

Git for Programmers

Master Git for effective implementation of version
control for your programming projects

Jesse Liberty

BIRMINGHAM - MUMBAI

Git for Programmers

Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing or its dealers and distributors, will be held liable for any damages caused
or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Producer: Ravit Jain
Acquisition Editor – Peer Reviews: Saby Dsilva
Content Development Editor: Alex Patterson
Technical Editor: Gaurav Gavas
Project Editor: Namrata Katare
Copy Editor: Safis Editing
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Presentation Designer: Ganesh Bhadwalkar

First published: June 2021

Production reference: 1240621

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-80107-573-2

www.packt.com

http://www.packt.com

Foreword
Git is powerful, but complex. Many developers, myself included, use it daily but get
pretty worried when we get outside of our comfort zones. After that, it's off to copy
and paste internet search results and hope for the best… Or we might just clone to
another folder and merge our changes by hand. Tell me I'm not the only one who
does that from time to time, hoping it goes well so we don't have to quit our job and
leave the country under the cover of night.

Part of the problem is that Git has a ridiculous number of rarely used commands,
each with a long list of options. There are websites that will generate fake Git
command documentation (search for "git man page generator" for an example),
and it's hard to tell them apart from the real thing. Type the wrong Git command
and you might lose your code changes, get stuck in vim (requiring a reboot to exit),
upset your co-workers by pushing to the wrong branch, publish your passwords to
GitHub, or even end up with a detached head (a truly terrifying prospect).

And, let's be honest, another part of the problem is that no one wants to look stupid.
Everyone is expected to be a Git expert now, but most developers will admit (under
conditions of strict anonymity) that they're not. So it can be a little embarrassing to
ask for help.

You're in luck – this book is here to help!

I've had the honor of knowing Jesse for at least a decade. Maybe longer – both of our
memories get fuzzy past the decade range. We've been co-workers, co-presenters, co-
podcasters, co-authors, and also great friends. We both turn to each other for advice.
Like many in the community, I've come to trust Jesse to break down complicated
concepts to the essentials, and explain them in a way that just makes sense – and,
quite often, surprise us by making the whole process a lot of fun.

Jesse has outdone himself with this book. It's well designed and expertly written.
When he told me that he was writing a book on Git, I honestly thought, "Good luck
with that…" because there's just so much to cover, but he's done an amazing job of
figuring out the truly important concepts, focusing on them, and just nailing the
explanations.

He's kept things "as simple as possible, but no simpler" as the quote (often attributed
to Einstein) goes. There are some places where you need to know some Git internals
to understand what you're doing, and Jesse explains those well, but he doesn't waste
your attention with trivia.

A few of my favorite sections of the book:

The chapters on rebasing, amending, cherry-picking, and interactive rebasing really
helped me more deeply understand what those commands are doing. I had some
"cargo cult" commands that mostly seemed to work for me, but I couldn't have
explained what they were actually doing. Jesse's diagrams and examples made
a lot of lightbulbs go on for me there.

Some of the final chapters covering aliases, log, stash, and bisect gave me a lot of tips
to work more effectively.

The Fixing Mistakes chapter is an amazing list of hands-on steps to get yourself out
of common Git emergencies, and Jesse explains what the commands are doing.
I absolutely see myself diving for this chapter the next time Git threatens to detach
my head.

And finally, the challenges at the end of each chapter are an amazing resource. After
learning the content in a chapter, these challenges (with detailed answers to follow)
give you some fun puzzles to test your knowledge. I plan to revisit the challenges
periodically to test my retention and read up on the solutions to fill in the spots I've
forgotten.

Congratulations to you on picking a great book to take your Git knowledge to
the next level, and to Jesse for proving me wrong and writing an amazing book
about Git.

Jon Galloway
Senior Program Manager on the .NET Community Team

Contributors

About the author

Jesse Liberty is a Principal Software Engineer at StoryBoardThat. He is the author
of two dozen programming books and a not-yet-published novel, as well as over two
dozen training videos for Pluralsight, Packt, and Udemy.

Jesse is an international speaker and blogger (jesseliberty.com) and he is the host
of the popular Yet Another Podcast, which you can access through his web site:
jesseliberty.com/podcast.

http://jesseliberty.com
http://jesseliberty.com/podcast

He has been programming for 30 years (starting in 8086 Assembly and C!) and in C#
since 2001. He is currently focused on .NET 5/6, C# 9, and related technology (Git,
Azure DevOps, etc.).

When he is not programming… just kidding. He's always programming.

There are too many people to thank, but let's begin with the folks at Packt.
Others, in no particular order, include: Namrata Katare, the people at
StoryBoardThat, Mads Torgersen, Scott Guthrie, Scott Hanselman, Bill
Wagner, Jared Parsons, Brent Laster, Jon Galloway, John Papa, Ward Bell,
Adam Summers, Seth Weiss, Stacey Liberty, Skip Gilbrech, Dan Hurwitz,
the folks in the Microsoft MVP program, the Albahari brothers, Douglas
Crockford, Julie Lerman, Andrew Lock, Ken Henderson, and all the others
I've forgotten.

About the reviewers
Wilson Mar has been trying to figure out Git and GitHub since 2010. In 2020 he
helped to migrate 3,000 developers and their repositories to GitHub.com. He collects
PROTIPs at his blog, https://wilsonmar.github.io.

Johannes Schindelin has been involved in the Git project since 2005. He invented
the interactive rebase and is the maintainer of Git for Windows.

http://GitHub.com
https://wilsonmar.github.io

[i]

Table of Contents
Preface vii
Chapter 1: Introduction 1

About this book 1
Version control 2
About the code examples 2
Just a brief history 2
Tools for working with Git 3

GitHub, et al. 3
GUIs and the command line 3
The command line 4
Making the command line pretty 4
Visual Studio 2019 5
Getting Visual Studio for free 6
GitHub Desktop 6

Getting Git 7
Getting Git on Windows 7
Getting Git on a Mac 8
Getting Git on Linux 9
Checking your version 10

Configuring Git – the command line 10
Configuring Git – Visual Studio 11
Configuring Git – GitHub Desktop 12
Summary 12

Table of Contents

[ii]

Chapter 2: Creating Your Repository 13
Creating Your Repository 13

Creating Your Repository on GitHub First 14
Cloning to Your Computer – Command Line 17
Cloning to Your Computer – Visual Studio 18
Cloning to Your Computer – GitHub for Desktop 20
Creating a Project 21

Git Pull 23
Pulling Down using GitHub Desktop 23
Pulling Down to Visual Studio 23

Push Me, Pull You 23
Pushing to the Server 24

Downloading the Changes at the Command Line 26
Downloading the Changes Using GitHub Desktop 27

Starting at the Command Line 28
Pulling to GitHub Desktop 30
Pulling to Visual Studio 30

Commits – Best Practices 30
How Often Should I Commit? 30
Keep Your Commit History Clean 31
A Note on Commit Messages 31
When the Title Isn't Enough 31

Summary 33
Chapter 3: Branching, Places, and GUIs 35

Five places 35
The work area 36
The index/staging area 37
Skipping the staging area 38
Visual Studio 39
GitHub Desktop 40
Local and remote repositories 41
The stash 41

Branches 41
Programmer 1 (CommandLine) and calculator 44

Pushing the new branch 46
Examining origin 47
Adding commits to a branch 48

The Book branch – Git within Visual Studio 48
Committing with GitHub Desktop 50
Status 51

What's on origin? 51
Adding more commits 51

Table of Contents

[iii]

Examining your commits 54
Summary 55
Challenge 56
Answer 56

Chapter 4: Merging, Pull Requests, and Handling
Merge Conflicts 61

Merging overview 62
Book 62

What's in that push? 62
Visual Studio 64
Details, details 66

GitHub Desktop 67
Push it already 68
Visual Studio 69

Merge conflicts 70
Merging from the command line 73
Fast forward 73
True merge 74

Avoiding conflicts 75
Summary 76
Challenge 76
Answer 76

Task #1: Set up a new repository and clone it to two different folders 77
Task #2: Have one person populate the main branch with the
beginnings of UtilityKnife, commit the changes, and push it 80
Task #3: Each programmer creates a feature branch. Each
programmer then puts the beginning of their feature into their branch,
committing frequently (more frequently than you would in "real life") 84

Sara and the Calculator 86
Task #4: Merge the main branch into the feature branch frequently
to ensure that if there are conflicts, you catch them early 88
Task #5: John is building the temperature converter. Have him
"borrow" code from the calculator. See if there are merge conflicts 92

Chapter 5: Rebasing, Amend, and Cherry-Picking 101
Rebasing 102

How Git does it 104
Getting your head around it 105
Rebase early and rebase often 105
Rebase locally only 105
Rebasing in practice 105

Table of Contents

[iv]

Seeing the rebase at work 107
Conflicts 108

Amending 110
Cherry-picking 112

Visual Studio cherry-picking 113
Summary 114
Challenge 114
Answer 114

Creating a new repository on GitHub 115
Creating two feature branches with fake programmers 116
Frequent rebasing 118
Amending a commit to add a file 119
Amending a commit to change the message 121
Cherry-picking one commit onto main 121

Chapter 6: Interactive Rebasing 125
Interactive rebasing at work 125

Creating our example 126
Using interactive rebase to clean up your commits 133

Summary 137
Challenge 137

Chapter 7: Workflow, Notes, and Tags 147
Standard workflow 147
Mirroring your repo 148

Replicating an existing repo 149
Adding and showing notes 153
Tags 154

Pointing to a different tag 157
Summary 158
Challenge 158

Chapter 8: Aliases 165
Aliases 165
Summary 168
Challenge 168
Answer 168

Chapter 9: Using the Log 171
Getting started with log 172

The LogDemo program 173
Visual Studio 176
GitHub Desktop 177

Table of Contents

[v]

log at the command line 177
Which files changed? 178
What changed in each file? 179
diff 180
Visual Studio 181
What changed in this file over time? 182
Search 183
Where are my commits? 184

Summary 185
Challenge 186
Answer 186

Create a New Repository 186
Add at least 6 commits 188
Find the names of every file changed in each commit 192
Find what changed in a given file over time 193
Find all the files you committed in the past hour (or whatever
time increment makes sense) 194

Chapter 10: Important Git Commands and Metadata 197
Stash 198
Clean 203
Metadata 204
Summary 205
Challenge 205
Answer 206

Chapter 11: Finding a Broken Commit: Bisect and Blame 211
Blame 220
Challenge 220

Chapter 12: Fixing Mistakes 223
You wrote the wrong message in the last commit 224
You forgot to add changed files from your last commit 224
Problems with the order of commits or their messages 225
You need to undo changes made in a commit 225
You misnamed your branch 227
You committed to the wrong branch 227
You trashed a file in a previous commit 228
You messed up the remote by pushing a broken branch 228
Quiz 229

Table of Contents

[vi]

Answers 229
What do you do if you left out a changed file in the last commit? 229
What do you do if you committed to the wrong branch? 229
What do you do if you corrupted a file in a previous commit? 229
What do you do if you need to undo changes made in a commit? 230
What do you do if you trashed Master by pushing a broken branch? 230

Chapter 13: Next Steps 231
Other Books You May Enjoy 237
Index 241

[vii]

Preface
This is a book about Git, the most popular version control system in the world. I will
explain what version control is and then lead you from introductory topics to quite
advanced material. See chapter 1 for what background experience and software you
will need (all free).

Who this book is for
This book is for programmers of any skill level. Full Stop.

Version control is essential to every programming project, as will be explained in
chapter 1, and Git is the world's most popular version control system. The larger the
team the more urgent it is that you use version control, but it can be essential for a
single programmer as well.

What this book covers
Chapter 1 is the Introduction; you will learn about how the book is structured, what
Git is, what version control systems are, where Git came from, and what tools are
available for Git. You will also learn how to install Git on your computer.

In Chapter 2, Creating Your Repository, you will learn how to create a repository and
clone it from GitHub. You will see the relationship between the repository on your
disk and the one you've created on GitHub. A simple example program will be
introduced.

In Chapter 3, Branching, Places, and GUIs, we'll cover the work area, the index,
the repository, the remote repository, and the stash; what they are; and what they
are for.

Preface

[viii]

In Chapter 4, Merging, Pull Requests, and Handling Merge Conflicts, you'll learn about
branching: a central concept in version control and one of Git's great strengths.
Branching allows you to work on more than one thing at a time and keeps your
release code clean. Git has especially fast branching.

In Chapter 5, Rebasing, Amend, and Cherry-Picking, you'll learn how to re-write history
with Rebase and Amend. The very term Rebase makes some programmers quiver
with fear, but I'll show you how to master this useful (and safe!) tool.

In Chapter 6, Interactive Rebasing, we'll look at how you can change the message
associated with your commit, rearrange multiple commits, and even drop commits
before pushing them to the server.

In Chapter 7, Workflow, Notes, and Tags, we examine the basic workflow for managing
your repository, as well as how to add metadata to keep your repository clean and
clear.

In Chapter 8, Aliases, we'll examine aliases and how they can save you a lot of work.
Aliases can combine commands and all their flags to make your life much easier.

In Chapter 9, Using the Log, we will look at the very powerful log command. Log is
much overlooked, and yet it can give you insight into every aspect of your current
and past status of your projects.

In Chapter 10, Important Git Commands and Metadata, we'll go on to examine some very
useful and important Git commands. These powerful statements can get you out of
trouble when things appear to have gone wrong.

In Chapter 11, Finding a Broken Commit: Bisect and Blame, we'll look at a life-saving
command, Bisect, which helps Git help you find where your program broke.

In Chapter 12, Fixing Mistakes, you'll learn how to get yourself out of difficulty if you
make a mistake while using Git.

Finally, in Chapter 13, Next Steps, we'll take a quick look at additional resources.

To get the most out of this book
• You will want to be somewhat comfortable with a programming language.

Familiarity with C# is a big plus, but not required.
• You will need Git (free) installed on your computer, and it would be best also

to have the latest free version (or better) of Visual Studio 2019. Finally, you'll
want to download and install (free) GitHub Desktop. Thus, you do not have
to spend any money to follow the examples in this book.

Preface

[ix]

• A note to macOS users: All of the above applies to you as well, and I don't
anticipate you having any additional issues.

• A note to Linux users: I don't work with Unix, but I strongly suspect that all
of the above (except Visual Studio) will apply to you as well.

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams
used in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801075732_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter
handles. For example: "If you look at the log, git log --oneline, you should see
all three commits: the one created when you cloned the repository and the two you
created by hand."

A block of code is set as follows:

public int Add (int left, int right)
{
 return left + right;
}
public int Subtract (int left, int right)
{
 return left - right;
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

public int Add (int left, int right)
{
 return left + right;
}
public int Subtract (int left, int right)
{
 return left - right;
}

https://static.packt-cdn.com/downloads/9781801075732_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801075732_ColorImages.pdf

Preface

[x]

Any command-line input or output is written as follows:

git add .
git commit -m "Add calculator class"

Bold: Indicates a new term, an important word, or words that you see on the screen.
Words in menus or dialog boxes appear in the text like this. For example: "Select
System info from the Administration panel."

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the
book title in the subject of your message and email Packt at customercare@packtpub.
com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful
if you could report this to us. Please visit www.packtpub.com/support/errata, select
your book, click on the Errata Submission Form link, and enter the details.

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location address
or website name. Please contact us at copyright@packtpub.com with a link to the
material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book, please
visit http://authors.packtpub.com.

Warnings or important notes appear like this.

http://www.packtpub.com/support/errata
http://authors.packtpub.com

Preface

[xi]

Share your thoughts
Once you've read Git for Programmers, we'd love to hear your thoughts! Please click
here to go straight to the Amazon review page for this book and share your
feedback.

Your review is important to us and the tech community and will help us make sure
we're delivering excellent quality content.

https://packt.link/r/1-801-07573-5
https://packt.link/r/1-801-07573-5

[1]

1
Introduction

In this chapter, we will cover the following topics:

• A very brief history of version control and Git
• Getting and setting up Visual Studio 2019, GitHub Desktop, and your

terminal
• Getting and installing Git
• Configuring Git for Visual Studio, GitHub Desktop, and GitHub at the

command line

Let's get started!

About this book
"Begin at the beginning," the King said gravely, "and go on till you come to the end,
then stop." – Alice in Wonderland

In this book, we will cover Git from the very beginning all the way through to
advanced topics. No experience with Git is expected. Though if you have been
using Git, you'll probably want to skim the initial chapters. Git is arguably the most
popular version control system in the world, but this raises the question: "What is
version control?"

Introduction

[2]

Version control
Before version control, I would code a bit and then when I became afraid of losing
that code, I would make a backup of my directory. This is slow, inefficient, takes up a
lot of disk space, and is very hard to share with others.

A Version Control System (VCS) does all this work for you (and more) and does
so in a way that is fast, efficient, and takes up a minimum of disk space. One of the
fastest and most efficient is Git, although there are others. This book will not spend
a lot of time convincing you that Git is better than the others. First, the market has
spoken, and Git prevails. Second, if you've purchased this book, you've already
decided. And if you haven't already purchased this book, go do so. I'll wait here.

About the code examples
In order to demonstrate the use of Git, we need to have a small program that we can
evolve. The code examples are given in C#, but they are so simple that you'll be able
to follow them regardless of your experience with the language. For example, if you
can figure out what this does, you're all set.

public class Program
{
 public void PrintHello()
 {
 Console.WriteLine("Hello World!");
 }
}

This code declares a class (don't worry about what that is) named Program. Inside
that class is a method (function) called PrintHello that prints Hello World to the
console (your screen).

This is about as complex as it gets, and I'll explain each code snippet as we go.

Just a brief history
In July of 2005, after just a few month's work, Linus Torvalds, the genius behind
Linux, released Git to meet his own needs, the needs of the Linux community, and
eventually, the rest of us. The goal of Git was to be fast and efficient. It succeeded.

Chapter 1

[3]

While most VCSes at the time were centralized (all the files were kept on a big
server), Git uses a distributed system, in which everyone has their own repository.
Technically, no central server is required for Git, although if you are working in a
team, a central place for sharing code is convenient. But the huge difference is that
with Git, the vast majority of your interactions with the VCS are local – right there on
your disk.

Tools for working with Git
There are a number of easily confused terms (such as Git versus GitHub) and there
are many tools for working with Git – from the command line to Graphical User
Interface (GUI) tools. This section will review some of these options.

GitHub, et al.
There are many services that allow you to create shared "repositories" (the location
of all the versions of your program). The most famous and popular are GitHub and
Microsoft's Azure, as well as BitBucket and GitLab. Azure is a very powerful system
for DevOps, while GitHub is a very straightforward way to host your program. We'll
be using GitHub in this book. (Recently, Microsoft acquired GitHub for $7.5 billion in
stock – and made a huge commitment to GitHub, open source and, of course, to Git.)

GUIs and the command line
There are many ways in which to interact with Git. The principal ones are to work
at the command line or to use a GUI. There are a wide number of GUIs. This book
will focus on GitHub for Desktop and Visual Studio 2019, as well as the command
line. In fact, one of the things that makes this book different is that all of Git will be
explained using these three tools. This will give you a deep understanding of Git
along with how the GUIs can help (and can hinder) your work.

Key point: Git is the system we're covering in this book. GitHub
is a central repository system for sharing code (we'll make this
more specific later in the book) and GitHub Desktop is a GUI for
working with Git.

Introduction

[4]

There are many other excellent GUI tools, and the ecosystem of tools keeps evolving.
That said, the ones we will use are both powerful and representative of what you get
with nearly all the other GUI tools. In addition, these tools are well established and
likely to stick around. Furthermore, if you learn one GUI and see how it relates to
command-line instructions, you'll find it easy to use other GUIs.

We will look first at the command-line interface to Git. While there are some
limitations in GUI tools, if it can be done with Git, it can be done at the command
line, that is, all of Git's functionality is exposed at the command line. Furthermore, as
has often been pointed out, understanding Git at the command line will make your
use of a GUI much easier as you will know what is actually happening.

Does it help to understand how your car works? Not at all, until something goes
wrong. Then you turn to the expert mechanic who can fix the problem. In Git, the
expert is the programmer who knows the command line.

The command line
Out of the box, on Windows 10, the command line is available straight from your
terminal. It gives you everything you need, but it is a bit ugly:

Figure 1.1: Git at the command line

It is hard to read, but we can make it pretty, so that it's easier on the eye.

Making the command line pretty
If you are using Git on Windows 10, you can make the command line prettier and
more useful, as shown here:

Chapter 1

[5]

Figure 1.2: Example of Pretty Print

To do this, download and install Power Shell. Then, follow Scott Hanselman's
excellent directions at http://jliberty.me/PrettyGit.

A similar effect can be had on mac and Linux by following the directions at https://
github.com/diogocavilha/fancy-git. There are other options available on the
GitHub site that do pretty much the same thing.

Visual Studio 2019
Visual Studio 2019 has extensive support for Git built in. There is a separate menu
specifically designed for Git, and Git information is integrated into the general UI:

Figure 1.3: Git menu in Visual Studio 2019

http://jliberty.me/PrettyGit
https://github.com/diogocavilha/fancy-git
https://github.com/diogocavilha/fancy-git

Introduction

[6]

The first order of business is to get and set up Visual Studio.

Getting Visual Studio for free
All three of the products used for illustration purposes in this book (the command
line, Visual Studio 2019, and GitHub Desktop) have free versions available. To obtain
your copy of Visual Studio 2019, go to http://visualstudio.com and hover over the
Visual Studio button. Select Community 2019. It will download and all you have to
do is double-click on it and follow the instructions:

Figure 1.4: Obtaining Visual Studio

If you are using a Mac, there are some significant differences between how Visual
Studio 2019 for Windows handles Git and how Visual Studio for Mac does. You will
probably have no trouble following along, but you can always use the Terminal or
GitHub Desktop.

GitHub Desktop
A very popular GUI, especially for use with GitHub, is GitHub Desktop. This cross-
platform application makes working with Git extremely easy: anticipating what you
might want to do and making that simple. The downside is that there are limitations,
as there are for virtually every GUI.

http://visualstudio.com

Chapter 1

[7]

Figure 1.5: GitHub Desktop

We will be using all three of these throughout the book: command line, Visual Studio
2019, and GitHub Desktop. As we proceed, the selections and Git commands shown
above will make much more sense; for now, just get a feel for their appearance.

Getting Git
The very first thing you need to do is to install Git on your computer. The official
Git site states that "even if Git is already installed on your computer, it is probably a
good idea to reinstall to update to the latest version."

Getting Git on Windows
There are also a few ways in which to install Git on Windows. I recommend using
the official build. The most recent one is available from the Git website: https://git-
scm.com/download/win.

https://git-scm.com/download/win
https://git-scm.com/download/win

Introduction

[8]

Another way to get Git, and to kill two birds with one stone, is to download and
install GitHub Desktop. The installer will also install a command-line version of Git.
You can get it at https://desktop.github.com/:

Figure 1.6: Obtaining GitHub Desktop

This book will show its demonstrations on Windows 10, using Git version
2.30.0.windows.2, but the examples should work with just about any version of Git.

Getting Git on a Mac
There are several ways to install Git on a Mac. The easiest is probably to install the
Xcode command-line tools. You can do this by trying to run Git from the Terminal
the very first time, as follows:

$ Git --version

If you don't have it installed already, it will prompt you to install it.

https://desktop.github.com/

Chapter 1

[9]

If you want a more up-to-date version, you can also install it via a binary installer. A
macOS Git installer is maintained and available for download at the Git website at
https://git-scm.com/download/mac:

Figure 1.7: Getting Git on a Mac

You can also install it as part of the GitHub Desktop for macOS install. Their GUI Git
tool also has an option to install command-line tools. You can download that tool
from the GitHub Desktop for macOS website at https://desktop.github.com.

Getting Git on Linux
This book does not formally support Linux, but almost all of Git is the same on all
platforms.

If you want to install the basic Git tools on Linux, you can generally do so through
the package management tool that comes with your distribution. If you're on Fedora
(or any closely related RPM-based distribution, such as RHEL or CentOS), you can
use dnf:

$ sudo dnf install git-all

https://git-scm.com/download/mac
https://desktop.github.com

Introduction

[10]

If you're on a Debian-based distribution, such as Ubuntu, try apt:

$ sudo apt install git-all

Checking your version
Once you have Git installed, your first command should be the following:

git --version

That is, the keyword git, and then version, preceded by two dashes. This is
sometimes called "git dash dash version."

The output on my computer is as follows:

˃ Git --version
git version 2.30.0.windows.2

(Your mileage may vary.)

Configuring Git – the command line
We'll look at configuring Git to personalize throughout this book, but for now,
let's add your name and email address so that every entry into Git is stamped
appropriately. Enter the command-line command:

git config --global --edit

This will bring up your editor. Find or create the [user] section and add the
following:

[user]
name = Jesse Liberty
email = jesseliberty@gmail.com

Chapter 1

[11]

You will probably want to use your own name and email address.

There are other entries in the config file. Ignore them for now and save and close the
file.

Configuring Git – Visual Studio
In Visual Studio for Windows, click on the Git menu and a dialog box will open. On
the first tab, enter your username and email address:

Figure 1.8: Setting Git options in Visual Studio

Introduction

[12]

Configuring Git – GitHub Desktop
To configure GitHub Desktop, you'll need an account on GitHub. We'll cover that
in the next chapter. Once you do have an account, go to File | Options, select the
Accounts tab, and then click on Sign in:

Figure 1.9: Setting up GitHub Desktop

Summary
In this chapter you saw an introduction to the book, listing what is in each chapter.
You also saw a quick history of version control and of Git itself.

Next, we took a look at downloading the environments you'll need to follow along:
Visual Studio 2019, GitHub Desktop, and PowerShell as your command line. All of
these can be obtained for free.

Once the software was downloaded, we looked at how to set up Git, and how to set
up the tools we'll be using.

[13]

2
Creating Your Repository

In this chapter, you will learn how to create an account on GitHub, and how to create
and clone your first repository so that you have a link between the repository on
your computer and that on GitHub.

This chapter will cover:

• Creating your repository
• Git pull
• Push me, pull you
• Starting at the command line
• Commits – best practices

We'll start by creating your GitHub repository.

Creating your repository
There are a number of different ways to create your repository. We'll cover creating
a repository on GitHub and cloning it to your disk, as this is the most common way.

Creating Your Repository

[14]

Creating your repository on GitHub first
Your first step is to register with GitHub. Go to http://github.com and click Sign
Up. Fill in your username (it will tell you if the name is taken) and your email and
it may ask you to verify that you are a human. Assuming you are, click Create
Account.

Fill out their micro-survey and click Create Account. You will be asked to verify
your email, and once you do, you'll see the (one-time) opening page asking what you
want to do first. Choose Create a repository:

Figure 2.1: Getting started with GitHub

If you already have an account, sign in and press New Repository. You may not find
this at first glance, in which case click the big plus sign in the corner.

Either way, you will be brought to the Create A New Repository page. The first job
is to give your new repository a name. I'll use ProGitForProgrammers. Feel free to use
any name you want as long as GitHub doesn't complain that the name is taken.

http://github.com

Chapter 2

[15]

Now it is time to fill in the form:

Figure 2.2: Creating the repository

Creating Your Repository

[16]

Start by entering a short description of your project. Next, and very importantly,
choose whether you want this repository to be public (anyone can see it) or private
(only people you invite can see it).

I strongly recommend checking Add a README file. This will be what is shown
to users when they come to your repository. You can fix the file up later using
Markdown.

Be sure to add a .gitignore file. This tells Git which files to ignore when checking
your files into the repository. This can be very important so that you don't overwrite
another programmer's metadata files. Click the dropdown and admire how many
languages are supported; for C# I recommend you search for and choose Visual
Studio.

If your repository is public, be certain to choose a license for the code. I chose the
MIT License. You can learn more about this license at https://opensource.org/
licenses/MIT.

That's it! You are ready to click Create repository. When you do, you'll be brought to
the home page for your new GitHub repository:

Figure 2.3: Initial view of your repository

Notice that you have the three files you asked for, and that you can see a preview of
the README as well as the description you entered.

https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT

Chapter 2

[17]

Right now, this repository exists only on the server. You want to put a copy on your
disk so that you can add code and use commands to keep them in sync. Therefore
you will "clone" the repository; that is, you'll make an exact copy of the remote
repository in your local repository.

How you will do this will depend on whether you are using the command line,
Visual Studio, or a GUI.

Cloning to your computer – command line
Cloning to your local repository is easy. Open your terminal (or PowerShell) and
change the directory to where you want the repository to go (in my case GitHub/the
command line).

Switch back to your GitHub repo on GitHub.com, and see the green button in the
upper right-hand corner marked Code. Click that button and a small dialog box will
open. Choose HTTPS unless you know you have SSH (as I do). In either case, click
on the clipboard icon to copy the address:

Figure 2.4: Copying the address of the repo

Return to the command line, enter git clone, and then paste in the address:

git clone git@github.com:JesseLiberty/ProGitForProgrammers.git

http://GitHub.com

Creating Your Repository

[18]

You should see something like this:

Figure 2.5: Cloning at the command line

Change the directory to ProGitForProgrammers and you'll see that the three files that
were on the server are now here as well:

Figure 2.6: Files in the directory

Now let's take a look at how to do this in Visual Studio.

Cloning to your computer – visual studio
Go to your directory (in my case GitHub) and make a directory called VisualStudio.

Chapter 2

[19]

Open Visual Studio with no project. Select File | Clone Repository. Fill in the fields
and click Clone:

Figure 2.7: Cloning to your local repository using Visual Studio

A few seconds later you will see the three files, now shown in the Solution Explorer:

Figure 2.8: Cloned files in Visual Studio

There are a number of ways to clone from a GitHub repository to your own. One
way is to use a dedicated GUI tool such as GitHub Desktop.

Creating Your Repository

[20]

Cloning to your computer – GitHub for
Desktop
Once again, return to your root directory (GitHub) and make a new directory. This
time call it GitHubDesktop.

Now, return to GitHub and click Code:

Figure 2.9: Cloning directly through GitHub Desktop

Notice that one of the choices is Open with GitHub Desktop. Click on that. A dialog
will open. The only field you need to fill in is the local path. Click Clone:

Figure 2.10: Cloning to GitHub Desktop using HTTP

Chapter 2

[21]

You now have three copies of your original repository, each in its own directory:
CommandLine, VisualStudio, and GitHubDesktop. These might represent three
programmers working on the same solution, or various ways for one programmer to
choose to clone their project.

Creating a project
We need a project. Using Visual Studio (or your favorite editor) create a project
called ProGitForProgrammers in the CommandLine directory. When you are done, you
should have the three original files and a folder for your program. In that folder will
be the .sln file as well as a folder for the code.

Open the command line and navigate to the same directory. When you get there
your command line should look something like this:

Figure 2.11: The command-line prompt

Look at the yellow, where you see +1 ~0 -0. The +1 means you've added a file or a
directory; the ~0 indicates that no files have been modified; the -0 indicates that no
files have been deleted. Let's see what was added. Enter:

git status

You should see something like this:

Figure 2.12: Untracked files

Notice that GitHub Desktop wants the https URL for your
repository.

Creating Your Repository

[22]

Git is telling you that you are on the branch main (the only branch for now) and that
you have "untracked files" – that is, files that are in the directory but that are not
being tracked by Git. If they are untracked, Git can't store them; in fact, Git knows
nothing about them. Let's fix that. Enter these commands:

git add ProGitForProgrammers/
git commit -m "First commit – from command line"

add tells Git that this is a file it should pay attention to and commit brings it into the
local repository.

Every commit must have a message, and if you don't provide one, you'll be prompted
by Git to add one. Here I've added it by using the -m flag.

Once again, all this is happening locally and so GitHub doesn't know about it. We
can fix that by pushing our commit up to the server:

git push

Now if you go to GitHub and refresh the page your project will be there. You can
click your way down through the folders, and even into Program.cs, to see the code:

Figure 2.13: Viewing your code on GitHub

Notice in the upper left that it tells you that you are on the main branch. Next to that
is the path to get to Program.cs. Below that is the message you added, and then the
file itself.

Chapter 2

[23]

Git pull
Having pushed your commits to the server, other developers may want to pull them
to their own directory, to keep in sync.

Pulling down using GitHub Desktop
Having put the project up on the server, we can simply pull it down into the other
locations. For example, open GitHub Desktop. It will tell you that there have been
changes in the repository and helpfully offer a button for you to update your local repo.

If you open a file explorer and navigate to the GitHubDesktop directory, you'll see
that there is now a replica of the files you pushed from the command line.

Pulling down to Visual Studio
Click on the Git menu and choose Pull. Visual Studio is updated with the code from
the server. Now all three repositories are up to date. This is the heart of Git:

• Save your files to a local repository
• Push your files to the remote repository
• Pull down any files that are on the remote repository but not on your local

repository

Push me, pull you
Generally, you want to push your changes and pull down changes from other
developers. Also, generally, you will not be working on the same files, and certainly
not in main. We'll discuss how to avoid this in Chapter 4, Merging Branches. For now,
we'll just be very careful.

Open Visual Studio in the directory GitHub/VisualStudio/ProGitForProgrammers.
Add a line to Program.cs as shown here:

namespace ProGitForProgrammers
{
 class Program
 {
 static void Main(string[] args)
 {

Creating Your Repository

[24]

 Console.WriteLine("Hello World!");
 Console.WriteLine("I just added this in Visual Studio");
 }
 }
}

Having made your change, you want to check it in. Since we are in the VisualStudio
directory, we'll do the work right within Visual Studio. Click the Git menu and
choose Commit or Stash. A Git window will open as a tab next to Solution Explorer.
Enter a commit message and press Commit All:

Figure 2.14: Git window in Visual Studio

As you can see, and will see often in this book, you can do almost anything in Visual
Studio that you can do at the command line.

Pushing to the server
You have now committed your changes to your local repository. The GitHub
repository, however, doesn't know about your changes. (You can prove this to
yourself by returning to GitHub and drilling down to Program.cs.)

The other programmers' repositories (for example, CommandLine and GitHubDesktop)
are equally oblivious. To disseminate this change, you first push your changes up to
the server (GitHub) and then pull them down to the other repositories.

Note that if you drop down the Commit All menu, you have a
number of shortcuts for adding, committing, and pushing your
changes.

Chapter 2

[25]

From within Visual Studio's Git window, press Staged. This will stage your changes
for committing. Next, click Commit. This will put your changes into your local
repository (be sure to give the commit a meaningful message).

Examine the Git window; there is a lot of information:

Figure 2.15: The Git window in Visual Studio

You are told that the commit was created locally (and locally is the important part!).
Below that is the status of your commit. You have one to push up to the server
(outgoing) and none to bring down (incoming):

Figure 2.16: Uploading a commit from Visual Studio

Creating Your Repository

[26]

Now, find the up-pointing arrow in the upper-right corner. Hover over it and you'll
see that it says Push. Click that button to push your changes to the server. When it is
done, it will give you a success message. Ignore the offer to create a pull request for
now.

Look to the left of your Git menu and see the local history of your commits:

Figure 2.17: The history of commits

Each dot signals a commit, and next to each dot is your commit message (and now
you can see why meaningful commit messages are both hard to write and worth the
effort). There is also an indicator that main is pointing to your last commit.

If you check GitHub (remember to refresh the page) you will now see the line in
Program.cs. Make sure you understand why: this is because after we committed the
change, we pushed it to the remote repository.

Downloading the changes at the
command line
We created the changes in the VisualStudio directory. CommandLine and
GitHubDesktop know nothing of the changes, even though they are now on GitHub.

For these directories to know about the changes, you need to pull the changes down.

Change directories to CommandLine. Examine the contents of Program.cs; the new line
is not there. Open your terminal and enter pull. This will pull any changes from the
server to your local repository.

The result should look like this:

Chapter 2

[27]

Figure 2.18: Pulling from the remote repository

Git is telling you that it formatted and compressed your files and passed them down
to your repository. Toward the bottom it says that it used Fast-forward. We'll discuss
this in Chapter 4, Merging, Pull Requests, and Handling Merge Conflicts.

Take a look at Program.cs now in your command directory; the new addition should
now be there.

Downloading the changes using GitHub Desktop
Change directories to GitHubDesktop and open the GitHub Desktop program. It will
give you a lot of information about the status of your repository (No Local Changes)
and it will automatically check and inform you that there is one commit to update
your local repository with:

Figure 2.19: The view from the remote repository

Want to do something cool? Open the Program.cs file before
updating. After the update you will see the second WriteLine
pop into view. What is actually happening is that the code that
was in your directory is replaced by the new code on the pull.

Creating Your Repository

[28]

Go ahead and click Pull origin. It does the pull, and the button disappears. Check
your code; the change should now be in your Program.cs (and is recorded in your
local repository).

Starting at the command line
You can start the process at any of our repositories. Last time we started in the
VisualStudio repository and then pulled the changes down to the CommandLine and
GitDesktop repos. This time, let's start at the command line.

Open Visual Studio and point it to the project in your CommandLine directory. Just to
be certain, right-click on Solution, select Open Folder in File Explorer, and make
sure you are in the right directory.

To keep this example very simple, we'll just add another line to Program.cs:

class Program
{
 static void Main(string[] args)
 {
 Console.WriteLine("Hello World!");
 Console.WriteLine("I just added this in Visual Studio");
 Console.WriteLine("I just added this in the command line repo");
 }
}

Normally you would make many more changes before checking in, but again, this is
a demo and we're more interested in using Git than we are in fussing with this silly
program. Save all your files and at the command line get the status by entering:

git status

All three local repositories and the server repository are now in
sync.

Chapter 2

[29]

This will give you output that looks like this:

Figure 2.20: The command line indicating one file has been modified

The key piece of information is the modified file. That is just as it should be, as that is
the file we modified. You can now add it to the index and then commit it:

git add ProGitForProgrammers/ProGitForProgrammers/Program.cs
git commit -m "Add writeline indicating we are in command line"

On the other hand, you can combine these two steps with the -a flag:

git commit -a -m "Add writeline indicating we are in command line"

You will want to draw a distinction between untracked files and modified files.
Untracked files are outside of Git and cannot be manipulated inside Git until they are
added; modified files are tracked by Git but have changed since the last commit.

If we are happy with the commit we've added, we can (optionally) push it to the
server:

Figure 2.21: Pushing our commit to the remote repository

Creating Your Repository

[30]

We'll want to do that because we want to share this code with the other
programmers.

Pulling to GitHub Desktop
Switching to GitHub Desktop, we see that it already knows there is something to
pull, as we saw last time. (If it doesn't, push the Fetch button, which will go to the
server to see if there is anything to bring back.)

That's two repos that are identical, but the VisualStudio repo is not yet up to date.
Let's return to Visual Studio in the VisualStudio folder.

Pulling to Visual Studio
Open the Git menu item, and select Pull. Watch your source code and see the third
line pop into existence. Once again, the three local repositories and the remote repo
are all in sync.

Commits – best practices
Like everything else in programming, best practices in commits are, to some degree,
controversial. The first issue is frequency.

How often should I commit?
There are those who say a commit should be atomic: representing exactly one unit
of work (one task, one bug fix). No more and no less. So, according to this line of
thought, if you are in the middle of work and you get called away, you should not
commit, but you should use the stash. The stash is an area where you can put files
that you want to come back to later. You can name sets of files that you stash, and
then pick the one you want to restore by name.

This is a defensible position, but I hold the opposite: commit early and commit often.

Commits are cheap and fast in Git, and interactive rebase (see Chapter 6, Interactive
Rebasing) allows you to "squash" commits together. Therefore, if you are working on
a feature and you make five interim commits before you are done, you'll have the
opportunity to squash them into a single commit with a single message. This is the
best of both worlds: you secure your interim work with a commit, and you present
only one commit (rather than five) to the server.

Chapter 2

[31]

Keep your commit history clean
The first way that a programmer reviews your code is to look at the list of commits
and then dive into those that are interesting. A good history of commits with well-
written messages is a delight to review. A long, tedious history with meaningless
messages is only slightly more fun than eating glass.

A note on commit messages
As you will see later in this book, commit messages are very important for anyone
(including you) reviewing your commit history. By convention, commit messages
should be in the imperative, and should tell you exactly what is in that commit.

Fixing some files // bad
Fix WriteLine in helloworld.cs // good

In practice you'll often find comments in the past tense:

Fixed WriteLine in helloworld.cs // good enough

"In theory, theory and practice are the same; in practice, they never are."
-- Pat Johnson

It pays to get into the habit of writing good messages in the right format. Your
teammates will thank you.

When the title isn't enough
The message title should be kept to 50 characters. Most of the time this is enough, but
if it isn't, leave the -m message off and let Git open your editor. There you can add
additional information. Skip a line after the header and consider using bullet points
or other ways of making the things you want to convey easy to read.

Important: By default Git uses vi (a Unix editor). You'll want to enter:

git config ––global core editor "code -w"

Creating Your Repository

[32]

This ensures that Visual Studio Code is your default editor:

Figure 2.22: Editing in Visual Studio Code

Note that # is the comment character, and all lines that begin with # will be ignored.

When you use log (see Chapter 9, Using the Log) to see your history (or view history
in Visual Studio, etc.) you'll see the entire message:

Figure 2.23: The output of the log command

Chapter 2

[33]

You can see just the headers if you want, using git log -–oneline, but we'll leave
the details for Chapter 9, Using the Log:

Figure 2.24: log using the oneline flag

Summary
In this chapter, we have covered a number of topics relating to creating and
interacting with your repository. We discussed:

• Creating your repository
• The relationship between your local and remote repositories
• Git pull
• Git push
• Starting at the command line
• Using Visual Studio
• Commits: best practices

In the next chapter, we'll take a look at the various places Git keeps your files, and
the relationship between adding an untracked file and committing a tracked file.

[35]

3
Branching, Places, and GUIs

In this chapter, you will learn about the crucial "five places" for Git: the work area,
the index, the local repository, the remote repository, and the stash. You will see how
to use each of these and how they work together.

Each concept will be illustrated with both code and screenshots, and most Git actions
will be illustrated in the command line, Visual Studio, and a GUI (GitHub Desktop).

You'll also learn about creating branches, committing code, and how to move
commits from the work area to the repository, and from the repository to the remote
repository.

Five places
As a programmer I think of Git as divided into five places:

1. The work area
2. The index (staging area)
3. The local repository
4. The remote repository
5. The stash

Let's begin by examining each of these in turn.

Branching, Places, and GUIs

[36]

The work area
The work area is where your current files are. That is, if you were to open Windows
Explorer and navigate to the directory you cloned to, you would see the version of
the program you were currently working on. If you were to open Visual Studio 2019,
these are the files that would be in the Solution Explorer. Again, the work area is
where your current files are; if you open Visual Studio on your project, the files in the
work area are what you will see. As you change branches (see below) the work area
is updated with the appropriate files. This can be one of the hardest concepts in Git:
when you change branches you change the files that are in your work area – that is,
the files for that branch are swapped into the Windows (or Mac or Linux) directory.

In our current program the work area looks like this in Windows Explorer:

Figure 3.1: Current work area

This same directory can be seen from the command line:

Figure 3.2: Current work area from command line

Note: it is possible to have more than one work area using what are
known as work trees. These are well beyond the scope of this book,
and you can go a long while before you will need them.

Chapter 3

[37]

In Visual Studio, the same work area looks like this:

Figure 3.3: Current work area from Visual Studio

If you look at what is in the directory, you will find the exact same files.

The index/staging area
If you have files in the work area that you would like to commit, you first add them
to the staging area (often called the index). From the staging area, it takes just one
command (commit) to move these files into the local repository.

Figure 3.4: Modifying Program.cs

I have added a couple of lines to all three copies we have.

Branching, Places, and GUIs

[38]

Let's start at the command line. I make a habit of invoking git status before doing
anything else:

Figure 3.5: git status from the command line

To add this to the index at the command line, you just use the keyword add followed
either by the name of the file or by a period (.) indicating you want all the files
moved to the staging area:

git add ProGitForProgrammers/ProGitForProgrammers/Program.cs

Git will make no response, but the file is now in the staging area. You can see this if
you get the status again:

Figure 3.6: Modified file staged

This time, it shows the modified file as ready to be committed. To commit this file
all you need to do is enter git commit. Because the file is already staged, it will be
immediately committed to the local repository. If you don't add -m "my message" the
editor will be opened for you to add your message.

Skipping the staging area
You can bypass the staging area and go directly to committing the file by using the
-a flag. Thus, with your file unstaged you can write:

git commit ProGitForProgrammers/ProGitForProgrammers/Program.cs -a -m
"My message"

Chapter 3

[39]

This will immediately commit Program.cs with the indicated message. I confess this
is the way I commit files 90% of the time. (You can also use git commit -a -m "my
message" to commit all the modified files in the working area.)

Visual Studio
In Visual Studio the status is visible at all times, in the lower right-hand corner:

Figure 3.7: Lower right of Visual Studio

The 0 with an up arrow indicates that you have no files waiting to be pushed. The 1
next to the pencil indicates that you have one modified file. Next comes the name of
your program and then finally the branch you are on.

There are a number of ways to commit in Visual Studio. For example, you can
commit right from the Git menu or by right-clicking on the file and selecting Git.
You will then select Commit or Stash. An easier way, however, is to click on the
pencil, which brings up the Git Changes menu:

Figure 3.8: Visual Studio changes window

Branching, Places, and GUIs

[40]

Here you can see the changed files and their paths. You can choose Commit All
or drop down that button and choose from a number of related options. Fill in the
message and press Commit All and Visual Studio immediately responds with a
confirmation, reinforcement that you've committed to the local repository, and offers
you the opportunity to upload to the remote repository (showing you that you have
one outgoing file):

Figure 3.9: Visual Studio commit and push/pull menu

It can be confusing as to which way is outgoing as we tend to think of uploading
rather than outgoing. Suffice to say that when Visual Studio says outgoing they
mean going from the local to the remote server, and when they say incoming they
mean moving from the server to the local repo.

GitHub Desktop
GitHub Desktop gives you a tremendous amount of information on one screen:

Figure 3.10: GitHub Desktop

On the top row, you can see the name of the repository and the current branch. In the
window on the upper left, you can see that one file changed, and which file that is.
On the right, you can see the actual change.

Chapter 3

[41]

Finally, on the lower left, you can put in your message and commit your file.

As soon as you commit, the page is cleared and a new button appears to allow you to
push the changes to the server.

Local and remote repositories
The third and fourth areas for Git are the local and remote repositories. We've
covered this in the previous chapter so all I'll repeat here is that commit puts your
files into the local repository and push sends your commit from your local repository
to the remote one.

While I believe in committing frequently, you'll want to put in a few commits before
you push. This will give you the opportunity to combine similar commits as we'll see
in Chapter 6, Interactive Rebasing on interactive rebase.

The stash
The fifth and final area for Git is the stash. The stash, as it sounds, is a place to stash
away files that you've modified but don't want to commit or lose when changing
branches. We'll see more of this just below, when we discuss branching.

Branches
Using branches is critical to working with Git, not to mention to the success of your
project. The idea is this: you have a "main" branch that you'll do your releases from.
Each time code is added to the main branch it is checked and reviewed so that the
main branch stays as clean as possible.

When you want to work on a bug or a feature, you create a new branch (often called
a feature branch). This creates a copy of the code that is currently in the main branch.
You can work on your feature branch without affecting the main branch at all. Once
you are done, and all is working, you can then "merge" your feature branch into the
main branch:

Figure 3.11: First feature branch

Branching, Places, and GUIs

[42]

Notice that there is a pointer named Head. This points to whatever is in your work
area. In this case, we've branched to Feature 1 and Head shows that the code for that
feature branch is now in our work area.

That is a pretty good simplification of branching but there is a good deal more to it.
First, let's see how to do it. Until now, all your code has been on the Main branch – a
bad practice. We should have created a feature branch before doing any coding. That
said, we can do so now.

From the command line, you simply check out Main (putting whatever is at the tip of
Main into your work area. The tip means the most recent commit). Once you are in
Main you will pull from the remote repository to get the very latest version of Main.
You are now ready to create your first branch. The sequence of commands looks like
this:

Figure 3.12: Creating branch on command line

Note that creating the branch Calculator did not check it out; you must do that as
a separate step. However, if you use the -b flag, then you can create the branch and
check it out at the same time:

git checkout -b Calculator

In either case, the new branch is in the work area. But what is in that branch? Because
that branch was created from main, and we've not changed anything yet, the new
branch is identical to the main branch. From here they will diverge. As you add code,
it will be in the new branch (Calculator) but not in the main one.

Before we look at that in depth, let's create branches for the Visual Studio user and
for the GitHub Desktop user.

The easiest way to do this (and the least confusing) is to open Windows Explorer
and navigate to the VisualStudio folder (in my case, GitHub | VisualStudio |
ProGitForProgrammers | ProGitForProgrammers). In that folder is a .sln file,
which I will double-click on, opening Visual Studio. (This book was originally
named Pro Git For Programmers and you will see that name in the code quite a bit.)

Chapter 3

[43]

We want to put this on a branch as well, and to reduce confusion we'll call this
branch Book. To create the branch, click on the Git menu and select New Branch.
Give the new branch the name Book, and press Create:

Figure 3.13: Creating a new branch in Visual Studio

When you do, a window will open on the left that lists the branches for this
repository and Book will be in bold indicating that it is the current branch:

Figure 3.14: Branches menu in Visual Studio

Don't be confused between the VisualStudio folder (which we are
using to demonstrate Git in Visual Studio) and the program itself,
which we use to modify the code in all three places (CommandLine,
GitHubDesktop, and VisualStudio).

It might be less confusing if you think of these as three separate
programmers, each one on their own computer (mimicked here by
using separate directories). Each programmer has a main branch
and each one is now branching off for their own work.

Branching, Places, and GUIs

[44]

Two of the users have now branched off of main. Let's use GitHub Desktop to create
a third branch. Open the program and click on the menu choice Repository. On
that menu click on Show In Explorer and make sure you are in the path C:\GitHub\
GitHubDesktop\ProGitForProgrammers.

It should indicate that you have one pull from the origin (the server) and have a
button that says Pull Origin. Go ahead and click that button. That brings down the
latest version of Main. You now should see that the button says Push Origin – that's
to push up to the server the two commits that are now sitting in this directory.

To create your new branch, click on the Branch menu choice and select New Branch.
It will prompt you for the name of your new branch. Enter Movie and click Create.
The interface now asks if you want to publish your branch. Publishing in GitHub
Desktop simply means uploading it for the first time. Let's hold off on that and first
make some commits.

Programmer 1 (CommandLine) and calculator
Open Visual Studio in the CommandLine directory path. In the Solution Explorer, you
should see Program.cs, which has five WriteLine statements. Add a new class named
Calculator and set it to public:

namespace ProGitForProgrammers
{
 public class Calculator
 {
 }
}

Normally we would not create a commit after so little work, but for this book, to
make simple examples, we'll be doing a great deal of committing. Return to the
command line and get the status. It will tell you that you have one untracked file. Git
has recognized that there is a file in the directory that it knows nothing about. Our
next step is to add it to Git:

git add .

By using the dot, the add command will add any modified or new files to the staging
area. You can then commit the new file just by writing:

git commit -m "Add calculator class"

Chapter 3

[45]

If you write git status now, Git will tell you that you are on the branch Calculator,
that you have nothing to commit, and that your working tree is clean.

We're going to talk about the log command in detail in Chapter 9, Using the Log, but
for now, let's just use it to see our commit and the message that went with it:

git log ––oneline

This will display all of your commits, one per line:

˃ git log --oneline
e5c4db9 (HEAD -> Calculator) Add calculator class
b00ca09 (origin/main, origin/HEAD, main, featureOne) Demonstrating the
staging area
4ac9d40 Add a line to program to indicate why it was added
ef16f81 Add writeline indicating we are in command line
d418600 Add informative WriteLine
a3f085e First commit -- from command line
a5798e1 Initial commit

The seven-digit hexadecimal identifier is the "short ID" and is enough to uniquely
identify each commit. They are listed in newest-to-oldest order. Our most recent
commit says:

e5c4db9 (HEAD -> Calculator) Add calculator class

This tells you that your Head pointer is pointing to your Calculator branch (that is,
what is in your working area right now is the Calculator branch) and it displays the
message we added for that commit. Graphically, it might look like this:

Figure 3.15: Head pointer

Notice that the arrow runs from Calculator to Main. Each commit points to its
parent.

Branching, Places, and GUIs

[46]

Pushing the new branch
We can push this commit up to the server, but the server doesn't know about this
branch. When we enter git push, we get back this message:

> git push
fatal: The current branch Calculator has no upstream branch.
To push the current branch and set the remote as upstream, use

 git push --set-upstream origin Calculator

It is saying that it could not proceed (fatal) because the current branch (which is
Calculator) does not correspond to a branch on the server. Wonderfully, however, it
gives us the command line to use. Just copy the command and paste it at the prompt
and hit Enter. Hey presto! You've pushed your branch up to the server:

Figure 3.16: Pushing to the server

For now, you can ignore all the other messages; what you care about is the last two
lines, indicating that you now have a branch, Calculator, on the server, and that on
the server it is also called Calculator.

Note that from now on, when pushing commits on the Calculator branch, you won't
have to use that line; you'll just be able to write git push.

Chapter 3

[47]

Examining origin
Let's go to GitHub and examine our new branch. Sign in and select the
ProGitForProgrammers repository:

Figure 3.17: Repository on server

So, where is our calculator folder? Notice the button in the upper left that says main.
Drop that down and choose Calculator – which will display the contents of the
Calculator branch:

Figure 3.18: Calculator branch on server

You can see that the Calculator branch does have the expected file.

Branching, Places, and GUIs

[48]

Adding commits to a branch
Let's add another commit to our branch. Return to Visual Studio and give our
Calculator class an add method:

 public int Add (int left, int right)
 {
 return left + right;
 }

Again, just to have lots of commits, let's commit this. The easiest way is to combine
the add and the commit and to add a message on a single line:

git commit -a -m "Add the add method"

To see that this was in fact committed, run the log command again:

Figure 3.19: Tracking HEAD

If you study this for a moment, not only will you see that our commit worked (it is
the first one listed) but also that we have various pointers. On the first line, we see
that HEAD is pointing to our Calculator branch. Good enough.

The second line indicates that the Calculator branch on origin (GitHub) is pointing
to the previous commit. We have one commit to push.

The third line shows us that main on origin, HEAD on origin, the main branch, and the
featureOne branch are all pointing to the third most recent commit. All this is fine.
We expect Calculator to have diverged from main, and we can push our commit if
we like, or we can wait until we have a few of them.

The Book branch – Git within Visual Studio
Let's turn our attention to the Visual Studio programmer. You will remember that
this takes place in the VisualStudio folder. Let's open Visual Studio in that directory,
and note that in the upper right, it says 1 outgoing – this indicates that we have a
commit to push. Click on it and Visual Studio opens two more windows.

Chapter 3

[49]

One shows that Book is the current branch (see above) and the other shows the
history of your commits (not unlike log).

There is a section in the middle window that shows what was committed locally and
what awaits commitment in the outgoing section. Also note that Book and main are
indicated as outgoing:

Figure 3.20: Commitments window Visual Studio

To push these commits find the tiny up arrow in the upper-right corner (magnified
here):

Figure 3.21: Link to push files on Visual Studio

Let's create a Book class. The process is similar to the creation of the Calculator class
above. Right-click on the project and choose Add | Class. Name your new class
"Book". Make your Book class public and give it three properties:

Figure 3.22: New Book class

Branching, Places, and GUIs

[50]

Let's commit this. To do so either click on the Git menu choice and choose Commit
or Stash, or click on the pencil at the bottom of the screen. Either way, you will be
brought to the commit screen. Notice that it says 1 outgoing. Click on the up arrow.
That will push our previous commit. You will get back a message saying that you
have successfully pushed Book to origin.

Committing with GitHub Desktop
Open Visual Studio in the GitHubDesktop directory. Here we will create the Movie
class and give it two properties: Title and a collection of people (which we will
represent as strings to keep things simple):

Figure 3.23: Movie class

Now open GitHub Desktop. It recognizes and displays the changes (with deleted
lines in red and new lines in green). It also offers you the opportunity to check in the
new changes:

Figure 3.24: Changes shown in GitHub Desktop

Chapter 3

[51]

You can see the changes highlighted above, in Figure 3.24.

Status
You can see that the GUIs make the work easier, but that the command line makes
the steps more explicit. Our repository looks like this (conceptually):

Figure 3.25: Multiple branches

What's on origin?
It's important to remember that this map of commits only applies to the local
repository. What is on the remote repository may or may not be the same for any
given branch depending on whether you've pushed all your commits. In Chapter
6, Interactive Rebasing, we'll review why you might want to hold on to a number of
commits before pushing them (in short, you will have the ability to combine commits
to reduce the number of commits a reviewer must slog through).

Adding more commits
We'd like to add a number of commits so that we can review their history and
to set us up for future chapters. To do so, we'll want to work on the CommandLine
project. You can, as we have done already, open Windows Explorer and navigate
to the appropriate directory, and then double-click on ProGitForProgrammers.sln.
An alternative is to open Visual Studio from anywhere and then choose
File | Recent Projects and Solutions, and click on the one you want, in this
case, ProGitForProgrammers (C:\GitHub\CommandLine\ProGitForProgrammers).

Branching, Places, and GUIs

[52]

Visual Studio will open to the Calculator folder. Just to triple-check that you are in
the right place, right-click on the project and select Open Folder In File Explorer.
You should see a Windows Explorer window open in the expected folder (no matter
which folder you started out in). Let's add a Subtract method:

 public int Add (int left, int right)
 {
 return left + right;
 }
 public int Subtract (int left, int right)
 {
 return left - right;
 }

While we normally wouldn't commit for such a small change, let's go ahead now and
turn to the command line. As always we start with a git status:

Figure 3.26: git status

Let's read through this carefully. The first line after git status confirms that you
are on the Calculator branch. Next comes a notice that you are ahead of origin/
Calculator by one commit. That means that you didn't push your last commit (and
this is true).

Next comes a paragraph telling you that Calculator.cs has been modified and gives
you a couple of commands you might want to use in this context. Let's use the add
command to place our modified file in the index.

Rather than typing the name of the modified file, we'll use a period (.) to indicate
that we want everything changed in the working directory (in this case, just the one
file):

git add .

Chapter 3

[53]

Git makes no real acknowledgment, but if you request the status, you'll find that
the modified file is now a different color (on most setups) and that the message is
slightly different, as you now have that modified file in the index:

Figure 3.27: Modified files in git status

Git helpfully gives you a command to unstage your files if you choose to do so.
Be careful with the restore command, however. If you use it as shown with the
--staged flag you will unstage your file, but if you leave out the flag you will restore
your file to your last commit, losing all the work you've done in the interim.

In our case, we want to commit that change, and so we will enter:

git commit -m "Add subtract method"

Notice that we don't need the -a flag as the files we want to commit have already
been added to the index.

Add a multiply method and commit it. Next, add an integer division method and
commit that as well:

public int Add(int left, int right)
 {
 return left + right;
 }
 public int Subtract(int left, int right)
 {
 return left - right;
 }

 public int Multiply(int left, int right)
 {
 return left * right;
 }

 public int Divide(int left, int right)
 {
 return left / right;
 }

Branching, Places, and GUIs

[54]

Examining your commits
Enter the log command:

git log –oneline

Figure 3.28: log command

Again, examine the output carefully. The first line tells you that HEAD is pointing to
the Calculator branch, as we would expect. Below that are a couple of commits and
then you see a line that indicates that Calculator on origin is only up to commit
e5c4db9 (the one where the message is Add calculator class).

Is that right? There are a couple of ways to tell. The easiest is to go to GitHub and see
if the Calculator class has what this indicates:

Figure 3.29: Branch on server

Chapter 3

[55]

Notice in the upper left that we are on the Calculator branch. Now drill down to the
code. What you see is only the class in its initial state. This is consistent with what
the log showed.

There is one more way to tell. Return to Visual Studio and click on the 3 next to the
up arrow on the right side of the very bottom of the application:

Figure 3.30: Accessing history on Visual Studio

When you do, a window will open that shows your local history and the "outgoing"
files – that is, the ones you've not yet pushed:

Figure 3.31: History in Visual Studio

Again, this is consistent with what log has shown.

Summary
In this chapter, you have learned about the crucial "five places" for Git: the work
area, the index, the local repository, the remote repository, and the stash. You have
seen how to use each of these and how they work together.

Each concept was illustrated with both code and screenshots, and every Git action
was illustrated in the command line, Visual Studio, and GitHub Desktop.

Finally, you have learned about creating branches, committing code, and how to
move commits from the work area to the repository and from the repository to the
remote repository.

Branching, Places, and GUIs

[56]

Challenge
Create a private repository on GitHub named Contacts, and then clone that repository
down to a folder on your disk. Using the command line, create a feature branch named
Person and in that feature branch, create a person object with their name, age, and
social security number. Create commits as you add each attribute. Review the log to
see what you've created and then add these commits to the remote repository.

Answer
There is no one right way to do this, but we'll walk through a likely answer.

Task #1 – create a private repository on GitHub named Contacts. To do this, open a
browser to Github.com and navigate to your repository page. Click on New and fill in
the fields as shown here:

Figure 3.32: New repo on server

Notice that I've marked the repository as private. Click the Create Repository button.

http://Github.com

Chapter 3

[57]

Task #2 – clone that repository down to a folder on your disk.

On the same GitHub page, click on Code and click on the clipboard to copy the
HTTPS or SSH path (if you have SSH you'll know it, otherwise choose HTTPS):

Figure 3.33: Copy address from server

Open the command line where you want your cloned repo and type:

git clone

and paste in the link you just copied:

git clone git@github.com:JesseLiberty/Contacts.git

You should see something like this:

Figure 3.34: Cloning from server to local repo

This indicates that you have cloned Contacts from GitHub into a directory named
Contacts and then you have changed to that directory.

Branching, Places, and GUIs

[58]

Task #3 – using the command line, create a feature branch named Person.

To create a feature branch, we'll use the branch command and the checkout
command (or the cb alias):

Figure 3.35: Creating a branch

Task #4 – in that feature branch, create a person object with their name, age, and
social security number. Create commits as you add each attribute.

For this I created my project (Contacts) and then within a folder, I added the Person
class:

Figure 3.36: Adding the Person class

Creating the class was intentionally trivial:

Figure 3.37: Person properties

Chapter 3

[59]

I then returned to the command line to check in these changes.

Remember to save your file before each commit or the command line will tell you
that there is nothing to commit.

Task #5 – review the log to see what you've created:

Figure 3.38: Examining the log

Task #6 – add these commits to the remote repository.

We'll try to push, but the remote repository won't have heard of our branch.
Fortunately, Git tells us what to do:

Figure 3.39: Pushing to server

Branching, Places, and GUIs

[60]

At this point, you have a local and remote repository named Contacts and a branch
named Person. On the branch named Person you have code for a skeleton class
named Person. A quick review of GitHub shows that main does not have a Person
object (or class, or folder):

Figure 3.40: Branches on origin

But the Person branch does:

Figure 3.41: Person branch on origin

As you can see, the Person branch does have the expected code.

[61]

4
Merging, Pull Requests, and

Handling Merge Conflicts
In this chapter, you will see how to merge branches, using different types of merges.
You will also see how to handle merge conflicts and tools to make managing conflicts
easier. You will learn about pull requests and the difference between a fast-forward
merge and a "true" merge.

In this chapter, you will learn:

• How to push a commit to the server
• How to manage your commits with the command line, Visual Studio, and

GitHub Desktop
• How to merge into the main branch
• What a pull request is
• What merge conflicts are and how to resolve them
• What a fast-forward merge is
• What a true merge is

Let's start with an overview of merging.

Merging, Pull Requests, and Handling Merge Conflicts

[62]

Merging overview
If you are on a feature branch, and the feature is sufficiently complete and tested,
you will want to merge your branch back into the main branch. Some organizations
let you simply merge, others (most?) require that you create a Pull Request (PR). A
PR says, essentially, "Please examine my code and if you think it is right, merge it
into the main branch."

Having a second (or third) set of eyes on your code before merging can save a lot of
headaches later on (see Chapter 12, Fixing Mistakes (Undo), on fixing mistakes).

Often, if you've been careful (see below) you will merge without a problem. From
time to time, however, you will run into the dreaded merge conflict. You'll see below
a couple ways to handle that conflict.

Book
You will remember from the previous chapter that we have a directory, C:\GitHub\
VisualStudio\ProGitForProgrammers, that is the home of the Books application and
that we've been editing in Visual Studio. Of course, we don't have to manage it in
Visual Studio; we can use any of our tools. For example, I can open the terminal and
change directories to the Books app:

Figure 4.1: Opening the terminal

Notice that it says I have one commit to push (as indicated by the up-pointing arrow
followed by the 1). I must have forgotten to do so the last time I was working with
this code. I don't want to just push it, however—who knows what's in there? There
are a few ways to find out.

What's in that push?
From the command line, we can use the git show command:

Chapter 4

[63]

Figure 4.2: Examining the push

There's a lot of information here. First, we see the author and the date. Then we see
the message that was attached to this commit (Add properties). Next, Git does a diff
(difference) between Book.cs and Book.cs naming the first one a and the second b.
The one labeled a is Book.cs before this commit, the one labeled b is the new contents
in this commit.

You may have noticed the line that says /dev/null. This indicates that a file is being
compared against nothing, and thus everything is new.

The next line shows that /dev/null is being compared against file b (the new Book.cs
file):

Figure 4.3: Comparing against dev/null

Merging, Pull Requests, and Handling Merge Conflicts

[64]

What follows are the changes. Deletions will be marked in red, modifications in
green, and new code in yellow. (This display and these colors may depend on which
shell you are using.) We see here that three using statements, a namespace, and the
class Book were all added in this commit. Before we push it, let's see what we can
learn in Visual Studio.

Visual Studio
Opening the same directory in Visual Studio and going to the Git view reveals, as we
would expect, that we have one commit to push (outgoing):

Figure 4.4: Visual Studio showing one file to push

Before we push, let's see what's in that push. Clicking on 1 outgoing opens two
windows. The Branches window shows us which branch we are on (Book):

Figure 4.5: Visual Studio showing contents of the local repository

The middle panel has the really cool info. It tells you the local (as opposed to origin)
history of your branches:

Chapter 4

[65]

Figure 4.6: Visual Studio showing commit history

We can see that main has five commits (reading newest to oldest) and that preceding
the newest commit in main, we have an outgoing commit on the Book branch,
whose message is Add properties. This is consistent with what we saw at the
command line.

We can go further, and return to Solution Explorer. Because there is more to see in
Program.cs (rather than Book.cs), right-click on Program.cs and choose Git and then
History. That opens the History page for Program.cs:

Figure 4.7: Visual Studio showing the history of Program.cs

Note that if we registered a user with an image, that image would
be shown on the extreme left.

Merging, Pull Requests, and Handling Merge Conflicts

[66]

Here we see the four commits. We can compare them by right-clicking on, for
example, the first one and choosing Compare with previous. Two windows open.
On the left, you have the older commit, on the right the newer. We can see that in
the newer commit one line was added, which is shown in Visual Studio with green
highlighting:

Figure 4.8: Side-by-side comparison

You can see that Visual Studio can give you a graphic representation of the same
information you might get from the command line.

Details, details
Let's close all these history windows and go back to the list of outgoing and local
history. Under Outgoing, we see Add properties. Right-click on that line and a
window will open on the right. You'll see the commit ID (ID) along with the name of
the committer, the date, and so forth. You'll also see the message and then you'll see
a list of which files were changed (in this case, Book.cs):

Figure 4.9: Visual Studio showing which files have changed for a commit

Chapter 4

[67]

We want to know what changed in Book.cs. To do this, right-click on Book.cs and
choose View History. The single commit will come up in the middle window.
Double-click on that and you'll see the Book class that is being added by this commit.

GitHub Desktop
We can open GitHub Desktop to the same directory. Click on File and choose Add
local repository...:

Figure 4.10: Opening GitHub Desktop

The next step is to tell GitHub Desktop where that repository is. A dialog opens
and you can either enter the local path by hand, or you can click Choose..., which
will bring you to a Windows Explorer window where you can pick the appropriate
directory. Once that is all set, click Add repository:

Figure 4.11: Adding a local repository

You'll now be brought to the main page. Notice that we are still in the repository
ProGitForProgrammers, but on the Book branch, and that it knows we have one
commit to push. It also offers a handy Push origin button with an explanation that
pressing that button will push the commit to the origin (the server; your repository
on GitHub):

Merging, Pull Requests, and Handling Merge Conflicts

[68]

Figure 4.12: GitHub Desktop information bar

Once again, we want to know what we are pushing. No problem, just click History
and you'll see the history of commits and the changes for whichever commit you
highlight:

Figure 4.13: History in GitHub Desktop

Now that we've seen the various ways the command line, Visual Studio, and GitHub
Desktop manage the commit, it is time to get the commit to the server.

Push it already
Let's return to the command line and push the commit we've been examining:

Chapter 4

[69]

Figure 4.14: Pushing from the command line

If you go to Visual Studio now, it should say 0 outgoing as you've pushed the one
that was waiting. Similarly, GitHub Desktop will have changed its button from Push
Origin to Create Pull Request – the likely next thing to do.

Now that we have the Book branch sorted, it is (finally!) time to merge it into main.

Visual Studio
Our goal is to merge Book back into main. To do this in Visual Studio, just click on
Git and then on Manage Branches. Your Branches window will open. Right-click
on main and choose Checkout. You are now ready to merge Book into main, which
you'll see in the right-click (context) menu as well:

Figure 4.15: Merging in Visual Studio

Merging, Pull Requests, and Handling Merge Conflicts

[70]

The trick is, while main is checked out, right-click on Book and you'll see the option
to make the merge.

Merge conflicts
Let's turn to the command line and do a pull as our branch has diverged from the
origin. When we do, we're told that there is a merge conflict in Program.cs and that
the merge has failed. Git tells you to fix the conflicts and then commit the result. This
is unusual, to get a merge conflict on a pull, but as you can see, it does happen. Let's
handle this conflict and then set up a more typical situation:

Figure 4.16: A merge conflict

There are a few ways to handle any merge, but the easiest is to use a merge tool. I use
KDiff3 (https://sourceforge.net/projects/kdiff3/). Since I use this a lot, I have
put it into my config file:

git config --edit --global

Figure 4.17: Reviewing the configuration file

This sets up KDiff3 as my merge tool and tells Git where to find it. One of the things
I like most about KDiff is that it will often fix the problem for you.

To invoke it, all I need to write is:

git mergetool

and it opens KDiff to the conflict.

https://sourceforge.net/projects/kdiff3/

Chapter 4

[71]

Here it found two problems and was able to fix one:

Figure 4.18: KDiff automatically solves one conflict

It then brings us to a window with multiple panes. The panes on top show you the
conflict:

Figure 4.19: Conflicts as shown in KDiff

You can see on the left side (Local) that we have one line whereas on the right side
(Remote) we have two lines. Clearly, someone else has edited this file that we edited
and now Git doesn't know what to do.

In the bottom pane is code to provide context and then a highlighted line where your
choice of which line(s) to place there is shown:

Figure 4.20: KDiff provides context for your merge

Merging, Pull Requests, and Handling Merge Conflicts

[72]

When you right-click on that line, you are given a choice to pick the left window
(window A), the right window (window B), or both (and you can choose the order
they are added in):

Figure 4.21: KDiff asking which version should be placed

Once you are done, save the file and close KDiff. <poof\> No more conflict. Git now
shows you the changes you made that should now be committed:

Figure 4.22: Console indicating that the conflicts have been resolved

You can now add that file and commit it, and then push it up to the origin:

Figure 4.23: Committing and pushing to origin

Chapter 4

[73]

We've seen how KDiff and similar programs can greatly reduce the amount of work
involved in solving merge conflicts.

Merging from the command line
Much more common is for there to be a merge conflict when you specifically merge
locally. To do so is pretty easy. From the command line, check out the branch you
want to merge into (main) and then use the Git command merge:

Figure 4.24: The merge command

Here Git used the "recursive" strategy; a way to speed up the merge.

Fast forward
Often, however, you'll see Git report that it used a fast forward merge. Fast forward
works like this; suppose your starting point is this:

Figure 4.25: Fast forward

Merging, Pull Requests, and Handling Merge Conflicts

[74]

You now want to merge Feature1 into Main. Notice that Feature1 branched from
the tip of Main (the latest commit). In that case, there is a path from the first commit
in Main to the last commit in Feature1. In that case, all Git has to do is move Main's
pointer to the tip of Feature1, creating a single branch (which it will call Main):

Figure 4.26: Moving the pointer

Because all that is required is moving a pointer to the last commit, this is called fast
forward.

True merge
In the previous example, Feature1 was branched off of Main at the point that is still
the tip of Main. But what if someone else merged a branch into Main, and now the
commit you branched off of is no longer the tip:

Figure 4.27: Feature 1 does not branch off the tip of Main

Chapter 4

[75]

In this case, you either need a rebase (covered in the next chapter) or a "true" merge:

Figure 4.28: A true merge is required

Because there was no path from Main to the tip of Feature1 that didn't leave out any
other commits (for example, the tip of Main), we use a new commit to bring the two
branches together.

Notice that this approach adds a new commit (A) that exists only for the merge. Over
time you will have a lot of these relatively meaningless commits cluttering up your
history. The solution to this is to rebase, as shown in the next chapter.

You don't change anything when doing a fast forward or a true merge; you merge
and Git takes care of the details

Avoiding conflicts
Avoiding conflict is generally a good thing to do, and in the case of Git, it is a very
good thing indeed. Rather than having to resolve a whole lot of conflicts all at once,
you really want to catch those conflicts as you go (and thus handle just one or two
at a time). If you are on a team, some conflicts cannot be avoided, but there are
two good rules of thumb to cut down drastically on the work involved in handling
conflicts:

• Do not have more than one programmer working on any given file
(if possible)

• Merge main into your feature branch very frequently

Merging, Pull Requests, and Handling Merge Conflicts

[76]

Notice #2 does not say to merge your feature branch into main, but rather the other
way around. This will not endanger the main thread, but will quickly reveal if there
are any conflicts so far. If so, you can fix them in your branch and move on.

Summary
In this chapter, you saw:

• How to merge branches
• The different types of merges
• How to merge conflicts
• How tools like KDiff can make merging easier
• What a pull request is
• What a fast forward merge is
• What a true merge is

Challenge
Pretend you are two programmers working on the same project – a utility that
contains a calculator and a Fahrenheit to Celsius converter. If you actually have two
programmers to do this, even better.

Set up a new repository and clone it to two different folders. Have one person
populate the main branch with the beginnings of the UtilityKnife project, commit the
changes, and push it. Have the other person pull the main branch's changes.

OK, you both have a main branch with some code on it. Now have each programmer
create their own branch, one to work on the calculator and the other to work on the
converter. Along the way, the converter will want to use some of the methods of the
calculator. Try to avoid or minimize conflicts, merge frequently, and resolve conflicts
that arise.

Answer
As always, there is no one single correct way to do this. Here is how I worked
through it.

Chapter 4

[77]

Task #1: Set up a new repository and clone it
to two different folders
Notice that we are going to use just one repository. We are building a single
program, but at least at first John is going to create the calculator while Sara is going
to create the temperature converter. We'll call the entire program UtilityKnife. To
begin we go to GitHub.com and create our new repository:

Figure 4.29: Creating the new repository

We then clone the repo into folders (or separate computers if there are two or more
of you). I'll create a directory, John, and clone this repo into that directory.

The readme file is written using Markdown. You can learn more
about Markdown at https://www.markdownguide.org/cheat-
sheet/ among other places on the net.

http://GitHub.com
https://www.markdownguide.org/cheat-sheet/
https://www.markdownguide.org/cheat-sheet/

Merging, Pull Requests, and Handling Merge Conflicts

[78]

Figure 4.30: Cloning from the command line

John has chosen to use the command line. Sara, on the other hand, likes to use Visual
Studio.

Begin by clicking on File and selecting Clone Repository...:

Figure 4.31: Opening the Git menu

Chapter 4

[79]

That will bring up a dialog box where you can paste in the path you took from
GitHub.com and the path to your new repo:

Figure 4.32: Cloning from Visual Studio

Click the Clone button, and Visual Studio will set up your cloned repository.

Solution Explorer validates that you have cloned the repository and brought down
the three files from GitHub:

Figure 4.33: Solution Explorer shows results of the clone

http://GitHub.com

Merging, Pull Requests, and Handling Merge Conflicts

[80]

Task #2: Have one person populate the main
branch with the beginnings of UtilityKnife,
commit the changes, and push it
We'll have Sara create a new solution in her directory for the UtilityKnife program:

Figure 4.34: Creating the program

When the project is completed, she adjusts Program.cs to be the skeleton of all that is
to come:

namespace UtilityKnife
{
 public static class Program
 {
 static void Main(string[] args)
 {
 // skeleton program
 }
 }
}

Chapter 4

[81]

With this in place, she will commit these changes using the Git menu:

Figure 4.35: The Git menu in Visual Studio

This will open the commit window, where you can fill in the commit message, and
then click Commit All:

Figure 4.36: The Git Changes menu in Visual Studio

Merging, Pull Requests, and Handling Merge Conflicts

[82]

Once you do, the view will change to remove the files and commit message and will
confirm the commit and show that there is one commit ready to be pushed:

Figure 4.37: Commit confirmation in Visual Studio

That is just what we want, so click on the upload button (the up-pointing arrow) and
push the commit to the repo on GitHub.

It verifies your success and offers to create a Pull Request for you, which we do not
want right now:

Figure 4.38: After commit Visual Studio indicates there is one file to push

Sara now has the starting main branch and is ready to create a feature branch. Before
we look at that, let's have John bring down the main branch as well:

Chapter 4

[83]

Figure 4.39: Pulling the repository from origin

This is a somewhat complex screenshot. We start by seeing that within C:\GitHub\
John there is a folder called UtilityKnife. We change to that directory and then do a
git pull. The result is the retrieval of the files for the UtilityKnife program.

Now both John and Sara have the same starter program for UtilityKnife.

Merging, Pull Requests, and Handling Merge Conflicts

[84]

Task #3: Each programmer creates a feature
branch. Each programmer then puts the
beginning of their feature into their branch,
committing frequently (more frequently than
you would in "real life")
John, who uses the command line, starts his feature branch by using the checkout -b
command, which both creates a new branch and checks it out:

Figure 4.40: Creating a new branch at the command line

He is now ready to start coding. Let's create a folder, and then within that folder, the
skeleton of our class and its first method:

namespace UtilityKnife.Converters
{
 public class FahrenheitToCelsius
 {
 public double FahrenheitToCelsiusConverter(double FahrenheitTemp)
 {
 double _fahreneithTemp = 0.0;
 double _celsius = 0.0;
 return _celsius;
 }
 }
}

Chapter 4

[85]

Let's save and commit this:

Figure 4.41: Committing from the command line

We begin by taking a status that shows us that we have one untracked file. We add
that file (remember that add . means add all the untracked and modified files to
the index), and then we commit it, adding a message. Uh oh, the commit message is
misspelled. Let's fix that with a new command: amend. Since we have not pushed, all
we have to do is enter --amend and use -m for the revised message:

Figure 4.42: Using the amend flag

Notice the second line reflects back the change, and if we use log to see the commits,
we'll see that the commit now is spelled correctly:

Figure 4.43: Using log to see the commit

Merging, Pull Requests, and Handling Merge Conflicts

[86]

John decides to push his commit from his local repository up to the origin (the
GitHub repo). When he tries, however, Git tells him that the server doesn't know
about his branch, but it helpfully gives him the right command to use:

Figure 4.44: Trying to push but failing. Git helps.

Meanwhile, Sara has begun work on the Calculator class.

Sara and the Calculator
Within Visual Studio, she clicks on the Git menu choice and then new branch. A
dialog opens, and note that it assumes you want to branch off of main (though if you
have multiple branches, you can of course branch off of any of them):

Figure 4.45: Creating a new branch

Chapter 4

[87]

She is ready now to code, and whatever she writes will not affect John's code (or
the code on main). You can verify that she can't even see John's work. They are on
different (and thus isolated) feature branches.

She will add the skeleton of a Calculator class within its own folder.

namespace UtilityKnife.Calculator
{
 public class Calculator
 {
 public static int Add (int x, int y)
 {
 return x + y;
 }
 }
}

Sara will now check this in, but unlike John, she will not push it up to the server.
Thus, it will be in her local repository only.

After selecting Git | Commit or Stash, she enters her message and clicks Commit
All:

Figure 4.46: Committing all

As noted above, this puts her commit into the local repository.

Merging, Pull Requests, and Handling Merge Conflicts

[88]

Task #4: Merge the main branch into the
feature branch frequently to ensure that if
there are conflicts, you catch them early
John wants to merge main into his branch to ensure that he catches bugs early. To do
this, he switches to main, updates by issuing a pull request, and then switches back
to his feature branch and enters merge main:

Figure 4.47: Main already up to date

No problem here. Main hasn't changed since we branched off of it, so
temperatureConverter is fully up to date.

Now, suppose John decides to merge his feature branch into main. Whether or not
this is wise, all he has to do is reverse the merge order:

Figure 4.48: Reversing the merge order

The key line here is:

git merge temperatureConverter

Chapter 4

[89]

We are on the main branch, and this merges the feature branch into main. You can
see that Git is able to fast-forward the merge, as described in a previous chapter.

John is now free to continue with his existing feature branch or to create a new
one. If, on the other hand, he had to do a Pull Request and then wait for his PR to
be approved before it is really merged, he would be wise to make a new branch,
possibly off of temperatureConverter.

Sara had taken a break but she's ready to go back to work. Being cautious, she wants
first to merge main into her feature branch to make sure there are no conflicts.
Remember, John and Sara may work well together but they are not telling each other
every time they commit or merge.

To start, Sara checks out main and does a pull to get the latest files from main. Now
she checks out Calculator and right-clicks on main:

Figure 4.49: Merging main into Calculator in Visual Studio

She will select Merge 'main' into 'Calculator'. Once again, doing so will not merge
her changes into main, but simply retrieve the newest version of main and merge
that into her feature branch.

Since Visual Studio is cautious, it will ask you if you are sure.

Figure 4.50: Visual Studio checks that what you are about to do is what you want to do

Merging, Pull Requests, and Handling Merge Conflicts

[90]

Clicking Yes will begin the merge. Now, remember that John had done some work,
and then merged his branch into main. Since there were no conflicts, Visual Studio
just tells Sara that the merge was successful:

Figure 4.51: Visual Studio signals success

Of course, merging main into Calculator will change Calculator, bringing in
everything in main. The key thing in main is what John merged, and we see that in
Calculator now:

Figure 4.52: Examining the result of the merges in Visual Studio

Note that since Sara has not merged her code into main, John has no awareness of,
nor way to get to, the Calculator class. If we open Visual Studio in John's branch, we
see Converters but no Calculator:

Figure 4.53: John's branch with no Calculator

Chapter 4

[91]

Let's pause a moment and think about what is happening on GitHub. Sara has
committed her changes but not pushed them, so GitHub won't know about her
branch. John has pushed his changes and also merged them into main. We would
anticipate two branches on GitHub, one for main and one for John; what's more,
at this point, main and John should be identical, and Sara should have a branch on
GitHub:

Figure 4.54: The branches on origin

Main has Converters (from John's merge) but not Calculator (because Sara has not
merged). John's branch (temperatureConverter) is identical:

Figure 4.55: Changing branches on origin

Merging, Pull Requests, and Handling Merge Conflicts

[92]

To drive this home, we can ask GitHub for a list of all the branches it knows about:

Figure 4.56: Asking GitHub to list all the branches

Task #5: John is building the temperature
converter. Have him "borrow" code from the
calculator. See if there are merge conflicts
In the next four commits, Sara fleshes out the calculator with subtraction,
multiplication, integer division, and division. She has not yet pushed her changes:

Figure 4.57: Fleshing out the calculator

These all show as updated by me because Sara and John don't
really exist.

Chapter 4

[93]

The formula for converting Fahrenheit to Celsius is:

(F – 32) * 5/9

John wants to convert 212° Fahrenheit (the boiling point of water) and expects to get
back 100° Celsius as a good test case. To do this, he could use the built-in subtraction
and division operators but instead chooses to use Sara's calculator. His first attempt
is to merge main into his branch:

Figure 4.58: Merging main into the working branch

Main is up to date and there is no difference between main and temperatureConverter.
Yet John doesn't have the functions he needs. This tells John that the calculator
functions he needs are not yet pushed to GitHub. He can call Sara and ask her to
push them so that he can pull them down, or she can merge them into main and then
he can update from main. Sara is not ready to merge into main, but agrees to push
her branch's commits.

She has four outgoing commits (that is, commits that have not yet been pushed to the
origin):

Figure 4.59: Visual Studio indicates four outgoing commits

Merging, Pull Requests, and Handling Merge Conflicts

[94]

To push these, she just clicks on the up arrow:

Figure 4.60: The push button in Visual Studio

John tries to bring down the changes but runs into a brick wall.

Figure 4.61: Unable to see Calculator

His local repository has never heard of the branch Calculator. There are a couple of
ways to solve this but the easiest is to ask Sara to merge her work into main:

Figure 4.62: Merging Calculator into main

Chapter 4

[95]

John is now ready to pull these changes. Once he does, he realizes that Sara has used
integers and he needs doubles. He modifies the Calculator class to use doubles, and
while he is at it, he makes all the methods (and the class) static. (If you're not familiar
with C#, don't worry about what that means; the important thing is that he's made a
change)

namespace UtilityKnife.Calculator
{
 public static class Calculator
 {
 public static double Add(double x, double y)
 {
 return x + y;
 }
 public static double Subtract(double x, double y)
 {
 return x - y;
 }
 public static double Multiply(double x, double y)
 {
 return x * y;
 }

 public static int Division (int x, int y)
 {
 return x / y;
 }

 public static double Division (double x, double y)
 {
 return x / y;
 }

 }
}

When Sara merges Calculator into main, she does so locally. She
still has to push these changes to the origin to do John any good.
She pushes as she would any commit.

Merging, Pull Requests, and Handling Merge Conflicts

[96]

Figure 4.63: Pull the changes for the branch

The second line says that we're starting out with main up to date with origin/main.
However, when we do a pull, the local Git finds objects to bring down for main.
There are 22 objects. Why 22 when there were only 4 commits? Some of these objects
are used internally by Git.

Later, we see that the merge was a fast forward, and the next line shows that there
were 29 additions and no modifications or deletions (if you count the + marks, you'll
find that there are 29). This is followed by the confirmation that 1 file changed with
29 insertions.

John is almost there. His local copy of main now has what he needs, but it is on the
wrong branch. The solution is to merge main into temperatureConverter.

Because the order of which branch is being merged into the other matters, I always
look it up on Stack Overflow:

Figure 4.64: Stack Overflow advice

Chapter 4

[97]

These are exactly the steps John needs to take:

Figure 4.65: Merging

The last two lines indicate that Calculator has been brought over with the merge
and that temperatureConverter has two commits to push to its repo.

A quick look at the log shows that HEAD, origin/temperatureConverter, origin/main,
origin/HEAD, and origin/Calculator are all pointing to the same commit as main!
Thus, John's branch now has access to the Calculator class:

Figure 4.66: Access to the calculator

He can now return to his program and use these static methods:

namespace UtilityKnife.Converters
{
 public class FahrenheitToCelsius
 {
 public double FahrenheitToCelsiusConverter(double fahrenheitTemp)
 {
 double _celsius = 0.0;

 // (F – 32) * 5/9

 var step1 = Calculator.Calculator.Subtract(
 fahrenheitTemp, 32);
 var step2 = Calculator.Calculator.Multiplication(
 step1, 5.0);
 _celsius = Calculator.Calculator.Division(step2, 9.0);
 return _celsius;
 }
 }
}

Merging, Pull Requests, and Handling Merge Conflicts

[98]

I agree that this is wicked ugly, but it works, and more importantly, it demonstrates
that John's temperatureConverter can use code from Calculator. What's more, John
can edit Calculator. We'll see what happens when all this is merged.

In jumping back and forth between John and Sara, I did the work in Sara's folder. No
harm done, however. We'll just have Sara commit the changes. Uh oh, the changes
were made on main. Let's clean all this up. First, on Sara's machine, let's merge main
into Calculator:

Figure 4.67: Merging main into Calculator in Visual Studio

This is just like the previous merges except that now Calculator is the checked-out
branch and we right-click on main to get the Merge 'main' into 'Calculator' option.
Now, to ensure that all is right with the world, merge Calculator back into main.

At this point, Sara's main and Calculator branches are identical, but John still doesn't
have what he needs. Sara can now push main to the origin with a simple push.

John can now retrieve main, which should have the changes he needs:

Figure 4.68: Retrieving main with changes

Chapter 4

[99]

Great, main has what John needs, but he needs it on his branch. No problem, we'll
merge main into temperatureConverter:

Figure 4.69: Merging main into temperatureConverter

Let's go look at John's Fahrenheit converter and see if it is now up to date.

namespace UtilityKnife.Converters
{
 public class FahrenheitToCelsius
 {
 public double FahrenheitToCelsiusConverter(double fahrenheitTemp)
 {
 double _celsius = 0.0;

 // (F – 32) * 5/9

 var step1 = Calculator.Calculator.Subtract(
 fahrenheitTemp, 32);
 var step2 = Calculator.Calculator.Multiplication(
 step1, 5.0);
 _celsius = Calculator.Calculator.Division(step2, 9.0);
 return _celsius;
 }
 }
}

We can test that this worked by feeding the method 212 and hoping to get back 100.
Let's turn to the program for that:

using System;
using UtilityKnife.Converters;

namespace UtilityKnife
{

Merging, Pull Requests, and Handling Merge Conflicts

[100]

 public static class Program
 {
 static void Main(string[] args)
 {
 var converter = new FahrenheitToCelsius();
 var celsius = converter.FahrenheitToCelsiusConverter(212.0);
 Console.WriteLine($"Fahrenheit temp of 212 is {celsius}.");
 }
 }
}

Let's run our program:

Figure 4.70: Testing the program

We have completed the challenge and managed all our branches. More important,
the program works!

[101]

5
Rebasing, Amend, and

Cherry-Picking
If you say "rebasing" to most novice Git programmers, they burst into tears and
run screaming from the room. But the truth is that this is only because of how it
is explained in so many books and magazines, where rebasing is (correctly but
confusingly) shown with diagrams of commits being copied and moved along with
dense and technical text.

In truth, rebasing is not hard to understand, and it is not hard to do if you
understand what it is for. In this chapter, we will review rebasing without fear.

Rebasing is a command that allows you to take a feature branch and place it on the
tip of another branch. We'll discuss how, and more importantly why, you would do
this.

Amending is a quick command that allows you to modify the most recent commit.
You can use this to add a file you forgot to put in the commit or to fix up a botched
message.

Cherry-picking is the ability to take one or more commits from a branch and apply
them onto the tip of another branch.

Git programmers describe these three commands as rewriting history and that is
what they all have in common. Each has the ability to change how commits were
added to the repository, and thus clean up your list of commits.

Rebasing, Amend, and Cherry-Picking

[102]

Rebasing
Rebasing is nothing more than taking one branch and adding it to the tip of another,
where the tip is simply the last commit in the branch. For example, suppose you
have the following structure:

Figure 5.1: Git structure

You can't do a fast forward here, because Main has moved on since you branched
from it. You can do a true merge, but a true merge adds a commit to your history
every time you do one:

Figure 5.2: True merges

Chapter 5

[103]

A rebase solves the same problem, but without adding merges to the commit history.

Notice that as you review this history, you have to skip over a significant number of
commits since they are just merges. Rebase eliminates most of these commits.

Here comes the important part:

• You merge branch Feature1 into Main, but you rebase Feature1 onto Main.
• Returning to our earlier example, if you rebase Feature1 onto Main, it looks

like this:

Figure 5.3: After the rebase

Rebasing, Amend, and Cherry-Picking

[104]

• There is now a clear path from the first commit of Main to the last commit of
Feature1 without leaving anything out. This is most often drawn like this:

Figure 5.4: Another way to look at the commits after rebasing

• This emphasizes that you have rebased Feature1 onto the tip of Main (the tip
is Main's latest commit).

That is all there is to rebasing. Honest.

How Git does it
Generally, I don't spend time or brain cells on how Git does what it does, but here it
is worth noting that to rebase, Git rolls back history to the first Feature1 commit and
then makes a copy and adds it to the tip of Main. It then makes a copy of the second
Feature1 commit and puts that on top of the latest commit, and so forth.

The reason this is important is that a copy is made, and thus will have a different ID.
Okay, you are now free to forget all this and treat rebasing as the magic it is.

Chapter 5

[105]

Getting your head around it
Rebasing is not hard, as you have seen. But truly grokking what is happening and
why it is okay takes anywhere from five minutes to five years. We are taking our
feature and putting it on top of Main. Remember that our feature started as a branch
off of Main.

Now we're incorporating all that is in Main into our feature.

That is the critical part. Because we do this locally, we are just saying "no matter
how much Main has advanced, I will eventually need to merge into it. For now, I'm
going to rebase onto Main, making it one long branch, and make sure there are no
conflicts."

Rebase early and rebase often
It is very good practice to rebase frequently, so as to surface any conflicts that might
arise. Each time you rebase, you end up with a stack of commits that has all that came
before and then your new commits at the tip. If a conflict arises between what you just
added and what was there, you will see it immediately and can fix it on the spot.

Rebase locally only
You rebase only on your local machine, and never on the shared repository in the
cloud (for example, GitHub). This is because rebasing "rewrites history" – remember
that it makes copies of Feature1 – and if another programmer is working on that
branch, they will not be happy with you if you rebase. This is the kind of "not happy"
that can lead to felony charges.

Rebasing in practice
Let's create a new repository named Rebasing. We're going to watch Adam as he
creates a branch named Person by taking the following steps:

1. Go to the main root directory
2. Create a branch named Person
3. Open Visual Studio and create a project named Person
4. Create a new class named Person
5. Add the Rebasing repo to your local repository
6. Add the repository and commit it (which will also commit Person)

Rebasing, Amend, and Cherry-Picking

[106]

7. Add an age property to Person and commit (but don't push):
namespace Rebasing
{
 public class Person
 {
 public double Age {get; set;}
 }
}

8. Add a name property and commit but don't push

After we add a height property, we are in this situation:

Figure 5.5: History of commits in Visual Studio

We could push now, but there is more work to be done on the Person class. On the
other hand, we don't want main to have moved so far away from us that we'll have
too many conflicts when we are done with person. The answer: rebase. Make sure
you are on person, then right-click on main and choose Rebase 'person' onto 'main':

Figure 5.6: Rebasing in Visual Studio

Chapter 5

[107]

With that done, we can continue working on the Person branch.

Notice that you have only four outgoing commits:

Figure 5.7: Rebasing does not add a commit

The rebase did not add a commit, and keeps your history clean.

Seeing the rebase at work
To see that your rebase did actually rewind the history of your commits and
then add each commit back on top of main, go to the command line and issue the
command git log --name-only --oneline:

Figure 5.8: Rebase rewinds history

Rebasing, Amend, and Cherry-Picking

[108]

What we see here going from top to bottom is the addition of the final property
(height) and then we rebase Person.cs and add the name property. Next, we rebase
and add the age property. We continue this all the way back until we've rebased all
of the files onto the tip of main.

Conflicts
When rebasing we may well run into conflicts. You will remember that we have one
branch: Person. Let's have a second programmer clone the repository. That second
programmer is happily working away in their branch (teacher) when they realize
they need person to have a different age. They add this to the file (okay, no one is
quite that stupid, but this kind of thing happens in more subtle ways):

Figure 5.9: Rebasing caused conflicts

Fortunately, Git tells you what to do.

Remember, you can at any time enter git rebase --abort and go back to where you
were before you started the rebase.

This time, however, we'll fix the problem by hand. Open the file pointed to
Person.cs:

namespace Rebasing
{
 public class Person
 {

<<<<<<< HEAD
 public double Age { get; set; } = 35;
=======
 public double Age { get; set; } = 30;
>>>>>>> cb76bd6 (set age to 30)
 public string Name { get; set; }

Chapter 5

[109]

 public double Height { get; set; }
 public double Weight { get; set; }

<<<<<<< HEAD
=======

>>>>>>> cb76bd6 (set age to 30)
 }
}

The part that looks like this:

<<<<<<< HEAD
 public double Age { get; set; } = 35;
=======

is the code in the current revision; the next set of code:

>>>>>>> cb76bd6 (set age to 30)
 public string Name { get; set; }
 public double Height { get; set; }
 public double Weight { get; set; }

<<<<<<< HEAD

is coming from the code to be rebased.

Bleh. What a mess. You can fix this by hand, making the adjustments and then
removing the conflict markers, or you can use a tool as mentioned in the previous
chapter.

To fix this, we'll adjust the age in the branch onto which we rebase the patches; i.e. 35
is the authoritative age, therefore the 35 line is the one we want to keep, and we want
to remove the rest.

In any case, once you have resolved the conflicts, return to the command line and
enter git rebase --continue. This will resume the rebase, checking for other
conflicts. If there are none, Git will ask you to enter a message and the rebase will be
completed:

> git rebase --continue
[detached HEAD 5843a73] Rebased, set age to 30
 1 file changed, 1 insertion(+)
Successfully rebased and updated refs/heads/person.

Rebasing, Amend, and Cherry-Picking

[110]

The key with rebase conflicts is not to panic, but to work your way through them
one by one. Take heart, had you not done the rebase, you would have run into these
issues and more when trying to merge into main once you were done with your
feature branch.

Amending
If you check in a change and then realize you've left out a file or have mangled the
message, you can use the amend command. However, you can only amend the most
recent commit.

Let's say we return to person and we add a weight property and then commit it.
Before we push it, we realize we left out a change to Program.cs:

namespace Rebasing
{
 class Program
 {
 static void Main(string[] args)
 {
 var person = new Person();
 person.Name = "Jesse";
 }
 }
}

Since the error was in the most recent commit, we can amend that commit. All we
need to do is put the Program.cs file into the index and then issue the command git
commit --amend.

Because amend rewrites history, you must do this only before you push (that is,
while the commit is only in your local repo), for the same reasons as noted above:

Figure 5.10: Amending (before pushing!)

Chapter 5

[111]

Let's take this one line at a time from the top. First we notice that one commit is
waiting to be pushed. That is the commit we're going to amend.

On the second line, we add the file we want to amend to the index.

Next, we add the amend command: git commit --amend.

Git will respond by opening your editor so that you can amend the message (which
we see here: add person and in person add weight).

Finally, it tells you all the usual information about the commit.

Notice, however, that you still have only one commit waiting to be pushed. The
amend did not appear to create a new commit (okay, technically it did, but you can
safely ignore that).

If you use a commit with no file name but with the message flag, you change only
the message for that most recent commit. You don't even need the flag; if there are no
new, modified, or deleted files in the index, it will open your editor for you:

Figure 5.11: This will cause your editor to open

If you get the history now, with log, you'll see the amended message:

Figure 5.12: The message amended in the editor

Amend can save you a lot of work down the road, and it is important to have a well-
written message to clarify the purpose of the commit.

Rebasing, Amend, and Cherry-Picking

[112]

Cherry-picking
Sometimes you just need one or a small number of commits from one branch to
be added to the tip of another branch. A common case is this: you have a release
branch and a feature branch. The release branch is "frozen" but then you need to
add a commit from a feature branch to the release branch (possibly a patch to fix a
problem). When you cherry-pick, the picked commit goes to the tip of the branch
you are cherry-picking onto.

An illustration will help. Here's our starting point:

Figure 5.13: Before cherry-picking

We discover that we do not want all of Feature1 on Main, but we do want Feature1B
(it has the fix or feature set we need). To do this at the command line you enter git
cherry-pick a2cb5f3 where a2cb5f3 is the ID of the feature commit you want to
cherry-pick.

What you end up with looks like this:

Chapter 5

[113]

Figure 5.14: After the cherry-pick

Notice that Feature1B is now added to the tip of main, but it is also left on the feature
branch.

Visual Studio cherry-picking
Visual Studio has terrific support for cherry-picking. Just go to the branch you
want and then open the history. Right-click on the commit you want and choose
Cherry-Pick:

Figure 5.15: Cherry-picking in Visual Studio

Rebasing, Amend, and Cherry-Picking

[114]

Cherry-picking can be essential when you've branched off your develop branch but
create something on a feature branch that you realize you need.

Summary
In this chapter, we looked at a few advanced topics:

• Rebasing
• Amending
• Cherry-picking

What all three of these have in common is that they all rewrite history. Rebasing does
so by copying all the commits of one branch onto the tip of another. Amending does
so by allowing you to add files and/or change the message on a commit. Finally,
cherry-picking acts like rebasing, but using just one or a few commits.

You saw that many of these activities are easier in Visual Studio but that some things
you want to do are much clearer at the command line.

Finally, we explained why you merge into main, but you rebase onto main.

Challenge
Create a new repository called Panofy, which supplies MP3 music to its subscribers.
There will be three branches: main, which you get when you create the repo, and two
feature branches. Demonstrate the following:

• Creating the repository
• Two programmers creating feature branches
• Frequent rebasing
• Amending a commit to add a file
• Amending a commit to change the message
• Cherry-picking one commit onto main

Answer
Once again, there are many ways to solve this challenge. Here is how I went about it.

Chapter 5

[115]

Creating a new repository on GitHub
We've seen this before, so I'll do it quickly. I'll navigate to GitHub.com and fill in the
usual form, making this demo program public:

Figure 5.16: Creating a new repository

Once you've created the repository, you and anyone else who wants to develop
against it (and has the right permissions) can clone it locally.

http://GitHub.com

Rebasing, Amend, and Cherry-Picking

[116]

Creating two feature branches with fake
programmers
To do this, I'll create two directories, and clone to each. My first directory I'll call
GitHub/DirA and my second GitHub/DirB. I will then clone into each:

Figure 5.17: Cloning the program to the local repository

Only Mateo will program in DirA, and only Kim will program in DirB.

Create a C# program in both DirA and DirB. Once done, use git status to ensure
they are both pointing to main. To be certain, make a small change in DirA and make
sure it is reflected in DirB. It is easy to become confused as to which directory your
Visual Studio is pointing to. You can always right-click on the project and choose
Open folder in File Explorer to double-check.

The steps I'll take to confirm that both directories have the same main branch are:

1. In branch B I will make a change and push it
2. In branch A I will pull the change to make my local repository
3. Finally, I will inspect Visual Studio in branch A to prove that it is identical to

branch B:

Chapter 5

[117]

Figure 5.18: Cloning to ensure the two repositories are identical

To keep track of what I'm looking at, I changed the name of the project for B to
PanofyB. I then pushed that and on A I pulled it, so that both stay in sync.

This approach is fraught with danger, not least of which is that it is easy to overwrite
the work of another developer, or to create conflicts. To avoid that, I'll create
a branch for each programmer. I'll create a branch called Calculator on A and
a branch called Converter on B.

Rebasing, Amend, and Cherry-Picking

[118]

Frequent rebasing
Now that we have two branches, and to keep this simple, we'll build a new version
of UtilityKnife, this time with small features and frequent merging. Mateo will go
first, creating the structure of the calculator, checking it in and you would merge it
into main (you would not normally do it this way – you would build a few aspects of
the feature, checking it in frequently, and then when you are done merging it, but we
need some demo code).

When I first add to Calculator, main is identical, so when I rebase, essentially
nothing happens:

Figure 5.19: Rebase early and Rebase often

Let's do a bit of work on Calculator and then get ready to push it. Before we do,
however, let's do a rebase, in case work was done and pushed to main on a different
thread:

Chapter 5

[119]

Figure 5.20: Pull changes and then get calculator, remembering to rebase onto main

Yes! Even though another thread (in this case converter) is added to main, we were
able to rebase calculator's code on top of it. We now know that there will be no
conflicts, at least so far in development.

Amending a commit to add a file
Let's return to the Calculator class. We'll add a division example using doubles,
check it in, and commit it:

Figure 5.21: Using amend to add a file to the most recent commit

Rebasing, Amend, and Cherry-Picking

[120]

After we make the commit, we realize that we intended to add a square root method
as well:

public double SquareRoot(double x)
{
 return Math.Sqrt(x);
}

We'd rather not create a new commit just for that. What we want to do is amend the
most recent commit. We do that with the --amend command.

To do this, we put the file(s) we want to add into the index and issue the git commit
--amend command:

Figure 5.22: Amending the commit to include the change in Calculator.cs

We take the following steps in the code shown above:

1. Call git status. Note that we have a modified file, so add it to the index
with git add.

2. Invoke git commit --amend, which commits the new code as part of the
previous commit.

3. The editor will open; put in the new message. Notice that the new message is
now displayed (second arrow).

This allows us to amend the message to something more meaningful. You'll see
another way to do this in the chapter on interactive rebasing.

Chapter 5

[121]

Amending a commit to change the message
If there is nothing new in the index then git commit --amend will just give you an
opportunity to change the message:

Figure 5.23: Using amend to modify the message of the most recent commit

We do a git status to make sure that nothing is in the index. We then call git
commit --amend just as we did before, but we add a message (if we didn't add a
message our editor would come up). Since there was nothing in the index, Git just
changes the messages.

Cherry-picking one commit onto main
Here is the log for main and for calculator:

Figure 5.24: Cheryy-pick onto main

Rebasing, Amend, and Cherry-Picking

[122]

We don't want to merge all of calculator into main but we do want to add the
multiply and divide commits.

Notice the seven-integer ID next to each commit. To cherry-pick 972d77a into
main, we make sure main is the current branch and then we issue the cherry-pick
command with the ID of the commit we want to add:

Figure 5.25: Issuing the cherry-pick command

You have committed 972d77a into main, and main has one commit to push. Before
we push let's look at those logs again:

Okay, that is silly, but for a real-world example imagine that main
is your release branch, and calculator has an important function
that you want to add.

Chapter 5

[123]

Figure 5.26: Examining the log after the cherry-pick

Three things to notice here:

1. Main now has the add multiply and divide commit
2. Multiply and divide have not been removed from calculator
3. The ID is different for the two commits, meaning they are separate commits

and manipulation of one will not affect the other

This example answer meets the requirements of creating two feature branches off a
new repo, and the "programmers" rebase frequently. We also amended a message
(while local) and used cherry-picking to copy one commit onto the main branch.

[125]

6
Interactive Rebasing

Interactive rebasing is a confusing name for a very useful Git functionality. From a
user's perspective, rebase and interactive rebase have little in common.

Interactive rebase allows you to clean up your commits, but only before you push
them to the server. With interactive rebasing you can:

• "Squash" your commits so that your commit history is sparser and easier to
read

• Modify the message for your commits
• Fixup, which is just like squash except that it doesn't stop and ask for a new

message
• Drop, which removes a commit

The key thing here is that you are modifying commits, not the files that go into a
commit. And, as I'll keep mentioning, you must do this interactive rebasing before
you push your commits to origin. You never modify commits once they are on the
server because other developers may be interacting with the commits, and you will
likely create conflicts, which are time-consuming to repair. See Chapter 4, Merging,
Pull Requests and Handling Merge Conflicts, for information on merge conflicts.

Interactive rebasing at work
To see this at work, we need a dozen commits. Let's create a new quick and dirty
program and create commits with every line. Once we have that, we can look at how
interactive rebasing is accomplished at the command line and also in Visual Studio.

Interactive Rebasing

[126]

Creating our example
For variety's sake, let's create the skeleton of a music tracking application. The first
step is to create the repository on GitHub:

Figure 6.1: Creating a repository

With the repository created, we need to clone it into a local repository. This time let's
use Visual Studio, and GitHub's awareness of Visual Studio. On GitHub click on
Code and when the dropdown opens, choose Open with Visual Studio:

Note: you would never commit this frequently, but we
need commits to work with.

Chapter 6

[127]

Figure 6.2: Downloading a commit with Visual Studio

When you do, Visual Studio will open and offer to save your project, with the name
and default location chosen. For this exercise, create a solution with that project, and
then add a Music class:

Figure 6.3: Cloning a repository with Visual Studio

Click on Clone in the lower-right corner and you will be brought to your application.
You may be asked to sign in to GitHub if you haven't already done so from Visual
Studio.

Interactive Rebasing

[128]

Because the checkboxes were selected at repo creation, your three files are already
in the Solution Explorer (README.md, LICENSE, and .gitignore). Your next step is to
create a project in that solution. In our case, we'll create a console application named
MusicHandler. Click on File | New Project and select Console Application. You'll be
asked what framework you'd like to use. For this console application any will do; I'll
choose .NET 5. Click on Create in the lower right-hand corner.

Your application is created, complete with Program.cs. Let's make this our first
commit. Staying in Visual Studio, we can click on the Git menu item, and choose
Commit or Stash:

Figure 6.4: Your first commit with Visual Studio

As soon as you select it, the right-hand window (where Solution Explorer is) will
turn into a Git handler:

Figure 6.5: Visual Studio's principal Git handler

Chapter 6

[129]

There is a lot of information here. At the bottom of the figure, you see that the project
and Program.cs are marked as new (capital A) and that there are two changes (which
is correct). You can stage them by clicking on the + sign. Or you can click on Commit
All to both stage and commit your files.

Enter your message and select Commit All:

Figure 6.6: After creating a commit in Visual Studio

The view immediately changes in a few significant ways. At the top you see that a
commit was created locally – that is, in the local repository. You also see that you
now have "1 outgoing" – that is, one commit locally that has not been pushed to the
server.

You also see an Amend checkbox; you can use that if you want to change the
message on the most recent commit. Even though we have one outgoing, we are not
going to push that commit. We need a number of local commits.

We need a solution to work with, so create a new project/solution in the same
location. When you are done, your Solution Explorer should look like Figure 6.7:

Figure 6.7: Creating a project in the repo folder

Interactive Rebasing

[130]

We're now ready to create our Music class:

using System;

public class Music
{
 public Music()
 {
 }
}

Let's commit that. You will see that your files are not yet tracked. You'll need to add
them to the index:

git add .

Now you are ready to commit it:

git commit -m "Add music class"

If you look at the log, git log --oneline, you should see all three commits: the one
created when you cloned the repository and the two you created by hand:

8147adb (HEAD -> main) Add music class
238230b Initial Commit
b6fc88f (origin/main, origin/HEAD) Initial commit

Let's create two more commits. We'll start by giving the Music class some properties,
committing as we add each one:

using System;

public class Music
{
 public string Name { get; set; }
 public string Artist { get; set; }
 public DateTime ReleaseDate { get; set; }

}

We can review our commits by going to the Git menu and choosing View Branch
History (which is much like git log ––oneline):

Chapter 6

[131]

Figure 6.8: Reviewing a commit in Visual Studio

The result is a list of the IDs, the author of the commit, the date of the commit, and
the commit message, as shown in Figure 6.9:

Figure 6.9: Reviewing the history of commits in Visual Studio

Notice that Visual Studio differentiates between those commits that are already on
the server (under Local History) and those that have not yet been pushed (under
Outgoing).

Let's add just three more commits. If you followed along, then you are as stuck as
I am with Music outside of any namespace. Let's fix that:

using System;
namespace MusicHandler
{

Interactive Rebasing

[132]

 public class Music
 {
 public string Name { get; set; }
 public string Artist { get; set; }
 public DateTime ReleaseDate { get; set; }

 }
}

Now drag Music.cs out of the solution and into the project, and you will thus have
fixed my error. This is an easy error to make when grabbing a solution from a
repository using Visual Studio.

Commit these changes.

Now we can make an instance of Music inside Program.cs and commit that:

static void Main(string[] args)
{
 var music = new Music();
 music.Name = "Ripple";
 music.Artist = "Grateful Dead";
 music.ReleaseDate = new DateTime(11, 1, 1970);
}

We can now use the Git menu in Visual Studio to see the entire commit history:

Figure 6.10: Returning to Visual Studio to see the entire commit history

Chapter 6

[133]

We should see the same information in our log from the command line:

Figure 6.11: Using the log to see the commit history

Using interactive rebase to clean up your
commits
Let us suppose that we do not want the three commits of name, artist, and release
date to appear as separate commits, cluttering up the history. This is where
interactive rebase comes in. We need only to count the number of commits down to
one or two past the Add Name property. Let's say we decide on 7. We can then enter:

git rebase -i HEAD~7

Git will respond with:

hint: waiting for your editor to close the file…

and it will open Visual Studio Code as shown in Figure 6.12:

Figure 6.12: Waiting for your editor to open

Interactive Rebasing

[134]

Now comes the fun part. For each line, we have a number of options:

• Leave pick, which will just keep the commit as is
• Squash – the one we want, explained below
• Drop – leave that commit out – erase it
• Label – label chosen commit(s) with a label (see Chapter 6, Using the Log)

You can also re-order your commits if that is somehow helpful to you.

Let's do what we set out to do, squash the release, name, and artist into the commit
above (create the music class). With Visual Studio Code make the changes shown in
Figure 6.13:

Figure 6.13: Inside the editor for an interactive rebase

Notice we are set to squash the release date into the artist (making them one
commit), then squash that commit into Name, and then take all of that and squash it
into the music class. This will make one commit out of the four.

Save the file; Git comes back and re-opens the file and offers to allow you to fix up
the messages. It starts by showing you what messages you had, as shown in Figure
6.14:

Figure 6.14: The history of the messages

Chapter 6

[135]

You can now choose your message (and edit it as well) leaving out or including the
previous messages.

I will choose one meaningful message:

Figure 6.15: Choosing the messages you want to keep

Notice, again, that there are extensive comments at the bottom of the file to help you
understand what is happening:

Figure 6.16: Progress notes on your interactive feedback

When we save and close this file, Git tells us that the rebase was successful.

If you ask Git for the status at this point, you'll get a review of where your rebase
stands:

Figure 6.17: Git status after an interactive rebase

Interactive Rebasing

[136]

Enter git rebase ––continue and you should see a recap and success message as
shown in Figure 6.18:

Figure 6.18: Git summary of interactive rebase

Your rebase worked. Let's look at the log:

Figure 6.19: Log reflects the interactive rebase

Let's turn back to Visual Studio and ask for a history:

Figure 6.20: Looking at the modified history in Visual Studio

Notice that the interim commits are gone! They have been merged into Add music
class.

Interactive rebase is both powerful and safe. It can clean up your commits before
pushing them, making it easier for your teammates to read the history. If you get into
trouble during the interaction with interactive rebase, you can enter:

--abort

to return to where you were before the interactive rebase started.

I confess, I use squash all the time, and I almost never use any of the other options;
though it is good to know they are there.

Chapter 6

[137]

Summary
In this chapter you learned:

• How to use interactive rebase to squash commits before pushing them
• Other options in interactive rebase
• The impact of squash in interactive rebase
• How to fix up the messages for your rebased files

Challenge
In this challenge you will create a new project that you will clone to your local
repository using GitHub Desktop. You will then add at least 7-8 commits. Finally,
you'll use interactive rebase to squash some of your commits together. Feel free to
experiment with some of the other options in interactive rebase.

For my project I'm going to create a solution that tracks the Rocky Horror Picture
Show (a true classic).

Step 1, as usual, is to create the new repository:

Figure 6.21: Creating the repo

Interactive Rebasing

[138]

Step 2 is to clone to your disk; however, this time we'll use GitHub Desktop:

Figure 6.22: Downloading the repository with GitHub Desktop

GitHub Desktop will be launched:

Figure 6.23: Launching GitHub Desktop

GitHub Desktop will launch and pop up a modal dialog box asking you to confirm
or change the repository and where you want to put it on your disk:

Figure 6.24: Cloning to GitHub Desktop

Chapter 6

[139]

As expected, your repository is cloned to the folder you designated, and GitHub
Desktop is set to your repository and main branch:

Figure 6.25: Confirming the local repository was created

The next step is to create a project in that directory. GitHub Desktop is immediately
populated on the left side with the files you've entered, and on the right side with the
changes to the selected file:

Figure 6.26: Creating a project in your repository directory

We want to commit this, but not push it. We make the commit using the commit
section at the bottom left:

Figure 6.27: Creating a commit (with a message) in GitHub Desktop

Interactive Rebasing

[140]

GitHub Desktop reconfigures to show you the current state of your project:

Figure 6.28: The state of your project, shown in GitHub Desktop

Following the arrows from left to right we see that there are now zero changes to
report; this is reiterated in the headline and the third arrow points to the button that
would push your changes to origin (which we will not do now).

In the upper left-hand corner is a button that says History; clicking that brings you to
your commit history, with each file added or modified in that commit listed:

Figure 6.29: Your commit history in GitHub Desktop

There is quite a bit to see here. The highlighted commit has an up arrow offering to
push it to origin. It also has the one-line headline from the commit, which is repeated
on the right where you will also find the commit message. Once again, clicking on
any of the files in that commit will show the changes in the right-hand window (not
shown).

Now let's add commits as we have in the past. I opted to begin by creating a class
called Showing, which will have properties for the location and time of each showing
of the film in Boston for a given week:

Chapter 6

[141]

namespace RockyHorror
{
 public class Showing
 {
 }
}

I'll commit after creating the class and each of its properties. When I'm done, Showing
looks like this:

namespace RockyHorror
{
 public class Showing
 {
 public string Location { get; set; }
 public int NumberOfSeats { get; set; }
 public List<DateTime> ShowTimes { get; set; }
 }
}

The first time I saved this file, ShowTimes was just a DateTime, but I quickly realized
that would require an object at each location for each showtime, so I changed it to a
list of DateTime objects.

Program.cs ended up looking like this:

using System;
using System.Collections.Generic;

namespace RockyHorror
{
 class Program
 {
 static void Main(string[] args)
 {
 var showing = new Showing();
 showing.Location = "Brattle";
 showing.NumberOfSeats = 250;
 showing.ShowTimes = new List<DateTime>
 {
 new DateTime(0,0,0,10,0,0),
 new DateTime(0,0,0,13,0,0),
 new DateTime(0,0,0,16,0,0),

Interactive Rebasing

[142]

 new DateTime(0,0,0,19,0,0),
 new DateTime(0,0,0,22,0,0),
 new DateTime(0,0,0,0,0,1)
 };
 }
 }
}

The first time I committed the ShowTimes I forgot to include midnight (horrors!). Let's
look at the history available in GitHub Desktop:

Figure 6.30: Commit history in GitHub Desktop

Chapter 6

[143]

Before we push these, let's clean them up with an interactive rebase. We can combine
some commits, and more interesting, we can drop the commit with just a single time
because it is replaced with the commit that makes ShowTimes into a list.

The easiest way to do so is to use the command line to bring up the editor.

Here is the initial state of our interactive rebase:

Figure 6.31: Before the interactive rebase

And here is where we'll end up:

Figure 6.32: After the interactive rebase

We are dropping the commit in which showtime was a DateTime as it is replaced by
the next commit where ShowTimes is a list of DateTime objects. We are also squashing
all the entries into our instance into a single commit. Once we save this, we will have
an opportunity to fix up the messages.

Interactive Rebasing

[144]

Oops, we are notified there is a conflict:

Figure 6.33: A conflict during the interactive rebase

Git offers us a number of alternatives: fix the conflict and then continue the rebase or
skip the conflicted commit and abort the rebase. Let's fix the problem by returning to
GitHub Desktop:

Figure 6.34: Finding the conflict in GitHub Desktop

Notice that GitHub Desktop knows about the conflict too, and offers a number of
choices:

• Open in Visual Studio Code
• Open in the command line
• Open with your tool of choice
• Resolve manually

Chapter 6

[145]

Let's choose to open in Visual Studio Code:

Figure 6.35: The conflict in Visual Studio

Visual Studio Code works hard to help you make the changes. Notice the small
menus that allow you to accept one or the other or both changes (and it gives you the
message on the incoming change to make sure you know what you are choosing).
When you are done, the file looks as you intended:

using System;
using System.Collections.Generic;

namespace RockyHorror
{
 public class Showing
 {
 public string Location { get; set; }
 public int NumberOfSeats { get; set; }
 public List<DateTime> ShowTimes { get; set; }
 }
}

Interactive Rebasing

[146]

Save and close the file. When you return to the command line, add the fixed file back
in and then tell Git to continue:

git add .
git rebase --continue

Visual Studio Code will open again, to allow you to fix up the commit messages.
Save and close and Visual Studio Code will open a third time to allow you to fix up
all your messages. Once you save and close that, much to your relief, Git will tell you
that the rebase has succeeded:

Figure 6.36: Your interactive rebase worked!

[147]

7
Workflow, Notes, and Tags

In this chapter, we will see

• The standard workflow using Git
• What notes are
• How to use notes
• What tags are
• How to use tags

We'll start off by examining the standard workflow.

Standard workflow
The standard workflow is pretty much what we've seen in the previous five chapters,
except that you usually would not commit so quickly or often. Typically, it goes like this:

1. Create a repository.
2. Either clone that repository from the server, or if it was created locally, push

it to the server.
3. Create a branch.
4. Code.
5. Test.
6. Commit.
7. Repeat steps 4-6 until you have a block of code that does "something" (e.g.

opens a dialog box and processes the result).

Workflow, Notes, and Tags

[148]

8. Test.
9. Commit.
10. Push.
11. Repeat steps 4-10 until you have fulfilled a requirement (self-imposed or

otherwise).
12. Merge into the main branch (or create a pull request if you are in a team).

There are variants on this. Some people like to push after each commit, but that
prevents them from using interactive rebase to reorganize their commits. What
happens though if you have pushed your commit and realize that there is additional
information you wish you had added to the message?

Do not modify code you've pushed. (Have I said that before?) So, what to do?

If the problem is significant (you need to modify the commit contents, etc.) then
you'll need to take more drastic measures (see Chapter 12, Fixing Mistakes on fixing
mistakes). But if it is just a matter of updating the message, consider adding a note.

Mirroring your repo
We want to go on to discuss notes, but to do so we need to take a digression into
mirroring our repository so that we can add notes without messing up our existing
repo.

The repository we want to mirror should have a fair number of commits. You may
remember from the previous chapter that I answered the challenge by creating a
repository called RockyHorror. Let's open that repo on our local machine and use the
log to see the commits:

Figure 7.1: What's in the existing repository?

Note: You are not going crazy: for this chapter I've switched from
PowerShell to the Bash shell.

Chapter 7

[149]

Replicating an existing repo
As you can see there are nine commits, which will be enough for our purposes.
However, I don't want to modify this repository (principally so that when you
download the code it will look right when you are reading Chapter 6, Interactive
Rebasing).

To get an exact copy of this repository into another, complete with commits,
messages, etc., we're going to use Git's --mirror flag. Here's how you do it.

Change directory to RockyHorror and make sure you are in the local repository by
using the log, using the --oneline flag, as shown previously in Figure 7.1.

Now, we need a repository to put our mirrored version into. Go to GitHub and
create a new repository named RockyHorror2:

Figure 7.2: Creating the new repo

Workflow, Notes, and Tags

[150]

As you would expect, you now have a repository, RockyHorror2, on the server but
not locally. We are now going to overwrite the files, commits, etc. on the server with
the contents of RockyHorror, giving us an exact duplicate to work with.

To do this, make sure you are in the original repository (RockyHorror), and then
push to the server using the ––mirror flag and pushing to the new repository
(RockyHorror2). You'll need the address of your new repo, so start by going to
the clone button on the server and copying the address, but do not clone the repo:

Figure 7.3: Mirroring to the new repo

Okay, let's review. In your terminal (Bash, PowerShell, Terminal, etc.) you are in the
directory for RockyHorror and if you call git log --oneline you will get the results
shown in Figure 7.1.

Now you are ready to mirror this repo locally. You'll do that from your terminal, but
remember, what it is going to do is push a mirror of this repository onto the server,
overwriting whatever is already in RockyHorror2 (in this case just the README.md, the
LICENSE, and the .gitignore file).

This will cause Git to take a number of actions, the net effect of which is to copy
everything from RockyHorror over to RockyHorror2:

Chapter 7

[151]

Figure 7.4: Copying from the server to a local repo

You can now go to GitHub and see that RockyHorror2 has been updated to be an
exact replica of RockyHorror (If you don't see that, remember to refresh the page):

Figure 7.5: Examining the mirrored repo

Workflow, Notes, and Tags

[152]

There are a few interesting things to see in Figure 7.5. First, notice in the upper left
that we're in RockyHorror2, but if you look at the README it says RockyHorror. That is
because that README came from the original RockyHorror repo. Also notice that the
files are not from a few minutes ago, but in my case from 6 days ago; that is because
I modified those files 6 days ago in the original repo. The point, which really can be
hard to wrap your head around, is that this is an exact duplicate of RockyHorror.

Now go to RockyHorror2 on your local machine. What? It isn't there? Right, we only
mirrored to the server. If we want a local repository we need to clone our new one.
You can do that using the command line, Visual Studio, or GitHub Desktop as we've
seen (or any other GUI you like. SourceTree and Fork are very popular as of the time
of writing).

When you are cloning, make sure you copy the address of the new repo, not the
original:

Figure 7.6: Ensuring you are in the right place

You now can change into the new RockyHorror2 directory. Do so and get a log of
what is in there:

Figure 7.7: Getting a log of the mirrored repo

Chapter 7

[153]

A key thing to notice here is that the commits and where HEAD and origin are
pointing to are identical to RockyHorror as shown in Figure 7.1.

Notice that the ID is identical as well. I personally find this almost shocking, but
as far as Git is concerned this is just another copy of the same repo. From now on,
however, you can change one without affecting the other.

Adding and showing notes
Now we are ready to add a note to one of our commits.

Notes are just bits of text you can attach to a commit after it is already in the repo.
A common use for notes is to explain how a commit fits in with other commits, or
perhaps to flag a commit for amending or rebasing, or really to add any information
you want to paste onto the commit. It does not change the commit; it is like a post-it
you tack on.

To add the note, you'll use the git notes command with one or more flags. For
example, if you have the code in Figure 7.7 and you want to add a note to the commit
that currently says "Remove Hello World" all we need to do is to get the ID commit
id—bb4927c— and execute like this:

git notes add -m "Remove from program.cs" bb4927c

If you now run git log you'll see the note in the log listing, prefixed by the word
Notes:

Figure 7.8: Seeing the attached note

Let me be clear, you do not have to mirror your repo to use
notes. We only did that here for the purposes of the book; to
ensure that the repos correspond to what is shown in each
chapter. Normally, you would just add the note.

Workflow, Notes, and Tags

[154]

If you want to see your changes along with the note, use the show subcommand:

Figure 7.9: Seeing your changes with the notes

Once again, there are many subcommands that you can Google for when the need
arises.

Tags
It can be convenient to mark a given commit with a name. For example, you might
mark one commit as the developer release, and another as the general release. Each
time you make a new release you add another tag, giving you a quick and clean way
to look through the history and see which commits were added before or after each
release.

Let's look back at Figure 7.1 one more time. We might decide that the commit Enter
show times is the last commit in creating the Show object, and we'd like to indicate
that. We can do so with a note, but in this case, it may be more convenient to tag that
commit.

Chapter 7

[155]

There are two types of tags you might use: a simple tag and an annotated tag. Let's
start with a simple tag:

Figure 7.10: Tag for LastShowCommit

In Figure 7.10 we first take an online log of all the commits. We then add the tag:

git tag LastShowCommit bf6b900

As you can see, we use the keyword tag followed by the tag itself (one word, no
quotes) followed by the ID of the commit we're tagging.

Note that we are tagging a commit, not a given file. This tag applies to all the files in
that commit.

The second type of tag is an annotated tag, as shown in Figure 7.11:

Figure 7.11: Annotated tag

Workflow, Notes, and Tags

[156]

When you use the oneline log, this appears just as the other tag did, as shown in
Figure 7.12:

Figure 7.12: Annotated tag in the oneline log

If, however, you use the show command, you can see the tag with the additional
information you supplied (i.e. the message) when it was created and by whom. It is
very similar to a commit, except that no files are affected, and it is marked with the
keywords tag and tagger:

Figure 7.13: The annotated tag

Chapter 7

[157]

Pointing to a different tag
If you create a tag but point it to the wrong commit, you can change what it points to
by using the force flag. For example, suppose you have the list of commits shown in
Figure 7.14:

Figure 7.14: List with tag at the wrong commit

Notice that the tag TestOfShowObject is pointing to f55eb4e. Unfortunately, we
meant to point it to the next commit (e16d191). To do this, we can write:

git tag -f TestOfShowObject e16d191

We need the force flag (-f) to ensure that Git doesn't complain with Fatal: tag
TestOfShowObjects already exists:

Figure 7.15: Using the force command to reassign the tag

As you can see in Figure 7.15, Git responds with the message updated tag, the name
of the tag, and what it had been pointing to. The tag has now been moved to e16d191,
as we hoped.

Workflow, Notes, and Tags

[158]

Finally, we can delete a tag with the -d flag:

Figure 7.16: Deleting the tag

Figure 7.16 shows that Git confirms the deletion and running the log shows that the
tag is gone.

Summary
In this chapter you learned

• The standard workflow using Git
• What notes are and how to create them
• What tags are and how to create, move, and delete them

Challenge
Create a local copy of Panofy. Add a note to one of the commits and ensure it is there.
Add a tag to one of the commits and make sure it is there. Finally, change which
commit the tag is pointing to.

Here is my answer:

First, switch directory to Panofy. If it is not on your local machine, clone it:

Chapter 7

[159]

Figure 7.17: Switching to the Panofy project

As shown in Figure 7.17 when I tried to change directory to Panofy I was told it
doesn't exist, so I cloned it from the server.

To create a mirror I first create a new repo on the server named Panofy2:

Figure 7.18: Mirroring

As you can see in Figure 7.18, this time I did not bother creating a license file as all of
this will be overwritten when I mirror Panofy over it. To do so I change directory to
Panofy (the original repo) and enter:

git push ––mirror https://github.com/JesseLiberty/Panofy2.git

Workflow, Notes, and Tags

[160]

This takes the repository I'm in (Panofy) and pushes it to the new address, mirroring
the original:

Figure 7.19: Pushing to the mirrored repo on the server

I'll switch to Panofy2 on the server, and sure enough, the license is now there (from
Panofy) along with the Panofy folder as shown in Figure 7.20:

Figure 7.20: License for Panofy

With that in place, I can safely change Panofy2. The first task is to add a note. Let's
start with a log so that we can see what we have:

Chapter 7

[161]

Figure 7.21: Adding a note to a commit in the mirrored repo

Let's add a note to the commit with the message Add Hello Message that says
Traditional first Hello World:

Figure 7.22: Adding a note

In Figure 7.22 we see that this time I did not add the note in the Git statement.
Instead I waited for the editor (in my case Visual Studio Code) to open and I put the
statement in there. When I closed the file the note was entered, as shown in Figure
7.23:

Figure 7.23: Adding the note with an editor

Workflow, Notes, and Tags

[162]

Let's look at the log once more:

Figure 7.24: Examining the log

I'll add an annotated tag to the commit that says Update csproj:

Figure 7.25: Examining an annotated tag

Chapter 7

[163]

There are four arrows in Figure 7.25. The first points to the creation of the tag. The
second shows you the tag name, the third shows you who the tagger (creator of the
tag) was, and the final arrow points to the text of the tag itself.

Let's look at the log again, as shown in Figure 7.26:

Figure 7.26: An annotated tag in the oneline log

We can see the tag at 877348c, but it turns out we had forgotten to update csproj and
fixed that at commit 4b080ba. Let's move the tag there:

Figure 7.27: Moving the tag

In this final figure, Figure 7.27, you can see that we have moved the tag
ReleaseCandidate to 4b080ba as intended.

[165]

8
Aliases

Stop working so hard! In this chapter, we will look at Git aliases, which greatly
reduce the amount of typing you have to do. Aliases can be very simple, or they can
take arguments and flags.

Aliases
Aliases they allow you to create shortcuts to git commands. For example, I have the
alias st, which stands for status. Thus, I enter:

git st

and it is exactly as if I had entered:

git status

We'll get to more exciting and useful aliases in just a moment, but first let's look at
how these are created. To create an alias:

• Enter git
• Enter the keyword config
• Enter the flag --global
• Enter the keyword alias followed by a period and then the alias itself
• Enter the command you are aliasing

Aliases

[166]

This sounds more complicated than it is. For example, to create the st alias, I entered:

git config --global alias.st status

Of course, you don't have to use global. Your alternatives are system and local,
but personally, I always use global because I'm the only one on this computer and
I want it to always be available.

Here is a slightly more complicated alias that allows you to create a branch and
check it out:

git config --global alias.bc checkout -b

The important thing to notice here is that your alias can take one or more flags.

I can never remember if it is bc or cb, so I made another alias to execute the same
command:

git config --global alias.cb checkout -b

One alias I use a lot commits everything and waits for a message from me:

git config --global alias.cam commit -a -m

When I type git cam it commits everything along with the message I give it:

git cam "Here is my message"

Finally, here is my favorite alias:

git config –global alias.lg log --graph --pretty=format:'%Cred%h%Creset
-%C(yellow)%d%Creset %s %Cgreen(%cr) %C(yellow)<%an>%Creset' --abbrev-
commit

This offers me an alternative to log --oneline that gives much more information:

Figure 8.1: git lg

Chapter 8

[167]

Looking from left to right, we see the SHA followed by the commit message, then in
parentheses we can see how long ago it was committed and then by whom. As seen
on the fourth line, if there is a tag it is shown before the message, and the pointers
(HEAD, for example) are shown first after the SHA.

Let's briefly take the alias apart: Each color is surrounded by %C and %Creset. Some
display items are displayed using shortcuts such as %h, which displays the SHA.
Thus, to show the SHA in red we have '%Cred%h%Creset.

All of this is stored in your global configuration file, which you can access by
entering:

git config --edit --global

which opens the global configuration file in your editor. Here you will find a number
of sections, one of which contains the aliases:

[user]
 name = Jesse Liberty
 email = jesseliberty@gmail.com
[alias]
 co = checkout
 bc = checkout
 cb = checkout
 st = status
 cam = commit -a -m
 lg = log –graph --pretty=format:'%Cred%h%Creset
-%C(yellow)%d%Creset %s %Cgreen(%cr) %C(yellow)<%an>%Creset' --abbrev-
commit

Notice that the aliases are there, but with a slightly different syntax. You can add
aliases directly here if you like. (Note that the red underlining has no meaning. That
is just Visual Studio Code pointing out that it does not recognize these terms.)

Take heed: if you are going to use more than one flag, you must put your alias in
quotes, as shown in this line (you'll recognize it later in my answer to the challenge):

git config --global alias.nx "log --name-only --oneline"

Aliases

[168]

Summary
Aliases are a convenient way to shorten otherwise lengthy commands. You create an
alias with this sequence:

• Enter git
• Enter the keyword config
• Enter the flag --global
• Enter the keyword alias followed by a period and then the alias itself
• Enter the command you are aliasing

You can access the configuration file directly with:

git config --edit --global

Aliases are simple, easy, and incredibly useful when working at the command line.

Challenge
Create an alias that replaces the following command:

git log ––name-only --oneline

Answer
To do this, I will go to the command line and enter:

git config --global alias.nx "log --name-only --oneline"

The double quotes are needed because you are using two flags on log.

Chapter 8

[169]

The result of calling this command is shown in Figure 8.2:

Figure 8.2: Our new alias at work

Notice that each commit is there, represented on a single line and with only the SHA
and message (except when there is a tag or pointers, as shown on line 1 and line 7 in
Figure 8.2).

[171]

9
Using the Log

One of the most powerful commands in Git is log. You've already seen the log being
used a bit in previous chapters, but now it is time to look at it in detail.

The log can show you when each commit was created, who created it, and other
useful information about the commit, such as what changed in each file. You have
great control over what is displayed, as you will see in this chapter.

Using the Log

[172]

Getting started with log
Let's quickly build another project and repository:

Figure 9.1: Create a new repository

Chapter 9

[173]

Next, as we have done before, we'll clone this repository to our local machine:

Figure 9.2: Cloning the demo program

With this local repository, we can begin to examine its commits using log. To do so,
of course, we need to create a program and make some commits.

The LogDemo program
Create a program in the LogDemo directory. Change the program to be public and
build and run it to make sure it is working:

Figure 9.3: Testing the program

Using the Log

[174]

I'm going to create the same calculator class we've seen before, with the same
commits after each tiny function. I'll spare you having to look at all that and I'll just
put it into the repository.

Having added all the functions, let's give it a spin:

using System;

namespace LogDemo
{
 public class Program
 {
 static void Main(string[] args)
 {
 var calculator = new Calculator.Calculator();
 Console.WriteLine($"5+3 = {calculator.Add(5, 3)}");
 Console.WriteLine($"The square root of 3.14159 is
 {calculator.squareRoot(3.14159)}");
 }
 }
}

The results should be:

5+3 = 8
The square root of 3.14159 is 1.7724531023414978

Chapter 9

[175]

I now have a number of commits, which we can see using the lg alias described in
Chapter 8, Aliases:

Figure 9.4: Examining the commits with the lg alias of log

We can see that there are 12 commits, and we can see on the last line that none
of them has been pushed, and so we are ahead of origin by 12 commits. That is
confirmed by the status command:

Figure 9.5: Status shows 12 commits to push and nothing in the working directory

Using the Log

[176]

Once the commits are made, the working directory is clean. You do have 12 commits
ready to be pushed, but that does not affect Git's analysis of the state of the working
directory.

Visual Studio
Another great view of this same information is in Visual Studio. Click on Git:

Figure 9.6: Click on the menu item Git

And then on View Branch History:

Figure 9.7: Branch history

This shows the 12 commits ready to be pushed, and the one commit that is already
on origin (e040fb00).

Chapter 9

[177]

GitHub Desktop
GitHub Desktop has yet another way of presenting the same data. This single page
tells you a lot in one view:

Figure 9.8: GitHub Desktop

Along the top, we see the repository, branch, and status. Running down the left
column are each of the commits and their messages. (Clicking on the up arrow will
push that commit.) The middle column shows which files are in that commit, and the
far right shows the code from the selected file. The log command can do all of these
things, but not all at once.

log at the command line
There are a large number of flags you can add to log to control its output. In creating
the lg alias, we already saw how to use log -–oneline:

Figure 9.9: Using log at the command line

Using the Log

[178]

Looking closely, we see that the left column has the short ID, the right column lists
the messages associated with each commit, and for both the first and last commits,
we also see where the head pointer is; both locally and on origin.

Which files changed?
If you want to know which files were changed in each commit but not see what those
changes were, you would use:

git log ––name-only

Here is an excerpt:

Figure 9.10: Using log to see file changes

We see two commits. The first, in Program.cs, has the message Call the add
function, and you can also see the full ID, the author, and when this commit was
made.

Chapter 9

[179]

You can of course do the same thing with our lg alias to condense the output:

Figure 9.11: Using the shortcut lg

The problem here is that the vertical spacing can be confusing. This example shows
three commits. The first has the message Instantiate the calculator and in that
commit Program.cs was modified. The best way to figure out which file goes with
which commit is to start with the ID.

There is not an easy way to do this in Visual Studio and, as we saw, GitHub Desktop
shows you the list of changed files as part of the commit history.

What changed in each file?
We can go further and ask log which files changed and what the files were in that
change. The command for this is git log -p.

This will print out the changes for each file in each commit. Here is one file's changes:

Figure 9.12: Using log to see what has changed in each file

Using the Log

[180]

On my computer, the new line is shown in green, and notice the + sign to the
left indicating that this line was added. Let's go into Program.cs and make some
more changes – taking out the square root function and adding a call to the divide
function:

Figure 9.13: Using diff indicators to see changes

Here log is showing that the square root method was removed (red on my screen
with a minus sign on the far left) and the divide method was added (once again, note
the + sign on the far left).

Just below the message for this commit we see an interesting line:

diff --git a/LogDemo/LogDemo/Program.cs b/LogDemo/LogDemo/Program.cs

Git is using the diff command, separating the original version (a/LogDemo/LogDemo/
Program.cs) from the new version (b/LogDemo/LogDemo/Program.cs). It is this use of
diff that allows log to show the changes.

diff
Nothing stops you from using diff yourself. The most powerful use of this is to show
you what has changed in the work you have done since the last commit. You do this
before you commit your changes.

Chapter 9

[181]

Suppose you are doing work and then you are called away. If you are like me, you
have completely forgotten how far you've gotten and what exactly you were about to
do. Let's add back the square root method and remove the divide method to test the
program, but before we commit it, let's see the change:

Figure 9.14: Using diff

This is very similar to the previous example, except that this shows the difference
between what I have in my working directory and what was in the previous commit.
I can tell that this is a change in my working directory by the ~1 in the prompt –
indicating that one file has been modified but not yet checked in.

Visual Studio
Suppose I'm working on my program and I add an Absolute method to the
calculator:

public double Absolute (double x)
 {
 return Math.Abs(x);
 }

I save that and go off to work on other parts of the program. When I return to the
calculator, I know I've made a change but I can't remember what. In Visual Studio,
right-click on Calculator.cs and select:

git compare with unmodified

Using the Log

[182]

Visual Studio opens side-by-side windows showing what you've changed in this file
since the last commit:

Figure 9.15: Side-by-side comparison

This makes your changes immediately obvious.

What changed in this file over time?
If you want to see the history of changes for a given file, enter:

git log <filename>

Figure 9.16: Examining changes to one file over time

Chapter 9

[183]

Here I've asked for a log of Calculator.cs (providing the full path) and I get back
each change in that file over time. As you might expect, I can make this easier to read
with lg:

Figure 9.17: Using lg to see what has changed over time

Now we can see what is really going on. The log is providing all the information it
usually does, but only for the selected file. Note that the prompt still says we have 14 files
to upload, a good hint that this list is not the entire list of commits waiting to be pushed.

Search
Suppose for a moment that we want to find every file in our set of commits that has
the word calculator in it. For that we use the -S search flag, followed immediately by
the term we are searching for:

git log -Scalculator

This will return all the commits that have the word calculator in one or more of its files:

Figure 9.18: Searching within commits

Using the Log

[184]

Note: You can also use git log -Gcalculator, which will allow you to search on
regular expressions.

Once again, the lg alias can make this easier to read:

Figure 9.19: Using lg with search

Searching is uncommon, but when you need it, Git provides a very powerful tool.

Where are my commits?
Sometimes you just want the list of commits a particular person has added. To do
that, you use:

git lg ––committer="Jesse"

Of course, for this example, that will be all of the commits:

Figure 9.20: Using lg to see what has changed over time

Note that the search is case sensitive, so searching for "jesse liberty" won't return any
records, but "Jesse" will.

You may find in practice that you are more interested in the author than who made
the commit, and that works the same way, except for using --author.

It turns out, however, that all I want is "Jesse Liberty's" commits in the past 80
minutes. For that we use the since flag (you can put in any reasonable designation of
elapsed time, for example, --since="one week"):

Chapter 9

[185]

git lg --since="80 minutes"

That produces a much more manageable list:

Figure 9.21: Limiting the output of log by time

You can do exactly the same search for author, in case they are not the same:

 Figure 9.22: Limiting the log based on author and time

Limiting the log to a specific time can greatly facilitate zeroing in on the changes you
are interested in.

Summary
In this section you've seen the powerful Git command log in use. Among the flags
we covered were:

log flag Meaning
--oneline Show only one line per commit
--name-only Names of files that have changed in each commit
-p What has changed?
git log <filename> What has changed in this file?
-Sfoo Search for foo in every commit
--committer="name" Search for all commits by name
--author="name" Search for all authors by name

--since="1 week" Use with committer or author to search within a designated
amount of time

Using the Log

[186]

Good working knowledge of the most important log commands can make working
with your commits much easier. Of course, there are many more commands and
flags, but it is easy to google the ones you want.

Challenge
In this challenge you will use log to examine a set of commits:

1. Create a new repository
2. Create a program in that repository
3. Add a number of (at least 6) commits
4. Find the names of every file changed in each commit
5. Find what changed in a given file over time
6. Find all the files you committed in the past hour (or whatever time increment

makes sense)

Notice that you will be using log to see how one file changes over time and to find
the names of every file in the commit. This shows the versatility of the log command.

Answer
There is no one correct answer to this challenge, but unlike some of the other
challenges, you are somewhat constrained by how log is typically used.

Create a new repository
I will go to GitHub.com and create the LogChallenge repository:

Chapter 9

[187]

Figure 9.23: Creating the repository

Next, I need to clone that repo to my local machine:

git clone git@github.com:JesseLiberty/LogChallenge.git

Using the Log

[188]

Add at least 6 commits
First, we must track the new program:

Figure 9.24: Tracking the program

We'll add one change to Program.cs:

namespace LogChallenge
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Hello World!");
 Console.WriteLine("Log Challenge!");
 }
 }
}

Now it is time to commit that change. Let's start with a call to status (st):

Figure 9.25: Handling untracked and modified files

Chapter 9

[189]

This is a tricky image. Make sure you understand why the first three are "to be
committed" and the last is not staged for commit. (Hint: the first three are already in
the staging area.)

To make life easy, we'll add the unstaged files all at once:

Figure 9.26: Adding the unstaged files

Now make sure you understand why there are three files to be committed and not
four (hint: take a look at Program.cs).

Go ahead and commit these files:

Figure 9.27: Making the commits

Once again, I'm using the alias from the previous chapter. Notice that cam adds, but
there is nothing to add. No harm done. It then commits and waits for a message. Do
not push the commit at this time.

Let's add some more commits by creating the Calculator class and each method and
committing after each change, as you've seen before.

Finally, let's test the SquareRoot function in Program.cs:

namespace LogChallenge
{
 public static class Program
 {
 public static void Main(string[] args)
 {

Using the Log

[190]

 var calculator = new Calculator.Calculator();
 Console.WriteLine($"The square root of 2 is
 {calculator.SquareRoot(2)}");

 }
 }
}
namespace LogChallenge.Calculator
{
 public class Calculator
 {
 public int Add(int left, int right)
 {
 return left + right;
 }
 public int Subtract(int left, int right)
 {
 return left - right;
 }
 public int Multiply(int left, int right)
 {
 return left * right;
 }
 public int IntDivision(int left, int right)
 {
 return left / right;
 }

 public double Division(double left, double right)
 {
 return left / right;
 }

 public int Modulus(int left, int right)
 {

Chapter 9

[191]

 return left % right;
 }
 public double SquareRoot(double x)
 {
 return Math.Sqrt(x);
 }

 }
}

Running this gives the correct result as a double:

The square root of 2 is 1.4142135623730951

Let's examine the messages of all the commits:

> git lg
43dd70e | test the square root function [Jesse Liberty] (5 minutes
ago) (HEAD -> main)
0fa51fa | make Main public and remove writelines [Jesse Liberty] (8
minutes ago)
51dd6e9 | Add square root function [Jesse Liberty] (8 minutes ago)
711c4e8 | add modulus operator [Jesse Liberty] (9 minutes ago)
06d7319 | add division function [Jesse Liberty] (10 minutes ago)
31f5873 | Add intDivision function [Jesse Liberty] (11 minutes ago)
9639a70 | add the multiply function [Jesse Liberty] (12 minutes ago)
d1eaff5 | capitalize subtract function [Jesse Liberty] (12 minutes
ago)
d92657d | Add subtract function [Jesse Liberty] (13 minutes ago)
b5e945f | Capitalize add function [Jesse Liberty] (13 minutes ago)
f535d26 | Add the add function [Jesse Liberty] (14 minutes ago)
a8cf101 | make calculator class public [Jesse Liberty] (15 minutes
ago)
acd2ce4 | Create calculator class [Jesse Liberty] (15 minutes ago)
29cfe55 | First commit [Jesse Liberty] (19 minutes ago)
d0518a1 | Initial commit [Jesse Liberty] (41 minutes ago) (origin/
main, origin/HEAD)

Using the Log

[192]

There is a bit of extra information here (the ID, the author, and so on.) but we do see
the messages of all the commits:

Figure 9.28: Using lg with the name only flag

Now that we've seen how to handle staged and unstaged files and examine their
contents with log, let's see how to find every file in a commit that actually changed.

Find the names of every file changed in each
commit
This is tricky because of the spacing. Let's examine the first one; first, we see the ID
and message from the latest commit, and then some way down we see the affected
file. Similarly, in the second box, we see Add square root function, but the affected
file, Calculator.cs, is a bit further down the listing. This is clearer with a couple of
files. Let's do that.

We'll add the Round method to Calculator:

 public decimal Round(decimal x)
 {
 return Math.Round(x);
 }

Chapter 9

[193]

And we'll test it in the program:

public static void Main(string[] args)
 {
 var calculator = new Calculator.Calculator();
 Console.WriteLine($"The square root of 93 is
 {calculator.SquareRoot(93)}");
 Console.WriteLine($"93.64 rounded is " +
 $"{calculator.Round((decimal)93.64)}");
 }

We now check it in, and we have made changes to two files:

Figure 9.29: Seeing that two files are modified

We check that in, and we now have 15 commits:

Figure 9.30: Using lg to examine the 15 commits

Find what changed in a given file over time
To find what has changed in a file over time, we use the simple log command with
the name of the file we want to see. For example, we can examine the changes to
Program.cs (remember to include the relative path):

git log LogChallenge/LogChallenge/Program.cs

Using the Log

[194]

The result shows all the commits, with the latest at the top:

Figure 9.31: All the commits for one file

We have seen how to find all the commits for one file over time, but that can be a bit
overwhelming. We may want only the most recent commits.

Find all the files you committed in the past
hour (or whatever time increment makes
sense)
For this, we need only the since flag:

Figure 9.32: Using the since flag

Chapter 9

[195]

We have fulfilled the challenge by doing the following:

• Creating a new repository
• Creating a program in that repository
• Adding commits
• Finding the names of every file changed in each commit
• Examining the changes in one file over time
• Finding all the files committed in the past hour

[197]

10
Important Git

Commands and Metadata
There are hundreds of Git commands and flags. In this chapter, we'll endeavor to
review a few of the most important that we have not looked at so far. These include:

• Creating the stash
• Listing what's in the stash
• Retrieving from the stash
• The clean command for getting rid of unwanted untracked files
• How to see metadata and choose which data you want to see

Let's start by digging into the stash.

You can find the complete list at http://git-scm.com/docs.

http://git-scm.com/docs

Important Git Commands and Metadata

[198]

Stash
When we reviewed the five areas of Git, we included an area called the stash, but we
did not delve into what the stash is. In short, the stash is a place where you can hold
(stash) files you've modified but not yet committed:

Figure 10.1: The five areas of Git

The stash can be pretty important. Let's say you are working on a feature and
suddenly you are asked to work on a very important bug. You are not ready to
commit the code you have, but you can't switch branches with uncommitted files
in the work area.

To solve this, you could just make a backup of your directory, and then delete the
uncommitted files, but that is very slow and error-prone. Instead, you want to stash
them away somewhere that you can get them back when you are ready, which of
course is the purpose of the stash.

To see this at work, we need a repository with some commits. Let's quickly make a
mirror of the RockyHorror2 repo. To do so, we'll start by making sure we have the
RockyHorror2 repository on disk, or else we'll pull it from the server.

Chapter 10

[199]

Let's go to GitHub and create a repo called RockyHorrorStash:

Figure 10.2: Creating the repository

Notice that I did not bother creating a readme, .gitignore, nor a license since these
will all be overwritten when I do the mirror.

Click Create Repository and once created, grab its address.

Important Git Commands and Metadata

[200]

We are now ready to mirror RockyHorror2 over RockyHorrorStash. Be sure to change
directory to RockyHorror2 and enter this command:

Figure 10.3: Push the mirrored repo to the remote

We now have the mirrored repo on the server but not locally, so let's clone it:

Figure 10.4: Pull the mirrored repo back to the local repo

Great, we have a repo we can work with. Let's see what's in it with a quick call to log:

Figure 10.5: Examining the local repo with log

Chapter 10

[201]

Suppose we are working on this project and we modify two files. First, we modify
the Showing class to keep count of how many boxes of popcorn are sold:

Figure 10.6: Adding the Showing class

Next, we modify Program.cs to say that the Brattle theater has 500 seats. If we take a
status, we see the two modified files in the work area:

Figure 10.7: git status shows two modified files

We have two uncommitted modified files. We have more work to do but our boss
calls and she tells us that there is an urgent bug in another project. This is where
stash comes in. We could commit what we have, but we're not ready to, so let's put it
in the stash:

Figure 10.8: Adding to the stash

Important Git Commands and Metadata

[202]

You tell it git stash, and it takes everything in the work area and in the index and
puts it in the stash without committing it. At that point, the work area is reset to the
state it was in before you started modifying files—that is the previous position of
HEAD.

You can see what is in your stash with the stash list command:

Figure 10.9: Listing what is in the stash

The stash has added the designation WIP on main. WIP means Work In Progress.

At the moment, you only have one thing in the stash. You might find, however, that
while fixing that "very important bug," your boss calls back and says to stop work on
that and fix a fatal bug. Once again, you may need to stash your work. Rather than
setting all that up, we'll make a small change in the main program and then stash it.
Let's change the name of the theater:

Figure 10.10: Stashing more work

Hey! What happened to the number of seats being increased to 500? Remember, we
never committed that, we stashed it away and the working area was reset. Let's take
a look at the status:

Figure 10.11: Examining the status

As we expect, we see the one modification we've made. Let's stash that away using
git stash:

Figure 10.12: Stashing the modification

Chapter 10

[203]

We now have two items in the stash. If we ask for a list, we should see both:

Figure 10.13: Listing the items in the stash

Sure enough, both stashed items are there. Normally they would have different ID
and messages, but since we stashed from the same place, we ended up with this
anomalous situation. You can see what is in the stash by using stash show:

Figure 10.14: Showing the contents of the stash

You can drop items from the stash and you can clear the entire stash with stash
clear.

Clean
From time to time, you'll find that there are untracked files listed in your status.
99% of the time these will be files you created and you'll want them to be tracked,
which you do by adding them to the index (as shown previously). There are times,
however, when you may find untracked files that you don't want:

Figure 10.15: Untracked files

In this case, we have a couple choices. We can add Untracked.cs to the index or we
can get rid of it. To do so, we try git clean:

Figure 10.16: Using clean to remove untracked files (fails)

Important Git Commands and Metadata

[204]

Because git clean is one of the few truly destructive commands—once called, the
untracked files are gone, never to be seen again—Git comes back with the snarky
reply that it is "refusing to clean." To actually clean, Git requires that you tell it you
really mean it by using the -f (force) flag:

Figure 10.17: Using clean as above, but with the force flag (succeeds)

The -f flag essentially says "I know what I'm doing"—so make sure you do.

Metadata
Every commit, merge, and so on, is accompanied by metadata. You can get at a lot of
the metadata by using the log, but sometimes you just want to extract a few pieces of
important metadata. For that you can use the show command:

Figure 10.18: Using show to see metadata

In this example, we use show to find the name and email of the author, along with the
ID and the metadata telling us where the tip of main is. Let's break it down:

• git show—the show command.
• -s—silent (or quiet), which suppresses the difference output (try the

command without it to see).
• HEAD tells show which commit you are interested in.
• %an is the author's name.
• %ae is the author's email address.

We put this code into a string and assign it to the format flag.

Let's look at the log and see what else we can do with showing metadata:

Figure 10.19: Looking at the log

Chapter 10

[205]

Let's zero in on the metadata associated with one of these entries. To do so, we use
the ID:

Figure 10.20: Using show -s to see metadata

You can also specify a range of entries:

Figure 10.21: Specifying a range of entries

We are able to zero in on what we want in the stash. To retrieve the stashed files,
use git stash apply. This will apply everything in the stash to the current working
directory. Once you are sure you have what you need, you can then call git stash
pop, which will apply the changes again and remove them from the stash.

Summary
In this chapter, we reviewed some of the most important commands that we had not
yet looked at. These include:

• Creating the stash
• Listing what's in the stash
• Retrieving from the stash
• The clean command for getting rid of unwanted untracked files
• How to see metadata and choose which data you want to see

Challenge
Mirror a repo, or use one you already have if you don't mind changing it. Examine
the list of commits. Start work on some changes but don't commit your changes.
Switch to working on a different repo. Create or modify some files in the second repo
but don't commit them. Start work on a third repo. Abandon that work and go back
to the first repository. Examine the stash and retrieve the stash you need to keep
working.

Important Git Commands and Metadata

[206]

Answer
Once again, there are many ways to answer this. I'll start by mirroring the
RockyHorrorStash repo to RockyHorrorStash2, and then I will immediately clone it to
my local repo.

I'll do the same thing with Panofy (to PanofyStash) and musicHandler2 (creating
musicHandler2Stash). Now we have three repos we can work on:

• musicHandler2Stash

• PanofyStash

• RockyHorrorStash

Let's begin with musicHandler2Stash by changing directory and getting a log of what
is already there. Then let's open it in Visual Studio and do some work:

Figure 10.22: Log of MusicHandler2Stash

Let's make two changes by opening Visual Studio in that directory. We need changes
in a couple of files, so let's just add comments. When we take a status, we see that
there are two modified files:

Figure 10.23: Status of MusicHandler files after changes and before commit

Chapter 10

[207]

Right in the middle of our work, we're asked to work on a bug. We're not ready to
check in these files so we add them to the stash:

Figure 10.24: Call stash, which puts the modified files into the stash,
then call status to see the working directory is empty

We are now free to change to the RockyHorrorStash directory. Here we will
start fixing the bug (which we will do by adding comments to represent the real
work). Uh oh, we have to work on a bigger bug. Let's stash the work we did in
RockyHorrorStash.

We'll switch to PanofyStash and make some changes and commit them. We are now
ready to return to the bug we were working on in musicHandler2stash as that has
now become the priority. The first thing to do is to list what we have in the stash for
this repository (remember, stashes are per repository):

Figure 10.25: stash list in musicHandler2stash

Let's restore that. There are two ways to do so:

• apply applies the stashed files but leaves them in the stash.
• pop applies the stashed files but removes them from the stash.

Important Git Commands and Metadata

[208]

I recommend using apply because it leaves a copy of the stashed items in the:

Figure 10.26: stash apply

In Figure 10.26 we first call git stash apply. Be very careful with this—there is a
different command, git apply, which is not what you want here.

Once applied you can see that the two files that were modified are back. We take a
status to make sure everything is as we expect. Now that we know it is safe, we can
clean out the stash:

Figure 10.27: Dropping the cache

In Figure 10.27 we list what's in the stash, then we drop the stash, and then list again
to make sure it is gone.

Chapter 10

[209]

In this challenge, we mirrored three repos so that we could work on them without
changing their original state. We then looked at what commits were there and added
new files without committing them. In order to be able to switch repositories, we
stashed the uncommitted files. When we returned to the original project, we were
able to retrieve the stashed items.

[211]

11
Finding a Broken Commit:

Bisect and Blame
Sooner or later, you are likely to find that you have a bug in your program that
was introduced sometime in the past. You can go searching through all your prior
commits, but that is time consuming and inefficient. Git provides a command, bisect,
to take care of all the hard work for you.

Here's how it works: bisect asks you for a known "bad" commit. Most often this is
the last commit. It then asks for a known "good" commit – that is, a commit that is
known to work. You do not have to try out a variety of commits to find this; just far
back enough that you can be sure it was working back then.

If you are cautious, you may want to check out the good commit and run it just to
make sure.

Bisect will then do a series of binary searches looking to find the first bad commit. If
you have good unit tests, bisect can do this on its own; otherwise you must test each
commit it finds and report whether it is good or bad.

You begin by entering git bisect start. This enters the bisect state, not unlike the
way we might enter the rebase state.

Your second command is to tell bisect that the current commit is broken (not working,
or in bisect's terminology, bad). You indicate this by entering git bisect bad.

Finding a Broken Commit: Bisect and Blame

[212]

You now need to tell bisect a good checkout. You can do this in one of two ways:
either give it the ID of a good commit, or tell it how many commits to go back from
the current, for example git checkout HEAD~12, indicating that we know that things
were working twelve commits ago.

Git will divide the remaining commits roughly in half, and check out a commit. Let's
say that this is the commit made six commits prior to the current one. You then test
that commit and tell bisect if it is good or bad.

If you say it is good, that means that every commit before it is good. If you say it is
bad, that means that every commit after it is bad. Let's assume commit 6 is good.
Bisect will now consider its range to be 6 to 12 and might check out commit 9.

You test commit 9 and find that it is bad. That means that every commit after 9 is
bad. Bisect now has a range of 6 to 9 and checks out 7. If 7 is good then the bad
commit is either 8 or 9. We test 8 and get the answer: if it is good then 9 is the first
bad commit, otherwise it is 8.

All of this is much easier to see with an example. Let's create a new repository called
BisectTest:

Chapter 11

[213]

Figure 11.1: The repo to demonstrate bisect

Now, clone that repository to your local disk as we've done before. To demonstrate
how this works, we're going to create 12 commits, with one in the middle that has
an error that will propagate until someone notices that the program is broken after
checking in commit 12. "Oh no," we can hear that programmer cry, "this could have
been broken for a long time, with no one noticing. I need to use bisect to find out
which commit was bad and fix it."

Finding a Broken Commit: Bisect and Blame

[214]

Let's use our tried-and-true Calculator class to create 12 commits. The first will just
create the project:

Figure 11.2: The beginning of our program

We'll save and commit that as our first commit:

Figure 11.3: Save and commit

Chapter 11

[215]

Next we'll create the Calculator class and commit that:

namespace BisectTest
{
 public class Calculator
 {
 }
}

That makes three commits: the initial commit created when you cloned it, the commit
after creating the program, and this commit after creating the Calculator class:

Figure 11.4: The three commits

Now we'll add the four functions (add, subtract, multiply, and integer division) and
commit after each one. After doing so, we have seven commits.

Let's add the modulus operator, real division, and square root, committing after each
one.

That gives us ten commits. Next, we'll go back to the program and use the calculator
to print out the value of 23/4 using integer division, which gives us the value 5. Let's
check that in.

Next, we'll use the modulus operator on the same division:

namespace BisectTest
{
 public static class Program
 {
 static void Main(string[] args)
 {
 var calculator = new Calculator();
 Console.WriteLine($"Integer division of 23/4 is
 {calculator.Divide(23, 4)}");
 Console.WriteLine(
 $"Modulus 23%4 is {calculator.Modulus(23, 4)}");
 }
 }
}

Finding a Broken Commit: Bisect and Blame

[216]

Finally, we'll divide using doubles:

using System;

namespace BisectTest
{
 public static class Program
 {
 static void Main(string[] args)
 {
 var calculator = new Calculator();
 Console.WriteLine($"Integer division of 23/4 is
 {calculator.Divide(23, 4)}");
 Console.WriteLine($"Modulus 23%4 is
 {calculator.Modulus(23, 4)}");
 Console.WriteLine($"Real division of 23/4 is
 {calculator.Divide(23.0, 4.0)}");

 }
 }
}

Okay, we're ready to show off our results at the next code review. We run the
program and we get:

Integer division of 23/4 is 5
Modulus 23%4 is 5
Real division of 23/4 is 5.75

That result can't be right. Now, in this case, the problem is obvious; our modulus
operator is off. But in the real world, the answer will be far less obvious, let alone
where it was introduced.

Let's use bisect to find the commit where we went wrong. We start up bisect, and
then we tell it that the current commit is bad:

Figure 11.5: Starting bisect

Chapter 11

[217]

Now we need to tell it a good commit. Let's look at the log:

Figure 11.6: Looking for the good commit

We know that the second commit was good because all we did was create the
project. Let's tell that to bisect:

Figure 11.7: A known good commit

You may get a lot of warnings about having a detached head (ouch). You can safely
ignore those warnings. For form's sake, we'll test the currently checked-out commit
and of course, it is fine. So we tell bisect that the current checkout is good:

Figure 11.8: Telling Bisect this commit is good

It comes back with some interesting information. It tells you that if the original
commit was bad, and this one is good, then it has five revisions left to test, which
will take roughly three steps. It also tells you that it checked out the commit whose
message is "Add the divide function." Let's inspect the (now) current program and
see if it is right. (Normally, here, you'd run the program to see if you get the expected
result. Even better, you might run your suite of unit tests to see if it passes.)

Looking in Visual Studio we see that the working directory looks like this:

namespace BisectTest
{
 public class Calculator
 {

Finding a Broken Commit: Bisect and Blame

[218]

 public int Add(int x, int y)
 {
 return x + y;
 }
 public int Subtract(int x, int y)
 {
 return x + y;
 }
 public int Multiply(int x, int y)
 {
 return x * y;
 }
 public int Divide(int x, int y)
 {
 return x / y;
 }
 }
}

Looks good. Note that some functions are missing, and that is because bisect checked
out an earlier commit. We can tell bisect that this commit is good:

Figure 11.9: Another good commit

It comes back and says that we've really narrowed things down. There are only two
revisions left to test. Look at the original log:

Figure 11.10: The repo to demonstrate bisect

Chapter 11

[219]

We told it that the latest is bad and the second is good. We then were offered the
commit whose message is "Add the divide function." That is, bisect cut our list of
commits roughly in half and checked out a commit for us to test. We told bisect that
the commit it had us try was good. So, Bisect thinks, "Hmm. Divide is good, and real
division is bad, so let's cut it in half (giving us "Add square root") and see if that is
good or bad. Either way, we only have one more test to get the final answer."

When we try the code, it is bad; it does not work in the expected way. So, let's tell
Bisect that square root is bad. In response, it checks out "Add real division." Look
again at the log. Either this one is bad or the one below it is bad. We've already told
it that "Add the divide function" is good, and we've already told it that the square
root commit is bad:

Figure 11.11: Honing in on the problem

It has checked out "Add the divide function" so let's test that.

That one is bad, so we'll tell bisect that:

Figure 11.12: We have found the problem

It comes back and tells us that "Add modulus operator" must be the culprit and that
there is nothing more to test. We've got it. Let's look – sure enough, the modulus
operator is using the divide operator instead:

public int Modulus(int x, int y)
 {
 return x / y;
 }

Even though we had to use a simple and fake example, you can see how bisect
narrows down the commits to find the first one that went bad. Now that we know
what is wrong, we can fix it.

Finding a Broken Commit: Bisect and Blame

[220]

Blame
This unfortunately-named command can be a great help in tracking down who made
changes to your code, line by line. From there you can talk with the programmer and
discover their intention, or provide an opportunity for correction.

To open Blame in Visual Studio, right-click on a file and choose Git and then Blame.
The file will open with a section on the left that will list who made the edit to that
line of code.

Challenge
Create a program with twenty commits. Put an error in one of the early commits that
won't break the working program (so that it can be hidden). Use bisect to find the
error.

The first step is to create a program with 20 commits. I decided to create a program
that holds information about a book:

namespace BisectTest
{
 public class Book
 {
 public string Author { get; set; }
 public string BookName { get; set; }
 public double Price { get; set; }
 public double DiscountPrice { get; set; }
 internal double WholeSalePrice { get; set; }
 internal double DiscontinuedPrice { get; set; }

 public void ComputePrice()
 {
 Price = WholeSalePrice + (WholeSalePrice * .5);
 }

 public void ComputeDiscountPrice()
 {
 DiscountPrice = Price * 2;
 }

Chapter 11

[221]

 public void ComputeDiscontinued()
 {
 DiscontinuedPrice = DiscontinuedPrice * 0.8;
 }

 }
}

We also have a program that interacts with our book class and displays the results:

using System;

namespace BisectTest
{
 class Program
 {
 static void Main(string[] args)
 {
 var book = new Book();
 book.Author = "Jesse Liberty";
 book.BookName = "Pro Git for Programmers";
 book.WholeSalePrice = 10.0;
 book.ComputePrice();
 Console.WriteLine($"{book.BookName} by {book.Author}");
 Console.WriteLine($"{book.BookName}: {book.Price}");
 Console.WriteLine($"Discount price is
 {book.DiscountPrice}");
 Console.WriteLine($"Discontinued price is
 {book.DiscontinuedPrice}");
 }
 }
}

Let's run the program and examine the output:

Pro Git for Programmers by Jesse Liberty
Pro Git for Programmers: 15
Discount price is 0
Discontinued price is 0

Finding a Broken Commit: Bisect and Blame

[222]

That is clearly not what we intended. Both the discount and the discontinued prices
are 0, where they should be a fraction of 15. Oh! We forgot to call the method to
compute the prices. When we do, and we display them all, we get this:

Pro Git for Programmers by Jesse Liberty
Pro Git for Programmers: 15
Pro Git for Programmers discount price = 30
Discontinued price is 0

Better, but still not right. Why is Discontinued coming out to zero? To find this, we'll
use bisect. To start we'll enter:

git bisect start

Next, we need to tell Bisect that the current (most recent) commit is bad by entering:

git bisect bad

Looking at the log, I see that the first commit has the ID 7259bb3. So we'll enter:

Git checkout 7259bb3
Git bisect good

It checks out a version for me to test, and tells me that there are 11 revisions to test
after this (assuming this is bad) and that it will take roughly 4 steps. We continue
bisecting until we find the first instance of the broken code, as we saw above.

[223]

12
Fixing Mistakes

The most common reaction to making a mistake in Git is to panic. What if you have
just lost all your work? Worse, what if you have broken the master branch?

This chapter will review a number of common Git mistakes and how to fix them. The
first rule, of course, is stay calm, or as Douglas Adams said, Don't Panic!

The problems we'll review are:

• You wrote the wrong message in a commit.
• You forgot to add changed files from your last commit.
• Problems with the order of commits or their messages.
• You need to undo changes made in a commit.
• You misnamed your branch.
• You committed to the wrong branch.
• You trashed a file in a previous commit.
• You messed up the remote by pushing a broken branch.

To see the answers at work, let's mirror Panofy into ErrorsDemo. Here are the steps
we'll be doing:

1. On the remote, create ErrorsDemo and get its URL.
2. Go to the local branch you want to mirror (in our case, Panofy).
3. Push that up to the server with the mirror command, using ErrorsDemo's URL.
4. Clone the new branch (be sure to clone it in the directory you want it).
5. Change directory to the new (cloned) directory (ErrorsDemo).

Fixing Mistakes

[224]

You can see this walked through in Chapter 10, Important Git Commands & Metadata.

You wrote the wrong message in the last
commit
Let's start with the log so that we can see the change:

Figure 12.1: Log of initial state

This one is easy; all you need do is enter:

git commit --amend

Your editor will open and allow you to change the message. To change the wording
of the message just change the "pick" to "reword."

After you save your file, the message of the last commit will be changed as shown in
Figure 12.2:

Figure 12.2: Log after amend (changed message in the last commit)

You forgot to add changed files from
your last commit
You solve this problem in the exact same way you solved the problem of fixing the
message in your last commit: with --amend.

Chapter 12

[225]

First, stage your new or changed files. Then enter:

git --amend

If you don't want to edit the message when you add the files, enter:

git --amend --no-edit

Problems with the order of commits or
their messages
If the problem is not with the last commit (in which case you'd use --amend), it's
time to break out interactive rebase as shown in Chapter 8, Interactive Rebasing. If
you haven't pushed yet, Interactive Rebase will let you do all this and more.

You need to undo changes made in a
commit
All you need to do here is to call the log, get the ObjectID of the commit you want to
undo and call:

git revert ObjectID

Let's go back to the log:

Figure 12.3: Log, starting point

Fixing Mistakes

[226]

Now let's revert the commit that added the hello message:

git revert c507abf

Because I reverted a change in the middle of the branch, it's no surprise that I run
into a merge conflict:

Figure 12.4: Merge conflict

To solve this I will call git mergetool, invoking the tool I set up in Chapter 4,
Merging, Pull Requests, and Handling Merge Conflicts. Kdiff3 is smart enough to fix all
the conflicts without my help:

Figure 12.5: Kdiff3 fixes the conflicts for me

Sure enough, when we open Program.cs the Hello World is gone:

Figure 12.6: Program.cs after revert

Chapter 12

[227]

You misnamed your branch
Checkout the branch in question and enter:

git branch -m <currentName> <desiredName>

Here's what we get:

Figure 12.7: Renaming branch foo to bar

In Figure 12.7 you create the branch foo and then check it out. Finally, you rename it
as shown above and your branch name is changed.

You committed to the wrong branch
The way this plays out for me (again and again!) is that I forget to create a new
branch and so make my changes on the develop branch or to main. To fix this, enter:

git branch <new branch>
git reset HEAD~ --hard

You are creating the new branch, then removing the check-in from main (HEAD~) but
leaving the files in the new branch.

Fixing Mistakes

[228]

You trashed a file in a previous commit
You ruin a file but you only find out about it after a number of other commits. Ouch.
Use git log to find the ObjectID for a commit from before the problem commit. Now
we want to get only that file from the commit. For this, we enter:

git checkout ObjectID -- <path to file>

(The path to the file is relative to the root of the project.)

You now have the earlier version in the staging area. You can "unstage" it and edit it
from the work area.

An alternative to using the ObjectID is to count back from HEAD, such as:

git checkout HEAD~4 --<path to file>

This just says "go back 4 commits and get the file from there." The two approaches
work equally well.

You messed up the remote by pushing
a broken branch
If (and when) you break the Master branch by pushing an incomplete and broken
local copy, dry your tears, take heart! This can be fixed.

Note, this should not be possible. If you are using Azure DevOps (or something
similar) your pipeline should not accept any merge that doesn't compile (and
arguably pass a set of unit tests). But I digress…

The first command you want is:

git reset --hard <remoteRepository> / <Yourbranch>@{1}

That resets your local copy of <Yourbranch> to the last synchronized version of
<remoteRepo>. Thus, if your branch is Feature1 and it is on origin, you would write:

git reset --hard origin/Feature1@{1}

Now you want to restore the remote repo to its state before you broke it:

git push -f <remoteRepository><Yourbranch>

Chapter 12

[229]

Quiz
The challenge for this chapter consists of a quiz. The answers are all at the end of the
quiz.

1. What do you do if you left out a changed file in the last commit?
2. What do you do if you committed to the wrong branch?
3. What do you do if you corrupted a file in a previous commit?
4. What do you do if you need to undo changes made in a commit?
5. What do you do if you trash Master by pushing a broken branch?

Answers

What do you do if you left out a changed file
in the last commit?
You solve this with the same command you use to modify the message in the last
commit, using --amend, but you need to indicate that you do not want to edit the
message (make sure your files are staged):

git --amend --no-edit

What do you do if you committed to the
wrong branch?
Checkout or create the branch you want to have committed to and then use reset to
remove the change from the remote branch, but leave your files in the index (staging
area) to be committed to the new branch:

git branch <new branch>
git reset HEAD~ --hard

What do you do if you corrupted a file in a
previous commit?
First, use git log to find a commit before the corruption. Get the ObjectID of that
commit. Next, get the problem file (and only that file) from the good commit:

git checkout ObjectID -- <path to file>

Fixing Mistakes

[230]

Remember: The path to the file is relative to the root of the project.

You now have the healthy version of the file in the staging area. If that file needs
editing you can unstage it, but the more likely case is that you can use this older
version as is. In that case, you can just commit it.

What do you do if you need to undo changes
made in a commit?
In this case, open the log and get the ObjectID of the commit you want to undo. You
can now call revert on that ObjectID:

git revert ObjectID

What do you do if you trashed Master by
pushing a broken branch?
If your DevOps system allowed you to push a broken branch to Master, fix this
immediately. In fact, if you can, tell the rest of your team not to commit to Master
until you fix it. After they stop yelling at you, do this:

git reset --hard <remoteRepository> / <Yourbranch>@{1}

That resets your local copy of <Yourbranch> to the last synchronized version of
<remoteRepo>. Thus, if your branch is myFeature and it is on origin, you would write:

git reset --hard origin/myFeature@{1}

Now you need to restore the remote repo to its state before you broke it:

git push -f <remoteRepository><Yourbranch>

Master should now be fixed.

Great job with the quiz! Keep this chapter around for the inevitable day you will
need it.

[231]

13
Next Steps

Over the course of this glorious book, you have learned about:

• Installing Git at the command line, within Visual Studio, and GitHub
Desktop

• How to create a remote repository on GitHub
• How to clone a repository to your local repository using the command line,

Visual Studio, or GitHub Desktop
• How to pull changes down to the local repository
• How to push changes up to the remote repository (origin)
• Best practices on the frequency of committing
• How to write effective messages when committing
• What the work area is
• What the stash is
• What the index/staging area is
• What the local repository is
• What the remote repository is
• How to stage and commit
• How to commit without staging
• What branches are and how to create them
• How to push a new branch
• What the HEAD pointer is

Next Steps

[232]

• How to examine your commits with Log
• How to push a commit to the server
• How to manage your commits with the command line, Visual Studio, and

GitHub Desktop
• How to merge into the main branch
• What a pull request is
• What merge conflicts are and how to resolve them
• What a Fast Forward merge is
• What a True Merge is
• What Rebasing is and how to use it
• How to use amend to modify the previous commit
• How to cherry-pick commits from one branch to another
• How to work with Interactive Rebasing to change history
• The standard workflow using Git
• What notes are and how to use them
• What tags are and how to use them
• Using the log to review your commits
• Using log flags and commands to zero in on the information you want
• How to see the information the log provides in Visual Studio and GitHub

Desktop
• Using Diff to see what has changed
• Using aliases to save time and simplify your use of Git
• Searching for words or phrases in a set of commits
• Creating the stash
• Listing what's in the stash
• Retrieving from the stash
• The clean command for getting rid of unwanted untracked files
• How to see metadata and choose which data you want to see
• Using bisect to find a broken commit
• Using blame to examine which programmer made each change to a file
• Fixing numerous kinds of errors

Chapter 13

[233]

Despite this seemingly comprehensive list, there are some advanced or corner cases
that we did not cover. Further, there are additional flags for almost all the commands
we did cover. You can learn about them in several places. The key locations for
learning about Git are:

• GitHub Docs Repository: https://github.com/github/docs
• Git users mailing list: http://jliberty.me/gitmail
• Stack Overflow: http://jliberty.me/SOGit
• Git Documentation reference: http://jliberty.me/GitDocs

You can reach me at jesseliberty@gmail.com if none of these resources answer your
question, though I'm sometimes slow to respond.

The Git commands should not change much, if at all, and Visual Studio and GitHub
Desktop will almost certainly keep up with any changes as they arrive.

Be sure to check out some of the other excellent GUI interfaces to Git, such as:

• Fork
• SourceTree
• Tortoise Git

There are too many to list, but take a look at http://jliberty.me/GitGUI for a nearly
exhaustive list of GUI clients.

Good luck and I hope you Git everything you want in life.

Jesse Liberty

http://jesseliberty.com

@jesseliberty

https://github.com/github/docs
http://jliberty.me/gitmail
http://jliberty.me/SOGit
http://jliberty.me/GitDocs
http://jliberty.me/GitGUI

[235]

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
 ● Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals
 ● Learn better with Skill Plans built especially for you
 ● Get a free eBook or video every month
 ● Fully searchable for easy access to vital information
 ● Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.Packt.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with
us at customercare@packtpub.com for more details.

At www.Packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.Packt.com
mailto:customercare@packtpub.com
http://www.packtpub.com/

[237]

Other Books
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Expert Python Programming – Fourth Edition
Michał Jaworski
Tarek Ziadé

ISBN: 978-1-80107-110-9

 ● Explore modern ways of setting up repeatable and consistent Python
development environments

 ● Effectively package Python code for community and production use
 ● Learn about modern syntax elements of Python programming, such as f-strings,

dataclasses, enums, and lambda functions
 ● Demystify metaprogramming in Python with metaclasses
 ● Write concurrent code in Python
 ● Monitor and optimize the performance of Python application
 ● Extend and integrate Python with code written in different languages

https://www.packtpub.com/product/expert-python-programming-fourth-edition/9781801071109

[238]

Other Books You May Enjoy

Learning Tableau 2020 - Fourth Edition
Joshua N. Milligan

ISBN: 978-1-80020-036-4

 ● Develop stunning visualizations to explain complex data with clarity
 ● Explore exciting new Data Model capabilities
 ● Connect to various data sources to bring all your data together
 ● Leverage Tableau Prep Builder's amazing capabilities for data cleaning and

structuring
 ● Create and use calculations to solve problems and enrich the analytics
 ● Master advanced topics such as sets, LOD calculations, and much more
 ● Enable smart decisions with data clustering, distribution, and forecasting
 ● Share your data stories to build a culture of trust and action

https://www.packtpub.com/product/learning-tableau-2020-fourth-edition/9781800200364

[239]

Other Books You May Enjoy

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.
com and apply today. We have worked with thousands of developers and tech
professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that
we are recruiting an author for, or submit your own idea.

Share your thoughts
Now you've finished Git for Programmers, we'd love to hear your thoughts! If you
purchased the book from Amazon, please click here to go straight to the
Amazon review page for this book and share your feedback or leave a review on the
site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1-801-07573-5
https://packt.link/r/1-801-07573-5

[241]

Index
A
amending 101, 110, 111

B
Blame 220

commits program, creating 220-222
branches

GitHub Desktop, committing with 50, 51
Git, within Visual Studio 48-50
using, in Git 41-44

branches, programmer 44, 45
commits, adding 48
origin, examining 47
pushing, to server 46

branches, status 51
commits, adding 51-53
commits, examining 54, 55
origin 51

C
cherry-picking 101, 112, 113

in Visual Studio 113, 114
clean

using 203
command line 3, 4, 28-30

pulling to, GitHub Desktop 30
pulling to, Visual Studio 30
using 4

commits, best practices 30
history 31
messages 31
message title 31, 33
representing 30

commits 184, 185

cleaning, with interactive rebase 133-136

D
diff 180

F
fast forward 74

true merge 74, 75

G
Git

areas 198
branches, using 41-44
configuring, via command line 10
configuring, via GitHub Desktop 12
configuring, via Visual Studio 11
GitHub Desktop 40
index/staging area 37, 38
installation, checking 10
installing 7
installing, on Linux 9, 10
installing, on mac 8, 9
installing, on Windows 7, 8
local and remote repositories 41
overview 35
staging area, bypassing 38, 39
stash 41
Visual Studio 39, 40
within, Visual Studio 48-50
work area 36, 37

Git aliases 166, 167
GitHub Desktop 6, 7, 67, 68, 177

committing with 50, 51
merging, in Visual Studio 69

[242]

pushing, from command line 68
reference link 8

GitHub, et al. 3
GitHub repository

cloning, to command line 17, 18
cloning, to GitHub for Desktop 20, 21
cloning, to Visual Studio 18, 19
creating 14, 16
ProGitForProgrammers project,

creating 21, 22
Git mistakes

changed files, adding 224, 225
file trashing, in previous commit 228
interactive rebase 225
master branch, breaking 228
undo changes 225, 226
wrong branch, committing 227
wrong message, writing 224

Git pull 23
using, in GitHub Desktop 23
using, in Visual Studio 23

git show command
in Visual Studio 64-66
local history 66, 67
using 62, 63

Git, tools 3
command line 3, 4
GitHub Desktop 6, 7
GitHub, et al. 3
Graphical User Interface (GUI) 3, 4
Visual Studio 2019 5, 6

Git window
changes, downloading at command

line 26, 27
changes, downloading with GitHub

Desktop 27, 28
changes, modifying 23, 24
changes, to server 24-26

Graphical User Interface (GUI) 3, 4

I
interactive rebase

at work 125
example, creating 126-133
using, to clean up commits 133-136

L
Linux

Git installation 9, 10
log 172

local repo, examining 201
log, at command line 177, 178

diff 180
file changes, viewing 178-180
history of changes, for file 182, 183
search flag 183, 184
Visual Studio 181

LogDemo program 173-175

M
mac

Git installation 8, 9
merge conflict 70-73

avoiding 75, 76
fast forward 73
from command line 73

merging
overview 62

metadata
viewing, with show command 204

mirrored repo
pulling back, to local repo 200
pushing, to remote 200

P
Pull Request (PR) 62

R
rebasing 101-104

conflicts, checking 108, 109
good practices 105
in Git 104
Main, incorporating to 105
on local machine 105
using 105-107
working 107, 108

repository
cloning, to local machine 173
creating 172
mirroring 148

[243]

notes, adding 153, 154
notes, showing 153, 154
replicating 149-153
tags 154-156

RockyHorrorStash repository
creating 199

S
search flag 183, 184
show command

used, for viewing metadata 204
standard workflow 147, 148
stash 198

items, listing 203
stashed files

retrieving 205
stash list command 202

T
tags 154-156

pointing 157, 158

V
Visual Studio 176

cherry-picking 113, 114
Visual Studio 2019 5, 6

W
Windows

Git installation 7, 8

	Cover
	Copyright
	Foreword
	Contributors
	Table of Contents
	Preface
	Chapter 1: Introduction
	About this book
	Version control
	About the code examples
	Just a brief history
	Tools for working with Git
	GitHub, et al.
	GUIs and the command line
	The command line
	Making the command line pretty
	Visual Studio 2019
	Getting Visual Studio for free
	GitHub Desktop

	Getting Git
	Getting Git on Windows
	Getting Git on a Mac
	Getting Git on Linux
	Checking your version

	Configuring Git – the command line
	Configuring Git – Visual Studio
	Configuring Git – GitHub Desktop
	Summary

	Chapter 2: Creating Your Repository
	Creating Your Repository
	Creating Your Repository on GitHub First
	Cloning to Your Computer – Command Line
	Cloning to Your Computer – Visual Studio
	Cloning to Your Computer – GitHub for Desktop
	Creating a Project

	Git Pull
	Pulling Down using GitHub Desktop
	Pulling Down to Visual Studio

	Push Me, Pull You
	Pushing to the Server
	Downloading the Changes at the Command Line
	Downloading the Changes Using GitHub Desktop

	Starting at the Command Line
	Pulling to GitHub Desktop
	Pulling to Visual Studio

	Commits – Best Practices
	How Often Should I Commit?
	Keep Your Commit History Clean
	A Note on Commit Messages
	When the Title Isn't Enough

	Summary

	Chapter 3: Branching, Places, and GUIs
	Five places
	The work area
	The index/staging area
	Skipping the staging area
	Visual Studio
	GitHub Desktop
	Local and remote repositories
	The stash

	Branches
	Programmer 1 (CommandLine) and calculator
	Pushing the new branch
	Examining origin
	Adding commits to a branch

	The Book branch – Git within Visual Studio
	Committing with GitHub Desktop
	Status
	What's on origin?

	Adding more commits
	Examining your commits

	Summary
	Challenge
	Answer

	Chapter 4: Merging, Pull Requests, and Handling Merge Conflicts
	Merging overview
	Book

	What's in that push?
	Visual Studio
	Details, details

	GitHub Desktop
	Push it already
	Visual Studio

	Merge conflicts
	Merging from the command line
	Fast forward
	True merge

	Avoiding conflicts
	Summary
	Challenge
	Answer
	Task #1: Set up a new repository and clone it to two different folders
	Task #2: Have one person populate the main branch with the beginnings of UtilityKnife, commit the changes, and push it
	Task #3: Each programmer creates a feature branch. Each programmer then puts the beginning of their feature into their branch, committing frequently (more frequently than you would in "real life")
	Sara and the Calculator

	Task #4: Merge the main branch into the feature branch frequently to ensure that if there are conflicts, you catch them early
	Task #5: John is building the temperature converter. Have him "borrow" code from the calculator. See if there are merge conflicts

	Chapter 5: Rebasing, Amend, and Cherry-Picking
	Rebasing
	How Git does it
	Getting your head around it
	Rebase early and rebase often
	Rebase locally only
	Rebasing in practice
	Seeing the rebase at work
	Conflicts

	Amending
	Cherry-picking
	Visual Studio cherry-picking

	Summary
	Challenge
	Answer
	Creating a new repository on GitHub
	Creating two feature branches with fake programmers
	Frequent rebasing
	Amending a commit to add a file
	Amending a commit to change the message
	Cherry-picking one commit onto main

	Chapter 6: Interactive Rebasing
	Interactive rebasing at work
	Creating our example
	Using interactive rebase to clean up your commits

	Summary
	Challenge

	Chapter 7: Workflow, Notes, and Tags
	Standard workflow
	Mirroring your repo
	Replicating an existing repo
	Adding and showing notes
	Tags
	Pointing to a different tag

	Summary
	Challenge

	Chapter 8: Aliases
	Aliases
	Summary
	Challenge
	Answer

	Chapter 9: Using the Log
	Getting started with log
	The LogDemo program
	Visual Studio
	GitHub Desktop

	log at the command line
	Which files changed?
	What changed in each file?
	diff
	Visual Studio
	What changed in this file over time?
	Search
	Where are my commits?

	Summary
	Challenge
	Answer
	Create a New Repository
	Add at least 6 commits
	Find the names of every file changed in each commit
	Find what changed in a given file over time
	Find all the files you committed in the past hour (or whatever time increment makes sense)

	Chapter 10: Important Git Commands and Metadata
	Stash
	Clean
	Metadata
	Summary
	Challenge
	Answer

	Chapter 11: Finding a Broken Commit: Bisect and Blame
	Blame
	Challenge

	Chapter 12: Fixing Mistakes
	You wrote the wrong message in the last commit
	You forgot to add changed files from your last commit
	Problems with the order of commits or their messages
	You need to undo changes made in a commit
	You misnamed your branch
	You committed to the wrong branch
	You trashed a file in a previous commit
	You messed up the remote by pushing a broken branch
	Quiz
	Answers
	What do you do if you left out a changed file in the last commit?
	What do you do if you committed to the wrong branch?
	What do you do if you corrupted a file in a previous commit?
	What do you do if you need to undo changes made in a commit?
	What do you do if you trashed Master by pushing a broken branch?

	Chapter 13: Next Steps
	Packt Page
	Other Books You May Enjoy
	Index

