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Foreword

Advances in electronic warfare (EW) have determined the winners of wars. The 
research, development, and adoption of these technical advances shapes the tac-
tics, operational maneuvers, and strategies employed by commanders at all levels 
in the battle space. Advanced research and development efforts contribute sub-
stantially to deterrence. The Department of Defense in the United States invests 
approximately $7B annually in EW; I led the development and acquisition of 
these systems in the Pentagon and continue to advance these systems as a chief 
technology officer in our national security innovation base.

Cognitive EW is one of the critical advances that will determine the out-
comes of future battles. An EW researcher from World War II would recognize 
many of the systems operationally fielded today. The application of artificial  
intelligence (AI) to make EW systems cognitive is a critical advance to allow our 
systems to adapt and to learn during a mission. In a digital world of software-de-
fined capability, EW systems must respond to previously unknown signals. In the 
densely connected battle space of today, the so-called internet of military things, 
feedback can be known, or at least estimated, continuously during a mission. 
Through aggregated sensor feeds and understanding, EW systems are capable 
of adapting based on this real-time feedback. With appropriate automation, this 
feedback and learning can occur faster than humans can reason on data. This 
adaptation during an individual mission or engagement can allow our soldiers 
and our airmen to successfully complete their missions, or in some cases survive 
an engagement.

While it’s easy to state that an EW system will learn from its surroundings 
in real time, it’s quixotic to assume that just any system is effective, and robust, in 
performing its function. Society, including its military elements, is excited at the 
future AI will enable. To realize this future, we need experts like Karen and Julia 
to link the theory to the application. While it’s easy to showcase a demo, military 
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systems require robustness in their operations and will undergo critical testing 
and evaluation.

The application of AI into our lives will change how we perform functions 
each day. Military applications of cognitive technology require security as well 
to protect their functionality. Machine learning and adaptivity begin to change 
this for the military. While there are diverse interesting philosophical questions 
around protecting algorithms, specific implementations, training data, and real-
time learning, the academic foundation is quite robust and provides valuable 
insights for practitioners in the field. Given the rapid rate of innovation and 
advancements in AI, military systems must leverage these advances at the speed 
of relevance.

Karen and Julia do an excellent job in this book at providing the framework 
that will enable developers to include these recent advances into their capabili-
ties. A core understanding of AI provides a foundation, followed by a detailed 
discussion of objective functions for cognitive EW. Each EW function is unique, 
and the nuances are described in necessary depth. Every acquisition professional 
knows that sustaining weapon systems is where the costs are truly borne. In this 
case, the management of data, building the right architectures, and testing these 
new systems is covered. Last, Karen and Julia provide a gateway to these new sys-
tem functions. The balance of breadth and depth ensures alignment and success 
to meet the lofty goal of helping nations deter and, when needed, win wars.

Dr. William G. Conley
Chief Technology Officer, Mercury Systems

Former director of EW the Office of the Secretary of Defense
July 2021



xiii

Preface

I often hear that cognitive EW is too big a landscape and that people don’t know 
where to start. I always say: “AI is like Math: One day it will be everywhere.” Ev-
erybody, no matter their role or their age, should know enough about AI to know 
where it applies to the problems in their daily lives. AI is not just “autonomous 
vehicles” or “Terminator;” AI is face recognition on a camera, purchase recom-
mendations when shopping, and predictions about hurricane paths. AI belongs 
in EW systems, just as math and physics belong in EW systems. This book aims 
at lighting the path, and igniting a passion for solving EW problems that can’t be 
solved using only traditional methods.

Julia and I wrote the book for radio frequency (RF) people—experts in EW, 
cognitive radio, and/or cognitive radar—who want to learn more about how and 
where to use AI. Our goal is to help triage and guide EW system designers in 
choosing AI and machine learning (ML) solutions. ML is a key component, but 
AI is much more than just ML.

If it seems like we flip-flop between communications and radar, or electron-
ic attack and electronic protect, we do. From an AI standpoint, these problems 
truly are interchangeable. We use the same AI techniques in all four of those ar-
eas. There are some important differences, such as EW battle damage assessment 
(BDA), but AI can bring these ideas together, solve common problems, and move 
from coexistence to codesign.

We use a running example throughout the book: the BBN Strategy Op-
timizer (BBN SO). It is a communications electronic protect effort that learns 
how to handle novel environments using in-mission learning at mission-relevant 
timescales, and then performs hard real-time optimization and decision-making 
to choose mitigation strategies. Example 7.1 presents the essential concept, and 
many of the discussion points use examples derived from this work.
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1
Introduction to Cognitive Electronic 
Warfare

The challenges of modern EW are beyond the ability of traditional approaches to 
solve. Incorporating AI techniques into EW systems is the only way to manage the 
complexity of this problem domain and its rapid timescales. This book describes 
how AI techniques can help address the challenges of modern EW. We expect read-
ers to be familiar with at least one of EW, cognitive radio, or cognitive radar do-
mains, and will focus instead on AI techniques and their associated challenges and 
trade-offs. In the future, AI will be part of every EW system, recording and analyz-
ing the system’s previous performance and then adapting behavior according to the 
current situation. AI—not just ML—is the heart of future cognitive EW solutions.

Cognitive radio concepts have existed since at least 1999, when Joe Mitola 
III [1] introduced the term, while the idea of cognitive radar has been around 
since at least 2006 [2]. Fielded examples, however, are few and far between and 
limited in their cognitive capabilities. A significant reason for this gap is due to 
the sense that building a cognitive system is a huge undertaking, exacerbated by 
the misconception that it is impossible to evaluate a cognitive system.

This book aims to address this gap: it introduces RF practitioners to relevant 
AI techniques for EW: situation-assessment (SA), decision-making (DM), and 
ML. It covers SA techniques for electronic support (ES), including characteriza-
tion, classification, anomaly detection, causal reasoning, and intent recognition. 
The book discusses DM techniques for electronic protect (EP), electronic attack 
(EA), and electronic battle management (EBM), including planning, optimization, 
and scheduling, and how to manage the temporal trade-offs and distributed nature 
of the problem. It describes where to incorporate ML to improve both SA and DM. 
The book also examines a significant area of interest for EW system designers: real-
time in-mission learning to recognize novel environments and respond to surprises.
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To address the barrier-to-adoption created by the lack of understanding of 
how to evaluate a cognitive system, the book describes how to manage data and 
models to ensure quality and presents a learning-assurance process for validating 
the results and building trusted systems.

Finally, this book provides a few recommendations on how to get started 
with building an actual cognitive EW system.

Creating a cognitive EW system is not a huge “all-or-nothing” hurdle.

From an AI standpoint, EP and EA differ only in their objectives: EP de-
fines objectives with respect to oneself, while EA defines objectives with respect to 
the adversary. Likewise, AI is agnostic to whether the solutions apply to radar or 
communications problems. This book therefore treats EP/EA and radar/commu-
nications equally, highlighting the few places where the problem domain impacts 
the choice of data or algorithm.

The AI techniques presented here apply to other related disciplines such as 
cybersecurity; information warfare; position, navigation, and timing (PNT); and 
intelligence, reconnaissance, and surveillance (ISR). We do not directly address 
related areas.

1.1 What Makes a Cognitive System?

AI, the field of computer science that attempts to mimic human behaviors, was 
founded as an academic discipline in 1956 at the Dartmouth Conference [3] and 
draws from a wide variety of fields including cognitive psychology, mathematics, 
computer science, systems engineering, and linguistics.

AI comprises many subfields, including knowledge management, planning, ML, 
natural language processing (NLP), and autonomy.

A cognitive system, or intelligent agent, perceives its environment and takes 
actions to achieve its goals, as illustrated in Figure 1.1. It reasons and understands 
at a higher level, dealing with symbolic and conceptual information, to make ac-
curate decisions in complex situations. Cognitive systems are aware of context, 
handle uncertainty, and make judgments autonomously. They are iterative and 
interactive and learn from their experiences. Figure 1.2 illustrates the cognition 
loop with its three concepts:

• SA is the understanding of environmental elements and events with respect 
to time or space, the comprehension of their meaning, and the projection 
of their future status. (Situation awareness is result of a SA module.) It is a 
critical foundation for successful DM. Key steps are to collect the raw data, 
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validate the observations, fuse the data into higher-level concepts, analyze 
the impact of the situation, and infer the intent of users (both friendly and 
adversarial). 

• Execution monitoring is the activity within SA that focuses on evaluating 
how well-planned actions succeeded. Key challenges for an SA module 
include diversity in the data, latency of when the data is received, and how 
observable the environment is.

• DM involves setting goals and determining feasible methods of achieving 
them. The cognitive system must prioritize goals, understand the benefits 
and costs of different actions, and resolve conflicts. Key challenges include 
managing resources, multiple actors, and nondeterministic actions, espe-
cially in problem-solving domains where the environment is constantly 
changing.

Figure 1.1 A cognitive system perceives the environment, reasons about the situation, and 
acts to accomplish goals. It learns from the interaction with the environment.

Figure 1.2 A cognitive system iteratively assesses the situation, plans and decides its actions, 
and learns from its experience.
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• Learning extracts information from prior experience to improve future 
performance. ML techniques may extract rules about how to interpret ob-
servations or behave, or they may build functions that approximate the 
performance of the data. Key challenges include data heterogeneity, miss-
ing data, and managing bias.

Figure 1.3 lays out these three functions to highlight increasing levels of 
cognition. A simple, traditional EW system uses the ES to identify known signals, 
and chooses a response based on a library lookup. Each AI capability increases 
the overall level of cognition. This layout also provides a means to evaluate and 
compare EW system capability. Horne et al. present a cognition mapping that 
breaks down the DM components by memory, forethought, and algorithmic so-
phistication [4].

The cognition loop is similar to the observe, orient, decide, and act (OODA) 
loop commonly used in military environments [5]. The key difference between the 
OODA loop and the cognition loop is that OODA describes a process; cognition 
happens in the humans following that process. As one example, SA performed by 
a cognitive system feeds the situation awareness of the human operators.

1.2 A Brief Introduction to EW

Electromagnetic (EM) spectrum operations (EMSO) comprise all coordinated 
military actions to exploit, attack, protect, and manage the electromagnetic envi-

Figure 1.3 AI functions contribute to increasing levels of cognitive function, according to the 
concepts laid out in Figure 1.2.



4 Cognitive Electronic Warfare: An Artificial Intelligence Approach  Introduction to Cognitive Electronic Warfare 5

ronment to achieve a commander’s objectives. EM EW focuses on how to control 
the spectrum or attack an enemy using the EM spectrum, including infrared, 
optical, and microwave [6, 7]. Many of the AI techniques in this book apply to 
cyber and other multidomain aspects (e.g., information warfare [8]), but we do 
not specifically address these adjacent domains.

Electronic warfare (EW) is any action involving the use of the electromagnetic 
spectrum (EM spectrum) or directed energy to control the spectrum, attack 
an enemy, or impede enemy assaults. The purpose of electronic warfare is to 
deny the opponent the advantage of, and ensure friendly unimpeded access 
to, the EM spectrum. EW can be applied from air, sea, land, and/or space by 
manned and unmanned systems, and can target humans, communication, 
radar, or other assets (military and civilian).

—Chairman of the Joint Chiefs of Staff, 2012 [9]  
Joint Publication 3-13.1: Electronic Warfare

EW comprises the following core concepts:

• ES understands the spectrum—who is using it and how, when, and where. 
ES needs to detect, intercept, identify, and locate EMS energy, understand 
how it is being used, and determine whether there are any identifiable pat-
terns that can be exploited.

• EP involves actions taken to protect the friendly nodes from any undesir-
able effects due to changes in the spectrum such as jamming or noise. This 
activity chooses strategies or countermeasures to maintain communica-
tions or radar performance. EP conversations revolve around antijamming 
and radar countermeasure techniques; in this book we use EP equally to 
discuss techniques used to protect communication and radar systems. 
Strategies may include frequency agility, waveform design, antenna direc-
tion, and signal processing to reduce jamming.

• EA denies the adversary access to its own RF spectrum. EA uses offensive 
EM energy to degrade or deny the adversary’s access to the spectrum, or to 
deceive the adversary by conveying misleading information.

Deny, degrade, disrupt, deceive, destroy

• EBM oversees all aspects of EMSO to increase mission effectiveness, in-
cluding managing changing mission priorities, coordinating effects, and 
collaborating with other elements of mission command. A key aspect is to 
interact with and support the EW officer.
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• EW BDA assesses the effectiveness of the EA and provides feedback that 
allows the operator or system to create more effective attacks. EW BDA 
modules feed into, and are often part of, the ES module.

• EW reprogramming changes the self-defense systems, offensive weapons 
systems, and intelligence-collection systems. EW reprogramming activi-
ties fall into three major categories—tactics, software, and hardware—and 
provide commanders with a timely capability to respond to changes in 
adversary threat systems, correct system deficiencies, and tailor equipment 
to meet unique theater or mission requirements.

The EW Handbook [10] is a good reference for many EW equations and concepts.
From an AI standpoint, EP and EA can be treated the same way; the only 

difference is that EP defines objectives with respect to oneself, while EA defines 
objectives with respect to the adversary (and is thus harder to measure). The same 
applies to communications and radar systems, in that the available actions are 
the same; communications systems have more challenging distributed DM re-
quirements, with more latency, more coordination, and a more nuanced set of 
performance metrics.

Table 1.1 shows how these EW concepts map to the common AI terms 
introduced in Section 1.1. Other mappings exist, including Haykin’s Perception-
Action Cycle [11] and Mitola’s Observe-Orient-Plan-Decide-ActLearn (OOPDAL) 
model [1].

Figure 1.4 illustrates how different AI concepts and techniques might ap-
pear in a traditional EW functional diagram. Note that the EW kill-chain of 
find-fix-track-target-attack-assess (FFTTAA) is quite similar to the OODA and 
cognition loops.

1.3 EW Domain Challenges Viewed from an AI Perspective

Like any other intelligent system, cognitive EW must overcome challenges associ-
ated with each AI concept or stage of the cognition loop. The domain is challeng-

Table 1.1 
EW Activities and AI Counterparts

AI Term EW Term
Situation assessment Electronic support 
Decision making Electronic protect and electronic attack

Electronic battle management 
Execution monitoring Electronic warfare battle damage assessment 
Learning Electronic warfare reprogramming (of data and 

software)
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ing to understand, and the decision space is large and complex. User requirements 
add an additional layer of complexity to the system. This book addresses two of 
the challenges of the U.S. Department of Defense’s EW Community of Interest 
[12]: (1) cognitive/adaptive, and (2) distributed/coordinated.

1.3.1 Situation-Assessment for Electronic Support and Electronic Warfare Battle 
Damage Assessment

The dynamics and complexity of the RF/EW domain create a number of chal-
lenges for SA for ES and EW BDA:

• Dynamic: Nothing in a distributed cognitive EW system is static. Most 
assessments of the current situation are valid only fleetingly and may have 
even expired before DM activity begins.

• Ambiguous: Some observations may have multiple root causes or imply 
multiple conclusions. Detection and understanding of a change in situa-
tion is not always simple. For example, how does the system automatically 
tell the difference between short-term fade versus entering a building?

• Partially observable: Many factors that impact the EMS cannot be ob-
served. Few platforms, for example, incorporate a “fog” sensor. EW BDA 
is notoriously difficult to accomplish accurately. Some nodes may be able 
to sense an event, while other nodes cannot.

• Complex interactions: Many control parameters have poorly understood 
interactions with each other and with system performance. While specific 

Figure 1.4 AI situation assessment, decision making, and learning capabilities are relevant for 
all EW functions.
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pair-wise interactions can often be identified, such as that increased power 
reduces battery life, generally these pair-wise interactions are studied in 
laboratory environments, and the conclusions do not transfer directly to 
a fielded system. System calibration in the field addresses some pair-wise 
interactions, but it is typically limited to the most significant performance 
parameters because it is time-consuming and expensive to perform. Inter-
actions across many parameters are rarely studied, even in the lab.

• Complex temporal feedback loops: Within a node, certain activities occur at 
very rapid speeds requiring a very tight feedback loop to support cognitive 
control. Other activities occur on a longer timescale that requires analyzing 
a wider range of factors over broader windows of time. Between nodes, 
there is yet a longer feedback loop between decisions and their effects. The 
variety of temporal loops and their dramatic feedback latency differences 
means that correlating cause and effect of actions is particularly challenging.

These characteristics combine to create the significant challenge of a lack 
of training data. In a complex EW domain, it is impossible to collect sufficient 
examples of how the system behaves. While it may be possible to collect many 
examples of WiFi performance, where nodes are somewhat mobile, this is not true 
for highly mobile settings, multiple weather patterns, complex missions, and nov-
el waveforms. Synthetic data can represent some of this variation (e.g., channel 
effects), but this data will be neither realistic enough or comprehensive enough to 
cover all situations. Chapter 8 addresses the training data challenge.

This challenge is exacerbated given the adversarial setting: A true representa-
tion of adversary tactics and capabilities is likely not available for day 0 operations, 
and becomes increasingly true for day 1 to N as the situation in a conflict changes.

The EW system must be able to learn from very small numbers of novel examples, 
even during a mission.

1.3.2 Decision-Making for Electronic Attack, Electronic Protect, and Electronic 
Battle Management

Many EW domain characteristics also create challenges for DM for EA, EP, and 
EBM. The operating environment and available equipment impose constraints to 
which the decision maker must conform, including:

• Dynamic: Military missions change, user requirements change, platforms 
join or leave the ensemble, hardware fails, and mobility causes continuous 
fluctuations in communications connectivity. Each change increases the 
complexity of the DM activity.
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• Resource constrained: Nodes typically have tight constraints on size, weight, 
and power (SWaP). Power management is a critical requirement for re-
mote operations. A given node may have the ability to accomplish a given 
EW task but will exhaust its resources when doing so. One strategy to re-
duce the resource use on a single node is to distribute the task across mul-
tiple nodes, but communications is also a resource that the system must 
manage.

• Distributed: As a result of the limited communication and frequent discon-
nections, nodes must intentionally trade off the benefit of rapid local DM 
against the advantages that can be gained by coordinating across nodes. A 
stand-alone EW system or platform has significantly lower latencies than 
an internetworked EW system.

• Diverse: Nodes in a distributed EW environment may have a wide variety 
of capabilities, from small hand-held radios, to large platforms with satel-
lite communications (SATCOM), or aircraft with modern radar systems. 
Nodes may have different RF antenna components and supporting com-
putational infrastructure such as memory and compute. Diversity also ex-
ists in the operation of similar equipment, sensors, produced by different 
manufacturers or different revisions. This heterogeneity requires different 
solutions on different nodes, causing additional diversity in the software 
layers.

• Massive scale: There are many observable and controllable parameters (pos-
sibly continuous-valued) to configure per node. No current system exposes 
all of theoretically available control parameters. The maximum number of 
strategies that each node can take, per time step, is Π∀cvc, where vc is the 
number of possible values for the control parameter c. Even if all nc  control 
parameters are simply binary on/off, then there are 2 nc  strategies per node, 
per time step. When even one controllable is continuous-valued, there is 
an infinite number of configurations.

• Macroscale impacts: Elements essentially unrelated to the direct EW en-
gagement can affect outcomes. For example, red platform maneuvers that 
exceed their antenna coverage, or lack of or incidental illumination during 
red threat engagement with other platforms both impact mission success.

These challenges create a distributed, heterogeneous, low-communication, 
partially observable, high-latency, exponential optimization problem. Cognitive 
control in the general case is therefore never simple: The level at which symptoms 
appear may not be the level at which changes to the node configuration must be 
made; symptoms may be ambiguous at one level or at a given time and require 
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more context; changes in one module may impact other modules and may cause 
new issues; and the timing of changes may be critical. In practice, however, the 
challenge is not as great as it seems. First, from an engineering perspective, the 
“true” optimal is not required, and in practice there may be many “good enough” 
solutions (Section 5.3). Second, physics and progression of the engagement both 
constrain the problem.

In other domains, AI techniques have addressed the full richness of most of 
these challenges. In the cognitive radio (CR) and EW domains, AI techniques are 
just beginning to scratch the surface. AI techniques have addressed many of these 
challenges in physically embodied systems that have some similar characteristics 
to the EW domain (e.g., robotics). We need to bring these techniques into EMS 
operations and address them in depth.

The one notable exception where AI has only just begun to explore is that 
of automatic heterogeneous intercommunication. There has historically been a 
very strong norm in the networking community that all nodes must be designed 
and (preferably statically) configured to interoperate [13], typical ad hoc networks 
built from a group of homogenous nodes. CR networks break this assumption: 
Each node can have an independent cognitive controller, and thus network nodes 
may be heterogeneous, and may fall into in noninteroperable configurations.1 Mean-
while traditional AI has always assumed that communication is “safe,” negotiating 
and coordinating only the application-level tasks [14–16]; moreover, they also 
generally require very high communications overhead. These assumptions—ho-
mogeneity and safe communications—fall squarely into the set of eight distrib-
uted computing fallacies (Figure 1.5). ADROIT [18], by giving each node its own 
learning system, represented a radical departure from the traditional networking 
stance that requires homogeneous configurations. ADROIT was the first system 
to demonstrate an effective heterogeneous mobile ad hoc network (MANET) and, 
moreover, used ML to configure the nodes. Section 5.4 discusses approaches to 
addressing the distributed coordination challenge.

1.3.3 User Requirements

Finally, user requirements, described as follows, add another layer of complexity 
to the cognitive EW system:

• Complex access policies: Due to the heterogeneous nature of the data the 
nodes, and the missions, access policies may restrict the set of nodes that 
are permitted to hold or transmit specific data.

1. The alternative is to have one cognitive controller for several nodes; while coordination issues 
are reduced, communication overhead and latency increases dramatically and intelligent control 
is vulnerable to network partitions.
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• Complex multiobjective performance requirements: Multiple users have in-
teracting requirements and policies, thus requiring a complex multiobjec-
tive function that captures mission and environmental standpoints [19]. 
It is rarely possible to optimize all objectives simultaneously. Instead, the 
system must choose a particular operating point that balances the trade-
offs. Examples include resource use, joint optimization of ES/EP/EA, joint 
optimization of comms and radar, and accuracy such as probability of de-
tection (Pd) versus probability of false alarms (Pfa).

• Constrained operations: All cognitive EW system designers desire real-time, 
in-mission ML. The concern from a user perspective is that the system 
may learn inappropriate behaviors. Requirements must simultaneously 
constrain emergent behavior, and yet address novel, unexpected situations.

Ultimately, these factors lead to how much the human stakeholders trust the 
information gathering, SA, and DM of the AI system. Stakeholders include the 
acquisitions community, who want “verifiable” and “guaranteed” performance, 
as well as the individuals—electronic warfare officers (EWOs), air crew, sailors, 
and soldiers—whose lives depend on pragmatic actions. Section 5.1.1 discusses 
multiobjective optimization. Section 6.3 discusses the human-machine team, and 
Chapter 10 presents mechanisms for verification and validation of an AI-based 
system.

1.3.4 Connection between Cognitive Radio and EW Systems

CR networks accomplish EP objectives of cognitive EW systems in RF communi-
cations. Table 1.2 outlines some of the potential and well-known benefits of CR, 
which are directly applicable to cognitive EW.

Figure 1.5 When designing a distributed cognitive EW system, one must not fall victim to the 
classical eight fallacies of distributed computing defined in 1994 by Peter Deutsch and James 
Gosling [17]. These fallacies are more acute in EW.
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CR concepts were developed to address RF spectrum usage efficiency [20–
22]. CR technology promises to become a transformative force within spectrum 
management. All EMS operations can leverage these novel spectrum manage-
ment approaches and opportunistic spectrum access. Furthermore, opportunistic 
spectrum access implies that CR engines have achieved a certain level of spectrum 
situational awareness, which is an important aspect of an intelligent EW system as 
well. CR networks are also looking at heterogeneous radio frameworks’ manage-
ment, a concept also relevant for multiagent, heterogeneous EW systems [23–26]. 
5G, the fifth-generation cellular network, also has similarities to the EW environ-
ment. Callout 11.1 outlines use cases and some cognitive approaches.

Much of the published CR work deals with multiaccess issues, not spec-
trum use in an adversarial environment. Moreover, CR research usually assumes 
cooperative entities with similar goals, while EW scenarios are always adversarial. 
Chapter 5 describes approaches to optimizing in the adversarial setting.

1.3.5 EW System Design Questions

Cognitive EW system design must provide SA, DM, and learning capabilities. 
System requirements drive a set of decisions about which components to incor-
porate, and what questions to ask during system design [20, 27–29]:

• DM: Should decisions be centralized or distributed? What DM algorithms 
should be used? How do we define optimization functions? Can we le-
verage the physics of the domain, and progression of the engagement to 
reduce the state space? Chapter 5 describes DM for EP and EA, while 
Chapter 6 describes DM for EBM.

• Learning: How do we define appropriate learning tasks? Should learning 
be supervised or unsupervised or semisupervised? What measurements 

Table 1.2 
The Benefits of Cognitive Radio Systems and How They Transfer to Cognitive EW

Cognitive Radio Benefits Cognitive EW Benefits
RF communications, seamless to 
the user

→ EMS operations must also be seamless 
to the user. Moreover, networked 
radar EW systems require underlying 
communications.

Self-regulating radio networks → EW systems must also be self-configuring 
and self-regulating, particularly given the 
rapid requirements of the EW kill chain.

Better performance in terms of 
cost, speed, power consumption, 
availability, timeliness, and 
resource use

→ Better performance in terms of cost, 
speed, power consumption, availability, 
timeliness, and resource use. EA activity, 
in communications or in radar, is also 
measured by effectiveness (EW BDA).
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(features) should form the basis of the learning task? How do we handle 
the combinatorial explosion of the data that captures all past observations 
and decisions? Chapter 4 describes learning tasks, and Chapter 8 describes 
data-management approaches.

• Sensing: How do we assess the accuracy of spectrum sensing capabilities? 
Can we improve sensor accuracy? How do we leverage cooperative sens-
ing mechanisms across spatially diverse nodes without incurring untenable 
latency? Can we leverage redundancy in data feeds to compensate or cor-
rect for failures? How do we address other topics such as long-range RF 
sensing, multifunctional RF sensing, and passive RF sensing? Section 4.3 
discusses some of the data fusion concepts that AI can help with, while 
Section 8.1.1 discusses the need to record not only the data, but also its 
uncertainty and origin.

• Security: When do we need to encrypt data? How do we ensure policies to 
avoid security violations, particularly given the highly dynamic environ-
ment and missions? How do we protect data and models without jeopar-
dizing performance, particularly accuracy and latency? Can we ensure that 
even if a model is compromised, it cannot be reverse-engineered? Section 
8.3.5 talks about some security issues.

• Software architectures: How do we address global optimization of an EW 
system, both globally across the network of platforms, and internally with-
in each node across each module? Section 9.1 describes software architec-
tures in more detail.

• Hardware design: How do we design RF systems that are amenable to cog-
nitive control? Can we effectively design multifunction hardware systems 
that can handle cognitive configurations? What memory and compute ca-
pabilities can we incorporate within the SWaP constraints of the platform? 
Because not all data can be recorded, what data compaction techniques 
effectively minimize data loss? Section 9.3 outlines some of the hardware 
considerations.

1.4 Choices: AI or Traditional?

AI, despite the hype in the media, is not applicable to every problem. AI solutions 
are less brittle, more transferrable to different problems, and more scalable than 
traditional approaches.

One does not need large computers to achieve impressive results. (That said, 
most AI practitioners would choose the largest compute and memory possible 
within the SWaP constraints.)
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AI-based approaches scale to available hardware, including smaller hard real-
time embedded systems.

For example, the cognitive EP system by Haigh et al. [30] learns how to 
maintain communications in a variety of novel interference conditions. The Strat-
egy Optimizer (SO) uses the ML technique support vector regression machines [31], 
which enables it to achieve real-time in-mission learning on an ARMv7 processor 
in under a second. More details appear in Example 7.1.

The question is therefore how to choose between a traditional approach or 
an AI-based approach. There are times that a direct computation will be faster 
and more efficient. Broadly speaking, if an available model is accurate, then the 
traditional approach is likely to be more efficient than an AI-based approach. For 
example, if physics captures all relevant interactions, and empirical data doesn’t 
change the function significantly, then the physics model is a better choice. (See 
the EW Handbook [10] for examples.)

AI approaches and traditional approaches should coexist on platforms, per-
forming tasks appropriate for their strengths. Depending on measurements, con-
ditions, and uncertainty, either could be the final arbiter for given tasks. Likewise, 
the two approaches could operate in parallel, and the results combined to generate 
the final outcome.

We can evaluate a problem domain according to any of the characteristics 
in Section 1.3. The most informative of these are how distributed, complex, or 
dynamic the problem is. Figure 1.6 illustrates these axes, indicating attributes that 

Figure 1.6 Domain characteristics determine whether AI is useful or necessary. Figure 1.3 
places these AI functions to show levels of cognition.
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determine when a more traditional approach is likely to be sufficient, and when 
an AI-based approach becomes necessary.

When the problem domain is highly distributed, distributed coordination 
(or multiagent techniques) become increasingly important. If a single node can 
accomplish the task, the system does not need to merge potentially disparate ob-
servations of the same object, negotiate task assignments, or coordinate actions. 
With a team of multiple homogeneous nodes, each node can make assumptions 
about its teammates, minimizing communications and facilitating coordina-
tion. Heterogeneous nodes must allocate resources and tasks across the nodes 
and dynamically update those allocations during a mission while minimizing 
communications overhead. Most AI-based distributed coordination approach-
es generate more resilient plans than conventional control systems. Networked 
EW systems have loosely coupled task coordination (e.g., deciding which nodes 
should do stand-in jamming or becoming a communications relay), and they 
also have tightly coupled task coordination (e.g., performing distributed coherent 
transmissions).

When the problem is highly complex, SA techniques become relevant for 
data understanding. When data simply needs to be moved from one node to an-
other, no knowledge is extracted from the data. When a traditional model can ex-
tract useful information efficiently and accurately, then AI is unlikely to improve 
results. Data fusion brings together disparate data sources, possibly different types 
of data collected, or the same type of data on multiple nodes. The more disparate 
the types of data, and the more varied the temporal characteristics, the more that 
data fusion concepts need to be employed. Plan recognition and intent inference 
techniques enable the system to understand the intent of actors in the domain, 
whether they are users or adversaries. To maintain system performance, EP sys-
tems need to recognize the intent of the users. EA systems are more effective when 
they understand the intent of the adversary.

Planning and scheduling techniques address DM as domain complexity in-
creases. If the system does exactly one thing (i.e., has one configuration), then 
traditional control approaches are appropriate. Simple rules can manage a handful 
of possible configurations. Planning, scheduling, and optimization approaches 
become necessary when there are many possible configurations. In most EW sys-
tems, the configuration parameters can be combined in many ways, yielding a 
possibly infinite number of configurations. At the same time, the EW system may 
encounter a possibly infinite number of scenarios. AI-based DM is critical.

The third key domain characteristic is dynamism. When the domain is stat-
ic, a preconfigured system is sufficient for the task. When the domain is dynamic, 
and the system encounters changing conditions, an adaptive approach becomes 
necessary, for example, selecting EP countermeasures appropriate for the observed 
jammers. These responses can be designed a priori by hand or by a (non-real-
time) ML approach, and then uploaded to the system via EW reprogramming. 
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When the system will encounter novel conditions, such as novel transmitters, 
then a real-time in-mission ML approach is crucial.

Each of these technical areas (distributed coordination, SA, DM, and ML) 
support a vibrant research community in AI, including dedicated technical con-
ferences and publications. In each case, the research community is developing 
multiple approaches; the cognitive EW community can choose approaches ap-
propriate for available hardware. Each of the chapters in this book will discuss 
relevant approaches, and highlight the trade space that system architects should 
consider.

The key lesson is to not select the solution (i.e., cool AI technology) without fully 
understanding the problem.

What desired outcome will the AI enable? What data exists upon which to 
base a ML solution? Do the characteristics of the problem warrant an AI-based 
solution?

1.5 Reader’s Guide

The chapters in this book walk through the concepts required for building a fully 
cognitive EW system, organized by the components in Figure 1.4.

• Chapter 2 describes the objective function that drives DM.

• Chapter 3 presents a short primer2 on ML, including a discussion of algo-
rithmic trade-offs.

• Chapter 4 explains how to assess an ES situation.

• Chapter 5 describes how to choose a strategy for EP and EA in time-
constrained and distributed settings.

• Chapter 6 presents EBM and the human interface, dealing with planning, 
including resource management, uncertainty, and adversaries.

• Chapter 7 examines online replanning and learning, including EW BDA, 
which maps expected outcomes to observed outcomes.

• Chapter 8 presents data management processes and practice.

• Chapter 9 covers software and hardware architecture considerations.

• Chapter 10 presents evaluation: how to test and what to test.

2. The word primer is pronounced primmer using the i from sit when it covers the basic elements 
of a subject. It is pronounced pr-eye-mer using the i from five when it is an underlayer of paint.
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• Chapter 11 condenses all the lessons learned into recommendations on 
how to get started building a cognitive EW system.

1.6 Conclusion

Building a cognitive EW system requires understanding what and where AI can 
help: SA for ES and understanding the RF environment, DM for choosing EP/
EA/EBM actions, and ML for continuous improvement.

This high-tempo complex environment is well-suited to the application of 
AI, but there are challenges to developing fieldable cognitive EW systems that 
can operate in that environment. A fully cognitive EW system needs algorithmic 
advancements for learning and inference, developments in DM at tempo, data 
management approaches that annotate characteristics, and architectures that sup-
port cognitive reasoning.

However, you can start with a small capability, and grow it for the problem 
at hand; Chapter 11 describes the incremental steps.

A journey of a thousand miles begins with a single step.
—Chinese proverb,  

Dào Dé Jıng by LaoZi, 6th century BCE
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2
Objective Function

The EW DM challenge is to build a cognitive controller that automatically main-
tains near-optimal configurations in highly dynamic environments. Every DM 
problem has the following components:

• A set of objectives for the system to accomplish, with each objective having 
an established importance;

• A set of actions available for the system to use to accomplish the objectives; 

• A set of methods that evaluate the state to determine consequences (e.g., 
reinforce success and handle adverse consequences).

Armed with these three components, the system can choose the most ap-
propriate actions for the evolving mission conditions. This chapter describes the 
heart of the EW decision maker: the set of objectives. Objectives must be opera-
tionally relevant, and optimizable in practice [1–4]. We must therefore capture 
mission goals and constraints in a mathematically optimizable objective function, 
also known as a utility function. Goals and constraints come from user and mis-
sion needs, from environmental constraints, and from equipment capabilities. 
The utility function measures all the factors by which to evaluate a decision, so 
the system can choose the “best” solution. Consider an EW system with N nodes; 
each node n ∈ N has:

• A set of observable parameters on that describe the RF environment (Sec-
tion 2.1);

• A set of controllable parameters cn that the decision-maker can use to change 
system behavior (Section 2.2);
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• One or more metrics mn that provide feedback on how well it is doing, 
along with their corresponding weights wn (Section 2.3);

• A utility function U  that combines the metrics and weights into a single 
scalar-valued result (Section 2.4).

A strategy sn is a combination of control parameters cn. The goal is to have 
each node n choose its strategy sn to maximize utility U n of the system.

Table 2.1 collects these symbols. In the main text of this book, we generally 
use informal notation for these concepts; Section 2.4 presents a formal definition 
of the true utility function U, and its approximation U n.

Depending on system requirements, a strategy may contribute to EP objec-
tives, or EA objectives, or both. Likewise, a strategy may contribute to commu-
nications objectives, or radar objectives, or both. AI is agnostic to the problem 
domain and does not discriminate between objective types or problem domains. 
It is the problem definition that determines problem-specific observables, con-
trollables, objectives, and heuristics.

AI techniques apply equally to EP/EA, and comms/radar. The utility function ties 
AI techniques to problem domain.

Table 2.1 
Symbols That Support the Construction of a Utility Function

Symbol Definition

n ∈ N A node n in the set of nodes N

t Timestamp
on Observables o for node n; on(t) is the value of on at time t; Denote 

n no o
z Unobservable contextual information
cn Controllables c for n; cn(t) is the value of cn at time t; Denote 

n nc c

mn Metrics m for node n; denote 
n nm m

wn Weights corresponding to each metric in mn; =n nw m
sn Strategy s for node n; combination of controllable values cn

U The true utility function with no corresponding exact analytical expression


nU Node n’s local estimate of the utility

Fn
Node n’s local model of the performance surface

Un Observed utility at node n
ˆ

nU Best-measured (or optimal) utility at node n
gn A function over metrics mn and weights wn to evaluate utility nU

fnk A function over observables on and controllables cn to evaluate the kth metric 
of node n: mnk = fnk(on,cn) = fnk(on,sn) or simply mk = fk(o,s)
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2.1 Observables That Describe the Environment

In EW, observable features, or observables, are general descriptors of the signal 
environment and any relevant contextual information. Observables are computed 
by ES modules. Each node n ∈ N has its own set of observables, on, and these may 
differ from other nodes n′ ∈ N. There are no  observables at each node. Observ-
ables may include raw values, deduced abstractions, or inferred concepts:

• Raw receiver in-phase/quadrature (I/Q) values.

• Descriptions of all detected emitters (friendly, neutral, or adversarial). 
These features might include noise levels, error rates, Gaussianness, repeti-
tiveness, similarity to own communications signal, or geolocation infor-
mation, emitter capabilities, and current operational mode.

• Descriptions of all detected targets, including carrier, pulse statistics, and 
Doppler.

• Descriptions of receiver state (e.g., saturation and antenna characteristics).

• Descriptions of internal software state, which include in a CR setting sta-
tistics from the IP stack or end-user applications, such as message error 
rate, queue lengths, and neighborhood size.

• Descriptions of the mission, including known or forecasted locations, 
tasks, users, and commander’s intent.

• Descriptions of the environment, such as temperature, dust, or topography.

Figure 2.1 illustrates a handful of observables that capture different jammer 
types. Each detected emitter is associated with its own vector of observables.

Generally, when derived or inferred features can be abstracted or normalized 
relative to expectations, the decision-maker can more easily determine the relative 
importance of different features. For example, observables might range from –1 
to 1 (strongly “is not” to strongly “is”) relative to expectations. Partially observable 
values can be captured with NaN.

There are many different visualization tools useful for understanding how 
each environment is different. Figure 2.2 shows four different ways to look at the 
data; each may be useful for different reasons. The bar charts use the mean values 
of each observable to give a quick gestalt sense. The box plots show the distribu-
tion of values. The scatter plot shows detailed distributions of each observable for 
every observation of the environment.
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All models are wrong, but some are useful.
—George Box [5]

Note that there may be unobservable contextual information, z. These hid-
den variables may include broad environmental factors like politics, wind farms, 
weather, or detailed concepts like undetected emitters or failing hardware com-
ponents. In theory, every butterfly could impact the performance of the system; 
in practice, designers should attempt to capture all relevant factors. Unobservable 
factors are the primary source of modeling error in ES. Models of physical systems 
are inherently incomplete, and the apparent randomness of a system depends on 
unseen or unmeasurable variables.

2.1.1 Clustering Environments

As our first foray into using ML in an EW system, we can use clustering to de-
termine environment similarity. Clustering is an unsupervised ML method that 
groups similar items based on their features [6, 7]. We cluster the observable fea-
ture vectors into RF environments and then draw a corresponding dendrogram to 
visualize how similar or dissimilar each environment is to the others. Figure 2.3 
shows a dendrogram built from 23 different RF environments and three of the 
corresponding boxplots. The shorter the lines connecting two environments, the 
more similar they are. Environments 06 and 05 are the two most similar environ-
ments and form the first cluster; these two then become a cluster with the pair 
(env16 and env13). The boxplots for env16 and env06 show that they are, in fact, 
very similar. Env21 is very different, and is very far away in the dendrogram.

Figure 2.1 Observables are the features that allow a system to make decisions; these observ-
ables are useful to characterize different jammer types.
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Many clustering methods are available in standard ML libraries (Section 
11.2.1). Algorithm 2.1 shows how to plot a simple dendrogram using scikit-learn. 
Scikit-learn’s dendrogram functions require the data to contain no NaN values. 
The cleanNaNs() function therefore replaces NaN values by values: For each 
environment, for each observable, replace NaNs with the mean value of the non-
NaN values of that observable in that environment.

Standard ML libraries will not take advantage of any computations used 
for multiple purposes and will need reimplementation for the embedded envi-
ronment. K-means clustering is efficient and appropriate for embedded domains 
[8]; one can also use the known labels as the initial cluster seeds. If the system 

Figure 2.2 Four different ways to visualize environmental observations: (a) a bar chart that 
shows the mean of the non-NaN values, (b) a box-and-whiskers plot showing the distribution, 
(c) a bar chart plotted on a polar axis, and (d) a scatter plot of values on a polar axis. Each 
of these visualizations represent the same underlying observable data. (Figure 7.3 explains 
boxplots.)
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Figure 2.3 A dendrogram visualizes how similar items are to each other. Each environment is 
described by the multiple features shown in the boxplots. (a) the Dendrogram, where the x-axis 
indicates the distance between environments; (b) env16; (c) env06; and (d) env21. (Figure 7.3 
explains boxplots.) 
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Algorithm 2.1 This scikit-learn code plots a dendrogram like the one in 
Figure 2.3 to show the similarity of RF environments.
import csv
import numpy as np 
import pandas as pd
import matplotlib.pyplot as plt 
from scipy.cluster.hierarchy import dendrogram 
from scipy.cluster.hierarchy import linkage

####################
# Load a dataset: columns are (Environ) label and  
# multiple (obs)
def getData():
 environs = pd.read_csv( ’radardata.csv’ ) 
 environs = environs.set_index(’Environ’) 
 return environs

####################
# Efficient method to replace NaNs with the mu 
# for that environ/obs
def cleanNaNs(df):
 newDF = pd.DataFrame()
 environs = np.unique( df.index )
 for environ in environs:
  # Instances for this environ
  instances = df.loc[ df.index == environ ]
  # Only replace NaN in columns with NaN values
  nanCols = instances.isnull().any(axis=0)
  for i in instances.columns[nanCols]:
   # Replace NaN in this col with mean of
   # other vals
   instances[i].fillna( instances[i].mean(), 
          inplace=True )
  newDF = newDF.append(instances)
 return newDF

#################### 
if _ _name_ _ == ’_ _main_ _’:
 df = getData()
 df = cleanNaNs(df)
 nEnvirons = len(np.unique( df.index ))
 fig,ax = plt.subplots(figsize=(12,8))
 Z = linkage(df,method=’ward’)
 dendrogram(Z,truncate_mode=’lastp’,
      p=nEnvirons,orientation=’left’)
 fig.tight_layout()
 plt.savefig(’dendrogram.pdf’)
 plt.close()
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maintains distances between examples (e.g., to support training an SVM or main-
taining diversity in the dataset), then hierarchical clustering methods are also ap-
propriate. The final number of clusters can be driven by available memory or by 
intercluster distances.

2.2 Control Parameters to Change Behavior

Control parameters, or controllables, can include any action available to the node. 
Each node n has a set of controllables, cn, that conform to the platform’s available 
capabilities; these are the platform’s “knobs”, or degrees of freedom. There are nc
controllables at each node. A strategy sn is a combination of control parameters, 
wherein each controllable has an assigned value. The maximum number of strate-
gies per node, per timestep, is Π∀cvc, where vc is the number of possible values for 
the control parameter c; if all cn controllables are binary on/off, then there are 2 nc

strategies, well beyond the ability of a human to manage. For example, if there are 
five controllables: c1, c2, c3 are binary on/off, c4 can take 3 values, and c5 has 10, 
then there are a total of 23 × 3 × 10 = 240 different strategies. When controllables 
can take continuous values, or many discrete values, there may be an infinite 
number of strategies per node.

Control parameters are intentionally exposed by the platform for tuning; 
crosslayer issues are implicitly captured by selecting control parameters from mul-
tiple components. For a CR, these are typically parameters in the protocol stack 
or on the radio, such as those settable through a management information base 
(MIB) or the mission data file (MDF).

The choice of algorithm or module allows for online reconfiguration of 
software and firmware flow. Modeled as a binary on/off, each available module 
has a control parameter x, and x = 1 when the module should be invoked, and 
x = 0 when the module should not operate [9].

Hierarchical control parameters are those parameters that are only valid 
when affiliated parameters or algorithms are enabled. For example, a proactive 
routing protocol requires the periodicity of hello messages, while a reactive proto-
col requires time-to-live thresholds.

We assume a team of heterogeneous nodes. Each node has an optimizer 
that can configure its capabilities, including techniques in the RF hardware, the 
FPGAs, the IP stack, and even outside the RF system when appropriate, such 
as telling the platform to move, or requesting action from a human user. Some 
examples include:

• Antenna techniques such as beamforming, nulling, and sensitivity time 
control;



28 Cognitive Electronic Warfare: An Artificial Intelligence Approach  Objective Function 29

• RF front-end techniques such as analog tunable filters or frequency-divi-
sion multiplexing;

• Physical layer parameters such as transmit power, notch filters, or number 
of Fourier transform bins;

• Medium access control (MAC) layer parameters such as dynamic spec-
trum access, frame size, carrier sense threshold, reliability mode, unicast/
broadcast, timers, contention window algorithm (e.g., linear and exponen-
tial), neighbor aggregation algorithm, dwell time, pulse repetition interval, 
and pulse compression length;

• Network layer or multinode coordination parameters such as neighbor 
discovery algorithm, thresholds, timers, number of transmitter/receiver 
pairs to combine in a multistatic radar, and number of receivers to jam;

• Encryption settings such as cipher and hash function;

• Application layer parameters such as compression (e.g., jpg 1 versus 10), 
method (e.g., audio versus video), scan pattern, or how to weight indi-
vidual radar returns;

• Radar/counterradar items such as modulation type, antenna scan rate and 
beam-pointing sequence, receiver bandwidth and dwell duration, space-
time adaptive processing parameters (STaR), and EA technique(s);

• Concepts outside the RF framework, such as when interacting with a 
human or the platform (e.g., deploying chaff to change the electromagnetic 
properties of the air, or deploying a towed array to increase spatial diversity).

Controllables may have associated costs that must be accounted for in the 
metrics. Costs can include ramp-up, maintenance, or ramp-down. Costs may re-
flect any relevant metric, including time, power, or memory usage. Costs may 
depend on the value of the controllable; for example, frequent hello interval timers 
will cost more power and bandwidth than infrequent ones. Costs in a set of con-
trollables may be combined in different ways. For example, latency-to-implement 
is a parallel cost, while transmit-power is summed.

Controllable values may be mutually exclusive. For example, a synthetic ap-
erture radar can control integration time or azimuth resolution, but not both.

Controllables may not always be available. Different phases of a mission, 
for example, may enable or disable platform capabilities (e.g., the information-
gathering phase of a mission may disable actions that reveal the presence of the 
node, and then the prosecution phase enables them).

The AI concept of adjustable autonomy may also enable or disable capa-
bilities. In an adjustably autonomous system, the human user may empower 
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the platform with different levels of autonomy [10]. For example, a human may 
choose a low level of autonomy, where she “joysticks” an aerial vehicle, or a high 
level of autonomy, where she geotags a region of interest that the platform should 
monitor.

2.3 Metrics to Evaluate Performance

System requirements directly drive the process of identifying appropriate metrics 
in a complex system. Choosing a good set of metrics is possibly the hardest part of 
creating a system that effectively chooses actions autonomously. Each metric must 
capture the connection between available actions and system high-level require-
ments. The set should be as complete as possible and include no extraneous mea-
surements. Metrics should be relevant, measurable, responsible, and resourced 
[11].

There are multiple layers of metrics, but the two that matter most are those 
that impact mission success and EW performance. Mission success metrics, includ-
ing platform survival and probability of mission kill, are most relevant to the 
military decision-makers and users. Metrics evaluate the performance of the sub-
components under different operational conditions and are directly optimizable, 
either at design time or online through self-assessment and changing behavior.

Metrics quantify how well the EW system satisfies requirements from mis-
sion, and situational standpoints. There are nm  metrics at each node. A decision-
maker chooses controllables cn(t) to impact the metrics mnk(t ′> t). Metrics may 
be computed from a model or empirically learned per Section 4.2 and Chapter 7. 
Metrics include:

• Effectiveness concepts include throughput, latency, sensitivity, bit-error rate 
(BER), message error rate, Pd, Pfa, clutter-to-noise ratio, and broad con-
cepts of jamming effectiveness (J/S or EW BDA). Note that EW BDA is 
an inferred metric of adversary systems and cannot be directly measured, 
for example, radar track quality (angle, range, velocity, covariance matrix 
estimate).

• Cost factors include time, power, control overhead, timeline usage, prob-
ability of detection, or even platform wear-and-tear.

• Other concepts include DM uncertainty, heuristic preference, or flexibility to 
surprise. For example, designers may prefer FPGA-based actions over soft-
ware-based actions, or for the system to remain relatively stable over time 
(not changing actions at each time step). The value of information (Section 
6.1.4) can also be an important metric. When the system uses ML to learn 
the models fk(o,s), decision confidence or applicability domain may become 
important metrics. (The applicability domain of a statistical model is the 
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subset of the underlying patterns on which the model is expected to give 
reliable predictions.)

Haigh et al. [1] examines four potential metrics: (1) application-level qual-
ity-of-service (QoS) requirements of multiple heterogeneous traffic flows, (2) 
node-level constraints on battery lifetime, (3) node-level constraints on probabil-
ity of detection, and (4) cost in terms of how much bandwidth the network wastes 
as a byproduct of application-level data transfer. Table 4.1 outlines some metrics 
for 5G localization.

There is an inherent tension between metrics and observables, in that many 
items could be used either way. BER, for example, may be an observable to sup-
port a low probability of intercept/low probability of detection (LPI/LPD) met-
ric, or it may be a metric that the EP system aims to minimize. The choice of 
whether to call a feature a metric or an observable is a function of the mission and 
the problem definition. When building the system, it is frequently most appropri-
ate to start with the simplest metric (i.e., the easiest to measure), while using more 
complex or inferred features as observables. Once the system has stabilized, one 
can convert features from observables to metrics. For example, the initial system 
may optimize BER, and subsequently augment to broader concepts of through-
put and latency.

Each metric may have an associated weight that specifies how the metric 
impacts the overall performance. A scalar value could be used to accumulate a 
weighted sum of metrics. A lambda function could specify more flexible struc-
tures to handle metrics that are not uniform or linear. For example, if BER is 
above a threshold, or latency is beyond an acceptable time limit, then the metric 
can be zeroed. Figure 2.4 sketches some possible weight functions.

Metric values should be normalized, so that large values are evaluated at 
the same level as small values. Metrics may be measured in linear scale or loga-
rithmic scale (e.g., dB). The normalization approach may differ based on the 

Figure 2.4 Weights can modify metric values in different ways and moreover may change de-
pending on the mission (e.g., whether the emitter is in search, acquisition, or track mode).
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scale of choice. Weights control their relative values. When maximizing utility, 
effectiveness metrics would have positive weights, while costs would have negative 
weights.

The most effective metrics are ones with rapid, measurable feedback. Feed-
back is computed by ES/BDA and reflects the observed value of the metric to 
compare against the value estimated by learned models. Useful questions include: 

• Can the metric be directly measured? BER can be directly measured, while 
EW BDA is instead inferred. The system can use both types, but a directly 
measurable one is significantly easier to develop and leverage.

• How many nodes contribute to the measurement? BER can be measured 
on a single node; roundtrip time is measured by all of the nodes in a single 
flow, and EW BDA could be constructed locally or over a small team of 
nodes. Generally, fewer nodes means that the computation is faster and 
more accurate. Multinode measurements introduce latency and can be 
computed with techniques such as consensus propagation [12].

• How rapid is the feedback? BER is relatively instantaneous, Throughput 
has delay usually measured in seconds. Target tracking accuracy is usually 
measured in minutes, and number of lives lost on a mission is measured 
in hours or days. As the feedback interval increases, it is harder for the sys-
tem to connect specific actions to their effect. While in theory, the system 
could automatically determine these relationships, the amount of time and 
data required becomes prohibitive.

• Does the metric value change with time or other contexts? For example, 
target tracking in a surveillance radar is measured in minutes, but fire con-
trol only needs seconds to generate a firing solution. Moreover, accuracy 
may matter for only the initial shot selection and midcourse/end-game 
aspects of weapons guidance. If the EW system deceives an enemy mis-
sile guidance radar for 90% of flight-out time but did not deny the final 
10% of the fly-out, it still fails. Metrics must be evaluated when they are 
most applicable to ensure they are meaningful in the context of the overall 
engagement outcome in terms of success. Some of these concerns can be 
handled with lambda functions, others may require changing the structure 
of the utility function.

2.4 Creating a Utility Function

In systems that autonomously choose actions, a utility function captures the ob-
jectives of the stakeholders. The structure of the utility function depends on the 
specific tasks and capabilities of the system. The function combines the metrics 
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in a way that is operationally meaningful and optimizable in practice. Callout 2.1 
presents a formal definition of a utility function, and how to simplify it so that it 
can be optimized it in practice.

Generally, a comms objective function will be more nuanced than a radar 
objective function, because there are more metrics available. Joint optimization 
(EP/EA or comms/radar) adds another layer of complexity.

In a complex system, requirements drive the process of choosing metrics 
and weights and how to combine them. Goals and constraints come from user 
and mission needs, from environmental constraints, and from equipment capa-
bilities. Haigh et al. [1] present an approach to allow in-mission manipulation of 
the utility function through policy bundles. It is important to capture goals from 
all stakeholders.

A simple objective function computes the weighted sum of the metrics:

 ( )
1

nm

n nk nkk
U w m

=
= ×∑  

where each weight wnk is a scalar value, and each metric mnk is a function of the 
node’s observables and controllables, mnk = fnk(on,cn). When weights are lambda 
functions, a possible function is:

 ( )
1
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n nk nkk
U w m

=
= ∑  

When metrics are not independent, alternate structures may be appropriate. 
For example, any communications flow before a deadline should be evaluated us-
ing jitter, but after the deadline, there is no benefit for delivering data. If latency 
m1 < 3 is a hard constraint, and jitter m2 = 0 is a soft constraint, then a good 
mathematical representation of this concept is:

 ( ) −= − ⋅

2
2 2

1 13 w m
nU w m e  

where w1(·) is the unit step function, and w2 > 0 is a parameter that characterizes 
how soft the jitter constraint is. Figure 2.5 shows the utility values from this func-
tion. Note that estimates for m1 and m2 may still depend on learned models f1(o,s) 
and f2(o,s) respectively.

As an example, ES systems have a goal of 100% for probability-of-intercept 
(POI). The only way to achieve 100% is to construct a staring architecture that 
monitors the spectrum continuously. Architectures that cannot provide continu-
ous monitoring must implement scan patterns with sequential tuning and dwell-
ing to intercept emitters when they are transmitting and while the receiver is 
dwelling at their frequency. A simplified utility function in this case is POI = f (RF 
environment observables, scan rate, revisit patterns, dwell, ..., frequency ). As with 
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Callout 2.1 Formal problem definition: the true utility function U must 
be simplified to make it optimizable in practice. 
Consider an EW system with N heterogeneous nodes. Each node n ∈ N has 
the following:

• A set of no  observable features, denoted 1 2( , , , )
n

n n n noo o oo   .

• A set of nc  control parameters, denoted 1 2( , , , )
n

n n n ncc c cc   .

Denote unobservable contextual information as z.
To capture changes over time, denote cn(t) to be the value of cn at time 

t, and do likewise for on and z.
Associated with the system is a real-valued scalar utility measure U(t) 

that characterizes the global, network-wide performance measure at time t. 
This measure is a function F of all the control parameters, observable features, 
and unobservable factors, for all nodes, since the beginning of the mission:

( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )+ = ∀ ∈ o o c c1 0 , , , 0 , , , 0 , ,  n n n nt n N t t tU F z z

The goal is to solve the following distributed optimization problem:

Design a fully distributed algorithm where every node n 
determines its control parameter values cn(t) using only its own 
previous observable features on(0), ..., on(t) and control values 
cn(0), ..., cn(t) such that U(t + 1) is maximized (or minimized) 
for each t.*

The challenge is that we cannot define an exact analytical expression for 
F, due to the unobservable factors z and complex intra- and internode inter-
actions. Therefore, the algorithms described in this book and in the related 
work generally simplify the problem by using local, memory-less approxima-
tions of F: Each node approximates the true utility U with nU .

( ) ( ) ( )( )
( ) ( )

+ =

∀ ∈ ≈
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Essentially, node n assumes that decisions made historically (cn(t ′< 
t)), and by nearby nodes (n′ ≠ n), will be implicitly observable in on(t). For 

* The optimization goal can be expanded to compute the Utility of the entire mission, rather 
than for each consecutive instantaneous time value t.
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example, if a neighbor n′ increases data rate, node n will observe increased 
congestion. When nodes n′ ≠ n explicitly share the previous observables or 
control settings with node n [i.e., on′ ≠ n(t ′< t) or cn′ ≠ n(t ′< t)], these values 
become additional features in on(t).

To configure the nodes, at each timestep t, each node selects a strategy 
sn(t) that is a particular setting of controllables cn(t) that optimize perfor-
mance on this surface: 

( ) ( ) ( ) ( )( )=s o carg max ,F
nn n n nc tt t t

(Or alternatively, argmin.) There are ∀Π
n nc cv  candidate strategies for node 

n at each timestep, where 
ncv  is the number of values that a given control-

lable cn can assume. This number becomes infinity when controllables are 
continuous-valued.

To support changing the system’s behavior during the mission, we ex-
press nU  as a set of nm  metrics, mn, allowing a user to change corresponding 
weights wn during the mission.† Thus for a node n ∈ N, nU (t) is a function 
of its metrics and their weights, and each metric is in turn a function of the 
observables and controllables at that node:

( ) ( ) ( )( )
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( ) ( ) ( ) ( )( )1 2

1 ,

,

, , ,
n

nk nk n n

nk nk nk

n n n n nm

m t f o t c t

v t w t m t

U t g v t v t v t

+ =

=

=



The functions fnk are models created by hand or empirically learned. 
The model fnk at time t estimates the metric value mnk(t + 1) from the ob-
servables on(t) and controllables cn(t), allowing a decision-maker on node n 
to select the best control settings.

Elsewhere in this book, we rarely need this level of detailed 
notation. We therefore use the following shorthand: mk = fk(o, s), 
or simply m = f(o, s). Likewise, U (si) is shorthand for the utility of 
candidate strategy si.

Unlike more common notations, where y = f (x), we explicitly distin-
guish between observables and controllables to expose the system’s ability to 
make decisions. This notation is similar to that of MDPs, where the reward 
is expressed as a function of state and action: U = R(s, a), in Section 6.1.3.

† Weights do not need to be scalar values; lambda functions may be appropriate for some 
metrics.
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most BDA metrics, POI cannot be directly measured and must be inferred by ES/
BDA functions.

Section 5.1.1 describes different approaches for using and optimizing a 
multiobjective utility function. Game theory (Section 6.2) may add a layer of 
probabilities over the utilities to handle environments with selfish-but-rational 
individuals.

2.5 Utility Function Design Considerations

From an architectural design and implementation perspective, consider the fol-
lowing suggestions:

• Choose a single, rapid, easy-to-measure metric, such as BER, to test the 
decision pipeline.

• Structure the function so it is easy to add new metrics and new require-
ments, thus handling both planned and unplanned changes in the system.

Figure 2.5 This QoS metric combines the hard deadline of latency and a soft constraint of jitter 
[1]; here we use w2 = 0.3.
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• Keep each metric computationally independent from other metrics until 
the last logical moment where they need to be combined, thereby support-
ing rapid changes in priorities during a mission. Notably, this separation 
of concerns is critical if you use ML techniques to learn the relationship 
between the controllables and the metrics mk = fk(o,s). Some systems will 
build a single model nU  = F n(o,s), burying the component metrics; this ap-
proach means either that the system can never be retasked or that previous 
experience has to be completely restructured.
 As an example, by keeping Pd separate from Pfa, the system can dynam-
ically choose its operating point along the receiver operating characteristic 
(ROC) curve.
 Section 4.2 describes approaches to learning metrics from empirical 
data, while Chapter 7 describes the process of learning during a mission.

• Because different nodes might have different capabilities and require-
ments, different nodes (or types of nodes) may have different utility func-
tions. There is no need for the utility function to be identical on every 
node: Each node may have its own unique function. Utility across a het-
erogeneous set of nodes is additionally complicated because of intermittent 
connectivity and dynamic network membership. The true utility function 
U takes into account a fully heterogeneous team, wherein each node has 
different capabilities and tasks. The approximate utility function nU   cap-
tures utility for a specific node n and may use different metrics, weights, 
observables, and controllables from any other node.

• Identify mechanisms for the nodes to share information efficiently when 
a metric is an inherently multinode concept. Consensus propagation is 
an effective approach that minimizes measurement latency and does not 
require the system to know how many nodes are in the network [1, 12]. 
Each node n computes its local contribution to the shared metric, incor-
porating estimates from other nodes n′ when available. Section 6.1.4 dis-
cusses knowledge sharing.

• Do not create a centralized node that determines either strategies or utili-
ties for distributed nodes. A centralized system introduces communication 
latencies, information inconsistencies and overload, and most importantly, 
a single point of failure. Only use a centralized node for advice that does 
not need to happen rapidly, and as an unreliable information archive (as-
suming sufficient communications are available).

The objectives defined in the EW doctrine may need to be adjusted or elab-
orated to include concepts not traditionally incorporated. For example, degrad-
ing the adversary’s DM ability, or causing those processes to fail (e.g., defeating 
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aircraft track automation or reducing the number of targets that an adversary 
operator can individually manage by requiring more human involvement).

2.6 Conclusion

The goal of a fully capable, effective EW system rests on a foundation of a utility 
function that measures system performance, so that it can select good strategies 
for the mission. The utility function captures user objectives, mission goals, and 
environmental constraints in a mathematically optimizable approach.

Chapter 4 describes ES and the observable features upon which to base de-
cisions; the structure of the objective function supports observables that are raw 
values, derived from physics models, or inferred by learned models. Chapters 5 
and 6 show how to use the objective function for DM: how to choose strategies 
for EP and EA using optimization and scheduling techniques, and the longer-
term EBM DM horizon using planning approaches.
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3
Machine Learning Primer

AI is a field within computer science that draws from mathematics, engineering, 
and neuroscience. Figure 3.1 illustrates a few of the many subfields of AI. ML is 
just one of many subfields, and artificial neural networks (ANNs) are one of many 
families of techniques within ML.

“AI” is not synonymous with “deep learning.”
AI ⊃ ML ⊃ DL.

This book is emphatically not a treatise on AI. It is a sampling of AI tech-
niques that are most immediately applicable to cognitive EW. The book AI: A 
Modern Approach [1] has an in-depth discussion of AI concepts, written from the 
perspective of building a complete intelligent agent.

Chapters 5 and 6 discuss the AI techniques of planning, optimization, dis-
tributed AI, and human factors concepts, because these form a logical unit within 
DM.

ML, however, is more broadly relevant throughout the EW system. Cogni-
tive EW techniques rely on ML to model the spectrum, understand the partici-
pants, and learn how to effectively plan and optimize. In-mission learning is an 
essential part of a complete cognitive EW system; without this capability, the 
system will never handle novel emitters.

A learning algorithm uses empirical data to learn a model of the space. Fig-
ure 3.2 illustrates the steps for building an ML model. Every ML model is trained 
and tested with the same basic process. Algorithm 4.1 shows an example of code 
underlying this loop.

Learning algorithms are commonly grouped into supervised and unsuper-
vised approaches, where the algorithm is given the ground truth labels Y for train-
ing, or not, respectively. A supervised learner creates a function f : X → Y from an 
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input space X to an output space Y, using a finite number of instances (X, f (X)). 
The model f approximates the true output space F. An unsupervised learner uses 
only X to build the model that captures hidden patterns in the unlabeled data. For 
example, a supervised modulation classifier would attempt to label every observa-
tion of the RF environment with the true transmitted modulation. An unsuper-
vised modulation-clustering algorithm would group similar observations without 
knowing their labels, and the output Y is a value corresponding to the cluster 
number for each observation.

Semi-supervised learning approaches have a small number of labeled exam-
ples, and many unlabeled ones. In a reinforcement learning (RL) approach, the 
learner gathers the labels itself by taking actions in the environment. RL forms the 
basis of in-mission learning (Chapter 7).

Figure 3.1 Like math, which has calculus, geometry, and algebra, AI has many subfields, in-
cluding planning, ML, and robotics; the area of ML comprises many techniques.

Figure 3.2 Every ML model is trained and tested with the same underlying process.
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Table 3.1 lists some of the common uses of ML; this book presents many 
other examples for EW. Section 3.6 presents some of the trade-offs that an EW 
engineer should consider when choosing an ML algorithm. Section 11.2 lists ML 
toolkits useful for rapid prototyping and supporting datasets.

3.1 Common ML Algorithms

There are many ML algorithms; Figure 3.1 touches on only a few of the more 
common ones used in EW. For a deeper analysis, refer to The Hundred-page Ma-
chine Learning Book [2], or even deeper to The Elements of Statistical Learning [3]. 
Alternatively, Vink and de Haan [4] have short descriptions of ML algorithms in 
the context of target recognition, and Kulin et al. [5] presents some of the math 
around ML for spectrum learning.

Instance-based methods store all training instances in memory, and the in-
ference phase compares new instances against all training instances. There is no 
training time, but inference time is a function of the size of the training data. Ta-
ble-lookup, hashing, and nearest neighbor methods are common instance-based 
approaches [1]. If an EW system automatically adds new threats to the library, 
then the traditional EW activity of “looking up the threat in the library” is an 
instance-based learning method.

Model-based methods use the training data to create a model that has param-
eters; the model size (number of parameters) does not change with the amount of 
data. Training time is a function of the size of the training data, while inference 
time is constant. Support vector machines (SVMs) (Section 3.1.1) and ANNs 
(Section 3.1.2) are two that have particular relevance for EW.

3.1.1 Support Vector Machines

SVMs are a class of ML methods used for clustering, classification, regression, 
and outlier detection [6–8]. SVMs have high generalization performance, par-

Table 3.1 
Common Applications for ML Algorithms

Application Description EW Example
Classification Assigning a label from a set of discrete classes

(supervised)
Section 4.1.3

Regression Estimating a numerical value (supervised) Section 4.2

Clustering Grouping similar instances together (unsupervised) Section 2.1.1

Outlier detection Identifying instances that are very different from 
typical examples (unsupervised)

Section 4.4
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ticularly for complex nonlinear relationships and when the available training data 
is limited.

SVMs use a subset of training data points (called support vectors) in the de-
cision function of the SVM algorithm. Each SVM constructs a decision function 
that estimates the decision boundary, known as the maximum-margin hyperplane, 
and an acceptable hard or soft margin around that hyperplane. The support vec-
tors are the samples on the margin, illustrated in Figure 3.3.

SVMs proficiently accomplish nonlinear classification by using kernel func-
tions or “tricks” [9]. With a kernel trick, nonlinear classifiers map their inputs 
into high-dimensional feature spaces.

3.1.2 Artificial Neutral Networks

ANNs are a class of algorithms inspired by the way biological nervous systems, 
such as the brain, process information. These algorithms simulate neurons and 
their interconnections to replicate how the brain learns. ANNs have their concep-
tual roots in the 1940s [10], and in 1958, Rosenblatt designed the perceptron, an 
algorithm for pattern recognition [11]. Werbos’s 1975 back-propagation algorithm 
enabled practical training of multilayer networks: It distributes the error term 
back up through the layers by modifying the weights at each node [12].

ANNs consist of input, hidden, and output layers, illustrated in Figure 3.4. 
The number of layers refers to the depth of the network. Modern ANNs typically 
have many layers and are thus referred to as deep learning, deep neural networks, 
or simply DeepNets. DeepNets can discover patterns or latent features that are too 
complex for a human to extract or design.

Figure 3.3 SVMs efficiently learn complex functions with limited data.
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Many DeepNet architectures exist, with new ones emerging regularly. The 
most comprehensive references are by Bengio, Hinton, and LeCun, who won the 
Turing award for their work in 2018 [13, 14]. Common architectures include: 

• Convolutional neural networks (CNNs) [15, 16] are neural networks for 
processing data with a known grid-like topology. A typical CNN consists 
of three types of layers: convolutional, pooling, and fully connected, illus-
trated in Figure 3.5. Convolutional layers allow the network to learn filters 
that respond to local regions of the input. Pooling layers streamline data-
processing: They reduce the outputs of neuron clusters at one layer into a 
single neuron in the next layer. Fully connected layers connect every neuron 
in one layer to every neuron in the next layer.

• Recurrent neural networks (RNNs) [17] belong to a family of neural net-
works for processing sequential data [14]. RNNs have feedback connec-
tions (i.e., memory). They address the temporal nature of their input data 
by maintaining internal states that have memory [18].

• Temporal CNNs handle sequence-related, time-related, and memory-relat-
ed deep learning [19] and may render RNNs obsolete.

Figure 3.4 ANNs consist of input, hidden, and output layers. The number of layers refers to the 
depth of the network.

Figure 3.5 CNNs process data with a known grid-like topology.
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• Autoencoders learn efficient data encodings, building a model with a bot-
tleneck layer; the bottleneck is the efficient encoding, and the output layer 
is the reconstruction of the input. The autoencoder tries to generate, from 
the reduced encoding, a representation as close as possible to its original 
input. They effectively learn to eliminate noise (i.e., they learn the com-
mon case) and are often used as anomaly detectors [14, 20].

• Siamese neural nets use the same weights on multiple networks, while 
training on different input data. They require less training data than other 
methods [21].

• Kohonen networks, also known as self-organizing maps (SOMs), produce 
low-dimensional representations of the input space and are used for di-
mensionality reduction and visualization.

• Generative adversarial networks (GANs) are a system of two competing 
neural networks, each trying to improve the accuracy of its predictions. A 
GAN sets a generative network against a discriminative network in a compe-
tition: The generative network’s goal is to fool the discriminative network. 
GANs are often used to create synthetic data.

The ability for a model to estimate its own confidence (i.e., when it should 
be trusted) is an important emerging capability [22].

Popular ANN architectures are available online [23–25] and have been pre-
sented in the context of RF [26].

3.2 Ensemble Methods

Using multiple classifiers in an ensemble [1, 27–32] can improve prediction accu-
racy and increase robustness to adversarial attacks, because an ensemble combines 
the predictions from multiple diverse models. Election predictions, for example, 
combine the results from many different polls, with the hope that flaws in one 
poll will compensate for flaws in other models. Section 7.1.1 shows a simple ex-
ample in the EW BDA environment.

Common ensemble approaches include bagging, boosting, and Bayesian-
model averaging; most ML toolkits offer additional techniques. Simple majority 
voting chooses the most common prediction. Bagging gives each model in the 
ensemble equal weight. Boosting incrementally builds the ensemble by training 
each new model to emphasize training instances that previous models misclassi-
fied. Bayesian-model averaging uses weights based on the posterior probabilities of 
each model.
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3.3 Hybrid ML

Symbolic AI approaches manipulate symbols (often human-readable), while non-
symbolic approaches operate on raw data. Decision trees are frequently symbolic 
in nature, while DeepNets are usually nonsymbolic. In recent years, hybrid ap-
proaches combine the two; they use symbolic knowledge to construct features, 
reduce the search space, improve search efficiency, and explain resulting mod-
els. Hybrid approaches often exploit domain-specific knowledge and heuristics 
to find solutions more quickly [33–41]. Hybrid approaches are also known as 
knowledge-based ML or neural-symbolic AI.

Hybrid approaches essentially “bootstrap” the learning process. Figure 3.6 
illustrates the idea: An analytical model provides an initial framework or educated 
guess about the result, and the empirical data refines the prediction to match 
observed experience. The hybrid approach enables the learner to work adequately 
even with no training data and work well after real-world training. Figure 3.7 
sketches how DeepNets, classic ML, and hybrid approaches perform as a function 
of available data.

Section 4.1.1 presents an example of how to combine traditional features 
with DeepNet models. Section 7.3.3 describes how to combine a DeepNet for 
latent features with an SVM for rapid in-mission-learning. Section 6.3 presents a 
variety of ways to leverage human expertise in model design.

Figure 3.6 Analytical models estimate the performance surface as a function of no  dimensions 
of observables and nc  dimensions of controllables; empirical models refine the prediction. (From 
[35].)
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3.4 Open-Set Classification

Open-set classification techniques create new classes on-the-fly, after the initial 
model is trained. They handle unknown data encountered during the mission 
that was not anticipated during the training phase.

One option is to choose an ML model that effectively learns from one ex-
ample; k-nearest neighbor (kNN) and SVMs are good choices [42]. kNNs have 
no retraining time, but each inference is linear in the number of training ex-
amples. SVMs recompute the model (roughly O(n2) for n as number of training 
examples), but can be very efficient at inference.

Other approaches include autoencoders, zero- or low-shot learning [43–48] 
and anomaly detection (Section 4.4). Low-shot learning, for example, uses the 
training data to constructs a latent embedding of the important features and then 
uses this embedding to create new classes on-the-fly. Data augmentation (Sec-
tion 8.3.3) can also help ensure that the original training data covers more of the 
unknown classes.

3.5 Generalization and Meta-learning

Generalization refers to a model’s ability to adapt properly to new, previously un-
seen data, drawn from the same distribution as the one used to create the model. 
A table-lookup, for example, has no ability to generalize. Overfitting means that 
the model captures the training data too well and therefore is unlikely to do well 
with new data, while underfitting doesn’t even capture the training data well (Fig-
ure 3.8). Good generalization means finding the right trade-off between under- 
and overfitting the data.

Over- and underfitting is controlled by tuning hyperparameters that control 
how the algorithm works, in a process known as meta-learning [49–52]. Each al-
gorithm has its own hyperparameters, for example decision trees tune MaxDepth 

Figure 3.7 DeepNets identify latent features in the data, whereas classical ML approaches rely 
on traditional feature engineering.
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and MinSamples, while SVMs tune C and γ (cost for misclassified points, and in-
fluence of single instances, respectively), and DeepNets might use early stopping 
and activation dropout. If using one of the standard ML toolkits (Section 11.2.1), 
hyperparameters are usually the arguments to the function. Section 5.1.3 talks 
more about meta-learning, emphasizing its role in optimization. Meta-learning is 
often part of a RL solution.

Other approaches to improve generalization include ensemble methods 
(Section 3.2), hybrid models (Section 3.3), and training approaches like batch-
norm [53, 54], Langevin methods [55], or entropy filtering [56].

High-dimensional problems, with more features than training examples, 
(i.e., ( )n no c n+  ) often need different approaches [3]. Managing the data with 
diversity, augmentation, and forgetting is another important step (Section 8.3).

The domain of expertise indicates what the model should be expected to 
capture well: When a new observation falls within the domain of expertise, the 
model should do better than when it falls outside. In Figure 3.8, for example, the 
training data falls in the range [–1.0,1.0]. A value of 2.0 is outside the domain of 
expertise. The two-degree polynomial generalizes well outside this range, but the 
other two models generate increasing error the further away from the expected 
range. Ideally, the model should compute its own confidence.

3.6 Algorithmic Trade-Offs

Choosing which ML technique to apply to the spectrum understanding problem 
depends on a variety of factors. There is no one model that will always outperform 
every other model [2, 57, 58]. These factors include what the task is, what kind of 
data is available, the solution goals, and operating constraints. Table 3.2 lists some 
of the questions that must be addressed when choosing the algorithm.

As one example, DeepNets effectively identify latent features in the data. 
DeepNets, however, depend on a large set of diverse well-labeled training data. 

Figure 3.8 Linear models often underfit, and models tend to overfit if there are many more 
features than training instances. (Underlying data is y = x2 + ε.)
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While there might be a lot of data available for cellular or WiFi networks, EW 
domains do not have this advantage.

Figure 3.7 illustrates the performance trade-off: DeepNets perform better 
when there is a lot of data, while classical ML approaches do better when data is 
limited, in large part because features are crafted for the problem. Section 4.1.1 
describes how DeepNets and SVMs might be combined effectively in a deployed 
system, so that DeepNets compute general features of the RF domain, while 
SVMs perform the in-mission model updates.

In some cases, data augmentation and adversarial training approaches (Sec-
tion 8.3.3) can compensate for the lack of data [59–63]. Data augmentation in-
creases the diversity of data, without actually collecting new data. Common data 
augmentation techniques in image recognition include cropping, flipping, rotat-
ing, and changing lighting schemes. In RF, passing the signal through a channel 
model and/or a noise model accomplishes many of the same effects.

In EW missions where the mission expects to encounter novel emitters dur-
ing the mission, system design must incorporate techniques for learning novel 

Table 3.2 
Questions to Address When Choosing an Algorithmic Solution to Fit an ML Task

Factor Questions to consider
Task Are you trying to understand the environment? Predict what will happen? Control 

actions? Adapt Continuously?
Scott Page, in The Model Thinker [57], presents the uses of models (REDCAPE):
•  Reason: To identify conditions and deduce logical implications.
•  Explain: To provide (testable) explanations for empirical phenomena.
•  Design: To choose features of institutions, policies, and rules.
•  Communicate: To relate knowledge and understandings.
•  Act: To guide policy choices and strategic actions.
•  Predict: To make numerical and categorical predictions of future and unknown 

phenomena.
•  Explore: To investigate possibilities and hypotheticals.

Data How much training data is available (pre-mission and in-mission)? How well labeled is 
the data? Is it partially observable (i.e., can features be missing)? Is the data numeric 
or categorical? What features can be computed by a priori models? Has data changed 
since training (e.g., concept drift, component updates)?

Goals How accurate must the solution be? How fast must the system arrive at conclusions? 
Do false positives and false negatives impact performance differently? Are confidence 
levels appropriate or necessary as annotations on decisions? Does the solution need 
to be interpretable or explainable to an EW operator? Does the solution need to be 
scalable to more emitters, more environments, or more tasks? What security/privacy 
considerations matter?

Constraints What hard real-time requirements must be satisfied? What computation is available 
(CPU, GPU, FPGA, custom ASIC)? How much storage is available, for the model and 
for the data? How much of the data must be persistent over very long durations (e.g., 
mission-to-mission)?
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models, from one or two examples, at mission-relevant timescales. Open-set clas-
sification (Section 3.4) discusses some approaches.

Table 3.3 summarizes a few of the design trade-offs for common ML algo-
rithms. This list is not comprehensive but simply illustrates the need to analyze the 
task, data, goals, and constraints of the EW system before settling on one particu-
lar approach. Some general rules of thumb include [2]:

• When predicting the future, larger complex models tend to capture the 
performance surface more accurately. When trying to explain, smaller 
more concise models are better.

• When the number of training instances is limited, feature engineering can 
be very helpful, and classical ML approaches are more likely to be useful.

Table 3.3 
Design Trade-Offs for Common ML Algorithms 

ML Algorithm Common Uses Advantages Disadvantages
SVMs Stock market; RF qual-

ity; radar emitter signal 
recognition; modula-
tion recognition;
anomalies

Excellent accuracy on little 
data; extremely efficient; 
good for many features

Primarily numerical data

DeepNets Image understand-
ing; natural language; 
signal characteristics; 
modulation recogni-
tion; target tracking; 
anomalies; SEI

Extracts latent features in 
the data; inference can be 
very fast

Requires a lot of training 
data; computationally 
intensive; hard to 
explain; may suffer from 
long training times

Logistic
regression

Risk; process failure Efficient; interpretable;
computes feature 
relevance

Requires clean data;
one-dimensional output

Naïve Bayes
classifier

Sentiment analysis;
document 
categorization; spam 
filtering

Categorical input data; 
relatively little training 
data; probability of 
outcomes

Requires conditional 
independence

k-nearest
neighbor

Document similarity;
emitter similarity

Efficient; interpretable; 
no training step; instantly 
incorporates new data

Weaker with high-
dimensional spaces; 
imbalance causes 
problems; outlier 
sensitivity; can be 
computationally 
intensive

Decision
trees

Design decisions;
sentiment analysis

Easy to explain; very strong 
with discrete data

Fragile with many 
features; weaker with 
numerical data

Causal
models

Relationships Patterns when 
experimentation is not 
possible

Hard to control for
unobservable features
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• When the number of training instances is large, and there is ample time 
for training, DeepNets can be effective.

• When inference-time is limited, model-based techniques are better than 
instance-based techniques. Model-based techniques may suffer from long 
training times, but inference is fast. Instance-based techniques do not have 
a training phase, instead incurring computation time at inference.

Lim et al. [64] evaluate 33 algorithms using metrics of training time and 
accuracy. A longer list of metrics appears in Callout 10.2.

3.7 Conclusion

AI is a subject area as broad as mathematics or engineering.

AI is like math. One day, it will be everywhere.

AI incorporates many subfields, covering the broader concepts of situation as-
sessment and DM. Techniques such as planning, optimization, data fusion, and 
learning support application areas such as machine vision, NLP, robotics, and 
logistics.

The key thing to remember about AI is that ML is a concept within AI, and 
that DeepNets are a set of techniques within ML: AI is not equivalent to ML, and 
AI is not equivalent to DeepNets. ML is more than just deep learning. DeepNets 
have their place for EW problems, but do not neglect or ignore classical ML ap-
proaches or any of the other AI approaches simply because DeepNets currently 
have the broadest visibility.
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4
Electronic Support

The first step in every cognitive EW system is ES to understand the RF spectrum. 
Known as situation assessment  in the AI community, ES determines who is using 
the spectrum, where and when they are using it, and whether there are patterns 
that can be exploited.

This chapter discusses AI/ML techniques that can be used for feature estima-
tion, emitter characterization and classification, data fusion, anomaly detection, 
and intent recognition. ES analyzes the environment and creates the observables 
that drive DM. The chapter is organized according to the increasing complexity 
implied by Figure 1.4.

Howland et al. [1] define spectrum situation awareness (SSA) as “a means of 
collecting disparate information about spectrum use and processing this informa-
tion to produce a fused spectrum picture.” SSA collects, organizes, and processes 
the spectrum data required for EW. In addition to pre- and post-mission analysis, 
SSA needs to occur in rapid real time, according to the needs of the decision 
maker.

To reduce brittleness and handle novel emitters and adversaries, AI and ML 
capabilities can improve SSA at every level. Figure 4.1 depicts a view of these AI/
ML technologies, in the context of other relevant SSA technologies. A complete 
EW system must have multifaceted SSA. Future SSA systems can be trained with 
deep learning models for latent feature generation, classical ML models for in-
mission-updates, and hybrid models to offset limited data (Section 4.1). More-
over, SSA does not have to solely rely on the RF data: It can be fused with non-RF 
data such as video and still imagery, free-space optics, or open-source, tactical, 
or operational intelligence (Section 4.3). Distributed data fusion across multiple 
heterogeneous sources must create a coherent battlespace spectrum common op-
erating picture that is accurate in space, time, and frequency. Anomaly detection 
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(Section 4.4), causal reasoning (Section 4.5), and intent inference (Section 4.6) 
complete the picture to understand the impact of events and support DM.

4.1 Emitter Classification and Characterization

A foundational component of ES is to understand what emitters are in the en-
vironment and what they are doing. Emitter classification identifies known cat-
egories of the signal (e.g., modulation classification or platform type). In AI, clas-
sification refers to any discrete category or label; thus the EW concept of specific 
emitter identification (SEI) is also a form of classification. Characterization, on 
the other hand, refers to capturing behaviors of the signal environment, without 
necessarily placing a named label on the behavior. One might for example rec-
ognize that a signal is loud, or is Gaussian, or repeats over a given time interval.

Characterization and classification can feed each other, in the sense that a 
given behavior may support a given classification, or that a given classification 
may indicate a need to search for a particular behavior characteristic.

A variety of challenges can impact the accuracy of emitter classification and 
characterization:

• Emitter characterization and long-term pattern analysis can reveal dynam-
ic properties, where signal types change over time.

• Spoofing, wherein cognitive emitters replay signals to mask their identity, 
can be mitigated with RF fingerprints that capture microimperfections 
unique to the emitter.

Figure 4.1 SSA must combine a variety of supporting technologies, both traditional and cogni-
tive. One of the challenges lies in the integration and demonstration of relevant technologies, 
only a few of which are cognitive.
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• Unknown emitters, where there is no a priori training data, usually have 
known behavior characteristics (e.g., canonical modulation, frequency, 
and pulse parameters), but combine them in unexpected ways or use them 
for different purposes. Open-set classification techniques recognize and 
cluster these novel feature groups and construct new classes on-the-fly.

4.1.1 Feature Engineering and Behavior Characterization

Behavior characterization describes the signal environment, including features 
such as instantaneous energy, frequency, scattering, and repetition patterns and 
their probabilities. Traditionally, feature engineering is computed via a suite of a 
priori modules, corresponding to characteristics that experts know to be relevant 
for the expected signals. These mature signal intelligence (SIGINT) approaches 
can be very accurate, even at low signal-to-noise ratios (SNRs), because they rely 
on underlying immutable properties of the domain, such as physics of signal 
propagation or kinematics of the targets. However, classical signal processing ap-
proaches tend to be brittle in a complex problem domain and typically cannot 
incorporate novel emitters or conditions.

Traditional methods use statistical analysis of features such as pulse width, 
pulse repetition interval, and frequency, and map them to a database of known 
signals. These may be channel-specific, such as channel impulse response, or trans-
mitter-specific, such as signal encoding. They may be time-varying or time-inde-
pendent. Fractal features can provide a deeper understanding of the properties of 
the signal [2–4].

DeepNet approaches can identify latent features in the signal environment 
when trained with sufficient data, potentially capturing characteristics at a much 
higher fidelity than hand-generated computations. These approaches can capture 
behavior characteristics that are hard to model with explicit mathematical expres-
sions or that vary significantly with environmental conditions. They also tend 
to be more effective when the domain is partially observable (i.e., when known 
observables on cannot be measured temporarily, or for unobservable features z).

Hand-generated features are a better choice when little training data is avail-
able, or when the known model closely captures the empirical performance. Fea-
tures can also be pulled from non-RF data sources, such as topography [5], road 
networks [6], and weather conditions [7]. Section 4.3 discusses some approaches 
to data fusion.

Combining approaches is an effective way to accelerate learning accuracy. 
Radio signal strength, for example, generally follows the inverse square law with 
distance but is impacted by factors such as antenna gain, multipath, and fad-
ing. One way to create a hybrid model in RF uses both traditional features and 
DeepNets. The DeepNets would learn the latent features, while the traditional 
features would include physics, human expertise, and other metadata. Figure 4.2 
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illustrates a concept of how the overall network could be constructed, combining 
I/Q data with a fast Fourier transform (FFT) and traditional features.

Feature engineering should focus on those that lead to better assessment of the 
environment and thus actionable inferences.

For example, features that indicate a loss of adversary performance include (1) 
reduced comms network throughput that suggests changing to a more robust 
modulation technique, (e.g., switch from QAM64 to QPSK), or (2) in the radar 
space a loss of track indicated by cessation of track waveforms or detection of 
acquisition waveforms suggests increasing the beam revisit rate or changing the 
waveform (e.g., longer pulse widths).

An interesting characterization problem determines the degree of sophis-
tication of observed emitters [8–10]. Extended observation of the emitter com-
putes its adaptivity and behavior model, thus supporting inference of its strategy 
and probable next actions (Section 4.6).

4.1.2 Waveform Classification

One of the most popular current uses for ML techniques is in the area of wave-
form classification. Older work frequently used SVMs for radar emitter signal 
recognition [11, 12], radar antenna scan type recognition for EW applications 
[13], and automatic digital modulation recognition [14, 15]. Newer work is mi-
grating to using deep networks, largely because of their ability to identify latent 
features of the RF signals [16, 17]. Examples include classifying radio emitters 
using CNNs [18–20], radar emitters using CNNs [21], and RNNs to capture 
temporal patterns [22]. GANs are effective methods for augmenting the data, so 
that a model can be trained with fewer examples [23, 24].

Figure 4.2 A possible hybrid architecture uses independent DeepNets to analyze I/Q data and 
FFTs, then hierarchically combines the generated features with the traditional features.
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In 2018, the U.S. Army Rapid Capabilities Office (RCO)1 conducted a 
Signal Classification Challenge to promote advanced research to explore deep 
learning algorithms for blind signal classification and characterization [25]. While 
accuracies demonstrated by this challenge were not ready for fielding, research 
exploded, and perhaps more importantly, the importance of data quality and di-
versity has been recognized by the community. Hybrid ML approaches may solve 
some of the open problems. Figure 4.2 illustrates one possible hybrid architecture; 
Section 7.3.3 describes a different structure appropriate when a priori training 
data is abundant, but the system needs to rapidly update during a mission. No-
tably, the winning team used a hybrid approach, combining traditional features, 
ensemble learning, and DeepNets [26, 27].

Algorithm 4.1 outlines the basic steps required to build a radar class detec-
tor. Create a set of emitter descriptor words (EDWs) from ground truth–observed 
parameters including the duty cycle, the frequency, the pulse repetition interval, 
and the pulse width. Assign each EDW its associated class. This example trains 
the naïve Bayes algorithm, which computes the probability of each possible class. 
Using Bayes’ rule, the posterior probability P(y |x) is the probability that the ra-
dar whose EDW is x is actually a member of the class y: P(y |x) = P(x |y) × P(y) ÷ 
P(x) where P(x |y) is the likelihood of the EDW given the class, P(y) is the prior 
probability of the class, and P(x) is the prior probability of the EDW. The train/
test cycle is the same for every model type, and other ML models may yield more 
accurate results.

Figure 4.3 illustrates where these steps function during design and opera-
tion. Using the iterative validation process of Section 10.4, the design phase cre-
ates the data formats, develops the model, and evaluates its performance. Always 
experiment with multiple data formats (and features) and types of models to de-
termine which is most effective for the problem: accuracy, data, goals, and con-
straints (Section 3.6). When it meets requirements, the model is used to classify 
new radars during operation. Figure 4.4 illustrates where the classifier belongs in 
the RF processing chain.

4.1.3 Specific Emitter Identification

SEI, or RF fingerprinting, is the process of uniquely identifying each RF emitter, 
independent of receiver properties or how the transmitter changes its transmis-
sions, its mobility, or environmental factors. Xu et al. [28] provide an overview of 
the challenges and opportunities of this classification problem.

Chen et al. [29] use clustering and infinite hidden Markov random fields to 
handle both time-dependent and time-independent features. Nguyen et al. [30] 

1. The Army RCO has since been renamed the Army Rapid Capabilities and Critical Technologies 
Office (RCCTO).
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use Gaussian mixture models (GMMs) to cluster and then classify signals. Cain et 
al. [31] use CNNs on image-based representations of the signal.

Algorithm 4.1 To build a radar class detector, train a model on some of 
the data, and validate the model on the rest of the data. Every ML model 
is trained and tested with the same process (Figure 3.2).
Step 1: Load the data set of known radars. Split the data set into a train and test 
set (approximately 80%/20%).*

from sklearn.model_selection import train_test_split 
radars = pandas.read_csv( ’radar-classes.csv’ ) 
X = radars.drop(columns=[’Class’]) 
y = radars[ ’Class’ ]
( xTrain,xTest ), 
( yTrain,yTest ) = train_test_split( X, y, 
             test_size=0.20)

Step 2: Train the algorithm. Select a classification algorithm, for example naïve 
Bayes, and train the model on the training data.

from sklearn.naive_bayes import GaussianNB  
gnb = GaussianNB()
trainedGNB = gnb.fit( xTrain, yTrain )

Step 3: Validate the results. Evaluate the model with the test data. Compare 
the predicted classes against the known test classes using a confusion matrix 
(Section 10.3.2).

from sklearn.metrics import confusion_matrix 
yPred = trainedGNB.predict( xTest )  
accuracy = (yTest==yPred).sum() / len(yTest) * 100 
confMtx = confusion_matrix( yTest, yPred )

Step 4: Classify new radars and estimate class probabilities. In this snippet, we 
assume no ‘Class’ column. Open-set classification (Section 3.4) and Abla-
tion trials (Section 10.2) address this concept.

newRadars = pandas.read_csv( ’newRadars.csv’ ) 
yPred = trainedGNB.predict( newRadars )  
yProbs = trainedGNB.predict_proba( newRadars )

* Most ML algorithms expect no NaN-values in the data. We therefore replace NaNs for 
each feature with the non-NaN mean of that feature (Algorithm 2.1). When replacing 
NaNs before training a ML model, do not replace NaNs in the complete dataset (i.e., be-
fore splitting it for train and test data). Instead, first split the data, and use only the training 
data to compute the means.
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A lot of current work feeds I/Q samples to a CNN, moving away from 
hand-generated features. These models do not perform channel estimation and 
do not assume prior knowledge of the system. Examples include feeding the I/Q 
samples to the CNN [32–35], adding a finite input response (FIR) [36], and us-
ing a wavelet transform to handle temporal patterns [33].

Existing work has not yet achieved the accuracy of traditional approaches 
for highly dense, complex real-world environments, particularly for low signal 
strengths. Hybrid approaches will likely yield interesting results in the future.

4.2 Performance Estimation

One can also use ML techniques to capture the relationship between observations 
o and performance metrics m, usually as regression models: m = f (o,s). Section 2.3 

Figure 4.3 Each of the steps in Algorithm 4.1 must be evaluated during the design phase before 
moving to operation.

Figure 4.4 The radar classifier is the last step of the common RF processing chain. (Other AI 
techniques could use the information for further downstream analysis.)
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presents possible metrics, organized by effectiveness and cost. Example techniques 
include SVMs [37], ANNs [38–43], Bayesian networks [44], and Markov deci-
sion processes (MDPs) [45, 46]. Because these approaches measure system per-
formance, many of them are incorporated into RL frameworks, where the learned 
model is then used to control the decision process (see Chapter 7).

Performance estimation learns the effectiveness of each technique, using the 
set of observables that describe the jammer. Figure 4.5 presents example results 
from estimating the performance of different controllables against different RF 
environments. Only the points marked with a dot are known a priori; the ML 
model estimates other performance values based on observable features of the dif-
ferent environments. This example uses an SVM to model the performance space 
and traditional features to describe the environments. Each observation of an 
environment generates a corresponding set of observables o. Each use of a strategy 
s in that environment creates feedback of the metric mk [i.e., an example of mk = 
fk(o,c)] and marked with a dot on the graphic. The trained model then estimates 
the performance of all strategies against all environments, generalizing from the 
known cases to other conditions. Figure 7.5 extends this example to show how the 
model can incrementally learn during a mission.

As a concrete example, Table 5.1 outlines several techniques to mitigate a 
tone jammer. The learner can model both the associated benefits and associated 
costs. In this case, BER is a good metric to evaluate performance.

Figure 4.5 The ML model fk learns to estimate the performance mk of different controllables c 
against different environments. (Real data from Example 7.1.) Dots represent observations; all 
other points are estimated by the model. Figure 8.5 shows plots like these in a 3D layout.
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ML can also predict performance in terms of jamming effectiveness [47], 
learning which EA technique to use for which observed emitter behaviors. Per-
formance feedback on these predictions comes from EW BDA (Section 7.1.1).

4.3 Multi-Intelligence Data Fusion

For optimal situational awareness, decision-makers need to interpret data from 
multiple sources (e.g., radars, unmanned aerial, ground, or underwater systems, 
ships, space assets, fighter jets, antennas, and sensor networks). To support this 
capability, a cognitive EW system must perform data fusion.

Data fusion is the process of data integration from multiple sources to pro-
duce more accurate inferences. Multi-intelligence (multi-INT) data fusion com-
pares, correlates, and combines data from multiple sources of different types to 
achieve improved accuracy and more specific inferences than those that can be 
achieved by a single sensor alone [48–50]. Accurate data fusion is a hard task to 
accomplish due to a variety of challenges [51, 52].

In all cases, metadata tagging (Section 8.1.1) tracks he upstream sources of 
data, allowing downstream consumer modules to compensate for error.

Data fusion challenges include:

• Data quality issues, such as measurement uncertainty, sensor calibration, 
and bias can skew accuracy and confidence. Data curation (Section 8.2) 
helps mitigate this issue.

• Conflicting data can produce counterintuitive results. Traceability (Sec-
tion 8.1.3) and managing information uncertainty (Section 6.1.4) facili-
tate correct decisions [53].

• Data association connects the dots between concepts, and if overeager, can 
produce ridiculous results. Causal modeling (Section 4.5) techniques help 
identify correct relationships.

• High-dimensional data makes it difficult to find good items to fuse, akin 
to looking for the needle in the haystack. Section 5.1.3 describes some 
techniques for dimensionality reduction.

• Operational timing can cause relevant information to be delayed or ar-
rive out of sequence. Metadata is crucial here: Time is probably the most 
important feature to record faithfully so the fusion engine doesn’t fuse 
inconsistent items. Section 4.3.3 delves more into this issue.
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Data fusion techniques can be grouped into three nonexclusive categories: 
(1) data association, (2) state estimation, and (3) decision fusion [52]. The Joint 
Directors of Laboratories/Data Fusion Information Group (JDL/DFIG) model 
comprises seven levels of data fusion shown in Figure 4.6 [54, 55]. Each level in-
creases the breadth of data and scope of analysis. Some of the JDL/DFIG model’s 
benefits include exploration of situation awareness, user refinement, and mission 
management [54]. The JDL/DFIG model has also been successfully used for the 
data fusion process visualization, discussion facilitation and common understand-
ing [55], and systems-level data fusion design [54, 56]. The latest advances in the 
data fusion field are captured by the International Society of Information Fusion 
(ISIF) in [57].

4.3.1 Data Fusion Approaches

The book Sensor and Data Fusion [58] presents a comprehensive compilation of 
research papers on various topics related to sensor and data fusion. Some of the 
addressed problems include target tracking, air traffic control, remote sensing, 
anomaly detection and behavior prediction, and sensor networks.

Data fusion techniques have been widely used in multisensor environments 
with the objective of amalgamating data from different sensors. The advantages of 
multisensor data fusion predominately include enhancements in data authentic-
ity, reliability, and availability [49, 51, 52, 59–62]. Examples of data authenticity 
enhancements consist of improved detection, confidence, reliability, and reduc-
tion in data ambiguity. Data availability enhancements focus on extending spatial 
and temporal multisensor coverage.

Figure 4.6 The JDL/DFIG model comprises seven levels of data fusion.
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Data fusion helps solve scalability issues in wireless sensor networks (WSNs) 
that are caused by a large number of sensor nodes, packet collisions, and redun-
dant data transmissions. When the routing process performs data fusion (i.e., sen-
sor data is merged and only the result is forwarded), the total number of messages 
is reduced, collisions are avoided, and energy reduced [49, 51, 59]. WSN nodes 
typically rely on battery power for energy that can be consumed by computation, 
communication, sensing, and idling states [63].

Some interesting applications of multi-INT/multisensor data techniques in 
EW pull features from other types of data sources. Brandfass et al. [5] develop 
an application that adds map data to radar. Katsilieris and Charlish [6] use road 
networks for ground moving target indicator. Zhang et al. use weather data to im-
prove path loss predictions [7]. Levashova et al. [64] present an approach to data 
fusion to predict terrorist threat activity for applications such as area surveillance, 
command and control, communications, and access rights.

4.3.2 Example: 5G Multi-INT Data Fusion for Localization

One concrete example of how ML can assist with the multi-INT data fusion is 5G 
localization and the concept of context awareness.2 Context-aware mobile devices 
such as smart phones may become aware of their location or attempt to make 
assumptions about the end user’s current situation. Table 4.1 shows 5G’s location-
based key performance indicators (KPIs) [65, 66] and some related use cases.

The complex localization KPI requirements in 5G scenarios can be fulfilled 
by exploiting different ML-enabled data-fusion techniques and measurements 
summarized in Table 4.2 [66–71]. The reliability of 5G localization also requires 
efficient network strategies such as node prioritization, node activation, and node 
deployment. Cooperative operation, robustness guarantees, and distributed de-
sign of network operation are also important in localization, because they affect 
energy consumption and determine localization accuracy [72].

One of the novel localization approaches for 5G is soft information (SI)-
based localization from heterogeneous sensors and contextual information. Con-
ventional localization methods rely on single-value estimates (SVEs) such as time 
of arrival (TOA), observed-time difference-of-arrival (OTDOA), angle of arrival 
(AoA), or received-signal strength indicator (RSSI). Novel techniques, however, 
rely on a set of possible values rather than on a single-distance estimates, for ex-
ample, soft range information [67]. ML-enabled data-fusion approaches include 
data association, state estimation, decision fusion, classification, prediction/re-
gression, unsupervised ML, dimension reduction, and statistical inference and 
analytics [68].

2. 5G is a set of fifth-generation commercial cellular standards developed by the 3rd Generation 
Partnership Project (3GPP) standardization body.
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4.3.3 Distributed Data Fusion

Distributed data fusion is the process of intelligent agents (1) sensing their local 
environment, (2) communicating with other agents, and (3) collectively trying 
to infer knowledge about a particular process [73]. Distributed data fusion is an 
important area to consider as it must respect many key constraints imposed by 
the EW domain, particularly limited communication. Lang [74] surveys work 
that addresses collective DM with incomplete knowledge. Makarenko et al. [75] 
examine distributed data fusion as a distributed inference problem and apply 
Shafer-Shenoy and Hugin junction tree algorithms to target tracking. Decentral-
ized estimation increases robustness against node and link failures [76]. The book 
collection edited by Hall et al. [77] describes a variety of data-fusion approaches 
for distributed network-centric operations.

Table 4.1 
5G’s Location-Based KPIs and Some Related Use Cases

KPI Description
Position accuracy (PA) Difference between the user equipment (UE) estimated position 

and its true position
Speed accuracy (SpA) Difference between the estimated magnitude of the UE’s velocity 

to the true magnitude
Bearing accuracy (BA) Difference between the UE measured bearing and its true bearing
Latency (L) Time elapsed between the event that triggers the determination 

of the position-related data and its availability at the positioning 
system interface

Time to first fix (TTFF) Time elapsed between the event triggering the determination of 
the position-related data and its availability at the positioning 
system interface

Update rate (UR) Rate at which the position-related data is generated by 
localization

Power consumption (PC) Electrical power (typically in milliwatts) used by localization to 
produce the position-related data

Energy per fix (EPF) Electrical energy (typically in millijoules per fix) used by 
localization to produce the position-related data

System scalability (SS) Number of devices for which the positioning system can determine 
the position-related data in a given time unit, and/or for a specific 
update rate

Using these KPIs, 3GPP outlined several use cases and their potential requirements, listed as follows:

• First responders indoor: PA: 1-m horizontal, 2-m vertical; availability: 95%; TTFF: 10s; L: 1s.

• Augmented reality outdoor: PA: 1–3-m horizontal, 0.1–3-m vertical; velocity: 2 m/s; 10 degrees; avail-
ability: 80%; TTFF: 10s; L: 1s; UR: 0.1–1s; PC: low energy.

• Traffic monitoring and control outdoor: PA: 1–3-m horizontal, 2.5-m vertical; availability: 95%; UR: 
0.1s; TTFF: 10s; L: 30 msec; antispoofing; antitampering.

• Asset tracking and management outdoor: PA: 10–30-m horizontal; 5m/s; availability: 99%; UR: 300s–1 
day; antispoofing; antitampering; out of coverage; EPF=20 mJ/fix.

• UAV: (Data analysis) Outdoor PA: 0.1-m horizontal, 0.1-m vertical; availability: 99%; TTFF: 10s; low 
energy; antispoofing; antitampering.
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High-quality metadata (Section 8.1.1) is a key requirement of distributed 
data fusion. The challenge is not accuracy in spectrum per se, but rather the 
challenge of taking multiple signals across spectrum collected on multiple nodes, 
and aggregating them into a single consistent view of the observed emitters. This 
step requires consistent signal interpretation and emitter behavior aggregation via 
sharing and a very consistent behavior representation. Additionally, provenance 
and credibility (Section 8.1.3) notably impact data transformation, inferences 
made, and downstream modules’ functionalities.

Collectively, distributed data fusion may change the overall sensitivity of the 
data (e.g., temperature at a singular sensor X may not be sensitive, but the results 
from the sensor array are).

Distributed analysis is a powerful way to reduce data ambiguity and increase 
accuracy of slower-time conclusions.

4.4 Anomaly Detection

Anomaly or outlier detection aims to find patterns in data that do not follow 
known behavior [78]. The statistics community has been studying anomaly de-
tection in data as early as the 19th century [79], and many anomaly-detection 
techniques exist.

Figure 4.7 provides a simple example of anomalies in a two-dimensional 
data set; previously seen well-behaved data is depicted by black circles, while 
anomalies are shown as triangles. Anomalies in RF can be due to factors such as 
spurious noise, measurement error, and new observed behaviors.

Chandola et al. [78] distinguish between simple anomalies and complex 
anomalies. Simple or point anomalies address individual data instances that are 
anomalous with respect to the rest of the data (e.g., a radar deliberately using a 

Table 4.2 
ML-Enabled Radio Access Technology (RAT)–Dependent and 
RAT-Independent Data-Fusion Techniques and Measurements

RAT-Dependent RAT-Independent
4-4.5G: Cell-ID, enhanced-CID, OTDOA, 
uplink TDA, radio-frequency pattern 
matching [66]

Traditional: GNSS, radio-frequency 
identification (RFID), terrestrial beacon systems, 
Bluetooth, wireless local area network, sensors 
(e.g., RF, acoustic, infrared, radar, laser, inertial, 
vision tech, and barometric), ultra-wideband 
[66]

Novel: multipath-assisted localization [69], 
single-anchor localization with massive 
millimeter-wave antenna arrays [70], 
cooperative localization (e.g., device-to-
device and vehicle-to-everything) [71]

Novel: Distributed soft information-based 
localization from heterogeneous sensors plus 
context [67], such as digital maps, dynamic 
channel models, geographic information system 
data, and real-time traffic data
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different frequency or making a spurious error). The majority of anomaly-detec-
tion research focuses on point anomalies.

Complex anomalies can further be subdivided into contextual and collective 
anomalies. A contextual or conditional anomaly is an anomalous data instance in 
a specific context, but not otherwise [80]. A collective anomaly is an anomalous 
collection of related data instances with respect to the entire data set. The indi-
vidual data instances in a collective anomaly may not be anomalies by themselves, 
but their combined occurrence is anomalous. For example, when a radar uses 
a particular pulse burst [e.g., defined parametrics, RF, or pulse-descriptor word 
(PDW)] with a specific scan pattern (say, box search) ordinarily used for target 
acquisition, and instead uses it for tracking.

Anomaly-detection techniques rely on ML techniques such as classification, 
nearest neighbor, clustering, statistics, information theory, and spectral theory 
[78, 81–88]. Common classification-based anomaly-detection techniques often 
involve SVMs, Bayesian networks, rule-based methodologies, and DeepNets, par-
ticularly autoencoders.

Anomaly detection is commonly employed for network intrusion-detection 
and categorization using various algorithms including: feed-forward ANNs [89], 
RNNs [90], autoencoders [91], SVMs [92, 93], supervised ML techniques such 
as linear regression and random forest for multicloud environments [94], and 
restricted Boltzmann machines [95].

An interesting use for anomaly detection at runtime is detecting evolving 
normal data where the current (normal) state is not sufficiently representative of 
the future state. This idea is known as concept drift in the AI literature, because 
the current concept of normal has drifted away from the concept at the beginning 
of the mission. One way to handle concept drift is to estimate the properties of 
statistical distribution models that capture the range of observations. When the 
distribution(s) begin to separate with a weight (support) of “anomalous” signals 

Figure 4.7 Anomaly detection aims to find data that does not follow conventional behavior.
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then the distribution models can be split to capture the statistics of all modes 
observed. This idea lies behind much of the open-set classification research (Sec-
tion 3.4). In this way one does not lose the history of known behavior and get 
distracted by the new anomalies or fail to adapt to new behavior. It is not a precise 
solution since there are trade-offs on when to spawn a new distributional model 
component, but having a persistent memory as well as mechanisms to learn new 
behavior is critical.

4.5 Causal Relationships

Causal inference attempts to extract causal relationships from the observed data, 
typically when there is no explicit way to perform an experiment to validate a 
hypothesis [96, 97]. The causal hierarchy groups models according to the kinds of 
questions that each layer is capable of answering, described as follows.

• Association. Observing. How does my belief in a concept y depend on an 
observation x: P(y|x)?

• Intervention. Acting. How does doing an action a impact the outcome y: 
P(y|do(a))

• Counterfactuals. Imagining. What would have happened under other cir-
cumstances: P(y|x′)

Causal models are commonly used for analysis of medical, warfare, and 
other social settings. Effective for cybersecurity [98], they have also been used for 
radar and air traffic safety [99]. The goal is to detect sequences of events that lead 
to likely outcomes, such as a precursor “red flag” of imminent danger. In RF, Mar-
tin and Chang [100] use probabilistic structural causal models (SCMs) and multiat-
tribute utility theory for dynamic spectrum access (DSA) situational awareness and 
decision-making. The DSA causal inference system develops and maintains situ-
ational awareness based on spectral occupancy, spectrum user location estimates, 
and path loss characterizations. The authors derive the relationship between SA 
uncertainty and DSA system performance [101, 102] yielding path loss estimates 
that enable DSA systems to operate with acceptable levels of risk.

Other techniques that analyze causal relationships include statistical pat-
terns [103], Granger causality [104, 105], hysteresis [106], precursor detection 
[107], n-gram analysis to determine common phrases, and hidden Markov mod-
els (HMMs) to determine likely transitions [9]. Intent recognition (Section 4.6) 
takes the pattern analysis “up” one level, determining full grammars and hierar-
chical structure.
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4.6 Intent Recognition

Plan recognition, activity recognition, and intent recognition all make inferences 
about another actor by observing their interactions with the environment and 
each other [108, 109]. In a cognitive EW system, such techniques can be applied 
to observe and understand the plans, activities, and goals of all the participants 
in the theater, including adversaries, coalition partners, and human EWOs. Such 
inference actually requires three separate tasks.

First, activity recognition identifies the lowest-level actions being executed by 
an agent. As such, it focuses on the problem of processing raw, noisy, frequently 
continuous data into high-confidence discrete events (often with much longer 
duration). For example, signal-processing algorithms remove noise from a con-
tinuous stream of sensor values to provide a clear unambiguous identification of 
the event that is happening.

Second, goal recognition identifies the highest-level desired end or goal states 
of the observed agent. Such a process asks at a high level what the agent is trying 
to accomplish. In the abstract, activity and goal recognition can be seen as the 
same problem and may be amenable to similar algorithms. That is, both of these 
problems are instances of labeling: Given a sequence of observations, both of 
these tasks produce a single label to identify either the activity being performed 
or the goal being achieved.

Finally, and in contrast, rather than producing a single label for a sequence 
of activities, plan recognition produces a structured (hierarchical) representation 
that relates observed activities to the desired goal states of the agent [110]. Thus, a 
plan recognition system takes as input the sequences of events identified by activ-
ity recognition. It organizes the sequence of observations into structured represen-
tations that capture the causal relations for the particular sequence of recognized 
activities and their final objective. This inference of the final objective means 
goal recognition is frequently performed as a byproduct of plan recognition. This 
process also frequently requires not only capturing the relations between the ob-
served activities, but also hypothesizing future activities that the agent will have 
to undertake if the algorithm is correct in identifying the actor’s plan and goal. As 
such, it can enable prediction of future actions at multiple levels of abstraction. 
These predictions can then be used as a comparison feature for EW BDA (Section 
7.1.1).

Adversarial intent recognition creates a challenge for plan recognition algo-
rithms because the actor(s) attempt to hide or disguise their actions or deliberately 
change their patterns of activity to make recognition harder. However, given a 
model of what the adversary can do, the process is no different for adversarial 
actions than for benign actions. The algorithm must be agnostic about whether 
an action is benign or deceptive until an additional action differentiates the two.

Algorithms for plan recognition fall into the following two categories [111]:
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• Plan recognition as planning describes observed actions/activities as func-
tions from states to states and captures the changes in the world state 
caused by their execution. As such, plan recognition is a world-state-based 
search for a sequence of actions that will provably carry the actor from a 
known initial state of the world to a goal state of the world.

• Plan recognition as parsing views the problem as a search in the space of 
possible plans. Such systems explicitly represent the set of possible plans 
(frequently using a formal grammar similar to those used in NLP) and 
then search this space for the plan that is most consistent with the input 
observations. This process constructs hierarchical structures to capture the 
plans.

As an example, the probabilistic hostile agent task tracker (PHATT) [112] 
used a parsing-based approach for a number of diverse domains including net-
work intrusion detection [113] and insider threat/misuse detection. To represent 
the plans to be recognized, it used a probabilistic context-free tree grammar most 
closely associated with Greibach normal form (GNF) grammars. GNFs are com-
monly used in compilers for programming languages. While PHATT was very 
effective, its wide applicability was limited by its computational costs. It made 
early commitments to high-level goals and required a complete search of the space 
of consistent plans. For example, imagine observing an airplane take off; PHATT 
would immediately consider all possible flight paths to all possible destinations, 
no matter how wildly unlikely. This problem prevented its scaling to large, real-
world deployment.

Geib’s more recent work on the LEXrec component of the Engine for Lexi-
calized Intent Reasoning (ELEXIR) [114] addressed this limitation. Instead of tree 
grammars, LEXrec uses probabilistic combinatory categorial grammars (CCGs) 
from state-of-the-art NLP research. LEXrec supports recognizing multiple con-
current and interleaved plans, partially ordered plans, and partial observability in 
the domain.

In addition, LEXrec leverages Monte-Carlo tree search—the algorithm 
behind AlphaGo [115]—to perform a heuristic search of the space of possible 
plans in an “anytime” fashion (Section 5.3). This approach has allowed LEXrec 
to process thousands of observations in minutes in the task of recognizing grey-
zone operations. Further, the grammars for LEXrec can be configured to further 
accelerate processing and are thus promising for large-scale deployment on real-
world problems. LEXrec’s search can be modified so that more likely explanations 
for the observations are searched first. In such a case, high-probability explana-
tions that include hostile plans will be explored before lower-probability benign 
explanations.
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Similar grammar-based systems have been successfully applied to the mul-
tifunction radar problem [116, 117]. Further, the plan recognition community 
has developed both supervised and unsupervised learning techniques to learn new 
grammars (potential plans) based on sequences of observations. While this work 
is still in its initial stages, there is evidence that it is possible to learn more accurate 
grammars than those built by hand.

A system like LEXrec could take as input a large number of categorized 
radar tracks and observations from diverse and distributed multifunction radars. 
On the basis of these observations, and a grammar capturing both the potential 
individual and joint plans that the targets could be following, the system could 
build a set of hypothesized plans and goals (both individual and team) and estab-
lish conditional probabilities over these possible plans. Such plans could capture 
complex radar modes and temporally extended plans. Further, the system could 
predict the future course of the targets, not just on the basis of their immediate 
trajectory, but based on a higher-level understanding of the target’s goals.

Recent work has started to incorporate game-theoretic approaches to recog-
nize plans where the observed agent actively tries to avoid detection [118–120]. 
The adversarial plan recognition task consists of inferring a probability distribu-
tion over the set of possible adversarial plans, and a strategy formulation task selects 
the most appropriate response by computing a Nash equilibrium. Section 6.2 
discusses other uses for game theory.

4.6.1 Automatic Target Recognition and Tracking

One common intent recognition task in EW is that of target tracking. ML tech-
niques have been applied to the target recognition and tracking task since at least 
the early 1990s (e.g., [121–124]). Many of the techniques popular in the com-
puter vision community have been successfully adopted by the RF community. 
Techniques demonstrated in RF include knowledge-based approaches and strictly 
empirical approaches.

Knowledge-based approaches build on prior distributions and knowledge-
aided models from similar environments to perform tracking. Xiang et al. [125] 
use recursive Bayesian state estimation that iterates between choosing the targets 
to track and acquiring the track. Gunturken [126] starts with a weak target esti-
mation and refines it in two adaptive filtering stages.

Empirical ML approaches use only environment observations to build a 
model of the environment. GMMs, for example, are an effective method to iden-
tify ground surveillance radar targets, and can outperform trained human opera-
tors [127]. GMMs also perform well at assigning target measurements to multiple 
existing tracks in radars [128, 129]. Schmidlin et al. [124] presented an early 
ANN approach for multiple target radar tracking problems. In this work, one 
ANN recognizes trajectories and delivers track predictions, while a second RNN 
associates plots to tracks. Compared to Kalman filters, the ANN approach is more 
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accurate, while Kalman filters are more robust to noise. CNNs have been very 
effective for object detection in radar and SAR images [17]. The Visual Object 
Tracking challenge of 2019 had no trackers that relied on hand-generated fea-
tures, which the organizers state is a “stark contrast to VOT2018” [130].

CNNs and SVMs have also been successfully combined [131–133]: The 
CNNs are trained and then SVMs replace the final classification layer, similar to 
Figure 7.6. The combination takes advantage of the CNN’s ability to learn fea-
tures, and the SVM’s ability to generalize well for high-dimensional input spaces. 
The method achieves very high accuracy.

Combining traditional techniques including hand-generated features, 
knowledge-based approaches, and empirical methods in hybrid approaches im-
proves the learning rate and overall effectiveness of the models. Multiple tech-
niques often provide complementary capabilities [130, 134–137]. Some recent 
work augments the tracking methods with reinforcement learning to create sys-
tems with both perception and action, using for example MDPs [45], or deep 
Q-learning [138]. Xiang et al. [125] combine recursive Bayesian state estimation 
to track targets with optimization over dynamic graphical models to select the 
optimal subset of radars, waveforms, and locations for the next tracking instant.

4.7 Conclusion

ES is at the heart of every effective EW system. EP and EA performance is directly 
tied to the quality of the ES. ES analyzes the environment and creates the observ-
ables that drive DM. This chapter introduced a sampling of SA techniques that 
address some of the particular challenges of an ES system.

Classical ML techniques have had a presence in EW systems for years. ML is 
exploding with new insights and results, driven primarily by developments in the 
deep learning community. Deep learning has achieved remarkable breakthroughs 
in natural language and image processing, largely due to three factors: bigger com-
puters, labeled data, and insights into how to connect the networks. The RF com-
munity can exploit these advances to address similar problems in ES.

Embracing deep learning, however, does not mean that classical ML tech-
niques or expert knowledge of the problem should be dropped. Use the approach 
most suited for the task at hand that meets system goals and requirements.
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5
Electronic Protect and Electronic Attack

The majority of EW literature separates the discussion of EP from EA, arguing 
that they are fundamentally different purposes. From an AI standpoint, however, 
they use the same underlying algorithmic solutions.

The only difference between EP and EA is the mission objective: EP defines 
objectives with respect to oneself, while EA defines objectives with respect to others.

EP, for example, might want to minimize BER, while EA aims at maximizing 
the POI; BER can be directly measured, while POI cannot. Moreover, missions 
often need to accomplish objectives of both types, so it is unwise to decouple the 
concepts. Because the goal of this book is not to describe EP and EA, but rather 
to highlight what challenges AI and ML can help address, we therefore present 
solutions from the perspective of AI DM.

The EW system must choose actions to accomplish mission objectives, given 
whatever context it knows about the environment and the tasks: The platform(s) 
have a set of capabilities, and the cognitive decision-maker composes these into 
strategies to achieve the desired performance. It is through these knobs, or degrees 
of freedom, that the EW system can accomplish its goals. Figure 5.1 outlines a 
spectrum of the kinds of strategies that can accomplish both EP and EA objectives.

Two key reasons for AI-based DM are time and complexity. DM time re-
quirements are faster than humans are capable of handling. Moreover, the domain 
has too many inputs for a human to understand quickly, and too many choices 
for a human to analyze.

Figure 5.2 illustrates a notional flow. The decision-maker takes input from 
the ES system, consisting of the observables o and recent control feedback on the 
metrics m, and chooses a new strategy s to implement. If there is an online learning 
loop (Chapter 7), the system can update models on the fly. As a simple example, 
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imagine choosing commute routes to work. Observables are day of week, time of 
day, and weather conditions. Strategies involve the route and vehicle. Metrics are 
time and distance. The optimizer chooses the best strategy for current conditions 
and updates the model as needed (e.g., if a road goes under construction).

Choosing a strategy is best-solved using decision theory approaches, because 
it follows a rigorous approach to reasoning about action choices. Decision theory 
is the science of choosing actions based on their expected outcomes, given con-
straints and assumptions about the problem, as illustrated in Figure 5.3.

Decision theory has a long history; renowned economist Kenneth Arrow 
describes early work [1]. Russell and Norvig [2] provide a good introductory 
discussion of decision theory, discussing rational DM, how to handle uncertainty 

Figure 5.1 EP and EA lie on a spectrum, where a chosen strategy can be effective for multiple 
mission objectives.

Figure 5.2 The decision-maker chooses a strategy s based on recent observables o and per-
formance feedback of the metrics m. An optional online learning step updates performance 
models based on empirical data. (Based on Example 7.1.)

Figure 5.3 Decision theory gives a structural framework for thinking about the problem and 
making choices.
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and partially observable environments, how to compute utility over time, and 
how to handle adversaries. In a complete cognitive EW system, decision theory 
appears in the context of three highly connected concepts: planning, scheduling, 
and optimization.

• Planning synthesizes a sequence of actions that results in a desired goal 
state. Planning is what to do, and in what order, as a partially ordered graph. 
Planning is more strategic and more global. An EBM system plans how 
many platforms to deploy, which resources each gets, and where they will 
go. Chapter 6 describes the EW planning problem, which is at a higher 
level than scheduling and optimization.

• Optimization evaluates multiple plans to choose the “best” plan. Optimi-
zation is more tactical and more local. An EW system optimizes EP and 
EA metrics like power usage, probability of detection, and EW BDA. Sec-
tion 5.1 describes optimization, including multiple objectives.

• Scheduling maps a partially ordered plan to specific resources and times-
lots. Scheduling worries about when and how to do things. Scheduling 
drives down into the specifics of when to transmit and when to receive. 
Section 5.2 describes scheduling.

These activities are not clearly delineated. Traditionally, humans create the EW 
plan, delegating detailed scheduling and automation to the system. When plan-
ning is also automated, these activities are closely tied together; in fact, solution 
feasibility can only be guaranteed by dynamically harmonizing the layers [3, 4].

Chapter 2 presented the objective function, and Chapter 4 (ES) explained 
how observables describe the environment. This chapter describes how to choose a 
strategy, with a focus on optimization and scheduling. Section 5.1 describes opti-
mization approaches, and Section 5.2 discusses scheduling. Section 5.3 describes 
a desirable attributed for DM: that implementations need to be interruptible. 
Section 5.4 considers methods to optimize across a distributed network of nodes.

5.1 Optimization

An optimization problem consists of choosing a set of values that maximize (or 
minimize) a utility function. Optimization has been a subject of mathematics 
since at least 1646 [5], with modern cross-disciplinary work falling in many 
fields including operations research, economics, and AI. AI confers heuristics and 
randomized search, allowing systems to solve previously impossible problems. AI 
tackles the exponential nature of how to search the performance landscape. Sec-
tion 5.1.1 describes the challenges of multi-objective optimization. Section 5.1.2 
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highlights some of the approximation approaches developed by the AI commu-
nity. Section 5.1.3 presents a few metalearning techniques being used to improve 
optimization.

5.1.1 Multi-Objective Optimization

It is rarely possible to optimize all objectives simultaneously. Usually, the system 
must trade off the various objectives, making adequate performance toward all 
of them, without being optimal in any. For example, there is a rate/range/power 
trade-off, and a trade between robustness and efficiency.

Ramzan et al. [6] survey multi-objective optimization approaches for spec-
trum sharing. A classic example in radar is Pd versus Pfa; the receiver operating 
characteristic curve defines the trade-off [7–9]. Joint optimization of radar and 
communications performance is another common multi-objective problem [10], 
as is resource management on the platform [11, 12].

When the desired balance between objectives is not known, the Pareto-
optimal frontier is the set of noninferior solutions for each objective, as illustrated 
in Figure 5.4. The “best” decision becomes a choice along the frontier, using one 
of these common approaches:

1. Balancing mission parameters that define the desired balance in the form 
of an objective function (e.g., through weights on the metrics) (Section 
2.4);

2. Solving a constraint model, where some metrics must meet minimum 
criteria while others are optimized (Figure 5.5);

3. Computing a probability distribution over the options (e.g., game theo-
ry) (Section 6.2);

4. If there’s enough time, showing feasible options to a human operator 
(Section 6.3).

Figure 5.4 Pareto-optimal points occur when no one metric can be improved without degrad-
ing other metrics: A higher value for m1 reduces the value for m2.
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As an example, consider a tone jammer. There are many different tech-
niques that can mitigate the interference it causes; each technique has a different 
expected benefit and cost (Table 5.1). Even in this simple case, the choice is not 
always straightforward. First, specific details of the jammer may reduce the ex-
pected benefit of the technique, and therefore the system should learn to estimate 
the performance based on these observables (Section 4.2). Second, different costs 
may be more or less tolerable to the platform and mission. Finally, different stages 

Table 5.1 
Different Techniques to Mitigate a Tone Jammer with Different Expected Effectiveness 

and Costs in a Communications EP Setting

Strategy Effectiveness Cost
Notch filter Good, but as power goes up, an 

adaptive notch may remove too 
much signal

Low

Beamforming Usually good; poor if interference 
is distributed

Computation and multiple 
antennas

DSA Good, but jammer may follow Sensing; coordination time
Narrowband-hopping Depends on bandwidth of tone Coordination time
Redundant packets Good if tone is intermittent; poor 

otherwise
Power (and half the 
throughput)

Spreading Poor More gain in receive path 
increases vulnerability to 
saturation

Routing around Medium Power (multiple nodes),
Latency

Figure 5.5 Constraint models support DM along a Pareto frontier. In contrast, a single objective 
function would combine all metrics, using negative weights for costs.



90 Cognitive Electronic Warfare: An Artificial Intelligence Approach  Electronic Protect and Electronic Attack 91

of the mission may have different priorities and thus mandate a different choice, 
even for techniques that have equal expected effectiveness.

Traditional look-up tables and one-to-one mapping of environment to tech-
nique are inferior in every realistic case with many performance metrics, capabili-
ties, platforms, missions, and complex jammers.

5.1.2 Searching Through the Performance Landscape

AI tackles the problem of how to search the exponential performance landscape. 
Traditional mathematics approaches focused on complete, optimal solutions, but 
computing a solution for most real-world problems (including EW) is impossible. 
Per our definition of the objective function, EW has an exponential number of 
strategies (Π∀cvc, where vc is the number of possible values for the control param-
eter c), quickly approaching infinity. When the number of strategies is small, the 
system can estimate the utility of every strategy, as outlined in Algorithm 5.1.

As the number of strategies grows, alternative approaches become necessary. 
If the objective function is smooth and has relatively few local maxima, gradient-
based searches are efficient and effective methods to finding a solution.

EW objectives, however, are rarely smooth, not necessarily continuous, and 
frequently have many local maxima, making randomized search methods appro-
priate [16]. Also known as metaheuristic methods, Monte Carlo methods, or stochas-
tic algorithms, they statistically guarantee an optimal solution; there is typically no 
way to know whether they have found an optimal solution.

Optimality, however, is rarely critical; usually “good” is good enough.

In EW, the domain is partially observable, and changes so fast that an approxi-
mate solution is sufficient. In other words, one can overthink the problem. No-
bel Prize–winning economist and father of AI, Herbert A. Simon, developed the 

Algorithm 5.1 When the number of candidate strategies is small, node 
n can exhaustively compute the estimated utility for each strategy. This 
approach effectively chooses EP interference-mitigation approaches for 
a fielded communications network (Example 7.1, [15]).

For each candidate strategy si: //All candidate strategies for node n

For each metric mk:
mk = fk(o,si)

//Estimated metrics

Compute U (si) from all metrics mk //Estimated utility

Select s = argmax
is
U(si) //Best strategy
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concept of bounded rationality [17], which says that the rationality of individuals 
is limited by the information they have, the limitations of their minds, and the 
finite amount of time they have to make a decision. Section 5.3 continues this line 
of thought.

Moreover, many EW systems are specified to have certain performance 
against the most stressing threats. For example, a radar employing adaptive beam-
forming may be specified to create null depth of, say 50 dB, to counter a noise 
jammer. The 50 dB is typically chosen to counter the most powerful jammer at the 
closest range—creating the highest effective isotropic radiated power (EIRP)—at 
the closest angle to the desired target. Therefore, if the learning system chooses 
adaptive beamforming as the correct EP, it will likely still be effective against a 
very large population of jammers because of the extra margin built into the system 
for this mode, even if some of the parameters for it aren’t optimal (e.g., sample 
support for secondary data estimation).

Randomized search methods compute the quality of individuals in a popu-
lation over several iterations before selecting a final choice (Algorithm 5.2). In 
our case, the population P is a subset of all candidate strategies available at the 
node, and the set is much smaller than the total number of available candidates. 
Randomized algorithms differ in the metaheuristic they use to compute each suc-
cessive iteration.

Our discussion of randomized optimization algorithms is far from being 
comprehensive; we list ones that have shown promise to the EW space and men-
tion a few relevant examples. Beheshti and Shamsuddin [18] review population-
based meta-heuristics, including mathematical formulations and trade-offs. 
Jamil and Yang [19] present 175 different benchmark problems that validate the 

Algorithm 5.2 Metaheuristic methods explore the performance 
landscape using randomized methods that search through a small 
population of individuals. The utility function nU  evaluates the quality of 
the individuals.

P = Compute initial population of candidate strategies for node n

For each iteration: //Convergence or max iterations

For each candidate strategy si ∈P:
For each metric mk:

mk = fk(o,si) //Estimated metrics

Compute U n(si) //Estimated utility

P = Update population (location or individuals)

Select s = argmaxsi ∈P ( U n(si)) //Best strategy in last population
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performance of optimization algorithms and (importantly) the characteristics of 
each. Ramzan et al. [6] present a survey of optimization approaches in the context 
of CR networks. The NATO Cognitive Radar report presents many approaches 
and applications [20]. These techniques are merely a starting point, and can be 
combined and augmented with other approaches. Several randomized optimiza-
tion algorithms are described as follows.

• Ant colony optimization (ACO) is a robust, versatile metaheuristic for solv-
ing combinatorial optimization problems, wherein a population of artifi-
cial “ants” randomize the search to a solution [21, 22]. As the ants move 
through the landscape, they leave “pheromones”; higher probability paths 
have denser pheromones. Updating the population in Algorithm 5.2 for 
ACO means “moving” the ant to a different strategy.

• Pros: ACO is inherently parallelizable, guarantees convergence, and can 
be used in dynamic applications.

• Cons: Because ACO is a randomized search, time to convergence is 
uncertain, it is hard to analyze theoretically, and it doesn’t guarantee an 
optimal solution. Good solutions in the previous iteration increase the 
probability that solutions in subsequent iterations will follow a similar 
path, reducing the diversity of the population.

ACO is used in cognitive radio networks to build routing trees [23, 24], 
assign channels [25], and tune transmission parameters [26]. Karaboga 
et al. [27] uses ACO to steer nulls in linear antenna arrays. Ye et al. [28] 
combines ACO with Tabu search to make collaborative cooperative jam-
ming decisions.

• Particle swarm optimization (PSO) uses a population (swarm) of candidate 
solutions (particles) to move through the search space [29]. Particle move-
ments are guided by their own estimate of their position, and the swarm’s 
best-known position.

• Pros: PSO has a simple structure that is easy to encode. PSO is more ef-
ficient than genetic algorithms, especially in problems with continuous 
variables. PSO can operate in dynamic applications.

• Cons: The choice of PSO parameters can have a large impact on opti-
mization performance and can converge prematurely to local optima, 
especially with complex problems. Stochastic variability can be very 
high.

PSOs are used to compute multiparameter solutions for transmission and 
resource allocation in radio networks [6]. PSO works well for radar pulse 
compression codes [30, 31], and designing discrete frequency waveforms 
[32, 33].
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• Genetic algorithms (GAs) are another population-based randomized search 
method in which solutions are encoded as “chromosomes” [34]. This me-
taheuristic uses mutation, crossover, and selection to generate high-quality 
solutions to complex problems.

• Pros: GAs are naturally suited for discrete-valued problems, and are 
easily parallelized.

• Cons: GAs are prone to premature convergence; maintaining diversity 
in the population is critical [35–37]. GA problem-encoding is problem-
specific, and these encodings can be difficult to create. Also, GAs are 
less computationally efficient than PSO [38].

GAs are used to compute multiparameter solutions for transmission, with 
various goals including power management, transmission performance, 
and shared spectrum usage [6, 39]. GAs have been used for radar design 
[40], waveform selection [41], waveform design [42, 43], target identifica-
tion [44, 45], and jammer suppression [46].

• Simulated annealing is another search metaheuristic that probabilistically 
decides whether to move from one solution to another [47]. Unlike GAs 
and PSO, there is only one search instance. The probability function is 
usually chosen so that the probability of deciding to move decreases when 
the difference in solution quality increases; that is, small uphill moves are 
more likely than large uphill moves. It can be used within GAs and PSO 
to improve search time.

• Pros: Simulated annealing is relatively easy to code and generally gives a 
good solution. (It statistically guarantees finding an optimal solution.) 
Because simulated annealing has only one individual, it requires signifi-
cantly less memory than population-based approaches.

• Cons: For the same reason, it is more likely to end up in the same valley 
it started in; it doesn’t know whether it has found an optimal solution.

Simulated annealing has been used for topics as varied as detecting faults 
in antennas [48], meeting the QoS for a radio network [49], estimating ra-
dar cross-sections [50], localizing jammers [51], and suppressing jamming 
[52]. Simulated annealing and GAs have been combined for power alloca-
tion in CR networks [53], radar imaging [54], and designing a MIMO 
sensor array [55]. Simulated annealing has been combined with other AI 
techniques (e.g., Case-based reasoning [56]) to increase the convergence 
rate.

• Cross-entropy method (CEM) is a randomized search method for impor-
tance sampling; it draws a sample from a probability distribution, and then 
minimizes the cross-entropy between this distribution and the target dis-
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tribution to produce a better sample in the next iteration [57, 58]. Amos 
and Yarats [59] describe a method to differentiate CEM so that it can be 
used with gradient descent methods.

• Pros: CEM defines a precise mathematical framework, in some sense 
optimal learning rules. It is robust to parameter settings. CEM is valu-
able for rare event simulation, where very small probabilities need to be 
accurately estimated.

• Cons: Time to convergence is uncertain; the stopping condition is a 
heuristic. The original CEM method has high storage and computa-
tional requirements [60].

CEM is used to estimate and optimize network reliability [57, 61], find 
network paths [62], and place nulls [63]. Naeem et al. [64] use CEM 
to optimize cooperative communication and greenhouse gas emissions. 
CEM can also be used in the antenna design problem [65] and in RL 
to learn more quickly [58, 60]. Like simulated annealing, CEM can be 
combined with the population-based approaches to parallelize solutions 
[66, 67].

Despite optimization being a mature field, new approximation techniques 
are developed regularly. Moreover, individual optimization approaches can be 
combined to get better performance (speed or solution quality). Many other ap-
proaches can likewise help, including hybrid approaches (Section 3.3) and meta-
learning (Section 5.1.3). For example, while the performance surface is in theory 
infinitely large, EW engagements are constrained by physics and progression of 
engagement state by collection or denial of information. Heuristics can lever-
age this connected state space and use the randomized methods to explore the 
remaining unknown regions.

5.1.3 Optimization Metalearning

Metalearning is the process of learning to learn [68, 69]. Metalearning is an 
awareness and understanding of the phenomenon of learning, rather than learn-
ing the subject knowledge. A metalearner changes the operational parameters of 
an algorithm so that its expected performance increases with experience. There is 
some terminology awkwardness because learning involves creating rules to assess 
or decide more effectively, while metalearning is learning-to-learn. Many learning 
algorithms are optimizers; therefore metalearning can learn to optimize a learner 
that improves an optimizer.

Early research in metalearning looked at bias-management to select between 
different algorithms [70], meta-genetic programming to evolve a better genetic 
program [71], and learning to optimize learning rules in neural networks [72]. 
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Metalearning learns how to exploit structure in the problems of interest in an au-
tomatic way, so that they no longer need to be tuned by hand [73]. Metalearning 
offers a variety of benefits:

1. Speed: Learn or optimize faster;

2. Ease of use: Automating the process of tuning algorithms;

3. Adaptability: agile to environmental changes;

4. Reduced data: transfers knowledge from one context to another.

Metalearning approaches can be combined, as illustrated in Figure 5.6, with 
the overall purpose of improving the generalization of ML models and the effi-
ciency and accuracy of DM engines.

Metalearning can learn a low-dimensional representation of the task [74, 
75] to make it easier to search. Here, the metalearner changes the number of 
parameters in nU . Other dimensionality-reduction approaches include principal 
components analysis (PCA) and ANNs (Kohonen networks and auto-encoders 
per Section 3.1.2).

Metalearning can help prioritize the search for strategies, starting with the 
most important controllables (i.e., those that contribute most to solution quali-
ty). The algorithm searches over options for a small handful of important control-
lables, while using default values or the values selected in the previous timestep, 
for the less important ones. The algorithm searches for less important control-
lables only after fixing these important values. This approach is akin to learning 
how to plan (Section 7.3). An example in communication jamming would be the 
use of an appropriate duty cycle for causing interference as a major controllable, 

Figure 5.6 Metalearning changes the representation of the data, prioritizing search, adjusting 
hyperparameters, and transforming the utility function to improve solution quality.
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with minor controllables being the details of a jamming waveform like frequency 
offsets and particular modulation techniques.

Metalearning can analyze the search process to optimize hyperparameters 
and search more efficiently [76–78]. A metalearner optimizes a set of hyperpa-
rameters θ that control the optimization of nU . The metalearner uses a metaU-
tility function ( nU , J), where J evaluates qualities of the optimizer, such as the 
speed to convergence, as illustrated in Figure 5.7.

Orthogonally, approximating the derivative creates a differentiable version 
of nU  that is appropriate for gradient-based methods [59].

Section 7.3 presents additional learning methods to improve DM, within 
the context of RL and direct interaction with the environment. All the methods 
presented here can also be viewed as RL methods.

5.2 Scheduling

Scheduling maps a partially-ordered plan to specific resources and timeslots. 
Scheduling is concerned with when and how to do things. In EW, scheduling 
commonly furnishes the specifics of when to transmit and when to receive.

A resource scheduler on a single EW node may decide when to activate sen-
sors, when and how to transmit, when and how to avoid specific electromagnetic 
signatures, and/or when and how to receive. For distributed EW systems, such 
particulars (of how and when) only grow in complexity. An EW resource sched-
uler needs (1) a sequence of actions and their resource requirements, (2) a set of 
resources to use, (3) constraints, and (4) an objective function.

Critical path methods build a directed graph relating actions; the critical path 
is the one with the total longest duration; it determines the maximum duration 
of the entire EW mission. Any task that lays on the critical path is called a critical 
task. Critical tasks and their interdependencies can be represented with a Gantt 
chart or similar approaches. Critical tasks are spectrum sensing, spectrum analy-
sis, and spectrum decision (Figure 5.8); an EW mission encompasses numerous 
cognition cycle iterations.

Figure 5.7 Metalearning optimizes the hyperparameters θ of the optimizer using a metaUtility 
function J.
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In computing, the first scheduling approaches were taken from the field 
of operations management. Assembly lines and many other human aspects of 
life require scheduling, sharing the same concerns with computing, including a 
desire for efficiency. The development of scheduling policies is concerned with 
determining what the key assumptions should be and what metrics are important. 
In computer science, metrics include workload, jobs, turnaround time, and fair-
ness [79]. Today, many scheduling disciplines exist and are found in solutions for 
network routers, operating systems, disk drives, embedded systems, and packet-
switched wireless networks.

In EW systems, the scheduler chooses actions that will ultimately enable 
the EW system to transmit and to receive. The scheduler can perform actions 
in a cyclical or linear manner. Linear schedules are finite, whereas cyclical ones 
naturally repeat. Ideally, an awareness of all possible states is necessary for proper 
task scheduling; however, partial observability of some states could make it dif-
ficult to accomplish a given task. To address numerous constraints such as output 
power, energy efficiency, and time requirements, the automatic scheduler may 
assign weights or costs to these various constraints thus eliminating the need to 
preplan manually, an arduous task that is often impossible given the timing con-
straints of the system.

In automatic scheduling, all tasks may have to undergo an automatic pri-
oritization of execution order, but the nature of tasks themselves might have to 
be predetermined by the cognitive EW system designer. Furthermore, a single 
node of distributed EW system may be aware of all of its states within its world’s 

Figure 5.8 Each of the high-level tasks—sensing, analysis, and DM—drive the transmit/re-
ceive schedule.
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purview yet it may not be aware of other nodes’ or actors’ states. Partial accom-
plishment of tasks can be achieved in time, locally, on each node, but coordina-
tion among nodes is crucial as nodes might not be striving toward the same goal 
and might end up being in conflict with each other’s objectives. For example, the 
scheduler has to be cognizant of limited node connectivity and visibility, validate 
that tasks have been successfully accomplished, and manage accountability for 
wrongly executed tasks (reward and punishment).

The designer’s goal is to create a scheduler that achieves all of its scheduling 
objectives within the mission and operating constraints. In distributed systems, 
the decision should be based upon nodes’ responses (or lack thereof ) to determine 
if some tasks need to be abandoned altogether or whether another node should be 
allowed to carry out the task. Lack of true broad spectrum “visibility” in spacetime 
will also determine the boundaries of one’s scheduling algorithm. Awareness of 
many states, past, current, or preplanned/predicted future, allows the scheduler 
to adjust its parameters when executing the tasks (i.e., adjusting its overall mas-
ter schedule). For real-time cognitive EW systems, time is of the essence. Thus, 
near real-time decisions must determine the appropriate order of tasks to execute, 
based on many internal and external factors such as sensor data, weather, antenna 
array availability or, generally, resource availability. A scheduler should adjust the 
schedule based on resource availability.

Modern commercial communications systems, for example, have schedulers 
that allow them to prioritize when to transmit and receive and in what frequencies 
and time slots, e.g., frequency-division multiple access (FDMA) or time-division 
multiple access (TDMA) schemes. DSA is also an attractive feature for any EW 
system to possess and should be a part of the system’s scheduling algorithm.

The scheduler decides in which order to execute system tasks, while as-
sessing resource availability and determining how to utilize these resources. The 
scheduler must rely on SA information and reorder tasking based on the infor-
mation received. While a simple scheduler can be entirely deterministic (e.g., 
rule-based or hard-coded with predetermined inputs and outputs), the chosen 
approach must support scheduling to account for unexpected, unknown or par-
tially observable states.

Lastly, overall awareness of the mission environment is important for suc-
cessful execution of system tasks (whatever they may be) in the best possible or-
der. Flexibility is key; prioritization and reprioritization are equally important. 
Valuable information may sometimes arrive at an inconvenient time, but cannot 
be ignored and should be recognized by the scheduler. The scheduler may also 
benefit from having a “fight or flight” capability or an emergency mode, when 
the ongoing schedule might have to be abandoned in lieu of an emergency to 
instantiate a new tasks’ order to protect the system.

Table 5.2 provides several examples from the literature of various schedulers 
that are relevant to cognitive EW.
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5.3 Anytime Algorithms

EW DM algorithms operate in rapidly changing environments with hard real-
time requirements. New priorities can “pop up” at any time, and resources may 
be unexpectedly depleted. A desirable trait for a decision-maker is that it can 
generate solutions quickly, or, when time is available, spend more time deliberat-
ing. While it may be a goal to have zero-latency for decisions, in practice, a longer 
integration time (and waiting a second or two) may yield a better result.

Anytime algorithms find better and better solutions the longer they run. 
Invented by Dean and Boddy in the 1980s [114], anytime algorithms can be 
interrupted at any point during computation to return a result whose utility is a 
function of computation time. The similar concept of flexible computation [115] 
explicitly balances the benefits of additional computation time against the costs 
of acting with a partial solution. Both ideas have roots in Herb Simon’s concept 
of satisficing [116], which involves searching for a solution until an acceptability 

Table 5.2
Examples of Optimization Approaches Used by EW Schedulers

Category Examples
Comms Satellite broadcast scheduling using local search, simulated annealing, and ACO 

[80]; satellite scheduling for low-power terminal operations [81]; minimizing energy 
to transmit [82]; long-term evolution uplink timing-alignment and power-control [83]; 
user scheduling for multiple antenna systems [84]; ML-enabled fish-eye state routing 
(FSR) for MANET optimization [85]; adaptive MANET routing algorithm based on the 
simulated annealing [86]; MANET transmission scheduling protocol based on recovered 
minislots [87]; position-based broadcast TDMA scheduling for MANETs [88]; spectrum 
sensing scheduler for CRNs [89]; GA-based scheduling algorithm for CRNs [90]; real-time 
heuristic scheduling for CRNs [91]; real-time scheduler for CRNs [92]; polynomial-time, 
energy-efficient heuristic scheduler for centralized CRNs [93]; scheduling for distributed 
sensor networks [94]; survey of resource allocation techniques [95], with approaches 
including cloning GA, estimation of distribution algorithm (EDA) based on weighted-sum 
method (WSM) for green radio resource allocation, and CEO.

Radar Phased-array task scheduling using hybrid GAs and heuristics [96]; ML-enabled 
active electronically scanned array (AESA) antenna scheduling [97]; multifunctional 
radar network greedy and heuristic scheduling [98]; multifunction phased array radar 
scheduling heuristics [99]; multifunction radar using Monte Carlo tree search [100].

EW FSR and power control for EP [85]; partially observable Markov decision process (POMDP) 
for airborne electronic countermeasures (ECMs) [101]; ML-enabled. periodic sensor 
scheduling for ES [102]; game-based approach for jamming resources and strategy 
optimization for EA [103]; risk-based multisensor scheduling using POMDPs and decision 
trees for target threat assessment [104].

General 
framework

Scheduling based on knowledge-based engineering [105]; heterogeneity-driven task 
scheduling and end-to-end synchronized scheduling algorithms for networked embedded 
systems [106]; utility accrual real-time scheduler based on polynomial-time heuristic 
algorithm [107]; RL scheduler for heterogeneous distributed systems [108]; generalized 
ML-based solution for large-scale resource scheduling [109]; online resource scheduling 
algorithm using deep RL [110]; ML approaches to learning heuristics for combinatorial 
optimization [111]; scheduling approaches using evolutionary computation [112]; 
temporal reasoning for planning and scheduling [113].
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threshold is met; satisficing is particularly useful when optimal solutions cannot 
be determined because of computational intractability or lack of information. 
Longer observation times may generate better quality observations, and longer 
compute times may yield better optimization. Anytime algorithms recognize that 
the time required to find the optimal solution typically reduces the overall utility, 
similar to the law of diminishing returns.

Most metaheuristic algorithms satisfy this condition: Each iteration im-
proves the quality of the best-available solution and therefore can be stopped as 
needed. Adding to the list of citations from Section 5.1.2, anytime algorithms are 
effective in domains where approximate solutions need to be generated quickly, 
from image alignment [117] to adaptive weather-control radars [118].

Zilberstein looks at the problem of metacontrol: compiling, controlling, 
and managing multiple anytime algorithms [119, 120]. Zilberstein, who used 
a radar threat analysis and target-assignment problem as one of his motivating 
scenarios, saying [119]:

The radar component, designed to track objects, and the planning component, 
designed to perform target assignment, are clearly interdependent: the quality 
of the first clearly affects the quality of the second. The use of conditional 
performance profiles and dynamic scheduling seems essential for solving such 
problems.

Metalearning (Section 5.1.3) augments this work to learn and utilize performance 
predictions [121–123].

5.4 Distributed Optimization

An EW system may need to optimize across multiple decision-makers on a single 
platform, or across platforms. Both radar and comms systems require distributed 
DM, but comms systems have greater latency and more coordination. Approach-
es differ according to the nature of the solution:

• Centralized: A single decision-maker finds a solution for all components 
and all nodes;

• Distributed: Decision-makers use local communications to coordinate ac-
tions;

• Decentralized: Decision-makers are fully independent and do not rely on 
communications for coordination.

On a single platform, a single optimizer will find generally a solution that 
is closer to optimal than multiple optimizers, because it can search for a single 
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global solution. However, a single optimizer is more challenging to design due to 
differing timescales, differing types of information, and the amount of informa-
tion to synchronize.

Across the network of platforms, a single, centralized optimizer is inappro-
priate. The critical concern is that of a single bottleneck: If the centralized op-
timizer fails, the entire system fails. Additional concerns include the latency of 
DM, information privacy, and detectable emissions. It is better to make a locally 
good decision quickly than it is to attempt to find a globally optimal decision 
that is irrelevant before it can be implemented. Figure 5.9 illustrates the practical 
limits of a centralized optimization approach. Many distributed and decentralized 
optimization solutions are naturally anytime algorithms, making them inherently 
suitable for generating satisficing solutions in this dynamic domain.

In EW, centralized nodes can capture “slower-time” information, including 
changes to the broader mission policy, EWO interactions (Section 6.3), and slow-
er information dissemination and task management [124, 125] (Section 6.1.6).

Distributed optimization approaches communicate across local neighbor-
hoods to coordinate actions. Traditional approaches assume that communica-
tions is safe and plentiful. This assumption is not true in EW where communica-
tions limited or denied due to jamming, mobility disconnects, or decisions to 
reduce RF emissions. Section 6.1.4 discusses approaches for planning when to 
communicate—managing the benefit of information sharing against the cost of 
transmission.

Several surveys describe distributed optimization solutions, noting commu-
nications overhead, memory usage, and optimality [126–128].

Figure 5.9 Centralized reasoning quickly reaches a practical limit.
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Consensus propagation [129] is a lightweight communications approach that 
allows each node to share its local estimate of the global utility and quickly com-
pute the global average, despite not knowing how many nodes are in the network. 
ACO algorithms likewise have low communications demands.

Fully decentralized coordination requires each node to independently evalu-
ate its contribution to the global solution. One option is to formulate the utility 
function so that each node’s local optimum accurately captures its contribution 
to the team’s global optimum. The formal problem definition of Callout 2.1 uses 
a fully local approximation of the true utility to choose EP interference-mitiga-
tion approaches for a communications network in a online learning environment 
(Example 7.1, [15]). Molzhan et al. [130] present an approach for decentralized 
optimization in electric power systems, against the backdrop of classical control 
theory and real-time feedback control.

Communication-free learning [131] formulates the problem so that local 
sensing is sufficient to determine whether the solution is valid; the authors de-
scribe how to model graph coloring, channel assignment with channel-dependent 
interference, intersession network coding, and decentralized transmission sched-
uling. Each node needs to know only its own assignments; it doesn’t need to know 
the choices of the other nodes.

Distributed optimization approaches support information fusion [118], re-
source allocation [124, 131, 132] and scheduling [133]. A common application 
for distributed optimization is timing synchronization, which then can be used 
for data fusion, duty cycling, cooperative localization, and coordinated actions 
such as distributed beamforming [134–136].

5.5 Conclusion

Just as there is no free lunch for ML and statistical inference [137], there is no free 
lunch for optimization [138]: If an algorithm performs well on a certain class of 
problems then it necessarily pays for that with degraded performance on the set 
of all remaining problems.

This chapter presented some of the optimization approaches shown to be 
effective for EW problems; these approaches support:

• Support multiple objectives;

• Rapidly search the exponential performance surface;

• Handle a dynamic environment;

• Improve solution quality when given more time;

• Operate well for multiple nodes under limited communication.
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Chapter 6 discusses more strategic DM: long-term battle planning and 
management.
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6
Electronic Battle Management

An EBM system plans how many platforms to deploy, which resources each gets, 
and where they will go. It coordinates activity across EMSO domains, and with 
broader issues such as logistics. EW plans should identify the desired electromag-
netic profile; identify missions, tasks, and resources; evaluate threats; and meet 
the constraints and goals of relevant policies [1]. Factors affecting the plan include 
available assets, desired effects, placement limitations (altitude, range, time, or 
loads), frequency deconfliction, anticipated EW missions from other services, and 
authentication requirements [2]. Figure 6.1 captures some of the inputs and out-
puts of an EBM system, including the desired effects, platform limitations, rules 
of engagement, and anticipated EW missions from other services.

DoD doctrine explains the traditional approach to EW planning, noting 
that “Joint EW is centrally planned and directed and decentrally executed…” [1], 
and that “…this planning requires a multidisciplined approach with expertise 
from operations (ground, airborne, space), intelligence, logistics, weather, and 
information.” [2]

Moving to an automated EBM planning system creates a more interactive 
system that can respond to events as they occur during the mission. As noted in 
Chapter 5, automated planning activities overlap optimization and scheduling 
and will become fully interactive integrated systems in the future. Section 6.1 
presents AI planning approaches, discussing issues such as uncertainty, resource 
allocation, and multiple timescales. Section 6.2 touches on game theory ap-
proaches for team coordination and reasoning about adversarial actions. Section 
6.3 discusses the human-machine interface (HMI), including how to leverage 
human expertise within the system, extract human-level goals for optimization, 
and explain decisions to human users. (Section 7.2 describes how to update plans 
during a mission.)
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In a complete EW system, there will be multiple decision-makers. Planners 
might be task-specific, algorithm-delineated, and geographically  or temporally 
separated. This separation of concerns makes system design significantly easier. 
Examples of task-specific planners include ROGUE, which had a task planner 
and a route planner [3], and Tactical Expert Mission Planner (TEMPLAR), 
which had four planners (Example 6.1).

Figure 6.1 To support deliberative EBM planning, inputs include relatively static descriptions 
of the mission, and outputs include high-level tasking. (As planning becomes more automated, 
dynamic inputs will also become relevant.)

Example 6.1 TEMPLAR generates air tasking orders. 

Tactical Expert Mission Planner (TEMPLAR)

There are four distinct planning modules in TEMPLAR:

• The package planner, which generates mission lines on Target Plan-
ning Worksheets.

• The flow planner, which generates mission lines on unit schedules for 
[Close Air Support] CAS and [Defensive Counter Air] DCA missions.

• The air-air refueling planner, which generates mission lines on Refuel-
ing Planning Worksheets.

• The mission line planner, which fills in mission number, call sign, SIF 
code, and other information on existing mission lines.

—Siska, Press, and Lipinski [4]
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6.1 Planning

Planning operates over broader scope and with a slower time envelope than opti-
mization or scheduling. Planning evaluates actions over longer time horizons, and 
handles broader asset and resource types. The Hubble Space Telescope, which is 
automatically controlled with a planning and scheduling system built in the early 
1990s, highlights the tight coupling between a planner and a scheduler (Example 
6.2).

Planning focuses on the causal reasoning for finding a sequence of actions 
needed to achieve the goal(s). The plan is usually a partially ordered set of ac-
tions that does not specify resources or a schedule; scheduling assigns time and 
resources to the plan. Figure 6.2 shows how different challenges drive selection of 
a planning approach.

Classical planning takes as input a description of the current situation (an 
initial state), a set of actions, and a description of the goal(s), and generates as out-
put a sequence of actions that lead from the current situation to the goals. Proba-
bilistic planning handles nondeterministic and partially observable environments. 
Temporal planning handles actions with duration, or can be concurrent; temporal 
planning techniques usually handle resources, because resource use is frequently 
temporal in nature (e.g., a resource may be used by at most one action at a time). 
Conditional planning, or contingent planning, generates plans with conditional 
branches: Rather than a sequence of actions, it generates a contingency plan that 
chooses actions based on perception of the environment, such as the one illus-
trated in Figure 6.3. The more mission-critical the failure, the more important it 
is to prepare in advance for contingencies [7].

Several good books exist on planning [8–10]. Benaskeur et al. [7] describe 
different planning approaches for naval-engagement scenarios. The International  

Example 6.2 An AI planner and scheduler controls astronomy tasks on 
the Hubble Space Telescope.
The Hubble Space Telescope was one of the first fielded, large-scale, auto-
mated planning and scheduling systems [5, 6]. The Heuristic Scheduling Tes-
tbed System (HSTS) constructs observation schedules based on goal expan-
sion (planning) and resource allocation (scheduling). Astronomers formulate 
observation programs with temporal constraints specifying the collection of 
light from a celestial object with one of the six scientific instruments. The re-
sulting plan must accomplish tasks for multiple astronomers. Multiple layers 
of abstraction allow the planner to manage the combinatorics of the problem: 
The abstract level manages telescope availability, reconfiguration time, and 
target visibility, while the detail level manages specific exposures.
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Planning Competition (IPC) [11], held roughly biennially since 1998, runs 
tracks for different types of planners on realistic (and sometimes real) real-world 
problems, such as satellite-based Earth observation, wildlife poaching, and data-
network task-scheduling. Notably, the source code from these planners is public. 
Yuen [12] presents a graphic showing the evolution of IPC competition tracks 
and the important trade-offs to consider for different types of problems. Yuen 
then presents a detailed cyber red-teaming use case.

Search and planning algorithms are judged on the basis of completeness, op-
timality, time complexity, and space complexity [8]. This chapter presents search al-
gorithms that search through the solution space in a deliberative manner. Section 
5.1.2 presents randomized search engines and uses this same criteria to evaluate 
their appropriateness to EW.

Figure 6.2 Different problem domain challenges require different considerations in the plan-
ning approach (not mutually exclusive).

Figure 6.3 A contingent plan generates actions with conditional branches based on expected 
outcomes. In simple cases such as this plan for a tone jammer (Table 5.1), they look like decision 
trees or rules systems.
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6.1.1 Planning Basics: Problem Definition, and Search

A problem can be defined formally with the following components:

• An initial state, s0 ∈ S;

• A set of possible actions, A;

• A description of what each action does, as a function that returns the state 
s′ ∈ S that results from doing action a in state s, ρ : (s,a) → s′, 

• A goal state, sg ∈ S;

• A cost function that assigns a cost to each step between states, c(s,a,s′).

A solution to the planning problem P is to find a sequence of actions π = 
(a1,a2,...,an) from s0 that produces a sequence of states (s1,s2,...,sg). An optimal 
solution has the lowest cost path from s0 to sg.

Classical planning domains are commonly represented in the Planning Do-
main Definition Language (PDDL) [13]. PDDL syntax encodes the domain: 
states, actions, and compound actions. States are represented as a conjunction 
of positive literals predicate(arg1,...,argN), e.g., s = in(pilot,airplane) AND has 
fuel(airplane). Actions have preconditions and effects; An action a is applicable in 
a state s only if its precondition literals pi ∈ s are true. Several variants of PDDL 
capture planning problems of different natures and complexities, including con-
straints, conditional effects, numeric and temporal features, and action costs.

Search algorithms look for the sequence of actions, by creating a search tree 
whose root is the initial state. Each branching step expands the current state by ap-
plying each legal action to the state, thereby generating new states. As an example, 
a simple robot moving in a grid-world can move to any adjacent grid square, 
resulting in four possible future states. (A robot moving on a flat surface has a 2D 
infinite space of future states. An aerial drone has a 3D infinite space.) Continu-
ous values can be discretized or presented with statistics such as mean and vari-
ance. Pruning steps eliminate illegal or repeated states to reduce the search effort.

Uninformed algorithms build this search tree without guidance from the 
domain, expanding nodes until they reach the goal. Common strategies include 
breadth-first search, depth-first search, iterative deepening, and bidirectional 
search. Given the complexity of EW, we do not present these in more detail here, 
because domain knowledge is critical to finding solutions.

Informed search strategies use heuristics to guide the search, thus making 
search more efficient or more effective [14]. Heuristic rules can be generated by 
experts, or created by ML from empirical data. One of the best-known heuristic 
algorithms is A*, a best-first search that expands the node n with the lowest esti-
mated path cost [i.e., g(n) + h(n), where g(n) is the cost from the initial state s0 to 
n, and h(n) is the estimated cost from n to the goal state sg].
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Nearly every successful planning system for real-world domains uses domain-
specific heuristics.

The randomized metaheuristic search algorithms of Section 5.1.2 are one 
approach to finding solutions in a complex space, and many of the schedulers 
in Section 5.2 also use heuristics. Typically, each possible plan is encoded as a 
sequence of actions that can be manipulated by the randomized search engine. 
For example, plans become chromosomes for GAs [15, 16], and graphs capture 
hazards in fire-escape routes for ACO [17].

6.1.2 Hierarchical Task Networks

Hierarchical task networks (HTN) planning embodies a different view of plan-
ning [10, 18–20]: Instead of searching for goals by changing the state of the world 
model, the HTNs are a set of abstract tasks to be done, and a set of methods for 
each task that represent different ways in which they can be carried out. The de-
pendency among actions is represented with hierarchically structured networks.

HTN planners develop plans at increasing levels of abstraction. HTNs are 
the most widely used form of planning in practical applications for two reasons. 
First, they effectively manage computational complexity. Second, they naturally 
correspond to how humans think about problems. This characteristic means that 
humans can describe relationships among tasks more easily, and the user interface 
inherently explains task progress.

An HTN planner reasons over a task network representing the problem to be 
solved. The network is a collection of tasks to carry out and associated constraints, 
such as their order and what preconditions must be true, as illustrated in Figure 
6.4. There are three types of tasks:

• Goal tasks, capturing the desired end state;

• Primitive tasks, which are actions that can be directly executed in the state, 
with associated preconditions and expected effects;

• Compound tasks, showing how to accomplish goals with primitive tasks. A 
method shows how to decompose a compound task into partially ordered 
subtasks (primitive or compound).

A solution to an HTN problem is thus an executable sequence of primitive 
tasks that can be obtained from the initial task network by decomposing com-
pound tasks into their set of simpler tasks, and by inserting ordering constraints.

HTN planners are used in many problem domains [20], including medi-
cine, production planning, logistics, crisis management, air campaign planning, 
naval command and control [22], aircraft carrier scheduling [23], and unmanned 
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combat robot teams [21]. Example 6.3 presents a more detailed example for coali-
tion battle planning. Because HTN planners encode domain knowledge within 
the task networks, they can solve much larger planning problems, and solve them 
more quickly, than domain-independent planners.

HTNs can be translated to other planning representations to improve their 
performance, for example PDDL [27], MDPs [28], and temporal planners [29]. 
In this way, the domain-independent planners can leverage domain knowledge 
encoded in the HTN. The ability to use domain knowledge is essential for solving 
large problems in complex domains.

6.1.3 Action Uncertainty

There are several approaches for planning in domains where actions have non-
deterministic outcomes, including conditional planning [30, 31], graph plan-
ning [32], stochastic satisfiability [33, 34], first-order decision diagrams [35] and 
MDPs. Because MDPs are the most widely used of these, they are the focus of this 
section. (Section 6.1.4 discusses the orthogonal issue of information uncertainty.)

MDPs are a framework for modeling and guiding sequential DM under un-
certainty [8, 36, 37]. Markov models describe systems that transition probabilisti-
cally between a finite set of states. When the domain is only partially observable, 
planning corresponds to a POMDP.

MDPs augment the problem definition of Section 6.1.1 with transition 
probabilities P(s′|s,a) that denote the probability of reaching state s′ ∈ S if action 

Figure 6.4 HTNs contain tasks, their preconditions, and associated constraints such as or-
dering. The mission goal has three possibly independent tasks: ECM, suppression of enemy air 
defense (SEAD), or patrol airspace. The SEAD method decomposes into three ordered tasks, 
ingress, strike, and egress. (Derived from [21].)
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a ∈ A is done in state s ∈ S. A reward R captures the expected reward when action 
a is done in state s. If models of adversary behavior are available from ES, they 
can be incorporated into the transition function to reflect the fact that the state 
of threats (which is part of each si ∈ S) is affected by both friendly and adversarial 
actions.

The policy π specifies what agents should do in every state; π(s) is the action 
recommended by π for state s. In a stationary policy, once the policy is found, the 
action is fixed for each state; in a nonstationary policy, the policy changes over time 
(i.e., actions depend on history).

Because the environment is stochastic, the quality of a policy is measured 
by its expected utility from executing it many times. An optimal policy π∗ is one 
that yields the highest expected utility. The planning problem is to find a good (or 
optimal) policy. Two standard algorithms that return a stationary optimal policy 
after a finite number of iterations are value iteration and policy iteration [38].

The most common utility function for MDPs is that of discounted rewards, 
where the utility of a state sequence is discounted over time, for the discount fac-
tor γ ∈ [0,1]. The expected utility of a policy π starting in state s0 is:

Example 6.3 The Course-of-Action Display and Evaluation Tool 
(CADET) integrates HTN planning with scheduling to create coalition 
battle plans.
CADET assists military planners in coalition environments [24–26]. CA-
DET is a knowledge-based tool capable of producing automatically (or with 
human guidance) battle plans with a realistic degree of detail and complex-
ity. CADET has been integrated with several battle management systems for 
DARPA and the U.S. Army [25].

The human planner defines the key goals for a tactical course of ac-
tion (COA), and CADET expands them into a detailed plan/schedule of 
the operation. CADET includes technology for interleaved planning, sched-
uling, routing, attrition, and resource consumption. CADET models assets 
and tasks, handles the adversarial environment, coordinates team efforts, and 
supports autonomous action (through commander’s intent).

The authors state, “The integration of planning and scheduling is 
achieved via an algorithm for tightly interleaved incremental planning and 
scheduling. The HTN-like planning step produces an incremental group 
of tasks by applying domain-specific ‘expansion’ rules to those activities in 
the current state of the plan that require hierarchical decomposition. The 
scheduling step performs temporal constraint propagation (both lateral and 
vertical within the hierarchy) and schedules the newly added activities to the 
available resources and time periods.” [25]
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where ai = π(si). π∗(si) is then the action that maximizes the expected utility of the 
subsequent state si+1.

A variety of action-choice functions that may be appropriate for the mission 
include:

• Maximax: Choose the action with the largest expected reward, even if it is 
unlikely (optimistic; risky).

• Maximum likelihood: Pick the action with the largest expected value by 
combining probability of outcome with expected reward.

• Maximin: Choose the action with the maximum of the minimum values 
(pessimistic; risk-averse).

• Minimax regret: Choose the action that minimizes worst-case regret, which 
is the opportunity loss for making the wrong decision (risk-averse).

A myopic best response selects the reward-maximizing action in each state, 
ignoring any possible future reward (i.e., γ = 0).

MDP planning is very computationally inefficient [38–40], but MDPs are 
the most widely used framework to formulate probabilistic plans. For this rea-
son, much research focuses on how to improve MDP planning performance [28, 
41–47].

Decentralized POMDPs are a common solution for a team of coordinating 
nodes [48] but are NEXP-complete [49] and may require doubly exponential 
time to solve in the worst case. Moreover, states and actions of node n include 
knowledge and actions from nodes n′. In practice, nodes reduce problem size by 
using heuristics or exploiting problem structure. Locality of interaction, for ex-
ample, assumes that nodes only need to coordinate with a limited subset of other 
nodes (i.e., that nodes do not need to know every detail of every other node) [48, 
50, 51]. Section 5.4 presents additional distributed optimization approaches.

POMDPs are also the most common representation used in RL settings 
(Chapter 7), where RL techniques learn the probabilities and/or rewards of the 
model. There are three key reasons why RL is not synonymous with MDPs: (1) 
MDPs are models that specify a policy, while RL takes actions to update that 
policy, (2) in MDP planning, the planner must decide when to terminate plan-
ning, while RL terminates only when the mission is over [42], and (3) other ML 
models can be used for RL.
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6.1.4 Information Uncertainty

In complex environments, information is rarely known perfectly. DM engines 
must incorporate and reason about the uncertainty in the information leading to 
decisions. With this information, the planner can use active sensing and commu-
nication to improve the information quality or certainty. Approaches to managing 
information uncertainty include:

• Dempster-Shafer theory, which measures belief in a fact and computes the 
probability that the evidence supports the proposition [52, 53];

• Fuzzy logic, which represents the truth value of facts [54];

• Argumentation, which explicitly constructs the relationships connecting 
evidence and conclusions, making it possible to reason about these rela-
tionships directly [55], for example, to resolve conflicting information or 
to allow planners to reason about causality [56].

These approaches support evaluating the utility of information.

Information utility enables being deliberative about whether, when, with whom, 
and what to communicate or sense.

Table 6.1 summarizes these active sensing/communication actions. The concepts 
of provenance and credibility are closely connected (Section 8.1.3), as is data fu-
sion (Section 4.3). Table 6.2 suggests some possible active sensing actions that the 
system might take depending on the desired information. After performing an ac-
tive sensing action, the execution monitor must determine whether the effect was 
simply an inherent function of the environment, or whether the sensing caused 
the observed behavior.

Note also that communication can be interplatform, and also intraplatform 
(i.e., among multiple decision-makers on a single platform). This section focuses 

Table 6.1 
Active Sensing/Communication Actions

Factor Active Sensing Deliberate Communication
Why Improve info quality Improve info quality
Who Collaborative sensing With whom to communicate
What What to gather What to transmit; abstraction level
Where Spatial and spectral Team geography
When Sensing schedule Criticality of information
How What sensors to use Implicit or explicit interactions
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on interplatform communication, but similar reasoning applies to the simpler 
problem of intraplatform communication.

When time and bandwidth are available, nodes can exchange observations 
and decisions to improve or recalibrate their understanding of the situation. Data 
fusion resolves ambiguities, reduces uncertainty in the models, and can accelerate 
the rate of identifying previously unknown threats. For example, a team of nodes 
can combine estimates of threats that can only be seen with fleeting glimpses. 
Figure 6.5 illustrates the potential impact of communications on planning for 
an integrated air defense system (IADS) task. As communications become more 
available, more of the lower-priority threats can be neutralized. 

In the broad context of performing distributed optimization under lim-
ited communications, traditional approaches assume that communications is safe 
and plentiful. In EW, this assumption is false: Communications are limited or 
denied due to jamming, mobility disconnects, or deliberate choices to reduce 

Table 6.2 
Sensing Actions Elicit Information About Unknown Emitters in the Environment

Domain Desired Info Active Sensing Action
Radar Number of radar(s)

Location of radar(s)
Generate ghosts
Directional probes for blind spots

Radar Max detection range
sensitivity
G-force limits

Move toward target
Signal amplification, PRI and 
Doppler
Increase replay rate

Communications Node response time;
network recovery time;
network recovery methods

Surgical packet jamming
Self-collapse trigger attacks
Piecewise attack during recovery

Communications Network critical nodes Isolate nodes
Communications 
and radar

ES recognition ability
EP methods
EA agility and precision

Honeypot sequences
Camouflage signatures

Figure 6.5 Task accomplishment depends on available communications for coordination.
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RF emissions. Reasoning about when to communicate can achieve near-optimal 
results [57–61]. The system can minimize the operation and computational costs 
of communication based on a quantitative estimate of the benefit of communicat-
ing or sensing. Some of the DM’s choices and tradeoffs include:

• Types of information: Surprising outcomes; high-penalty outcomes; critical 
coordination; ambiguous or conflicting observations; uncertain variables, 
predictions, or inferences; unfamiliar concepts; assumptions (testing hy-
potheses).

• With whom: Nodes in coordinated actions; nodes with temporal depen-
dencies; nearby nodes.

• Level of abstraction: Different state and action abstractions depending on 
task.

• Costs: Energy; exposure; congestion; coordination effort; cost of being 
wrong.

The level of detail at which nodes communicate determines the level of co-
ordination they can achieve if/when needed and the kind of coordinated actions 
they can execute. It also impacts the computational and communication cost of 
solving the problem. (Even in settings where instantaneous and cost-free commu-
nication is available, broadcasting all information to all nodes doesn’t scale [48].) 
A richer communication language is informative (e.g., incorporating detailed cur-
rent state [62]), leading to better coordinated decisions, but it results in a larger 
problem size. In a simpler language, the nodes can exchange commitments over 
actions with nonlocal effects [63]. In the simplest language, a node can signal 
the completion of an action with nonlocal effects, but for this information to be 
informative, the recipient needs to have some knowledge of what the completion 
of this action implies regarding the sender’s future intentions.

Nodes can also use implicit communication to send information. This ap-
proach assumes that other nodes can observe actions or changes to the state and 
infer what happened without needing to explicitly interact. This method dovetails 
with the decentralized coordination approach of Section 5.4.

Ontologies are a way to represent information (Section 8.1.2) and can be 
used jointly with the planner communication languages.

6.1.5 Temporal Planning and Resource Management

Protracted engagements require awareness and coordination over shared resources 
(including communications). Nodes are heterogeneous, resources are constrained 
(and possibly nonrenewable), and distributed tasks must be coordinated. Aug-
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menting the planning with resource management ensures a unified approach 
to resource optimization and EW strategy selection. (Ignoring resources creates 
plans that may not be achievable, and/or need to be updated based on execution 
monitoring per Section 7.1.) The planner must make the best use of resources to 
handle current and anticipated threats according to the mission model, for the 
time scale over which the resources are needed. Temporal planning and resource 
planning are tightly coupled, because resource use is frequently temporal in na-
ture. Temporal overlap between actions is limited if they need the same resource 
in conflicting ways.

The critical feature of a cognitive radar is that various constraints have to 
be fulfilled resulting from the hardware, the platform or the environment. 
In reality, the constraining requirements are often contradicting. The art-of-
radar-system engineering consists of handling these constraints by matching 
the different hardware and software components of the system to fulfill the 
requirements in a good compromise.

—R. Klemm et al. [64]

Consider a heterogeneous team of nodes. Airborne assets must coexist and 
share tasks with ground-based EW systems. The appropriate assignment of tasks 
to assets depends on available resources (such as transmit power, frequency band, 
range, look angle, and time-to-target) and friendly considerations (such as fratri-
cide minimization). For example, while ground-based systems may have longer 
time-on-station, they also have more limited range and greater vulnerability. The 
planner must ensure that these trade-offs are effectively managed when tasks are 
assigned.

Resource management ensures availability and appropriate usage of resourc-
es, both locally at a single node, and as needed by coordinating groups of nodes. 
The planner does this by (1) tracking current and expected resource usage, (2) 
determining what resource usage information should be shared with other nodes, 
and (3) sharing this information in an efficient and timely manner.

Resources have associated capacity, which can be a categorical value (e.g., 
available/unavailable) or a numerical value that tracks consumption. Consumable 
resources may be renewable or disposable and are either shareable by multiple 
tasks or exclusive for one task.

By incorporating resource consumption considerations into the planner, we 
ensure effective decisions that address threat conditions while respecting long-
term distributed-resource constraints. Resource constraints have been successfully 
incorporated into decision-theoretic models for both single [65] and multiple 
[66] decision-makers.

Game-theoretic approaches are also relevant (Section 6.2) (e.g., for find-
ing fair resource allocations). Various optimization and scheduling approaches 
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can also accomplish the task; see surveys [7, 67–69], or Chapter 5. Multi-armed 
bandits (Section 7.3.4) are also useful.

Different approaches to resource modeling have different impacts on re-
source reasoning. Extending the definitions of Section 6.1.3, we augment the 
rewards R or state descriptions s. Table 6.3 outlines the options:

• Managing local resource consumption through costs. The simplest ap-
proach is to incorporate local resource consumption directly into the re-
ward function, enabling simultaneous optimization of domain rewards 
and resource usage.

• Incorporating levels of local resources in state. A richer expression in-
corporates resource profiles into the state, allowing the planner to reason 
about the long-term cumulative resource effects of actions. Consumable 
resources, such as fuel or the number of available decoys, must be man-
aged so that they are used when they are most effective for the mission. 
An augmented state ns  for node n is ns  = 〈sn, q1,...,qK〉, where each qk is the 
available remaining amount of resource k, and sn is the original state. The 
transition function P operates on the augmented state. The resulting func 

tion ,n nn n
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• Incorporating levels of shared resources in state. Shared resources are not 
entirely under the node’s control, thus requiring coordination. When 

Table 6.3 
Different Approaches To Resource Modeling

Network Scope Temporal Scope Approach
Local Immediate Consider resource utilization of actions:

( ) ( ) =
= − ×∑ 1

, ,
K

n n n n n n kk
R s a R s a c  needs (an,k)

Local Long-term Capture local resources in state: 
 ′  n n 1 r n n n ns = s ,q ,…,q P s s ,a

Global Long-term Capture shared resources in state: 
 ′  



n n n nP s s ,a

sn = state of node n; 
n

s  = augmented state of node n; an = action of node n; ck = cost of resource k; 
needs(an,k) = action an requires resource k, K = number of resources
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nodes coordinate, they can exchange abstract information that includes 
probabilities using a shared resource. nP  thus accounts for another node 
taking an action that affects a shared resource. For example, consider two 
nodes that adjust their power level during transmission to have their com-
bined SNR meet a desired level at the target. As the nodes (friendly or 
adversarial) move, the nodes need to update their power levels.

This unified approach to DM and resource management allows the planner 
to simultaneously consider resource-impact and attack effectiveness. The planner 
considers the impact of actions on immediate, near-term, and long-term mission 
goals.

6.1.6 Multiple Timescales

One of the system design questions to answer is how to handle DM at different 
timescales. Decisions may have different lead times; actions may have different 
durations; and metrics may have different latencies before they can be measured. 
Figure 6.6 illustrates the temporal groups. Priority tasks are often in conflict, both 
within platforms and across platforms, and architectural choices at lower levels 
constrain higher-level capabilities.

The most effective approach is to completely decouple the planners, for ex-
ample, to have one planner that operates over units of days, a second that operates 
over minutes, and a third that operates over milliseconds. Each layer of temporal 
abstraction places constraints on the layer(s) below. This approach is simple to de-
sign, implement, and test, and it supports specialized reasoning at different scales.

Within a single planner, it may be beneficial to reason over abstractions, 
increasing the resolution in each iteration. This approach, while being harder to 
design than decoupled planners can lead to significantly better solutions because 
all dependencies are explicit.

Figure 6.6 Different temporal requirements drive different architectural choices.
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6.2 Game Theory

Game theory is a set of analytical tools used to model strategic, complex interac-
tions among multiple entities. Game theory supports DM in uncertain environ-
ments when the uncertainty in the outcome of an action depends on how others 
react [70, 71].

Game theory characterizes both cooperation and competition. It is effective 
for cooperative teams, for resource allocation, and for adversarial settings. Coop-
erative games allow individuals to form agreements before choosing actions, while 
noncooperative games model selfish-but-rational individuals.

In the teamwork setting, game theory addresses self-organizing, decentral-
ized networks where individuals have self-interest, but must cooperate to maxi-
mize performance [72–74]. Cooperative self-interest extends to distributed re-
source use. Game theory has been applied to the RF domain in power control, 
admission control, and network management [68, 73–76].

Game theory is an effective method to handle adversarial (competitive) 
situations. It is a popular approach in security settings, modeling and attacker 
and defender, such as cybersecurity [77–79], and EW for countering jammers 
[80–87]. Sundaram et al. [88] examined the case where defense EP actions have 
costs, while Blum [89] examined electronic countermeasures including bluffing 
to create uncertainty. The mixed-strategy game-theoretic decision can be viewed 
as rolling biased dice: Traditionally, the decision-maker chooses the single optimal 
action, while in an adversarial game, the decision-maker chooses an semirandom 
action based on a probability that is a function of the direct utility and the ad-
versary’s possible responses. The randomness makes it harder for the adversary to 
anticipate actions.

To incorporate game theory in an EW decision-maker, two significant chal-
lenges must be addressed: (1) confidence about adversary goals, and (2) compu-
tational cost.

In adversarial settings, the approach relies on an estimate of the adversary’s 
utility. Zero-sum games assume that the loss and gain for each participant is ex-
actly balanced by the losses or gains of other participants (i.e., that the total losses 
and gains for all players sum to zero). Zero-sum games can be solved with linear 
programming. EW usually assumes that the adversary wins when friendly forces 
lose, but this simplification may not be true. Moreover, games that are zero-sum 
in one dimension may not be zero-sum in another, increasing the complexity of 
the DM problem.

Algorithmic game theory studies the computational aspects of game theory, 
focusing on finding solutions with reasonable limits on computational complex-
ity. Generally, game-theoretic solutions are computationally difficult, although 
approximate or problem-specific solutions can be constructed.
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6.3 Human-Machine Interface

A successful design of the HMI needs to be intuitive, flexible, extensible, and 
highly responsive. The main objectives of the HMI system should be to (1) im-
prove operational performance, (2) increase effectiveness, and (3) alleviate task-
ing overload on pilots/drivers, EWOs, and mission planners. The system should 
provide a set of wide-ranging and intuitive displays and controls for the operator’s 
timely interaction with EW system functions and data. A well-considered HMI 
design is critical for maintaining situational awareness.

Customarily, HMI transforms human-operator actions to command actions 
for the machine and then transforms the machine’s sensory data back to the hu-
man operator as illustrated in Figure 6.7 [90]. In traditional HMIs, these trans-
formations are static and do not change based on the state of the human operator, 
the machine, or the environment.

Human-machine teaming (HMT) addresses this gap: Transformation pro-
cesses are no longer static and may employ intelligent agents and ML. HMT is a 
relationship between the human operator and machine that goes beyond a human 
operating or supervising machine(s) [90, 91]. This evolving discipline aims to de-
velop operative teams where human operator and automation are complementary 
team members [92, 93]. The HMT framework should be based around the fol-
lowing four themes to design an ethical and trustworthy AI system [94]:

1. Accountability to humans;

2. Cognizance of speculative risks and benefits;

3. Respectfulness and security; 

4. Honesty and usability.

In addition, the interrelationship between humans and machines will have 
the following five dominant aspects or technological challenges to contend with 
[95]:

Figure 6.7 An HMI translates between human and machine (adapted from [90]).
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Figure 6.8 Premission planners, EWOs, and system designers interact with the system at all 
points; the system must accept their commands and inputs, track their tasks, learn their prefer-
ences, and explain its own decisions.

• Human state sensing and assessment: Performance, behavior, and physi-
ological factors;

• Human-machine interaction: Communication and information-sharing 
between human and machine;

• Task and cognitive modeling: Establishing workload and DM balance by 
task and function allocation;

• Human and ML: Adaptive learning and extended mutual training be-
tween human and machine; 

• Data fusion and understanding: Integration of human and machine data 
to generate a shared world model.

An EBM system plans how many platforms to deploy, which resources each 
gets, and where they will go. To achieve all of these objectives, the EBM system 
can benefit from multiple HMT-enabled HMIs and may have to establish inter-
action points with every notional block of the EBM system depicted in Figure 
1.4. It may also be beneficial to have an overarching, global HMI providing the 
end-to-end capability for the entire EBM system. Trust must be established at 
every HMT-based HMI. Figure 6.8 depicts the potential HMI interaction points 
for the EBM components of the cognitive EW system.

These interaction points vary among the cognitive EW system participants 
(i.e., designers, commanders, mission planners, EWOs, and the cognitive system). 
Below we highlight some of the concepts/interaction points that each stakeholder 
type may be concerned with.

System designers have the greatest impact on how the system works, and are 
often forgotten as key members of the human-machine team. Leveraging hu-
man expertise improves the performance of the AI components, thus supporting 
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EWOs and the EW mission. Planning systems have leveraged human expertise 
since their initial inception, for example, showing the power of domain-guidance 
in HTN planners (Section 6.1.2). Haigh et al. [96] discusses hybrid ML models 
in RF as one example of a neurosymbolic AI approach that seeks to blend numeri-
cal approaches (e.g., neural nets) with symbolic approaches (i.e., concepts that a 
human can understand) [97, 98]. Designers can provide:

• Assumptions about types of missions, users, and platforms.

• Concepts to represent [e.g., via ontologies (see Section 6.1.4)].

• Choice of system observables, controllables, and metrics;

• Abstract feature construction for ES (e.g., cross-layer interactions or 
effect of topography on signal propagation). For example, Haigh et al. 
[96] use distance-to-neighbors to bootstrap a rough estimate of MANET 
throughput.

• Statespace reduction and guidance for optimization (e.g., relevant or criti-
cal parameters, current operating space, and constraints).

• Type of learned models (e.g., decision trees versus DeepNets as a function 
of how explainable the results need to be [99]).

• Within learned models to match data types, inference requirements, 
speed, or accuracy (e.g., changing the form of the model).

• Search heuristics to reduce search effort. Experts and offline simulations 
can create guidelines and rules, expressed in a language appropriate to the 
decision-maker. For example, Mitola [100] suggested radio knowledge 
representation language (RKRL), and a policy description language man-
ages spectrum sharing in radio networks [101].

Commanders control and guide all participants in the mission. The system 
must capture their objectives and vision. Commander’s intent (CI), a critical con-
cept for the entire EW mission team, describes concepts such as acceptable risk, 
possible methods, and success conditions. Human participants and machine-gen-
erated decision support need to have the ability to communicate and interpret a 
shared CI [102, 103]. For example, Gustavsson et al. [102] propose a model that 
relates CI to effects, and supports both traditional military planning and effects-
based operations.

Utility captures objectives. Roth et al. [104] break down high-level utilities 
to the lower-level specifications that the system needs to run. Haigh et al. [105] 
describe policy-based methods for a human expert and an approach to turning 
them into an implementable, operationally meaningful objective function. A sat-
isfactory objective function must be (1) operationally meaningful, (2) sufficiently 
flexible, (3) easy to modify, and (4) implementable and optimizable in practice.
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Mission planners and EWOs interact with the EW system both in preplan-
ning and in real time. They must be able to guide and control the automation, 
and understand all feedback. EW resources for mission planners include databases 
for intelligence and operational data, (automated) planners, spatial and propaga-
tion modeling tools, and reach-back support if required information is not avail-
able immediately [1] (Figure 6.9).

Mixed-initiative planning is an approach to developing plans interactively; 
for example the automated planner presents trade-offs, and the human planner 
selects from amongst the choices [4, 22, 106, 107]. Argumentation is a natural way 
to present conflicting concepts to humans, showing the reasons why an observa-
tion might be true or a decision might be good, and the reasons against (including 
deception) [56, 108, 109]. Playbook interfaces allow a user to call a “play” and then 
tailor it to the situation [110, 111]. Influenced by sports playbooks, the playbook 
assumes each player knows the broad outline of a play, and each play has been 
well-practiced by the team. The shared-task model provides a means of human-
automation communication about plans, goals, methods, and resource usage. 
Raytheon’s EW Planning and Management Tool (EWPMT) uses a playbook in-
terface (Example 6.4). Playbook interfaces have an additional benefit: They map 
naturally to HTN planning (Section 6.1.2). For example, Goldman et al. [21] 
propose a mixed-initiative planning system with a playbook GUI to generate, 
check, and modify plans for teams of heterogeneous UAVs. Finally, the concept 
of adjustable autonomy allows a human user to grant the platform different levels 
of autonomy [115].

In addition to these planning and control approaches, humans can support 
ES, for example by labeling unknown signals, or providing supporting Human-
INT evidence such environmental conditions (e.g., topography, weather, or 
threats).

Another underrecognized concept in a HMT is that of the machine under-
standing the human users. Preference learning captures a user’s preferences in cases 
where they are hard to state explicitly [116]. Preference learning approaches can 
learn utility functions (learning a function that captures why a is better than b), or 
learn preference relations (the partially ordered graph between options). Preference 
learning can take explicit or implicit feedback [117]. Bantouna et al. [118] use 
Bayesian statistics to learn user preferences for QoS. Intent Recognition (Section 
4.6) attempts to understand what goals the user is trying to achieve; this informa-
tion can be used to anticipate user needs and customize the display.

Figure 6.9 A variety of decision aids can help human EW planners.
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A cognitive EW system designer/developer may wish to implement an agile 
software development approach whose tenets are also applicable to hardware. In 
the agile approach, one creates user stories to capture each user’s requirements and 
desired functionality at the highest level. The story’s purpose is to communicate 
how a feature will provide value to various stakeholders [119]. Within the context 
of HMI, these user stories should encapsulate all the necessary interfaces/interac-
tion points for each end user. A user story is an informal, general description of a 
feature written from the perspective of the end user, and can be as simple as [120]:

As a type of user, I want goal so that reason. 
User stories are not system requirements, but a way to ensure that these various 
requirements are “not lost in translation” down the line.

A key component of agile software development is putting people first, and 
a user story puts end users at the center of the conversation. These stories 
use non-technical language to provide context for the development team 
and their efforts. After reading a user story, the team knows why they are 
building, what they’re building, and what value it creates. [119]

At the highest level, the cognitive EW system’s users are the stakeholders: 
designers, commanders, mission planners, EWOs, and machines or intelligent 
agents. The agile approach supports good human factors design, wherein stake-
holders are regularly consulted from the beginning. MITRE’s HMT engineering 
guide suggests approaches for this process [91].

Example 6.4 Raytheon’s EWPMT uses plays to interact with the EW 
personnel.
Raytheon’s EWPMT software assists the maneuver commander’s ability to 
plan, coordinate, and synchronize EW, spectrum management, and Cyber 
operations [112–114]. EWPMT has been a U.S. Army program of record 
since 2014.

EWPMT provides EW mission planning, EW targeting, and simula-
tion capabilities to support COA development. It develops the electromag-
netic order of battle, deconflicts EW and communications assets, and dis-
plays the electromagnetic operational environment [113]. EWPMT takes 
in data from sensors in real time and provides automation and analytics. It 
allows users to easily identify a new threat, geolocate that threat, and share 
that information [112].

Automated “plays” help relieve the cognitive burden on EW in the 
field, enabling automated actions when certain conditions are met, such as 
turning off sensors on a specific frequency if they’re detected by the sensing 
system [112].
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6.4 Conclusion

Automated EBM planning systems must support human planners at all stages 
of EW planning—long-range planning, midterm planning, and real-time mis-
sion management. Multiple tightly coupled decision-makers can handle separate 
concerns.

HTN planners work for complex domains, and naturally support the trans-
parency, explainability, and control required for HMT. In-mission replanning 
(Section 7.2) ensures that the plan remains feasible despite surprises and changes 
in mission goals.

Planners must address both action and information uncertainty, manage 
temporal and resource constraints, and choose what and when to communicate 
with team members. Domain-specific heuristics and metalearning (Section 5.1.3) 
help improve the search process. Game-theoretic approaches assist with coopera-
tive team management and competitive adversaries.
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7
Real-Time In-Mission Planning and 
Learning

SA and DM are key components to all EW systems. Chapters 1–6 presented 
approaches for these activities without putting them in context of in-mission 
performance.

Traditional approaches to EW replanning assumed lengthy timescales be-
tween creating EP/EA plans and updating ES models. In a fully integrated mod-
ern EW system the system can, and must, respond to unexpected events that 
happen during the mission and learn from its experiences.

In a natural evolution of control theory, execution monitoring tracks the 
outcomes of actions, giving a planner the ability to adapt to changes, and a learner 
the ability to incorporate experience.

7.1 Execution Monitoring

An EW system must monitor execution at all levels: ES, EP/EA, and EBM. Moni-
toring must occur on each platform, and across the team of multiple nodes. Ex-
ecution monitoring requires ES capabilities and becomes an introspective com-
ponent of ES.

ES describes a situation/environment. Execution monitoring compares the 
observed environment to the expected environment.

Monitoring actions illustrated in Figure 7.1 include the following:
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• Sensor monitoring: Is the raw data correct? Are the sensors operating cor-
rectly? Is the inferred current situation rare or anomalous? Can the sensor 
information be trusted? Is there an adversarial attack on the sensors?

• Model monitoring: Are the ES models correct? Is the SA correct? Does the 
model cover the current situation; is the situation within the domain of ex-
pertise? Is there an adversarial attack on the situational inferences? In a sys-
tem using learned models, does the input data follow the distribution over 
which the model was trained (its domain of expertise or operational space)? 
When the system also learns in-mission, is the concept drift acceptable?

• Action monitoring: Are the assumptions or preconditions still true for an 
action? After acting, did one of the expected outcomes happen? How well 
did the action perform? Were there minor, but possibly critical, variations 
on the expected outcome(s)?

• Plan monitoring: Is the remainder of the plan still feasible? Can the system 
still accomplish its goals? Do any tasks need to be reallocated? Will the 
costs or time to accomplish the mission change?

• Goal monitoring: Before acting, do the long-term goals still make sense? 
Has the mission changed in a meaningful way? Are there new opportuni-
ties to accomplish additional objectives?

A failure of one of these questions might trigger replanning or trigger learn-
ing. Replanning involves updating the plan to handle the new situation; learning 
updates and corrects the underlying models.

ES capabilities evaluate expected conditions against the current conditions. 
When the feedback matches that of the learned models, the feedback enables in-

Figure 7.1 In uncertain or dynamic domains, execution monitoring must analyze sensors S, 
models M, actions π, plans P, and goals G.
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mission learning updates. For example, execution monitoring can compute the 
model’s prediction error to trigger retraining, as in Example 7.1.

By tying actions to observations, execution monitoring can compute the 
causal relationships between events. This analysis allows the system to determine 
whether events are an inherent function of the observed environment, or whether 
actions are true precursors. The system can then use precursor events as “red flags” 
of imminent danger. Section 4.5 describes how to detect these patterns.

7.1.1 Electronic Warfare Battle Damage Assessment

In EP missions, the performance metric can often be directly measured (e.g., 
BER or throughput). For an EA system, ES must instead infer the effectiveness 
of the attack. Examples of inferred values include jamming effectiveness [1], radar 
mode, Pfa/Pd, or POI. Using ground truth collected during a test phase, an ML 
model can be trained to infer these values and then used at runtime.

For example, an EW BDA system can estimate whether a threat’s mode or 
other behavior changed. Different radar modes vary different parameters to ac-
complish different tasks [2–5], including, for example, pulse width to improve 
search capability or PRI to change detection range [3]. Changes in these charac-
teristics may indicate EA effectiveness [5–10].

In addition to causal event analysis, historical patterns add to the evidence. 
For example, when a radar parameter changes several times in a row, the system 
can increase its confidence in the effectiveness of the EA technique. A hand-
engineered rules-based BDA system might set thresholds for alerts, or construct 
rules. Each rule might contribute a score; scores can be combined arithmetically 
or used as votes for the overall effectiveness of the action. As emitters become 
more complex, hand-generated rules quickly become brittle.

To reduce the brittleness of hand-generated rules, incorporate these features 
into an ML model. Any ML model, including rule learning, may be appropriate 
as a BDA scoring engine. Standard classification methods can combine features 
to estimate BDA effectiveness.

Figure 7.2 illustrates a possible ML architecture. Each feature (e.g., mode 
or behavior) could be derived by a hand-generated algorithm, or inferred by ML 
(traditional, DeepNet, or hybrid). Multiple classifiers use these features to com-
pute their local threat-mode estimates, and the ensemble method (Section 3.2) 
chooses the best threat mode. Finally, change detection compares the current 
mode to the previous mode(s). Algorithm 7.1 shows a corresponding code listing 
for an ensemble of different classifiers chosen from scikit-learn: a decision tree, an 
extra tree, a Gaussian Naïve Bayes, and two kNN models using different values 
of k. Figure 7.3 shows the results. The tenfold cross-validation in evalModel() 
yields 10 scores per model, presented in a box-and-whisker plot.
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Example 7.1 The BBN SO performs real-time in-mission learning and 
optimization for communications EP.
The BBN SO learns how to optimize network performance in the presence of 
previously unknown interference and jamming conditions [35, 51, 52]. The 
SO automatically recognizes conditions that affect communications quality 
and learns to select a configuration that improves performance, even in high-
ly dynamic missions. The SO is the first known communications EP system 
to use ML in-mission, at mission-relevant timescales.

The SO comprises a rapid response-engine (RRE) that makes strategy 
decisions, and a long-term response engine (LTRE) that learns the models of 
how strategies perform.

Given a set of training data (possibly empty), the LTRE constructs a 
model of the performance surface for each metric: mk = fk(o,s). The SO uses 
SVMs (Section 3.1.1) as a regression tool to estimate performance (Section 
4.2). The SO uses SVMs because they can learn from small numbers of train-
ing examples, and because they can be implemented on limited hardware. 
Because memory is limited on this device, the LTRE manages data diversity 
(Section 8.3.2) and forgets old instances (Section 8.3.4).

The RRE then uses these SVM models fk to make rapid real-time strat-
egy decisions during the mission using Algorithm 5.1.

The SO effectively learns how to mitigate communications interference, 
in real-time, on limited hardware, from small numbers of examples, 
even when given no a priori training data.
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The SO has been tested against many different interference conditions, 
from distributed interference to complex jammers, in simulation, in lab emu-
lation, and in the field. Results are shown on a PPC440 with a hard real-time 
operating system [35].

At each time step, the platform provides the observables and the per-
formance feedback for the metrics m. If the estimated performance of mk(t) 
differs sufficiently from the observed performance m̂k(t + δ),* then the RRE 
triggers a retraining event, and the LTRE rebuilds the SVM for mk using the 
new training data. The SO therefore uses RL to perform in-mission learning 
at mission-relevant timescales.

The SO is agnostic to the platform and problem domain. All observ-
ables, controllables, and metrics are listed in a configuration XML. Control-
lables list their valid settings, and metrics list their associated weights and 
costs. The learning and optimization approach is therefore transferrable to 
other platforms, problem sets, and utility metrics.

The BBN SO is part of a family of research into ML for RF systems 
starting in 2006 [35, 43, 51–58]. ADROIT [43] was the first to use ML to 
control a real-world (not simulated) mobile ad hoc network, demonstrating 
control of network, MAC, and PHY parameters for an application-level map-
quality metric. The BBN SO [35] was the first communications EP system 
to use ML to learn at real time during the mission, demonstrating control of 
antenna, PHY, and MAC layer parameters for EP. Early work used ANNs 
and achieved the accuracy at the expense of training time and large training 
sets. SVMs solved both of those challenges.

*The BBN SO uses δ = 1 for immediate feedback.
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7.2 In-Mission Replanning

No plan of operations reaches with any certainty beyond the first encounter 
with the enemy’s main force.

—Helmuth von Moltke
Kriegsgechichtliche Einzelschriften (1880) 

(Often misquoted as, “No plan survives contact with the enemy.”)

In-mission replanning ensures that the plan remains feasible, despite surprises 
and changes in mission goals. New priorities can emerge, and resources may be 

Figure 7.2 Ensemble methods can increase accuracy by selecting from or combining multiple 
hypotheses. Features can be hand-generated or learned, and any ML method can be used as 
the intermediate classifier.

Figure 7.3 Ensemble methods can achieve higher accuracy than independent models. Each 
boxplot shows the tenfold cross validation scores for the model. (a) A k-fold cross-validation 
trains k models; each model uses a different 1/k of the dataset as its test examples. (b) A box-
and-whisker plot shows a distribution of values. The central box shows the range of the middle 
half of the data (first quartile to third quartile), and whiskers correspond to 1.5 times the inter-
quartile range (99.3% of the data if the data is normally distributed). Outliers are shown individu-
ally.
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Algorithm 7.1 Ensemble methods can achieve higher accuracy than 
independent models. scikit-learn contains multiple classifiers and 
ensemble methods.
from sklearn.tree import DecisionTreeClassifier 
from sklearn.tree import ExtraTreeClassifier 
from sklearn.naive_bayes import GaussianNB 
from sklearn.neighbors import\  
 KNeighborsClassifier as KNN 
from sklearn.ensemble import VotingClassifier 
import numpy as np 
from sklearn.datasets import make_classification 
from sklearn.model_selection import cross_val_score 
from sklearn.model_selection import KFold from 
matplotlib import pyplot

# define a fake dataset 
def getData():
 X, y = make_classification(n_samples=1000,
       n_features=25, n_informative=15,
       n_redundant=5)
 return (X,y)

def getModels():
 models = [] 
 models.append((’CART’, DecisionTreeClassifier())) 
 models.append((’RandTree’, ExtraTreeClassifier())) 
 models.append((’GNB’, GaussianNB())) 
 models.append((’kNN-3’, KNN(n_neighbors=3))) 
 models.append((’kNN-7’, KNN(n_neighbors=7))) 
 return models

# 10-fold cross validation 
def evalModel(name, model, X, y):
 cv = KFold(n_splits=10) 
 scores = cross_val_score(model, X, y,
      scoring=’accuracy’,
      cv=cv, error_score=’raise’)
 s = ’{:10s} mu={:.3f} ’.format(
  name,np.mean(scores))
 s = s+’std={:.3f} scores={}’.format(
  np.std(scores),scores)
 print(s)
 return scores
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unexpectedly depleted. Some planning approaches, such as conditional planning 
and MDPs, incorporate options for expected outcomes.

The planner must also always update the plan to handle unexpected out-
comes (both positive and negative). Figure 7.4 illustrates a possible scenario where 
replanning adapts to the situation.

Planners can incorporate flexibility to surprise as part of the decision crite-
ria. Planners can also plan to communicate to handle expected changes in mission 
goals [11].

if _ _name_ _ == ’_ _main_ _’:
 names,results=[],[] 
 X,y = getData() 
 models = getModels() 
 for name,model in models: 
  scores = evalModel( name, model, X, y ) 
  results.append(scores) 
  names.append(name)
 ensemble = VotingClassifier( estimators=models )
 scores = evalModel( ’Ensemble’, ensemble, X, y ) 
 results.append(scores) 
 names.append(’Ensemble’)
 
 # plot model performance 
 fig = pyplot.figure() 
 pyplot.boxplot(results, labels=names) 
 fig.savefig(’ensemble.png’)

Figure 7.4 In-mission replanning must adjust to unexpected situations: (a) a priori ELINT antici-
pated one enemy radar; (b) in-mission collaborative ES detected two enemy radars and an aerial 
drone; and (c) in-mission replanning adjusts, and the nodes neutralize the enemy.
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In conditional planning, the planner prepares actions for multiple possible 
outcomes (usually the most mission-critical), leaving other actions for dynamic 
replanning because they are less important, less likely, or easy to handle at runtime 
[12].

In all cases, execution monitoring triggers the replanning process. An action 
might have failed to achieve expected results, and it must be repeated or replaced 
[e.g., BDA indicates that the chosen EA method wasn’t sufficiently effective and 
that a different technique(s) must be used]. The existing plan may no longer be 
achievable, such as when a platform failed and tasks need to be reallocated. The 
existing plan may no longer be relevant, because the mission goals changed, and a 
completely new plan must be generated.

Engineers can often estimate the types of failures, even if specific failures are 
hard to foresee. For example, one can anticipate platform attrition but not know 
which platforms (and thus which tasks) will be compromised.

Planners have the option to perform a complete replan from the current 
state, or repair the existing plan [13, 14]. The decision can depend, for example, 
on the algorithmic approach, computation time, or desire for plan stability. Any-
time approaches manage DM when time is limited (Section 5.3). Plan-repair 
techniques usually depend on the chosen planning approach, for example:

• Interleaving planning and execution [15, 16];

• Contingent planner with sensing [17, 18];

• HTN planning [19–21];

• Probabilistic planning [22];

• Task allocation [23, 24],

• Graph planning [25, 26]; 

• Analogical planning [27];

• Plan editing [28, 29].

A common theme of these approaches is that of plan stability, wherein the 
new plan is similar to the original [26–29]. This approach reduces computa-
tion, reduces coordination among participants, and supports human operators 
more effectively: humans do not like significant changes to plans without clear 
justification.

AFRL’s Distribute Operations (DistrO) program addresses this concept di-
rectly, looking at plan creation and plan repair [30]. Components assess progress 
toward goals, identify deviations from expected outcomes, and recommend ad-
justments to the plan for forward nodes in an anti-access area-denial (A2/AD) en-
vironment. A key concept is to minimize adjustments to the plan because nodes 
have made commitments, and may not be able to communicate any changes. 
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It may also be useful to factor the cost of changing the plan into the planning 
process.

7.3 In-Mission Learning

RL, in its broadest definition, is a goal-directed learning approach wherein indi-
viduals interact with the environment to improve their performance over time 
[31]. (In contrast, a supervised learner is passive and given the examples; see Chap-
ter 3.) In EW, RL means that the system can take an EP or EA action in the envi-
ronment, collect feedback, and evaluate its own performance.

Real-world environments are usually too complex to collect data that covers 
all expected situations. In EW, moreover, systems will encounter novel conditions 
that cannot be captured in any lab setting. RL is related to direct adaptive control 
of nonlinear systems [32] and model-predictive control (MPC) [33, 34]. The 
critical difference is that MPC is model-based, while RL is not. RL systems do not 
have a differentiable objective function and must take an action in the environ-
ment to learn the function. RL allows the system to learn in situ, where learning 
is most beneficial, and most needed.

RL can update action descriptions to capture what actually happens in the 
environment—for example updating transition probabilities P(s′|s,a), or action 
preconditions (p1,p2,p3) to (p1,p2,p4), for pi ∈ state s. RL is the only way to accu-
rately learn performance models m = f (on,cn), as introduced in Section 4.2.

Figure 7.5 presents a simplified example of in-mission incremental learning. 
At time t − δ, the optimizer uses the previously learned model f to estimate the 
performance m of each candidate strategy s, given the known observables o: m = 
f (on,cn) = f (o,s). After choosing and then executing the best strategy s = argmax

is


nU (si), the system observes the actual performance of si. The learner adds the result 
to the dataset, updates the model f, and the optimizer starts using the updated 
function f. In the sketch, if on(t) ≈ on(t − δ), then the optimizer chooses the indi-
cated best strategy.

The two key actions in every RL system are (1) what actions to take and 
(2) when to update models. Figure 5.2 illustrates an example control flow that 
incorporates in-mission learning of performance metrics. 

Most RL systems update models at every time step, but the choice can be 
deliberate. For example, the system might trigger retraining in batches if compute 
cycles are limited, or if there is new information. Essentially, every expectation or 
prediction failure is an opportunity to learn. New information includes perfor-
mance metric feedback for new actions in a known environment, known actions 
in new environments, or unexpected feedback for a known action in a known 
environment. Edge cases, strange sensor readings, and adversarial attacks are also 
candidates.
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In terms of choosing actions, the decision-maker makes an explicit explore/
exploit trade-off. Exploitation means that the decision-maker chooses the strategy 
with the highest expected utility, while exploration means that it chooses actions 
that will acquire new knowledge. (The utility function can also incorporate value 
of information directly, per Section 6.1.4.) The decision balances reward maximi-
zation based on previously acquired knowledge with attempting new actions to 
increase knowledge. Even in human DM, the willingness to fail increases learning 
rate [36].

Active Learning is the RL concept of deliberately choosing what actions to 
take (i.e., choosing actions that are most useful to learning). For example, one way 
to manage bias (Section 8.2) and maintain data diversity (Section 8.3.2) is for the 
decision-maker to record which strategies it has used against which environments, 
using a sparse matrix such as Table 7.1. The decision-maker clusters environments 

Figure 7.5 At time t − δ, the BBN SO (Example 7.1, [35]) uses the model mk = fk(o,s) to estimate 
mk based on the (known) observables and all (candidate) strategies o,s, and chooses the best 
strategy. The learner updates fk for the next iteration. To simplify the illustration, the x- and y-
axes are multidimensional: x captures all values of all controllables, and y captures all values of 
all observables. Note also that the sketch shows fk only for the given ot−δ and ot, but fk models 
all possible observable values and all strategies for metric mk.
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using observable vectors (Section 2.1.1), adding new classes as needed. In Table 
7.1, controllables c1 and c2 are binary on/off, and c3 can take the values 0, 1, and 
2, yielding 12 strategies. “Y” indicates when the system has performance results 
for that strategy in that environment, “–” otherwise.

Much of the common research in RL is based on MDPs to the extent that 
RL is almost synonymous with MDP. It’s not: MDPs may or may not be the un-
derlying model.

RL is not defined by the learning method, but by the learning problem and direct 
interaction with the environment [31].

In fact, MDP-based RL is generally inappropriate for in-mission EW due to com-
putational complexity and the number of training samples required. Section 3.6 
discusses some of the algorithmic trade-offs to consider when choosing a model, 
and what to learn in-mission.

7.3.1 Cognitive Architectures

Many cognitive architectures learn rules of one form or another to help make deci-
sions. Many of these have been used in physical domains, such as robot soccer 
and fighter pilots [37–41]. Section 5.1.3 describes other learning approaches that 
improve planning performance. RL formalizes the explore-exploit trade-off; the 
cognitive architecture literature uses similar concepts of perceptual attention and 
action selection.

7.3.2 Neural Networks

When time is plentiful, ANNs (Section 3.1.2) effectively learn a variety of tasks in 
RF in an RL environment [42]. Many examples in Chapter 4 are based on ANNs; 
the RL framework trains these models using real environmental feedback. Some 
examples include learning performance [43, 44], avoiding collisions in spectrum-
sharing radar [45], interference control in CRNs [46], recognizing signals [47, 
48], selecting tasks [49], and detecting and organizing attack types [50]. Refer-

Table 7.1 
Examples of Sparse Matrix Used by a Decision-Maker to Track Strategies  

Used Against RF Environments

Env None One Value Two Values Three Values
000 001 002 010 100 011 012 101 102 110 111 112

Env1 Y Y Y Y Y Y — — — Y — —
Env2 Y Y Y Y Y — — Y — Y — —
Env3 Y Y Y Y Y — — Y Y — — —

Unknown — — — — — — — — — — — —
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ence [50] suggests techniques to address some of the challenges, including com-
putational efficiency and asymmetric data (class imbalance). ANNs have not been 
incorporated in the rapid real-time EW literature, because they require a lot of 
data and computational resources; they cannot learn from a single example. Low-
shot learning (Section 3.4) is a promising research area for solving this challenge.

7.3.3 Support Vector Machines

SVMs (Section 3.1.1) are a particularly effective method for RL in EW. They 
learn from small numbers of training examples (even just a single example) and 
do not require large compute capability. The BBN SO uses SVMs to perform 
real-time in-mission learning for communications EP [35] and triggers retraining 
based on prediction error (Example 7.1).

Combining DeepNets with SVMs is a promising area for research [59– 61]. 
The DeepNet model can be trained a priori on a large corpus of data to extract 
latent features of RF signals. One would then replace the output layer of the 
DeepNet with an SVM that can be updated in mission, at timescales relevant 
to RF missions, to learn how to classify novel emitters. Figure 7.6 illustrates this 
concept. SVMs learn rapidly from very little data, and model updates can be 
computed on FPGAs or CPUs in sub-millisecond timeframes.

7.3.4 Multiarmed Bandit

Multiarmed Bandit (MAB) is a classic RL approach where the rewards have prob-
ability distributions rather than fixed amounts [31, 62, 63]. Each action (strategy 
s) is an “arm” and has a reward distribution Rs with an associated mean value µs. 
MABs model a situation where the environment is static and the same decision 

Figure 7.6 Before the mission, a DeepNet learns from a large set of typical environments to 
extract latent features. During the mission, the system uses the trained DeepNet for inference, 
and then uses these features to train (and update) an SVM model.
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has to be made repeatedly. A bandit can be viewed as an MDP with only one state 
and multiple available actions; equivalently, an MDP is a set of MAB problems, 
because the state changes. MAB converges faster than MDPs. A useful variation 
of MAB adds context to each action, thus learning the reward distribution associ-
ated with the context [i.e., for m = f(o,s), the distribution of values for m, when 
using strategy s under observables o]. MABs have been used for channel selection 
[64–66], anti-jamming [67], and jamming [68, 69].

Takeuchi et al. [70] develop a simplified MAB algorithm for channel selec-
tion that rapidly forgets past parameters and thus reduces computational costs. 
Several anytime MAB algorithms exist [71–73], correlated to the idea of how 
much information is enough [74]. Metalearning can also help choose the best 
MAB heuristic [75], and MAB can become a metalearner to choose effective al-
gorithms [76, 77].

7.3.5 Markov Decision Processes

MDPs are the most common method for representing uncertainty (Section 6.1.3). 
Q-learning is a model-free RL approach to learn quality (Q-value) of actions; it 
finds the optimal policy for any finite MDP given infinite exploration time [78]. 
MDPs have been used within the RL framework to manage spectrum sharing in 
radar [45], to predict interference [79], for anti-jamming [80], and to understand 
user behavior [81]. Complementary work includes structuring the utility func-
tion to understand how carefully the reward function needs to be maintained 
[82] and optimizing the utility function while satisfying constraints [83, 84]. 
Generally Q-learning and other MDP-based methods are inappropriate for EW 
because they are extremely sample-inefficient and moreover have high computa-
tional complexity [45], [85].

Bayesian RL [86, 87] maintains a distribution over key concepts, includ-
ing model parameters, the policy, or the reward function. The Bayesian posterior 
naturally captures the full state of knowledge, subject to the chosen parametric 
representation, and thus, the agent can select actions that maximize the expected 
gain with respect to this information state.

7.3.6 Deep Q-Learning

Deep Q-Networks (DQNs) use a DeepNet to estimate the Q-values of all pos-
sible actions of each MDP state [88] and thus reduce the computational burden 
(and number of samples required) of conventional Q-learning. The book Deep RL 
Hands-on [89] presents Python examples. DQNs have been used for a variety of 
RF tasks including signal classification [47], coexistence [90, 91], jamming [92], 
and anti-jamming [93–99]. Deep active learning approaches use information 
uncertainty, diversity, and expected model change to select experiments [100]. 
DQNs have not yet evaluated for sample efficiency in the EW domain where (1) 
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it may be critical to learn from only one sample, and (2) it must meet hard real-
time EW requirements.

7.4 Conclusion

No plan survives contact with the enemy, and no model accurately captures every 
detail of the environment. An EW system must respond to these unexpected, 
in-mission events and learn from its experiences. This chapter has discussed ways 
of achieving real-time in-mission planning and learning. Specifically, it focuses 
on concepts of execution monitoring, in-mission replanning, and in-mission 
(machine) Learning. Unexpected observations, inferences, and changes must be 
promptly conveyed to the human users via the HMI (Section 6.3).

Interaction with the real environment mandates constant oversight for plan-
ning, and it is the replanning that keeps the mission on track. Moreover, interac-
tion with the real environment enables ML to improve empirical models; in-mis-
sion learning improves performance based on real experience. Finally, execution 
monitoring closes the loop, because it ties (1) the actions to the observations, (2) 
the DM to the SA, and (3) the EP/EA/EBM to the ES.
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8
Data Management

Data collection and management is perhaps the hardest part of building a system 
based on AI and ML. A rule of thumb for all ML-enabled systems is that 80% of 
the work goes into collecting and curating the data, despite the fact that they are 
only two of the steps in the data lifecycle (Figure 8.1). Chapter 4 discussed the 
steps related to creating deductions and inferences from the data; this chapter de-
scribes how to create high-quality data from the beginning and how to maintain 
data quality over time.

One of the biggest challenges in EW is data quality: Data is improperly cu-
rated, “dropped” because the legacy system doesn’t record it, and even gets delib-
erately destroyed. Data is frequently either not available, not annotated with the 
right metadata, or not trustworthy. Before creating (or using) a dataset, consider 
the following questions:

• What is the problem? What is the decision to be informed? What is the 
task: understand, predict, control, adapt continuously? If you know the 
question, you can be much selective about what you need. What data is 
available? Is it sufficient? Is it diverse? If not, can more be collected? What 
formats does it use? If you build the model, it may help identify where the 
data is lacking.

• How has the data been curated? Is it inherently biased? Has it been ma-
nipulated by an adversary? If you know where the data came from, you 
know where and how to use it.
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System requirements rarely capture data needs, such as what data to record, 
how to tag it, or what properties it must have (e.g., diversity).

This chapter presents both the data management process (how to collect and 
curate EW data), and practice (how to use it inside a system to get the desired 
results). The European Safety Agency presents many of the same ideas from the 
perspective of safety-critical systems [1].

8.1 Data Management Process

The data “supply chain” is a crucial driver of the quality of an AI/ML system. This 
supply chain includes the provenance and credibility of the data, its complete-
ness, and its accessibility. If the data (or its metadata) is low-quality, the ML will 
make poor inferences and, more importantly, be unaware of its own deficiencies. 
Callout 8.1 outlines the critical actions to take when performing an experiment 
and collecting data.

Metadata captures the context of the data; semantics establishes the mean-
ing of the concepts in the data; and traceability provides the structure for data 
integrity. Together, these concepts enable accurate inference and DM, experiment 
reproducibility, and sharing data across platforms and over time. Moreover, these 
concepts are key requirements when moving the data through security- or safety-
assurance levels: They enable decisions to be made about whether it is appropriate 
to manipulate the data, whether to grant access to users, or whether the system 
meets accreditation requirements. Table 8.1 summarizes the DoD’s perspective 
for managing data as an asset. The goals support the purpose of data access, avail-
ability, and stewardship. Metadata, semantics, and traceability form the common 
theme.

Figure 8.1  The data lifecycle involves collecting and processing the data; iterations increase 
its utility for multiple purposes.
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From an engineering perspective, modules must provide information that 
can be directly used by other modules, including data fusion, DM, and the user 
interface. Figure 8.2 highlights the key concepts that support interoperability and 
cooperative processes.

Callout 8.1 Establish clear semantics and liberally annotate everything 
when performing an experiment.
Annotate all data with metadata that details how it was collected, including 
location, type of experiment, and participants.

• Ensure that synthetic and real data have the same structure.

• Version-control everything: software, hardware, mission data, and sce-
nario configurations.

Establish clear semantics to support interoperability, across missions, across 
platforms, and over time.

• Identify all assumptions, both explicit and (if possible) implicit. If the 
data is synthetic, note all simplifying assumptions.

• Identify unusual cases, such as rare “edge” cases, or adversarial ex-
amples purposely constructed to exploit weaknesses.

Table 8.1 
Key Goals of the DoD’s Data Strategy that Manage Data as a Strategic Asset

Goal Required Capabilities for Measurable Progress
Visible Advertised; available; metadata standards; catalogued; 

common services to publish, search and discover data; 
governments make decision based on live visualizations

Accessible Standard APIs; common platforms create and use data; data 
access is protected

Understandable Preserves semantics; common syntax; elements aligned;
catalogued

Linked Discoverable and linked; metadata standards
Trustworthy Protection; lineage; pedigree metadata; data quality
Interoperable Exchange specifications; metadata and semantics; machine-

readable; translation across formats does not lose fidelity; 
data tagging

Secure Granular privileges; approved standards; clear markings;
authorized users

Summarized from: [2].
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8.1.1 Metadata

Metadata captures all the information about the experiment (and the dataset) that 
is not inherently part of the dataset. It is the ground truth context of who, what, 
where, why, and when the data was created. High-quality metadata is a crucial 
underpinning for cognitive EW systems, supporting a variety of tasks, such as:

• Accurate root-cause or ground-truth analysis: Evaluating a cognitive EW sys-
tem requires knowing what actually happened (e.g., knowing if a packet 
collision was intentional or accidental. Similarly, for an SEI task, record-
ing the distance from transmitter to receiver enables the experimenter to 
determine that the model used latent features of the transmitter, and not 
received power (as a surrogate for distance).

• Experiment reproducibility: Evaluating system accuracy requires the abil-
ity to rerun experiments, tweak experimental conditions, or evaluate ML 
models against each other. For example, the system can assess the relative 
benefit of separating signals by frequency or by cyclostationary processing.

• Meta-analysis: Determining data quality involves analyzing datasets for 
patterns such as distribution, completeness, and systemic bias. Construct-
ing complex scenarios that combine features of (previously) independent 
datasets involves understanding where and how they interact. Meta-anal-
ysis also supports evaluating data integrity: ensuring that incoming or 
stored data is factual and complete.

• Future-proofing: Reducing “bitrot” requires capturing the details of the ex-
periment so it is useful even as equipment or software changes.

• Interoperability: Reusing information across platforms or tools requires ap-
propriate tagging of all collected, derived, or inferred knowledge.

• Task reuse: Knowing the purpose of a data collection allows developers 
to evaluate whether a dataset can be reused for a different purpose. For 
example, a dataset collected for the purpose of waveform classification 
is unlikely to be useful for SEI or identifying whether nodes are being 

Figure 8.2 To support interoperability, situation assessment and DM modules should produce 
practical results that are actionable, additive, auditable, and agnostic. (Concepts originally intro-
duced for probability management [3].)
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jammed. The inverse, meanwhile, may not be true: Specific emitter data 
may very well be useful for waveform classification. Likewise, knowing 
which receiver recorded which data for SEI enables developing receiver-
independent models.

• Data sharing: Sharing data with other organizations for research and op-
erational purposes enables cooperative missions and fosters collaborative 
research. Metadata helps decide whether, and how, to grant access to sensi-
tive data.

• Supply-chain evaluation: Knowing the provenance and credibility of the 
data allows ES to make correct inferences, EP/EA/EBM to make correct 
decisions, and system designers to determine whether to use the data at all. 
Manipulation can occur at any point in the supply chain, via hardware, 
software, in transit, or in storage.

One of the barriers to developing cognitive EW systems is that data is poor-
ly collected, poorly tagged, and/or proprietary. Good metadata can help eliminate 
this barrier. Along with the completeness, bias, and appropriateness of the data for 
new tasks, metadata supports evaluation of the cognitive EW system.

Metadata should annotate the dataset’s macro features, such as version, 
author, and collection date, along with the purpose and goals of the scenario. 
Synthetic and real data should have the same structure. Examples of these global 
features include:

• Mission type and sequencing;

• Traffic type and patterns;

• Location (e.g., indoor, outdoor, lab, anechoic chamber, GPS coordinates, 
and topography);

• Conditions (e.g., weather, mobility, and rural/urban);

• Experiment design (e.g., controlled or “in-the-wild”);

• Experiment scenario (e.g., number of emitters and their types/roles);

• Hardware and software components (e.g., versions, capabilities, and mea-
surement error);

• Generation/collection style [e.g., over-the-wire, over-the-air, or synthetic 
(and the software)];

• Interdependencies, both within and between datasets;

• Collection protocols (e.g., continuous/sporadic experiments, reset/persis-
tent configuration); 
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• Assumptions, both explicit and (if possible) implicit, particularly simplify-
ing assumptions for synthetic data.

The more detailed the annotations, the more useful the data will be for 
multiple scenarios. A detail like this cable connected part A to part B inside radio C 
may seem superfluous or overengineered during an initial collection, but having 
this record allows future analysis and reuse. A detail such as whether data was col-
lected in binary, integer, fixed-point, or n-bit floating point allows others to im-
mediately triage whether the data applies to their situation. (Many public datasets 
are recorded in floating point, which is not compatible with FPGAs.)

Figure 8.3 illustrates a notional (complex) example based on air traffic con-
trol radar. A final air traffic control display pulls together information from many 
different sources, including surface-movement radar (SMR), airport-surveillance 
radar (ASR), multilateration sensors around the airport, automatic dependent 
surveillance–broadcast (ADS-B) sensors, and flight plan data.

Each inferred flight track is based on a complex web of connected compo-
nents. Multiple platforms collect different types of raw data, make intermediate 
inferences, and communicate them to other platforms. Different data formats, 
communications media, and communications protocols move the inferences 
together, leading to final track inferences that support warning systems and air 
traffic control. Each piece of this complex system—hardware, firmware, software, 
communications, displays—must be certified to meet aviation safety standards 
because each piece impacts the accuracy of the final inferences and the degree to 
which stakeholders will trust the system. The degree to which it is recorded im-
pacts how easy it is to analyze the data and identify faults.

Figure 8.3 A complex web of components lead to high quality tracks and overall air traffic 
safety.
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Annotate everything: all observations and conclusions made by human ob-
servers and software components, such as the purpose of sending and the infer-
ences made. For example, an experiment collected at the beginning of the day 
may have different artifacts than after continuous usage when the hardware is 
warm. It’s particularly useful to identify unusual cases, such as rare “edge” cases, 
adversarial cases purposely constructed to exploit weaknesses.

Version-control everything: software and hardware configurations, customiza-
tions and mission scenarios. It is hard to over-emphasize this requirement.

A cognitive radar requires a means for evaluating and ensuring the reliability 
of its knowledge sources: both sources of past knowledge, provided through 
access of databases, as well as knowledge learned through operational 
experience. This includes considering not only the possibility for deception, 
but also whether the validity of data degrades over time.

—Gürbüz et al., 2019 [4]

Northeastern University’s (NEU) RF fingerprinting project provides a con-
crete example of metadata for a comprehensive experiment [5]. The metadata 
captures a description of the original dataset, the preprocessing steps, the model 
architecture, and methods for training and testing the data, as summarized in 
Table 8.2. To evaluate RF fingerprinting and ensure repeatable experiments, NEU 
records detailed features of every experiment [5]. Each component has associated 
parameters (e.g., slicing chooses random examples from a configurable fraction 
of data). From this structure, a given experiment can evaluate the effect of chan-
nel effects, number of I/Q samples per burst, and whether signal onset impacts 
results. With a tag indicating that the training set contains transmitters 1,...,k and 
the test set contains transmitters k + 1,...,n, we can evaluate the impact of diversity 
on the ability to learn novel emitters [6].

Table 8.2 
NEU Records Detailing Features of Every Experiment to Ensure Repeatable Experiments

Preprocessing Model Learning Task
Band-filtering
Partial equalization
Slicing

Full ANN architecture (e.g., 
layers, activation functions, 
batch normalization, and 
dropout)
Optimizer (type, metrics, loss)
Training platform(s) (CPU, GPUs)
Trained weights

Evaluation scenario
Training process (batches, 
epochs, normalization, 
stopping, etc.)
Training population (devices, # 
examples, etc.)
Validation population
Test population
Results (accuracy, timing, etc.)

Derived from: [5]
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The raw data itself should ideally record the details of each transmitter and 
each receiver, including information such as time-synchronous transmissions. 
These details enable analysis of the impact of mobility, transmitter versus receiver 
chains, and simultaneous signals.

Time is one of the most important features to record faithfully.

When time is not recorded accurately, it becomes very challenging for the AI to 
recover information. For example, a summary of a pulse burst may have an incon-
sistent TOA compared to the TOA of the constituent pulses.

Hardware layouts, and software versions, should likewise be detailed. A ma-
jor gap to developing AI systems that understand their own limitations is that 
key information is lost along the processing chain. For example, while the system 
integrators know the angle and range measurement error for the radar system, 
this information needs to be available to the AI. If the metadata captures the 
uncertainty in raw measurements, software modules (especially data fusion) can 
estimate the error and confidence of the final inferences.

Figure 8.4 depicts a rudimentary, singular universal software radio periph-
eral (USRP) radio setup to demonstrate the locations for the USRP hardware 
driver (UHD) and FPGA-based applications. On the server side, there are several 
options to talk to UHD, with raw C/C++ encoding having the best performance 
but requiring one to write all signal-processing blocks from scratch. GNU radio 
packages (C/C++ or Python) are quicker to adopt, but may not have the same 
efficiency. On the USRP side, the RF network on chip (RFNoC) utility can be 

Figure 8.4 The metadata should contain details of the hardware, firmware, and software in this 
USRP structure, including versions and serial numbers.
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used to create FPGA applications to abstract some of the FPGA-based process-
ing. The UHD software application programming interface (API) supports ap-
plication development on all USRP software-defined radio (SDR) products [7]. 
Using common software API improves code portability, allowing applications to 
transition seamlessly to other USRP SDR platforms when necessary. It reduces 
development efforts by allowing the users to preserve and reuse their legacy code 
so that they can focus on the development of new algorithms.

8.1.2 Semantics

Well-established data semantics is a crucial piece of supporting tasks such as in-
teroperability, task reuse, and data sharing. Good semantics allows data to be 
reused across systems and over time. The data set can grow, even as components 
(software, hardware, platforms, and missions) evolve.

Two orthogonal tools capture data semantics: ontologies and schemas. On-
tologies are dictionaries that capture the meaning of concepts. Schemas are the 
formats that capture the data.

An ontology represents information that captures semantics. An ontology 
is a formal naming and definition of the terms and categories to describe the 
concepts, data, and entities of a problem domain and the relationships among 
them. A domain ontology focuses on problem domains, while a process ontology 
captures the steps and constraints involved in a processing chain. Ontologies for 
CR [8–10] and radar [11] exist. Each has a slightly different focus; for example, 
the SDR forum’s ontology [8] focuses on adaptive modulation, while Cooklev 
and Stanchev’s [10] supports radio topology. The web ontology language (OWL) 
is commonly used to capture the ontology [12], and the Protégé editor is used to 
create and manipulate it [13]. The main challenge when developing an ontology 
is to develop it only for the necessary task. It is easy to overengineer the ontology 
and develop concepts that will never be used.

A formal ontology may be excessive for the task. The crucial point is to establish a 
clear semantics that cannot be misinterpreted.

The Signal Metadata Format (SigMF) [14, 15] is an open standard schema 
adopted by the GNU Radio community. It captures general information about 
the collection of samples (e.g., purpose, author, date), the characteristics of the 
system that generated the samples (e.g., hardware, software, scenario), and fea-
tures of each signal (e.g., center frequency and timestamp). A variety of extensions 
to the base format exist. For example, the antenna format captures information 
such as model, frequency range, and gain patterns, while the WiFi extension adds 
information for frames and packets. An associated python library sigmf makes 
it easy to use. Annotations allow comments, such as whether it was deliberately 
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injected, or how it was classified by an ML model. Algorithm 8.1 contains a small 
example. The GENESYS lab at NEU provides two SigMF-compatible datasets 
for RF fingerprinting of USRP X310 radios [16].

VITA-49 is a complementary standard used for sending RF samples over a 
data transport [17, 18]; it is designed for data in motion, not long-term storage. 
Packet types include context, signal data, and control.

Google’s open-source protocol buffers (protobuf ) serialize and share struc-
tured data [19]. Protobuf ’s compactness emphasizes simplicity and performance 
(particularly for network communication) and maintains backward compatibility. 
It is not however, self-describing: The structure of the data is external to the data 
itself. Simple object access protocol (SOAP) [20, 21] is a self-describing (and 
therefore less-compact) data format.

Algorithm 8.1 SigMF captures information about the collection, the 
characteristics of the system, and features of each signal. (Example 
generated by code of README in [15].)
{
 “global”: {
  “core:author”: “jane.doe@domain.org”,
  “core:datatype”: “cf32_le”,
  “core:description”: “All zero example file.”,
  “core:sample_rate”: 48000,
  “core:sha512”:”18790c279e0ca614c2b57a215fec...
  “core:version”: “0.0.2”
 },
 “captures”: [
  {
   “core:datetime”:”2020-08-19T23:58:58.610246Z”,
   “core:frequency”: 915000000,
   “core:sample_start”: 0
  }
 ],
 “annotations”: [
  {
   “core:comment”: “example annotation”,
   “core:freq_lower_edge”: 914995000.0,
   “core:freq_upper_edge”: 915005000.0,
   “core:sample_count”: 200,
   “core:sample_start”: 100
  }
 ]
}
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8.1.3 Traceability

Traceability is a necessary component for determining data integrity, both from a 
security perspective and a learning/inference perspective. The two key points are:

• The system must ensure that the data is not corrupted at ingest, during 
analysis, in transit, or in storage.

• The system must track the provenance and credibility of the data as it 
moves through hardware, firmware, software, communications, and 
humans.

The provenance of the data records where the data came from, while its 
credibility tracks how reliable the source is (i.e., that the data represents what it 
is supposed to represent). While provenance and credibility are often considered 
a cybersecurity problem, the same issues apply to poorly collected data. In fact, 
if the system can determine that the data was deliberately manipulated, it can 
compensate and infer more accurately than when the data collection was sloppy 
or incomplete.

Never attribute to malice that which is adequately explained by incompetence.
—Robert Hanlon, Hanlon’s Razor

Good data collection and curation is the first step in creating credible data; 
each transformation of the data also transforms its credibility. For example, data 
fusion can fuse information from multiple low-credibility sources to create a 
relatively high-credibility conclusion. Another example would be improved ra-
dar-emitter signal recognition and classification via amalgamation of classifiers’ 
predictions and drone’s surveillance data; surveillance can provide visual target 
confirmation and its location, further increasing the credibility of the predicted 
data.

Traceability ensures that ES data fusion forms the correct conclusions (Sec-
tion 4.3) and that DM algorithms manage information uncertainty correctly 
(Section 6.1.4). Traceability also enables anomalies and errors to be traced to their 
origin, components replaced, and better results achieved.

8.2 Curation and Bias

Data curation is the activity of validating, organizing, and integrating data. Cu-
ration ensures high-quality data from which the system can draw high-quality 
conclusions. The goal is to eliminate bias and increase the quality of the data. 
Almost all datasets are biased, in that they do not accurately represent a model’s 
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use case, resulting in skewed outcomes, low accuracy levels, and analytical errors. 
For example, bias can lead to radar tracking errors and multiple tracks generated 
for the same target. Common forms of data bias include:

• Sample or selection bias: When samples do not represent the underlying 
distribution of the data. This problem occurs due to faulty experiment de-
sign (missing key examples), or environmental factors that cause samples 
to be missed. For example, signal propagation over land is very different 
than over sea water due to ducting and surface-wave action; experiments 
and data collection must compensate for these factors. 
 Feedback loops (such as those created by RL) can exacerbate selection 
bias. For example, each favorable use of an ECM technique can reinforce 
the desire to use the same (or similar) technique, stepping along the gradi-
ent toward a local optimum. Without being deliberate about active learn-
ing and maintaining diversity, the system can become trapped in that local 
optimum and never discover the global optimum.

• Class bias: When data skews toward a particular set of classes. To the extent 
that the data covers all forms of RF signal (e.g., frequencies, modulations, 
and protocols), the more likely that a learned model will capture all the 
latent features of RF, and not just the features within the overly narrow 
dataset. (Specialized models for a given type of RF signal are appropriate 
and should be tagged as such.)

• Exclusion bias: Post-collection exclusion of examples from the data, usually 
during data preprocessing. For example, if a system only records data of 
“interesting” emitters or those above/below a specific SNR threshold, criti-
cal examples are lost. A common structure in EW systems is that the legacy 
framework will act on the things it knows, and only forward the data it 
doesn’t know how to handle; this model becomes a significant challenge 
because the cognitive structures only receive the “scraps,” and don’t have 
sufficient history or context to make accurate conclusions.

• Measurement bias: Miscalibration, sensor bias or misregistration, faulty 
measurements, mislabeled examples, missing variables, or a difference be-
tween the data collected for training versus inference.
 Spatial misregistration, for example, will lead to false radar tracks.
 Resampling in digital signal processing (DSP) can cause significant 
measurement bias. If the original data is down-sampled to meet computa-
tion or memory requirements for a DSP, then it may not lose important 
features. Likewise, if decimating the data violates the Nyquist criteria, 
aliasing can create distortions that cannot be corrected downstream.
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• Recall bias: A type of mislabeling where similar examples receive different 
labels; in a dynamic system that evolves over time, this is a common prob-
lem. The domain may change, and the concept may drift.
 If components are replaced, the meaning of labels may change. For ex-
ample, signals separated by cyclostationary processing will have different 
characteristics than signals separated by frequency. Maintaining the meta-
data ensures that these meanings can be correctly interpreted.

• Observer or confirmation bias: Labels based on expected results, not ac-
tual results. A common cause of this problem is when the system fails to 
recognize novel examples (e.g., a new modulation) and classifies them as 
the most similar previously known example. Single-source errors likewise 
create a risk that the data encodes artifacts of that particular source, such 
as when the data was collected by a single receiver.

Systemic bias is different from noise, which is the random variability of the 
domain. It is easier to measure and correct noise than it is to measure and correct 
bias. While it may be tempting to remove noise from the stored data, the par-
ticular noise elimination technique may in itself be biased. In general, the dataset 
should contain the noise to reduce overfitting; data augmentation will, in fact, de-
liberately add noise (Section 8.3.3). The general expectation is that the distribu-
tion of the noise in the attributes of the training data will match the distribution 
of noise during inference [22, 23] and should be verified [1].

However, noise is also a leading cause of classification errors because the 
model learns to fit the noise and not the underlying concept. Regularization, di-
versity, and cross-validation are good techniques to ensure that the noise improves 
the quality of the model.

8.3 Data Management Practice

Data management, both in-mission and postmission, is the foundation to achiev-
ing the desired results in practice. Data management requirements are different 
between algorithm development and in-mission operation. During development, 
databases have relatively few space and timing constraints and therefore should be 
comprehensive and thoroughly annotated.

In an embedded system, however, space and timing constraints must be con-
sidered. Data diversity ensures efficient memory use and rapid computation while 
achieving desired model quality. Augmenting data is a good way to ensure data 
diversity and is particularly effective at handling adversarial settings. Forgetting 
irrelevant data helps ensure model relevance to the current situation. Finally, data 
security ensures that the data remains private.
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8.3.1 Data in an Embedded System

Data management in an embedded system has very different requirements com-
pared to huge data compute systems in a server farm. Moreover, many EW sys-
tems operate in the tactical edge, where communications is limited or nonexis-
tent, so storage and computation must be strictly local.

Controlling the size of the dataset solves both problems: memory usage and 
computation time. The BBN SO [24] (Example 7.1) uses a fixed-length circular 
buffer, maintaining the diversity of instances in memory and forgetting old in-
stances. It records all examples in persistent storage for use in later missions, but 
these are not accessed in real time. The BBN SO stores k instances, each having 

+ +n n no c m  features (each feature is an eight-bit integer). It computes the dot 
products of the pairwise distances between instances, and stores the triangular 
similarity matrix, size 1

2 k2. To improve efficiency for both memory and compute, 
the triangle matrix is a fixed-size, one-dimensional array that uses index arith-
metic [25]; the index of x[i;j] in the one-dimensional array is 1

2 i(i + 1) + j. This 
similarity matrix then becomes a basis for data diversity, model computation, and 
managing experiments for active learning. Matrix sizes are controlled and known 
a priori and can be adjusted to suit the available memory on the platform.

Controlling the size of the dataset ensures meeting memory constraints and 
improves computation time: Smaller datasets are less likely to trigger cache miss 
penalties, and it is faster to train the models with smaller datasets.

8.3.2 Data Diversity

In embedded systems with limited memory, it is crucial to use the available mem-
ory as efficiently as possible. One of the keys to producing a model with good 
generalizability is to ensure data diversity. Diversity of the training data ensures 
that the data contains enough discriminative information to identify the impor-
tant features (i.e., to maximize the amount of information contained in the data). 
The data should include edge cases and adversarial examples. The goal is to have 
the model build high-quality abstract representations. The better the generaliza-
tion, the more likely that the model will perform well against novel environments. 
Moreover, diversity helps protect against adversarial attacks, as demonstrated by 
the data augmentation literature (Section 8.3.3).

The dataset does not need to be large, but it must be diverse.

Three examples of three different strategies in three different RF environ-
ments (27 examples) is far more useful than a million examples of one strategy 
in one RF environment, even though each observation of that environment will 
be slightly different. Figure 8.5 illustrates the 27 points; despite so few examples, 
it is clear that these examples cover the performance surface better than many 
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examples for a single strategy or a single environment. By maintaining a diverse 
dataset, the learned models can achieve good performance even with limited 
examples.

A simple and effective method for computing diversity is simply the pair-
wise dot products between examples. When a new observation arrives, compute 
its distance to examples already in memory. If that distance is zero, then it is 
completely redundant with existing knowledge. Note that the dot product may 
compute observables only, observables and strategy, or observables, strategy, and met-
rics, depending on intended use. For example, computing the RF environments 
(Section 2.1.1) uses only the observables, while managing a diverse training data-
set requires also using the strategy and metrics.

Mirzasoleiman et al. [26] develop a rigorous method for choosing a small 
subset S of the full training data V. The coreset of data is a weighted subset S that 
best approximates the full gradient of V and can be efficiently found using a fast 
greedy algorithm. At every step, the greedy algorithm selects the element that re-
duces the upper bound on the estimation error the most. The size of the smallest 
subset S that estimates the full gradient by an error of at most ε depends on the 
structural properties of the data. The algorithm obtains significant speed-up in 
training time while maintaining generalization accuracy.

Figure 8.5 Three observations of each of three environments and three strategies yield 27 di-
verse training points (artificial data). An environment corresponds to a cluster of observable 
vectors o, and a strategy corresponds to a setting of controllables c. Figure 4.5 shows several 2D 
environment “slices” from real environments, showing some environments with no observations 
where the model generalized from similar characteristics.
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In fact, diversity is so important that simulated diversity yields better results 
than a nondiverse real-world dataset. Essentially, while the simulated values do 
not capture the complexity or natural noise of the real environment, they do 
increase the breadth of knowledge to draw inferences from. Real-world datasets 
are naturally imbalanced, and hidden war reserve modes exacerbate this imbal-
ance. Simulated data can help “bootstrap” the learning process. Section 11.2.3 
describes several RF data-generation tools. Work demonstrating the impact of 
diversity includes:

• Ablation trials show that training the model using the most diverse dataset 
yields the best generalization to new environments (Section 10.2).

• “Pseudo classes” cause classes to repulse from each other so that the learned 
model chooses more discriminative features [27].

• Diversified minibatch stochastic gradient descent (DM-SGD) builds sim-
ilarity matrices to suppress the co-occurrence of similar data points in the 
same training minibatch [28]. This approach generates more interpretable 
and diverse features for unsupervised problems and better classification 
accuracies for supervised problems.

• Convex transductive experimental design (CTED) [29, 30] incorporates 
a diversity regularizer to ensure that selected samples are diverse. The ap-
proach excludes highly similar examples with redundant information, con-
sistently outperforming other active learning methods.

• Informativeness analysis uses pairwise gradient length [29] as a measure 
of informativeness, and a diversity analysis forces a constraint on the pro-
posed diverse gradient angle. Empirical evaluations demonstrate the effec-
tiveness and efficiency of the approach.

• Entropy measurement and management [31] controls out-of-sample er-
ror; solutions with higher entropy have lower error and handle novel situ-
ations better.

Diversity and uncertainty are effective methods to choose experiments in active 
learning [32, 33].

8.3.3 Data Augmentation

One of the most effective ways of creating data diversity is through data augmen-
tation. Data augmentation is a set of techniques that enables ML practitioners to 
increase the diversity of the training data, without actually having to collect new 
data. Augmentation techniques include adding (to the existing dataset) slightly 
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modified replicas of already existing data, or newly synthesized data from existing 
data.

Data augmentation is closely related to the concept of oversampling in data 
analysis and can reduce overfitting during the training phase of the learning model 
[34]. For example, in image processing, some of the commonly used data augmen-
tation techniques are padding, cropping, flipping, and changing lighting schemes.

Data augmentation techniques are necessary to capture data invariance, the 
property of remaining unchanged regardless of changes in the conditions of mea-
surement. For example, the surface area of an airplane remains unchanged if the 
airplane changes its pitch, yaw, and/or roll; thus the surface area of an airplane ex-
hibits rotational invariance. Data augmentation ensures that the model is trained 
against this data invariance.

Chung et al. [35] present an approach to detecting sample, class, and recall 
bias using correlation analysis, dynamic bucketization, unknown count estima-
tion, and unknown value estimation. They then use the results to augment the 
data.

A common theme to many data-augmentation approaches is adding noise 
to the dataset. There can be noise in the observables and in the metrics. Model ac-
curacy improves by injecting structured noise into the features [36–41]. Gaussian 
noise is the most common type of noise to add. Noise has a regularization effect 
that improves the robustness of the model. Adding noise means that the network 
is less able to memorize training samples, resulting in smaller network weights and 
a more robust network that has lower generalization error. Consider the following 
guidelines:

• Normalize the data before adding noise.

• Add noise only during the training phase.

• Noise can be added to the input data features.

• Noise can be added to outputs before training, especially in regression 
tasks over continuous target values. However, in the cases where it is pos-
sible to remove noise from outputs, better results can be obtained [42].

• Noise can be added to the activations, weights, and/or gradients [37].

Soltani et al. [43] propose a data-augmentation technique for the training 
phase that exposes the RF fingerprinting DeepNet to many simulated channel 
and noise variations not present in the original dataset. The authors propose two 
approaches for data augmentation, one for the transmitter data (using pure sig-
nals without data distortion) and the other for the receiver data (using passive, 
available over-the-air transmitted signals). The authors saw a 75% improvement 
with transmitter data augmentation and 32%–51% improvement for receiver 
augmentation.
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Sheeny et al. [44] present a radar data-augmentation technique based on the 
measured properties of the radar signal. Their model achieved only 39% accuracy 
with nonaugmented data, 82% accuracy with translations and image mirroring, 
and 99.8% accuracy using data augmented with radar properties of signal attenu-
ation and resolution change over range, speckle noise, and background shift.

Data augmentation doesn’t require knowledge of RF spectrum. Huang et al. 
[45] use rotation, flip, and Gaussian noise to improve classification accuracy for 
radio-modulation recognition. Modulations can be successfully classified using 
shorter radio samples, leading to a simplified deep-learning model and shorter in-
ference time. They also show that augmentation improves accuracy at lower SNR.

Data augmentation also helps protect against adversarial attacks. Well-con-
structed examples train a model to defend against white-box attacks (where the 
adversary knows everything about the model), black-box attacks (where the adver-
sary knows nothing), and intermediate gray-box attacks [46, 47].

GANs [48] are becoming a de facto method for generating adversarial ex-
amples and training models. A key benefit of GANs is that they do not require 
any information about RF properties. Adversarial training techniques set a genera-
tive network against a discriminative network in a competition: The generative net-
work’s goal is to fool the discriminative network. The generative network creates 
artificial data designed to exploit weaknesses in the discriminative model. One of 
the most famous GANs generates photos of nonexistent celebrities [49]; humans 
are unable to distinguish these “photos” from reality. GANs improve accuracy for 
classification tasks such as modulation recognition [50, 51] and radar target rec-
ognition [52]. The generative component has been used for signal spoofing and 
synthesizing new modulations [53, 54].

8.3.4 Forgetting

The counterpoint to data augmentation is forgetting. There are multiple reasons 
to deliberately drop data from a training dataset, including limited memory, inac-
curate information, and class imbalance. The key issue is to prevent total informa-
tion loss within a category, either RF environment or strategy (i.e., maintain the 
dataset’s diversity).

During a mission, when memory and compute time are limited, simple 
strategies for choosing which examples to drop from the training dataset in mem-
ory include:

• Distance: Drop instances that are very similar to other items (observables, 
strategy, and metrics);

• Class imbalance: Drop instances that are well-represented (i.e., have many 
more examples than other classes);
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• Fidelity: Drop instances used to bootstrap the learner (e.g., generated from 
simulated data or collected on similar-but-not-identical platforms); 

• Age: Drop-the-oldest instances, an approach that is responsive to changing 
mission conditions.

Note that all examples collected in-mission can (and should) be stored in 
persistent storage for postmission analysis. Postmission analysis can analyze data 
for missing data (e.g., performance that can’t be explained usually means miss-
ing observables), patterns across systems and missions (e.g., something seen only 
fleetingly at single nodes, but regularly across the group), and best practices (e.g., 
different methods of curating data).

It is hard to justify permanently forgetting data. Even though data may 
degrade over time, older knowledge can help bootstrap a system when nothing 
is known about a set of conditions. This kind of knowledge transfer accelerates 
learning in novel conditions. Good metadata records the history and context of 
the data, which premission analysis uses to decide which data to use for training 
in future missions. We need to overcome the barrier of deliberately destroying 
data for the sake of security and instead find ways to appropriately protect it.

8.3.5 Data Security

A common issue in data storage is that of data sensitivity, particularly for classi-
fied datasets. The system must protect both the data (so that adversaries cannot 
reconstruct the original data) and the models so that adversaries cannot determine 
system vulnerabilities.

Differential privacy (DP) is a mathematical definition of privacy used to 
prove guarantees of protection against privacy attacks [55]. DP has valuable prop-
erties to analyze protection [56], including (1) quantification of privacy loss, (2) 
group privacy, (3) immunity to postprocessing, and (4) composition and control 
over multiple computations.

There are many different ways to achieve differential privacy; most involve 
modifications to the original dataset. Anonymizing the dataset provides privacy 
protection and facilitates sharing data to other forums. Some approaches include:

• Label anonymization: Give features (observables, controllables, and met-
rics) anonymous names (e.g., “tone jammer” becomes “environment#1,” 
and “notch filter” becomes “technique#1”). Anonymous labeling has the 
advantage that the decision-maker cannot exploit the semantic meaning 
of the labels themselves. (In other words, the AI stays agnostic to the par-
ticular dataset in question, allowing the same code to transfer to different 
capabilities, platforms, and tasks.)
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• Normalization: Normalize the data over a fixed range, say int8 represen-
tation -128 to 127. Moreover, most learning models expect data to be nor-
malized so that large-valued features do not dwarf small-valued features; 
model generalization is better when trained on normalized data.

• Generalization: Round and reduce the precision of data.

• Discretization: Replace ranges of values with discrete labels.

• Perturbation: Replace values with a uniform function modifying the val-
ues. Add noise if appropriate.

There are also methods to learn models that preserve privacy. The goal is 
to build a model that does not reveal features of the original training data, while 
still ensuring that any inference based on a specific example does not change. 
Consider the following:

• The system learns models on fully encrypted data [57–62], and outputs 
an encrypted result;

• The system partitions the sensitive data and trains an ensemble of “teach-
er” models; then, using unlabeled nonsensitive data, the system trains a 
“student” model to mimic the ensemble [63].

• A federated learning system splits training data among many nodes, and 
then combines the model parameters in a central location before redistrib-
uting the blended model back to the nodes [64]. Each node learns only on 
its own observations, and the central model never sees the original data.

A good security approach requires multiple layers, including standard cy-
bersecurity approaches. One layer of a comprehensive solution is to protect the 
model and the data to maintain information privacy, even if the model itself is 
compromised.

8.4 Conclusion

Despite myths to the contrary, the system does not need a large dataset to learn 
effectively. Managing the dataset to maintain diversity is the most effective way 
to create high-quality generalized models that handle novel situations (out-of-
sample) and that are resistant to adversarial attacks. Smaller datasets also have the 
benefit of improving computation time.

A good data engineer will ensure that the data is high-quality and can be 
reused on different platforms, for different tasks, and over time. Detailed in-
teractions and use-case development ensures that the EW community and AI 
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community use the same language and have the same goals [65]; we must also 
address the social gap between the two communities. Detailed metadata ensures 
high-quality DM and root-cause analysis, allowing the system to propagate errors 
from measurements to final inferences.

Garbage-in, Garbage-out.
—Thomas McRae, 1964, The Impact of Computers on Accounting 

Life is like a sewer: what you get out of it depends on what you put into it.
—Tom Lehrer, 1959, We will all go together when we go
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9
Architecture

Using the deeper understanding of SA and DM developed in Chapters 1–8, we 
can redraw the components of the cognitive system from Figure 1.4 as illustrated 
in Figure 9.1. A modular architecture provides the backbone to these capabilities, 
allowing different techniques to provide different services and ensuring consistent 
flow of information and control. This chapter briefly touches on software and 
hardware architecture concerns and provides a short developer’s roadmap.

9.1 Software Architecture: Interprocess

While highly adaptive, advanced radar and SDR architectures generally still rely 
on tailored APIs that expose each parameter separately. This approach is not ame-
nable to real-time cognitive control in EW systems, because the tight coupling 
means that an AI can’t make global decisions.

To eliminate this barrier, the constituent modules must be highly modu-
lar and composable. A general interface allows modules to expose their param-
eters and dependencies and thus enables global optimization and computational 
load-balancing across multiple processors [1–5]. A modular system also allows 
for real-time composability of the system, where modules can be swapped in/out 
depending on mission needs [1]. To this end, we need a broker that provides the 
following.

• One consistent interface to any and all modules, so that if a module changes, 
or a new module is created, none of its controlling or subordinate modules 
need to be modified. Figure 9.2 sketches the difference between a tightly 
coupled and brokered interface. This modular approach solves the m × n 
problem (i.e., upgrades or replacements of modules).
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• Coordination of control to ensure that multiple controllers don’t overwrite 
each other. A module may not expose its parameters for outside control via 
any interface except the broker.

The first software architecture that provided this capability in RF was the 
ADROIT broker [1], using the abstract structure illustrated in Figure 9.3. Each 
module exposes its parameters and their properties (especially read/write). When 
a module changes (e.g., adding a new parameter), it simply exposes the new pa-
rameter, exposeParameter(name,properties), rather than adding a new 
API function for that new parameter. ADROIT instantiated the broker with the 
particular modules shown in Figure 9.4. ADROIT developers also performed 

Figure 9.1 DM critically depends on SA.

Figure 9.2 Adding or modifying modules in a tightly coupled traditional API requires updates to 
all connecting modules, while a brokered API doesn’t impact other modules.
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several detailed walk-throughs showing the separation of concerns of networking 
modules versus a cognitive layer [1].

The advantages of this generic, modular approach is that it doesn’t restrict 
the form of cognition, allowing designers to choose techniques appropriate to the 
problem:

• The architecture supports almost any cognitive technique;

• The architecture can contain multiple cognitive techniques;

• The architecture doesn’t mandate cognitive techniques.

The modularity allows for fine-grained decomposition of capability; for example, 
a module might compute and publish one (and only one) statistic (e.g., BER) that 
becomes an input to many modules.

An interesting side effect of a broker-based approach is that the distinction 
between “application” and “module” blurs. A given module may request changes 
not only “down” the stack, but also “up,” for example, requesting that the video 
reduce its resolution to meet bandwidth limitations. In theory, any module can 
issue instructions to any other module.

Modern RF systems use various “pub/sub” systems such as the data distri-
bution service (DDS) [6, 7] or Kafka [8]. Pub/sub is an asynchronous messaging 
service that decouples services that produce events (publishers) from services that 
process events (subscribers). While pub/sub systems are most commonly used to 

Figure 9.3 ADROIT was the first network architecture to support cognitive control through a 
broker. (From [1].)
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distribute services across a wide-area network, they are equally effective within a 
single CPU. Moreover, services can naturally be extended across a bus or multiple 
cores on a single platform, or across multiple platforms, with increasing latency.

One of the challenges in implementing cognitive control is deconflicting 
with legacy systems. Ideally, every module in the system should subscribe to the 
same broker so that every module has the context awareness it requires to make 
accurate inferences. In practice, however, legacy systems do not connect to a bro-
ker, and more importantly, often do not allow the cognitive system to track all the 
incoming data. A common problem is that the legacy system will respond to all of 
the RF signals it “knows,” only passing on unknown signals. This approach leads 
to exclusion bias (Section 8.2) and incorrect conclusions due to lack of awareness 
of longer-term patterns.

9.2 Software Architecture: Intraprocess

Threading and shared memory approaches are appropriate when the interaction 
between processes needs to be more tightly coupled (e.g., memory access and 
similar computations). Any instance-based learning method that compares new 
instances directly against training instances is likely to fall into this category.

The SVMs of the BBN SO (Example 7.1) require the RRE and LTRE to 
be in separate threads of the same process. Both RRE and LTRE require high-fre-
quency, low-latency access to the same internal datastore; selected instances from 
the training data become the support vectors. Figure 9.5 illustrates the distribu-
tion of function across threads, supporting the functions of Figure 5.2. This effort 
highlights one of the necessary activities in building the cognitive EW solution:

Translating from common ML libraries to embedded hard real-time software 
takes significant effort.

The SO’s SVM model is derived from WEKA [10], which (at the time) 
was one of the fastest libraries available, and available in both Java and C/C++. 
The effort to translate the code for the embedded system involved removing un-
necessary code, flattening or replacing object structures, and evaluating numerical 
representations [11]. The largest effort, by far, was to split the code to be multi-
threaded: to have the RRE operate in hard real time with guaranteed timing for 
strategy choices and the LTRE operate in a background thread when computation 
resources are available. Figure 9.6 illustrates this split. The embedded code ran at 
5% of the runtime from the baseline C/C++ code, where baseline disabled the 
“easy-to-ablate” capabilities. The original (off-the-shelf ) Java code had additional 
items that we could not ablate, such as shared computation across threads, and 
ran a 1,000,000 times slower than the embedded code. Putting the RRE and 
LTRE in separate processes would likely increase this time yet another > 1,000 
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Figure 9.5 The BBN SO uses threads to share data between capabilities. (Example 7.1, [9].)

Figure 9.6 The RRE computes strategy choices on a hard real-time schedule, while the LTRE 
operates in a background thread when computation is available. (Example 7.1, [9].)
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times, because the processes would both compute shared values, and the system 
would incur overhead for sharing the dataset across processes.

9.3 Hardware Choices

Many cognitive EW solutions will be software (or firmware) overlays on exist-
ing legacy systems, in which case this section isn’t relevant. For those who have a 
choice, there are several trade-offs to consider.

Customers are discovering that there is no single ‘best’ piece of hardware 
to run the wide variety of AI applications, because there’s no single type of 
AI. The constraints of the application dictate the capabilities of the required 
hardware from data center to edge to device, and this reiterates the need for a 
more diverse hardware portfolio.

—Naveen Rao (Intel), 2018 [12]

A combination of CPUs and FPGAs will generally be the most appropriate for 
EW. Callout 9.1 highlights some of the hardware design concerns for EW systems.

GPUs are unlikely to be useful for EW operations.

Table 9.1 summarizes the key features of CPUs, FPGAs, GPUs, and custom 
ASICs. The main lesson learned is that GPUs will rarely meet the timing consid-
erations of EW: GPUs work well for training DeepNets but are too power-hungry, 
and unreliable for hard real-time tasks [13, 14]. CPUs and FPGAs will  generally 
be the preferred choice for EW applications. Some of the notable issues include:

Callout 9.1 Embedded EW systems, especially those at the tactical 
edge, create unique hardware considerations. Wide instantaneous 
bandwidth exacerbates the processing resources and power issue for 
EW.
Lack of access to cloud computing 
requires local processing

Limited power from generators and 
batteries requires efficient systems

Space and weight limitations require 
compact solutions

Mission-critical safety and security 
require reliable and trusted solutions

Upgrade lifecycle of 10+ years re-
quires scalable, modular solutions

Harsh environments with varying 
temperatures, pressure, shock, and 
humidity require ruggedized systems
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• GPUs are power-hungry.

• Synchronization is notably difficult, sometimes even causing the CPU to 
block on unrelated tasks.

• The excellent performance for parallel computation comes at a cost of 
memory transfer, which means that real-time systems suffer from an unac-
ceptable latency.

• The documentation can be inconsistent with, and sometimes contradic-
tory, to observed performance.

• The black-box nature of GPUs means that developers do not have a reli-
able model of GPU behavior, and therefore what system designers learn 
about current GPUs may not apply in the future.

Table 9.1 
The Key Features of CPUs, FPGAs, GPUs, and Custom ASICs

Processor Characteristics Pros/Cons
CPU • Traditional processor for general-

purpose applications
• Single- and multicore, plus 

specialized blocks (e.g., floating 
point)

• Lots of cache; best latency 
performance from memory to core

• Can run independently and host an 
operating system

• Optimized for sequential processing 
with limited parallelism

• Multiple mission modes; future-proofing
• Data locality
• Very reliable vendors
• Industrial versions available
• Software availability and programmer 

talent
• High performance for non-DeepNet ML
• High performance on inference that 

requires a lot of memory

FPGA • Flexible collection of logical elements 
that can be changed in the field

• Tailor-made architecture configured 
application

• Higher performance, lower cost and 
lower power consumption

• Reconfigurable
• Guaranteed timing performance
• Large datasets
• Compute-intensive applications
• Not good for floating-point operations
• Harder to program than other platforms, 

therefore relatively inflexible
GPU • Built to do many identical parallel 

operations (e.g., matrix math)
• Thousands of identical processor 

cores

• Reliable vendors 
• Most software support for DeepNets
• High-power consumption
• Computation improvement comes at a cost 

of memory transfer
• Unreliable for hard real-time tasks
• Black-box specifications
• Shorter lifecycle than CPU or FPGA
• Security features less advanced

ASIC • Application-specific integrated 
circuity 

• The most efficient performance-to-
power solution

• Single mode (dedicated AI process)
• Short lifespan due to rapid technology 

obsolescence (<1 year)
• Limited software support
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• GPU life cycles are significantly shorter than CPUs or FPGAs. In the 
context of DoD programs, this issue makes sustainment more difficult 
and diminishing manufacturing sources and material shortages (DMSMS) 
more likely.

• The security feature set of GPUs is significantly less advanced than CPUs 
and FPGAs, making them more difficult to fit into program protection 
approaches.

The fact that GPUs are inappropriate for EW is not actually a loss:

EW is not a “big-data” environment.

ASICs may have a role in EW, assuming that the short lifespan of the hard-
ware technology, and thus the single application it can host, is acceptable to the 
community.

CPUs have a long history of good performance in hard real-time systems 
and are flexible to changes in the software applications over the decade-long life 
span. FPGAs are ideal because they outperform CPUs for fixed algorithms over 
streaming data, but the cost (dollars) can be prohibitive. FPGAs are reconfigu-
rable and provide huge power-efficient processing capabilities, reducing thermal 
management and space requirements. This feature allows the integration of ac-
celeration hardware in small housings and extreme environments.

9.4 Conclusion

From the software-architecture perspective, supporting system-wide cognitive 
control is best accomplished with a modular infrastructure, wherein each module 
connects to a backbone and exposes its parameters.

From the hardware perspective, GPUs are rarely appropriate for the embed-
ded EW environment. A combination of CPUs and FPGAs will generally be the 
most appropriate for EW due to their support for hard real-time operations and 
streaming computation.

Getting started with cognitive techniques in an EW system is not as com-
plex as many believe; it’s a matter of choosing an appropriate-sized problem to 
tackle.
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10
Test and Evaluation

AI has unique evaluation requirements, especially if it’s going to learn during 
a mission. This chapter describes how to test and evaluate performance so that 
customers and end users will trust the system, even when it encounters unex-
pected conditions. This chapter answers the question of how to test something 
that changes. The key steps to test and evaluation are:

• Specify the metrics of performance (MOPs) and the metrics of success 
(MOS) that are relevant to the mission and end user (Section 2.3 and 
Callout 10.2).

• Use a closed-loop interactive test framework (Section 10.1).

• Use ablation trials to demonstrate that the system will work in previously 
unknown environments (Section 10.2).

• Compute accuracy of classification, regression, and strategy choice (Sec-
tion 10.3).

• Use a learning assurance process to formally and empirically validate re-
sults (Section 10.4).

The goal of evaluation is to determine how much trust to place in the AI. 
Simply put, is the model useful, and making valid decisions in the mission context? 
Should you trust the AI enough to report observations? To fly the platform? To 
target an adversary? To learn rules of engagement?

Trust is a function of risk: The more risk for the trustor and authority granted to 
the AI, the greater the validation and assurance requirements.
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Trust must start with safety and security [1], and the degree of trust depends 
on the amount of risk the trustor can tolerate, as illustrated in Figure 10.1. The 
degree of trust determines the amount of authority they will grant to the AI.

10.1 Scenario Driver

ML systems commonly use static datasets to learn how to classify objects. In EW, 
this approach is insufficient because it doesn’t show how the system handles novel 
examples, responds to dynamic situations, or operates against an adversary. The 
environment responds to every action.

To validate a cognitive-decision engine, a closed-loop testing framework is essential.

Figure 10.2 illustrates the structure of the scenario driver (SD) that interacts 
with the cognitive engine, responding appropriately to stimuli.

A ground-truth data file (GTDF) contains all the known data, however it 
was generated; Table 10.1 shows an example from a real communications EP sys-
tem. The GTDF might contain raw I/Q samples, PDWs, or inferred features, as 
required by the AI module. The GTDF consists of all mission scenarios for which 

Figure 10.1 Trust depends on safety and security, and depends on the acceptable level of risk.

Figure 10.2 A closed-loop scenario driver ensures that a cognitive-decision engine responds 
correctly to stimuli, sending observables o and metrics m to the AI module, which computes a 
strategy s.
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ground truth conditions are known: all combinations of tasks, nodes (friendly, 
neutral, and adversarial), and configurations.

An RF environment is one of the various test scenario conditions. In the 
simplest case, it might be free-and-clear communications under clear-weather 
and low-traffic requirements. Other environments might add mobility, jammers, 
weather, and topography. During controlled experiments, each environment is 
tagged with its known environment, and recorded in the GTDF.

If the data is recorded in a comma-separated value (CSV) file, each row 
captures a single example of the observables, controllables, and metrics < o,s,m >, 
describing how the strategy performed against that environment for node n. The 
observables correspond to a single observation of the environment.

In theory, the GTDF could have a very large number of rows for each tested 
RF environment and an exponential (or even infinite) number of columns corre-
sponding to every possible strategy. In practice, a smaller, sparse, dataset with high 
diversity is more valuable (Section 8.3.2). As the mission proceeds, the system col-
lects the data, adds experience, and updates the table. A typical approach might be 
to collect data for each independent controllable (varying one controllable while 
the others are set to default values), and a few pairs (e.g., Table 7.1).

A test scenario describes which environments to use as training data and 
which to use as test data. The SD selects those examples of the GTDF that match 
the training environments and generates a training data file for the AI module 
to use premission. (Figure 9.5 shows the premission steps for the BBN SO.) The 
closed-loop test contains the following steps:

• SD generates one example observation of the test data (observables o and 
metrics m).

• AI chooses a strategy (or characterizes, for example, the signal) and returns 
the result to the SD.

• SD evaluates that strategy, and computes the metric m at the next iteration 
and the optimal performance per Section 10.3.3.

The SD plays sequences that interact appropriately with the decisions made 
by the AI. Using the simple state machine of Figure 10.3, for example, if the 
AI observes the request-to-send (RTS) and then successfully chooses a jamming 
technique to block the clear-to-send (CTS), then the SD would replay another 
RTS. If the AI did not choose to jam the CTS, then the SD would start sending 
the data. In the radar world, these labels might correspond to radar modes. Each 
arc indicates the trigger that causes the state to transition.

For open-set classification (Section 3.4), this interactive process supports 
evaluation of how many new examples the system requires before correctly identi-
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fying a novel class. For ablation trials (Section 10.2), it evaluates how quickly the 
system learns how to handle a new RF environment.

Structure the SD so that it can replay any kind of data, using any underlying 
state machine. This approach allows testing of multiple AI modules, for example 
one that generates I/Q samples to test a deinterleaver, one that generates PDWs 
to test a classifier, and one that generates PDWs with a state machine to test ECM 
choices.

Since system requirements documents are often poorly specified with respect to 
learning, it is crucial to determine early which scenarios to test.

It is impossible to test all ∞ configurations by ∞ scenarios. Identify which of 
the three axes illustrated in Figure 1.3 are relevant to system performance—and 
customer needs—and test at multiple points along each axis. Moreover, combina-
torial explosion is tempered by the fact that EW engagements are constrained by 
physics and progression of engagement state by collection/denial of information, 
thus helping focus test requirements.

Figure 10.4 illustrates a notional architecture for developing and testing 
multiple AI modules. The SD generates data using the same format as it would 
arrive in the fielded system. Each module should be independently unit-tested 
before testing the sequence. When bringing modules into the sequence, replace 

Figure 10.3 The SD can replay data from the GTDF using state machines such as this simple 
comms sequence. The “environments” in the GTDF would correspond to the RTS, CTS, Data, 
and ACK labels.

Figure 10.4 The SD can drive testing of multiple AI modules.
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other modules with “omniscient” components that are always correct. (For ex-
ample, to test the SA module, the DM can be a simple set of handwritten rules, 
and BDA knows exactly how well the chosen ECM worked.) Evaluate the BDA 
and SA modules using a weighted accuracy (Section 10.3.1 or Section 10.3.2.3), 
and the DM module using adequacy (Section 10.3.3.1).

10.2 Ablation Testing

n-choose-k ablation testing proves that a cognitive system is capable of learning 
how to handle new environments. An ablation trial tests how much given training 
example(s) contribute to the generalization ability of the model.1 The ground 
truth data has n known cases; we train the system on k ⊆ n cases, and test on all 

n, for all values of k and all subsets 
n

k
 
  

. Thus, during the test, n−k environments 

are novel. For n = 3 environments known to the SD, there are a total of eight 

ablation tests:

• k = 0. SD creates one test scenario 
3

0
 
  

. The AI receives no a priori training 

data; during the test, all n = 3 environments are novel.

• k = 1. SD creates three test scenarios 
3

1
 
  

. In each, the AI trains on one 

environment; during the test, one is known, and two are novel.

• k = 2. SD creates three test scenarios 
3

2
 
  

. In each, the AI trains on two 

environments; during the test, two are known, and one is novel.

• k = 3. SD creates one test scenario 
3

3
 
  

. The AI trains on all three environ-

ments; during the test, only the order of environments is unknown.

Ablation tests are similar to leave-one-out testing, which would train on n−1 
cases and test on the remaining one case. Likewise, k-fold cross-validation trains k 
models and tests each on a different 1/kth of the data. The idea is to demonstrate 
that the system can learn to handle new environments, regardless of what it was 
initially trained on.

Figure 10.5 shows n-choose-k results collected when developing the BBN 
SO (Example 7.1,[3]). For each of n = 9 environments, the SD trains the SO on 

1. Ablation studies traditionally remove components to understand the contribution of the com-
ponent to the system; ablation studies require that the system exhibit graceful degradation as 
components are removed [2].
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all subsets k ⊆ n, and tests on all nine environments. This chart shows 512 indi-
vidual tests, ranging from the case of k = 0 that has no a priori training data, to 
the case of k = 9 that trains on all n = 9 environments, but during the test the SO 
doesn’t know their order.

Even in the extreme case when the SO receives no a priori training data, it 
achieves 70% of optimal performance due to in-mission learning.

Figures 10.8 and 10.9 show single scenarios each corresponding to one point 
on Figure 10.5, and highlight how in-mission-learning can learn how to handle a 
novel environment in only one or two examples. With about 30% of the training 
data, the SO can achieve 98% adequacy in the best case; in the worst case, it 
achieves 78% adequacy.

This difference is explained by diversity: which environments were used in 
the size-k training data. The worst case uses three very similar environments, while 
the best case uses three very different environments. Section 2.1.1 describes how 
to compute environment similarity: Create unsupervised clusters of RF environ-
ments that can be visualized with a dendrogram. The dendrogram corresponds to 

Figure 10.5 An n-choose-k ablation trial for the BBN SO shows that the performance gracefully 
degrades as the SO’s a priori training data contains fewer conditions. Each point corresponds 
to the adequacy of one experiment such as Figure 10.8; the x-axis is k showing how many con-
ditions were present in the training dataset, and the y-axis is the adequacy value per Section 
10.3.3.1. Parenthetical “(x)” values show number of experiments performed for 9-choose-k. (Ex-
ample 7.1, [3].)
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observables for the n known environments, and the scenario determines which of 
these to use for training and testing.

Because it is unsupervised, the EW decision-maker can use this clustering 
and associated dendrogram to drive active learning (Section 7.3).

The SD can also use this clustering to evaluate performance against optimal 
(Section 10.3.3.1); the clusters are named based on the ground-truth labels. Us-
ing Figure 2.3 as an example, a good test to see how well the system performs on 
extremely different data would train the models on the 15 environments in the 
top cluster (16 to 23 vertically), and then test on eight environments the bottom 
cluster (22 to 08).

Referring again to Figure 10.5, the best case might correspond to the three 
very different environments 16, 23, and 22 because the model generalizes effec-
tively against all 20 of the other environments. Meanwhile, the worst case might 
correspond to training on the three similar environments 22, 02, and 07, causing 
the system to take longer to learn how to handle the novel situations, and thus 
receive a lower adequacy score.

In Algorithm 4.1, during step 4 (classify new radars) the AI-system-under-
test does not know the ground-truth environment, but the SD can correctly eval-
uate the performance of an open-set classifier. The score of the classifier depends 
on the environments in question. For example, it may be acceptable to consider 
environments 05 and 06 as the same, especially if the environments represent 
jammers and the chosen mitigation techniques have the same performance. Like-
wise, an open-set classifier should be able to recognize a novel transmitter more 
quickly when it is really different than when it is only slightly different from 
known examples.

Ablation tests demonstrate empirically that the cognitive system can learn to 
generalize from its experience to handle novel environments.

10.3 Computing Accuracy

EW systems use both regression and classification learning approaches. Regres-
sion models predict numerical values [i.e., y = f(x) for y ∈ R]. The accuracy of a 
regression model is evaluated using normalized root-mean-squared error (RMSE) 
(Section 10.3.1).

Classification models label discrete classes [i.e., y = f(x) and y ∈S for a dis-
crete set of classes S]. Classification models are evaluated using confusion matrices 
and related statistics (Section 10.3.2).

In EW, we also capture cases when multiple EP/EA strategies yield different 
performance for different RF environments. For example, multiple EP strategies 
might protect against one jammer type with different efficacy. These models are 
evaluated with a modified confusion matrix (Section 10.3.3).
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10.3.1 Regression and Normalized Root-Mean-Square Error

Regression algorithms are usually evaluated with RMSE, the square root of the 
average squared difference between the observed values ŷ  and the estimated values 
y. Normalized RMSE (nRMSE) allows results from different data distributions to 

be compared fairly. nRMSE is the RMSE divided by the standard deviation σ of 

the values. For v instances with a mean value of ( )µ == ∑1 ˆv
ii i

y
v

: 

  ( )
( ) )
( ) )σ

µ=

−
= − = =

−

∑
∑

∑

2

1
2

1
21

1 ˆ
1 RMSE

ˆRMSE nRMSE
1 ˆ

v

v ii

i
vi

ii

y y
vy y

v
y

v

 

The standard deviation represents the performance of a learner that uses the 
mean as the prediction for all instances. Our goal is to achieve as low an nRMSE 
as possible; 0.0 indicates that every instance is predicted with no error, while  
>1.0 indicates that no “fancy” model is needed because the mean value is better. 
Figure 10.6 illustrates a simple example allowing us to compare the models for 
two metrics.

A high nRMSE tells us that the model struggled to capture the performance 
surface. This result can help the system engineer understand and identify system-
atic problems, such as missing observables, faulty sensors, unreliable metrics, and 
temporal latencies.

10.3.2 Classification and Confusion Matrices

Classification algorithms are usually evaluated using accuracy values computed 
from confusion matrices using the structure illustrated in Table 10.2. The rows 
correspond to the known observed classes, while the columns correspond to the 
classes predicted by the model. A true positive or a true negative indicates that 
the model was correct, while a false positive or a false negative indicates that the 
model was wrong. Table 10.3 shows some notional results for the acoustic signal 
classes biological and man-made; this notional classifier yields 94.5% accuracy, 
with a propensity to label objects as man-made. Each cell in this confusion matrix 
counts the number of examples of each type, for two classes.

Depending on the problem, false negatives and false positives may have 
different consequences. For example, if an explosives detector in airport baggage 
scanner identifies a nonexplosive as an explosive, then the false positive creates 
some additional screening time. If the scanner misses an explosive, however, then 
the false negative could cost lives.
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10.3.2.1 Accuracy, Precision, Recall, and Class Imbalance

The accuracy of the confusion matrix is the diagonal counts divided by the total 
number of test instances. For a confusion matrix M that counts labels across x 
classes, M∈Jx×x:

 =

= =

= ∑
∑ ∑

,1

,1 1

Accuracy

x

i ii
x x

i ji j

M

M
 

Figure 10.6 To compare models that predict different ranges, we must normalize the RMSE by 
the standard deviation. (a) Metric m1 ranges from 458,365 to 537,068, with µ = 501,041 and σ = 
18,061; RMSE is 6,328, yielding an nRMSE of 0.350. (b) Metric m2 ranges from 5.7 to 13.6, with µ = 
9.7 and σ = 1.7; RMSE is 0.76, yielding an nRMSE of 0.442. (nRMSE=0.0 occurs when all predic-
tions are identical to the true values, and lie along the diagonal grey line.)
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Accuracy can be a misleading metric for imbalanced data sets (for example, 
when there are many fewer man-made objects than biological objects). Balanced 
accuracy normalizes predictions by the number of examples in each class:
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Recall corresponds to the number of samples in a class that were correctly 
labeled, by computing the diagonal value against the sum of the row i:

 
=

=
∑

,

,1

Recall i i
i x

i jj

M

M  

Precision corresponds to how tightly the model predicts a class, by comput-
ing the diagonal value against the sum of the column j:
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Table 10.3  
Notional Results for the Acoustic 

Signal Classes Biological and 
Man-Made

Bio Man-made
Biological 90 10
Man-made 1 99

Table 10.2  
Confusion Matrix Showing How a  

Classification Algorithm Identifies Objects 

Predicted 
Positive

Predicted 
Negative

Observed 
Positive

True positive False negative

Observed 
Negative

False positive True negative
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10.3.2.2 Multiple Classes

When there are more than two classes, we expect high match counts along the 
diagonal of the confusion matrix; off-diagonal results show misclassification er-
rors. Rows and columns are usually sorted by some form of similarity, making it 
easier to see (and possibly ignore) misclassification errors between similar classes. 
For example, in a modulation classification evaluation, we would expect QAM16 
and QAM64 to be adjacent, where misclassifications are unsurprising.

In the SEI example of Figure 10.7, each pair of rows/columns is two trans-
mitters mounted on the same radio platform that share a power supply. Therefore, 
misclassifications within each “block” of four cells around the diagonal are “less” 
incorrect than misclassifications elsewhere.

10.3.2.3 Weighted Accuracy and Model Quality

When the reward for a classification differs by class, we bias the accuracy evalu-
ation using a reward matrix, R ∈ Rx × x, and 0 ≤ Ri,j ≤ 1. In this case, we weight 
the confusion matrix M by the rewards R, obtaining a weighted accuracy matrix 
Q ∈ Rx × x: each cell i,j in M is weighted by its corresponding cell i,j in R:

 =, , ,Q M Ri j i j i j  

Overall quality of the model is computed as a percentage of the total (label 
quality divided by total number of labels):
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Figure 10.7 These confusion matrices represent the labels for specific emitter identification 
using two different classification algorithms [4]. (a) DeepNets achieved 71.9% accuracy. (b) A 
multistage training algorithm achieved 98.7% accuracy.
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As an example, consider a notional set of rewards for six radar classes (two 
radars with three modes each) in Table 10.4. Diagonal cells capture the case when 
the model correctly labeled both the radar and its mode. It is partially correct to 
identify the correct radar (but the wrong mode), or the correct mode (but the 
wrong radar). Using these reward weightings R to weight the classification results 
M of Table 10.5, we obtain the quality matrix Q shown in Table 10.6. Overall 
quality is 90%.

Table 10.4 
Notional Radar Reward Matrix R

R1M1 R1M1 R1M3 R2M1 R2M2 R2M3
Radar 1, Mode 1 1.0 0.5 0.5 0.3 — —
Radar 1, Mode 2 0.5 1.0 0.5 — 0.3 —
Radar 1, Mode 3 0.5 0.5 1.0 — — 0.3
Radar 2, Mode 1 0.3 — — 1.0 0.5 0.5
Radar 2, Mode 2 — 0.3 — 0.5 1.0 0.5
Radar 2, Mode 3 — — 0.3 0.5 0.5 1.0

Table 10.5 
Notional Model Classifies Radars and Modes, Yielding a Confusion  

Matrix M Showing 85% Accuracy

R1M1 R1M1 R1M3 R2M1 R2M2 R2M3 Recall
Radar 1, Mode 1 10 — — 2 — — 83%
Radar 1, Mode 2 1 11 — — — — 92%
Radar 1, Mode 3 — 1 5 — 1 5 42%
Radar 2, Mode 1 — — — 11 — — 100%
Radar 2, Mode 2 — — — 1 12 — 92%
Radar 2, Mode 3 — — — — — 12 100%

Precision 91% 92% 100% 79% 92% 71%

Table 10.6 
Combining the Confusion Matrix M of Table 10.4 and Reward Weights R 

of Table 10.5, Yielding Quality Matrix Q with a Quality Score of 90%

R1M1 R1M1 R1M3 R2M1 R2M2 R2M3
Radar 1, Mode 1 10 — — 0.6 — —
Radar 1, Mode 2 0.5 11 — — — 1.5
Radar 1, Mode 3 — 0.5 5 — 0 —

Radar 2, Mode 1 — — — 11 — —
Radar 2, Mode 2 — — — 0.5 12 —
Radar 2, Mode 3 — — — — — 12
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10.3.3 Evaluating Strategy Performance

To evaluate the effect of the strategy on system performance, neither nRMSE nor 
confusion matrices capture an essential concept:

For a given RF environment, there may be multiple strategies that contribute to 
performance with a nonzero utility.

A modified confusion matrix measures performance of strategies against envi-
ronments. Instead of the confusion matrix of environments by environments, we 
use environments by strategies.

The SD maintains a performance table  km  ∈Ja×b for each metric mk, where 
J is the set of positive integers, a << no  is the number of environments, and b is 
the number of strategies Π∀cvc. Each cell , km

i j  corresponds to the observed perfor-
mance of metric mk using strategy j = sn in environment i associated with on.2 Sec-
tion 2.1.1 describes how to compute an environment for collected observables.

Essentially,  km   summarizes the data from the GTDF, plus any experience 
collected in-mission. The GTDF is a collection of examples, <o,s,m>, while  km  is 
a table of size a × b for a given mk. In theory,  km   could have a very large number 
of rows, but the SD controls the number of environments a by setting the maxi-
mum number of environment clusters (Section 2.1.1) .

10.3.3.1 Adequacy: Performance over a Scenario

Adequacy is the performance of the system over a scenario. A simplistic way to 
compute adequacy is to count the strategy choices for each environment and score 
against the best strategy for that environment, similar to computing the quality 
matrix Q.

This approach, however, doesn’t take into account cases when changing 
strategies is part of the utility function (i.e., when the best strategy at time t de-
pends on which strategy was in place at time t – δ).

To compute adequacy during a mission, the SD uses the observed perfor-
mance Un(t) divided by the best possible performance Û n(t):

 ( ) ( )
( )

= ˆA n
n

n

U t
t

U t
 

Û n(t) corresponds to the strategy that could have achieved best performance 
at time t. The SD computes Û n(t) from the performance tables  km  using the 

2. It may be appropriate to maintain a list of the obtained performances and then use a probability 
distribution or other statistical measure to determine goodness relative to optimal.
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utility function in place at time t at node n, and computes Un(t) from the perfor-
mance feedback returned at time t + δ. (It is not the true optimal, but rather the 
optimal among previously-collected ground truth.)

Adequacy for the scenario is the average over all timestamps:

 ( )
=

= ∑
1

1
A A

T

n n
t

t
T

 

Figure 10.8 shows results from a scenario with six environments changing 
every five time units. Generally, the BBN SO chooses the best strategy for the 
environment, yielding an overall adequacy An = 0.86. Most errors occur when the 
environment changes, in that the strategy in place in envi has less utility against 
the next environment envi+1. When the adequacy stays at 1.0 even when the envi-
ronment changes, that indicates that the chosen strategy is equally useful in both 
environments. Adequacy can be negative (e.g., at t = 1), because costs outweigh 
benefit. Adequacy can improve over multiple timesteps (e.g., t = [11,...,13]) due 
to a ramp-up time of the strategy, or to incremental learning where the decision 
maker tries different strategies.

Figure 10.9 shows the impact of using incremental in-mission learning. 
The adaptive and cognitive systems start with a model trained on the same data. 
The SD exposes each system to the same sequence of novel environments. The 
adaptive system is not allowed to retrain and uses the learned-but-unchanging 
model throughout the scenario, yielding a final adequacy score of 0.28. The cog-
nitive system retrains three times, which enables it to choose better strategies, and 

Figure 10.8 The SD evaluates adequacy at each time step using the decision-maker’s strategy 
choice against the best-known strategy for that environment. (Example 7.1, [3].)
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achieves an adequacy score of 0.88. In-mission learning learns to handle the novel 
environments using only one example.

Each single point in Figure 10.5 represents the adequacy score for one 
train/test scenario, showing adequacy across all combinations of training/testing 
environments.

Incremental learning handles new environments with only a small loss of 
optimality.

Figure 10.9 A cognitive system in (b) performs better than an adaptive system in (a) the same 
test scenario. Triangles indicate when the decision maker triggered learning events (Example 
7.1. Redrawn from [3].)
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Unsupervised clustering determines the environments, and real-world ob-
served performance determines the utility. The optimal value for a given envi-
ronment may change during a mission, especially if exploration exposes better 
candidate strategies. When running in a setting without ground truth, “optimal” 
is the best known so far.

10.4 Learning Assurance: Evaluating a Cognitive System

Evaluating a cognitive system has many similarities to traditional validation and 
verification (V&V) approaches. Tests include normal cases, edge cases, stress con-
ditions, and adversarial situations. A learning system, however, requires adapta-
tion to the V&V process. Notably, this process ensures and evaluates model ro-
bustness, particularly with respect to changes in the data. All of the steps of data 
management, model development, and metalearning affect the quality of the final 
system.

Validation [of complex models] is a process involving measurements, 
computational modeling, and subject-matter expertise, for assessing how well 
a model represents reality for a specified quantity of interest and domain of 
applicability.

—National Research Council, 2012 [5]

10.4.1 Learning Assurance Process

Learning assurance is a quality assurance or quality control process for any ML-
enabled system. The learning assurance processes aim to provide the (cognitive) 
EW stakeholders with the same trust levels that existing EW systems boast, hav-
ing undergone the traditional “V”-shaped development assurance process.

Callout 10.1 presents a list of tasks necessary for developing an effective AI 
system. The design loop of Figure 10.10 ensures data quality, model accuracy, and 
model generalizability. The design phase is iterative, ensuring that all changes are 
verified: changes to the data formats, choices in model structure, and adaptations 
to hyperparameters.

To bring these design ideas into a formal certification methodology, the 
European Aviation Safety Agency and Daedalean AG adapted the traditional “V”-
shaped process to handle cognitive systems. The learning assurance “W” of Figure 
10.11 incorporates steps for learning systems: data life-cycle management, and 
model training and verification [6], described as follows:
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• Data management identifies candidate datasets, data preparation methods, 
data quality requirements, and validation objectives with respect to the 
product/system requirements and concept of operations (ConOps).

• Learning process management drives the selection and validation of ele-
ments such as the training algorithm, the initialization strategy, and hyper-
parameters. It also considers the hardware and software frameworks and 
chooses the evaluation metrics. The core measurement is accuracy. Accu-
racy depends on a variety of other contextual factors, and these trade-offs 
should be measured (Callout 10.2).

• Model training trains the model and evaluates model parameters using the 
validation dataset.

• Learning process verification evaluates the trained model against the test 
dataset, using the measurements identified for evaluation.

Callout 10.1 The five steps of an AI project guide and constrain 
development effort to encompass only necessary and sufficient actions.
In 1988, Cohen and Howe [2] presented an AI research five-stage model 
that describes evaluation guidelines per stage. These guidelines are provided 
in the form of detailed evaluation criteria and techniques, describing how to 
conduct an evaluation, and they are still valid today:

• Refine the topic to a task. Is the task significant? Is it representative of 
the class of tasks?

• Design the method. Is the method an improvement over existing ap-
proaches? What is the scope of the method? What alternative ap-
proaches exist?

• Build a program. How demonstrative is the program? Is it tuned for an 
example? Are the results predictable?

• Design experiments. How many examples can be demonstrated? What 
benchmarks should be used to compare results? How does each com-
ponent impact the result?

• Analyze the results. What is the performance? How efficient is the al-
gorithm? What are its limitations?

The paper goes into much more detail about each task, and how to evaluate 
steps.
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• Model implementation transforms the model into an executable model that 
can run on a target hardware. All optimizations and modifications for the 
embedded hard real-time environment must be validated.

Figure 10.10 During the design phase, principles of verification apply to the iterative process 
of data management, model development, and metalearning. Good design verification leads to 
performance assurance during the operational phase.

Figure 10.11 V&V for a learning system. (Source: [6]. Reprinted with permission.)
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• Inference model verification ensures that the embedded model continues to 
meet expected requirements.

• Data verification ensures that data assumptions have not changed.

Callout 10.2 Accuracy is the main system evaluation metric, 
but depends on a variety of other contextual factors and system 
requirements.

Accuracy: Successful characterization of the environment, behaviors, 
and causal event patterns, and high adequacy of EP/EA strategies.

Scalability: Number of emitters, number of strategies, size of training 
data.

Portability: Hardware and operating system context.

Complexity: Mission/threat complexity.

Data requirements: Amount, type, completeness, correctness; see also 
Table 8.1.

Computation effort: Time to learn a model, time to make an inference, 
sample efficiency.

Adaptability: Time and number of examples required to update a model 
to novel conditions.

Generalizability: Accuracy outside of the domain of applicability.

Robustness/stability: Brittleness and sensitivity to variation of input val-
ues.

Uncertainty/confidence: Ability to self-determine the confidence on the 
estimate.

Usability and explainability: Ease for a human to understand the results, 
both in-mission, and for forensics.

Safety: Ease of providing performance guarantees.

Transferability: Effectiveness of model in slightly different contexts (e.g., 
trained on synthetic data and tested on real data).

Cumulative gains: Impact of performance over time/experience, or in 
conjunction with additional AI/ML components.

Performance over time: System performance over time; concept drift; 
whether stakeholders develop genuine trust and willingness to rely on 
system decisions.
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Multiple-version dissimilar software is a system design technique that involves 
producing two or more components of software that provide the same function 
in a way that may avoid some sources of common errors between the components 
[7]. Correlated to ensemble learning (Section 3.2), redundant solutions increase 
system resilience and improve confidence in learning approaches.

Learning systems should be verified with both empirical and formal meth-
ods (or a combination thereof ) [6, 8]. Figure 10.12 briefly defines each category. 
Sections 10.4.2 and 10.4.3 present specific examples of formal and empirical veri-
fication methodologies, respectively.

The National Research Council describes how to assess the reliability of 
complex models [5]. Luckcuck et al. [9] provide a detailed overview of formal 
specification and verification for autonomous robotics. Jacklin et al. [10] address 
some of the unique V&V challenges for adaptive flight-critical control software. 
Lahiri and Wang [11] present various formal methods for ANN verification for 
safety-critical systems. Example 10.1 presents an example of an assurance archi-
tecture for an aircraft taxiing application.

From a practical perspective, useful outputs for verification methodologies 
include [6, 13]:

• Inputs that violate constraints (out-of-sample error);

• Amount that inputs can change before causing outputs to fail require-
ments;

• What outputs to expect for a given set of inputs;

• Confidence estimates that describe when a model is likely to fail.

Figure 10.12 Learning verification approaches include empirical, formal, and hybrid methods.
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10.4.2 Formal Verification Methods

Computational learning theory (CLT) and statistical learning theory (SLT) are sub-
fields of AI that study the design and analysis of ML algorithms [14–16]. While 
CLT and STL both share the same theoretical framework, CLT attempts to deter-
mine what problems are “learnable,” and STL focuses on improving the accuracy 
of existing ML algorithms.

The Vapnik–Chervonenkis (VC) dimension determines the complexity of a 
given classifier [17]. A large VC dimension indicates that the classifier is more 
complex and vice versa. The VC dimension can, for example, predict a probabi-
listic upper bound on the test error of a classifier [18].

Probably approximately correct (PAC) learning is a theoretical framework pro-
posed in 1984 by Leslie Valiant [19]. PAC learning is used for analyzing ML gen-
eralization errors in terms of their errors on training datasets, while also providing 
some measures of their complexity. Its typical objective is to demonstrate a high 
probability (hence the “probably” part) of an algorithm achieving a low general-
ization error (the “approximately correct” part). PAC learning has been extended 
to include PAC-Bayesian inequalities [20–22]. McAllester’s PAC-Bayesian analy-
sis, for example, derives upper empirical bounds for Bayesian classifiers [23]. In a 
sense, this analysis could be considered semiformal.

Katz et al. [24, 25] develop a theoretical framework for verifying deep neu-
ral networks (DNNs). Marabou is based on satisfiability modulo theories (SMT) 

Example 10.1 Multiple assurance approaches prove the safety ML-
based components within an aircraft taxiing application.
Cofer et al. [12] demonstrated a run-time assurance architecture for an air-
craft-taxiing application. The demonstration included a safety architecture 
based on the ASTM F3269-17 standard for bounded behavior of complex 
systems, diverse run-time monitors of system safety, and formal synthesis 
of critical high-assurance components. The developed architecture demon-
strated the ability to maintain system safety in the presence of defects in the 
underlying ANN-enabled components.

Cofer et al. used the following techniques to assure the system: (1) 
modeling system architecture using the Architecture Analysis and Design 
Language (AADL), (2) formally verifying system behaviors using the Assume 
Guarantee Reasoning Environment (AGREE), (3) using an architecture-
based assurance case for showing correct implementation with the resolute 
language, (4) employing various run-time monitors for system safety, integ-
rity, and availability, and (5) developing synthesis from formal specifications 
with proof of correctness for critical high-assurance components. Note that 
AGREE uses k-induction as the underlying algorithm for model checking.
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solvers and can answer queries about a DNN’s properties by transforming these 
queries into constraint satisfaction problems. Marabou formally proved that 
DNNs avoid midair collisions. SMT methods can also detect adversarial pertur-
bations, that is, the minimal changes that cause the network to misclassify. The 
method can guarantee that adversarial examples, if they exist, are found for the 
given region and family of manipulations [26]. SMT solvers belong to a class of 
automated theorem provers that can deduce the satisfiability and validity of first-
order formulas, in particular logical theories. Balunovic et al. [27] show that SMT 
solvers are more general than satisfiability (SAT) solvers, and have been used for 
verification of neural networks, program synthesis, static analysis, and scheduling. 
SAT solvers essentially provide a generic combinatorial reasoning-and-search plat-
form and have been used for software verification, planning, and scheduling [28].

Wang et al. [29] use interval arithmetic to compute rigorous bounds on the 
DNN outputs and symbolic interval analysis to minimize overestimations of out-
put bounds. Amini et al. [30] compute precise and calibrated uncertainty estimates 
to estimate out-of-distribution samples and recognize when the model is likely to 
fail. Uncertainty can come from both data (aleatoric uncertainty) and from the 
prediction (epistemic uncertainty).

Maher and Orlando [31] use ontology-based knowledge graphs to enhance op-
erational training of ML capabilities. The use of an ontology model, through the 
creation of knowledge graphs, can be a solution for dealing with bad data. This 
methodology allows for a formal and explicit expression of domain’s concepts by 
adding the semantics to describe how domain data relate to each other.

Formal verification methods are attractive due to their ability to theoreti-
cally determine algorithmic stability. However, the complexity of DeepNets and 
other ML algorithms makes it difficult to utilize formal software verification pro-
cesses. Issues include computational complexity, scalability, applicability, lack of 
benchmarking, and trade-off between runtime and results completeness.

10.4.3 Empirical and Semiformal Verification Methods

Empirical verification approaches must be conducted in a closed-loop manner 
because the environment responds to actions (Section 10.1).

During the design phase, verification testing can be performed with syn-
thetic data, emulated data, real training data, augmented data, or any combina-
tion. Performance measurement(s) should be conducted in the field, especially 
during the operational phase of learning assurance. For example, if real raw I/Q 
data is unavailable, RF signal classifiers can be initially trained/verified on syn-
thetic I/Q data (e.g., generated via MATLAB). Although synthetic data intro-
duces unwanted artifacts and lack realism (e.g., I/Q imbalance or phase noise of 
a given OFDM system), it can also provide data diversity and capture edge cases 
(Section 8.3.2). Some of the general drawbacks of empirical verification method-
ologies can be (training) data integrity and data bias. Approaches include:
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• Ablation testing: n-choose-k ablation testing (Section 10.2) demonstrates 
that the system can handle new environments, because it trains on k cases 
and tests all n known ground-truth environments, thus evaluating perfor-
mance on n − k novel environments.

• Adversarial testing: This approach assesses ML algorithms’ robustness 
against an adversary who does the worst possible thing (e.g., [32]).

• White-box testing: White-box verification methods assess the behavior of a 
model through testing. The white-box concept determines the final out-
put behavior and its internal parameters such as neural coverage and acti-
vation patterns [33, 34].

• Limitation studies: To understand how well the system will perform in 
unexpected conditions, test it with known edge cases, such as increased 
noise, incomplete data, or errors. Falsification, for example, generates edge 
cases. While there are no guarantees of completeness or correctness with 
this method, test coverage is typically expanded in efficient ways that make 
sense [35, 36].

• Mistake-bound model: A mistake-bound model addresses the question of 
how many mistakes an online learning algorithm will make before it learns 
the intended concept or target function f [37, 38]. Learning occurs in 
rounds, where in each round the SD provides an unlabeled example x, and 
the learner must predict the value f (x) of the unknown target function f. 
The SD then provides the performance feedback, allowing the learner to 
retrain and update its hypothesis. The mistake bound of the learner is the 
worst-case number of mistakes it makes across all rounds.

• Simplification: Elboher et al. [39] propose a verification framework for 
simplifying neural nets by using overapproximation to reduce the size of 
the network. Knowledge distillation trains “teacher” models and then trains 
a simple “student” model to mimic the teacher [40–42]. Abstract interpre-
tation approximates the behavior of the network, explicitly managing the 
trade-off between approximations and precisions [43].

• Occam learning: Occam learning is closely related to PAC learning but 
can produce tighter (empirical) bounds on the training dataset’s complex-
ity. The algorithm’s objective is to output a concise representation of the 
received training dataset. Occam learning was named after Occam’s razor, 
a principle stating that, given two explanations for observed data, all other 
things being equal, the simpler explanation is preferred [44].

• Sensitivity analysis/tuning studies: Metalearning (Section 5.1.3) can esti-
mate how sensitive the models are to changes in hyperparameters, yield-
ing estimates of stability and robustness to change. Output reachability 
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analysis computes the maximum sensitivity of neural networks, and then 
simulates the output reachable set [45].

• Direct assessment: In some cases, an end user can evaluate the “plausibility” 
of system performance. While this approach doesn’t provide any “publish-
able” results, it builds stakeholder trust.

10.5 Conclusion

Evaluating a learning system requires thinking outside the traditional V&V meth-
ods. Traditional approaches tend to validate system performance on one (or sev-
eral) fixed, known scenarios, and do not portray novel situations. The learning 
assurance process must validate data quality, model accuracy, and model gener-
alizability. System requirements generally handle pure DM (optimization) ap-
proaches but have not yet caught up to the needs of learning-based AI. Data 
quality, data storage, model security, and validation objectives are lacking.

Due to the interactive and adversarial nature of EW, cognitive systems must 
be tested in a closed-loop environment. System requirements highlight which of 
the three axes of cognition (Figure 1.3) matter to the mission, ensuring that test 
scenarios and measured characteristics meet goals.
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Getting Started: First Steps

Creating a cognitive EW system is not the hurdle that many believe.

It’s easy to start small and grow, as follows:

1. Choose a bite-sized task.

2. Choose an ML toolkit and prototype a model.

3. Evaluate with representative data.

4. Implement on representative hardware.

As with all things, the devil’s in the details, but starting small develops (human) 
expertise and awareness of which details will affect the final product.

Step 1: The first step in adopting cognitive solutions in an existing system 
is to identify a bite-sized task that is easy to accomplish. Typically, this new 
component would replace, or augment, existing traditional approaches. 
Good candidates include:

• Learn to classify signals (Algorithm 4.1);

• EW BDA (Section 7.1.1); 

• Learn the performance of actions (Section 4.2), and then choose a strat-
egy (Algorithm 5.1). Possible metrics include BER or link stability. For 
BER, Figure 2.1 lists some example observables and Table 5.1 lists some 
example controllables. Table 11.1 lists some example observables and 
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controllables for link stability. Link stability decisions depend on BER 
and other variables; hysteresis or other statistics may also be relevant.

Step 2: Choose one of the ML toolkits of Section 11.2.1. Implement an initial 
prototype with the process outlined in Algorithm 4.1. The goal is to develop the 
pipeline, not to test the accuracy. Test the pipeline on any available machine.
 The main factor driving rapid prototyping is training time, which in turn 
is driven by amount of data and number of training iterations. Use a very 
small sample of data (e.g., < 100 samples); the data should have approxi-
mately similar ranges and numerical representations (preferably normalized), 
but doesn’t have to be realistic or representative. (e.g., Table 11.2). (That said, 
the more that the characteristics of this initial data represent the characteris-
tics of the expected data, the better.) Train on 10% of the data, test on 90%, 
and choose loose hyperparameters (e.g., increase error limits and reduce the 
number of training epochs).

Step 3: Once the logic flow is established, switch to a representative data-
set. Start with synthetic data and move to emulated and real data wherever 
possible; focus on maintaining diversity (Section 8.3.2). Evaluate candidate 
models, and vary their hyperparameters over acceptable ranges. Use the 
evaluation approaches in Chapter 10 to choose an ML algorithm.

Step 4: Implement on representative hardware. SDR platforms are a good 
stand-in for many EW platforms: they are relatively inexpensive and provide 
an RF front end [1, 2] (Figure 11.1). Expect translation from prototype 
model to embedded code to be a significant effort. When stable, transition 
to the target platform.

11.1 Development Considerations

Callout 10.1 suggests a framework for expanding to a broader cognitive solution 
for EW. EW efforts should factor in the following items:

• Define a scenario. This step is too often neglected. A scenario ensures col-
lecting the right data and choosing the right algorithms for the platform 

Table 11.1 
Example Observables and Controllables for Link Stability 

Observables Controllables
BER (moving average; hysteresis)
Packet error rate (moving average; hysteresis)
Link disruptions (time of most recent, hysteresis)
Correlation of link disruptions to context (e.g., 
geography, EW activity)

Implement or deactivate retransmission
Modify waveform modulation
Implement or deactivate network coding
Modify network coding parameters
Change the physical node position
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and mission. It is easy to collect the wrong data, develop “too much” on-
tology, choose the wrong hardware, or neglect end-user concerns such as 
explainability. Create a set of requirements, asking questions such as those 
in Table 3.2, Figure 6.2, and Chapter 8, and determine where and how the 
adversary plays a part.

• Bring in data engineers from day zero. There are too many cases where 
RF engineers collect good data that can’t be reused later. The initial data 
framework (e.g., structure and ontology) should capture the initial use 
cases [3] and provide hooks for extensibility. Clearly define the metadata. 
(Section 8.1.1)

• Identify the required data early. Too many solutions expect to have a good 
dataset, but in EW there will be no good existing dataset; it will be small, 
and there may be no ground truth. Knowing the characteristics of the data 
will drive the solution choice more than any other factor (Section 11.2.3).

• Assume that your offline data is only somewhat indicative of online data. The 
solution must handle novel conditions. While ablation trials (Section 10.2) 

Table 11.2 
Development of the Initial Logic Flow that Do Not Need Real or Realistic Data

Class Duty Freq PRF PW
Pulse 2.8 9200 5048 0.0005546
Pulse 2.9 7430 6373 0.0004550
Pulse 2.5 9790 1396 0.0017908
Pulse 1.5 4640 4609 0.0003254
PulseDoppler 38 1900 7799 0.0048724
PulseDoppler 49 4600 5148 0.0095182
PulseDoppler 34 8590 1619 0.0210006
PulseDoppler 26 5730 5116 0.0050820
CW 100 8830 7559 0.0132292
CW 100 610 3810 0.0262467
CW 100 7240 6772 0.0147666
CW 100 1570 9280 0.0107758

Figure 11.1 SDR platforms provide RF front end, CPU, FPGA and in some cases ASICs.
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establish confidence that the system will work on unknown conditions, 
events will occur outside all expected boundaries.

• Expect that most of your time will be cleaning data. Common problems 
include correcting sensor errors, deconflicting with legacy capabilities, and 
only receiving the “scraps” of data that the legacy system will share. (Sec-
tion 8.2).

• Prepare a closed-loop test environment. EW systems operate against an ad-
versary; testing using a static training set will not fulfill the goal. There is 
generally a lack of closed-loop test systems on which to test DM (Section 
10.1).

• Ensure that you have a scalable software architecture. Interoperability, modu-
larity, and scalability are hard to retroengineer. Expect conflicts with legacy 
systems that will need to be resolved (Section 9.1).

• Ensure system security from the start. Adding security infrastructure later 
will not achieve objectives. Protect the data and the model (Section 8.3.5).

• Prototype and evaluate a variety of candidate solutions. Choose a tool that 
allows rapid development and comparison of algorithms (Section 11.2.1). 
When choosing a final solution, consider not only the accuracy, but other 
requirements (Section 3.6), including data availability, training time, in-
ference time, memory usage, explainability and security.

• Expect to manually translate the prototype code for the embedded platform. 
No existing vendor tool chain is sufficient for deployment or memory and 
timing management on embedded hard real-time platforms (example in 
Section 9.2).

5G’s use cases and AI/ML solutions have many similarities to EW systems, 
as outlined in Callout 11.1 and Section 4.3.2. Tracking and adopting the work for 
5G holds promise for new capabilities in EW. NATO’s Cognitive Radar working 
group released a cognitive radar report that also compiles good examples [17].

11.2 Tools and Data

Existing ML toolkits, datasets, and simulation frameworks can accelerate the pro-
totype and development process.

11.2.1 ML Toolkits

Popular ML libraries include scikit-learn [18], TensorFlow [19], MATLAB Ma-
chine Learning Toolbox [20], R [21], and WEKA [22]. Many of these kits have 
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Callout 11.1 5G use cases and solutions have direct application to EW.
5G is the fifth generation of commercial cellular networks. Developed by the 
3rd Generation Partnership Project (3GPP) standardization body, it is a new 
global wireless standard that could be transformative as it promises signifi-
cantly higher data rates (multi-gigabits-per-second peak data speeds), lower 
latency (in milliseconds), ubiquitous connectivity, and higher reliability than 
3G and 4G technologies. 3GPP defines three primary 5G new radio (NR) 
use cases:

• Enhanced mobile broadband (eMBB): Large amounts of data will be 
transmitted at much higher throughputs compared to 3G and 4G. 
eMBB will address bandwidth-hungry applications, such as massive 
video streaming and virtual/augmented reality (VR/AR) [4].

• Ultra-reliable and low-latency communications (URLLC): Also known 
as mission-critical communications, URLLC will provide a stable net-
work and the lowest possible latency (in milliseconds) to initiate con-
nectivity (e.g., tactile Internet, autonomous vehicles (cars and drones) 
and the low latency of 1 millisecond or less for collision avoidance).

• Massive machine-type communications (mMTC): Sets the foundation 
for the Internet of Things (IoT). mMTC will allow machines (up 
to one million devices per 1 square km) to communicate with one 
another while requiring only a minimal human involvement (e.g., in-
dustrial applications, metering, or massive sensor networks).

Moreover, new 5G features, such as the dynamic air interface, network 
function virtualization, and network slicing, introduce additional system 
design complexity and optimization requirements to address challenges re-
lated to network operation and maintenance. Consequently, ML has recently 
come back into focus in the field of communications for its potential to 
address these challenges that cannot be resolved with traditional method-
ologies. For example, 3GPP and International Telecommunications Union 
(ITU) have both proposed 5G research projects involving various AI/ML 
techniques. You et al. [5] discuss four problems in 5G whose solutions have 
direct application to EW:

1. Network resource allocation: The 5G NR orthogonal frequency-divi-
sion multiplexing (OFDM) resource block (RB) allocation is much 
more complex than that of 4G long-term evolution (LTE) because 
of the required support for the three aforementioned use cases. RL 
performs RB allocation [5] and 5G network slicing [6].
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  Yao et al. [5] discuss how to achieve energy-efficient beamform-
ing in a massive MIMO system by finding the beamforming ma-
trix, which introduces minimum power amplifier nonlinearities 
within a large solution space. The RNN recursively learns about 
the nonlinearities of the PAs and finds suitable neuron weights that 
satisfy two requirements: (1) zero forcing beamforming, meaning 
minimal multiuser interference and (2) minimum overall nonlinear 
distortion. The RNN models the nonlinearity of the power am-
plifier array, which then optimized to minimal transmitted power 
while providing a zero-forcing solution. The RNN then notifies the 
5G system on how to set its zero-forcing beamforming weights [4].

  Other ML techniques incorporate context awareness for resource 
allocation [7], game theory to optimize power control for users 
from multiple cells that are assigned the same RB [8], and manag-
ing and orchestrating cellular network resources [9].

2. Self-organizing networks (SONs): SON is a new way of network 
management that provides intelligence in the operation and main-
tenance of the network. 3GPP introduced SON as a key compo-
nent of 4G LTE networks. 3GPP divides SON solutions into three 
categories: self-configuration, self-optimization, and self-healing. 
With 5G, SON functions will have to improve due to network ul-
tra-densification and dynamic resource allocation as well as overall 
increased network complexity.

  ML techniques such as ANN and genetic algorithms solve vari-
ous SON functions such as new cell and spectrum deployment, 
automatic base station configuration, coverage and capacity optimi-
zation, and cell-outage detection and compensation [5, 10–12].

  Gomez et al. [13] developed a root-cause analysis system that 
combines supervised and unsupervised learning techniques in three 
steps: (1) unsupervised SON training, (2) unsupervised clustering, 
and (3) labeling by experts.

3. Uniform 5G baseband acceleration: The 5G baseband signal process-
ing comprises a series of signal-processing blocks, including mas-
sive MIMO detection and polar codes for channel decoding. The 
increased number of baseband blocks results in much more com-
plex hardware designs and implementations. To speed up baseband 
signal processing, a uniform accelerator can be designed with the 
factor-graphs-based belief propagation algorithms (applied to all 
the blocks), aided by DeepNets (e.g., [14, 15]).
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good online documentation. The book Hands-On Machine Learning with Scikit-
Learn, Keras & TensorFlow [23] is an excellent foundation for the Python envi-
ronment. These libraries are effective for prototyping but will need significant 
modification for embedded hard real-time operation [24].

11.2.2 ML Datasets

Kaggle [25], IEEE [26], and Google Dataset [27] provide links to many public 
datasets. Good, comprehensive RF-specific datasets are desperately needed [28]. 
Even if the data exists, few of the datasets are tagged well enough for reuse (Sec-
tion 8.1.1). Starting points include snowfall properties of radars [29] and USRP 
fingerprinting [30]. Flowers [31] provides code to generate synthetic data for 
fingerprinting.

11.2.3 Radio Frequency Data-Generation Tools

Given the complexity of the RF environment, exacerbated by the adversarial na-
ture of EW, synthetic and emulated data-generation capabilities are key, both for 
basic data generation (Section 8.3.2) and interactive simulation/emulation (Sec-
tion 10.1).

In contrast to frequent and dedicated Chinese or Russian experimentation, 
[US] DoD does not pursue extensive EW or EMS experimentation due to 
concerns about operational security and access to ranges and other appropriate 
instrumented facilities... An increased reliance on virtual and constructive 
systems for EW and EMSO training could improve DoD’s ability to 
experiment, as could a new approach to R&D that combines technical and 
operational innovation.

—Center for Strategic and Budgetary Assessments, 2019 [32]

4. Optimization of end-to-end physical layer communication: O’Shea 
and Hoydis [16] propose an autoencoder-based end-to-end PHY 
optimization method. By interpreting a communications system as 
an autoencoder, the authors propose a novel approach of thinking 
about communications-system design as an end-to-end reconstruc-
tion task that seeks to jointly optimize transmitter and receiver com-
ponents in a single process.

The demonstrated solutions to the 5G use cases map to problems in the 
communications, radar, and cognitive EW systems across many operational 
domains.
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MATLAB’s RF Toolbox [33] is an easy-to-access signal generator. Flowers 
[31] provides code to generate synthetic data for fingerprinting.

A variety of testbeds have been developed that support interactive design 
and evaluation of cognitive EW systems, e.g., [2, 34–36]. Many commercial sig-
nal generators exist that can be integrated with the test engine [37]. CEESIM is a 
plug-in to MATLAB [38]. A small testbed using Raspberry Pi [39] or USRP [40] 
radios supports inexpensive over-the-air signal collection and testing for initial 
prototypes, to develop and test the decision logic.

RF simulation and emulation tools exist that support high-fidelity develop-
ment and testing of EW systems, including RFNest [41], NEWEG [42], RFView 
[43], and RES [44].

11.3 Conclusion

Creating a cognitive EW system is conceptually easy to grasp. Taking small incre-
mental steps to incorporate cognitive concepts in an existing system will ensure 
the success of the final product. Don’t aim for a fully cognitive system (Figure 1.3) 
in a single step; choose the most brittle piece that needs to be replaced with a more 
robust empirical or heuristic method. Ask yourself:

• Does your system need better situation assessment? Deeper understanding 
of the RF environment, the anomalies, and the intent of the emitters?

• Does your system need better DM? Something that can adapt to changing 
conditions and surprises?

• Does your system need to learn from its mistakes?

Each small step is a step in the right direction.

We don’t need to wait for a ‘boil the ocean’ ‘big bang’ ‘all in’ new network of 
the future to get software defined networking (#SDN) into tactical systems. 
We can layer it on top of what we have today.

—Tim Grayson (DARPA), 2020, referring to #DyNAMO [45]
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Acronyms

ACK Acknowledge

ACO Ant Colony Optimization

AI Artificial Intelligence

ANN Artificial Neural Network

API Application Programming Interface

ASIC Application-specific Integrated Circuit

BDA Battle Damage Assessment

CNN Convolutional Neural Network

CPU Central Processing Unit

CR Cognitive Radio

CRN Cognitive Radio Network

CTS Clear-to-Send

DM Decision Making

DoD Department of Defense (USA)

DSA Dynamic Spectrum Access

EA Electronic Attack

EBM Electronic Battle Management

ECM Electronic Countermeasures

EMS Electromagnetic Spectrum



234 Cognitive Electronic Warfare: An Artificial Intelligence Approach  Acronyms 235

EMSO Electromagnetic Spectrum Operations

EP Electronic Protect

ES Electronic Support

EW Electronic Warfare

EW BDA Electronic Warfare Battle Damage Assessment

EWO Electronic Warfare Officer

FFT Fast Fourier Transform

FPGA Field Programmable Gate Array

GAs Genetic Algorithms

GMM Gaussian Mixture Model

GPU Graphics Processing Unit

I/Q In-phase and Quadrature

IP stack Internet Protocol 7-layer stack

ISR Intelligence, Reconnaissance, and Surveillance

kNN k-Nearest Neighbor

MAC Medium Access Layer in the IP stack

MANET Mobile Ad-hoc Network

MDP Markov Decision Process

ML Machine Learning

NLP Natural Language Processing

PHY Physical layer in the IP stack

POI Probability of Intercept

POMDP Partially-observable MDP

Pd Probability of detection

Pfa Probability of false alarm

QoS Quality of Service

RF Radio Frequency

RL Reinforcement Learning

RNN Recurrent Neural Network
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RTS Request-to-Send

SA Situation Assessment

SAR Synthetic Aperture Radar

SD Scenario Driver

SO Strategy Optimizer

SDR Software Defined Radio

SEI Specific Emitter Identification

SVM Support Vector Machines

SWaP Size, Weight, and Power
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