

Python Packages

Chapman & Hall/CRC
The Python Series

About the Series

Python has been ranked as the most popular programming language, and it is widely used
in education and industry. This book series will offer a wide range of books on Python
for students and professionals. Titles in the series will help users learn the language at an
introductory and advanced level, and explore its many applications in data science, AI, and
machine learning. Series titles can also be supplemented with Jupyter notebooks.

Image Processing and Acquisition using Python, Second Edition
Ravishankar Chityala, Sridevi Pudipeddi

Python Packages
Tomas Beuzen and Tiffany Timbers

For more information about this series please visit: https://www.crcpress.com/Chapman-
-HallCRC/book-series/PYTH

https://www.crcpress.com/Chapman--HallCRC/book-series/PYTH
https://www.crcpress.com/Chapman--HallCRC/book-series/PYTH

Python Packages

Tomas Beuzen
Tiffany Timbers

First edition published 2022
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2022 Tomas Beuzen and Tiffany Timbers

Reasonable efforts have been made to publish reliable data and information, but the author
and publisher cannot assume responsibility for the validity of all materials or the conse-
quences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if
permission to publish in this form has not been obtained. If any copyright material has not
been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted,
reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other
means, now known or hereafter invented, including photocopying, microfilming, and re-
cording, or in any information storage or retrieval system, without written permission
from the publishers.

For permission to photocopy or use material electronically from this work, access www.
copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please
contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trade-
marks and are used only for identification and explanation without intent to infringe.

ISBN: 978-1-032-03825-4 (hbk)
ISBN: 978-1-032-02944-3 (pbk)	
ISBN: 978-1-003-18925-1 (ebk)

DOI: 10.1201/9781003189251

Publisher’s note: This book has been prepared from camera-ready copy provided by the
authors.

mailto:mpkbookspermissions@tandf.co.uk
http://www.copyright.com
http://www.copyright.com
https://doi.org/10.1201/9781003189251

To you, the Reader.

Never stop learning. You are capable of anything.

http://taylorandfrancis.com

Contents

List of Figures xi

List of Tables xiii

Preface xv

About the authors xix

1 Introduction 1
1.1 Why you should create packages 2

2 System setup 3
2.1 The command-line interface 3
2.2 Installing software . 3

2.2.1 Installing Python . 3
2.2.2 Install packaging software 4

2.3 Register for a PyPI account 5
2.4 Set up Git and GitHub . 5
2.5 Python integrated development environments 6

2.5.1 Visual Studio Code . 7
2.5.2 JupyterLab . 8
2.5.3 RStudio . 10

2.6 Developing with Docker . 11
2.6.1 Docker with Visual Studio Code 12
2.6.2 Docker with JupyterLab 14

3 How to package a Python 17
3.1 Counting words in a text file 17

3.1.1 Developing our code 17
3.1.2 Turning our code into functions 20

3.2 Package structure . 22
3.2.1 A brief introduction 22
3.2.2 Creating a package structure 23

3.3 Put your package under version control 26
3.3.1 Set up local version control 26
3.3.2 Set up remote version control 27

3.4 Packaging your code . 30

vii

viii Contents

3.5 Test drive your package code 32
3.5.1 Create a virtual environment 32
3.5.2 Installing your package 33

3.6 Adding dependencies to your package 37
3.6.1 Dependency version constraints 40

3.7 Testing your package . 43
3.7.1 Writing tests . 43
3.7.2 Running tests . 45
3.7.3 Code coverage . 48

3.8 Package documentation . 49
3.8.1 Writing documentation 52
3.8.2 Writing docstrings . 54
3.8.3 Creating usage examples 59
3.8.4 Building documentation 60
3.8.5 Hosting documentation online 69

3.9 Tagging a package release with version control 72
3.10 Building and distributing your package 74

3.10.1 Building your package 74
3.10.2 Publishing to TestPyPI 78
3.10.3 Publishing to PyPI . 79

3.11 Summary and next steps . 79

4 Package structure and distribution 83
4.1 Packaging fundamentals . 83
4.2 Package structure . 89

4.2.1 Package contents . 89
4.2.2 Package and module names 92
4.2.3 Intra-package references 93
4.2.4 The init file . 94
4.2.5 Including non-code files in a package 97
4.2.6 Including data in a package 98
4.2.7 The source layout . 101

4.3 Package distribution and installation 103
4.3.1 Package installation 104
4.3.2 Building sdists and wheels 107
4.3.3 Packaging tools . 108
4.3.4 Package repositories 109

4.4 Version control . 110

5 Testing 111
5.1 Testing workflow . 111
5.2 Test structure . 114
5.3 Writing tests . 116

5.3.1 Unit tests . 116
5.3.2 Test that a specific error is raised 120

Contents ix

5.3.3 Integration tests . 123
5.3.4 Regression tests . 124
5.3.5 How many tests should you write 126

5.4 Advanced testing methods 126
5.4.1 Fixtures . 127
5.4.2 Parameterizations . 129

5.5 Code coverage . 132
5.5.1 Line coverage . 133
5.5.2 Branch coverage . 134
5.5.3 Calculating coverage 134
5.5.4 Coverage reports . 136

5.6 Version control . 138

6 Documentation 139
6.1 Documentation content and workflow 139
6.2 Writing documentation . 143

6.2.1 README . 144
6.2.2 License . 145
6.2.3 Contributing guidelines 146
6.2.4 Code of conduct . 146
6.2.5 Changelog . 147
6.2.6 Examples . 148
6.2.7 Docstrings . 150
6.2.8 Application programming interface (API) reference . . 153
6.2.9 Other package documentation 153

6.3 Building documentation . 154
6.4 Hosting documentation online 162

7 Releasing and versioning 165
7.1 Version numbering . 165
7.2 Version bumping . 168

7.2.1 Manual version bumping 168
7.2.2 Automatic version bumping 169

7.3 Checklist for releasing a new package version 172
7.3.1 Step 1: make changes to package source files 173
7.3.2 Step 2: document your changes 173
7.3.3 Step 3: bump version number 174
7.3.4 Step 4: run tests and build documentation 176
7.3.5 Step 5: tag a release with version control 177
7.3.6 Step 6: build and release package to PyPI 178

7.4 Automating releases . 181
7.5 Breaking changes and deprecating package functionality . . . 181
7.6 Updating dependency versions 183

x Contents

8 Continuous integration and deployment 185
8.1 An introduction to CI/CD 185
8.2 CI/CD tools . 186
8.3 Introduction to GitHub Actions 187

8.3.1 Key concepts . 187
8.3.2 A toy example . 188
8.3.3 Actions and commands 192

8.4 Setting up continuous integration 193
8.4.1 Setup . 193
8.4.2 Running tests . 196
8.4.3 Recording code coverage 196
8.4.4 Build documentation 197
8.4.5 Testing continuous integration 198

8.5 Setting up continuous deployment 200
8.5.1 Setup . 201
8.5.2 Automatically creating a new package version 204
8.5.3 Uploading to TestPyPI and PyPI 207
8.5.4 Testing continuous deployment 210

8.6 Summary . 214

Bibliography 219

Index 221

List of Figures

2.1 Installing the Python extension in Visual Studio Code. 7
2.2 Executing a simple Python file called hello-world.py from the

integrated terminal in Visual Studio Code. 8
2.3 Executing a simple Python file called hello-world.py from a

terminal in JupyterLab. 9
2.4 Executing Python code in the RStudio. 11

3.1 Creating a new repository in GitHub. 28
3.2 Setting up a new repository in GitHub. 29
3.3 Instructions on how to link local and remote version control

repositories. 30
3.4 Example figure created from the plotting function. 38
3.5 Rendered version of README.md. 54
3.6 A simple Jupyter Notebook using code from pycounts. 61
3.7 First half of Jupyter Notebook demonstrating an example work-

flow using the pycounts package. 61
3.8 Second half of Jupyter Notebook demonstrating an example

workflow using the pycounts package. 62
3.9 The documentation homepage generated by sphinx. 63
3.10 Documentation for the pycounts plotting module. 69
3.11 Jupyter Notebook example rendered into pycounts’s documen-

tation. 70
3.12 Tag of v0.1.0 of pycounts on GitHub. 73
3.13 Making a release of v0.1.0 of pycounts on GitHub. 74
3.14 Release of v0.1.0 of pycounts on GitHub. 75

4.1 Keep package names meaningful, memorable, and manageable. 93
4.2 The Python package cycle. 104

5.1 The testing workflow. 113
5.2 HTML test report. 137
5.3 Detailed view of the datasets module in the HTML report. . 137

6.1 Example of HTML documentation generated by sphinx. . . . 142
6.2 First half of Jupyter Notebook demonstrating an example work-

flow using the pycounts package. 150

xi

xii List of Figures

6.3 Second half of Jupyter Notebook demonstrating an example
workflow using the pycounts package. 151

6.4 API reference for the pycounts package. 154
6.5 API reference for the pycounts.plotting package. 155
6.6 The documentation homepage generated by sphinx. 157
6.7 Jupyter Notebook example rendered into pycounts’s documen-

tation. 161

7.1 Tag of v0.2.0 of pycounts on GitHub. 178
7.2 Release v0.2.0 of pycounts on GitHub. 179

8.1 Setting up our first GitHub Actions workflow. 188
8.2 Our first GitHub Actions workflow. 190
8.3 The logs of our first GitHub Actions workflow. 191
8.4 Example of the Codecov dashboard linked to a repository called

pypkgs. Coverage decreased significantly after the most recent
commit. 198

8.5 Successfully run continuous integration workflow on GitHub. 200
8.6 Continuous integration workflow logs. 201
8.7 Adding the TestPyPI API token to our GitHub repository. . 208
8.8 Adding the PyPI API token to our GitHub repository. 209
8.9 Continuous deployment workflow on GitHub. 212
8.10 Successfully run continuous deployment workflow on GitHub. 213
8.11 The Python semantic release tool automatically bumped the

package version from 0.2.0 to 0.3.0. 214
8.12 The Python semantic release tool automatically updated the

changelog and added an entry for v0.3.0 based on commit mes-
sages. 215

8.13 The Python semantic release tool automatically created tagged
release v0.3.0. 216

8.14 Deployment of new package version 0.3.0 to PyPI. 217

List of Tables

0.1 Concepts this book assumes readers have basic familiarity with. xvi

3.1 A description of the py-pkgs-cookiecutter template prompts. . 24
3.2 A description of the tables in the pyproject.toml. 34
3.3 Typical Python package documentation. 50

4.1 Demonstration of absolute and relative intra-package imports. 94

6.1 Typical Python package documentation. 139

7.1 Examples of major, minor, and patch releases of Python. . . . 167

8.1 Terminology used in GitHub Actions. 187
8.2 Description of Python Semantic Release configuration options. 205

xiii

http://taylorandfrancis.com

Preface

Python packages are the fundamental units of shareable code in Python. Pack-
ages make it easy to organize, reuse, and maintain your code, as well as share
it between projects, with your colleagues, and with the wider Python com-
munity. Python Packages is an open-source book that describes modern and
efficient workflows for creating Python packages. The focus of this book is
overwhelmingly practical; we will demonstrate methods and tools you can use
to develop and maintain packages quickly, reproducibly, and with as much
automation as possible — so you can focus on writing and sharing code!

Why read this book?
Despite their importance, packages can be difficult to understand and cum-
bersome to create for beginners and seasoned developers alike. This book aims
to describe the packaging process at an accessible and practical level for data
scientists, developers, and programmers. Along the way, we’ll develop a real
Python package and will explore all the key elements of Python packaging,
including: creating a package file and directory structure, when and why to
write tests and documentation, and how to maintain and update your package
with the help of automated continuous integration and continuous deployment
(CI/CD) pipelines.

By reading this book, you will:

• Understand what Python packages are, and when and why you should use
them.

• Be able to build your own Python package from scratch.
• Learn how to document your Python code and packages.
• Write software tests for your code and automate them.
• Learn how to release your package on the Python Package Index (PyPI)

and discover best practices for updating and versioning your code.
• Implement CI/CD workflows to build, test, and deploy your package au-

tomatically.
• Get tips on Python coding style, best-practice packaging workflows, and

other useful development tools.

xv

xvi Preface

Structure of the book
Chapter 1: Introduction first gives a brief introduction to packages in
Python and why you should know how to make them.

Chapter 2: System setup describes how to set up your development envi-
ronment to develop packages and follow the examples in this book.

In Chapter 3: How to package a Python, we develop an example package
from beginning-to-end as a practical demonstration of the key steps involved
in the packaging process. This chapter forms the foundation of the book and
will act as a reference sheet for readers creating packages in the future.

The remaining chapters then go into more detail about each step in this pro-
cess, organized roughly in their order in the workflow:

• Chapter 4: Package structure and distribution
• Chapter 5: Testing
• Chapter 6: Documentation
• Chapter 7: Releasing and versioning
• Chapter 8: Continuous integration and deployment

Assumptions
While this book aims to introduce Python packaging at a beginner level, we
assume readers have basic familiarity with the concepts listed in Table 0.1:

TABLE 0.1: Concepts this book assumes readers have basic familiarity with.

Item Learning resources
How to import Python packages
with the import statement

Python documentation

How to write conditionals
(if/elif/else) and loops (for)

Python documentation

How to use and write Python
functions

Plotting and Programming in
Python: Writing Functions (The

Carpentries, 2021)
(Optional) Basic familiarity with
version control and Git and GitHub
(or similar tools)

Happy Git and GitHub for the useR
(Bryan et al., 2021) or Research

Software Engineering with Python
(Irving et al., 2021)

Preface xvii

Conventions
Throughout this book we use foo() to refer to functions, bar for inline com-
mands/variables/function parameters/package names, and __init__.py and
src/ to refer to files and directories respectively.

Commands entered at the command line appear as below, with $ indicating
the command prompt:

$ mkdir my-first-package
$ cd my-first-package
$ python

Code entered in a Python interpreter looks like this:

>>> import math
>>> round(math.pi, 3)

3.142

Code blocks appear as below:

def is_even(n):
”””Check if n is even.”””
if n % 2 == 0:

return True
else:

return False

If you are reading an electronic version of the book, e.g., https://py-pkgs.org,
all code is rendered so that you can easily copy and paste directly from your
browser to your Python interpreter or editor.

Persistence
The Python software ecosystem is constantly evolving. While we aim to make
the packaging workflows and concepts discussed in this book tool-agnostic,
the tools we do use in the book may have been updated by the time you read
it. If the maintainers of these tools are doing the right thing by documenting,

https://py-pkgs.org

xviii Preface

versioning, and properly deprecating their code (we’ll explore these concepts
ourselves in Chapter 7: Releasing and versioning), then it should be
straightforward to adapt any outdated code in the book.

Colophon
This book was written in JupyterLab1 and compiled using Jupyter Book2. The
source is hosted on GitHub3 and is deployed online at https://py-pkgs.org
with Netlify4.

Acknowledgments
We’d like to thank everyone that has contributed to the development of Python
Packages. This is an open source book that began as supplementary mate-
rial for the University of British Columbia’s Master of Data Science program
and was subsequently developed openly on GitHub where it has been read,
revised, and supported by many students, educators, practitioners and hobby-
ists. Without you all, this book wouldn’t be nearly as good as it is, and we are
deeply grateful. A special thanks to those who have contributed to or provided
feedback on the text via GitHub (in alphabetical order of GitHub username):
benjy765, Carreau, chendaniely, dcslagel, eliasdabbas, fegue, firasm, Mid-
nighter, mtkerbeR, NickleDave, SamEdwardes, tarensanders.

The scope and intent of this book was inspired by the fantastic R Packages5

(Wickham and Bryan, 2015) book written by Hadley Wickham and Jenny
Bryan, a book that has been a significant resource for the R community over
the years. We hope that Python Packages will eventually play a similar role
in the Python community.

1https://jupyterlab.readthedocs.io/en/stable/index.html
2https://jupyterbook.org/intro.html
3https://github.com/UBC-MDS/py-pkgs
4https://www.netlify.com/
5https://r-pkgs.org

https://py-pkgs.org
https://jupyterlab.readthedocs.io/en/stable/index.html
https://jupyterbook.org/intro.html
https://github.com/UBC-MDS/py-pkgs
https://www.netlify.com/
https://r-pkgs.org

About the authors

Tomas Beuzen is a data scientist and educator based in Sydney, Australia.
He has a background in coastal engineering and climate science and was a
teaching fellow in the Master of Data Science program (Vancouver Option) at
the University of British Columbia. Tomas currently works as a data scientist
in the renewable energy sector and enjoys spending his free time developing
open-source, educational data science material, and using data science to solve
problems in the natural and engineered world.

Tiffany Timbers is an Assistant Professor of Teaching in the Department of
Statistics and a Co-Director for the Master of Data Science program (Vancou-
ver Option) at the University of British Columbia. In these roles she teaches
and develops curriculum around the responsible application of data science to
solve real-world problems. One of her favorite courses she teaches is a gradu-
ate course on collaborative software development, which focuses on teaching
how to create R and Python packages using modern tools and workflows.

xix

http://taylorandfrancis.com

1
Introduction

Python packages are a core element of the Python programming language and
are how you write reusable and shareable code in Python. This book assumes
that readers are familiar with how to install a package using a package installer
like pip or conda, and how to import and use it with the help of the import
statement in Python.

For example, the command below uses pip to install numpy (Harris et al., 2020),
the core scientific computing package for Python:

$ pip install numpy

Once the package is installed, it can be used in a Python interpreter. For
example, to round pi to three decimal places:

$ python

>>> import numpy as np
>>> np.round(np.pi, decimals=3)

3.142

At a minimum, a package bundles together code (such as functions, classes,
variables, or scripts) so that it can be easily reused across different projects.
However, packages are typically also supported by extra content such as docu-
mentation and tests, which become exponentially more important if you wish
to share your package with others.

As of January 2022, there are over 350,000 packages available on the Python
Package Index (PyPI)1, the official online software repository for Python.
Packages are a key reason why Python is such a powerful and widely used
programming language. The chances are that someone has already solved a
problem that you’re working on, and you can benefit from their work by down-
loading and installing their package. Put simply, packages are how you make

1https://pypi.org

DOI: 10.1201/9781003189251-1 1

https://pypi.org
https://doi.org/10.1201/9781003189251-1

2 1 Introduction

it as easy as possible to use, maintain, share, and collaborate on Python code
with others, whether they be your friends, work colleagues, the world, or your
future self!

Even if you never intend to share your code with others, making packages
will ultimately save you time. Packages make it significantly easier for you to
reuse and maintain your code within a project and across different projects.
After programming for some time, most people will eventually reach a point
where they want to reuse code from one project in another. For beginners,
in particular, this is something often accomplished by copying-and-pasting
existing code into the new project. Despite being inefficient, this practice also
makes it difficult to improve and maintain your code across projects. Creating
a simple Python package will solve these problems.

Regardless of your motivation, the goal of this book is to show you how to
easily develop Python packages. The focus is overwhelmingly practical — we
will leverage modern methods and tools to develop and maintain packages
efficiently, reproducibly, and with as much automation as possible, so you
can focus on writing and sharing code. Along the way, we’ll also enlighten
some interesting and relevant lower-level details of Python packaging and the
Python programming language.

1.1 Why you should create packages
There are many reasons why you should develop Python packages!

• To effectively share your code with others.
• They save you time. Even if you don’t intend to share your package with

others, they help you easily reuse and maintain your code across multiple
projects.

• They force you to organize and document your code, such that it can be
easily understood and used at a later time.

• They isolate dependencies for your code and improve its reproducibility.
• They are a good way to practice writing good code.
• Packages can be used to effectively bundle up reproducible data analysis

and programming projects.
• Finally, developing and distributing packages supports the Python ecosys-

tem and other Python users who can benefit from your work.

2
System setup

If you intend to follow along with the code presented in this book, we rec-
ommend you follow these setup instructions so that you will run into fewer
technical issues.

2.1 The command-line interface
A command-line interface (CLI) is a text-based interface used to interact with
your computer. We’ll be using a CLI for various tasks throughout this book.
We’ll assume Mac and Linux users are using the “Terminal” and Windows
users are using the “Anaconda Prompt” (which we’ll install in the next section)
as a CLI.

2.2 Installing software
Section 2.2.1 and Section 2.2.2 describe how to install the software you’ll
need to develop a Python package and follow along with the text and examples
in this book. However, we also support an alternative setup with Docker that
has everything you need already installed to get started. The Docker approach
is recommended for anyone that runs into issues installing or using any of the
software below on their specific operating system, or anyone who would simply
prefer to use Docker — if that’s you, skip to Section 2.3 for now, and we’ll
describe the Docker setup later in Section 2.6.

2.2.1 Installing Python
We recommend installing the latest version of Python via the Miniconda distri-
bution by following the instructions in the Miniconda documentation1. Mini-
conda is a lightweight version of the popular Anaconda distribution. If you

1https://docs.conda.io/en/latest/miniconda.html

DOI: 10.1201/9781003189251-2 3

https://docs.conda.io/en/latest/miniconda.html
https://doi.org/10.1201/9781003189251-2

4 2 System setup

have previously installed the Anaconda or Miniconda distribution feel free to
skip to Section 2.2.2.

If you are unfamiliar with Miniconda and Anaconda, they are distributions of
Python that also include the conda package and environment manager, and a
number of other useful packages. The difference between Anaconda and Mini-
conda is that Anaconda installs over 250 additional packages (many of which
you might never use), while Miniconda is a much smaller distribution that
comes bundled with just a few key packages; you can then install additional
packages as you need them using the command conda install.

conda is a piece of software that supports the process of installing and up-
dating software (like Python packages). It is also an environment manager,
which is the key function we’ll be using it for in this book. An environment
manager helps you create “virtual environments” on your machine, where you
can safely install different packages and their dependencies in an isolated lo-
cation. Installing all the packages you need in the same place (i.e., the system
default location) can be problematic because different packages often depend
on different versions of the same dependencies; as you install more packages,
you’ll inevitably get conflicts between dependencies, and your code will start
to break. Virtual environments help you compartmentalize and isolate the
packages you are using for different projects to avoid this issue. You can read
more about virtual environments in the conda documentation2. While alterna-
tive package and environment managers exist, we choose to use conda in this
book because of its popularity, ease-of-use, and ability to handle any software
stack (not just Python).

2.2.2 Install packaging software
Once you’ve installed the Miniconda distribution, ensure that Python and
conda are up to date by running the following command at the command line:

$ conda update --all

Now we’ll install the two main pieces of software we’ll be using to help us
create Python packages in this book:

1. poetry3: software that will help us build our own Python packages.
poetry is under active development, thus we recommend referring
to the official poetry documentation4 for detailed installation in-
structions and support.

2https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
3https://python-poetry.org/
4https://python-poetry.org/docs/

https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://python-poetry.org/
https://python-poetry.org/docs/

2.3 Register for a PyPI account 5

2. cookiecutter5: software that will help us create packages from pre-
made templates. It can be installed with conda as follows:

$ conda install -c conda-forge cookiecutter

2.3 Register for a PyPI account
The Python Package Index (PyPI) is the official online software repository for
Python. A software repository is a storage location for downloadable software,
like Python packages. In this book we’ll be publishing a package to PyPI. Be-
fore publishing packages to PyPI, it is typical to “test drive” their publication
on TestPyPI, which is a test version of PyPI. To follow along with this book,
you should register for a TestPyPI account on the TestPyPI website6 and a
PyPI account on the PyPI website7.

2.4 Set up Git and GitHub
If you’re not using a version control system, we highly recommend you get
into the habit! A version control system tracks changes to the file(s) of your
project in a clear and organized way (no more “document_1.doc”, “docu-
ment_1_new.doc”, “document_final.doc”, etc.). As a result, a version con-
trol system contains a full history of all the revisions made to your project,
which you can view and retrieve at any time. You don’t need to use or be
familiar with version control to read this book, but if you’re serious about
creating Python packages, version control will become an invaluable part of
your workflow, so now is a good time to learn!

There are many version control systems available, but the most common is
Git and we’ll be using it throughout this book. You can download Git by
following the instructions in the Git documentation8. Git helps track changes
to a project on a local computer, but what if we want to collaborate with
others? Or, what happens if your computer crashes and you lose all your
work? That’s where GitHub comes in. GitHub is one of many online services
for hosting Git-managed projects. GitHub helps you create an online copy of

5https://github.com/cookiecutter/cookiecutter
6https://test.pypi.org/account/register/
7https://pypi.org/account/register/
8https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

https://github.com/cookiecutter/cookiecutter
https://test.pypi.org/account/register/
https://pypi.org/account/register/
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

6 2 System setup

your local Git repository, which acts as a backup of your local work and allows
others to easily and transparently collaborate on your project. You can sign
up for a free GitHub account on the GitHub website9. Once signed up, you
should also set up SSH authentication to help push and pull files from GitHub
by following the steps in the official GitHub documentation10.

We assume that those who choose to follow the optional version control sec-
tions of this book have basic familiarity with Git and GitHub (or equivalent).
Two excellent learning resources are Happy Git and GitHub for the useR11

(Bryan et al., 2021) and Research Software Engineering with Python12 (Irving
et al., 2021).

2.5 Python integrated development environments
A Python integrated development environment (IDE) will make the process
of creating Python packages significantly easier. An IDE is a piece of soft-
ware that provides advanced functionality for code development, such as di-
rectory and file creation and navigation, autocomplete, debugging, and syntax
highlighting, to name a few. An IDE will save you time and help you write
better code. Commonly used free Python IDEs include Visual Studio Code13,
Atom14, Sublime Text15, Spyder16, and PyCharm Community Edition17. For
those more familiar with the Jupyter ecosystem, JupyterLab18 is a suitable
browser-based IDE. Finally, for the R community, the RStudio IDE19 also
supports Python.

You’ll be able to follow along with the examples presented in this book re-
gardless of what IDE you choose to develop your Python code in. If you don’t
know which IDE to use, we recommend starting with Visual Studio Code. Be-
low we briefly describe how to set up Visual Studio Code, JupyterLab, and
RStudio as Python IDEs (these are the IDEs we personally use in our day-to-
day work). If you’d like to use Docker to help develop Python packages and
follow along with this book, we’ll describe how to do so with Visual Studio
Code or JupyterLab in Section 2.6.

9https://www.github.com
10https://docs.github.com/en/authentication/connecting-to-github-with-ssh
11https://happygitwithr.com
12https://merely-useful.tech/py-rse/git-cmdline.html
13https://code.visualstudio.com/
14https://atom.io/
15https://www.sublimetext.com/
16https://www.spyder-ide.org/
17https://www.jetbrains.com/pycharm/
18https://jupyter.org/
19https://rstudio.com/products/rstudio/download/

https://www.github.com
https://docs.github.com/en/authentication/connecting-to-github-with-ssh
https://happygitwithr.com
https://merely-useful.tech/py-rse/git-cmdline.html
https://code.visualstudio.com/
https://atom.io/
https://www.sublimetext.com/
https://www.spyder-ide.org/
https://www.jetbrains.com/pycharm/
https://jupyter.org/
https://rstudio.com/products/rstudio/download/

2.5 Python integrated development environments 7

2.5.1 Visual Studio Code
You can download Visual Studio Code (VS Code) from the Visual Studio Code
website20. Once you’ve installed VS Code, you should install the “Python”
extension from the VS Code Marketplace. To do this, follow the steps listed
below and illustrated in Fig. 2.1:

1. Open the Marketplace by clicking the Extensions tab on the VS
Code activity bar.

2. Search for “Python” in the search bar.
3. Select the extension named “Python” and then click Install.

FIGURE 2.1: Installing the Python extension in Visual Studio Code.

Once this is done, you have everything you need to start creating packages! For
example, you can create files and directories from the File Explorer tab on the
VS Code activity bar, and you can open up an integrated CLI by selecting
Terminal from the View menu. Fig. 2.2 shows an example of executing a
Python .py file from the command line in VS Code.

We recommend you take a look at the VS Code Getting Started Guide21 to
learn more about using VS Code. While you don’t need to install any ad-
ditional extensions to start creating packages in VS Code, there are many

20https://code.visualstudio.com/
21https://code.visualstudio.com/docs

https://code.visualstudio.com/
https://code.visualstudio.com/docs

8 2 System setup

FIGURE 2.2: Executing a simple Python file called hello-world.py from the
integrated terminal in Visual Studio Code.

extensions available that can support and streamline your programming work-
flows in VS Code. Below are a few we recommend installing to support the
workflows we use in this book (you can search for and install these from the
“Marketplace” as we did earlier):

• Python Docstring Generator22: an extension to quickly generate documen-
tation strings (docstrings) for Python functions.

• Markdown All in One23: an extension that provides keyboard shortcuts,
automatic table of contents, and preview functionality for Markdown files.
Markdown24 is a plain-text markup language that we’ll use and learn about
in this book.

2.5.2 JupyterLab
For those comfortable in the Jupyter ecosystem feel free to stay there to create
your Python packages! JupyterLab is a browser-based IDE that supports all
of the core functionality we need to create packages. As per the JupyterLab
installation instructions25, you can install JupyterLab with:

22https://marketplace.visualstudio.com/items?itemName=njpwerner.autodocstring
23https://marketplace.visualstudio.com/items?itemName=yzhang.markdown-all-in-one
24https://www.markdownguide.org
25https://jupyterlab.readthedocs.io/en/stable/getting_started/installation.html

https://marketplace.visualstudio.com/items?itemName=njpwerner.autodocstring
https://marketplace.visualstudio.com/items?itemName=yzhang.markdown-all-in-one
https://www.markdownguide.org
https://jupyterlab.readthedocs.io/en/stable/getting_started/installation.html

2.5 Python integrated development environments 9

$ conda install -c conda-forge jupyterlab

Once installed, you can launch JupyterLab from your current directory by
typing the following command in your terminal:

$ jupyter lab

In JupyterLab, you can create files and directories from the File Browser and
can open up an integrated terminal from the File menu. Fig. 2.3 shows an
example of executing a Python .py file from the command line in JupyterLab.

FIGURE 2.3: Executing a simple Python file called hello-world.py from a
terminal in JupyterLab.

We recommend you take a look at the JupyterLab documentation26 to learn
more about how to use Jupyterlab. In particular, we’ll note that, like VS
Code, JupyterLab supports an ecosystem of extensions that can add additional
functionality to the IDE. We won’t install any here, but you can browse them
in the JupyterLab Extension Manager if you’re interested.

26https://jupyterlab.readthedocs.io/en/stable/index.html

https://jupyterlab.readthedocs.io/en/stable/index.html

10 2 System setup

2.5.3 RStudio
Users with an R background may prefer to stay in the RStudio IDE. We
recommend installing the most recent version of the IDE from the RStudio
website27 (we recommend installing at least version ^1.4) and then installing
the most recent version of R from CRAN28. To use Python in RStudio, you
will need to install the reticulate29 R package by typing the following in the
R console inside RStudio:

install.packages(”reticulate”)

When installing reticulate, you may be prompted to install the Anaconda
distribution. We already installed the Miniconda distribution of Python in
Section 2.2.1, so answer “no” to this prompt. Before being able to use Python
in RStudio, you will need to configure reticulate. We will briefly describe how
to do this for different operating systems below, but we encourage you to look
at the reticulate documentation30 for more help.

Mac and Linux

1. Find the path to the Python interpreter installed with Miniconda
by typing which python at the command line.

2. Open (or create) an .Rprofile file in your HOME directory and
add the line Sys.setenv(RETICULATE_PYTHON = ”path_to_python”),
where ”path_to_python” is the path identified in step 1.

3. Open (or create) a .bash_profile file in your HOME directory and
add the line export PATH=”/opt/miniconda3/bin:$PATH”, replacing
/opt/miniconda3/bin with the path you identified in step 1 but with-
out the python at the end.

4. Restart R.
5. Try using Python in RStudio by running the following in the R

console:

library(reticulate)
repl_python()

Windows

1. Find the path to the Python interpreter installed with Miniconda
by opening an Anaconda Prompt from the Start Menu and typing
where python in a terminal.

27https://rstudio.com/products/rstudio/download/preview/
28https://cran.r-project.org/
29https://rstudio.github.io/reticulate/
30https://rstudio.github.io/reticulate/

https://rstudio.com/products/rstudio/download/preview/
https://cran.r-project.org/
https://rstudio.github.io/reticulate/
https://rstudio.github.io/reticulate/

2.6 Developing with Docker 11

2. Open (or create) an .Rprofile file in your HOME directory and add
the line Sys.setenv(RETICULATE_PYTHON = ”path_to_python”), where
”path_to_python” is the path identified in step 1. Note that in Win-
dows, you need \\ instead of \ to separate the directories; for exam-
ple your path might look like: C:\\Users\\miniconda3\\python.exe.

3. Open (or create) a .bash_profile file in your HOME directory and
add the line export PATH=”/opt/miniconda3/bin:$PATH”, replacing
/opt/miniconda3/bin with the path you identified in step 1 but with-
out the python at the end.

4. Restart R.
5. Try using Python in RStudio by running the following in the R

console:

library(reticulate)
repl_python()

Fig. 2.4 shows an example of executing Python code interactively within the
RStudio console.

FIGURE 2.4: Executing Python code in the RStudio.

2.6 Developing with Docker
If you have issues installing or using any of the software in this book on your
specific operating system, or would prefer to use Docker to help develop your

12 2 System setup

Python packages, we have provided an alternative software setup with Docker
that has everything you need already installed to get started. Docker31 is a
platform that allows you to run and develop software in an isolated environ-
ment called a container. Images contain the instructions required to create a
container.

We have developed Docker images to support Python package development
in Visual Studio Code or JupyterLab, and we describe minimal workflows for
using these images to follow along with this book in the sections below. Feel
free to customize these images and/or workflows to suit your specific use cases.
We will continue to maintain the Docker images via their GitHub repositories
(py-pkgs/docker-vscode32 and py-pkgs/docker-jupyter33) to support readers
of this book into the future.

2.6.1 Docker with Visual Studio Code
To develop with Docker inside Visual Studio Code, you can consult the Visual
Studio Code official container tutorial34, or try following the steps below:

1. Install Visual Studio Code from the official website35.

2. Install and configure Docker Desktop for your operating system
following the instructions on the official website36.

3. Once docker is installed, open a command-line interface and pull the
pypkgs/vscode docker image by running the following command:

$ docker pull pypkgs/vscode

4. From Visual Studio Code, open/create the working directory you
want to develop in (this can be called anything and located wherever
you like on your file system).

5. In Visual Studio Code, open the Extensions tab on the Visual Stu-
dio Code activity bar and search for the “Remote - Containers”
extension in the search bar. Install this extension if it is not already
installed.

6. Create a file called .devcontainer.json in your current working
directory (be sure to include the period at the beginning of the file

31https://docs.docker.com/get-started/overview/
32https://github.com/py-pkgs/docker-vscode
33https://github.com/py-pkgs/docker-jupyter
34https://code.visualstudio.com/docs/remote/containers-tutorial
35https://code.visualstudio.com/
36https://www.docker.com/get-started

https://docs.docker.com/get-started/overview/
https://github.com/py-pkgs/docker-vscode
https://github.com/py-pkgs/docker-jupyter
https://code.visualstudio.com/docs/remote/containers-tutorial
https://code.visualstudio.com/
https://www.docker.com/get-started

2.6 Developing with Docker 13

name). This file will tell Visual Studio Code how to run in a Docker
container. You can read more about this configuration in the official
documentation37, but for now, a minimal set up requires adding the
following content to that file:

{
”name”: ”poetry”,
”image”: ”pypkgs/vscode”,
”extensions”: [”ms-python.python”],

}

7. Now, open the Visual Studio Code Command Palette38 and search
for and select the command “Remote-Containers: Reopen in Con-
tainer”. This command will open Visual Studio Code inside a con-
tainer made using the pypkgs/vscode Docker image. After Visual
Studio Code finishes opening in the container, test that you have
access to the three pre-installed pieces of packaging software we
need by opening the integrated terminal39 and trying the following
commands:

$ poetry --version
$ conda --version
$ cookiecutter --version

8. Your development environment is now set up, and you can work
with Visual Studio Code as if everything were running locally on
your machine (except now your development environment exists
inside a container). If you exit Visual Studio Code, your container
will stop but will persist on your machine. It can be re-opened at
a later time using the “Remote-Containers: Reopen in Container”
command we used in step 7.

9. If you want to completely remove your development container to
free up memory on your machine, first find the container’s ID:

$ docker ps -a

37https://code.visualstudio.com/docs/remote/create-dev-container
38https://code.visualstudio.com/docs/getstarted/userinterface#_command-palette
39https://code.visualstudio.com/docs/editor/integrated-terminal

https://code.visualstudio.com/docs/remote/create-dev-container
https://code.visualstudio.com/docs/getstarted/userinterface#_command-palette
https://code.visualstudio.com/docs/editor/integrated-terminal

14 2 System setup

CONTAINER ID IMAGE
762bca6eb51e pypkgs/vscode

10. Then use the docker rm command combined with the container’s ID.
This will remove the container, including any packages or virtual
environments installed in it. However, any files and directories you
created will persist on your machine.

$ docker rm 762bca6eb51e

2.6.2 Docker with JupyterLab
To develop with Docker in JupyterLab follow the instructions below. Helpful
information and tutorials can also be found in the Jupyter Docker Stacks
documentation40.

1. Install and configure Docker Desktop for your operating system
following the instructions on the official website41.

2. Once Docker has been installed, open a command-line interface and
pull the pypkgs/jupyter Docker image by running the docker pull
command as follows:

$ docker pull pypkgs/jupyter

3. From the command line, navigate to the directory you want to de-
velop in (this can be called anything and located wherever you like
on your file system).

4. Start a new container from that directory by running the following
command from the command line:

$ docker run -p 8888:8888 \
-v ”${PWD}”:/home/jovyan/work \
pypkgs/jupyter

40https://jupyter-docker-stacks.readthedocs.io/en/latest/index.html
41https://www.docker.com/get-started

https://jupyter-docker-stacks.readthedocs.io/en/latest/index.html
https://www.docker.com/get-started

2.6 Developing with Docker 15

In the command above, -p binds port 8888 in the container
to port 8888 on the host machine and -v mounts the current
directory into the container at the location /home/jovyan/work.
Windows users that run into issues with the command above
may need to try double-slashes in the volume mount path, for
example: -v /$(pwd)://home//jovyan//work. You can read more
about the docker run command and its arguments in the Docker
command-line interface documentation42.

5. Copy the unique URL printed to screen (that looks something like
this: http://127.0.0.1:8888/lab?token=45d53a348580b3acfafa) to
your browser. This will open an instance of JupyterLab running
inside a Docker container.

6. Navigate to the work directory in JupyterLab. This is where you
can develop and create new files and directories that will persist in
the directory from where you launched your container.

7. Test that you have access to the three pre-installed pieces of pack-
aging software we need by opening a terminal in JupyterLab and
trying the following commands:

$ poetry --version
$ conda --version
$ cookiecutter --version

8. When you’ve finished a working session, you can exit JupyterLab,
and kill your terminal, and your container will persist. You can
restart the container and launch JupyterLab again by first finding
its ID:

$ docker ps -a

CONTAINER ID IMAGE
653daa2cd48e pypkgs/jupyter

9. Then, to restart the container and launch JupyterLab, use the
docker start -a command combined with the container’s ID:

42https://docs.docker.com/engine/reference/commandline/run/

https://docs.docker.com/engine/reference/commandline/run/
http://127.0.0.1:8888/

16 2 System setup

$ docker start -a 653daa2cd48e

10. If you want to completely remove the container you can use the
docker rm command. This will remove the container, including any
packages or virtual environments installed in it. However, all files
and directories added to the work directory will persist on your
machine.

$ docker rm 653daa2cd48e

3
How to package a Python

In this chapter we will develop an entire example Python package from
beginning-to-end to demonstrate the key steps involved in developing a pack-
age. This chapter forms the foundation of this book. It contains everything
you need to know to create a Python package and can be used as a reference
sheet when creating packages in the future. Later chapters explore each of the
individual steps in the packaging process in further detail.

The example package we are going to create in this chapter will help us cal-
culate word counts from a text file. We’ll be calling it pycounts, and it will
be useful for calculating word usage in texts such as novels, research papers,
news articles, log files, and more.

3.1 Counting words in a text file
3.1.1 Developing our code
Before even thinking about making a package, we’ll first develop the code we
want to package up. The pycounts package we are going to create will help
us calculate word counts from a text file. Python has a useful Counter object
that can be used to calculate counts of a collection of elements (like a list of
words) and store them in a dictionary.

We can demonstrate the functionality of Counter by first opening up a Python
interpreter by typing python at the command line:

$ python

We can then import the Counter class from the collections module:

>>> from collections import Counter

Now we will define and use a sample list of words to create a Counter object:

DOI: 10.1201/9781003189251-3 17

https://doi.org/10.1201/9781003189251-3

18 3 How to package a Python

>>> words = [”a”, ”happy”, ”hello”, ”a”, ”world”, ”happy”]
>>> word_counts = Counter(words)
>>> word_counts

Counter({'a': 2, 'happy': 2, 'hello': 1, 'world': 1})

Note how the Counter object automatically calculated the count of each unique
word in our input list and returned the result as a dictionary of 'word': count
pairs! Given this functionality, how can we use Counter to count the words in
a text file? Well, we would need to load the file with Python, split it up into
a list of words, and then create a Counter object from that list of words.

We first need a text file to help us build this workflow. “The Zen of Python1” is
a list of nineteen aphorisms about the Python programming language, which
can be viewed by running import this in a Python interpreter:

>>> import this

The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
...

Let’s make a text file called zen.txt containing the “The Zen of Python”
text above. Do this by manually copying the above output into a file in your
current directory called zen.txt using an editor of your choice, or by running
the following command at the command line:

$ python -c ”import this” > zen.txt

In the command above, the -c option allows you to pass a string
for Python to execute, and the > directs the output of the com-
mand to a file (which in our case is called “zen.txt” and is located
in the current directory).

1https://www.python.org/dev/peps/pep-0020/

https://www.python.org/dev/peps/pep-0020/

3.1 Counting words in a text file 19

Now that we have a text file to work with, we can go back to developing our
word-counting workflow. To open zen.txt in Python, we can use the open()
function to open the file and then the .read() method to read its contents
as a Python string. The code below, run in a Python interpreter, saves the
contents of zen.txt as a string in the variable text:

>>> with open(”zen.txt”) as file:
text = file.read()

Let’s see what text looks like:

>>> text

”The Zen of Python, by Tim Peters\n\nBeautiful is better
than ugly.\nExplicit is better than implicit.\nSimple is
better than complex.\nComplex is better than complicated
...”

We can see that the text variable is a single string, with the \n symbols
indicating a new line in the string.

Before we split the above text into individual words for counting with Counter,
we should lowercase all the letters and remove punctuation so that if the same
word occurs multiple times with different capitalization or punctuation, it isn’t
treated as different words by Counter. For example we want “Better”, “better”,
and “better!” to result in three counts of the word “better”.

To lowercase all letters in a Python string, we can use the .lower() method:

>>> text = text.lower()

To remove punctuation, we can find them in our string and replace them
with nothing using the .replace() method. Python provides a collection of
common punctuation marks in the string module:

>>> from string import punctuation
>>> punctuation

'!”#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~'

We can use a for loop to remove each of the above punctuation marks from
our text variable by replacing it with nothing, i.e., an empty string (””):

20 3 How to package a Python

>>> for p in punctuation:
text = text.replace(p, ””)

With punctuation removed and the letters in text all lowercase, we can now
split it up into individual words using the .split() method. This method
splits a string into a list of strings using spaces, newlines (\n), and tabs (\t)
as separators:

>>> words = text.split()
>>> words

['the', 'zen', 'of', 'python', 'by', 'tim', 'peters',
'beautiful', 'is', 'better', 'than', 'ugly', ...]

We’ve managed to load, pre-process, and split our zen.txt file up into indi-
vidual words and can now determine the word counts by creating a Counter
object:

>>> from collections import Counter
>>> word_counts = Counter(words)
>>> word_counts

Counter({'is': 10, 'better': 8, 'than': 8, 'the': 6,
'to': 5, 'of': 3, 'although': 3, 'never': 3, ... })

3.1.2 Turning our code into functions
In Section 3.1.1 we developed a workflow for counting words in a text file.
But it would be a pain to run all that code every time we want to count the
words in a file! To make things more efficient, let’s turn the above code into
three reusable functions called load_text(), clean_text(), and count_words()
by defining them in our Python interpreter:

We’ve added a short documentation string (docstring) to each
function here using triple quotes. We’ll talk more about doc-
strings in Section 3.8.2.

3.1 Counting words in a text file 21

>>> def load_text(input_file):
”””Load text from a text file and return as a string.”””
with open(input_file, ”r”) as file:

text = file.read()
return text

>>> def clean_text(text):
”””Lowercase and remove punctuation from a string.”””
text = text.lower()
for p in punctuation:

text = text.replace(p, ””)
return text

>>> def count_words(input_file):
”””Count unique words in a string.”””
text = load_text(input_file)
text = clean_text(text)
words = text.split()
return Counter(words)

We can now use our word-counting functionality as follows:

>>> count_words(”zen.txt”)

Counter({'is': 10, 'better': 8, 'than': 8, 'the': 6,
'to': 5, 'of': 3, 'although': 3, 'never': 3, ... })

Unfortunately, if you quit from the Python interpreter, the functions we just
defined will be lost and you will have to define them again in new sessions.

The whole idea of a Python package is that we can store Python code, like our
load_text(), clean_text(), and count_words() functions, in a package that we,
and others, can install, import, and use at any time and in any project. In the
remainder of this chapter, we’ll work towards packaging up the code we’ve
written into a Python package called pycounts.

22 3 How to package a Python

3.2 Package structure
3.2.1 A brief introduction
To develop our pycounts package we first need to create an appropriate di-
rectory structure. Python packages consist of a specific directory structure
typically including the following:

• A root directory with the name of the package, e.g., pycounts/;
• One or more Python modules (files with a .py extension that contain Python

code) in a subdirectroy src/pycounts/;
• Instructions on how to build and install the package on a computer in a file

called pyproject.toml;
• Important documentation such as a README in the root directory, and

additional documentation in a docs/ subdirectory; and,
• Tests in a tests/ subdirectory.

An example structure for a package called “pycounts” with two modules
(“moduleA” and “moduleB”) is shown below. There’s a lot of files here, but
don’t worry; packages are usually created from pre-made templates, as we’ll
show in the next section. At this point, we’re just getting a bird’s-eye view of
package structure. We’ll create and explore each element in this structure as
we make our way through this chapter.

pycounts
├── CHANGELOG.md ┐
├── CONDUCT.md │
├── CONTRIBUTING.md │
├── docs │ Package documentation
│ └── ... │
├── LICENSE │
├── README.md ┘
├── pyproject.toml ┐
├── src │
│ └── pycounts │ Package source code, metadata,
│ ├── __init__.py │ and build instructions
│ ├── moduleA.py │
│ └── moduleB.py ┘
└── tests ┐

└── ... ┘ Package tests

3.2 Package structure 23

It might be confusing to see two directories with the pack-
age’s name (the root directory pycounts/ and the subdirectory
src/pycounts/, but this is how Python packages are typically
set up. We’ll explore this structure more in the rest of this chap-
ter and discuss it in detail in Chapter 4: Package structure
and distribution.

3.2.2 Creating a package structure
Most developers use a pre-made template to set up the directory structure of
a Python package. We will use the cookiecutter tool (which we installed in
Section 2.2.2) to create our package structure for us.

cookiecutter is a tool for populating a directory structure from a pre-made
template. People have developed and open-sourced many cookiecutter tem-
plates for different projects, such as for creating Python packages, R packages,
websites, and more. You can find these templates by, for example, searching
an online hosting service like GitHub2. We have developed our own py-pkgs-
cookiecutter Python package template to support this book; it is hosted on
GitHub3.

To use this template to create a package directory structure, you can navigate
to the directory where you want to create your package from the command
line, and then run the command below. Upon executing this command you will
be prompted to provide information that will be used to create your package
file and directory structure. We provide an example of how to respond to these
prompts below and an explanation of what they mean in Table 3.1.

$ cookiecutter https://github.com/py-pkgs/py-pkgs-cookiecutter.git

author_name [Monty Python]: Tomas Beuzen
package_name [mypkg]: pycounts
package_short_description []: Calculate word counts in a text file!
package_version [0.1.0]:
python_version [3.9]:
Select open_source_license:
1 - MIT
2 - Apache License 2.0

2https://www.github.com
3https://github.com/py-pkgs/py-pkgs-cookiecutter

https://www.github.com
https://github.com/py-pkgs/py-pkgs-cookiecutter
https://github.com/

24 3 How to package a Python

3 - GNU General Public License v3.0
4 - Creative Commons Attribution 4.0
5 - BSD 3-Clause
6 - Proprietary
7 - None
Choose from 1, 2, 3, 4, 5, 6 [1]:
Select include_github_actions:
1 - no
2 - ci
3 - ci+cd
Choose from 1, 2, 3 [1]:

TABLE 3.1: A description of the py-pkgs-cookiecutter template prompts.

Prompt keyword Description
author_name, package_name,
package_short_description

These are self-explanatory. Note that
we will be publishing our pycounts
package to Python’s main package
index PyPI, where names must be
unique. If you plan to follow
along with this tutorial you
should choose a unique name
for your package. Something like
pycounts_[your intials] might be
appropriate, but you can check if a
name is already taken by searching
for it on PyPI. We provide guidance
on choosing a good package name in
Section 4.2.2.

package_version The version of your package. Most
packages use semantic versioning,
where a version number consists of
three integers A.B.C. A is the “major”
version, B is the “minor” version, and
C is the “patch” version. The first
version of a package usually starts at
0.1.0 and increments from there.
We’ll discuss versioning in Chapter
7: Releasing and versioning.

python_version The minimum version of Python
your package will support. We’ll talk
more about versions and constraints
in Section 3.6.1

3.2 Package structure 25

Prompt keyword Description
open_source_license The license that dictates how your

package can be used by others. We
discuss licenses in Section 6.2.2.
The MIT license we chose in our
example is a permissive license
commonly used for open-source work.
If your project will not be open
source you can choose not to include
a license.

include_github_actions An option to include continuous
integration and continuous
deployment files for use with GitHub
Actions. We’ll explore these topics in
Chapter 8: Continuous
integration and deployment, so
for now, we recommend responding
no.

After responding to the py-pkgs-cookiecutter prompts, we have a new di-
rectory called pycounts, full of content suitable for building a fully-featured
Python package! We’ll explore each element of this directory structure as we
develop our pycounts package throughout this chapter.

pycounts
├── .readthedocs.yml ┐
├── CHANGELOG.md │
├── CONDUCT.md │
├── CONTRIBUTING.md │
├── docs │
│ ├── changelog.md │
│ ├── conduct.md │
│ ├── conf.py │
│ ├── contributing.md │ Package documentation
│ ├── example.ipynb │
│ ├── index.md │
│ ├── make.bat │
│ ├── Makefile │
│ └── requirements.txt │
├── LICENSE │
├── README.md ┘
├── pyproject.toml ┐
├── src │

26 3 How to package a Python

│ └── pycounts │ Package source code, metadata,
│ ├── __init__.py │ and build instructions
│ └── pycounts.py ┘
└── tests ┐

└── test_pycounts.py ┘ Package tests

3.3 Put your package under version control
Before continuing to develop our package it is good practice to put it under
local and remote version control. This is not necessary for developing a pack-
age, but it is highly recommended so that you can better manage and track
changes to your package over time. Version control is particularly useful if you
plan on collaborating on your package with others. If you don’t want to use
version control, feel free to skip to Section 3.4. The tools we will be using for
version control in this book are Git and GitHub (which we set up in Section
2.4).

For this book, we assume readers have basic familiarity with Git
and GitHub (or similar). To learn more about Git and GitHub,
we recommend the following resources: Happy Git and GitHub
for the useR4 (Bryan et al., 2021) and Research Software Engi-
neering with Python5 (Irving et al., 2021).

3.3.1 Set up local version control
To set up local version control, navigate to the root pycounts/ directory and
initialize a Git repository:

$ cd pycounts
$ git init

4https://happygitwithr.com
5https://merely-useful.tech/py-rse/git-cmdline.html

https://happygitwithr.com
https://merely-useful.tech/py-rse/git-cmdline.html

3.3 Put your package under version control 27

Initialized empty Git repository in /Users/tomasbeuzen/pycounts/.git/

Next, we need to tell Git which files to track for version control (which will
be all of them at this point) and then commit these changes locally:

$ git add .
$ git commit -m ”initial package setup”

[master (root-commit) 51795ad] initial package setup
20 files changed, 502 insertions(+)
create mode 100644 .gitignore
create mode 100644 .readthedocs.yml
create mode 100644 CHANGELOG.md
...
create mode 100644 src/pycounts/__init__.py
create mode 100644 src/pycounts/pycounts.py
create mode 100644 tests/test_pycounts.py

3.3.2 Set up remote version control
Now that we have set up local version control, we will create a repository
on GitHub6 and set that as the remote version control home for this project.
First, we need to create a new repository on GitHub7 as demonstrated in Fig.
3.1:

Next, select the following options when setting up your GitHub repository, as
shown in Fig. 3.2:

1. Give the GitHub repository the same name as your Python package
and give it a short description.

2. You can choose to make your repository public or private — we’ll
be making ours public so we can share it with others.

3. Do not initialize the repository with any files (we’ve already created
all our files locally using the py-pkgs-cookiecutter template).

Now, use the commands shown on GitHub, and outlined in Fig. 3.3, to link
your local and remote repositories and push your local content to GitHub:

6https://github.com/
7https://www.github.com

https://github.com/
https://www.github.com

28 3 How to package a Python

FIGURE 3.1: Creating a new repository in GitHub.

The commands below should be specific to your GitHub user-
name and the name of your Python package. They use SSH
authentication to connect to GitHub which you will need to set
up by following the steps in the official GitHub documentation8.

$ git remote add origin git@github.com:TomasBeuzen/pycounts.git
$ git branch -M main
$ git push -u origin main

8https://docs.github.com/en/authentication/connecting-to-github-with-ssh

https://docs.github.com/en/authentication/connecting-to-github-with-ssh
mailto:git@github.com

3.3 Put your package under version control 29

FIGURE 3.2: Setting up a new repository in GitHub.

Enumerating objects: 26, done.
Counting objects: 100% (26/26), done.
Delta compression using up to 8 threads
Compressing objects: 100% (19/19), done.
Writing objects: 100% (26/26), 8.03 KiB | 4.01 MiB/s, done.
Total 26 (delta 0), reused 0 (delta 0)
To github.com:TomasBeuzen/pycounts.git

30 3 How to package a Python

FIGURE 3.3: Instructions on how to link local and remote version control
repositories.

* [new branch] main -> main
Branch 'main' set up to track remote branch 'main' from 'origin'.

3.4 Packaging your code
We now have our pycounts package structure set up, and are ready to populate
our package with the load_text(), clean_text() and count_words() functions

3.4 Packaging your code 31

we developed at the beginning of the chapter in Section 3.1.2. Where should
we put these functions? Let’s review the structure of our package:

pycounts
├── .readthedocs.yml
├── CHANGELOG.md
├── CONDUCT.md
├── CONTRIBUTING.md
├── docs
│ └── ...
├── LICENSE
├── pyproject.toml
├── README.md
├── src
│ └── pycounts
│ ├── __init__.py
│ └── pycounts.py
└── tests

└── ...

The Python code for our package should live in modules in the src/pycounts/
directory. The py-pkgs-cookiecutter template already created a Python mod-
ule for us to put our code in called src/pycounts/pycounts.py (note that this
module can be named anything, but it is common for a module to share the
name of the package). We’ll copy the functions we created in Section 3.1.2
to the module src/pycounts/pycounts.py now. Our functions depends on col-
lections.Counter and string.punctuation, so we also need to import those
at the top of the file. Here’s what src/pycounts/pycounts.py should now look
like:

from collections import Counter
from string import punctuation

def load_text(input_file):
”””Load text from a text file and return as a string.”””
with open(input_file, ”r”) as file:

text = file.read()
return text

def clean_text(text):
”””Lowercase and remove punctuation from a string.”””
text = text.lower()
for p in punctuation:

text = text.replace(p, ””)

32 3 How to package a Python

return text

def count_words(input_file):
”””Count unique words in a string.”””
text = load_text(input_file)
text = clean_text(text)
words = text.split()
return Counter(words)

3.5 Test drive your package code
3.5.1 Create a virtual environment
Before we install and test our package, it is highly recommended to set up
a virtual environment. As discussed previously in Section 2.2.1, a virtual
environment provides a safe and isolated space to develop and install packages.
If you don’t want to use a virtual environment, feel free to skip to Section
3.5.2.

There are several options available when it comes to creating and managing
virtual environments (e.g., conda or venv). We will use conda (which we in-
stalled in Section 2.2.1) because it is a simple, commonly used, and effective
tool for managing virtual environments.

To use conda to create a new virtual environment called pycounts that contains
Python, run the following in your terminal:

$ conda create --name pycounts python=3.9 -y

We are specifying python=3.9 because that is the minimum ver-
sion of Python we specified that our package will support in
Section 3.2.2.

To use this new environment for developing and installing software we need
to “activate” it:

3.5 Test drive your package code 33

$ conda activate pycounts

In most command lines, conda will add a prefix like (pycounts) to your
command-line prompt to indicate which environment you are working in. Any-
time you wish to work on your package, you should activate its virtual environ-
ment. You can view the packages currently installed in a conda environment
using the command conda list, and you can exit a conda virtual environment
using conda deactivate.

poetry, the packaging tool we’ll use to develop our package later
in this chapter, also supports virtual environment management9

without the need for conda. However, we find conda to be a more
intuitive and explicit environment manager, which is why we
advocate for it in this book.

3.5.2 Installing your package
We have our package structure set up and we’ve populated it with our Python
code. How do we install and use our package? There are several tools available
to develop installable Python packages. The most common are poetry, flit,
and setuptools, which we compare in Section 4.3.3. In this book, we will
be using poetry (which we installed in Section 2.2.2); it is a modern packag-
ing tool that provides simple and efficient commands to develop, install, and
distribute Python packages.

In a poetry-managed package, the pyproject.toml file stores all the metadata
and install instructions for the package. The pyproject.toml that the py-pkgs-
cookiecutter created for our pycounts package looks like this:

[tool.poetry]
name = ”pycounts”
version = ”0.1.0”
description = ”Calculate word counts in a text file.”
authors = [”Tomas Beuzen”]
license = ”MIT”
readme = ”README.md”

9https://python-poetry.org/docs/managing-environments/

https://python-poetry.org/docs/managing-environments/

34 3 How to package a Python

[tool.poetry.dependencies]
python = ”^3.9”

[tool.poetry.dev-dependencies]

[build-system]
requires = [”poetry-core>=1.0.0”]
build-backend = ”poetry.core.masonry.api”

Table 3.2 provides a brief description of each of the headings in that file (called
“tables” in TOML file jargon).

TABLE 3.2: A description of the tables in the pyproject.toml.

TOML table Description
[tool.poetry] Defines package metadata. The name,

version, description, and authors of
the package are required.

[tool.poetry.dependencies] Identifies dependencies of a package
— that is, software that the package
depends on. Our pycounts package
only depends on Python 3.9 or
higher, but we’ll add other
dependencies to our package later in
this chapter.

[tool.poetry.dev-dependencies] Identifies development dependencies
of a package — dependencies
required for development purposes,
such as running tests or building
documentation. We’ll add
development dependencies to our
pycounts package later in this
chapter.

[build-system] Identifies the build tools required to
build your package. We’ll talk more
about this in Section 3.10.

With our pyproject.toml file already set up for us by the py-pkgs-
cookiecutter template, we can use poetry to install our package using the
command poetry install at the command line from the root package direc-
tory:

3.5 Test drive your package code 35

$ poetry install

Updating dependencies
Resolving dependencies... (0.1s)

Writing lock file

Installing the current project: pycounts (0.1.0)

When you run poetry install, poetry creates a poetry.lock file,
which contains a record of all the dependencies you’ve installed
while developing your package. For anyone else working on your
project (including you in the future), running poetry install
installs dependencies from poetry.lock to ensure that they have
the same versions of dependencies that you did when developing
the package. We won’t be focusing on poetry.lock in this book,
but it can be a helpful development tool, which you can read
more about in the poetry documentation10.

With our package installed, we can now import and use it in a Python session.
Before we do that, we need a text file to test our package on. Feel free to
use any text file, but we’ll create the same “Zen of Python” text file we used
earlier in the chapter by running the following at the command line:

$ python -c ”import this” > zen.txt

Now we can open a Python interpreter and import and use the count_words()
function from our pycounts module with the following code:

>>> from pycounts.pycounts import count_words
>>> count_words(”zen.txt”)

Counter({'is': 10, 'better': 8, 'than': 8, 'the': 6,
'to': 5, 'of': 3, 'although': 3, 'never': 3, ... })

10https://python-poetry.org/docs/basic-usage/#installing-dependencies

https://python-poetry.org/docs/basic-usage/#installing-dependencies

36 3 How to package a Python

Looks like everything is working! We have now created and installed a simple
Python package! You can now use this Python package in any project you wish
(if using virtual environments, you’ll need to poetry install the package in
them before it can be used).

poetry install actually installs packages in “editable mode”, which means
that it installs a link to your package’s code on your computer (rather than
installing it as a independent piece of software). Editable installs are commonly
used by developers because it means that any edits made to the package’s
source code are immediately available the next time it is imported, without
having to poetry install again. We’ll talk more about installing packages in
Section 3.10.

In the next section, we’ll show how to add code to our package that depends
on another package. But for those using version control, it’s a good idea to
commit the changes we’ve made to src/pycounts/pycounts.py to local and
remote version control:

$ git add src/pycounts/pycounts.py
$ git commit -m ”feat: add word counting functions”
$ git push

In this book, we use the Angular style11 for Git commit mes-
sages. We’ll talk about this style more in Section 7.2.2, but our
commit messages have the form “type: subject”, where “type” in-
dicates the kind of change being made and “subject” contains a
description of the change. We’ll be using the following “types”
for our commits:

• “build”: indicates a change to the build system or external dependencies.
• “docs”: indicates a change to documentation.
• “feat”: indicates a new feature being added to the code base.
• “fix”: indicates a bug fix.
• “test”: indicates changes to testing framework.

11https://github.com/angular/angular.js/blob/master/DEVELOPERS.md#-git-commit-
guidelines

https://github.com/angular/angular.js/blob/master/DEVELOPERS.md#-git-commit-guidelines
https://github.com/angular/angular.js/blob/master/DEVELOPERS.md#-git-commit-guidelines

3.6 Adding dependencies to your package 37

3.6 Adding dependencies to your package
Let’s now add a new function to our package that can plot a bar chart of
the top n words in a Counter object of word counts. Imagine we’ve come up
with the following plot_words() function that does this. The function uses the
convenient .most_common() method of the Counter object to return a list of
tuples of the top n words counts in the format (word, count). It then uses the
Python function zip(*...) to unpack that list of tuples into two individual
lists, word and count. Finally, the matplotlib (Hunter, 2007) package is used
to plot the result (plt.bar(...)), which looks like Fig. 3.4.

If this code is not familiar to you, don’t worry! The code itself
is not overly important to our discussion of packaging. You just
need to know that we are adding some new code to our package
that depends on the matplotlib package.

import matplotlib.pyplot as plt

def plot_words(word_counts, n=10):
”””Plot a bar chart of word counts.”””
top_n_words = word_counts.most_common(n)
word, count = zip(*top_n_words)
fig = plt.bar(range(n), count)
plt.xticks(range(n), labels=word, rotation=45)
plt.xlabel(”Word”)
plt.ylabel(”Count”)
return fig

Where should we put this function in our package? You could certainly add
all your package code into a single module (e.g., src/pycounts/pycounts.py),
but as you add functionality to your package that module will quickly become
overcrowded and hard to manage. Instead, as you write more code, it’s a good
idea to organize it into multiple, logical modules. With that in mind, we’ll
create a new module called src/pycounts/plotting.py to house our plotting
function plot_words(). Create that new module now in an editor of your
choice.

38 3 How to package a Python

FIGURE 3.4: Example figure created from the plotting function.

Your package structure should now look like this:

pycounts
├── .readthedocs.yml
├── CHANGELOG.md
├── CONDUCT.md
├── CONTRIBUTING.md
├── docs
│ └── ...
├── LICENSE
├── poetry.lock
├── pyproject.toml
├── README.md
├── src
│ └── pycounts
│ ├── __init__.py
│ ├── plotting.py <--------
│ └── pycounts.py
└── tests

└── ...

Open src/pycounts/plotting.py and add the plot_words() code from above
(don’t forget to add the import matplotlib.pyplot as plt at the top of the
module).

3.6 Adding dependencies to your package 39

After doing this, if we tried to import our new function in a Python interpreter
we’d get an error:

If using a conda virtual environment, make sure that environ-
ment is active by running conda activate pycounts, before using
or working on your package.

>>> from pycounts.plotting import plot_words

ModuleNotFoundError: No module named 'matplotlib'

This is because matplotlib is not part of the standard Python library; we
need to install it and add it as a dependency of our pycounts package. We
can do this with poetry using the command poetry add. This command will
install the specified dependency into the current virtual environment and will
update the [tool.poetry.dependencies] section of the pyproject.toml file:

$ poetry add matplotlib

Using version ^3.4.3 for matplotlib

Updating dependencies
Resolving dependencies...

Writing lock file

Package operations: 8 installs, 0 updates, 0 removals

• Installing six (1.16.0)
• Installing cycler (0.10.0)
• Installing kiwisolver (1.3.1)
• Installing numpy (1.21.1)
• Installing pillow (8.3.1)
• Installing pyparsing (2.4.7)
• Installing python-dateutil (2.8.2)
• Installing matplotlib (3.4.3)

40 3 How to package a Python

If you open pyproject.toml file, you should now see matplotlib listed as a
dependency under the [tool.poetry.dependencies] section (which previously
only contained Python 3.9 as a dependency, as we saw in Section 3.5.2):

[tool.poetry.dependencies]
python = ”^3.9”
matplotlib = ”^3.4.3”

We can now use our package in a Python interpreter as follows (be sure that
the zen.txt file we created earlier is in the current directory if you’re running
the code below):

>>> from pycounts.pycounts import count_words
>>> from pycounts.plotting import plot_words
>>> counts = count_words(”zen.txt”)
>>> fig = plot_words(counts, 10)

If running the above Python code in an interactive IPython shell or Jupyter
Notebook, the plot will be displayed automatically. If you’re running from the
Python interpreter, you’ll need to run the matplotlib command plt.show()
to display the plot, as shown below:

>>> import matplotlib.pyplot as plt
>>> plt.show()

We’ve made some important changes to our package in this section by adding
a new module and a dependency. Those using version control should commit
these changes:

$ git add src/pycounts/plotting.py
$ git commit -m ”feat: add plotting module”
$ git add pyproject.toml poetry.lock
$ git commit -m ”build: add matplotlib as a dependency”
$ git push

3.6.1 Dependency version constraints
Versioning is the practice of assigning a unique identifier to unique releases of
a package. For example, semantic versioning12 is a common versioning system
that consists of three integers A.B.C. A is the “major” version, B is the “minor”
version, and C is the “patch” version identifier. Package versions usually starts

12https://semver.org

https://semver.org

3.6 Adding dependencies to your package 41

at 0.1.0 and positively increment the major, minor, and patch numbers from
there, depending on the kind of changes made to the package over time.

We’ll talk more about versioning in Chapter 7: Releasing and versioning,
but what’s important to know now is that we typically constrain the required
version number(s) of our package’s dependencies, to ensure we’re using ver-
sions that are up-to-date and contain the functionality we need. You may have
noticed poetry prepended a caret (^) operator to the dependency versions in
our pyproject.toml file, under the [tool.poetry.dependencies] section:

[tool.poetry.dependencies]
python = ”^3.9”
matplotlib = ”^3.4.3”

The caret operator is short-hand for “requires this or any higher version that
does not modify the left-most non-zero version digit”. For example, our pack-
age depends on any Python version >=3.9.0 and <4.0.0. Thus, examples of
valid versions include 3.9.1 and 3.12.0, but 4.0.1 would be invalid. There are
many other syntaxes that can be used to specify version constraints in differ-
ent ways, as you can read more about in the poetry documentation13. So why
do we care about this? The caret operator enforces an upper cap on the de-
pendency versions our package requires. A problem with this approach is that
it forces anyone depending on your package to specify the same constraints
and can thus make it difficult to add and resolve dependencies.

This problem is best shown by example. Version 1.21.5 of the popular numpy
(Harris et al., 2020) package had bound version constraints on Python, requir-
ing version >=3.7 and <3.11 (see the source code14). Watch what happens if
we try to add this version of numpy to our pycounts package (we use the argu-
ment --dry-run to show what would happen here without actually executing
anything):

$ poetry add numpy=1.21.5 --dry-run

Updating dependencies
Resolving dependencies... (0.1s)

SolverProblemError

The current project's Python requirement (>=3.9,<4.0) is not compatible
with some of the required packages Python requirement:

13https://python-poetry.org/docs/dependency-specification
14https://github.com/numpy/numpy/blob/c3d0a09342c08c466984654bc4738af595fba896/setup

.py#L409

https://python-poetry.org/docs/dependency-specification
https://github.com/numpy/numpy/blob/c3d0a09342c08c466984654bc4738af595fba896/setup.py#L409
https://github.com/numpy/numpy/blob/c3d0a09342c08c466984654bc4738af595fba896/setup.py#L409

42 3 How to package a Python

- numpy requires Python >=3.7,<3.11, so it will not be satisfied
for Python >=3.11,<4.0

The problem here is that our package currently supports Python versions ^3.9
(i.e., >=3.9.0 and <4.0.0), so if we released it, a user with Python 3.12.0 would
technically be able to install it. However, numpy 1.21.5 only supports >=3.7
and <3.11 which would not be compatible with Python 3.12.0 (or any version
>=3.11). As a result of this inconsistency, poetry refuses to add numpy 1.21.5
as a dependency of our package. To add it, we have three main choices:

1. Change the Python version constraints of our package to >=3.7
and <3.11.

2. Wait for a version of numpy that is compatible with our package’s
Python constraints.

3. Manually specify the versions of Python for which the dependency
can be installed, e.g.: poetry add numpy=1.21.5 --python ”>=3.7,
<3.11”.

None of these options is really ideal, especially if your package has a large
number of dependencies with different bound version constraints. However, a
simple way this issue could be resolved is if numpy 1.21.5 did not having an
upper cap on the Python version required. In fact, in the subsequent minor
version release of numpy, 1.22.0, the upper version cap on Python was removed,
requiring only version >=3.8 (see the source code15), which we would be able
to successfully add to our package:

$ poetry add numpy=1.22.0 --dry-run

Ultimately, version constraints are an important issue that can affect the us-
ability of your package. If you intend to share your package, having an upper
cap on dependency versions can make it very difficult for other developers
to use your package as a dependency in their own projects. At the time of
writing, much of the packaging community, including the Python Packaging
Authority16, generally recommend not using an upper cap on version con-
straints unless absolutely necessary. As a result, we recommend specifying
version constraints without an upper cap by manually changing poetry’s de-
fault caret operator (^) to a greater-than-or-equal-to sign (>=). For example,
we will change the [tool.poetry.dependencies] section of our pyproject.toml
file as follows:

15https://github.com/numpy/numpy/blob/4adc87dff15a247e417d50f10cc4def8e1c17a03/setup
.py#L410

16https://github.com/pypa/packaging.python.org/pull/850

https://github.com/numpy/numpy/blob/4adc87dff15a247e417d50f10cc4def8e1c17a03/setup.py#L410
https://github.com/numpy/numpy/blob/4adc87dff15a247e417d50f10cc4def8e1c17a03/setup.py#L410
https://github.com/pypa/packaging.python.org/pull/850

3.7 Testing your package 43

[tool.poetry.dependencies]
python = ”>=3.9”
matplotlib = ”>=3.4.3”

You can read more about the issues around version constraints, as well as
examples where they might actually be valid, in Henry Schreiner’s excellent
blog post17. Those using version control should commit this import change
we’ve made to our package:

$ git add pyproject.toml
$ git commit -m ”build: remove upper bound on dependency versions”
$ git push

3.7 Testing your package
3.7.1 Writing tests
At this point we have developed a package that can count words in a text
file and plot the results. But how can we be certain that our package works
correctly and produces reliable results?

One thing we can do is write tests for our package that check the package
is working as expected. This is particularly important if you intend to share
your package with others (you don’t want to share code that doesn’t work!).
But even if you don’t intend to share your package, writing tests can still be
helpful to catch errors in your code and to write new code without breaking
any tried-and-tested existing functionality. If you don’t want to write to tests
for your package feel free to skip to Section 3.8.

Many of us already conduct informal tests of our code by running it a few
times in a Python session to see if it’s working as we expect, and if not,
changing the code and repeating the process. This is called “manual testing”
or “exploratory testing”. However, when writing software, it’s preferable to
define your tests in a more formal and reproducible way.

Tests in Python are often written with the assert statement. assert checks
the truth of an expression; if the expression is true, Python does nothing
and continues running, but if it’s false, the code terminates and shows a user-
defined error message. For example, consider running the follow code in a
Python interpreter:

17https://iscinumpy.dev/post/bound-version-constraints/

https://iscinumpy.dev/post/bound-version-constraints/

44 3 How to package a Python

>>> ages = [32, 19, 9, 75]
>>> for age in ages:
>>> assert age >= 18, ”Person is younger than 18!”
>>> print(”Age verified!”)

Age verified!
Age verified!
Traceback (most recent call last):
File ”<stdin>”, line 2, in <module>

AssertionError: Person is younger than 18!

Note how the first two “ages” (32 and 19) are verified, with an “Age verified!”
message printed to screen. But the third age of 9 fails the assert, so an error
message is raised and the program terminates before checking the last age of
75.

Using the assert statement, let’s write a test for the count_words() function
of our pycounts package. There are different kinds of tests used to test soft-
ware (unit tests, integration tests, regression tests, etc.); we discuss these in
Chapter 5: Testing. For now, we’ll write a unit test. Unit tests evaluate a
single “unit” of software, such as a Python function, to check that it produces
an expected result. A unit test consists of:

1. Some data to test the code with (called a “fixture”). The fixture
is typically a small or simple version of the data the function will
typically process.

2. The actual result that the code produces given the fixture.
3. The expected result of the test, which is compared to the actual

result using an assert statement.

The unit test we are going to write will assert that the count_words() function
produces an expected result given a certain fixture. We’ll use the following
quote from Albert Einstein as our fixture:

“Insanity is doing the same thing over and over and expecting
different results.”

The actual result is the result count_words() outputs when we input this

3.7 Testing your package 45

fixture. We can get the expected result by manually counting the words in the
quote (ignoring capitalization and punctuation):

einstein_counts = {'insanity': 1, 'is': 1, 'doing': 1,
'the': 1, 'same': 1, 'thing': 1,
'over': 2, 'and': 2, 'expecting': 1,
'different': 1, 'results': 1}

To write our unit test in Python code, let’s first create a text file containing
the Einstein quote to use as our fixture. We’ll add it to the tests/ directory of
our package as a file called einstein.txt — you can make the file manually, or
you can create it from a Python session started in the root package directory
using the following code:

>>> quote = ”Insanity is doing the same thing over and over and \
expecting different results.”

>>> with open(”tests/einstein.txt”, ”w”) as file:
file.write(quote)

Now, a unit test for our count_words() function would look as below:

>>> from pycounts.pycounts import count_words
>>> from collections import Counter
>>> expected = Counter({'insanity': 1, 'is': 1, 'doing': 1,

'the': 1, 'same': 1, 'thing': 1,
'over': 2, 'and': 2, 'expecting': 1,
'different': 1, 'results': 1})

>>> actual = count_words(”tests/einstein.txt”)
>>> assert actual == expected, ”Einstein quote counted incorrectly!”

If the above code runs without error, our count_words() function is working,
at least to our test specifications. In the next section, we’ll discuss how we
can make this testing process more efficient.

3.7.2 Running tests
It would be tedious and inefficient to manually write and execute unit tests for
your package’s code like we did above. Instead, it’s common to use a “testing
framework” to automatically run our tests for us. pytest is the most common
test framework used for Python packages. To use pytest:

1. Tests are defined as functions prefixed with test_ and contain one
or more statements that assert code produces an expected result.

46 3 How to package a Python

2. Tests are put in files of the form test_*.py or *_test.py, and are
usually placed in a directory called tests/ in a package’s root.

3. Tests can be executed using the command pytest at the command
line and pointing it to the directory your tests live in (i.e., pytest
tests/). pytest will find all files of the form test_*.py or *_test.py
in that directory and its sub-directories, and execute any functions
with names prefixed with test_.

The py-pkgs-cookiecutter created a tests/ directory and a module called
test_pycounts.py for us to put our tests in:

pycounts
├── CHANGELOG.md
├── CONDUCT.md
├── CONTRIBUTING.md
├── docs
│ └── ...
├── LICENSE
├── poetry.lock
├── pyproject.toml
├── README.md
├── src
│ └── ...
└── tests <--------

├── einstein.txt <--------
└── test_pycounts.py <--------

We created the file tests/einstein.txt ourselves in Section
3.7.1, it was not created by the py-pkgs-cookiecutter.

As mentioned above, pytest tests are written as functions prefixed with test_
and which contain one or more assert statements that check some code func-
tionality. Based on this format, let’s add the unit test we created in Section
3.7.1 as a test function to tests/test_pycounts.py using the below Python
code:

from pycounts.pycounts import count_words
from collections import Counter

3.7 Testing your package 47

def test_count_words():
”””Test word counting from a file.”””
expected = Counter({'insanity': 1, 'is': 1, 'doing': 1,

'the': 1, 'same': 1, 'thing': 1,
'over': 2, 'and': 2, 'expecting': 1,
'different': 1, 'results': 1})

actual = count_words(”tests/einstein.txt”)
assert actual == expected, ”Einstein quote counted incorrectly!”

Before we can use pytest to run our test for us we need to add it as a devel-
opment dependency of our package using the command poetry add --dev. A
development dependency is a package that is not required by a user to use
your package but is required for development purposes (like testing):

If using a conda virtual environment, make sure that environ-
ment is active by running conda activate pycounts, before using
or working on your package.

$ poetry add --dev pytest

If you look in the pyproject.toml file you will see that pytest gets added under
the [tool.poetry.dev-dependencies] section (which was previously empty, as
we saw in Section 3.5.2):

[tool.poetry.dev-dependencies]
pytest = ”^6.2.5”

To use pytest to run our test we can use the following command from our
root package directory:

$ pytest tests/

========================= test session starts =========================
...
collected 1 item

48 3 How to package a Python

tests/test_pycounts.py . [100%]

========================== 1 passed in 0.01s ==========================

If you’re not developing your package in a conda virtual environ-
ment, poetry will automatically create a virtual environment for
you using a tool called venv (read more in the documentation18).
You’ll need to tell poetry to use this environment by prepending
any command you run with poetry run, like: poetry run pytest
tests/.

From the pytest output we can see that our test passed! At this point, we
could add more tests for our package by writing more test_* functions. But
we’ll do this in Chapter 5: Testing. Typically you want to write enough tests
to check all the core code of your package. We’ll show how you can calculate
how much of your package’s code your tests actually check in the next section.

3.7.3 Code coverage
A good test suite will contain tests that check as much of your package’s code
as possible. How much of your code your tests actually use is called “code
coverage”. The simplest and most intuitive measure of code coverage is line
coverage. It is the proportion of lines of your package’s code that are executed
by your tests:

coverage = lines executed
total lines ∗ 100%

There is a useful extension to pytest called pytest-cov, which we can use to
calculate coverage. First, we’ll use poetry to add pytest-cov as a development
dependency of our pycounts package:

$ poetry add --dev pytest-cov

We can calculate the line coverage of our tests by running the following com-
mand, which tells pytest-cov to calculate the coverage our tests have of our
pycounts package:

18https://python-poetry.org/docs/managing-environments/

https://python-poetry.org/docs/managing-environments/

3.8 Package documentation 49

$ pytest tests/ --cov=pycounts

========================= test session starts =========================
...

Name Stmts Miss Cover
--
src/pycounts/__init__.py 2 0 100%
src/pycounts/plotting.py 9 9 0%
src/pycounts/pycounts.py 16 0 100%
--
TOTAL 27 9 67%

========================== 1 passed in 0.02s ==========================

In the output above, Stmts is how many lines are in a module, Miss is how
many lines were not executed during your tests, and Cover is the percentage
of lines covered by your tests. From the above output, we can see that our
tests currently don’t cover any of the lines in the pycounts.plotting module.
We’ll write more tests for our package, and discuss more advanced methods
of testing and calculating code coverage in Chapter 5: Testing.

For those using version control, commit the changes we’ve made to our pack-
ages tests to local and remote version control:

$ git add pyproject.toml poetry.lock
$ git commit -m ”build: add pytest and pytest-cov as dev dependencies”
$ git add tests/*
$ git commit -m ”test: add unit test for count_words”
$ git push

3.8 Package documentation
Documentation describing what your package does and how to use it is in-
valuable for the users of your package (including yourself). The amount of
documentation needed to support a package varies depending on its complex-
ity and the intended audience. A typical package contains documentation in
various parts of its directory structure, as shown in Table 3.3. There’s a lot
here but don’t worry, we’ll show how to efficiently write all these pieces of
documentation in the following sections.

50 3 How to package a Python

TABLE 3.3: Typical Python package documentation.

Documentation Typical location Description
README Root Provides high-level

information about the
package, e.g., what it
does, how to install it,
and how to use it.

License Root Explains who owns the
copyright to your
package source and how
it can be used and
shared.

Contributing guidelines Root Explains how to
contribute to the
project.

Code of conduct Root Defines standards for
how to appropriately
engage with and
contribute to the
project.

Changelog Root A chronologically
ordered list of notable
changes to the package
over time, usually
organized by version.

Docstrings .py files Text appearing as the
first statement in a
function, method, class,
or module in Python
that describes what the
code does and how to
use it. Accessible to
users via the help()
command.

Examples docs/ Step-by-step,
tutorial-like examples
showing how the
package works in more
detail.

3.8 Package documentation 51

Documentation Typical location Description
Application
programming interface
(API) reference

docs/ An organized list of the
user-facing
functionality of your
package (i.e., functions,
classes, etc.) along with
a short description of
what they do and how
to use them. Typically
created automatically
from your package’s
docstrings using the
sphinx tool as we’ll
discuss in Section
3.8.4.

Our pycounts package is a good example of a package with all this documen-
tation:

pycounts
├── .readthedocs.yml
├── CHANGELOG.md
├── CONDUCT.md
├── CONTRIBUTING.md
├── docs
│ ├── example.ipynb
│ └── ...
├── LICENSE
├── README.md
├── poetry.lock
├── pyproject.toml
├── src
│ └── ...
└── tests

└── ...

The typical workflow for documenting a Python package consists of three
steps:

1. Write documentation: manually write documentation in a plain-
text format.

2. Build documentation: compile and render documentation into
HTML using the documentation generator sphinx.

52 3 How to package a Python

3. Host documentation online: share the built documentation on-
line so it can be easily accessed by anyone with an internet connec-
tion, using a free service like Read the Docs19 or GitHub Pages20.

In this section, we will walk through each of these steps in detail.

3.8.1 Writing documentation
Python package documentation is typically written in a plain-text markup for-
mat such as Markdown21 (.md) or reStructuredText22 (.rst). With a plain-text
markup language, documents are written in plain-text and a special syntax
is used to specify how the text should be formatted when it is rendered by
a suitable tool. We’ll show an example of this below, but we’ll be using the
Markdown language in this book because it is widely used, and we feel it has
a less verbose and more intuitive syntax than reStructuredText (check out the
Markdown Guide23 to learn more about Markdown syntax).

Most developers create packages from templates which pre-populate a lot of
the standard package documentation for them. For example, as we saw in Sec-
tion 3.8, the py-pkgs-cookiecutter template we used to create our pycounts
package created a LICENSE, CHANGELOG.md, contributing guidelines (CONTRIBUT-
ING.md), and code of conduct (CONDUCT.md) for us already!

A README.md was also created, but it contains a “Usage” section, which is
currently empty. Now that we’ve developed the basic functionality of pycounts,
we can fill that section with Markdown text as follows:

In the Markdown text below, the following syntax is used:

• Headers are denoted with number signs (#). The number of number signs
corresponds to the heading level.

• Code blocks are bounded by three back-ticks. A programming language can
succeed the opening bounds to specify how the code syntax should be high-
lighted.

• Links are defined using brackets [] to enclose the link text, followed by the
URL in parentheses ().

19https://readthedocs.org
20https://pages.github.com
21https://en.wikipedia.org/wiki/Markdown
22https://www.sphinx-doc.org/en/master/usage/restructuredtext/index.html
23https://www.markdownguide.org

https://readthedocs.org
https://pages.github.com
https://en.wikipedia.org/wiki/Markdown
https://www.sphinx-doc.org/en/master/usage/restructuredtext/index.html
https://www.markdownguide.org

3.8 Package documentation 53

pycounts

Calculate word counts in a text file!

Installation

```bash
$ pip install pycounts
```

Usage

`pycounts` can be used to count words in a text file and plot results
as follows:

```python
from pycounts.pycounts import count_words
from pycounts.plotting import plot_words
import matplotlib.pyplot as plt

file_path = ”test.txt” # path to your file
counts = count_words(file_path)
fig = plot_words(counts, n=10)
plt.show()
```

Contributing

Interested in contributing? Check out the contributing guidelines.
Please note that this project is released with a Code of Conduct.
By contributing to this project, you agree to abide by its terms.

License

`pycounts` was created by Tomas Beuzen. It is licensed under the terms
of the MIT license.

Credits

`pycounts` was created with
[`cookiecutter`](https://cookiecutter.readthedocs.io/en/latest/) and
the `py-pkgs-cookiecutter`
[template](https://github.com/py-pkgs/py-pkgs-cookiecutter).

https://cookiecutter.readthedocs.io
https://github.com

54 3 How to package a Python

When we render this Markdown text later on with sphinx, it will look like
Fig. 3.5. We’ll talk about sphinx in Section 3.8.4, but many other tools are
also able to natively render Markdown documents (e.g., Jupyter, VS Code,
GitHub, etc.), which is why it’s so widely used.

FIGURE 3.5: Rendered version of README.md.

So, we now have a CHANGELOG.md, CONDUCT.md, CONTRIBUTING.md, LICENSE, and
README.md. In the next section, we’ll explain how to document your package’s
Python code using docstrings.

3.8.2 Writing docstrings
A docstring is a string, surrounded by triple-quotes, at the start of a module,
class, or function in Python (preceding any code) that provides documentation
on what the object does and how to use it. Docstrings automatically become

3.8 Package documentation 55

the documented object’s documentation, accessible to users via the help()
function. Docstrings are a user’s first port-of-call when they are trying to use
your package, they really are a necessity when creating packages, even for
yourself.

General docstring convention in Python is described in Python Enhancement
Proposal (PEP) 257 — Docstring Conventions24, but there is flexibility in
how you write your docstrings. A minimal docstring contains a single line
describing what the object does, and that might be sufficient for a simple
function or for when your code is in the early stages of development. However,
for code you intend to share with others (including your future self) a more
comprehensive docstring should be written. A typical docstring will include:

1. A one-line summary that does not use variable names or the func-
tion name.

2. An extended description.
3. Parameter types and descriptions.
4. Returned value types and descriptions.
5. Example usage.
6. Potentially more.

There are different “docstring styles” used in Python to organize this infor-
mation, such as numpydoc style25, Google style26, and sphinx style27. We’ll
be using the numpydoc style for our pycounts package because it is readable,
commonly used, and supported by sphinx. In the numpydoc style:

• Section headers are denoted as text underlined with dashes;

Parameters

• Input arguments are denoted as:

name : type
Description of parameter `name`.

• Output values use the same syntax above, but specifying the name is optional.

We show a numpydoc style docstring for our count_words() function below:

24https://www.python.org/dev/peps/pep-0257/
25https://numpydoc.readthedocs.io/en/latest/format.html#docstring-standard
26https://github.com/google/styleguide/blob/gh-pages/pyguide.md#38-comments-and-

docstrings
27https://sphinx-rtd-tutorial.readthedocs.io/en/latest/docstrings.html#the-sphinx-

docstring-format

https://www.python.org/dev/peps/pep-0257/
https://numpydoc.readthedocs.io/en/latest/format.html#docstring-standard
https://github.com/google/styleguide/blob/gh-pages/pyguide.md#38-comments-and-docstrings
https://github.com/google/styleguide/blob/gh-pages/pyguide.md#38-comments-and-docstrings
https://sphinx-rtd-tutorial.readthedocs.io/en/latest/docstrings.html#the-sphinx-docstring-format
https://sphinx-rtd-tutorial.readthedocs.io/en/latest/docstrings.html#the-sphinx-docstring-format

56 3 How to package a Python

def count_words(input_file):
”””Count words in a text file.

Words are made lowercase and punctuation is removed
before counting.

Parameters

input_file : str

Path to text file.

Returns

collections.Counter

dict-like object where keys are words and values are counts.

Examples

>>> count_words(”text.txt”)
”””
text = load_text(input_file)
text = clean_text(text)
words = text.split()
return Counter(words)

This docstrings can be accessed by users of our package by using the help()
function in a Python interpreter:

>>> from pycounts.pycounts import count_words
>>> help(count_words)

Help on function count_words in module pycounts.pycounts:

count_words(input_file)
Count words in a text file.

Words are made lowercase and punctuation is removed
before counting.

Parameters

...

3.8 Package documentation 57

You can add information to your docstrings at your discretion — you won’t
always need all the sections above, and in some cases you may want to in-
clude additional sections from the numpydoc style documentation28. We’ve
documented the remaining functions from our pycounts package as below. If
you’re following along with this tutorial, copy these docstrings into the func-
tions in the pycounts.pycounts and pycounts.plotting modules:

def plot_words(word_counts, n=10):
”””Plot a bar chart of word counts.

Parameters

word_counts : collections.Counter

Counter object of word counts.
n : int, optional

Plot the top n words. By default, 10.

Returns

matplotlib.container.BarContainer

Bar chart of word counts.

Examples

>>> from pycounts.pycounts import count_words
>>> from pycounts.plotting import plot_words
>>> counts = count_words(”text.txt”)
>>> plot_words(counts)
”””
top_n_words = word_counts.most_common(n)
word, count = zip(*top_n_words)
fig = plt.bar(range(n), count)
plt.xticks(range(n), labels=word, rotation=45)
plt.xlabel(”Word”)
plt.ylabel(”Count”)
return fig

28https://numpydoc.readthedocs.io/en/latest/format.html#docstring-standard

https://numpydoc.readthedocs.io/en/latest/format.html#docstring-standard

58 3 How to package a Python

def load_text(input_file):
”””Load text from a text file and return as a string.

Parameters

input_file : str

Path to text file.

Returns

str

Text file contents.

Examples

>>> load_text(”text.txt”)
”””
with open(input_file, ”r”) as file:

text = file.read()
return text

def clean_text(text):
”””Lowercase and remove punctuation from a string.

Parameters

text : str

Text to clean.

Returns

str

Cleaned text.

Examples

>>> clean_text(”Early optimization is the root of all evil!”)
'early optimization is the root of all evil'
”””
text = text.lower()
for p in punctuation:

text = text.replace(p, ””)
return text

3.8 Package documentation 59

For the users of our package it would be helpful to compile all of our functions
and docstrings into a easy-to-navigate document, so they can access this doc-
umentation without having to import them and run help(), or search through
our source code. Such a document is referred to as an application program-
ming interface (API) reference. We could create one by manually copying and
pasting all of our function names and docstrings into a plain-text file, but that
would be inefficient. Instead, we’ll show how to use sphinx in Section 3.8.4
to automatically parse our source code, extract our functions and docstrings,
and create an API reference for us.

3.8.3 Creating usage examples
Creating examples of how to use your package can be invaluable to new and
existing users alike. Unlike the brief and basic “Usage” heading we wrote
in our README in Section 3.8.1, these examples are more like tutorials,
including a mix of text and code that demonstrates the functionality and
common workflows of your package step-by-step.

You could write examples from scratch using a plain-text format like Mark-
down, but this can be inefficient and prone to errors. If you change the way a
function works, or what it outputs, you would have to re-write your example.
Instead, in this section we’ll show how to use Jupyter Notebooks (Kluyver
et al., 2016) as a more efficient, interactive, and reproducible way to create
usage examples for your users. If you don’t want to create usage examples for
your package, or aren’t interested in learning how to use Jupyter Notebooks
to do so, you can skip to Section 3.8.4.

Jupyter Notebooks are interactive documents with an .ipynb extension that
can contain code, equations, text, and visualizations. They are effective for
demonstrating examples because they directly import and use code from your
package; this ensures you don’t make mistakes when writing out your exam-
ples, and it allows users to download, execute, and interact with the notebooks
themselves (as opposed to just reading text). To create a usage example for
our pycounts package using a Jupyter Notebook, we first need to add jupyter
as a development dependency:

If using a conda virtual environment, make sure that environ-
ment is active by running conda activate pycounts, before using
or working on your package.

60 3 How to package a Python

$ poetry add --dev jupyter

Our py-pkgs-cookiecutter template already created a Jupyter Notebook ex-
ample document for us at docs/example.ipynb. To edit that document, we first
open the Jupyter Notebook application using the following command from the
root package directory:

$ jupyter notebook

If you’re developing your Python package in an IDE that na-
tively supports Jupyter Notebooks, such as Visual Studio Code
or JupyterLab, you can simply open docs/example.ipynb to
edit it, without needing to run the jupyter notebook command
above.

In the interface, navigate to and open docs/example.ipynb. As explained in
the Jupyter Notebook documentation29, notebooks are comprised of “cells”,
which can contain Python code or Markdown text. Our notebook currently
looks like Fig. 3.6.

As an example, we’ll update our notebook with the collection of Markdown
and code cells shown in Fig. 3.7 and Fig. 3.8.

Our Jupyter Notebook now contains an interactive tutorial demonstrating
the basic usage of our package. What’s important to note is that the code
and outputs are generated using our package itself, they have not been writ-
ten manually. Our users could now also download our example notebook and
interact and execute it themselves. But in the next section, we’ll show how
to use sphinx to automatically execute notebooks and include their content
(including the outputs of code cells) into a compiled collection of all our pack-
age’s documentation that users can easily read and navigate through without
even having to start the Jupyter application!

3.8.4 Building documentation
We’ve now written all the individual pieces of documentation needed to sup-
port our pycounts package. But all this documentation is spread over the

29https://jupyter-notebook.readthedocs.io/en/stable/

https://jupyter-notebook.readthedocs.io/en/stable/

3.8 Package documentation 61

FIGURE 3.6: A simple Jupyter Notebook using code from pycounts.

FIGURE 3.7: First half of Jupyter Notebook demonstrating an example
workflow using the pycounts package.

62 3 How to package a Python

FIGURE 3.8: Second half of Jupyter Notebook demonstrating an example
workflow using the pycounts package.

directory structure of our package making it difficult to share and search
through.

This is where the documentation generator sphinx comes in. sphinx is a tool
used to compile and render collections of plain-text source files into user-
friendly output formats, such as HTML or PDF. sphinx also has a rich ecosys-
tem of extensions that can be used to help automatically generate content —
we’ll be using some of these extensions in this section to automatically create
an API reference sheet from our docstrings, and to execute and render our
Jupyter Notebook example into our documentation.

To first give you an idea of what we’re going to build, Fig. 3.9 shows the
homepage of our package’s documentation compiled by sphinx into HTML.

3.8 Package documentation 63

FIGURE 3.9: The documentation homepage generated by sphinx.

The source and configuration files to build documentation like this using
sphinx typically live in the docs/ directory in a package’s root. The py-pkgs-
cookiecutter automatically created this directory and the necessary files for
us. We’ll discuss what each of these files are used for below.

pycounts
├── .readthedocs.yml
├── CHANGELOG.md
├── CONDUCT.md
├── CONTRIBUTING.md
├── docs
│ ├── changelog.md
│ ├── conduct.md

64 3 How to package a Python

│ ├── conf.py
│ ├── contributing.md
│ ├── example.ipynb
│ ├── index.md
│ ├── make.bat
│ ├── Makefile
│ └── requirements.txt
├── LICENSE
├── poetry.lock
├── pyproject.toml
├── README.md
├── src
│ └── ...
└── tests

└── ...

The docs/ directory includes:

• Makefile/make.bat: files that contain commands needed to build our docu-
mentation with sphinx and do not need to be modified. Make30 is a tool
used to run commands to efficiently read, process, and write files. A Make-
file defines the tasks for Make to execute. If you’re interested in learning
more about Make, we recommend the Learn Makefiles31 tutorial. But for
building documentation with sphinx, all you need to know is that having
these Makefiles allows us to build documentation with the simple command
make html, which we’ll do later in this section.

• requirements.txt: contains a list of documentation-specific dependencies re-
quired to host our documentation online on Read the Docs32, which we’ll
discuss in Section 3.8.5.

• conf.py is a configuration file controlling how sphinx builds your documen-
tation. You can read more about conf.py in the sphinx documentation33

and we’ll touch on it again shortly, but, for now, it has been pre-populated
by the py-pkgs-cookiecutter template and does not need to be modified.

• The remaining files in the docs/ directory form the content of our generated
documentation, as we’ll discuss in the remainder of this section.

The index.md file will form the landing page of our documentation (the one
we saw earlier in Fig. 3.9). Think of it as the homepage of a website. For your
landing page, you’d typically want some high-level information about your
package, and then links to the rest of the documentation you want to expose

30https://www.gnu.org/software/make/
31https://makefiletutorial.com
32https://readthedocs.org/
33https://www.sphinx-doc.org/en/master/usage/configuration.html

https://www.gnu.org/software/make/
https://makefiletutorial.com
https://readthedocs.org/
https://www.sphinx-doc.org/en/master/usage/configuration.html

3.8 Package documentation 65

to a user. If you open index.md in an editor of your choice, that’s exactly the
content we are including, with a particular kind of syntax, which we explain
below.

```{include} ../README.md
```

```toctree
:maxdepth: 1
:hidden:

example.ipynb
changelog.md
contributing.md
conduct.md
autoapi/index
```

The syntax we’re using in this file is known as Markedly Structured Text
(MyST)34. MyST is based on Markdown but with additional syntax options
compatible for use with sphinx. The {include} syntax specifies that when
this page is rendered with sphinx, we want it to include the content of the
README.md from our package’s root directory (think of it as a copy-paste oper-
ation).

The {toctree} syntax defines what documents will be listed in the table of
contents (ToC) on the left-hand side of our rendered documentation, as shown
in Fig. 3.9. The argument :maxdepth: 1 indicates how many heading levels the
ToC should include, and :hidden: specifies that the ToC should only appear
in the side bar and not in the welcome page itself. The ToC then lists the
documents to include in our rendered documentation.

“example.ipynb” is the Jupyter Notebook we wrote in section Section 3.8.3.
sphinx doesn’t support relative links in a ToC, so to include the documents
CHANGELOG.md, CONTRIBUTING.md, CONDUCT.md from our package’s root, we create
“stub files” called changelog.md, contributing.md, and conduct.md, which link
to these documents using the {include} syntax we saw earlier. For example,
changelog.md contains the following text:

```{include} ../CHANGELOG.md
```

The final document in the ToC, “autoapi/index” is an API reference sheet

34https://myst-parser.readthedocs.io/en/latest/syntax/syntax.html

https://myst-parser.readthedocs.io/en/latest/syntax/syntax.html

66 3 How to package a Python

that will be generated automatically for us, from our package structure and
docstrings, when we build our documentation with sphinx.

Before we can go ahead and build our documentation with sphinx, it relies on
a few sphinx extensions that need to be installed and configured:

• myst-nb35: extension that will enable sphinx to parse our Markdown, MyST,
and Jupyter Notebook files (sphinx only supports reStructuredTex, .rst files,
by default).

• sphinx-rtd-theme36: a custom theme for styling the way our documentation
will look. It looks much better than the default theme.

• sphinx-autoapi37: extension that will parse our source code and docstrings
to create an API reference sheet.

• sphinx.ext.napoleon38: extension that enables sphinx to parse numpydoc
style docstrings.

• sphinx.ext.viewcode39: extension that adds a helpful link to the source code
of each object in the API reference sheet.

These extensions are not necessary to create documentation with sphinx, but
they are all commonly used in Python packaging documentation and signifi-
cantly improve the look and user-experience of the generated documentation.
Extensions without the sphinx.ext prefix need to be installed. We can install
them as development dependencies in a poetry-managed project with the fol-
lowing command:

If using a conda virtual environment, make sure that environ-
ment is active by running conda activate pycounts, before using
or working on your package.

$ poetry add --dev myst-nb --python ”^3.9”
$ poetry add --dev sphinx-autoapi sphinx-rtd-theme

Adding myst-nb is a great example of why upper caps on de-
pendency versions can be a pain, as we discussed in Section

35https://myst-nb.readthedocs.io/en/latest/
36https://sphinx-rtd-theme.readthedocs.io/en/stable/
37https://sphinx-autoapi.readthedocs.io/en/latest/
38https://sphinxcontrib-napoleon.readthedocs.io/en/latest/
39https://www.sphinx-doc.org/en/master/usage/extensions/viewcode.html

https://myst-nb.readthedocs.io/en/latest/
https://sphinx-rtd-theme.readthedocs.io/en/stable/
https://sphinx-autoapi.readthedocs.io/en/latest/
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/
https://www.sphinx-doc.org/en/master/usage/extensions/viewcode.html

3.8 Package documentation 67

3.6.1. At the time of writing, one of the dependencies of myst-
nb, mdit-py-plugins, has an upper cap of <4.0 on the Python
version it requires, so it’s not compatible with our package and
its other dependencies which all support Python >=3.9. Thus,
unless mdit-py-plugins removes this upper cap, the easiest way
for us to add myst-nb is to tell poetry to only install it for Python
versions ^3.9 (i.e., >=3.9 and <4.0), by using the argument --
python ”^3.9”.

Once installed, any extensions you want to use need to be added to a list
called extensions in the conf.py configuration file and configured. Configura-
tion options for each extension (if they exist) can be viewed in their respective
documentation, but the py-pkgs-cookeicutter has already taken care of ev-
erything for us, by defining the following variables within conf.py:

extensions = [
”myst_nb”,
”autoapi.extension”,
”sphinx.ext.napoleon”,
”sphinx.ext.viewcode”

]
autoapi_dirs = [”../src”] # location to parse for API reference
html_theme = ”sphinx_rtd_theme”

With our documentation structure set up, and our extensions configured, we
can now navigate to the docs/ directory and build our documentation with
sphinx using the following commands:

$ cd docs
$ make html

Running Sphinx
...
build succeeded.
The HTML pages are in _build/html.

If we look inside our docs/ directory we see a new directory _build/html,
which contains our built documentation as HTML files. If you open
_build/html/index.html, you should see the page shown earlier in Fig. 3.9.

68 3 How to package a Python

If you make significant changes to your documentation, it can
be a good idea to delete the _build/ folder before building it
again. You can do this easily by adding the clean option into
the make html command: make clean html.

The sphinx-autoapi extension extracted the docstrings we wrote for our pack-
age’s functions in **Fig. @ref(fig:03:Writing-docstrings** and rendered them
into our documentation. You can find the generated API reference sheet
by clicking ”API Reference” in the table of contents. For example,
{numref}03-documentation-2-fig) shows the functions and docstrings in the
pycounts.plotting module. The sphinx.ext.viewcode extension added the
“source” button next to each function in our API reference sheet, which links
readers directly to the source code of the function (if they want to view it).

Finally, if we navigate to the “Example usage” page, Fig. 3.11 shows the
Jupyter Notebook we wrote in Section 3.8.3 rendered into our documenta-
tion, including the Markdown text, code input, and executed output. This
was made possible using the myst-nb extension.

Ultimately, you can efficiently make beautiful and many-featured documen-
tation with sphinx and its ecosystem of extensions. You can now use this
documentation yourself or potentially share it with others, but it really shines
when you host it on the web using a free service like Read the Docs40, as we’ll
do in the next section. For those using version control, now is a good time
to move back to our package’s root directory and commit our work using the
following commands:

$ cd ..
$ git add README.md docs/example.ipynb
$ git commit -m ”docs: updated readme and example”
$ git add src/pycounts/pycounts.py src/pycounts/plotting.py
$ git commit -m ”docs: created docstrings for package functions”
$ git add pyproject.toml poetry.lock
$ git commit -m ”build: added dev dependencies for docs”
$ git push

40https://readthedocs.org/

https://readthedocs.org/

3.8 Package documentation 69

FIGURE 3.10: Documentation for the pycounts plotting module.

3.8.5 Hosting documentation online
If you intend to share your package with others, it will be useful to make your
documentation accessible online. It’s common to host Python package docu-
mentation on the free online hosting service Read the Docs41. Read the Docs
works by connecting to an online repository hosting your package documenta-
tion, such as a GitHub repository. When you push changes to your repository,
Read the Docs automatically builds a fresh copy of your documentation (i.e.,
runs make html) and hosts it at the URL https://<pkgname>.readthedocs.io/

41https://readthedocs.org/

https://readthedocs.org/
https://<pkgname>.readthedocs.io/

70 3 How to package a Python

FIGURE 3.11: Jupyter Notebook example rendered into pycounts’s docu-
mentation.

(you can also configure Read the Docs to use a custom domain name). This
means that any changes you make to your documentation source files (and
push to your linked remote repository) are immediately deployed to your users.
If you need your documentation to be private (e.g., only available to employ-
ees of a company), Read the Docs offers a paid “Business plan” with this
functionality.

3.8 Package documentation 71

GitHub Pages42 is another popular service used for hosting
documentation from a repository. However, it doesn’t natively
support automatic building of your documentation when you
push changes to the source files, which is why we prefer to
use Read the Docs here. If you did want to host your docs
on GitHub Pages, we recommend using the ghp-import43 pack-
age, or setting up an automated GitHub Actions workflow using
the peaceiris/actions-gh-pages44 action (we’ll learn more about
GitHub Actions in Chapter 8: Continuous integration and
deployment).

The Read the Docs45 documentation will provide the most up-to-date steps
required to host your documentation online. For our pycounts package, this
involved the following steps:

1. Visit https://readthedocs.org/ and click on “Sign up”.
2. Select “Sign up with GitHub”.
3. Click “Import a Project”.
4. Click “Import Manually”.
5. Fill in the project details by:

1. Providing your package name (e.g., pycounts).
2. The URL to your package’s GitHub repository (e.g.,

https://github.com/TomasBeuzen/pycounts).
3. Specify the default branch as main.

6. Click “Next” and then “Build version”.

After following the steps above, your documentation should be successfully
built by Read the Docs46, and you should be able to access it via the “View
Docs” button on the build page. For example, the documentation for pycounts
is now available at https://pycounts.readthedocs.io/en/latest/. This
documentation will be automatically re-built by Read the Docs each time you
push changes to your GitHub repository.

42https://pages.github.com
43https://github.com/c-w/ghp-import
44https://github.com/peaceiris/actions-gh-pages
45https://readthedocs.org
46https://readthedocs.org/

https://readthedocs.org/
https://pycounts.readthedocs.io/en/latest/
https://pages.github.com
https://github.com/c-w/ghp-import
https://github.com/peaceiris/actions-gh-pages
https://readthedocs.org
https://readthedocs.org/

72 3 How to package a Python

The .readthedocs.yml file that py-pkgs-cookiecutter created
for us in the root directory of our Python package contains the
configuration settings necessary for Read the Docs to properly
build our documentation. It specifies what version of Python to
use and tells Read the Docs that our documentation requires the
extra packages specified in pycounts/docs/requirements.txt to
be generated correctly.

3.9 Tagging a package release with version control
We have now created all the source files that make up version 0.1.0 of our
pycounts package, including Python code, documentation, and tests — well
done! In the next section, we’ll turn all these source files into a distribution
package that can be easily shared and installed by others. But for those using
version control, it’s helpful at this point to tag a release of your package’s
repository. If you’re not using version control, you can skip to Section 3.10.

Tagging a release means that we permanently “tag” a specific point in our
repository’s history, and then create a downloadable “release” of all the files
in our repository in the state they were in when the tag was made. It’s common
to tag a release for each new version of your package, as we’ll discuss more in
Chapter 7: Releasing and versioning.

Tagging a release is a two-step process involving both Git and GitHub:

1. Create a tag marking a specific point in a repository’s history using
the command git tag.

2. On GitHub, create a release of all the files in your repository (usually
in the form of a zipped archive like .zip or .tar.gz) based on your
tag. Others can then download this release if they wish to view or
use your package’s source files as they existed at the time the tag
was created.

We’ll demonstrate this process by tagging a release of v0.1.0 of our pycounts
package (it’s common to prefix a tag with “v” for “version”). First, we need
to create a tag identifying the state of our repository at v0.1.0 and then push
the tag to GitHub using the following git commands at the command line:

3.9 Tagging a package release with version control 73

$ git tag v0.1.0
$ git push --tags

Now if you go to the pycounts repository on GitHub and navigate to the
“Releases” tab, you should see a tag like that shown in Fig. 3.12.

FIGURE 3.12: Tag of v0.1.0 of pycounts on GitHub.

To create a release from this tag, click “Draft a new release”. You can then
identify the tag from which to create the release and optionally add some
additional details about the release as shown in Fig. 3.13.

After clicking “Publish release”, GitHub will automatically create a release
from your tag, including compressed archives of your code in .zip and .tar.gz
format, as shown in Fig. 3.14.

We’ll talk more about making new versions and releases of your package as
you update it (e.g., modify code, add features, fix bugs, etc.) in Chapter 7:
Releasing and versioning.

People with access to your GitHub repository can actually pip
install your package directly from the repository using your
tags. We talk more about that in Section 4.3.4.

74 3 How to package a Python

FIGURE 3.13: Making a release of v0.1.0 of pycounts on GitHub.

3.10 Building and distributing your package
3.10.1 Building your package
Right now, our package is a collection of files and folders that is difficult
to share with others. The solution to this problem is to create a “distribu-
tion package”. A distribution package is a single archive file containing all

3.10 Building and distributing your package 75

FIGURE 3.14: Release of v0.1.0 of pycounts on GitHub.

the files and information necessary to install a package using a tool like pip.
Distribution packages are often called “distributions” for short and they are
how packages are shared in Python and installed by users, typically with the
command pip install <some-package>.

The main types of distributions in Python are source distributions (known
as “sdists”) and wheels. sdists are a compressed archive of all the source files,
metadata, and instructions needed to construct an installable version of your
package. To install from an sdist, a user needs to download the sdist, extract
its contents, and then use the build instructions to build and finally install
the package on their computer.

In contrast, wheels are pre-built versions of a package. They are built on
the developer’s machine before sharing with users. They are the preferred
distribution format because a user only needs to download the wheel and move
it to the location on their computer where Python searches for packages; no
build step is required.

76 3 How to package a Python

pip install can handle installation from either an sdist or a wheel, and we’ll
discuss these topics in much more detail in Section 4.3. What you need to
know now is that when distributing a package it’s common to create both
sdist and wheel distributions. We can easily create an sdist and wheel of a
package with poetry using the command poetry build. Let’s do that now
for our pycounts package by running the following command from our root
package directory:

$ poetry build

Building pycounts (0.1.0)
- Building sdist
- Built pycounts-0.1.0.tar.gz
- Building wheel
- Built pycounts-0.1.0-py3-none-any.whl

After running this command, you’ll notice a new directory in your package
called dist/:

pycounts
├── .readthedocs.yml
├── CHANGELOG.md
├── CONDUCT.md
├── CONTRIBUTING.md
├── dist
│ ├── pycounts-0.1.0-py3-none-any.whl <- wheel
│ └── pycounts-0.1.0.tar.gz <- sdist
├── docs
│ └── ...
├── LICENSE
├── poetry.lock
├── pyproject.toml
├── README.md
├── src
│ └── ...
└── tests

└── ...

Those two new files are the sdist and wheel for our pycounts package. A user
could now easily install our package if they had one of these distributions by
using pip install. For example, to install the wheel (the preferred distribution
type), you could enter the following in a terminal:

3.10 Building and distributing your package 77

$ cd dist/
$ pip install pycounts-0.1.0-py3-none-any.whl

Processing ./pycounts-0.1.0-py3-none-any.whl
...
Successfully installed pycounts-0.1.0

To install using the sdist, you would have to unpack the sdist archive before
running pip install. The procedure for this varies depending on your spe-
cific operating system. For example, on Mac OS, the command line tool tar
with argument x (extract the input file), z (gunzip the input file), f (apply
operations to the provided input file) can be used to unpack the sdist:

$ tar xzf pycounts-0.1.0.tar.gz
$ pip install pycounts-0.1.0/

Processing ./pycounts-0.1.0-py3-none-any.whl
Installing build dependencies ... done
Getting requirements to build wheel ... done
Preparing wheel metadata ... done

...
Successfully built pycounts
Successfully installed pycounts-0.1.0

Note in the output above how installing from an sdist requires a build step
prior to installation. The sdist is first built into a wheel, which is then installed.
For those interested, we discuss the nuances of building and installing packages
from sdists and wheels in Section 4.3.

Creating a distribution for our package is most useful if we make it available on
an online repository like the Python Package Index (PyPI), the official online
software repository for Python. This would allow users to simply run pip
install pycounts to install our package, without needing the sdist or wheel
files locally, and we’ll do this in the next section. But even if you don’t intend
to share your package, it can still be useful to build and install distributions
for two reasons:

1. A distribution is a self-contained copy of your package’s source files
that’s easy to move around and store on your computer. It makes
it easy to retain distributions for different versions of your package,
so that you can re-use or share them if you ever need to.

2. Recall that poetry installs package in “editable mode”, such that a

78 3 How to package a Python

link to the package’s location is installed, rather than an indepen-
dent distribution of the package itself. This is useful for development
purposes, because it means that any changes to the source code will
be immediately reflected when you next import the package, with-
out the need to poetry install again. However, for users of your
package (including yourself using your package in other projects),
it is often better to install a “non-editable” version of the package
(the default behavior when you pip install an sdist or wheel) be-
cause a non-editable installation will remain stable and immune to
any changes made to the source files on your computer.

3.10.2 Publishing to TestPyPI
At this point, we have distributions of pycounts that we want to share with the
world by publishing to PyPI47. However, it is good practice to do a “dry run”
and check that everything works as expected by submitting to TestPyPi48

first. poetry has a publish command, which we can use to do this, however
the default behavior is to publish to PyPI. So we need to add TestPyPI to
the list of repositories poetry knows about using the following command:

$ poetry config repositories.test-pypi https://test.pypi.org/legacy/

To publish to TestPyPI we can use poetry publish (you will be prompted
for your username and password for TestPyPI — which we signed up for in
Section 2.3):

$ poetry publish -r test-pypi

Username: TomasBeuzen
Password:
Publishing pycounts (0.1.0) to test-pypi
- Uploading pycounts-0.1.0-py3-none-any.whl 100%
- Uploading pycounts-0.1.0.tar.gz 100%

Rather than entering your username and password every time
you want to publish a distribution to TestPyPI or PyPI, you

47https://pypi.org/
48https://test.pypi.org/

https://pypi.org/
https://test.pypi.org/
https://test.pypi.org/

3.11 Summary and next steps 79

can configure an API token as described in the PyPI documen-
tation49.

Now we should be able to visit our package on TestPyPI. The URL for our
pycounts package is: https://test.pypi.org/project/pycounts/. We can try
installing our package using pip from the command line with the following
command:

$ pip install --index-url https://test.pypi.org/simple/ \
--extra-index-url https://pypi.org/simple \
pycounts

By default pip install will search PyPI for the named package. However,
we want to search TestPyPI because that is where we uploaded our package.
The argument --index-url points pip to the TestPyPI index. However, it’s
important to note that not all developers upload their packages to TestPyPI;
some only upload them directly to PyPI. If your package depends on packages
that are not on TestPyPI you can tell pip to try and look for them on PyPI
instead. To do that, you can use the argument --extra-index-url as we do in
the command above.

3.10.3 Publishing to PyPI
If you were able to upload your package to TestPyPI and install it without
error, you’re ready to publish your package to PyPI. You can publish to PyPI
using the poetry publish command without any arguments:

$ poetry publish

Your package will then be available on PyPI (e.g., https://pypi.org/project
/pycounts/) and can be installed by anyone using pip:

$ pip install pycounts

3.11 Summary and next steps
This chapter provided a practical overview of the key steps required to gener-
ate a fully-featured Python package. In the following chapters, we’ll explore

49https://pypi.org/help/#apitoken

https://test.pypi.org/project/pycounts/
https://pypi.org/project/pycounts/
https://pypi.org/project/pycounts/
https://pypi.org/help/#apitoken
https://test.pypi.org/
https://pypi.org/

80 3 How to package a Python

each of these steps in more detail and continue to add features to our pycounts
package. Two key workflows we have yet to discuss are:

1. Releasing new versions of your package as you update it. We’ll dis-
cuss this in Chapter 7: Releasing and versioning.

2. Setting up continuous integration and continuous deployment
(CI/CD) — that is, automated pipelines for running tests, building
documentation, and deploying your package. We’ll discuss CI/CD
in Chapter 8: Continuous integration and deployment.

Before moving onto the next chapter, let’s summarize a reference list of all
the steps we took to develop a Python package in this chapter:

1. Create package structure using cookiecutter (Section 3.2.2).

$ cookiecutter \
https://github.com/py-pkgs/py-pkgs-cookiecutter.git

2. (Optional) Put your package under version control (Section 3.3).

3. (Optional) Create and activate a virtual environment using conda
(Section 3.5.1).

$ conda create --name <your-env-name> python=3.9 -y
$ conda activate <your-env-name>

4. Add Python code to module(s) in the src/ directory (Section 3.4),
adding dependencies as needed (Section 3.6).

$ poetry add <dependency>

5. Install and try out your package in a Python interpreter (Section
3.5.2).

$ poetry install

6. (Optional) Write tests for your package in module(s) prefixed with
test_ in the tests/ directory. Add pytest as a development de-
pendency to run your tests (Section 3.7.2). Add pytest-cov as

https://github.com/

3.11 Summary and next steps 81

a development dependency to calculate the coverage of your tests
(Section 3.7.3).

$ poetry add --dev pytest pytest-cov
$ pytest tests/ --cov=<pkg-name>

7. (Optional) Create documentation source files for your package
(Section 3.8). Use sphinx to compile and generate an HTML render
of your documentation, adding the required development dependen-
cies (Section 3.8.4).

$ poetry add --dev myst-nb sphinx-autoapi sphinx-rtd-theme
$ cd docs
$ make html
$ cd ..

8. (Optional) Host documentation online with Read the Docs50

(Section 3.8.5).

9. (Optional) Tag a release of your package using Git and GitHub, or
equivalent version control tools (Section 3.9).

10. Build sdist and wheel distributions for your package (Section
3.10.1).

$ poetry build

11. (Optional) Publish your distributions to TestPyPI51 and try in-
stalling your package (Section 3.10.2).

$ poetry config repositories.test-pypi \
https://test.pypi.org/legacy/

$ poetry publish -r test-pypi
$ pip install --index-url https://test.pypi.org/simple/ \

--extra-index-url https://pypi.org/simple \
pycounts

50https://readthedocs.org/
51https://test.pypi.org/

https://readthedocs.org/
https://test.pypi.org/
https://test.pypi.org
https://test.pypi.org
https://test.pypi.org

82 3 How to package a Python

12. (Optional) Publish your distributions to PyPI52. Your package can
now be installed by anyone using pip (Section 3.10.3).

$ poetry publish
$ pip install <pkg-name>

The above workflow uses a particular suite of tools (e.g., conda, poetry, sphinx,
etc.) to develop a Python package. While there are other tools that can be
used to help build Python packages, the aim of this book is to give a high-
level, practical, and efficient introduction to Python packaging using modern
tools, and this has influenced our selection of tools in this chapter and book.
However, the concepts and workflow discussed here remain relevant to the
Python packaging ecosystem, regardless of the exact tools you use to develop
your Python packages.

52https://pypi.org/

https://pypi.org/

4
Package structure and distribution

Chapter 3: How to package a Python provided a practical overview of
how to create, install, and distribute a Python package. This chapter now goes
into more detail about what a Python package actually is, digging deeper into
how packages are structured, installed, and distributed.

We begin with a discussion of how modules and packages are represented in
Python and why they are used. We then discuss some more advanced package
structure topics, such as controlling the import behavior of a package and
including non-code files, like data. The chapter finishes with a discussion of
what package distributions are, how to build them, and how they are installed.
Along the way, we’ll demonstrate key concepts by continuing to develop our
pycounts package from the previous chapter.

4.1 Packaging fundamentals
We’ll begin this chapter by exploring some of the lower-level implementation
details related to what packages are, how they’re structured, and how they’re
used in Python.

All data in a Python program are represented by objects or by relations be-
tween objects. For example, integers and functions are kinds of Python objects.
We can find the type of a Python object using the type() function. For ex-
ample, the code below, run in a Python interpreter, creates an integer object
and a function object mapped to the names a and hello_world, respectively:

>>> a = 1
>>> type(a)

int

DOI: 10.1201/9781003189251-4 83

https://doi.org/10.1201/9781003189251-4

84 4 Package structure and distribution

>>> def hello_world(name):
print(f”Hello world! My name is {name}.”)

>>> type(hello_world)

function

The Python object important to our discussion of packages is the “module”
object. A module is an object that serves as an organizational unit of Python
code. Typically, Python code you want to reuse is stored in a file with a
.py suffix and is imported using the import statement. This process creates
a module object with the same name as the imported file (excluding the .py
suffix), and from this object, we can access the contents of the file.

For example, imagine we have a module greetings.py in our current directory
containing functions to print “Hello World!” in English and Squamish (the
Squamish people1 are an indigenous people of modern-day British Columbia,
Canada):

def hello_world():
print(”Hello World!”)

def hello_world_squamish():
print(”I chen tl'iḵ!”)

We can import that module using the import statement and can use the type()
function to verify that we created a module object, which has been mapped
to the name “greetings” (the name of the file):

>>> import greetings
>>> type(greetings)

module

We call the module object an “organizational unit of code” because the content
of the module (in this case, the two “hello world” functions) can be accessed
via the module name and “dot notation”. For example:

1https://en.wikipedia.org/wiki/Squamish_people

https://en.wikipedia.org/wiki/Squamish_people

4.1 Packaging fundamentals 85

>>> greetings.hello_world()

”Hello World!”

>>> greetings.hello_world_squamish()

”I chen tl'iḵ!”

At this point in our discussion, it’s useful to mention Python’s namespaces.
A “namespace” in Python is a mapping from names to objects. From the
code examples above, we’ve added the names a (an integer), hello_world (a
function), and greetings (a module) to the current namespace and can use
those names to refer to the objects we created. The dir() function can be
used to inspect a namespace. When called with no arguments, dir() returns
a list of names defined in the current namespace:

>>> dir()

['__annotations__', '__builtins__', '__doc__', '__loader__',
'__name__', '__package__', '__spec__', 'a', 'hello_world',
'greetings']

In the output above, we can see the names of the three objects we have defined
in this section: a, hello_world, and greetings. The other names bounded by
double underscores are objects that were initialized automatically when we
started the Python interpreter and are implementation details that aren’t
important to our discussion here but can be read about in the Python docu-
mentation2.

Namespaces are created at different moments, have different lifetimes, and
can be accessed from different parts of a Python program — but these details
digress from our discussion, and we point interested readers to the Python doc-
umentation3 to learn more. The important point to make here is that when a
module is imported using the import statement, a module object is created and
it has its own namespace containing the names of the Python objects defined
in the modules. For example, when we imported the greetings.py file earlier,
we created a greetings module object and namespace containing the names

2https://docs.python.org/3/reference/executionmodel.html?highlight=__builtins__#exe
cution-model

3https://docs.python.org/3/tutorial/classes.html#python-scopes-and-namespaces

https://docs.python.org/3/reference/executionmodel.html?highlight=__builtins__#execution-model
https://docs.python.org/3/reference/executionmodel.html?highlight=__builtins__#execution-model
https://docs.python.org/3/tutorial/classes.html#python-scopes-and-namespaces

86 4 Package structure and distribution

of the objects defined in the file — hello_world and hello_world_squamish —
which we can access using dot notation, e.g., greetings.hello_world() and
greetings.hello_world_squamish().

In this way, the module object isolates a collection of code and provides us with
a clean, logical, and organized way to access it. We can inspect the namespace
of a module by passing the module object as an input to the dir() function:

>>> dir(greetings)

['__annotations__', '__builtins__', '__doc__', '__loader__',
'__name__', '__package__', '__spec__', 'hello_world',
'hello_world_squamish']

An important point to stress here is that there is no relation between names in
different namespaces. That means that we can have objects of the exact same
name in a Python session if they exist in different namespaces. For example,
in the Python session we’ve been running in this section we have access to
two hello_world functions; one that was defined earlier in our interactive
interpreter, and one defined in the greetings module. While these functions
have the exact same name, there is no relation between them because they
exist in different namespaces; greetings.hello_world() exists in the greetings
module namespace, and hello_world() exists in the “global” namespace of our
interpreter. So, we can access both with the appropriate syntax:

>>> hello_world(”Tom”)

”Hello world! My name is Tom.”

>>> greetings.hello_world()

”Hello World!”

Now that we have a basic understanding of modules, we can further discuss
packages. Packages are just a collection of one or more modules. They are typ-
ically structured as a directory (the package) containing one or more .py files
(the modules) and/or subdirectories (which we call subpackages). A special file
named __init__.py is used to tell Python that a directory is a package (rather
than just a plain-old directory on your computer). We’ll talk more about the
__init__.py file and package structure in Section 3.2, but for now, here’s an
example of a simple package structure with two modules and one subpackage:

4.1 Packaging fundamentals 87

pkg
├── __init__.py
├── module1.py
└── subpkg

├── __init__.py
└── module2.py

Put simply, packages provide another level of abstraction for our code and
allow us to organize related modules under a single package namespace. It’s
helpful to think of a package as a module containing other modules. In fact,
this is pretty much how Python treats packages. Regardless of whether you
import a single, standalone module (i.e., a .py file) or a package (i.e., a di-
rectory), Python will create a module object in the current namespace. For
example, let’s import the pycounts package we created in Chapter 3: How
to package a Python and check its type (recall that this package contains
two modules; pycounts.py and plotting.py):

If you’re following on from Chapter 3: How to package a
Python and created a virtual environment for your pycounts
package using conda, as we did in Section 3.5.1, be sure to
activate that environment before continuing with this chapter
by running conda activate pycounts at the command line.

>>> import pycounts
>>> type(pycounts)

module

Note that despite importing our pycounts package (which contains two mod-
ules), Python still created a single module object. Just as before, we can access
the contents of our package via dot notation. For example, we can import the
plot_words() function from the plotting module of the pycounts package
using the following syntax:

88 4 Package structure and distribution

>>> from pycounts.plotting import plot_words
>>> type(plot_words)

function

While we get a module object regardless of whether we import a single module
(a single .py file) or a package (a directory containing one or more .py files),
one technical difference between a module and a package in Python is that
packages are imported as module objects that have a __path__ attribute.

When importing a package or module, Python searches for it in the default
list of directories defined in sys.path:

>>> import sys
>>> sys.path

['',
'/opt/miniconda/base/envs/pycounts/lib/python39.zip',
'/opt/miniconda/base/envs/pycounts/lib/python3.9',
'/opt/miniconda/base/envs/pycounts/lib/python3.9/lib-dynload',
'/opt/miniconda/base/envs/pycounts/lib/python3.9/site-packages']

The list of directories shown by sys.path will change depending
on how you installed Python and whether or not you’re in a
virtual environment. The empty string at the start of the list
represents the current directory.

But when importing something from a package, Python uses the __path__
attribute of the package to look for that something, rather than the paths
in sys.path. For example, let’s check the __path__ attribute of the pycounts
object:

>>> pycounts.__path__

['/Users/tomasbeuzen/pycounts/src/pycounts']

4.2 Package structure 89

In Section 3.5.2 we discussed how poetry, the tool we’re
using to develop our pycounts package, installs packages in
“editable” mode meaning that it installs a link to your package’s
code on your computer, and that’s what we see in the output
above. If you install pycounts (or any other package) using
pip install or conda install and check its __path__ attribute
you would see a path including a site-packages/ directory,
which is where Python puts installed packages by default, e.g.:
['/opt/miniconda/base/envs/pycounts/lib/python3.9/site-
packages/pycounts'].

We’ll talk more about package installation in Section 4.3.

What this all means is that when you type import pycounts.plotting, Python
first searches for a module or package called pycounts in the list of search paths
defined by sys.path. If pycounts is a package, it then searches for a plotting
module or subpackage using pycounts.__path__ as the search path (rather
than sys.path). At this point, we’re straying into the nuances of Python’s im-
port system and digressing from the scope of this book, but interested readers
can read more about Python’s import system in the Python documentation4.

Ultimately, the important takeaway message from this section is that packages
are a collection of Python modules. They help us better organize and access
our code, as well as distribute it to others, as we’ll discuss in Section 4.3.

4.2 Package structure
With the theory out of the way, we’ll now get back to more practical topics
in this section; we’ll discuss how packages are structured, how we can control
their import behavior, and how we can include non-code files, like data, into
our packages.

4.2.1 Package contents
As we discussed in Section 4.1, packages are a way of organizing and ac-
cessing a collection of modules. Fundamentally, a package is identified as a
directory containing an __init__.py file, and a module is a file with a .py

4https://docs.python.org/3/reference/import.html

https://docs.python.org/3/reference/import.html

90 4 Package structure and distribution

extension that contains Python code. Below is an example directory structure
of a simple Python package with two modules and a subpackage:

pkg
├── __init__.py
├── module1.py
└── subpkg

├── __init__.py
└── module2.py

The __init__.py tells Python to treat a directory as a package (or subpackage).
It is common for __init__.py files to be empty, but they can also contain
helpful initialization code to run when your package is imported, as we’ll
discuss in Section 4.2.4.

The above structure satisfies the criteria for a Python package, and you would
be able to import content from this package on your local computer if it was
in the current working directory (or if its path had been manually added to
sys.path). But this package lacks the content required to make it installable.

To create an installable package, we need a tool capable of installing and
building packages. Currently the most common tools used for package devel-
opment are poetry, flit, and setuptools. In this book, we use poetry, but
we’ll compare these tools later in Section 4.3.3. Regardless of the tool you
use, it will rely on a configuration file(s) that defines the metadata and instal-
lation instructions for your package. In a poetry-managed project, that file
is the pyproject.toml. It’s also good practice to include a README in your
package’s root directory to provide high-level information about the package,
and to put the Python code of your package in a src/ directory (we’ll discuss
why this is in Section 4.2.7). Thus, the structure for an installable package
looks more like this:

pkg
├── src
│ └── pkg
│ ├── __init__.py
│ ├── module1.py
│ └── subpkg
│ ├── __init__.py
│ └── module2.py
├── README.md
└── pyproject.toml

The above structure is suitable for a simple package, or one intended solely for
personal use. But most packages include many more bells and whistles than

4.2 Package structure 91

this, such as detailed documentation, tests, and more, as we saw in Chapter
3: How to package a Python. The pycounts package we created in that
chapter is a more typical example of a Python package structure:

pycounts
├── .readthedocs.yml
├── CHANGELOG.md
├── CONDUCT.md
├── CONTRIBUTING.md
├── docs
│ └── ...
├── LICENSE
├── README.md
├── pyproject.toml
├── src
│ └── pycounts
│ ├── __init__.py
│ ├── plotting.py
│ └── pycounts.py
└── tests

└── ...

Not all of this content will be included in the version of your package that
you install or distribute to others. Typically, it’s just the Python code (in the
src/ directory) that forms the installable version of your package (but we’ll
show how you can specify additional content to include in Section 4.2.5).
The rest of the content, like documentation and tests, exists to support de-
velopment, and this content is not needed by the users of your package, so
it’s usually shared (if desired) via a collaborative medium like GitHub, where
other developers can access and contribute to it.

The package structure described in this section is technically
called a “regular package” in Python, and it is what the vast ma-
jority of Python packages and developers use. However, Python
also supports a second type of package known as a “namespace
package”. Namespace packages are a way of splitting a single
Python package across multiple directories. Unlike regular pack-
ages, where all contents live in the same directory hierarchy,
namespace packages can be formed from directories in different
locations on a file system and do not contain an __init__.py
file.

92 4 Package structure and distribution

The main reason a developer might want to use a namespace
package is if they wish to develop, install, and distribute portions
of a package separately, or if they want to combine packages
that reside on different locations on their file system. However,
namespace packages can be a confusing topic for beginners and
the majority of developers will never create a namespace package
so we won’t discuss them further in this book. Instead we refer
readers interested in learning more about them to PEP 4205 and
the Python documentation6. As a result, when we use the term
“package” in this book, we specifically mean “regular package”.

4.2.2 Package and module names
When building a package, it’s important to select appropriate names for your
package and its modules. Python package naming guidelines and conventions
are described in Python Enhancement Proposal (PEP) 87 and PEP 4238. The
fundamental guidelines are:

• Packages and modules should have a single, short, all-lowercase name.
• Underscores can be used to separate words in a name if it improves read-

ability, but their use is typically discouraged.

In terms of the actual name chosen for a module or package, it may be helpful
to consider the following “three M’s”:

1. Meaningful: the name should reflect the functionality of the pack-
age.

2. Memorable: the name should be easy for users to find, remember,
and relate to other relevant packages.

3. Manageable: remember that users of your package will access
its contents/namespace via dot notation. Make it as quick and
easy as possible for them to do this by keeping your names short
and sweet. For example, imagine if we called our pycounts pack-
age something like wordcountingpackage. Every time a user wanted
to access the plot_words() function from the plotting module,
they’d have to write this: from wordcountingpackage.plotting im-
port plot_words() — yikes!

Finally, you should always check PyPI9 and other popular hosting sites like

5https://www.python.org/dev/peps/pep-0420/
6https://docs.python.org/3/reference/import.html#namespace-packages
7https://www.python.org/dev/peps/pep-0008/
8https://www.python.org/dev/peps/pep-0423/
9https://pypi.org

https://www.python.org/dev/peps/pep-0420/
https://docs.python.org/3/reference/import.html#namespace-packages
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0423/
https://pypi.org

4.2 Package structure 93

GitHub, GitLab, BitBucket, etc., to make sure that your chosen package name
is not already in use.

FIGURE 4.1: Keep package names meaningful, memorable, and manage-
able.

4.2.3 Intra-package references
When building packages of multiple modules, it is common to want to use
code from one module in another. For example, consider the following package
structure:

src
└── package

├── __init__.py
├── moduleA.py
├── moduleB.py
└── subpackage

├── __init__.py
└── moduleC.py

A developer may want to import code from moduleA in moduleB. This is an
“intra-package reference” and can be accomplished via an “absolute” or “rela-
tive” import.

Absolute imports use the package name in an absolute context. Relative im-
ports use dots to indicate from where the relative import should begin. A
single dot indicates an import relative to the current package (or subpack-
age), additional dots can be used to move further up the packaging hierarchy,
one level per dot after the first dot.

Table 4.1 shows some practical examples of absolute and relative imports,
based on the package structure shown previously.

94 4 Package structure and distribution

TABLE 4.1: Demonstration of absolute and relative intra-package imports.

Absolute Relative
Import from moduleA in
moduleB

from package.moduleA
import XXX

from .moduleA import
XXX

Import from moduleA in
moduleC

from package.moduleA
import XXX

from ..moduleA import
XXX

Import from moduleC in
moduleA

from pack-
age.subpackage.moduleC
import XXX

from
.subpackage.moduleC
import XXX

While the choice here mostly comes down to personal preference, PEP 810

recommends using absolute imports because they are explicit.

4.2.4 The init file
Earlier we discussed how an __init__.py file is used to tell Python that the
directory containing the __init__.py file is a package. The __init__.py file
can be, and often is, left empty and only used for the purpose of identifying
a directory as a package. However, it can also be used to add objects to the
package’s namespace, provide documentation, and/or run other initialization
code.

We’ll demonstrate this functionality using the pycounts packages we developed
in Chapter 3: How to package a Python. Consider the __init__.py of
our package:

pycounts
├── .readthedocs.yml
├── CHANGELOG.md
├── CONDUCT.md
├── CONTRIBUTING.md
├── docs
│ └── ...
├── LICENSE
├── pyproject.toml
├── README.md
├── src
│ └── pycounts
│ ├── __init__.py <--------
│ ├── plotting.py
│ └── pycounts.py

10https://www.python.org/dev/peps/pep-0008/

https://www.python.org/dev/peps/pep-0008/

4.2 Package structure 95

└── tests
└── ...

When a package is imported, the __init__.py file is executed, and any objects
it defines are bound to the package’s namespace. As an example, in Python
packaging, it’s convention to define a package’s version in two places:

1. In the package’s configuration file, pyproject.toml, as we saw in
Section 3.5.2.

2. In the package’s __init__.py file using the __version__ attribute, so
users can quickly check the version of your package they are using,
with code like:

>>> import pycounts
>>> pycounts.__version__

0.1.0

Sometimes you’ll see the version number hard-coded in the __init__.py file,
like __version__ = ”0.1.0”. But this means you have to remember to update
the version in two places anytime you want to make a new version of your pack-
age — __init__.py and pyproject.toml (we’ll discuss versioning in Chapter
7: Releasing and versioning). Instead, it’s better to have your package
version defined only in pyproject.toml, and then read programmatically in
the __init__.py file using the importlib.metadata.version() function, which
reads a package’s version from its installed metadata (i.e., the pyproject.toml
file).

The py-pkgs-cookiecutter we used to create our pycounts package (Section
3.2.2) already populated our __init__.py file with this code for us:

read version from installed package
from importlib.metadata import version
__version__ = version(”pycounts”)

Because any objects defined in the __init__.py get bound to the package’s
namespace upon import, the __version__ variable is accessible from our pack-
age’s namespace as we saw earlier.

Another common use case of the __init__.py file is to control the import
behavior of a package. For example, there are currently only two main
functions that users will commonly use from our pycounts package: py-

96 4 Package structure and distribution

counts.count_words() and plotting.plot_words(). Users have to type the full
path to these functions to import them:

from pycounts.pycounts import count_words
from pycounts.plotting import plot_words

We could make life easier for our users by importing these core functions in
pycounts’s __init__.py file, which would bind them to the package namespace.
For example, the code below, added to the __init__.py file, imports our core
functions pycounts.count_words() and plotting.plot_words():

read version from installed package
from importlib.metadata import version
__version__ = version(__name__)

populate package namespace
from pycounts.pycounts import count_words
from pycounts.plotting import plot_words

If you’re following along and developing the pycounts package
in this book, and tried installing it from TestPyPI or PyPI in
Section 3.10, it will no longer be installed in “editable mode”
and so won’t reflect any changes you make to the source code.
You’ll have to run poetry install to see your changes and put
your package back in editable mode (which is the mode you want
for development).

The functions are now bound to the pycounts namespace, so users can access
them like this:

>>> import pycounts
>>> pycounts.count_words

<function count_words>

Ultimately, the __init__.py file can be used to customize how your package
and its contents are imported. It’s an interesting exercise to visit large Python

4.2 Package structure 97

packages, such as NumPy11, pandas12, or scikitlearn13, to see the kinds of
initialization code they run in their __init__.py files.

4.2.5 Including non-code files in a package
Consider again the full structure of our pycounts package:

pycounts
├── .readthedocs.yml
├── CHANGELOG.md
├── CONDUCT.md
├── CONTRIBUTING.md
├── docs
│ ├── changelog.md
│ ├── conduct.md
│ ├── conf.py
│ ├── contributing.md
│ ├── example.ipynb
│ ├── index.md
│ ├── make.bat
│ ├── Makefile
│ └── requirements.txt
├── LICENSE
├── README.md
├── poetry.lock
├── pyproject.toml
├── src
│ └── pycounts
│ ├── __init__.py
│ └── pycounts.py
└── tests

├── einstein.text
└── test_pycounts.py

The installable version of your package that you distribute to others will typ-
ically only contain the Python code in the src/ directory. The rest of the
content exists to support development of the package and is not needed by
users to actually use the package. This content is typically shared by the de-
veloper by some other means, such as GitHub, so that other developers can
access and contribute to it if they wish.

However, it is possible to include arbitrary additional content in your package

11https://github.com/numpy/numpy/blob/main/numpy/__init__.py
12https://github.com/pandas-dev/pandas/blob/master/pandas/__init__.py
13https://github.com/scikit-learn/scikit-learn/blob/main/sklearn/__init__.py

https://github.com/numpy/numpy/blob/main/numpy/__init__.py
https://github.com/pandas-dev/pandas/blob/master/pandas/__init__.py
https://github.com/scikit-learn/scikit-learn/blob/main/sklearn/__init__.py

98 4 Package structure and distribution

that will get installed by users, along with the usual Python code. The method
of doing this varies depending on what packaging tool you’re using, but with
poetry, you can specify the extra content you wish to include in your package
using the include parameter under the [tool.poetry] table in pyproject.toml.
For example, if we wanted to include our tests/ directory and CHANGELOG.md
file to our installable package distribution, we would add the following to
pyproject.toml:

[tool.poetry]
name = ”pycounts”
version = ”0.1.0”
description = ”Calculate word counts in a text file!”
authors = [”Tomas Beuzen”]
license = ”MIT”
readme = ”README.md”
include = [”tests/*”, ”CHANGELOG.md”]

...rest of file hidden...

Most developers won’t ship additional content with their package like this,
preferring to share it via a service like GitHub, but there are certainly use
cases for doing so — for example, if you’re sharing a package privately within
an organization, you may wish to ship everything with your package (docu-
mentation, tests, etc.).

4.2.6 Including data in a package
One type of non-code that developers do commonly want to include in a
package is data. There are several reasons why a developer might want to
include data in their package:

1. It’s required to use some of the package’s functionality.
2. To provide example data to help demonstrate the functionality of

the package.
3. As a method of distributing and versioning a data file(s).
4. If the package is being used to bundle up a reproducible data anal-

ysis and it’s important to keep the code and data together.

Regardless of the use case, there are two typical ways to include data in a
Python package:

1. Include the raw data as part of the installable package, and provide
code to help users load it (if required). This option is well-suited to
smaller data files, or for data that the package absolutely depends
on.

4.2 Package structure 99

2. Include scripts as part of the package that download the data from
an external source. This option is suited to large data files, or ones
that a user may only need optionally.

We’ll demonstrate option 1 above with an example. Our pycounts package
helps users calculate words counts in text files. To demonstrate our package’s
functionality to new users, it might be helpful to add an example text file to
our package for them to practice with. For our package, we’ll add a text file
of the novel Flatland, by Edwin Abbott (Abbott, 1884) (available online14).

To include this data in our package, we need to do two things:

1. Include the raw .txt file in our package.
2. Include code to help a user access the data.

We’ll start by creating a new data subpackage in our src/pycounts/ direc-
tory, where you should download and place the linked Flatland novel as flat-
land.txt. We’ll also create a new module datasets.py in our package that we’ll
shortly populate with code to help users load data. Our pycounts directory
structure now looks like this:

pycounts
├── ...rest of package hidden...
├── src
│ └── pycounts
│ ├── __init__.py
│ ├── data <--------
│ │ ├── __init__.py <--------
│ │ └── flatland.txt <--------
│ ├── datasets.py <--------
│ ├── plotting.py
│ └── pycounts.py
└── ...rest of package hidden...

Now we need to add some Python code to datasets.py to help users load
the example data. The recommended way to access data files in a package is
using the importlib.resources module15. The main function of our pycounts
package, pycounts.count_words() requires users to pass a file path to the text
file they want to count words in. So, we should write a function in our new
datasets.py that returns the path to the example flatland.txt file to the
user. The importlib.resources.path() function can help us do that. You can
read about this function in the Python documentation16; it is used in a with

14https://www.gutenberg.org/ebooks/97
15https://docs.python.org/3/library/importlib.html#module-importlib.resources
16https://docs.python.org/3/library/importlib.html#importlib.resources.path

https://www.gutenberg.org/ebooks/97
https://docs.python.org/3/library/importlib.html#module-importlib.resources
https://docs.python.org/3/library/importlib.html#importlib.resources.path

100 4 Package structure and distribution

statement and requires two parameters, the location of the subpackage the
data is in (”pycounts.data”) and the name of the data file to access within that
subpackage (”flatland.txt”). The code below, which we’ll add to datasets.py,
demonstrates its usage:

from importlib import resources

def get_flatland():
”””Get path to example ”Flatland” [1]_ text file.

Returns

pathlib.PosixPath

Path to file.

References

.. [1] E. A. Abbott, ”Flatland”, Seeley & Co., 1884.
”””
with resources.path(”pycounts.data”, ”flatland.txt”) as f:

data_file_path = f
return data_file_path

Once you’ve added this code to datasets.py, you can try it out:

>>> from pycounts.datasets import get_flatland
>>> get_flatland()

PosixPath('/Users/tomasbeuzen/pycounts/src/pycounts/data/flatland.txt')

If you’re following along and developing the pycounts package
in this book, and tried installing it from TestPyPI or PyPI in
Section 3.10, it will no longer be installed in “editable mode”
and so won’t reflect any changes you make to the source code.
You’ll have to run poetry install to see your changes and put
your package back in editable mode (which is the mode you want
for development).

4.2 Package structure 101

A user can directly use this path in the pycounts function count_words() as
follows:

>>> from pycounts.pycounts import count_words
>>> from pycounts.datasets import get_flatland
>>> flatland_path = get_flatland()
>>> count_words(flatland_path)

Counter({'the': 2244, 'of': 1597, 'to': 1078, 'and': 1074,
'a': 902, 'i': 706, 'in': 698, 'that': 486, ... })

This is just one example of how we can include data as part of our package
and expose it to a user. The importlib.resources module can be used to load
any kind of data in different ways (as a path, as a string, as a binary file, etc.).
If you’re developing a package that includes user-facing data, we recommend
taking a look at the importlib.resources documentation17, as well as the
“datasets” modules included in larger Python libraries such as scikit-learn18,
torchvision19, or statsmodels20 to learn more.

4.2.7 The source layout
When describing and defining package structure throughout this book, we
have been nesting our package’s Python code inside a src/ directory, as in the
example structure below. This layout is called the “src”/“source” layout for
obvious reasons.

pkg
├── ...
├── src
│ └── pkg
│ ├── __init__.py
│ ├── module1.py
│ └── subpkg
│ ├── __init__.py
│ └── module2.py
└── ...

However, nesting a package’s code in a src/ directory is not required to build

17https://docs.python.org/3/library/importlib.html#module-importlib.resources
18https://github.com/scikit-learn/scikit-learn/tree/main/sklearn/datasets
19https://github.com/pytorch/vision/tree/main/torchvision/datasets
20https://github.com/statsmodels/statsmodels/tree/main/statsmodels/datasets

https://docs.python.org/3/library/importlib.html#module-importlib.resources
https://github.com/scikit-learn/scikit-learn/tree/main/sklearn/datasets
https://github.com/pytorch/vision/tree/main/torchvision/datasets
https://github.com/statsmodels/statsmodels/tree/main/statsmodels/datasets

102 4 Package structure and distribution

a package, and it’s also common to see packages without it. We’ll call this the
“non-src” layout and show an example below.

pkg
├── ...
├── pkg
│ ├── __init__.py
│ ├── module1.py
│ └── subpkg
│ ├── __init__.py
│ └── module2.py
└── ...

In general, we recommend using the “src” layout over the “non-src” layout
(and so does the Python Packaging Authority21) because it has several ad-
vantages when it comes to developing and distributing installable Python
packages. We list a few of these below:

1. For developers using a testing framework like pytest, a “src” layout
forces you to install your package before it can be tested. Most
developers would agree that you would want to test your package
as it will be installed by users, rather than as it currently exists
on your own machine. The problem with a “non-src” layout is that
Python can import your package even if it is not installed. This is
because in most cases the first place Python searches when running
import is the current directory (check this by importing sys and
running sys.path[0]). Without a “src” folder, Python will find your
package as it exists in the current directory and import it, rather
than using it as it would be installed on a user’s machine. There are
plenty of horror stories of developers uploading broken distributions
to PyPI because they were testing their code as it existed on their
machine rather than as it would be installed by users. This issue
is described in detail in Ionel Cristian Mărieș’ Packaging a Python
Library22 and Hynek Schlawack’s Testing and Packaging23 excellent
blog posts for those interested.

2. A “src” layout leads to cleaner editable installs of your package.
Recall from Section 3.5.2 that when developing a package, it’s
common to install it in editable mode (the default when running
poetry install). This adds the path to your project’s Python
code to the sys.path list so that changes to your source code are

21https://packaging.python.org/tutorials/packaging-projects/
22https://blog.ionelmc.ro/2014/05/25/python-packaging/
23https://hynek.me/articles/testing-packaging/

https://packaging.python.org/tutorials/packaging-projects/
https://blog.ionelmc.ro/2014/05/25/python-packaging/
https://hynek.me/articles/testing-packaging/

4.3 Package distribution and installation 103

immediately available when you import it, without needing to rein-
stall. With a “src” layout that path looks something like this:

'/Users/tomasbeuzen/pycounts/src'

In contrast, a “non-src” layout will add your project’s root to
sys.path (there is no “src” directory to provide a layer of sepa-
ration):

'/Users/tomasbeuzen/pycounts/'

There’s usually a lot more than just Python code at that path. There
could be test modules, scratch code, data files, documentation, ex-
ample scripts, etc., all of which are now potentially importable in
your development workflow!

3. Finally, “src” is generally a universally recognized location for source
code, making it easier for others to quickly navigate the contents of
your package.

Ultimately, while you can certainly use a “non-src layout” to develop a package,
using a “src” layout will typically reduce the chance of things breaking during
development and distribution.

4.3 Package distribution and installation
In this section, we won’t be writing any code, but rather we will discuss theory
related to package distribution and installation for those interested. If that’s
not you, feel free to skip to Section 4.4.

As we saw in Chapter 3: How to package a Python, the typical workflow
for developing and distributing a Python packages is as follows:

1. A developer creates a Python package on their machine.
2. The developer uses a tool like poetry to build a distribution from

that package.
3. The developer shares the distribution, usually by uploading to a

online repository like PyPI24.

24https://pypi.org

https://pypi.org

104 4 Package structure and distribution

4. A user uses an installation tool like pip to download the distribution
and install it on their machine.

5. (Optional) Users provide feedback to the developer about the pack-
age (identify bugs, request features, etc.) and the cycle repeats.

This workflow is illustrated in Fig. 4.2.

FIGURE 4.2: The Python package cycle.

To build up an intuition of the steps in this process, we’ll begin at the user-end,
and discuss how packages are installed. We’ll then work our way backwards
to better understand what distributions are and how they’re made.

4.3.1 Package installation
To be installed, a package needs to generate two directories:

1. {package}: a directory of the package’s source files (i.e., modules
and subpackages).

2. {package}-{version}.dist-info: a directory of files containing in-
formation about the package, such as a metadata file with informa-
tion such as the package’s author and what versions of Python it
supports (METADATA), a license file (LICENSE), a file specifying

4.3 Package distribution and installation 105

what tool was used to install the package (INSTALLER), and more.
These files are described in detail in PEP 42725.

We’ll talk about how these directories are actually built shortly, but for now,
we’ll talk about installation. When you install a package with an installer
like pip the above directories are copied into the site-packages/ directory
of your Python installation, which is one of the default places Python looks
when importing a package. The exact path to the site-packages/ directory
varies depending on your operating system, how you installed Python, and
whether you’re using a virtual environment. You can check the path using the
sys.path variable. The below paths are for a MacOS, with Python installed
via Miniconda26, and with a virtual environments called pycounts activated:

>>> import sys
>>> sys.path

['',
'/opt/miniconda/base/envs/pycounts/lib/python39.zip',
'/opt/miniconda/base/envs/pycounts/lib/python3.9',
'/opt/miniconda/base/envs/pycounts/lib/python3.9/lib-dynload',
'/opt/miniconda/base/envs/pycounts/lib/python3.9/site-packages']

If you navigate to the site-packages/ directory you will see examples of the
{package} and {package}-{version}.dist-info directories for each package
you have installed. For example, if we were to pip install the pycounts pack-
age we uploaded to PyPI in Section 3.10, we would see the following in our
site-packages folder:

'/opt/miniconda/base/lib/python3.9/site-packages/pycounts'
├── __init__.py
├── __pycache__
├── plotting.py
└── pycounts.py

/opt/miniconda/base/lib/python3.9/site-packages/pycounts-0.1.0.dist-info
├── INSTALLER
├── LICENSE
├── METADATA
├── RECORD

25https://www.python.org/dev/peps/pep-0427/#the-dist-info-directory
26https://docs.conda.io/en/latest/miniconda.html

https://www.python.org/dev/peps/pep-0427/#the-dist-info-directory
https://docs.conda.io/en/latest/miniconda.html

106 4 Package structure and distribution

├── REQUESTED
└── WHEEL

So the question is, how do we provide the {package} and {package}-
{version}.dist-info directories necessary to install our package? There are
two options:

1. Create a single archive of all our package source code, metadata,
and instructions on how to create the {package} and {package}-
{version}.dist-info directories, and then share that archive with
users. This is called a source distribution or sdist. To install your
package from an sdist, a user needs to download the archive, un-
pack it, and use the included build instructions to build it into the
{package} and {package}-{version}.dist-info directories on their
own computer (we’ll talk about how these directories are “built” in
Section 4.3.2). Finally, the package is installed by copying these
directories to the site-packages/ directory.

2. Build the {package} and {package}-{version}.dist-info directo-
ries on our own machine, compress them into a single file, and
share them with users. This single file is called a wheel. A user
just needs to download the wheel and extract the contents to the
site-packages/ folder; no build step is necessary.

pip install can handle installation from an sdist or a wheel, but distributing
your package to users as a wheel (option 2) certainly seems preferable; every-
thing has already been done on the developer’s side and installation just in-
volves downloading the distribution and copying it to the appropriate location
on a user’s computer. This is why wheels are the preferred distribution format
for Python packages. In fact, when you run pip install <some-package>, it
will always prioritize installing the specified package from a wheel (if it exists).

At this point you might be wondering why we bother with sdists at all. The
reason is that wheels aren’t always available to users. Some Python packages
contain “extensions” written in other languages, such as C/C++, because they
offer functionality and performance enhancements. While Python is typically
referred to as an interpreted language (i.e., your Python code is translated
to machine code as it is executed), languages such as C/C++ require compi-
lation by a compiler program before they can be used (i.e., your code must
be translated into “machine code” before it can be executed). Compilation is
platform-specific. Thus, if a developer wanted to provide wheels of a package
that included extensions in another language, they would have to generate one
wheel for each platform they wanted to support (e.g., MacOS-arm64, MacOS-
x86, Win-32, Win-amd64, etc.). For this reason, sdists are usually provided
with wheels; if a wheel isn’t available for a user’s particular platform, they

4.3 Package distribution and installation 107

will still be able to build the package from the sdist (which would require that
they have the appropriate compiling program(s)).

As an example, the popular numpy package contains extensions written in C, so
its wheels are platform-specific. Wheels have a specific naming convention (de-
scribed in PEP 42727), which includes the name of the platform they support;
if you look at numpy’s distributions on PyPi28, you’ll see wheels for common
platforms, as well as an sdist at the bottom of the list.

Wheels specific to a platform are known as “platform wheels”. However, the
vast majority of Python packages use pure Python code (i.e., they don’t in-
clude extensions written in other languages), and so don’t need to worry about
generating platform wheels. Most developers and readers of this book will
only ever generate one wheel for their package: a “universal wheel” (compati-
ble with Python 2 and 3) or a “pure Python wheel” (compatible with either
Python 2 or 3). The build tool you use to make your distributions will handle
wheel creation for you (as we’ll talk about in the next section), so it’s not
something you need to worry about, but it’s interesting to know these things!

4.3.2 Building sdists and wheels
In the previous section we talked about how packages need to generate {pack-
age} and {package}-{version}.dist-info folders to be installed, and how a
wheel is a single archive containing these files. So how exactly do we build a
wheel?

In a nutshell the build process involves: 1. Developer builds the package source
into an sdist{distribution!sdists}; 2. Developer or user builds a wheel from the
sdist; 3. Users installs the wheel{distribution!wheel}.

The build steps here are where packaging tools like poetry, flit, or setuptools
come in. These tools provide the code required to build sdists and wheels.
Recall the pyproject.toml file poetry uses to manage package development.
One table in that file we did not talk about when we introduced the file in
Section 3.5.2 is [build-system]:

...other file content hidden...

[build-system]
requires = [”poetry-core>=1.0.0”]
build-backend = ”poetry.core.masonry.api”

This table specifies the tools required to build the sdist and wheel for a pack-
age (requires) and where the functions that actually do the build are located

27https://www.python.org/dev/peps/pep-0427/
28https://pypi.org/project/numpy/#files

https://www.python.org/dev/peps/pep-0427/
https://pypi.org/project/numpy/#files

108 4 Package structure and distribution

in a build-tool’s library (build-backend). For example, the table above shows
that the poetry-core library is required to build our package, and that the
building functions are located in poetry.core.masonry.api. If you take a look
at the source code of poetry-core’s poetry.core.masonry.api module29, you’ll
see functions like build_wheel() and build_sdist(). The exact building me-
chanics are beyond the scope of this book, so we wont go into detail about how
they work. However, as a packaging book, it would be remiss not to mention
that the ability to specify the build tools required to make sdists and wheels
of a package is a relatively new development in the packaging ecosystem. This
functionality was introduced in PEP 51730 and PEP 51831, to remove the
dependency of the packaging system on legacy tools. These PEPs are an in-
teresting read for those keen on digging into more of the low-level details of
building and installing package distributions.

4.3.3 Packaging tools
The focus of this book is on workflows and tools that make packaging acces-
sible and efficient. poetry is one of those tools; it abstracts the lower-level
details of package development away from the developer so they can focus on
writing code. poetry is completely configured by a single pyproject.toml file
and has intuitive commands to install a package (poetry install), manage
dependencies (poetry add), build distributions (poetry build), and publish
those distributions to a repository like PyPI (poetry publish).

An alternative modern packaging tool is flit. flit is essentially a stripped-
down version of poetry. It is also managed by a pyproject.toml file and pro-
vides commands similar to poetry to help install a package (flit install),
build distributions (flit build), and publish those distributions to a reposi-
tory like PyPI (flit publish). The main difference between flit and poetry is
that flit doesn’t automatically manage the dependencies of your project like
poetry does; you have to manually add dependencies and their version spec-
ifications to pyproject.toml. As a result, we prefer poetry because it means
there’s one less thing to worry about!

The downside of poetry and flit is that, at the time of writing, they only sup-
port pure Python packages and not packages that contain extensions written
in other languages, which we discussed in Section 4.3.1. This is completely
fine for the vast majority of developers. However, for those looking to build
more advanced packages that include non-Python code, setuptools is the
preferred option. For a long time, setuptools was the default build tool for
Python packages so it is still used by many projects that have been around for
a while. setuptools require a little more expertise to configure than poetry or

29https://github.com/python-poetry/poetry-core/blob/master/src/poetry/core/masonry/a
pi.py

30https://www.python.org/dev/peps/pep-0517/
31https://www.python.org/dev/peps/pep-0518/

https://github.com/python-poetry/poetry-core/blob/master/src/poetry/core/masonry/api.py
https://github.com/python-poetry/poetry-core/blob/master/src/poetry/core/masonry/api.py
https://www.python.org/dev/peps/pep-0517/
https://www.python.org/dev/peps/pep-0518/

4.3 Package distribution and installation 109

flit, as you can read more about in the documentation32, so we prefer poetry
or flit for packaging projects where possible.

4.3.4 Package repositories
In Chapter 3: How to package a Python, we released our pycounts pack-
age to the Python Package Index (PyPI33) and discussed how PyPI is the
main repository for Python packages. Even if you’ve never heard of PyPI, if
you’ve ever run pip install <some-package> you’ve installed packages from
there. If you’re interested in sharing your work publicly, PyPI is probably
where you’ll release your package, however, it is not the only option.

The Anaconda34 and conda-forge35 repositories are the next most popular
software repositories for Python packages. Packages on these repositories can
be installed from the command line using conda install (we installed the
conda tool in Section 2.2.1). The main differences between PyPI and these
repositories is that they can host non-Python software (as opposed to PyPI
which only hosts Python software), and conda packages are binaries (there is
never a need to have to build a package or its dependencies from an sdist).
As a result, packages that depend on non-Python code are usually released to
Anaconda or conda-forge. Even for packages that are pure Python, developers
sometimes still also create a conda package and upload to Anaconda or conda-
forge to cater to users who are using conda as a package manager rather
than pip. For those interested, Anaconda provides a helpful tutorial36 to help
convert packages on PyPI to conda packages, but for most readers of this
book, building sdist and wheel distributions and sharing them on PyPI will
be enough.

In some cases, you may want to release your package to a private reposi-
tory (for example, for internal use by your company only). There are many
private repository options for Python packages. Companies like Anaconda37,
PyDist38, and GemFury39 are all examples that offer (typically paid) private
Python package repository hosting. You can also set up your own server on
a dedicated machine or cloud service — as discussed in this article40. You
can also choose to host your package on GitHub (or equivalent), and forego
releasing to a dedicated software repository. pip install supports installing
a package directly from a GitHub repository you have access to, as discussed

32https://setuptools.readthedocs.io/en/latest/userguide/index.html
33https://pypi.org/
34https://anaconda.org/anaconda/repo
35https://conda-forge.org
36https://docs.conda.io/projects/conda-build/en/latest/user-guide/tutorials/build-

pkgs-skeleton.html
37https://docs.anaconda.com/
38https://pydist.com/
39https://gemfury.com/
40https://medium.com/swlh/how-to-install-a-private-pypi-server-on-aws-76993e45c610

https://setuptools.readthedocs.io/en/latest/userguide/index.html
https://pypi.org/
https://anaconda.org/anaconda/repo
https://conda-forge.org
https://docs.conda.io/projects/conda-build/en/latest/user-guide/tutorials/build-pkgs-skeleton.html
https://docs.conda.io/projects/conda-build/en/latest/user-guide/tutorials/build-pkgs-skeleton.html
https://docs.anaconda.com/
https://pydist.com/
https://gemfury.com/
https://medium.com/swlh/how-to-install-a-private-pypi-server-on-aws-76993e45c610

110 4 Package structure and distribution

in the documentation41. You can pip install from a repository branch, a
specific commit, or a tag. For example, we tagged a release of v0.1.0 of our
pycounts package on GitHub in Section 3.9. Others could now install our
package directly from GitHub using the following command:

$ pip install git+https://github.com/TomasBeuzen/pycounts.git@v0.1.0

Installing from GitHub can be useful for users wanting a version of your pack-
age not yet available on PyPI (for example, a development version), or if you
want to host your package in a private repository and only share it with a
select few collaborators. In general though, we don’t recommend GitHub for
sharing Python packages to a wide audience as the vast majority of Python
users do not install packages from GitHub, and dedicated software reposito-
ries like PyPI provide better discoverability, ease of installation, and a stamp
of authenticity.

4.4 Version control
In Section 4.2.6 we made an important change to our pycounts package
by adding a new datasets module and some example data. We will make a
new release of our package in Chapter 7: Releasing and versioning that
incorporates this change. So, if you’re following along building the pycounts
package yourself and using version control, commit these changes to your local
and remote repositories using the commands below. If you’re not building
the pycounts package or not using version control, you can skip to the next
chapter.

$ git add src/pycounts/datasets.py src/pycounts/data
$ git commit -m ”feat: add example data and datasets module”
$ git push

41https://pip.pypa.io/en/stable/topics/vcs-support/

https://pip.pypa.io/en/stable/topics/vcs-support/
https://github.com

5
Testing

Testing is an important part of Python package development but one that
is often neglected due to the perceived additional workload. However, the
reality is quite the opposite! Introducing formal, automated testing into your
workflow can have several benefits:

1. Fewer bugs: you’re explicitly constructing and testing your code
from the viewpoint of a developer and a user.

2. Better code structure: writing tests forces you to structure and
organize your code so that it’s easier to test and understand.

3. Easier development: formal tests will help you and others add
features to your code without breaking tried-and-tested existing
functionality.

Section 3.7 briefly introduced testing in Python package development. This
chapter now goes into more detail about how to write tests, different types of
tests (unit tests, regression tests, integration tests), and code coverage.

5.1 Testing workflow
In general, the goal of testing is to check that your code produces the results
you expect it to. You probably already conduct informal tests of your code
in your current workflow. In a typical workflow, we write code, run it in a
Python session to see if it’s working as we expect, make changes, repeat. This
is sometimes called “manual testing” or “exploratory testing” and is common
in the early stages of development of your code. But when developing code
you intend to package up, reuse, and potentially share with others, you’ll need
to test it in a more formal and reproducible way.

In Python, tests are usually written using an assert statement, which checks
the truth of a given expression, and returns a user-defined error message if the
expression is false. To demonstrate this process, imagine we want to create a
function called count_letters() that counts the number of letters in a string.
We come up with the following code as a first version of that function:

DOI: 10.1201/9781003189251-5 111

https://doi.org/10.1201/9781003189251-5

112 5 Testing

def count_letters(text):
”””Count letters in a string.”””
return len(text)

We can write some tests for that function using the assert statement to check
it’s working as we expect it to. For example we would expect our function to
calculate five letters in the string ”Hello” and ten letters in the string ”Hello
world”:

>>> assert count_letters(”Hello”) == 5, ”'Hello' should have 5 letters”
>>> assert count_letters(”Hello world”) == 10, ”'Hello world' should \

have 10 letters”

If we ran the above assert statements, the first would pass without error, but
the second would raise an error:

AssertionError: 'Hello world' should have 10 letters

What went wrong? When we call len() on a string, it counts all the char-
acters in the string, including the spaces. So, we need to go back to our
count_letters() function and remove spaces before counting letters. One way
we can do this is by using the .replace() method to replace spaces with an
empty string ”” (i.e., nothing):

def count_letters(text):
”””Count letters in a string.”””
return len(text.replace(” ”, ””))

Now our previous assert statements should both pass. This process we just
went through roughly followed the typical testing workflow of:

1. Write a test.
2. Write the code to be tested.
3. Test the code.
4. Refactor code (make small changes).
5. Repeat.

This workflow is illustrated in Fig. 5.1.

In our earlier demonstration with the count_letters() function, we swapped
steps 1 and 2; we wrote the first version of our function’s code before we wrote
our tests, and this is a common workflow too. However, you can see how it
might have been beneficial to write the tests (or at least think about them)

5.1 Testing workflow 113

FIGURE 5.1: The testing workflow.

before writing the code; if we knew we were testing text with a space in it, we
might have included that in our function in the first place.

Writing your tests before your code is known as “test-driven development”,
and advocates of this approach suggest that it helps you better understand the
code you need to write, prevent bugs, and ultimately save you time. However
in practice, writing your tests first or last doesn’t seem to have a significant
impact on overall development time (Fucci et al., 2016). Regardless of when
you choose to formally write your tests, all developers should at least think
about the specifications of their code before they write it. What might the
inputs look like? What will the output look like? Are there any edge cases1 to
consider? Taking a moment to consider and write down these specifications
will help you write code effectively and efficiently.

Ultimately, the testing workflow is all about working incrementally and itera-
tively. The idea is to make small changes to your code as you add features or
identify bugs, test it, write more tests, repeat. Managing and executing such
a workflow manually like we did above would clearly be inefficient. Instead,
a test framework is typically used to help manage the testing workflow in an
efficient, automated, and reproducible way. pytest is one of the most common
test frameworks for Python packages. We used it to help test our pycounts
package in Section 3.7.2. In the rest of this chapter, we’ll continue to explore

1https://en.wikipedia.org/wiki/Edge_case

https://en.wikipedia.org/wiki/Edge_case

114 5 Testing

how pytest can be used to test a package and will demonstrate concepts by
writing tests for the pycounts package.

5.2 Test structure
To use pytest as a testing framework, it expects tests to be structured as
follows:

1. Tests are defined as functions prefixed with test_ and contain one
or more statements that assert code produces an expected result
or raises a particular error.

2. Tests are put in files of the form test_*.py or *_test.py, and are
usually placed in a directory called tests/ in a package’s root.

Tests can be executed using the command pytest at the command line and
pointing it to the directory your tests live in (i.e., pytest tests/). pytest
will find all files of the form test_*.py or *_test.py in that directory and its
subdirectories, and execute any functions with names prefixed with test_.

As an example, consider the structure of the pycounts package we developed
in Chapter 3: How to package a Python:

pycounts
├── .readthedocs.yml
├── CHANGELOG.md
├── CONDUCT.md
├── CONTRIBUTING.md
├── docs
│ └── ...
├── LICENSE
├── README.md
├── poetry.lock
├── pyproject.toml
├── src
│ └── ...
└── tests <--------

├── einstein.txt <--------
└── test_pycounts.py <--------

The file einstein.txt is a text file we created in Section 3.7.1 to use in our
tests. It includes a quote from Albert Einstein:

5.2 Test structure 115

“Insanity is doing the same thing over and over and expecting
different results.”

The file test_pycounts.py is where the tests we want to run with pytest should
be. That file contains the following test we wrote in Section 3.7.2, using the
format expected by pytest, a function prefixed with test_ that includes an
assert statement.

from pycounts.pycounts import count_words
from collections import Counter

def test_count_words():
”””Test word counting from a file.”””
expected = Counter({'insanity': 1, 'is': 1, 'doing': 1,

'the': 1, 'same': 1, 'thing': 1,
'over': 2, 'and': 2, 'expecting': 1,
'different': 1, 'results': 1})

actual = count_words(”tests/einstein.txt”)
assert actual == expected, ”Einstein quote counted incorrectly!”

To use pytest to run this test it should first be installed as a development
dependency of your package. If using poetry as a packaging tool, as we do in
this book, that can be done with the following command:

If you’re following on from Chapter 3: How to package a
Python and created a virtual environment for your pycounts
package using conda, as we did in Section 3.5.1, be sure to
activate that environment before continuing with this chapter
by running conda activate pycounts at the command line.

$ poetry add --dev pytest

With pytest installed, we use the following command from our root package
directory to run our test:

116 5 Testing

$ pytest tests/

========================= test session starts =========================
...
collected 1 item

tests/test_pycounts.py . [100%]

========================== 1 passed in 0.01s ==========================

The output of pytest provides some basic system information, along with how
many tests were run and what percentage passed. If a test fails, it will output
the traceback of the error, so you can see exactly which test failed and why. In
the next section, we’ll go into more detail about how to write different kinds
of tests in pytest.

5.3 Writing tests
There are several kinds of tests commonly used to test Python packages: unit
tests, integration tests, and regression tests. In this section, we’ll explore and
demonstrate what these tests are and how to write them in pytest.

5.3.1 Unit tests
Unit tests are the most common type of test you will write. A unit test veri-
fies that an independent unit of code (e.g., a Python function) is working as
expected in a particular situation. It will typically comprise:

1. Some data to test the code with (called a “fixture”). The fixture is
typically a small or simple version of the type of data the function
will typically process.

2. The actual result that the code produces given the fixture.
3. The expected result of the test, which is compared to the actual

result, typically using an assert statement.

The test_count_words() function of our pycounts package is an example of
a unit test. Recall that our count_words() function can be used to calculate
words counts in a text file. To test it, we created a small, sample text file
called einstein.txt (our fixture), which contains the following quote:

5.3 Writing tests 117

“Insanity is doing the same thing over and over and expecting
different results.”

The result of our count_words() function using this fixture is the actual result.
The fixture is small enough that we can count the words by hand, and that
forms our expected result. Thus the unit test currently in our test_pycounts.py
looks as follows:

from pycounts.pycounts import count_words
from collections import Counter

def test_count_words():
”””Test word counting from a file.”””
expected = Counter({'insanity': 1, 'is': 1, 'doing': 1,

'the': 1, 'same': 1, 'thing': 1,
'over': 2, 'and': 2, 'expecting': 1,
'different': 1, 'results': 1})

actual = count_words(”tests/einstein.txt”)
assert actual == expected, ”Einstein quote counted incorrectly!”

A pytest test function can actually include multiple assert statements and if
any of the included assert functions fail, the whole test will fail. As an example
of a unit test with multiple assert statements, we’ll write a new test in our
test_pycounts.py file for the plot_words() function of our pycounts.plotting
module. We developed the plot_words() function in Section 3.6 and show it
below:

import matplotlib.pyplot as plt

def plot_words(word_counts, n=10):
”””Plot a bar chart of word counts.

Parameters

word_counts : collections.Counter

Counter object of word counts.
n : int, optional

Plot the top n words. By default, 10.

118 5 Testing

...rest of docstring hidden...
”””
top_n_words = word_counts.most_common(n)
word, count = zip(*top_n_words)
fig = plt.bar(range(n), count)
plt.xticks(range(n), labels=word, rotation=45)
plt.xlabel(”Word”)
plt.ylabel(”Count”)
return fig

Our function takes in a Counter object of word counts and outputs a mat-
plotlib bar chart. To test that it’s working as expected with a unit test,
we’ll:

• Use the manually counted words from the Einstein quote as a fixture.
• Use that fixture as an input to the plot_words() function to create a bar

plot (the actual result).
• assert that the plot is a matplotlib bar chart

(matplotlib.container.BarContainer) and assert that there are ten
bars in the bar chart (n=10 is the default number of bars to plot in the
plot_words() function, as you can see above).

Below we show this unit test in Python code, and we’ll add it to our
test_pycounts.py file:

from pycounts.pycounts import count_words
from pycounts.plotting import plot_words <--------
import matplotlib <--------
from collections import Counter

def test_count_words():
... same as before ...

def test_plot_words(): <--------
”””Test plotting of word counts.”””
counts = Counter({'insanity': 1, 'is': 1, 'doing': 1,

'the': 1, 'same': 1, 'thing': 1,
'over': 2, 'and': 2, 'expecting': 1,
'different': 1, 'results': 1})

fig = plot_words(counts)
assert isinstance(fig, matplotlib.container.BarContainer), \

”Wrong plot type”
assert len(fig.datavalues) == 10, \

”Incorrect number of bars plotted”

5.3 Writing tests 119

Now that we’ve written a new test, we need to check that it is working. Run-
ning pytest at the command line should now show two tests were run:

$ pytest tests/

========================= test session starts =========================
...
collected 2 item

tests/test_pycounts.py . [100%]

========================== 2 passed in 0.01s ==========================

Looks like things are working as expected!

Before we move on, there’s one more important thing to mention. We know
that the assert statement can be used with any expression that evaluates to a
boolean (True/False). However, if your package uses floating-point numbers,
and you’re wanting to assert the equality of floating-point numbers in your
tests, there’s one thing to watch out for. Due to the limitations of floating-
point arithmetic in computers, numbers that we would expect to be equal are
sometimes not. Consider the following infamous example:

>>> assert 0.1 + 0.2 == 0.3, ”Numbers are not equal!”

AssertionError: Numbers are not equal!

You can read more about the nuances of floating-point arithmetic in the
Python documentation2, but the important point here is that, when work-
ing with floating-point numbers, we usually assert that numbers are ap-
proximately equal, rather than exactly equal. To do this we can use the
pytest.approx() function:

>>> import pytest
>>> assert 0.1 + 0.2 == pytest.approx(0.3), ”Numbers are not equal!”

You can control how approximate you want the equality to be by using the
abs and rel arguments of pytest.approx() to specify how much absolute or
relative error you want to allow, respectively.

2https://docs.python.org/3/tutorial/floatingpoint.html

https://docs.python.org/3/tutorial/floatingpoint.html

120 5 Testing

5.3.2 Test that a specific error is raised
Rather than assert that your code produces a particular output given a par-
ticular input, sometimes you want to check that your code raises a particular
error when used in the wrong way by a user. Consider again the plot_words()
function of our pycounts.plotting module. From the docstring, we see that
the function expects users to pass a Counter object to the function:

import matplotlib.pyplot as plt

def plot_words(word_counts, n=10):
”””Plot a bar chart of word counts.

Parameters

word_counts : collections.Counter <--------

Counter object of word counts.
n : int, optional

Plot the top n words. By default, 10.

...rest of docstring hidden...
”””
top_n_words = word_counts.most_common(n)
word, count = zip(*top_n_words)
fig = plt.bar(range(n), count)
plt.xticks(range(n), labels=word, rotation=45)
plt.xlabel(”Word”)
plt.ylabel(”Count”)
return fig

What happens if a user inputs a different object? For the sake of argument,
let’s consider what happens if they pass a list of words to our function:

>>> from pycounts.plotting import plot_words
>>> word_list = [”Pythons”, ”are”, ”non”, ”venomous”]
>>> plot_words(word_list)

AttributeError: 'list' object has no attribute 'most_common'

This AttributeError message is not overly useful to our users. The problem
is that our code uses the method .most_common(), which is specific to the
Counter object and retrieves the top n counts from that object. To improve
the user-experience, we might want to raise a more helpful error message to a
user to tell them if they pass the wrong object type.

5.3 Writing tests 121

Let’s modify our plot_words() function to check that the word_counts ar-
gument is a Counter object using the isinstance() function and, if it’s not,
raise a TypeError with a useful message. The raise statement terminates a
program and allows you to notify users of an error. There are many error types
to choose from and you can even create your own, as discussed in the Python
documentation3. We’ll use the TypeError here because it is used to indicate
that an object is of the wrong type. Our function, with this new checking code
in it, now looks like this:

import matplotlib.pyplot as plt
from collections import Counter <--------

def plot_words(word_counts, n=10):
”””Plot a bar chart of word counts.

...rest of docstring hidden...
”””
if not isinstance(word_counts, Counter): <--------

raise TypeError(”'word_counts' should be of type 'Counter'.”)
top_n_words = word_counts.most_common(n)
word, count = zip(*top_n_words)
fig = plt.bar(range(n), count)
plt.xticks(range(n), labels=word, rotation=45)
plt.xlabel(”Word”)
plt.ylabel(”Count”)
return fig

Other commons exceptions used in tests include:

• AttributeError: for when an object does not support a referenced attribute
(i.e., of the form object.attribute).

• ValueError: for when an argument has the right type but an inappropriate
value.

• FileNotFoundError: for when a specified file or directory doesn’t exist.
• ImportError: for when the import statement can’t find a module.

We can check that our new error-handling code is working by starting a new

3https://docs.python.org/3/library/exceptions.html

https://docs.python.org/3/library/exceptions.html

122 5 Testing

Python session and retrying our code from before, which passed a list to our
function:

>>> from pycounts.plotting import plot_words
>>> word_list = [”Pythons”, ”are”, ”non”, ”venomous”]
>>> plot_words(word_list)

TypeError: 'word_counts' should be of type 'Counter'.

Great, our plot_words() function now raises a helpful TypeError when a user
inputs the wrong type of object. But how can we test this functionality with
pytest? We can use pytest.raises(). pytest.raises() is used as part of a
with statement, which contains the code you expect to throw an error. Let’s
add the new unit test shown below, called test_plot_words_error(), to our
test file test_pycounts.py to demonstrate this functionality.

We’ve written a new test called test_plot_words_error(), rather
than adding to our existing test_plot_words() test, because unit
tests should be written to check one unit of code (i.e., a function)
in one particular situation.

from pycounts.pycounts import count_words
from pycounts.plotting import plot_words
import matplotlib
from collections import Counter
import pytest <--------

def test_count_words():
... same as before ...

def test_plot_words():
... same as before ...

def test_plot_words_error(): <--------
”””Check TypeError raised when Counter not used.”””
with pytest.raises(TypeError):

list_object = [”Pythons”, ”are”, ”non”, ”venomous”]
plot_words(list_object)

5.3 Writing tests 123

In the new test above, we purposefully pass the wrong object type (a list) to
plot_words() and expect it to raise a TypeError. Let’s check that this new
test, and our existing tests, all pass by running pytest at the terminal. pytest
should now find and execute three tests:

$ pytest tests/

========================= test session starts =========================
...
collected 3 items

tests/test_pycounts.py . [100%]

========================== 3 passed in 0.39s ==========================

5.3.3 Integration tests
The unit tests we’ve written above verify that the individual functions of our
package work in isolation. But we should also test that they work correctly
together. Such a test is called an “integration test” (because individual units
of code are integrated into a single test).

Integration tests are structured the same way as unit tests. We use a fixture to
produce an actual result with our code, which is then compared to an expected
result. As an example of an integration test we’ll:

• Use the “Einstein quote” text file, einstein.txt, as a fixture.
• Count the words in the quote using the count_words() function.
• Plot the word counts using the plot_words() function.
• assert that a matplotlib bar chart was created, that the chart has 10 bars,

and that the maximum word count in the chart is 2 (no word appears more
than twice in the quote in the einstein.txt file).

The overall aim of this test is to check that the two core functions of our
package count_words() and plot_words() work together (at least to our test
specifications). It can be written and added to our test_pycounts.py file as
follows:

from pycounts.pycounts import count_words
from pycounts.plotting import plot_words
import matplotlib
from collections import Counter
import pytest

124 5 Testing

def test_count_words():
... same as before ...

def test_plot_words():
... same as before ...

def test_plot_words_error():
... same as before ...

def test_integration(): <--------
”””Test count_words() and plot_words() workflow.”””
counts = count_words(”tests/einstein.txt”)
fig = plot_words(counts)
assert isinstance(fig, matplotlib.container.BarContainer), \

”Wrong plot type”
assert len(fig.datavalues) == 10, \

”Incorrect number of bars plotted”
assert max(fig.datavalues) == 2, ”Highest word count should be 2”

pytest should now find and execute four tests:

$ pytest tests/

========================= test session starts =========================
...
collected 4 items

tests/test_pycounts.py . [100%]

========================== 4 passed in 0.39s ==========================

5.3.4 Regression tests
We’ve been testing our pycounts package on the simple “Einstein quote” fix-
ture, but how does it perform on real data? We added some example real data
to our package in Section 4.2.6; a .txt file of the novel Flatland, by Edwin
Abbott (Abbott, 1884) (available online4). However, it would be impossible
to count all of the words in that text by hand to come up with an “expected”
result.

4https://www.gutenberg.org/ebooks/97

https://www.gutenberg.org/ebooks/97

5.3 Writing tests 125

Instead, regression testing is about testing that your code produces consistent
results as opposed to expected results. The idea is to see how our package
performs on this data now, and add a test to check that the result stays
consistent in the future as we add more functionality to our package.

For example, the most-common words in Flatland can be determined as fol-
lows:

>>> from pycounts.datasets import get_flatland
>>> from pycounts.pycounts import count_words
>>> counts = count_words(get_flatland())
>>> counts.most_common(1)

[('the', 2244)]

Unsurprisingly, the most common word is “the” which occurs 2245 times. An
example regression test for our package would, therefore, look as follows:

from pycounts.pycounts import count_words
from pycounts.plotting import plot_words
from pycounts.datasets import get_flatland <--------
import matplotlib
from collections import Counter
import pytest

def test_count_words():
... same as before ...

def test_plot_words():
... same as before ...

def test_plot_words_error():
... same as before ...

def test_integration():
... same as before ...

def test_regression(): <--------
”””Regression test for Flatland”””
top_word = count_words(get_flatland()).most_common(1)
assert top_word[0][0] == ”the”, ”Most common word is not 'the'”
assert top_word[0][1] == 2244, ”'the' count has changed”

126 5 Testing

pytest should now find and execute five tests:

$ pytest tests/

========================= test session starts =========================
...
collected 5 items

tests/test_pycounts.py . [100%]

========================== 5 passed in 0.39s ==========================

5.3.5 How many tests should you write
Now that you know how to write tests, how many should you actually write?
There’s no single answer to this question. In general, you want your tests to
evaluate the core functionality of your program. Code coverage, which we’ll
discuss in Section 3.7.3, is a metric that can help you understand how much
of your code your tests actually evaluate. But even 100% coverage doesn’t
guarantee your code is perfect, only that it passes the specific tests you wrote!

It might be near impossible to write tests for every single use-case of your
package (you’d be amazed at the weird and wonderful ways users can find to
unwittingly break your code!). That’s why testing is an iterative procedure,
as we discussed in Section 5.1; as you refactor and add to your code, as users
find ways to use your function that you didn’t expect, or it produces results
you didn’t account for, write new tests, write new code, run your tests, and
repeat.

5.4 Advanced testing methods
As the complexity and number of tests you write increases, it can be helpful to
streamline and organize your tests in a more efficient and accessible manner.
pytest fixtures and parameterizations are two useful concepts that can help
here. As we’ll next discuss, pytest fixtures can be used to more efficiently
define the context for your tests (e.g., the data or directory structure they run
in), and parameterizations allow you to run the same test multiple times but
with different input and output values.

5.4 Advanced testing methods 127

5.4.1 Fixtures
Our current test_pycounts.py file contains the same fixture defined multiple
times; a Counter object of the words in the “Einstein quote”.

from pycounts.pycounts import count_words
from pycounts.plotting import plot_words
from pycounts.datasets import get_flatland
import matplotlib
from collections import Counter
import pytest

def test_count_words():
”””Test word counting from a file.”””
expected = Counter({'insanity': 1, 'is': 1, 'doing': 1,

'the': 1, 'same': 1, 'thing': 1,
'over': 2, 'and': 2, 'expecting': 1,
'different': 1, 'results': 1})

actual = count_words(”tests/einstein.txt”)
assert actual == expected, ”Einstein quote counted incorrectly!”

def test_plot_words():
”””Test plotting of word counts.”””
counts = Counter({'insanity': 1, 'is': 1, 'doing': 1,

'the': 1, 'same': 1, 'thing': 1,
'over': 2, 'and': 2, 'expecting': 1,
'different': 1, 'results': 1})

fig = plot_words(counts)
assert isinstance(fig, matplotlib.container.BarContainer), \

”Wrong plot type”
assert len(fig.datavalues) == 10, ”Incorrect number of bars plotted”

... rest of file hidden ...

This is inefficient and violates the “don’t repeat yourself” (DRY) principle of
software development. Fortunately, there’s a solution. In pytest, fixtures can
be defined as functions that can be reused across your test suite. In our case,
we could create a fixture that defines the “Einstein quote” Counter object, and
makes it available to any test that wants to use it.

It’s easiest to see the utility of a fixture by example. Fixtures can be created in
pytest using the @pytest.fixture decorator. A decorator in Python is defined
using the @ symbol and immediately precedes a function definition. Decorators
add functionality to the function they are “decorating”; understanding them

128 5 Testing

isn’t necessary to use them here, but for those interested in learning more,
check out this Primer on Python Decorators5.

In the code below, we define a function called einstein_counts() and deco-
rate it with the @pytest.fixture decorator. This fixture returns the manually
counted words in the Einstein quote as a Counter object. To use it in a test,
we pass it as an parameter to the test function, just like you would usually
specify a function parameter, e.g., test_count_words(einstein_counts). We’ll
use our new fixture in both the test_count_words() and test_plot_words()
below:

from pycounts.pycounts import count_words
from pycounts.plotting import plot_words
from pycounts.datasets import get_flatland
import matplotlib
from collections import Counter
import pytest

@pytest.fixture <--------
def einstein_counts(): <--------

return Counter({'insanity': 1, 'is': 1, 'doing': 1,
'the': 1, 'same': 1, 'thing': 1,
'over': 2, 'and': 2, 'expecting': 1,
'different': 1, 'results': 1})

def test_count_words(einstein_counts): <--------
”””Test word counting from a file.”””
expected = einstein_counts
actual = count_words(”tests/einstein.txt”)
assert actual == expected, ”Einstein quote counted incorrectly!”

def test_plot_words(einstein_counts): <--------
”””Test plotting of word counts.”””
fig = plot_words(einstein_counts)
assert isinstance(fig, matplotlib.container.BarContainer), \

”Wrong plot type”
assert len(fig.datavalues) == 10, ”Incorrect number of bars plotted”

... rest of file hidden ...

We now have a way of defining a fixture once but using it in multiple tests.

At this point you might wonder why we used the @pytest.fixture decorator

5https://realpython.com/primer-on-python-decorators

https://realpython.com/primer-on-python-decorators

5.4 Advanced testing methods 129

at all, why not just define a variable as normal at the top of the script like
this:

from pycounts.pycounts import count_words
from pycounts.plotting import plot_words
from pycounts.datasets import get_flatland
import matplotlib
from collections import Counter
import pytest

einstein_counts = Counter({'insanity': 1, 'is': 1, 'doing': 1,
'the': 1, 'same': 1, 'thing': 1,
'over': 2, 'and': 2, 'expecting': 1,
'different': 1, 'results': 1})

def test_count_words():
”””Test word counting from a file.”””
expected = einstein_counts

... rest of file hidden ...

The short answer is that fixtures provide far more functionality and reliability
than manually defined variables. For example, each time you use a pytest
fixture, it triggers the fixture function, meaning that each test gets a fresh
copy of the data; you don’t have to worry about accidentally mutating or
deleting your fixture during a test session. You can also control this behavior;
should the fixture be executed once per use, once per test module, or once per
test session? This can be helpful if the fixture is large or time-consuming to
create. Finally, we’ve only explored the use of fixtures as data for a test, but
fixtures can also be used to set up the environment for a test. For example,
the directory structure a test should run in, or the environment variables it
should have access to. pytest fixtures can help you easily set up these kinds
of contexts, as you can read more about in the pytest documentation6.

5.4.2 Parameterizations
Parameterizations can be useful for running a test multiple times using differ-
ent arguments. For example, recall in Section 5.3.2 that we added some code
to pycounts’s plot_words() function that raises a TypeError if a user inputs an
object other than a Counter object to the function. We wrote a test to check
that in our test_pycounts.py file as follows:

6https://pytest.readthedocs.io/en/latest/fixture.html

https://pytest.readthedocs.io/en/latest/fixture.html

130 5 Testing

... rest of file hidden ...

def test_plot_words_error():
”””Check TypeError raised when Counter not used.”””
with pytest.raises(TypeError):

list_object = [”Pythons”, ”are”, ”non”, ”venomous”]
plot_words(list_object)

... rest of file hidden ...

Our test only tests the TypeError is raised if a list object is passed as an
input, but we should also test what happens if other objects are passed too,
such as numbers or strings. Rather than writing new tests for each object we
want to try, we can parameterize this test with all the different data we want
to try, and pytest will run the test for each piece of data.

Parameterizations can be created in pytest using the
@pytest.mark.parametrize(argnames, argvalues) decorator. argnames
represent the names of test variable(s) you want to use in your test function
(you can use any name you want), and argvalues is a list of the values those
test variable(s) will take.

In the code example below, that we’ve added to the test_pycounts.py file, we
create a test variable named obj, which can take three values; a float (3.141),
a string (”test.txt”), or a list of strings ([”list”, ”of”, ”words”]). With this
parameterization, pytest will run our test three times, once for each value that
we specified we want obj to take.

... rest of file hidden ...

@pytest.mark.parametrize(
”obj”,
[

3.141,
”test.txt”,
[”list”, ”of”, ”words”]

]
)
def test_plot_words_error(obj):

”””Check TypeError raised when Counter not used.”””
with pytest.raises(TypeError):

plot_words(obj)

... rest of file hidden ...

5.4 Advanced testing methods 131

We can explicitly show that pytest will run our test three times (once for each
value we specified) by adding the --verbose flag to our pytest command:

$ pytest tests/ --verbose

========================= test session starts =========================
...
collected 7 items

tests/test_pycounts.py::test_count_words PASSED [14%]
tests/test_pycounts.py::test_plot_words PASSED [28%]
tests/test_pycounts.py::test_plot_words_error[3.141] PASSED [42%]
tests/test_pycounts.py::test_plot_words_error[test.txt] PASSED [57%]
tests/test_pycounts.py::test_plot_words_error[obj2] PASSED [71%]
tests/test_pycounts.py::test_integration PASSED [85%]
tests/test_pycounts.py::test_regression PASSED [100%]

======================== 7 passed in 0.52s ============================

Sometimes you’ll want to run a test on a function, where the output depends
on the input. As an example, consider the function is_even() below:

def is_even(n):
”””Check if n is even.”””
if n % 2 == 0:

return True
else:

return False

To parameterize this test with different input/output pairs, we use the same
syntax as before with @pytest.mark.parametrize() except we comma-separate
the test arguments in a string (”n, result”) and group the pairs of values we
want those arguments to take in a tuple (e.g., (2, True), (3, False), etc.).
In the example test that follows, we’ll purposefully add a wrong input/output
pair ((4, False)) to show what the output of pytest looks like in the case of
a failed parameterization:

@pytest.mark.parametrize(
”n, result”,
[

(2, True),
(3, False),
(4, False) # this last pair is purposefully wrong so we can

132 5 Testing

show an example of the pytest error message
]

)
def test_is_even(n, result):

assert is_even(n) == result

The above test would run successfully for the first two parameterized in-
put/output pairs but would fail for the last one with the following helpful
error message that points out exactly which parameterization failed:

emphasize-lines: 4, 19

============================== FAILURES ===============================
________________________ testis_even[4-False] _________________________

n = 4, result = False

@pytest.mark.parametrize(
”n, result”,
[

(2, True),
(3, False),
(4, False)

]
)
def testis_even(n, result):

> assert is_even(n) == result

tests/test_example.py:13: AssertionError
======================= short test summary info =======================
FAILED tests/test_example.py:testis_even[4-False]: assert True == False

You can read more about parameterizations in the pytest documentation7.

5.5 Code coverage
A good test suite will contain tests that check as much of your package’s code
as possible. How much of your code your tests actually use is called “code

7https://docs.pytest.org/en/6.2.x/parametrize.html

https://docs.pytest.org/en/6.2.x/parametrize.html

5.5 Code coverage 133

coverage”, and there are different ways to calculate it, as we’ll learn about in
this section.

5.5.1 Line coverage
The simplest and most intuitive measure of code coverage is line coverage. It
is the proportion of lines of your package’s code that are executed by your
tests:

coverage = lines executed
total lines ∗ 100%

Consider the following hypothetical code, consisting of 9 lines:

def myfunc(x): # Line 1
if x > 0: # Line 2

print(”x above threshold!”) # Line 3
print(”Running analysis.”) # Line 4
y = round(x) # Line 5
z = y ** 2 # Line 6

elif x < 0: # Line 7
z = abs(x) # Line 8

return z # Line 9

Imagine we write the following unit test for that code. This unit test uses
x=10.25 as a test fixture (if you follow the code above, you’ll see that the
expected result for that fixture is 100):

def test_myfunc_1():
assert myfunc(x=10.25) == 100

This test only covers the condition x > 0 of our myfunc() function and hence
will only execute lines 1 — 6 and line 9; a total of 7, of 9, possible lines. The
coverage would therefore be:

coverage = 7
9 ∗ 100% = 78%

Line coverage is simple and intuitive to understand, and many developers use
it as a measure of how much of their package’s code is covered by their tests.
But you can see how line coverage can potentially be misleading. Our myfunc()
function has two possible outputs, depending on which condition of the if
statement is satisfied. These two possible code paths are called “branches”,
and they might be equally important to our package, but our line coverage
metric is heavily dependent on which branches we actually test. Imagine if we
used the test below for our myfunc() function, which passes a value x <= 0:

134 5 Testing

def test_myfunc_2():
assert myfunc(x=-5) == 5

This test only covers line 1, 2 and lines 7-9 of the function, for a total of 5
lines and 56% coverage. Because line coverage can be skewed (or artificially
inflated) by how many lines are in the branches of your code, some developers
prefer to calculate branch coverage, which we’ll talk about in the next section.

5.5.2 Branch coverage
In contrast to line coverage, branch coverage evaluates how many branches in
your code are executed by tests, where a branch is a possible execution path
the code can take, usually in the form of an if statement.

def myfunc(x):
Branch 1
if x > 0:

print(”x above threshold!”)
print(”Running analysis.”)
y = round(x)
z = y ** 2

Branch 2
elif x < 0:

z = abs(x)
return z

coverage = branches executed
total branches ∗ 100%

When using branch coverage, we would get 50% coverage regardless of whether
we ran the test_myfunc_1() or test_myfunc_2() test functions we defined in
Section 5.5.1 because each test covers one branch. While line coverage is
perhaps more intuitive and easier to understand than branch coverage, many
developers feel that branch coverage provides a more useful, less-biased, mea-
sure of coverage. In the next section, we’ll show how to calculate coverage as
a mix of line and branch coverage, to get the best of both metrics.

5.5.3 Calculating coverage
We can calculate code coverage with pytest using the extension pytest-cov.
For a poetry-managed package, pytest-cov can be installed as a development
dependency with the following command:

5.5 Code coverage 135

$ poetry add --dev pytest-cov

pytest-cov is an implementation of the coverage package. It
can sometimes be helpful to visit the latter’s documentation8

if you’re looking for more information about how pytest-cov
calculates coverage.

Code coverage can be calculated using the pytest command with the argument
--cov=<pkg-name> specified. For example, the following command determines
the coverage our tests have of our pycounts package:

$ pytest tests/ --cov=pycounts

========================= test session starts =========================

Name Stmts Miss Cover

src/pycounts/__init__.py 2 0 100%
src/pycounts/data/__init__.py 0 0 100%
src/pycounts/datasets.py 5 0 100%
src/pycounts/plotting.py 12 0 100%
src/pycounts/pycounts.py 16 0 100%

TOTAL 35 0 100%

========================== 7 passed in 0.46s ==========================

The output summarizes the coverage of the individual modules in our pycounts
package. By default, pytest-cov calculates coverage as line coverage. Stmts is
how many lines are in a module, Miss is how many lines were not executed by
tests, and Cover is the percentage of lines executed by your tests. After having
made our way through this chapter, we’ve written enough tests to obtain 100
percent line coverage for our pycounts modules! But note that 100 percent
coverage doesn’t guarantee our code is perfect, only that it passes the specific
tests we wrote!

8https://coverage.readthedocs.io/en/latest/

https://coverage.readthedocs.io/en/latest/

136 5 Testing

If we want to calculate branch coverage with pytest, we can specify the argu-
ment --cov-branch:

$ pytest --cov=pycounts --cov-branch

========================= test session starts =========================

Name Stmts Miss Branch BrPart Cover

src/pycounts/__init__.py 2 0 0 0 100%
src/pycounts/data/__init__.py 0 0 0 0 100%
src/pycounts/datasets.py 5 0 0 0 100%
src/pycounts/plotting.py 12 0 2 0 100%
src/pycounts/pycounts.py 16 0 2 0 100%

TOTAL 35 0 4 0 100%

========================== 5 passed in 0.46s ==========================

In this output Branch is the number of branches in the module, and BrPart is
the number of branches executed by tests. “Branch coverage” in pytest-cov
is actually calculated using a mix of branch and line coverage, which can be
useful to get the best of both metrics:

coverage = lines executed + branches executed
total lines + total branches ∗ 100%

5.5.4 Coverage reports
As we’ve seen, pytest --cov provides a helpful high-level summary of our test
coverage at the command line. But if we want to see a more detailed output
we can generate a useful HTML report using the argument --cov-report html
as follows:

$ pytest --cov=pycounts --cov-report html

The report will be available at htmlcov/index.html (relative to your working
directory) and will look like Fig. 5.2.

We can click on elements of the report, like the datasets.py module, to see
exactly what lines/branches the tests are hitting/missing, as shown in Fig.
5.3:

5.5 Code coverage 137

FIGURE 5.2: HTML test report.

FIGURE 5.3: Detailed view of the datasets module in the HTML report.

138 5 Testing

5.6 Version control
Throughout this chapter, we added a significant number of tests
to our test_pycounts.py file, and made a small change to our py-
counts.plotting.plot_words() function in Section 5.3.2 to have it check
that users pass a Counter object as an input argument. These changes will
form part of a new release of our package that we’ll develop in Chapter 7:
Releasing and versioning. So, if you’re following along building the py-
counts package yourself and using version control, commit these changes to
your local and remote repositories using the commands below. If you’re not
building the pycounts package or not using version control, you can skip to
the next chapter.

$ git add tests/test_pycounts.py
$ git commit -m ”test: add additional tests for all modules”
$ git add src/pycounts/plotting.py
$ git commit -m ”fix: check input type to plot_words function”
$ git push

6
Documentation

Writing documentation for your package is arguably one of the most impor-
tant, but perhaps least exciting, parts of the packaging process. The purpose
of documentation is to help users understand how they can use and interact
with your package, without having to read the source code. For the users of
your code (including your future self), having readable and accessible doc-
umentation is invaluable. The reality is, if no one knows how to use your
package, it will probably not get used!

In Section 3.8, we walked through the steps required to create documenta-
tion, compile it into a user-friendly and shareable HTML format, and then
host it online. We’ll revise those steps here and will provide more detail about
the documentation workflow and the individual elements of package documen-
tation.

6.1 Documentation content and workflow
To give you an idea of what we mean when we say “documentation”, Table 6.1
shows the documentation included with a typical Python package and where
it is usually located in the package’s directory structure.

TABLE 6.1: Typical Python package documentation.

Documentation Typical location Description
README Root Provides high-level

information about the
package, e.g., what it
does, how to install it,
and how to use it.

License Root Explains who owns the
copyright to your
package source and how
it can be used and
shared.

DOI: 10.1201/9781003189251-6 139

https://doi.rog/10.1201/9781003189251-6

140 6 Documentation

Documentation Typical location Description
Contributing guidelines Root Explains how to

contribute to the
project.

Code of conduct Root Defines standards for
how to appropriately
engage with and
contribute to the
project and its
community.

Changelog Root A chronologically
ordered list of notable
changes to the package
over time, usually
organized by version.

Docstrings .py files Text appearing as the
first statement in a
function, method, class,
or module in Python
that describes what the
code does and how to
use it. Accessible to
users via the help()
command.

Examples docs/ Step-by-step,
tutorial-like examples
showing how the
package works in more
detail.

API reference docs/ An organized list of the
user-facing
functionality of your
package (i.e., functions,
classes, etc.) along with
a short description of
what they do and how
to use them. Typically
created automatically
from your package’s
docstrings using the
sphinx tool as we’ll
discuss in Section
3.8.4.

6.1 Documentation content and workflow 141

We’ll discuss what each of these pieces of documentation are and how to write
them in Section 3.8.1. But it’s first helpful to understand the big-picture
documentation workflow and what we’re aiming to build.

The typical workflow for documenting a Python package consists of three
steps:

1. Write documentation: manually write the documentation source
files that will support your package, such as those listed in Table
6.1. These are usually written in a plain-text format like Markdown1

(.md). reStructuredText2 (.rst), which we explain in Section 3.8.1.
Below we show an example of the README.md file we wrote for the
pycounts package we developed in Chapter 3: How to package
a Python.

pycounts

Calculate word counts in a text file!

Installation

```bash
$ pip install pycounts
```

Usage

`pycounts` can be used to count words in a text file and plot
results as follows:

```python
from pycounts.pycounts import count_words
from pycounts.plotting import plot_words
import matplotlib.pyplot as plt

file_path = ”test.txt” # path to your file
counts = count_words(file_path)
fig = plot_words(counts, n=10)
plt.show()
```

...rest of file hidden...

1https://en.wikipedia.org/wiki/Markdown
2https://www.sphinx-doc.org/en/master/usage/restructuredtext/index.html

https://en.wikipedia.org/wiki/Markdown
https://www.sphinx-doc.org/en/master/usage/restructuredtext/index.html

142 6 Documentation

2. Build documentation: compile and render the manually written
documentation into an organized, coherent, and shareable format,
such as HTML or PDF, using the documentation generator tool
sphinx. To help you understand what this means, Fig. 6.1 shows
an example of what the README document above looks like when
it’s “built”.

FIGURE 6.1: Example of HTML documentation generated by sphinx.

3. Host documentation online: share documentation online so it
can be easily accessed by anyone with an internet connection, using
a free service like Read the Docs3 or GitHub Pages4. For example,
the documentation we built for pycounts in Section 3.8 is available
online at https://pycounts.readthedocs.io/en/latest/.

3https://readthedocs.org
4https://pages.github.com

https://pycounts.readthedocs.io/en/latest/
https://readthedocs.org
https://pages.github.com

6.2 Writing documentation 143

In the remaining sections of this chapter, we’ll walk through each of the above
steps of the documentation workflow.

6.2 Writing documentation
Table 6.1 shows the typical documentation included in a package and where it
is usually located in the package’s directory structure. There’s a lot of content
to think about here, but the reality is that most developers make Python
packages from templates that create most of this documentation automatically.
For example, consider the pycounts package we created using the py-pkgs-
cookiecutter template in Section 3.2.2:

pycounts
├── .readthedocs.yml
├── CHANGELOG.md <--------
├── CONDUCT.md <--------
├── CONTRIBUTING.md <--------
├── docs <--------
│ └── ... <--------
├── LICENSE <--------
├── README.md <--------
├── poetry.lock
├── pyproject.toml
├── src
│ └── ...
└── tests

└── ...

Documentation is typically written in a plain-text markup format, such as
Markdown5 (.md) or reStructuredText6 (.rst). With a plain-text markup lan-
guage, documents are written in plain-text and a special syntax is used to
specify how the text should be formatted when it is rendered by a suitable
tool. We saw an example of a raw and rendered Markdown document in Sec-
tion 6.1. As you can see from the structure of our pycounts package above, we
use Markdown (.md) in this book because it is widely used, and we feel it has
a less verbose and more intuitive syntax than reStructuredText. Automatic
Markdown-rendering is also supported on a wide variety of IDEs and websites.
We’ll show examples of Markdown syntax and writing the documents above in

5https://en.wikipedia.org/wiki/Markdown
6https://www.sphinx-doc.org/en/master/usage/restructuredtext/index.html

https://en.wikipedia.org/wiki/Markdown
https://www.sphinx-doc.org/en/master/usage/restructuredtext/index.html

144 6 Documentation

the following sections, and you can check out the Markdown Guide7 to learn
more about Markdown.

6.2.1 README
The README file is the “map” of your package. It’s typically the first thing
users will see and read when interacting with your package and should provide
high-level information such as: what your package does, how it can be installed,
a brief demonstration of usage, who created the package, how it is licensed,
and how to contribute to it. The README is the “gateway” to your package.
Without it, users won’t know where to begin.

As an example of a README file, we show the full README of our pycounts
package below, which we developed in Chapter 3: How to package a
Python.

In the Markdown text below, the following syntax is used:

• Headers are denoted with number signs (#). The number of number signs
corresponds to the heading level.

• Code blocks are bounded by three back-ticks. A programming language can
succeed the opening bounds to specify how the code syntax should be high-
lighted.

• Links are defined using brackets [] to enclose the link text, followed by the
URL in parentheses ().

pycounts

Calculate word counts in a text file!

Installation

```bash
$ pip install pycounts
```

Usage

7https://www.markdownguide.org

https://www.markdownguide.org

6.2 Writing documentation 145

`pycounts` can be used to count words in a text file and plot results
as follows:

```python
from pycounts.pycounts import count_words
from pycounts.plotting import plot_words
import matplotlib.pyplot as plt

file_path = ”test.txt” # path to your file
counts = count_words(file_path)
fig = plot_words(counts, n=10)
plt.show()
```

Contributing

Interested in contributing? Check out the contributing guidelines.
Please note that this project is released with a Code of Conduct.
By contributing to this project, you agree to abide by its terms.

License

`pycounts` was created by Tomas Beuzen. It is licensed under the terms
of the MIT license.

Credits

`pycounts` was created with
[`cookiecutter`](https://cookiecutter.readthedocs.io/en/latest/) and
the `py-pkgs-cookiecutter`
[template](https://github.com/py-pkgs/py-pkgs-cookiecutter).

To stress the point once more, while the raw text above doesn’t look like much,
the Markdown syntax formats the text nicely when rendered by a tool like
sphinx into what we showed in Fig. 6.1. This is why we use Markdown to write
package documentation — it can be easily written in plain-text but renders
into something so much more!

6.2.2 License
A license tells others what they can and can’t do with your code. The Open
Source Initiative (OSI)8 is a good place to learn more about different licenses,

8https://opensource.org/

https://opensource.org/
https://cookiecutter.readthedocs.io
https://github.com

146 6 Documentation

and GitHub also has a useful tool9 for helping choose the most appropriate
license for your package. Some common licenses used for Python packages
include:

• Creative Commons CC0 1.0 Universal (CC0 1.0): releases your software into
the public domain, such that others can use it for any purpose.

• MIT license: allows users to do whatever they want with your software, as
long as they include the original copyright and license notice in any copy or
substantial modification of it.

• GNU General Public License v3 (GPL-3): less permissive than the above
licenses. Any changes made to your software must be recorded, and the
complete source code of the original software and modifications of it must
be made available under the same GPL-3 license.

If you don’t include a license, then default copyright laws apply, which typ-
ically means that you retain all rights to your source code, and no one may
download, reproduce, distribute, or create derivative works from your package.
This might be fine if you want to keep your work private or proprietary, but
if you open-source your work without a license, others will be unable to use
or contribute to it.

6.2.3 Contributing guidelines
A contributing guidelines file (often named “CONTRIBUTING”) outlines pro-
cedures for how users can contribute to your project. These guidelines will vary
depending on how you’re sharing your package’s source with others, but they
typically include information on what kinds of contributions you’re accepting,
and how to make those contributions (usually via the use of a version control
system). GitHub provides a good guide10 for adding a contributing file to your
project.

Having clear contributing guidelines streamlines the incorporation of contri-
butions into your package. Without contributing guidelines, it’s not clear how
others should effectively contribute, or if you would like contributions at all.
As a result, you may receive contributions you don’t want, or in a way you
don’t want, which could waste your and other people’s time.

6.2.4 Code of conduct
A code of conduct file (often named “CONDUCT”) is used to define com-
munity standards, identify a welcoming and inclusive project, and outline

9https://choosealicense.com/
10https://help.github.com/en/github/building-a-strong-community/setting-guidelines-

for-repository-contributors

https://choosealicense.com/
https://help.github.com/en/github/building-a-strong-community/setting-guidelines-for-repository-contributors
https://help.github.com/en/github/building-a-strong-community/setting-guidelines-for-repository-contributors

6.2 Writing documentation 147

procedures for handling abuse. GitHub provides an excellent guide11 for
adding a code of conduct to your project. A code of conduct helps the commu-
nity feel safe, respected, and welcome to contribute to your package. Without
it, others may not want to contribute to your package, and conflicts may arise
among contributors with conflicting ideas.

6.2.5 Changelog
A changelog is a file which contains a chronologically ordered list of changes
made to your package. Changes are typically organized per released version of
your package, something we’ll discuss more in Chapter 7: Releasing and
versioning. Having a changelog helps users and contributors understand the
history of a package and how it has evolved over time. Without it, there’s no
easy way for users to understand when, what, and why changes were made to
your package.

Changelog’s are made for humans to read. They typically contain dot-points
of important changes made for each version of your package, grouped into
categories such as: “Feature”, “Fix”, “Documentation”, “Tests”, and with the
latest version at the top of the file. An example of a hypothetical changelog
for our pycounts package is shown below.

In the Markdown text below the syntax <!-- ... --> indicates
a comment. Comments aren’t included in the rendered version
of the document.

Changelog

<!--next-version-placeholder-->

v0.2.1 (12/09/2021)

Fix

- Changed confusing error message in plotting.plot_words()

v0.2.0 (10/09/2021)

11https://help.github.com/en/github/building-a-strong-community/adding-a-code-of-
conduct-to-your-project

https://help.github.com/en/github/building-a-strong-community/adding-a-code-of-conduct-to-your-project
https://help.github.com/en/github/building-a-strong-community/adding-a-code-of-conduct-to-your-project

148 6 Documentation

Feature

- Added a ”stop_words” argument to pycounts.count_words()

Documentation

- Added new usage examples
- Now hosting documentation on Read the Docs

v0.1.0 (24/08/2021)

- First release of `pycounts`

In Chapter 8: Continuous integration and deployment,
we’ll show how you can automatically update your changelog
from your version control commit messages when you make a
new release of your package.

6.2.6 Examples
Creating examples of how to use your package can be invaluable to new and
existing users alike. Unlike the brief “Usage” heading in the README in
Section 6.2.1, these examples are more like tutorials, including a mix of text,
figures, and code that demonstrate the functionality and common workflows
of your package step-by-step. The examples should be realistic and illustrate
workflows that users of your package might actually do (as opposed to toy
examples).

It’s important to think about your audience here too. Sometimes, it’s necessary
to create examples for different levels of expertise. Examples for new users will
introduce the basic functionality of your package step-by-step, with plenty of
commentary about what each piece of code is doing and why. Examples for
more competent users might be more code-based, requiring less explanation
of each step, and will likely explore more advanced usage of the package.

You could certainly write examples from scratch using a plain-text format
like Markdown, but this can be inefficient and prone to errors. Instead, we
recommend creating examples using a computational notebook like a Jupyter
Notebook (Kluyver et al., 2016) (.ipynb file). Jupyter Notebooks are inter-
active documents that can contain code, equations, text, and visualizations.

6.2 Writing documentation 149

They are effective for demonstrating examples because they directly import
and use code from your package; this ensures you don’t make mistakes when
writing out your example, and it allows users to download, execute, and inter-
act with the notebooks themselves (as opposed to just reading text).

To create examples in a Jupyter notebook, you’ll need to install the Jupyter
software. If you’re using a poetry-managed project, as we do in this book, you
can install the Jupyter software as a development dependency of your package
with the following command:

If you’re following on from Chapter 3: How to package a
Python and created a virtual environment for your pycounts
package using conda, as we did in Section 3.5.1, be sure to
activate that environment before continuing by running conda
activate pycounts at the command line.

$ poetry add --dev jupyter

Once installed, you can launch the Jupyter Notebook application with the
following command:

$ jupyter notebook

If you’re developing your Python package in an IDE that na-
tively supports Jupyter Notebooks, such as Visual Studio Code
or JupyterLab, you can simply open docs/example.ipynb to
edit it, without needing to run the jupyter notebook command
above.

Notebooks are made of “cells” that can contain Python code or Markdown
text. Discussing how to use the Jupyter application is beyond the scope of
this book, and we refer readers to the Jupyter documentation12 to learn more.

12https://jupyter-notebook.readthedocs.io/en/latest/?badge=latest

https://jupyter-notebook.readthedocs.io/en/latest/?badge=latest

150 6 Documentation

However, as an example, Fig. 6.2 and Fig. 6.3 show the example notebook
that we created to support our pycounts package in Section 3.8.3.

FIGURE 6.2: First half of Jupyter Notebook demonstrating an example
workflow using the pycounts package.

In Section 3.8.4, we’ll show how we can use sphinx to automatically execute
notebooks and include their content (including the outputs of code cells) into
our built documentation so that users can easily read and navigate through
them without having to even start the Jupyter application!

6.2.7 Docstrings
A docstring is a string, surrounded by triple-quotes, at the start of a module,
class, or function in Python (preceding any code) that provides documentation
on what the object does and how to use it. Docstrings automatically become
the documented object’s documentation, accessible to users via the help()
function. Docstrings are a user’s first port-of-call when they are trying to use
code from your package; they really are a necessity when creating packages,
even for yourself.

General docstring convention in Python is described in Python Enhancement

6.2 Writing documentation 151

FIGURE 6.3: Second half of Jupyter Notebook demonstrating an example
workflow using the pycounts package.

Proposal (PEP) 257 — Docstring Conventions13, but there is flexibility in
how you write your docstrings. A minimal docstring contains a single line
describing what the object does, and that might be sufficient for a simple
function or for when your code is in the early stages of development. However,
for code you intend to share with others (including your future self) a more
comprehensive docstring should be written.

A typical docstring will include:

1. A one-line summary that does not use variable names or the func-
tion name.

13https://www.python.org/dev/peps/pep-0257/

https://www.python.org/dev/peps/pep-0257/

152 6 Documentation

2. An extended description.
3. Parameter types and descriptions.
4. Returned value types and descriptions.
5. Example usage.
6. Potentially more.

There are different “docstring styles” used in Python to organize this infor-
mation, such as numpydoc style14, Google style15, and sphinx style16. In this
book, we’ve been using the numpydoc style because we find it has an intuitive
syntax and is human-readable. In the numpydoc style:

• Section headers are denoted as text underlined with dashes:

Parameters

• Input arguments are denoted as:

name : type
Description of parameter `name`.

• Output values use the same syntax above, but specifying the name is optional.

As an example of a docstring, consider the count_words() function of our
pycounts package:

def count_words(input_file):
”””Count words in a text file.

Words are made lowercase and punctuation is removed
before counting.

Parameters

input_file : str

Path to text file.

Returns

collections.Counter

14https://numpydoc.readthedocs.io/en/latest/format.html#docstring-standard
15https://github.com/google/styleguide/blob/gh-pages/pyguide.md#38-comments-and-

docstrings
16https://sphinx-rtd-tutorial.readthedocs.io/en/latest/docstrings.html#the-sphinx-

docstring-format

https://numpydoc.readthedocs.io/en/latest/format.html#docstring-standard
https://github.com/google/styleguide/blob/gh-pages/pyguide.md#38-comments-and-docstrings
https://github.com/google/styleguide/blob/gh-pages/pyguide.md#38-comments-and-docstrings
https://sphinx-rtd-tutorial.readthedocs.io/en/latest/docstrings.html#the-sphinx-docstring-format
https://sphinx-rtd-tutorial.readthedocs.io/en/latest/docstrings.html#the-sphinx-docstring-format

6.2 Writing documentation 153

dict-like object where keys are words and values are counts.

Examples

>>> count_words(”text.txt”)
”””
text = load_text(input_file)
text = clean_text(text)
words = text.split()
return Counter(words)

You can add information to your docstrings at your discretion — you won’t
always need all the sections above, and in some case you may want to include
additional sections from the numpydoc style documentation17.

6.2.8 Application programming interface (API) reference
An application programming interface (API) reference sheet is an organized
index of your package’s user-facing functionality and associated docstrings. It
helps users efficiently understand and search through your package’s function-
ality without having to dig in to the source code or run the Python help()
command on every object they need to know about.

As a concrete example of what we’re talking about, Fig. 6.4 shows an API
reference for our pycounts package, and Fig. 6.5 shows the detail we get when
we click on the pycounts.plotting module.

You could create an API reference by manually copying and pasting the names
of all of your package’s Python objects (functions, modules, classes, etc.) and
their docstrings into a plain-text file, but that would be incredibly tedious and
not reproducible. Instead, API references are usually generated automatically
using sphinx, which can parse your source code to extract Python objects and
their docstrings and render them into an API reference. We’ll demonstrate
how to do this in Section 3.8.4.

6.2.9 Other package documentation
In this section, we’ve only explored the core documentation typically included
in a Python package. But you can add as much documentation as you wish!
For example, you might wish to write documents for frequently asked ques-
tions (FAQs), a document referencing how your project compares to similar
projects, information on project funding and attribution, etc. In general, the
more documentation the better!

17https://numpydoc.readthedocs.io/en/latest/format.html#docstring-standard

https://numpydoc.readthedocs.io/en/latest/format.html#docstring-standard

154 6 Documentation

FIGURE 6.4: API reference for the pycounts package.

6.3 Building documentation
At the moment, the documentation we’ve written is spread throughout our
package’s directory structure in the form of plain-text Markdown files, Jupyter
Notebooks, and docstrings in our Python modules. Rather than requiring users
to search through this directory structure to find documentation, it’s common
to use a documentation generator like sphinx to compile and render all of this
plain-text documentation into a user-friendly output format, such as HTML
or PDF, that is easy to view, navigate, and share with others. We showed
an example of sphinx-generated documentation in Fig. 6.1. As we’ll see in
this section, sphinx also has a rich ecosystem of extensions that can be used
to help customize and automatically generate content to complement your
manually-written documentation.

We’ll demonstrate the process of building documentation with sphinx using
our pycounts package. This section will effectively walk through the same steps
we went through in Section 3.8.4, so for readers who have recently read that
section, feel free to skip to Section 3.8.5.

6.3 Building documentation 155

FIGURE 6.5: API reference for the pycounts.plotting package.

The source and configuration files to build documentation using sphinx live
in a docs/ folder in the root of your package. The py-pkgs-cookiecutter au-
tomatically created this folder for us:

pycounts
├── .readthedocs.yml
├── CHANGELOG.md
├── CONDUCT.md
├── CONTRIBUTING.md
├── docs <---------
│ ├── changelog.md

156 6 Documentation

│ ├── conduct.md
│ ├── conf.py
│ ├── contributing.md
│ ├── example.ipynb
│ ├── index.md
│ ├── make.bat
│ ├── Makefile
│ └── requirements.txt
├── LICENSE
├── pyproject.toml
├── README.md
├── src
│ └── ...
└── tests

└── ...

If you don’t use a template to create your Python package di-
rectory structure, the sphinx command sphinx-quickstart can
be used to quickly create the source files in the docs/ directory
for you.

The docs/ directory includes:

• Makefile/make.bat: files that contain commands needed to build our docu-
mentation with sphinx and do not need to be modified. Make18 is a tool
used to run commands to efficiently read, process, and write files. A Make-
file defines the tasks for Make to execute. If you’re interested in learning
more about Make, we recommend the Learn Makefiles19 tutorial. But for
building documentation with sphinx, all you need to know is that having
these Makefiles allows us to build documentation with the simple command
make html and to clean documentation (i.e., remove it so we can make a
fresh copy) with the command make clean. We’ll use these commands later
in this section.

• requirements.txt: contains a list of documentation-specific dependencies re-
quired to host our documentation online on Read the Docs20, which we’ll
discuss in Section 3.8.5.
18https://www.gnu.org/software/make/
19https://makefiletutorial.com
20https://readthedocs.org/

https://www.gnu.org/software/make/
https://makefiletutorial.com
https://readthedocs.org/

6.3 Building documentation 157

• conf.py is a configuration file controlling how sphinx builds your documen-
tation. You can read more about conf.py in the sphinx documentation21,
and we’ll touch on it again shortly, but for now, it has been pre-populated
by the py-pkgs-cookiecutter template and does not need to be modified.

• The remaining files in the docs/ directory form the content of our generated
documentation, as we’ll discuss in the remainder of this section.

The index.md file will form the landing page of our documentation. Think of
it as the homepage of a website. For your landing page, you’d typically want
some high-level information about your package, and then links to the rest of
the documentation you want to expose to a user. For example, the landing
page we are going to build will look like Fig. 6.6.

FIGURE 6.6: The documentation homepage generated by sphinx.

21https://www.sphinx-doc.org/en/master/usage/configuration.html

https://www.sphinx-doc.org/en/master/usage/configuration.html

158 6 Documentation

If you open index.md in an editor of your choice you’ll see we’re generating
this content with a particular kind of syntax explained below.

```{include} ../README.md
```

```toctree
:maxdepth: 1
:hidden:

example.ipynb
changelog.md
contributing.md
conduct.md
autoapi/index
```

Sphinx natively supports reStructuredText22, but many developers prefer to
work in Markdown (as we do in this book). The syntax shown above in in-
dex.md is a flavor of Markdown known as Markedly Structured Text (MyST)23.
MyST is based on Markdown but with additional syntax options inspired by
reStructuredText and compatible for use with sphinx. For example, the {in-
clude} syntax specifies that we want the index.md landing page to include
the content of the README.md in our package’s root directory (think of it as a
copy-paste operation).

The {toctree} syntax defines what documents will be listed in the table of
contents (ToC) on the left-hand side of Fig. 6.6. The argument :maxdepth:
1 indicates how many heading levels the ToC should include, and :hidden:
specifies that the ToC should only appear in the side bar and not in the index
page itself. The ToC then lists the documents we want to include and link to
in our documentation. “example.ipynb” is the Jupyter Notebook we showed in
section Section 6.2.6. sphinx doesn’t support relative links in a ToC, so to in-
clude the documents CHANGELOG.md, CONTRIBUTING.md, and CONDUCT.md from our
root, we create “stub files” changelog.md, contributing.md, and conduct.md,
which contain links to these documents with the {include} syntax from earlier
(which does support relative links). For example, changelog.md contains the
following text:

```{include} ../CHANGELOG.md
```

22https://www.sphinx-doc.org/en/master/usage/restructuredtext/index.html
23https://myst-parser.readthedocs.io/en/latest/syntax/syntax.html

https://www.sphinx-doc.org/en/master/usage/restructuredtext/index.html
https://myst-parser.readthedocs.io/en/latest/syntax/syntax.html

6.3 Building documentation 159

The final document in the ToC, “autoapi/index” is an API reference sheet
that will be generated automatically for us, from our package structure and
docstrings, when we build our documentation with sphinx.

Before we can go ahead and build our documentation with sphinx, it relies on
a few sphinx extensions that need to be installed and configured:

• myst-nb24: extension that enables sphinx to parse Markdown, MyST, and
notebook files (sphinx only supports reStructuredTex, .rst files, by default).

• sphinx-rtd-theme25: a custom theme for styling the way our documentation
will look. It looks much better than the sphinx default.

• sphinx-autoapi26: extension that will parse our source code and docstrings
to create an API reference sheet.

• sphinx.ext.napoleon27: enables sphinx to parse numpydoc style docstrings.
• sphinx.ext.viewcode28: adds a helpful link to the source code of each object

in the API reference sheet.

These extensions are not necessary to create documentation with sphinx, but
they are all commonly used in Python packaging documentation and signifi-
cantly improve the look and user-experience of the generated documentation.
Extensions without the sphinx.ext prefix need to be installed. We can install
them as development dependencies in a poetry-managed project with the fol-
lowing command:

$ poetry add --dev myst-nb --python ”^3.9”
$ poetry add --dev sphinx-autoapi sphinx-rtd-theme

Adding myst-nb is a great example of why upper caps on depen-
dency versions can be a pain, as we discussed in Section 3.6.1.
At the time of writing, one of the dependencies of myst-nb, mdit-
py-plugins, has an upper cap of <4.0 on the Python version it
requires, so it’s not compatible with our package which supports
Python >=3.9. Thus, unless mdit-py-plugins removes this up-
per cap, the easiest way for us to add myst-nb is to tell poetry to
only install it for Python versions ^3.9 (i.e., >=3.9 and <4.0),
by using the argument --python ”^3.9”.

24https://myst-nb.readthedocs.io/en/latest/
25https://sphinx-rtd-theme.readthedocs.io/en/stable/
26https://sphinx-autoapi.readthedocs.io/en/latest/
27https://sphinxcontrib-napoleon.readthedocs.io/en/latest/
28https://www.sphinx-doc.org/en/master/usage/extensions/viewcode.html

https://myst-nb.readthedocs.io/en/latest/
https://sphinx-rtd-theme.readthedocs.io/en/stable/
https://sphinx-autoapi.readthedocs.io/en/latest/
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/
https://www.sphinx-doc.org/en/master/usage/extensions/viewcode.html

160 6 Documentation

Once installed, any extensions you want to use need to be added to a list
called extensions in the conf.py configuration file and configured. Configura-
tion options for each extension (if they exist) can be viewed in their respective
documentation, but the py-pkgs-cookeicutter has already taken care of ev-
erything for us, by defining the following variables within conf.py:

extensions = [
”myst_nb”,
”autoapi.extension”,
”sphinx.ext.napoleon”,
”sphinx.ext.viewcode”,

]
autoapi_dirs = [”../src”] # location to parse for API reference
html_theme = ”sphinx_rtd_theme”

With our documentation structure set up, and our extensions configured, we
can now navigate to the docs/ directory and build our documentation with
sphinx using the following commands:

$ cd docs
$ make html

Running Sphinx
...
build succeeded.
The HTML pages are in _build/html.

If we now look inside our docs/ directory we see a new directory _build/html,
which contains our built documentation as HTML files. If you open
_build/html/index.html you should see the landing page in Fig. 6.6.

If you make significant changes to your documentation, it can
be a good idea to delete the _build/ folder before building it
again. You can do this easily by adding the clean option into
the make html command: make clean html.

The sphinx-autoapi and sphinx.ext.napoleon extensions extracted the doc-
strings within each module and rendered them into our documentation. If you

6.3 Building documentation 161

click “API Reference” you should now be able to view pages like those shown
in Fig. 6.4 and Fig. 6.5.

If you navigate to the “Example usage” page, you should see a rendered version
of our Jupyter Notebook example, as shown in Fig. 6.7. This was made possible
using the myst-nb extension.

FIGURE 6.7: Jupyter Notebook example rendered into pycounts’s documen-
tation.

Ultimately, you can efficiently make beautiful and many-featured documen-
tation with sphinx and its ecosystem of extensions. You can now use this
documentation yourself or potentially share it with others, but it really shines
when you host it on the web using a free service like Read the Docs29, as we’ll
do in the next section.

29https://readthedocs.org/

https://readthedocs.org/

162 6 Documentation

6.4 Hosting documentation online
If you intend to share your package with others, it will be useful to make
your documentation accessible online. It’s common to host Python package
documentation on the free online hosting service Read the Docs30, which
can automate the building, deployment, and hosting of your documenta-
tion. Read the Docs works by connecting to an online repository hosting
your package documentation, such as a GitHub repository. When you push
changes to your repository, Read the Docs automatically builds a fresh
copy of your documentation (i.e., runs make html) and hosts it at the URL
https://pkgname.readthedocs.io/ (you can also configure Read the Docs
to use a custom domain name). This means that any changes you make to
your documentation source files are immediately deployed to your users. If you
need your documentation to be private (i.e., only available to employees of a
company), Read the Docs offers a paid “Business plan” with this functionality.

GitHub Pages31 is another popular service used for hosting
documentation from a repository. However, it doesn’t natively
support automatic building of your documentation when you
push changes to the source files, which is why we prefer to
use Read the Docs here. If you did want to host your docs
on GitHub Pages, we recommend using the ghp-import32 pack-
age, or setting up an automated GitHub Actions workflow using
the peaceiris/actions-gh-pages33 action (we’ll learn more about
GitHub Actions in Chapter 8: Continuous integration and
deployment).

The Read the Docs34 documentation will provide the most up-to-date steps
required to host your documentation online. For our pycounts package, this
involved the following steps:

1. Visit https://readthedocs.org/ and click on “Sign up”.
2. Select “Sign up with GitHub”.

30https://readthedocs.org/
31https://pages.github.com
32https://github.com/c-w/ghp-import
33https://github.com/peaceiris/actions-gh-pages
34https://readthedocs.org

https://pkgname.readthedocs.io/
https://readthedocs.org/
https://readthedocs.org/
https://pages.github.com
https://github.com/c-w/ghp-import
https://github.com/peaceiris/actions-gh-pages
https://readthedocs.org

6.4 Hosting documentation online 163

3. Click “Import a Project”.
4. Click “Import Manually”.
5. Fill in the project details by:

•Providing your package name (e.g., pycounts).
•The GitHub repository URL (e.g., https://github.com/Tomas
Beuzen/pycounts).

•Specifying the default branch as main.
6. Click “Next” and then “Build version”.

After following the steps above, your documentation should be successfully
built by Read the Docs35, and you should be able to access it via the “View
Docs” button on the build page. For example, the documentation for pycounts
is now available at https://pycounts.readthedocs.io/en/latest/. This
documentation will be automatically re-built by Read the Docs each time you
push changes to the specified default branch of your GitHub repository.

The .readthedocs.yml file that py-pkgs-cookiecutter created
for us in the root directory of our Python package contains the
configuration settings necessary for Read the Docs to properly
build our documentation. It specifies what version of Python to
use and tells Read the Docs that our documentation requires the
extra packages specified in pycounts/docs/requirements.txt to
be generated correctly.

35https://readthedocs.org/

https://github.com/TomasBeuzen/pycounts
https://github.com/TomasBeuzen/pycounts
https://pycounts.readthedocs.io/en/latest/
https://readthedocs.org/

http://taylorandfrancis.com

7
Releasing and versioning

Previous chapters have focused on how to develop a Python package from
scratch by creating the Python source code, developing a testing framework,
writing documentation, and then releasing it online via PyPI (if desired). This
chapter now describes the next step in the packaging workflow — updating
your package!

At any given time, your package’s users (including you) will install a particular
version of your package in a project. If you change the package’s source code,
their code could potentially break (imagine you change a module name, or re-
move a function argument a user was using). To solve this problem, developers
assign a unique version number to each unique state of their package and re-
lease each new version independently. Most of the time, users will want to use
the most up-to-date version of your package, but sometimes, they’ll need to
use an older version that is compatible with their project. Releasing versions
is also an important way of communicating to your users that your package
has changed (e.g., bugs have been fixed, new features have been added, etc.).

In this chapter, we’ll walk through the process of creating and releasing new
versions of your Python package.

7.1 Version numbering
Versioning is the process of adding unique identifiers to different versions of
your package. The unique identifier you use may be name-based or number-
based, but most Python packages use semantic versioning1. In semantic ver-
sioning, a version number consists of three integers A.B.C, where A is the
“major” version, B is the “minor” version, and C is the “patch” version. The
first version of a software usually starts at 0.1.0 and increments from there.
We call an increment a “bump”, and it consists of adding 1 to either the major,
minor, or patch identifier as follows:

• Patch release (0.1.0 -> 0.1.1): patch releases are typically used for bug
fixes, which are backward compatible. Backward compatibility refers to the

1https://semver.org

DOI: 10.1201/9781003189251-7 165

https://semver.org
https://doi.org/10.1201/9781003189251-7

166 7 Releasing and versioning

compatibility of your package with previous versions of itself. For example,
if a user was using v0.1.0 of your package, they should be able to upgrade to
v0.1.1 and have any code they previously wrote still work. It’s fine to have
so many patch releases that you need to use two digits (e.g., 0.1.27).

• Minor release (0.1.0 -> 0.2.0): a minor release typically includes larger
bug fixes or new features that are backward compatible, for example, the
addition of a new function. It’s fine to have so many minor releases that you
need to use two digits (e.g., 0.13.0).

• Major release (0.1.0 -> 1.0.0): release 1.0.0 is typically used for the first sta-
ble release of your package. After that, major releases are made for changes
that are not backward compatible and may affect many users. Changes that
are not backward compatible are called “breaking changes”. For example,
changing the name of one of the modules in your package would be a break-
ing change; if users upgraded to your new package, any code they’d written
using the old module name would no longer work, and they would have to
change it.

Most of the time, you’ll be making patch and minor releases. We’ll discuss
major releases, breaking changes, and how to deprecate package functionality
(i.e., remove it) more in Section 7.5.

Even with the guidelines above, versioning a package can be a little subjective
and requires you to use your best judgment. For example, small packages
might make a patch release for each individual bug fixed or a minor release for
each new feature added. In contrast, larger packages will often group multiple
bug fixes into a single patch release or multiple features into a single minor
release, because making a release for every individual change would result
in an overwhelming and confusing amount of releases! Table 7.1 shows some
practical examples of major, minor, and patch releases made for the Python
software itself. To formalize the circumstances under which different kinds of
releases should be made, some developers create a “version policy” document
for their package; the pandas version policy2 is a good example of this.

2https://pandas.pydata.org/docs/development/policies.html#version-policy

https://pandas.pydata.org/docs/development/policies.html#version-policy

7.1 Version numbering 167

TABLE 7.1: Examples of major, minor, and patch releases of Python.

Release Type Version Bump Description
Major 2.X.X -> 3.0.0

(December, 2008)
This release included
breaking changes, e.g.,
print() became a
function, integer
division resulted a float
rather than an integer,
built-in objects like
dictionaries and strings
changed considerably,
and many old features
were removed.

Minor 3.8.X -> 3.9.0
(October, 2020)

New features and
optimizations were
added in this release,
e.g., string methods to
remove prefixes and
suffixes (.removepre-
fix()/.removesuffix())
were added, and a new
parser was implemented
for CPython (the
engine that compiles
and executes your
Python code).

Patch 3.9.5 -> 3.9.6 (June,
2021)

This release contained
bug and maintenance
fixes, e.g., a confusing
error message was
updated in the
str.format() method,
and the version of pip
bundled with Python
downloads was updated
from 21.1.2 -> 21.1.3,
and parts of the
documentation were
updated.

168 7 Releasing and versioning

7.2 Version bumping
While we’ll discuss the full workflow for releasing a new version of your package
in Section 7.3, we first want to dicuss version bumping. That is, how to
increment the version of your package when you’re preparing a new release.
This can be done manually or automatically as we’ll show below.

7.2.1 Manual version bumping
Once you’ve decided what the new version of your package will be (i.e., are
you making a patch, minor, or major release) you need to update the package’s
version number in your source code. For a poetry-managed project, that infor-
mation is in the pyproject.toml file. Consider the pyproject.toml file of the
pycounts package we developed in Chapter 3: How to package a Python,
the top of which looks like this:

[tool.poetry]
name = ”pycounts”
version = ”0.1.0”
description = ”Calculate word counts in a text file!”
authors = [”Tomas Beuzen”]
license = ”MIT”
readme = ”README.md”

...rest of file hidden...

Imagine we wanted to make a patch release of our package. We could sim-
ply change the version number manually in this file to “0.1.1”, and many
developers do take this manual approach. An alternative method is to use the
poetry version command. The poetry version command can be used with
the arguments patch, minor, or major depending on how you want to update
the version of your package. For example, to make a patch release, we could
run the following at the command line:

If you’re building the pycounts package with us in this book,
you don’t have to run the below command, it is just for demon-
stration purposes. We’ll make a new version of pycounts later in
this chapter.

7.2 Version bumping 169

$ poetry version patch

Bumping version from 0.1.0 to 0.1.1

This command changes the version variable in the pyproject.toml file:

[tool.poetry]
name = ”pycounts”
version = ”0.1.1”
description = ”Calculate word counts in a text file!”
authors = [”Tomas Beuzen”]
license = ”MIT”
readme = ”README.md”

...rest of file hidden...

7.2.2 Automatic version bumping
In this book, we’re interested in automating as much as possible of the pack-
aging workflow. While the manual versioning approach described above in
Section 7.2.1 is certainly used by many developers, we can do things more
efficiently! To automate version bumping, you’ll need to be using a version
control system like Git. If you are not using version control for your package,
you can skip to Section 7.3.

Python Semantic Release (PSR)3 is a tool that can automatically bump ver-
sion numbers based on keywords it finds in commit messages. The idea is
to use a standardized commit message format and syntax, which PSR can
parse to determine how to increment the version number. The default commit
message format used by PSR is the Angular commit style4, which looks like
this:

<type>(optional scope): short summary in present tense

(optional body: explains motivation for the change)

(optional footer: note BREAKING CHANGES here, and issues to be closed)

3https://python-semantic-release.readthedocs.io/en/latest/
4https://github.com/angular/angular.js/blob/master/DEVELOPERS.md#commit-message-

format

https://python-semantic-release.readthedocs.io/en/latest/
https://github.com/angular/angular.js/blob/master/DEVELOPERS.md#commit-message-format
https://github.com/angular/angular.js/blob/master/DEVELOPERS.md#commit-message-format

170 7 Releasing and versioning

<type> refers to the kind of change made and is usually one of:

• feat: A new feature.
• fix: A bug fix.
• docs: Documentation changes.
• style: Changes that do not affect the meaning of the code (white-space,

formatting, missing semi-colons, etc).
• refactor: A code change that neither fixes a bug nor adds a feature.
• perf: A code change that improves performance.
• test: Changes to the test framework.
• build: Changes to the build process or tools.

scope is an optional keyword that provides context for where the change was
made. It can be anything relevant to your package or development workflow
(e.g., it could be the module or function name affected by the change).

Different text in the commit message will trigger PSR to make different kinds
of releases:

• A <type> of fix triggers a patch version bump, e.g.:

$ git commit -m ”fix(mod_plotting): fix confusing error message in \
plot_words”

• A <type> of feat triggers a minor version bump, e.g.:

$ git commit -m ”feat(package): add example data and new module to \
package”

• The text BREAKING CHANGE: in the footer will trigger a major release, e.g.:

$ git commit -m ”feat(mod_plotting): move code from plotting module \
to pycounts module

$
$ BREAKING CHANGE: plotting module wont exist after this release.”

To use PSR we need to install and configure it. To install PSR as a development
dependency of a poetry-managed project, you can use the following command:

$ poetry add --dev python-semantic-release

To configure PSR, we need to tell it where the version number of our pack-
age is stored. The package version is stored in the pyproject.toml file for
a poetry-managed project. It exists as the variable version under the table

7.2 Version bumping 171

[tool.poetry]. To tell PSR this, we need to add a new table to the pypro-
ject.toml file called [tool.semantic_release] within which we specify that
our version_variable is stored at pyproject.toml:version:

...rest of file hidden...

[tool.semantic_release]
version_variable = ”pyproject.toml:version”

Finally, you can use the command semantic-release version at the command
line to get PSR to automatically bump your package’s version number. PSR
will parse all the commit messages since the last tag of your package to deter-
mine what kind of version bump to make. For example, imagine the following
three commit messages have been made since tag v0.1.0:

1. ”fix(mod_plotting): raise TypeError in plot_words”
2. ”fix(mod_plotting): fix confusing error message in plot_words”
3. ”feat(package): add example data and new module to package”

PSR will note that there are two “fix” and one “feat” keywords. “fix” triggers
a patch release, but “feat” triggers a minor release, which trumps a patch
release, so PSR would make a minor version bump from v0.1.0 to v0.2.0.

As a more practical demonstration of how PSR works, imagine we have a
package at version 0.1.0, make a bug fix and commit our changes with the
following message:

If you’re building the pycounts package with us in this book,
you don’t have to run the below commands, they are just for
demonstration purposes. We’ll make a new version of pycounts
later in this chapter.

$ git add src/pycounts/plotting.py
$ git commit -m ”fix(code): change confusing error message in \
plotting.plot_words”

We then run semantic-release version to update our version number. In the
command below, we’ll specify the argument -v DEBUG to ask PSR to print extra
information to the screen so we can get an inside look at how PSR works:

172 7 Releasing and versioning

$ semantic-release version -v DEBUG

Creating new version
debug: get_current_version_by_config_file()
debug: Parsing current version: path=PosixPath('pyproject.toml')
debug: Regex matched version: 0.1.0
debug: get_current_version_by_config_file -> 0.1.0
Current version: 0.1.0
debug: evaluate_version_bump('0.1.0', None)
debug: parse_commit_message('fix(code): change confusing error...)
debug: parse_commit_message -> ParsedCommit(bump=1, type='fix')
debug: Commits found since last release: 1
debug: evaluate_version_bump -> patch
debug: get_new_version('0.1.0', 'patch')
debug: get_new_version -> 0.1.1
debug: set_new_version('0.1.1')
debug: Writing new version number: path=PosixPath('pyproject.toml')
debug: set_new_version -> True
debug: commit_new_version('0.1.1')
debug: commit_new_version -> [main d82fa3f] 0.1.1
debug: Author: semantic-release <semantic-release>
debug: 1 file changed, 5 insertions(+), 1 deletion(-)
debug: tag_new_version('0.1.1')
debug: tag_new_version ->
Bumping with a patch version to 0.1.1

We can see that PSR found our commit messages, and decided that a patch re-
lease was necessary based on the text in the message. We can also see that com-
mand automatically updated the version number in the the pyproject.toml
file and created a new version control tag for our package’s source (we talked
about tags in Section 3.9). In the next section, we’ll go through a real exam-
ple of using PSR with our pycounts package.

7.3 Checklist for releasing a new package version
Now that we know about versioning and how to increment the version of our
package, we’re ready to run through a release checklist. We’ll make a new
minor release of the pycounts package we’ve been developing throughout this
book, from v0.1.0 to v0.2.0, to demonstrate each step in the release checklist.

7.3 Checklist for releasing a new package version 173

7.3.1 Step 1: make changes to package source files
This is an obvious one, but before you can make a new release, you need
to make the changes to your package’s source that will comprise your new
release!

Consider our pycounts package. We published the first release, v0.1.0, of our
package in Chapter 3: How to package a Python. Since then, we’ve made
a few changes. Specifically:

• In Chapter 4: Package structure and distribution, we added a new
“datasets” module to our package along with some example data, a text file
of the novel Flatland by Edwin Abbott (Abbott, 1884), that users could load
to try out the functionality of our package.

• In Chapter 5: Testing, we significantly upgraded our testing suite
by adding several new unit, integration, and regression tests to the
tests/test_pycounts.py file.

In practice, if you’re using version control, changes are usually
made to a package’s source using branches5. Branches isolate
your changes so you can develop your package without affecting
the existing, stable version. Only when you’re happy with your
changes do you merge them into the existing source.

7.3.2 Step 2: document your changes
Before we make our new release, we should document everything
we’ve changed in our changelog. For example, here’s pycounts’s updated
CHANGELOG.md file:

We talked about changelog file format and content in Section
6.2.5.

5https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell

https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell

174 7 Releasing and versioning

Changelog

<!--next-version-placeholder-->

v0.2.0 (10/09/2021)

Feature

- Added new datasets modules to load example data

Fix

- Check type of argument passed to `plotting.plot_words()`

Tests

- Added new tests to all package modules in test_pycounts.py

v0.1.0 (24/08/2021)

- First release of `pycounts`

If using version control, you should commit this change to make sure it be-
comes part of your release:

$ git add CHANGELOG.md
$ git commit -m ”build: preparing for release v0.2.0”
$ git push

7.3.3 Step 3: bump version number
Once your changes for the new release are ready, you need to bump the pack-
age version manually (Section 7.2.1) or automatically with the PSR tool
(Section 7.2.2).

We’ll take the automatic route using PSR here, but if you’re not using Git as
a version control system, you’ll need to do this step manually. The changes we
made to pycounts, described in the section above, constitute a minor release
(we added a new feature to load example data and made some significant
changes to our package’s test framework). When we committed these changes
in Section 4.4 and Section 4.4, we did so with the following collection of
commit messages:

7.3 Checklist for releasing a new package version 175

$ git commit -m ”feat: add example data and datasets module”
$ git commit -m ”test: add additional tests for all modules”
$ git commit -m ”fix: check input type to plot_words function”

As we discussed in Section 7.2.2, PSR can automatically parse these commit
messages to increment our package version for us. If you haven’t already, install
PSR as a development dependency using poetry:

If you’re following on from Chapter 3: How to package a
Python and created a virtual environment for your pycounts
package using conda, as we did in Section 3.5.1, be sure to
activate that environment before continuing by running conda
activate pycounts at the command line.

$ poetry add --dev python-semantic-release

This command updated our recorded package dependencies in pyproject.toml
and poetry.lock, so we should commit those changes to version control before
we update our package version:

$ git add pyproject.toml poetry.lock
$ git commit -m ”build: add PSR as dev dependency”
$ git push

Now we can use PSR to automatically bump our package version with the
semantic-release version command. If you want to see exactly what PSR
found in your commit messages and why it decided to make a patch, minor,
or major release, you can add the argument -v DEBUG.

Recall from Section 7.2.2 that to use PSR, you need to tell
it where your package’s version number is stored by defin-
ing version_variable = ”pyproject.toml:version” under the
[tool.semantic_release] table in pyproject.toml.

176 7 Releasing and versioning

$ semantic-release version

Creating new version
Current version: 0.1.0
Bumping with a minor version to 0.2.0

This step automatically updated our package’s version in the pyproject.toml
file and created a new tag for our package, “v0.2.0”, which you could view by
typing git tag --list at the command line:

$ git tag --list

v0.1.0
v0.2.0

7.3.4 Step 4: run tests and build documentation
We’ve now prepped our package for release, but before we release it, it’s im-
portant to check that its tests run and documentation builds successfully. To
do this with our pycounts package, we should first install the package (we
should re-install because we’ve created a new version):

$ poetry install

Installing the current project: pycounts (0.2.0)

Now we’ll check that our tests are still passing and what their coverage is using
pytest and pytest-cov (we discussed these tools in Chapter 5: Testing):

$ pytest tests/ --cov=pycounts

========================= test session starts =========================

---------- coverage: platform darwin, python 3.9.6-final-0 -----------
Name Stmts Miss Cover

src/pycounts/__init__.py 2 0 100%
src/pycounts/data/__init__.py 0 0 100%

7.3 Checklist for releasing a new package version 177

src/pycounts/datasets.py 5 0 100%
src/pycounts/plotting.py 12 0 100%
src/pycounts/pycounts.py 16 0 100%

TOTAL 35 0 100%

========================== 7 passed in 0.41s ==========================

Finally, to check that documentation still builds correctly you typically want
to create the documentation from scratch, i.e., remove any existing built doc-
umentation in your package and then building it again. To do this, we first
need to run make clean before running make html from the docs/ directory (we
discussed building documentation with these commands in Chapter 6: Doc-
umentation). In the spirit of efficiency we can combine these two commands
together like we do below:

$ cd docs
$ make clean html

Running Sphinx
...
build succeeded.
The HTML pages are in _build/html.

Looks like everything is working!

7.3.5 Step 5: tag a release with version control
For those using remote version control on GitHub (or similar), it’s time to
tag a new release of your repository on GitHub. If you’re not using version
control, you can skip to the next section. We discussed how to tag a release
and why we do this in Section 3.9. Recall that it’s a two-step process:

1. Create a tag marking a specific point in a repository’s history using
the command git tag.

2. On GitHub, create a release of your repository based on the tag.

If using PSR to bump your package version, then step 1 was done automati-
cally for you. If you didn’t use PSR, you can make a tag manually using the
following command:

178 7 Releasing and versioning

$ git tag v0.2.0

You can now push any local commits and your new tag to GitHub with the
following commands:

$ git push
$ git push --tags

After running those commands for our pycounts package, we can go to GitHub
and navigate to the “Releases” tab to see our tag, as shown in Fig. 7.1.

FIGURE 7.1: Tag of v0.2.0 of pycounts on GitHub.

To create a release from this tag, click “Draft a new release”. You can then
identify the tag from which to create the release and optionally add a de-
scription of the release; often, this description links to the changelog, where
changes have already been documented. Fig. 7.2 shows the release of v0.2.0 of
pycounts on GitHub.

7.3.6 Step 6: build and release package to PyPI
It’s now time to build the new distributions for our package (i.e., the sdist
and wheel — we talked about these in Section 4.3). We can do that with
poetry using the following command run from the root package directory:

7.3 Checklist for releasing a new package version 179

FIGURE 7.2: Release v0.2.0 of pycounts on GitHub.

$ poetry build

Building pycounts (0.2.0)
- Building sdist
- Built pycounts-0.2.0.tar.gz
- Building wheel
- Built pycounts-0.2.0-py3-none-any.whl

You can now use and share these distributions as you please, but most devel-
opers will want to upload them to PyPI, which is what we’ll do here.

180 7 Releasing and versioning

As discussed in Section 3.10.2, it’s good practice to release your package on
TestPyPI6 before PyPI, to test that everything is working as expected. We
can do that with poetry publish:

$ poetry publish -r test-pypi

The above command assumes that you have added TestPyPI to
the list of repositories poetry knows about via: poetry config
repositories.test-pypi https://test.pypi.org/legacy/

Now you should be able to download your package from TestPyPI:

$ pip install --index-url https://test.pypi.org/simple/ \
--extra-index-url https://pypi.org/simple pycounts

By default pip will search PyPI for the named package. The
argument --index-url points pip to the TestPyPI index instead.
If your package has dependencies that are not on TestPyPI, you
may need to tell pip to also search PyPI with the following
argument: --extra-index-url https://pypi.org/simple.

If you’re happy with how your newly versioned package is working, you can
go ahead and publish to PyPI:

$ poetry publish

6https://test.pypi.org/

https://test.pypi.org/
https://test.pypi.org
https://test.pypi.org
https://pypi.org/
https://pypi.org/

7.4 Automating releases 181

7.4 Automating releases
As you’ve seen in this chapter, there are quite a few steps to go through in order
to make a new release of a package. In Chapter 8: Continuous integration
and deployment we’ll see how we can automate the entire release process,
including running tests, building documentation, and publishing to TestPyPI
and PyPI.

7.5 Breaking changes and deprecating package function-
ality

As discussed earlier in the chapter, major version releases may come with
backward incompatible changes, which we call “breaking changes”. Breaking
changes affect your package’s user base. The impact and importance of break-
ing changes is directly proportional to the number of people using your pack-
age. That’s not to say that you should avoid breaking changes — there are
good reasons for making them, such as improving software design mistakes,
improving functionality, or making code simpler and easier to use.

If you do need to make a breaking change, it is best to implement that change
gradually, by providing adequate warning and advice to your package’s user
base through “deprecation warnings”.

We can add a deprecation warning to our code by using the warnings module7

from the Python standard library. For example, imagine that we want to
remove the get_flatland() function from the datasetsmodule of our pycounts
package in the upcoming major v1.0.0 release. We can do this by adding a
FutureWarning to our code, as shown in the datasets.py module below (we
created this module back in Section 4.2.6).

If you’ve used any larger Python libraries before (such as NumPy,
Pandas or scikit-learn) you probably have seen deprecation
warnings before! On that note, these large, established Python
libraries offer great resources for learning how to properly man-
age your own package — don’t be afraid to check out their source
code and history on GitHub.

7https://docs.python.org/3/library/warnings.html

https://docs.python.org/3/library/warnings.html

182 7 Releasing and versioning

from importlib import resources
import warnings

def get_flatland():
”””Get path to example ”Flatland” [1]_ text file.

...rest of docstring hidden...
”””
warnings.warn(”This function will be deprecated in v1.0.0.”,

FutureWarning)

with resources.path(”pycounts.data”, ”flatland.txt”) as f:
data_file_path = f

return data_file_path

If we were to try and use this function now, we would see the FutureWarning
printed to our output:

>>> from pycounts.datasets import get_flatland
>>> flatland_path = get_flatland()

FutureWarning: This function will be deprecated in v1.0.0.

A few other things to think about when making breaking changes:

• If you’re changing a function significantly, consider keeping both the legacy
version (with a deprecation warning) and new version of the function for
a few releases to help users make a smoother transition to using the new
function.

• If you’re deprecating a lot of code, consider doing it in small increments over
multiple releases.

• If your breaking change is a result of one of your package’s dependencies
changing, it is often better to warn your users that they require a newer
version of a dependency rather than immediately making it a required de-
pendency of your package.

• Documentation is key! Don’t be afraid to be verbose about documenting
breaking changes in your package’s documentation and changelog.

7.6 Updating dependency versions 183

7.6 Updating dependency versions
If your package depends on other packages, like our pycounts package does,
you’ll need to think about updating your dependency version constraints as
new versions of dependencies are released over time. This is true even for the
version(s) of Python that your package supports.

Luckily, poetry makes this a relatively simple process. The command poetry
update can be used to update the version of installed dependencies in your
virtual environment, within the constraints of the pyproject.toml file. This
is useful for testing that your package works as expected with newer versions
of its dependencies. For example, if we wanted to install the latest version of
matplotlib compatible with our pycounts package, we could use the following
code:

$ poetry update matplotlib

However, poetry update won’t update the constraints specified in your pypro-
ject.toml file, or the metadata built into your package releases. To update
that you have two options:

1. Manually modify version constraints in pyproject.toml.
2. Use poetry add to update a dependency to a specific version(s).

For example, our current version constraint for matplotlib is shown in pypro-
ject.toml:

[tool.poetry.dependencies]
python = ”>=3.9”
matplotlib = ”>=3.4.3”

If we wanted the minimum version of matplotlib to now be 3.5.0, we could
manually adjust our pyproject.toml file as shown below:

[tool.poetry.dependencies]
python = ”>=3.9”
matplotlib = ”>=3.5.0”

Or we could run the following code:

$ poetry add ”matplotlib>=3.5.0”

184 7 Releasing and versioning

We use double quotes in the command above because in many
shells, like bash, > is a redirection operator. The double quotes
are used to preserve the literal value of the contained characters
(read more in the documentation8).

8http://www.gnu.org/software/bash/manual/html_node/Double-Quotes.html

http://www.gnu.org/software/bash/manual/html_node/Double-Quotes.html

8
Continuous integration and deployment

If you’ve gotten this far, you now have a working knowledge of how to create
a fully-featured Python package! We went through quite a lot to get here: we
learned about package structure, developed source code, created tests, wrote
documentation, and learned how to release new versions of a package.

As you continue to develop your package into the future it would be helpful
to automate many of these workflows so you and your collaborators can focus
more on writing code and less on the nuances of packaging and testing. This is
where continuous integration (CI) and continuous deployment (CD) come in!
CI/CD generally refers to the automated testing, building, and deployment of
software. In this chapter, we’ll first introduce CI/CD and walk through how
to set it up with the GitHub Actions service. After that, we’ll show how to set
up CI/CD for a Python package, demonstrating concepts using the pycounts
package we’ve been developing throughout this book.

This chapter requires basic familiarity with Git and GitHub
or similar version control tools. To learn more about Git and
GitHub, we recommend the following resources: Happy Git and
GitHub for the useR1 (Bryan et al., 2021) and Research Software
Engineering with Python2 (Irving et al., 2021).

8.1 An introduction to CI/CD
Continuous integration (CI) refers to the process of automatically evaluating
your code as it is updated by yourself and contributors, to try and catch any
potential issues your updates have caused. A CI workflow typically includes

1https://happygitwithr.com
2https://merely-useful.tech/py-rse/git-cmdline.html

DOI: 10.1201/9781003189251-8 185

https://happygitwithr.com
https://merely-useful.tech/py-rse/git-cmdline.html
https://doi.org/10.1201/9781003189251-8

186 8 Continuous integration and deployment

automatic execution of many of the steps we’ve seen throughout this book,
such as running tests, calculating code coverage, and building documentation,
among others.

Continuous deployment (CD) is the process of automating the deployment of
new versions of your software to e.g., PyPI, from changes that have made it
through CI.

CI/CD can automate the packaging workflows that we’ve done manually
throughout this book and can ultimately save you time and help you release
new versions of your package quickly. CI/CD also helps others contribute to
your package, because the process of updating your package is automated and
doesn’t depend on one person’s expert knowledge (i.e., yours) of how to make
releases manually. Even if your package won’t be updated very often, setting
up CI/CD is still beneficial because it means you don’t have to remember all
the manual steps required to make a release of your package (which can be
daunting and deter you from wanting to update and maintain your package).

8.2 CI/CD tools
You could manually write and execute a CI/CD workflow by, for example,
writing scripts that execute all of the steps we’ve walked through in previous
chapters (i.e., running tests, building documented, build and release distribu-
tions, etc.). However, this process is not efficient or scalable, and it does not
work well if more than one person (i.e., you) is contributing to your code.

It is therefore more common to use a CI/CD service to implement CI/CD.
These services essentially do what we described above but in an automated
manner; we define a workflow, which these services will automatically run
at certain “trigger events”, which we can also define (for example, merging
new code into the “main” branch of a GitHub repository might trigger the
automatic deployment of a new version of the software).

There are many CI/CD services out there — such as GitHub Actions3, Travis
CI4, and CircleCi5. We’ll be using GitHub Actions in this chapter, which
is a service for executing CI/CD workflows for software stored in a GitHub
repository. We’ll introduce how to use GitHub Actions in the next section.

3https://docs.github.com/en/actions
4https://www.travis-ci.com
5https://circleci.com

https://docs.github.com/en/actions
https://www.travis-ci.com
https://circleci.com

8.3 Introduction to GitHub Actions 187

GitHub Actions is free for public repositories and includes a
generous amount of free minutes for private repositories. Read
more in the GitHub Actions documentation6.

8.3 Introduction to GitHub Actions
8.3.1 Key concepts
GitHub Actions is a service for executing CI/CD workflows. The general idea
is to create a set of commands that GitHub Actions will run on our behalf. We
call this set of commands a “workflow”. A GitHub Actions workflow is defined
in a .yml file and contains the set of “actions” we want GitHub Actions to run
for us (such as running our tests with pytest or building our documentation
with sphinx). Actions are organized as “steps” in a workflow (e.g., step 1: run
tests, step 2: build documentation), which in turn are organized into “jobs”
(e.g., job 1: continuous integration). A workflow is executed on a machine
provided by GitHub Actions called a “runner”, when triggered by a particular
“event” (like merging code into the main branch of a repository).

That’s a lot to take in, but don’t worry! All this terminology is summarized in
Table 8.1, and we’ll walk through an example of using GitHub Actions, which
refers to this terminology in the next section.

TABLE 8.1: Terminology used in GitHub Actions.

Keyword Description
Actions Individual tasks you want to perform.
Workflow A collection of actions (specified together in one file).
Event Something that triggers the running of a workflow.
Runner A machine that can run the Github Action(s).
Job A set of steps executed on the same runner.
Step A set of commands or actions which a job executes.

6https://docs.github.com/en/billing/managing-billing-for-github-actions/about-
billing-for-github-actions

https://docs.github.com/en/billing/managing-billing-for-github-actions/about-billing-for-github-actions
https://docs.github.com/en/billing/managing-billing-for-github-actions/about-billing-for-github-actions

188 8 Continuous integration and deployment

8.3.2 A toy example
In this section, we’ll walk through a simple example of running a workflow
with GitHub Actions. The workflow will contains actions that simply print
some things to the GitHub Actions runner’s terminal using the echo command,
when a change is made to a repository’s content.

• Step 1

Create a new repository on GitHub named anything you like (we called our
repository “actions-example”). Click on the “Actions” tab, and then click
the “Set up this workflow” button as shown in Fig. 8.1.

FIGURE 8.1: Setting up our first GitHub Actions workflow.

• Step 2

Commit the .yml file that has been created for you to your repository by
clicking “Start commit” and then “Commit new file”. Then, open the file on
GitHub. You should see the contents below. All the terminology we defined

8.3 Introduction to GitHub Actions 189

in Section 8.3.1 exists in this workflow file, and each line is commented to
describe exactly what it does. For example, we can see that:

– This workflow is triggered on any push or pull request made to the main
branch.

– It consists of one job called build.
– The job will run on ubuntu-latest (the latest version of the Ubuntu

runner GitHub Actions provides).
– It contains three steps. The first step “checks out” the repository — this

is necessary for the runner to access your repository. The second step
will print “Hello, world!” to the runner’s terminal. The final step will
print two lines. We’ll discuss steps and how to write them in Section
8.3.3.

This is a basic workflow to help you get started with Actions

Name of the workflow
name: CI

Controls when the workflow will run
on:
Triggers the workflow on push or pull request events but only for
the main branch
push:
branches: [main]

pull_request:
branches: [main]

Allows you to run this workflow manually from the Actions tab
workflow_dispatch:

A workflow run is made up of one or more jobs that can run
sequentially or in parallel
jobs:
This workflow contains a single job called ”build”
build:
The type of runner that the job will run on
runs-on: ubuntu-latest

Steps represent a sequence of tasks that will be executed as
part of the job
steps:
Checks-out your repository so your job can access it
- name: Check-out repository

uses: actions/checkout@v2

190 8 Continuous integration and deployment

Runs a single command using the runners shell
- name: Run a one-line script

run: echo Hello, world!

Runs a set of commands using the runners shell
- name: Run a multi-line script

run: |
echo Add other actions to build,
echo test, and deploy your project.

• Step 3

Now, go to the “Actions” tab of your repository. You should see one workflow
run, as in Fig. 8.2. This workflow ran because in Step 2 we committed our
workflow .yml file to the main branch of our repository, and the workflow is
triggered to execute on any push or pull request with the main branch.

FIGURE 8.2: Our first GitHub Actions workflow.

• Step 4

Look at the logs of the executed workflow by clicking on the “Create
blank.yml” workflow, then clicking the “build” job in the left-hand panel.

8.3 Introduction to GitHub Actions 191

Click on arrows inside the build logs to examine their output. You should
be able to see output printed to the screen for the “Run a one-line script”
and “Run a multi-line script” steps in our workflow, as shown in Fig. 8.3.

FIGURE 8.3: The logs of our first GitHub Actions workflow.

We’ll practice writing workflows for implementing CI and CD for a Python
package in the following sections of this chapter, but at this point, the high-
level concepts to be aware of are:

• A workflow is a set of commands that are triggered to execute by certain
events (like a push to the main branch of a repository).

• A workflow is run on a machine called a runner, which uses a particular
operating system and is hosted by the CI/CD service.

• A workflow contains one or more jobs.
• Each job contains one or more steps to execute. In GitHub Actions, steps

comprise either “actions” or “commands” as we’ll discuss in the next section.

192 8 Continuous integration and deployment

8.3.3 Actions and commands
As we saw in the workflow file in Section 8.3.2, a step in a GitHub Actions
can be an “action” (specified with the keyword uses) or a “command” (speci-
fied with keyword run). We’ll briefly explain the difference between these two
concepts here.

Steps that use command line commands consist of a name and a run key, as
shown in the example below:

Runs a single command using the runners shell
- name: Run a one-line script
run: echo Hello, world!

Anything after the run key will be executed at the runner’s command line.
You can run multiple commands in a single step using the | character:

Runs a set of commands using the runners shell
- name: Run a multi-line script
run: |
echo Add other actions to build,
echo test, and deploy your project.

In contrast to commands, actions are reusable units of code that perform a
particular task without having to write out any commands. You’ll typically
use actions that have been created by others and shared on the GitHub Mar-
ketplace7. Actions are specified with the uses keyword, followed by the name
of the action you want to use. The @ symbol is used to specify which version
of the action you want to use, like in the example below:

Checks-out your repository so your job can access it
- name: Check-out repository
uses: actions/checkout@v2

Some actions can also be configured with inputs using the with key, as in the
example below:

Set up a Python environment for use in actions
- name: Set up Python
uses: actions/setup-python@v2
with:
python-version: 3.9

7https://github.com/marketplace?type=

https://github.com/marketplace?type=

8.4 Setting up continuous integration 193

8.4 Setting up continuous integration
Now that we have a basic familiarity with GitHub Actions, in this section we’ll
build up a continuous integration workflow for a Python package. We’ll create
this workflow for the pycounts package we’ve been developing throughout this
book. However, it will be applicable to any Python package, and it should be
straightforward to see how you can modify it to your needs.

Our goal here is to create a CI workflow that will install our package with
poetry, run our package’s tests with pytest, and build its documentation
with sphinx, every time someone makes a push or pull request of changes to
the main branch of the pycounts GitHub repository. These are steps we, or a
collaborator, would usually perform locally every time our package is changed,
so it makes sense to automate them.

8.4.1 Setup
To set up a workflow with GitHub Actions, we need to create a workflow file.
Workflow files are .yml files located in a .github/workflows/ directory in the
root package directory. We’ll call our file ci-cd.yml. You can create that file
in an editor of your choice, or by running the following commands at the
command line, from your root package directory:

$ mkdir -p .github/workflows
$ touch .github/workflows/ci-cd.yml

Your package directory structure should now look something like the following:

pycounts
├── .github <--------
│ └── workflows <--------
│ └── ci-cd.yml <--------
├── .readthedocs.yml
├── CHANGELOG.md
├── CONDUCT.md
├── CONTRIBUTING.md
├── docs
│ └── ...
├── LICENSE
├── README.md
├── poetry.lock
├── pyproject.toml

194 8 Continuous integration and deployment

├── src
│ └── ...
└── tests

└── ...

Open this new ci-cd.yml file in an editor. We are going to set up a CI workflow
that triggers when someone pushes new content or makes a pull-request to
any branch of our repository (note that this differs slightly to Section 8.3.2,
where our workflow ran on push or pull request to the “main” branch only).
To set this up, copy and paste the following text into ci-cd.yml:

When building our CI workflow, we’ll be using the same syntax
and terminology we described previously in Section 8.3. Don’t
be afraid to revise that section as needed.

name: ci-cd

on: [push, pull_request]

Now we need to set up the steps that will be executed if one of the above
trigger events occurs. GitHub Actions essentially provides you with a blank
operating system of your choice (a “runner”), which we need to set up based
on what steps we are going to want it to execute. In our case, we need to
install Python and install poetry on the runner, so that we can then install
our packages and run its tests and build its documentation. Thus, our setup
will involve the steps below, for which we’ve indicated whether step will use
an action or command(s) (Section 8.3.3):

1. Specify an operating system. We’ll be using Ubuntu with the syntax
runs-on: ubuntu-latest. MacOS and Windows are also available if
you wish to test your package on those systems, but Ubuntu is a
good default to use — see the GitHub Actions documentation8).

2. Install Python (action: actions/setup-python@v29).

8https://docs.github.com/en/actions/using-github-hosted-runners/about-github-hosted-
runners#supported-runners-and-hardware-resources

9https://github.com/actions/setup-python

https://docs.github.com/en/actions/using-github-hosted-runners/about-github-hosted-runners#supported-runners-and-hardware-resources
https://docs.github.com/en/actions/using-github-hosted-runners/about-github-hosted-runners#supported-runners-and-hardware-resources
https://github.com/actions/setup-python

8.4 Setting up continuous integration 195

3. Checkout our repository so we can access its contents (action: ac-
tions/checkout@v210).

4. Install poetry (action: snok/install-poetry@v111).
5. Use poetry to install pycounts (command: poetry install).

We’ll add all these steps to our workflow in a job called “ci”:

name: ci-cd

on: [push, pull_request]

jobs:
ci:
Set up operating system
runs-on: ubuntu-latest

Define job steps
steps:
- name: Set up Python 3.9

uses: actions/setup-python@v2
with:
python-version: 3.9

- name: Check-out repository
uses: actions/checkout@v2

- name: Install poetry
uses: snok/install-poetry@v1

- name: Install package
run: poetry install

The above steps will set up our system in preparation for:

1. Running pycounts’s unit tests with pytest.
2. Checking the code coverage of our tests.
3. Checking that pycounts’s documentation builds correctly.

We’ll create each of these steps in the following sections.

10https://github.com/actions/checkout
11https://github.com/snok/install-poetry

https://github.com/actions/checkout
https://github.com/snok/install-poetry

196 8 Continuous integration and deployment

8.4.2 Running tests
Remember all the hard work we put into writing tests for our package back in
the Chapter 5: Testing? Well, we likely want to make sure that these tests
(and any others that we add) continue to pass for any new changes proposed
to our package.

Recall that we used pytest as the testing framework for our pycounts package.
This is listed as a development dependency of our package, so it will already
be installed on our runner from “Step 5” when we execute poetry install.
Therefore, we just need to add a new step to our workflow with a command
to run pytest. Because our runner is not using a conda virtual environment,
poetry sets one up automatically when poetry install is executed. We need
to explicitly tell poetry to use this virtual environment it set up for us by
prefixing commands with poetry run, as we do below:

- name: Test with pytest
run: poetry run pytest tests/ --cov=pycounts --cov-report=xml

We could install conda on our runner and set up a virtual en-
vironment if we wanted to. But this is a lot of overhead for a
workflow that is just going to run tests and build documentation,
so we’ve decided not to do that here.

Note that in the command above we are also obtaining our test coverage
through the --cov argument and outputting a report to .xml format with the
--cov-report argument (these require the pytest-cov package which we used
and added as a dependency of our package in Section 5.5.3). In the next
section, we will integrate another service called Codecov12 into our workflow
that will automatically record test coverage for us using the .xml report.

8.4.3 Recording code coverage
In the previous step, we ran the tests for our pycounts package. However, if
someone adds new code to your package but forgets to write tests for that
new code, your existing tests will still pass, but the coverage will be reduced.
So, we probably want to track code coverage in our CI workflow.

12https://codecov.io/

https://codecov.io/

8.4 Setting up continuous integration 197

To do this, we could print the coverage to our runner’s build log, but having the
coverage buried in those logs is not overly helpful. Instead, it’s common to use
a service like Codecov13 to track our code coverage for us. To set up Codecov,
first create a Codecov account by linking it with your GitHub account, as
described in the Codecov documentation14 (Codecov also supports GitLab
and Bitbucket). Once you’ve done this, Codecov automatically syncs with all
the repositories that you have access to. Now, to use Codecov to automatically
track code coverage as part of our CI workflow we can use the action they’ve
created called codecov/codecov-action@v215, as below:

If your GitHub repository is private, you’ll need to provide an
“upload token” to allow Codecov to access it as described in the
Codecov documentation16.

- name: Use Codecov to track coverage
uses: codecov/codecov-action@v2
with:
files: ./coverage.xml # coverage report

With this step in our workflow, coverage will automatically be recorded for
each new proposed change to our code. Codecov can show you whether cover-
age has increased or decreased, by how much, and will link to relevant areas
of your package’s source code. This information will automatically appear on
any pull request someone makes to the main branch on GitHub, or it can
be viewed anytime on the Codecov website; for example, Fig. 8.4 shows the
coverage dashboard for a package called pypkgs, where coverage decreased
significantly after the most recent commit.

8.4.4 Build documentation
The final step we’ll add to our CI workflow will be to check that our docu-
mentation builds without issue. We’ll use the same make html command we’ve
used throughout this book to build documentation with sphinx to do this:

13https://codecov.io/
14https://docs.codecov.com/docs
15https://github.com/marketplace/actions/codecov
16https://github.com/marketplace/actions/codecov

https://codecov.io/
https://docs.codecov.com/docs
https://github.com/marketplace/actions/codecov
https://github.com/marketplace/actions/codecov

198 8 Continuous integration and deployment

FIGURE 8.4: Example of the Codecov dashboard linked to a repository
called pypkgs. Coverage decreased significantly after the most recent commit.

- name: Build documentation
run: poetry run make html --directory docs/

8.4.5 Testing continuous integration
We’ve now set up our CI pipeline! Our final .github/workflows/ci-cd.yml file
looks like this:

name: ci-cd

on: [push, pull_request]

jobs:
ci:
Set up operating system

8.4 Setting up continuous integration 199

runs-on: ubuntu-latest

Define job steps
steps:
- name: Set up Python 3.9

uses: actions/setup-python@v2
with:
python-version: 3.9

- name: Check-out repository
uses: actions/checkout@v2

- name: Install poetry
uses: snok/install-poetry@v1

- name: Install package
run: poetry install

- name: Test with pytest
run: poetry run pytest tests/ --cov=pycounts --cov-report=xml

- name: Use Codecov to track coverage
uses: codecov/codecov-action@v2
with:
files: ./coverage.xml # coverage report

- name: Build documentation
run: poetry run make html --directory docs/

We’re now ready to test out our workflow! Let’s go ahead and commit our
workflow file to version control and push it to GitHub. This will trigger our
workflow because we configured it to run when someone pushes new work to
any branch of our repository.

$ git add .github/workflows/ci-cd.yml
$ git commit -m ”build: add CI workflow”
$ git push

Now if we go to our pycounts GitHub repository and click on the “Actions”
tab, we should see our workflow, as shown in Fig. 8.5:

We can investigate the build logs by clicking the “ci” job as in Fig. 8.6:

This workflow will trigger anytime someone makes a push or pull request
with the main branch. Now you, or your collaborators, don’t have to worry

200 8 Continuous integration and deployment

FIGURE 8.5: Successfully run continuous integration workflow on GitHub.

about remembering all these steps or running them manually! In the next
section, we’ll take this automation to the next level, and set up a workflow to
automatically deploy a new version of our package if proposed changes pass
the CI workflow.

8.5 Setting up continuous deployment
In the previous step, we set up CI for our package to check that tests run,
code coverage is stable, and documentation still builds, whenever we make a
push or pull request with new changes to the main branch of our repository.

In this section, we’ll set up continuous deployment (CD). If the changes we
push to our repository pass our CI, then we want a CD workflow that will
automatically:

1. Create a new version of our pycounts package.
2. Build new distributions (i.e., sdist and wheel).
3. Upload the distributions to TestPyPI and test that the package can

be installed successfully.

8.5 Setting up continuous deployment 201

FIGURE 8.6: Continuous integration workflow logs.

4. Upload the distributions to PyPI.

We’ll build up that CD workflow in this section.

8.5.1 Setup
To set up CD, we’ll add to the .github/workflows/ci-cd.yml workflow file we
created in Section 8.4. Our aim here is to add a new job called “cd” to this
workflow that will trigger a deployment of our package each time updated
code is pushed to the main branch of our repository. We only want this job to
execute if:

1. The “ci” job passes — we don’t want to deploy a new version of our

202 8 Continuous integration and deployment

package if it isn’t passing CI. We can specify this constraint using
the needs keyword in GitHub Actions (documentation17).

2. Code is pushed to the main branch — we don’t want to deploy a
new version of our package when a pull request is opened, we only
want to deploy a new version when a pull request is merged into the
main branch or changes are pushed to the main branch directly. We
can specify this constraint using the if syntax in GitHub Actions
(documentation18).

We can set up a new job and add the two constraints above with the following
syntax:

name: ci-cd

on: [push, pull_request]

jobs:
ci:
...
CI steps hidden
...

cd:
Only run this job if the ”ci” job passes
needs: ci

Only run this job if new work is pushed to the ”main” branch
if: github.event_name == 'push' && github.ref == 'refs/heads/main'

Now we can set up our CD workflow. In GitHub Actions, each job runs on
a fresh runner, which we need to set up from scratch. Once we’ve done that,
our CD workflow will effectively comprise all the steps we walked through
manually in Chapter 7: Releasing and versioning. Below we list all the
steps required to set up the CD workflow:

1. Specify an operating system. We’ll be using Ubuntu again with the
syntax runs-on: ubuntu-latest.

2. Install Python (action: actions/setup-python@v219).

17https://docs.github.com/en/actions/reference/workflow-syntax-for-github-actions#job
sjob_idneeds

18https://docs.github.com/en/actions/reference/workflow-syntax-for-github-actions#job
sjob_idif

19https://github.com/actions/setup-python

https://docs.github.com/en/actions/reference/workflow-syntax-for-github-actions#jobsjob_idneeds
https://docs.github.com/en/actions/reference/workflow-syntax-for-github-actions#jobsjob_idneeds
https://docs.github.com/en/actions/reference/workflow-syntax-for-github-actions#jobsjob_idif
https://docs.github.com/en/actions/reference/workflow-syntax-for-github-actions#jobsjob_idif
https://github.com/actions/setup-python

8.5 Setting up continuous deployment 203

3. Check out our repository so we can access its contents (action: ac-
tions/checkout@v220).

4. Install poetry (action: snok/install-poetry@v121).
5. Use poetry to install pycounts (command: poetry install).
6. Make a new release of pycounts (command: semantic-release pub-

lish, this uses the Python Semantic Release (PSR)22 tool which we
described in Section 7.2.2 and will describe again below).

7. Upload new release to TestPyPI (action: pypa/gh-action-pypi-
publish@release/v123).

8. Test that the new package version installs successfully from Test-
PyPI (command: pip install).

9. Upload new release to PyPI (action: pypa/gh-action-pypi-
publish@release/v124).

Steps 1 to 5 are the same as we set up previously for our CI workflow, so
we can just copy and paste them into our “cd” job as below. The only new
code here is that we specify the input parameter fetch-depth: 0 for the
actions/checkout@v225 action. This input parameter will allow the PSR tool
to access the full history of commits in our repository, so that it can determine
how to bump the package’s version. Without this parameter, PSR can only
access the single most recent commit message.

name: ci-cd

on: [push, pull_request]

jobs:
ci:
...
CI steps hidden
...

cd:
Only run this job if the ”ci” job passes
needs: ci

Only run this job if new work is pushed to ”main”
if: github.event_name == 'push' && github.ref == 'refs/heads/main'

20https://github.com/actions/checkout
21https://github.com/snok/install-poetry
22https://python-semantic-release.readthedocs.io/en/latest/
23https://github.com/pypa/gh-action-pypi-publish
24https://github.com/pypa/gh-action-pypi-publish
25https://github.com/actions/checkout

https://github.com/actions/checkout
https://github.com/snok/install-poetry
https://python-semantic-release.readthedocs.io/en/latest/
https://github.com/pypa/gh-action-pypi-publish
https://github.com/pypa/gh-action-pypi-publish
https://github.com/actions/checkout

204 8 Continuous integration and deployment

Set up operating system
runs-on: ubuntu-latest

Define job steps
steps:
- name: Set up Python 3.9

uses: actions/setup-python@v2
with:
python-version: 3.9

- name: Check-out repository
uses: actions/checkout@v2
with:
fetch-depth: 0

- name: Install poetry
uses: snok/install-poetry@v1

- name: Install package
run: poetry install

We’ll discuss steps 6 to 9 in the sections below.

8.5.2 Automatically creating a new package version
As we saw in Chapter 7: Releasing and versioning, there are a few key
steps to go through when creating a new version of your package:

1. Document what’s changed in the CHANGELOG.md.
2. Bump the package version number.
3. Tag a new release on GitHub.
4. Build a new sdist and wheel.

In Section 7.2.2, we introduced the Python Semantic Release (PSR)26 tool,
which can automatically bump your package’s version number based on key-
words it finds in commit messages.

However, PSR can do more than this! In fact, it can do all the steps we list
above. In Section 7.2.2, we saw how PSR is configured using a table called
[tool.semantic_release] in the pyproject.toml. To configure it to perform
all the steps above, we need to add a few keys to that table as follows:

26https://python-semantic-release.readthedocs.io/en/latest/

https://python-semantic-release.readthedocs.io/en/latest/

8.5 Setting up continuous deployment 205

[tool.semantic_release]
version_variable = ”pyproject.toml:version” # version location
branch = ”main” # branch to make releases of
changelog_file = ”CHANGELOG.md” # changelog file
build_command = ”poetry build” # build dists
dist_path = ”dist/” # where to put dists
upload_to_release = true # auto-create GitHub release
upload_to_pypi = false # don't auto-upload to PyPI
remove_dist = false # don't remove dists
patch_without_tag = true # patch release by default

We’ve added comments above to clarify what each key is doing in the ta-
ble, and we describe them in Table 8.2. You can also read more about these
configuration options in the PSR documentation27.

TABLE 8.2: Description of Python Semantic Release configuration options.

Key Description
version_variable Location of version number for PSR

to bump.
branch Branch where releases should be

made from.
changelog_file Location of changelog file for PSR to

update using commit messages.
build_command How to build new distributions for

the release.
dist_path Location of distributions after

running build_command.
upload_to_release Whether to automatically create a

release of the new package version on
GitHub.

upload_to_pypi Whether to upload to PyPI. Default
is true, but we want to upload to

TestPyPI first to test things out, so
we’ve turned this off.

remove_dist Whether to remove distributions at
dist_path after upload. We turned
this off because we want to upload

these distributions to TestPyPI and
PyPI ourselves.

27https://python-semantic-release.readthedocs.io/en/latest/configuration.html

https://python-semantic-release.readthedocs.io/en/latest/configuration.html

206 8 Continuous integration and deployment

Key Description
patch_without_tag Always create a new patch release

even if there is no trigger tag, such
as “fix” or “feat”, in any commits

since the last release.

With PSR configured in our pyproject.toml, we can now add it as a step to
our CD workflow.

In Section 7.2.2, we used the command semantic-release version to get
PSR to automatically update our version based on keywords it finds in all
the commit messages that have been made since the last tag of your package.
In our CD workflow, we’ll be using the slightly different command semantic-
release publish, which will bump our version, update our changelog, tag a
new release on GitHub, and build a new sdist and wheel.

PSR will need to interact with our GitHub repository to modify our
CHANGELOG.md file and tag a new release of our package. To give PSR per-
mission to do this there’s a few things we need to do:

1. Provide PSR with a GitHub access token28 called GH_TOKEN to allow
it to read/write files in our repository. At the start of each work-
flow run, GitHub automatically creates29 such a token for us, called
GITHUB_TOKEN. We can pass this token to PSR using the env key and
the syntax ${{ secrets.GITHUB_TOKEN }}. You can read more about
this syntax in the GitHub documentation30, but we’ve done it for
you in the code shown below.

2. Configure the Git credentials of the runner machine by setting
the username as github-actions and email address as github-
actions@github.com. If you don’t configure these credentials, the
workflow won’t be able to make changes to our repository, as you
can read more about in the GitHub documentation31. We’ve also
done this for you in the code shown below, so all you need to do is
add this code as the next step in your CD workflow file.

- name: Use Python Semantic Release to prepare release
env:

28https://python-semantic-release.readthedocs.io/en/latest/envvars.html#env-gh-token
29https://docs.github.com/en/actions/security-guides/automatic-token-authentication
30https://docs.github.com/en/actions/security-guides/encrypted-secrets#using-encrypte

d-secrets-in-a-workflow
31https://docs.github.com/en/get-started/getting-started-with-git/setting-your-

username-in-git

https://python-semantic-release.readthedocs.io/en/latest/envvars.html#env-gh-token
https://docs.github.com/en/actions/security-guides/automatic-token-authentication
https://docs.github.com/en/actions/security-guides/encrypted-secrets#using-encrypted-secrets-in-a-workflow
https://docs.github.com/en/actions/security-guides/encrypted-secrets#using-encrypted-secrets-in-a-workflow
https://docs.github.com/en/get-started/getting-started-with-git/setting-your-username-in-git
https://docs.github.com/en/get-started/getting-started-with-git/setting-your-username-in-git

8.5 Setting up continuous deployment 207

GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |

git config user.name github-actions
git config user.email github-actions@github.com
poetry run semantic-release publish

We’ll see PSR in action shortly, but let’s first configure the rest of our CD
workflow file.

8.5.3 Uploading to TestPyPI and PyPI
The PSR step will create an sdist and wheel for our new package version. What
we need to do next in our CD workflow is try uploading those distributions to
TestPyPI. This step is not strictly necessary, but it’s a good idea because it
can help catch any unexpected errors before we upload our package to PyPI.

Rather than write the code needed to do all this from scratch, we’ll use the
pypa/gh-action-pypi-publish@release/v132 action. This action relies on token
authentication with TestPyPI (rather than the classic username and password
authentication). To use the action, you’ll need to log-in to TestPyPI33, create
an API token34, and add the token as a secret35 called TEST_PYPI_API_TOKEN
to your GitHub repository, as shown in Fig. 8.7.

To use the pypa/gh-action-pypi-publish@release/v136 action, we can add the
following step to our CD workflow. Note how we configure the action to use the
token user method, specifying password as the TEST_PYPI_API_TOKEN we just
added to our repository, and we point the action to the TestPyPI repository
(repository_url: https://test.pypi.org/legacy/).

- name: Publish to TestPyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
user: __token__
password: ${{ secrets.TEST_PYPI_API_TOKEN }}
repository_url: https://test.pypi.org/legacy/

The above action will publish the new version of your package to TestPyPI.
We now want to test that we can install the package correctly from TestPyPI
using the following command:

32https://github.com/pypa/gh-action-pypi-publish
33https://test.pypi.org
34https://pypi.org/help/#apitoken
35https://docs.github.com/en/actions/reference/encrypted-secrets
36https://github.com/pypa/gh-action-pypi-publish

https://github.com/pypa/gh-action-pypi-publish
https://test.pypi.org
https://pypi.org/help/#apitoken
https://docs.github.com/en/actions/reference/encrypted-secrets
https://github.com/pypa/gh-action-pypi-publish
mailto:github-actions@github.com
https://test.pypi.org
https://test.pypi.org/

208 8 Continuous integration and deployment

FIGURE 8.7: Adding the TestPyPI API token to our GitHub repository.

- name: Test install from TestPyPI
run: |

pip install \
--index-url https://test.pypi.org/simple/ \
--extra-index-url https://pypi.org/simple \
pycounts

Finally, the last step in our CD workflow will be publishing our package to
PyPI. This uses the same pypa/gh-action-pypi-publish@release/v137 action as

37https://github.com/pypa/gh-action-pypi-publish

https://github.com/pypa/gh-action-pypi-publish
https://test.pypi.org
https://pypi.org

8.5 Setting up continuous deployment 209

earlier and will require you to obtain a token from PyPI38 and add the token
as PYPI_API_TOKEN to your GitHub repository, as shown in Fig. 8.8.

- name: Publish to PyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
user: __token__
password: ${{ secrets.PYPI_API_TOKEN }}

FIGURE 8.8: Adding the PyPI API token to our GitHub repository.

38https://pypi.org

https://pypi.org

210 8 Continuous integration and deployment

8.5.4 Testing continuous deployment
We’ve now set up our CD workflow! Our final .github/workflows/ci-cd.yml
file looks like this:

name: ci-cd

on: [push, pull_request]

jobs:
ci:
...
CI steps same as before
...

cd:
Only run this job if the ”ci” job passes
needs: ci

Only run this job if new work is pushed to ”main”
if: github.event_name == 'push' && github.ref == 'refs/heads/main'

Set up operating system
runs-on: ubuntu-latest

Define job steps
steps:
- name: Set up Python 3.9

uses: actions/setup-python@v2
with:

python-version: 3.9

- name: Check-out repository
uses: actions/checkout@v2
with:

fetch-depth: 0

- name: Install poetry
uses: snok/install-poetry@v1

- name: Install package
run: poetry install

- name: Use Python Semantic Release to prepare release
env:

8.5 Setting up continuous deployment 211

GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |

git config user.name github-actions
git config user.email github-actions@github.com
poetry run semantic-release publish

- name: Publish to TestPyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
user: __token__
password: ${{ secrets.TEST_PYPI_API_TOKEN }}
repository_url: https://test.pypi.org/legacy/

- name: Test install from TestPyPI
run: |

pip install \
--index-url https://test.pypi.org/simple/ \
--extra-index-url https://pypi.org/simple \
pycounts

- name: Publish to PyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
user: __token__
password: ${{ secrets.PYPI_API_TOKEN }}

We’re now ready to test out our full CI/CD workflow! Let’s go ahead and
commit our new workflow file and our pyproject.toml file (which we changed
when we added the configuration options for PSR) to version control and push
it to GitHub. This will trigger our CI/CD workflow because we configured it
to run when someone pushes to the “main” branch of our repository. For the
sake of example, we’ll include the “feat” keyword in our commit message to
trigger PSR to make a minor release of our package from these changes.

We described what keywords trigger particular version bumps in
Section 7.2.2, but note that even if no keywords were present
in any commits, we configured PSR in Section 8.5.2 to make
a patch release by default.

mailto:github-actions@github.com
https://test.pypi.org
https://test.pypi.org
https://pypi.org/

212 8 Continuous integration and deployment

$ git add .github/workflows/ci-cd.yml pyproject.toml
$ git commit -m ”feat: add CI/CD workflow”
$ git push

Now if we go to our pycounts GitHub repository and click on the “Actions”
tab, we should see a new run of our workflow as shown in Fig. 8.9:

FIGURE 8.9: Continuous deployment workflow on GitHub.

If we click on the workflow we will see it was composed of two jobs, “ci” and
“cd”, each of which ran successfully, as shown in Fig. 8.10:

If we click on the “cd” job to view the build log, we can see that PSR parsed
our commit message — “feat: add CI/CD workflow” — to determine that our
package should be bumped with a minor release from 0.2.0 to 0.3.0 as shown
in Fig. 8.11.

PSR also automatically updated our changelog and tagged a new release of
our package, as shown in Fig. 8.12 and Fig. 8.13, respectively.

8.5 Setting up continuous deployment 213

FIGURE 8.10: Successfully run continuous deployment workflow on
GitHub.

Finally, we can see from the build logs that the new version of our package
was released to TestPyPI and PyPI, as shown in Fig. 8.14:

It didn’t take too long for us to implement a CD workflow that completely
automates all the steps we would usually have to perform manually when
publishing a new release of our package. You may choose, or need, to use
different tools and commands to what we’ve used here to implement CD for
your packages in the future. But hopefully you can see the kinds of things
that are possible with CD and how it can be useful to quickly deploy new
releases of your package, how it saves you from having to remember all the
commands you’d need to run to do this yourself, and how it lowers the barrier
for potential collaborators to contribute to your package.

214 8 Continuous integration and deployment

FIGURE 8.11: The Python semantic release tool automatically bumped the
package version from 0.2.0 to 0.3.0.

8.6 Summary
In this chapter, we created CI/CD workflows for our pycounts package. What
we’ve shown here is just one example and one set of tools for implementing
CI/CD — but after reading this chapter, the hope is that you can appreciate
the utility of CI/CD and the kinds of workflows that you can set up for your
packages in the future.

It’s important to note that when using version control in this book, we’ve
been directly modifying the main branch of our repository. However, changes
to your package are more typically made on branches. Branches isolate your
changes so you can develop your package without affecting the existing, stable
version. Only when you’re happy with your changes and they’ve passed CI,
do you merge them into the existing source and trigger a CD workflow (if
it exists). In collaborative environments, this is typically done via a “pull
request”, which you can read more about in the GitHub documentation39.
Open-source projects are built off pull requests; go visit your favorite Python

39https://docs.github.com/en/github/collaborating-with-pull-requests/proposing-
changes-to-your-work-with-pull-requests/about-pull-requests

https://docs.github.com/en/github/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests
https://docs.github.com/en/github/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests

8.6 Summary 215

FIGURE 8.12: The Python semantic release tool automatically updated the
changelog and added an entry for v0.3.0 based on commit messages.

package repository on GitHub and click the “Pull requests” tab to see what
and how collaborators are merging changes into the package, and the kind of
CI/CD workflows that are set up to handle them.

Finally, while we developed our workflow file from scratch here, the py-pkgs-
cookiecutter template40 we used to set up our package in Section 3.2.2 can
make the workflow .yml file for you. Recall from Section 3.2.2 that one of
the py-pkgs-cookiecutter prompts was as follows:

Select include_github_actions:
1 - no

40https://github.com/py-pkgs/py-pkgs-cookiecutter

https://github.com/py-pkgs/py-pkgs-cookiecutter

216 8 Continuous integration and deployment

FIGURE 8.13: The Python semantic release tool automatically created
tagged release v0.3.0.

2 - ci
3 - ci+cd
Choose from 1, 2, 3 [1]:

In the future, you can include a workflow file for CI or CI+CD by selecting
an appropriate response.

Congratulations on making it to the end of the book and happy packaging!

8.6 Summary 217

FIGURE 8.14: Deployment of new package version 0.3.0 to PyPI.

http://taylorandfrancis.com

Bibliography

Abbott, E. A. (1884). Flatland. Seeley and Co.

Bryan, J., Hester, J., and Assistants, S. T. (2021). Happy git and GitHub for
the user. https://happygitwithr.com/.

Fucci, D., Erdogmus, H., Turhan, B., Oivo, M., and Juristo, N. (2016). A
dissection of the test-driven development process: Does it really matter
to test-first or to test-last? IEEE Transactions on Software Engineering,
43(7):597–614.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen,
P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R.,
Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Río,
J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy,
T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E. (2020).
Array programming with NumPy. Nature, 585(7825):357–362.

Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Computing in
Science & Engineering, 9(3):90–95.

Irving, D., Hertweck, K., Johnston, L., Ostblom, J., Wickham, C., and Wilson,
G. (2021). Research Software Engineering with Python. Chapman and
Hall/CRC.

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B. E., Bussonnier, M.,
Frederic, J., Kelley, K., Hamrick, J. B., Grout, J., Corlay, S., et al. (2016).
Jupyter Notebooks-a publishing format for reproducible computational work-
flows., volume 2016. IOS Press.

The Carpentries (2021). Plotting and programming in Python: Writing func-
tions. https://swcarpentry.github.io/python-novice-gapminder/16-
writing-functions/index.html.

Wickham, H. and Bryan, J. (2015). R Packages. O’Reilly Media, Inc.

219

https://happygitwithr.com/
https://swcarpentry.github.io/python-novice-gapminder/16-writing-functions/index.html
https://swcarpentry.github.io/python-novice-gapminder/16-writing-functions/index.html

http://taylorandfrancis.com

Index

Anaconda, 3, 109
Anaconda Prompt, 3
application programming interface,

51, 59, 153

breaking change, 166, 181

CI/CD, 185, 186
code coverage, 48, 133

branch coverage, 134
coverage report, 136
line coverage, 48, 133

command-line interface, 3
conda, 1, 4, 32, 109
conda-forge, 109
continuous deployment, 185, 186, 200
continuous integration, 185, 193
cookiecutter, 5, 23

data, 98
dependency, 34, 39

development dependency, 34, 47,
48, 59, 115, 134

deprecation, 181
distribution, 74, 83, 103, 178, 204

sdists, 75, 106
wheel, 75, 106

Docker, 3, 11, 12
docstring, 8, 50, 54, 120, 150
documentation, 49, 52, 60, 91, 139,

143
build documentation, 51, 62,

142, 154
changelog, 50, 147, 173, 204
code of conduct, 50, 146
contributing guidelines, 50, 146
host documentation, 52, 69, 142,

162

license, 50, 145
README, 50, 144

editable install, 36, 89, 96

fixture, 127
flit, 33, 90, 107, 108

Git, 5, 26, 72
GitHub, 5, 26, 27, 72, 91, 110, 177
GitHub Actions, 186, 187
GitHub Pages, 52, 71, 162

import, 1, 35, 84, 89, 90, 95
init.py, 86, 89, 94

version, 95
installable Python package, 33, 76,

90, 105
integrated development environment,

6, 60, 143, 149
intra-package reference, 93

absolute, 93
relative, 93

Jupyter, 6, 8, 12, 59, 149
notebook, 68, 149
notebooks, 59

license, 25

Make, 64, 156
Makefile, 64, 156

Markdown, 8, 52, 59, 143
Markedly Structured Text, 65
Miniconda, 3, 4
module, 22, 31, 84

namespace, 85, 94
namespace package, 91

221

222 Index

non-code files, 97

package name, 92
package structure, 22, 23, 30, 38, 49,

83, 86, 89
parameterization, 129
pip, 1, 75, 106, 109
poetry, 4, 33, 76, 78, 90, 98, 107, 108,

168
publish, 78, 79
py-pkgs-cookiecutter, 23, 46, 52, 63
PyPI, 1, 5, 24, 77–79, 92, 109, 180,

207
pyproject.toml, 22, 33, 39, 90, 95, 98,

108, 168, 204
Python Semantic Release, 169, 174,

204

R, 6, 10
Read the Docs, 52, 69, 142, 162
reStructuredText, 52, 143
reticulate, 10
RStudio, 6, 10

semantic versioning, 24, 40, 165
setuptools, 33, 90, 107, 108
software repository, 5, 78
source layout, 101
sphinx, 51, 62, 154

Terminal, 3
TestPyPI, 5, 78, 79, 180, 207
tests, 43, 45, 48, 91, 111

assert, 43, 111, 114, 116
error, 120
fixture, 44, 116, 127
integration test, 123
parameterization, 129
pytest, 45, 48, 114, 122, 134
pytest-cov, 48, 134
raises, 120
regression test, 125
test framework, 45
test-driven development, 113
testing workflow, 112
unit test, 44, 116

version control, 5, 26, 27, 36, 40, 49,
68, 72, 110, 138, 169, 185

release, 72, 177, 204
tag, 72, 177, 204

versioning, 165, 172, 204
automatic, 169
major, 166
manual, 168
minor, 166
patch, 165
Python Semantic Release, 169,

174, 204
virtual environment, 4, 32, 39
Visual Studio Code, 6, 7, 12, 60, 149

	Cover
	Half Title
	Series Page
	Title Page
	Copyright Page
	Dedication
	Contents
	List of Figures
	List of Tables
	Preface
	About the authors
	1. Introduction
	1.1. Why you should create packages

	2. System setup
	2.1. The command-line interface
	2.2. Installing software
	2.2.1. Installing Python
	2.2.2. Install packaging software

	2.3. Register for a PyPI account
	2.4. Set up Git and GitHub
	2.5. Python integrated development environments
	2.5.1. Visual Studio Code
	2.5.2. JupyterLab
	2.5.3. RStudio

	2.6. Developing with Docker
	2.6.1. Docker with Visual Studio Code
	2.6.2. Docker with JupyterLab

	3. How to package a Python
	3.1. Counting words in a text file
	3.1.1. Developing our code
	3.1.2. Turning our code into functions

	3.2. Package structure
	3.2.1. A brief introduction
	3.2.2. Creating a package structure

	3.3. Put your package under version control
	3.3.1. Set up local version control
	3.3.2. Set up remote version control

	3.4. Packaging your code
	3.5. Test drive your package code
	3.5.1. Create a virtual environment
	3.5.2. Installing your package

	3.6. Adding dependencies to your package
	3.6.1. Dependency version constraints

	3.7. Testing your package
	3.7.1. Writing tests
	3.7.2. Running tests
	3.7.3. Code coverage

	3.8. Package documentation
	3.8.1. Writing documentation
	3.8.2. Writing docstrings
	3.8.3. Creating usage examples
	3.8.4. Building documentation
	3.8.5. Hosting documentation online

	3.9. Tagging a package release with version control
	3.10. Building and distributing your package
	3.10.1. Building your package
	3.10.2. Publishing to TestPyPI
	3.10.3. Publishing to PyPI

	3.11. Summary and next steps

	4. Package structure and distribution
	4.1. Packaging fundamentals
	4.2. Package structure
	4.2.1. Package contents
	4.2.2. Package and module names
	4.2.3. Intra-package references
	4.2.4. The init file
	4.2.5. Including non-code files in a package
	4.2.6. Including data in a package
	4.2.7. The source layout

	4.3. Package distribution and installation
	4.3.1. Package installation
	4.3.2. Building sdists and wheels
	4.3.3. Packaging tools
	4.3.4. Package repositories

	4.4. Version control

	5. Testing
	5.1. Testing workflow
	5.2. Test structure
	5.3. Writing tests
	5.3.1. Unit tests
	5.3.2. Test that a specific error is raised
	5.3.3. Integration tests
	5.3.4. Regression tests
	5.3.5. How many tests should you write

	5.4. Advanced testing methods
	5.4.1. Fixtures
	5.4.2. Parameterizations

	5.5. Code coverage
	5.5.1. Line coverage
	5.5.2. Branch coverage
	5.5.3. Calculating coverage
	5.5.4. Coverage reports

	5.6. Version control

	6. Documentation
	6.1. Documentation content and workflow
	6.2. Writing documentation
	6.2.1. README
	6.2.2. License
	6.2.3. Contributing guidelines
	6.2.4. Code of conduct
	6.2.5. Changelog
	6.2.6. Examples
	6.2.7. Docstrings
	6.2.8. Application programming interface (API) reference
	6.2.9. Other package documentation

	6.3. Building documentation
	6.4. Hosting documentation online

	7. Releasing and versioning
	7.1. Version numbering
	7.2. Version bumping
	7.2.1. Manual version bumping
	7.2.2. Automatic version bumping

	7.3. Checklist for releasing a new package version
	7.3.1. Step 1: make changes to package source files
	7.3.2. Step 2: document your changes
	7.3.3. Step 3: bump version number
	7.3.4. Step 4: run tests and build documentation
	7.3.5. Step 5: tag a release with version control
	7.3.6. Step 6: build and release package to PyPI

	7.4. Automating releases
	7.5. Breaking changes and deprecating package functionality
	7.6. Updating dependency versions

	8. Continuous integration and deployment
	8.1. An introduction to CI/CD
	8.2. CI/CD tools
	8.3. Introduction to GitHub Actions
	8.3.1. Key concepts
	8.3.2. A toy example
	8.3.3. Actions and commands

	8.4. Setting up continuous integration
	8.4.1. Setup
	8.4.2. Running tests
	8.4.3. Recording code coverage
	8.4.4. Build documentation
	8.4.5. Testing continuous integration

	8.5. Setting up continuous deployment
	8.5.1. Setup
	8.5.2. Automatically creating a new package version
	8.5.3. Uploading to TestPyPI and PyPI
	8.5.4. Testing continuous deployment

	8.6. Summary

	Bibliography
	Index

