a prompt to the standard output without a trailing newline before reading input from keyboard buffer. The newline character \n
 can be embedded in the prompt string any number of times to display prompt string on multiple lines. Thus a string argument effectively combines a prompt string with the process of inputting.

x = input(‘Enter a value ’)

1.13.1 Inputting Strings

In Python 3.7 and higher versions, the input command reads everything from standard input up to EOL. Thus

print(‘Please enter a string’)

x = input()

print(‘x=’,x, ‘type x=’,type(x))

will read the value typed by the user on the keyboard and store it in variable x as a string. This can be verified using a print function, which prints both x and its type. If the user inputs 12 on the keyboard, this prints

x= 12 type x= <class ‘str’>

The <
class ‘str’>
 means that Python has stored the result as a string type. If the user typed

12 34 56, it prints x= ‘12 34 56’ type x= <class ‘str’>

1.13.2 Inputting Numbers

If you wish to capture a number from the keyboard, you may write the above as:

print(‘Please enter a number’)

x = int(input())

print(‘x=’,x, ‘type x=’,type(x))

which now prints

x= 12 type x= <class int’>

Technically, the int() function converts the keyboard input to a number. It throws ValueError when the number entered is not a a digit in 0 to 9. The int() can be replaced by float() or double() to convert input appropriately. Another way to enter numeric data is using the eval function.

>>> x = eval(input(‘Please enter a number: ’))

Please enter a number: 123

>>> x, type(x)

(123, <class ‘int’>)

>>> x = eval(input(‘Please enter a number: ’))

Please enter a number: 3.14

>>> x, type(x)

(3.14, <class ‘float’>)

The eval() function is smart enough to automatically detect the type of the data entered by the user and assign it to a variable of proper type on the LHS.

1.14 Coding Standards

Coding standards may not be so important for beginners as their primary aim is to master a new programming language and start coding to produce some result. It is not taught rigorously in most educational institutions, as experienced programmers can easily adapt to any coding standard. It is an industry practice to code variables and functions with descriptive names wherever possible. This not only improves readability and reliability, but also is useful in long-term program maintenance. There are several standards in common use for forming identifier names. The most popular among them are camelCase, snake case, KINGCASE, and kindercase.

1.14.1 Camel-case

Camel case identifiers are formed by making the first character of a multi-word name except the very first character
 as capital-case. Examples are studentRollNumber, dateOfBirth, employeeName etc. Some companies insist on this format even for loop variables. For instance, if employee details are to be printed in a loop, the for-loop variable can be called aRecord, or anEmployeeRec instead of the usual i or j as variable names.

1.14.2 Snake-case

Snake-case identifiers are formed by joining multiple words together using an underscore character. Examples are student_roll_number, date_of_birth, employee_name etc. Database derived field names are usually coded in snake-case to distinguish them from other program identifiers.

Note that other allowed special characters in the language can also be used in place of underscore.

1.14.3 King-case

When several identifier names are alike, one may have to distinguish one among them from others (like a King among people). Similarly, situations arise where one word in an identifier may have to be highlighted, or several versions of the software exist like development version (say alpha version), testing version (beta version), pre-production version, production version, etc. Sometimes the words used in an identifier may be an abbreviation or several nouns which are best written in uppercase as in DOSvsUNIX (which gives DOS commands and corresponding UNIX commands). The king case uses one of the above forms with highpoint word in capital-case or everything in upper-case. Examples are HOURSWORKED, DOB, PREPROD_VERSION, PYTHONSTARTUP, PYTHONOPTIMIZE, DEBUG = True, etc.

1.14.4 Kinder-case

All Python function names are in lowercase
[18]
. For example, the string functions isalnum, isupper (is it i-supper or is-upper), startswith, endswith etc., dictionary functions like popitem(), getitems() etc. would have been more meaningful with camelCase as isAlnum(), isUpper() and so on. When multiple keywords are combined and all are kept in lowercase, it is called Kinder-case (like kinder among people).

1.15 Statements

There are two types of statements called executable statements and non-executable statements. Examples of non-executable statements include comment lines (starting with #), whitespace lines (entire line contains whitespace characters), etc. Statements with just strings (triple quote strings) are certainly executable as they have namespace entries. All programs should have at least one executable statement to be meaningful. String literals and comments in a Python program use an encoding known as UTF-8 (an ASCII superset) by default, but could use a different encoding using an encoding declaration (# -*- coding: <
encoding-name>
 -*-) at the beginning of the source file.

Python evaluates program statements from top to bottom (eg: within the main function). Exception are in if-statements where one or more conditions decide how the statements are executed (see chapter 4) and loop exit statements like break where execution jumps to the statement immediately following the enclosing loop.

1.15.1 Assignment Statements

Assignment statements are executable code in programming languages. An assignment operator (which is usually = but can also be one of the extended shorthand versions) separates the left and right side of a statement. They evaluate an expression or a variable on the RHS and assigns the value to the variable on the LHS. Thus the LHS must either be a variable name or a pointer to a memory location. This is called the “l-value”, which is evaluated at execution time to get a unique memory address.

Python extends this concept further, allowing us to use multiple l-values on the LHS so long as there are corresponding “r-values” (matching memory addresses) on the RHS. The RHS may contain arithmetic or logical expressions, constants, enumerations, function calls (that return non-null values), classes etc. In other words, Python assignment statements can have one or more comma separated variables on the LHS and constants or expressions on the RHS. Statements are often given line by line.

Python statements can be grouped using an indentation level from the left margin. This is further discussed in the chapters on conditions and loops. Python has several special statements like pass, lambda, break, exec, del, yield etc. The pass statement is a “do nothing” operation. The exec statement is used to immediately execute a statement in a string variable (or given as a string). Other statements are discussed in subsequent chapters.

Python programs are written as one or more statements. Each statement can either appear on a line by itself or multiple statements can be combined on a single line separated by semicolon as prev 1; curr=1

If semicolon is used to separate statements, the last statement need not have an ending ; (but it will do no harm even if you put a ; at end). This works even in the Python prompt (>>>
). A disadvantage is that one cannot put inline comments on such statements (like the /* */ comments in some other languages).

All nontrivial statements in programming languages are made of variables and constants, with variables appearing on the LHS of an assignment statement. There are some exceptions to this in Python. First, a Python variable can be formed using the _ character any number of times (without spaces) as shown below (because ‘_’ character or its combinations are special variables). Secondly, a Python expression can have special symbols on the RHS like x ={} or y=[] because curly brackets denote Python dictionary and square brackets denote lists. Thus x becomes an empty dictionary and y becomes an empty list. Other special symbols are () for tuple, ‘’ or "" for empty strings, etc.

1.15.2 Walrus Assignment Operator

Python 3.8 has introduced the assignment operator (:=) that can be used in expressions or function invocations (when a named parameter is to be assigned an expression) for dynamic value assignment (without the need to set initial values to variables). The values to be assigned can be constants, literals or expressions. This operator cannot be used in lieu
 of the usual assignment operator (=). An expression and a statement are two distinct concepts in Python. A statement is usually ended by a line-break or a semicolon, and returns None (see chapter 8, pp. 8-8). As examples, break
 and continue
 are flow-control statements, import
 is a module visibility statement, and there exists many types of assignment statements in which the LHS is an l-value and RHS is an expression (arithmetic, Boolean or function calls). An expression is a sub-part of a statement. It often appears on conditions (used in if
 and while
 statements), in comprehensions (list, dictionary, tuple etc.) and on with
 commands.

Walrus assignment operator can appear multiple times on an expression, provided that subsequent operations are enclosed in parentheses.

Note that walrus assignment operator has lower priority than relational operator (see next section). Thus the following statement stores either True or False in the variable D

a,b,c = 2 ,3, 7

if(D := b*b - 4 *a*c <0):

print(‘D=’, D)

because b
∗b
−4∗a
∗c <
 0 is evaluated first. This prints True because D is evaluated as 9-56=-47, which is then compared with zero resulting in the Boolean assignment. Enclosing the walrus assignment in parenthesis

if((D := b*b - 4*a*c)<0): print(‘D=’, D)

corrects this mistake. The type of the variable D is determined by the type of the evaluated expression. It will be visible in local scope throughout. Thus D can be used in subsequent elif and else blocks.

import math as m

if(D := b*b - 4*a*c)<0:

print(‘Discriminant is negative’, D)

elif D==0:

print(‘Equal roots: D=’, D, ‘root=’,-0.5*b/a)

else:

r1,r2 = 0.5*((T := m.sqrt(D))-b)/a, 0.5*(-b-T) /a

print(‘root1=’,r1,‘ root2=’,r2)

Note that the extra parenthesis around the walrus expression is essential on the RHS because the variable T is used again to find second root. This operator is also useful in interactive programming where a user typed input is captured into program variables.

if input()==‘quit’: # Python 3.7

print(‘exiting’); exit(-1)

if (prompt:=input())==‘quit’: # Python 3.8

print(‘exiting’); exit(-1)

while (pwd := input("Enter the password: ")) != "xxx":

continue

This while loop will keep on looping until a user enters the correct password (which is assumed to be xxx here). The advantage here is that the variable pwd can be used in subsequent statements. Assignment expressions at the top level of an expression statement, and at subsequent nested levels if any, must appear in parentheses. As their primary purpose is to set values dynamically, multiple assignments (multiple comma separated values on RHS) is not permitted unless those values appear in parenthesis as shown below:

if (x := (1 , 2,3)):

where x is assigned a tuple. Although useful in reducing code size, the walrus operator must be confined to those cases that improve code readability.

1.15.3 Priority of Operators

A question that beginners who have never programmed before might ask is “Why does priority matter?”. To illustrate the importance of priority, consider a simple problem of finding the monthly repayments on a loan for amount A at monthly interest rate r which is given by the formula

P = A r
/
(1 − 1
/
(1 + r)
12
 n
)

 (1.2)

where n is the number of years. In what order will a computer evaluate this expression when all variables on the RHS have proper values? Operator priority and precedence should be known to understand this. All programming languages use a concept called “priority of operators”.

All operators in programming languages do not have the same priority. When an expression contains multiple operators, they must be evaluated in some specific order. The general rule is as follows:

(i) If there are nested parentheses, the innermost bracket is evaluated first (ii) If an expression contains operators of different priority, then operators are evaluated from highest priority to lowest priority order (iii) If a sub-expression to be evaluated contain operators of the same priority, they are evaluated from either left-to-right order or right-to-left order depending on the operator (iv) Evaluated sub-expressions are substituted back and the resulting expression is again evaluated using above rules. Let

p =2

q =3

r =5

x = p + q * r

As * (multiplication) has high priority over + (addition), q*r=3*5=15 is evaluated first, resulting in x = p + 15. Then the + operator is carried out giving x = 2+15 = 17. If p+q must be multiplied by r, the + operator should be evaluated first using simple parentheses as x = (p + q) * r. This is evaluated as x = 5 * r = 5*5 = 25. Operator precedence refers to the order in which the same operator is evaluated when it occurs multiple times side-by-side (in contiguous positions) in an expression. A binary operator is left-associative if a sub-expression in the middle belongs to (is bound to) the operator on the left. Otherwise it is right-associative. Consider the statement x = 26 % 7 % 3 in a program. As % is evaluated from left to right, a computer will evaluate this as x = (26 % 7) % 3 which becomes x = 5 % 3 = 2. Beginning programmers who are unaware of the operator precedence and those who do not have the precedence table readily available can instead use simple brackets to make the intent explicit (see table 1.4). Adding extra parentheses in an expression makes the code more readable, and is sometimes helpful for debugging. Thus the monthly loan payment problem described above can be converted into a program statement as

P = A * r / (1 - 1 / (1 + r) ** (12*n))

where extra brackets are used to disambiguate the priority.

A = 5000

r = 0.066

n = 12

P = A * r/(1-1/(1+r)**(12*n))

print("Monthly payment for %5d at %.3f interest\

rate for %2d years is %f\n" %(A, r, n, P))

Output:

Monthly payment for 5000 at 0.066 interest rate for 12 years is 330.033229

As another simple example, the roots of a quadratic equation are given by r=(−b
± √

(b
2
− 4ac
))/
2a
. This can be converted into two program statements as

r1 = (-b + math.sqrt(b*b-4.0*a*c))/(2.0*a)

r2 = (-b - math.sqrt(b*b-4.0*a*c))/(2.0*a)

where math.sqrt() denotes the square root function defined in math module, and is discussed in-depth in chapter 4. Most of the operators with same priority are evaluated from left to right order. An exception is the exponentiation operator which is evaluated from right to left. Consider p=4, q=3, r=2. Then p**q**r is evaluated as 4**9=49
=262144, because it works from right to left.

Table 1.4: Priority of Python Operators

	
Operator

	
Name

	
Rank

	
(), [] , (,)

	
Parentheses, Lists, Tuples

	
1

	
**

	
Exponentiation

	
2

	
	
Bitwise NOT

	
3

	
+

	
Unary Plus, Unary Minus

	
3

	
*, /, //, %

	
Multiply, Divide, Modulo

	
4

	
+

	
Addition and Subtraction

	
5

	
&

	
Bitwise AND

	
6

	
∧

	
Bitwise XOR

	
7

	
|

	
Bitwise OR

	
8

	

<,<
=,>,>
=

	
Comparison operators

	
9

	
==, !=

	
Equality operators

	
9

	
in, not in

	
Identity Operators

	
9

	
is, is not

	
Membership Operators

	
9

	
not

	
Boolean NOT

	
10

	
and

	
Boolean AND

	
11

	
or

	
Boolean OR

	
12

	
=,+=,=,/=,*=,**=

	
Assignment Operators

	
13

>>> 4**3**2

262144

>>> 4**(3**2)

262144

>>> (4**3)**2

4096

In Python 2.7, the division operator / can return the integer result. For example, x=2/3 stores zero in x, whereas x=2.0/3 and x=2/3.0 both stores 0.6666666667 in x. Consider the following program.

C = 27

F = 9/5 * C + 32

print (‘%d Celsius is %f Fahrenheit.’ % (C, F))

This will print ‘27 Celsius is 59 Fahrenheit’, which is wrong in Python 2.7 because 9/5 is evaluated as 1 and not as 1.8 as is to be expected. This can be corrected by putting a decimal point either in the numerator as ‘9./5’ or in the denominator as ‘9/5.’ to get the correct result of 80.6 in Python 2.7. But later versions of Python will automatically convert 9/5 into a decimal number and give you the correct result. Alternately one could use F = 1.8 * C + 32. The % formatting character is used in the above program code. This is explained in subsequent chapters.

1.15.4 Multiple Assignments

Multiple assignments are those in which more than one variable appear on the LHS of a statement. Thus x,y = y,x stores the value of y in x and that of x in y simultaneously. This is a normal swap when the type of both variables is the same (say both are integers or floats). If types are not the same, Python will swap the types and the values simultaneously. This happens even in multiple assignment statements:–

x=1; y=2; z=3

x,y = y,z = z,x

print (x,y,z)

prints 3,1,1 because the values of z and x are simultaneously assigned to y and z in the rightmost assignment operation to give y=3, z=1. These values are then simultaneously assigned to x,y to get the above result.

Table 1.5: Escape Sequences

	
Sequence

	
Meaning

	
Where used

	
\a

	
Beep

	
Output statements, Prompts

	
\b

	
Backspace char

	
Print statement

	
\r

	
Carriage return

	
Output statements

	
\n

	
Line feed

	
Output statements

	
\t

	
Horizontal tab

	
Output statements

	
\f

	
Form feed

	
Printed Output statements

	
\v

	
Vertical Tab

	
Screen Output statements

	
\

	
Backslash

	
Line continuation character

	
\’

	
Single quote

	
Quote within quote

	
\”

	
Double quote

	
Quote within “ quote”

	
\u xxxx

	
16-bit Unicode

	
Output statements

	
\U xxxxyyyy

	
32-bit Unicode

	
Output statements

1.16 Escape Sequences

These are special characters that have a special meaning in programming languages. The most commonly encountered among them and their meaning are shown in table 1.5. If str1 = ‘c:\novels’, then print(str1) will take the \n as a new line character and print it on two lines as

c:

ovels

Raw strings are indicated with a preceding ‘r’ and binary strings by a ‘b’. Thus str1 = r‘c:\novels’ when printed will correctly print it as expected because \n is no longer interpreted as new line character.

1.17 Writing Simple Programs

The prime difficulty that programming students have is to form a sequence of statements that will solve a problem. Consider the problem of converting between scales like Celsius to Fahrenheit, kms to Miles etc. Assuming that the input comes from the keyboard, a program should first accept the quantity to be converted, apply a mathematical formula, produce an output and display it to the user in proper format with new unit. Consider the simple problem of converting kilometres to miles. The sequence of statements is very clear. Ask the user to enter the kilometres, store it in a float type variable, apply the mathematics and output the result.

km = float(input(‘Enter Kms:’))

miles = 0.62137 * km

print(‘{0} kms is {1} miles’.format(km, miles))

Save this file as first.py and type the command python first.py at the OS prompt. If Python is properly installed and the PATH is properly set, you will see a screen asking you to enter kilometers. If you enter 1.62 as input, you see the output as

1.62 kms is 1.0066194 miles

Placeholders 0, 1 etc. are used in the above code. Here 0 refers to the first argument supplied in the format function and 1 is the second argument. These are called positional placeholders. Named placeholders could also be given as follows:

print(‘{x} kms is {y:6} miles’.format(x=km, y=miles))

When neither a number nor a name appears inside the curly bracket, the arguments supplied on format() are substituted from left to right.

print(‘{} kms is {:6} miles’.format(km, miles))

Next consider the problem of checking whether[image:]
+ 3)] converges. An ideal sequence of statements that solve this problem might be using loops. As looping constructs are not introduced yet, the problem is solved by accumulating the sum for k=0,1,2,3, etc.

C = 1 / 6

k = 1

T1 = 1/((k+1)*(k+2)*(2*k+3))

k = k+1

T2 = 1/((k+1)*(k+2)*(2*k+3))

k = k+1

T3 = 1/((k+1)*(k+2)*(2*k+3))

k = k+1

T4 = 1/((k+1)*(k+2)*(2*k+3))

pi = 3 + C - T1 + T2 - T3 + T4

print(pi)

Save the above file as apr2pi.py and enter python apr2pi.py at OS prompt to see the output as 3.139. This problem is solved using for-loops in chapter 5.

1.17.1 Python Bytecode File

Python compiles (transforms) error-free source files into a bytecode representation, which is a platform-neutral intermediate format that is executed by PVM. Bytecode files are not pure text files, but have a special format (You cannot view it in an editor because it contains special characters). This is done to speed-up the execution of programs (intermediate form is closer to target machine language). These files are generally larger in size than the corresponding source files because it contains extra information to the runtime system (all comments in source files are discarded and not kept in .pyc files, so that if your source program has too many comments, the corresponding .pyc file could be smaller). Bytecode files contain byte instructions to be executed, string literals, source file name, module name and other information. The bytecode files with an extension of .pyc
[19]
 are executable (just like the normal Python programs with an extension of .py) using the command

python first.pyc

where first.pyc is the name of the compiled file. This runs much faster than when the original source code is run using “python first.py”. However, they are not in general backward compatible. As an example, a .pyc file generated using Python 3.8 cannot be executed using a Python 2.7 compiler
[20]
.

Python programs are run behind the scenes in four successive steps:– lexical analysis, parsing, compiling, and interpreting. Lexical analysis step simply breaks the source code into tokens and pass them to the parser, which generates an in-memory abstract ‘syntax tree’ structure using type of statement and language specific features like priority of operators, parentheses etc. All lexical errors in your program will be caught at this stage. Parsing is the slowest among the four steps in the compilation process. A bytecode representation reduces execution overhead because the parsing step is skipped if the date stamp of source code is earlier than that of the bytecode. The output of parser is fed to the compiler that generates one or more code objects (.pyc files). The interpretation is the last step in which the compiled bytecode is read-in, in-memory optimized to create another intermediate representation which is then executed.

1.17.2 Creating Bytecode Files

The easiest way to create a pyc file is to go to Python prompt (>>>
) and then import the source file (with an extension of .py only, see below).

>>> import first.py

This creates first.pyc file in the same directory in versions 2.7 and older but in a subdirectory pycache under the Python installation directory in newer versions. Depending on the Python version being used, the file name will be modified as “first.cpython-36.pyc” (Python 3.6) and so on. You may disable creating .pyc and .pyo files on import either using -B command line option, or using the environment variable PYTHONDONTWRITEBYTECODE=x (which is in king-case). Alternately use the py compile module to manually compile any module.

>>> import py_compile as pyc

>>> pyc.compile(‘‘first.py’’)

Bytecode can be generated for all Python programs in a specified directory using the command: python -m compileall

Each time a program whose .pyc is created and available on the PATH is run, Python will skip the compilation step and simply execute the .pyc file. Python will recompile the source if it is newer than the .pyc file. This rule applies even to import commands. Imported modules that have pyc files in the current directory won’t be recompiled again. These .pyc files are saved in the same directory as the source in older versions of Python. In versions 3.2 and later, they are saved in a sub-directory named pycache under the source files directory.

[image:]

There is no harm in deleting .pyc files that clutter your directory, but it is advisable to keep them in the same directory from where the Python programs are run because you can bypass some of the compilation steps mentioned above resulting in faster execution. As the .pyc files are in general platform independent, they can be copied to other operating systems. Bytecode may be created in one environment and copied to other compatible environments. This could very well speed-up the production, testing and deployment cycles.

1.18 Summary

Python is a wonderful first programming language for beginners. This chapter introduced the basics of Python in an easy to grasp way. Even students who did not have prior programming experience will be able to pick up the language easily by reading this chapter. After discussing salient features of the language, a discussion on installation is given. Then the interpretation steps are introduced, so that readers understand how things work under-the-hood. This is followed by Python prompt, which is a very nice feature for beginners to get their hands on. The print statement briefly describes output from a Python program. Python comments, multiline comments and docstrings are discussed at length. This is especially useful to students in understanding the rest of the chapters. Identifiers and statements are discussed next, including the newly introduced walrus assignment operator. Priority of Python operators are explored next. The chapter ends with a discussion of Python bytecode and how to create them. Readers will be able to write simple program statements that produce output after finishing this chapter.

2

[image:]

Data Types in Python

	
Chapter objectives

•

Introduce basic data types in Python

•

Distinguish strongly-type and weakly-typed languages

•

Discuss type-casting

•

Describe mutable and immutable types

•

Look into scope of variables

•

Discuss Date and Time data types

•

Introduce modules and aliases

2.1 Fundamental Data Types

Every programming language has some fundamental data types (also called scalar data types). These types determine what kind of data are stored in each program variable. There are different kinds of data like integers, floating point numbers, complex numbers, strings and Boolean type, in addition to user-defined types. Each variable type need to be explicitly declared to store specific kind of data in some high-level languages like C, C++, Java, etc. This makes data manipulation unambiguous and efficient. In addition, some languages have data type modifiers like “unsigned” that make memory allocation to different data types optimal. Those programming languages in which data types are fixed at compile time are called statically (or static) typed languages, and others are called dynamically typed languages. Python is a dynamically typed language as explained later.

2.1.1 Strongly typed vs Weakly typed

Programming languages are either strongly typed
 or weakly typed
 (also called loosely typed)
[21]
(table 2.1). Strongly typed languages strictly enforce types (once it is declared or modified to be of a specific type). This means that some operations are restricted among different types. In Java and C++, you cannot add or multiply a number and a string, but in Python you could multiply an integer and a string because the * operator is overloaded to mean “replication” or “repetition” so that 3*“Hi” produces “HiHiHi”, while 3+“Hi” flags as an error:

TypeError: unsupported operand type(s) for +:‘int’ and ‘str’.

Weakly typed languages ignore the type during program execution. VBScript is an example of weakly typed language as you can concatenate (join together) strings with integers, then treat the result as an integer. Both these features have advantages and disadvantages. Python is a dynamic-typed language. This means that a variable type need not be declared as in C or Java. The type could change during program execution. For instance, the following 2 lines are valid statements in C, C++ or Java:

int x = 0 ;

float pi = 3.14 ;

that declares and sets variables. Here int and float before the variable names declare their types. This can be coded in Python simply as:

x = 0

pi = 3.14

where the data type (int, float etc) and the ending semicolon are not needed. Python also permits multiple statements to appear on a single line by placing a semicolon in-between them

x = 0; pi = 3.14

as shown above. Python will automatically guess the data type using initial values or expressions on the RHS. As x has initial value zero, it becomes int type and pi becomes float type. In other words, initial values implicitly determine a variable’s data type in Python
. Types are not enforced in Python unless the operator is overloaded (either by the system or by the user).

x = 2; msg = ‘Hi’

print(x*msg) # replication ‘HiHi’

x = -3

print(x*msg) # replication ignored, returns null string

x = 0b10 # binary for 2

print(x*msg) # replication ‘HiHi’

The multiplier constant can be given in binary, decimal or hexadecimal. Replication is applied only if the value is positive (otherwise it returns null string) as shown above.

Table 2.1: Language Type Categories

	
Language

	
Category

	
Comment

	
C, C++, Java, CLU, ADA,

	
Strongly

	
compiler fixes type at

	
PASCAL

	
typed

	
compile time

	
Python, PHP, Ruby, Perl,

	
Weakly

	
types can be changed at

	
Smalltalk, Javascript

	
typed

	
run time many times

	
Visual Basic (VB)

	
Hybrid

	
“Variant” data type can store any type of data

	
Assembly, FORTH

	
Untyped

	
machine level

C language is considered to be strongly typed, but using pointers and typecasting, it can subvert the strong typing as in File *fp = (FILE *) malloc(); Similarly Javascript can be considered as weakly typed or untyped.

Table 2.2: The Integer Family

	
Type

	
Prefix

	
Contents

	
Example

	
bininteger

	
0b,0B,0

	
0,1

	
x = 0b100 or x = 0100

	
decimalinteger

	
	
0..9

	
x = 123

	
octinteger

	
0o, 0O

	
0..7

	
x = 0o123 or x = 0O123

	
hexinteger

	
0x, 0X

	
0..9,a..f,A..F

	
x = 0 x1FB

No space after prefix or before suffix. First digit must be nonzero for decimal integer. Python 2.x has a

longinteger that uses L or l as suffix, but this is not available in Python 3 .x

2.2 Standard Data Types

Python has a set of standard or built-in data types. The prominent among them are BOOLEAN, FLOAT, INTEGER, and NUMBERS. These are capital-case so that programmers coming to Python from other languages will not inadvertently declare data types of variables. INTEGER family has members like longinteger, integer, bininteger, octinteger, hexinteger and so on. These are distinguished using a leading symbol (prefix character) or a trailing symbol (suffix character). For instance, long integers (Python 2.x) should have a suffix of ‘l’ (lowercase L) or ‘L’ as in x = 9875L (this type is no longer there in Python 3.x as it is merged with int type). Octal integers should have a prefix ‘0’ (Python 2.x) or ‘0o’ or ‘0O’ (Python 3.x). Table 2.2 describes these types. Whereas x = 0123; will store the decimal number 123 in x in C, C++, Java and other languages, it stores octal 123 value (which is decimal 83) in Python. Hence you cannot place a leading zero character arbitrarily in Python assignment statements. Consider y = 123+0123. This stores 206 in y because the second term evaluates to 83.

>>> y = 123 + 0123

>>> y

206

Python ignores multiple leading zeros appearing in an integer constant, and still it is considered as octal value.

>>> y = 123 + 0000000123

>>> y

206

Python has many types of numeric literals – plain integer, floating point decimal number, and complex number (with a nonzero imaginary part). In addition, it has several special types. Examples are sequences, sets and mappings. A type called “None” (which is the equivalent of null in C++, Java because Python does not have null
 keyword) denotes the absence of a value and has truth value False. It can be used in assignments, named parameters of functions, and as return value of functions. Another called “Ellipsis” is used to indicate the presence of the “...” syntax in a slice (of a list or string). It has truth value True.

As everything in Python is first-class object, one may have to test their truth-value (eg. in “if”, “elif” or “while” conditions, assert statements, etc.). Python considers “None”, “False”, zero of any numeric type like “0”, “0L”, “0.0”, “0j”; any empty sequence like “ ” ”, “‘()”, “[]”; empty mappings “”; and instances of user-defined classes as False.

In Python 2.7, an L at the end of an integer denotes that it is a large integer. This has been dropped in Python 3.x where you get “SyntaxError: invalid syntax”.

>>> 12345678911 # regular integer

12345678911

>>> 12345678912 # large integer (Python 2 .x)

12345678912 L

>>> 9999999999 # 10 nines is large integer (Python 2 .x)

9999999999 L

>>> 999999999 # 9 nines is regular integer

999999999

>>> 123L # explicitly store this as long (Python 2 .x)

123 L

Python has no limit on storing arbitrarily long integers. Note that spaces and commas are not allowed in numbers, after a prefix or before a suffix. If commas appear in a number, Python will store it as a tuple. Python 3.6 has introduced the underscore character as a separator (in lieu of commas). This can be used in any type of numbers including binary, decimal etc. Python promotes plain integers to long type when needed. As 2147483647 (231
−1) is the largest integer in 32-bit arithmetic, values larger than this are promoted to long type automatically. Similar reasoning holds for negative integers. Thus numbers less than -2147483648 are automatically promoted to be of negative large type. Python 3.x renamed long type of Python 2.x to int, so you may work with very large integers.

>>> -2147483648 # regular integer in Python 2 .x

-2147483648

>>> -2147483649 # large integer in Python 2 .x

-2147483649 L

>>> x = 2_147_483_649 #in Python 3.6 _ is thousands separator

>>> x

2147483649

2.2.1 Bool Type

[image:]

This type is used to store True and False values (which are stored as 1 and 0 inside the computer). The default is False so that bool() returns a False. This type can be converted to int using int() function call that returns 0 for False and 1 for True. Note that True and False are Python builtin constants (which are true and false in C++, Java, PHP)
[22]
. There is also a bool() function that takes 0 or 1 as argument and creates True = bool(1) or False = bool(0). All non-empty Python values evaluate to True in general. Thus bool(None), bool([]) , bool({}), are all False where None type denotes a null object. Similarly, bool(-5) = bool(100) = True. In particular empty strings, tuple, sets, lists and dictionaries are all False (because there are no elements in them) and non-empty values are True. Boolean Types are used in if statements, while loops etc.

2.3 Constant Literals

Constants are those values that do not change. Numeric constants can be specified in various bases. Thus there are binary, octal, hexadecimal constants. Python also has several predefined constants.

2.3.1 Binary Literals

Binary constants are specified using a 0b or 0B prefix. The ‘0’ prefix here is important. If you give x = b1101, Python assumes that b1101 is an identifier name. If such an identifier is not already defined, Python will flag this as a “NameError: name ‘b1101’ is not defined”. If you add the prefix 0 and give it as x = 0b1101, Python will store decimal 13 in x.

>>> bin(13)

‘0b1101’

>>> x = 0b1101 # binary number (decimal 13)

>>> int(x)

13

>>> x = b"1101" # bytearray (<class ‘bytes’>)

>>> x

b‘1101’

>>> int(x, 2) # bytearray to decimal

13

>>> x = ‘1101’ # binary number as a string (<class ‘str’>)

b = int(x, 2)

13

Either a lowercase (b) or uppercase (B) can be used in the above example. The int (bytstr, base = 2) is used to convert a bytearray string binstr to corresponding integer, and int(binstr) used to convert a binary string.

2.3.2 Octal Literals

Octal Literals are explicitly specified using an 0o or 0O prefix (zero followed by upper or lowercase O). The allowed digits are 0 to 7 only. Values outside this range throws “SyntaxError: invalid token”. They can be positive or negative (put - sign before the 0). They can also be created using the oct() function that takes exactly one argument.

>>> x = 0 o 17

>>> x

15

>>> int(‘17’,8)

15

>>> oct(15)

‘017’

2.3.3 Hexadecimal Literals

Hexadecimal constants are explicitly specified using a 0x or 0X prefix. This is followed by any number of hexadecimal digits (0-9, a-f or A-F). Thus u = 0xA and u = 0xa both stores decimal 10 in variable u. An underscore character () can be used in very large hexadecimal constants to separate them into convenient groupings (say groups of 3 each). A minus sign can appear before the literal to denote negative hexadecimal numbers.

>>> c = 0xA # same as c = 0xa or 0Xa or 0 XA

>>> hex(0b1101)

‘0xd’

>>> hex(13)

‘0xd’

Table 2.3: Mutable vs Immutable Types in Python

	
Mutable

	
array, bytearray, list, dictionaries, set

	
Immutable

	
Complex, Float, bool, int, frozenset, string, tuple

frozenset is a read-only set that is also immutable

Decimal numbers can be converted into hexadecimal literals using the built-in hex() function. Thus hex(0) returns ‘0x0’ and hex(-155) returns ‘-0x9b’. The argument of hex() can be decimals, octals or in binary form. This function takes just one argument. If hex() is called without argument, Python throws “TypeError: hex() takes exactly one argument (0 given)”. Blanks or commas are not allowed in the argument, but Python 3.x allows an underscore character as discussed above. As shown below, the \x notation is used by bytes type to store non-printable keyboard characters.

2.3.4 String Literals

Strings are sequences of characters in Python. These were introduced in chapter 1. Strings can be enclosed in single, double or triple quotes. They may contain any ASCII characters, as well as characters in other bases as shown below.

>>> y = ‘0b1101’ # string of binary digits

>>> type(y)

<type ‘str’>

>>> int(y, 2)

13

>>> x = ‘0xaf’ # hex string

>>> int(x, 16)

175

Raw strings (containing control characters like \n, \r, etc.) can be represented by placing an ‘r’ before the string as dirname = r‘\sales\region\north’ which is <
type ‘str’>
. There are a large number of member functions to work with strings. These are discussed in depth in the chapter on Strings.

2.4 Mutable vs Immutable Types

Python objects can be mutable or immutable (Table 2.3). The literal meaning of mutable is changeable or alterable. Mutable objects can change contents any number of times. Immutable is the opposite of mutable. Immutable objects cannot change their content once they are created. As an example, Lists have an insert command to add a new element to it. This changes the contents of the list because lists are mutable. Consider the following statements:

x = 1

y = x

x = x + 2

print (y)

The second statement copies the content of variable x to y. Then increment x by 2, but this does not affect y, so that the print (y) statement prints out 1. Next consider the following example where x is a list.

x = [1,2] # a list

y = x

x = x + [3]

print (y)

The third line above adds a new element 3 to the list x. Then print the value of y. Surprisingly, the output is [1, 2, 3]. This is because y = x stores a reference (and not the values) of x in y. Thus x and y point to the same memory location. When either of them is changed, it is reflected in the other. Beginning Python programmers must be aware of this fact. These are reviewed in table 2.3.

2.5 Bytes Type

Python 3.x introduced the bytes type which stores integers in the range 0 – 255. One byte is a memory location with 8 bits irrespective of the machine architecture (whether it is 32 bit or 64 bit or something else). A bytes type stores an immutable sequence of zero or more bytes and is conceptually similar to a string type (str) that stores a sequence of characters. In other words, instead of being a string of characters as in string type, bytes type is a string of nonnegative integers less than 256. These are quite often used internally, but also finds applications in iterating over small arrays and lists.

2.5.1 Creating Bytes Type

There are many ways to create a bytes object. An empty bytes object is created when no argument is given, or if the argument is 0 or negative.

>>> x = bytes() # empty bytes object, same as bytes(0)

>>> len(x)

0

>>> x.zfill(4) # argument is a positive integer

b‘0000’

>>> len(x)

0

>>> x.zfill(-1) # negative arguments ignored

b`’

>>> len(x)

0

>>> x = x.zfill(4) # stored in x itself

>>> len(x)

4

The zfill function is used to fill the bytes object with zeros. Argument of zfill is ignored if it is 0 or negative. Note that the filled bytes array need to be stored somewhere to use it subsequently.

A bytes object of size given by the parameter having all null bytes is created if the argument is a positive integer. Too large arguments can result in OverflowError as shown below:

>>> v = bytes(9999999999)

Traceback (most recent call last): File "<pyshell#1>", line 1, in < module >

OverflowError:

cannot fit ‘int’ into an index-sized integer.

A bytes string can be given as an argument as v = bytes(b‘11010’) or w = bytes(b‘python’). If the first argument is a string, an encoding must follow. The argument can also be an iterable of integers provided each integer is in the range 0 to 255.

The count() function is used to count the occurrences of non-overlapping pattern in the bytes array. Note that the pattern to count must be given in byte format and not as a string. An optional start and end (both integers) can be specified to search in small blocks of a large array.

+ is overloaded to combine bytes types

>>> w = w + b" programmer"

>>> w

b‘python programmer’

>>> w.count(b‘p’) # number of occurrences of ‘p’

2

start counting for ‘p’ from position 2

>>> w.count(b‘p’, 2)

1

Either uppercase B or lowercase b can be used inside the parentheses. The overloaded feature of operator + has been used to combine two bytes objects above. This operator can be applied any number of times. Similarly the * operator is also overloaded for repeating bytes, and can be repeated any number of times.

>>> x = b‘Hi’

>>> x

b‘Hi’

>>> x*3

b‘HiHiHi’

>>> 2 *x

b‘HiHi’

A related function with same syntax is find() (or rfind()) that returns the position of the first (last) occurrence of a pattern. Find returns -1 if pattern is not found whereas count returns 0. The index() and rindex() functions work similar and are used to search for patterns in bytes (from beginning or end)
[23]
. The difference between find() and index() is that index will

	
throw a ValueError when the pattern is not found but find will not throw any errors. hex() function converts bytes to hexadecimal form in Python 3 .x.

>>> w = b‘python’

>>> z = w.hex()

	
The

>>> z

‘707974686f6e’

[image:]

The general syntax is bytes([source[, encoding[, errors]]]) where source (optional) is used to set the array bytes, and the other two parameters are meaningful only if source is a string (in which case second argument decides the encoding to be used and third one the action to take when the encoding conversion fails). An iterable can also be passed as a parameter and is discussed in subsequent chapters.

The most common 8-bit encoding on the Web is UTF-8, which is backward-compatible with ASCII (pure ASCII text is valid UTF-8)a
. The encoding can also be ‘ascii’, ‘UTF-7’, ‘UTF-16’, ‘latin-1’, ‘cp437’ etc., but ‘UTF-8’ is the default. The ASCII codec may not be able to encode all unicode characters unless an error handler is specified as in x = bytearray(‘sen˜or’,‘ascii’,‘ignore’) where ‘sen˜or’ is a Spanish word (pronounced as se-nior and meaning Sir). A modified form of UTF-7 is used in the IMAP e-mail protocol, but is not popular. Whereas UTF-8 being a variable-length encoding takes 8 bits or more (1 byte to 4 bytes), UTF-16 takes 2 bytes for characters U+0000 to U+FFFF and 4 bytes for higher, and UTF-32 size being fixed will always take 4 bytes of memory. For the first 127 characters, UTF-8 takes just 1 byte of memory. Thus its size is set to 1, 2, 3 or 4 bytes wide. The UTF-16 or UTF-32 encodings are used to support non-English languages like Chinese, Vietnamese, Japanese, and Korean character space. Current version of Windows on 32-bit machines uses UTF-16 internally, whereas Linux uses UTF-8.

a
Case does not matter for encoding, so that you may give them as upper or lower case.

arr = bytes("python", ‘utf-8’) # creates a byte array

one_byte = int(‘1101’, 2) # which stores 13 in one_byte

An iterable can also be passed as a parameter and is discussed in subsequent chapters.

arr = bytes("python", ‘utf-8’) # creates a byte array

one_byte = int(‘1101’, 2) # which stores 13 in one_byte

The argument to bytes can be a list (discussed in a later chapter) enclosed in square brackets containing any number of elements, each of which is an integer.

>>> L = [25, 1024, 2560, 0,520]

>>> b = bytes(L)

>>> b

‘[25, 1024, 2560, 0, 520] ’

>>> type(b)

<type ‘str’> # in Python 2.7

<class 'bytes'> # in Python 3.6, 3.8

Above works fine in Python 2.7, and Python 3.8 but not in other versions (where you get “ValueError: bytes must be in range(0, 256)” message). Python 3.6 returns the type as <
class ‘bytes’>
. An empty bytes type is created when the list is empty.

>>> x = [255, 254, 253, 252]

>>> b = bytes(x)

>>> print(b)

b‘\xff\xfe\xfd\xfc’ # 4 distinct hexadecimal literals

>>> x = [1, 10, 100, 255]

>>> b = bytes(x)

>>> b

b‘\x01\nd\xff’ # only 3 distinct literals

Although 3 literals are printed to the console, Python stores all of them in compressed format in memory. If x = [1, 99, 100, 255], the same string b‘\x01\nd\xff’ is printed. Now if x = [50,100,150,255], you get b‘2d\x96\xff’ instead. The best way to peek into a byte string is to print it out (for d in b: print(d)) or use the debugger. Alternatively use the memoryview
 method as follows:

>>> v = memoryview(b)

>>> v[0]

255

>>> v[1]

254

2.5.2 Converting Bytes Type

Bytes are stored internally as integers. Sometimes it may have to be converted into other forms such as other bases (like binary or hexadecimal), or to strings or lists. As different editors and IDE have various filters in place to display printable and non-printable characters, Python uses the following rules for display purposes:- If the integer corresponds to a printable ASCII character, Python will use that character. If the integer is that of a control character like tab, newline, carriage return, bell, or \, the escape sequences \t, \n, \r, \b and \\ are used. All other integers are automatically displayed in hexadecimal form (\x00 is the null byte). String data can be converted into bytes using the bytes() call with an encoding specified as second parameter.

>>> x = "python"

>>> t = bytes(x,‘ascii’)

>>> t

b‘python’

>>> t2 = x.encode()

>>> t == t2

True

Similarly bytearrays can be converted into bytes

>>> a = bytearray(b‘python’)

>>> a

bytearray(b‘python’)

>>> c = bytes(a)

>>> c

‘python’

The prefix b in the above example denotes a byte string. Any of “b”, “B”, “br”, “Br”, “bR” or “BR” can be used to denote byte strings.

Integers are converted to bytes as int.to bytes(length, byteorder, *, signed=False) that returns an array of bytes representing an integer.

>>> n = 258

>>> b = n.to_bytes(3, ‘little’)

>>> b

b‘\x02\x01\x00’ # 3 bytes

Create a single byte from an integer

abyte = n.to_bytes(1, byteorder=‘big’, signed=True)

>>> n = 35

>>> abyte = n.to_bytes(1, byteorder=‘big’, signed=True)

>>> abyte

b‘#’

>>> n = 128

insufficient length

>>> abyte = n.to_bytes(1, byteorder=‘big’, signed=True)

Traceback (most recent call last):

File "<pyshell#1>", line 1, in < module >

OverflowError: int too big to convert

The first argument is the length (of output string) and second argument is the byteorder (big, little or sys.byteorder). Most significant byte is at the beginning of the byte array if ‘big’ is specified, and at the end of the byte array if ‘little’ is specified. Native byte order of the host system is assumed if ‘sys.byteorder’ is used (where sys.byteorder is given without quotes as in n.to bytes(2, byteorder=sys.byteorder), and ‘import sys’ command must precede this statement). If the first argument is 1, the maximum number that can be converted is 127. Numbers larger than this throws an OverflowError as shown above. Changing the first argument to 2 will clear this error.

An extra parenthesis is required if n is a literal constant as in b = (258).to bytes(3, ‘little’).

Bytes can be converted to integers using int.from bytes(some bytes, byteorder=‘big’, *, signed=False) that returns an int. A signed integer can be created using signed=True as third argument.

>>> x = b‘\xaf’

x must be byte-like object or an iterable

>>> i = int.from_bytes(x, byteorder=‘big’) # Python 3 .x

>>> i

175

j=int.from_bytes(b‘\x00\x0F’, byteorder=‘big’,signed=True)

15

A common mistake made by beginners is forgetting the x in the bytestring. If x has initial value x = b‘\af’, Python will replace \a
 (bell character) by its ASCII code 7 to get b‘\x07f’ and give wrong result.

2.6 Bytearray Type

Python bytearray is a standard type defined in builtins module. Whereas Python strings and bytes are immutable, bytearrays are mutable. This means that changes can be made anywhere within a bytearray using one of the techniques discussed below. In this aspect bytearray is like a list of single character strings. Strings perform poorly when we want to make lots of little changes in large chunks of memory like images, screen buffers, shared objects, etc because we may have to make a copy of the whole string. Python bytearrays can accomplish this easily and efficiently. They are most useful when we work with either Unicode or binary data
[24]
.

2.6.1 Creating Bytearrays

Bytearrays can be created in many ways. An array of size 0 is created without an argument. Thus x=bytearray() creates an empty bytearray.

>>> x = bytearray() # create an empty bytearray

>>> x.zfill(10)
argument is the repetition count

bytearray(b‘0000000000’) # note the argument prefix b

>>> len(x)

0

>>> x = x.zfill(10) # store result in x itself

>>> len(x)

10

All the other bytearray() methods return a bytearray object which is a mutable (can be modified) sequence of integers in the range 0 ≤x <
 256. As ASCII codes also assume integer values in this range, any string of extended ASCII characters can also be given as a parameter as shown below. Giving a positive integer n as an argument creates a large bytearray to hold that many bytes, which are set to null (\x00). Python will throw a “MemoryError” when a very large integer is given as argument.

>>> b = bytearray(99999999) # eight 9 ’s

>>> b

Traceback (most recent call last):

File "<pyshell#1>", line 1, in < module > b

MemoryError

>>> b = bytearray(999999999) # nine 9 ’s

Traceback (most recent call last):

File "<pyshell#1>", line 1, in < module >

b=bytearray(999999999)

MemoryError

Giving a negative integer throws “ValueError: negative count”. The system may get hung up when you try to output the variable even if the provided argument is large but within permissible limits. This is because Python has to read each and every byte in RAM and output it to the screen buffer (which is limited). Thus

>>> b = bytearray(999999) # six 9 ’s

>>> b

will result in system hanging up. This must be kept in mind when you works with very large bytearrays. Never try to print (or output) large bytearrays (or bytes) in Python prompt. If you have modified a part of a large bytearray, just output that portion of it using the slicing operator discussed below, instead of outputting the entire bytearray. You cannot use blanks or commas in the argument. Thus b=bytearray(999,999) throws “TypeError: bytearray() argument 2 must be str, not int” whereas b=bytearray(999 999) throws “SyntaxError: invalid syntax” (due to whitespace). You may use the underline character (_) as a separator (in lieu of comma separator) in numeric literals in Python 3.x. Thus b=bytearray(0b10_11) creates a size 11 and b=bytearray(9_9) creates a size 99 bytearray. Although the default base of the argument is decimal, you could use integers in other bases without any problems, so long as they are in decimal 0 to 255 range.

>>> b = bytearray(0b1011) # binary

>>> len(b)

11

>>> b = bytearray(0O056) # octal number

>>> len(b)

46

>>> b = bytearray(0x099) # hexadecimal number

>>> len(b)

153

>>> x = bytearray(b‘\x10\xef’) # hexadecimal string

>>> x

bytearray(b‘\x10\xef’)

>>> y = bytearray.fromhex(‘10 ef’) # hexadecimal codes

>>> x == y

True

The bytearray.hex(arg) returns a string representation of arg which must be a bytearray. A bytes or a buffer object can be given as argument to produce a bytearray. For instance, x= bytearray(b‘101010’) creates bytearray(b‘101010’) and y = bytearray(b‘python) creates bytearray(b‘python’).

A string enclosed in single, double or triple quotes can also be given as an argument to produce a bytearray. The general syntax is bytearray([sourcestr[, encoding[, errors]]]). If the first argument is a string, an encoding must follow it.

>>> y = bytearray("python") # encoding missing

Traceback (most recent call last):

File "<pyshell#1>", line 1, in < module > y=bytearray("python")

TypeError: string argument without an encoding

The encoding must also be a string in single or double quotes.

>>> x = bytearray("python", "utf-8")

>>> x

bytearray(b‘python’)

t = bytearray(‘‘‘ this is

 a long string

 on 3 lines’’’, ‘utf-7’)

>>> t

bytearray(b‘ this is\na long string\non 3 lines’)

Case does not matter in the encoding string. Thus ascii, ASCII, ascII, AsCiI are all acceptable.

Similarly both x = bytearray(‘python’, ‘UTF’) and x = bytearray(‘python’, ‘UtF’) are accepted without errors. The argument of bytearray can be a list containing any number of elements, each element of which is an integer in the range [0, 256).

>>> L = [25, 1, 255, 0,100] # a list

>>> d = bytearray(L)

>>> type(d)

<type ‘bytearray’>

>>> d

bytearray(b‘\x19\x01\xff\x00d’)

>>> t = (0,0,1,255) # a tuple

>>> x = bytearray(t)

>>> x

bytearray(b‘\x00\x00\x01\xff’)

An empty bytearray is created if L itself is an empty list. Note that the integers need not all be in decimal. It can be in binary, octal or hexadecimal forms.

a mix of hex, binary and decimal

>>> L = [25, 0x17, 0x25, 0b110, 100]

>>> d = bytearray(L)

>>> d

bytearray(b‘\x19\x17%\x00d’)

>>> for i in d:

...
print (i)

...

25

23

37

6

100

A for
 loop is used in the above example, which is discussed in chapter 5. Bytearrays are iterable. If you iterate over a bytearray, you get integer byte values (which are ASCII codes in the following example):–

>>> b = bytearray(b"Hello World")

>>> for c in b: print(c)

...

72

101

108

108

111

32

87

111

114

108

100

Use print(chr(c)) to get equivalent ASCII characters. If any of the numbers is greater than 255, an error is thrown as shown below:

Traceback (most recent call last):

File "<stdin>", line 1, in < module >

ValueError: byte must be in range(0, 256)

Elements of the list must be either integers or byte arrays. Otherwise a TypeError is thrown as shown below.

>>> L = [‘python’,‘programming’,‘is’,‘fun’]

>>> L

[‘python’, ‘programming’, ‘is’, ‘fun’]

>>> x = bytearray(L)

Traceback (most recent call last):

File "<pyshell#1>", line 1, in < module > x = bytearray(L)

TypeError: an integer is required

Lists in the above example can be replaced by tuples or sets containing either numbers in the range 0-255 or byte arrays.

>>> t = (12, 34, 56) # a tuple with 3 integer elements

>>> x = bytearray(t)

>>> x

bytearray(b‘\x0c"8’)

>>> t = (b‘python’) # tuple of byte string

>>> x = bytearray(t)

>>> x

bytearray(b‘python’)

t = {12,34,56} # a set

>>> type(t)

<class ‘set’>

>>> x = bytearray(t)

>>> x

bytearray(b‘8"\x0c’)

2.6.2 Modifying Bytearrays

As the bytearray is mutable, it could be modified online using a zero-based index notation. The insert() method is used to add a single item into the bytearray before the given index.

hex, binary, decimal [25,23 ,37, 6,100]

>>> L = [25, 0x17, 0x25, 0b110, 100]

>>> d = bytearray(L)

>>> d[0] = 123 # set 0-th element to 123

>>> d

bytearray(b‘{\x17%\x06d’)

>>> d.insert(1,55) # insert 55 at position 1

>>> for i in d:

...
print (i)

...

123

55

23

37

6

100

This feature is useful when data changes dynamically as in flights and train departures, queuing systems, shared documents being modified by multiple persons, and in shared memory multiprocessor applications. As it is quite flexible, one may manipulate its elements as either positive numbers in the 0-255 range, or as one-character strings (with chr()). It is also used in image processing applications where some pixel values may have to be changed without making a copy of the entire image.

2.6.3 Modifying Bytearrays using Slices

Slicing is a technique to retrieve a part of stored data. The part that is of interest is usually contiguous (in adjacent positions) and identified using starting and ending indices. Slicing operator (:) can be applied to extract a range of characters of a bytearray. For the time being, it is enough to understand that this operator expects integer values on its left and right which are the operands. If the left side operand is missing, this operator will extract everything from the beginning to the right operand (excluding last). If the right side operand is missing, this operator will extract everything from the left operand to the end. If both are present, this operator will extract elements in between those indices (excluding last) and the difference between the numbers is the slice width. If both are absent, this operator will create a duplicate copy. The indices specified on the left and right can also be negative and is discussed in later chapters. Slices can be used to change its contents as bytearray is mutable. The square bracket notation can also be used to access single bytes (which are interpreted as integer).

>>> x = bytearray(b‘0123456789’)

>>> x

bytearray(b‘0123456789’)

>>> x[2:5] # excluding 5 bytearray(b‘234’)

>>> x[3:] bytearray(b‘3456789’)

>>> x[:3] # excluding 3 bytearray(b‘012’)

>>> x[2:4] = b‘ab’ # replaces contents from index 2 to 3

>>> x

bytearray(b‘01ab456789’)

>>> x[1] = 99 # number on RHS (ASCII code of c)

>>> x

bytearray(b‘0cab456789’)

If the LHS of an assignment statement contains a slice (like x[2:3]), then the RHS may be a bytestring (only bytes, buffers, or iterables of ints in the range [0, 256)). A list, tuple or set can be used on the RHS as they are iterable.

>>> x[4:6] = [71,79] # ASCII code for G and O

>>> x

bytearray(b‘0cabGO6789’)

What happens when the list on the RHS has more elements than the slice width specified on the LHS? If the number of elements in the list falls within the variable on the LHS starting with the index to the left of the colon, then Python will continue replacing elements until all elements of the list are exhausted. To illustrate this point, suppose the list has four elements and x[4:6] = [71,79,78,69]. The intention was to replace only the slice x[4:6] with starting index 4. As 4+4 = 8 is less than 10 (length of x), Python will replace contents of locations 4 and 5 and INSERT the rest of the elements of the list elements that results in a bigger variable!.

>>> x = bytearray(b‘0123456789’)

>>> x

bytearray(b‘0123456789’)

>>> len(x)

10

>>> x[4:6] = [72,65,80,80,89] # 5 elements in list

>>> x

bytearray(b‘0123HAPPY6789’)

>>> len(x)

13

>>> x = bytearray(b‘0123456789’)

>>> x[4:9] = [72,65,80,80,89] # 5 elements each on LHS and RHS

>>> x

bytearray(b‘0123HAPPY9’)

>>> x = bytearray(b‘0123456789’)

>>> x[4:] = [72,65,80,80,89] # wrong replacement

>>> x

bytearray(b‘0123HAPPY’)

Note that the length of x has been increased to 13. Correct replacement occurs when the slice width matches with the number of elements on RHS. If right index of slice (integer after the :) is missing, Python will ignore everything after the last element of list is copied as shown above. This is a common mistake made by beginners.

>>> x = bytearray(b‘0123456789’)

>>> x

bytearray(b‘0123456789’)

>>> len(x)

10

>>> x[10]

Traceback (most recent call last):

File "<pyshell#1>", line 1, in < module > x[10]

IndexError: bytearray index out of range

>>> x[10:] = [72,65 ,80, 80,89]

>>> x

bytearray(b‘0123456789HAPPY’)

Although x[10] throws an array index out of range exception, one can successfully use x[10:] to append the list elements to x. Now the length of x has become 15. Apparently there is an error in Python 3.6 in slicing. If the starting index of a slice is given as a number well beyond its size, instead of throwing an index out of range exception, Python will simply append the RHS contents as shown below:

>>> x = bytearray(b‘0123456789’)

line below must throw an exception, but does not!

>>> x[110:] = [72,65 ,80, 80,89]

>>> x

bytearray(b‘0123456789HAPPY’)

>>> len(x)

15

Now use extend() method to add elements at end

>>> x = bytearray(b‘0123456789’)

>>> x.extend([72,65,80,80,89])

>>> x

bytearray(b‘0123456789HAPPY’)

2.6.3.1
Using the Slice() function

Python has a slice class in builtins module. It is used to create a slice object. As the name implies, a slice is a part of a larger data item that is usually in contiguous positions. The slice() function can be used to create an object that holds mapping details for a slice. It either accepts a single integer parameter which is interpreted as a stop, two parameters which are interpreted as start, stop or 3 parameters which are interpreted as start, stop and step (or stride). Out of range values are ignored as in the example below.

>>> x = bytearray(b‘0123456789’)

>>> x

bytearray(b‘0123456789’)

>>> len(x)

10

define a slice property that maps elements from 1 to 3

>>> k = slice(1,4)

>>> type(k)

<class ‘slice’>

>>> y = x[k] # extract a slice using the map in k

>>> y

bytearray(b‘123’)

>>> k = slice(4,12) # 12 is out of range

>>> k

slice(4, 12, None)

>>> x[k]

bytearray(b‘456789’)

The slice() can be programmatically set to avoid out of range exceptions. Mapping occurs from the end when the first parameter is negative, as in the following example:

>>> x = bytearray(b‘0123456789’)

>>> x

bytearray(b‘0123456789’)

>>> len(x)

10

>>> k = slice(-4,12) # -4 is 4 positions from right end

>>> k

slice(-4, 12, None)

>>> y = x[k]

>>> y

bytearray(b‘6789’)

The extend method works with lists, tuples, sets, and strings as shown below.

>>> x = bytearray(b‘0123456789’)

>>> x.extend((72,65,80,80,89)) # tuples use parentheses

>>> x = bytearray(b‘0123456789’)

>>> x.extend({72,65,80,80,89}) # sets use curly brackets

>>> x = bytearray(b‘0123456789’)

>>> x.extend(b"HAPPY") # string

If LHS contains a single index (as in x[1]), then the RHS must be an integer in the range 0 to 255. Slices of bytes type are also bytes type including slice of length 1.

>>> y = x[1]

>>> y

49

>>> type(y)

<class ‘int’>

>>> z = x[1:2]

>>> z

bytearray(b‘1’)

>>> x[3:2]

bytearray(b‘’)

>>> x[3:3]

bytearray(b‘’)

A null bytestring is returned when the left slice index is greater than or equal to the right. Other slicing techniques like extracting alternate elements are discussed in subsequent chapters.

>>> x = bytearray(b‘0123456789’)

>>> y = x[1:10:2] # extract alternate elements

>>> y

bytearray(b‘13579’)

Bit-wise operators can be applied on the elements using a loop as shown below:

>>> enckey = 37

>>> message = bytearray(b"Hello Python")

>>> s = bytearray(x ^ enckey for x in message) # encrypt it

>>> s

bytearray(b‘m@IIJ\x05u\\QMJK’)

>>> bytearray(x ^ enckey for x in s) # decrypt it bytearray(b"Hello Python")

Another useful function is pop() which by default removes the last item in the bytearray (whose size is reduced by 1 after each pop() call). An integer argument (say k) can be passed to this function to pop an item from kth
 place. If k is outside the range of index, ‘IndexError: pop index out of range’ exception is thrown. If k is negative, then kth
 element from the end (right to left) is popped. If pop is attempted on an empty bytearray it throws an exception “IndexError: pop from empty bytearray”.

x = bytearray(b‘0123456789’)

>>> len(x)

10

>>> y = x.pop() # same as x.pop(-1)

>>> len(x)

9

>>> t = x.pop(2) # third element

>>> t

50

>>> t = x.pop(-2) # two positions from right end

>>> t

55

An alternate syntax is y = bytearray.pop(x) but the above form is the preferred choice. A related function is remove() which is used to delete a named item. An integer argument (value to be removed) is passed as a parameter. If the element is not present, “ValueError: value not found in bytearray” exception is thrown. If the value occurs multiple times, the first occurrence is removed. Unfortunately, this function does not return the removed value. Hence a statement t = x.remove(53) simply removed 53 from the bytearray (if present), but t remains unassigned. The x.reverse() command is used to reverse the order of elements and is useful in encryption programs.

2.6.4 Clearing Bytearrays

Bytearrays can be cleared either using the clear() member function or setting the variable to null (b‘’) as shown below. Another way is to set the variable to None so that it is reset to None Type. But care must be exercised not to call the len() function on variables that were set to None type or reset to zero (as it will throw a TypeError). As Python is dynamically typed, zero can be stored (eg: x = 0) in that variable to clear previous contents. But the bytearray type is gone and it resets to int type.

>>> x = bytearray(b‘0123456789’)

>>> len(x)

10

>>> x = b‘’ # reset to null bytestring

>>> len(x)

0

>>> x = bytearray(b‘0123456789’)

>>> x.clear() # calls clear() method

>>> len(x)

0

>>> x = bytearray(b‘0123456789’)

>>> x = None # or x = 0 is not the preferred approach

>>> len(x)

Traceback (most recent call last):

File "<pyshell#1>", line 1, in < module > len(x)

TypeError: object of type ‘NoneType’ has no len()

2.6.5 Combining Bytearrays

The + operator is overloaded for bytearrays. Thus multiple bytearrays could be joined into one easily as shown below:

>>> one = bytearray(b"Hello ")

>>> two = bytearray(b"Python ")

>>> three = bytearray(b"Programmer")

>>> msg = one+two+three # concatenate byte arrays bytearray(b‘Hello Python Programmer’)

Not only + but the * (repetition operator) as well is overloaded for bytearrays.

>>> one = bytearray(b"Hello ")

>>> one bytearray(b‘Hello ’)

>>> two = one * 2

>>> two

bytearray(b‘Hello Hello ’)

>>> three = 3 * one

>>> three

bytearray(b‘Hello Hello Hello ’)

The append member function can be used to add new elements at the end of a bytearray, which has slight speed advantage over concatenating (+) elements one at a time. There is a significant speed improvement in using bytearrays over bytes in buffering applications. Suppose a stream of data is received over a network connection and we wish to wait for message headers and terminators to appear in the stream. The message is parsed only when it is completely received. Incoming bytes are appended to a buffer until finished. If a byte type is used with concatenation (+) operator, it will be slower by many orders of magnitude than if a bytearray is used instead. Concatenation is slow in Python and it becomes crucial in certain applications. This is the reason why bytearrays are the most preferred structure while processing high-volume of dynamic data. Thus the bytes versus bytearray divide is crucial for developers who are concerned with performance critical Python applications.

Data comes continuously in some applications like sensor data collection, socket based communications etc. A Python program can buffer the data until it is completely received before processing. Although there exist many ways to program this, a bytearray based implementation gives a neat solution. Assume that the sensor or socket keeps the data in a buffer b. We should either know the size of the data being transmitted or the sender must first send a positive integer which is the size of the data being sent. This size can be captured, stored in an integer variable called more and the following code executed:

more = number of bytes expected from sender

data = bytearray() # declare an empty buffer

while more > 0:

part = b.recv(more) # sensor puts data in b buffer

data.extend(part)
accumulate in data buffer

more -= len(part)
adjust expected data size

Here the while loop (discussed in chapter 5) is used to repeatedly execute a block of statements. The len() is a built-in function that returns the length of the argument. The while loop variable (called more
) is decremented each time new data chunks arrive. A problem with this code is that it will loop for ever if the network connection is lost or interrupted.

2.6.6 Converting Bytearrays

Bytearrays can be converted into bytes, strings, lists and so on. The int() function can be used to convert small bytearrays into integers. Leading zeros, if any, are ignored by the int() function.

>>> x = bytearray(b‘0123456789’)

>>> y = int(x)

>>> y

123456789

Bytearrays can be converted into string format in many ways.

>>> t = ‘ ’.join(str(i) for i in x) # outputs ASCII codes

‘48 49 50 51 52 53 54 55 56 57 ’

>>> d = x.decode(encoding = ‘utf-8’, errors = ‘strict’)

‘0123456789’

A comma can be used as a separator in the above command to get a comma separated string, which can be converted into lists or tuples. Strings can be converted into bytearrays using the encode() method as follows:

>>> s = "0123456789"

>>> y = s.encode(encoding = ‘utf-8’, errors = ‘strict’)

>>> y

b‘0123456789’

There is also a base64 module that can be used for encoding and decoding using Base16, Base32, and Base64 algorithms for arbitrary binary strings into ASCII-only byte strings. These file-system safe Base64 strings are used in email message transmissions, HTTP POST requests, or for use in web URLs.

>>> import base64

>>> x = bytearray(b‘0123456789’)

>>> c = base64.b64encode(x)

>>> c

b‘MDEyMzQ1Njc4OQ==’

>>> d = base64.b64decode(c)

>>> d

b‘0123456789’

Although bytes type is immutable, one can make changes to it using a round-trip through bytearray as follows:

>>> e = bytes(b‘0123456’)

>>> type (e)

<class ‘bytes’>

>>> f = bytearray(e)

>>> f

bytearray(b‘0123456’)

>>> f[3:4] = [98]

>>> e = bytes(f)

>>> e

b‘012b456’

2.7 Number Type

The Number is a built-in class in Python. It is an abstract base class for all numbers (Real, Rational, Float, Complex, etc.). The float type takes 8 bytes of storage by default. They are used in those situations where integer values are insufficient. For example, most of the measurable variables like height, weight, amounts, distances, etc. have an integer and fractional parts.

2.7.1 Integer Type

The int data type is used to store signed integer values similar to int in C/C++/Java languages. It is used in loops, array and list indexing and so on. The size depends on the machine or environment. Plain integers are in the range (-2147483648, 2147483647) in 32-bit arithmetic. Any integer value outside this is automatically converted to “longinteger” type. To know the exact range, you may execute the following statements:

import sys

sys.maxint # Python 2 .x

sys.maxsize # Python 3 .x

which gives the maximum integer value (the minimum is -maxint-1). Every data type has its own maximum and minimum values. But this is no concern for other data types because unlike other languages, float and int types can store really large data values in Python
[25]
. Usually it is in the range (−231
,231
−1) for 32-bit machines, (−263
,263
−1) for 64-bit machines, (−2127
,2127
−1) for 128-bit machines. There is also a function int() that takes a string and converts it to an int type. Such types are called callable types (because they call the constructor of corresponding class). They can be used as a type specifier or as a function. When used as a function, it calls the constructor of the type. Callable types in Python include bool, int, long, complex, float, file, set, tuple. Some of the callable type constructors are overloaded to accept different data types (argument can be enclosed in either single or double quotes). Thus int(3.14), int(‘3.14’), int(‘BC12’,16) creates valid integers where int(‘BC12’,16) is a base 16 (hexadecimal) to decimal conversion. The second argument of int() can be any number between 2 and 36 if first argument is a string. If it is 2, then int() returns the binary representation of the first argument. For example, if s = ‘111’; print(s,2) outputs the binary equivalent of decimal 111, which is 4+2+1 = 7. This is the same value returned by bin(7) function which returns 0b111 (see below). When the first argument contains characters outside the range of the base specified as second argument, Python will throw an Exception “ValueError: invalid literal”. Thus x = int(‘102’,2) and x = int(‘‘12F’’,8) will both throw ValueError because 2 is an invalid binary literal and ‘F’ is an invalid octal (base 8) literal.

Sometimes the user-entered value may have to be checked to see if it is actually an integer. This can be done either using:

if not isinstance(n, int):

statement, or by reading the input into a string and converting it to integer using the int() function as

m = int(input(‘enter a number’))

which will throw an Exception if the value is non-numeric.

Integers and expressions involving them can appear in print statements without quotation marks. For example, print(5) will print the integer 5 whereas print (2+3*4) will print 14. Python automatically identify the type of the constant or expression to be output and will use the default format to print the result. This holds even in the Python shell prompt. The type() builtin function returns ‘int’ as the type for both integer constants and expressions. The statement print(3*4+int(‘2’)) will print 14 because int(‘2’) is converted into 2 which is added to 12 to get 14. Explicit format (%d) could also be used to output integer values. This is useful in reports where we may have to print a variety of integer values with different widths.

Commas are not allowed in integer constants. Commas are used in some countries to separate thousands from the rest of the digits from right to left. For example, 2,500 denotes two thousand five hundred whereas 1,234,000 denotes one million 234 thousand. These are used only in formatted outputs and could vary from country to country because some European countries swap the roles of comma and dot (.) so that 1,234,000 is written as 1.234.000 instead. Python 3.x allows the underscore character to be used in lieu of comma in numbers.

The general syntax of int() method is int(x = 0, base = 10) where x is the argument and base if not specified is assumed as 10 (for decimal). The optional second parameter to int is the base to be used (which is usually 2,8,10 or 16) where base 0 is synonymous with base 10. Python documentation says that “the base must be ≥ 2 and ≤ 36, or 0 Decimal (base 10) is assumed”. A “ValueError” is thrown if this rule is violated. Base 10 (decimal) is assumed if this parameter is missing. First argument must be a string if an explicit base is specified as second one.

>>> x = int(15) # OK

>>> y = int("15", 10) # or y = int("15", 0); both decimal base

>>> z = int(15, 10)

TypeError: int() can’t convert non-string with explicit base

>>> z = int("15", 8) # octal 15 is decimal 13

>>> p = int("15",3) # digit 5 is illegal in base 3 ValueError: invalid literal for int() with base 3: ‘15’

>>> x = int("12",3) # x is now 5

>>> k = int(12, 1) # base 1 is illegal

Traceback (most recent call last):

File "<pyshell#0>", line 1, in < module > k = int(12, 1) # base = 0 or (2 to 36) (inclusive)

ValueError: int() base must be >= 2 and <= 36, or 0

The int() function can create an integer object using either an integer literal, string, binary, octal or hexadecimal constants.

k = int() # same as k=0

k = int(-1) # negative integer

k = int("-1") # same as k = int(-1)

k = int(0b110) # binary argument (decimal 6)

k = int(0xab) # hexadecimal argument (decimal 171)

k = int(0O45 # octal (decimal 37)

k = int("045", 16) # decimal 69

k = int(‘af’,16) # decimal 175

A decimal number is usually used to denote the base, but it could also be given as binary, octal or hexadecimal. If a valid second argument appears on int(), the first argument must be a string. Single quotes, double quotes or triple quotes can be used for string arguments.

k = int(b‘1101’, 8) # or k = int(b‘1101’,0b1000) decimal 577

k = int(‘-0xaf’, 0b10000) # decimal -175, as base = 16

k = int("-1") # same as k = int(-1)

k = int("1110", 0b100) # decimal 84

k = int(‘‘‘af’’’, 16) # triple quotes, decimal 175

k = int("110", 0x10) # decimal 272

Some applications may need to know the number of bits necessary to represent an integer in binary notation, excluding the sign and leading zeros. There is a member function bit length() that returns a positive integer for this purpose.

[image:]

>>> bin(42)

‘0b101010’

>>> print(int.bit_length(42))

6

>>> print(int.bit_length(-42))

6

2.7.1.1
Integer Conversions

Binary numbers are converted into integers using base 2 as second parameter of int().

>>> m = ‘10111’ # binary string

>>> n = int(m, 2)

>>> n

23

Numbers in other bases can easily be converted by giving appropriate base as second parameter. Thus hexadecimal strings are converted into decimal integers as follows:

>>> m = ‘ef9’

>>> n = int(m, 16)

>>> n

3833

The method int.from_bytes(bytes, byteorder, *, signed = False) returns the integer representation of given array of bytes, where bytes argument must be either bytes or bytearray.

Integers are converted to bytes as int.to_bytes(length, byteorder, *, signed = False). This returns an array of bytes representing an integer (see bytes section). The hex() function accepts a decimal integer and returns the hexadecimal equivalent. Use the oct() function to convert into octal numbers. Pairs of hexadecimal digits separated by spaces can be parsed using bytes.fromhex(hexstr) where hexstr is the string to be parsed.

s = ‘A8 2B 7C F9’

>>> bytes.fromhex(s)

b‘\xa8+|\xf9’

The chr() function can be used to convert integers to corresponding ASCII characters. For example chr(66) returns ‘B’ and chr(112) returns ‘p’. Nonprintable characters outside the range are returned in hexadecimal form. Thus chr(141) returns ‘\x8d’.

As mentioned before, positive or negative integers can be converted into binary form using the builtin bin() function.

>>> b = bin(20)

‘0b10100’

>>> int(b, 2)

20

Python 2.x has a long
 type to store large integers in 8 bytes (by default), and uses L or l as a suffix character. This is no longer supported in Python 3.x as it is merged with int class.

2.7.2 Float Type

This type is used to store decimal numbers. Python will automatically guess that the type is float if a constant contains a decimal point, or an expression evaluates to a decimal result. There is also a function float() that takes a string or number as argument and converts it to a float type. As examples, x = float(123) and y = float(‘‘123") both stores the floating point number 123.0 in respective variable. The float class has many useful member functions. Thus float.hex(123.) returns a hexadecimal representation of the argument 123. An alternate way to invoke is 123.0.hex() or simply as 123..hex() where the double dot is mandatory (if you give a single dot, you get SyntaxError: invalid syntax message). These are discussed in subsequent chapters.

There are many ways to represent floating point numbers as in other languages. The most frequently used formats are with integer and fractional parts (eg 3.14), integer followed by a dot (123.), with only fractional part (eg: .0001), in scientific notation (eg: 1e5 or 3.14e-4 where e (lowercase or uppercase) represents exponent so that 1e5 = 100000.0 and 3.14e-4 = 0.000314).

Float type uses 64 bits of memory. It can hold decimal values in the range 2.22507×10−308
 to 1.79769 ×10308
 with maximum precision of 16 digits. Unlike the int type discussed above, the float type has lower and upper limits although these ranges are far too sufficient for majority of applications.

The int function can be used to separate the integer part of a floating point number. There is also a round() function to round a float value to nearest integer. Thus int(1.73205) returns 1 whereas round(1.73205) returns 2.0 because it is closer to 2 than to 1. The round function is more general than the single argument version above. If a second parameter is specified, it rounds at the specified number of decimal digits. Thus round(1.73205, 2) returns 1.73 while round(1.73205, 4) returns 1.7321 because the 5 in fifth decimal place is rounded to a 1 in fourth place. If second argument is a negative integer, rounding takes place in the decimal part with the count starting from rightmost (least significant) to leftmost direction. If x = 9874.123 , round(x,-1) returns 9870.0 and round(x,-2) returns 9900.0, and round(x,-4) returns x = 10000.0 because the most significant digit is 9. In general, round(n, r) rounds decimal number n to the 10−
r
 decimal digit.

2.7.2.1
Float Type Conversions

The need to convert floating point numbers occur in cryptography, network communications and in many engineering applications. Repeating decimal numbers are encountered in probability theory and statistics [SC2015]. Most of the statisticians prefer to work with decimal number of the form p/q where p and q are devoid of common factors (called proper form of a fraction). The float class has a convenient method to get p and q from any arbitrary decimal representation called float.as integer ratio(). Although useful in some situations, this function is not efficiently implemented in Python (see Chapter 5 of Shanmugam & Chattamvelli, Statistics for scientists and engineers, John Wiley, NY (2016) for several efficient algorithms for this purpose that work even for repeating decimals).

>>> x = .66

>>> float.as_integer_ratio(x) # or x.as_integer_ratio()

(5944751508129055, 9007199254740992)

Although 0.66 can be written as 66/100 or 33/50, Python reports it quite strangely (using 16 digits for p and q). Floating point arithmetic in Python is not always accurate. Keep in mind that Python uses double precision representation when you stumble across something exotic like the following:

>>> x = 3.14

>>> x

3.14

>>> x = x-3 # should return 0.14, but does not!

>>> x

0.14000000000000012

>>> 1.1+2.2

3.3000000000000003

>>> 0.1 + 0.2

0.30000000000000004

>>> .1 + .2 == .3 # Mathematicians, don’t frown!

False

This round-off error is more when the decimal part is near zero.

>>> x = 3.14

>>> x -= 2 # subtract 2

>>> x

1.1400000000000001

Python stores the correct result when 1 is subtracted instead of 2 or 3. Although small rounding errors are incredibly satisfying to students, it has its pitfalls in scientific programming where even 64 decimal places of accuracy may be insufficient. A solution is to use the decimal module (import decimal) which is a collection of classes like Decimal, Context, DecimalTuple, DivisionByZero, FloatOperation etc. Only the Decimal class is important for a beginner. Even this class does not guarantee more than 16 decimal places of accuracy. The argument of Decimal class can be an integer, string, tuple, or another Decimal object.

>>> import decimal as D

>>> x = D.Decimal(1/3)

>>> x

0

>>> x = D.Decimal(1/3.)

>>> x

Decimal(‘0.3333333333333333148’)

The following example shows that accuracy is maintained when the argument to the class are strings rather than decimal numbers.

>>> from decimal import Decimal as D

>>> x = D(.1)+D(.2)

>>> x

Decimal(‘0.3000000000000000166533453694’)

>>> x = D(‘.1’)+D(‘.2’)

>>> x

Decimal(‘0.3’)

Decimal class is preferred over float type in scientific computations, financial applications that require exact decimal representations, and when the level of precision is predetermined. Python also has a Fraction class (in fractions module) for more precise floating point computations.

import fractions as F

>>> x = F.Fraction(2/3)

>>> x

Fraction(6004799503160661, 9007199254740992)

>>> print(x)

6004799503160661/9007199254740992

>>> x = F.Fraction(‘2/3’)

>>> x

Fraction(2, 3)

String arguments must be used whenever possible to get correct result as shown above. A hexadecimal representation of a floating-point number is obtained using float.hex() method and the reverse process of getting a floating point number from hex string using float.fromhex(hexstring).

>>> x = 3.14

>>> float.hex(x)

‘0x1.91eb851eb851fp+1’ # scientific notation

>>> x.hex()

‘0x1.91eb851eb851fp+1’

Both float.hex(x) and x.hex() return the same result, which is in the scientific notation. This works for positive and negative floating point numbers.

2.7.3 Complex Type

Complex numbers are represented as expressions with real and imaginary parts. Symbolically

complex(x,y)≡x+yj where j denotes the imaginary part (sqrt(-1)) (j can be lower j or uppercase J). If the imaginary constant is 1, it should explicitly be given as z = 2+1j or 2+1.j or 2+1.0 j. If we simply give z = 2+j, Python assumes that we are trying to add 2 and a variable j. If j is not already defined, this will be flagged as an error “NameError: name ‘j’ is not defined”.

As shown above, the complex type accepts a real part and an imaginary part. There are two ways to form complex data type in Python. The first one uses the explicit constructor as z1 = complex(1,2). Both arguments can be integers, long or floats. The second one uses an arithmetic expression with a real number and a constant times j which is a short form for sqrt(−1), as shown above. Thus z2 = 1+2j creates the same. Note that no space or tab character is allowed between the constant and j. Complex numbers can have a missing real part. Thus yj is the same as complex(0,y), whereas complex(x) is the same as x+0j, which is real. These are discussed at length in a subsequent chapter. The isinstance(c, complex) method can be used to check if a variable c is of type complex.

2.7.4 Type-casting

Type-casting is a technique used in high-level languages like C, C++ and Java to change the current type of a variable or expression to another (usually of lower) type (eg: change float to int type) to match a variable on the LHS. Thus forcing a variable or expression to behave as a type other than the one they currently hold is called type casting.

Types are automatically cast in some programming languages when lower precision data are stored in higher precision (like storing int values in a float variable or storing int or float in double variable in C++, Java etc). Unfortunately, this does not work in Python. When you store an int in a variable that currently holds a float value, Python will suddenly change the type from float to int. The same reasoning applies to other data types. Programmers coming from other languages are warned about the pitfalls of dynamic typing. Type-casting can be implicit or explicit. Explicit type-casting uses built-in functions discussed below. Implicit typecasting infers the type automatically using the RHS of an assignment statement. As an example, x = 4+2.1 converts the 4 into a float and stores 6.1 in x. Similarly, t = 2 + True stores 3 in t because the Boolean constant True is converted to a 1.

Python has several built-in functions to cast the types. As mentioned above, int, float, long etc. are data types as well as functions. When used as functions, these are meant to cast the type as shown below:

>>> i = 10

>>> print(type(i))

>>> i = float(i) # type cast from int to float

>>> print(type(i))

>>> i = complex(i)

>>> i

(10+0j)

>>> print(type(i)) Output:

<type ‘int’>

<type ‘float’>

<type ‘complex’>

Converting float to int using c = int(3.15) results in truncation of decimal part and c becomes 3. The round function takes a real number and rounds it to the nearest integer and returns the result as a float. Thus c = int(round(3.1415)) stores 3 in c whereas c = int(round(3.51)) stores 4 in c. Note that .5 and above are rounded to next higher integer. Arguments of these functions can also be a string. Thus c = int(‘‘3.15’’) stores 3 in c.

A base could also be specified as second parameter when the first one is a string. Thus c = int(‘‘315’’, 8) stores the octal (base 8) value 315 (which is decimal 205) in c. Python represents infinity (∞) as a floating point number which is given by float(‘inf’) which is the same value stored in math.inf as shown below:

>>> math.inf # infinity in Python inf

>>> math.inf == float(‘inf’)

True

>>> 10**10000 < math.inf True

Python will hang-up if you give a very very large number (say 10**10**10000) on the LHS of above comparison statement. Another special value is float(‘nan’) which stands for floating-point “not a number” (NaN) value.

2.8 Extended Types

Python has several system-defined types. These are called objects and is discussed in subsequent chapters. Examples are collection objects like Lists, Dictionary, Map, Set and Tuples. User-defined types are classes which are blueprints for creating objects. The built-in type() function can be used to get the type of an object. Python has a built-in function id() which returns the identity of an object as an unsigned integer. Usually this is the heap memory address of the variable (it depends on the Python implementation. It is the memory address of the C-object in Cpython). Two variables with non-overlapping lifetimes may have the same identity as Python scrambles the heap when variables are freed or goes out-of-scope. As Python stores metadata (like type, size, etc) along with a variable, elements of a collection (like lists or tuples) need not be stored in any specific order as properties of them (like list size, element type) are also stored as metadata. Anyway, id() guarantees to be unique and constant for an object during a program run (unless that object is reallocated memory inside loops or functions). The Python “is operator” uses id() to check if two objects in memory are identical or not (as opposed to the stored values being equal). In other words “is” evaluates to True when two variables point to the same object in memory (and “is not” evaluates to False).

2.9 Date and Time

Python has many modules to work with date and time. The most frequently used one is time module. This can be used to get the day, month, year, hour, minute, second as well as day of week, Julian number (between 1 and 365) and timezone information. An example follows:

import time

lc = time.localtime()

month = lc.tm_mon

day = lc.tm_mday

year = lc.tm_year

dayOfWeek = lc.tm_wday

Julian = lc.tm_yday

Python uses 0 for Monday and 6 for Sunday in dayOfWeek. There is another module datetime which is a fast implementation of datetime type. This accepts a wide range of dates from “01/01/01” to “12/31/9999”. The present date and time an be obtained as follows:

>>> from datetime import datetime as dt

>>> today = dt.now()

>>> today

datetime.datetime(2018, 5, 14, 4, 50, 32, 15000)

where the first 3 numbers are the year, month and day and rest of it is time. There is also a Calendar class to display calendars and do date arithmetic (like elapsed days between two dates). These are discussed in subsequent chapters.

2.10 Scope

Scope refers to visibility of a variable in programming languages. Location or place of declaration of a variable determines its scope. In simple terms, the innermost accessibility region of a variable (nearest enclosing region) is called its scope. Python maintains global and local namespaces separately. Variables defined within a function are visible only within that function. Thus the scope is local to the function. This is because Python functions have their own namespace. This means that variables can be named the same in multiple functions as each of them are visible within those functions only. Similarly, variables can be defined within if blocks
, for
 and while
 loops and Exception
 blocks, user-defined types (classes), etc. They are visible only within their local scope. Variables defined outside all functions can have nonlocal
, package
 or global
 scope. Global scope could be forced to variables using the global command. If a global variable and a local variable have the same name, the local scope will take priority over the global scope. This avoids unexpected side effects when those variables are modified within local scope. Note that Python does not have static scope (which is available in most of the other popular languages). The global command can be followed by one or more comma separated variable names (Chapter 5).

global x,y,z

Those variables appearing on a global statement should not be used in the same code block preceding that global statement. Thus “global” keyword is like a declaration. In fact it is a directive to the parser. There are few other restrictions on this statement:– (i) global variables should not be defined as formal parameters of functions (ii) they should not be used in a ‘for loop’ control target (iii) they should not be used as user-defined types (in class definition) (iv) they cannot be used to name functions (v) they cannot be used in “import” statement.

Variables appearing on a global statement need not all be of the same type. Once you declare your global variables, they can be assigned whatever value you like. Thus x can be a float, y can be a Boolean and z can be complex type.

2.11 Modules

Module is a concept that originated in Modula programming language in which programs are broken down into convenient sized independent units. A module is a program that implements a logically independent functionality. Other modules or programs can then use these modules using an import statement. Such a scheme allows large and complex software systems to be built using manageable and well-tested small modules that can be modified at will. Modular design is especially useful in top-down design of software systems in which modules are arranged as a tree structure. Modules can be nested to any level. Care must be taken to preclude the possibility of duplicate modules to appear in a namespace (duplicate code is usually ignored). The Python Standard Library (PSL) is a collection of modules to access the OS, I/O devices, string management, network communication, etc. Functions and classes can be kept in a source file with .py (or .pyc) extension. A Python module is such a file containing function or class definitions or interface definitions. A module may contain any number of such functions or classes. Global statements can also appear in modules. Such entities in a module are accessed using the ‘dot notation’ as mname.attrname where mname is the module name and attrname is either an attribute, function or class defined in the module (where functions and classes need extra information; these are discussed in subsequent chapters). Other modules can then import needed modules at the very beginning of their source file. An alternate syntax is using the “from modulename” syntax (eg: from collections import OrderedDict).

An advantage of Python is that system modules as well as user-defined modules can be imported into other programs. A good practice is to import system modules first, followed by user-defined modules to minimize shadowing effects. User-defined modules should never be given a name of a system module. Such name clashes can result in erroneous results. As an example, sys, os, math, etc are system modules whereas numpy, matplotlib, BeautifulSoup etc are external modules for special purposes. Python looks for imported modules in all the directories defined in sys.path. Present paths can be obtained using two simple commands:

>>> import sys

>>> print (sys.path)

This will print the names of directories on the path including the current directory as a comma separated list. If you wish to see the path on one line at a time, you can issue the following two commands:

>>> import sys, pprint

>>> pprint.pprint(sys.path)

This will print the path names line by line. Here the built-in “pretty print” (pprint) module is used. As sys.path is a list of directory names that constitute the current search path, you could append new paths dynamically from within Python as follows:

>>> sys.path.append(r‘\dirname\subdir\path’)

in windows and using forward slash in *nix. Here lowercase r inside the brackets indicates that the argument that follows is a ‘raw string’. Even if you have directory names starting with n, t, r etc. in Windows, they are treated literally and won’t create a problem (as \n, \t, \t, etc. are control characters).

2.11.1 Importing Modules

There are many ways to import modules. The first one is very similar to the Java syntax. For example, to import Mathematics module, simply give

import math

anywhere within your program, preferably at the top of the source file (or subsequent lines following a function definition). Then any of the mathematical functions or constants can be invoked using ‘math.’ prepended to it. For example, math.pi gives value of pi and math.cos() returns value of trigonometric cosine function. To avoid the use of prefix “math” everywhere, give the command

from math import *

to import everything in the module. Importing unnecessary functions in a program can result in an increase in the namespace used. Hence it is recommended that you import only essential functions used in the program. Imported modules and functions can be given new names (alias) using the ‘as’ command (page 2-32).

import math as m

from math import sin as s, cos as c, log as ln

where m in the first line is an alias for math module itself, and s,c,ln are aliases for sine, cosine and logarithmic functions of the math module. The standard way is to import math and then use math.xxx() to call individual functions from it.

Alternate ways to import: import math

D = math.sqrt(b*b-4.*a*c)

import math as m

D = m.sqrt(b*b-4.*a*c)

from math import sqrt

D = sqrt(b*b-4.*a*c)

from math import *

D = sqrt(b*b-4.*a*c)

from math import sqrt as X

D = X(b*b-4.*a*c)

All documented info in a library can be obtained as follows:

import math dir(math) which prints all methods and attributes of math class.

[‘__doc__’, ‘__name__’, ‘__package__’, ‘acos’, ‘acosh’,

‘asin’, ‘asinh’, ‘atan’, ‘atan2’, ‘atanh’, ‘ceil’,

‘copysign’, ‘cos’, ‘cosh’, ‘degrees’, ‘e’, ’erf’,

‘erfc’, ‘exp’, ‘expm1’, ‘fabs’,‘factorial’, ‘floor’,

‘fmod’, ‘frexp’, ‘fsum’, ‘gamma’, ‘hypot’,‘isinf’,

‘isnan’, ‘ldexp’,‘lgamma’, ‘log’,‘log10’, ‘log1p’,

‘modf’, ‘pi’, ‘pow’, ‘radians’, ‘sin’,‘sinh’,‘sqrt’,

‘tan’,‘tanh’, ‘trunc’]

Use pprint.pprint(dir(math)) to list it one line at a time.

import math, pprint

pprint.pprint(dir(math))

Python has another module called cmath for complex mathematical operations (import cmath). An import statement may contain the name of multiple modules separated by commas. As shown above, an alias can also be attached to each of them to make it easy to refer to a module. For instance “import math as m, matplotlib as mpl, BeautifulSoup as bs” is a valid import statement that brings in one system module called math, two external modules called matplotlib (for graphing) and BeautifulSoup (for XML and HTML parsing). If a module (say matplotlib) is not installed on your system, you get the error “ModuleNotFoundError: No module named ‘matplotlib”’ (matplotlib is available for free download at matplotlib.org). If you get a similar error even after downloading and installing the module, you may need to check sys.path and try debugging the issue at the Python prompt to fix it.

2.12 Aliasing

Programmers coming to Python from other languages like C or C++ may find that some of the

Python function names are different from what they are used to. One example is the file open statement, which is fopen in C/C++. You can alias any of the function names in Python as follows:

fopen = open # redefines open() command as fopen()

fp = fopen(‘data.pck’, ‘w’)

Aliasing creates another variable that refers to the same memory location. This can sometimes create problems. Consider the following set of statements:

x = ‘Java’

y = x # create alias for x

y = ‘Python’

del x

print (y)

What do you expect the print statement to display?. As x and y refer to the same location, one might expect del x to remove the common memory location and print (y) to throw an error. But it does not. What happened was that “del x” statement removed the variable x from the namespace, but as the memory allocated to x is now referenced by y, the print(y) will print ‘Python’.

Whether two or more names are aliases can be checked in many ways. The easiest way is to use id() function. For example, if x and y are aliases, print (id(x),id(y)) will print identical values (or equivalently id(x) == id(y) prints True). The ‘is’ operator can also be used to check for aliases. Thus if(x is y): print (‘Yes they are aliases’) will be True only when x and y are aliases, whereas x==y will not check for aliases but only for stored values. Thus if x = ‘Python’, y = ‘Python’ and x==y will print True although x and y are not aliases.

2.13 Summary

This chapter introduced the fundamental data types, various types of integers and how to represent each type. It then briefly introduced the complex type. A discussion of type-casting that convert numbers from one type to another can be found in §2.7.4. The scope of variables are discussed in §2.10, and Date/Time in §2.9. It then explored the modules and aliasing. A good understanding of these concepts is needed to write error-free programs.

3

[image:]

Python Operators

	
Chapter objectives

•

Introduce basic Operators in Python

•

Discuss Precedence and Associativity

•

Understand Arithmetic and Assignment Operators

•

Understand Logical and Relational Operators

•

Distinguish Boolean and bitwise Operators

•

Explain Identity Operators

•

Describe Membership Operators

3.1
Operators

As the name implies, operators operate on arguments (called operands) to produce a result. There are different types of operators depending on the number of operands (arguments on which they operate). Unary operators work on a single argument. Programmers in C, C++, PHP, Java etc are familiar with ++ (auto-increment) and −− (auto-decrement) unary operators. Python does not have these operators as of this writing. The negation operator (-), logical operator not, bitwise operator (∼) are examples of Python unary operators. Among these, the negation operator can be applied to numbers or expressions or functions returning numbers. The logical operators can be applied to Boolean variables or expressions that evaluate to a Boolean truth value (True or False) and bitwise operator can be applied to binary data and bitarray types.

3.1.1 Precedence and Associativity of Operators

Operator precedence determines the order in which they are evaluated by a computer. This was discussed in chapter 1 (pp. 1-29). Highest precedence (most binding) operators are evaluated first (see table 3.1). This is meaningful only when multiple operators of different types are present in an expression. Such a situation is quite common in scientific programming. Consider the simple expression x = p-q-r where p,q,r have some initial values. There are two negation operators (-) which have left-toright associativity, so that a computer evaluates p-q first and subtracts r from it. If p = 8, q = 4 and r = 2, p-q is 4 so that p-q-r = 4-2 = 2. Now write the above as x = -(q+r-p). There are 2 binary operators inside the parenthesis and a unary - (negation) outside. A computer evaluates

Table 3.1: Standard Arithmetic Operators

	
Operator

	
Symbol

	
Type

	
Priority

	
Associativity

	
Exponentiation

	
**

	
binary

	
highest (5)

	
R to L

	
Multiplication

	
*

	
binary

	
next (4)

	
L to R

	
Division

	
/

	
binary

	
next (4)

	
L to R

	
Integer Division

	
//

	
binary

	
next (4)

	
L to R

	
Remainder

	
%

	
binary

	
next (3)

	
L to R

	
Addition, subtraction

	
+,-

	
binary

	
next (2)

	
L to R

	
Negation

	
-

	
unary

	
least (1)

	

Expressions involving multiple parentheses () at the same level are evaluated from left to right, and nested parentheses are evaluated from innermost to outermost. Integer Division is also known as Floor Division.

the bracketed expression first because parentheses have higher precedence. As + and - have the same priority, it is evaluated from left to right. As q+r = 6, q+r-p is 6-8 = -2. The end-result is then negated to get the result in x as 2.

Operator associativity decides the order of evaluation of multiple operators of the same type or level. Most operators in Python have left-to-right associativity. An exception is the exponentiation operator which is evaluated from right-to-left.

>>> -4**3**2

-262144

>>> (-4**3)**2

4096

Here 3**2 is first evaluated (as 9) and then 4**9 negated. In the second case the entire bracketed expression is -4**3 = -64, which is squared to get +4096. Another special case is multiple assignment operator (=) appearing in an expression. Whenever there are two or more = operators, they are evaluated from right-to-left order. For example, p = q = r = x%y evaluates x%y first and stores it in r first, then in q and then in p. All of the variables p,q,r become <
class ‘int’>
 type. Another common example is to simultaneously assign user input values to multiple variables as in p = q = int(input(“Enter size of square matrix:”)).

If an expression has nested parentheses, the above rules are applied from innermost to outermost level. This means that the innermost parenthesis is first evaluated, followed by the next surrounding level and so on. This applies to the walrus assignment operator as well (see chapter 1, pp.1-28).

3.1.2 Arithmetic Operators

All scientific programming languages have a set of standard arithmetic operators. The Python list includes addition (+), subtraction (-), multiplication (*), division(/), modulus (%) and exponentiation (**). In addition, Python has a special operator for integer division (//) that stores the integer part of the quotient. The modulo operator gives the remainder when an integer is divided by another non-zero integer. You get the desired result when the second operand is a positive integer (>
1). For example, if x = 7 and y = 5, x%y returns 2 as the remainder. But if y= -5, x%y returns -3 as remainder (2*-5+7)=-3.

3.1.3 Assignment Operators

Assignment operators are all binary operators because there must be an l-value (memory location to hold the value) on the LHS and an r-value (which may be constants, expressions, function calls or objects) on the right of it. If a constant appears after an assignment operator, Python automatically checks the type of the constant and allocates memory for corresponding variable and assigns the value appearing after the operator (several Boolean and integer variables can share the same memory location; see the discussion on “auto-interns” in page 3-16). Assume that an expression appears on the RHS of an assignment operator. It is evaluated and the resulting value is used to guess the type (of LHS variable). Python then assigns the value to the variable of correct type.

>>> x = True

>>> y = bool(1)

>>> z = not x

>>> id(x), id(y), id(z)

(1762538580, 1762538580, 1762538372)

>>> z = not z

>>> id(x), id(y), id(z)

(1762538580, 1762538580, 1762538580)

As True and bool(1) both denotes a 1, Python does not allocate new memory for variable y. The actual value printed on your system will differ, but it will be the same for both x and y. Although z = not z on line 6 resets z to 1, it is allocated a new memory location. This shows that Python’s auto-interning is a near-sighted
 phenomena. This means that whenever several variables on adjacent statements have the same value, they are allocated to the same memory location.

Assignment operators can be used to set default values to function arguments. This allows the same function to be called with different signatures (different number of parameters). If all parameters of a function have default values, it can be called without explicitly supplying any argument at all. This is discussed in chapter 8.

3.1.4 Shorthand Assignment Operators

Shorthand operators exist to ease the typing when identifier names are long. Consider the expression total amount = total amount + sales tax. This could be shortened as total amount += sales tax. Other common shorthand operators appear in table 3.2. In addition to producing compact code, there is also execution speed advantage by using the shorthand forms, especially when they appear in large loops. Note that all of them are binary assignment operators (because the last character on them is = sign) and are called augmented arithmetic assignments. Variables appearing on the LHS and RHS of a shorthand operator should preferably be of the same type. If possible, Python will perform automatic type conversion when LHS and RHS are of incompatible types. They are evaluated in the usual form (eg: x+=y is evaluated as x = x + y) when both of them are number type.

>>> p = 3

>>> type(p)

<class ‘int’>

>>> q = 0.14

>>> p += q # convert type of p from int to float

>>> p

3.14

>>> type(p)

<class ‘float’>

The type of p is changed from int to float because q is float. The RHS value is appended to the variable on LHS when both arguments are strings (+ becomes concatenation).

>>> x = ‘a’

>>> x += ‘b’ # concatenation assignment

>>> x

‘ab’

>>> z = 2

>>> x *= z # replication or repetition

‘abab’

>>> x = 2 # int type

>>> x *= ‘a’ # x changes to str as RHS is string

‘aa’

Shorthand operators are valid not only for numbers but also for other data types for which they are overloaded. As shown above, the + operator means concatenation for strings. Thus if x and y are of type string (or string literals), x += y will concatenate the contents of y at the end of x. This is called concatenation assignment
. An error is thrown if they are of incompatible types or if y is ‘None’ type. An exception is the addition or subtraction of a constant from complex numbers. Consider the statements:

x = 2 + 1 j

y = 3 - 2 j

x += y # 5 - 1 j

y += 1

x -= 2j

y += x

x *= y

3.1.5 Relational Operators

Relational operators are used most frequently in if statements, elif branches and while loops. They are so called because they compare quantities for equality or inequality. It is almost identical with relational operators in Java, C++ and PHP. Note that the not equal to
 operator can be != or <>
 (which is deprecated and may be dropped in future versions). Another improvement is that the relational operators can be chained (given in succession) any number of times as shown in §3.1.9, in pp.3-9.

3.1.6 Equality Operators

These operators compare whether two variables or expressions are equal in value or not. Equality testing is done using == which is a binary operator. Left or right operand can be constants, variables or expressions. If x = 2 and y = “2” then x==y returns False because one is an integer and the other is a string. If x is set with single, double or triple quote, the above condition will return True. This can be verified using a condition type(x)==type(y), which returns True when both are of the same type.

Table 3.2: Common Shorthand Operators

	
Operator

	
expanded form

	
Meaning

	
+=

	
x = x+y

	
add (or concatenate) to same variable

	
-=

	
x = x-y

	
subtract from same variable

	
*=

	
x = x*y

	
multiply (or replicate) and store in same variable

	
/=

	
x = x/y

	
divide and store in same variable

	
//=

	
x = x//y

	
integer divide and store in same variable

	
%=

	
x = x%y

	
find remainder and store in same variable

	
**=

	
x = x**y

	
exponentiate and store in same variable

	

>>
=

	
x = x>>
y

	
right shift and store in same variable

	

<<
=

	
x = x<<
y

	
left shift and store in same variable

x is the variable on the LHS (which is overwritten) and y on the RHS in each of them.

Whether two variables hold the same value or not can be tested using the == or != operators. The LHS and RHS of this operator must be of the same type. For example, one can test if two integers or strings are equal. This operator is also overloaded for other data types like lists, sets, maps, dictionaries etc. Thus two lists can be compared to see if they contain identical values in the same order or not. If L1 = [1,2] and L2 = [2,1], the equality test will return False because although they contain the same elements, they are not in order. The same reasoning holds for tuples (Tuples are ordered collection of heterogeneous items enclosed in simple parentheses with comma as element separator). But as sets are unordered collection of elements, two sets S1 = {1,2} and S2 = {2,1} are considered to be equal. This can be verified by S1==S2.

>>> x = 3.0 # float

>>> y = 3
int

>>> z = 0b11 #binary 3

>>> x == y

True

>>> y == z

True

>>> S1 = {1 , 2}

>>> S2 = {2 , 1}

>>> S1 == S2

True

As mentioned above, the values to be compared must be of compatible types and of same precision. In other words only operands with the same type identity can be compared in Python. An exception to this rule is the None type which can be compared with anything. Not only built-in numeric types (int, float, complex) but strings, and some standard library types like fractions.Fraction, decimal.Decimal etc can also be compared within and across their types
[26]
.

>>> import fractions as F

>>> x = F.Fraction(2,3)

>>> x

Fraction(2, 3)

>>> y = F.Fraction(F.Fraction(4,2),F.Fraction(6,2))

>>> x==y

True

>>> z = decimal.Decimal(2)/decimal.Decimal(3)

>>> z

Decimal(‘0.666 666 666 666 666 666 666 666 6667’)

>>> x==z

False

>>> t = 2 / 3.

>>> t

0.6666666666666666

>>> z == t # precision does not match

False

Whether the execution is inside the main function can be checked using:

if __name__ == ‘__main__’:

within the body of which all of the other functions are called. Here LHS is a system variable of str type and RHS is a string literal (without spaces).

Python 3.x does not support complex and dictionary type comparisons (other than == , !=, is, is not)
[27]
. If you attempt any of the other operators like (<
, >
 etc.), you get “TypeError: ‘<
’ not supported between instances of ‘complex’ and ‘complex”’. This applies to dictionaries as well.

3.1.6.1
Python Comparison Rule (PCR)

Check operand’s identity first, followed by value comparison for distinct elements.

Strings (instances of str or Unicode) are compared lexicographically using the current codepage (from left to right). Collections are compared in the following manner: (i) compare the types (ii) compare the length (sizes) (iii) compare each pair of corresponding elements from left to right using Python Comparison Rule above. Thus [1,2], {1,2} and (1,2) are unequal because the types differ. As sets and dictionaries rearrange items, two of them with different order of elements will evaluate to True.

>>> S1 = {1, 2, 3}

>>> S2 = {3, 2, 1}

>>> S1 == S2

True

System functions and user-defined functions can also be used in relational operators if they are of compatible types. As an example, the divmod() function takes two arguments (need not be integers) and returns a tuple of quotient and remainder. This can be compared to other tuples with 2 elements. If the arguments of divmod are both integers, the tuple elements returned are also integers. Both elements of the tuple are decimals when at least one argument is a decimal number. Even then, the returned values can be compared with integer tuple:

>>> divmod(5,2) == (2 , 1)

True

>>> divmod(3.5,.25)

(14.0, 0.0)

>>> divmod(3.5,.25) == (14,0) True

Another example is testing of strings using slice operation (discussed in chapter 7) where the equality of a string s is checked as s == s[::-1] where the RHS is a slice operation that reverses

s. This returns True if s is a palindrome. Dates and time, user-defined types etc can also be checked for equality.

A special case of equality testing is to compare an expression to 0 or 1. As an example, suppose an integer is to be tested if it is even or odd. This is simply done as “if n%2 == 0 ” where the % is the remainder operator. As True=1 and False=0 in Python, this could simply be coded as “if not n%2” (for even) and drop the ==0 part.

n = int(input(‘Enter an integer:’)) if not n%2:

print("Even") else: print("Odd")

An alternative to input command is eval which automatically converts user entered literals (constants) and expressions into proper form and stores the result in LHS variable. The if statement is discussed in the next chapter. For the time being, it is enough to understand that the else branch above is taken only when the if condition is false. Thus “Odd” is printed only when the number is not divisible by 2.

3.1.7 Inequality Operators

Inequality is the opposite of equality. Inequality operator is used in input data validation, evaluating the results of a multiple choice test (in which only one of the answer choices is correct), checking data ranges, balance amounts, overdue dates, etc. These are discussed in subsequent chapters. Another way is to use equality operator with the “not” operator prepended (eg: not (x==y)). Sometimes inequality checking may be easier and elegant than equality checking. The inequality operator is !=. Instead of checking if two variables or expressions are equal, one may check if they are unequal. This also is a binary operator and compares the values stored in variables or expressions. This operator is always symmetric in the operands. This means that x != y and y! = x are exactly identical. The operands involved (x and y) must be of the same type. Thus if x is a number (int, float, etc) then y must also be a number. Expressions could also be compared with variables; and expressions with expressions. For example, ‘x*x + y*y != R’ has an expression on the left and a simple variable on the right, while ‘x*x + y*y != r * r’ has expressions on both LHS and RHS. Expressions if any will be evaluated by the CPU at run-time and its type determined by Python before the comparison is carried out. As everything in Python are objects (which have object class as the topmost parent) all comparison operations inherit the default behaviour of comparison operator of object. Note that in Python 3.x, arithmetic comparisons do not care about the type but cares only about the stored value. This does not mean that strings can be compared with numbers or other types.

>>> x = 3.0 # float

>>> y = 3
int

>>> z = 0b11 #binary 3

>>> x != y

False

>>> x==‘3’

False

>>> x != ‘3’ and y != ‘3’

True

Python 3.x throws a type error for mixed operand types with other relational operators as explained below. Equality and inequality operators also work on other data types like strings, complex numbers, date and time, and collection types to name a few.

>>> a = ‘python’

>>> b = "Python"

>>> a != b # ‘p’ and ‘P’

True

>>> c1 = 2 + 3 j

>>> c2 = 2.0+3.0 j

>>> c1 != c2

False

The first condition is True because of the case of the first character (p vs P). Python uses absolute value of complex numbers in comparison operations.

>>> C1 = 6/3j #complex conjugate

>>> C2 = 6 j/ 3

>>> C1 == C2

False

CPython stores C = 6/3j as -2j (0-2j), which is the complex conjugate whereas C = 6j/3 is stored as 2 j.

3.1.8 Other Comparison Operators

	
The greater than or equal to operator (≥) of Mathematics is >
= without any whitespace between >
 and =. It is used in if statements, else blocks and while loops. It checks if the LHS is greater than or equal in value than the RHS and returns True or False. Lexicographic comparison is used for strings. Python does not automatically remove whitespaces in strings (which must be explicitly removed using string functions). The strictly greater than operator (>
) checks for strict inequality. This may be considered as lower-bounding because if(x>
y) is the same as if(x-y>
0). The other two operators <
= (without any whitespace) and <
 works similarly by checking if LHS is less than or equal to; or less than the RHS.

A shorter collection that appears as a prefix of a longer collection is supposed to return True.

>>> L1 = {1, 2, 3}

>>> L2 = {1, 2}

>>> L2 < L1

True

	

	
Python 3.x compares list and set sequences differently using the above rule.

>>> S1 = {1, 2, 3}

>>> S2 = {1, 3}

>>> S2 < S1

True

>>> S3 = {2, 3}

>>> S3 < S1

True

>>> L1 = [1, 2, 3]

>>> L2 = [1 , 3]

>>> L2 < L1

False

>>> T1 = (1 ,2, 3)

>>> T2 = (1 , 3)

>>> T2 < T1

	

False

where the set comparison returned a True, but exactly identical list and tuple comparisons returned False. The same result is obtained when numbers are replaced by strings or character literals.

Table 3.3: Membership and Relational Operators

	
Operator

	
Description

	
in, not in

	
Membership tests

	
is, is not

	
Identity tests

	

<
, <
=, >
, >
=, <>
, !=, ==

	
Comparisons

	
|

	
Bitwise OR

	
∧

	
Bitwise XOR

	
&

	
Bitwise AND

	

<<
, >>

	
Shifts

Numeric and non-numeric types can be compared together in Python 2.x. This throws a “Type Error:” with an appropriate message in Python 3.x. Numbers could be compared with numbers or Boolean constants, strings with strings, all members of collection classes (lists, tuples, sets) with same type.

>>> () < (0,) # empty tuple with tuple

True

>>> L = [1 ,2, 3]

>>> M = [1, 3, 2]

>>> N = [1 , 3]

>>> L < M

True

>>> L == M

False

>>> N < M

True

>>> L < N

True

As Python stores the last evaluated expression in a special variable _, this can also be used in the command prompt. For instance

>>> x = 5

>>> x += 5

>>> x

10

>>> _ == 10

True

Above command checks if the last value evaluated (which is stored in _) is 10 or not.

3.1.9 Chained Relational Operators

Python operators <,>,<
=,>
= are transitive. This means that if x < y
 and y < z
 then x < z
. This allows us to write an expression x < y < z
. Similar expressions can be formed for other operators given above. Python chained operators allow us to test multiple conditions on a single statement using this technique.

>>> x = 3.0 # float

>>> y = 3
int

>>> z = 0b11 #binary 3

>>> x == y == z

True

>>> x == y == z == ‘3’

False

>>> x != y! = z! = ‘3’

False

>>> False < 0.5 < True

True

where the last condition is True because False = 0 and True = 1 in Python. Consider a variable called age with legitimate values in the range 0 to 120 years. A simple statement could be used to check for validity.

if 0 <= age <= 120:

print (‘Valid age’)

This could also be written using an and operator as

if 0 <= age and age <= 120:

print (‘Valid age’)

The short form is useful when a variable is to be assigned a value using a complex condition as shown in list and dictionary comprehensions in later chapters. Although >
 and <
 can be combined on chained-operation, it is not recommended to do so, as comprehending and debugging of code could become difficult.

>>> x = 1

>>> z = 2

>>> y = 1.5

>>> x < y > z

False

>>> z < x > y

False

Always remember that the chained conditions are combined using ‘and’ operator. Thus x<
y>
z is equivalent to x<
y and y>
z.

3.1.10 Logical Operators

Logical operators are used to combine two or more conditions. In other words, they provide a way to make decisions using multiple conditions that are combined into a single complex condition. They are used in if statements, while loops, etc. Although there are special symbols in other popular programming languages for logical operators, Python uses ‘not’, ‘and’, ‘or’ keywords. (The exclamation (!), & and ∧ operators are used in sets and dictionaries as shown later). Operands of these operators must be Boolean expressions that return either a True or a False value. Python uses short-circuit evaluation when there are more than one expressions. This means that “False and X” never evaluates the value of X, where False indicates either a null value or a Boolean expression that evaluates to False.

If they are of other types, the values returned may be meaningless. Logical operators can also be used to combine the return values of functions or system conditions as shown in chapter 7. Some programming languages like PHP have an === operator which checks for equality of values and types. This can be done in Python using logical operators as follows:

Table 3.4: Logical Operators

	
Operator

	
Meaning

	
Example

	
Comment

	
or

	
Boolean OR

	
x or y

	
either of them is True

	
and

	
Boolean AND

	
x and y

	
both conditions are True

	
not

	
Boolean NOT

	
not x

	
True if x is False

Table 3.5: Logical ‘AND’ and ‘OR’ Table

	
Condition-1

	
Condition-2

	
AND

	
OR

	
True

	
True

	
True

	
True

	
True

	
False

	
False

	
True

	
False

	
True

	
False

	
True

	
False

	
False

	
False

	
False

x = ‘2’ y = ‘‘2’’ if (type(x)==type(y) and x==y): print (‘‘equal’’)

Python assumes that None, 0, “ ”,
 {}
, [], ()
 are all False
. Hence the not operator can be used to create True values using above special values. Similarly, the built-in function bool() can be used to create True or False values. All of bool(None), bool(‘’), bool(0), bool([]) , bool(()),bool({}) as well as bool() (without arguments) return False and everything else return True. This function can be used with the special variable in the interpreter shell as follows:

>>> bool(_)

	
Traceback (most recent call last):

File "<stdin>", line 1, in < module >

NameError: name ‘_’ is not defined

>>> x = 3

>>> x

3

>>> bool(_)

>>> True

	

	
In the above statements, as soon as x is printed, the

	
variable gets defined so that bool()

returns True.

3.2 Bitwise Operators

They get the name because they operate on individual bits (0 or 1) that make up a larger value. Bit operations are faster for some applications like cryptography, image processing, data communication and data compression. Embedded software applications extensively use bitwise operations as they are extremely fast and efficient for transmission of data packet frames to a parent device through a serial interface as an array of compressed bits, which are filled and emptied at sending and receiving ends using a user-defined structure. The most prominent bitwise operators are “complement, and, or, not, xor, left shift, and right shift”.

Table 3.6: Bitwise Operators

	
Operator

	
Example

	
Meaning

	
Comment

	
&

	
x & y

	
And

	
And together each bit of same length

	
|

	
x | y

	
Or

	
Or together each bit of same length

	
∧

	
x ∧ y

	
XOR

	
Exclusive-or together each of same length

	
∼

	
∼y

	
Not

	
Flip each bit in y (1’s complement)

	
<<

	

x <<
y

	
Shift left

	
Shift x left by y bits

	
>>

	

x >>
y

	
Shift right

	
Shift x right by y bits

Table 3.7: Priority of Logical and Bitwise Operators

	
Operator

	
Meaning

	
Example

	
∼x

	
Bitwise NOT

	
∼010 = 101

	
&

	
Bitwise AND

	
101 & 011 = 001

	
∧

	
Bitwise XOR

	
101∧011 = 110

	
|

	
Bitwise OR

	
101|011= 111

	
in, not in, is, is not, <
, <
=, >
, >
=, !=, ==

	
Comparisons, membership tests and identity tests

	

	
not x

	
Boolean NOT

	

	
and

	
Boolean AND

	

	
or

	
Boolean OR

	

3.2.1Complement Operator

As the name implies, the complement operator flips bits (or complements each bit). To understand this better, one need to know about 1’s complement and 2’s complement. Both of them are for binary numbers only. The 1’s complement of a binary number is obtained by changing all 1’s to 0’s and vice-versa
. The 2’s complement and 1’s complement are related as they differ by 1. In other words, 2’s complement is obtained by adding a constant 1 to 1’s complement with the carry bit propagated throughout the width of the number from right to left. A computer never stores the ‘negative sign’ in negative numbers, but they are represented inside the memory as 2’s complement form. Note that these complements are always computed with respect to a fixed number of bits
 and not for arbitrary length. For convenience a width of 8 bits is assumed. But remember that the width is 32 in 32-bit machines, 64 in 64-bit machines and so on. Bitwise complement operator being unary operator has the highest priority after exponentiation, as also unary negation.

The sign of a number is stored in the left-most bit and is 0 for positive numbers and 1 for negative numbers. Thus 101 when considered as unsigned is decimal 5, but when considered as signed number is -4+1 = -3 (see table 3.8, row 3, col 4). Consider the number 1 which after fixing the width becomes 0000 0001 (pad 7 zeros on the left). Its 1’s complement is 1111 1110. If 1 is added to it, only the least significant bit (LSB) will change from 0 to a 1 resulting in 1111 1111. This is 1’s complement representation of -1. Now consider 2 with binary value ‘10’. Pad with 6 zeros to get 0000 0010 of width 8. Its 1’s complement is 1111 1101. Add 1 to get 1111 1110. This is how -2 is represented inside a computer. See the fourth column of row 2 in table 3.8. As 1 ’s complement of 2 is 1111 1101 a computer stores -3 the same way because 3 = 0000 0011 and 2 ’s complement is 1111 1100 + 1 = 1111 1101. You may convince yourself about other numbers by

Table 3.8: 1’s and 2’s complement

	
Number

	
Number

	
fix width

	
1’s complement

	
2’s complement

	
decimal

	
(dec)

	
(bin)

	
to 8 bits

	
representation

	
representation

	

	
0

	
0

	
0000 0000

	
1111 1111

	
(1)0000 0000

	
-1

	
1

	
1

	
0000 0001

	
1111 1110

	
1111 1111

	
-2

	
2

	
10

	
0000 0010

	
1111 1101

	
1111 1110

	
-3

	
3

	
11

	
0000 0011

	
1111 1100

	
1111 1101

	
-4

	
4

	
100

	
0000 0100

	
1111 1011

	
1111 1100

	
-5

	
5

	
101

	
0000 0101

	
1111 1010

	
1111 1011

	
-6

	
6

	
110

	
0000 0110

	
1111 1001

	
1111 1010

	
-7

	
7

	
111

	
0000 0111

	
1111 1000

	
1111 1001

	
-8

looking at the entries in the fourth column of row-k and 5th column of row-(k+1) in table 3.8. An advantage of 2’s complement representation of −ve numbers is that a computer can operate on them in the same way as on positive numbers. For example, to find p-q, computer adds the 2’s complement of q to p because p-q = p+(-q). This is called addition using a complementing subtracter. On occasion, it could happen that when bits are added from right to left, a carry may be generated at the end, in which case that carry (called end-round borrow bit) is added back to the LSB to get the result
[28]
. Thus the algorithm for 1’s complementation can be stated as “convert to binary ⇒ fix width ⇒ flip bits” and 2’s complement is obtained by adding a 1 to 1’s complement. It is easy to verify that ∼z and −(∼(∼z)+1) are the same because ∼(∼z) flips each bit twice to get the original binary representation (just assign any value to z and give print(∼z, -(∼(∼z)+1))).

As True = 1 and False = 0, logical operations can be applied on them.

>>> False & True # 0 & 1

False

>>> True & True

True

>>> False | True # 0 | 1 = 1

True

>>> True | True

True

>>> 1 & False

0

>>> 1 & True

1

>>> 0b110 & 0b101 # same as 6 & 5

4

>>> 6|5 # same as 0b110 | 0b101

7

>>> 6 | 1 # same as 0 b110| 0b001

7

The last example above shows that there are many-to-one mappings when bitwise OR is applied as it performs bit by bit OR on the two values (6 | 5 and 6 | 1 are both 7). This must be

Table 3.9: Example of Bitwise Operators

	
x

	
y

	
x & y

	
X | y

	
x ∧ y

	
0

	
0

	
0

	
0

	
0

	
0

	
1

	
0

	
1

	
1

	
1

	
0

	
0

	
1

	
1

	
1

	
1

	
1

	
1

	
0

kept in mind when using bitwise operators for encryption. If the operands of bitwise operators are of unequal length, shorter operand must be padded with zeroes to make both of them of equal length. Then the operation is performed from right-to-left (least significant bit to most significant bit). Consider oring
 9 (‘1001’) and 3 (‘11’). As length of the bitstring representation of 3 is 2 (there are two bits in it), pad the left with 2 zeros to get 3 = ‘0011’. Now apply the operation from right to left to get 1 0 0 1 | 0 0 1 1 = 1 0 1 1 = 8+3 = 11. It can be seen from the last column of table 3.9 that 0 ∧ 0= 1 ∧ 1 = 0. An outcome of this is that the XOR of two identical numbers is always 0, and XOR of any number with 0 is itself. The bitwise 1 ’s complement (∼) operator takes a binary number and returns its one’s complement by converting every 0 to a 1 and vice-versa. Note that ∼x is the same as -x-1.

>>> x = 16

>>> y = 23

>>> x^ (y ^ x)

23 # = y

>>> y ^ (x ^ y)

16 # = x

It is easily seen from the above that the XOR operation is symmetric and invertible. This means that y∧(x ∧ y) = x and x∧ (y ∧ x) = y. If x (or y) is taken as a mask (say of the same size as the message, or appropriately zero-padded otherwise) and the other as the message, the mask can be XOR’ed with the message to get an encrypted message, which when XOR’ed again with the mask results in the original message. This assumes that the mask size is less than or equal to the message size, which is usually the case. What to do if our mask is longer than the message? In that case simply zero-pad the message on the left to make it of the same size as the mask before encryption and decrypt at the receiving end using the same mask and just throw away leading zeroes in the resulting message. As this technique is trivial to implement, it is used in cryptography to convert plain text into binary. Bitwise operators are used in programming (controlling) digital pins on micro-controllers like Raspberry Pi.

3.3 Membership-test Operators

Comparison and membership-test operators have the same precedence. The most frequently used membership operators are “in” and “is”. Both of them are binary operators. The left operand of “in operator” can be any Python object. The right operand is always a collection object or an iterable. Both operands of “is operator” are always user-defined Python identifiers (for which the id() function is defined). If the ‘is operator’ returns True, the == will also return True, but the converse need not be true.

3.3.1
“in” Operator

All built-in sequences like tuples, lists, sets, frozenset and collections.deque support the “in” operator. The statement ‘x in S’ returns True if x is a member of S and False otherwise. Situations arise where the non-membership (whether x does not belong to S) may have to be tested. This is done by adding a “not” before “in” as ‘x not in S’. This is the same as ‘not (x in S)’. A set can hold a heterogeneous collection of data, which are automatically rearranged. Membership of any data could be checked, whether it is present or absent in a set. This operator is valid even for dictionary with an exception that “in” checks if the dictionary contains a key (and not a value).

>>> S = {1, ‘two’, 0b11} >>> S

{1, 3, ‘two’} # 0b11 = 3

>>> ‘one’ in S

False

>>> ‘two’ in S

True

>>> 3.0 in S

True

>>> {1,‘two’} in S

False

>>> {1,3} in S

False

>>> 3.0+0j in S # constant 3

True

>>> ‘Py’ in ‘Python’ True

A substring search is carried out when the key on the left is a string or a bytes type and the RHS is a matching type (bigger string or bytes array). This returns True if the substring is found at any position. As empty string (null string) is a special type of length 0, it always returns True when used on the LHS. This does not hold for null tuples, lists or sets. They can contain sublists as elements. Membership of sublists can also be checked as shown below:

>>> H = [1,[2,3],(4,5),‘six’] # nested list

>>> [2,3] in H

True

>>> (4,5) in H

True

>>> any([2,3] is k or [2,3]==k for k in H)

True

>>> any([2,3] == k for k in H)

True

>>> x = (1,(3+2j),[1,2]) # heterogeneous tuple

>>> 3+2j in x

True

This works for tuples as well because they can also contain heterogeneous elements. Behind the scenes, the “x in S” statement is implemented as “any(x is k or x == k for k in S)”. An application of the in operator is to filter out common elements in a list.

3.3.2
“is” Operator

The “is” operator compares the identity of two objects (or variables) while the == operator compares the stored values. As discussed in Chapter 1, the id() function returns a unique value for each and every visible variable. The “is” operator can be regarded as numerically checking the corresponding id() of the operands. Thus “x is y” is synonymous with id(x)==id(y). Beginners seldom need this operator, but there are situations where one may want to check if two variables point to the same object.

>>> x = 0

>>> x += 1

>>> y = 1

>>> id(x),id(y)

(1809965840, 1809965840)

>>> x is y

True

>>> x == y

True y = 0.5*(2*y)

>>> id(x), id(y)

(1809965840, 3137275214)

Although x and y are totally different variables, they share the same memory location (as evidenced by id() functions). This result may differ among CPython and JPython. What happened above is that CPython “auto-interns” small integer variables, Boolean variables and some immutables so that if two or more variables store the same value, CPython will use a lazy-trick of assigning all of them to the same memory location instead of creating separate variables. After the statement y = 0.5*(2*y), the variable y becomes float type so that it is assigned a new memory location.

>>> x = 3

>>> x += 2 >>> y = 6

>>> y -= 1

>>> z = 2+3

>>> id(x), id(y), id(z)

(1809965904, 1809965904, 1809965904)

If you replace z = 2+3 by z = 2.0+3 (or 2+3.0), CPython will allocate a new memory location for z, but x and y will still point to the same memory. Note however that identical collection objects are always allocated new memory locations.

>>> x = (1 , 2)

>>> y = (1 , 2)

>>> id(x), id(y)

(60397848, 60421584)

>>> x = [False, True]

>>> y = [False, True]

>>> id(x), id(y)

(60246616, 60339544)

Two arbitrary python objects can be compared using the ‘is’ operator. As the built-in function type() returns the type of a Python object, the objects to be compared must be of the same type.

3.4 Summary

Operators are special symbols of one or more characters that denote some operation to be performed on operands. Whereas arithmetic operators return an arithmetic result (like real or complex number), relational operators return a Boolean value (True or False). Different types of operators like unary and binary operators are introduced in this chapter. This includes the assignment operators, comparison operators, bit-operators and logical operators. Bitwise operators operate on large binary strings and are several order of magnitudes faster than other operators. They find applications in cryptography, network communications, and embedded systems development.

4

[image:]

If Statement

	
Chapter objectives

•

Introduce the condition statement

•

Understand various forms of if statement

•

Explore the elif and else branching

•

 Explain nested if and Trailing if statements

•

Discuss short-circuit Evaluation

4.1 Introduction

An if statement in programming languages is the simplest decision-making construct. It is often used in data validation. A condition (also called test expression) terminated by a colon follows the if keyword. It is also called a conditional statement because it works on one or more conditions. Each if statement must be followed by one or more executable statements, which is called the body
 of if statement. It causes a sequence of statements in its body to be executed or skipped, depending on the value of a Boolean expression, a variable or a literal. This means that all statements in its body are executed one-by-one in sequential order when the condition evaluates to True or is non-zero. Its body is entirely skipped and the next statement following the if block is executed when the condition is False or evaluates to zero, or is None. Thus an if statement decides whether to execute a particular code block when a certain condition is satisfied, or not execute it at all when the condition is not satisfied at run time. This is why if statements are called branching
 statements or control-flow
 statements (loops introduced in the next chapter are also called control-flow statements).

Most other programming languages use simple brackets to enclose the condition. Parentheses around the condition is optional in Python. This is because Python if statement (where ‘if’ is in lowercase) is ended by a colon (:) character. Everything in-between the if keyword and the terminating colon is taken as the condition to be tested. Note that the colon character has other uses in Python. For example, it is used as a slicing operator
 in strings, arrays, lists etc.; and as the separator
 of (key, val) pairs in dictionaries. In addition, the : is used with for loops, while loops, function definitions, etc. as discussed later. The colon character can appear as a string or as a slice-operator inside the if condition, but the terminating colon is not a string or a part of a slice. If an if condition is continued on multiple lines and a colon appears as the last character on a line, Python is smart enough to guess if it is a part of a slice or string; or it is the terminating colon of the if condition.

4.2 Simple if Statement

The simple ‘if’ statement is used to execute a statement block using a single Boolean condition. There are four components to it – (i) the if
 keyword (in lowercase only), (ii) a condition
 or a literal, (iii) a terminating colon character, and (iv) a suite of one or more statements with the same indentation (called the body of if statement or if block). The condition checking can either be followed by a uniformly indented block of one or more statements, or semicolon-separated statements on the same line (see below). As mentioned above, if the condition evaluates to True at run-time, the i
f block statements get executed. Hence it is imperative to understand how to form Boolean conditions to write error-free programs.

Example 4.1
 Two ways to convert Celsius to Fahrenheit

Celsius temperatures (C) can be converted into Fahrenheit (F) using either the formula F = C

* 9/5 + 32 or using the formula F = C2 + 32 - C2/10 where C2 = 2*C is double the value of

C. Verify if both formulas produce identical results.

Solution 4.1
 The following program accepts the user input as a string. The eval() function call converts the string value entered by a user into an appropriate type. You could also use float() to get decimal number from a user. Any other non-numeric value will throw a ‘Value error’ and the program will abort.

Program to check two formulas for Celsius to Fahrenheit

C = eval(input(‘Enter Celsius temperature: ’))

F1 = C * 9.0 / 5 + 32

C2 = 2.0 * C

F2 = C2 + 32 - C2 / 10.0

if F1==F2:

 print (‘F1= ’,F1, ‘ F2=’,F2)

Above print statement will execute only when the condition evaluates to True. Some sample outputs are shown below:

Enter Celsius temperature: 36.88

F1= 98.384 F2= 98.384

Enter Celsius temperature: 140 F1= 284.0 F2= 284.0

Enter Celsius temperature: -20 F1= -4.0 F2= -4.0

Enter Celsius temperature: -272 F1= -457.6 F2= -457.6

This shows that both formulas produce identical results. This can also be programmed using walrus operator as

F2 = (C2:=2*c)+32-C2/ 10

4.2.1 Continuing if Statement

An if statement may have to be split into multiple lines in two situations:– (i) when the variable names used in the condition are long (ii) when the condition itself is comprised of complex expressions involving multiple variables or function invocations. In both these situations, one may continue an if statement to subsequent line(s) by putting a line continuation character (\) as the last one, and placing the rest of the conditions on the next line. As Python looks for the terminating colon character to catch the logical end of the if statement, the continued statements need not follow the indentation rule. This means that the continued statements can begin anywhere including the first column of subsequent lines (although this may not look nice). But as soon as the terminating colon character is encountered, Python expects all subsequent statements in the body of if statement to follow the indentation rule (to the right of the column where if statement started). However, if the terminating colon character on a line is immediately followed by the line continuation character, the next line can start anywhere.

Any amount of white-space is allowed before or after the colon in an if statement. Comments can appear after the terminating colon character. But comments are not allowed after the line-continuation character. Consider the following example to check if a number is even or not.

n = int(input(‘Enter a number:’))

if n % 2==0: # check equality

print(‘You entered an even number’)

print(‘Exited if block..’)

or equivalently:

if (n := int(input(‘Enter a number:’))) % 2==0: # check equality

print(‘You entered an even number’)

print(‘Exited if block..’)

Here the remainder operator that returns an integer is used. If a user enters an odd integer, the condition evaluates to False (because n % 2 returns 1 and 1==0 is the condition tested) and the first print statement is not executed. The second print statement is always executed as it is outside the if block.

4.2.2 Indentation Levels

The literal meaning of indent
 is to start or place something off (further away
) from a margin. Thus indented objects are placed after leaving some extra space from its predecessor. As an example, runners in circular race-tracks are indented in their start position so as to make up for the difference in the distance covered by each track. Indentation can be to the left, or to the right in real life
[29]
. Indenting in Python means that program statements on succeeding lines are placed off to the right of current (enclosing) level. It is tacitly assumed in this book that indenting is always uniform (same width) and to the right, and un-indenting is always to the left. First character position (column 1) is the top-level margin for indentation in Python. Here the margin is location specific. Successive indentation moves the margin further and further to the right. This is discussed in the nested-if statements below. The first line that breaks the indentation rule automatically moves the margin to the immediate level to its left. This is called ‘unindenting’. Python remembers the indentation level of each block so that it can automatically detect statements that break each indentation level.

An indentation of 2 spaces is used in the above code for the executable block. All executable statements following an if statement that have the same amount of indentation are grouped together as if the user has put a ‘{’ in the beginning and ‘}’ at the end of such blocks (as done in Java/C++). As indentation level of control-flow statements decides the flow of program execution, a wrong indentation level in Python can result in incorrect program flow resulting in erroneous output. if condition:

indented statement block

to execute if condition is True

#next statement breaks indentation level

As comment lines are ignored by the interpreter, a comment line appearing after an indented block has no effect on unindenting
. In other words, comment lines will not change the scope of an indented block. But since triple-quoted strings are executable statements, they should also obey the indentation rule.

How much to indent is purely arbitrary. Most programmers prefer to indent statements by either 2 or 4 spaces to the right or in units of tabs (say one TAB). Size of the TAB key depends on the editor used. Most editors use a default value of 4 or 8 spaces for each tab key. Both the Notepad and Wordpad editors in Windows use 8 spaces. The Sublime Text editor and Python IDLE use a default value of 4 spaces. Click on Options → Configure IDLE to bring up the Settings dialog window and use the Slider at the bottom left side to slide it to any desired level between 2 and 16. Setting it to a high level (say above 10) will create problems if a program has many nested if statements and loops because it effectively reduces the remaining space on a line where you wish to put program code. But you may use different indentation levels in different blocks, although this practice is highly discouraged. Preferred indentation width is 4 spaces.

The very first executable statement in a Python program must have zero indentation (meaning that it must start at column 1). Thus ‘un-nested if statement’ must also start at column 1 (an exception is the trailing if statement discussed in page 4-14). But ‘if statement’ itself can be indented if it is inside a loop or another if statement.

4.2.3 Forming Conditions

It was mentioned in the last chapter that the most often used relational operators are ==, >
, >
=, <
, <
= and !=. All of these have the same priority and it is lower than the priority of arithmetic, shifting and bitwise operators. This has the implication that arithmetic expressions if any, in a condition are evaluated before applying the relational operator. Among these, the == operator tests for equality of two expressions; or an expression and a constant. Note that strict equality may not hold when floating point numbers are compared. Hence it is often used with integer expressions, character or string expressions. These operators can also appear multiple times in a conditional expression as shown later. Following are some examples of simple if
 conditions.

if m == 5: # check equality of a variable and a constant

print(‘m is 5 ’)

if m != n: # check if two variables are unequal

print(‘m=’,m,‘ n=’,n,‘ are unequal’)

YorN = eval(‘Enter Y or N’)

if YorN == ‘y’ or YorN == ‘Y’: # var. and const. literal

print(‘You entered Y’)

The condition can be either variable==expression or expression== variable. Thus you can write the above as

if 5 == m: # equality of an int to a variable

print(‘m is 5 ’)

YorN = eval(input(‘Enter y or n’))

if ‘n’ == YorN: # equality of a char to a variable

print(‘You entered n’)

or use walrus operator to accept input and test it on the same line. There are no hard-and fast rules on where the constants should appear. Majority of programmers use a variable (or expression) on the left and a constant or expression on the right of relational operators. All of the examples above are “value comparisons” because they compare the value of a variable or expression with another. Not only relational operators, but membership test operators (in and not in), identity operators (is and is not), function calls etc. can also be used on if statements.

p = 5

q = p

if p is q: # check equality

print(‘They are auto-interns’)

A condition can involve variables, constants, expressions, objects and function calls. One special case is the use of input() command on an if statement:–

import sys

if input(‘Enter y to continue..’) != ‘y’:

 sys.exit(-1)

This single statement is equivalent to the following statements:

import sys

ans = input(‘Enter y to continue..’)

if ans != ‘y’: sys.exit(-1)

It is assumed in the rest of the book that an import sys statement precedes whenever sys.exit(-1) is encountered. When an if statement body is a single executable line or function call, it can appear on the same line as follows:

if marks < 0 or marks > 100: print(‘Invalid marks’,marks)

When the body of an if block has multiple statements, all of them can appear as semicolon separated on the same line. A semicolon after the last executable statement is optional. People coming to Python from other programming languages like Java, C++ etc. tend to put semicolon at the end of executable statements. You may also put semicolons at the end of executable statements in indented if blocks, which are simply ignored. Semicolons are mandatory only when multiple statements appear on a line.

4.3 Variants of IF Statement

The if-statement in Python can take a variety of forms. In addition, the if-statement can appear on assignment statements or for-loops as discussed below. The simple if statement discussed above is used to check if a condition holds or not (and you are not concerned when the condition is false). Python has a special keyword “pass” which means “do nothing” which can be used on the else branch if needed in such situations.

4.3.1 IF Statement with else Branch

Sometimes Python may have to execute one set of instructions when a condition is true and another set when the condition is false. The else construct allows us to branch to the second set of instructions when the matching if condition evaluates to False.

n = eval(input(‘Enter a number or expression:’))

if n<0: print(‘Result is negative’)

else: print(‘Result is positive’)

A user may enter either a literal constant or an expression. This prints ‘Result is negative’ when n is less than zero. Otherwise it prints ‘Result is positive’.

It is the common practice to split an if statement into multiple lines when there are more than one executable statements in its body. The else branch of an if statement cannot appear on the same line. Whenever an if statement is coded with one or more statements on the same line, the matching else statement must appear immediately below with the same indentation level as the if statement. Otherwise you get an indentation error.

import sys

year = eval(input(‘Enter year (yyyy) format:’))

if year<1000 or year>9999:

 print("Needs 4 digit year");\

sys.exit(-1)

month = eval(input(‘Enter month (1 to 12)’))

if month<1 or month>12:

 print("Wrong month");sys.exit(-1)

if month == 2:

 days = 28 ;

if (year%4==0 and year%100!=0) or year%400==0:

 days = 29

else:

if month == 4 or month == 6 or month==9 or month==11:

days = 30

else:

days = 31

print(‘Month ’,month,‘of year’,year,‘has’,days,‘days’)

The first two if statements validate data
[30]
. Number of days in February is then set to 28. This is reset to 29 only for leap years. These two statements are indented by 2 spaces. The else branch has another if block (called nested if blocks discussed below) which is indented by 2 spaces. Each nested if statement indents its own if-elif-else blocks and is indented by enclosing if blocks. Multiple executable statements (other than if statements) can also appear on the same line as else:
 if they are separated by semicolons. But if an else branch has another if statement, it must start on a new line.

Example 4.2 (
Calories burned on a treadmill)
 The calories burned on a treadmill is approximately given by

Cal = (A * age_in_yrs − B * weight_in_kg + C * pulse_rate − D
) ∗ t/
4.
184

where t is the time in minutes. Input unknown variables and write Python statement to print the calories burned.

Solution 4.2
 As the multipliers for males and females are different, the user is prompted to enter the gender.

Table 4.1: Energy Burning Multipliers for Males and Females in Treadmill

[image:]

	
	
A

	
B

	
C

	
D

	
Male

	
0.2017

	
0.09036

	
0.6309

	
55.0969

	
Female

	
0.074

	
0.05741

	
0.4472

	
20.4022

gender = input(‘Enter m for male, f for female’)

age_in_yrs= float(input(‘Enter age in years: ’))

weight_in_kg= float(input(‘Enter weight in kg: ’))

pulse_rate= float(input(‘Enter pulse rate: ’))

t = float(input(‘Enter time in minutes: ’))

if gender==‘m’ or gender==‘M’:

A, B, C, D = 0.2017,0.09036,0.6309,55.0969

else:

A, B, C, D =0.074,0.05741,0.4472,20.4022

Cal = (A * age_in_yrs -B * weight_in_kg+C *\ pulse_rate-D)*t/4.184

print(‘Calories burned is’, Cal)

Data validation is skipped in the above example. It accepts user input and calculates the calories burned using the formula and prints it out.

Program modification is easier when if statement blocks are spread across multiple lines. Hence it is recommended that all if blocks must appear on separate lines with proper indentation to demarcate the body of if and else branches as shown below.

Program to check two formulas for Celsius to Fahrenheit

C = float(input(‘Enter Celsius temperature:’))

F1 = C*9.0/5+32

F2 = (C2:=2.0*C) + 32 - C2/10.0

if F1 == F2:

print (‘F1= F2=’,F1)

else:

print (F1,‘ <> ’,F2)

The above program works fine for integers and most floating point numbers. But if you input 37.7777 as Celsius temperature, F1 and F2 are respectively 99.99986 and 99.99986000000001 (which differs at the sixteenth decimal place). As these are different for a computer, it will take the else branch and print the message that they are different.

As shown above, if statements are quite often used for input data validation and range checking. Input may be corrupted due to keystroke errors, data transmission errors or many other reasons. The following program checks if the user entered temperature is between 0 and 100.

C = float(input(‘Enter Celsius temperature:’))

if 0 <= C and C <= 100:

 F = 9.0 / 5 * C + 32

print ("Fahrenheit temperature=",F)

else:

print (‘Input %f is not in 0 to 100 range ’ % C)

Here the else branch prints a warning message to the user (the value in variable C is printed using %d as format as explained later). There is another way to program the same logic. Consider the expression

if C <0 or C > 100: # validate data

 print (‘Input %f is not in 0 to 100 range ’ % C)

else:

F = 9.0 / 5 * C + 32

print ("Fahrenheit temperature=",F)

Above code checks two conditions using the ‘or’ operator. Both programs are correct. If majority of our data values are in the proper range, the first version will run faster.

4.3.2 IF statement with elif branches

The if - else construct creates only two branches – a True branch followed by a False branch. What if three or more branchings are needed in a decision statement?. The elif: construct allows us to create as many branches to an if statement as needed. Should an else branch appear in such a construct, it must be the very last one. In other words, in if - elif construct, an else cannot be placed before an elif.

if condition1: block of 1 or more statements

elif condition2: block of statements satisfying condition 2

elif condition3:

block of statements satisfying condition 3 else:

statements that satisfy none of the above conditions

<next statement>

The elif keyword is an abbreviation for “else if”. It is used only when there are 3 or more branchings. There could be zero or more elif statement blocks in an if statement and the last else branch is not compulsory. This means that you can have an if block followed by any number of elif blocks. Python checks the conditions in an if-elif construct from top to bottom. When one of the conditions is satisfied, the corresponding block is executed and the rest of the blocks are skipped.

Example 4.3 (Letter Grade from Marks)
 The grades in a course are determined as follows: marks >
=95 = A+, 90-94 = A, 85-89=B+, 80-84=B, 75-79=C+, 70-74=C, 65-69=D+, 6064=D, <
60=F. Write a program to input a mark between 0 and 100 and print out the letter grade.

Solution 4.3
 As the marks is assumed to be an integer, the following input statement converts the user-entered value into an integer, and stores it in a variable ‘marks’.

import sys marks = int(input(‘Enter marks between 0 and 100:’)) if marks <0 or marks > 100:

print(‘Marks %d is not between 0 and 100’ % marks) sys.exit(-1)

if marks >= 95: print(‘It is an A+’)

elif marks >=90: print(‘It is an A’)

elif marks >=85: print(‘It is a B+’)

elif marks >=80: print(‘It is a B’)

elif marks >=75: print(‘It is a C+’)

elif marks >=70: print(‘It is a C’)

elif marks >=65: print(‘It is a D+’)

elif marks >=60:

print(‘It is a D’)

else:

print(‘It is an F’)

print()

Marks are assumed to be integers in this example. This prints the letter grade if the user enters an integer in the range 0 to 100. Note that each of the elif statements demarcates a separate non-overlapping interval. The last ‘else:’ branch takes care of the rest of the unexplored ranges (ie. marks <
 60). The elif blocks in this example cannot be exchanged as the logic is built from top-to-bottom.

Multiple conditions can be combined in an if statement using logical operators (not, and, or). These operators do not have symbolic equivalents as in other languages like Java or C++ (where not is !, and is & and or is |). The not
 operator can be inserted in front of any Boolean expression to change the value from True to False and vice-versa
. This is especially useful in condition testing using list or set membership.

Example 4.4 (Galaxy Classification)
 Suppose a function (called galaxy type(galaxy)) is available for galaxy classification as Almost Circular (C), Elliptical (E), Lenticular (L), Spiral (S), Irregular(I), or Unclassifiable (U). When you pass the image of a galaxy as argument to this function, it returns one of the abbreviations. Write the Python code to print the description using the code returned by the function.

Solution 4.4
 Assume that the image is read from the disk and is stored in a variable aGalaxy. The first line below is a function call that stores the result in the variable what type.

what_type = galaxy_type(aGalaxy)

if what_type == ‘C’:

 print(‘‘It is Almost Circular’’)

elif what_type == ‘E’:

print(‘‘It is Elliptical’’)

elif what_type == ‘L’:

print(‘‘It is Lenticular’’)

elif what_type == ‘S’:

print(‘‘It is Spiral’’)

elif what_type == ‘I’:

print(‘‘It is Irregular’’) else:

print(‘‘It is Unclassifiable’’)

As each of the conditions have a string literal on the RHS, the function galaxytype() must return a capital-case string literal for this program to work. The RHS literal can be given in single quotes or double quotes. The elif blocks in this example can be exchanged as they are mutually exclusive.

Example 4.5 (Doubling of Recurring Deposits)
 The accumulated amount in a recurring deposit with initial amount P, and compound interest rate r is given by the formula A = P*(1+r/100)n
 where n is the number of years. Write Python program to find in how many years the initial amount doubles.

Solution 4.5
 The question is to find the value of n for which A = 2P. This may not become exactly equal for some values of r. Hence the program needs to find the minimum value of n for which the relationship A>
2P holds. First rewrite the above expression as A/P = (1+r/100)n
. Now take log and separate out the n term to get

n
 = log(A / P)/
log(1 + r/
100)

(4.1)

As A>
2P, one can substitute A = 2P (or A/P =2) to get a fractional value for n. This gives

n
 = log(2)/
log(1 + r/
100)

(4.2)

This is a function of r only.

import math import sys

##

Program to find the time needed for money deposited in

a recurring deposit to double
#

P = float(input(‘Enter principal amount (>0) : ’))

if P <= 0:

print(‘Wrong amount %.2f entered’ % P);

sys.exit(-1)

r = float(input(‘Annual interest rate in percentage:’))

if r > 0 and r < 100:

n = math.log(2) / math.log(1+r/100)

frac_part = n - int(n)

years = n - frac_part

months = math.ceil(frac_part*12)

if months == 12:

 months = 0

years += 1 # increment year by 1

print(‘Your money doubles in’,int(years),‘years’,end=‘’)

if months != 0: # don’t print 0 months

 print(‘ and ’,months,‘ months’)

else: print()

else:

print(‘Wrong interest rate’,r,‘%’)

The import math statement is needed as the log() and ceil() functions in it are used. Interest rate entered as a fraction is converted into a percentage first. Separate the integer and fractional parts after computing the value of n (which can be a fraction). To report the answer in terms of years and months, multiply the fractional part by 12 and take the ceil (next higher integer). On occasion, this could return 12, in which case increase the years by one and reset months to zero. The first print statement has an end=‘’ option on it to keep the cursor on the same line. Move the cursor to the next line if the month is zero. This is done by a print() statement in the else branch.

4.3.3 Compound Conditions

Multiple relational operators can also be used in if, else and elif branches. Consider three variables x,y,z each of which should lie in [0,5] range. In addition, suppose x,y,z must be in increasing order. All of these conditions could be checked on a single statement as:

if 0 <= x < y < z <= 5:

Any number of such conditions can be chained as a compound condition which can substantially reduce the Python code.

Example 4.6 (Roots of quadratic equations)
 Write a Python program to find the roots of a quadratic equation ax
2
 + bx
 + c
 = 0 where a,b,c are real numbers and a =0. 6

Solution 4.6
 The roots are given by (−b
 ± sqrt(b
2
− 4ac
))/
(2a
), which can be imaginary, equal or real depending on the sign of b
2
−4 ac.

import sys

import math, cmath

a = float(input(‘Enter coefficient of x*x: ’))

if a == 0:

print(‘‘Equation is not quadratic for a=0’’)

sys.exit(-1)

b = float(input(‘Enter coefficient of x: ’))

c = float(input(‘Enter constant coefficient: ’))

d = b * b -4.0 * a * c # Discriminant

if d == 0.0: # discriminant is zero

 print(‘Roots are equal, each= ’,-0.5*b/a)

elif d < 0:

print (‘Roots are imaginary.. ’)

temp = cmath.sqrt(d) # complex square root

r1 = 0.5 * (-b + temp)/a

r2 = 0.5 * (-b - temp)/a

print (‘Complex roots are ’, r1, r2)

else: # discriminant is positive

temp = math.sqrt(d)

r1 = 0.5 * (-b + temp)/a

r2 = 0.5 * (-b - temp)/a

print (‘Roots are %.6f and %.6f ’ % (r1, r2))

The walrus assignment can also be used as follows:

r1, r2 = 0.5 * ((temp := math.sqrt(d))-b)/a, 0.5 * (-b - temp)/a

This example has one elif branch and one else branch. Note that statements are indented by the same amount in each branch, which is not a requirement. Python considers each branch separately. Hence different blocks could be indented differently if we so wish. But uniform indentation improves readability. The import statement is used to import math and cmath modules because the discriminant could be positive or negative. The cmath module is used for complex arithmetic. Complex roots are found when the discriminant is negative. Some sample output is shown below:

Enter coefficient of x*x: 1

Enter coefficient of x: -6

Enter constant coefficient: 9

Roots are equal, each= 3.0

Enter coefficient of x*x: 3

Enter coefficient of x: 5

Enter constant coefficient: -12

Roots are 1.33 and -3.00

Enter coefficient of x*x: 1

Enter coefficient of x: 3 Enter constant coefficient: 7 Roots are imaginary..

Complex roots are (-1.5+2.179449j) (-1.5-2.179449j)

One could move “import cmath” line to “elif d<
0:” block and “import math” line to “else:” block, if needed. In addition, the statements to find r1 and r2 are exactly identical although the value of temp variable in one block is a complex number and in the other block is a real number. The above code can be modified as follows:

same lines as above goes here.....

if d==0: # discriminant is zero

 print (‘Roots are equal, each= ’,-0.5*b/a)

else:

if d<0:

import cmath

temp = cmath.sqrt(d) # complex square root

else: # discriminant is positive

import math

temp = math.sqrt(d)

Now temp is either real or complex

r1 = 0.5 * (-b + temp)/a

r2 = 0.5 * (-b - temp)/a

print (‘Roots are ’, r1, ‘ and ’, r2)

The round-off error will be more when roots are very close to zero or when the discriminant is small (roots are almost equal). Here 3 separate input commands are used. There are other ways to get multiple values from a user. These are given in later chapters.

4.4 Short-circuit Evaluation

When an if statement or a loop condition involves multiple logical expressions, they are normally evaluated from left to right (associativity in action)
[31]
. If there are k logical sub-expressions, each of them need not be evaluated. Python skips the rest of the expressions when the first logical sub-expression evaluates to False in logical and expressions, because the overall result is False (since False and’ed with anything is False) and there is nothing to be gained by evaluating the rest of it. Similarly if a sub-expression is True in a logical or expression, the rest of the statement is skipped because the overall result is True. This is called minimal, lazy or short-circuit evaluation.

Definition 4.1
 Short-circuit evaluation is a technique used in some programming languages to speed-up program execution by skipping suffix sub-expressions when a prefix sub-expression suffices to determine the truth-value of an entire long condition or Boolean expression.

It is usually implemented as an optimization step by a compiler or interpreter. It can slightly speed-up a program execution when large conditions appear inside long-running loops (say of the order of thousands) because the saving in time adds up linearly for each iteration. It is also used by some of the database query processors for query-optimization by rearranging some conditions in an SQL query. Consider the expression

P = True and X or Y

As and has higher priority than or, this will return X when X is not Null and Y otherwise. Note that Y is not evaluated when X is True or non-zero (refer the table 4.2). It is assumed here that X and Y are simple variables or arithmetic expressions. What if they are function calls? As the overhead of function invocation is more, execution time could be saved if such function calls are skipped. That is exactly the idea behind short-circuit evaluations. Another advantage

Table 4.2: Short-Circuit Evaluation

	
Expression

	
Result

	
Evaluation detail

	
True and True

	
True

	
Both evaluated

	
True and False

	
False

	
Both evaluated

	
False and True

	
False

	
Only first evaluated

	
False and False

	
False

	
Only first evaluated

	
True or True

	
True

	
Only first evaluated

	
True or False

	
True

	
Only first evaluated

	
False or True

	
True

	
Both evaluated

	
False or False

	
False

	
Both evaluated

of short-circuit evaluation is that when one of the logical sub-expressions towards the end of a conditional expression is likely to throw an exception, premature termination of the condition can preclude a program crash. Such side effects will remain hidden and may not be a concern unless they modify the type or value of a variable. Unaware of the pitfalls, some novices move most frequently encountered tests to the beginning of a condition as follows:

if (costlyTest1() or costlyTest2() and costlyTest3()):

hoping that it will speed up program execution. This may not be the desired order of evaluation if the first few conditions are likely to throw exceptions. A statement of the form ‘if x == k or y / (x-k) == 2:’ won’t throw an exception because the second one is skipped when the first condition is True, and the denominator of second sub-expression is non-zero when first one is False. Consider the code:

if x>0 and math.sin(1/x):

y = x != 1 and x/(1-x) <= 100

do something else

When x is zero, math.sin(1/x) will throw “ZeroDivisionError: division by zero”. In this case, if x>0 evaluates to False so that short-circuit evaluation will skip the rest of the statement since False and anything is False. The next statement has a Boolean expression on the RHS. As x != 1 condition evaluates to False when x is 1, the sub-expression that follows it is not evaluated, thereby avoiding further exceptions. When an if condition or a Boolean expression has sub-expressions that are likely to throw exceptions, it is preferable to move such sub-expression(s) towards the end to reduce the chances of a program crash. Similarly, some of the library functions like size() throws exceptions. Hence a Boolean condition of the form

if (L != None or L.size() > 0):

print(L)

ensures that exceptions are not thrown.

4.5 Conditional (Trailing) IF statements

Python has a special form of if statement that can appear at the end of an executable statement. This is called trailing if statement. It can reduce the size of program code and is used in lambda functions (chapter 8).

x = n if n > 0 else - n

This is an abridged form of the expanded statement

if n > 0: x = n else:

x = - n

Note that there is no colon either after the if condition or after else keyword in the trailing if statement; and that else is followed by a single value or expression (that will be assigned to the variable on the LHS). Moreover, the elif keyword is not allowed on this kind of if statements. Parentheses around the condition is optional but will improve readability.

max = a if (a > b) else b

In both of the examples above, the type of data stored in the LHS variable is the same (int or float). Now consider the following example, where the LHS variable stores either a float or a string.

result = a/b if (b != 0) else ‘Error’

This concept can be extended such that the variable on the LHS can be assigned any of the multitude of data types. Multiple range checks can be combined using logical operators as in the following piece of code:–

month, year = 11, 18 if not 1<= month <= 12 or\

not 1000 <= year <= 9999:

print (‘Please enter valid month and year’)

else: print (‘ok’)

See page 5-3 in Chapter 5 for more discussion.

Example 4.7 (Triangle Formation Checker)
 Write a program to enter 3 numbers and check if they form the sides of a triangle.

Solution 4.7
 Let the numbers be x, y, z. They will form the sides of a triangle if x+y>
z, y+z>
x and z+x>
y.

import sys

x = float(input(‘Enter side 1 of a triangle:’))

y = float(input(‘Enter side 2 of a triangle:’))

z = float(input(‘Enter side 3 of a triangle:’))

if x<0 or y<0 or z<0:

print(‘Negative numbers not allowed’);

 sys.exit(-1)

if x+y <= z or y+z <= x or z+x <= y:

 print (‘Triangle not possible’)

else:

 print (‘Triangle possible’)

There are simpler ways to check these conditions using a List which is discussed in a later chapter. Sometimes different values may have to be assigned to a variable depending on a condition.

n = int(input(‘Enter an integer’))

if n % 2:

msg = ‘Odd number’

else:

msg = ‘Even number’

This can be coded in Python using a single statement:

msg = ‘Odd number’ if n % 2 else ‘Even number’

As n% 2 returns 0 for even integers and 1 for odd integers, the above if statement stores ‘Odd number’ in msg when n is odd (remainder is 1). The general format of conditional if statement is as follows:

var = expr1 if condition else expr2

Python uses “look-ahead” to see if there are trailing if statements on a line before the EOL. The first condition is then evaluated and expr1 is assigned to the variable on the LHS if this evaluates to True. Otherwise expr2 is assigned to the LHS variable. Normally, both expr1 and expr2 are of the same type (like strings or integers). But as Python is dynamically typed, they can also be of different types.

An advantage of this statement is that it can appear in place of a function parameter, which will be evaluated when the function is called.

x = math.pi/4

print(math.sin(x) if 0 <= x <= 2*math.pi else math.nan)

0.70710678

Here math.nan represents a special “not-a-number” value.

4.5.1 Multi-variable Decisions

Most of the previous examples used a single variable for decision making. Some practical applications may have to use different variables or function calls in different branches of an if statement as illustrated below:

import sys

MINBAL = 1000

username = input(‘Enter user name:’)

password = input(‘Enter password:’)

if not isValid(username):

print(‘‘Wrong user name entered’’)

sys.exit(1)

elif not isValid(password):

print(‘‘Wrong password entered’’)

sys.exit(2)

elif balance < MINBAL:

print(‘‘You have insufficient balance’’)

sys.exit(3)

else:

amount = float(input(‘‘Enter withdrawal amount:’’))

if amount > balance:

print(‘‘You have an overdraft’’)

sys.exit(4)

else:

print (‘‘Withdrawal permitted.")

Here different variables are used in making various decisions. The isValid() is a user-defined function (chapter 8). There is a natural flow from top to bottom in this code. If the credentials (like user name and password or PIN) submitted by a user are valid, one may proceed to check the balance in the account. If there is insufficient balance, the program exits after printing a message. Otherwise the withdrawal amount need to be checked whether it is less than the current balance.

4.5.2 Nested IF statements

If statements may be nested to any depth. Here ‘nesting’ means the presence of ‘if statements’ within if, elif or else statements. Each such nested statement is considered as a block, and must be indented to the right from its parent block. Python senses the inner ones from surrounding ones using the indentation level. This can sometimes become a problem when an if statement spans multiple screens as in the following example on postal zip codes. Nevertheless, Python code is much neater than corresponding code in other languages like C++ and Java that use curly brackets.

Example 4.8 (Postal Zip Code of Richmond)
 There are more than 100 places around the world named ‘Richmond’. Write a program to accept a country code (2 chars as used in internet addresses), and a state/region code, if applicable, and print out the postal zip code of ‘Richmond’ in that country.

Solution 4.8
 The following program is a partial solution as there are too many places to be included. This program is best coded using dictionaries as explained later.

’’’ Program to print the postal ZIP code of

‘‘Richmond’’ in various countries using country code and state abbreviation code.’’’

import sys

country = input(‘Enter the country code (2 chars): ’)

if len(country) != 2:

 print(‘Country code must be 2 chars long.’)

 sys.exit(-1)

state = input(‘Enter the state code (2 chars): ’)

if len(state) != 2:

print(‘State code must be 2 chars long’)

sys.exit(-1)

Capitalize codes if not already so

country = country.upper()

state = state.upper()

msg = ‘‘Zip code of Richmond,"

if country == ‘US’:

if state == ‘AL’: print(msg, ‘Alabama is: 36761’)

elif state == ‘CA’: print(msg, ‘California is: 94801’)

elif state == ‘IL’: print(msg, ‘Illinois is: 60071’)

elif state == ‘IN’: print(msg, ‘Indiana is: 47374’)

elif state == ‘KS’: print(msg, ‘Kansas is: 66080’)

elif state == ‘KY’: print(msg, ‘Kentucky is: 40475’)

elif state == ‘MA’: print(msg, ‘Massachusetts is: 01254’)

elif state == ‘ME’: print(msg, ‘Maine is: 04357’)

elif state == ‘MN’: print(msg, ‘Minnesota is: 56368’)

elif state == ‘OH’: print(msg, ‘Ohio is: 43944’)

elif state == ‘TX’: print(msg, ‘Texas is: 77406’)

elif state == ‘VA’:

print(msg, ‘Virginia is: 23218’)

else:

print(‘Unfound in USA. Please look up online..’)

elif country == ‘CA’: # Canada

if state == ‘AL’: print(msg, ‘Alberta is: T2T’)

elif state == ‘BC’: print(msg, ‘British Columbia is: V6V, V7E’)

elif state == ‘QC’:

print(msg, ‘Quebec is: J0B’)

elif state == ‘ON’:

print(msg, ‘Ontario is: K0A’)

elif state == ‘NS’:

print(msg, ‘Nova Scotia is: B5A’)

else:

print(‘Unfound in Canada. Please look up online..’)

elif country == ‘AU’: # Australia

if state == ‘VIC’:

print(msg, ‘Victoria (AU) is: 3121’)

rest of the countries

The string comparison is used in the above example because the user input is string type. Other type comparisons (like int, float, complex etc) could also be used. It must be kept in mind that float comparisons can sometimes give erroneous results due to round-off errors as explained earlier. Nested if statements are quite often used in tax computations, insurance premium calculations, loan repayment calculations, fare calculations (like railway tickets that have different rates for kids, adults and seniors). More applications of nested if statements can be found in the exercise.

4.6 Summary

The if statement and its variants are discussed in this chapter. They use a condition to decide whether to execute a block of subsequent statements or not. Python resorts to short-circuit evaluation with an intend to speed-up execution when this condition comprises of multiple logical sub-expressions. The if-else construct executes one block when the condition is True and another block when it is False. An extension of this is if-elif-else construct that results in multiple branching. Nested-if statements are those in which other if statements within outer if statements. Another variant is trailing if statement that can appear on executable statements.

5

[image:]

Loops

	
Chapter objectives

•

Introduce for
 loops

•

Understand various ways of looping

•

Distinguish for
 and while
 loops

•

Discuss loop termination and skipping

•

Explain enumeration in loops

•

Describe nested loops

•

Explore Zip command in loops

5.1L oops in Python

As the name implies, loops are program constructs to repeat one or more instructions that follow. These instructions that are part of each loop is called the body of the loop. The loop body may comprise of any number of one or more instructions including function calls. There are two kinds of loops in most programming languages. These are called for loop and while loop. Both of them are described in detail below. The primary difference between them in Python is that a while loop uses a condition, whereas a for loop uses an iterator. This has the implication that the number of times a for loop body is going to be executed is usually known in advance, whereas this may not always be known for while loops. Body of the loop (statement block to be repeatedly executed) is either given as an indented block or can be given as comma separated statements on the same line. Increasing levels of indentation are needed in nested loops. Python will throw an exception if this rule is violated. Each iteration of the loop body is called a pass of the loop. Thus nth
 pass refers to the nth
 iteration of the loop. The pass number (iteration count) can easily be known for `for loops’ either directly or indirectly as shown below. This information is usually unknown for while loops unless a separate counter is used to keep track of the iteration number, or when the loop condition itself is formed using a count variable.

5.1.1 Loop Condition

Simple while loops use a single condition at the beginning of the loop to decide whether or not to execute its body. This condition is given as a Boolean expression for while loops as

5 -1

in the case of if statements discussed in the previous chapter. Execution control comes back to the beginning of the loop after each successful pass. The next pass of while loop starts if the condition is still True. Otherwise program will resume with the executable statement, if any, that follows the loop body. Loop conditions can be formed using one or more logical sub-expressions or Boolean functions. Python uses the short-circuit evaluation technique discussed in the prior chapter to speedup the program. As Python interprets non-zero values as True, any non-zero expression or literal (or a function that returns a nonzero value) can also be used in lieu of a logical expression. This may result in infinite-loops described in page 5-16. Care must be taken to ensure that such loops are terminated using break or sys.exit() statements within its body. This is called conditional exit.

5.2 For Loops

This is the simplest loop in Python. It simply iterates over a known set of elements that are either stored statically (as in lists, tuples or dictionaries) or other iterable data structures, or generated dynamically (by system function calls like range(), xrange() etc.) or user-defined functions that create iterables. The general syntax is:

for var in Collection:

indented body of for loop

else:

<indented block of statements>

where Collection is an iterable object and the body of the loop is indented properly and uniformly. In plain English this can be stated as “For each item ‘var’ in the iterable collection, execute the body of the loop one by one and branch to the else block when done”. A for loop need not have an else block, but it is useful in some situations as shown below. Although var is a simple variable in most applications, it could also be a tuple as well.

Suppose there is a list defined as Drinks = [‘Coke’,‘Pepsi’,‘Fanta’,‘7 Up’]. A for loop can be used to iterate over this list:

for x in Drinks: print (x)

Some important points to note are as follows:

1.

‘for’, ‘in’ and ‘else’ are in lowercase only

2.

the for-loop variable follows immediately after the ‘for’

3.

Any amount of whitespace is allowed around the colon

4.

The body of the loop is not executed if Drinks is empty

5.

A “TypeError: object is not iterable” is thrown if Drinks is not iterable

6.

 Here x is a generic variable which takes successive values in the list Drinks. Hence the memory address of x will keep on changing through each pass of the loop (x is not like the for loop variable of other languages like C, C++, Java, PHP etc). There is no index setting, bound checking, or index incrementing/decrementing as in other languages

7.

 Body of a for-loop must be indented at least one space to the right from the indentation level of ‘for’ keyword uniformly

8.

 Python interpreter will automatically indent the for-loop body when the program is typed in the command prompt (>>>
), but a blank <
Enter>
 must be given to indicate that the for loop body is finished, or succeeding statements after the for-loop must be un-indented (to the left) by proper amount.

9.

 The for-loop variable should not be changed within the body of the loop. If it is modified within the for-loop, it will result in a new local variable that shadows
 the original, but the original variable will vary independently through subsequent passes. This is more of a problem in nested for-loops.

10.

 At most one else branch can appear in for loops. This must follow the for-loop body and should have the same indentation level as the matching for statement.

11.

 Any number of statements can appear in the else branch too, including other for and while loops, and independent if statements. These are indented to the right by an appropriate amount from where else appears.

12.

 An else branch, if it exists, will be executed even if the loop-body is never entered (say the Drinks in the above example is empty).

The following program was run using 64 bit Python. The memory addresses printed will of course differ on your system.

for x in range(5): # original x is int

print(‘Original id=’, id(x),‘x=’,x)

x -= 5 # this x is a new variable

print(‘and new id =’,id(x),‘x=’,x) # new variable

Output:

Original id= 140707662386176 x= 0

and new id = 140707662386016 x= -5

Original id= 140707662386208 x= 1

and new id = 140707662386048 x= -4

Original id= 140707662386240 x= 2

and new id = 140707662386080 x= -3

Original id= 140707662386272 x= 3

and new id = 140707662386112 x= -2

Original id= 140707662386304 x= 4

and new id = 140707662386144 x= -1

The output shows that there are two variables with the name x and that the memory address of each of them keeps changing during different passes.

Python guesses the type of the for-loop variable using the values in the iterable. As range() function (page 5-8) always returns an integer, it can be used as index to collections like lists, tuples or used with strings. A question that beginners ask is “Can we use trailing if statement (Chapter 4, page 4-14) with short-cut operators like +=, *= etc.?”. Of course you can, so long as the type returned by each branch of the if statement is compatible with the LHS type. The HL in the following example is a heterogeneous list. The += operator is followed by either an int 5 or a string literal ‘5’. As + is overloaded as a string concatenation operator in Python, it will append a ‘5’ to ‘3.141’ to get ‘3.1415’. This produces the following output in 64 bit Python (where the actual addresses will differ on your system).

HL = [123, 0b1011, ‘3.141’]

for x in HL: # Heterogeneous List

 print(‘Original id=’, id(x),‘x=’,x)

 x += 5 if type(x) is int else ‘5’

 print(‘and new id =’,id(x),‘x=’,x) # new variable

Original id= 140707662390112 x= 123 and new id = 140707662390272 x= 128

Original id= 140707662386528 x= 11 and new id = 140707662386688 x= 16

Original id= 1863692196248 x= 3.141 and new id = 1863690920600 x= 3.1415

An astute reader will notice a big difference in the memory addresses of numbers and strings. This is because they are allocated in different parts of memory locations (stack vs heap) as discussed in subsequent chapters.

The ‘in’ keyword is an operator which fetches successive elements from Drinks and assigns it to the temporary variable x (which is undefined once the loop completes). Thus x iterates over each and every element in Drinks. This type of loop is also called “for-in” loops for short (for-in range, for-in list, for-in dict etc).

As in the case of if statements, the body of for loops can be given either on separate lines with the proper indentation (which is the preferred method) or can appear as semicolon separated statements on the same line. This may be useful in the Python command prompt, but it is not recommended in scripts saved to files. As an example, consider the following statements.

for x in [‘Coke’,‘Pepsi’,‘Fanta’,‘7 Up’]: print(x)

An advantage of this kind of for loop is that the “array index out of bounds” problem that plague C/C++ programmers seldom arises because for loop variable takes predetermined values only. Unfortunately, Python does not have C/C++ style “for(int i=0; i<
n; i++)” type looping. Either stick with the above type of looping or use the range function described in page 5-8 below. Care must be taken while traversing through long Python loops of mutable objects. Python evaluates the expression list just once to generate an iterator. This returns elements in the same order returned by the iterator. If some other process or thread immediately updates the expression list, it won’t be reflected in the current for loop. Same problem occurs with deletion of mutable sequences. A solution is to make a temporary copy of mutable sequences, and use that copy to iterate over the list. Then compare the temporary copy with the original at the end of the loop to see if the original was modified or not. Single threaded programmers need not worry about such a possibility.

The iterables in the collection are quite often of the same type (like all integers, floats or strings). Consider the following example where all items are integers:

L=[3,5,2,1,7,9] sum = 0 for x in L:

sum += x else:

print ("Average is ", float(sum)/len(L))

There exist easier ways to find the average without explicitly looping through the elements using a list. An else: branch is used in the above loop. This branch is taken when there are no more items in the returned iterator (it will not be executed if one breaks out of the loop as stated below). As there is one statement each in the body of for loop and else branch, these statements can also appear on the same line as follows:

L = [3,5,2,1,7,9]

sum = 0

for x in L:

 sum += x

else:

 print ("Average is ", float(sum)/len(L))

5.2.1 Exiting Loops

Loops can be exited prematurely using the ‘break’ statement
[32]
. As the name implies, it is used to terminate the enclosing loop (for loop and while loop). If a break statement is executed inside the body of the for loop, it will exit the loop including the else block. A break statement cannot appear in the else block (Python will throw ‘SyntaxError: break outside loop’), as also a continue statement (both of them works within loops only). If a break statement is associated with an ‘if condition’, there cannot be any more executable statements following the break (and within the if block) as they are ‘unreachable’. But the same if statement can have an else branch without problems. This rule applies also when a break statement appears within an enclosing if block (with some prior executable statements before the break). Although not a requirement, a break statement should preferably be preceded by a condition to be meaningful (or it should be inside an if or else block within the loop body). The loop is exited when the condition evaluates to True. In other words, the execution of the enclosing loop is stopped by the break statement, and control is passed to the statement that follows. Note that the else branch (if present) is not executed when a ‘break’ is executed in the very last iteration of a loop body. If the break statement appears inside a try block, which has a finally branch, the code in the finally block will be executed before breaking out of the loop.

if condition:

break

unreachable statements else:

some other statements

If there are nested loops, a single break statement will exit the innermost loop where the break occurs. Thus there must be 3 separate break statements to prematurely exit from a depth 3 nested-loop. There are other ways to exit loops as explained below.

A related statement is continue. As the name implies, it is used to terminate the current iteration of the loop and continue with the next iteration. If a continue statement is executed inside the for-loop body, it will skip the rest of the block code and continue with the next iteration (if any) or move on to the else block (if an else block exists and loop iteration has terminated). Thus continue statement must also be preceded by a condition to be meaningful (or it must be inside an if or else block within the loop body). If the condition evaluates to True, execution will restart at the top of the loop for the next value of the iterable or loop exited. A single continue statement will take us to the next iteration of enclosing loop only. Control will jump to the else clause, if present, when a continue is executed in the last iteration of a loop body. Otherwise the statement following the loop is executed. A continue statement was illegal in the finally clause in prior versions, but is perfectly legal in Python 3.8, and later versions. If the loop is inside a function, a return statement will terminate the loop and transfer control to the calling program. Similarly loop will be terminated and control transferred to the OS when an exit() is executed inside a loop.

5.2.2 Namespaces

The literal meaning of namespace is a collection of names
. A namespace in Python is a dictionary that maps variable names to values (ie. memory addresses allocated to those variables) sometimes called name-to-object mapping. Every variable used in a program mutates its namespace. For example, an assignment statement “x = 1” in the main program mutates the global namespace by adding an entry in it which is identified by variable name x, with value 1 as an integer object. This happens not only during the very first encounter of a variable, but also when another assignment is made. As discussed in chapter 1, a Python variable can keep on changing its type by assigning different types of data values (like int, float, str etc). The dir() function can be used to see the contents of this dictionary. It is a light-weight “symbol-table” used in high-level programming languages. A Python program without user-defined functions and classes have one namespace. This is called the global namespace. In addition, it has many reserved namespaces for built-in functions or built-in exception names (builtins), documentation strings (doc), packages (packages) etc.

Every user-defined class and function creates a new namespace in addition to existing namespaces. In other words, global namespaces and other existing local namespaces are preserved when a new user-defined class or function is encountered (is being executed). As functions may call other functions, chained enclosing namespaces are created in hierarchical call order. Thus multiple, completely isolated or nested namespaces can coexist in highly coupled systems. This allows same variable name to be used in multiple scope levels without conflict. When a function terminates, its namespace is removed and nearest enclosing scope is used to decide the current one. When all objects created using a user-defined class goes out-of-scope or are explicitly garbage collected, the namespace of that class also is removed from memory and above rule is applied to find the current namespace. This tremendously speeds up a Python program since only a small local namespace is used for lookup operation (for variables defined within that scope).

5.2.3 Scope in Python

Scope and namespaces are related concepts. A scope refers to the implied chain (if any) of namespaces to be recursively searched to locate an identifier (a variable, user-defined function or class name) unambiguously by starting with the current one and always moving outwards through enclosing namespaces until either a namespace is found, or Python exhausts all namespaces (identifier is not found).

Definition 5.1
 A scope in programming languages refers to a contiguous region within a large program (usually comprised of multiple functions or classes) where a namespace is directly accessed without a namespace prefix.

Most programming languages have four scopes:– local, enclosing, global and built-in (LEGB). Scope resolution means looking up namespaces to find a name (or object). This is done from current to outermost (global) level in ‘enclosing’ order (called LEGB rule). A NameError
 exception is thrown if this search ends without any outcome. For example, if an assignment statement has an undefined variable (say x) on the RHS, Python throws “NameError: name ‘x’ is not defined” after looking it up in every namespace from current to global order.

All variables defined in the main program belongs to the global namespace (has global scope), so that they can be accessed from anywhere including for and while loops that are in the same scope. These variables are de-allocated from memory when the program terminates (either successfully or prematurely due to an exception). All global variables are allocated memory afresh when the program restarts. This is how Python prevents memory drain. As loops do not create their own namespaces, all loop variables are added to the current namespace. Thus if the loop is within a function, all global variables (using the global keyword) as well as local variables seen up to that point within that function are accessible within the loop. All local variables are lost (garbage collected) as soon as the function returns (chapter 8). Python’s predefined global functions like len(), range() etc belongs to the builtin namespace
[33]
. This is searched when local, enclosing and global namespaces are exhausted.

5.2.4 For Loop Variable

A for loop variable (also called control variable) has visibility only within the loop (local scope) in other programming languages, but NOT in Python. It is released from memory (garbage collected) as soon as the loop terminates in most other languages. This does not happen in Python because of the intentional design. This is because a for loop, a while loop, if-else blocks or a with statement does not create a local scope. As mentioned in chapter 8, the innermost scope is at function level. Other scopes are at class level and module level. Thus all variables appearing inside a loop are added to the enclosing namespace and retain their values outside the loop (but within the enclosing scope).

Another variable of the same name defined before the for loop is overridden inside the loop body as shown below. All such variables are lost and the variable retains the value assumed in the last pass of the loop.

x = ‘me_string’

print(‘Before loop x=’,x,‘ type=’,type(x))

for x in range(3):

 print(‘Inside loop x=’,x,‘ type=’,type(x))

local_x = 10

print(‘Loop exited’)

print(‘Outside loop x=’,x,‘ type=’,type(x),\ ‘, local_x=’,local_x)

Output:

Before loop x= me_string type= <class ‘str’>

Inside loop x= 0 type= <class ‘int’>

Inside loop x= 1 type= <class ‘int’>

Inside loop x= 2 type= <class ‘int’>

Loop exited

Outside loop x= 2 type= <class ‘int’>, local_x= 10

Our original variable x has been replaced by loop variable x. In addition, the local variable ‘local x ’ defined within the loop still retains its value outside the loop. This happens because our loop is running in global namespace. Not only the index variables of loops and comprehensions (like list and set comprehensions), but also local loop variables are leaked to the enclosing scope. All loops within functions have local namespace (which have function scope). This example shows the importance of proper naming of for loop variables in large programs. Although this has pitfalls, it is useful in enumerated for loops (see page 5-13) in which a count variable varies side-by-side with a loop variable.

for k, x in enumerate(range(3)):

print(‘Inside loop x=’,x,‘ type=’,type(x))

local_x = 10

print(‘Loop exited, k=’, k)

print(‘Outside loop x=’,x,‘ type=’,type(x),\

‘, local_x=’,local_x)

Here k is the enumeration variable which retains its value even after the loop termination. This is true even when a break statement exits the loop prematurely. The value of k can be used in such situations to access the collection element that forced the loop exit or to index the rest of the elements in the collection for further processing.

5.3 Range function

The range() is a built-in function that returns a list. It accepts 1, 2 or 3 arguments. The simplest is the range(0) call that returns an empty list []. As there are no elements in this list, the range(0) call is not of much use. When called with a negative argument, this function returns the empty list again. For example range(-3) returns an empty list. When called with a positive integer, this function returns a list of consecutive integers starting with 0.

>>> range(3) range(0,3) # = [0, 1, 2]

>>> range(1) range(0,1) # = [0]

When a range command is given in the Python prompt, it will print details of the range as shown above because range is an object. You can either convert it into a list or iterate using a for loop to see the contents:

>>> list(range(10))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

for x in range(10):

 print(x) # prints numbers one per line

Here x takes successive values between 0 and 9. The second version of range accepts two integers, which are the starting and ending indices. Thus range(1,5) generates the list [1 ,2,3, 4] and range(5,1) returns the null list. Note that range(m,n) generates a list of integers from m (inclusive) up to n (exclusive) ie. up to n-1. A third version that accepts 3 arguments is available. In this case, the first argument is the starting value, second is the upper limit and third argument (called step argument) is the amount of skips, strides or jumps to be taken. Thus range(1,10,2) generates the list [1,3,5,7,9] and range(5,0,-1) generates [5,4,3,2,1]. Higher values are generated when the step argument is positive, and lower values are generated if it is negative. The first argument can also be negative. For example, range(-5,0) generates [-5,-4 , -3,-2,-1].

Some applications may have identical loops at several places. As the range() method returns an object, one could store it in a program variable and reuse that variable as many times as needed.

Y = range(1,10)

for x in Y:

 print(x, end=‘,’)

for z in Y:

 print(z, end=‘,’)

Output:

1 ,2,3,4,5,6,7,8,9,

1 ,2,3,4,5,6,7,8,9,

This is useful to speed up your program when you need to generate several very large ranges (say of the order of thousands) or identical small ranges in very long running loops. Instead of repeatedly generating it using range() method, you generate it just once and store it away, and reuse it whenever needed. The print(*Y)) command can be used to see the contents of the variable Y. The xrange() function was available in Python 2.x but is no longer present in Python 3.x (deprecated).

A constant (10) is passed as argument of range in the above example. A positive integer variable, or a function that returns an integer could also be passed. It returns a Null object (of length 0) if 0 or a negative integer is passed. Python evaluates the range function just once. If a variable is the argument of range(), its current value is used to generate the sequence. Thus the loop will have no effect even if the value of that variable is changed within the body of the for loop as shown below.

n = 5 #initially 5

for x in range(n):

print(‘x=’,x,‘ size=’,x.__sizeof__(),end=‘, ’)

n += 10 # changed n has no effect on x

print(‘n=’,n)

Output:

x= 0 size= 24, n= 15 x= 1 size= 28, n= 25 x= 2 size= 28, n= 35 x= 3 size= 28, n= 45 x= 4 size= 28, n= 55

As the value of n is 5, range(5) will be used to generate the loop. Even though n is incremented inside the loop body, it has no effect on the number of times the loop is executed. The final value of n printed is 55 (because loop executes 5 times only). Although the loop-variable x in the above code looks like a simple variable, it is reallocated memory each time through the loop. By default, Python uses a 16 bit (2 byte) integer variable for for loop variable in 32 bit Python, but could vary for 64 bit Python as shown above. This variable can assume positive and negative values as shown below.

Loops are used to verify facts and check the correctness of mathematical formulas. Consider the following simple problem of summing the first n natural numbers. The answer is obviously n(n+1)/2. This is in fact an integer because the numerator is the product of two consecutive numbers, exactly one of which is even. Thus n*(n+1) is always an even number, which when divided by 2 gives an integer. But a computer stores this as a floating point number. The following program is used to verify this fact.

Example 5.1
 Verify whether the sum of the first n natural numbers is n(n+1)/2.

Solution 5.1
 The following program computes the sum and verifies using an == command. This always prints True as both are the same.

n = int(input(‘Enter a positive integer: ’))

if n<=0:

 print(‘Wrong input entered!’)

else:

sum = 0

for i in range(1, n+1):

sum += i

 else:

 print(n*(n+1)//2==sum, sum) # or n*(n+1)/2

Output:

Enter a positive integer: 12345

True 76205685

Enter a positive integer: 123456789

True 7620789436823655

The integer division operator // is used in this example because n(n+1) is always even.

Example 5.2
 Find the decimal equivalent of a binary number using d =[image:]
 from rightmost to leftmost bit.

Solution 5.2
 Iterate over each of the bits and multiply by corresponding weights to get the result.

import sys

b = input("Enter binary number:") if(len(b))<=1:

sys.exit()

d, m = 0, 1

for n in range(len(b)-1, -1, -1):

d += int(b[n])*m

 m *= 2

else:

 print(‘Decimal equivalent is ’,d) Output:

Enter binary number:11011

Decimal equivalent is 27

Enter binary number:10101010

Decimal equivalent is 170

A variable d is used to accumulate the result and m is used to store the multipliers. The range function is varying from length of the input minus one to 0 (this is explained in the chapter 6). That is why -1 is used as second argument (and a -1 as third argument to decrement values all the way down to zero). A flaw with this program is that it blindly assumes that the user has entered a valid binary string. The best one could do at this point is to check if the user input includes only digits using b.isdigit() method. To check if it is truly a binary number, one need to do string processing, which is a topic of the next chapter.

Example 5.3
 A bank offers interest rate of r% on recurring deposits. Find the number of years needed for an amount to double in this deposit scheme.

Solution 5.3
 The accumulated amount is given by the formula A = P * (1+r/100)n
 where n is the number of years. Obviously the amount will more than double in 100/r years (assuming that r<
100). Hence use a loop and compute the accumulated amount until it doubles. Then exit the loop and print n.

P = Q = float(input(‘Enter principal amount (>0) : ’))

r = float(input(‘and annual interest rate in %:’))

if r>0 and P>0:

m = int(100/r) # upper limit for looping

for n in range(1, m):

 A = P*(1+r/100)

 if A >= 2.*Q:

 break

else:

P = A

print ("Your money will double in %d years\n" %n)

else:

print(‘Wrong interest rate or amount entered!’)

Output:

Enter principal amount (>0) :200

and annual interest rate in %:8

Your money will double in 10 years

Enter principal amount (>0) :135

and annual interest rate in %:5

Your money will double in 15 years

The walrus assignment can also be used as “for n in range(1, m:=int(100/r)):” without an explicit parenthesis around the assignment of m (because m is a parameter of range()). The principal amount is stored in two variables P and Q because P is modified during each pass through the loop. Thus the original amount entered by the user gets modified. That is why it is stored in Q and used in the if statement to exit the loop. An alternate solution to this problem appears in the previous chapter (page 4-10) without looping.

Example 5.4
 The Body Mass Index (BMI) of 10 patients are BMI = [28, 43, 19, 25, 31, 20 , 26, 45, 37, 22]. If BMI is classified as {Normal <
=25, Medium =(25, 30], Heavy =(30,35] , Overfat=>
35 } print out the frequency counts.

Solution 5.4
 Store the BMI values in a list. Nested if statement is used to count values in each bin. An else statement of for loop is used to print out the results.

BMI = [28, 43, 19, 25, 31, 20, 26, 45, 37, 22]

Normal = Medium = Heavy = Overfat = 0

for x in BMI:

if x <= 25:

Normal += 1

elif x <= 30:

Medium += 1

elif x <= 35:

Heavy += 1

else:

Overfat += 1

else:

print("Normal BMI=",Normal," Medium BMI=",Medium,\

" Heavy BMI=",Heavy," Overfat BMI=",Overfat)

Output:

Normal BMI= 4 Medium BMI= 2 Heavy BMI= 1 Overfat BMI= 3

The first elif statement could be specified as “25 <
 x <
= 30:” but this is really not needed because the execution will reach the first elif statement only if the first condition is false. This means that x<
= 30 in the elif branch of an “if x<
=25” will implicitly mean “25 <
 x <
= 30: ”, and so on.

5.4 Generator Loops

These are convenient ways to generate elements that satisfy some common property. To illustrate, suppose multiplication tables must be taught to students. Squares, cubes etc could be stored either using conventional loops discussed above or using a simple piece of code called comprehension (discussed in later chapters).

>>> Sq = [n*n for n in range(1,10)]

>>> Sq

[1, 4, 9, 16, 25, 36, 49, 64, 81]

>>> Sq = [n**2 for n in range(1,10) if n%2]

[1, 9, 25, 49, 81]

The first command above generates a list by squaring n where n is an element in the generated range. A trailing if filter can be added to apply the squaring process to integers satisfying the if condition. Thus the second statement above finds square of all odd numbers between 1 and 10. As the n on the RHS is a temporary variable, it will not create name conflicts with another variable of the same name (already defined). As a special case, the RHS result could be stored in a variable named n itself. Thus the following also works (where tuples are used instead of lists).

>>> a = (a*a for a in range(1,10))

>>> b = (b**3 for b in range(1,10))

>>> c = (c**4 for c in range(1,10))

>>> list(a), list(b), list(c)

([1, 4, 9, 16, 25, 36, 49, 64, 81] ,

[1, 8, 27, 64, 125, 216, 343, 512, 729] ,

[1, 16, 81, 256, 625, 1296, 2401, 4096, 6561])

>>> next(a), next(b), next(c)

(1, 1, 1)

>>> next(a), next(b), next(c)

(4, 8, 16)

Each of the next() calls advances the pointer in the corresponding tuple by one position. That is why the second set of next() commands print (4, 8, 16) which are the second elements in respective tuples. This is a convenient way to generate tuples whose elements are values returned by different functions. An alternate way to implement the same functionality using zip() command is discussed below.

Instead of using range() function, the desired numbers to be operated upon could also be stored in a list or tuple and used as an iterator. Nested loops can also be formed by giving them one after another. Suppose one wishes to know how much will an initial deposit of 500 become in 2 to 5 years at different interest rates (say 6 percent to 9 percent). This can be accomplished in a single statement as follows:

P = 500 # initial investment

print([P*(1+r/100)**n for n in range(2,6) \

 for r in range(6,10)])

Output:

[561.800, 572.45, 583.2, 594.050 ,

595.508, 612.5215, 629.856, 647.5145 ,

631.23848, 655.398, 680.24448, 705.7908 ,

669.1127888, 701.275865, 734.664038, 769.311977]

Here r is specified in percentages for r=6,7,8,9. The outer loop (for r) is varied faster than the inner loop (for n).

5.5 Enumerated For Loops

Suppose we need to access each element of a collection, and keep track of their index orders. An integer variable could be explicitly declared and incremented each time a new element is accessed. Python has a straightforward way to iterate through collections in their index order using enumerate command. It is formed by passing the collection or iterator of the loop to enumerate(), which is a class in builtins module. The constructor of this class has signature enumerate(iterable, start=0). Here start is a named argument (discussed in chapter 8). If it is omitted, the indexing starts at zero. Let Drinks = [‘Coke’,‘Pepsi’,‘Fanta’,‘7 Up’] be a list. Then

for i, x in enumerate(Drinks): print (i, x)

prints each element position (i) and element value (x) of Drinks from first to last order.

0

Coke

1

Pepsi

2

Fanta

3

3 7 Up

Enumerate command always start indexing the elements with 0 as shown above. The argument of enumerate command must be an enumerable object like list, set, dictionary or other collections. As mentioned in next chapter, the slice operator could be used to force iteration to start from a higher element. The sorted() function can be applied to get the elements in sorted order as follows:

>>> C=[‘Coke’,‘Pepsi’,‘Fanta’,‘7 Up’,‘Lemonade’]

>>> for i,x in enumerate(sorted(C)): print(i,x)

(0, ‘7 Up’)

(1, ‘Coke’)

(2, ‘Fanta’)

(3, ‘Lemonade’)

(4, ‘Pepsi’)

>>> for i,x in enumerate(sorted(C, reverse=True)): print(i,x)

(0, ‘Pepsi’)

(1, ‘Lemonade’)

(2, ‘Fanta’)

(3, ‘Coke’)

(4, ‘7 Up’)

Other flags as applicable for each type of data can also be used inside the sorted() function. These are discussed in next chapter page 6-10.

5.5.1 Enumerated Loop Variables

An enumerated for loop has an additional integer variable (called enumeration variable) which assumes consecutive integer values between 0 and n-1 (by default) where n is the number of passes. The default value of enumeration variable is 0. This can be changed by passing a higher value through keyword argument called start (keyword arguments are discussed in chapter 8).

for k, x in enumerate(range(0,35,10)):

print(‘k=’,k,‘ x=’,x)

print(‘Loop exited, k=’, k)

for k, x in enumerate(range(1,5), start=10):

print(‘k=’,k,‘ x=’,x)

print(‘Loop exited, k=’, k)

Output:

k= 0 x= 0

k= 1 x= 10

k= 2 x= 20

k= 3 x= 30

Loop exited, k= 3

k= 10 x= 1

k= 11 x= 2

k= 12 x= 3

k= 13 x= 4

Loop exited, k= 13

In the first example, the enumeration variable
 assumes consecutive values starting with 0. In the second example, it starts with 10 because of start=10 argument of enumerate. The “start=” can also be omitted as it is the only remaining argument (enumerate(range(1,5), 10) also works).

5.6 While Loops

While loops work on a condition which must be True (or non-zero) initially. The while keyword is followed by the condition and terminated by a colon. One or more statements to be repeated appears as the body of while loop. As in the case of for loops, the body can either appear as an indented block beneath it, or as comma-separated statements on the same line.

The statements in its body are repeated so long as the condition is true. This means that it may not always be known beforehand how many times the body of a loop gets repeated. The condition to be tested must change within the loop body. Otherwise program may end up in an infinite loop (which never terminates, unless explicitly exited). If the loop condition uses a single variable with an upper limit (say i<
n), that variable must be properly incremented in the loop body so that eventually the condition becomes violated. Thus all for loops can be written as while loops, but not vice-versa
. For example, a for loop and its equivalent while loop are as follows:

for x in range(1,10,2):

 print(x, end=’ ’)

print()

x = 1

while x<=9:

 print (x, end=‘ ’);

 x += 2

Output:

1 3 5 7 9

1 3 5 7 9

Here the loop variable is x which is set to 1. Inside the loop body, x is incremented by 2 so that the successive values assumed are 3,5,7,9. When x reaches 11, the condition is no longer satisfied and the loop will terminate. The loop body is entered only if the condition is True.

All statements that are part of the while loop also must have the same indentation level. The colon mark at the end of while loop indicates the beginning of the indented block of statements. Use the line continuation character as the last one on a line when the while condition is too long to fit on a single line, and continue the statement to the next line(s), and place the colon at the end of the condition.

A while loop can be prematurely terminated using the break statement. Usually the break statement is given when the loop-exit condition is satisfied. All the discussions of for loops in §5.2.1 (page 5-5) are applicable for while loops as well. In particular, the continue statement can be used within while loops as well to skip the rest of the loop body for the current iteration so that control comes back to the beginning of the while loop (for next iteration).

Example 5.5
 Find the Greatest Common Divisor (GCD) of two integers entered by the user.

Solution 5.5
 The following program first accepts two integers as input. It is immediately printed out as they are changed inside the loop. The GCD is printed out when the loop terminates.

import sys

u = int(input(‘Enter first integer (>0): ’))

v = int(input(‘Enter second integer (>0): ’))

if u<=0 or v<=0:

print(‘GCD needs positive integers’)

sys.exit(-1)

print (‘GCD of’,u, ‘and ’,v,‘is ’,end=‘’)

while u != v:

 if u>v:

 u -= v

 else:

 v -= u

print (u)

Output:

Enter first integer (>0): 121

Enter second integer (>0): 836 GCD of 121 and 836 is 11

Enter first integer (>0): 12345

Enter second integer (>0): 67890 GCD of 12345 and 67890 is 15

Both the if and else statements inside the while loop have a single line in its body. Thus they appear on the same line. As successive numbers are obtained by subtraction, this algorithm is slow when both u and v are large and nearby numbers or when one of them is small and the other is large. Another algorithm that converges much faster than the above can be obtained using the remainder operator:

import sys

u = int(input(‘Enter first integer:’))

v = int(input(‘Enter second integer:’))

if u<=0 or v<=0:

print(‘GCD needs positive integers’)

sys.exit(-1)

print (‘GCD of ’,u, ‘and’,v,‘is ’,end=‘’)

while v! = 0:

result = v

u, v = v, u % v

print(result)

which is much faster because u and v decrease rapidly.

5.7 Infinite Loops

Most of the programming problems need only finite loops. There are some situations where the number of loop iterations are unknown. One example is in iterative algorithms like root finding, approximate eigen-value finding in linear algebra, approximating the cumulative distribution function (CDF) or inverse CDF in statistics, etc. Other examples are guessing games (which usually progress towards a solution), puzzles and optimization problems. Iterations in such problems are continued until either a specified condition is satisfied (say the root is within an acceptable accuracy) or the number of iterations exceed a predetermined level. A while loop with True condition can be formed when there are no specified conditions:

set initial values

while True: # or while 1:

computations

if condition:

break

else:

further computations else:

statements

This is called an infinite loop because the loop condition is True. It will eventually exit using the break statement. Every such loop must have at least one break or exit() command within the loop-body. A return statement may also be used if the loop is within a function. Another alternative is to use some timing mechanism to exit infinite loops when a timer expires. Alternatively, an input statement can be used within such loops to get a value and exit the loop if the input matches a known value. Any relational expression that always evaluates to True (or will eventually become False) could also be used instead of using constants like True or 1. Examples are while 1==1:, while 2>
1:, etc. Some applications may have to count up until either the system runs out of resources or an exception occurs. This is done as k=0; while(k>
0): to create a loop and increment k until an exception occurs when the system runs out of resources (like RAM or heap memory). The break statement can then appear inside the exception processing block.

5.7.1 Conditional exit of Infinite Loops

Infinite loops are usually terminated with ‘break’ statement, which passes control to the executable line immediately following the while loop. This is called conditional exit with break because a condition is used to come out of it. Several nested loops can have the same ending point. In such a case, an exit from one while loop will continue execution in the enclosing while loop (outer loop). A return statement within a function simultaneously exits an infinite loop and the function. A sys.exit() call within an infinite loop will exit the program to the OS. This practice is highly discouraged as some resources (like open files) may be forcibly closed by Python. Loops may also be exited by raising some exceptions in exception processing blocks.

5.7.2 Interactive While Loops

While loops in which the condition is formed using user input are called interactive. This has applications in many areas like guessing games, error processing and exception handling, software testing etc. As an example, consider the binary-to-decimal conversion program given in page 5-10. Suppose multiple binary numbers are to be converted to decimals. A while loop can be formed whose condition checks user input as follows:

import sys

while (\ input(‘Convert binary to decimal?(y|n) ’)\) .lower()==‘y’ : b = input("Enter binary number:")

 if(len(b))<=1:

sys.exit()

d, m = 0, 1

for n in range(len(b)-1, -1, -1):

d += int(b[n])*m

 m *= 2

else:

 print(‘Decimal equivalent is ’,d)

Here the user input is directly checked whether it is ‘y’ or ‘Y’ (because of .lower() method). Of course the user input can be stored in a variable (say more work) using walrus assignment. Then check that variable if it is ‘y’ or ‘Y’. This method is more useful when a program is likely to throw exceptions. The exception processing block gets the user input into more work and exits the loop if needed.

A system function (like mouse events) can also be used to form the condition.

while not win.checkMouse() == None: # computations

5.8 Nested Loops

Loops within loops are called nested loops. The number of such nested loops is called the depth
 of nesting. Although Python documentation says that nesting depth is unlimited, some implementations have a maximum nesting depth of 19, which is far too sufficient for most people. Nested loops can be formed in many ways:

1.

For loops within for loops

These are the most common nested loops. It is used in matrix algorithms, linear algebra, sorting algorithms, FFT, and many other applied mathematics and numerical computing problems.

2.

For loops within while loops.

These are used in some online updating algorithms where data comes continuously and each data blocks are processed individually.

3.

While loops within for loops.

This case has an outer for loop and one or more nested inner while loops. This is used in numerical computing to find a fixed number of roots or eigen values, each within a desired accuracy.

4.

While loops within while loops.

This case has an outer while loop and one or more nested inner while loops. It is used in some approximation algorithms.

Example 5.6
 Write a Python program to sort a set of numbers using Bubble-sort algorithm.

Solution 5.6
 The following program generates the numbers using the built-in random module and stores it in a list (Lists use square bracket notation). Then the main logic runs in a nested for-loop that compares pairs of elements and swaps them in-place if they are out-of-order.

Sorted list is printed when both loops finish.

import random as r

import sys

n = int(input(‘How many numbers to sort? ’))

if n > 1:

L =[r.randrange(0,100) for i in range(n)]

else:

 sys.exit(-1)

print("Original numbers are as follows:")

for x in L:

print(x,end=‘ ’)

print()

for x in range(len(L)-1):

for y in range(x+1,len(L)):

if L[x] > L[y]:

L[x],L[y] = L[y],L[x] # swap

print("Sorted numbers are as follows:")

for x in L:

print(x,end=‘,’)

print()

A nested for loop is used here because the range of values for x and y to vary are known. A while loop could also be used as shown below (where import, data generation, and output statements are omitted):

x

 = 0

while x < len(L)-1: y = x + 1 while y < len(L):

if L[x] > L[y]:

L[x],L[y] = L[y],L[x]

y

+= 1

x += 1

This code is more like C++ and Java code, except for the swap statement (you could use temp=L[x]; L[x]=L[y]; L[y]=temp as in those languages). The problem with while loops is that a variable should be explicitly set and varied within desired range. Thus for-loops are much preferred over while loops as they are easier to debug.

5.8.1 Nested Loop Variables

Each of the nested loops should have its own variables. These variables are given different names in most programming languages. But Python allows you to have the same variable for nested loops, although this practice of giving identical names to loop variables is highly discouraged.

z, x = 0, 9

for x in range(3):

for x in range(3): z += 1

print(z, end=‘,’)

print(‘\n inner x=’,x)

print(‘outer x=’,x)

Output:

1 ,2,3,

inner x= 2

4 ,5,6,

inner x= 2

7 ,8,9,

inner x= 2

outer x= 2

Although the same variable name is used, this loop is executed 9 times as is evident from the values of z printed (comma separated numbers). But when the inner loop exits, its own copy of x is 2 so that it gets printed as “inner x”. Note that outer x is shadowed here. Similarly when the outer loop exits, it prints 2 instead of the initial value of x=9 because the initial variable is overridden. Global variables defined outside the current namespace can be accessed and even modified within loops, as shown in later chapters.

Example 5.7
 An integer is divisible by 9 if the repeated sum of the digits is divisible by 9. Write a program to accept an integer and check if it is divisible by 9.

Solution 5.7
 A nested while loop is used as it is not known how big the input number is going to be.

while (\ input(‘Check divisibility by 9? (y|n) ’)\) .lower()==‘y’ : n = m = int(input(‘Enter an integer: ’))

if -9 < n < 9:

print(‘Not divisible by 9 ’)

else:

while True:

digitSum = 0

while True:

 x, y = divmod(m, 10)

 digitSum += y

 if x == 0: break

m = x

if digitSum<10:

break

else:

m = digitSum

if digitSum == 9:

print(n,‘is divisible by 9 ’)

else:

 print(n,‘is not divisible by 9 ’)

Output:

Check divisibility by 9? (y|n) y

Enter an integer: 123456789

123456789 is divisible by 9

Check divisibility by 9? (y|n) y

Enter an integer: 765432

765432 is divisible by 9

If the input is 765432 with sum of the digits 27, the outer loop will again execute and inner loop will then find 2+7=9 which is divisible by 9. The divmod() function above simultaneously returns the quotient and remainder. The remainder is then summed up and quotient is used in break statement. A direct consequence of this algorithm is that another number obtained by permuting the digits of a number divisible by 9 is also divisible. For instance 975318642 which is a permutation of above number is also divisible by 9.

5.9 Zip() Command

The zip command in Python has nothing to do with compression, but is more similar to the zip of pants, sleeves and bags that joins together two pieces on either side (of course when you lift it up). Thus Python zip() is a joiner that behaves like a conjoined single entity. It is used to map two or more entities (like lists) to create a temporary iterable object. The process of conjoining will be called ‘zipping’ and the reverse process of splitting (separating) a zipped object into constituent parts as ‘unzipping’. It is highly flexible enough to work with a heterogeneous collection. It returns a collection called a “zip object”. You cannot directly print it, but you need to prefix it with a * in print(). Alternatively, it can be easily converted into lists, sets or maps and printed.

5.9.1 Zipping Equal-length Objects

This simply removes one item at a time from each of the arguments and creates tuples.

DOS = [‘cls’, ‘copy’, ‘del’, ‘dir’, ‘md’, ‘rd’, ‘type’]

UNIX = [‘clear’,‘cp’,‘rm’,‘ls’,‘mkdir’,‘rmdir’,‘cat’]

z = zip(DOS, UNIX)

print(list(z)) # or print(*z)

Output:

[(‘cls’,‘clear’),(‘copy’,‘cp’),(‘del’,‘rm’),(‘dir’,‘ls’),

(‘md’, ‘mkdir’), (‘rd’, ‘rmdir’), (‘type’, ‘cat’)]

The print(list(z)) command first converts the zipped object into a list and then prints it. A for loop can be used to iterate through each element as follows:

for x in z:

print(x)

(‘cls’, ‘clear’)

(‘copy’, ‘cp’)

(‘del’, ‘rm’)

(‘dir’, ‘ls’)

(‘md’, ‘mkdir’)

(‘rd’, ‘rmdir’)

(‘type’, ‘cat’)

5.9.2 Zipping Unequal-length Objects

When the components have unequal length, the minimum of the lengths is found and corresponding elements are zipped from left to right. All others at the right-end that do not have a match are discarded.

DOS=[‘cls’,‘copy’,‘del’,‘dir’,‘md’,‘rd’,‘type’] # 7 items

UNIX=[‘clear’,‘cp’,‘rm’,‘ls’,‘mkdir’,‘rmdir’] # 6 items

z = enumerate(zip(DOS, UNIX), 1) # start index is 1

for x in z:

 print (x)

Output:

(1, (‘cls’, ‘clear’))

(2, (‘copy’, ‘cp’))

(3, (‘del’, ‘rm’))

(4, (‘dir’, ‘ls’))

(5, (‘md’, ‘mkdir’))

(6, (‘rd’, ‘rmdir’))

It does not matter which of the items have smaller number of elements. In the above example, the first list is bigger than the second. The results is the same if the second list is bigger. Hence it is a good idea to check the size (number of elements) in each set before zipping is carried out. This is especially useful when data comes from files, database queries, or over a network-connection. Note the use of enumerate command in the above example. By default, enumerate starts numbering from 0 onwards. A second parameter (a positive or negative integer) to this function allows us to start counting from the supplied number. Thus z = enumerate(zip(DOS,UNIX), 1) starts numbering up from 1 onwards, whereas z = enumerate(zip(DOS,UNIX), -5) starts the count up from -5 onwards (to 0 in this example because there are 6 pairs).

More advanced iterator processing is available in itertools package. This package has classes for accumulating sums from different sequences, finding Cartesian products, permutations and combinations, repeating objects a specified number of times, applying user-defined functions on each element of a collection, juxtapositioning elements from different collections and much more. The itertools package has a zip longest class to zip unequal collections. You can even set a default value to be used to pair with unmatched values using fillvalue keyword argument.

import itertools as it

w = it.zip_longest(DOS, UNIX, fillvalue=None)

for p in w:

 print(p)

Output:

(‘cls’, ‘clear’)

(‘copy’, ‘cp’)

(‘del’, ‘rm’)

(‘dir’, ‘ls’)

(‘md’, ‘mkdir’)

(‘rd’, ‘rmdir’)

(‘type’, None)

The second line sets fillvalue to None. All unpaired elements at the end of the list are now paired with None as seen on (‘type’, None) line. Any valid constant or variable can be given as fillvalue. But it is preferable to give a fillvalue that matches the type of other elements in its column. If the second collection has more elements in the above example, it would have appeared as the first item in the zipped object. That is why it is called zip longest. An enumerate command can also be applied to it as follows:

w =enumerate(it.zip_longest(DOS,UNIX,fillvalue=None), 1)

Output:

(1, (‘cls’, ‘clear’))

(2, (‘copy’, ‘cp’))

(3, (‘del’, ‘rm’))

(4, (‘dir’, ‘ls’))

(5, (‘md’, ‘mkdir’))

(6, (‘rd’, ‘rmdir’))

(7, (‘type’, None))

5.9.3 Zipping Heterogeneous Objects

The zip() function does not care about the type of objects being zipped. If one of the items to be zipped is a string, individual characters of it are paired with the rest of the elements. In the following example, the first list consists of strings and second one has tuples
[34]
.

airportcodes =

["AMS", "BCN", "CDG", "LGA", "DXB", "DEL", "ORD", "LHR"] airports = [

("Amsterdam Airport", "North Holland", "Netherland"),

("Barcelona El Prat Airport", "Barcelona", "Spain"),

("Charles de Gaulle Airport", "Paris", "France"),

("La Guardia Airport", "New York", "USA"),

("Dubai International Airport", "Dubai", "UAE"),

("Indira Gandhi International Airport", "New Delhi", "India"),

("O‘Hare International Airport", "Chicago", "USA"),

("Heathrow Airport", "London", "UK")]

z = zip(airportcodes, airports)

for x in z:

 print (x)

Output:

(‘AMS’,(‘Amsterdam Airport’,‘North Holland’,‘Netherland’))

(‘BCN’,(‘Barcelona El Prat Airport’,‘Barcelona’, ‘Spain’))

(‘CDG’, (‘Charles de Gaulle Airport’, ‘Paris’, ‘France’))

(‘LGA’, (‘La Guardia Airport’, ‘New York’, ‘USA’))

(‘DXB’, (‘Dubai International Airport’, ‘Dubai’, ‘UAE’))

(‘DEL’,(‘Indira Gandhi International Airport’,‘New Delhi’,‘India’)),

(‘ORD’,("O’Hare International Airport",‘Chicago’,‘USA’))

(‘LHR’, (‘Heathrow Airport’, ‘London’, ‘UK’))

First argument is a single string (which is iterable) and second one is a tuple in the following example. Each character of the string is then paired with a religion.

religioncodes = ‘CMHBSO’

religions =

(‘Christian’,‘Muslim’,‘Hindu’,‘Buddhist’,‘Sikh’,‘Other’)

z = zip(religioncodes, religions) # print(*z) prints it out

for x in z:

 print (x)

Output:

(‘C’, ‘Christian’)

(‘M’, ‘Muslim’)

(‘H’, ‘Hindu’)

(‘B’, ‘Buddhist’)

(‘S’, ‘Sikh’)

(‘O’, ‘Other’)

Heterogeneous objects that are zipped can be printed using appropriate formats as done below. Consider the names of players (a string) and scores in a game (an integer) in two separate lists ‘players’ and ‘scores’. You can print it neatly using appropriate format.

for x, y in zip(players, scores):

print ("Player: %s has score : %d" % (x, y))

5.9.3.1
Nesting Zip Commands

As the zip command returns an iterable object of type <
class ‘zip’>
, it can be applied any number of times. In other words, a zip() command can have any number of zip() commands as argument.

religioncodes = ‘CMHBSO’

religions =

(‘Christian’,‘Muslim’,‘Hindu’,‘Buddhist’,‘Sikh’,‘Other’)

percentages = (33, 24, 15, 9, 1, 18)

z = zip(religioncodes, zip(religions, percentages))

for x in z:

print (x)

Output:

(‘C’, (‘Christian’, 33))

(‘M’, (‘Muslim’, 24))

(‘H’, (‘Hindu’, 15))

(‘B’, (‘Buddhist’, 9))

(‘S’, (‘Sikh’, 1))

(‘O’, (‘Other’, 18))

This is called a nested zip, which are evaluated from innermost to outermost. Thus the zip(religions, percentages) is evaluated first and used as second argument of outer zip command.

5.9.4 Unzipping Zipped Objects

As mentioned above, the zip() command creates an object of type <
class ‘zip’>
. It has an iter() method to create an iterator and a next() function to get consecutive zipped values. On occasion a zipped object may have to be converted back to its constituents (resulting in the original objects). This is called unzipping, which is the opposite of zipping. It is like pulling the zip of your pants or sleeves down. It separates the conjoined parts into individual self. Python uses the ‘*’ operator to unpack a list created by the zip() command. In general the * operator unpacks any iterable object like a list or a tuple into positional arguments.

religioncodes = ‘CMHBSO’

religions =

(‘Christian’,‘Muslim’,‘Hindu’,‘Buddhist’,‘Sikh’,‘Other’)

z = zip(religioncodes, religions) # zip it first

u, v = zip(*z) # unzip it now

print(‘u = ’,u)

print(‘v = ’,v)

Output:

u = (‘C’, ‘M’, ‘H’, ‘B’, ‘S’, ‘O’)

v = (‘Christian’, ‘Muslim’, ‘Hindu’, ‘Buddhist’, ‘Sikh’, ‘Other’)

Although it started with a single string of 6 characters, a round-trip through zip and unzip resulted in a tuple of 6 characters. This is because Python does not keep track of the type information from which items were zipped. All arguments of a zip command can also be strings, in which case one character each is extracted from the strings and zipped as a tuple (next chapter).

5.10 Garbage Collection

Programmers are responsible for memory management in systems developed in C, C++, Java etc. It is an unnecessary burden in scientific programs. Python has automatic garbage collection. This frees the memory management responsibilities from the hands of programmers to the Python runtime system. All variables that are out-of-scope will be automatically removed (deallocated) from memory. This does not apply to for-loops, while-loops, and with statements as they do not have their own scope. Python functions, classes and modules keep their own scope. The namespace can sometimes get littered with lots of unwanted variables. It could be cleared or reduced as discussed below.

5.10.1 The del Keyword

Python has a “del” keyword to release the memory of program variables. This accepts one or more comma separated variables that hold memory (called defined variables). Variables appearing on a del statement can be either local ones or those defined on global statement in the same code block. Undefined variables appearing on a del statement (that name is unbound) will throw a “NameError” exception. This means that you can use the del command only on those variables visible at that point (that are already bound). This applies to simple variables, collections and user-defined types.

Deletion of a variable only removes the binding of that name from the local or global namespace. In other words, the del command merely changes the namespace of those variables.

Memory is not explicitly freed by del command, but it is freed by the garbage collector (GC). If no other names hold a reference to the object, the GC cleans up those objects. This command need not be used for local variables within functions because these are automatically marked when they go out-of-scope. Python keeps track of each variable using a reference count. It assumes that the variable has gone out-of-scope when the reference count has gone down to zero. There are some situations where we have to work with very large arrays. The del command may have to be used if memory is limited, so as to regain allocated memory.

>>> p, q = 1, ‘two’

>>> del p, q

>>> p

Traceback (most recent call last):

File "<pyshell#109>", line 1, in < module >

NameError: name ‘p’ is not defined

If the object to be deleted is a composite data structure, the elements are removed recursively from left to right. Slices of collections can also be deleted, provided that the parent object involved has this operation well-defined. This is because deleting a slice is in general equivalent to assigning an empty slice of the right type. See subsequent chapters on collections for further information.

5.11 Summary

Loops are extremely important in programming as it allows us to repeat a set of statements in its body multiple times. They find applications in several areas of scientific computing like matrices and linear algebra, numerical computing, statistics, to name a few. This chapter introduced different types of loops like for loop, while loop and their nested versions. Techniques like exiting loops prematurely, skipping one pass through the loop, and adding an else branch to a loop construct etc. are also introduced. The zip command also is discussed at length and different techniques for zipping and unzipping are discussed.

6

[image:]

Strings

	
Chapter objectives

•

Understand Strings

•

Discuss Importance of Strings

•

Introduce String Input and Output

•

Discuss String indexing and Slicing

•

Reveal Command line argument processing

•

Describe Iterating and Enumerating Strings

•

Review String Functions

6.1 Strings Basics

Strings are collections of contiguously ordered characters from an alphabet, which is often interpreted from left to right (start to end) in computer science and related fields
[35]
. There are different types of strings. In natural languages like English or Japanese, strings are formed from respective alphabet sets along with punctuation marks and special characters. Some natural languages have lowercase and uppercase characters (called bicameral languages)
[36]

[37]
. Examples are English, Greek and Roman. But majority of natural languages do not have such a distinction. Strings of digits (like binary digits) are used in data communication, coding theory, etc. Strings drawn from a narrow alphabet are used in bio-informatics and genetic algorithms, whereas strings drawn from a wider alphabet (like extended ASCII characters) are used in encryption and data compression. For example, hexadecimal digits defined as hexdigits = digits + ‘abcdef’ + ‘ABCDEF’ where digits = ‘0123456789’ are used to describe memory addresses, and to represent Unicode characters. As hexadecimal number system uses base-16, it provides a compact way to represent one number in 4 bits. Octal digits are used to denote file permissions. All these can be interpreted as strings.

Although strings in natural languages and bio-informatics have meanings, it may not have any meaning at all in other applications. One example is cryptography where an original string is mapped into an inscrutable string. Data compression maps an original string (data) into a much smaller undecipherable string using different techniques. A string comprises of alphanumeric characters (alphabet, numbers, whitespace characters
[38]
, etc.) in Natural Language Processing (NLP) and text mining applications.

Python strings are sequences of immutable characters that are stored in a builtin type str, which is a class derived from object as its only parent class. Any valid ASCII character can be a part of a string. Starting with Python 3.x, any Unicode character can be a part of a string

(Unicode is a superset of ASCII). It is one of the most frequently used primitive data structures.

6.1.1 Creating Strings

Strings can be created using single, double or triple quotes. Thus s = ‘’ or s = “” both creates an empty string of length zero. The commands

>>> s1 = ‘Python’ # single quote

>>> s2 = "Python" # double quotes

>>> s3 = ‘‘‘Python’’’ # triple quotes

>>> s = str("Python")

all create string literals of the same size. Python’s str() function is actually a class in builtins module. A statement s = str("hello") creates a string object in heap memory. In addition, builtins module has an repr function that accepts any Python type like a list, tuple, map etc and returns the canonical string representation of the object. Some of the member functions of str class (like join(), expandtabs()) can also be used to create strings as shown below, as well as decode function of some classes like bytestring (eg: b‘\x80abc’.decode(“utf-8”, “ignore”)). Similarly, file and socket operations like read() returns a string (as a stream) that when stored in a Python variable defaults to string type. Whereas bytes.decode() creates a string, the call str.encode() takes a Unicode string and returns its byte representation. Literal strings are Unicode by default in Python-3, so that every character in a Python string is one or more bytes inside the memory (it occupies one byte for standard ASCII characters but could be more for other characters as explained below).

Multi-line strings that does not fit on a line can be created using triple quote method (this works for single line strings as well). Special characters like \n, \t etc can appear in a string. A string literal by itself on a line (without it being assigned to a variable) works in Python 3.x and is simply ignored. String literals at the end of an executable statement are not allowed (throws ‘Invalid Syntax’ error). As mentioned in chapter 1, a triple quoted string is an executable statement and creates a namespace entry if it is the first line in a program, class or function (called docstring).

‘‘‘ This is a docstring as it is the first line’’’

‘ Program to convert Celsius to Fahrenheit’ # ignored " Ensure that Celsius is greater than -272" # ignored

while (C := eval(input(‘Enter Celsius temperature: ’))) >= -272:

F = C * 9.0 / 5 + 32

print(‘Fahrenheit equivalent of Celsius ’,C,‘is’,F)

The contents of a string cannot be changed once it is created as strings are immutable in Python.

This means that the individual characters within a string cannot be changed using the index

Table 6.1: Python String Constants

[image:]

	
whitespace

	
whitespace characters

	
ascii_lowercase

	
lowercase letters

	
ascii_uppercase

	
uppercase letters

	
ascii_letters

	
letters

	
digits

	
decimal digits (0 to 9)

	
hexdigits

	
hexadecimal digits (0-9, a-f, A-F)

	
octdigits

	
octal digits (‘01234567’)

	
punctuation

	
punctuation characters

	
printable

	
printable characters

[image:]

Printable is defined as ‘digits + ascii letters + punctuation + whitespace’ where punctuation is given above. All ASCII characters are not printable.

notation described below. For example, if S = ‘Canada’ and you give S[0] = ‘K’, you get “TypeError: ‘str’ object does not support item assignment” (see §6.1.7, pp.6-6). Nevertheless, strings can be manipulated using the indexing techniques discussed below which allows you to create new string literals from existing strings. Python has a string module that contains a collection of string constants (see table 6.1). You can see these from the Python prompt. Simply give the commands as follows:

>>> import string

>>> string.punctuation

‘!"#\$%&\’()*+,-./:;<=>?@[\\]^_‘{|}~’

>>> string.whitespace ’ \t\n\r\x0b\x0c’ where \x0b denotes carriage return and \x0c denotes line-feed characters.

6.1.2 Creating Strings From Collections

Elements in a non-empty list can be used to create strings using the join command. Consider L = [‘First’,‘Second’,‘Third’], a list with 3 elements each of which is a string. Then “ ”.join(L) will return the string ‘First Second Third’ whereas “,”.join(L) returns ‘First,Second,Third’. The character or string that precedes the join command is used as the delimiter
 for concatenation. It can be the empty string, a single character or multiple characters. The join command returns a temporary string which is the concatenation of the strings (or characters) in the iterable with the separator string (or character; also called joiner string) inserted in-between the elements in left-to-right order. If you need a comma followed by a blank as separator, use “, ” before the join (where blank appears after the comma). Use ‘,’.join(reversed(L)) to join the items in reversed order. This works with tuples, maps and dictionaries as well. Only the keys are concatenated in the case of dictionaries.

>>> m = (‘me’, ‘too’) # tuple

>>> n = {‘me’, ‘too’} # set

>>> d = {‘me’:1, ‘too’:2} # dictionary

>>> ‘,’.join(d)

‘me,too’

>>> ‘,’.join(n) # and ‘,’.join(m)

‘me,too’

Note that sets and dictionaries may rearrange constituent items, so that the join function may return values in some arbitrary order.

>>> s = "Python"

>>> ‘+’.join(s)

‘P+y+t+h+o+n’

Here the string is split and each character is concatenated using ‘+’ as delimiter.

6.1.3 Special Prefixes

Python uses special prefixes to represent raw strings, Unicode characters, etc. Consider the problem of opening a file located in a subdirectory. If any of the directory names in the path starts with ‘n’,‘t’,‘r’ or some other escape character, it will create a problem in Windows if the file name is specified using \ as directory separator. To be concrete, suppose there is a file named receipts.doc in a directory named newdata and a subdirectory inside it called temp in drive C. Our path will then be ‘C:\newdata\temp\receipts.doc’. As ‘\n’ denotes new line, ‘\t’ the tab character and ‘\r’ the carriage return, Python will throw an exception as “Invalid mode (‘r’) or filename”. Python will correctly identify the resource if each backslash is escaped as two backslashes. This is often inconvenient in long path names and file names derived from external sources. An easy solution is to prefix the string using the character ‘r’ that indicates that what follows need to be interpreted as raw string. Thus open(r‘C:\newdata\temp\receipts.doc’) will correctly open the file. Unicode characters are indicated using the ‘u’ prefix instead of ‘r’. Thus ‘\u0394’ represents Greek capital Delta (∆) character. There is also a capital U version that expects eight hex digits. A lowercase ‘u’ (‘\u’) is used for characters with 16-bit hex values, and capital ‘U’ (‘\U’) is used for characters with 32-bit hex values. Unicode can also be created using the chr() built-in function that accepts a single integer argument. This is most often used in multi-lingual interfaces, cross language translations etc. Binary strings are denoted by putting a ‘b’ before a string like so: addr1 = b‘10100011’, and hexadecimal string have the x character placed before the beginning quote marks.

6.1.4 String Input and Output

String input has already been discussed in previous chapters. Python accepts user entered data from keyboard as a string. Users can type any keyboard characters, extended ASCII characters and Unicode characters (using their hexadecimal codes). Python 3.x stores text as Unicode (as str type). Trailing newline characters are ignored by the input() command. This command inputs everything until the user presses the <
Enter>
 key on the keyboard in Windows, or ∧d in *NIX (which denotes pressing down the CTRL key and hitting d). Leading and trailing blanks or other whitespace characters are not discarded, but is included by the input() command. Formatting characters can also be specified in the input command.

Python print() command outputs text data, which can also be formatted. The concatenation operator (+) can be used when every element to be output is string type. As concatenation creates temporary strings, it is not recommended in long running loops (see below). Instead, a comma separated list of heterogeneous elements can be used in a print() command. The print() command can evaluate expressions on-the-fly. Thus simple arithmetic expressions can be given as argument to print() as shown below.

while (C := \

eval(input(‘Enter Celsius temperature (-273 to exit): ’))) >= -272:

print(‘Fahrenheit equivalent of Celsius’,C,‘is’,\

C * 9.0 / 5 + 32)

C = eval(input(‘Enter Celsius temperature: ’))

Output:

Enter Celsius temperature (-272 to exit): 120-3*75/33+8%3

Fahrenheit equivalent of Celsius 115.181819 is 239.327274

Enter Celsius temperature: 37.778

Fahrenheit equivalent of Celsius 37.778 is 100.0004

Enter Celsius temperature: -272

Fahrenheit equivalent of Celsius -272 is -457.6

As the eval function is used to accept user input, any arithmetic expression can be given as input. This may contain builtin functions as well, provided the respective package (eg: import math) appears at the top of the source program. Thus F = eval(input(‘Enter Celsius temperature(-272 to exit):’))*9.0/5+32 also works if input is given as a string.

6.1.5 Escape Sequences

Python strings can contain escape sequences as they too are ASCII characters. These include the whitespace characters, bell, EOF, horizontal and vertical tabs etc.

>>> import string as st

>>> st.whitespace

‘ \t\n\r\x0b\x0c’

The tab characters in a string can be replaced with blanks using expandtabs() function that accepts a single integer as parameter. If no parameter is supplied, then 8 (blank characters) is assumed as the tab size. In other words, this command returns a copy of the string with all tab characters expanded using specified number of spaces. This of course increases the size of the string.

>>> S = ‘Ari\tzona’ # has a tab

>>> S.expandtabs(3)

‘Ari
zona’

The original string S will remain as such because this method does not update the string inline. The replaced string must be stored in another variable (or in the same variable) to use it subsequently as T = S.expandtabs(3).

6.1.6 Testing String for Null

Empty strings have zero length. The builtin function len() can be used to check if a string is null or not. Note that Python does not have null keyword. Alternatively, use relational operator as s ==‘’ or s==“” where RHS is a null string in single, double or triple quotes. Alternatively use “if not s:” statement which returns True if s is empty. Even a null string in Python occupies some memory (as it stores data in an object of type str class).

>>> s = ‘’

>>> s.__sizeof__()

25 # Python 3.6

49 # Python 3.8

>>> type(s)

<class ‘str’>

The number printed above depends on the version. Python 64 bit version takes 49 bytes of memory to store even a null string.

6.1.7 String Indexing

The index notation [] can be used to access individual characters of a string object just like accessing elements of a one-dimensional array. The index starts from 0 to len-1 where len is the length of the string. A positive number k (in square braces as [k]) extracts specified character at position k from left end, and a negative number extracts kth
 character from the right end of a string. The index is usually given as a decimal number, but could also be specified as a binary, octal or hexadecimal number (S[0b10],S[0x01],S[0o04]). An integer expression or any function that returns an integer (like len(S)) in the proper range can also be used for indexing.

>>> S = ‘Saturn’

>>> print(S[-1], S[1])

(‘n’, ‘a’)

>>> print(S[-2], S[2])

(‘r’, ‘t’)

An “IndexError: string index out of range” exception is thrown when a value outside the range is specified.

6.1.8 String Slicing

Substrings within a non-empty string can be accessed using square brackets ([]) that contains the indices of the characters in a string. This is called the slice operator. If the argument within the [] is either k or -k, it will extract exactly one character, namely the kth
 character from left or right-end of the string. Thus S[-1] extracts last character of string S.

>>> S = ‘Saturn’

T = S[:] # shallow copies S to T

>>> S[0:3]

‘Sat’

>>> S[-4:] # last 4 chars from right end

‘turn’

>>> S[1:-1]

‘atur’

If the argument within the [] is a single colon, it will extract the entire string. This is called shallow copy. Thus t = S[:] copies the string S to variable t. If there are two integers to the left and right of :, it will extract all characters from left index up to but not including the right index. Similarly, S[1:3] copies second and third characters. This is called the range slice operator. Note that it is wrong to give S[i:i] as it returns a null string. Likewise, if the first index is greater than the second, it will return a null string. Hence i must always be strictly less than j in S[i:j]. If there are two colons with integers in-between, the third integer will be used as a step. Thus S[i:j:k] extracts the characters S[i], S[i+k], S[i+2k], etc. up to either S[j-1] or S[i+b(j
 − i
 − 1)/k
c]. In Python 3.x, the index j can be well outside the rightmost position as shown below (without an exception being thrown):

>>> S[1:6:2]

‘aun’

>>> S[1:50:2] # 50 is outside the range

‘aun’

>>> S[3:]

‘urn’

As noted above, first index i must be strictly less than j when k is a positive integer, but i is greater than j if k is a negative integer. In this case, characters will be extracted starting with the last position. If the index to the left of the colon is missing but the right one is specified as s[:j], it will extract all characters from the beginning to the index position j-1 (namely S[0], S[1],...,S[j-1]). If the index to the right of the colon is missing but the left one is specified as S[i:], it will extract all characters from the index position i to the end of the string (namely S[i], S[i+1],...,S[len(s)-1]. These are reviewed in table 6.2 .

Table 6.2: String and List Slicing Operation

	
Expression

	
Characters (slice from)

	
Conditions

	
s[:]

	
shallow copy

	
s non-null

	
s[i:j]

	
i to j-1

	
i<
j

	
s[:j]

	
0 to j-1

	
j + ve

	
s[:-j]

	
n-j+1 to n-1

	
s non-null

	
s[i:]

	
i to len(s)-1

	
i + ve

	
s[i:-j]

	
i to len(s)-j

	
j + ve

	
s[-i:]

	
n-i to len(s)-1

	
i + ve

	
s[i:j:k]

	
i to j-1 in steps of k

	
i<
j

	
s[i:j:-k]

	
i to j-1 in steps of k backwards

	
i>
j

	
s[-i:-j:-k]

	
n-i to n-j-1 in steps of k backwards

	
i>
j

	
s[::k]

	
equivalent to s[0:len(s):k]

	
k positive or negative integer

	
s[i::k]

	
equivalent to s[0:len(s):k]

	
k positive or negative integer

	
s[:j:k]

	
equivalent to s[0:len(s):k]

	
k positive or negative integer

	
s[::k]

	
every kth character from left to right

	
k + ve

	
s[::-k]

	
every kth character from right to left

	
k + ve

Negative k values selects elements in reverse order from the end of the string or list.

As of this writing, Python does not throw “string index out of range exception” when one of the indices go beyond the range of current string in slice notation (but it is thrown when a single integer is used inside the square bracket). Thus all of the following works without an exception being thrown in Python 3.7 and later versions.

s = ‘’ # null string

print(s[10:30]) # both indices out of range print(s[1:50:2]

print(s[-1:-1])

print(s[-1:-1:-1])

print(s[4]) # throws exception

Output:

‘’ # null string

‘’

‘’

‘’

IndexError: string index out of range

6.1.8.1
Slice Object

The slice function was introduced in chapter 2. Slicing is a way of selecting subsets of iterable structures like collection data types (list, set, tuple, dictionaries), strings and user-defined objects that implements iter() member functions. Python slice class in builtins module can be used to create an object that holds mapping details for a slice. It is extremely useful in reusing slices in large string collections or buffers repetitively (at different points inside a program). It either accepts a single integer parameter which is interpreted as a stop, two parameters which are interpreted as start, stop or 3 parameters which are interpreted as start, stop and step (or stride) (see table 6.2). Slice indices must be integers, None, or have an index method.

define a slice property that maps elements from 1 to 4

>>> k = slice(1,5)

>>> type(k)

<class ‘slice’>

>>> S = ‘Saturn’

>>> S[k]

‘atur’

Mapping occurs from the end of the variable when the first parameter is negative. Thus slice(1, -4, -1) extracts -1th
, -2th
 and -3th
 characters from the right-end. Every Python object that implements an index method can be used in place of an integer in a slice function.

6.1.9
Unpacking Strings

All Python iterable objects can be unpacked. As strings are iterable, they could be unpacked too. A string with n characters can be unpacked using n variables with a single assignment statement where LHS is the comma separated list of variables.

s = ‘xyz’

a,b,c = s

Output:

a = ‘x’, b = ‘y’, c = ‘z’

Python will throw a “Too many values to unpack” error if the number of variables does not match with the number of characters in the string. When the number of variables on the left exceeds number of characters in the string, Python throws a “ValueError: need more than n values to unpack” message. The * operator can be used on the LHS of an unpacking statement to mean the “rest of the values”. A variable with the * operator prepended to it will be called “star-variable” or “star-var” for short.

>>> S = ‘Python’

>>> u, *v = S

>>> u

‘P’

>>> v

[‘y’, ‘t’, ‘h’, ‘o’, ‘n’]

The first character is unpacked to variable u and rest of them to variable v. Python 3.x allows even the star-variable to be in the middle of a set of variables on the LHS:

>>> S = ‘Python’

>>> u,*v, w = S

>>> u, v, w

(‘P’, [‘y’, ‘t’, ‘h’, ‘o’], ‘n’)

At most one star-variable is allowed in unpacking. If two (or more) star-variables appear on the LHS, Python throws “SyntaxError: two starred expressions in assignment”. As expressions in parentheses are evaluated first (from inner to outer), multiple star-variables could be enclosed properly in parentheses as shown below:

>>> S = ‘Python’

>>> (u, *v), *w = S

>>> u, v, w

(‘P’, [], [‘y’, ‘t’, ‘h’, ‘o’, ‘n’])

>>> (u, *v), *w = S,‘Wonder’

>>> u,v,w

(‘P’, [‘y’, ‘t’, ‘h’, ‘o’, ‘n’], [‘Wonder’])

>>> u, *v = reversed(S)

>>> u, v

(‘n’, [‘o’, ‘h’, ‘t’, ‘y’, ‘P’])

At most one star-var is allowed within each level of nested parentheses. One may also apply sorted(), reversed() etc. on the items to be unpacked (on the RHS).

6.2 Iteration

As the name implies, iteration is the process of accessing successive elements of a string or collection. Any object that implements iter (self, /) function can be iterated. Python classes that implement this function include str, list, dict, map, tuple, and set as well as classes derived from these (like frozenset). One could iterate through the characters of a string easily using a ‘for-in’ loop:

S = ‘Python is Fun’

for c in S:

 print (c, end=‘’)

for c in S.split():

 print (c)

Output:

Python is Fun Python is Fun

The split command breaks a string into words using whitespace characters.

6.2.1 Enumeration

The literal meaning of enumeration is ‘establishing a numbering or naming of something in a group of two or more elements’ or ‘to name things in a set separately, one by one in order’. Python enumerate-command was discussed in previous chapter (page 5-12). It is used to number a sequence so as to know the relative position of elements in it (from first to last). This creates an iterator that returns a sequence of tuples whose first elements are natural numbers and second elements are the values of the sequence. As seen in last chapter, the index starts from 0 by default, but can start at any desired value using a second parameter which can be a positive or negative integer. Thus if S = ‘Python’, the statement for k,c in enumerate(S,1): generates (1,‘P’), (2,‘y’), (3,‘t’), (4,‘h’), (5,‘o’), (6,‘n’). Indexing the sequence in reverse is also possible. Thus for k,c in enumerate(S[::-1]): generates the sequence in reverse order as (0 ,‘n’),

(1,‘o’), (2,‘h’), (3,‘t’), (4,‘y’), (5 ,‘P’).

6.2.1.1
Enumerating Zipped Strings

Enumeration is possible for zipped Strings to walk through them simultaneously. This will combine one element from first string and corresponding element from second string and output this as a tuple, with each tuple indexed starting with 0. For example,

L = ‘123’; M = ‘456’

for k,e in enumerate(zip(L,M),1):

print (k,e)

prints (1 (‘1’,‘4’)),(2 (‘2’,‘5’)),(3 (‘3’,‘6’)) because starting index is specified as 1. Either or both of the strings can also be reversed as discussed above. An alternate way to produce the above output in Python 3.x is using print(*enumerate(zip(L,M),1)) (you get a SyntaxError: invalid syntax message in Python 2.7). Either or both of the arguments may also be reversed as shown below.

for k,e in enumerate(zip(L[::-1],M),1):

print (k,e)

prints (1 (‘3’,‘4’)), (2 (‘2’,‘5’)), (3 (‘1’,‘ 6’)).

6.3 Command-line Arguments

As in C++/Java, parameters can be passed to a Python program through the command line. An ‘import sys’ should be used for this to work. The following for loop:

import sys

for filename in sys.argv[1:]:

 print(filename)

assumes that the user has passed one or more file names (or strings) through the OS command prompt which are stored as a list of strings in argv[]. When parameters are passed as options and values (like -filename myfile.py -username Malala) each of the pairs may have to be packed as a separate list. The following command when typed at the OS prompt will pass myfile.py as argv[0] and rest of the arguments as argv[1:].

python myfile.py arg1 arg2 arg3

It is a good idea to check len(argv) before doing the processing, because if there are no command line args, len(argv) will be zero. Use sys.argv[-1] to access last argument. The loop iterates starting with sys.argv[1:] because argv[0] is the name of the program itself. As of this writing, IDLE doesn’t provide a way to pass arguments to a program. For testing purposes, the following command can be used.

idle.py -r myfile.py arg1 arg2 arg3

which assumes that the Python library is on your PATH. The idle library is installed under your Python installation directory /Lib/idlelib subdirectory. If the above command gives “idle.py’ is not identified as an internal or external command, operable program or batch file’ error, you may give the absolute path name to the file. Alternately, you may explicitly set argv as follows: sys.argv = ["myfile.py", "argv1", "argv2"]

6.4 String Operations

One reason for the popularity of Python for NLP is the large number of methods available in str class. There are many methods that mitigate the string processing effort. The most popular string operators are + (for concatenation) and * (for repetition). Both of them are binary operators and can be repeatedly applied. Whereas the + operator expects string objects, the * operator expects a string and an integer. Both of them are described below.

6.4.1 Concatenation

Joining strings is a frequent operation in text processing applications. Python offers many ways to join strings. Strings are concatenated using the + operator which works from left to right (naive appending). Thus multiple strings can be joined together in a single statement. Other data types should be converted to string form when they are to be concatenated. String objects returned by functions can be used in this process. Python’s add () function can concatenate a new string to an existing one.

>>> s = ‘Python ’

>>> s.__add__(‘programming’)

‘Python programming’

>>>s.__add__(‘programming’).__add__(‘ is’).__add__(‘ fun’)

‘Python programming is fun’

This has a speed advantage in very large loops (where concatenation using + operator is totally discouraged). Note that the original string is not modified in-place, but only a temporary string is returned. Hence an assignment should be done if the modified value is to be used elsewhere.

6.4.2 Replication

The multiplication operator * is overloaded to work with strings as replicator
. Thus 3 * ‘*’ generates the string ‘***’ because 3 acts as a repetition factor. This is useful in graphics programs and in report generation applications.

>>> s = ‘Python’

>>> 2 * s

‘PythonPython’

>>> s * 3

‘PythonPythonPython’

>>> 2 * s * 2

‘PythonPythonPythonPython’

The multiplier (replicator) should be of type ‘int’ and can appear on either or both sides of a string. It is applied from left to right. Integer expressions or functions that return an integer could also be used instead of integer literals. If a floating point number is used as replicator, you get ‘TypeError: can’t multiply sequence by non-int of type ‘float”.

6.4.3 String Containment

There are many ways to check if a character or a substring is present in another string. The easiest way is to use the in
 operator as follows:

S = ‘Python’

if ‘n’ in S: # this returns True

if ‘on’ in S: # this also returns True

if ‘Python’ in S: # this also returns True

The existence of special characters like \t and \n could also be checked in a string. But to check if a string contains a backslash character, two backslashes must be used as shown below:

if ‘\\’ in S:

Note that the in
 operator does not support wildcards or any string matching patterns.

A second way to check for the presence of substrings is using the find and rfind functions. These are almost identical except that rfind starts searching from the right-end of a string whereas find starts from the left-end. A similar set of functions called index() and rindex() are available to search a string. The difference between find() and index() is that index() and rindex() raise the ValueError (substring not found) if a substring is unfound in a string, whereas find() and rfind() does not raise the ValueError, but returns −1 in those situations. All of these four functions can be called with either one, or two or three arguments. The substring to search for needs to be specified in the ‘one argument’ version. Thus S.find(‘on’) will search for substring ‘on’ in string S. The substring of course can be anything from just one character to any length. It is meaningless to search for a bigger string in a smaller string. Thus the lengths of pattern and string should be checked if the pattern to search for comes as user input.

S = ‘Python’

S.find(‘on’)

this returns 4 as string index starts at zero

S.find(‘no’)

this returns -1 as substring is not found

S.index(‘no’) this raises ‘‘ValueError substring not found’’ Both find() and index() return the position of the first occurrence of substring (if present) from left. This function could be repetitively called to find subsequent occurrences. For example, to find the second occurrence of a substring, call find as S.find(‘on’, S.find(‘on’)+1). This may return overlapping occurrences. To get the second non-overlapping occurrence one may use

S.find(‘on’, S.find(‘on’)+len(‘on’)) or write it as two statements

S = ‘Mississippi’

pat = ‘ssi’ # or whatever pattern to search for

m = len(pat)

k = S.find(pat)

if k>=0:

 j = S.find(pat, k+m)

if j! = -1:

print(‘Second occurrence of ‘’+pat+"’ in ‘"+S+"’ is at "+j)

prints ‘Second occurrence of ‘ssi’ in ‘Mississippi’ is at 5.

6.4.4 String comparison

The relational operators <
, <
=, >
, >
= and != works even for strings. Strings are compared lexicographically from left to right using the current loaded codepage. A string S1 precedes another S2 in lexicographic order if (i) S1 is a prefix of S2 or (ii) if c and d are respectively the first character of S1 and S2 in which they differ, then c precedes d in the loaded Unicode character set’s order. String comparison can take place either directly using the above operators or using the builtin str functions lt () for <
 comparison, le () for <
=, ne () for ! = etc. The format differs in these two types of comparisons as shown below.

>>> s = ‘Python’

>>> t = ‘Pythagores’

>>> s > t # direct comparison

True

>>> s.__gt__(t)

True

Python compares an ‘o’ with ‘a’ as the first four characters match. As ‘o’ is lexicographically greater than ‘a’, it returns True.

The == operator is used to compare variable values. It can be chained any number of times. There is also a keyword “is” in Python. This tests for object identity. This returns True if the object is the same, whereas == is True
 if the stored values are the same. This is discussed in chapter 8.

6.5 String Functions

There are a large number of functions to make life easier. These are extremely useful for string processing applications. Some of the functions returns a temporary (modified string). Hence the returned string should be stored in same or another variable or used immediately (say in an expression or as argument of functions).

6.5.1 String Centering

Strings can be centered using the center() function which accepts either one or two arguments. This returns a padded version of a string S with the original string moved to center
 surrounded by a balanced set of blank characters. The first argument must always be an integer. Zero or negative values as first argument are simply ignored, as also numbers less than the size of the string to be centered. If the first argument is 1 more than the size of the string, the fill character is added at the end of the string if length of the string is odd; and at the beginning if the length is even. Thus S = ‘he’; S.center(3) will produce ‘ he’ whereas S = ‘her’; S.center(4) will produce ‘her ’. Thus it is advisable to check the length of a string using len(S) to see if it is odd or even.

>>> r = ‘-123’ # negative number stored as string

>>> r.center(10,‘x’)

‘xxx-123xxx’

This produces a temporary string while keeping original string intact.

6.5.2 String Padding

Padding is the process of adding special characters (usually in the beginning) to make a string of fixed length. Python provides a zfill() function that takes an integer argument. This is usually applied to string variable that holds numbers, as the default padding character is 0.

>>> s=‘123’

>>> s.zfill(6) # make total width 6

‘000123’

This command does not modify the string if the width specified is the same as the length of the string, or less. Similarly, negative arguments are simply ignored. The contents of the string should be binary digits, decimal numbers or hexadecimals to be meaningful. Python will automatically sense if there exist any + or - signs in the string and pad zeros after that.

>>> r = ‘-123’ # negative number stored as string

>>> r.zfill(8)

‘-0000123’

Related functions for Unicode strings are ljust() and rjust(). The ljust() method either takes a single integer argument or an integer followed by a fill character argument, and left-justifies the string. Blanks are used as fill character in the first version (with only one integer parameter).

>>> r = ‘-123’ # negative number stored as string

>>> r.ljust(6)

‘-123 ’ # 2 spaces added after 123

The rjust() function is just the opposite of ljust(). It pads a Unicode string on the left, and right-justifies it. The syntax is S.rjust(width[, fillchar]). It returns the modified string. The fillchar is blank by default.

>>> r = ‘-123’ # negative number stored as string

>>> r.rjust(10, ‘x’)

‘xxxxxx-123’

>>> r.ljust(6, ‘x’).rjust(8, ‘y’)

‘yy-123xx’

>>> r.center(8,‘0’)

‘00-12300’

Although zfill() function respects the + and - signs within a string, the ljust() and rjust() functions ignore them (sign is also considered as a separate Unicode character). Both of these functions return the argument unchanged when the width specified is less than the current width. Both of them can be called one after another to pad a string symmetrically on the left and right. Alternately the center(width[,fillchar]) can be used. It is important to note that you need to store the changed value either in the same string or in a new variable to be of use. Strings can be printed with padded characters (that fill empty positions in their width) using a simple technique. Simply give a padding character before the width specifier as in ‘%dm.nf’ where d is the padding character, m.n is the format for printing a real number (denoted by format specifier character f). As an example, print(‘%08.2f\n’ % math.pi) prints 00003.14 with width 8.

6.5.3 Boolean String Methods

As the name implies, these methods return True or False. They are used to check the kind of data stored in a string variable. In each of the following functions, S is a string. Some of the functions consider + and - as non-digits. Thus if you have a string S = ‘-123’ then S.isdigit() and S.isnumeric() return False. If all characters in S are “whitespace” then S.isspace() returns True
.

Table 6.3: String Boolean Functions

	
Expression

	
Conditions

	
S.isalnum()

	
String consists of only alphanumeric characters (no symbols)

	
S.isalpha()

	
String consists of only alphabetic characters (no symbols)

	
S.isdecimal()

	
only decimal characters in S

	
S.isdigit()

	
All characters are digits

	
S.isidentifier()

	
S is a valid identifier according to language definition

	
S.islower()

	
String’s alphabetic characters are all lower case

	
S.isnumeric()

	
String consists of only numeric characters

	
S.isprintable

	
all characters in S are considered printable in repr() or S is empty

	
S.isspace()

	
String consists of only whitespace characters

	
S.istitle()

	
String is in title case

	
S.isupper()

	
String alphabetic characters are all upper case

6.5.4
String Splitting

Strings can be split using the split function. This function is very flexible and comprehensive. When called without arguments, it will split the string using blanks and white spaces. If an argument is a single character, that will be used to split the string instead of the default blanks. As an example, comma separated files (CSV files) exported from spreadsheet programs can be parsed by supplying comma (,) as delimiter to split(). Actually, the argument of split can either be a single character or multiple character substrings. If the argument of split is a substring, Python will first find all non-overlapping occurrences of substrings in the string and split the string at those positions and output substrings less the argument. The split function accepts a second argument maxsplits which is an integer that specifies at most how many splits are to be done. In this case the first argument must be specified. If whitespace characters are to be used for splitting, one can specify a blank character or one of the whitespace characters line \n, \t, \r etc. A null string cannot be specified as first argument. A simple solution is to use Python special keyword None as the first argument to split at whitespace characters. Thus S.split(None, 5) will split the string S into 5 parts at the first 5 whitespace characters encountered from left to right scan of string S. Note also that multiple special characters like ‘\n\r’ cannot be specified as the argument (which will be ignored by Python), but multiple regular characters are permitted. To split a string at occurrences of backslash character (\) one need to specify two backslashes as the argument of split as T = S.split(‘\\’). If only one \ appears as the argument, you get “SyntaxError: EOL while scanning string literal”. Special characters like \n or \t are kept as such because they have special meaning within a string.

Text processing applications often need to split a string at newline (‘\n’) characters. There is a special function splitlines() that uses newline character as the default delimiter and returns all lines in the input string by breaking at line boundaries. Python will ignore the line break characters by default. Specify True as the argument of splitlines to keep the line break characters in the returned strings as S.splitlines(True) (note that False is the default). For example,

mline = ‘‘‘This is a multi-\r line string to \ test if linebreaks\n are kept’’’ lines = mline.splitlines(True)

print (lines)

Output:

[‘This is a multi-\r\n’,

‘line string to test if linebreaks\n’,

‘\n’, ‘are kept’]

In fact, the argument to splitlines can even be a conditional expression that evaluates to True
 or False
. For example, lines = mline.splitlines(mline.find(‘\n’)>0)

invokes the function only if the string contains a newline character (in which case True
 is passed as the argument). A common mistake that beginners make is to use linesplit() instead of splitlines() (which really means split into multiple lines). There is also a split function in the regular expression class that is more versatile. The regular expression version of split
 will search for multiple delimiter characters with or without whitespaces around the delimiters. One need to import re and call re.split(pat, stringvar) where pat is a regular expression pattern and stringvar is the variable containing our string. According to Python documentation, the rsplit() function splits the string from right to left order. Unfortunately this does not work in Python 3.7 and 3.8 versions as shown below:

>>> t = ‘The Morse code = Here come dots’

>>> t.split() == t.rsplit()

Output:

True

The partition and rpartition functions are used to split a long string into 3 mutually exclusive parts. It uses a separator argument. If this is found in the string at position k, then all preceding characters (up to (k-1)), kth
 character and all succeeding characters are returned as a tuple if the separator is a single character. If a word is passed as the separator, then all preceding characters before the word, the word itself and all succeeding characters after the word are returned.

s = "Halley’s Comet = Shall yet come"

>>> s.partition(‘=’)

("Halley’s Comet ", ‘=’, ‘ Shall yet come’) >>> s.partition(‘Comet’)

("Halley’s ", ‘Comet’, ‘ = Shall yet come’)

Note that the whitespace are kept in the partitions. The rpartition() function also does not work in Python 3.7/3.8 as shown below:

>>> s = "Halley’s Comet = Shall yet come"

>>> s.rpartition(‘=’) == s.partition(‘=’)

Output: True

which is not what is expected.

6.6 String Formatting

Formatting output values is a frequent activity in almost all Python programs. It is especially important in report generation, and in scientific programs. Those familiar with C++ and Java knows about formatting characters used in input and output statements. Python uses formatting mainly for output. The % character is an overloaded operator in Python:– it is used to find the modulus and used for applying a format specifier. When used with integers, the % operator finds the remainder of division of LHS by RHS. Thus x = 20 % 7 stores 6 in x. The same operator can appear in a print statement where it has two interpretations. If % is followed by a format conversion specifier like %d or %s, it is taken as a placeholder whose value is to be derived from a dictionary, a tuple or comma separated list that appears after another % character that appears outside the format string. The formatting characters can be preceded by a precision to limit the number of decimal places. Either a tuple or a dictionary can be used in place of the list of variables in which case each element is printed. In the case of tuple, each element is matched from left to right with format specifier. Here are some examples:

from math import pi

print(‘Value of PI to 8 decimal place is %0.8f\n’ % pi)

miles = 15.51

print("%.2f miles is %.4f kms\n" % (miles, 8.0/5.0 *miles))

Output

Value of PI to 8 decimal place is 3.14159265

15.51 miles is 24.8160 kms

An asterisk (*) can appear any number of times in a format width or precision. In this case, each such * is matched with an integer in the argument list.

print(‘The value of %*s to 8 decimals %0.*f\n’ % (3,‘PI’,8, pi))

Here the first * is replaced by 3 and second * by 8 so that the string ‘PI’ is printed in 3 column width and actual value of pi in %0.8f format. There is also a format map() method that maps

[image:]

Table 6.4: Table of Format Specifiers

[image:]

	
d, i

	
unsigned int

	
u

	
unsigned decimal

	
x, X

	
lower/upper Hexadecimal int

	
e, E

	
floating point scientific number

	
f, F

	
floating point decimal number

	
g, G

	
more general decimal

	
c

	
single character

	
r

	
string (uses repr)

[image:]

the keys and values of a dictionary to certain positions within a string.

>>> D = {‘x’:‘Obama’,‘y’:‘Barack’,‘x1’:‘Bill’,y1 = ‘Clinton’}

>>> print(‘‘{x}’s last name is { y}’’.format_map(D))

Obama’s last name is Barack

>>> print(‘‘{x1}’s last name is { y1}’’.format_map(D))

Bill’s last name is Clinton

6.7 String Modification Methods

Programmers cannot modify strings directly (using index notation) as they are immutable. With this in mind, Python designers have provided a large number of methods to modify strings. These include capitalize(), lower(), upper(), title(), swapcase() and many other functions. Even if the input string comprises of multiple sentences delimited by full-stops, the S.capitalize() makes only the very first character uppercase and the rest lowercase. It has no effect either when the first character is not an alphabet, or if it is whitespace. The S.lower() converts everything to lowercase and S.upper() makes everything uppercase. This also has no effect if a string does not have alphabetic characters. Although of little use, S.title() makes the first character of every word in a sentence as capital. Even single character words are set in capital. It uses any whitespace character to identify words. Another method S.swapcase() can swap all uppercase to lowercase and vice versa.

>>> s1 = ‘\t i am a string’ # whitespace in beginning

>>> s2 = s1.capitalize()

‘\t i am a string’ # no change

>>> s3 = s1.strip().capitalize()

‘I am a string’

>>> s1 = s1.title()

>>> s1

‘\t I Am A String’ >>> s1.swapcase()

‘\t i aM a sTRING’

Whereas the strip() function removes whitespace, if any, from both ends of a string, lstrip() removes only from the beginning and rstrip() removes only from the end of the string. All of them collectively is called *strip (pronounced star-strip) or strip-family functions. A single character or a string can be given as argument of *strip functions. If the argument is not None, they remove characters in the supplied string instead from the extremes.

>>> s = ‘i am a string and awesome’

>>> s.strip(‘aeiou’) ‘ am a string and awesom’

6.7.1 String Matching

A fast technique to find all occurrences of a pattern in a large string is called string matching. Text can be matched at the start or end of a string. One of the four functions mentioned above could of course be used for this purpose with an extra if statement. For example, if S.find(pat)==0: checks if the pat occurs in string S at the beginning, whereas if S.find(pat)==len(S)-len(pat): checks if the occurrence is at the end of the string. Python provides two simplified functions startswith() and endswith() for this purpose. These are extremely useful in URL processing applications. Consider reading an HTML link of the form http://www.python.org, where the prefix denotes the protocol to be used. Suppose the https (secure protocol) is to be used instead. Then one can check if the string starts with ‘https’ or not. If not, replace http with https.

6.8 Summary

This chapter introduced strings and its properties. Main topics discussed include creating strings, input and output, string indexing, slicing, and unpacking. String operations like concatenation, replication, enumeration, comparison and formatting are also discussed. A brief discussion of string functions follows it. Modification of strings and string matching are also discussed.

7

[image:]

Files and Directories

	
Chapter objectives

•

Understand File Input and Output

•

Discuss File Types and Formats

•

Describe File Operations

•

Create Temporary files and Directories

•

Review StringIO class and pickle package

•

Introduce CSV files

7.1
Introduction

Files are used to exchange data from or to storage systems accessible by the Operating System (OS). Technically they are storage locations spread across a medium and accessed as a single entity using a unique name. Python also has a special way to store a file in a string or bytearray variable (discussed below). All files are identified externally by a file-name and a file-extension. The file-name is dependent on the OS. Some OS allows (embedded) blanks in file names while some others allow alpha-numerals and some special symbols (like underscore character _) only in file names. File extension also is OS specific. Whereas older versions of Windows allowed limited number of characters in file extensions, new versions allow up to 29 characters in file extension. You must check with your OS to see the limitations on file names and extensions. A dot (.) is used as a separator between the file name and extension as in ‘data.txt’. This notation is universally followed in file naming in most of the OS. Note that the dot has a different interpretation in OS where it denotes the current working directory.

Multiple files in a system can have the same name so long as they belong to different users (kept in different directories). Some OS (like Windows 10) allows the dot to be a part of the file name itself (eg: data.2019.fall.csv), or directory name. In such cases, the suffix (after the last .) is chosen as the file extension, and rest of it as file name (data.2019.fall is the file name and csv is the file extension). The os.extsep in os module is the extension separator character (which by default is .) used by Python in file names. Some OS allows a file to have only a name (without extension). Still others allow a file to have only an extension. For example, you can create a file as .py (without a filename) in some versions of Windows. A file extension identifies what type of data are kept in a file. Thus a text-file can be given any extension, but it is customary to give .txt, .text, .dat, or something similar for plain text files, and .csv for comma-separated text-files. The End-of-Line (EOL) and End-Of-File (EOF) characters also differ among various OS. Hence the origin OS (where a file was created) must be known while working with many files from various OS’s.

Files are stored as a continuous stream of bytes on storage devices. Different OS use different control characters to demarcate the end-of-line or record. Various applications like spreadsheets, databases etc. within the same OS may use different characters for EOL. In other words, the EOL is dependent on the

Table 7.1: File Open Modes vs Python Class Used

[image:]

r, w, x, U, a, r+, w+, rt, wt, rU,
TextIOWrapper ab

rb, br
BufferedReader rw, wr, wb BufferedWriter w+b, r+b BufferedRandom

[image:]

BufferedRandom is an interface to random access streams. A BufferedRWPair class is used for buffered reading and writing (used in socket programming).

software application. Any EOL in the input file will be seen as a ‘\n’ in Python (see the system default line separator defined as os.linesep). An open file gains an attribute called ‘newlines’. Legitimate values for this attribute are None (no newline read yet), ‘\r’, ‘\n’, ‘\r\n’ or a tuple containing all the newline types seen. The ‘U’ mode stands for Universal newlines mode, and is deprecated in Python 3.x.

Table 7.2: Common File Open Modes in Python

	
Mode

	
Meaning

	
Example

	
r

	
read file

	
fp = open(filename, ‘r’)

	
r+

	
read and write

	
fp = open(filename, ‘r+’)

	
rb

	
read binary file

	
fp = open(filename, ‘rb’)

	
rU

	
read using universal support

	
fp = open(filename, ‘rU’)

	
U+

	
read using universal support

	
fp = open(filename, ‘U+’)

	
x

	
create new file & open it for writing

	
fp = open(filename, ‘x’)

	
w

	
write file, truncate file first

	
fp = open(filename, ‘w’)

	
rw

	
read and write file

	
fp = open(filename, ‘rw’)

	
w+

	
read and write file

	
fp = open(filename, ‘w+’)

	
wb

	
write binary file

	
fp = open(filename, ‘wb’)

	
r+b, w+b

	
read/write random file

	
fp = open(filename, ‘w+b’)

	
a

	
append to existing file

	
fp = open(filename, ‘a’)

	
a+

	
read and append mode

	
fp = open(filename, ‘a+’)

	
ab

	
append to existing binary file

	
fp = open(filename, ‘ab’)

	
ab+

	
read and append in binary

	
fp = open(filename, ‘ab+’)

	
t

	
text mode

	
fp=open(filename, ‘rt’)

+ is read/write mode, r+ is same as rw. The U option (uppercase u) is used for reading with universal newline support (deprecated in Python 3.x). It cannot be combined with w or +. The t option works with r, w, U or x. File is opened for read and write in binary mode when rb+ is specified with file pointer at the beginning of file.

The wb+ mode is similar, but the file is truncated if already present.

Use newline = None or some other value in the open command (described below) itself for universal newline control.

7.2 File Operations

Python needs a conduit for file operations because programs reside in RAM and files on storage devices (or in a virtual workspace like the Cloud). This passage is provided through open() command which instantiates objects of various kinds in memory depending on the parameters supplied by the user (see table 7.1). Any number of files, anywhere on an accessible network (including local system) can be opened simultaneously. A pathname (or simply a path) is used to locate a file buried inside a sub-directory. It is a string that has an optional drive letter followed by zero or more subdirectory names that are separated by the directory separator character (which is ‘/’ in *NIX and ‘\’ in Windows). All operating systems use a tree hierarchy to arrange directories and files. Absolute paths contain a sequence of directory names starting with a root drive or directory, which is often a drive letter (like D:\) in Windows and ‘/’ in *NIX. The drive letter can appear in uppercase or lowercase. File will be searched for in the current drive if root drive specifier is missing. Python keeps each open connection through a unique file handle (which is a Python variable that has the same rules as identifier names). File handles are not like ordinary variables, but they are objects of specific Python classes. After you open a file with a file handle fp, you may issue:

fp.__sizeof__()

to see how many bytes that resource is occupying in storage (here fp is the file handle described below). Python uses the most appropriate class to do file operations (table 7.1) depending on the mode and buffering parameters specified (or their default values).

7.2.1 Opening Files

Files are quite often opened using the open function with 1, 2 or 3 arguments. The first one is the name of the file, second is the mode of operation, and an optional third parameter (an integer) identifies the type of buffering. Python 3.x has other arguments like encoding = None, errors = None, newline = None, closefd = True, opener = None etc that will be explained later. The general syntax is:

fp = open(filename[, mode [, buffering]])

where the first argument filename comprises of the path followed by the file name. The path can either be absolute or relative (as a string). A correct path must be specified if the file is not in the current working directory. Python assumes the current directory as default when a path does not precede a file name. Thus

fp = open(‘‘data.txt", ‘w’)

opens a file in the current directory for writing, whereas

fp = open(‘‘./subdir/data.txt", ‘w’)

opens the data.txt file in a sub-directory called subdir under the current directory. The first argument is a string literal in both the examples above. It can also be a string variable or any expression that evaluates to a string. It can also be function calls that return a string as explained below.

The filename argument cannot be a directory name in Windows (Python throws “PermissionError: [Errno 13] Permission denied”). Use ‘r’ for reading (default in Python 3.x is ‘rt’ which means ‘read text file’ (or open specified text file for reading), which is synonymous with ‘tr’), ‘w’ for writing, and ‘a’ for appending (see table 7.2).

fp = open(‘afile.txt’,‘rt’) # fp=open(‘afile.txt’,‘tr’)

Note that both ‘rt’ and ‘r’ modes create a TextIOWrapper (TextIOBase) object which is a character and line based layer over a BufferedIOBase object. The ‘t’ mode specifier is a modifier (which stands for text) that cannot occur by itself, but with ‘r’ or ‘w’, or specified with ‘x’ mode as ‘xt’ or ‘tx’ if the file does not exist.

Non-existent files are created if the mode is ‘w’, but will raise IOError upon failure in ‘r’ mode. Already existing files are overwritten in ‘w’ mode. Thus

fp = open(r‘c:/user/data/data.txt’, ‘w’)

creates a file in the specified directory. Here ‘r’ before the file name indicates that it is a raw string (so that directory or file names starting with ‘n’, ‘r’, ‘t’ etc. will work correctly).

A second way to open a file is using the with
 command. The syntax is:

with open(filename, mode) as myalias:

for var in myalias:

and so on, where the statements following the with command
 are indented. A question that beginners ask is ‘Does “fp = open(‘myfile’, ‘rb’)” mean the same thing as “with open(‘myfile’, ‘rb’) as fp:”?’. According to Python documentation, “The with statement is used to wrap the execution of a block with methods defined by a context manager”. This may be enigmatic to a beginner. But it is plain and simple – with
 command has more control over a file than a simple open command. Python automatically closes a file if it was opened using the with
 command when the file handle goes out-of-scope. Moreover, multiple files can be opened with a single with statement as follows.

with open(‘infile.ext’, ‘r’) as readfile, \

 open(‘outfile.ext’, ‘w’) as writefile:

for aLine in readfile: # rest of it.

In addition, the with
 statement reduces exception handling code compared to open() statement. This is the reason why experienced software developers always use the with
 command instead of open
 command. However, the open
 command has an advantage. Multiple file handles could be associated to a file that is opened using open
 command, but not using with
 command.

fp = fq = open(‘c:/python/game.py’) # ok

print(*fp) # prints file contents

fp.seek(10)

print(*fq)

with open(‘d:/ppp/names.ind’) as fp, fq:

 print(*fp)

ValueError: I/O operation on closed file.

In the first example, both fp and fq are valid file handles. In the second one, none of them are file handles, but the logic could of course be changed as:

with open(‘d:/ppp/names.ind’) as fp:

fq = fp # copy file handle

print(*fp)

fq.seek(10)

print(*fq)

There is another way to open a file using interactive file dialog windows. A file path and a filtering condition can be used to display all matching files from which a user can select the file to be opened using either the mouse or arrow keys. This requires a GUI module like Tkinter.

from tkinter.filedialog import askopenfilename

dirname = ‘‘d:/python/’’

extfile = ‘‘*.py’’

filename = askopenfilename(initialdir = dirname,\

filetypes =((‘‘Text File’’, extfile),\

(‘‘All Files’’,‘‘*.*’’)), title = ‘‘Choose a file..’’

)

This code can be wrapped in a function and an event assigned to a button to call this function whenever a file needs to be opened.

Sometimes one or more files may be opened at the very beginning of a big program and one may want to know the mode in which it was opened at a later time. The fp.mode
 attribute returns a string where fp is the file pointer of an open file. This may be compared with another string like fp.mode == ‘r+’ etc.

>>> fp = open(‘d:/game.py’)

>>> fp.mode

‘r’

>>> with open(‘d:/game.py’) as fq:

print(fq.mode)

‘r’

7.2.2 Creating Temporary Files

Python programs may have to create temporary files or directories to store non-persistent data. Quite often they are created, used, and deleted immediately. As an example, large file downloads from the net may create temporary files to store received blocks of packets which is renamed and moved to correct location when download is complete. Python has a tempfile module with methods to handle temporary files (temp-file for short) easily. This module can create temporary directory and temporary files. A class attribute tempdir of string type can be used to set the candidate location to store temporary files. If it is not set before the first use, Python will use the default temporary directory /tmp and create all files there
[39]
 with the help of TMP, TEMP, or TMPDIR environment variables. There are two classes in this module, namely, TemporaryDirectory and SpooledTemporaryFile both of which are derived from the object class. The TemporaryDirectory class has a method with the same name TemporaryDirectory(suffix = None, prefix = None, dir = None), and an init function with the same signature to create and return a temporary directory.

[image:]

import tempfile as tmp

import os

create a temporary directory

with tmp.TemporaryDirectory() as tmpdir:

print(‘The created directory is\n %s’ % tmpdir)

print(‘Does it still exist?: ’,end=‘ ’)

print(‘Yes’) if os.path.exists(tmpdir) else print(‘No’)

Output:

The created directory is

C:\Users\Admin\AppData\Local\Temp\tmpm7fziqpu

Does it still exist?: No

Although the tmpdir variable is still there, the print
 statement prints False
 indicating that the file is automatically deleted when the with
 block is exited. Temporary files are given special names by the OS. The extension is usually tmp or tmp_ (with a trailing underscore). Their name, location and access permissions can be controlled programmatically. Use the NamedTemporaryFile() method to give whatever name you want it to have using prefix and suffix arguments
[40]
. A file alias or handle must always be used to access the contents.

import tempfile as tmp

import os

create a temporary file

with tmp.TemporaryFile() as fp:

fp.write(b‘‘Line 1 ’’)

fp.seek(0)

print(‘‘File name: {} ’’.format(fp.name))

print(‘‘File contents: {} ’’.format(fp.read ()))

fp.close()

print(‘‘Does it still exist?:’’, end=’ ’)

print(‘Yes’) if os.path.exists(fp.name) else print(‘No’)

Output:

File name: C:\Users\Admin\AppData\Local\Temp\tmp9w0abo_n

File contents: b‘Line 1 ’

Does it still exist?: No

This method has a delete argument which can be used to explicitly control whether the file is to be deleted or not. Set delete = True
 to delete it on close.

import tempfile as tmp

import os

create a named temporary file

with tmp.NamedTemporaryFile(prefix = ‘myfile’,\

suffix = ‘.tmp’,dir = ‘c:/Users/Public/Documents’) as fp:

fp.write(b"Line 1 ")

fp.seek(0)

print(‘‘File name: {} ’’.format(fp.name)) print(‘‘File contents: {} ’’.format(fp.read ())) fp.close()

print(‘‘Does it still exist?:’’, end = ‘ ’)

print(‘Yes’) if os.path.exists(fp.name) else print(‘No’)

Output:

File name: c:\Users\Public\Documents\myfile69n33nhd.tmp

File contents: b‘Line 1 ’

Does it still exist?: No

Note that the file name is now formed using our prefix and suffix along with a randomly generated string. A file is created without extension when the suffix does not have a dot in it. Temporary directories can also be created using mkdtemp(suffix= None, prefix= None, dir = None) method which returns the pathname of the created directory. There is also a mkstemp(suffix = None, prefix = None, dir = None, text = False) method to create temporary files. This method returns a pair (fd, name) where fd is the file descriptor returned by os.open, and name is the filename. This is a tuple of objects. The fd can be used to read from and write to the file by the user who created it (other users are disallowed since it is created as process specific). The user is responsible to delete it when done with it. There is a third method mktemp(suffix = ‘’, prefix = ‘tmp’, dir = None) to return a unique temporary file-name without actually creating a file.

>>> tmp.mktemp(suffix = ‘.tmp’, prefix = ‘my’, dir = None) ‘C:\Users\Admin\AppData\Local\Temp\myfm539ifx.tmp’

As the file is not actually created, the name (returned as a string) can be used as argument to NamedTemporaryFile() for more explicit control of temporary files.

7.2.3 Opening Binary Files

There are several files that contain binary data – image files (like jpeg and gif), application files, music (audio) and video files, encrypted and zipped files, multimedia files etc. The ‘b’ mode in an open statement indicates that data in that file are binary. Binary files retain contents as bytes objects without any decoding. The mode ‘b’ (for binary files) can be appended with ‘r’ or ‘w’ as ‘rb’ or ‘wb’. In Python 3.x rb and br or wb and bw are acceptable. Python uses a BufferedReader class for binary files.

fq = open(r‘d:/mybin.txt’,‘br’) # open binary file

with open(‘infile.txt’, ‘rb’) as readfile, \

open(‘outfile.txt’, ‘wb’) as writefile:

 for aLine in readfile: etc

Whereas the first command uses plain open() statement, the second one uses with
 statement to open two binary files.

7.2.4 File Opening Modes

Python provides plenty of file modes. All of these modes can be specified either using the first syntax (fp = open(etc)) or with the second one (with open()). A ‘+’ mode specifier can be added to other options to indicate simultaneous read and write. If it precedes the character, you get ‘ValueError: mode string must begin with one of ‘r’, ‘w’, ‘a’ or ‘U’, not ‘+”. Thus r+ and w+ are synonymous, and a+ opens the file in append-mode for read or write. When opened in this mode, regardless of the current seek position, all writes may append to the end of the file on *NIX systems. The mode can be omitted, but cannot be blank or empty. Python throws “ValueError: empty mode string” when an empty character is supplied as the mode. These notations are identical to those used in *NIX file systems because Python file objects are implemented using C’s stdio package (which is also used in *NIX). The mode w+b opens and truncates the file to 0 bytes, while r+b opens the file without truncation. Files opened in mode rb+ and r+b are not exactly identical. Whereas r+b mode opens the file for random access, rb+ opens a binary file for reading and appending. Only the filename argument is compulsory in an open statement. The following statement with a single argument opens the file for reading. Thus if you always work with file reading
 operations, you can forget about the other parameters.

>>> fp = open(‘‘data.txt’’)

>>> fp

<open file "data.txt", mode ‘r’ at 0 x016E 4D88>

If successful, the above command will assign a file handle to the file so that all subsequent operations can take place using the handle specified on the LHS
[41]
. Note that the filename argument is a positional argument, and all others are key = value pairs (called keyword arguments). Hence an open statement must have the file-name as the first argument, after which the keyword arguments can appear in any desired order. A thorough discussion of this can be found in the next chapter on functions. Give

fp = open(‘fname.txt’, newline = ‘\n’)

if you do not wish to use buffering, but uses only newline
 argument.

fp = open(‘fname.txt’, buffering = 0, mode = ‘rb’)

All opened file handles have certain attributes. For example, fp.name returns the name of opened file, fp.mode returns the mode, fp.encoding returns file encoding and fp.newlines returns whether end-of-line convention is used for this file.

Files and directories created in *NIX inherits access permissions based on the umask
 of the current user. The os module has a chmod
 command to change the access permissions of a file, with signature os.chmod(path, mode, *, dir fd = None, follow symlinks = True).

os.chmod(‘myfile.txt’, 0557)

There is also a chmod() command in pathlib module that works for files and directories with a much simpler syntax. This command is usually executed when the file is in closed mode. If any user has opened it for writing or updating, you must ensure that it is closed before this command runs. This could easily be checked using the file handle when the file is opened by the same user (or in the same process) using if fp.closed:. This returns True
 if the file is indeed closed.

7.2.5 Renaming Files and Directories

Files can be renamed and deleted in many ways. Some OS (like Windows) does not allow renaming of open files, while some others (Raspbian, Linux, some *NIX versions) allow it. Thus it is OS-specific. The os.rename() method could be used for this. Three positional arguments and 2 keyword arguments can appear on a rename command. The first argument is the present file name and second argument is the new name to be given. The same command is used to rename directories. A third positional argument of * can be used for bulk renaming in directories. The fourth and fifth parameters are keyword arguments src_dir_fd and dst_dir_fd which are the source and destination file descriptors for directories to be renamed. The first two arguments can be relative file names if these two descriptors are not None
.

Files can be renamed on the fly
. There are two methods rename(src, dst, *, src_dir_fd = None, dst_dir_fd = None) and renames (old, new) for this. The singular form works for both files and directories. The first argument (src) must be the name of an existing file or directory, and dst must be a valid new name. Other parameters are used in *NIX environments. The plural form renames(old, new) works with directories only. It first renames the “old” directory and recursively descends to sub-directories looking for empty ones (which are only deleted at the end of successful completion of the command) and renames sub-directories using the same existing names. This command may fail after the complete tree is renamed if the user who issues it does not have correct permissions. The os.replace(src, dst, *, src_dir_fd = None, dst_dir_fd = None) command is also similar to rename().

import os

fname = ‘C:/test.txt’

if os.path.exists(fname):

try:

os.rename(fname, fname) # rename to same name

process further

except OSError as e:

 print (‘Access denied’ + fname + str(e))

7.2.6 Access Permissions of Files and Directories

A Boolean method access() that uses the real uid/gid of a file can test for access to a file. This has signature os.access(path, mode) where path is the directory or file name to be tested for existence or any access, and mode is one of F_OK, R_OK, W_OK, or X_OK. These can appear individually or combined in meaningful ways (as inclusive OR). While os.F_OK tests the existence, R_OK, W_OK, and X_OK tests for readable, writable and executable permissions. These do not work as expected in Windows (even a simple text file will show as executable in Windows using the above method).

import os

meaningful only in *NIX, all returns True or False

exists = os.access(‘/Python/games/race.py’, os.F_OK)

readable = os.access(‘/Python/games/race.py’, os.R_OK)

writable = os.access(‘/Python/games/race.py’, os.W_OK)

rwable = os.access(‘/Python/games/race.py’, os.R_OK|os.W_OK)

executable = os.access(‘/Python/games/race.py’, os.X_OK)

Alternatively create a Path() object using pathlib module and call exists(), is_dir(), is_file() etc. The pathlib is more versatile as it could check device types is_block_device()

(if path is pointing to a block device),

Is_char_device() (if it is pointing to a character device), is_socket() (whether it is a socket), is_symlink() (if it is pointing to a symbolic link) etc.

7.2.6.1
Buffering Mode

A buffering mode (an int) can be specified as the third parameter of open command where 0 means unbuffered, 1 means line buffered, and bigger integers specify the buffer size to be used. Buffering makes disk I/O faster because a temporary buffer in RAM will be used to reduce the peripheral data transfer. This is especially useful in I/O intensive critical applications where data files are of giga or tera-bytes in size. The buffer argument on open() can be specified only for text files. As True is 1 and False is 0, these constants can also be used as third parameter to make it more readable. The option 0 is allowed only in binary mode. Binary files are always buffered in fixed-size chunks by default. The buffer size depends on the OS, but typically it is 4096 or 8192 bytes long in 32-bit and 64-bit OS. The io.DEFAULT_BUFFER_SIZE can be used to set it to a higher or lower number. Although 0 is the least buffer size you can allocate, any value ≤ 0 will result in unbuffered
 I/O (the default is buffering = -1).

>>> import io

>>> io.DEFAULT_BUFFER_SIZE

8192 # in Python 3.7 and 3.8 (64 bit)

>>> io.DEFAULT_BUFFER_SIZE = 32767

7.2.6.2
Encoding Attribute

An encoding attribute can be used for text files. The default encoding is platform dependent (encoding = ‘cp1252’ in Windows 10). It is used to encode or decode the file contents. When this attribute is not specified or is None, Python will call locale.getpreferredencoding(False) to get the current locale encoding. A related attribute is ‘errors’ which specifies how encoding errors are to be handled. Both ‘encoding’ and ‘errors’ attributes are forbidden for binary files. Most commonly used values for errors attribute are strict to raise a ValueError if there is an encoding error, ignore to ignore errors.

7.2.7 Deleting Files and Directories

Use remove(path, *, dir_fd = None) and os.removedirs(dirname) commands to remove files and directories. This works recursively by removing a specified leaf directory, and all empty intermediate ones beneath it. Note that the path, if any, should be formed using os.sep character and file extensions follow the os.extsep character (which is a dot in Windows). The shutil.rmtree(path, ignore_errors = False, onerror = None) command can recursively delete a directory tree specified as path, even if a subdirectory is non-empty.

import os

os.rename(cur_file, new_file)

os.remove(‘C:/Users/Admin/AppData/Local/Temp/AdobeARM.log’) os.removedirs(‘C:/Users/Admin/AppData/Local/Temp/Excel8.0’)

The os.removedirs() will throw an exception (OSError: [WinError 145] The directory is not empty:
) when the specified directory is not empty.

import os, shutil

os.removedirs(‘c:/python/games’) # OSError if nonempty

shutil.rmtree(‘c:/python/games’) # works

There is also a super-rename called os.renames() that accepts just two directory names (source directory to be renamed, destination directory name) and automatically deletes empty directories. The os.replace() command is similar as it renames a file or directory by overwriting the destination.

7.2.8 Closing Files

All files opened using the fp = open() command must be explicitly closed using the fp.close() command where fp is the file handle. You need to reopen it for further file access. This is especially important in multi-user environments where other people may be waiting for a file exclusively opened by another.

>>> f = open(‘game.py’)

>>> f

<open file ‘game.py’, mode ‘r’ at 0 x016E 4D88>

>>> f.name,f.mode

(‘game.py’, ‘r’)

>>> f.close()

>>> f

<closed file ‘game.py’, mode ‘r’ at 0 x016E 4D88>

>>> f.fileno()

ValueError: I/O operation on closed file

>>> f.closed # an attribute True

The f.close() command can be called any number of times without generating an exception. It simply sets the data attribute .closed
 to True
, so that further file operations are stopped. The f.fileno() returns a unique integer for each opened file. This method is useful to check if a file is opened or not. If called on the handle of a closed file, it will throw a “ValueError: I/O operation on closed file”.

All files opened using the with command
 are closed automatically when they go out-of-scope

(this is the magic of the indented block). Consider the code

with open(‘game.py’, ‘U’, 10) as fp:

data = fp.read(10) # discussed below

print (data)

fp.fileno()

The fp.fileno() statement which marks the end of with block is not indented. As Python finishes the with block, the file goes out-of-scope and fp.fileno() generates “ValueError: I/O operation on closed file”. If fp.close() statement appears there, it won’t generate errors.

Open files

try:

do all file operations

finally:

 file.close()

As the finally block is always executed, all open files could safely be closed here.

There is another way to close files using the os module. An import os followed by os.close(fd) or os.closerange(fdlow, fdhigh) can be used to close either one or a bulk of files using their file handles.

7.2.9 Checking for File and Directory Existence

File operations can throw different types of errors. It is wiser to check the existence of files at the correct place before some of the following operations are carried out. There are separate methods to check for file existence, directory existence and path existence (where path may point to a directory or file).

import os

fname = ‘d:/Python/game.py’

if os.path.isfile(fname):
True

 print(‘It is a File’)

if os.path.isdir(fname):

print(‘It is a Directory’)

if os.path.exists(fname):

print(‘It is a Path (file or directory)’)

The pathlib module is an alternative that provides abstractions and helper functions for many file system operations. It can also be used to check if a file exists or whether a path points to a file or a directory.

import pathlib

fname = ‘d:\\Python/game.py’ # a mix of \\ and /

path = pathlib.Path(fname)

if path.exists() and path.is_file(): # open and process file

The pathlib is a painless solution for portability of Python programs. You can forget about the target OS and code the directory names as in *NIX (with /) and let pathlib do the portability instead of hard-coding it, or using os.path.join() with os.sep to build a path string. The PurePath class of this module returns either a PurePosixPath or a PureWindowsPath object on parent OS. The Path class (derived from PurePath class) ensures that forward slashes are converted if necessary into the correct kind of slash or other directory separator symbol for the current OS.

As the os.stat(fname) gives complete information about an existing file, a try-except block could be used to check for file existence and file attributes simultaneously. This function returns useful information like access permissions, file size and time information (like last access and modified time etc). Alternatively use pathlib module described above.

import os

fname = ‘d:/Python/game.py’

try:

f = os.stat(fname)

print(f)

#Perform File Operations (Reading and Writing a File)

except FileNotFoundError:

print (‘File: "+fname+" not found.")

except PermissionError:

print (‘Permission denied to "+fname+".")

except IOError: # parent of PersmissionError

print (‘File not accessible.")

7.2.10 Reading from Files

Reading and writing of files are the most frequent file operations. As the name implies, file reading brings data residing on external devices (like disks or CD/DVD drives) into the RAM. Files can be read only after they are opened using the open() statement:

fp = open(file, mode = ‘r’, buffering = -1, encoding = None,\

errors = None, newline = None, closefd = True, opener = None)

where file is the only positional parameter. The open statement actually creates a file handle (a Python object; see table 7.2, pp.7-2) that serves as a conduit between the Python program and the OS so that data can be passed to appropriate low-level OS kernels to physically place the bits-and-bytes into the storage locations in memory while reading, and in the reverse direction while writing. As the default value of mode is ‘r’, file is opened for reading only when mode is not specified. Binary files are always buffered in fixed-size chunks (4096 or 8192 on most systems). There are two Boolean functions fp.readable() and fp.writable() that return a value indicating whether the file object was opened for reading or writing.

7.2.10.1
Read Command

The read command accepts a single named parameter called size which is -1 by default. When called without parameters or with a negative argument, data = fp.read()

will read the entire file (up to EOF) and assign the contents to the variable called data (on the LHS) as a string. The command

fp = open(‘game.py’)

fp.read([size])

reads at most size bytes (or up to the EOF if there are no size bytes left) and returns it as a string. This returns an empty string at EOF. The fp.read(n) call returns the next n bytes from current file position. Then another fp.read() call without arguments will read from current location up to the EOF.

while char = fp.read(1) != None:

 print (char)

can be used to read a file character by character. A specified number of characters can be read as

n = 100

data = fp.read(n)

where the same reasoning above applies. A negative number as argument to read() is ignored and it behaves like a read() without arguments, and fp.read(0) returns null string. Less data than requested may be returned when the buffering parameter is specified, even when the size parameter is missing.

7.2.10.2
Readline Command

Quite often, text files are processed line by line. The readline() method reads all characters up to and including the next newline character (EOL) from a file, and retains newline characters. This command can be used to process a file one line at a time.

fp = open(‘game.py’)

while True:

aLine = fp.readline()

if not aLine: # EOF reached break

#process(aLine)

fp.close()

This method also accepts an optional non-negative size argument. It limits the maximum number of bytes to be read. If an EOL is encountered before this, it will immediately return. Otherwise an incomplete line may be returned. This function also returns an empty string at EOF. Note that Windows store “\r\n” at the end of each logical line in text files which are ASCII codes 13 (CR or Carriage Return) and 10 (LF or Line Feed). Python will read both characters and swallow CR characters. The reverse happens while writing text files. Python includes the CR character so that Windows will store it correctly. This happens in other OS as well (The Mac OS stores “\n\r” at the end of each logical line). The pprint module can be used to print file contents with newline characters as shown in second example below.

7.2.10.3
Readlines Command

There is another method fp.readlines() that returns all remaining characters up to EOF. If readlines() is called immediately after opening a file, it will read the entire contents of the file.

fp = open(r‘c:\Python37\game.py’)

 data = fp.readlines()

Python implements the readlines() as repeated calls to readline() when a size parameter is not specified. If a size is supplied on readlines(), it will keep calling readline() until the “size” number of bytes are read or EOF is reached.

List comprehension can be used to read the contents of a file into a list separated by newline.

from pprint import pprint

fp = open(‘temp.del’,‘r’)

lines = [aline for aline in fp] # create a list

pprint (lines)

There is a helper class to loop over all standard input files (lib/fileinput.py). Suppose multiple files specified on the command line need to be processed (defaults to sys.stdin if the argv[] list is empty). As sys.argv[1:] denotes the list of arguments supplied on the command line starting with 1 (up to EOL), all files specified on the command line can be processed in one go as follows:

files.py

import fileinput as fi

for aLine in fi.input():

 #process(aLine)

 print (aLine)

As mentioned above, all files are opened for reading in text mode by default. This can be changed by setting the mode
 parameter of open
(). Options are available to process a sequence of files and mark them as processed (by say renaming them to some other extension) using the options inplace=1, backup = ‘.bak’ in the input() call. The syntax of FileInput is

FileInput([files[, inplace[, backup[, bufsize[,\ mode[, openhook]]]]]])

where bufsize
 is an integer ≥0 (default is 0), mode
 is the open mode (default is r). Save the above code as files.py and give the command:

python files.py game.py chess.py turtle.py

you will see that each of the file contents in game.py, chess.py, turtle.py are printed on the screen. Replace the print (aLine) statement by some function call to process the contents in some other way. If the list on command line is empty or a filename appears as ‘-’, this defaults to sys.stdin. A method filelineno() returns the line number in the current file, whereas lineno() returns the cumulative line-number (wrt the files read) of the line that has just been read.

7.2.11 Writing to File

The write function is used to save data in RAM into external storage devices. Various operating systems use different character combinations as EOL (like ‘\r\n’ or ‘\n’) as EOL. This must be kept in mind when files created in one OS is processed in another.

fp = open(‘temp.del’, ‘w’)

fp.write(‘some text")

will output the specified text to the file. Issuing fp.close() will make the changes permanent

(it clears the file buffers and closes the file handle). There is also an fp.flush()

command to flush all memory buffers to the file. This is especially important when the third buffering mode parameter is used in an open statement. As fp.close() automatically flushes write buffers, there is no need to call fp.flush() if changes in file contents need not be immediately visible (as when a file is opened for read and write). Further file operations cannot be performed on closed files unless they are re-opened.

fp = open(‘temp.del’,‘w’)

print(fp,‘‘this is a string’’)

p.close()

fp = open(‘temp.del’,‘r’)

buf = fp.read()

print (buf)

Output:

this is a string

As shown in table 7.1 (page 7-2), there is an ‘x’ mode for open method which is synonymous with ‘w’ except that files opened as ‘x’ raises a ‘FileExistsError‘ if the file already exists. This happens even if it is an empty file.

7.2.12 Copying Files and Directories

The shutil module that comes pre-installed has lots of functions for copying and archiving files and directory trees. There are many related functions in this module to make copying easy. The simplest of them is the copy command with signature copy(src, dst, *, follow_symlinks = True).

import shutil

shutil.copy(‘src.txt’, ‘Temp’)

The first argument (src) is the name of the file to be copied, and second argument (dst) is either the destination directory or a new file name. If the src is the complete path and file name, and dst is the same directory (without a file name), Python will raise SameFileError. If the directories are different, the src will be copied into the destination directory with the same name. If second argument is a new file name, the src will be copied into a new file. Python will throw “OSError: [Errno 22] Invalid argument” when you specify a non-existent directory name as second argument, or when the first argument is a directory name.

>>> shutil.copy(‘d:/Python/game.py’,‘c:/backup/games/’)

c:/backup/games/game.py

This command actually returns the complete path and file name of the newly created file (as a string if both args are strings) upon success. It copies data and mode bits in *NIX systems. Wildcard characters are not accepted in file names as of this writing.

The shutil.copy2(), and shutil.copyfile() commands have the same signature but copies data and all stat info in *NIX systems. File ownership permission bits can be changed using shutil.chown() method and os.access (path, mode) can be used to check if a user is allowed to access a file before actually doing so)
[42]
. They are synonymous in Windows, where both sets the archive bit on copied dst file. The shutil.copyfile() has in addition the ability to create symlinks. There are separate copymode() and copystat() methods to copy metadata of files in shutil. The

copytree(src, dst, symlinks = False, ignore = None,\

copy_function = None, ignore_dangling_symlinks = False)

is more versatile as it recursively copies a directory tree (destination directory must not already exist). Files can also be moved without copying (internally it is implemented as a copy followed by a delete of src file) using move(src, dst, copy function = None) that recursively moves a src file or directory to another specified dst location. If dst is a directory and src is a file name, then src is moved into the dst directory.

7.3 Pickle

Pickle is a Python package for data serialization. This process is popularly known as pickling (also called marshaling or flattening). Most Python objects can be pickled and saved to disk, so that it can be later brought back to memory to create an exact replica of the original object (called deserialization). Internally a Python object is converted into a character stream with all necessary information to reconstruct the object later in another Python script. A Pickle.PicklingError is thrown if the object does not support pickling.

7.3.1 Serializing Objects

The pickle.dump() function is used to serialize an object to an external device.

dump(obj, file, protocol = None, *, fix_imports = True)

so that the obj and file are the only positional arguments.

import pickle

f = open(‘data.pck’, "w") pickle.dump(3.1415, f)

Possible values for protocol argument are 0, 1, 2, 3 and 4 (default protocol is 3). Protocol = 0 is used for simple text data, 1 for binary data, 2 for objects, 3 for optimal storage, 4 for very large objects. The object to be worked upon can be fundamental data types (like float or str), collection types (list, tuple, dict, etc) or user-defined types.

import pickle as pk

data_out = [123, ‘abcd’, (‘e’,‘f’)]

print(‘Data to be serialized : ’,repr(data_out))

file = open(‘pickletest’, ‘wb’)

pk.dump(data_out, file)

file.close()

file = open(‘pickletest’, ‘rb’)

data_in = pk.load(file)

print(‘Deserialized data:\t’,repr(data_in)) print(data_in==data_out)

Output:

Data to be serialized : [123, ‘abcd’, (‘e’, ‘f’)]

Deserialized data: [123, ‘abcd’, (‘e’, ‘f’)]

True

The file is open in ‘wb’ mode because all the operations are done using bytes. There are dumps and loads commands to write data as bytes to a string buffer and read it back (without using a file).

import pickle as pk

data_out = {123: ‘abcd’, 456:[‘ef’]}

print(‘Data to be serialized : ’,repr(data_out))

ps = pk.dumps(data_out)

data_in = pk.loads(ps)

print(‘Deserialized data:\t’,repr(data_in)) print(data_in==data_out)

Output:

Data to be serialized : {123: ‘abcd’, 456: [‘ef’]}

Deserialized data: {123: ‘abcd’, 456: [‘ef’]}

True

Pickle can also be used to do binary I/O. The protocol argument can be used to make resulting file smaller and unpickling faster. The following example uses protocol = pickle.HIGHEST_PROTOCOL.

import pickle as pk

with open(‘filename.pickle’, ‘wb’) as fp:

pk.dump(123, fp, protocol = pickle.HIGHEST_PROTOCOL)

pk.dump(‘four five’, fp, protocol=\ pickle.HIGHEST_PROTOCOL) pk.dump([6,7,8], fp, protocol = pickle.HIGHEST_PROTOCOL)

fp.close() # not actually needed

with open(‘filename.pickle’,‘rb’) as fq:

print(pk.load(fq)) print(pk.load(fq)) print(pk.load(fq)) fq.close() Output: 123 four five

[6, 7, 8]

7.4 The StringIO Class

The io module has a StringIO class for text operations using a Python string variable as an in-memory buffer. This class is derived from TextIOBase and IOBase. All of the methods available in file classes (that are created using an open() command) are also available here.

[image:]

import io

out = io.StringIO()

out.write(‘Line 1 \n’) out.write(‘Line 2 \n’)

buf = out.getvalue()

if len(buf) > 0:

 print(buf)

out.close()

inp = io.StringIO(‘Python programming is fun’)

Read from the buffer

print (inp.read(6)) # 6 characters

print (inp.read()) # rest of it

Output:

Line 1

Line 2

Python programming is fun

A bytearray can also be used in place of a string for in-memory file-like operations. The BytesIO class (in io module) is derived from BufferedIOBase and implements buffered I/O using an in-memory bytes buffer. It is especially useful in large image processing and data compression applications.

Table 7.3: Common File Operations in Python

[image:]

	
open

	
open file

	
fp = open(filename, ‘r’)

	
close

	
close an open file

	
fp.close()

	
flush

	
flush file buffers

	
fp.flush()

	
fileno

	
int file descriptor number

	
n = fp.fileno()

	
isatty

	
True if file connected to tty

	
fp.isatty()

	
next

	
next input line from file

	
fp.next()

	
read([size])

	
read at most size bytes

	
fp.read(n)

	
readline([size])

	
read at most size bytes

	
fp.readline(n)

	
readlines([size])

	
read at most size lines

	
fp.readline(n)

	
seek(off[,whence])

	
set file ptr position

	
fp.seek()

	
tell

	
current position in file

	
fp.tell()

	
truncate([size])

	
truncate file size (at n bytes)

	
fp.truncate(n)

	
write(str)

	
write string to file

	
fp.write()

	
writelines(seq)

	
write a seq of strings to file

	
fp.writelines()

[image:]

The “flush()” call may not write file’s buffered data to disk. Use “flush()” followed by “os.fsync()” to ensure write.

7.4.1 File Filters

The glob builtin module provides pattern matching capabilities to filter out files that match a given pattern. For example, glob.glob(‘*.py’) filters out all Python files in the current directory. These are sorted using sorted() function and printed.

import glob

glob supports Unix style pathname extensions

python_files = glob.glob(‘*.py’)

for file_name in sorted(python_files):

 print (‘
------’ + file_name)

This command also accepts regular expressions. For example, glob(‘g*[0-9]*.py’) searches for all Python file-names starting with the letter g and which contains one or more occurrences of a digit. The glob module can be used for wildcard processing as shown below:

import shutil, glob

for file in glob.glob(‘game*.py’):

shutil.copy(file,‘c:/backup/games/’)

An alternative is fnmatch(filename, pat) that tests whether filename matches with shell patterns (that uses *, ? and [sequence of chars] along with ! operator inside the square brackets specified in pattern).

7.5 Standard Input/Output

Python maps standard input (stdin) to the device sys.stdin, standard output (stdout) to sys.stdout and standard error (stderr) to sys.stderr. Thus whatever you type on the keyboard can be directly captured as a stream. Similarly, program output can be sent to the tty (screen) directly. These are implemented in PseudoInputFile and PseudoOutputFile classes in idlelib.run module. The read(n) and readlines() methods are used to read keyboard buffer, and the write() and writelines() methods to send output to the screen. As data are handled as a stream, all special characters (like CR and LF) are kept by these method calls.

Hence these commands may not work in IDLE and other development environments.

import sys

sys.stdout.write(‘What is your name? : ’)

name = sys.stdin.readline()

sys.stderr.write(‘Enter your age : ’)

age = sys.stdin.readline(3)

sys.stdout.writelines(‘Hello "+name.title()+‘, you are ’+\ str(age)+‘ years old!’) Output:

What is your name? : Bill

Enter your age :58

Hello Bill

, you are 58 years old!

What is your name? : Bush

Enter your age :100

Hello Bush

, you are 100 years old!

As the readline() method keeps the CR character (captured when you pressed the Enter key on keyboard), the output appears on multiple lines. If the age is two digits or less (<
100), a CR character is kept with it too. But if the age is 100 or more, the CR is not kept because a width of 3 was specified in readline(). This is why the second output appears on 2 lines. A solution to keep all output on a single line is to call strip() on input lines to strip-off the newline character as shown below:

import sys

sys.stdout.write(‘What is your name? : ’)

name = sys.stdin.readline().strip()

sys.stderr.write(‘Enter your age : ’)

age = sys.stdin.readline(3).strip()

sys.stdout.writelines(‘Hello "+name.title()+‘, you are ’+\ str(age)+‘ years old!’) Output:

What is your name? : bush

Enter your age :99

Hello Bush, you are 99 years old!

You may have to call flush() occasionally when small amounts of data are output. This command will force all output buffers to be flushed to the screen. The write function accepts a single string as argument. Hence other data types must be converted to string form (eg : str(age)). Multiple data values can be output by converting them to strings and using the concatenation operator + to join them together.

Example 7.1 (Filter Python files in a directory)
 Write a program to see if there are any Python files in a user -specified directory.

Solution 7.1
 The glob method is used to filter out all matching files. Program exits with a message when there are no matches. Otherwise, it displays the count and asks the user whether to print the file names or not. If the user answers yes, it prints out the file names using pprint module.

import os, glob, pprint, sys

files = ‘’

dirname = input(‘Enter directory name: ’)

if len(dirname)>0 and os.path.exists(dirname) and \

os.path.isdir(dirname):

if not dirname.endswith(‘\\’): # dirname.endswith(‘//’)

dirname += ‘\\’ # += ‘//’ in *NIX

files = glob.glob(dirname+"*.py")

else:

print(‘Wrong directory name ’,dirname)

sys.exit(-1)

if len(files)>0:

print(‘There are ’,len(files),‘Python files in ’,dirname)

if input(‘Print out those files?(y|n) : ’).lower()==‘y’ :

pprint.pprint(files)

else:

print(‘There are no Python files in ’,dirname)

The first if statement ensures that dirname entered by the user is indeed a directory name. Directory separator is added if the user has forgotten it in input. All Python file names are accumulated in files variable and printed out.

7.6 CSV Files

A Comma Separated Value (CSV) file is a text file with data values separated by commas. Multiple records are arranged line by line. It is usually saved with a .csv extension but any extension can be used as it is a pure text file. Data in spreadsheets are usually exported as CSV files. Similarly, database query results can be saved as CSV files. An advantage of CSV files is that data in it can be imported directly into spreadsheets or populated into database tables. As they are pure text files, they can easily be edited using any text editor. Missing column values are represented by nulls. Thus two adjacent commas in a CSV file indicates a missing value. As they have a definite structure, they can be merged with other CSV files with the same structure. The Sniffer class can be used to ‘sniff’ the format of a CSV file without actually reading it to understand the delimiter, quotechar etc used in it. This class returns a Dialect object described below. Some of the CSV files obtained by exporting Excel data may have a header row that identifies the variable in each column of the spreadsheet. Its presence can be checked using fp.has header(csvfilename) method.

Simple CSV files are those in which data are unquoted numbers (integers and real numbers). But a CSV file may contain a mix of numeric, date, and string data; some of which are enclosed in quotation marks. Parsing such files that have heterogeneous data types with commands like line.split(‘,’) may sometimes fail. Python provides an easy work-around to solve this problem. In addition to reading and writing CSV files, Python has a facility called ‘registration of dialects’. The csv module has a Dialect class which must be sub-classed (a child class derived from it). A dialect argument can be passed to readers and writers to make data transfer smooth and explicit. A dialect argument of type string identifies one of the previously registered dialects with the module. If it is a class or object instance, the attributes of the argument (class or object) are used as the settings for the reader or writer. There are several predefined dialects like excel, excel tab, Unix dialect etc. available in csv module. The excel class in csv module describes the usual properties of Excel-generated CSV files. Suppose you have exported an Excel file that has student name, gpa, major, year in college and DOB into a CSV file. Here gpa is a floating point number, year in college is an integer and all others are quoted strings. You can define a class as follows:

class studentexceldata:

delimiter = ‘,’

quotechar = ‘"’

escapechar = None

doublequote = True

skipinitialspace = False lineterminator = ‘\r\n’

quoting = QUOTE_MINIMAL

Most of the fields in this class are self-explanatory. Only two of the seven attributes (doublequote and skipinitialspace) are Booleans. The delimiter specifies the character that is used to delimit fields (columns of our Excel file into fields in CSV file are separated by this character) where comma is the default (other options are TAB (excel tab class in csv module), semicolon, backquote etc). The quotechar specifies which character is used to enclose strings and dates. The possible choices are single quote, double quote (default) and back quote. When quoting is set to QUOTE NONE, an escapechar should specify a one-character string to be used to escape the delimiter. Sometimes quotes may be present inside fields like foreign names, street addresses etc. The doublequote attribute controls the handling of such quotes. Whitespace characters which immediately follow a delimiter is controlled using the skipinitialspace attribute (defaults to False). If it is False, then whitespace immediately following a delimiter is assumed to be a part of the following field. As files exported from different OS have different record terminators, the lineterminator can be used to specify the character sequence that terminate rows of a CSV file. This is usually ‘\n’ (unix dialect class in csv) but could also be ‘\r\n’ (which is the default). Quotation marks could be forced around all fields using QUOTE_ALL, around non-numeric fields using QUOTE_NONNUMERIC on the quoting option. A QUOTE_NONE option does not put quotation marks and QUOTE_MINIMAL means to put quotes only when required.

7.6.1 Reading CSV Files

The readline() function mentioned above can of course be used to read CSV files. Python’s CSV module mitigates the work of reading and writing CSV files.

import csv

filename = ‘c:/python/test.csv’

with open(filename) as f:

 reader = csv.reader(f)

 next(reader)

for row in reader:

 print (row)

Keyword arguments like delimiter = ‘x’ and quotechar = ‘y’ can appear on the reader(f) command where x and y are chosen by the user.

7.7 Formatted File I/O

The print statement can be used to write formatted data to a file using a user specified data separator (available in Python 3.6 and later versions).

fp = open(‘sample.txt’,‘w’)

print(‘Student name:’,‘Albert’,"grade’,\

4.0, sep = ‘,’, file = fp) fp.close() fp = open(‘sample.txt’,‘r’)

data = fp.readlines()

print(data)

Output:

[‘Student name:,Albert,grade,4.0\n’]

7.8 Directories

Directories are special types of files that hold file name as contents, including other directories. Directory can also be empty (which can be checked by the len() command). Python 3.x can work with Unicode directory names. All directory and file names are interpreted as Unicode strings. Even if you name a directory using decimal digits(eg: 2020), it is a string for Python (stored as “2020”). The os module contains several methods that make directory traversal and processing easy. This includes listdir(), walk(), read(), rename(), write(), chdir(), etc.

7.8.1 Current and Parent Directories

The os.curdir attribute returns a string representing the current directory (it is always ‘.’ which is compliant with DOS, Windows, *NIX and many other OS). This can also be used to build relative paths down the directory tree. Thus “./payments” represents a directory called ‘payments’ beneath the current directory. Files in the current directory can be accessed without the “./” prefix. The os.getcwd() method returns a Unicode string representing the current working directory, and os.getcwdb() returns a bytes string. The following code prints current directory name.

import os

curdir = os.getcwd() print(curdir)

Output:

‘C:\\Users\\Python\\Python38’

Some OS use \ as directory separator. This character literal is stored in os.sep attribute which is the pathname separator (most often ‘/’ for *NIX and ‘\’ for Windows). Thus you get a string like “C:\Users\Python\Python38” where you have installed Python on your system. Contents of a subdirectory called games can be listed as os.listdir(os.getcwd()+os.sep+‘games’).

Although Windows command prompt accepts \ as path separator, you can specify paths of files and directories in Python programs using / as path separator. For example, fp = open (‘c:/Users/Public/file.ext’) will correctly open the file so long as the character that follows the / is

Table 7.4: Common Directory Operations in Python

	
Method

	
Meaning

	
Example

	
listdir

	
lists file contents

	
aStr = os.listdir(pathname)

	
chdir

	
change directory

	
fp.close()

	
read

	
read file into buffers

	
os.read(fd, bufsize)

	
rmdir

	
remove a directory

	
rmdir(path)

	
rename

	
rename a file or directory

	
renames(old, new)

	
next

	
next input line from file

	
fp.next()

	
read([size])

	
read at most size bytes

	
fp.read(n)

	
readline([size])

	
read at most size bytes

	
fp.readline(n)

	
readlines([size])

	
read at most size bytes

	
fp.readline(n)

	
seek(off[,whence])

	
set file ptr position

	
fp.seek()

	
tell

	
current position in file

	
fp.tell()

	
truncate([size])

	
truncate file size (at n bytes)

	
fp.truncate(n)

	
write(str)

	
write string to file

	
fp.write()

	
writelines(seq)

	
write a seq of strings to file

	
fp.writelines()

”flush()” may not write file’s buffered data to disk. Use ”flush()” followed by ”os.fsync()” to ensure write.

not (n, r, a, t etc). As discussed above, the raw string specifier can be used in such situations. The parent directory is accessed using os.pardir which is also a string representing the parent directory (always “..”). There is also an os.extsep attribute which is the file extension separator (always ‘.’). To reduce portability issues between various OS, Python provides os.altsep attribute which is the alternate pathname separator (None or ‘/’). The os.environ is an attribute (not a method) that stores the environment setting as a list (see chapter on lists). The os.pathsep stores the character used as path separator in PATH, PYTHONPATH (which is usually semicolon). The os.defpath attribute stores ‘.;C:\bin’. The isabs(s) function can be used to check if a path is absolute or not.

7.8.2 Listing Directory Contents

As the name implies, listdir(path = None) gets a list of directory contents as comma separated strings. Without arguments, it defaults to current directory. A path can be specified to list any permissible absolute directory as either str or bytes. If path is specified as bytes, the filenames returned will also be in bytes form (otherwise it is in string form). There is no way to distinguish between directory names and ordinary file names in the returned result (see discussion on os.walk(), os.scandir() below).

import os

currdir = os.listdir(‘.’) # os.listdir()

for item in currdir:

 print (item)

Replace the . in os.listdir(‘.’) by os.sep character in other OS. The listdir() command retrieves files and folders including hidden files and temporary files created by applications that start with tilde (∼) character (in Windows) and stores it as a List (chapter 10). As the plus operator is overloaded for Lists, a combined list of all files in current and parent directories can be obtained as follows:

currAndParent = os.listdir(‘.’) + os.listdir(‘..’)

All files (except . and ..) in parent directory can be obtained as a List using a simple line of code:

import os

parentdir = os.listdir(‘..’)

print (parentdir)

A list of all directory names could be obtained using a simple unpacking of the triplets returned by os.walk() method as follows:

import os for dirpath, dirs, files in os.walk(‘.’): print (dirpath)

Simply replace “print (dirpath)” by ”print (files)” to get a list of file names (in Python List format).

7.8.3 Creating and Deleting Directories

Directories can be created and removed from within Python programs. There are two methods mkdir() and makedirs() for this purpose. A single directory can be created using mkdir(path) command which has the general syntax mkdir(path, mode = 511, *, dir fd = None). Only the path is the positional argument. This must be a string (directory name to be created), bytes or os.path like (is either posixpath or ntpath) object. As of this writing, the mode is ignored in Windows; but it sets owner, user, and group access permissions in *NIX (which can be changed using shutil.chown(path, user = None, group = None) command). If the directory already exists, you get the message “FileExistsError: [WinError 183] Cannot create a file when that file already exists”.

The os.makedirs() method creates a sequence of directories one below the other. For example, os.makedirs(‘./game/cars/race/’) creates a game directory first, a cars sub-directory beneath it and a race sub-directory beneath cars directory in one go. Internally Python calls mkdir() repeatedly. If any of the subdirectory name is invalid, you get “OSError: [WinError 123] The filename, directory name, or volume label syntax is incorrect”. Hence it is a good idea to parse the string for validity before calling makedirs() command.

Empty directories can be deleted using os.rmdir(path, *, dir fd = None) where path is the absolute or relative path of the directory to be deleted and other parameters are not meaningful in Windows (third parameter can be a file descriptor open to a directory in which case path will be relative to that directory). This throws “OSError: [WinError 145] The directory is not empty” when there are files (ordinary or hidden) inside it. There is also a way to recursively remove an entire directory tree (a specified directory and all subdirectories and all files beneath it) using shutil (Shell Utilities) module shutil.rmtree(path, ignore errors = False, onerror = None) command.

import os

os.makedirs(‘./game/cars/race/’)

os.rmdir(‘./game/cars/race’)

Note that these commands returns a Python list or string, which may not be redirected to the Python console when run in interactive mode. Hence you should wrap these in print() statements as shown below if you intend to debug it from Python prompt.

import os

try:

print(os.makedirs(‘./game/cars/race/’))

print(os.listdir(‘./game/cars/race/’))

print(os.listdir(‘./game/cars/’))

os.rmdir(‘./game/cars/race’)

print(os.listdir(‘./game’))

except e:

print(‘Error has occurred"+e)

The os.rmdir(‘./game/cars/race’) command will remove only the tail directory (called race) and keep all directories above it intact. See the discussion on renaming files and directories in §7.2.5 in page 7-8.

7.8.4 Access Directory Tree

Python os module has a method called walk() which is extremely useful in bulk directory operations. The syntax for this is

walk(top, topdown = True, onerror = None, followlinks = False)

where the first positional argument is the root (for traversal) and other parameters are optional keyword arguments. This function generates a 3-tuple (chapter 10). The elements of this tuple are (dirpath, dirnames, filenames) where dirpath is the path to the directory as a string, dirnames is a list of names of subdirectories in dirpath, and filenames is a list of the names of non-directory files in dirpath. These triple tuplets are called triplets.

7.8.4.1
DFS and BFS Traversals

There are two ways to walk through the directory tree – in depth first search order (DFS) and breadth first search order (BFS). This is controlled by the topdown argument. A BFS order is performed if topdown is True or not specified. This implies that triplets are generated before the triples for any of its sub-directories. A DFS order is performed if topdown is False. In other words the directories are generated bottom up.

import os

w = os.walk(‘c:/Users/Public’, topdown = True)

for file in w:

print(file)

Output:

(‘c:/Users/Public’, [‘Desktop’, ‘Documents’,

‘Downloads’, ‘Libraries’, ‘Music’, ‘Pictures’, ‘Videos’])

(‘c:/Users/Public\\AccountPictures’, [], [‘desktop.ini’])

(‘c:/Users/Public\\Desktop’, [], [‘Adobe Reader XI.lnk’,

‘Firefox.lnk’, ‘Google Chrome.lnk’, ‘HeidiSQL.lnk’])

(‘c:/Users/Public\\Documents’, [‘My Music’, ‘My Pictures’,

‘My Videos’], [‘desktop.ini’])

(‘c:/Users/Public\\Downloads’, [], [‘desktop.ini’])

(‘c:/Users/Public\\Libraries’, [], [‘desktop.ini’) (‘c:/Users/Public\\Music’, [], [‘desktop.ini’])

(‘c:/Users/Public\\Pictures’, [], [‘desktop.ini’])

As triplets are added one by one at the end of a list in BFS mode, the list can be modified “in-place“ on the fly (via delete or slice re-assignment). Thus the ‘walk’ may be restricted to recurse into sub-directories whose names remain in the list. Symbolic links are not followed by default. The os.utime(path, times = None, *, ns = None, dir fd = None, follow symlinks = True) can be used to set the access and modified time of path.

7.9 Summary

This chapter discussed file and directory operation in depth. Most of the commercial Python programs use files of different types. Creating and using temporary files are discussed next. File operations like reading, writing, deleting, renaming, copying etc are also introduced. The StringIO class and pickle package are also described. The CSV files that are produced from Excel and databases are discussed in length.

8

[image:]

Functions

	
Chapter objectives

•

Understand Functions

•

Distinguish global and local scope

•

Introduce Parameter Passing

•

Explain Positional and Keyword Arguments

•

 Positional Only Function Parameters (POFP)

•

Review inner functions

•

Describe Lambda Functions

8.1 What is a Function

A function is an independent unit of named block of code (one or more statements) that has a logical purpose (to perform certain repetitive tasks) and invoked one or more times using its name (and function call operator) from anywhere the function definition is visible. A userdefined function name should obey the same rules as identifier names, and should not conflict with system defined or built-in functions. They advocate modularity and reusability of code. As Python is interpreted, a function can be called only after its definition is seen
 by the interpreter.

Definition 8.1
 A function is an independent logical unit of named-block of code with an intend to be called from elsewhere one or more times where it is visible.

There are two types of functions:– (i) built-in functions (ii) user-defined functions. Built-in functions come bundled with compiler, interpreter or libraries (see pp.8-9, and table 8.1). They may be invoked from anywhere. A user-defined function needs to be defined. Python creates a user-defined function object which binds the function name in the current local namespace. Although a function definition is an executable statement, it does not execute the function body. The body gets executed only when the function is invoked. This is explained below.

A function may or may not have formal parameters. Most of the functions that appear below have one or more parameters because functions without parameters have narrow scope. As they have a name, they are invoked using the function call operator “()” given immediately after the

8 -1

function name. A single pair of parentheses must be used to define a function even if it has no parameters.

8.2 Creating Functions

Python functions are defined using the “def” keyword which must be the first word on a line. The general syntax is as follows

def usage():

‘‘‘ This function displays program usage ’’’

print ("usage: python progname args")

where ‘def’ (stands for define) is in lowercase only and at least one whitespace must follow it. The def keyword is followed by a function name which has the same syntax as identifiers, and either an empty pair of parentheses as shown above or with one or more comma separated parameters (also called formal arguments or simply arguments)
[43]
. The closing parenthesis must be followed by a colon (:). Any amount of whitespace is allowed around the colon and within the parentheses. Note that the function return type (like int, float, etc or void which returns nothing) as available in C++, Java and other languages is not specified in Python (Python has no void keyword; see discussion in page 8-8). Thus by looking at a long Python function, you cannot immediately figure out what this function is actually returning. Most developers put docstring at the top of functions (as the immediately following line after a function definition) to describe it.

The name of a function must match exactly as in the definition in all function invocations. This is meaningful only when function names use alphabetical characters. You could of course name functions without alphabets in it (like (), 123(), etc), but each function should be named to reflect their intended purpose. This means that alphanumeric characters will almost always be used to name functions. See the discussion on naming identifiers in chapter 2. Functions can be created dynamically, passed as arguments to other functions, used in arithmetic and input/output statements, used in other control statements like loops, if-else statements etc.

8.2.1 Structure of Functions

Each function definition starts with def
 keyword. This is followed by the function name, which obeys the same rules as that of identifiers. The function name is followed by parentheses with zero or more variable names called formal parameters, separated by commas. Default values can be assigned to any of the variables using equal sign(=) followed by any valid value (like integers, floats, tuples, lists, dictionaries, etc). Such parameters are known as keyword arguments (keyarg for short) or default arguments (defarg) or named parameters. Other parameters that do not use (key=value) type assignment are called positional arguments (posarg for short) or nondefault arguments. If a function has both posarg and keyarg, then posarg must appear in the beginning of parameter list. Otherwise you get “SyntaxError: non-default argument follows default argument”. A colon must appear after the closing parenthesis to indicate that everything which follows is the body of the function. A continuation character is placed as the last one on a function definition when a function has too many arguments to be put on a single line. Then the rest of the arguments can be given on any number of subsequent lines and the colon given at the end. This is known as function header. Everything that appears after the colon is the function body. The function body is indented when they are on separate lines. Python will complain if this indentation is not present or if it is not uniform.

function definition def blank_line():

‘‘‘This function prints a blank line on screen’’’

print() # indented function body

function invocation below

blank_line()

This is a function without parameters. The print statement prints a blank line. This function can be invoked any number of times as “blank line()” after the function definition. If this function invocation is attempted before the interpreter sees the definition of the function, you get

blank_line()

NameError: name ‘blank_line’ is not defined

showing that only already defined functions can be invoked. All functions in a source file can either be grouped together at the beginning, or they can be dispersed such that its definition is followed by invocation. The second line is called “Doc string” and serves as documentation for the function. The docstring can be a single line or multiple lines. It is always enclosed in triple quotes, and must follow immediately after the function definition. The docstring if any, must also follow Python’s indentation rule when they are put on a new line. It is okay to put docstring and other executable statements on a single line as shown below. When you give help(blank line) at the Python command prompt, it will print the docstring of that function on the screen. Thus they serve as documentation for all functions that you write. It is highly recommended to put docstring as the first line in all functions, which briefly describes what the function does. If you move the docstring from second line to some other line, help(blank line) will print only the function name. But if your function body is small, you may put both the docstring and statements on the same function definition line as shown below:

function definition

def blank_line():‘‘‘Prints a blank line’’’;print()

function invocation below

blank_line()

A semicolon appears after the docstring, which is followed by other statements. Suppose your docstring is multi-line. Then you have to put the line continuation character \ on each line except the last, and indent each such lines by the same amount as other statements in the function body. After the docstring is over, you can continue giving executable statements.

function definition

def blank_line():

‘‘‘This function without parameters\

prints a blank line on screen, each time it is called.\ It can be used to print reports neatly. ’’’

print()

function invocation below

blank_line()

You cannot put ‘if statements’, ‘for and while loops’ etc on the same line as function definition. Input statements, return statement etc are allowed on the same line as a function definition. As mentioned above, a Python function definition is in fact an executable statement. This does not mean that the function body is executed. It only means that the function name is extracted from the definition, and a ‘function object’ that contains a reference to the global namespace is added in the current local namespace. This makes function invocations possible from anywhere.

Every statement in the body of a multi-statement function must be indented to the right by the same number of whitespace characters. Additional indentation for if, for, while
 etc are applicable as in main program. The first statement that breaks the function level indentation automatically determines the end of the function.

def is_divisible(x, y):

print (‘Is’, x, ‘divisible by’, y, ‘?’, end=‘ ’)

print (‘Yes’ if x % y == 0 else ‘No’)

is_divisible(98763, 7) is_divisible(654321, 11)

Output:

Is 98763 divisible by 7 ? Yes

Is 654321 divisible by 11 ? No

Here the function definition is followed by two print statements. This represents the function body. Body of a function comprises of statements that indicate the actions that the function ought to perform. Most of the functions encountered below have parameters. Functions are invoked by supplying actual values to the expected arguments in parentheses. These may either be variables or literals. Some developers keep all function definitions in separate source files. If a function is the last one in a source file (like a module), the EOF character denotes the end of the function definition. Such source files can be imported so that function definitions are known in the importing script.

8.2.2 The Main Function

A Python program may or may not have a main function. But there can only be at most one main function. If a main function is defined by the user, program execution starts in it. When a main function is NOT defined, Python starts executing either the very first statement if it is not a function, or else the first statement encountered outside a function. It can be checked by the statement if __name__ == ‘__main__’:

which is True only when execution is within the main function. Note that f. name returns the name of the function as a string. If the f is missing, it will return the ‘main’ string. The main function works similarly to other functions. It can be called from any other function or from the command prompt.

[image:]

Consider a C2F(C) function with a return statement. It can be used in a print statement as follows:

def C2F(C):

 return C * 9.0 / 5 + 32 # end of function

if __name__ == ‘__main__’:

C = int(input(‘Enter Celsius temperature:’))

print(‘‘%d Celsius is %0.2f Fahrenheit\n" % (C, C2F(C)))

where the function is invoked on the print command with %.2f as it returns a real number. It is kept on the same line because there is only one executable statement.

8.2.3 Return Values

A function may or may not return a value. If it is to return a value, there must be at least one return statement within its body. A function can have a return statement by itself.

def myPI(): return 3.141593

A return statement is needed when the calling program or script wishes to process or display the values computed by a function, and not needed when a function is used to display computed values to the user. A function that returns a value makes it more useful and versatile. The returned value could either be assigned to a variable and used for further processing, or the function call itself can be used on an arithmetic or print statement. Functions that return True or False values (called Boolean functions) can also be used on conditional statements.

def is_even(n):

if n % 2:

return False

else:

return True

print(is_even(30))

print(is_even(25))

Output:

True

False

As n % 2 returns the remainder (0 or 1), the return False is executed when the remainder is 1 (which is the case when the number is odd) and the else branch is executed when it is even.

When the function body has an if statement with a return statement, another matching return must appear on the other branch to avoid unexpected behavior at run time. Similar is the case when exceptions are thrown. If the last executable statement of an if block returns a Boolean value, the opposite value could be returned on the following statement without an else: branch. Consider the following example that uses the chained relational operators (introduced in chapter 3).

def valid_age(age): # validate age

if 0 <= age <= 120:

 return True

return False print(valid_age(999)) print(valid_age(25))

Output:

False

True

If the age condition is not met, control naturally comes to the “return False” statement, which breaks the indentation level of the if statement. The is even(n) function above can also be modified in this manner.

An ordinary Python function can return one or more values to the caller. This is in sharp contrast with other popular programming languages like Java and C++ in which a function can return a single value (which severely limits its application in some areas). A function that returns a single value can be used in any statement just like an identifier name, including output statements like print command. But if a function returns two or more values, it can be used only in an appropriate tuple with the same number of values, or used on print. Consider a function to find how many people are in various categories using BMI
[44]
.

def BMIfreq(BMI):

‘‘‘ Computes frequencies in BMI categories Normal, Medium,

Heavy, Overfat. Argument must be an iterable. ’’’

Normal = Medium = Heavy = Overfat = 0

for x in BMI:

if x <= 25:

Normal += 1

elif x <= 30:

Medium += 1

elif x <= 35:

Heavy += 1

else:

Overfat += 1

else:

 return Normal, Medium, Heavy, Overfat

if __name__ == ‘__main__’:

BMI = [28, 43, 19, 25, 31, 20, 26, 45, 37, 22]

N, M, H, O = BMIfreq(BMI) # store in a 4- tuple

print("Normal BMI=",N,", Medium BMI=",M,\

", Heavy BMI=",H,", Overfat BMI=",O)

Output:

Normal BMI= 3 , Medium BMI= 2 , Heavy BMI= 1 , Overfat BMI= 3

The else branch of the for loop returns a quadruplet. It is unpacked into four variables, which are then printed out.

As another example, suppose a game program needs to draw a ball on a 460x640 screen. Two random numbers in the range (0,460) and (0,640) need to be generated. A simple function can be written as

import random as r

def ballPos():

x = int(r.random() * 460)

y = int(r.random() * 640)

return x,y # returns a pair of values

a,b = ballPos() # assign values to a tuple

print (a, b)

Output:

383 414

58 105

Here r.random() returns a random decimal number in [0,1] range. That is why 460 or 640 was used as the multiplier. Alternately use r.randint(a, b) where a is the least and b is the largest number to be generated (eg: r.randint(0, 460)). Returning multiple values in recursive functions can be problematic because it could create nested tuples depending on the depth of recursion. Hence only ordinary functions should use multiple return values.

There can be any number of return statements in a function as shown below.

import sys

def marks2grade(marks):

if not isinstance(marks, int):

raise TypeError(‘Sorry. ’,marks, ‘ must be an integer.’)

if marks >= 95:

return ‘A+’

elif marks >=90:

return ‘A’

elif marks >=85:

return ‘B+’

elif marks >=80:

return ‘B’

elif marks >=75:

return ‘C+’

elif marks >=70:

return ‘C’

elif marks >=65:

return ‘D+’

elif marks >=60:

return ‘D’

else:

return ‘F’

if __name__==‘__main__’:

while True:

m = int(input(‘Enter marks (0..100), -1 to exit:’))

if m<0:

 sys.exit(-1)

print(‘Your grade is %s\n’ % marks2grade(m))

Output:

Enter marks (0..100), -1 to exit:100

Your grade is A+

Enter marks (0..100), -1 to exit:63

Your grade is D

Enter marks (0..100), -1 to exit:78

Your grade is C+

Enter marks (0..100), -1 to exit:-1

Here all of the branches return a string. Hence this function-type is strictly a string. It is not necessary to adhere to this rule in Python. A function is called multi-type if it can return objects of different types.

8.2.4 Void (None Type) Functions

Functions that do not return values are called void type in C, C++ and Java as well as many other popular languages. Python does not have the void
 keyword, but only an equivalent ‘None Type’. If there are no return statements at all in the body of a function, Python assumes that it is a None Type
 function. Such functions usually have output statements or they manipulate the internal state of objects. Consider the famous Towers Of Hanoi (TOH) problem.

def hanoi(n, From=‘From’, To=‘To’, Aux=‘Aux’):

if n>0:

hanoi(n-1, From, Aux, To)

print(‘‘Move disk %d from %s to %s\n’’ % (n, From, To))

hanoi(n-1, Aux, From, To)

invoke the function

n = int(input(‘Enter number of disks (<50) for ToH Problem:’))

if 1 <= n < 50:

 hanoi(n, ‘A’, ‘B’, ‘C’) # hanoi(n) also works!

This recursive function is called twice from within it’s body and does not return a value(see Chattamvelli Rajan(2012), Statistical Algorithms for a detailed discussion). Both these calls decrement n by 1 so that the algorithm is guaranteed to converge. The print statement gives the user information about how the internal states are modified so as to reach a final solution. As the complexity of this algorithm is O
(2n
) , this may take forever if the user enters an integer greater than 50. Some authors consider the case n=1 as special because just one disk need to be moved in this problem. The above algorithm still works in this situation because the if statement will block both recursive invocations.

8.2.5 Aliasing Functions

Aliasing is the process of giving a new name to another entity. It is extremely useful in giving short names to functions with long names, and in inter-language software development. For instance print can be renamed as drucken (pronounced drookken in German), imprimante (French) or la impresora (Spanish) in respective countries.

drucken = imprimante = la_impresora = print

This is valid because a function name without parentheses is treated as an object and with parentheses is treated as function invocation.

Functions with or without parameters can be aliased any number of times by assigning the name to convenient variable(s). All aliases can be kept in a separate module to make the program code inscrutable to hackers.

f = is_divisible

f(12,3)

This prints “12 is divisible by 3? Yes”. Here f is used as the function name because it is aliased to ‘is divisible’. As another example, one may rename the open() command to fopen() to look like the C/C++ fopen() command as follows:

fopen = open

fp = fopen(‘game.py’)

which will open the specified file for reading. You can not only alias Python commands but package and module names (that does not contain spaces or special characters) using dotted notation. For example, suppose you wish to keep different programs in separate directories relative to the base path of your Python installation. You can first define a ‘base’ alias as base=sys.base prefix and create new paths relative to this path. You could use ‘..’ to move up the path from the base suffix as shown below.

import sys, os

base = sys.base_prefix # alias for base path

ds = os.sep # directory separator

up2 = ds + ‘..’ + ds + ‘..’ + ds # same as 2*(ds + ‘..’) + ds base2up = base+up2

fp = open(base2up+‘game.py’, ‘r’)

This is especially useful when you wish to create temporary files or directories which must be discarded when the program terminates, and while extracting zip files. Already defined aliases (either in the same namespace, globals or visible external namespaces) can be mixed together in forming new aliases. Of course too many aliases can have an impact on execution speed, but it is useful during testing stage.

8.3 Built-in Functions

Python has several builtin functions like type(), dir(), help(), cmp(ob1,ob2), id(), filter() , map(), str() etc. The type function takes a single argument and returns the type inside the memory (see table 8.1).

>>> type(‘Python’)

<type ‘str’>

>>> type(20)

<type ‘int’>

>>> type(True)

<type ‘bool’>

>>> type(False)

<type ‘bool’>

The str is a class that creates string objects (and str() calls the class’ constructor).

>>> str(5)

‘5’

>>> str(3.14) ‘3.14’

>>> str(3j+2)

‘(2+3j)’

>>> str(0b1101)

‘13’

Table 8.1: Common Built-in Functions

[image:]

	
abs()

	
absolute value

	
any()

	
any elem of iterable is

True

	
all()

	
all in iterable is True

	
ascii()

	
ascii
representation
of arg

	
bin()

	
int to binary

	
bool()

	
value to Boolean

	
bytearray()

	
array of bytes

	
callable()

	
Object callable?

	
bytes()

	
bytes object

	
chr()

	
int to character

	
compile()

	
a code object

	
classmethod()

	
is it class method?

	
complex()

	
Complex number

	
delattr()

	
Delete attribute

	
dict()

	
Dictionary object

	
dir()

	
attributes of Object

	
divmod()

	
(quotient,remainder)

	
enumerate()

	
an enumerate Object

	
eval()

	
runs code

	
float()

	
string to float

	
format()

	
formatted strings

	
frozenset()

	
immutable frozenset obj.

	
getattr()

	
value of attribute

	
globals()

	
current global dictionary

	
exec()

	
executes program

	
hasattr()

	
has named attribute

	
help()

	
help system

	
hex()

	
int to hexadecimal

	
hash()

	
hash value of an ob-

ject

	
input()

	
read line from kbd

	
id()

	
identify of object

	
isinstance()

	
an instance of class

	
int()

	
string →integer

	
issubclass()

	
is subclass of a class

	
iter()

	
iterator for an object

	
list()

	
creates list in Python

	
locals()

	
local symbol table

	
len()

	
Length of Object

	
max()

	
largest element

	
min()

	
smallest element

	
map()

	
applies function to list

	
next()

	
next element

	
oct()

	
integer to octal

	
ord()

	
int for unicode character

	
open()

	
a file object

	
pow(x,y)

	
x to the power of y

	
print()

	
prints an Object

	
property()

	
a property attribute

	
range()

	
sequence generator

	
repr()

	
printable representation

	
reversed()

	
reversed iterator

	
round()

	
rounds a number

	
set()

	
a set

	
setattr()

	
sets value of an attribute

	
slice()

	
creates slice object

	
sorted()

	
sorted list

	
str()

	
string representation

	
sum()

	
sum items of an iterable

	
tuple()

	
creates a tuple

	
type()

	
Type of an object

	
vars()

	
dict
attr of class

	
zip()

	
an iterator of Tuples

[image:]

import () is a function called by import statement and super() refers to parent class.

The map() takes a function and a sequence (eg: list) as arguments and calls the function on each element of the sequence (to modify it in-place). The cmp() is used to compare any two objects or variables of the same type. Numeric comparison takes place when the arguments are both numbers and alphabetical comparison is carried out when both of them are strings or characters. It returns -1 if first argument is less than second, 0 if both are equal and +1 otherwise. It can also compare extended data types like lists, tuples, dictionaries and sets. The id() function is used to get the identity of a variable or object. In addition, there are builtin functions for type conversions like int(), float(), double(), etc. These functions can be called even to convert the user input values.

n =

int(input(‘Enter an integer:’)) f = float(input(‘Enter a decimal number:’))

The ascii(obj) takes an arbitrary string and returns an ASCII representation, and escapes nonASCII characters using \x, \u or \U escape codes.

The sum() function works with collections in which each element is a real number and returns the sum of the elements in it. Only the keys can be summed when the argument is a dict object (Chapter 11). The filter function, as its name implies, is used to filter out selected items of a sequence that satisfies certain conditions and returns another sequence of the selected values. It has 2 arguments, the first of which is a function that returns either True or False and the second is a sequence.

8.3.1 Built-in Mathematical Functions

There are many mathematical functions available for real and complex arithmetic. These are respectively available in math and cmath modules. You could import either of them or both of them together.

import math x, y = eval(input(‘Enter two comma separated numbers: ’)) print(x, ‘raised to power’, y, ‘is’, math.pow(x,y)) print(‘Hypotenuse of triangle with ’\

‘sides’,x,‘and’,y,‘is’,math.hypot(x,y)) print(‘GCD of’,x,‘and’,y,‘is’,math.gcd(x,y))

Output:

Enter two comma separated numbers: 3 , 8

3 raised to power 8 is 6561.0

Hypotenuse of triangle with sides 3 and 8 is 8.54400374531753

GCD of 3 and 8 is 1

The most commonly used functions are described in table 8.2. The cmath module in addition has phase(z) which returns the phase angle of a complex variable, polar(z) which converts a complex number from rectangular coordinates to polar coordinates, rect(r, φ
) that converts from polar coordinates to rectangular coordinates (r is the distance from Origin and φ
 is the phase angle).

8.4 Global Command

The global command (chapter 2) can be used within functions because functions have independent namespaces. Identical variable names defined elsewhere can appear within functions. They are simply shadowed. The global command makes such variables accessible within a function. It is followed by a list of variables declared outside the function scope. It tells Python

Table 8.2: Common Mathematical Functions

[image:]

	
acos(x),asin(x),atan(x)

	
arc cosine, sine, tan

	
in radians

	
atan2(y, x)

	
arc tangent of y/x

	
in radians

	
cos(x), sin(x), tan(x)

	
cosine, sine, tangent

	
in radians

	
sinh(x),cosh(x),tanh(x)

	
hyperbolic sin,cos, tan

	

	
ceil(x)

	
smallest int >
x

	
x decimal

	
floor(x)

	
largest int <
x

	
x decimal

	
erf(x)

	
Error function

	
erfc(x)=1-erf(x)

	
exp(x)

	
e raised to the power x

	
expm1(x)=exp(x)-1

	
fabs(x)

	
absolute value of float x

	
x is number

	
factorial(x)

	
x!

	
x integer≥0

	
frexp(x)

	
(m, e) pair

	
m=mantissa,e=expo.

	
fsum(iterable)

	
sum of vals in iterable

	
must be reals

	
gamma(x),lgamma(x)

	
gamma,log of gamma

	
natural log

	
gcd(x, y)

	
greatest common divisor

	
x,y integers

	
hypot(x, y)

	
sqrt(x*x + y*y)

	
hypotenuse

	
log(x[,b]),log2(x),log10(x)

	
log to various bases

	
base=2,e,10,..

	
modf(x)

	
frac, int parts of x

	
x must be decimal

	
pow(x, y)

	
x to the power of y

	
x**y

	
radians(x)

	
degrees to radians

	
0≤x≤360

	
sqrt(x)

	
square root of x

	
x>
0

	
trunc(x)

	
integer part

	
x real

[image:]

acosh(x), asinh(x), atanh(x) are inverse hyperbolic cos, sine, tan respectively. Unlike atan(y, x), the signs of both x and y are considered by atan2(y, x).

that the variables specified on the global command that are modified within the body of the function will retain modified values when the function returns. This is needed because global variables are shadowed by local variables, if any, defined in a class. An alternative is Python3 closures (page 8-26). If both a local variable and a global variable are available in a function, the global variable could be distinguished using globals()[‘varname’].

var = ‘me_string’

def afunc():

for var in range(3):

globals()[‘var’]+= ‘!’

print (‘var inside the loop is ’, var)

afunc()

print (‘Global var is ’, var)

Output:

inside the loop var is 0 inside the loop var is 1 inside the loop var is 2

Global var is me_string!!!

Although the for loop variable is named var, the global var is successfully updated within the loop. This is evident from the last print statement.

8.5 Function Parameters

As shown above, a function need not have any parameters at all. Such functions are called the same way (without actual parameters). A function without parameters has narrow scope, as information cannot be passed to it. This severely affects its applicability. A comma separated list of two or more variable names can appear as parameters on a function definition. This may include other function names. These are called formal parameters. As mentioned above, they may be posarg (positional arguments) or keyarg (keyword arguments) or namearg (named arguments). Duplicate names are not allowed in formal parameters, even if they are of posarg and keyarg types. But Python permits a function name and argument name to be the same. Thus it is perfectly legitimate to define a function as “def X(X, C):” or simply “def X(X):” where X is both the function name and argument name. A Python function can also be named “function” because function
 is not a reserved word (although it is highly discouraged because all functions should be given meaningful names). Neither the function name nor any of the arguments can be named “def”. Similarly, literals are also not allowed in formal parameters, although literals can be used in function invocations, and to set default values to keyargs.

import sys

def F2C(F):

return (F - 32) * 5.0 / 9

if __name__==‘__main__’:

while (F :=

eval(input(‘Enter Fahrenheit temp, <-272 to exit: ’))) > -272:

print(‘%.2f Fahrenheit is %.2f Celsius’ % (F, F2C(F))) Output:

Enter Fahrenheit temp, <-272 to exit: 98.4

98.40 Fahrenheit is 36.89 Celsius

Enter Fahrenheit temp, <-272 to exit: 124

124.00 Fahrenheit is 51.11 Celsius

Enter Fahrenheit temp, <-272 to exit: 22

22.00 Fahrenheit is -5.56 Celsius

Here the formal parameter is called F. It is converted into Celsius (a real number) and returned. Each variable used inside functions is created in its local namespaces.

Default parameters make a function more adaptable. For example, the Hanoi tower program in page 8-8 could have From=‘From’, To=‘To’, Aux=‘Aux’. This allows the function to be called with a single parameter ‘n’, so that calls like hanoi(4) will work. Keyword only arguments are sometimes used in scientific programs. Arbitrary positional arguments (*args) are used when the number of argument varies
[45]
 (see page 8-15). One example is in processing multiple files, where the number of files to be processed is unknown until run time. They prevent a program crash when the number of arguments to be passed to a function is unknown beforehand. Arbitrary keyword arguments (**kwargs) are used in a similar situation when the number of arguments are known dynamically but they can be uniquely identified each time using a different name (if they are generated dynamically and kept in a list).

8.5.1 Pass by Value vs Reference

Functions communicate with outside world through parameters. These are named variables that appear inside the parentheses (as comma separated if there are more than one) on a function definition. There are 3 types of parameters in general:– in parameter, out parameter and inout parameter. In-parameters bring in values to a function, out-parameters return values from a function to the caller and in-out parameters combine both these qualities. As Python does not have pointers, all immutable simple types (int, float, complex) are ‘in parameters’, but sequences (mutables) are ‘in-out parameters’. This means that you can pass a mutable type like a list or tuple to a function, change it there so that the change is reflected in the calling program.

There are two types of parameter passing in programming languages — (i) pass by value and (ii) pass by reference. For a beginner it is enough to understand that Python passes simple data types like int, float, etc by value. This means that if the value of an immutable parameter is changed within the body of the function, it is not reflected in the calling program. More technically, Python uses neither pass by value nor pass by reference but it uses pass-by-object-reference. When a Python function is invoked using actual arguments, an entry for it is created in the symbol table of that function (local namespace) and the formal parameters are bound to the actuals. Thus arguments are passed by assignment.

def test(alist=[1,2,3]):

alist.append(4)

print(alist)

if __name__==‘__main__’:

b = [9 ,8,7, 6]

test(b) # [9, 8, 7, 6, 4]

print(‘b after call is ’,b)

c=[] test(c) #[4]

print(‘c after call is ’,c)

test() #[1, 2, 3, 4]

The first function call prints [9, 8, 7, 6, 4]. As c=[] (an empty list; discussed in next chapter) in the second call, the default values inside the function are overridden with [] and only a 4 is added to it. The third call does not supply a formal argument at all, so that the default ([1,2,3]) will be applied and a 4 appended to it. This results in [1, 2, 3, 4]. As another example, consider a function with a single parameter, which is a dictionary (which is mutable; discussed in chapter 11).

def function(a_dict): # a function named function

a_dict["a"] = 1

if __name__ == ‘__main__’:

d = {}

function(d)

 print (d)

Output:

{‘a’: 1}

Here the name of the function is function itself. Function invocation creates a single key with value 1. Thus all collection data types are passed “as if” by reference.

8.5.2 Positional Arguments

Positional parameter is a normal Python parameter without any initial (default) values attached to it. Hence it is also called non-default parameter. The sum() function in the standard library is an example of a function that uses positional parameter, as it accepts only an iterable with real numbers as elements. Argument order in a function definition is maintained during function call.

def test(pos1, *pos):

print(‘first positional argument is’, pos1)

if pos==None:

 return

if len(pos)>0:

 k = 2

 for anarg in pos:

print(k,‘th positional argument is’, anarg)

k+=1

test(‘zero’)

test(‘Ten’,‘123’,45)

Output:

first positional argument is zero

first positional argument is Ten

2 th positional argument is 123

3 th positional argument is 45

This means that the definition of a function fixes the order in which positional arguments can be passed to it. This is meaningful only when a function has 2 or more parameters. Most of the programming languages like C, C++, Java, etc use this type. Consider the function for recurring deposit discussed in chapter 4.

def RecurringDeposit(P, r, n):

 return P*(1.0+r/100)**n

if __name__==‘__main__’:

 P = 1000; r=7.0; n=4

print (‘‘Accumulated amt for %f principal at %0.2f%%\ interest rate after %d years is %0.2f \n’’ %\

(P, r,‘%’,n,RecurringDeposit(P,r,n)))

Here double percentage signs (%%) is used to print the percent sign. The function invocation is done on the print command. The order of parameters in a positional argument cannot be changed because there is a one-to-one correspondence between formal and actual parameters.

Some of the functions accept only ‘in-parameters’, which are used to compute some intermediate result which is printed out. One example is the quadratic equation solver encountered in chapter 4. This accepts the coefficients in a specific order, finds the roots and prints them out or prints an appropriate error message. As Python has the ability to return multiple values (eg: as a tuple or list) the roots found could easily be returned to the calling program as shown below:

Example 8.1 (Roots of Quadratic Equations)
 Find the roots of a quadratic equation ax
2
+ bx
 + c
 = 0 where a,b,c are real numbers and a 6=0.

√

[image:]

Solution 8.1
 The roots are given by (−b
 ± b
2
− 4ac
)/
2a
, which can be imaginary, equal or real depending on the sign of b
2
−4 ac.

import math, cmath

def checkInstance(x):

if not (isinstance(x, float) or isinstance(x, int)):

raise TypeError("Sorry.",x," must be a float or int.")

def rootsOfQuadraticEquation(a,b,c):

checkInstance(a)

checkInstance(b)

checkInstance(c)

if a == 0:

raise ValueError("Sorry. Equation not quadratic (a=0)")

d = b*b - 4.0 * a * c # Discriminant

if d == 0.0: # discriminant is zero

aRoot = -0.5 *b/a

print(‘Roots are equal, both ’, aRoot)

return aRoot

elif d<0: # discriminant is negative

print (‘Roots are imaginary.. ’)

temp = cmath.sqrt(d) # complex square root

r1 = 0.5 * (-b + temp)/a

r2 = 0.5 * (-b - temp)/a

print (‘Complex roots are ’, r1, r2)

return r1, r2

else: # discriminant is positive

temp = math.sqrt(d)

r1 = 0.5 * (-b + temp)/a

r2 = 0.5 * (-b - temp)/a

print (‘Roots are %.6f and %.6f ’ % (r1, r2))

return r1, r2

if __name__ == ‘__main__’:

p = float(input(‘Enter coefficient of x*x: ’))

 q = float(input(‘Enter coefficient of x: ’))

 r = float(input(‘Enter constant coefficient: ’))

 roots = rootsOfQuadraticEquation(p,q,r)

Output:

Enter coefficient of x*x: 5

Enter coefficient of x: 11

Enter constant coefficient: 3

Roots are -0.318975 and -1.881025

Enter coefficient of x*x: 1

Enter coefficient of x: -4

Enter constant coefficient: 4

Roots are equal, both 2.0

This function first checks the types of arguments and raises an error if the coefficients are neither int nor float type. Then it exits the program when a=0. Otherwise either the cmath (complex math) module or math module is used to find the root depending on the sign of the discriminant. In the case of equal roots, it is returned as such so that ‘roots’ variable in the calling (main) program is type= <
class ‘float’>
. As two roots are returned by the function in the other two cases, ‘roots’ variable is type= <
class ‘tuple’>
. This is possible in Python because a function type is not declared. This shows the power of a Python function to produce a variety of objects of different types from within various branches of an if statement. It could also be written as root1, root2 = rootsOfQuadraticEquation(p,q,r). This function returns a single root in the equal root case. Hence either modify the equal root case as ‘return aRoot, aRoot’ or check the type of ‘roots’ variable to see if it is a simple variable or a tuple to distinguish between the cases.

Example 8.2 (Greatest Common Divisor Function) Write a function to find the GCD of two integers.

Solution 8.2
 The two integers are passed as the only parameters. Result obtained by the function is compared to that obtained by math.gcd() function.

def gcd(u, v):

while v!= 0:

result = v

u, v = v, u % v

return result

if __name__==‘__main__’:

N = (1234, 9876)

print (‘GCD of ’,N[0], ‘ and ’,N[1],‘ is ’,gcd(N[0],N[1]))

print(‘GCD in math package returns ’,math.gcd(N[0], N[1]))

Output:

GCD of 1234 and 9876 is 2

GCD in math package returns 2

The output shows that the gcd method of math module and above function returns the same result.

Example 8.3 (Binary to Decimal Conversion Function)
 Write a function to find the decimal equivalent of a binary number using d=[image:]
.

Solution 8.3
 The following program accepts a binary string. It is then passed to the function. It iterates over each of the bits from right to left and multiplies by corresponding weights (2k
) to get the result.

def isbinary(string):

bin = ‘01’

for c in string:

if not c in bin:

 return False

 else:

return True

def bin2dec(b):

if(len(b)) <= 1:

return int(b.strip())

d = 0

m = 1

for n in range(len(b)-1, -1, -1):

d += int(b[n])*m

 m *= 2

 return d

if __name__==‘__main__’:

b=‘1’

while len(b)>0:

b = input("Enter a binary number:")

b = b.lstrip(‘+-0’)

if len(b)==0:

 continue

 if isbinary(b):

print(‘Decimal equivalent is ’,bin2dec(b))

else:

print("Not a binary string")

Output:

Enter a binary number:110100

Decimal equivalent is 52

Enter a binary number:101010

Decimal equivalent is 42

Enter a binary number:10111

Decimal equivalent is 23

If a user enters a leading sign or zeros, it is filtered out before calling the function.

8.5.3 Positional Only Function Arguments

Suppose you wish to restrict the callers of your API to invoke your function by passing in parameters by position only. The reasons could be many – you wish to make your API backwardcompatible in future releases, or you want to force all calls to be positional only. This may be needed for example when people in different countries wish to call an API from programs written in their own language (trans-language). In other words, the parameter names may be language specific. Problems will occur if keyword arguments are used in such situations. This idea is not new. Positional-only arguments were possible for built-in function parameters even before Python 3.8. If a function has no keyword arguments, you put a ‘/ ’ as the last parameter.

def RecurringDeposit(P, r, n, /): return P*(1.0+r/100)**n

Theoretically, the ‘/’ separates positional from keyword arguments. Note that the / is not enclosed in quote marks, but is passed as such. The meaning of this is that that the function accepts positional-only parameters, and thus the arguments must be mapped to the parameters based solely on their order.

8.5.4 Keyword Arguments

This is a type of parameter passing in which the formal parameters serve as identifiers so that key=value type of assignment can be used to pass parameters in any desired order. A caller of a function only needs to know the names of the parameters, and not their natural order. Default values can be assigned to one or more ‘in-parameters’ of a Python function. A parameter that is assigned some default value on the function definition (using = sign) is known as a default parameter. If a user either forgets to pass a value or totally omits a parameter in a function call, the default value assigned to it (in the function definition) will be used inside the function body. A default value may be used to check range conformity as in the example below.

Example 8.4 (Leap Year using Function)
 Write a function to enter a 4-digit year and print whether it is a leap year or not.

import time

def isLeapYear(year=time.localtime().tm_year):

if not 0<=year<=9999:# year <= 0 or year > 9999:

print(‘Wrong year entered ’,year)

exit(-1)

else:

if year%4 !=0 or (year%400 !=0 and year %100==0):

return False

else:

return True

if __name__ == ‘__main__’:

year = 1

while year>0:

year = input (‘Enter a year (<=4 digits):’)

year = year.lstrip(‘0-+’)

if len(year)==2:

year = ‘20’ + year

if len(year)==4:

year = int(year) if(isLeapYear(year)):

print(year,‘ is a leap year’)

else:

print(year,‘ is not a leap year’)

else:

print("Invalid input:",year)

year=1

Output:

Enter a year (<=4 digits):2022

2022 is not a leap year

Enter a year (<=4 digits):20

2020 is a leap year

Enter a year (<=4 digits):40

2040 is a leap year

Enter a year (<=4 digits):00

Invalid input:

Wrong year entered

Solution 8.4
 This function has default value year=time.localtime().tm_year which is the current year. What happens when a user calls this function without parameters?. It will assume the present year as default and print the message and exit. If the user input contains leading zeros or ‘+’ or ‘-’ signs, they are stripped off before the function is called. The year is then converted from string to an int by the statement year = int(year). Next the function is called from the print statement.

Formal parameters of a function occupy memory locations only when the function is invoked. This memory is automatically released (garbage collected) when the function returns. Thus a function can be called repeatedly with different parameters. But care must be taken when mutable types like lists or dictionaries are used as default arguments to a function. If they are modified inside a function, they will persist (retain the new values) even after return. If you want the function to create a new list or dictionary (or any mutable type) each time it is called, you must explicitly create a matching temporary type, copy values to it and then return it properly.

As Python is case sensitive, the parameters should be given in exactly the same case (uppercase or lowercase combinations). If the names do not match, you get an error:

TypeError: funcName() got an unexpected keyword argument ‘parm’ where funcName is the name of the function and parm is the misspelled parameter.

Parameters with default values always appear at the end of the parameter list. If only one parameter is assigned default value, it must be the last one. If more than one parameter has default values, they must appear as a block (adjacent positions) at the end of the parameter list. In other words, non-default parameters (the usual or standard parameters) cannot be mixed in-between default value parameters. Thus func(u=1, v, w=2) is illegal because v is a non-default parameter whereas u and w have default values. The function can be modified as func(u=1, v=0, w=2) or func(v, u=1, w=2). Default values on function definition are assumed when positional parameters are omitted in actual calls. The calls may omit some or all of the parameters. Expressions may also be used as actual parameters. The value assigned to a default parameter does not preclude the function being called with another totally different type. Thus the above function can be called as

func(1, 2.3, 3.4L)

func([’x’,’y’],(1,2,3),{0,1})

A list [‘x’,‘y’] is passed as first parameter, a tuple (1,2,3) as second parameter and a set as third parameter, although the function func(v, u=1, w=2) was expecting integer values for second and third parameters. You cannot repeat a variable on the named parameter invocation of function calls. Thus func(x=1,y=2.3,x=3) will be flagged as a “SyntaxError: keyword argument repeated”. An exception to this rule is the variable argument discussed below. Python has a way to pass an unspecified number of positional parameters to a function using a *varname syntax after all other compulsory positional arguments, if any. The default parameters can be followed by just one variable argument (with a * before the parameter name). Thus func(u=1, v=0, w=2, *x) is a valid function definition. As a variable argument appears after the keyword arguments, it automatically becomes “keyword variable argument”. On the contrary, func(u,v,w,*x) makes x a “non-keyword variable argument”.

def a_func(posarg,
positional argument(s)

keyarg = ‘keyarg’, # named argument(s) with default value

*,
all after this are keyword parameters

keyargwithdefault=0, # keyarg with default value

keyargwithoutdefault): # keyarg without default value

pass

The None keyword can be used to make a function argument optional. This option is usually applied to simple positional arguments. The number of positional arguments to be passed to a function may vary in some applications. In the following example, the first parameter itself is prepended with ‘*’ as there are no other positional arguments.

function with an unspecified number of arguments.

def varf(*var):

var is received as a tuple.

if len(var)>0:

print ("total args:", len(var))

for k in range(len(var)):

print(‘argument’,k,‘=’,var[k])

invoke function

varf(1,2,3)

varf({‘a’:4,‘b’:5},{‘c’:6,‘d’:7})

Output:

total args: 3

argument 0 = 1

argument 1 = 2

argument 2 = 3

total args: 2

argument 0 = {‘a’: 4, ‘b’: 5}

argument 1 = {‘c’: 6, ‘d’: 7}

As it has unspecified positional argument, this function is very flexible. Any collection can be passed to it as the (var[k]) syntax is used within the function.

8.5.5 Variable Arguments

The asterisk (*) is overloaded in Python. When used with numbers, it denotes multiplication. It denotes repetition when used with collections or strings. It denotes unpacking operation when used on the LHS of an expression with a tuple on the RHS. When used as a prefix on the last parameter of a function, it denotes variable arguments.

There are two types of variable arguments used in Python. If a parameter is preceded by a single *, it will collect all parameters not accounted for till that position that are passed to this function. Such parameters are called unnamed parameters.

def fun(x, *y):

print(‘First parameter is ’, x)

print(‘Rest of the parameters are ’, y)

Now the function can be called with various parameters like the following:

fun(10)
call with x=10 and y=None

fun(1, 2, 3) # call with x=1 and y=(2,3)

fun(‘a’, ‘b’) # call with x=‘a’ and y=‘b’

If a parameter is preceded by a double star (**), it will collect all named parameters not accounted for till that position that are passed to this function. Such parameters are called named variable parameters.

def fun(x, **y):

print(‘First parameter is ’, x)

print(‘Rest of the parameters are’, y)

fun(10)

fun(x=1, y=2, z=3) fun(x=‘x’, z=‘y’) Output:

First parameter is 10

Rest of the parameters are {}

First parameter is 1

Rest of the parameters are {‘y’: 2, ‘z’: 3}

First parameter is x

Rest of the parameters are {‘z’: ‘y’}

Note that variable arguments cannot be assigned default values. If one or more keyword argument(s) is followed by a variable argument, two asterisks (**) must be put before it. Thus func(x=1,y=2.3,**z) will make z into a keyword argument and function calls like func (x=1, y=2.3, P=3, Q=4) will make variable argument into a dictionary z={‘P’:3,‘Q’:4}. Python scans all unmatching arguments on the call and collects all of them into a dictionary, so that func(U=‘u’, x=1,y=2.3, P=3, Q=4) makes a dictionary z={U:‘u’,‘P’:3,‘Q’:4}. Both single star (*) and double star (**) arguments can appear on a function definition in which case * argument comes before ** arguments (and these must be the last parameters). In this case, values of all non-keyword variable arguments will get assigned as a tuple
 to * argument, and values of all keyword variable arguments will get assigned as a dictionary
 to ** argument.

def myfunc(a,b, *args, **kwargs):

print(‘Regular’)

print(‘a=’,a,‘b=’,b)

print(‘Positional arguments’)

for ar in args:

print (ar)

print(‘Keyword arguments’)

for k, x in enumerate(kwargs.items()):

print(k,‘-->’,x)

u = kwargs.get(‘e’, None)

v = kwargs.get(‘f’, None)

print(u,v) # end of myfunc

a=2; b=‘test’

c=3.14; d=2+3j

#call myfunc

myfunc(a,b,c,d, e=‘hello’, f=‘Python’)

Output:

Regular

a= 2 b= test

Positional arguments

3.14

(2+3j)

Keyword arguments

0 --> (‘e’, ‘hello’)

1 --> (‘f’, ‘Python’)

hello Python

This feature has its advantages and disadvantages. On the plus side, the functions become more general. For example, a print function can take an object as first parameter, and one or more format strings as subsequent parameters. Such a function can be used to print integers, floats, complex numbers, strings, lists and many other types with ease. This will reduce code size substantially. In addition, it makes software portability to different geographic locations easy. Consider the VAT (value added tax) which is known by different names in different countries (like service tax, GST, etc). This differs greatly among different countries. To make things worse, some goods and services do not have VAT added to them. As Python code can be generated dynamically, it is a simple matter to generate functions with default parameter values for each country.

This also can ease maintenance problems because a function written by one programmer may have to be modified by another who may have to extend the functionality by passing more general parameters. On the negative side, as type checking is not automatically enforced, one may have to incorporate type compatibility within the function which is especially important in business software. For instance, if a phone number is to be passed to a function in a particular format (say 3 digit area code, 3 digit exchange code and 4 digit phone number as 123-456-7890) one may need to check at the beginning of the function itself if actual parameter is indeed in this format (and even the correct data type because Python allows you to pass a logical constant or a floating point number in place of phone number without any problems).

8.6 Generator Functions

All ordinary functions return a single value which can be primitive type or sequence type. A Python function can return multiple values as a comma separated list as shown above. These values are available to the caller only after the function returns. There is another way to generate an entire sequence of values of any type. A function can generate and return an entire sequence of values (one by one) using the yield
 command, which is followed by a variable or an expression which is immediately returned to the caller (even before the function call terminates). Such functions are known as generator functions
 or simply generators. The calling program can retrieve the returned results by two methods:– (1) using an iterator, (2) by successive calls to next()method called on a variable which is assigned the value of the function invocation. Assigning such a function call to a variable creates an iterator with a next() method which can be called as many times as the function executes the yield command. Each such call retrieves the next value returned. Alternatively, a for loop can be set up to retrieve successive values if the number of values returned is known in advance. It is like opening a pipe connection with the function and retrieving the values from one end of the pipe. Consider a count-down function for a rocket launch. A specific delay may be set to match the count-down in seconds, in minutes or other units.

import time # for sleep function

nsecs = 3 # how many seconds to sleep

def countdown(n):

‘‘‘function for rocket launch using yield statement’’’

while n>0:

check if all subsystems are OK

yield n

time.sleep(nsecs)

n -= 1 # decrement count

else:

print(‘‘Lift off!’’)

invoke the function

f = countdown(4)

for x in f:

 print (x)

Output:

4

3

2

1

Lift off!

This function accepts a positive integer n. The count down starts with n. An appropriate delay is incorporated for the next decrement to occur. The for loop repeatedly prints the returned values. The else branch is executed when the counter reaches zero. Next consider a while loop to fetch the values returned by a yield statement.

def my_generator():

for i in range(10):

yield i

def my_func(*args):

print(args)

it = my_generator() my_func(*it)

Output:

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

Next consider the Fibonacci numbers defined as F0
 = F1
 = 1, Fn
=Fn
−1
+Fn
−2
 for n≥2.

def fibo():

a, b = 0, 1

while True:

yield b

a, b = b, a+b

invoke it

f = fibo()

for x in f:

if x>25: break;

 print (x, end=’ ’)

Output:

1 1 2 3 5 8 13 21 etc.

As the yield statement is inside an infinite loop, an if statement is used to break out of the loop. A special use of yield statement is to accept input to a program one by one. A statement like: str =(yield) within the body of a function allows us to enter multiple inputs to the function.

8.7 Inner Functions

Python functions can be nested in ‘PASCAL’ style
[46]
. Any number of inner functions can be defined within a function. They are visible only within the outer scope. Most often, the outer function calls the inner function(s) to get the work done. Two or more functions that are nested at the same level of scope may call each other. Suppose [image:]
 is defined as n!/(r!(n-r)!). Define a fact() function within the nCr(n=1, r=1) function. Then call outer function as shown below:

def nCr(n=1, r=1):

def fact(n = 1):

if n == 0: return 1

else:

return n* fact(n-1)

if n == 0 or r == 0 or n == r:

 return 1

else:

return fact(n)/(fact(r)*fact(n-r))

invoke it

print(‘%3d’ % (nCr (10,3))) print(‘%2d’ % (nCr(n=6,r =2))) Output:

120

15

Inner functions behave the same way as ordinary functions except for the scope. They are hidden from the global scope. This allows data encapsulation and prevent unwanted modifications by objects outside it. They may or may not have parameters. Appropriate default values can be assigned to the parameters if needed. The nonlocal keyword can be used to change the value of the variable of the outer function similar to using global keyword to change the value of global variables
[47]
.

def f1(): #outer function a = 1

def f2(): #outer function nonlocal a

a = 2

print (a) #prints 2

f2()

print (a) #prints 2

f1()

8.7.1 Closure

Closure is basically keeping a record of a function with an environment. A function that remembers the environment where it was made is a closure. In other words, there is a closure when a nested function references a value in its enclosing scope
[48]
. Three conditions must be met for a closure: (i) nested functions must exist (ii) they should refer to a variable in enclosing scope (iii) enclosing scope should return this function. A closure provides data hiding, avoids usage of classes and global variables.

Consider an outer function f1() and an inner function f2(). The outer function f1 returns an instance of f2 (remember that the name of a function is an object).

def f1(a):

def f2(b):

return a+b

return f2

u = f1(1)

v = f1(100)

print (u(2))

print (v(2))

Output:

3

102

This example shows that both f1(1) and f1(100) are remembered by Python, although both returns an instance of f2 (inner function). All function objects have a __closure__ attribute that returns a tuple. This can be used to check if there exist closure functions.

8.7.2 Lambda functions

All ordinary functions are named. There are situations where a dynamic function is needed. One solution is a lambda function. These are anonymous functions. They can appear either on the RHS of an assignment statement or can be used even without assignment. Consider evaluating E=mc2
 on demand.

c = 1.86

e=lambda m: m*c*c if type(m)==float\

or type(m)==int else 0

e(12)

type(e)

Output:

41.5152

<class ‘function’>

Any type of parameter can be used in lambda expressions. Python will automatically guess the type using the parameter that you pass to lambda functions.

L = lambda x: sum(x)

print (L([3,14]))

print (L({1, 2,3}))

Output:

17

6

Lambda functions create namespace entries only if they are assigned to a variable as shown above (they are called anonymous due to this reason). Consider the problem of finding all prime numbers less than a positive integer n. All possible candidates are stored first in an array. Then the filter function is applied using a lambda function to filter out all primes. A filter function evaluates an expression which is either True (1) or False (0). It filters out only those values for which the function returns True.

n = 150

is_prime = lambda x:\

all(x % y != 0 for y in range(2,int(math.sqrt(x)) + 1))

pp = [x for x in range(2, n) if is_prime(x) == True]

print(*pp)

Output:

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149

Lambda functions can have default parameters and variable parameters (§8.2.1).

import sys

out = lambda *x: sys.stdout.write(" ".join(map(str,x)))

out(12, "34", 5.67)

Output:

12 34 5.6710

Example 8.5
 Write lambda function to find the variance of elements in a list

Solution 8.5
 A lambda function lambda z:z*z will find the square of the elements. The map function can be used with the lambda function as first argument and the list (or set) as second argument to find the square of each element. The sum() function can then sum the squares which when divided by len(L) gives
 Σx
2
i
/n
. The square of the mean is then subtracted to get the variance (Chattamvelli, Rajan (2012) Statistical Algorithms, Narosa, New Delhi; Alpha science, Oxford, UK).

L=[1,4,5,8]

y=sum(map(lambda z:z*z,L))/len(L)-sum(L)*sum(L)/(len(L)*len(L))

Output:

6.25

Example 8.6
 Write lambda function to convert numbers in an array (say the temperature in Celsius of 5 cities) to another unit (say Fahrenheit).

Solution 8.6
 Let C=[5,12,26,37.5] represent the temperatures of 5 cities in Celsius. A lambda function can be written to find the corresponding Fahrenheit temperatures as F = map(lambda x:(9.0/5)*x+32, C).

C = [5,12,26,37.5]

F = map(lambda x:(9.0/5)*x+32, C) print(*F)

Output:

41.0 53.6 78.80 99.50

Example 8.7
 Create a lambda function to find the accumulated amount in a bank account at the end of n years with interest rate of r percent.

Solution 8.7
 Let A denote principal amount. The statement x = range(5,16,2) creates a range of values (5 7 9 11 13 15). The for loop iterates through these values and invokes the lambda function.

P = lambda A,r,n: A*(1+r/100)**n

x = range(5,16,2)

for y in x:

print(P(100, 6, y))

Output:

133.82255776000002

150.36302589913606

168.9478959002693

189.82985583354258

213.29282601456848

239.65581930996916

Example 8.8
 Develop a lambda function to check equality of types and values of two Python variables (the equivalent of === operator in PHP).

Solution 8.8
 As the type and value must match, two equality checks are needed:

def truelyEqual(x,y):

if (type(x)==type(y) and x==y):

return True

else:

return False

This can be programmed as a lambda function as follows:

truelyequal = lambda x,y: type(x)==type(y) and x==y

u = 10

v = u

truelyequal(u, v)

w = 2 * 5

truelyequal(u, w)

Output:

True

False

As u and w have different memory locations, the truelyequal(u, w) call returns False, whereas v = u results in the same memory locations (see the discussion on “auto-interns” in chapter 3).

8.8 Summary

This chapter discussed functions at length. Built-in functions and mathematical functions are briefly described. Different types of argument passing are explained with examples. Positional and keyword arguments are discussed next. Generator functions, inner functions and lambda functions are then briefly explored.

Subject Index

1’s and 2’s complement, 3-13

absolute path, 7-3, 7-24 acronym, 1-10 recursively defined, 1-6

alias, 1-15, 8-9 aliasing, 2-32 function, 8-8

all(), 8-10 anatomy of function, 8-2 arithmetic operator table, 3-2 operators, 3-2 ASCII, 8-11 assignment operator, 3-3 augmented assignments, 3-3 augmented operators, 3-3 auto-intern, 3-3, 3-16

bicameral languages, 6-1 binary, 1-2 files, 1-16 operator, 1-30 string, 1-32 to decimal, 5-10, 8-17

bitwise operators, 3-11 BMI, 5-11 Bool type, 2-4 break statement, 5-5 bubble sort, 5-18 buffering mode, 7-10 built-in

Boolean constants, 1-15 function, 8-9

general, 8-10 mathematical, 8-12

bulk renaming, 7-9, 7-11 Bytearray Type, 2-11 bytearrays

clear, 2-20 combine, 2-20 convert, 2-21 modify, 2-15 bytecode, 1-33 creating, 1-34 Bytes type, 2-7

callable types, 2-23 Camel-case, 1-26 chained relational operator, 3-9 chmod command, 7-8

close files, 7-11 closures, 8-26 coding standards, 1-26 comma separated files, 7-21, 7-22 command line arguments, 6-10 comments, 1-18 comparison operators, 3-8 comparison rule, 3-6 complement operator, 3-12 complex numbers, 3-4 type, 2-27

compound conditions, 4-11 concatenation, 1-18, 6-3, 6-11 Conda, 1-7 conditional exit

loop, 5-2 while loop, 5-15, 5-16

conditions, 4-2 for closures, 8-26 forming, 4-4

constant literals, 2-4 continue statement, 5-5 copy files, 7-16 create directory, 7-25

CSV files, 7-21 read, 7-22

i

date and time, 2-29 del keyword, 5-24 DFS traversal, 7-26 directories, 7-23 directory, 2-31 access permission, 7-9 create, 7-25 current, 7-3 delete, 7-10 existence, 7-12 listing, 7-24 masks, 7-8 operations, 7-24 rename, 7-8 temporary, 7-5, 7-7 tree, 7-26

divisibility by 9, 5-19 divmod(), 3-6 docstring, 1-20, 6-2, 8-3 dynamic typing, 1-2

elif, 4-8, 5-11 ellipsis, 1-11, 1-12 empty directory, 7-25 encoding attribute, 7-10 enumerate, 5-13, 5-14, 5-21 string, 6-10 zipped strings, 6-10

enumerated for loops, 5-12, 5-13 equality operators, 3-4 escape sequences, 1-32, 6-5 even integer, 3-7 exception

array index out of range, 2-17 IndexError, 2-19, 6-6 invalid mode or filename, 6-4 NameError, 5-6, 5-24

ValueError, 2-19 extended types, 2-29

False, 2-4, 2-29 Fibonacci numbers, 8-24

file

binary, 7-7 buffering, 7-10 close, 7-11 copying, 7-16 CSV, 7-21, 7-22 existence, 7-12 filters, 7-19 formatted I/O, 7-23 open modes, 7-2, 7-7 operations, 7-3, 7-19 permission, 7-8 read, 7-13 readline, 7-14 remove, 7-10 rename, 7-8, 7-10 temporary, 7-5, 7-6 text, 7-3 write, 7-15

files

access permission, 7-9 in Python, 7-1

fill value, 5-22 finally block, 7-11 float type, 2-25 conversions, 2-26

for loop, 5-2

conditional exit, 5-16 enumerated, 5-12, 5-13 exiting, 5-5 points to ponder, 5-2 variable, 5-7

formal parameters, 8-20 formatted file I/O, 7-23 frozen binary files, 1-16 function aliasing, 8-8 builtin, 8-9 create, 8-2 generators, 8-23 inner, 8-25 lambda, 8-26 main, 8-4 mathematical, 8-11 multi-type, 8-8 parameters, 8-13 keyword, 8-19 pass-by-value, 8-14 positional, 8-15 positional only, 8-18 variable, 8-21

	

SUBJECT INDEX

 iii

recursive, 8-8 return multiple values, 8-6 return values, 8-5 structure of, 8-2

functions, 8-1

gc, 5-24, 5-25 GCD, 5-15, 8-17 generator functions, 8-23 generator loop, 5-11 glob, 7-19, 7-21 global keyword, 2-30, 5-6, 8-11

identifiers, 1-24 if statement, 4-1 continuation, 4-2 multi-variable, 4-16 simple, 4-2 trailing, 4-14, 5-3 variants, 4-5

if-else statement, 4-5 import statement, 1-5 in operator, 3-15, 6-12 indentation, 1-22 docstring, 1-21 level, 1-23

indentation level, 4-3 while loop, 5-15

index strings, 6-6 inequality operators, 3-7 infinite loops, 5-16 inner functions, 8-25 input command, 1-25 interactive while loop, 5-17 is operator, 3-16 joining strings, 6-3

key-value pairs, 8-19 kinder-case, 1-27 King-case, 1-27, 1-34

lambda functions, 8-26

lazy evaluation, 4-13

leap year, 8-19, 8-20

line continuation, 1-18, 8-3 list comprehension, 7-14 listing

directory contents, 7-24

logical operators, 3-10 loop body, 5-1

condition, 5-1 exiting, 5-5 for, 5-2 infinite, 5-16 nested, 5-17

main function, 8-4 mathematical functions, 8-11, 8-12 membership operators, 3-14 module, 1-5 modules, 2-30, 2-31 modulo operator, 3-2 multi-variable decision, 4-16 multiple assignment, 1-31 mutable vs immutable, 2-6

namespaces, 5-6, 8-11

local, 8-13

nested

if statements, 4-16, 4-18 loop variable, 5-19 loops, 5-17 zip command, 5-23 None type, 8-8 number type, 2-22

open

file using with command, 7-4 mode for files, 7-2

operator

overloading, 3-4 precedence, 1-30 priority, 1-29

operators, 3-1 arithmetic, 3-2 assignment, 3-3 associativity, 3-2 bitwise, 3-11

chained relational, 3-9 comparison, 3-8 complement, 3-12 equality, 3-4

inequality, 3-7

logical, 3-10 membership, 3-14 precedence, 3-1 relational, 3-4 shorthand, 3-3 palindrome, 3-7 parent directory, 7-23–7-25 pass, 4-5

number of the loop, 5-1 of the loop, 5-2, 5-7 statement, 1-28

path, 7-3 absolute, 7-3 relative, 7-23

pathlib, 7-9 pickle, 7-16 PIP, 1-6, 1-7 precedence

of operators, 3-1 of walrus operators, 1-29

precedence of operators, 1-30 print() statement, 1-17 priority

of arithmetic operators, 3-2 of bitwise operators, 3-12 of operators, 1-29, 1-31

Python built-in functions, 8-10 bytecode, 1-33 command prompt, 1-11 comments, 1-18 compiled files, 1-33, 1-34 data serialization, 7-16 features, 1-3 file modes, 7-2 float type, 2-25 functions, 8-2 install, 1-4 line continuation, 1-18 logical operators, 3-11 loops, 5-1 main function, 8-4 mathematical functions, 8-11 membership operators, 3-14 namespaces, 5-6 operators, 3-2 primary prompt, 1-14 reserved words, 1-23 secondary prompt, 1-13 shorthand operators, 3-5 source files, 1-9 startup program, 1-16 temporary files, 7-5

variable scope, 5-6 virtual machine, 1-10 yield command, 8-23 quadratic equation, 4-11, 8-15

random number, 8-6 range function, 5-8 read

command, 7-13 CSV files, 7-22 modes, 7-2

reading a file, 7-13 readline command, 7-14, 7-20 readlines command, 7-14 recurring deposit, 4-10, 8-15 recursive acronym, 1-6 recursive function, 8-8 relational operators, 3-4 reload command, 1-16 reserved words, 1-23 Richmond, 4-16

scope, 2-30, 8-25 function, 8-11 of variables, 5-6

serializing, 7-17 short-circuit evaluation, 4-13

advantage, 4-13 table, 4-13

shorthand operators, 3-3 slices, 2-17, 6-8 snake-case, 1-27 sorted() function, 5-13, 7-19 sorting, 5-18 source file arranging, 1-10 naming, 1-9

standard data types, 2-3 standard io, 7-19 stdin, 7-19 string

	

SUBJECT INDEX

 v

Boolean methods, 6-15 centering, 6-14 comparison, 6-13 concatenation, 6-11 constants, 6-3 create, 6-2 create from collections, 6-3 enumeration, 6-10 escape sequences, 6-5 formatting, 6-17 functions, 6-13 index, 6-6 input and output, 6-4 iteration, 6-9 literals, 2-6 matching, 6-19 modification, 6-18 multi-line, 6-2 operations, 6-11 padding, 6-14 prefixes, 6-4 replication, 6-11 slices, 6-6 splitting, 6-15 test if Null, 6-5 unpacking, 6-8

stringIO class, 7-18 Strings, 6-1

table

bitwise operators, 3-12 Boolean string functions, 6-15 builtin functions, 8-10 escape sequences, 1-32 file operations, 7-19 logical operators, 3-11 membership & relational operators,

3-9 mutable vs immutable, 2-6 of directory operations, 7-24 of format specifiers, 6-18 operators, 1-31 priority of logical operators, 3-12 Python class for files, 7-2

Python reserved words, 1-23 Python string constants, 6-3 short-circuit evaluation, 4-13 shorthand operators, 3-5 standard arithmetic operators, 3-2 string slicing, 6-7 virtual machines, 1-10

temporary directory, 7-7 files, 7-5 named files, 7-6 text files, 7-3, 7-10 encoding, 7-10 TOH problem, 8-8 trailing if, 4-14, 5-3 True, 1-15, 2-3, 2-4, 2-28, 2-29 type casting, 2-28

variable

environmental, 1-5 of nested loops, 5-19 scope, 5-6 undefined, 1-12

variable parameters, 8-22 variants of if, 4-5 virtual environment, 1-8 virtual machine, 1-10

walrus assignment, 1-28, 4-2 while loop, 5-5, 5-14 indentation, 5-15 infinite, 5-16 interactive, 5-17 nested, 5-19

whitespace, 1-22, 5-2, 6-2, 6-3 with command, 7-4, 7-11 write to file, 7-15 XOR, 3-12, 3-14

zero indentation, 4-4 zip codes, 4-16 zip command, 5-20

equal length objects, 5-20 heterogeneous objects, 5-22 unequal length objects, 5-21 zipped objects, 5-24

[1]
 The same installation program is used for both Intel and AMD based computers.

[2]
 This uses comma notation. A more intuitive assignment might be (x,y)=(y,x) which is a tuple assignment.

[3]
 The 3.8 and higher versions remove pythonw.exe dependency on Microsoft C++ runtime.

[4]
 A package manager is a software tool to automate the installing, updating, and removing of packages. There are two types of packages called import packages (that are imported from local folders) and distribution packages(that are downloaded from the Internet). The following discussion is exclusively on distribution packages in Python that are developed by third-party vendors and kept in public domains for download.

[5]
 pypi.python.org is a package repository for most of the popular Python packages and frameworks.

[6]
 In Windows, Python does execute a user created os.py but it will proceed to execute site.py in the lib directory and will throw an AttributeError.

[7]
 The acronym PVM is also used to denote “Parallel Virtual Machines”, which is a software to interconnect multiple independent heterogeneous machines to behave like a single virtual
 parallel computer, which often executes programs using the “master-slave” paradigm.

[8]
 Operating Systems belonging to the UNIX family like Linux, Dynix, Ultrix, etc. will be called *NIX in the rest of the book (pronounced as star-nix)

[9]
 Those familiar with C++ may recall that it uses >>
 operator in cin
 command to get input from the keyboard. Python just added one more >
 to prompt the user that it is waiting for user input.

[10]
 ps1 is also used in Mac OS(.bashrc, .bash profile); Bourne, Korn or Z shells of UNIX, etc. to change the terminal prompt.

[11]
 Print is a command in Python 2.7 and a function in later versions.

[12]
 A string literal is a string in one of the many quoting options which is not assigned to a variable. Technically speaking, string literals are also executable in Python.

[13]
 Some editors use # for single line comment and ## for block (multi-line) comments.

[14]
 Some IDE like IPython uses a question mark (?) after a name to produce help 16
A namespace is a dictionary that maps names or labels to Python objects.

[15]
 PEP-8 (Python Enhancement Proposal) states that “Thou shall not exceed 80 characters per line”

[16]
 Indentation can be mandatory or optional. Python uses mandatory indentation, and the level of indentation decide the statement blocks

[17]
 Moving back to the previous indentation level in an outer block is called unindentation

[18]
 perhaps because Python library developers did not like Camels, but likes kinder (which means children in German and Dutch; and is pronounced kin-der
 as in kindergarten)

[19]
 “.pyc” stands for compiled Python (“.py”) source file. Python always checks the last-modified time of source files and byte code files (.pyc) to know when the source need to be recompiled.

[20]
 It throws RuntimeError: Bad magic number in .pyc file when versions are incompatible

[21]
 Hybrid typed languages also exist, that are most often strongly typed but could accommodate weak typing in particular situations. Another example of weakly typed language is PHP.

[22]
 Builtin constants in Python are (None, False, True, Ellipsis, NotImplemented and debug). Here None
 denotes the absence of a value, NotImplemented indicates a special value used in comparisons, Ellipsis is same as ..., and debug constant denotes if Python was started with -O option on the command line

[23]
 Here rfind() means reverse find from end to beginning and rindex() is reverse index

[24]
 There is also a binascii module which has several methods to convert between binary and various ASCIIencoded binary representations. The hexlify(data) returns hexadecimal representation of binary data, while unhexlify(hexstr) returns binary data of hexadecimal representation hexstr.

[25]
 There is also a maxunicode type in sys module that stores the largest supported character.

[26]
 Note that the decimal module keeps 28 places of accuracy

[27]
 x is y is equivalent to x==y

[28]
 A problem encountered in this method is negative zero, which is represented as all 1’s and positive zero by all zeros in 1’s complement representation, while there exist only one representation of zero in 2’s complement representation (https://en.wikipedia.org/wiki/Ones%27 complement)

[29]
 Other types like top-to-bottom or reverse (base-to-top), and slanted indenting also exist as in 2D graphics, 3D building and ship architecture and design.

[30]
 This program will not work in Python 2.x unless input is string type

[31]
 Our assumption here is that the program is run on a single-core machine or that only one processor is executing our code.

[32]
 break means ‘break (jump) out of the enclosing loop’.

[33]
 dir(builtins ()) lists all entries in it.

[34]
 http://www.leonardsguide.com/us-airport-codes.shtml

[35]
 Some natural languages like Arabic use right to left order.

[36]
 All natural languages that use the Armenian, Cyrillic, Greek, and Latin scripts are also bicameral.

[37]
 -1

[38]
 whitespace = ‘ \t\n\r\v\f’ in Python where the first character is a blank.

[39]
 This is usually C:\temp, C:\tmp, or C:\Users\Admin\AppData\Local\Temp\ directory in Windows and /tmp, /var/tmp, /usr/tmp in *NIX

[40]
 It has signature NamedTemporaryFile(mode = ‘w+b’, buffering = -1, encoding = None, newline = None, suffix = None, prefix = None, dir = None, delete = True)

[41]
 Duplicate file handles can be obtained using os.dup(fd) or os.dup2(fd, fd2, inheritable = True) methods.

[42]
 copyfile() is written using the lower-level function copyfileobj()

[43]
 Python documentation does not distinguish between parameters and arguments. Actually formal argument is synonymous with parameter and actual arguments are the values supplied when a function is invoked.

[44]
 In some medical domains, a BMI of 24 or less is considered to be normal.

[45]
 called star-args (or stargs)

[46]
 PASCAL was a popular programming language in the academia during 1980 ’s.

[47]
 The nonlocal keyword makes it possible to use names from enclosing namespace into local namespace.

[48]
 They follow the LEGB (Local, Enclosing, Global, Built-in) scope rule for lookup.

