[image: Cover: The Python Book, 1 by Rob Mastrodomenico]

Table of Contents

	
Cover

	
Title Page

	
Copyright

	
1 Introduction

	
2 Getting Started

	
3 Packages and Builtin Functions

	
4 Data Types

	
5 Operators

	
6 Dates

	
7 Lists

	
8 Tuples

	
9 Dictionaries

	
10 Sets

	
11 Loops, if, Else, and While

	
12 Strings

	
13 Regular Expressions

	
14 Dealing with Files

	
14.1 Excel

	
14.2 JSON

	
14.3 XML

	
15 Functions and Classes

	
16 Pandas

	
16.1 Numpy Arrays

	
16.2 Series

	
16.3 DataFrames

	
16.4 Merge, Join, and Concatenation

	
16.5 DataFrame Methods

	
16.6 Missing Data

	
16.7 Grouping

	
16.8 Reading in Files with Pandas

	
17 Plotting

	
17.1 Pandas

	
17.2 Matplotlib

	
17.3 Seaborn

	
18 APIs in Python

	
19 Web Scraping in Python

	
19.1 An Introduction to HTML

	
19.2 Web Scraping

	
20 Conclusion

	
Index

	
End User License Agreement

List of Illustrations

	
Chapter 2

	
Figure 2.1 Anaconda navigator.

	
Figure 2.2 Jupyter Notebook.

	
Figure 2.3 Jupyter Notebook example.

	
Figure 2.4 Qt Console.

	
Figure 2.5 Qt Console example.

	
Figure 2.6 Command line example.

	
Chapter 15

	
Figure 15.1 Spyder IDE.

	
Figure 15.2 Run file in Spyder.

	
Chapter 17

	
Figure 17.1 Line plot of sepal length.

	
Figure 17.2 Histogram of sepal length.

	
Figure 17.3 Boxplot of sepal length.

	
Figure 17.4 Density plot of sepal length.

	
Figure 17.5 Area plot of sepal length.

	
Figure 17.6 Histogram of sepal length.

	
Figure 17.7 KDE of sepal length.

	
Figure 17.8 Line plot of sepal length.

	
Figure 17.9 Box plot of iris data.

	
Figure 17.10 Density plot on iris data.

	
Figure 17.11 Line plot on iris data.

	
Figure 17.12 Scatter plot on pandas data frame.

	
Figure 17.13 Area plot of iris DataFrame.

	
Figure 17.14 Histogram of iris DataFrame.

	
Figure 17.15 KDE of iris DataFrame.

	
Figure 17.16 Pie plot of tip size by day.

	
Figure 17.17 Barh plot of tips data by day.

	
Figure 17.18 Iris plot.

	
Figure 17.19 Panel plot example one.

	
Figure 17.20 Panel plot example two.

	
Figure 17.21 Plot with custom line colour.

	
Figure 17.22 Plot with custom linetype.

	
Figure 17.23 Plot with custom colour linetype.

	
Figure 17.24 Plot with limits altered.

	
Figure 17.25 Plot with reverse limits.

	
Figure 17.26 Plot with labels.

	
Figure 17.27 Plot with legend.

	
Figure 17.28 Scatter plots with different markers.

	
Figure 17.29 Scatter plot with different sizes.

	
Figure 17.30 Scatter using replot in seaborn.

	
Figure 17.31 Scatter plot using replot in seaborn with a third variable.

	
Figure 17.32 Scatter plot using replot in seaborn with a third variable and ...

	
Figure 17.33 Scatter plot using replot in seaborn with hue on size.

	
Figure 17.34 Scatter plot using replot in seaborn with a third variable usin...

	
Figure 17.35 Scatter plot using replot in seaborn with different size of poi...

	
Figure 17.36 Line plot in Seaborn using replot.

	
Figure 17.37 Line plot in replot with mean and confidence interval.

	
Figure 17.38 Line plot in replot with mean and no confidence interval.

	
Figure 17.39 Line plot in replot with mean and standard deviation.

	
Figure 17.40 Line plot in replot with hue applied.

	
Figure 17.41 Line plot in replot with hue and style applied.

	
Figure 17.42 Line plot in replot with hue and style applied on the dots data...

	
Figure 17.43 Multi scatter plot on tips data.

	
Figure 17.44 Multi line plot with rows and columns using fmri dataset.

	
Figure 17.45 Multi line plot with rows and columns using reduced fmri datase...

	
Figure 17.46 Multiline plot using col wrap.

	
Figure 17.47 Catplot of day against total bill from the tips dataset.

	
Figure 17.48 Catplot of day against total bill from the tips dataset with ki...

	
Figure 17.49 Catplot of day against total bill from the tips dataset with ki...

	
Figure 17.50 Catplot of size against total bill.

	
Figure 17.51 Catplot of smoker against tip using order argument.

	
Figure 17.52 Catplot of total bill against day with swarm and hue of time.

	
Figure 17.53 Boxplot using catplot.

	
Figure 17.54 Boxplot using catplot with a hue.

	
Figure 17.55 Boxen plot using catplot.

	
Figure 17.56 Violin plot using catplot.

	
Figure 17.57 Violin plot using catplot using a split on the hue.

	
Figure 17.58 Bar plot using catplot.

	
Figure 17.59 Count plot using catplot.

	
Figure 17.60 Boxplot of iris data.

	
Figure 17.61 Multiple plots with col in catplot.

	
Figure 17.62 Histogram with KDE.

	
Figure 17.63 Histogram with ruglplot.

	
Figure 17.64 Histogram with bins option set.

	
Figure 17.65 Joint plot.

	
Figure 17.66 Pairplot example using iris data.

	
Chapter 18

	
Figure 18.1 Example of flask‐restful download page.

	
Figure 18.2 Display of terminal window upon starting up API.

	
Figure 18.3 Display of API from browser.

	
Figure 18.4 Display of API from browser getting all films.

	
Figure 18.5 Display of API from browser getting film id 1.

	
Figure 18.6 Display of API from browser getting film id 3.

	
Chapter 19

	
Figure 19.1 Display of website from terminal.

	
Figure 19.2 Display of website from browser.

	
Figure 19.3 Display of website from with lowercase decorator applied.

	
Figure 19.4 Display of website from browser with html.

	
Figure 19.5 Display of website from browser with h1 hello world.

	
Figure 19.6 Display of website from browser showing a table.

	
Figure 19.7 Display of website from browser showing a table with customisati...

	
Figure 19.8 Display of website from browser showing a table with header and ...

Guide

	
Cover Page

	
Table of Contents

	
Title Page

	
Copyright

	
Begin Reading

	
Index

	
Wiley End User License Agreement

Pages

	
iv

	
1

	
3

	
4

	
5

	
6

	
7

	
8

	
9

	
10

	
11

	
12

	
13

	
14

	
15

	
16

	
17

	
18

	
19

	
20

	
21

	
22

	
23

	
24

	
25

	
26

	
27

	
29

	
30

	
31

	
32

	
33

	
34

	
35

	
36

	
37

	
39

	
40

	
41

	
42

	
43

	
44

	
45

	
46

	
47

	
48

	
49

	
50

	
51

	
52

	
53

	
54

	
55

	
56

	
57

	
58

	
59

	
60

	
61

	
62

	
63

	
64

	
65

	
67

	
68

	
69

	
70

	
71

	
72

	
73

	
74

	
75

	
76

	
77

	
78

	
79

	
80

	
81

	
82

	
83

	
84

	
85

	
86

	
87

	
88

	
89

	
90

	
91

	
92

	
93

	
94

	
95

	
96

	
97

	
98

	
99

	
100

	
101

	
103

	
104

	
105

	
106

	
107

	
108

	
109

	
110

	
111

	
112

	
113

	
114

	
115

	
116

	
117

	
118

	
119

	
120

	
121

	
122

	
123

	
124

	
125

	
126

	
127

	
128

	
129

	
130

	
131

	
132

	
133

	
134

	
135

	
136

	
137

	
138

	
139

	
140

	
141

	
142

	
143

	
144

	
145

	
146

	
147

	
148

	
149

	
150

	
151

	
152

	
153

	
154

	
155

	
156

	
157

	
159

	
160

	
161

	
162

	
163

	
164

	
165

	
166

	
167

	
168

	
169

	
170

	
171

	
172

	
173

	
174

	
175

	
176

	
177

	
178

	
179

	
180

	
181

	
182

	
183

	
184

	
185

	
186

	
187

	
188

	
189

	
190

	
191

	
192

	
193

	
194

	
195

	
196

	
197

	
198

	
199

	
200

	
201

	
202

	
203

	
204

	
205

	
206

	
207

	
208

	
209

	
210

	
211

	
212

	
213

	
214

	
215

	
216

	
217

	
218

	
219

	
220

	
221

	
222

	
223

	
224

	
225

	
226

	
227

	
229

	
230

	
231

	
232

	
233

	
234

	
235

	
236

	
237

	
238

	
239

	
240

	
241

	
242

	
243

	
244

	
245

	
246

	
247

	
248

	
249

	
250

	
251

	
252

	
253

	
254

	
255

	
257

	
258

	
259

	
260

	
261

	
262

 The Python Book

 Rob Mastrodomenico

		 Global Sports Statistics
Swindon, United Kingdom

		

		

		

		

		

		

		

		

		

		

		

		

		

		
 [image: Logo: Wiley]

This edition first published 2022

© 2022 John Wiley and Sons Ltd

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

The right of Rob Mastrodomenico to be identified as the authors of this work has been asserted in accordance with law.

Registered Office

John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial Office

9600 Garsington Road, Oxford, OX4 2DQ, UK

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print‐on‐demand. Some content that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty

The contents of this work are intended to further general scientific research, understanding, and discussion only and are not intended and should not be relied upon as recommending or promoting scientific method, diagnosis, or treatment by physicians for any particular patient. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of medicines, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each medicine, equipment, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging‐in‐Publication Data

Names: Mastrodomenico, Rob, author.

Title: The Python book / Rob Mastrodomenico.

Description: Hoboken, NJ : Wiley, 2022. | Includes bibliographical

 references and index.

Identifiers: LCCN 2021040056 (print) | LCCN 2021040057 (ebook) | ISBN

 9781119573319 (paperback) | ISBN 9781119573395 (adobe pdf) | ISBN

 9781119573289 (epub)

Subjects: LCSH: Python (Computer program language)

Classification: LCC QA76.73.P98 M379 2022 (print) | LCC QA76.73.P98

 (ebook) | DDC 005.13/3‐‐dc23

LC record available at https://lccn.loc.gov/2021040056

LC ebook record available at https://lccn.loc.gov/2021040057

Cover Design: Wiley

Cover Image: © shuoshu/Getty Images

1
Introduction

Welcome to The Python Book, over the following pages you will be given an insight into the Python language. The genesis of this book has come from my experience of using and more importantly teaching Python over the last 10 years. With my background as a Data Scientist, I have used a number of different programming languages over the course of my career and Python being the one that has stuck with me. Why Python? For me I enjoy Python because its fast to develop with and covers many different application allowing me to use Python for pretty much everything. However for you the reader, Python is a great choice of language to learn as its easy to pick up and fast to get going with which means that for the novice programmers they can feel like they are making progress. This book is not just for complete novices, if you have some experience with Python, then this book is a great reference. The fact that you can pick up Python quickly means that many users skip the basics. This book looks to cover all the basics giving you the building blocks to do great things with the language. What this book is not intended to do is over complicating anything. Python is beautiful in its simplicity and this book looks to stick to that approach. Concepts will be explained in simple terms and examples will be used to show how to practically use the introduced concepts.

Now having discussed what this book is intended to do, what is Python? Simply put Python is a programming language, its general purpose meaning that it can do lots of things. In this book, we will specialise in applying Python to data‐driven applications, however Python can be used for many other applications including AI, machine learning, web development, to name just a few. The language itself is of high level and also interpreted meaning that code need not be compiled before running. One of the big attractions to the language is the simplicity of its syntax, which makes it great to learn and even better to write code. Aside from the clear, easy to understand syntax, the language makes use of indentation as an important tool to distinguish different elements of the code. Python is an object‐orientated language and we will demonstrate this in more detail throughout this book. However, you can write Python code how you prefer be it object orientated, functional or interactively. The best way to demonstrate Python is by doing, so let's get started but to do so we need to get Python installed.

2
Getting Started

For the purposes of this book, we want you to install the Anaconda distribution of Python that is available at https://www.anaconda.com. Here, you have distributions for Windows, Mac, and Linux, which can be easily installed on your computer. Once you have the Anaconda installed, you will have access to the Anaconda navigator as shown in Figure 2.1.

Here, you get the following included by default:

	JupyterLab

	Notebook

	Qt Console

	Spyder

To follow the examples within this book you can use the Notebook or Qt Console. The Notebook is an interactive web based editor as shown in Figure 2.2.

Here, you can type your code, run the command, and then see the result, which is a nice way to work and is very popular. Here, we will show how we can define a variable x and then just type x and run the command with the run button to show the result (Figure 2.3).

However for the purposes of the book we will use a console‐based view that you can easily obtain through the Qt Console. An example is shown in Figure 2.4.

Like with the notebook, we show the same example using Qt Console in Figure 2.5.

Within this book we will denote anything that is an input with [image: greater-than greater-than greater-than] and with any output having no arrows preceding it (Figure 2.6).

Another concept that the reader will need to be familiar with is the ability to navigate using the terminal (linux systems including mac) or command prompt (windows). These can be obtained through various approaches but simply using the search procedures with the word terminal or command prompt will bring up the relevant screen. To navigate through the file system you can use the command cd to change directory. This essentially is like us clicking on a folder to see what is in it. Unlike using a file viewing interface you cannot see what is in a given directory by default so to do so you need to use the command ls. This command lists the files and directories within the current locations. Let's demonstrate with an example of navigating to a directory and then running a python file.

Aside from the Anaconda navigator we have over 250 open‐source data science and machine learning packages are automatically installed. You can also make use of the conda installer to install over 7500 packages easily into Python. A full list of packages that come with Anaconda is available for the relevant operating system from https://repo.anaconda.com/pkgs/. Details on the using the conda installer is available from https://docs.anaconda.com/anaconda/user-guide/tasks/install-packages/ however this is outside the scope of this book. The last concept we will raise but not cover in detail is that of virtual environments. This concept is where the user develops in an isolated Python environment and adds packages as needed. It is a very popular approach to development however as this book is aimed at beginners we use all packages included in the Anaconda installation.

 [image: Snapshot of Anaconda navigator.]

Figure 2.1 Anaconda navigator.

 [image: Snapshot of Jupyter Notebook.]

Figure 2.2 Jupyter Notebook.

 [image: Snapshot of Jupyter Notebook example.]

Figure 2.3 Jupyter Notebook example.

 [image: Snapshot of Qt Console.]

Figure 2.4 Qt Console.

 [image: Snapshot of Qt Console example.]

Figure 2.5 Qt Console example.

 [image: Snapshot of Command line example.]

Figure 2.6 Command line example.

3
Packages and Builtin Functions

We have discussed packages without really describing what they are so let's look at packages and how it sits within the general setup of Python. As mentioned previously, Python is object orientated which means that everything is an object, you'll get to understand this in practice, however there are a few important builtin functions which aren't objects and they are worth mentioning here as they will be used within the book. These builtin types will be used throughout the book so keep an eye out for them. Below we show some useful ones, for a full list refer to https://docs.python.org/3/library/functions.html.

	dir(): This function takes in an object and returns the _dir_() of that object giving us the attributes of the object.
 [image: image]

	float(): Returns a floating point number from an integer of string
 [image: image]

	int(): Returns an integer from a float of string
 [image: image]

	len(): Returns the length of an object
 [image: image]

	list(): Creates a list from the argument given
 [image: image]

	max(): Gives the maximum value from the argument provided
 [image: image]

	min(): Gives the minimum value from the argument provided
 [image: image]

	print(): Prints the object to the text stream
 [image: image]

	round(): Rounds the number to a specified precision
 [image: image]

	str(): Converts the object to type string
 [image: image]

	type(): Returns the type of an object
 [image: image]

	abs(): Returns the absolute value of a numeric value passed in
 [image: image]

	help(): Gives access to the Python help system
 [image: image]

Now if you are unfamiliar with the Python the concepts used above they will be introduced throughout this book.

Alongside these builtin functions Python also comes with a number of packages. These packages perform specific tasks and are imported into our code. Python has a number of packages that come as default however there are lots of third‐party packages which we can also use. In using the Anaconda distribution we get all the default packages as well as the packages that are described previously. We will cover both default and third‐party packages throughout this book. To demonstrate this we will introduce how to import a package. The package we are going to introduce is datetime which is part of the standard Python library. What this means is it comes with the Python and is not developed by a third party. Now to import the datetime package you just need to type the following:

 [image: image]

In doing this we now have access to everything within datetime and to see what datetime contains we can run the built in function dir which as we showed earlier gives us the attribute of the object.

 [image: image]

Now if we want to see what these attributes are we use the dot syntax to access attributes of the object. So to see what MINYEAR and MAXYEAR are we can do so as follows.

 [image: image]

Now we can import specific parts of a package by using the from syntax as demonstrate below.

 [image: image]

So what this says is from the package datetime import the specific date attribute. This is then the only aspect of datetime that we have access to. This is good practice to only import what you need from a package. Now every time we want to use date we have to call date, in this case its easy enough but you can also give the import an alias which can reduce your code down.

 [image: image]

That is the basics of importing packages, throughout this book we will import from various packages as well as show how this same syntax can be used to import our own code. Alongside builtin functions these are key concepts that we will use extensively within this book.

4
Data Types

The next concept of Python that we will introduce is data types and in this chapter we will introduce a number of these and show how they behave when applied to some basic operators. We first start by introducing integers which are a number without a decimal point, written as follows:

 [image: image]

A float is by definition a floating point number so we can write the previous as follows:

 [image: image]

A string is simply something enclosed in either a double or single quote. So again we can rewrite what we have seen as follows:

 [image: image]

Given the fact that we know how to define these variables, how can we check what they are? Well, conveniently Python has a type method that will allow us to determine the type of a variable. So we will rewrite what we have done and assign each instance to a variable and then see what type Python thinks they are

 [image: image]

So now we can define the variables, the question is what can we do with them? Initially we will consider the following operations:

	+

	−

	*

	/

These are commonly known as the mathematical operation: addition, subtraction, multiplication, and division.

So let's start with + now if we have two integers applying + is mathematical addition as we will show

 [image: image]

Similarly if we do the same with two floats we get a similar result

 [image: image]

But what happens if we apply addition to a float and an integer, let's see

 [image: image]

What we see is that addition works on a float and an integer but it returns a float, so it's converting the integer into a float.

What if we use addition on a string? Well this is the interesting part, let's run the same example from before with x and y as string representations.

 [image: image]

What has happened here? Well we have stuck together x and y, this is known as concatenation and is a very powerful tool in dealing with strings.

We considered the + operation with integers and floats but what will happen if we do the + operation with a string and say an integer

 [image: image]

What we see here is an error message saying we cannot concatenate a str and int object. So Python in this instance wants to use the + operation as concatenation but due to the fact it doesn't have two strings it can't do that and hence throws an error. In Python you cannot mix a string and integer or string and float so we won't consider operations between these types for the rest of this section.

Let us now look at the [image: minus] operation. First considering two integers we get the following:

 [image: image]

As you may have expected the [image: minus] operation with two integers acts as mathematical subtraction. If we apply it to two floats, or to a mix of floats and integers it acts as subtraction.

What about for strings, can we apply [image: minus] to two strings?

 [image: image]

Here we get another error but this time it is because the [image: minus] operation doesn't support strings. What this means is that when you try to operate on two strings using this operation, it doesn't know what to do. The same is true for * and / operations on string. So, if we are dealing with strings the only operation from this section that we can use is + which is concatenation.

The next operation we will consider is * which is generally known as mathematical multiplication to most. So considering its use on two integers we get the following:

 [image: image]

As we can see its mathematical multiplication, the same is true when we run the same on two floats. Let us see what happens when we mix floats and integers.

 [image: image]

As we can see it returns multiplication in float format, so like with addition and subtraction it converts integers to floats.

Next, we need to see how / operation works on integers and floats, so first we consider the same types, so we will apply / on integers:

 [image: image]

There are other data types beyond these and the first we consider are complex numbers which can be defined as follows

 [image: image]

We can obtain the real and imaginary parts of our complex numbers as follows

 [image: image]

We can also use the built‐in function complex

 [image: image]

In terms of operation we can use the standard operators shown earlier to complex numbers and the results are as follows

 [image: image]

We can also add, subtract, divide or multiply integers or floats to a complex numbers as we show

 [image: image]

In adding or subtracting an integer or float with a complex we change only the real part which is to be expected, however if we multiply or divide we apply that value across both real and imaginary parts.

Next we look at boolean values in Python, these can be defined using True or False

 [image: image]

Integers or floats can be converted into a boolean using the built‐in function bool. This treats any value as 0 or 0.0 as False and any other value to be True.

 [image: image]

Surprisingly we can use the operators in this chapter on boolean variables. The key to note is that a value of True is evaluated as 1 and False as 0, so you can see examples of this below.

 [image: image]

In most cases the results are as expected considering that we are dealing with 1 or 0 in the operation. However anytime that we divide by zero we get a ZeroDivisonError so be careful with zero division.

We can also create byte, byte arrays and memory view objects with the following syntax.

 [image: image]

We can concatenate byte strings together in the way we have shown with strings

 [image: image]

What we have covered in this chapter is some of the data types in Python and how to operate on them using standard mathematical methods. One thing to take from this is the mechanism that Python uses to operate on objects and that is simply look for a method that can take in the arguments that you pass into it.

5
Operators

The previous chapter introduced data types and some basic operators but in this chapter we build on this by introducing a number of key operators that are important to understand. As shown in our introductory examples in the previous chapter, we can define a variable as follows:

 [image: image]

Here, we are assigning the variable x with the result of 1 + 2 so x is 3. Now, if we wanted to see if the value of x was equal to 3 we would use == which refers to equality.

 [image: image]

We have shown how to test for equality but what about inequality. Well Python has that sorted as well, instead of using == we use != which is not equals. Using the example from before we get the following:

 [image: image]

What we have here is the result of an equality statement like this being of type boolean (True or False).

We can also test to see if something is greater or less than another element.

 [image: image]

Here we have introduced the following tests which takes the value on the left against the value on the right and tests for

	[image: greater-than] for greater than

	[image: less-than] less than

	[image: greater-than equals] greater than or equal to

	[image: less-than equals] less than or equal to

You can also test for equality using the statement is. Now it is not strictly the same as using == which we demonstrate earlier. Essentially the difference is that it returns True if the variables in question points to the same object whilst == returns True if the values are equal. It is a very subtle difference so you need to be careful with it. A simpler explanation is that == returns True if the variables being compared are equal, whereas is checks whether they are the same. The below examples shows the dangers in using is

 [image: image]

In the first instance a is assigned to be 1 and we say is a 1 and it is so we get True returned. In the second instance we assign a and b to be empty list (we will cover what a list is later) and we can see we return False with the is statement and True with the equals. The reason behind this is that they are not the same lists so

 [image: image]

However, they are both lists so using the comparison statement == we return True as they are both empty lists. If we assigned a as a list and b = a we would get the following:

 [image: image]

The reason being is that b is the same as a so they are the same thing. As with == and != we have is not again the != is a test of equality between two variables whereas the Python statement is not, is a test of identity. A good example of this is when you compare a variable to the Python Null value denoted as None. Here, the preferred way to write it is

 [image: image]

You can override the variable by assigning something to it like we did before

 [image: image]

All pretty simple stuff. Now if we have three variables that we want to assign we can do it as follows

 [image: image]

This is fine to do however it takes up a lot of space so instead you can write your assignment as follows

 [image: image]

This just makes it easier to assign variables and makes your code shorter and hopefully more readable. Obviously the naming convention I've used for the variables isn't the best and it makes for better code to give your variables meaningful names as it will help those who have to go back and read your code.

We have looked at assigning variables however what if we want to do something to the variable like say add something to the value. Lets assume we have a variable profit and we want to add 100.0 to it, then we could do it as follows

 [image: image]

What we are doing here is assigning profit the initial value then assigning it its value plus 100. There is nothing wrong with what we did here however the more Pythonic way would be to do this

 [image: image]

Similarly is we wanted to multiply the value by 20% we could do so as follows

 [image: image]

As you would think we can do the same for division and subtraction

 [image: image]

There are some other non typical operators that we can use in Python, the first one being modulus which returns the remainder of integer division.

 [image: image]

We can also perform exponentiation as follows

 [image: image]

Python also gives us the operator for floor division which was how division was used in Python 2 however it is now performed explicitly using the floor operator

 [image: image]

Following on from what we showed earlier these operations can be performed using the equals operator approach to assign back to the variable. So we can perform modulus, exponentiation and floor operations as follows.

 [image: image]

We can also chain together these types of operators as follows

 [image: image]

So we can combine our logic statements together to form more complex statements. This will become useful later in the book when we apply these with other Python functionality.

This chapter has shown how we perform various operations on Python data types and this will form the basis for lots of the logic that we apply throughout this book.

6
Dates

In the previous chapters we covered some of the main data types in Python but one thing that is quite important is dates. For anyone who has worked with dates they can be tricky things, there are different ways to format them and they can be hard to manipulate, however Python has you covered. If we want to create a datetime object we do so as follows (we earlier showed how to import the datetime package):

 [image: image]

What we have done here is create a datetime by passing into dt the year, month, day, hour, minute, second to give us a datetime object. If we want to see it in a more friendly way we can type str around it and we get the string representation. Given we can define a date we can operate on dates as follows:

 [image: image]

Here, we have created two dates and then subtracted one from the other. What we get back is a timedelta object and converting it to a string we can see that it represents the days and time from the date subtraction. To understand timedelta we can import it just as we did with datetime.

 [image: image]

Now timedelta behaves a little different from datetime in that we do not pass in years and months but instead days, hours, minutes, and seconds. If you think about it setting a timedelta using years and months does not make much sense as they are not consistent units of time. We can create a timedelta object of 1 day, 2 hours 10 minutes as follows.

 [image: image]

What we then did with the timedelta is subtract it from the datetime and it returns the datetime with the period in the timedelta subtracted from it. When this is shown as a str we see we have retained the datetime format, so this makes it much easier to do date subtraction, the same is true if we wanted to add to the datetime.

 [image: image]

If we just want to work with dates we can import date from datetime:

 [image: image]

So we imported in much the same way we did before, but let's say we want the current date we can use the method today to show the current date.

Taking the above we can apply what we have seen here to some examples. First let us consider a date in time and how we can calculate how long ago it was. The date that we will use is the 20 July 1969 which is the date that Neil Armstrong stepped on the moon. We can work out how far back from the current date it is:

 [image: image]

What we have seen is we can subtract a datetime from a date and get back a resulting timedelta that takes into account the different types.

Next, we can look at how far in the future a date is so we look at the date 2030‐01‐01 relative to now (at the time of print).

 [image: image]

What we do here is set the date as today using the today method and then we can subtract our future date which we set as a date giving us a timedelta object. As we have seen before we can access the specific number of days between 2020‐03‐05 and 2030‐01‐01 as 3569 days.

In this chapter, we have introduced how we manipulate dates within Python but also shown how packages including how we import them but also how we can access methods and attributes within them.

7
Lists

In this chapter we will cover lists, not the kind you write down your food shop but a really important part of Python. Lists are the first of the storage types we consider from core Python, the others being Tuples, Dictionaries, and Sets. Fundamentally lists allow us to store things, let's say we want to have a variable containing the numbers 1–10, we can store them in a list as follows:

 [image: image]

What we have here is a list of integers, we could do the same with a list of strings.

 [image: image]

The beauty with lists is that we could have a mixture of things in it, so it could look like this:

 [image: image]

We could even put variables in a list, so if we take the previous example we could have replaced some of the entries with the variable equivalent

 [image: image]

We can even put lists in lists, like so

 [image: image]

Basically lists are really powerful, however given you have put something in it you then need to be able access it. Lists in Python are 0 indexed which means to access the first element of the list you need to do the following:

 [image: image]

Similarly to get the second and fifth elements you would do the following:

 [image: image]

If you've not worked with something that is zero indexed then it can be a tad annoying to start off with but once you get the hang of it then it will just become second nature. We will cover in more detail how to access lists later in the chapter.

The first method that we will consider is pop, this removes the last item of the list.

 [image: image]

We can also specify the index position that we wish to pop from the list as follows:

 [image: image]

Note that what you return from the pop is the value you are popping, you do not need to assign this back to the list you have changed your list permanently by doing this.

You may ask how useful that is but it leads nicely onto append which allows us to add an element to the end of the list.

 [image: image]

There is another way to remove items from a list and that is by using the attribute remove. So let's say we wanted to remove 9 from the list we could use the following:

 [image: image]

This could work on any element of the list, we would just need to specify the name of the item we wanted to remove. It is worth noting that remove does not remove all instances, only the initial instance of that value within the list.

In this case we will put the list back to its old ways by again using the append method.

 [image: image]

Next, we will show how to use count, here we pass in something we want to get the count of in the list, to show this we will define a slightly more interesting list:

 [image: image]

We will now show how to use reverse which not surprisingly reverses the elements in a list:

 [image: image]

The last method we will show you is an interesting one, the sort method. Now on a list of integers the way it works is as you would expect the following:

 [image: image]

But what if you did this with strings or a mix of data types, well we can see by using the stuff list defined earlier:

 [image: image]

What happened here is Python doesn't know how to support sorting integers and strings, so we can only use the sort method on a list of numeric values.

That will do us in terms of looking at the attributes of a list, we will go back to how we select items from a list. As you will remember, we introduced the concept of indexing and selecting items in the list according to the index. We will take that a step further by showing how negative indexes work. Simply put it works from the end of the list and works backwards, so the last element of the list is [image: minus]1 and the first is the negative value of the length of the list. Now we can get the length of the list by using the function len as we will demonstrate:

 [image: image]

What have we done here? Initially we have shown the list to be what we defined earlier then we have applied len to it and obtained the result 7. What this says is that the number of elements in the list is 7. After that we used negative indexing to choose the last and second last item and showed how we could get the first element using negative indexing.

Now choosing a single item from a list is cool and all but what if we want to select subsets of the list. Well Python allows you to do this as well. Let us say we wanted to choose the second and third elements and have the results in a list. We could do so using the approach we showed so far as follows:

 [image: image]

That is fine but it is pretty ugly, it would be much nicer to do it in a single line, and what do you know you can do exactly that.

 [image: image]

What you are saying is take from the element in index 1 in the list (which is the second element as we are 0 indexed) and show up to but not including element in index 3 in the list. In a similar way you could select everything except the first element in a similar way:

 [image: image]

Note we have shown the list after taking what we wanted and it shows the full list. This is because splicing the list (which is what we are doing) doesn't change the list it just returns the splice of our list. So if we want to use the splice we need to assign it to a variable as follows:

 [image: image]

Splicing works using negative indexing as well. If we run the above code using [image: minus]1 instead of 1 we get the following:

 [image: image]

What we are doing here is staying we want everything from the [image: minus]1 index to the end of the list. Splicing works if we have the index after the colon. So again rewriting the previous example with [image: minus]1 after the colon gives us

 [image: image]

So its basically the opposite of what we did before as we take the everything from the start of the list up to the [image: minus]1 index position.

Let's say we now want to select every second element of the list then we would have to run the following:

 [image: image]

So here we are selecting everything between index 1 and 7 incrementing the index by 2 starting at the first position. Its pretty powerful stuff and gives us a lot of control over lists.

The next thing we consider is how to join lists together. Luckily we have covered concatenation earlier with strings and its very much the same for lists, lets demonstrate:

 [image: image]

By using the addition symbol we can concatenate two or more lists together in the same way we would a string.

If we want to check if an element is in a list we can easily do so by using the Python expression in argument.

 [image: image]

If the value is in we get back a boolean value True or False.

Similarly, we can use not in to see if a value is not in a list so repeating the previous example we would get the following result:

 [image: image]

Let's now consider the copy method. To demonstrate this we will create a list and then assign it to a new list.

 [image: image]

As we can see when we create the second list new_stuff anything we do to stuff is reflected in new_stuff. If we do not want to do this and want to take a copy of the list where they are independent then we use the copy method. Taking the last example we can repeat using the copy method.

 [image: image]

The next method we will consider in this chapter is the clear method, simply put this method clears the list of all its content.

 [image: image]

The last method we will consider is not strictly a list method, its not even a list type, but it used to be. Here we will look at a range object. Now in Python 2 you could create a range using the following syntax

 [image: image]

Here range created a list of length 7 starting at 0. We can modify this by giving it a start and end point as follows

 [image: image]

So the list starts at 1 and ends at 6, which mimics what we have seen when using the colon syntax to access a list earlier. We can take this a step further by adding the third argument

 [image: image]

This gives us a list of every other item starting at 1 ending at 6. We can think of the range method having three arguments start, stop and step where stop is the only necessary argument needed. This method is very useful for creating on the fly lists, however in Python 3 this changed and range no longer created a list object but instead created a range object. Let's demonstrate this by using the previous example in Python 3.

 [image: image]

We can pass in a start and stop values as before.

 [image: image]

We can also add the step value.

 [image: image]

We can access the elements of a range object in the same way we can a list by just passing the index value

 [image: image]

We can also splice up our range in the same manner as a list and access elements within it.

 [image: image]

Unlike with a list we don't have the variety of methods associated with them but we can obtain the start, stop and step of the range object alongside the count and index.

 [image: image]

Range objects can be very useful for creating on the fly objects containing integers objects and we will use these in some of the examples later on in this book. That covers lists and gives us a good reference on how to create, access and operate on them, we will use lists throughout the rest of the book.

8
Tuples

The good thing about covering lists is that it then makes tuples much easier to cover. Tuples are essentially lists. You access them in exactly the same way and many things we covered in lists are relevant to tuples, the big difference is tuples can't be modified. Why would you want something that cannot be modified? Well its actually more useful than you would think, it prevents you from accidentally changing something that you may rely on in your code.

Let's take the numbers list we defined at the start of the list section:

 [image: image]

We can rewrite this as a tuple as follows:

 [image: image]

Looks very similar doesn't it! Now let's try and access the first element of the tuple, again we do it in the same way as we would do in a list

 [image: image]

And to get the last number we would do

 [image: image]

We can splice the tuple just like we would a list, so if we wanted everything except the last two values then we do it in exactly the same way we would do in a list

 [image: image]

So what is the point in tuples? Well let's try and change the second element of the tuple as we would if it were a list:

 [image: image]

We cannot assign a new value to a defined tuple, well what can we do to a tuple? Here, we consider two methods for the numbers tuple, namely count and index.

Count simply tells us how many of a value are present in the tuple. To demonstrate it, we will define a new tuple as follows:

 [image: image]

So we see that new_numbers contains three instances of the integer value 2.

 [image: image]

For the index value we ask it what index the integer value 2 has in the tuple and here you can see it returns 1 which is correct, however we also have 2 at index values 2 and 3 so care needs to be taken with this method.

In this chapter we have introduced the brief but important concept of a tuple. Having an object which you cannot modify is very useful and is used throughout various Python packages.

9
Dictionaries

When we say dictionary in Python, we aren't speaking of the Oxford variety. Dictionaries are used to contain data in a very specific way as they hold key value pairs. What do we mean by key value pairs? For example, we could have a key as first name and a value as Rob. We could also have a key as wins and the value as 21. The key to dictionaries (pun intended) is that to access values we need to have a key associated with it. Let us start with an example about personal details, we may have the following fields: first name, surname, gender, favourite food. This could be written in the form of a dictionary as follows:

 [image: image]

Its important to note that the name of the dictionary is arbitrary, I used dict as I am not very creative, I could easily have written it as follows:

 [image: image]

You could argue that the second one is funnier and I would agree, however the name of your dictionary or variable should reflect what you are trying to do as someone will no doubt have to read your code. The problem with us using dict is that dict is a builtin function with Python that means it actually does something. Now, there is nothing to prevent you from using this, however if you override the builtin function dict with your dictionary dict, then you cannot use that within the current environment.

 [image: image]

For you eagle eyed viewers you can see that I renamed favourite food to favourite_food. The reason being is that Python interprets the space between the two words as two separate entries and throws an error. So in the remainder of this section we will refer to favourite food as favourite_food.

So recreating the person_details dictionary again we get the following:

 [image: image]

What we did here in the first line was create the dictionary using:

 [image: image]

In the subsequent lines we then assign key value pairs to the dictionary. We could have done this in another way though.

 [image: image]

Similarly we could have used the dict method with the above dictionary setup to achieve the same outcome.

 [image: image]

Earlier we talked about error handling and we will briefly cover it now. Let's say we try to access a key in dictionary that doesn't exist.

 [image: image]

Let's say we wanted to allow us to try and access a key that doesn't exist and instead of throwing us an error we want to deal with it in a more sophisticated way. To do this we can handle the exception (or error) that Python shows back. Now looking back at the error we can see very specifically that Python throws us a KeyError. Now if we can handle that then we can do something a bit better with it.

 [image: image]

What we have done here is we used a try except statement. What this does is try the code we want to run and if doesn't work, then it deals with the error. In this case, it tries to access the key age and assigns it to the variable age and if an error is thrown and it is a KeyError, then it assigns the value to None, which is the Python null value. So, what we see now is that as opposed to throwing an error, it deals with the fact that the key can't be found in a much better way. Whilst try excepts method can be really useful, they can be very dangerous as you don't need to specify the error so we could rewrite it as follows:

 [image: image]

Try excepts are useful however it would be better if we had a method that let us try and get a key and if it didn't exist not throw an error. Fortunately enough we have a get method that we can use to get the value from a dictionary by passing a key.

 [image: image]

When we covered lists we looked at the pop method and we have something similar for dictionaries

 [image: image]

In the first example we used pop with the key that we wanted to remove and in doing so this removed the specific key and value from the dictionary. The second approach used the popitem method which just pops off the last key value pair in the dictionary.

Another way to remove items is to use the del method where we pass the dictionary name and key combination to remove that key value pair from the dictionary.

 [image: image]

Earlier we mentioned how if we assign one list to another the changes are reflected. The same is true for dictionaries

 [image: image]

If we want to take a copy of a dictionary and independently make changes to it we can use the copy method in a similar way that we did with lists.

 [image: image]

We also have the ability to clear out all contents of dictionary using the clear method

 [image: image]

Earlier in the chapter we looked at approaches to create dictionaries however if we want to create a set of keys with the same value we can do using the fromkeys method.

 [image: image]

We have thus far accessed values from dictionaries using the keys, however we can access all keys and values from a dictionary using the following methods

 [image: image]

The objects that we return can be iterated over and this is covered later when we introduce loops however if you want to access them like we would a list we can cast them as such and access the relevant index positions.

 [image: image]

That gives summary of dictionary methods and what you can do with them, compared to lists and tuples these types of objects can be very powerful and flexible container. We will return to these throughout the book as they form a key concept in Python.

10
Sets

In this chapter, we cover the last object for data collection and that is set. Perhaps the best use for sets is that they cannot contain duplicate values so can be useful for storing unique values. They are also unordered and cannot be changed. Let's start by creating a set.

 [image: image]

Here, we use the curly brackets as we did with a dictionary, however now we have no key value pairs and the content resembles that of a list of tuple. We are not constrained by having strings in it, let's add some integers to our set.

 [image: image]

Here, we can see that the ordering of the set doesn't resemble what we put into it.

We can also create a set using the set builtin function as covered earlier.

 [image: image]

We can create a set from a string but we need to be aware of how the curly brackets and set builtin work

 [image: image]

What happens is that when you pass in a string using the curly brackets you retain the full string in but when passed in using set the string is split into the individual characters. Again note when the characters are split there is no ordering to them.

Next, we try and add a list to the set but we raise a type error as the list cannot be added.

 [image: image]

The same is true for dictionaries and sets as we show below:

 [image: image]

However, if we include a tuple in the set we get the following:

 [image: image]

The reason we can include the tuple over the dictionary, list and set is that the tuple cannot be changed so is supported in a set.

We can see if the value is in the set by using the following syntax:

 [image: image]

An item could be added to the set by using the add method:

 [image: image]

Note here when we add in Tony again to the set we don't get duplicate values of Tony in the set, but Steve gets added in as it was not present. That aspect of not having duplicate values within the set is useful if we want to have a unique representation of values where we could have duplicates. For example, you could imagine a long list with lots of repeated values and you just want the unique values within it as we show below:

 [image: image]

Now, the example is fairly trivial as we can see all content within the list but you can imagine examples within a big dataset where you may want a similar representation.

This is useful for a single set but we also have the ability to operate on multiple sets. The next example looks to obtain the unique value between two sets.

 [image: image]

Here, we use the | operator and get the values that are in the names set OR the more_names set so any shared values are included only once. The same can be achieved using the set method union.

 [image: image]

Now, while the results are the same we didn't need to pass a set in the union method, we could rewrite passing a list into the union and get the same results.

 [image: image]

So, we can achieve the same result as the list is converted into a set. If we used the | operator with the list, then we see an error.

 [image: image]

We can extend the union example by passing more items into the union method, for example, if we have two sets that we want to take the union with our existing set we would do as follows:

 [image: image]

Now, if the values were lists and not sets, then we can still use the union method as shown below:

 [image: image]

These examples so far have looked the union between two or more sets, what if we want to look at values that are in all sets, or not in any sets, luckily Python has us covered.

Now where we used union and the | operator if we want to find out what values are in all sets we use the intersection method or the & operator.

 [image: image]

As we saw with the union method and | operator, we can include more than two sets.

 [image: image]

And similarly as shown with the union method we can add non‐sets into the intersection method.

 [image: image]

If we want to look at the differences between two or more sets, then we can use the difference method or the [image: minus] operator. Again the rules that we have seen before are consistent here in that we can only do comparison using the [image: minus] operator on sets whereas for the difference method we can handle non‐sets passed in.

 [image: image]

The manner in which difference is applied for more than one comparison is to work left to right so we first look at the difference between names and more_names and then look at the difference between this result and even_more_names.

Another set comparison that we can perform is using the symmetric_difference method or the ^ operator. What this does is return back the elements that are in either set but not in both, so its like the or method but doesn't include any common values. We demonstrate as follows:

 [image: image]

Unlike with previous methods symmetric_difference doesn't allow more than one set, however it still allows us to pass in a non‐set as shown below:

 [image: image]

We can also see if a set has any elements in common by using the isdisjoint method.

 [image: image]

For any readers interested in set theory, there are a couple of other set methods:

	issubset

	issuperset

but we will leave it up to the reader to discover the wonders of them.

Now aside from these methods which have allowed us to compare sets there are a number of other methods that can be applied to sets, some of which we have covered in the previous chapters so we will briefly demonstrate them.

 [image: image]

As before pop removes an item from the set.

We can also remove an item from the set explicitly using the remove method:

 [image: image]

Now the problem with the above is that if we try and remove something from the set that isn't in there, then we get a key error. Another way to remove something from the set that allows for a value not to be in the set is the discard method which is demonstrated below:

 [image: image]

We can also clear the set by using the clear method which gives us an empty set.

 [image: image]

Given we can remove items from a set similar to how we can add to it, the first method we cover that does this is the add method:

 [image: image]

Now the add method adds values one at a time but we can utilise some methods which are similar in nature to those that looked at comparison on the sets and allow us to modify a set, the first of these we will show is the update method:

 [image: image]

You can see the return value using the | operator applied to two sets is the same as the update value. The big difference here is that when you use the | operator you don't change either of the sets, however using the update method changes the set that you have used the method for so in this case the names set is now the result of names | more_names.

 [image: image]

Like with the update method the intersection_update applies the & operation but assigns the result back to the set that its applied to. The same is true for the symmetric_difference:update which gives the same result as ∧ and difference:update which gives the difference between two sets.

The last concept that we look at in this chapter is the concept of the frozen set. The frozen set is what the tuple is to a list in that it cannot be altered:

 [image: image]

We use frozenset around a set, list, tuple, or string to give us our set but looking at the methods available you can see that the ones which change the set are not available to a frozen set, however the methods that allow us to compare sets are still available. This concludes this chapter and gives us an introduction into sets and how they can be used within Python.

11
Loops, if, Else, and While

This chapter is now going to cover the following important aspects of programming namely loops, if, else, and while statements. These statements are the key components of programming and allow us to operate on our objects. We have covered aspects of logic earlier when we considered comparison and equality and that is key when we look at if statements which is the first aspect we will consider here. The key to an if statement is that we need a statement that returns a true or false value. So let's consider the following statement:

 [image: image]

Now, the first line is an assignment and the second is comparison and its with the second line that we can introduce an if statement:

 [image: image]

What we have done here is test the return value of the statement and if its true then we increment the variable x by 1. That is the essence of an if statement, we test to see if the return of a logic statement is true and if it is we do something within that statement. We can extend the example by introducing the concept of an else statement. Essentially given the if statement tests if a statement is true the else deals with if the statement is false.

 [image: image]

Now what we have done is assign x the variable 2 and then test if x is equal to 1 which returns False. We then set an if else statement where if the value is equal to 1 we add one to x and if not we subtract one from the value x. As we can see the value isn't equal to one so we enter the else aspect of the loop and decrement the value of x by 1.

Logic like this is really useful to allow us to make decisions in our code based on what a variable may or may not be. However, the if else loop only allows us to make a decision based on a single true or false condition. If we require more control, then we can use the elif statement alongside an if else statement. Let's improve on our example from before and introduce the concept of elif.

 [image: image]

Here, we have set the variable x equal to 2 and then show the logic statements that we plan to use. In the first if statement we test if x is equal to 1, it isn't so we then enter the elif statement and see if x is equal to 2, it is so we then run the command in the statement and x is shown to be 2. We can expand the statement further with more elif statements so we can check for a variety of things. It is important to note that if one of the conditions on the if or elif is met we then exit the statement and continue through our code. So as soon as a condition is seen we exit the statement. Therefore, when thinking about using if statements you need to understand the context you are using them in.

If we have a fixed set of outcomes that we want to work with then an if elif statement like we showed before would work well. We next show an example where using an if elif statement doesn't quite work:

 [image: image]

On the face of this you may think that this is a really good bit of code, however it isn't. The problem is we want to test if the win for either side is a win or a win by more than 1 goal. What happens here is the condition for a home win is met before we test for the win by more than one (which would also return a true result). So using an if statement as we do here doesn't work, instead we need to use a nested if statement.

 [image: image]

We can see that we get the desired result. The point that this raises is that if statements can be very powerful but at the same time mistakes can be made if they are not thoroughly thought out. We next look to consider loops.

In earlier sections we have covered list (Chapter 7), tuples (Chapter 8), and dictionaries (Chapter 9) which are all important containers for values in Python. We showed how we can access and manipulate them. However, we concentrated on single instances of these objects whereas in reality this isn't the case. What you might expect is to have a collection of data which each may be contained in a list, tuple, or dictionary and you want to access it and perform some kind of operation on it. Let's create some data that allows us to do so.

 [image: image]

What we have done here is setup a list of lists. Now if we want to access element 3 of the first list we can do so as follows:

 [image: image]

So we access the first element of the outer list which returns us a list and then we access the value 3 of that list through the index 2. Now if we wanted to see everyones age we could write the following:

 [image: image]

This is fairly tedious for five people, imagine if we had hundreds or thousands of people. To avoid writing the same code again and again we can use a loop to access the ages of everyone in the list. Now to make it more interesting let's work out the average age of the people in the list.

 [image: image]

What we have done here is introduce the concept of a loop, alongside a few other things. Now, we initially setup a variable to contain the total age and set this to zero. The theory here is that we will increment the value by everyones age within the loop. Next, we enter the for loop. The syntax says for p in person, and what this means is that we iterate over all the elements in people and assign whatever it is to the variable p. The name p is totally arbitrary, we could rewrite the loop as follows:

 [image: image]

The name isn't technically import, although this is pretty bad naming convention. The point is that when you write your loops you don't always have to use p. The loop then one by one access all the elements of the list people, where each element is a list and the indented code within the loop does something to the that element. What we do within the loop is assign the third value of the list to the variable age and then add that value to the total age variable which we initially set to be zero. This bit of code is shorthand for the following:

 [image: image]

So we can see its a big reduction in amount of code written, which is a good thing. After that we divide the total age by the number of elements in the list which we get by using len. This then gives us the average for the list of lists, pretty cool.

That is the basics of for loops applied to lists, the key thing to remember is that you are iterating through the list, essentially going over every element of the list. Now as we discussed before the elements of the lists don't always have to be of the same type so care is needed when using loops as the logic applied to one element may not hold for all elements of the loop. Everything we have shown here for lists also apply to tuples so you could write the same type of loop on a tuple, however you can't set it up in the way we did earlier as that won't work.

One neat thing we can do with lists and loops is something known as list comprehension. Now if the problem we had is that we wanted to create a list with the squared ages of our people then we could write a loop as follows:

 [image: image]

That all looks fine, but we could write it in one line as follows:

 [image: image]

Looks cool doesn't it! Which one is better, well they both do the same, some may say using list comprehension is more Pythonic but you could argue its harder to read than the standard for loop example. It is really down to personal preference and what you like doing more.

Next, we will look at how to loop over dictionaries which behave differently to lists and tuples. Now if we have a list of dictionaries we can loop across the list and access the dictionary similarly to how we accessed the list within a list in the previous example. However, if we just have a dictionary we can loop over it in the following way:

 [image: image]

The way the loop behaves in this case is very different to what we have seen before with lists. The p in person is key of the dictionary not the key and value of the dictionary, so in putting the p in a list we get the keys of the dictionary. If we want the values from the person dictionary we need to do it in the following way:

 [image: image]

The only difference here is that we access the value from the dictionary that uses the key obtained from the loop.

Next, we consider how loops work on strings, which is again different to what we have seen before. We can loop over a string in the same way that we would a list.

 [image: image]

So, when we loop over a list we access each individual element of the string, so appending it to the list we see an entry for each letter in the name.

The last concept we will consider in this section is while loops, these are loops that continue whilst some logic is true. We will demonstrate as follows:

 [image: image]

What have we done here? Well initially we set a variable called score and set it equal to zero. Then we have said while score is less than four complete the code within the while loop. As for other logic considered here we need to use the colon after we have set the condition. What we see is that the output from this is that we show the values of score while score is less than four. Once it is completed we then leave the loop. Its much like a for loop, however while a for loop will work for loop will iterate over something a while loop doesn't and just continues until a condition is met which allows it to leave the loop. With a loop like this you need to be careful that the condition is met else it can stay in the loop forever!

Let's put all this together into a single example where we want to simulate a lottery draw. For those not familiar with lotteries we have a fixed number of balls that we randomly select to give a set of numbers. You win the lottery if you have the numbers selected. Now the example we will show will involve us generating six balls and a bonus ball. To generate the random balls we will use the following code:

 [image: image]

In this example we will use the min and max numbers to be 1 and 59, now using randint we can generate a random number between 1 and 59 inclusive.

 [image: image]

The key here is that we can generate a random integer but its not always unique, meaning we could get the same number out again so we need to have a way to ensure we don't get the same number out again. Now, there is not always one way to do something in Python so we will go through two different approaches to doing this, the first one is as follows:

 [image: image]

Here, we have created a list to store the values that we want to append the results to. We then loop over a range object:

 [image: image]

This essentially creates a range object that we could loop over and we have 7 as the value due to the fact we want to generate 7 numbers. We then generate a ball randomly and using a while loop if the ball isn't in the list we append it to the result list and this then gives us our 7 random numbers to simulate a lottery draw including the bonus ball.

We could however do this slightly differently and not need the range object as follows:

 [image: image]

So here we use the while loop to continue until the result_list has all the number of balls in so we can reduce the number of lines of code to achieve the same thing.

As you can see we have introduced the concepts of for, if, else, and while and shown how we can apply these to solve a problems and link them back to the concepts that we have covered so far.

12
Strings

Python is good at many things, I may be biased but I believe it's true, however one thing that its particularly good at is dealing with strings and string manipulation. This chapter will expand what we already know about strings showing how powerful Python is at dealing with them. So let's begin with looking at what a string is:

 [image: image]

In the above example it doesn't matter which way you create the string and it is all the same but there are a few examples where you need to create a string differently. This primarily revolves around the use of single and double quotes. Now, if you put a single quote in a string separated by single quotes you get the following:

 [image: image]

To include a single quote in a string separated by single quotes you need to use an escape sequence. An escape sequence is basically the character with a backslash before it, so if we write the previous string with an escape sequence it looks like the following:

 [image: image]

You might say why use single quotes around a string with single quotes and you would be right, we could write the previous example as follows with double quotes:

 [image: image]

We can get away with not using escape sequences if we use triple quotes. So we can rewrite the previous using triple quotes as follows:

 [image: image]

The same would hold for a double quote, however if we have the double quote at the end of the string we encounter a problem.

 [image: image]

To get around this problem you would need to use an escape sequence on the double quote as shown below:

 [image: image]

Another benefit to triple quoted strings is that you can write strings over multiple lines.

 [image: image]

The string contains the line return denoted by backlash n and three tabs denoted by backslash t. If we were to try this with single quotation then we end up with the following:

 [image: image]

We have touched briefly on escape sequences and although we have not covered all of them (you can search them out yourselves) an interesting issue comes up and that is what do we do if we use an escape sequence in our string. So, for example, typing backslash n gives us a carriage return in our string. But what if we want forward slash n in our string, we can use what is called a raw string:

 [image: image]

This is the same as writing

 [image: image]

In both examples when we show the content of the string it has an extra forward slash but when it is printed this disappears. And yes if you wanted an extra slash in there just use three slashes.

 [image: image]

So given you have a string what can you do with it? You can access it in much the same way as you did when we covered lists earlier on. So if we want the 3rd element of a string we do so as follows:

 [image: image]

Remember from before the value in position 3 is indexed at 2 as strings like lists are 0 indexed. We can similarly take the values in positions 5–8.

 [image: image]

We can also work backwards and get the last three elements.

 [image: image]

Or we can get everything but the last three elements.

 [image: image]

We can apply much of the logic shown earlier to strings. So if we want to know if a string contains a character or combination of characters we can do so by seeing if the characters are in the string.

 [image: image]

We can create custom strings using variables that we may have in our code. This is generally referred to as string formatting, so if we want to put a variable into our string we need only define the position in the string using curly brackets and then using the format method with the arguments passed in they get assigned to the appropriate positions.

 [image: image]

In this example it doesn't seem to have any benefit as we could have easily define the whole string as we did before. However, consider the case where the names are changing. We could be looping over a list of names or a file or names and at each iteration of the loop we want to show what the name is.

We can also give the positions in the curly brackets to where we want the variables assigned, so we could write the following:

 [image: image]

That is wrong but you get the point. We can also define each value as a variable and pass that variable name in the curly brackets.

 [image: image]

The first string method we will consider is how to convert a string to all uppercase letters and then all lowercase letters.

 [image: image]

We see using the lower and upper methods we create versions of the initial string in uppercase and lowercase, however we don't change the string itself. Why is this useful? You may want to check if certain characters in a string and may want to do it in a specific case so by changing the string to the correct case you can.

Next, we consider the split method which unsurprisingly can be used to split up strings.

 [image: image]

Again while this example may seem trivial but it can be very useful as you can split on any character within a string so, for example, a comma separated string which you may find in a csv file can be split into the variables it contains:

 [image: image]

So from that one line we can get out all the information it contains.

Another useful method to apply to a string is replace, again it does what it says on the tin.

 [image: image]

Here, we replace all the commas with colons, again it can come in very handy if say, for example, you want to change the separator in the string like we just did.

There is another string method that looks on the face of it like a list method, namely join.

 [image: image]

Here, we apply the join method on the string containing just the comma and it then creates a string of the values in the list separated by the string that we applied the method on. This is a very useful method when it comes to creating strings from lists separated by a common value.

The last thing we shall consider is a Python builtin function that can be applied to strings and that is len. We earlier saw it applied to lists to get the length of them and it does the same with regards to strings, however now it tells us how many characters the string contains:

 [image: image]

In this chapter, we have taken a deep dive into strings and what we can do with them and shown the level of flexibility and power Python gives us when we have a variable of type string or if we want to create our own.

13
Regular Expressions

An extension to dealing with strings is the concept of regular expressions. The broad concept is that we can do advanced searches beyond the simple ones.

 [image: image]

To do this, we will use the package re from the standard Python library and as opposed to going through all the specifics let's just jump in with some examples.

The first example looks at finding all the characters a to m within the string Rob Mastrodomenico. Now to do this we pass a string containing a‐m within list parenthesis and pass this into the findall method with the string of interest which has been called name. The result from this is a list containing all the characters in a‐m which appear in the string.

 [image: image]

Next, we see how we can find the integer values 0–9 within a sequence. We can do this in two ways; the first is by mimicking what we used in the previous example with the list convention but also by using d which gives us all values that are between 0 and 9. Both return a list of values that occur within the string. Now in the first example we can see that we get back each value but what if the value was repeated? In the next example, we see that repeated values are returned in the list as we had two instances of three within the string.

 [image: image]

This approach to finding if a value or values are present in the string and giving us all the values is useful but we can do more and look for specific patterns. In this next example, we use the standard text hello world and look for a specific pattern. We can pass the string “he..o” into the findall method and what this does is search for a sequence which starts with ho and has any two characters and is followed by an o, which fits nicely with the word hello. So in passing this in we get back the list containing the string hello. We can expand on this by changing the string to “hello helpo hesoo” in doing so we see that all these words are passed back from the findall. In using a different example like this, we can see how this could be applied across a bigger piece of text to see all the words that match this sequence.

 [image: image]

Next, we look at how to search specifically on the start of the string. To do so you use the ŝymbol prefixed to the string of interest, in this case we look for a string that starts with the string start. What the result of this gives is a list containing the word that is found so in the first example we get back the list containing the string start and in the second example we get an empty list.

 [image: image]

We can achieve the same thing for looking at the last word in the string by using ending the searched string with the $ sign. In this example, we show what we get when searching for the last part of a given string and in a similar way to previous example we return a list containing that string if it does exist and an empty list if it doesn't.

 [image: image]

The last two examples look at finding something specific at the start or end of a given string, in the next example we look at all instances of a given string with another string. What we are looking to do here is find the occurrences of ai followed by 0 or more x values. So the first example shows that there are four instances of the string ai within the string when we search for aix. As in the previous examples if we don't have any instances then we get returned an empty string.

 [image: image]

Expanding on the previous example you can find the number of instances of the string ai followed by one or more x by adding the + symbol. Applying that to the same string as before gives us the result of an empty string as we don't have aix within it.

 [image: image]

If we are after a specified number of characters that we want to see we can use curly brackets containing the number of instances we are interested in. So in the next example we want to find moo within the string so we can do it as mo2 or moo, with each returning a string containing the character we have searched for.

 [image: image]

If we want to find one or another value we can do so by using the | symbol between the two strings that we are interested in searching for. In the example that we show we are looking for the strings avengers or heroes in our string. As we have the string Avengers with a capitalised A we only have an exact match on heroes. The second example uses Avengers with a capital A and therefore as that is exactly matched within the string we get back a list containing both strings. The last example shows what happens if we have multiple instances of one of the words that we are searching for giving us the number of instances in the order that we see them.

 [image: image]

We can also use special sequences like the one below which returns the whitespace in a given string:

 [image: image]

There are other special sequences that we can use, they are listed as follows:

	\A: This matches if the characters defined are at the beginning of the string "\AIt"

	\b: This matches if the characters defined are at the beginning or at the end of a word "\bain" r"ain\b"

	\B Returns a match where the specified characters are present, but NOT at the beginning (or at the end) of a word (the "r" in the beginning is making sure that the string is being treated as a "raw string") r"\Bain" r"ain\B"

	\d Returns a match where the string contains digits (numbers from 0‐9) "\d"

	\D Returns a match where the string DOES NOT contain digits "\D"

	\s Returns a match where the string contains a white space character "\s"

	\S Returns a match where the string DOES NOT contain a white space character "\S"

	\w Returns a match where the string contains any word characters (characters from a to Z, digits from 0‐9, and the underscore _ character) "\w"

	\W Returns a match where the string DOES NOT contain any word characters "\W"

	\Z Returns a match if the specified characters are at the end of the string

Next, we use the split method.

 [image: image]

Expanding on this we can specify the number of times we want the split to be done by using the maxsplit argument. The below examples set the value to 1, 2, and 3. In each example, we see that the number of splits increases, so setting the value to 1 provides us with a list containing the results of a single split. As this increases we get more and more splits included.

 [image: image]

The next method we demonstrate is the submethod which behaves in a similar way to replace on a string. In the below example we replace the white space with the value 9:

 [image: image]

As with the previous example of split we have an extra argument that can be used here namely count, and again we apply it with values 1, 2, and 3. The result of this is the number of values that are replaced in the string with 1 giving only the first space being replaced by 9, 2 giving the first 2 spaces being replaced and so on.

 [image: image]

The last example that we look at is using the span method from a search result. Here, if we search for a set of characters in

 [image: image]

That is the last of the examples relating to regular expressions and that gives a good introduction into using the re packages and how powerful this can be when we want to do complex searching of strings.

14
Dealing with Files

Thus far we have gone through what you can do with Python and the examples given have revolved around simple examples. In reality we want to work on data of some kind and as such we need to get it into Python. Now, we can obtain our data from a variety of sources such as databases, web API's but a common way to obtain data is through a good old fashioned file. So in this section, we will use a lot of what we have learnt so far to deal with reading data from and writing to files.

Python can read files pretty easily from the standard library. Its just a case of specifying where the file is and then creating a stream to that location. Let's demonstrate by having a file located in /Path/to/file/test.csv. This is the full path to the comma separated file test.csv.

 [image: image]

What we have done here is define a string file_name containing the name of the file and then used the open command with the arguments of file_name and ‘r’ which is the mode to read the file in and in this case it refers to read. We have assigned the return of this to the variable f which is a stream to the file. Now to read in the data from the file we simply run:

 [image: image]

What we get back is the data in a single index list, which isn't that useful. In text files what you find is that lines are separated by a line return which means that we could apply the split method which will split what it reads into new elements of the list every time it sees a line return. Its easier to demonstrate this by an example on a string:

 [image: image]

So we can get our data into a readable format. The same theory works with reading data from a file where the lines are separated in the same way.

 [image: image]

With a comma separated file we have each item on a given line separated by a comma. So to get each item we need to split again based on a comma. To do that we need to do the following:

 [image: image]

Initially we split the string on the character \n to create a list containing three items. We then loop over the list and for each item in the list we split on the character comma to create a list containing first and last name. We can do this in a single line as opposed to looping the names list as follows:

 [image: image]

So in a single line we can achieve what we did in the loop, here you can see we have basically moved the loop into a one liner. From both lines we can see that we get an empty list at the end of both implementations. What is happening here is that at the last line return when we split on the line return we get an empty string after it. So with any file where we separate on \n we need to make sure to account for the empty string, the way we can do this is refer back to the pop method we introduced earlier:

 [image: image]

Now, we are able to read files. The next thing to cover is how to write to files. It works in much the same way as for reading from files in that we first need to define the file name and open a stream to write to file.

 [image: image]

This opens a stream under where your terminal window is open in write mode. To physically write something to a file you need to define something you want to be in the file.

 [image: image]

What we have done is create a string that we want to be in our file and then using the streams method write we have written the string to file. One thing we missed from the first example when we read from file is that we forgot to close the file stream. Here, we see in the last line that we do this using the close method. Now, Python will generally tidy things like this when you quit Python or when your written program ends, however its good practice to include this in your code.

Next, we will consider how to append to a file. Now this is very similar to writing to a file however when we open a file in write mode we would override any existing file with the same name. With append we would keep the existing file and then add whatever we wanted to the end of it. The way we do this is very similar to what we have seen before, we just use the append option when opening the file, so to append to our output.csv we need to write the following:

 [image: image]

Let's expand on this example by applying reading and writing to a bigger example. What we are going to do is import a dataset from sklean which is a package:

 [image: image]

Now here we load up a dictionary object containing a dataset and relevant details that we want to work on. Here, we want to take the data and feature_name keys from this dictionary and write to a csv file.

 [image: image]

To make things a little more difficult we will take every other column and not include the last two values.

 [image: image]

This will give us the values that we want to put into out file. So the next thing we will do is open up the file and write the headers to the file.

 [image: image]

Here, we can see the output of 23 referring to the 23 characters that we wrote to the file. What we want to do next is write the relevant data referring to the headers to the file.

 [image: image]

What we have done here is assign the data to boston_data and then loop over it. Each element of data can then be zipped with the feature_names to create a dictionary. The reason for doing this is to allow us to select the relevant values to write to file. To do this we loop over the headers and access the dictionary value using the key of the header. These values are then appended to a list and the join method is applied in much the same way we did for the headers to write each line to the file.

 [image: image]

Lastly, we need to close the file, technically if we don't do this then Python will do it for us, however its good practice to do so.

We can then read the file in and loop over the contents using the following code:

 [image: image]

So, here we have created the file to output and have written the headers to it, note the 23 denotes the number of characters written to the file. Next, we will loop across the data and write it line by line to the file making sure to select the columns that we want

 [image: image]

That is really about it when it comes to reading, writing, and appending to files. Its important to note that what we have shown only works for single sheet data files.

14.1 Excel

A more common type of file that you might want to open in Python is a spreadsheet like file containing sheets of data. This could be in the form of an xls or xlsx file. Luckily Python has a library for us called openpyxl which allows us to write the data to an excel file and read it back in as we will demonstrate.

 [image: image]

Next, we want to read this data into a sheet of an excel sheet.

 [image: image]

What we do here is import the relevant package and then create a Workbook. For this Workbook we then create a sheet to write to and call it boston_data and insert it into position 0 which is the first position of the spreadsheet.

 [image: image]

Next, we write the headers to our sheet, note we want to insert the values into the first row so we set a counter i to 1 to start at the first column and then increment it to insert subsequent values into the relevant columns. Here, we use the cell method where we pass in row, column, and value, and here the row is fixed at 1.

 [image: image]

Next, we look to write the first five rows of the data to the file so to do so we use the same cell method, however now we need to increment rows and columns to deal with the fact we have multiple rows. So to do so counters are setup outside the loop for the row and inside the loop for the column. This is because we need to reset the columns for every row as we want to go back to column 1, hence the k value needs to change to 1 every time we finish writing a row.

 [image: image]

Lastly, to save the data we just use the save method on the workbook and pass in the name of the file we want to save.

To read the data back in is a relatively simple process.

 [image: image]

We can see what worksheets we have through the worksheet method.

 [image: image]

We can then access the specific sheet using dictionary notation treating the sheet name as the key. To get the values we use row and column indexes:

 [image: image]

Note that our columns are zero indexed despite us writing to column 1 in the code to write to file but we can get the specific value by getting the value attribute.

14.2 JSON

JSON stands for JavaScript Object Notation and it has become very popular as a data type and is widely used. It's described as a lightweight data‐interchange format. But what actually does that mean, well it's really a text format to store data that is easy, visually, for us to read and write, and also easy for the computers to parse and generate.

For a Python user, JSON will appear to be a mixture of lists and dictionaries in that you can have collections of key value pairs like in a dictionary but also have data stored in a manner like a list. Let's take the example that we have used previously and create a json representation of the data.

 [image: image]

So, what we have done above is what has been done previously, however here we differ by selecting only the first five elements of the data which will allow us to show the data in json representation.

 [image: image]

The next set of code gets the data into a format to export to json. As mentioned before we can achieve this via a combination of dictionaries and lists. So, initially we create a list to put every row of our data into. A row can be represented as a dictionary which in this case is simply a key value pair for two of the feature names which have been assigned to the headers. What we end up with is a list of dictionaries which we will look to export as json.

 [image: image]

To create the json output we can use the json package and the dump method passing in the list and an open file as the arguments.

 [image: image]

The next part we need to cover is how to read the json file back into Python, luckily this is easily achieved using the json library.

 [image: image]

As we did with writing to file we just use the load method with the open file mode read which assigns the values in the file to the data object which is of type list.

14.3 XML

XML stands for Extensible Markup Language and much like JSON it is a way to store data that is easy visually for us to read and write but at the same time easy for computers to parse and generate. Unlike JSON it doesn't have a natural link to Python data types and so needs a bit more of an introduction into its types and how it works. Let's explain using the example below.

 [image: image]

Now let's deconstruct the above example:

 [image: image]

The first line is the xml declaration and it could have simply been written as follows:

 [image: image]

If we had some specific encoding to use in the xml file we could rewrite it as follows:

 [image: image]

Next, we have the following:

 [image: image]

The catalog to catalog are the root elements of the XML and are the start and end of the content. The name used is arbitrary and in this case, just reflects the data we have. You will notice the use of a / on the closing content, this is common between the opening and closing elements.

Next, we add in a further level down as follows:

 [image: image]

Here, we have defined a book using the opening book and closing book and unlike at the root level we have attached data to this level with the addition of the id=bk101. This is the high level book data, to add more specific data about the book we can do so as follows:

 [image: image]

Under the book level, we have added variables for author, title, genre, price, publish_date, and description. As before you can see that the definition of each variable has an opening and closing using the terminology introduced earlier.

Lastly, to add another book you would do so as follows:

 [image: image]

We can create another book under our initial book in much the same way as we did before. The way we distinguish each book is by using its own id.

What we have shown here is how we can build interesting data structures using XML. The next question to address is how can we create and parse XML objects. To do this we use lxml which is a Python library that allows the user to take advantage of the C libraries libxml2 and libxslt. These are very fast XML processing libraries that are easily accessible through Python.

As we have done earlier in the chapter, we will use the same example and show how you can create XML from it.

 [image: image]

The full code to write the data to xml is as follows:

 [image: image]

Breaking this down we first import lxml and then create the root of our xml document.

 [image: image]

Next, we have to loop over the data in a similar way that we have done before to put the data into our xml.

 [image: image]

The mechanism of looping the data is no different to what we have seen and we create the same row_dict and loop the headers to get the values, however the difference is in how we setup the xml and where we write to. For each iteration across the boston_data we create another row called row under the root using the SubElement method assigning root as the parent. Then for every value we obtain from looping the headers we create another SubElement this time with parent row and having the name of the header. We assign the value for this by setting the text attribute to be that value. This then gives us the format of data.

 [image: image]

The last part is to write the data to file so we can make use of the write method by passing the root of the document through ElementTree. Note that we set the pretty_print to be True, which gives the following file:

 [image: image]

Now, we will show how you can read an XML file in using lxml in Python using the example below.

 [image: image]

So, what we have done here is to import objectify from lxml, which will be used to read in the XML.

 [image: image]

Here, we are reading in the XML file and parsing it using the parse method of objectify. This gives us an XML object which we can then use to try and parse out the information. Next, we look to get the root of the document using:

 [image: image]

Having obtained the root we look to get the children of this which represents the next level down which are the rows.

 [image: image]

Now, to access the values we can loop through the children as that object is simply a list. In doing so we can obtain and print the values as follows:

 [image: image]

These refer to the values in the dataset which we created.

This chapter has covered some important concepts relating to files and how to read from and write to them using Python. We have covered a number of different file types and given practical examples of how these work. We will show later in the book other approaches to reading and writing to file but these somewhat low level approaches are very important when we want to have a high level of control when it comes to manipulating the data and are a great tool to have in your arsenal.

15
Functions and Classes

In this chapter, we are going to introduce the concepts of functions and classes and how these concepts can be introduced into the way you code in Python. Thus far in this book everything has been shown as blocks of code. These blocks of code may be just snippets to demonstrate a specific concept or longer sections to demonstrate how to perform a task. When you come to practically write your code you can write it in the manner that you have seen within this book and that is perfectly acceptable. However, if you want to group code together or reuse it then functions and classes are a great thing to use.

Let's start with functions, these are very useful for code that you want to reuse or if you have repeated code, then a function can help you. Functions also allow you to run code with arguments which gives you the ability to have the behaviour of the function dictated by the variables you pass to it. Let's demonstrate how to setup a function by using the lottery example from before. Now to familiarise ourselves with the code we looked to generate the results of a lottery draw using elements of code that we had used up to that point of the book. The results look as follows:

 [image: image]

Now, we can cast this a function called lottery as follows:

 [image: image]

What we have done here is define a function called lottery. This is done by using the command def followed by the name that you want to give the function. We then use two round brackets to denote the arguments that we want to pass to the function. Here, we have nothing within the brackets which means that we pass no argument into the function. Note that following the round brackets we use a colon in the same way we have for if, else, for, and while statements and in the same way as we do with these statements we indent the code one level from where the function was defined. From this point onwards the code used is exactly the same as we have seen in the lottery example. The main difference comes at the end in that we use the statement return with the return_list variable. What this does is return back what the variable return list after the code within the function has been run. In this instance we get back the list of lottery numbers that are generated. To run the above function we just do the following:

 [image: image]

If we consider what the function is doing we generate balls using the randint function. What if we didn't want numbers being 1–59 and instead want 1–49. We could just alter the code to have 49 instead of 59 but actually wouldn't it make sense for us to have arguments representing these max and min values. We can make that change relatively easily by rewriting the previous function as follows:

 [image: image]

What we have done here is to have the min and max as variables we pass into the function. Despite the values being the minimum and maximum we can call them what we want to. We have just denoted them as min and max, however they could be x and y, and its just a question of referencing these in the appropriate place within the code. So here the values min and max are used only in the randint function to give us back the random ball. We can demonstrate how we would use this below.

 [image: image]

In the previous example, we have passed in the minimum and maximum values we want to use in the function, however we may want them to have a default value such as 1 and 59 as in the original example. We can do that by just setting the values we pass into the function to have defaults, this is done as follows:

 [image: image]

Here, we have given the min a default of 1 and max default as 59 by using the equals to set the values. This then gives us the flexibility to call the function as follows:

 [image: image]

By passing nothing into the lottery function the min and max are set to the defaults 1 and 59. In the second example, we pass two values in the first getting assigned to the min and the second to the max. The last example of calling the lottery example sets the max value by passing it as an argument. What we can see is that by using arguments can give us a lot of flexibility when it comes to using functions.

If we look in more detail at the lottery example we can modify the example to be more flexible. The code we have used so far allows us to generate exactly 7 balls in our draw, however we may want to have more or less. To do this lets pass one more variable into the function definition namely draw length and we do so as follows:

 [image: image]

We can apply our modified lottery example as follows:

 [image: image]

This works exactly the same way as seen before but every time we have called it we have passed in the exact arguments that are required what would happen if we passed in different values.

 [image: image]

Here, we see that the function returns an error as it cannot support the types that are passed in so it would make sense to allow the function to determine if it can deal with the arguments passed in. We need to specify the values be integers as both the min and max need to be integers as randint generates integers, similarly the draw length can only be integers as it relates to the length of a list. We can rewrite the function as follows:

 [image: image]

What we have done here is use the type built in function to check if the value passed in for each variable is an integer. Note that this is done one by one so that an informative message can be sent back as to why the error occurred and what the problem was. To see this in action we only need to run the following:

 [image: image]

We see here that the function returned the message 'min must be an int, however we know that we would also have a problem with max and draw length which were passed in as strings but should also be an integer. We can expand upon the logic above by using a combination of if and else statements to determine which combination of variables are passed in with an invalid type.

 [image: image]

What we have added here is variables that are set to True for each of the values that we pass in as arguments. We set these to be False if the value is not an integer and use a combination of if else statements to determine which combination are of the right type and print an informative message about what variables are not correct. Note that we don't return anything when values are not all correct and the return type is None.

 [image: image]

Having introduced functions we will move onto classes within Python. Classes can be very powerful objects which allow us to bundle together lots of functions and variables. When we talk about functions and variables when related to a class we call them methods and attributes. We will demonstrate this by creating a simple class:

 [image: image]

What we have done here is create a class called my class by using the class definer. Within the class we have set a variable x to be equal to 10. We can then create an instance of MyClass and access the x variable using the dot syntax. Let us expand on this by creating a lottery example based on the function before.

 [image: image]

In this code, we define the class in the way we did before and call it Lottery. Next, we create an init method using __init__ this initialiser is called when we define the class so we can pass in arguments from here that can be used within the class. Note that we can use the standard defaults but these are then assigned to the class by using the self‐dot syntax which allows that value to be part of class and then allowed to be used anywhere within the class. We can create the class in the following example:

 [image: image]

You may think this isn't very different to what we did with the function, however we can change up our code to take advantage of how classes work to simplify how we deal with variables not being of the right type.

 [image: image]

What we have done here is move a lot of the complex logic around checking each types from the lottery function into the initialiser which means we can print what needs changing and also set the valid data attribute. Only if the valid data returns True can we run the lottery function. By using a class we have a lot more flexibility within it to make use of attributes and set logic that can affect what other methods do. Used correctly they can be a very powerful tool.

In the previous example, we have shown how to write functions and classes but as with the rest of the book we have done so in the interactive shell, however a more practical way to create a file with the content in. To do so is quite simple: you just simply write the exact same code into any blank file and save it with the suffix .py.

While in theory you can use any editor to write code in, you should use an integrated development environment (IDE). With the Anaconda installation of Python you get Spyder included, which is a great Python IDE. There are many more available with many free to use so once you get used to writing code in files you can choose which one is more suitable for you. For now, we will demonstrate how to develop within Spyder. Upon starting up you will be presented with a screen which will look something like the one shown in Figure 15.1.

The two windows we are most concerned with here are the editor and the console. In the editor window, we would type code as we have throughout the book but we would be able to save code to a physical file. You may ask why we would want to do this but it allows us to have saved code be it a set of Python commands, functions, classes, or any combination. In having saved the code, we can re‐run anything that we have written in Python very simply and using an IDE like Spyder gives us the option to run code that we have. So here by clicking the run command we would execute all code within a file. You can also see we have a console available to us, this allows the testing of commands and also allow you to access the variables within a script that you may have run. We will demonstrate this with a very simple example (Figure 15.2).

 [image: Snapshot of Spyder IDE.]

Figure 15.1 Spyder IDE.

 [image: Snapshot of Run file in Spyder.]

Figure 15.2 Run file in Spyder.

Here, we have written a very simple script called test.py where we define a variable x to be 1 and print it. By clicking the run file arrow in the toolbar we can run this script which is displayed on line 1 of the console as run file with the name of the file. Here, you can see the result of the run prints 1.0 to the screen however within the console we can access the x variable that we defined within the file.

Adding your code to files is great if you want to easily and quickly run a set of commands on demand and means you can create an archive and potentially version code that you have. What you can also do is share code with others and yourself. Let's demonstrate via an example, if we take the lottery function we defined at the start of the chapter and put this in a file called lottery.py we are then able to use this by importing it into Python. We have covered how to import packages in earlier chapters and importing your own Python file is no different. When importing your own file it is important to understand how Python does an import. To do so we import the package sys and look at the sys.path list.

 [image: image]

The sys.path list contains locations where Python can search for, so if we were looking to import our lottery file we can do so if it is present at one of the locations in sys.path. Note that the first entry is the current location you are in. We can also append a new location to this list if we require. Now, we can import the contents of the lottery.py file by just running the following code:

 [image: image]

This then gives us access to everything within the file and we could then just run our lottery function by calling it. We could also import using other approaches used earlier to import a package. This concept of importing our own code allows the coder to be flexible in how code is structured and also reduce repeatability by having key code written once and shared when needed. We could import our class into another file and run the code from there. If we create a file called import_lottery.py in the same directory as the lottery.py we can run the Lottery class as follows:

 [image: image]

It's as easy as that to share the code with other files. This makes it really easy to move sharable code into its own functions or classes and share it with other files very easily. Having both the console and an editor is important as sometime you want to work interactively to understand what you need to do but overall its much more efficient to have files with your code in.

16
Pandas

Previously we have looked at concepts and packages from the standard Python library, and now in this chapter we will look at a third‐party package and one that is very relevant within the Python eco‐system. Pandas is a package that is used for data analysis and data manipulation. It's used in a variety of packages and therefore understanding of it and its concepts is a crucial tool for a Python programmer to learn. In this chapter, we will introduce the package pandas from the basics up to some more advanced techniques. However, before we get started with pandas, we will briefly cover numpy arrays which alongside dictionaries and lists are concepts that should be understood to allow us to cover pandas.

16.1 Numpy Arrays

Numpy comes as part of the Anaconda distribution and is a key component in the scientific libraries within Python. It is very fast and underpins many other packages within Python. We concentrate on one specific aspect of it, numpy arrays. However, if you are interested in any of the machine learning libraries within Python, then numpy is certainly something worth exploring further.

We can import it as follows.

 [image: image]

Why np? Its the standard convention used in the documentation, however you do not have to use that convention but we will. In this chapter, we won't cover everything to do with numpy but instead only introduce a few concepts and the first one we will do is introduce an array. An array in numpy is much like a list in Python. If we want to create an array of integers 0–10 we can do so as follows:

 [image: image]

It looks like we passed a list into the method array and that is basically what we did as we can define the same array as follows:

 [image: image]

You may be thinking it looks like a list and we can use a list to create it, why is it different from a list. Very early on we looked at lists and operations on lists and we saw that using the common mathematical operators either didn't work or worked in an unexpected way. We will now cover these again and compare them to what happens when using an array in numpy. We will begin by looking at addition:

 [image: image]

So, what we see is that with a list we have concatenation of two lists which is what we have seen before, however using an array we add together the two arrays and return a single array where the result is the element wise addition. Next, let's consider what happens when we use the mathematical subtraction symbol.

 [image: image]

Here, we see that for two lists an error is thrown as it doesn't know how to use the operand on two lists. However, for two arrays it behaves how we might expect it to and subtracts element wise from the first array the value in the second. What happens if we look at the multiplication symbol * applied to two arrays and lists?

 [image: image]

Again, we see that this operand doesn't work on two lists but the arrays provide elementwise multiplication. Now for completion we will look at the division operand on both lists and arrays.

 [image: image]

Unsurprisingly, we see that this doesn't work on lists but on the arrays it performs elementwise division of the values in the first array by those in the second. Note that we get a warning for division by zero but ultimately it allows element by element division. This is great if we want to perform some mathematical operation on two lists which we cannot do and can be much faster. For the examples we have covered so far we can achieve the same thing using lists in Python in one line via list comprehension. So the three examples that didn't work here can be rewritten in as follows:

 [image: image]

We can see that subtraction and multiplication can be done using list comprehension but division cannot be done as we get a problem with division by zero. Now, it should be noted that we have simply worked with operations on the same list which makes it easy to rewrite, however if we had two distinct lists we cannot use list comprehension and to rewrite using loops becomes more difficult. Let's demonstrate this by creating two random integer arrays. So in numpy, we can do this by using the random choice functionality as follows:

 [image: image]

Here, we generated an array of length 10 containing random numbers between 0 and 9. Now if we extend this example to 1 million random numbers and generate two arrays we can multiply them together as follows:

 [image: image]

What we have just done is complete 1 million multiplications instantly, if you try this using loops you would be waiting quite a bit longer than an instance! We have seen how powerful numpy arrays are but how do we access elements of them. Luckily we can access elements as we did for lists. We will give some examples below applied to the result array from the previous example:

 [image: image]

You can see that we access elements in much the same we did for lists.

Now having introduced the concept of an array alongside everything else means we can start looking at Pandas starting with Series.

16.2 Series

We can import pandas as follows.

 [image: image]

Like before with numpy we use the alias pd which is the general convention used in the documentation for the package.

The first thing that we will cover here is the concept of a Series, we shall demonstrate this first by an example.

 [image: image]

We created a dictionary containing the keys of country names and the median age of citizens (source worldomometers.info) in that country and passes then in to the Series method to create point series. We can access the elements of the series as follows:

 [image: image]

You can see we can access the first element as if it was a list using the position of the value we want. We can also use the colon separated positional values as well as negative indices which we have covered earlier. There is a different way we can access elements of the series and that is by passing a list of the positions we want from the series. So if we want the first and third elements we have the values 0 and 2 in the list.

We have just accessed the values of the dict that we passed in to create the series but what about the keys and what use do they have in the series? What we will now show is that the series can also be accessed like it was a dictionary:

 [image: image]

We see the series has an index which is the key of the dictionary and we can access the values using the dictionary access approach we have seen earlier. Now, when we covered dictionaries earlier we saw that we could try and access a value from a key that isn't in the dictionary and it would throw an exception which is the same for the series.

 [image: image]

Here, we have shown what happens but you can see we have used the method get to try and access the value for the index England. As opposed to throwing an exception it just returns None.

Given we can now access elements of a series we will now show how you can operate on it. Given the series is based on the concept of an array in numpy you can do much of what you would in numpy to the series. So, now we will create series of random numbers and show how we can operate on them.

 [image: image]

Here, we have used numpy's random methods to generate an array of 10 random numbers between 0 and 1. This can be assigned to a series relatively easily.

 [image: image]

We can operate on this in much the same way as we do with a numpy array.

 [image: image]

Now that all looks the same as we have seen for arrays earlier, however one key difference is that we can operate on splices of the series.

 [image: image]

What we see is that the multiplication is done on the elements of the series by index. So where we don't have an index for both series we get an NaN shown.

We earlier defined a series by using a dictionary but we can define a series using a list or array as follows:

 [image: image]

As you can see the index is defined automatically by pandas, however if we want a specific index we can define one as follows:

 [image: image]

So, here we pass an optional list to the index variable and this gets defined as the index for the series. It must be noted that the length of the index list must match that of the list or array that we want to make a series.

16.3 DataFrames

Having looked at series, we will now turn our attention to data frames which are arguably the most popular aspect of pandas and are certainly what I use the most. They are essentially an object that carries data in column and row format, so for many they will mimic what is held in a spreadsheet or for others the content of a database table.

We will start off by looking at how we create a DataFrame and like with a series there are many ways we can do it.

 [image: image]

What we have done above is begin by setting up two lists, one containing names and another containing values. These are then put into a dictionary with keys name and value. This dictionary is then passed into the DataFrame method of pandas and what we get back is a DataFrame object with column names of name and values. We can see here that the index is automatically defined as 0–4 to correspond with the number of elements in each list.

 [image: image]

We can do the same using a dictionary of Series again assigning the Series to a dictionary and passing it into the DataFrame method. The same would happen if we used numpy arrays.

Next, we create a DataFrame using a list of tuples where the data is now country name, median age and density of the country.

 [image: image]

Here, we have created a list of tuples and we then pass those into the DataFrame method and it returns a three column by three row data frame. Unlike before we not only have auto assigned index values but we also have auto assigned column names which aren't the most useful, however we will later show how to assign both. The same applies here for a list of lists, list of series, or a list or arrays. It also works for a list of dictionaries, however the behaviour is slightly different.

 [image: image]

When the list of dictionaries is passed in we get the same DataFrame, however now we have column names from the dictionary. On the face of it everything seems like it works the same as for lists of lists, however if we change some of the keys we get some different behaviour.

 [image: image]

What we see here is that as every dictionary doesn't have all the same keys pandas fills in the missing values with NaN. Next, we will look at how to access elements of the data frame.

 [image: image]

We have done quite a lot here. The first thing is that we have defined the data frame based on the list of dictionaries as we showed previously. We then accessed all the elements of the column country by passing the name of the column as the key of the data frame. We next showed how we could access the first element of that by adding the index of the value we wanted. This is an important distinction as we aren't asking for the first element, we are instead asking for the value of the column with index value 0. Lastly, we select the rows of the country with index 0 and 1 in the usual way we would for a list, but again we are asking for specific index rows.

 [image: image]

Here, we asked for the last value of the column country as we would with a list, however it threw an error because there is no index [image: minus]1 in the index for the data frame. So we can't treat the data frame as we would a list and we need to have an understanding of the index. For any data frame we can find out the index and columns as follows:

 [image: image]

Here, it shows the index starting at 0 and stopping at 3 with the step used each time, it also shows the columns as a list of each name. We can change the index of a data frame as follows:

 [image: image]

Now if we want to access the first element of the country column we do so as follows:

 [image: image]

Similarly if we want to change the column names of a data frame we do so as follows:

 [image: image]

Given we have changed the index to strings, the question is how do we access the nth row if we don't know what the index is. Luckily there is a method of data frames called iloc which allow us to access the nth row by just passing in the number of the row that we want. It works as follows:

 [image: image]

We can see we can access rows from the data frame as if it was a list, which is cool.

Now that we have a grasp of DataFrames we will cover how to add to one. Let's say we want to add a column of all ones to our DataFrames we can do so as follows:

 [image: image]

We can then delete a column in a couple of ways:

 [image: image]

Here, we first used the del method to delete the ones column, we then added it again and then used the pop method to remove the column. Note that when we use the del method we simply delete from the DataFrame but using the pop method we return the column we have popped as well as removing it from the DataFrame.

 [image: image]

What we see here is that when we use a partial column to form a new one pandas knows to fill in the gaps with the NaN value. There is another approach where we can insert a column and put it in a specific position:

 [image: image]

Here, we create a column containing the integer value 2 and puts it into position 1 (remember position 0 is the first position) under the title twos. This gives us full control of how we add to the data frame.

So, now we have a grasp of what a DataFrame is we can start doing some cool things to it. Let's say we want to take all data where the value is less than 20.

 [image: image]

What we have done here is test the values in data_df values column to see which ones are less than 20. This concept is a pretty key, we test every element in the column to see which ones are less than 20 and return a boolean column to show which ones meet the criteria. We can then pass this into the square brackets around a DataFrame and it returns the values where the condition is true. We can do this on multiple boolean statements where anything true across all the statements is returned, this is shown below.

 [image: image]

It is important to note that the DataFrame isn't changed in this instance it stays the same. To use the DataFrame that is returned from such an operation you need to assign it to a variable to use later.

 [image: image]

Here, we have used the same test as used in the previous example and assigned it to a column which is now part of the DataFrame. We could do the same thing if we wanted to create another column that uses the data in data frame.

 [image: image]

Here, we have divided all values in the value column with the sum of all the values in the column which we can see is 606 to give us a new column of data. We can also perform standard mathematical operations to a column. Below we use the numpy exponential function to exponentiate every element of the column:

 [image: image]

We can also loop across a data frame as we have seen before with lists.

 [image: image]

This isn't exactly what we thought we would get as it only loops across the column names, we really want to get into the meat of the data frame to that we have to introduce the concept of transpose.

 [image: image]

What we have done here is turn the DataFrame the other way so now the columns are the index. To loop over it we use the method iteritems method.

 [image: image]

What we see here is that when we use the iteritems method over the data frame and at each instance of the loop it returns a two element tuple. The first element is the index and the second the values in the row stored in a series. The better way to access it would be to assign each element to a variable allowing us to have better access to each part.

 [image: image]

We assign the first element of the tuple to the variable ind and the series of the row in the variable row. Then we access the country column of that row and show it here with the index. Also we can avoid using the transpose of the data frame by directly accessing the row via the iterrows method.

 [image: image]

We have looked at how to add columns to a data frame but now we will look at how to add rows. The way we will consider is using the append method on data frames. We do so as follows:

 [image: image]

So we setup the initial data as we have done earlier but here make a fresh copy of the original data. We then setup a DataFrame of the new row and pass that into the append method of the original data frame. What we then see is the DataFrame containing the new row however it has an index of zero which we already had in the original DataFrame. We also see that when we call the DataFrame after this operation it no longer has the new row. If we look at the index problem we can resolve this by using the argument ignore_index as follows:

 [image: image]

So that is sorted but what about the fact that the new row hasn't become part of the data frame. Well to get that to work we need to assign the data frame to a new variable as the append method doesn't change the original DataFrame. We could re‐assign the data frame to the same name data_df, however we would lose the memory of what we have done so we could assign it to a new variable.

 [image: image]

16.4 Merge, Join, and Concatenation

Initially, we will consider the concept of concatenating DataFrames. The manner in which we can do this is to create a list of DataFrames and pass them into the pd.concat method. These DataFrames will build on what we have looked at in the previous chapter by using the following country data:

	density

	median age

	population (millions)

	population change (%)

 [image: image]

What we did was to create a list of DataFrames and then by passing them into the pd.concat method we get the result shown which is DataFrame with columns density, median_age, population, population_change and rows indexed with country names. But what if we did not have the index values as shown in the example:

 [image: image]

Here, we see that the index is retained for each DataFrame which when created all have the index 0, 1, 2, 3. To have an index 0–11 we need to use the ignore_index argument and set it to True.

 [image: image]

We can expand on this example by creating a list of DataFrames as we did previously and concat them together but now we use the argument keys and set it to a list containing region one, region two, and region three.

 [image: image]

In running the code what we see is that passing the keys in means we have what appears to be another level of the DataFrame away from our index in the previous example which allows us to select the one of the DataFrames used in the concat. If we look at the index of the result we get the following:

 [image: image]

This is commonly referred to a multilevel index as the name would suggest and what it does is tell us what the index value each element has. So the levels are [“region_one”, “region_two”, “region_three”] and [0, 1, 2, 3], which are denoted in levels. The index for each row is then determined using the label which has two lists of eight elements with the first one having values 0, 1, 2 which corresponds to region one, region two and region three whilst the second has values 0, 1, 2, 3 which refer to the levels 0, 1, 2, 3. We could name these levels by using the optional name argument.

 [image: image]

In the previous example we used concat to concatenate the DataFrames together however there are other ways to use it which we will demonstrate now by concatenating urban population percentage from France, Italy, Argentina, and Thailand to our initial DataFrame.

 [image: image]

Here, we have used concat with a list of DataFrames as we have done before but now we pass in the argument axis = 1. Now the axis argument says we concatenate on the columns, here 0 is index and 1 is columns. So, we see commonality in the index with France and Italy so we can add the extra column on and fill the values that are not common with NaN. Here, we have set the sort to be False which means we keep the order as if the two were joined one below the other. If we set the value to be True we get the following:

 [image: image]

We can see that with sort set to True we get the values sorted by index order. Below we can also see what happens if we run the same query with the axis set to 0.

 [image: image]

What we do is just concatenate the DataFrames one below each other with duplication of the index for France and Italy.

Concat also has an extra argument join that we will now explore and set the value to join.

 [image: image]

As you can see we only have two rows returned which if you look back at the example before are the only two rows where the two DataFrames have values in columns. The inner join is similar to that of a database join which we will cover later in the course however here we don't specify a key to use it on.

Next, we add argument join_axes and set it to df1.index.

 [image: image]

What we see is that all we get back only the values for in the index in df1 and show all the columns from the axis 1 argument. By default the join_axes are set to False.

Next, we will ignore the index by using the following arguments:

 [image: image]

Here, we see the result has lost index values from df1 and df2 and retained all the information filling the missing values with NaN.

We can achieve the same thing using the append method directly on a DataFrame.

 [image: image]

The concat method is not only valid for DataFrames but can also work on Series.

 [image: image]

What is worth noting is that we give the series a name and then that is set to be the name of the column when the two are concatenated together. We could also pass in multiple series in the list and we will add a second series with world share percentage.

 [image: image]

Next, we pass in series as a list to create a DataFrame and by specifying keys we can rename the columns.

 [image: image]

Next, we take our three DataFrames from before and assign them to a dictionary each with a key. The dictionary is then passed into concat.

 [image: image]

In using a dictionary we automatically create a DataFrame with a multilevel index where the first level is the key of the dictionary and the second level the index of the DataFrame. We next do exactly the same but here pass in an optional keys list.

 [image: image]

Having looked at the concat and append methods we now consider how pandas deals with database styles merging this is all done via the merge method. We will explain the specifics around each join type by example, however it is worth explaining the basics of database joins. So when we speak of database style joins we mean the mechanism to join together tables via common values. The way in which the tables will look will depend on the type of join with us showing examples for inner, outer, right, and left joins.

We will develop the example of country data to combine DataFrames that contain data relating to common countries and now add in the data for the countries relating to the percentage world share.

 [image: image]

In this example, we join two DataFrames on a common key which in this case is the country name. The result is a DataFrame with only one country column where both left and right are merged.

In the next example, we look at the merge method with a left and right DataFrame but this time will have two keys to join on which will be passed in as a list to the on argument. This allows us to join on multiple values being the same.

 [image: image]

Here, we have joined on country and population and the resulting DataFrame is where both DataFrames share the same country and population. So we lose one row of data from each DataFrame where we do not share the population and country on both.

Next, we run the same code with an added argument which is how equal to left.

 [image: image]

The result of this is what is known as a left join. So we retain all the information of the left DataFrame and only the elements from the right DataFrame with the same keys as the left one. In this case we retain all information from the left DataFrame.

Next we consider a right join using the same example as before.

 [image: image]

Essentially this does the same as the left join, however its now the left DataFrame that is joined onto the right one which is the reverse of what we saw with the left join.

The next join to consider is the outer join and again for completeness we use the previous example to show how it works.

 [image: image]

With the outer join its a combination of both the left and right joins so we have more rows than are in each DataFrame as the join of left and right give different results so we need all of these in the outer join result.

The last how option we consider is the inner join.

 [image: image]

This join gives only the result where we have commonality on both the left and right DataFrame. This is also the default when we pass no how argument:

 [image: image]

Next, we join two DataFrames with columns population and country but we join only on country using an outer join.

 [image: image]

What we see here is that if the columns are the same and not used in the join the names get changed. Here, we now have population_x and population_y which could be problematic if you are assuming to operate on the column population. This makes sense as we need a way to distinguish the two and pandas takes care of it for us.

Next, we do a merge using the indicator option set to True. Here, we have two DataFrames with only a single column to merge on which is country and we want to do an outer join:

 [image: image]

What the result shows is how the join is done index by index position so this could be left, right, or both. Here, we see that the join from one to the other is done on both.

The merge method is a pandas method to take account of two DataFrames, however we can use a DataFrames join method to join one onto another.

 [image: image]

What we see is that the left DataFrame is retained and we join the right one where the keys in right match the keys in left. Like with the merge we have the option how to join the DataFrames so we can specify that like we have seen earlier. Using the same example previously we can show this.

 [image: image]

In using the outer join we retain all the information from both DataFrames as we have seen when using a merge and where there are not values in one of the DataFrames they are filled in using NaN. Using the same example with an inner join show the following results:

 [image: image]

As expected the inner join just retains where the DataFrames have common data which here is for index France, Italy, and Germany.

We can achieve the same result without using a how if we pass in some different arguments to the merge method. These arguments are left_index and right_index here in setting them to True. We are getting the same behaviour as for the join method with how set to inner.

 [image: image]

Next, we use the argument ‘on’ with the join method when applied to the left DataFrame.

 [image: image]

In specifying the on column which is country we join the index of right on this column and we see that we now have a DataFrame indexed by the first DataFrame. This type of approach is what you may see when using databases and you want to join on the id of the column on the respective value in another table. This example can be extended to multiple values in the on argument however to do this you would require multilevel indexes which will be covered later in the book. We can remove any NaN values by adding the how argument and setting it to inner doing an inner join as shown below.

 [image: image]

The next thing we will consider is the important concept of missing data. We all hope to work with perfect datasets but the reality is we generally won't and having the ability to work with missing or bad data is an important one. Luckily pandas offers some great tools for dealing with this and we begin by showing how to identify where we have NaN in our dataset.

 [image: image]

Here, we have taken the DataFrames we have seen before and created a result DataFrame using the merge method with how set to outer. What this has done is given us a DataFrame with NaN values and we can now demonstrate how you can find where these values are within your DataFrame. We first consider the pandas isna method on a column of the DataFrame which tests each element to see what is and what isn't NaN. To achieve the same thing we can use the notna() method on a column or all of our DataFrame, or we could use isna() method which does the opposite of notna(). This makes it very easy to determine what is and what isn't NaN in our DataFrame.

 [image: image]

Taking the example one step further we can drop values from a column of the whole DataFrame by using the dropna method. For the column we only drop the one value that is NaN, however across the whole DataFrame we remove any row that has NaN in it. This may not be ideal and instead we may want to remove the row where one column has NaN and we can do that by passing and columns notna to the whole DataFrame.

16.5 DataFrame Methods

Now in the next example we will show some of the methods we can apply to a DataFrame. Earlier we demonstrated the sum method, however pandas has lots more to offer and we will look at some of the more common mathematical ones. Here, we import the package seaborn and load the iris dataset that comes with it giving us the data in a DataFrame.

 [image: image]

Following importing the package and the iris data we can access the top of the DataFrame by using head which by default gives us the top five rows, we can use the tail method to get the bottom five rows. We can get a defined number of rows by just passing the number into the head or tail method and if we want just the columns back we can use the columns method.

Having imported and accessed the data we now demonstrate some methods which we can apply.

 [image: image]

We can apply count to both the DataFrame and the column. When applied to the DataFrame we return the length of each column. We can also get the specific column length by either using the column name on the end of the count method or by accessing the column and then applying the count method. If you want the number of rows in the DataFrame as a whole you can use the len method on DataFrame.

 [image: image]

The corr method applied to the DataFrame gives us the correlation between each variable and we can limit that to one columns correlation with all others by passing the column name or get the correlation between two columns by passing both column names. You can also see the same applies with the cov method which calculates the covariance between variables.

 [image: image]

Next, we consider the cumsum method. This provides the cumulative sum as the columns ascend. Now for those columns of numeric type the value ascends as expected with the current value added to the previous value and so on to create an increasing value. The difference comes when we consider a character‐based column. The cumulative value here is just the concatenation of the values together with the results looking very strange. To make things easier to read we can restrict what we show for the return of the method by specifying a list of the columns to show and as you can see we can even chain the tail command on the end.

 [image: image]

Above we use the describe method which gives us a number of values namely the count, mean, standard deviation, minimum, maximum and the 25, 50, and 75 percentiles. This method only works on columns with the type to calculate the values so we not the column species is not included. We can also use this on individual columns, the manner in which we have done this in the example is not to use the square bracket method to accessing a column but instead the dot approach where we can use dot and the column name to access the value and then chain the describe method on the end.

 [image: image]

Next, we consider the max value. Here, when applied to the entire DataFrame we get the max of every column where a maximum value can be obtained. We also show that we can apply the method on a column in the same manner as we showed in the previous example.

 [image: image]

The next method we look at is the mean which is a common calculation that you may want to make and as before we can apply it on an individual column and we have done so here using the dot syntax. We then apply the mean method but now pass in a 0 or 1 referring to whether we want to apply across columns or rows. There are a number of different methods that you can apply to a DataFrame and a list of some of the more useful ones is given below.

	median: returns the arithmetic median

	min: returns the minimum value

	max: returns the maximum value

	mode: returns the most frequent number

	std: returns the standard deviation

	sum: returns the arithmetic sum

	var: returns the variance

These are demonstrated as follows:

 [image: image]

16.6 Missing Data

We next consider methods we can apply across the DataFrame and how missing data is dealt with. Here, we set the DataFrame up in the way we have done so far in the section and introduce some NaN entries into the DataFrame.

 [image: image]

So interpolate has a number of methods that you can use to interpolate between the NaN's. The default, which is executed with no argument is linear and what it does is ignore the index and treats the values as equally spaced and looks to linearly fill between the values. The remaining methods are all taken from scipy interpolate with a brief description given below.

	barycentric: Constructs a polynomial that passes through a given set of points.

	pchip: PCHIP one‐dimensional monotonic cubic interpolation

	akima: Fit piecewise cubic polynomials, given vectors x and y

	spline: Spline data interpolator where we can pass the order of the spline

	polynomial: Polynomial data interpolator where we can pass the order of the polynomial

For more information please refer to the scipy documentation.

Next, we will consider interpolate on a series and show some of the optional arguments that we can pass.

 [image: image]

Initially we interpolate using the default method which is linear, and for the rest of the example we use the default method and vary the optional arguments. Next, we pass the limit option and set it to 1 which says we can only interpolate one past any value so we still have NaN data in the Series. We next keep limit set to 1 and add another argument limit direction and set it to backward. What this does is only interpolate one value next to an existing value but unlike before does it going backwards. We extend this in the next example by setting the limit direction to be both which interpolates both forwards and backwards for one value. We next remove the limit one and keep limit direction to be both and see that all values are interpolated. We next introduce the limit area option which has two options (aside from the default None) these are inside and outside. When set to inside NaN's are only filled when they are surrounded by valid values and when set to outside it only fills outside valid values. Here, we show examples using each of these alongside limit direction and limit.

Next, we introduce the replace method.

 [image: image]

16.7 Grouping

Next, we introduce the concept of grouping the data via the groupby method. Grouping data is a very powerful tool as we are able to create and operate on groups of data all at once.

 [image: image]

Above we see the groupby applied to the iris dataset where we look to group the data based on the column species. This then allows us to apply methods to the groupby object and we show the results of the sum and mean method applied to this. What this is doing is applying this method to all the distinct types in species by all the columns in the dataset.

We next demonstrate how to loop over a group. Here, we set the DataFrame up as seen previously but now we loop over the group and in looping over it print the name of the group and what is in that group. This gives us a good visualisation of what a groupby does to the data.

 [image: image]

Next, we introduce the aggregate method applied to a groupby. We set the data up in the same way as seen earlier and then apply the aggregate method of the groupby object and inside it pass what we want to use for this aggregation. In the example we show we have used the np.sum method which will be applied to the group.

 [image: image]

We can extend the previous example by introducing the as_index argument. Here, we use the same DataFrame from the previous examples and groupby species with as_index set to False. What this does is create a group on species but retain species in the output as its column with the value we want to group by. In this case, we apply the sum to the group and so all other columns are summed within the group.

 [image: image]

There are also methods that we can apply to a groupby object which can be useful.

 [image: image]

We can also apply different methods to the group and in this example we show multiple ways to apply the numpy methods sum, mean, and std to our grouped data. So we create the same DataFrame and group as in the last examples. What we can then do is use the agg method with the arguments being a list of methods to be applied and what we see is that each method is applied on the group of data. Lastly, here we can even apply a lambda function to the groupby.

 [image: image]

What we next show is that you can get the largest and smallest values with a group by using the nlargest and nsmallest methods. Here, the integer value you pass in gives you the number of values returned. What you see is that we get the largest and smallest per group.

 [image: image]

Our next example introduces the apply method which can be very useful. Here, we set the data up in the manner seen before and groupby column species. We can then use the apply method on the group to apply whatever we pass through it to the groupby. It should be noted we can also use the apply method on DataFrames and Series. Here we see we have applied a custom function to the groupby.

 [image: image]

In the next example, we introduce a nice pandas method called qcut. This cuts the data into equal sized buckets based on the arguments passed in. Here, we apply the qcut on the data which is the column sepal length of the iris dataset by the list of values 0, 0.25, 0.5, 0.75, and 1. We assign the cut to the variable factor and when passed into the groupby the mean method gives the average on each bucket showing what the min and max values in the buckets are.

 [image: image]

So far we have considered grouping on single columns, however we could also group on multiple columns. However, the iris dataset isn't best setup to allow us to do this so we instead load the tips dataset. The tips dataset contains the following columns:

	total_bill

	tip

	sex

	smoker

	day

	time

	size

Given some of the columns only have limited responses it makes it ideal to do a group by multiple columns so next we group by sex and smoker.

 [image: image]

Here, we see that when we group by two or three variables we increase the number of values that are returned by creating more combinations within the groups.

A similar approach to groupby is pivot table which is a common amongst spreadsheet users. The concept is to take a combination of variables and group the data by it, which can seem similar to groupby. The difference is you can extend upon this to create some more complicated groupings of your dataset, we will demonstrate these by example.

 [image: image]

In the above code we use the tips as the dataset in each example and set a variety of index values starting at just sex and extending to sex and smoker and then with the combination of sex, smoker and day. In each example when we pivot the data by default we end up with the average of the index across all of the variables where we can take an average, so only numerical variables. We don't necessarily need to show all available variables as we have seen by passing the values argument as a list of columns we want to include.

 [image: image]

As a default when we use the pivot table command we get the average of the variables, however we can control what we get back by passing the aggfunc argument which takes a list of functions we want to apply to the data. Note here that we pass the numpy mean function as well as the len from the standard Python library.

 [image: image]

We can expand on this example by adding in the margins variable which then gives us the totals associated with the rows and columns.

16.8 Reading in Files with Pandas

The examples in the chapter have used the datasets from Seaborn and while this is useful, pandas has a lot of methods to allow you to read in external files. If we relate this back to earlier in the book where we read and manipulated data within Python we can see that these methods are a lot easier to use. They also allow us to write back to file. To show how this works we will take one of the existing datasets that we have been using and write to a csv and read that back in:

 [image: image]

What we have done is use the to_csv method that the tips DataFrame has and write the data into a file called ‘myfile.csv’, note this will live in the directory where this is being run from, as well as the file name the index argument is set to False which prevents the DataFrame index being written to the file with the other columns. Now, to read this back in we use the read_csv method from pandas and this takes the csv file and creates a DataFrame with the contents of this file. These methods are extremely useful as we do not have to worry about the process of writing to file or reading from file. Alongside read_csv we have other read methods for different file types and here are some of the more useful ones, for a complete list consult the pandas documentation:

	read_excel: reads in xls, xlsx, xlsm, xlsb, odf, ods and odt file types

	read_json: reads a valid json string

If we take the examples in previous chapters we created the following json and excel files called boston.json and boston.xlsx. We can read these into DataFrames using the following code:

 [image: image]

As you can see these methods provide very simple ways to load data from these common formats into DataFrames. There is also a read_table method which we can use for general delimited files. The read methods also support operations like querying databases or even reading html but that is beyond the scope of this book but well worth a look.

The to methods of the DataFrames are pretty similar with support for many different formats and a selection given as follows:

	to_dict

	to_json

	to_html

	to_latex

	to_string

These are all demonstrated as follows:

 [image: image]

We can also use some of these methods to write the data directly to file in the format with some examples below:

 [image: image]

These methods are really useful and for correctly formatted data are a very convenient way to read data into pandas and also export it from pandas.

What we have seen in this chapter is the advanced methods of pandas and how we can do complex data analysis. We have shown how pandas allows us to manipulate data as if it were in a database allows us to join, merge, group, and pivot the data in a variety of ways. We have also covered some of the built in methods that pandas has and shown how we can deal with missing data. The examples that we have covered have been rather simple in nature but pandas is powerful enough to deal with large datasets and that makes it an extremely powerful Python package. It is also worth noting that pandas plays well with many other Python packages meaning a mastery of it is essential for a Python programmer.

17
Plotting

Plotting is a key component when looking to work with data, and Python has a number of plotting libraries. In this chapter, we cover plotting in great detail starting with creating basic plots directly from Pandas DataFrames to getting more control using matplotlib all the way through to using Seaborn. The chapter is fully example driven with code snippets alongside the graphics they produce. The aim of including both is to give you the ability to see what the code produces but also act as a reference for when you want to produce graphs. The examples are based on datasets that come from with Python with many being taken from the documentation with the idea of giving them greater explanation to help you understand what is happening. The packages that we will look to use in this chapter are imported below.

 [image: image]

17.1 Pandas

Initially, we will look at plotting methods on Series and DataFrame objects in pandas. One of the great things about pandas is that we have inbuilt plotting methods that we can call and produce plots from. This allows very fast visual presentation of datasets that we want to analyse.

 [image: image]

 [image: image]

 [image: Snapshot of Line plot of sepal length.]

Figure 17.1 Line plot of sepal length.

The previous code snippets and associated plot show how we can produce a simple line plot of a Series. The two examples use plt.show() and plt.savefig() to show how to either show the graph or save the graph, with the graph shown in Figure 17.1 In the event of saving a graph, we need to supply the file path and name to where we want the plot to save.

 [image: image]

In the Figure 17.2, we use the method hist method of the series in the same way we used the plot method in the previous example. It should be noted that plt.clf() was used as the first line of code with the reason behind this to clear the figure meaning we do not see the previous plot when we plot the new image.

 [image: image]

 [image: image]

The next two snippets show how we can create a box plot and a density as shown in Figures 17.3 and 17.4. In these examples, we use plot method of the series to give us access to the plot that we want to create. This is slightly different from what we have used before, and looking at the plot method, we can see the types of plots that we can create.

 [image: Snapshot of Histogram of sepal length.]

Figure 17.2 Histogram of sepal length.

 [image: Snapshot of Boxplot of sepal length.]

Figure 17.3 Boxplot of sepal length.

 [image: image]

Here we see that alongside box and density, we also have the following types of plots.

 [image: Snapshot of Density plot of sepal length.]

Figure 17.4 Density plot of sepal length.

 [image: Snapshot of Area plot of sepal length.]

Figure 17.5 Area plot of sepal length.

	area as shown in Figure 17.5

	hist as shown in Figure 17.6

	kde as shown in Figure 17.7

	line as shown in Figure 17.8

It is worth noting that some of these types we have already covered as we can directly plot a line using plot and a histogram using hist. But we will show examples of each of these.

Thus far we have looked at plots on series which will apply to columns of data frames however we can also do plots on DataFrames as a whole. As opposed to working on a single column of the iris DataFrame, we now work on the DataFrame as a whole.

 [image: Snapshot of Histogram of sepal length.]

Figure 17.6 Histogram of sepal length.

 [image: Snapshot of KDE of sepal length.]

Figure 17.7 KDE of sepal length.

 [image: image]

The first plot that we will consider is the box plot as shown in Figure 17.9. When applied to the DataFrame as a whole, we can see that we have box plots for each of the variables where a box plot can be created. Pandas also labels up the variables from the DataFrame names so out of the box you get a robust plot of all the data.

 [image: Snapshot of Line plot of sepal length.]

Figure 17.8 Line plot of sepal length.

 [image: Snapshot of Box plot of iris data.]

Figure 17.9 Box plot of iris data.

 [image: image]

 [image: image]

 [image: Snapshot of Density plot on iris data.]

Figure 17.10 Density plot on iris data.

Next we will show a density and line plot, as shown in Figures 17.10 and 17.11 of the DataFrame and like with the box plot example we get a line for each variable where we can get one. In the same way, we have labels for each box we get a legend for the lines indicating what each colour refers to.

 [image: image]

 [image: Snapshot of Line plot on iris data.]

Figure 17.11 Line plot on iris data.

 [image: Snapshot of Scatter plot on pandas data frame.]

Figure 17.12 Scatter plot on pandas data frame.

In the last built‐in plot, we shall consider a scatter plot on the DataFrame as shown in Figure 17.2. Unlike the plots we have considered so far, a scatter plot requires an x and y variable as its plotting x against y. So, we pass in the specific column name from the DataFrame and the method can pick up the data that it needs to giving us the scatter of sepal length against sepal width.

As before we have a number of other plot types that we can apply to the DataFrame, these are

	area as shown in Figure 17.13

	line as shown in Figure 17.14
 [image: Snapshot of Area plot of iris DataFrame.]

Figure 17.13 Area plot of iris DataFrame.

 [image: Snapshot of Histogram of iris DataFrame.]

Figure 17.14 Histogram of iris DataFrame.

 [image: Snapshot of KDE of iris DataFrame.]

Figure 17.15 KDE of iris DataFrame.

	hist as shown in Figure 17.14

	kde as shown in Figure 17.15

Examples of these are shown below, with all being produced using iris.plot method as shown before.

There were a couple of plots that we did not include in the previous examples namely bar, barh, and pie (examples of a pie and barh plot are given in Figures 17.16 and 17.17). The reason being these plots require the data to be in the format suitable for the plot so we need data that has been manipulated to be in that form. Thus far all other plots have been directly on the DataFrame but here we will group the tips DataFrame to get in a format that we can use.

 [image: Snapshot of Pie plot of tip size by day.]

Figure 17.16 Pie plot of tip size by day.

 [image: Snapshot of Barh plot of tips data by day.]

Figure 17.17 Barh plot of tips data by day.

 [image: image]

 [image: image]

17.2 Matplotlib

So here we have shown a number of plots that you can easily generate with pandas and matplotlib; next, we will look at how we can customise them.

 [image: image]

Now in the above code, we use a different approach to creating our plot (Figure 17.18) using one which is more common from a matplotlib point of view. Here we setup a figure and plot lines on them using the plot method. In this example, we specify the line type by using an extra argument to determine if the line is solid or partially solid. Lastly, we save the plot using the savefig method, we can find what filetypes are supported by running the following command.

 [image: image]

 [image: Snapshot of Iris plot.]

Figure 17.18 Iris plot.

The next example we look at is a panel plot as shown in Figure 17.19. This is where we have two plots on one figure as opposed to plotting two lines on one plot.

 [image: image]

The first thing we do is create the figure in the usual way and we then use the subplot method to create two panels. The arguments for the subplot method is

	Number of rows

	Number of columns

	Index

 [image: Snapshot of Panel plot example one.]

Figure 17.19 Panel plot example one.

 [image: Snapshot of Panel plot example two.]

Figure 17.20 Panel plot example two.

So in this example, we have two rows with one column and initially we plot on index one the line of sepal length.

Next, we plot the line of petal length in the second panel and we now have an example of a panel plot as shown in Figure 17.20.

 [image: image]

We can achieve the same thing using the subplots method directly specifying we want two subplots and using the ax variable to control what goes into each subplot. Here we can use the plot method directly to plot sepal length in the first subplot and petal length in the second.

Next, we will look at how the plots look. In matplotlib, we can control the styling of the plot and by running the below command you get a list as follows

 [image: image]

To get a more detailed view of how these differ please refer to the documentation https://matplotlib.org/3.1.1/gallery/style_sheets/style_sheets_reference.html where there are images relating to the specific types. What is important to note is that we can alter how a plot looks by just using a different style sheet.

 [image: image]

Here we import the seaborn whitegrid style to use in this example and we setup the figure and axes. Next, we plot the same tips line but in each instance we add 5 to each value so we can see the difference between each of the lines. Now for each line we use, a different approach to give it a colour. The first line using the colour argument set as blue and we can use the colour as a name. The second line uses the colour set as a single letter where in this case g refers to green. For the third line, we use the grayscale value between 0 and 1. The forth line shows how we can use hex codes to pass in the colour. The fifth line shows how you use the RGB tuple where each value can be between 0 and 1 with the first referring to red the second to green and third to blue. The result of this is shown in Figure 17.21.

Next, we consider different line types that we can use within matplotlib where we use the linestyle argument to pass in different types of lines as shown in Figure 17.22.

 [image: image]

 [image: Snapshot of Plot with custom line colour.]

Figure 17.21 Plot with custom line colour.

 [image: Snapshot of Plot with custom linetype.]

Figure 17.22 Plot with custom linetype.

 [image: Snapshot of Plot with custom colour linetype.]

Figure 17.23 Plot with custom colour linetype.

We can also combine linestyle and colour into one argument to give different coloured lines on our plots. To do this, we use the short linestyle combined with the single letter colours the result of which is shown in Figure 17.23.

 [image: image]

In the next examples, we will look at how we change the limits and add some labelling to plots, we begin by looking at setting the limits for the plot.

 [image: image]

 [image: image]

In the first example shown in Figure 17.24, we plot the tip from the tips dataset and here we customise the x limits and y limits using xlim and ylim methods. To use these methods, you simply put in the start and end value where you want the axis to start and end with us using 50 to 200 for the x axis and 0 to 10 for the y axis.

In Figure 17.25, we reverse the axis by simply using 200 to 50 and 10 to 0 for the x axis and the y axis respectively.

 [image: Snapshot of Plot with limits altered.]

Figure 17.24 Plot with limits altered.

 [image: Snapshot of Plot with reverse limits.]

Figure 17.25 Plot with reverse limits.

 [image: image]

In the first example, shown in Figure 17.26, we label the plot to display titles and axis names by using the methods title, xlabel, and ylabel, which populate the plot title, x axis, and y axis, respectively. We can also add a legend to the plot (shown in Figure 17.27) using the legend method. In using this we add the label variable to the plot where we specify the name we want to be shown in the legend.

We next consider some special plots showcasing what we can do beyond standard plots within matplotlib.

 [image: Snapshot of Plot with labels.]

Figure 17.26 Plot with labels.

 [image: Snapshot of Plot with legend.]

Figure 17.27 Plot with legend.

 [image: image]

 [image: image]

In this first example shown in Figure 17.28, we show how to use a different markers on a plot. To do so we use the numpy RandomState to generate arrays of random numbers. We then loop over the list of markers that we want to plot and generate a five value random array to plot all of these values and add a legend to show what each point in our code refers to what on the plot.

 [image: Snapshot of Scatter plots with different markers.]

Figure 17.28 Scatter plots with different markers.

 [image: image]

The next plot Figure 17.29 that we create is a scatter plot where each element has a colour and size associated with it. To do this, we create a figure in the normal way and again use RandomState to allow us to generate random numbers. In this case, we calculate the x and y coordinates for the scatter plot by generating 100 random numbers. We next generate another 100 random numbers to determine the colours. Lastly, we generate the size of the scatter by multiplying another 100 random numbers by 1000 to make the ball size varied enough so that we can see them. These then get passed into the scatter method setting the c value to be the colours array and s to be the sizes array. We use the alpha argument to set how opaque the plots are. The last argument that we set is the cmap value which sets the colour map that we want to use. Once we have plotted the scatter, we can add the colour bar to show what the colours refer to relative to the random numbers from the colour array.

 [image: Snapshot of Scatter plot with different sizes.]

Figure 17.29 Scatter plot with different sizes.

17.3 Seaborn

Having covered direct plotting from pandas objects and how we can use matplotlib to create and customise plots, we next move onto Seaborn which is the natural progression as its built using matplotlib and is highly coupled with pandas DataFrames. In Seaborns own words, the functionality that it offers is as follows.

	A dataset‐oriented application programming interface (API) for examining relationships between multiple variables.

	Specialised support for using categorical variables to show observations or aggregate statistics.

	Options for visualising univariate or bivariate distributions and for comparing them between subsets of data.

	Automatic estimation and plotting of linear regression models for different kinds dependent variables.

	Convenient views onto the overall structure of complex datasets.

	High‐level abstractions for structuring multi‐plot grids that let you easily build complex visualisations.

	Concise control over matplotlib figure styling with several built‐in themes.

	Tools for choosing colour palettes that faithfully reveal patterns in your data.

What does this mean? In simple terms what Seaborn offers is some out of the box plots which look great and work well with DataFrames but can be configured to a high level.

The best way to show this is through example so let us dive in and get started

 [image: image]

The above code loads up the tips dataset in a manner similar to what we have done previously in the book. We then use the replot method and pass in the name of the DataFrame as the argument to the data option and set x and y to the column names from the DataFrame.

The result of this is a scatter plot of the x and y variables shown in Figure 17.30. Now we can extend this by adding a third dimension. In this case, we want to plot the same scatter plot but now segment the data by whether they are a smoker or not. To do this we use the hue option and pass in the name smoker which relates to the column within the DataFrame. Note here the values of smoker are yes and no which mimics what we see in the plot

 [image: Snapshot of Scatter using replot in seaborn.]

Figure 17.30 Scatter using replot in seaborn.

 [image: image]

The plot Figure 17.31 conveniently colours the values related to whether they are a smoker or not however we can extend this by adding the variable style and setting it to smoker which will now change what is plotted for each category in smoker, which in this case is yes or no, this is shown in Figure 17.32.

 [image: image]

The hue value previously was a categorical variable which makes sense when applying but what happens if your hue value is a numeric value? To demonstrate this, we change the hue value to use the size variable in the dataset. Initially we used the dot syntax to obtain the unique value but we get an error and this is due to the fact that dot size on any DataFrame brings back the actual size of the DataFrame which is rows multiplied by columns. So to obtain the unique values we use the square bracket notation. The size value is then passed into the hue to give us a scatter plot using a numeric hue.

 [image: Snapshot of Scatter plot using replot in seaborn with a third variable.]

Figure 17.31 Scatter plot using replot in seaborn with a third variable.

 [image: Snapshot of Scatter plot using replot in seaborn with a third variable and styling.]

Figure 17.32 Scatter plot using replot in seaborn with a third variable and styling.

 [image: image]

 [image: Snapshot of Scatter plot using replot in seaborn with hue on size.]

Figure 17.33 Scatter plot using replot in seaborn with hue on size.

What we see in the Figure 17.33 is that the size colours get darker as the value increases and seaborn casts the value to a float and uses a sequential palette taking care of this for you.

Having shown how to apply a third variable using hue we can also use the size option. As in the previous example, we will use the size variable as the input to size and what this does is change the size of the point based on this third variable, this is shown in Figure 17.34.

 [image: image]

We can expand upon the previous example by using the sizes variable this can be in the form of list, dictionary, or tuple. In the event of a categorical variable, a dictionary would contain the levels with the relevant values so for the smoker variable we could pass a dictionary as follows.

 [image: image]

We can do the same with a list replacing the dictionary

 [image: image]

 [image: Snapshot of Scatter plot using replot in seaborn with a third variable using the size command.]

Figure 17.34 Scatter plot using replot in seaborn with a third variable using the size command.

If the size used is numeric, we can pass a tuple with the min and max values which is then applied across the different numeric values to give appropriate sizes of each point, this is shown in Figure 17.35.

 [image: image]

Next, we will look at line plots in seaborn. Initially we will setup a DataFrame using two methods in numpy. The first is arange which creates a list of ascending integer values from 0 to [image: n minus 1], which we demonstrate below.

 [image: image]

We then also generate a set of random numbers using the randn method of random and them apply the cumsum method to cumulatively sum these.

 [image: image]

Note the values in the two examples will not add up as everytime we generate a set of random numbers we get a different value as they do not have memory. We could have cast the first value to a variable as follows and you can see the effect of cumsum.

 [image: Snapshot of Scatter plot using replot in seaborn with different size of points.]

Figure 17.35 Scatter plot using replot in seaborn with different size of points.

 [image: image]

Using the above we can create a DataFrame with some random values as our value column. To plot the data, we can use the lineplot or with replot setting the kind to be line as is shown below with the resulting graph in Figure 17.36.

 [image: image]

 [image: Snapshot of Line plot in Seaborn using replot.]

Figure 17.36 Line plot in Seaborn using replot.

Next, we look at the fmri dataset and how we can use replot to produce a line plot of timepoint by signal. Looking at the dataset, we can see for each timepoint we have multiple measurements.

 [image: image]

So for each timepoint, we have 56 values; now passing these values into replot aggregates over the data with the line representing the mean of that timepoint and a 95% confidence interval around that point, this is shown in Figure 17.37.

 [image: image]

We can repress the confidence interval by passing the ci to be None as shown in Figure 17.38.

 [image: image]

 [image: Snapshot of Line plot in replot with mean and confidence interval.]

Figure 17.37 Line plot in replot with mean and confidence interval.

 [image: Snapshot of Line plot in replot with mean and no confidence interval.]

Figure 17.38 Line plot in replot with mean and no confidence interval.

We can change what the interval around the mean by passing sd to it which then calculates the standard deviation around the mean which is given in Figure 17.39.

 [image: image]

Like we saw before with the scatterplot, we can use the hue to pass in a third variable to group our data by, in the below code we choose the event variable which splits our data in two as shown in Figure 17.40.

 [image: image]

We can expand on the previous example by setting the hue to be region and the style to be event. In doing so we have the different colours representing the regions and the line type representing the event. This allows us to represent more variables in the line plot as shown in Figure 17.41.

 [image: Snapshot of Line plot in replot with mean and standard deviation.]

Figure 17.39 Line plot in replot with mean and standard deviation.

 [image: Snapshot of Line plot in replot with hue applied.]

Figure 17.40 Line plot in replot with hue applied.

 [image: Snapshot of Line plot in replot with hue and style applied.]

Figure 17.41 Line plot in replot with hue and style applied.

 [image: image]

Let us change the example and use a different dataset. Here we load in the dots dataset.

 [image: image]

 [image: Snapshot of Line plot in replot with hue and style applied on the dots dataset.]

Figure 17.42 Line plot in replot with hue and style applied on the dots dataset.

In the plot shown in Figure 17.42, we use time and firing rate as our x and y variables, we then use the coherence and choice variables to provide the hue and the styling. Using both hue and style allows us to combine colour and style at each x and y combination. So in essence we can display four variables on one plot. It should be noted that the makeup of this dataset is particularly suited to doing this as we have six unique values for coherence and two for choice resulting in 12 lines. When considering using this type of plot, it is important to make sure that your dataset is suitable and that the plot is a better representation of the data, as opposed to something that visually offers little.

So far we have considered single plots but what if we want to compare the relationship between multiple variables on the same plot. Let us look at the tips dataset and the relationship between total bill and tip

 [image: image]

In this example, we have looked at the relationship between total bill and tip which has been covered before. Now looking at other variables within the dataset that we could use time and smoker to drill further into the relationship between total bill and tips. Setting the hue to be smoker breaks our data into those who are and who are not a smoker; however, we can expand on this further by using the col argument. In this case, we set col to time, which like with smoker contains only two categories, and results in our initial plot by hue being replicated on the variable passed through col. This is useful in showing us the relationship side by side and is shown in Figure 17.43.

We can expand upon the previous example by producing a multi plot using rows and columns. Here we load the fmri dataset from seaborn.

 [image: image]

 [image: Snapshot of Multi scatter plot on tips data.]

Figure 17.43 Multi scatter plot on tips data.

As usual we examine the dataset using head; however, in this example we use the dtypes method to display the types of each column. What this shows is that timepoint and signal are of types int64 and float64 respectively which make them ideal candidates as our x and y variable. Looking at the other variables, we see that both event and region have only two distinct values and the subject has 14 different values. So in putting together our plot subject is best suited to be the hue, and we can use event and region to be set as the row and col variables. In the code, we set the col as region and row as event. The result of this is that the headers for our 2 by 2 plot contains the distinct combinations of the variables as shown in Figure 17.44.

Now this plot is fine however you could argue that having 14 variables in the hue makes it hard to distinguish what's going on. We can quite easily reduce this down by looking at selecting a subset of data as shown in Figure 17.45.

 [image: image]

 [image: Snapshot of Multi line plot with rows and columns using fmri dataset.]

Figure 17.44 Multi line plot with rows and columns using fmri dataset.

If we only want to look at one variable passed through col, we can set a col_wrap which will have a max number of plots side by side. In this case, setting the value to 5 wraps the plots to 5 per line giving three rows to fit our 14 different subjects. This gives us the effect of setting rows and columns using just a single variable as shown in Figure 17.46.

 [image: image]

We next consider plotting categorical data and start by looking at using the catplot method with the tips dataset.

 [image: image]

 [image: Snapshot of Multi line plot with rows and columns using reduced fmri dataset.]

Figure 17.45 Multi line plot with rows and columns using reduced fmri dataset.

The code shown loads the seaborn dataset tips and we look at its content using the head and dtypes methods. What we see is that there are some options for categorical data and we look at the individual values of the day column which unsurprisingly contain some of the week of the year names (albeit abbreviated). It is also worth noting that the type of this column is category. We can then plot the values of the total bill split by the day of the week which is in the form of points grouped by the day and also coloured to distinguish them with the resulting plot shown in Figure 17.47.

 [image: Snapshot of Multiline plot using col wrap.]

Figure 17.46 Multiline plot using col wrap.

 [image: Snapshot of Catplot of day against total bill from the tips dataset.]

Figure 17.47 Catplot of day against total bill from the tips dataset.

Now if we consider the data, we can see some shared values

 [image: image]

So we can see that we have a shared value on Thursday for the total bill value of 13.00. In the previous plot, our scatter does not take account of that so we need a way to deal with this. Luckily, we have a setting that can be applied to change this. By passing the kind variable and setting it to swarm applies an algorithm to prevent the overlapping of the variables and this gives us a better representation of the distribution as shown in Figure 17.48. It should be noted that the default value of kind is strip which gives the plot shown in the previous example.

 [image: image]

Previously we had shown how we could add a hue to a plot to group it by that value and the same is true when we produce a catplot. Looking through the variable list, we can see that sex is another categorical variable that would work well passed to the hue. The difference that we see between this and the last plot is that the colour is now driven by the hue which is to be expected as our other categorical variable is passed through the x variable. This is shown in Figure 17.49.

 [image: image]

 [image: Snapshot of Catplot of day against total bill from the tips dataset with kind set to swarm.]

Figure 17.48 Catplot of day against total bill from the tips dataset with kind set to swarm.

 [image: Snapshot of Catplot of day against total bill from the tips dataset with kind set to swarm with hue set to sex.]

Figure 17.49 Catplot of day against total bill from the tips dataset with kind set to swarm with hue set to sex.

So far we have dealt with categorical variables in the form of text data like sex or day, but what if the category could be numerical. In this next example, we will set the x value to be size which is an integer and what we see is that the value is treated as a category in a similar way to what we have seen in the previous example. In the code, you will also see that we have introduced a new DataFrame method query which works by passing a query to apply on the DataFrame in the form of a string. So here we have passed in the query size != 3 so what we are saying is that we want to get the data where size is not equal to 3. This could also have been written using Boolean series where we would look for tips[tips[‘size’]!=3]. What should be noted is that catplot will order the x value appropriately based on the numerical values as shown in Figure 17.50.

 [image: image]

 [image: Snapshot of Catplot of size against total bill.]

Figure 17.50 Catplot of size against total bill.

The question of ordering a numerical value is relatively simple as you would expect seaborn to order it using the ascending numerical value, but for a categorical variable, it is not quite as straight forward. If we take the example of plotting smoker against tip how do we control the ordering of the smoker values which are yes and no. To do this we can use the order argument and set it to be how we want the responses to be shown as demonstrated in Figure 17.51.

 [image: image]

We can change the example by using the x axis as total bill and setting the y axis to be the categorical variable day to invert the plot with the swarm being horizontal as opposed to vertical. In this example, we also apply the hue and swarm which shows we can achieve the same result horizontally or vertically as shown in Figure 17.52.

 [image: image]

 [image: Snapshot of Catplot of smoker against tip using order argument.]

Figure 17.51 Catplot of smoker against tip using order argument.

 [image: Snapshot of Catplot of total bill against day with swarm and hue of time.]

Figure 17.52 Catplot of total bill against day with swarm and hue of time.

The previous examples have all looked at scatterplots but we can produce different plots by changing what we pass as the kind argument. The first such example that will be shown is how we produce a box plot of our data. To do this, we specify the kind to be box and that will move us from the default of a scatter plot to a box plot representation of the data. In the example below, we set the y axis to be the total bill and the x axis to be day.

 [image: image]

The result of this is a standard box plot but what we see is that data outside of the whiskers are shown as data points on the plot so every point of data is represented on it as shown in Figure 17.53.

As we have shown earlier with the scatterplot example, we can add a hue to our data which then gives us multiple box plots per category using the colour to distinguish the levels of the hue, which we demonstrate in Figure 17.54.

 [image: image]

The next type of plot we consider is a boxen plot, this is produced where the kind argument is set to boxen. The example below uses the diamond dataset and plots the variable colour against price. This plot is similar to the box plot except for the fact that the data is grouped beyond the quartiles that a box plot shows as shown in Figure 17.55. In doing this we can get a better picture of the distribution of the data given the larger number of groups.

 [image: Snapshot of Boxplot using catplot.]

Figure 17.53 Boxplot using catplot.

 [image: Snapshot of Boxplot using catplot with a hue.]

Figure 17.54 Boxplot using catplot with a hue.

 [image: Snapshot of Boxen plot using catplot.]

Figure 17.55 Boxen plot using catplot.

 [image: image]

The previous example of the boxen plot allowed us to get a better picture of the distribution with more groups than a box plot; however, our next example allows us to get the overview given by the box plot whilst also displaying the information of a box plot. To do this, we set the kind to violin which gives us a violin plot. In our example, we use the common total bill and day values that we have used previously; we apply a hue to the data using the variable time which has the unique values of Dinner and Lunch. The plot calculates the kernel density estimate (KDE) with the box plot representation of the data inside it. The KDE aspect of this plot is something that we will go into more detail. A KDE looks to represent the data in much the same way as histogram summarising the distribution. For a histogram, we would look to set the bin numbers to determine how the plot would look, now we cannot do this for the KDE aspect of the violin plot instead we have to set a smoothing parameter. In the example given, you can see that this is set to 0.15, this is in contrast to the default value 1. The choice of this parameter is key to how your plot looks as over smoothing may remove aspects of the dataset. The other argument that we pass here which we have not seen before is the cut parameter. This is much more straightforward as it determines where we extend the plot when used with the smoothing value. In this case, we set the value to 0 which means we truncate at the end of the data.

In the example, we can see that we do not have data points for each combination of day and time; therefore, for Thursday and Friday, we have two violins and for Saturday and Sunday we only have the one. Another interesting consequence is how a single data point is dealt with as we have only one for Thursday Dinner. In this case, we have a single line at the point 18.78 representing that total bill value. If we did not want this, we could remove it from the data before plotting it. The result of this is shown in Figure 17.56.

 [image: image]

 [image: Snapshot of Violin plot using catplot.]

Figure 17.56 Violin plot using catplot.

An interesting variation of this is to set the split value to True which when applied with a hue shows both sets of values in the same violin. So in this example, we have one violin per day as opposed to two that we might expect when we normally use hue. In doing this, our box plot is done on the data as a whole with the split on the violin so you can compare the overall distribution to the distribution of each category of the hue. This example is also good to compare the effect of the smoothing parameter which is set to the default here compared to the adjustment applied in the previous example. The resulting plot is shown in Figure 17.57.

 [image: image]

 [image: Snapshot of Violin plot using catplot using a split on the hue.]

Figure 17.57 Violin plot using catplot using a split on the hue.

Next we look at how we can capture variability within our dataset over categorical data using a bar plot. To achieve this, we pass bar as the argument to kind which produces a bar plot based on our x and y variables which are survived and sex with the hue class as shown in Figure 17.58. The default operation that the bar plot applies to the data is the mean and as such if we have multiple observations a confidence interval is bootstrapped from the data and shown as a vertical line at the top of the bar.

 [image: image]

 [image: Snapshot of Bar plot using catplot.]

Figure 17.58 Bar plot using catplot.

If we are interested in the frequency and not the mean, we can pass count to the kind argument which gives us a countplot as shown in Figure 17.59. Here we have not passed an x value and instead use the hue argument to group by class with the y value set to deck. What happens here is that as we are looking to obtain the counts of the deck variable grouped by class which means the output is the count per grouping which then becomes the x axis.

 [image: image]

The examples we have looked at so far have concentrated on relationships between variables that are explicitly passed to be plot. If we take the example of the iris dataset, we can be much more loose and pass the data to the method to get it applied across the dataset. In this example, the data is of type float for four of the five columns and passing this into the catplot with the type set as box results in box plots for these four variables of type float. So we can use seaborn to be more exploratory when producing plots of our datasets as shown in Figure 17.60. It should also be noted that we achieved the horizontal box plots by passing the orient argument set to h.

 [image: Snapshot of Count plot using catplot.]

Figure 17.59 Count plot using catplot.

 [image: Snapshot of Boxplot of iris data.]

Figure 17.60 Boxplot of iris data.

 [image: image]

 [image: Snapshot of Multiple plots with col in catplot.]

Figure 17.61 Multiple plots with col in catplot.

Having shown how to apply hue on catplot, we can also use the col argument to create multiple plots. This is demonstrated using the tips dataset and plotting a swarm plot of day against total bill with the hue being smoker, but to extend this we add the col as time which gives us two plots one for time set to Lunch and one for time set to Dinner. This is shown in Figure 17.61.

 [image: image]

Next, we look at plotting a single set of data as opposed to one value against another. We call this a univariate distribution, and for this type of data, we may want to use a histogram. To demonstrate this, we can simply generate some random data and then pass this into distplot to give us a histogram with a KDE fit to our data as shown in Figure 17.62.

 [image: image]

We can customise the histogram and next we look to remove the KDE by setting the kde option to False and add a rugplot by setting the rug option to True as shown in Figure 17.63. A rugplot shows every single value of data as lines along the x axis giving us a representation of the data.

 [image: Snapshot of Histogram with KDE.]

Figure 17.62 Histogram with KDE.

 [image: Snapshot of Histogram with ruglplot.]

Figure 17.63 Histogram with ruglplot.

 [image: image]

The previous histogram bin values have been the default values that distplot have used with the dataset. If we want to specify the number of bins to use, we can just set the bin argument to the value that we want and the plot will divide into the number of bins requested as shown in Figure 17.64.

 [image: image]

 [image: Snapshot of Histogram with bins option set.]

Figure 17.64 Histogram with bins option set.

Now having covered scatterplots and histograms, we now look at method which plots both; by using the jointplot method, we get a scatterplot of x against y as well as the histograms for each variable in the x and y axis. In our example, we create two random variables and put these into a DataFrame. This DataFrame is then passed in as the data argument and we set x and y arguments to refer to the columns in our DataFrame with the resultant plot shown in Figure 17.65.

 [image: image]

 [image: Snapshot of Joint plot.]

Figure 17.65 Joint plot.

 [image: Snapshot of Pairplot example using iris data.]

Figure 17.66 Pairplot example using iris data.

The last plot that we will consider in this chapter is the pairplot. In the example shown, we simply pass in the iris DataFrame and the result is a plot which shows every value plotted against every other one as a scatter plot with the distribution of each variable given as a histogram where the x and y names are the same as shown in Figure 17.66. Note in the example we have categorical data within the iris DataFrame yet the pairplot ignores this column.

 [image: image]

In this chapter, we have looked at plotting in Python and seen how we can produce simple easy to use through to very complicated customisable plots. What this hopefully demonstrates is the power of Python when it comes to producing plots. The examples shown should act as a reference for you to refer back to and give you a document of some of what can be achieved in Python.

18
APIs in Python

In this chapter, we will cover how to deal with APIs (application programming interfaces) using Python. To do this we are going to cover both how to create and access an API and build examples to do both. Before we get to writing any code we need to cover what an API is and why its useful. An API is a mechanism that allows communication between software applications and in this case will cover communication between an application and a web user. The uses of APIs have become increasingly popular allowing users to access data or communicate with services. They give a unified approach to doing so and therefore have become an important aspect to become familiar with, understanding how to communicate with.

We begin by creating our own API to do this. We are going to use the Python packages flask as well as the package flask‐restful. To see if you have the packages you can try and import them.

 [image: image]

Now, flask comes by default with the Anaconda distribution of Python but you may not have flask_restful, if that is the case you will need to install it. To do so go to https://anaconda.org/conda-forge/flask-restful to find something like the one shown in Figure 18.1.

Now, while this book has intended to be self‐contained and not rely on many things outside the Anaconda distribution of Python, the url around things like the Anaconda website and subsequent links within it may change. If at the time of reading this is the case, then you just need to search the package list of Anaconda to get this. You could also do a simple search of conda flask restful using your favourite search engine and you should find the relevant web pages. You can then install flask‐restful from the command line using one of the conda commands given.

With all the packages installed we can then look to create our very first API, to do so we will work within the confines of a script, so create a file called my_flask_api.py and add the following in the file.

 [image: image]

 [image: Snapshot of Example of flask-restful download page.]

Figure 18.1 Example of flask‐restful download page.

Let's first run this and then explain what is going on. To do so open up a terminal or command prompt and change directory to where your file is living.

Once there run the command Python my_flask_api.py and you will see something as shown in Figure 18.2.

What this is doing is starting up your API and you are now running it locally on machine. This means that it is accessible by you on your machine but not available on the world wide web. To demonstrate this if we open up a web browser we can go to the ip address http://127.0.0.1:5000/ then we see what is shown in Figure 18.3.

 [image: Snapshot of Display of terminal window upon starting up API.]

Figure 18.2 Display of terminal window upon starting up API.

 [image: Snapshot of Display of API from browser.]

Figure 18.3 Display of API from browser.

How has this all happened? Let's go back and look at the original code.

 [image: image]

We initially import the relevant objects from both flask and flask_restful, and using this we create a flask app using the Flask method with the name of the current module passed in via __name__. This gives us an app object, and we can then create an api object by passing the app into the API method. This is our setup stage, next we want to add an endpoint to it.

 [image: image]

In this code snippet, we create a class named HelloWorld using the argument of Resource. Within this class we create a method called get, which simply returns the dictionary of hello with the key world.

 [image: image]

Lastly, show the code that is executed to start the api up. In relation to the app object we use its run method with the argument of debug set as True. This makes the api available locally for the user. This block of code does raise an interesting line of code, namely,

 [image: image]

This is common place within Python but many use it without understanding it, and we will attempt to resolve that now. Using an if statement with the == between two variables is pretty straightforward but what do __name__ and '__main__' mean? As shown when the Flask object was created, we used the __name__ variable which gives us the name of the current module. But how does this work, we will show by an example creating two files that each call the __name__ variable to show how it behaves. Let us call our first file file_one.py, we put the following code in there:

 [image: image]

If we run this code, then we see the output:

 [image: image]

Now, we create file_two.py and put in the following code:

 [image: image]

If we run this code, then we see the output:

 [image: image]

All sounds sensible but if we now import file_two.py into file_one.py as follows:

 [image: image]

We get the following output:

 [image: image]

What does this mean in relation to the original code snippet?

 [image: image]

Essentially in having that bit of code, it means that if we run the code from the script that it is in, then we can execute what lives within the if statement.

So we have our API running on http://127.0.0.1:5000/ if we maintain the persistence of the script my_flask_api.py. So, keep that running in the same window you had it going in before. Now if we want to programmatically get the data from our own API, we need to use the requests package and access the data. If we work in the console we can interactively access the API running on our own machine using the following code:

 [image: image]

Now, if you refer back to the window where you are running your API from, you will notice that a get request was made to the endpoint / at the time you ran the requests.get method with the url as the argument. You'll notice that the data variable from the requests.get doesn't give us the json data that we saw from the website but instead gave us a response of 200. If we use the dir method around the data object, then we see the following:

 [image: image]

So, here we can see the methods and attributes of the data object and we look at a few of these. The json method of the object unsurprisingly gives the json that we saw from the endpoint via the web browser. The status_code attribute returns the status of the web request that we made here 200,which is a successful request. We will not cover all status codes within this book, however if you are interested then they are easily accessible online. Alongside a status code we also have a reason, here we would expect an informative message to alongside our status code. The text representation of what is returned is also available alongside the url we used. What is clear is that we get a lot of information back from our request.

Now this is a good first example, but it only demonstrates the get request and actually the information isn't that useful as we only get back some simple json. What we will do next is create an API that allows us to get, post, and delete information from a small movie database that we will add to the code. The full code is shown below and as usual we will step through it line by line:

 [image: image]

The imports that we use within this API are as follows:

 [image: image]

This is similar to what we used in the hello world example. However, now there are two more imports from flask_restful, namely reqparse and abort. Reqparse is an argument parser that we can make use of to process arguments sent with the web request to the API as shown below:

 [image: image]

Here, we create a RequestParser and then add arguments, name, year, and month, which we will pass when we need to add a film. Adding this doesn't allow us to get the arguments, to do this we need to parse them out and later in the code we have the following snippet of code:

 [image: image]

What this does is parse the arguments from the RequestParser and then store them in a dictionary.

The abort import is used in a custom function that we use to send an appropriate message if the film:id doesn't exist.

 [image: image]

Here, we pass the film:id as an argument and if the id doesn't exist in the dictionary then a 404 is given with a custom message relating to the film that doesn't exist. We use this function in a number of places within the code as we will show.

Next, we consider the two classes that are in the code namely Films and FilmDict. The first of these looks as follows:

 [image: image]

This class defines get, delete, and put methods which do, as you would think, what it says on the tin and gets a film, deletes a film, and puts a film in our dictionary. Notice that in the get and delete methods, we use our abort_if_film:doesnt_exist function to first check if the film exists and sends the appropriate error message and status code. Note that we could have done it in each method but if we ended up with 20 different methods that would be lots of repeated code. The actual nuts and bolts of what this code does is pretty straight forward and uses dictionary methods covered within this book. Note that for the delete and put methods we return a status code alongside an empty string for the delete method or the task for the put method.

 [image: image]

The next class only has a single get method and returns our entire database of films, but why have this as a separate class? This is because we add this to a separate url as shown in the following code snippet:

 [image: image]

Now, the FilmsDict class be accessed at the films url, if we want to get, delete, or put a film based on an id and we do so via the /films/¡film:id¿.

 [image: image]

And as before we run the app in debug mode. To get this running we change directory to where the code lives and run the script at which time we will have the API available on http://127.0.0.1:5000/ so if we navigate to http://127.0.0.1:5000/films which shows us the list as shown in Figure 18.4.

We can pass an id of a film that exists and get the result shown in Figure 18.5.

 [image: Snapshot of Display of API from browser getting all films.]

Figure 18.4 Display of API from browser getting all films.

 [image: Snapshot of Display of API from browser getting film id 1.]

Figure 18.5 Display of API from browser getting film id 1.

 [image: Snapshot of Display of API from browser getting film id 3.]

Figure 18.6 Display of API from browser getting film id 3.

If we enter the id for a film that isn't already in our database we get the message shown in Figure 18.6.

Now, if we want to use the API to add or delete films we can do so using the requests library. So, let's show some code examples.

 [image: image]

So, we can call the same urls that we did before from the browser using requests. Now, let's show how to add and delete using the api.

 [image: image]

To delete a film based on the id, we use the delete method and pass in the url and note that the text and status code match that mentioned within the API code. Now, to add that record back in we can use the put method.

 [image: image]

Now, we can see that we had only the film with id 2 available so using the put method with the same arguments as the reqparser means we can use the data argument to populate id 1. In sending the put request we get back the data in the form it has been added with the variable names matching what we have in the API. Lastly, we check that it was added correctly by calling the http://127.0.0.1:5000/films and getting all the films we have, which shows the film with id 1 was added back in.

So far our API has been public but what if we want to secure it in some way? To do so we need some authentication on our API, and below we discuss some of the options available to us.

Basic Authentication Mentioned above is the definition of basic authentication (Basic Auth) which is a server asking for a username and a password (e.g. to a personal social media account) to allow access to private data (though there are potential security risks to be aware of if this data is not encrypted as it is transferred). Basic Auth is performed over HTTP and is encrypted using SSL to protect the username and password being transmitted. Note that Basic Auth can be done without SSL but sensitive data will be transmitted over HTTP unencrypted which is an extreme security risk. Basic Auth is a simple authentication technique which makes coding it into scripts a relatively straightforward process. However, since it relies on the use of a username and password to access the API and manage the account associated with it, this is not ideal. It is like you lending your car keys to your friend and the keys can open everything in your house and workplace as well. Put differently, if you give your social media usernames and passwords out to scripts, those scripts will end up having a far greater access to your personal social media accounts than you might like!

API Key Authentication API key authentication is a technique that overcomes the weakness of Basic Auth by requiring the API to be accessed with a unique key. The key is usually a long series of letters and numbers that is completely separate from the user's login details (e.g. username and password). As such, API keys can be intentionally limited for security reasons, so that they provide access only to the bits of data and services users we need, rather than granting access to everything.

OAuth Token OAuth is a prevailing standard that applications can use to provide client applications with secure access that operates using the principles of API key authentication. OAuth authorises devices, APIs, servers and applications with access tokens rather than credentials. When OAuth is used to authenticate a connection to a server an authentication request is sent from the client application (in the present case, a Python script that we build) to an authentication server. It is the authentication server that generates the OAuth token. The token is returned to the client application over HTTPS, which then passes it to the API server. You may have come across websites or apps that ask you to login with your Google, Facebook, or Twitter account. In these cases Google, Facebook, or Twitter are acting as an authentication server. Note that an authentication server doesn't need to be a third‐party server, but will generally be a different server to the one providing data.

In the last example of this chapter, we will create an API that uses basic authentication to authenticate a web request. The full code is shown as follows:

 [image: image]

Now much of this code is similar to what we have seen before, so we will just go over the new elements of which there are two.

 [image: image]

In the above block of code we add in the HTTPBasicAuth from flask_httpauth, you may need to install this package so refer back to earlier in the book where we showed you where to find the command for a specific package. With this imported we create a HTTPBasicAuth() object and assign it to auth. We then create a dictionary containing user data which has a username and password as key and value.

 [image: image]

Next, we create a verify function which takes the username and password as arguments and returns True if the value of the dictionary call using the username gives the password we have. Note that we use get method of the dictionary so we don't get a key error. This is decorated this with the auth verify_password. We can then use the decorator auth.login_required on our get method that means we must be logged in to get the return of the HelloWorld class. The resource is added to the endpoint /hello_world and we run the API in the way we have done in the previous examples.

With the API running we can then attempt to access the endpoint http://127.0.0.1:5000/hello_world using the requests library.

 [image: image]

In the first example, we use the standard get method and get back the status code of 401 which refers to us being unauthorised. So to become authorised in the second example we pass a tuple of username and password to the auth argument and we get access to the endpoint and see we get back the expected json response.

In this chapter, we have covered API's how to create then and how to access them. All examples have been run locally on our machine however Python is a great tool for production quality APIs. The examples relating to how to access APIs are particularly useful for those wishing to work with different data sources as APIs are common place as a solution to allow users to interact with. While requests are great for interfacing directly with APIs you may find packages that wrap up some of the complexity associated with providers APIs.

19
Web Scraping in Python

The last chapter of the book covers the concept of web scraping. This is the programmatic process of obtaining information from a web page. To do this we need to get up to speed on a number of things:

	html

	obtaining a webpage

	getting information from the webpage

To do this we will create our own website using Python that we will scrape with our own code.

19.1 An Introduction to HTML

HTML stands for Hyper Text Markup Language and is the standard markup language for creating web pages. It is essentially the language that makes up what you see on the internet. An HTML file tells a web browser how to display the text, images, and other content on a webpage. The purpose of HTML is to describe how the content is structured and not how it will be styled, and rendered within a web browser. To render the page you need to use a cascading style sheet (CSS) and an HTML page can link to a CSS file to get information on colours, fonts, and other information relating to the rendering of the page.

HTML is a markup language, so in creating HTML content you are embedding the text to be displayed alongside how the text should be displayed. The way this is done is by using HTML tags which can contain name‐value pairs which are known as attributes. Information within a tag is known as an HTML element. Well‐formed HTML should have an open and a close tags, and before you start a new tag you should close off your old tag.

Now, that we have described what HTML is we will give some examples of how you create elements within it and show how to put together a page. Let's start by looking at some tags. It is important to remember that when we open a tag we close it with a / (forward slash). Let's demonstrate with a header tag.

Header

This is how we define a header

 [image: image]

Here, we see that to open the tag we have

 [image: image]

and to close it we have

 [image: image]

Paragraph

Next, we show how to tag a paragraph:

 [image: image]

Define

Here, we show how to define a tag, which is how we have embedded a hyperlink:

 [image: image]

Table

The next HTML tag is for a table which is a bit more complex than what we have covered before.

 [image: image]

So the first thing we need to define for a table is the table tag:

 [image: image]

Next, we need to define the rows in the table using the table row tag this is denoted using:

 [image: image]

Here, we have three rows defined.

In each row we need to have some data so you'll see we use

 [image: image]

and

 [image: image]

tags. The

 [image: image]

tags refer to the table header and

 [image: image]

the table data. So here we have the headers being Name, Year, and Month and then the next two rows are the table data.

Thead and Tbody

There are two other tags that we can add to this table and that is the thead and tbody tag. Within a table these can separate out the head and body of the table. They are used as follows:

 [image: image]

Div

The last tag we will introduce is a div tag. This is a tag that defines a section in the html. So linking back to the previous table example we can put a div tag around it. In putting html within a div we can apply the format to the whole section covered by it.

 [image: image]

HTML Attributes

Having defined lots of the tags, we will now discuss the attributes of these tags. Attributes provide us with additional information about the elements. We will show how these relate back to the tags we defined earlier. Let's begin by showing an example of an attribute applied to an

 [image: image]

tag.

 [image: image]

Here, the href is the attribute and it specifies what the url is.

We could also add a title to a tag which would result in the value being displayed as a tooltip (when you hover over it).

 [image: image]

Id and Classes

Having introduced attributes, we will now look at two important ones which can help us locate elements within html, these are the id and class attributes. An id element is unique to that html element whereas a class can be used in multiple elements. Let's demonstrate this by looking at three headers with associated information.

 [image: image]

Here, we have one header with an id attribute. This unique attribute specifically identifies that header. The remaining headers all have the same class film which has been applied to each one. This is only intended as a brief introduction to html so while this will help us in the remainder of the chapter it is not a comprehensive exploration of all things html so if you are interested there are lots of resources online which cover html.

19.2 Web Scraping

Having introduced html and how it works, we now move onto how we obtain that data using Python. When we think of web scraping, we generally think of the process of getting and processing data from a website. Actually this can be broken down into two distinct processes: web crawling and web scraping.

	Web crawling is the process of getting data from one or more urls which can be obtained by traversing through a websites html. For example say a website has a front page with lots of links to other pages and you want to get all the information from all the links, you would traverse through all the links programmatically and then visit all the relevant pages and store them.

	Web scraping is the process of getting the information from the page in question so in the previous part you would have to scrape the page to get the links that you want to traverse. When you scrape the page you would programmatically get the information from the page and when you have that you would be able to store or process the data.

Given scraping plays an important part in the whole process the combination of crawling and scraping will be referred to as web scraping. In scraping a page there is no code of conduct that you sign up to. However, as soon as you try to get data from a website there are some things to note that are important.

	Check if you are allowed to get and use data from a given website: While you may think that any data on the website is fair game, it is not always the case. Check the website's terms of use as while they may not be able to stop you obtaining the data via web scraping they may have something to say that if they see the data used in any research so be careful. The issues around legality of getting data from the web are really important and if you are in any doubt please get legal advice. The examples used in this book will involve creating our own web page locally and getting the data from it so we are covered.

	Check if there is a fair usage policy: Some websites are happy for you to scrape the data as long as you do it in an appropriate way. What do we mean by that? Well, every time you make a call to a website you are providing traffic to that site. By doing this via a computer you can send a lot of traffic to a site very quickly and this can be problematic to the site. If you are seen to do this your IP address can be blocked from the site which would mean you wouldn't be able to access the site in question. So what you need to consider is how often you plan to run code to hit certain websites and what is appropriate and necessary for you and whether the site will allow you to do. For code that does a call to a single url, it is just about how often you run it, however, if you wrote a code that crawled across lots of urls and brought back the data from them, then you would need to ensure that your code is running at an appropriate speed. To do this you would need to consider adding time delays to what you do to ensure that you are not sending excessive traffic to the site.

	Robots.txt: Again, linked to the above points, if you go to the websites url/robots.txt you will get information on what web crawlers can and can't do. If present, then it's expected that this is read to understand what can and can't be scrapped. If there is no robots.txt, then there is no specific instruction on how the site can be crawled. However, don't assume you can scrape everything on the site.

Ultimately you need to take care when scraping a website and if they have an application programming interface (API) available then you should be using that. If you are unsure please get the appropriate advice. Before you can start crawling the site and scraping the data you need to understand the page. Python cannot just get you the data you want, instead you need to tell it how to find the data you are after. So you need to understand how the html works and where to look.

To inspect the page you have a couple of options.

Through a Web Browser

You can use the tools of the web browser to inspect what HTML refers to what elements of the page. The manner in which you can inspect is specific to the browser itself. Ultimately, it involves you selecting the element of the page and inspecting the corresponding HTML and then it showing what the html refers to that element. Different browsers have different ways of inspecting the pages they show so refer to the documentation around the specific browser that you are using.

Saving the Page and Physically Searching

You can physically save the page and then search for the name or value of certain text and in the same way determine what html refers to that element. Ultimately what you are trying to do is learn what html refers to what values in the website. This isn't an exact science due to the fact html can be written in different ways. The key is understanding the definitions of html and how they fit together and then use this to understand what you need to access in the html. With any piece of code you need to plan ahead and with parsing html you need to develop a plan for how you want to get the data from the html.

So going back to what we mentioned at the start, we described web scraping and web crawling. Web crawling is the process of actually accessing the data from a url or multiple urls. To do this we need a mechanism to do this, luckily making a web request can be in the same way we accessed an API endpoint in the Chapter so we will use the requests library. This will be demonstrated later in the chapter where we setup our own webpage.

Having a mechanism to get the data is great but we also need to process what we get back so we need a Python library that can do this. Python has many options and this book isn't intended to be a review of the best packages for processing html as the landscape is constantly changing. Instead we will cover one specific parser namely BeautifulSoup.

BeautifulSoup

BeautifulSoup is not only an html parser but can also parse xml by using the lxml library which we covered earlier in the book. The way that BeautifulSoup works is that it takes advantage of other parsers. So, to run BeautifulSoup you would:

 [image: image]

Here content_to_be_parsed is the content from the site which could have been obtained using requests as shown before and the ‘parser name’ is the name of the parser to use. The four examples of these parsers are:

	html.parser: This is the default Python html parser. It has decent speed and is lenient in how it accepts html as of 3.2.2.

	lxml: This is built upon the lxml Python library which is built upon the C version. It's very fast and very lenient.

	lxml‐xml or xml: Again built upon lxml so similar to above. However, this is the only xml parser you can use with BeautifulSoup. So, while we introduced how to parse XML with lxml, you could also do the same in BeautifulSoup.

	htmllib5: This is built upon the Python html5lib and is very slow, however, it's very lenient and it parses the page in the same way a web browser does to create valid html5.

Now, for the rest of this section we will concentrate on using the html.parser. So to create soup we can do as follows:

 [image: image]

Now, this will have transformed the html into a format where we can access elements within it. What we will show now are the methods available to us.

 [image: image]

Now we can access this tag as follows:

 [image: image]

Now, if we had multiple b tags using soup.b would only return the first one.

 [image: image]

So, we won't get all the b tags back only the first one. The tag itself has a name which can be accessed as follows:

 [image: image]

The tag also has a dictionary of attributes which are accessed as follows:

 [image: image]

Now, let's have a look in a more complicated example. If we look at something like a table we can parse it as follows:

 [image: image]

Now, we can access elements of the table by just traversing down the tree structure of the html.

 [image: image]

Now, in each example we get the first instance of the tag that we are looking for. Assume we want to find all tr tags within the table we can do so as follows using the findAll method.

 [image: image]

So, here we get back a list of all the tr tags. Similarly, we can get back the list of td tags using the same method.

 [image: image]

So with regards to getting data out if we look back and consider our original table, we can use the find all method to get all the tr tags and then loop over these and get the td tags.

 [image: image]

What we are doing here is looping over the high level tr tags to get every row and then looking for the th tags and if we find them, we know its the table header and if not we get the td tags and associate both with the appropriate list namely headers or content. The important thing to note here is that we know the structure of the data as we will have inspected the html so we build the parsing solution knowing what we will get.

So, we have introduced the find_all method in a single table. But if we had two tables and the table we wanted had a specific id we could use the find method as follows:

 [image: image]

And we can get the data from this table in a similar way as before but again we can take advantage of the find method to find the text in the specific element.

 [image: image]

This shows that when we have multiple tables we can obtain the information from a specific one, this is really dependent on the table having an id attribute which made the process much easier.

So, we now know how to process html, and the next stage is to grab data from a website and then parse that data using Python. To do this we will build our own website locally which we will grab data from and parse the results. Given we have covered the libraries to get and process the data how do we go about creating a website?

As in the Chapter , we will use the package Flask to create a simple website that we can run locally and then scrape the data from. Let's just get started and write a hello world example to show how it will work. Here, we will create a file called my_flask_website.py and put the following code in it:

 [image: image]

Now, if you think back to the Chapter what we have here is a reduced down version of what we used to create our API. We import Flask from the flask package and then create ourselves an app. Unlike with the API where we created a class we simply define a hello_world function which returns the string Hello World.

 [image: image]

Again we use the syntax:

 [image: image]

to run our application. As with the API we built if we open a terminal or command prompt and move to the location of the file and run the code using Python my_flask_website.py then we will get a web page as shown in Figure 19.1.

 [image: Snapshot of Display of website from terminal.]

Figure 19.1 Display of website from terminal.

 [image: Snapshot of Display of website from browser.]

Figure 19.2 Display of website from browser.

If we then go to the address on a web browser we will see a web page as shown in Figure 19.2.

Now, one part of the code that we didn't cover was the use of @app.route this is an example of a decorator. In this is an example its purpose is to bind a location to a function. So when we apply the following:

 [image: image]

What we are doing is mapping any call of http://127.0.0.1:5000/ to the function hello_world so when that url is called the hello_world function is executed and the results displayed. This is a specific use of a decorator in general decorators are functions that can take functions as an argument. The best way to explain is by demonstration so we could decorate the hello_world function with a decorator that make a string all lowercase.

 [image: image]

What this function does is take in another function as an argument and then run the wrapper function in the return statement. The function wrapper then runs the function that is passed in to make_uppercase and take the output from it and make it lowercase and return that value. Let's demonstrate with one example (Figure 19.3).

 [image: Snapshot of Display of website from with lowercase decorator applied.]

Figure 19.3 Display of website from with lowercase decorator applied.

 [image: image]

We have our website up and running, so let's programmatically get the data from it. To do this we can use requests in the same way we did in the API chapter to obtain a get request.

 [image: image]

Notice that this time we looked at the text attribute as opposed to the json method and that is because the content of our website is not json. This is all well and good but its not much of a challenge to process the data mainly because its not in html format (Figure 19.4). We can change that pretty easily by just modifying the code in our flask application so let's change the output hello world as follows:

 [image: Snapshot of Display of website from browser with html.]

Figure 19.4 Display of website from browser with html.

 [image: image]

With our flask application running we can see the following on the web browser:

It looks pretty similar to what we saw before, so what has changed? If we run the code to get the data from the webpage we get the following:

 [image: image]

You can now see that instead of just the text representation, we have some html around that with the h tags.

Let's modify the code once more and change the h tags to h1 tags, so our flask application now looks like so

 [image: image]

With our flask application running we can see the following on the web browser:

 [image: Snapshot of Display of website from browser with h1 hello world.]

Figure 19.5 Display of website from browser with h1 hello world.

Again running the same requests code on this website bring back the h1 tags (Figure 19.5).

 [image: image]

So now we have our website running lets add something a little harder to parse and create a table that we can look to programmatically obtain. To do this we will add a new route to the flask application and look to add a html table. To do this we will make use of some existing data from the seaborn package namely the tips data.

 [image: image]

Now, we have imported the tips dataset and we can make use of the to_html method from pandas, which takes the DataFrame and give us back html that we could put on our website. If we look back to our previous table example, we might want to add an id to the table to allow us to access the table and we can do that using to_html by passing in the table_id argument and setting it to the name that we want our table to have. So, let's apply it by setting the name to be tips.

 [image: image]

So, we can now see we have added the id attribute with the name tips. Our next step is to add this to our website and we can alter the code as follows to do so:

 [image: image]

 [image: Snapshot of Display of website from browser showing a table.]

Figure 19.6 Display of website from browser showing a table.

Now, the difference here is that we have added the imports for seaborn and then imported the tips dataset. To display this we then create another function called table_view and in it return 20 rows of the DataFrame and convert it to html with the id of tips. A decorator then defines the route of this to be /table which means when we go to the http://127.0.0.1:5000/table we will see the result of this function. Let's do that and go to the url and see what is shown (Figure 19.6).

Now, we can see the table but it doesn't look great, we can customise this using some of the options that come with pandas. First, we will remove the index from the table as you normally wouldn't see this on a website. Next, we will centre the table headings and we will also make the borders more prominent. So our flask application is now modified to this.

 [image: image]

The browser view now looks like the one shown in Figure 19.7.

 [image: Snapshot of Display of website from browser showing a table with customisation.]

Figure 19.7 Display of website from browser showing a table with customisation.

If we use some of what we covered earlier, we can add a title and some information about the website in a paragraph. To do that we can use the h1 and p tags to create a header and paragraph, respectively, and to show that everything belongs together let's put this all within a div tag so it resembles what you might find on a production web page. The flask application now looks like the following:

 [image: image]

Our webpage now looks as the one shown in Figure 19.8.

 [image: Snapshot of Display of website from browser showing a table with header and paragraph.]

Figure 19.8 Display of website from browser showing a table with header and paragraph.

Ok so now we have a website we want to scrape it so let's use requests to get the html that we will look to obtain.

 [image: image]

So, we can see that it was relatively straight forward to get the data but unlike with our static table example before the data from the webpage is more than just table data. The next step is to pass this into BeautifulSoup to parse the html.

 [image: image]

$$$$$$$$$$$$$$
In using the table id we can go directly to the table within the html and we then have access to all the rows within it just like before. Note that we have only shown a subset of this data as we have 20 rows. Now, if we want to parse the data from the html we can use something like we used on the dummy data.

 [image: image]

As we can see we have now pulled the data from the html and got it into two separate lists bit to go a step further we can put it back into a DataFrame pretty simply by using what we have covered earlier in the book.

 [image: image]

Now, we have gone full circle and used a DataFrame to populate a table within our website and then scraped that data and converted it back into a DataFrame.

This chapter has covered a lot of content from introducing html to parsing it out to building our own website and scraping from there. The examples have been focussed on table data but they can be applied to any data we find within html. When it comes to web scraping Python is a powerful and popular choice to interact and obtain data from the web.

20
Conclusion

This book has given you an introduction into Python covering all the basics right up to some complex examples. However, there is much more that could have been covered and much more for you the reader to learn. Python has many more packages and changes are always being made, so its important to keep up to date with the trends within the language. From a development point of view, we have kept things simple working in the shell or writing basic scripts, however Python can be so much more than an exploratory language. Python can be used in a production environment and given its adoption by many big tech firms it works very well with a lot of cloud computing solutions and is an excellent choice for everything from web applications to machine learning. This book is a gateway to give you the tools to follow your own Python journey and with a community as big as Pythons there is always something to learn as well as new things to be aware of. Good luck!

Index

a

	aggfunc argument  153

	aggregate method  147

	akima  143

	Anaconda distribution of Python  215

	Anaconda installation of Python  99

	Anaconda navigator  3, 4

	APIs see application programming interfaces (APIs)

	append method  31, 119, 126

	application programming interfaces (APIs)  179, 215–227

	abort  221

	basic authentication in  224

	from browser  217, 222, 223

	delete method in  223

	dir method  219

	Flask method  217

	flask‐restful download page  215, 216

	key authentication  224

	OAuth token  224–225

	put method on  224

	RequestParser  221

	requests.get method  219

	single get method  222

	terminal window  217

	apply method  150

	as_index argument  148

	attributes  229, 232

b

	barh plot  168

	bar plot  207

	barycentric  143

	Basic Auth  224

	BeautifulSoup  235–254

	findAll method  238

	find method  239, 240

	htmllib5  235

	html.parser  235

	lxml Python library  235

	lxml‐xml  235

	Boolean series  199

	boolean value  16, 34

	boston.json  155

	boston.xlsx  155

	boxen plot  202–204

	builtin functions  7–10, 47

	built‐in plot  166

	byte arrays  17

c

	cascading style sheet (CSS)  229

	catplot method  194, 197–201

	cell method, in excel  83

	classes  96–101

	concatenation  13, 121–136

	confidence interval  187

	corr method  138

	count plot  208

	cov method  138

	cumsum method  139, 184

	custom colour linetype, plot with  174

	custom line colour, plot with  173

	custom linetype, plot with  173

d

	DataFrame  111–122, 136–141, 155, 166, 199, 213, 253, 254

	apply method on  150

	corr method to  138

	cov method on  138

	cumsum method  139

	len method on  138

	data types  11–18

	boolean values  16

	built‐in function bool  16

	ZeroDivisonError  17

	dates  25–27

	datetime  9, 10

	del method  44, 115

	dictionaries  41–46, 62, 128, 222

	clear method in  45

	copy method in  44

	del method  44

	dict method in  41–42

	fromkeys method  45

	popitem method  44

	pop method  43

	dict method  41–42

	dir method  219

	discard method, in sets  54

	distplot  211

	dtypes method  193

e

	ElementTree  89

	elif statement  58

	else statement  57, 58

	equals operator approach  23

	excel  83–84

	Extensible Markup Language (XML)  86–90

f

	files  79

	excel  83–84

	JSON  84–86

	with pandas  154–157

	XML  86–90

	findAll method  238

	Flask method  217

	float  12

	definition of  11

	fmri dataset  192, 194, 195

	fromkeys method  45

	functions and classes  91–101

g

	groupby method  146, 147

	grouping  146–154

h

	hello_world function  241, 242

	histogram  162, 204, 210

	with bins option set  212

	of iris DataFrame  167

	with KDE  211

	with ruglplot  211

	of sepal length  161, 163

	HTML (Hyper Text Markup Language)  229–233

	attributes  232

	define  230

	div tag  232

	header  229–230

	id and classes  233

	paragraph  230

	table 230–231

	thead and tbody  231

	website from browser with  244

	htmllib5  235

	html.parser  235

	HTTPBasicAuth  226

	Hyper Text Markup Language (HTML). see HTML (Hyper Text Markup Language)

i

	if statement  57, 59

	iloc  114

	integers  11–13, 73

	integrated development environment (IDE)  99

	intersection method  50

	iris data  164, 165

	boxplot of  209

	density plot on  165

	line plot on  165

	pairplot  213

	iris DataFrame

	area plot of  166

	histogram of  167

	KDE of  167

	iris.plot method  167, 169

	isdisjoint method  53

	isna() method  136

	issubset  53

	issuperset  53

	iteritems method  118

	iterrows method  119

j

	JavaScript Object Notation (JSON)  84–86, 219, 243

	join method  71–72, 121–136

	jointplot method  212

	JSON (JavaScript Object Notation)  84–86, 219, 243

	Jupyter Notebook  5

k

	kernel density estimate (KDE)  204, 210, 211

	KeyError  43

l

	left join  130

	legend method  176

	len method  138

	linear regression models  179

	line plot, in Seaborn  186

	hue and style applied  190, 191

	hue applied  189

	mean and confidence interval  187

	mean and no confidence interval  188

	mean and standard deviation  189

	list comprehension  62

	lists  29–37, 60

	append method  31

	boolean value  34

	clear method  34

	copy method  34

	of integers  29

	pop method  30

	range object  35–37

	sort method  31

	stuff list  31

	loops  45, 54, 58, 59, 61–63

	lottery function  91–93, 99–101

	lxml Python library  235

	lxml‐xml  235

m

	matplotlib  169–179

	custom colour linetype, plot with  174

	custom line colour, plot with  173

	custom linetype, plot with  173

	iris plot  169

	labels, plot with  176

	legend, plot with  177

	limits altered, plot with  175

	panel plot  169, 170

	reverse limits, plot with  175

	scatter plots with different markers  178

	scatter plot with different sizes  179

	maxsplit argument  77

	mean  140–141, 187–189, 188

	merge method  121–136

	missing data, in pandas  141–146

	multilevel index  124, 128

	multiple plots with col  210

	multi line plot  194–196

	multi scatter plot  192

	myfile.csv  155

n

	nested if statement  59

	nlargest method  149

	Notebook  3

	notna() method  136

	np.sum method  148

	nsmallest method  149

	numpy arrays  103–106

o

	OAuth token  224–225

	openpyxl  83

	operators  19–24

	equals operator approach  23

	floor operator  23

	optional name argument  124

p

	packages  7–10

	datetime  9, 10

	pairplot  213

	pandas  103–157

	concatenation  121–136

	DataFrame method  111–121, 136–141

	grouping  146–154

	join method  121–136

	merge method  121–136

	missing data  141–146

	numpy arrays  103–106

	qcut  150

	reading in files with  154–157

	scatter plot on, data frame  166

	series  106–110

	panel plot  169, 170, 171

	parse method  90

	pchip  143

	pivot table  151, 152

	plotting  159

	matplotlib  169–179

	pandas  159–168

	Seaborn  179–214

	polynomial data  143

	popitem method  44

	pop method  30, 43, 80, 115

	Python null value  21, 43

q

	qcut  150

	Qt Console  3, 5, 6

r

	randn method  184

	RandomState  177, 178

	range object  35–37

	raw string  68

	read_csv method  155

	read_table method  155

	regular expressions  73–78

	span method  78

	split method  77

	submethod  77

	replot method  180

	RequestParser  221

	requests.get method  219

	right join  130

	robots.txt  234

	ruglplot  211

s

	savefig method  169

	scatter plots

	with different markers  178

	with different sizes  179

	on pandas data frame  166

	replot in seaborn  180–185

	Seaborn  159

	bar plot  207

	boxplot  202–203, 209

	catplot  197–201

	count plot  208

	joint plot  212

	line plot in  186–191

	multi line plot  194–196

	multiple plots with col  210

	multi scatter plot on  192

	pairplot  213

	scatter plot in  180–185

	violin plot  205, 206

	sepal length

	area plot of  162

	boxplot of  161

	density plot of  162

	histogram of  161, 163

	KDE of  163

	line plot of  160, 164

	series  106–110

	sets  47

	add method  48, 54

	clear method for  54

	dictionaries and  48

	discard method in  54

	frozen set  55–56

	intersection method  50

	isdisjoint method  53

	issubset  53

	issuperset  53

	remove method in  53

	string  47–48

	symmetric_difference method  52

	tuple in  48

	in union method  49–51

	single get method  222

	sort method  31

	span method  78

	spline data  143

	split method  77

	Spyder IDE  99

	run file in  100

	square bracket method  140

	standard deviation  189

	streams method  81

	string file_name  79

	string formatting  70

	strings  13, 25, 47–48, 67, 72, 74–75

	definition of  11

	double quotes in  68

	format method  70

	join method in  71–72

	raw string  68

	single quote in  67

	split method in  70–71

	triple quotes in  68

	SubElement method  89

	submethod  77

	subplot method  170, 171

	sum method  136

	symmetric_difference method  52

	sys.path list  100–101

t

	timedelta object  25–27

	to_csv method  155

	to_html method  245

	tuples  39–40, 48, 112

	count  40

	index value  40

u

	union method  49–51

v

	variable, definition of  12

	violin plot  205, 206

w

	web crawling  233, 235

	web scraping  229

	definition of  233

	HTML  229–233

	saving the page and physically searching  235

	through web browser  234

	while loops  63, 65

	worksheet method  84

x

	xlim methods  175

	XML (Extensible Markup Language)  86–90

y

	ylim methods  175

z

	ZeroDivisonError  17

 WILEY END USER LICENSE AGREEMENT

 Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

