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        Introduction to the Electronic Editions
        

         
        
      
        
This e-book edition of The Feynman Lectures on Physics New Millennium Edition derives from the free-to-read online version at www.feynmanlectures.caltech.edu, which in turn derives from the LATEX manuscript used to print the books. Certain adaptations have been made to accommodate the displays of typical e-readers, including narrowing wide equations and tables, and splitting figures into parts for reflowability.



        
The typographical limitations of today’s popular e-book formats are especially evident in science and mathematics texts in which mathematical expressions, formulas and equations clash with the text or degrade when scaled. We consider this unacceptable for The Feynman Lectures on Physics, and so we have created a new kind of e-book especially for this edition – one which seamlessly integrates text, mathematics, figures and tables. 



        
Whenever technically feasible, mathematics are presented using HTML and stylesheet formatting; otherwise, vectorized images are used. Great effort has been put into making the mathematical typography rendered by these two different methods indistinguishable. Vectorized images are used for tables and line-drawn figures so that they also scale without degradation, uniformly with the text and mathematics. 



        
The lasting popularity of The Feynman Lectures on Physics, now more than fifty years in print, stands out as a testament to both the continued relevance of its subject matter and the enthusiastic spirit in which it is presented. It is our sincere hope that the electronic editions of Feynman’s lectures will make them even more accessible, so they may be more widely and better appreciated, and serve as an inspiration and guide to bright eager minds throughout the world, far into the future.




Michael A. Gottlieb, Editor

Rudolf Pfeiffer, Editor

Lars I. Næsheim, Ebook Producer


June 19, 2015
       




        
        
	
        

        

  
    
      
        
        
        About the Authors
        

         
        
        
        Richard Feynman
        

      
        
		
        Born in 1918 in New York City, Richard P. Feynman received his Ph.D from Princeton in 1942.
        Despite his youth, he played an important part in the Manhattan Project at Los Alamos during World
        War II. Subsequently, he taught at Cornell and at the California Institute of Technology. In 1965
        he received the Nobel Prize in Physics, along with Sin-Itiro Tomonaga and Julian Schwinger,
        for his work in quantum electrodynamics.
		

        

        
        
        
		
        Dr. Feynman won his Nobel Prize for successfully resolving problems with the theory of quantum
        electrodynamics. He also created a mathematical theory that accounts for the phenomenon of
        superfluidity in liquid helium. Thereafter, with Murray Gell-Mann, he did fundamental work in the
        area of weak interactions such as beta decay. In later years Feynman played a key role in the
        development of quark theory by putting forward his parton model of high energy proton collision
        processes.
        

        

        
        
		
        Beyond these achievements, Dr. Feynman introduced basic new computational techniques and notations
        into physics—above all, the ubiquitous Feynman diagrams that, perhaps more than any other formalism
        in recent scientific history, have changed the way in which basic physical processes are conceptualized
        and calculated.
        

        

        
        
		
        Feynman was a remarkably effective educator. Of all his numerous awards, he was especially proud of
        the Oersted Medal for Teaching, which he won in 1972. The Feynman Lectures on Physics,
        originally published in 1963, were described by a reviewer in Scientific American as “tough, but
        nourishing and full of flavor. After 25 years it is the guide for teachers and for the best
        of beginning students.” In order to increase the understanding of physics among the lay public,
        Dr. Feynman wrote The Character of Physical Law and QED: The Strange Theory of Light and
        Matter. He also authored a number of advanced publications that have become classic references
        and textbooks for researchers and students.
        

		

		
        
		
        Richard Feynman was a constructive public man. His work on the Challenger commission is well known,
        especially his famous demonstration of the susceptibility of the O-rings to cold, an elegant experiment
        which required nothing more than a glass of ice water and a C-clamp. Less well known were
        Dr. Feynman's efforts on the California State Curriculum Committee in the 1960s, where he protested
        the mediocrity of textbooks.
        

		

		
        
		
        A recital of Richard Feynman's myriad scientific and educational accomplishments cannot adequately
        capture the essence of the man. As any reader of even his most technical publications knows, Feynman's
        lively and multi-sided personality shines through all his work. Besides being a physicist, he was at
        various times a repairer of radios, a picker of locks, an artist, a dancer, a bongo player, and even a
        decipherer of Mayan hieroglyphics. Perpetually curious about his world, he was an exemplary empiricist.
        

		

		
        
		
        Richard Feynman died on February 15, 1988, in Los Angeles.
        

		

        

        
        
        
        Robert Leighton
        

        
        
		
        Born in Detroit in 1919, Robert B. Leighton did ground-breaking work in solid state physics, cosmic ray physics, the beginnings of modern particle physics, solar physics, planetary photography, infrared astronomy, and millimeter- and submillimeter-wave astronomy over the course of his life. He was widely known for his innovative design of scientific instruments, and was deeply admired as a teacher, having authored a highly influential text, Principles of Modern Physics, before joining the team developing The Feynman Lectures on Physics.
        

		


        
		
        In the early 1950s Leighton played a key role in showing the mu-meson decays into two neutrinos and an electron, and  made the first measurement of the energy spectrum of the decay electron.  He was the first to observe strange particle decays after their initial discovery, and elucidated many of the properties of the new strange particles.
        

		


        
		
        In the mid-1950s Leighton devised Doppler-shift and Zeeman-effect solar cameras. With the Zeeman camera, Leighton and his students mapped the sun's magnetic field with excellent resolution, leading to striking discoveries of a five-minute oscillation in local solar surface velocities and of a “super-granulation pattern,” thus opening a new field: solar seismology. Leighton also designed and built equipment to make clearer images of the planets, and opened another new field: adaptive optics. His were considered the best images of the planets until the era of space exploration with probes began in the 1960s.
        

		


        
		
        In the early 1960s, Leighton developed a novel, inexpensive infrared telescope, producing the first survey of the sky at 2.2 microns, which revealed an unexpectedly large number of objects in our galaxy too cool to be seen with the human eye.  During the mid-1960s he was Team Leader at JPL for  Imaging Science Investigations on the Mariner 4, 6, and 7 missions to Mars. Leighton played a key role in the development of JPL's first deep-space digital television system, and contributed to early efforts at image processing and enhancement techniques.
        

		


        
		
        In the 1970s, Leighton's interest shifted to the development of large, inexpensive dish antennae that could be used to pursue millimeter-wave interferometry and submillimeter-wave astronomy. Once again, his remarkable experimental abilities opened a new field of science, which continues to be vigorously pursued at the Owens Valley Radio Observatory and the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile.
        

		


        
		
        Robert Leighton died on March 9, 1997, in Pasadena, California.
        

		

        

        

        
        
        Matthew Sands
        

        
        
		
        Born in 1919 in Oxford, Massachusetts, Matthew Sands received his BA from Clark University in 1940 and his MA from Rice University in 1941. During World War II he served on the Manhattan Project at Los Alamos, working on electronics and instrumentation. After the war Sands helped found the Los Alamos Federation of Atomic Scientists, which lobbied against the further use of nuclear weapons. During that period he earned his Ph.D at MIT researching cosmic rays under Bruno Rossi.
        

		


        
		
        In 1950 Sands was recruited by Caltech to build and operate its 1.5 GeV electron synchrotron. He was the first to show, theoretically and experimentally, the importance of quantum effects in electron accelerators.
        

		


        
		
        From 1960 to 1966, Sands served on the Commission on College Physics, spearheading reforms in the Caltech undergraduate physics program that created The Feynman Lectures on Physics. During that time he also served as a consultant on nuclear weapons and disarmament to the President’s Science Advisory Committee, the Arms Control and Disarmament Agency, and the Department of Defense.
        

		


        
		
        In 1963 Sands became Deputy Director for construction and operation of the Stanford Linear Accelerator (SLAC), where he also worked on the Stanford Positron Electron Asymmetric Rings (SPEAR) 3 GeV collider.
        

		


        
		
        From 1969 to 1985 Sands was a physics professor at University of California, Santa Cruz, serving as its Vice Chancellor for Science from 1969 to 1972. He received a Distinguished Service Award from the American Association of Physics Teachers in 1972. As Professor Emeritus, he continued to be active in particle accelerator research until 1994. In 1998 the American Physical Society awarded Sands the Robert R. Wilson Prize “for his many contributions to accelerator physics and the development of electron-positron and proton colliders.”
        

		


        
		
        In his retirement Sands mentored local elementary and high school science teachers in Santa Cruz, helping them set up computer and laboratory activities for their students. He also supervised the editing of Feynman’s Tips on Physics, to which he contributed a memoir describing the creation of The Feynman Lectures on Physics.
        

		


        
		
        Matthew Sands died on September 13, 2014, in Santa Cruz, California.
        

		

        

        
        

   

  
    
        
        
        
        Preface to the New Millennium Edition
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		Nearly fifty years have passed since Richard Feynman taught the introductory
        physics course at Caltech that gave rise to these three volumes, The Feynman
        Lectures on Physics. In those fifty years our understanding of the physical
        world has changed greatly, but The Feynman Lectures on Physics has
        endured. Feynman’s lectures are as powerful today as when first published, thanks
        to Feynman’s unique physics insights and pedagogy. They have been studied
        worldwide by novices and mature physicists alike; they have been translated into
        at least a dozen languages with more than 1.5 millions copies printed in the
        English language alone. Perhaps no other set of physics books has had such wide
        impact, for so long.

        
        
        
		
        This New Millennium Edition ushers in a new era for The Feynman
        Lectures on Physics (FLP): the twenty-first century era of electronic
        publishing. FLP has been converted to eFLP, with the text and
        equations expressed in the LaTeX electronic typesetting language, and all figures
        redone using modern drawing software.

        
        
        
		
        The consequences for the print version of this edition are not
        startling; it looks almost the same as the original red books that physics
        students have known and loved for decades. The main differences are an expanded
        and improved index, the correction of 885 errata found by readers over the five
        years since the first printing of the previous edition, and the ease of
        correcting errata that future readers may find. To this I shall return
        below.

        
        
        
		
        The eBook Version of this edition, and the Enhanced Electronic
        Version are electronic innovations. By contrast with most eBook versions of
        20th century technical books, whose equations, figures and sometimes even text
        become pixellated when one tries to enlarge them, the LaTeX manuscript of the
        New Millennium Edition makes it possible to create eBooks of the highest
        quality, in which all features on the page (except photographs) can be enlarged
        without bound and retain their precise shapes and sharpness. And the Enhanced
        Electronic Version, with its audio and blackboard photos from Feynman’s
        original lectures, and its links to other resources, is an innovation that would
        have given Feynman great pleasure.
        
		

		

		
		
        Memories of Feynman’s Lectures

        
        
		
        These three volumes are a self-contained pedagogical treatise. They are also a
        historical record of Feynman’s 1961–64 undergraduate physics lectures, a course
        required of all Caltech freshmen and sophomores regardless of their majors.

        
        
        
		
        Readers may wonder, as I have, how Feynman’s lectures impacted the students who
        attended them. Feynman, in his Preface to these volumes, offered a somewhat
        negative view.  “I don’t think I did very well by the students,” he wrote.
        Matthew Sands, in his memoir in Feynman’s Tips on Physics expressed a far
        more positive view. Out of curiosity, in spring 2005 I emailed or talked to a
        quasi-random set of 17 students (out of about 150) from Feynman’s 1961–63
        class—some who had great difficulty with the class, and some who mastered it
        with ease; majors in biology, chemistry, engineering, geology, mathematics and
        astronomy, as well as in physics.

        
        
        
		
        The intervening years might have glazed their memories with a euphoric tint, but
        about 80 percent recall Feynman’s lectures as highlights of their college years.
        “It was like going to church.” The lectures were “a transformational
        experience,” “the experience of a lifetime, probably the most important thing I
        got from Caltech.” “I was a biology major but Feynman’s lectures stand out as a
        high point in my undergraduate experience … though I
        must admit I couldn’t do the homework at the time and I hardly turned any of it
        in.” “I was among the least promising of students in this course, and I never
        missed a lecture. … I remember and can still feel
        Feynman’s joy of discovery. … His lectures had an
        … emotional impact that was probably lost in the
        printed Lectures.”

        
        
        
		
        By contrast, several of the students have negative memories due largely to two
        issues: (i) “You couldn’t learn to work the homework problems by attending the
        lectures. Feynman was too slick—he knew tricks and what approximations could be
        made, and had intuition based on experience and genius that a beginning student
        does not possess.” Feynman and colleagues, aware of this flaw in the course,
        addressed it in part with materials that have been incorporated into Feynman’s
        Tips on Physics: three problem-solving lectures by Feynman, and a set of
        exercises and answers assembled by Robert B. Leighton and Rochus Vogt. (ii) “The
        insecurity of not knowing what was likely to be discussed in the next lecture,
        the lack of a text book or reference with any connection to the lecture material,
        and consequent inability for us to read ahead, were very frustrating. 
        …  I found the lectures exciting and understandable in the
        hall, but they were Sanskrit outside [when I tried to reconstruct the details].”
        This problem, of course, was solved by these three volumes, the printed version
        of The Feynman Lectures on Physics. They became the textbook from which
        Caltech students studied for many years thereafter, and they live on today as one
        of Feynman’s greatest legacies.

		

		

		
		
        A History of Errata

        
        
		
        The Feynman Lectures on Physics was produced very quickly by Feynman and
        his co-authors, Robert B. Leighton and Matthew Sands, working from and expanding
        on tape recordings and blackboard photos of Feynman’s course lectures1 (both of
        which are incorporated into the Enhanced Electronic Version of this New
        Millennium Edition). Given the high speed at which Feynman, Leighton and
        Sands worked, it was inevitable that many errors crept into the first edition.
        Feynman accumulated long lists of claimed errata over the subsequent
        years—errata found by students and faculty at Caltech and by readers around the
        world. In the 1960s and early ’70s, Feynman made time in his intense life to
        check most but not all of the claimed errata for Volumes I and II, and insert
        corrections into subsequent printings. But Feynman’s sense of duty never rose
        high enough above the excitement of discovering new things to make him deal with
        the errata in Volume III.2 After his untimely death in 1988,
        lists of errata for all three volumes were deposited in the Caltech Archives, and
        there they lay forgotten.

        
        
        
		
        In 2002 Ralph Leighton (son of the late Robert Leighton and compatriot of
        Feynman) informed me of the old errata and a new long list compiled by Ralph’s
        friend Michael Gottlieb. Leighton proposed that Caltech produce a new edition of
        The Feynman Lectures with all errata corrected, and publish it alongside a
        new volume of auxiliary material, Feynman’s Tips on Physics, which he and
        Gottlieb were preparing.

        
        
        
		
        Feynman was my hero and a close personal friend. When I saw the lists of errata
        and the content of the proposed new volume, I quickly agreed to oversee this
        project on behalf of Caltech (Feynman’s long-time academic home, to which he,
        Leighton and Sands had entrusted all rights and responsibilities for The
        Feynman Lectures). After a year and a half of meticulous work by Gottlieb,
        and careful scrutiny by Dr. Michael Hartl (an outstanding Caltech postdoc who
        vetted all errata plus the new volume), the 2005 Definitive Edition of The
        Feynman Lectures on Physics was born, with about 200 errata corrected and
        accompanied by Feynman’s Tips on Physics by Feynman, Gottlieb and
        Leighton.

        
        
        
		
        I thought that edition was going to be “Definitive”. What I did not
        anticipate was the enthusiastic response of readers around the world to an appeal
        from Gottlieb to identify further errata, and submit them via a website that
        Gottlieb created and continues to maintain, The Feynman Lectures Website,
        www.feynmanlectures.info.  In
        the five years since then, 965 new errata have been submitted and survived the
        meticulous scrutiny of Gottlieb, Hartl, and Nate Bode (an outstanding Caltech
        physics graduate student, who succeeded Hartl as Caltech’s vetter of errata). Of
        these, 965 vetted errata, 80 were corrected in the fourth printing of the
        Definitive Edition (August 2006) and the remaining 885 are corrected in
        the first printing of this New Millennium Edition (332 in volume I, 263 in
        volume II, and 200 in volume III). For details of the errata, see www.feynmanlectures.info.

        
        
        
		
        Clearly, making The Feynman Lectures on Physics error-free has become a
        world-wide community enterprise. On behalf of Caltech I thank the 50 readers who
        have contributed since 2005 and the many more who may contribute over the coming
        years. The names of all contributors are posted at www.feynmanlectures.info/flp_errata.html.

        
        
        
		
        Almost all the errata have been of three types: (i) typographical errors in
        prose; (ii) typographical and mathematical errors in equations, tables and
        figures—sign errors, incorrect numbers (e.g., a 5 that should be a 4), and
        missing subscripts, summation signs, parentheses and terms in equations; (iii)
        incorrect cross references to chapters, tables and figures. These kinds of
        errors, though not terribly serious to a mature physicist, can be frustrating and
        confusing to Feynman’s primary audience: students.

        
        
        
		
        It is remarkable that among the 1165 errata corrected under my auspices, only
        several do I regard as true errors in physics. An example is Volume II, page 5-9,
        which now says “…no static distribution of charges
        inside a closed grounded conductor can produce any [electric] fields
        outside” (the word grounded was omitted in previous editions). This error was
        pointed out to Feynman by a number of readers, including Beulah Elizabeth Cox, a
        student at The College of William and Mary, who had relied on Feynman’s erroneous
        passage in an exam. To Ms. Cox, Feynman wrote in 1975,3  “Your instructor was right
        not to give you any points, for your answer was wrong, as he demonstrated using
        Gauss’s law. You should, in science, believe logic and arguments, carefully
        drawn, and not authorities. You also read the book correctly and understood it. I
        made a mistake, so the book is wrong. I probably was thinking of a grounded
        conducting sphere, or else of the fact that moving the charges around in
        different places inside does not affect things on the outside. I am not sure how
        I did it, but I goofed. And you goofed, too, for believing me.”

		

		

		
		
        How this New Millennium Edition Came to Be

        
        
		
        Between November 2005 and July 2006, 340 errata were submitted to The Feynman
        Lectures Website www.feynmanlectures.info. Remarkably, the
        bulk of these came from one person: Dr. Rudolf Pfeiffer, then a physics
        postdoctoral fellow at the University of Vienna, Austria. The publisher, Addison
        Wesley, fixed 80 errata, but balked at fixing more because of cost: the books
        were being printed by a photo-offset process, working from photographic images of
        the pages from the 1960s. Correcting an error involved re-typesetting the entire
        page, and to ensure no new errors crept in, the page was re-typeset twice by two
        different people, then compared and proofread by several other people—a very
        costly process indeed, when hundreds of errata are involved.

        
        
        
		
        Gottlieb, Pfeiffer and Ralph Leighton were very unhappy about this, so they
        formulated a plan aimed at facilitating the repair of all errata, and also aimed
        at producing eBook and enhanced electronic versions of The Feynman Lectures on
        Physics. They proposed their plan to me, as Caltech’s representative, in
        2007. I was enthusiastic but cautious. After seeing further details, including a
        one-chapter demonstration of the Enhanced Electronic Version, I
        recommended that Caltech cooperate with Gottlieb, Pfeiffer and Leighton in the
        execution of their plan. The plan was approved by three successive chairs of
        Caltech’s Division of Physics, Mathematics and Astronomy—Tom Tombrello, Andrew
        Lange, and Tom Soifer—and the complex legal and contractual details were worked
        out by Caltech’s Intellectual Property Counsel, Adam Cochran. With the
        publication of this New Millennium Edition, the plan has been executed
        successfully, despite its complexity. Specifically:

        
        
        
		
        Pfeiffer and Gottlieb have converted into LaTeX all three volumes of FLP
        (and also more than 1000 exercises from the Feynman course for incorporation into
        Feynman’s Tips on Physics). The FLP figures were redrawn in modern
        electronic form in India, under guidance of the FLP German translator,
        Henning Heinze, for use in the German edition. Gottlieb and Pfeiffer traded
        non-exclusive use of their LaTeX equations in the German edition (published by
        Oldenbourg) for non-exclusive use of Heinze’s figures in this New
        Millennium English edition. Pfeiffer and Gottlieb have meticulously checked
        all the LaTeX text and equations and all the redrawn figures, and made
        corrections as needed. Nate Bode and I, on behalf of Caltech, have done spot
        checks of text, equations, and figures; and remarkably, we have found no errors.
        Pfeiffer and Gottlieb are unbelievably meticulous and accurate. Gottlieb and
        Pfeiffer arranged for John Sullivan at the Huntington Library to digitize the
        photos of Feynman’s 1962–64 blackboards, and for George Blood Audio to digitize
        the lecture tapes—with financial support and encouragement from Caltech
        Professor Carver Mead, logistical support from Caltech Archivist Shelley Erwin,
        and legal support from Cochran.

        
        
        
		
        The legal issues were serious: In the 1960s, Caltech licensed to Addison Wesley
        rights to publish the print edition, and in the 1990s, rights to distribute the
        audio of Feynman’s lectures and a variant of an electronic edition. In the 2000s,
        through a sequence of acquisitions of those licenses, the print rights were
        transferred to the Pearson publishing group, while rights to the audio and the
        electronic version were transferred to the Perseus publishing group. Cochran,
        with the aid of Ike Williams, an attorney who specializes in publishing,
        succeeded in uniting all of these rights with Perseus (Basic Books), making
        possible this New Millennium Edition.
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		These are the lectures in physics that I gave last year and the year before to
        the freshman and sophomore classes at Caltech. The lectures are, of course, not
        verbatim—they have been edited, sometimes extensively and sometimes less so.
        The lectures form only part of the complete course. The whole group of 180
        students gathered in a big lecture room twice a week to hear these lectures and
        then they broke up into small groups of 15 to 20 students in recitation sections
        under the guidance of a teaching assistant. In addition, there was a laboratory
        session once a week.
		

		

		
		
		The special problem we tried to get at with these lectures was to maintain the
        interest of the very enthusiastic and rather smart students coming out of the
        high schools and into Caltech. They have heard a lot about how interesting and
        exciting physics is—the theory of relativity, quantum mechanics, and other
        modern ideas. By the end of two years of our previous course, many would be very
        discouraged because there were really very few grand, new, modern ideas presented
        to them. They were made to study inclined planes, electrostatics, and so forth,
        and after two years it was quite stultifying. The problem was whether or not we
        could make a course which would save the more advanced and excited student by
        maintaining his enthusiasm.
		

		

		
		
		The lectures here are not in any way meant to be a survey course, but are very
        serious. I thought to address them to the most intelligent in the class and to
        make sure, if possible, that even the most intelligent student was unable to
        completely encompass everything that was in the lectures—by putting in
        suggestions of applications of the ideas and concepts in various directions
        outside the main line of attack. For this reason, though, I tried very hard to
        make all the statements as accurate as possible, to point out in every case where
        the equations and ideas fitted into the body of physics, and how—when they
        learned more—things would be modified. I also felt that for such students it is
        important to indicate what it is that they should—if they are sufficiently
        clever—be able to understand by deduction from what has been said before, and
        what is being put in as something new. When new ideas came in, I would try either
        to deduce them if they were deducible, or to explain that it was a
        new idea which hadn’t any basis in terms of things they had already learned and
        which was not supposed to be provable—but was just added in.
		

		

		
		
		At the start of these lectures, I assumed that the students knew something
        when they came out of high school—such things as geometrical optics, simple
        chemistry ideas, and so on. I also didn’t see that there was any reason to make
        the lectures in a definite order, in the sense that I would not be allowed to
        mention something until I was ready to discuss it in detail. There was a great
        deal of mention of things to come, without complete discussions. These more
        complete discussions would come later when the preparation became more advanced.
        Examples are the discussions of inductance, and of energy levels, which are at
        first brought in in a very qualitative way and are later developed more
        completely.
		

		

		
		
		At the same time that I was aiming at the more active student, I also wanted
        to take care of the fellow for whom the extra fireworks and side applications are
        merely disquieting and who cannot be expected to learn most of the material in
        the lecture at all. For such students I wanted there to be at least a central
        core or backbone of material which he could get. Even if he didn’t
        understand everything in a lecture, I hoped he wouldn’t get nervous. I didn’t
        expect him to understand everything, but only the central and most direct
        features. It takes, of course, a certain intelligence on his part to see which
        are the central theorems and central ideas, and which are the more advanced side
        issues and applications which he may understand only in later years.
		

		

		
		
		In giving these lectures there was one serious difficulty: in the way the
        course was given, there wasn’t any feedback from the students to the lecturer to
        indicate how well the lectures were going over. This is indeed a very serious
        difficulty, and I don’t know how good the lectures really are. The whole thing
        was essentially an experiment. And if I did it again I wouldn’t do it the same
        way—I hope I don’t have to do it again! I think, though, that things
        worked out—so far as the physics is concerned—quite satisfactorily in the
        first year.
		

		

		
		
		In the second year I was not so satisfied. In the first part of the course,
        dealing with electricity and magnetism, I couldn’t think of any really unique or
        different way of doing it—of any way that would be particularly more exciting
        than the usual way of presenting it. So I don’t think I did very much in the
        lectures on electricity and magnetism. At the end of the second year I had
        originally intended to go on, after the electricity and magnetism, by giving some
        more lectures on the properties of materials, but mainly to take up things like
        fundamental modes, solutions of the diffusion equation, vibrating systems,
        orthogonal functions, … developing the first
        stages of what are usually called “the mathematical methods of physics.”
        In retrospect, I think that if I were doing it again I would go back to that
        original idea. But since it was not planned that I would be giving these lectures
        again, it was suggested that it might be a good idea to try to give an
        introduction to the quantum mechanics—what you will find in Volume III.
		

		

		
		
		It is perfectly clear that students who will major in physics can wait until
        their third year for quantum mechanics. On the other hand, the argument was made
        that many of the students in our course study physics as a background for their
        primary interest in other fields. And the usual way of dealing with quantum
        mechanics makes that subject almost unavailable for the great majority of
        students because they have to take so long to learn it. Yet, in its real
        applications—especially in its more complex applications, such as in electrical
        engineering and chemistry—the full machinery of the differential equation
        approach is not actually used. So I tried to describe the principles of quantum
        mechanics in a way which wouldn’t require that one first know the mathematics of
        partial differential equations. Even for a physicist I think that is an
        interesting thing to try to do—to present quantum mechanics in this reverse
        fashion—for several reasons which may be apparent in the lectures themselves.
        However, I think that the experiment in the quantum mechanics part was not
        completely successful—in large part because I really did not have enough time
        at the end (I should, for instance, have had three or four more lectures in order
        to deal more completely with such matters as energy bands and the spatial
        dependence of amplitudes). Also, I had never presented the subject this way
        before, so the lack of feedback was particularly serious. I now believe the
        quantum mechanics should be given at a later time. Maybe I’ll have a chance to do
        it again someday. Then I’ll do it right.
		

		

		
		
		The reason there are no lectures on how to solve problems is because there
        were recitation sections. Although I did put in three lectures in the first year
        on how to solve problems, they are not included here. Also there was a lecture on
        inertial guidance which certainly belongs after the lecture on rotating systems,
        but which was, unfortunately, omitted. The fifth and sixth lectures are actually
        due to Matthew Sands, as I was out of town. The question, of course, is how well
        this experiment has succeeded. My own point of view—which, however, does not
        seem to be shared by most of the people who worked with the students—is
        pessimistic. I don’t think I did very well by the students. When I look at the
        way the majority of the students handled the problems on the examinations, I
        think that the system is a failure. Of course, my friends point out to me that
        there were one or two dozen students who—very surprisingly—understood almost
        everything in all of the lectures, and who were quite active in working with the
        material and worrying about the many points in an excited and interested way.
        These people have now, I believe, a first-rate background in physics—and they
        are, after all, the ones I was trying to get at. But then, "The power of
        instruction is seldom of much efficacy except in those happy dispositions where
        it is almost superfluous.” (Gibbon)
		

		

		
		
		Still, I didn’t want to leave any student completely behind, as perhaps I did.
        I think one way we could help the students more would be by putting more hard
        work into developing a set of problems which would elucidate some of the ideas in
        the lectures. Problems give a good opportunity to fill out the material of the
        lectures and make more realistic, more complete, and more settled in the mind the
        ideas that have been exposed.
		

		

		
		
		I think, however, that there isn’t any solution to this problem of education
        other than to realize that the best teaching can be done only when there is a
        direct individual relationship between a student and a good teacher—a situation
        in which the student discusses the ideas, thinks about the things, and talks
        about the things. It’s impossible to learn very much by simply sitting in a
        lecture, or even by simply doing problems that are assigned. But in our modern
        times we have so many students to teach that we have to try to find some
        substitute for the ideal. Perhaps my lectures can make some contribution. Perhaps
        in some small place where there are individual teachers and students, they may
        get some inspiration or some ideas from the lectures. Perhaps they will have fun
        thinking them through—or going on to develop some of the ideas further.
		

        
        Richard P.
        Feynman

        June, 1963
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		This book is based upon a course of lectures in introductory physics given by
        Prof. R. P. Feynman at the California Institute of Technology during the academic
        year 1961–62; it covers the first year of the two-year introductory course taken
        by all Caltech freshmen and sophomores, and was followed in 1962–63 by a similar
        series covering the second year. The lectures constitute a major part of a
        fundamental revision of the introductory course, carried out over a four-year
        period.

        
        
        
		
        The need for a basic revision arose both from the rapid development of physics in
        recent decades and from the fact that entering freshmen have shown a steady
        increase in mathematical ability as a result of improvements in high school
        mathematics course content. We hoped to take advantage of this improved
        mathematical background, and also to introduce enough modern subject matter to
        make the course challenging, interesting, and more representative of present-day
        physics.

        
        
        
		
        In order to generate a variety of ideas on what material to include and how to
        present it, a substantial number of the physics faculty were encouraged to offer
        their ideas in the form of topical outlines for a revised course. Several of
        these were presented and were thoroughly and critically discussed. It was agreed
        almost at once that a basic revision of the course could not be accomplished
        either by merely adopting a different textbook, or even by writing one ab
        initio, but that the new course should be centered about a set of lectures,
        to be presented at the rate of two or three per week; the appropriate text
        material would then be produced as a secondary operation as the course developed,
        and suitable laboratory experiments would also be arranged to fit the lecture
        material. Accordingly, a rough outline of the course was established, but this
        was recognized as being incomplete, tentative, and subject to considerable
        modification by whoever was to bear the responsibility for actually preparing the
        lectures.

        
        
        
		
        Concerning the mechanism by which the course would finally be brought to life,
        several plans were considered. These plans were mostly rather similar, involving
        a cooperative effort by N staff members who would share the total burden
        symmetrically and equally: each man would take responsibility for 1/N of
        the material, deliver the lectures, and write text material for his part.
        However, the unavailability of sufficient staff, and the difficulty of
        maintaining a uniform point of view because of differences in personality and
        philosophy of individual participants, made such plans seem unworkable.

        
        
        
		
        The realization that we actually possessed the means to create not just a new and
        different physics course, but possibly a unique one, came as a happy inspiration
        to Professor Sands. He suggested that Professor R. P. Feynman prepare and deliver
        the lectures, and that these be tape-recorded. When transcribed and edited, they
        would then become the textbook for the new course. This is essentially the plan
        that was adopted.

        
        
        
		
        It was expected that the necessary editing would be minor, mainly consisting of
        supplying figures, and checking punctuation and grammar; it was to be done by one
        or two graduate students on a part-time basis. Unfortunately, this expectation
        was short-lived. It was, in fact, a major editorial operation to transform the
        verbatim transcript into readable form, even without the reorganization or
        revision of the subject matter that was sometimes required. Furthermore, it was
        not a job for a technical editor or for a graduate student, but one that required
        the close attention of a professional physicist for from ten to twenty hours per
        lecture!

        
        
        
		
        The difficulty of the editorial task, together with the need to place the
        material in the hands of the students as soon as possible, set a strict limit
        upon the amount of “polishing” of the material that could be accomplished, and
        thus we were forced to aim toward a preliminary but technically correct product
        that could be used immediately, rather than one that might be considered final or
        finished. Because of an urgent need for more copies for our students, and a
        heartening interest on the part of instructors and students at several other
        institutions, we decided to publish the material in its preliminary form rather
        than wait for a further major revision which might never occur. We have no
        illusions as to the completeness, smoothness, or logical organization of the
        material; in fact, we plan several minor modifications in the course in the
        immediate future, and we hope that it will not become static in form or
        content.

        
        
        
		
        In addition to the lectures, which constitute a centrally important part of the
        course, it was necessary also to provide suitable exercises to develop the
        students’ experience and ability, and suitable experiments to provide first-hand
        contact with the lecture material in the laboratory. Neither of these aspects is
        in as advanced a state as the lecture material, but considerable progress has
        been made. Some exercises were made up as the lectures progressed, and these were
        expanded and amplified for use in the following year. However, because we are not
        yet satisfied that the exercises provide sufficient variety and depth of
        application of the lecture material to make the student fully aware of the
        tremendous power being placed at his disposal, the exercises are published
        separately in a less permanent form in order to encourage frequent
        revision.

        
        
        
		
        A number of new experiments for the new course have been devised by Professor H.
        V. Neher. Among these are several which utilize the extremely low friction
        exhibited by a gas bearing: a novel linear air trough, with which quantitative
        measurements of one-dimensional motion, impacts, and harmonic motion can be made,
        and an air-supported, air-driven Maxwell top, with which accelerated rotational
        motion and gyroscopic precession and nutation can be studied. The development of
        new laboratory experiments is expected to continue for a considerable period of
        time.

        
        
        
		
        The revision program was under the direction of Professors R. B. Leighton, H. V.
        Neher, and M . Sands. Officially participating in the program were Professors R.
        P. Feynman, G. Neugebauer, R. M. Sutton, H. P. Stabler,1 F. Strong,
        and R. Vogt, from the division of Physics, Mathematics and Astronomy, and
        Professors T. Caughey, M. Plesset, and C. H. Wilts from the division of
        Engineering Science. The valuable assistance of all those contributing to the
        revision program is gratefully acknowledged. We are particularly indebted to the
        Ford Foundation, without whose financial assistance this program could not have
        been carried out.

        
        
        Robert B . Leighton

        July, 1963

        (Photograph by Tom Harvey. Copyright © California 
		Institute of Technology)
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1 Atoms in Motion



1–1 Introduction


This two-year course in physics is presented from the point
of view that you, the reader, are going to be a physicist. This is not
necessarily the case of course, but that is what every professor in
every subject assumes! If you are going to be a physicist, you will have
a lot to study: two hundred years of the most rapidly developing field
of knowledge that there is. So much knowledge, in fact, that you might
think that you cannot learn all of it in four years, and truly you
cannot; you will have to go to graduate school too!




Surprisingly enough, in spite of the tremendous amount of work that has
been done for all this time it is possible to condense the enormous mass
of results to a large extent—that is, to find laws which
summarize all our knowledge. Even so, the laws are so hard to grasp that
it is unfair to you to start exploring this tremendous subject without
some kind of map or outline of the relationship of one part of the
subject of science to another. Following these preliminary remarks, the
first three chapters will therefore outline the relation of physics to
the rest of the sciences, the relations of the sciences to each other,
and the meaning of science, to help us develop a “feel” for the
subject.




You might ask why we cannot teach physics by just giving the basic laws
on page one and then showing how they work in all possible
circumstances, as we do in Euclidean geometry, where we state
the axioms and then make all sorts of deductions. (So, not satisfied to
learn physics in four years, you want to learn it in four minutes?) We
cannot do it in this way for two reasons. First, we do not yet
know all the basic laws: there is an expanding frontier of
ignorance. Second, the correct statement of the laws of physics involves
some very unfamiliar ideas which require advanced mathematics for their
description. Therefore, one needs a considerable amount of preparatory
training even to learn what the words mean. No, it is not
possible to do it that way. We can only do it piece by piece.




Each piece, or part, of the whole of nature is always merely an
approximation to the complete truth, or the complete truth so far
as we know it. In fact, everything we know is only some kind of
approximation, because we know that we do not know all the laws
as yet. Therefore, things must be learned only to be unlearned again or,
more likely, to be corrected.




The principle of science, the definition, almost, is the following:
The test of all knowledge is experiment. Experiment is the
sole judge of scientific “truth.” But what is the source of
knowledge? Where do the laws that are to be tested come from?
Experiment, itself, helps to produce these laws, in the sense that it
gives us hints. But also needed is imagination to create from
these hints the great generalizations—to guess at the wonderful,
simple, but very strange patterns beneath them all, and then to
experiment to check again whether we have made the right guess. This
imagining process is so difficult that there is a division of labor in
physics: there are theoretical physicists who imagine, deduce,
and guess at new laws, but do not experiment; and then there are
experimental physicists who experiment, imagine, deduce, and
guess.




We said that the laws of nature are approximate: that we first find the
“wrong” ones, and then we find the “right” ones. Now, how can an
experiment be “wrong”? First, in a trivial way: if something is wrong
with the apparatus that you did not notice. But these things are easily
fixed, and checked back and forth. So without snatching at such minor
things, how can the results of an experiment be wrong? Only by
being inaccurate. For example, the mass of an object never seems to
change: a spinning top has the same weight as a still one. So a “law”
was invented: mass is constant, independent of speed. That “law” is
now found to be incorrect. Mass is found to increase with velocity, but
appreciable increases require velocities near that of light. A
true law is: if an object moves with a speed of less than one
hundred miles a second the mass is constant to within one part in a
million. In some such approximate form this is a correct law. So in
practice one might think that the new law makes no significant
difference. Well, yes and no. For ordinary speeds we can certainly
forget it and use the simple constant-mass law as a good approximation.
But for high speeds we are wrong, and the higher the speed, the more
wrong we are.




Finally, and most interesting, philosophically we are completely
wrong with the approximate law. Our entire picture of the world has to
be altered even though the mass changes only by a little bit. This is a
very peculiar thing about the philosophy, or the ideas, behind the laws.
Even a very small effect sometimes requires profound changes in our
ideas.




Now, what should we teach first? Should we teach the correct but
unfamiliar law with its strange and difficult conceptual ideas, for
example the theory of relativity, four-dimensional space-time, and so
on? Or should we first teach the simple “constant-mass” law, which is
only approximate, but does not involve such difficult ideas? The first
is more exciting, more wonderful, and more fun, but the second is easier
to get at first, and is a first step to a real understanding of the
first idea. This point arises again and again in teaching physics. At
different times we shall have to resolve it in different ways, but at
each stage it is worth learning what is now known, how accurate it is,
how it fits into everything else, and how it may be changed when we
learn more.




Let us now proceed with our outline, or general map, of our
understanding of science today (in particular, physics, but also of
other sciences on the periphery), so that when we later concentrate on
some particular point we will have some idea of the background, why that
particular point is interesting, and how it fits into the big structure.
So, what is our over-all picture of the world?







1–2 Matter is made of atoms


If, in some cataclysm, all of scientific knowledge were to be destroyed,
and only one sentence passed on to the next generations of creatures,
what statement would contain the most information in the fewest words? I
believe it is the atomic hypothesis (or the atomic fact,
or whatever you wish to call it) that all things are made of
atoms—little particles that move around in perpetual motion,
attracting each other when they are a little distance apart, but
repelling upon being squeezed into one another. In that one sentence,
you will see, there is an enormous amount of information about
the world, if just a little imagination and thinking are applied.



[image: -][image: -]
Figure 1–1 





To illustrate the power of the atomic idea, suppose that we have a drop
of water a quarter of an inch on the side. If we look at it very closely
we see nothing but water—smooth, continuous water. Even if we magnify
it with the best optical microscope available—roughly two thousand
times—then the water drop will be roughly forty feet across, about as
big as a large room, and if we looked rather closely, we would
still see relatively smooth water—but here and there small
football-shaped things swimming back and forth. Very interesting. These
are paramecia. You may stop at this point and get so curious about the
paramecia with their wiggling cilia and twisting bodies that you go no
further, except perhaps to magnify the paramecia still more and see
inside. This, of course, is a subject for biology, but for the present
we pass on and look still more closely at the water material itself,
magnifying it two thousand times again. Now the drop of water extends
about fifteen miles across, and if we look very closely at it we see a
kind of teeming, something which no longer has a smooth appearance—it
looks something like a crowd at a football game as seen from a very
great distance. In order to see what this teeming is about, we will
magnify it another two hundred and fifty times and we will see something
similar to what is shown in Fig. 1–1. This is a picture of
water magnified a billion times, but idealized in several ways. In the
first place, the particles are drawn in a simple manner with sharp
edges, which is inaccurate. Secondly, for simplicity, they are sketched
almost schematically in a two-dimensional arrangement, but of course
they are moving around in three dimensions. Notice that there are two
kinds of “blobs” or circles to represent the atoms of oxygen (black)
and hydrogen (white), and that each oxygen has two hydrogens tied to it.
(Each little group of an oxygen with its two hydrogens is called a
molecule.) The picture is idealized further in that the
real particles in nature are continually jiggling and bouncing, turning
and twisting around one another. You will have to imagine this as a
dynamic rather than a static picture. Another thing that cannot be
illustrated in a drawing is the fact that the particles are “stuck
together”—that they attract each other, this one pulled by that one,
etc. The whole group is “glued together,” so to speak. On the other
hand, the particles do not squeeze through each other. If you try to
squeeze two of them too close together, they repel.





The atoms are 1 or 2×10−8[image: -*-] cm in radius. Now 10−8[image: -*-] cm is
called an angstrom (just as another name),
so we say they are 1 or 2 angstroms (Å) in radius. Another way to
remember their size is this: if an apple is magnified to the size of the
earth, then the atoms in the apple are approximately the size of the
original apple.




Now imagine this great drop of water with all of these jiggling
particles stuck together and tagging along with each other. The water
keeps its volume; it does not fall apart, because of the attraction of
the molecules for each other. If the drop is on a slope, where it can
move from one place to another, the water will flow, but it does not
just disappear—things do not just fly apart—because of the molecular
attraction. Now the jiggling motion is what we represent as
heat: when we increase the temperature, we increase
the motion. If we heat the water, the jiggling increases and the volume
between the atoms increases, and if the heating continues there comes a
time when the pull between the molecules is not enough to hold them
together and they do fly apart and become separated from one
another. Of course, this is how we manufacture steam out of water—by
increasing the temperature; the particles fly apart because of the
increased motion.



[image: -][image: -]
Figure 1–2 





In Fig. 1–2 we have a picture of steam. This picture of
steam fails in one respect: at ordinary atmospheric pressure there
certainly would not be as many as three water molecules in this figure.
Most squares this size would contain none—but we accidentally have two
and a half or three in the picture (just so it would not be completely
blank). Now in the case of steam we see the characteristic molecules
more clearly than in the case of water. For simplicity, the molecules
are drawn so that there is a 120°[image: -*-] angle between the hydrogen
atoms. In actual fact the angle is 105° 3′[image: -*-], and the distance
between the center of a hydrogen and the center of the oxygen is
0.957 Å, so we know this molecule very well.




Let us see what some of the properties of steam vapor or any other gas
are. The molecules, being separated from one another, will bounce
against the walls. Imagine a room with a number of tennis balls (a
hundred or so) bouncing around in perpetual motion. When they bombard
the wall, this pushes the wall away. (Of course we would have to push
the wall back.) This means that the gas exerts a jittery force which our
coarse senses (not being ourselves magnified a billion times) feel only
as an average push. In order to confine a gas we must apply a
pressure. Figure 1–3 shows a standard vessel for holding
gases (used in all textbooks), a cylinder with a piston in it. Now, it
makes no difference what the shapes of water molecules are, so for
simplicity we shall draw them as tennis balls or little dots. These
things are in perpetual motion in all directions. So many of them are
hitting the top piston all the time that to keep it from being patiently
knocked out of the tank by this continuous banging, we shall have to
hold the piston down by a certain force, which we call the
pressure (really, the pressure times the area is
the force). Clearly, the force is proportional to the area, for if we
increase the area but keep the number of molecules per cubic centimeter
the same, we increase the number of collisions with the piston in the
same proportion as the area was increased.



[image: -][image: -]
Figure 1–3 





Now let us put twice as many molecules in this tank, so as to double the
density, and let them have the same speed, i.e., the same
temperature. Then, to a close approximation, the number of collisions
will be doubled, and since each will be just as “energetic” as before,
the pressure is proportional to the density. If we
consider the true nature of the forces between the atoms, we would
expect a slight decrease in pressure because of the attraction between
the atoms, and a slight increase because of the finite volume they
occupy. Nevertheless, to an excellent approximation, if the
density is low enough that there are not many atoms,
the pressure is proportional to the density.




We can also see something else: If we increase the temperature without
changing the density of the gas, i.e., if we increase the
speed of the atoms, what is going to happen to the pressure? Well, the
atoms hit harder because they are moving faster, and in addition they
hit more often, so the pressure increases. You see how simple the ideas
of atomic theory are.





Let us consider another situation. Suppose that the piston moves inward,
so that the atoms are slowly compressed into a smaller space. What
happens when an atom hits the moving piston? Evidently it picks up speed
from the collision. You can try it by bouncing a ping-pong ball from a
forward-moving paddle, for example, and you will find that it comes off
with more speed than that with which it struck. (Special example: if an
atom happens to be standing still and the piston hits it, it will
certainly move.) So the atoms are “hotter” when they come away from
the piston than they were before they struck it. Therefore all the atoms
which are in the vessel will have picked up speed. This means that
when we compress a gas slowly, the temperature of the gas
increases. So, under slow compression, a gas will
increase in temperature, and under slow expansion it will
decrease in temperature.



[image: -][image: -]
Figure 1–4 





We now return to our drop of water and look in another direction.
Suppose that we decrease the temperature of our drop of water. Suppose
that the jiggling of the molecules of the atoms in the water is steadily
decreasing. We know that there are forces of attraction between the
atoms, so that after a while they will not be able to jiggle so well.
What will happen at very low temperatures is indicated in
Fig. 1–4: the molecules lock into a new pattern which is
ice. This particular schematic diagram of ice is wrong because it
is in two dimensions, but it is right qualitatively. The interesting
point is that the material has a definite place for every atom,
and you can easily appreciate that if somehow or other we were to hold
all the atoms at one end of the drop in a certain arrangement, each atom
in a certain place, then because of the structure of interconnections,
which is rigid, the other end miles away (at our magnified scale) will
have a definite location. So if we hold a needle of ice at one end, the
other end resists our pushing it aside, unlike the case of water, in
which the structure is broken down because of the increased jiggling so
that the atoms all move around in different ways. The difference between
solids and liquids is, then, that in a solid the atoms are arranged in
some kind of an array, called a crystalline array, and they do
not have a random position at long distances; the position of the atoms
on one side of the crystal is determined by that of other atoms millions
of atoms away on the other side of the crystal. Figure 1–4
is an invented arrangement for ice, and although it contains many of the
correct features of ice, it is not the true arrangement. One of the
correct features is that there is a part of the symmetry
that is hexagonal. You can see that if we turn the picture around an
axis by 60°[image: -*-], the picture returns to itself. So there is a
symmetry in the ice which accounts for the
six-sided appearance of snowflakes. Another thing we can see from
Fig. 1–4 is why ice shrinks when it melts. The particular
crystal pattern of ice shown here has many “holes” in it, as does the
true ice structure. When the organization breaks down, these holes can
be occupied by molecules. Most simple substances, with the exception of
water and type metal, expand upon melting, because the atoms are
closely packed in the solid crystal and upon melting need more room to
jiggle around, but an open structure collapses, as in the case of water.




Now although ice has a “rigid” crystalline form, its temperature can
change—ice has heat. If we wish, we can change the amount of heat.
What is the heat in the case of ice? The atoms are not standing still.
They are jiggling and vibrating. So even though there is a definite
order to the crystal—a definite structure—all of the atoms are
vibrating “in place.” As we increase the temperature, they vibrate
with greater and greater amplitude, until they shake themselves out of
place. We call this melting. As we decrease the temperature, the
vibration decreases and decreases until, at absolute zero, there is a minimum amount of vibration that
the atoms can have, but not zero. This minimum amount of motion
that atoms can have is not enough to melt a substance, with one
exception: helium. Helium merely decreases the
atomic motions as much as it can, but even at absolute
zero there is still enough
motion to keep it from freezing. Helium, even at absolute
zero, does not freeze, unless
the pressure is made so great as to make the atoms squash together. If
we increase the pressure, we can make it solidify.







1–3 Atomic processes

[image: -][image: -]
Figure 1–5 





So much for the description of solids, liquids, and gases from the
atomic point of view. However, the atomic hypothesis also describes
processes, and so we shall now look at a number of processes from
an atomic standpoint. The first process that we shall look at is
associated with the surface of the water. What happens at the surface of
the water? We shall now make the picture more complicated—and more
realistic—by imagining that the surface is in air.
Figure 1–5 shows the surface of water in air. We see the
water molecules as before, forming a body of liquid water, but now we
also see the surface of the water. Above the surface we find a number of
things: First of all there are water molecules, as in steam. This is
water vapor, which is always found above liquid water. (There is
an equilibrium between the steam vapor and the water which will be
described later.) In addition we find some other molecules—here two
oxygen atoms stuck together by themselves, forming an oxygen
molecule, there two nitrogen atoms also stuck together to make a
nitrogen molecule. Air consists almost entirely of nitrogen, oxygen,
some water vapor, and lesser amounts of carbon dioxide, argon, and other
things. So above the water surface is the air, a gas, containing some
water vapor. Now what is happening in this picture? The molecules in the
water are always jiggling around. From time to time, one on the surface
happens to be hit a little harder than usual, and gets knocked away. It
is hard to see that happening in the picture because it is a
still picture. But we can imagine that one molecule near the
surface has just been hit and is flying out, or perhaps another one has
been hit and is flying out. Thus, molecule by molecule, the water
disappears—it evaporates. But if we close the vessel above,
after a while we shall find a large number of molecules of water amongst
the air molecules. From time to time, one of these vapor molecules comes
flying down to the water and gets stuck again. So we see that what looks
like a dead, uninteresting thing—a glass of water with a cover, that
has been sitting there for perhaps twenty years—really contains a
dynamic and interesting phenomenon which is going on all the time. To
our eyes, our crude eyes, nothing is changing, but if we could see it a
billion times magnified, we would see that from its own point of view it
is always changing: molecules are leaving the surface, molecules are
coming back.




Why do we see no change? Because just as many molecules
are leaving as are coming back! In the long run “nothing happens.” If
we then take the top of the vessel off and blow the moist air away,
replacing it with dry air, then the number of molecules leaving is just
the same as it was before, because this depends on the jiggling of the
water, but the number coming back is greatly reduced because there are
so many fewer water molecules above the water. Therefore there are more
going out than coming in, and the water evaporates. Hence, if you wish
to evaporate water turn on the fan!




Here is something else: Which molecules leave? When a molecule leaves it
is due to an accidental, extra accumulation of a little bit more than
ordinary energy, which it needs if it is to break away from the
attractions of its neighbors. Therefore, since those that leave have
more energy than the average, the ones that are left have less
average motion than they had before. So the liquid gradually
cools if it evaporates. Of course, when a molecule of vapor comes
from the air to the water below there is a sudden great attraction as
the molecule approaches the surface. This speeds up the incoming
molecule and results in generation of heat. So when they leave they take
away heat; when they come back they generate heat. Of course when there
is no net evaporation the result is nothing—the
water is not changing temperature. If we blow on the water so as to
maintain a continuous preponderance in the number evaporating, then the
water is cooled. Hence, blow on soup to cool it!





Of course you should realize that the processes just described are more
complicated than we have indicated. Not only does the water go into the
air, but also, from time to time, one of the oxygen or nitrogen
molecules will come in and “get lost” in the mass of water molecules,
and work its way into the water. Thus the air dissolves in the water;
oxygen and nitrogen molecules will work their way into the water and the
water will contain air. If we suddenly take the air away from the
vessel, then the air molecules will leave more rapidly than they come
in, and in doing so will make bubbles. This is very bad for divers, as
you may know.



[image: -][image: -]
Figure 1–6 
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Figure 1–7 





Now we go on to another process. In Fig. 1–6 we see, from an
atomic point of view, a solid dissolving in water. If we put a crystal
of salt in the water, what will happen? Salt is a solid, a crystal, an
organized arrangement of “salt atoms.” Figure 1–7 is an
illustration of the three-dimensional structure of common salt, sodium
chloride. Strictly speaking, the crystal is not made of atoms, but of
what we call ions. An ion is an atom which either has
a few extra electrons or has lost a few electrons. In a salt crystal we
find chlorine ions (chlorine atoms with an extra electron) and sodium
ions (sodium atoms with one electron missing). The ions all stick
together by electrical attraction in the solid salt, but when we put
them in the water we find, because of the attractions of the negative
oxygen and positive hydrogen for the ions, that some of the ions jiggle
loose. In Fig. 1–6 we see a chlorine ion getting loose, and
other atoms floating in the water in the form of ions. This picture was
made with some care. Notice, for example, that the hydrogen ends of the
water molecules are more likely to be near the chlorine ion, while near
the sodium ion we are more likely to find the oxygen end, because the
sodium is positive and the oxygen end of the water is negative, and they
attract electrically. Can we tell from this picture whether the salt is
dissolving in water or crystallizing out of water? Of
course we cannot tell, because while some of the atoms are
leaving the crystal other atoms are rejoining it. The process is a
dynamic one, just as in the case of
evaporation, and it depends on whether there is more
or less salt in the water than the amount needed for equilibrium. By
equilibrium we mean that situation in which the rate
at which atoms are leaving just matches the rate at which they are
coming back. If there is almost no salt in the water, more atoms leave
than return, and the salt dissolves. If, on the other hand, there are
too many “salt atoms,” more return than leave, and the salt is
crystallizing.




In passing, we mention that the concept of a molecule of a
substance is only approximate and exists only for a certain class of
substances. It is clear in the case of water that the three atoms are
actually stuck together. It is not so clear in the case of sodium
chloride in the solid. There is just an arrangement of sodium and
chlorine ions in a cubic pattern. There is no natural way to group them
as “molecules of salt.”




Returning to our discussion of solution and precipitation, if we
increase the temperature of the salt solution, then the rate at which
atoms are taken away is increased, and so is the rate at which atoms are
brought back. It turns out to be very difficult, in general, to predict
which way it is going to go, whether more or less of the solid will
dissolve. Most substances dissolve more, but some substances dissolve
less, as the temperature increases.







1–4 Chemical reactions


In all of the processes which have been described so far, the atoms and
the ions have not changed partners, but of course there are
circumstances in which the atoms do change combinations, forming new
molecules. This is illustrated in Fig. 1–8. A process in
which the rearrangement of the atomic partners occurs is what we call a
chemical reaction. The other processes so far described are
called physical processes, but there is no sharp distinction between the
two. (Nature does not care what we call it, she just keeps on doing it.)
This figure is supposed to represent carbon burning in oxygen. In the
case of oxygen, two oxygen atoms stick together very strongly.
(Why do not three or even four stick together? That is
one of the very peculiar characteristics of such atomic processes. Atoms
are very special: they like certain particular partners, certain
particular directions, and so on. It is the job of physics to analyze
why each one wants what it wants. At any rate, two oxygen atoms form,
saturated and happy, a molecule.)
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Figure 1–8 





The carbon atoms are supposed to be in a solid crystal (which could be
graphite or diamond1). Now, for
example, one of the oxygen molecules can come over to the carbon, and
each atom can pick up a carbon atom and go flying off in a new
combination—“carbon-oxygen”—which is a molecule of the gas called
carbon monoxide. It is given the chemical name CO. It is very simple:
the letters “CO” are practically a picture of that molecule. But
carbon attracts oxygen much more than oxygen attracts oxygen or carbon
attracts carbon. Therefore in this process the oxygen may arrive with
only a little energy, but the oxygen and carbon will snap together with
a tremendous vengeance and commotion, and everything near them will pick
up the energy. A large amount of motion energy, kinetic
energy, is thus
generated. This of course is burning; we are getting heat
from the combination of oxygen and carbon. The heat is ordinarily in the
form of the molecular motion of the hot gas, but in certain
circumstances it can be so enormous that it generates light. That
is how one gets flames.




In addition, the carbon monoxide is not quite satisfied. It is possible
for it to attach another oxygen, so that we might have a much more
complicated reaction in which the oxygen is combining with the carbon,
while at the same time there happens to be a collision with a carbon
monoxide molecule. One oxygen atom could attach itself to the CO and
ultimately form a molecule, composed of one carbon and two oxygens,
which is designated CO2 and called carbon dioxide. If we burn the
carbon with very little oxygen in a very rapid reaction (for example, in
an automobile engine, where the explosion is so fast that there is not
time for it to make carbon dioxide) a considerable amount of carbon
monoxide is formed. In many such rearrangements, a very large amount of
energy is released, forming explosions, flames, etc., depending on the
reactions. Chemists have studied these arrangements of the atoms, and
found that every substance is some type of arrangement of atoms.




To illustrate this idea, let us consider another example. If we go into
a field of small violets, we know what “that smell” is. It is some
kind of molecule, or arrangement of atoms, that has worked its
way into our noses. First of all, how did it work its way in?
That is rather easy. If the smell is some kind of molecule in the air,
jiggling around and being knocked every which way, it might have
accidentally worked its way into the nose. Certainly it has no
particular desire to get into our nose. It is merely one helpless part
of a jostling crowd of molecules, and in its aimless wanderings this
particular chunk of matter happens to find itself in the nose.
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Figure 1–9 





Now chemists can take special molecules like the odor of violets, and
analyze them and tell us the exact arrangement of the atoms in
space. We know that the carbon dioxide molecule is straight and
symmetrical: O—C—O. (That can be determined easily, too, by
physical methods.) However, even for the vastly more complicated
arrangements of atoms that there are in chemistry, one can, by a long,
remarkable process of detective work, find the arrangements of the
atoms. Figure 1–9 is a picture of the air in the
neighborhood of a violet; again we find nitrogen and oxygen in the air,
and water vapor. (Why is there water vapor? Because the violet is
wet. All plants transpire.) However, we also see a “monster”
composed of carbon atoms, hydrogen atoms, and oxygen atoms, which have
picked a certain particular pattern in which to be arranged. It is a
much more complicated arrangement than that of carbon dioxide; in fact,
it is an enormously complicated arrangement. Unfortunately, we cannot
picture all that is really known about it chemically, because the
precise arrangement of all the atoms is actually known in three
dimensions, while our picture is in only two dimensions. The six carbons
which form a ring do not form a flat ring, but a kind of “puckered”
ring. All of the angles and distances are known. So a chemical
formula is merely a picture of such a molecule. When the chemist
writes such a thing on the blackboard, he is trying to “draw,” roughly
speaking, in two dimensions. For example, we see a “ring” of six
carbons, and a “chain” of carbons hanging on the end, with an oxygen
second from the end, three hydrogens tied to that carbon, two carbons
and three hydrogens sticking up here, etc.
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Fig. 1–10. The substance pictured is α[image: -*-]-irone.





How does the chemist find what the arrangement is? He mixes bottles full
of stuff together, and if it turns red, it tells him that it consists of
one hydrogen and two carbons tied on here; if it turns blue, on the
other hand, that is not the way it is at all. This is one of the most
fantastic pieces of detective work that has ever been done—organic
chemistry. To discover the arrangement of the atoms in these enormously
complicated arrays the chemist looks at what happens when he mixes two
different substances together. The physicist could never quite believe
that the chemist knew what he was talking about when he described the
arrangement of the atoms. For about twenty years it has been possible,
in some cases, to look at such molecules (not quite as complicated as
this one, but some which contain parts of it) by a physical method, and
it has been possible to locate every atom, not by looking at colors, but
by measuring where they are. And lo and behold!, the chemists are
almost always correct.




It turns out, in fact, that in the odor of violets there are three
slightly different molecules, which differ only in the arrangement of
the hydrogen atoms.




One problem of chemistry is to name a substance, so that we will know
what it is. Find a name for this shape! Not only must the name tell the
shape, but it must also tell that here is an oxygen atom, there a
hydrogen—exactly what and where each atom is. So we can appreciate
that the chemical names must be complex in order to be complete. You see
that the name of this thing in the more complete form that will tell you
the structure of it is 4-(2, 2, 3, 6
tetramethyl-5-cyclohexenyl)-3-buten-2-one, and that tells you that this
is the arrangement. We can appreciate the difficulties that the chemists
have, and also appreciate the reason for such long names. It is not that
they wish to be obscure, but they have an extremely difficult problem in
trying to describe the molecules in words!




How do we know that there are atoms? By one of the tricks
mentioned earlier: we make the hypothesis that there are atoms,
and one after the other results come out the way we predict, as they
ought to if things are made of atoms. There is also somewhat more
direct evidence, a good example of which is the following: The atoms are
so small that you cannot see them with a light microscope—in fact, not
even with an electron microscope. (With a light microscope you
can only see things which are much bigger.) Now if the atoms are always
in motion, say in water, and we put a big ball of something in the
water, a ball much bigger than the atoms, the ball will jiggle
around—much as in a push ball game, where a great big ball is pushed
around by a lot of people. The people are pushing in various directions,
and the ball moves around the field in an irregular fashion. So, in the
same way, the “large ball” will move because of the inequalities of
the collisions on one side to the other, from one moment to the next.
Therefore, if we look at very tiny particles (colloids) in water through
an excellent microscope, we see a perpetual jiggling of the particles,
which is the result of the bombardment of the atoms. This is called the
Brownian motion.




We can see further evidence for atoms in the structure of crystals. In
many cases the structures deduced by x-ray analysis agree in their
spatial “shapes” with the forms actually exhibited by crystals as they
occur in nature. The angles between the various “faces” of a crystal
agree, within seconds of arc, with angles deduced on the assumption that
a crystal is made of many “layers” of atoms.




Everything is made of atoms. That is the key hypothesis. The most
important hypothesis in all of biology, for example, is that
everything that animals do, atoms do. In other words, there
is nothing that living things do that cannot be understood from the
point of view that they are made of atoms acting according to the laws
of physics. This was not known from the beginning: it took some
experimenting and theorizing to suggest this hypothesis, but now it is
accepted, and it is the most useful theory for producing new ideas in
the field of biology.




If a piece of steel or a piece of salt, consisting of atoms one next to
the other, can have such interesting properties; if water—which is
nothing but these little blobs, mile upon mile of the same thing over
the earth—can form waves and foam, and make rushing noises and strange
patterns as it runs over cement; if all of this, all the life of a
stream of water, can be nothing but a pile of atoms, how much more
is possible? If instead of arranging the atoms in some definite
pattern, again and again repeated, on and on, or even forming little
lumps of complexity like the odor of violets, we make an arrangement
which is always different from place to place, with different
kinds of atoms arranged in many ways, continually changing, not
repeating, how much more marvelously is it possible that this thing
might behave? Is it possible that that “thing” walking back and forth
in front of you, talking to you, is a great glob of these atoms in a
very complex arrangement, such that the sheer complexity of it staggers
the imagination as to what it can do? When we say we are a pile of
atoms, we do not mean we are merely a pile of atoms, because a
pile of atoms which is not repeated from one to the other might well
have the possibilities which you see before you in the mirror.





	
  
  One can burn a diamond in air.
  ↩





  
    

2 Basic Physics



2–1 Introduction


In this chapter, we shall examine the most fundamental ideas
that we have about physics—the nature of things as we see them at the
present time. We shall not discuss the history of how we know that all
these ideas are true; you will learn these details in due time.




The things with which we concern ourselves in science appear in myriad
forms, and with a multitude of attributes. For example, if we stand on
the shore and look at the sea, we see the water, the waves breaking, the
foam, the sloshing motion of the water, the sound, the air, the winds
and the clouds, the sun and the blue sky, and light; there is sand and
there are rocks of various hardness and permanence, color and texture.
There are animals and seaweed, hunger and disease, and the observer on
the beach; there may be even happiness and thought. Any other spot in
nature has a similar variety of things and influences. It is always as
complicated as that, no matter where it is. Curiosity demands that we
ask questions, that we try to put things together and try to understand
this multitude of aspects as perhaps resulting from the action of a
relatively small number of elemental things and forces acting in an
infinite variety of combinations.




For example: Is the sand other than the rocks? That is, is the sand
perhaps nothing but a great number of very tiny stones? Is the moon a
great rock? If we understood rocks, would we also understand the sand
and the moon? Is the wind a sloshing of the air analogous to the
sloshing motion of the water in the sea? What common features do
different movements have? What is common to different kinds of sound?
How many different colors are there? And so on. In this way we try
gradually to analyze all things, to put together things which at first
sight look different, with the hope that we may be able to reduce
the number of different things and thereby understand them
better.




A few hundred years ago, a method was devised to find partial answers to
such questions. Observation, reason, and experiment
make up what we call the scientific method. We shall have to limit ourselves to a bare description of our
basic view of what is sometimes called fundamental physics, or
fundamental ideas which have arisen from the application of the
scientific method.




What do we mean by “understanding” something? We can imagine that this
complicated array of moving things which constitutes “the world” is
something like a great chess game being played by the gods, and we are
observers of the game. We do not know what the rules of the game are;
all we are allowed to do is to watch the playing. Of course, if
we watch long enough, we may eventually catch on to a few of the rules.
The rules of the game are what we mean by fundamental
physics. Even if we knew every rule, however, we might not be able to
understand why a particular move is made in the game, merely because it
is too complicated and our minds are limited. If you play chess you must
know that it is easy to learn all the rules, and yet it is often very
hard to select the best move or to understand why a player moves as he
does. So it is in nature, only much more so; but we may be able at least
to find all the rules. Actually, we do not have all the rules now.
(Every once in a while something like castling is going on that we still
do not understand.) Aside from not knowing all of the rules, what we
really can explain in terms of those rules is very limited, because
almost all situations are so enormously complicated that we cannot
follow the plays of the game using the rules, much less tell what is
going to happen next. We must, therefore, limit ourselves to the more
basic question of the rules of the game. If we know the rules, we
consider that we “understand” the world.




How can we tell whether the rules which we “guess” at are really right
if we cannot analyze the game very well? There are, roughly speaking,
three ways. First, there may be situations where nature has arranged, or
we arrange nature, to be simple and to have so few parts that we can
predict exactly what will happen, and thus we can check how our rules
work. (In one corner of the board there may be only a few chess pieces
at work, and that we can figure out exactly.)




A second good way to check rules is in terms of less specific rules
derived from them. For example, the rule on the move of a bishop on a
chessboard is that it moves only on the diagonal. One can deduce, no
matter how many moves may be made, that a certain bishop will always be
on a red square. So, without being able to follow the details, we can
always check our idea about the bishop’s motion by finding out whether
it is always on a red square. Of course it will be, for a long time,
until all of a sudden we find that it is on a black square (what
happened of course, is that in the meantime it was captured, another
pawn crossed for queening, and it turned into a bishop on a black
square). That is the way it is in physics. For a long time we will have
a rule that works excellently in an over-all way, even when we cannot
follow the details, and then some time we may discover a new
rule. From the point of view of basic physics, the most interesting
phenomena are of course in the new places, the places where the
rules do not work—not the places where they do work!  That is
the way in which we discover new rules.




The third way to tell whether our ideas are right is relatively crude
but probably the most powerful of them all. That is, by rough
approximation. While we may not be able to tell why Alekhine
moves this particular piece, perhaps we can roughly
understand that he is gathering his pieces around the king to protect
it, more or less, since that is the sensible thing to do in the
circumstances. In the same way, we can often understand nature, more or
less, without being able to see what every little piece is doing,
in terms of our understanding of the game.




At first the phenomena of nature were roughly divided into classes, like
heat, electricity, mechanics, magnetism, properties of substances,
chemical phenomena, light or optics, x-rays, nuclear physics,
gravitation, meson phenomena, etc. However, the aim is to see
complete nature as different aspects of one set of
phenomena. That is the problem in basic theoretical physics, today—to
find the laws behind experiment; to amalgamate these
classes. Historically, we have always been able to amalgamate
them, but as time goes on new things are found. We were
amalgamating very well, when all of a sudden x-rays were found.
Then we amalgamated some more, and mesons were found. Therefore,
at any stage of the game, it always looks rather messy. A great deal is
amalgamated, but there are always many wires or threads hanging
out in all directions. That is the situation today, which we shall try
to describe.




Some historic examples of amalgamation are the following. First,
take heat and mechanics. When atoms are in motion, the
more motion, the more heat the system contains, and so heat and
all temperature effects can be represented by the laws of mechanics.
Another tremendous amalgamation was the discovery of the relation
between electricity, magnetism, and light, which were found to be
different aspects of the same thing, which we call today the
electromagnetic field. Another amalgamation
is the unification of chemical phenomena, the various properties of
various substances, and the behavior of atomic particles, which is in
the quantum mechanics of chemistry.




The question is, of course, is it going to be possible to
amalgamate everything, and merely discover that this world
represents different aspects of one thing? Nobody knows. All we
know is that as we go along, we find that we can amalgamate
pieces, and then we find some pieces that do not fit, and we keep trying
to put the jigsaw puzzle together. Whether there are a finite number of
pieces, and whether there is even a border to the puzzle, is of course
unknown. It will never be known until we finish the picture, if ever.
What we wish to do here is to see to what extent this amalgamation
process has gone on, and what the situation is at present, in
understanding basic phenomena in terms of the smallest set of
principles. To express it in a simple manner, what are things made
of and how few elements are there?








2–2 Physics before 1920


It is a little difficult to begin at once with the present view, so we
shall first see how things looked in about 1920 and then take a few
things out of that picture. Before 1920, our world picture was something
like this: The “stage” on which the universe goes is the
three-dimensional space of geometry, as described by
Euclid, and things change in a medium
called time. The elements on the stage are
particles, for example the atoms, which have some
properties. First, the property of inertia: if a
particle is moving it keeps on going in the same direction unless
forces act upon it. The second element, then, is forces,
which were then thought to be of two varieties: First, an enormously
complicated, detailed kind of interaction force which held the various
atoms in different combinations in a complicated way, which determined
whether salt would dissolve faster or slower when we raise the
temperature. The other force that was known was a long-range
interaction—a smooth and quiet attraction—which varied inversely as
the square of the distance, and was called
gravitation. This law was known and was
very simple. Why things remain in motion when they are moving, or
why there is a law of gravitation was, of course, not known.




A description of nature is what we are concerned with here. From this
point of view, then, a gas, and indeed all matter, is a myriad of
moving particles. Thus many of the things we saw while standing at the
seashore can immediately be connected. First the pressure: this comes
from the collisions of the atoms with the walls or whatever; the drift
of the atoms, if they are all moving in one direction on the average, is
wind; the random internal motions are the heat. There are
waves of excess density, where too many particles have collected, and so
as they rush off they push up piles of particles farther out, and so on.
This wave of excess density is sound. It is a
tremendous achievement to be able to understand so much. Some of these
things were described in the previous chapter.




What kinds of particles are there? There were considered to be
92[image: -*-] at that time: 92[image: -*-] different kinds of atoms were ultimately
discovered. They had different names associated with their chemical
properties.




The next part of the problem was, what are the short-range
forces? Why does carbon attract one oxygen or perhaps two oxygens, but
not three oxygens? What is the machinery of interaction between atoms?
Is it gravitation? The answer is no. Gravity is entirely too weak. But
imagine a force analogous to gravity, varying inversely with the square
of the distance, but enormously more powerful and having one difference.
In gravity everything attracts everything else, but now imagine that
there are two kinds of “things,” and that this new force (which
is the electrical force, of course) has the property that likes
repel but unlikes attract. The “thing” that carries this
strong interaction is called charge.




Then what do we have? Suppose that we have two unlikes that attract each
other, a plus and a minus, and that they stick very close together.
Suppose we have another charge some distance away. Would it feel any
attraction? It would feel practically none, because if the first
two are equal in size, the attraction for the one and the repulsion for
the other balance out. Therefore there is very little force at any
appreciable distance. On the other hand, if we get very close
with the extra charge, attraction arises, because the repulsion
of likes and attraction of unlikes will tend to bring unlikes closer
together and push likes farther apart. Then the repulsion will be
less than the attraction. This is the reason why the atoms, which
are constituted out of plus and minus electric charges, feel very little
force when they are separated by appreciable distance (aside from
gravity). When they come close together, they can “see inside” each
other and rearrange their charges, with the result that they have a very
strong interaction. The ultimate basis of an interaction between the
atoms is electrical. Since this force is so enormous, all the
plusses and all minuses will normally come together in as intimate a
combination as they can. All things, even ourselves, are made of
fine-grained, enormously strongly interacting plus and minus parts, all
neatly balanced out. Once in a while, by accident, we may rub off a few
minuses or a few plusses (usually it is easier to rub off minuses), and
in those circumstances we find the force of electricity
unbalanced, and we can then see the effects of these electrical
attractions.




To give an idea of how much stronger electricity is than gravitation,
consider two grains of sand, a millimeter across, thirty meters apart.
If the force between them were not balanced, if everything attracted
everything else instead of likes repelling, so that there were no
cancellation, how much force would there be? There would be a force of
three million tons between the two! You see, there is very,
very little excess or deficit of the number of negative or
positive charges necessary to produce appreciable electrical effects.
This is, of course, the reason why you cannot see the difference between
an electrically charged or uncharged thing—so few particles are
involved that they hardly make a difference in the weight or size of an
object.




With this picture the atoms were easier to understand. They were thought
to have a “nucleus” at the center, which is positively
electrically charged and very massive, and the nucleus is
surrounded by a certain number of “electrons” which are very light and
negatively charged. Now we go a little ahead in our story to remark that
in the nucleus itself there were found two kinds of
particles, protons and neutrons, almost
of the same weight and very heavy. The protons are electrically charged
and the neutrons are neutral. If we have an atom with
six protons inside its nucleus, and this is surrounded by
six electrons (the negative particles in the ordinary world of matter
are all electrons, and these are very light compared with the protons
and neutrons which make nuclei), this would be atom
number six in the chemical table, and it is called carbon. Atom number
eight is called oxygen, etc., because the chemical properties depend
upon the electrons on the outside, and in fact only upon
how many electrons there are. So the chemical properties
of a substance depend only on a number, the number of electrons. (The
whole list of elements of the chemists really could have been called
1, 2, 3, 4, 5, etc. Instead of saying “carbon,” we could say
“element six,” meaning six electrons, but of course, when the elements
were first discovered, it was not known that they could be numbered that
way, and secondly, it would make everything look rather complicated. It
is better to have names and symbols for these things, rather than to
call everything by number.)





More was discovered about the electrical force. The natural
interpretation of electrical interaction is that two objects simply
attract each other: plus against minus. However, this was discovered to
be an inadequate idea to represent it. A more adequate representation of
the situation is to say that the existence of the positive charge, in
some sense, distorts, or creates a “condition” in space, so that when
we put the negative charge in, it feels a force. This potentiality for
producing a force is called an electric field. When we put an
electron in an electric field, we say it is “pulled.”
We then have two rules: (a) charges make a field, and (b) charges in
fields have forces on them and move. The reason for this will become
clear when we discuss the following phenomena: If we were to charge a
body, say a comb, electrically, and then place a charged piece of paper
at a distance and move the comb back and forth, the paper will respond
by always pointing to the comb. If we shake it faster, it will be
discovered that the paper is a little behind, there is a delay in
the action. (At the first stage, when we move the comb rather slowly, we
find a complication which is magnetism. Magnetic
influences have to do with charges in relative motion, so
magnetic forces and electric forces can really be attributed to one
field, as two different aspects of exactly the same thing. A changing
electric field cannot exist without magnetism.)  If we move the charged
paper farther out, the delay is greater. Then an interesting thing is
observed. Although the forces between two charged objects should go
inversely as the square of the distance, it is found, when we
shake a charge, that the influence extends very much farther out
than we would guess at first sight. That is, the effect falls off more
slowly than the inverse square.




Here is an analogy: If we are in a pool of water and there is a floating
cork very close by, we can move it “directly” by pushing the water
with another cork. If you looked only at the two corks, all you
would see would be that one moved immediately in response to the motion
of the other—there is some kind of “interaction” between
them. Of course, what we really do is to disturb the water; the
water then disturbs the other cork. We could make up a “law”
that if you pushed the water a little bit, an object close by in the
water would move. If it were farther away, of course, the second cork
would scarcely move, for we move the water locally. On the other
hand, if we jiggle the cork a new phenomenon is involved, in which the
motion of the water moves the water there, etc., and waves travel
away, so that by jiggling, there is an influence very much farther
out, an oscillatory influence, that cannot be understood from the
direct interaction. Therefore the idea of direct interaction must be
replaced with the existence of the water, or in the electrical case,
with what we call the electromagnetic field.




The electromagnetic field can carry waves; some of these waves are
light, others are used in
radio broadcasts, but the general name is electromagnetic
waves.
These oscillatory waves can have various frequencies. The only
thing that is really different from one wave to another is the
frequency of oscillation. If we shake a
charge back and forth more and more rapidly, and look at the effects, we
get a whole series of different kinds of effects, which are all unified
by specifying but one number, the number of oscillations per second. The
usual “pickup” that we get from electric currents in the circuits in
the walls of a building have a frequency of about one hundred cycles per
second. If we increase the frequency to 500[image: -*-] or 1000[image: -*-] kilocycles
(1 kilocycle=1000[image: -*-] cycles) per second, we are “on the air,” for
this is the frequency range which is used for radio broadcasts. (Of
course it has nothing to do with the air! We can have radio
broadcasts without any air.) If we again increase the frequency, we come
into the range that is used for FM and TV. Going still further, we use
certain short waves, for example for radar. Still higher, and we
do not need an instrument to “see” the stuff, we can see it with the
human eye. In the range of frequency from 5×1014[image: -*-] to
1015[image: -*-] cycles per second our eyes would see the oscillation of the
charged comb, if we could shake it that fast, as red, blue, or violet
light, depending on the frequency. Frequencies below this range are
called infrared, and above it, ultraviolet. The fact that we can see
in a particular frequency range makes that part of the electromagnetic
spectrum no more impressive than the other parts from a physicist’s
standpoint, but from a human standpoint, of course, it is more
interesting. If we go up even higher in frequency, we get
x-rays.
X-rays are nothing but very
high-frequency light. If we go still higher, we get gamma
rays. These two terms,
x-rays and gamma rays, are used almost synonymously. Usually
electromagnetic rays coming from nuclei are called gamma
rays, while those of high
energy from atoms are called
x-rays, but at the same frequency
they are indistinguishable physically, no matter what their source. If
we go to still higher frequencies, say to 1024[image: -*-] cycles per second,
we find that we can make those waves artificially, for example with the
synchrotron here at Caltech. We can find
electromagnetic waves with stupendously high frequencies—with even a
thousand times more rapid oscillation—in the waves found in
cosmic rays.
These waves cannot be controlled by us.





Table 2–1. The Electromagnetic Spectrum
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2–3 Quantum physics


Having described the idea of the electromagnetic field, and that this
field can carry waves, we soon learn that these waves actually behave in
a strange way which seems very unwavelike. At higher frequencies they
behave much more like particles! It is quantum mechanics,
discovered just after 1920, which explains this strange behavior. In the
years before 1920, the picture of space as a three-dimensional space,
and of time as a separate thing, was changed by
Einstein, first into a
combination which we call space-time, and then still
further into a curved space-time to represent
gravitation. So the “stage” is changed into
space-time, and gravitation is presumably a
modification of space-time. Then it was also found
that the rules for the motions of particles were incorrect. The
mechanical rules of “inertia” and “forces” are
wrong—Newton’s laws are
wrong—in the world of atoms. Instead, it was discovered that
things on a small scale behave nothing like things on a large
scale. That is what makes physics difficult—and very interesting. It
is hard because the way things behave on a small scale is so
“unnatural”; we have no direct experience with it. Here things behave
like nothing we know of, so that it is impossible to describe this
behavior in any other than analytic ways. It is difficult, and takes a
lot of imagination.




Quantum mechanics has many aspects. In the first place, the idea that a
particle has a definite location and a definite speed is no longer
allowed; that is wrong. To give an example of how wrong classical
physics is, there is a rule in quantum mechanics that says that one
cannot know both where something is and how fast it is moving. The
uncertainty of the momentum and the uncertainty of the position are
complementary, and the product of the two is bounded by a small
constant. We can write the law like this: Δ x Δ p≥ℏ/2[image: -*-], but
we shall explain it in more detail later. This rule is the explanation
of a very mysterious paradox: if the atoms are made out of plus and
minus charges, why don’t the minus charges simply sit on top of the plus
charges (they attract each other) and get so close as to completely
cancel them out? Why are atoms so big? Why is the
nucleus at the center with the electrons around it? It
was first thought that this was because the nucleus was
so big; but no, the nucleus is very small. An atom
has a diameter of about 10−8[image: -*-] cm. The nucleus has a
diameter of about 10−13[image: -*-] cm. If we had an atom and wished to see the
nucleus, we would have to magnify it until the whole atom
was the size of a large room, and then the nucleus would
be a bare speck which you could just about make out with the eye, but
very nearly all the weight of the atom is in that infinitesimal
nucleus. What keeps the electrons from simply
falling in? This principle: If they were in the nucleus,
we would know their position precisely, and the uncertainty
principle would then require that they have a very large (but
uncertain) momentum, i.e., a very large kinetic
energy. With this
energy they would break away from the nucleus. They make
a compromise: they leave themselves a little room for this uncertainty
and then jiggle with a certain amount of minimum motion in accordance
with this rule. (Remember that when a crystal is cooled to absolute
zero, we said that the atoms
do not stop moving, they still jiggle. Why? If they stopped moving, we
would know where they were and that they had zero motion, and that is
against the uncertainty principle. We cannot know where
they are and how fast they are moving, so they must be continually
wiggling in there!)





Another most interesting change in the ideas and philosophy of science
brought about by quantum mechanics is this: it is not possible to
predict exactly what will happen in any circumstance. For
example, it is possible to arrange an atom which is ready to emit light,
and we can measure when it has emitted light by picking up a photon
particle, which we shall describe shortly. We cannot, however, predict
when it is going to emit the light or, with several atoms,
which one is going to. You may say that this is because there are
some internal “wheels” which we have not looked at closely enough. No,
there are no internal wheels; nature, as we understand it today,
behaves in such a way that it is fundamentally impossible to make
a precise prediction of exactly what will happen in a given
experiment. This is a horrible thing; in fact, philosophers have said
before that one of the fundamental requisites of science is that
whenever you set up the same conditions, the same thing must happen.
This is simply not true, it is not a fundamental condition
of science. The fact is that the same thing does not happen, that we can
find only an average, statistically, as to what happens. Nevertheless,
science has not completely collapsed. Philosophers, incidentally, say a
great deal about what is absolutely necessary for science, and it
is always, so far as one can see, rather naive, and probably wrong. For
example, some philosopher or other said it is fundamental to the
scientific effort that if an experiment is performed in, say, Stockholm,
and then the same experiment is done in, say, Quito, the same
results must occur. That is quite false. It is not necessary that
science do that; it may be a fact of experience, but it is
not necessary. For example, if one of the experiments is to look out at
the sky and see the aurora borealis in Stockholm, you do not see it in
Quito; that is a different phenomenon. “But,” you say, “that is
something that has to do with the outside; can you close yourself up in
a box in Stockholm and pull down the shade and get any difference?”
Surely. If we take a pendulum on a universal joint, and pull it out and
let go, then the pendulum will swing almost in a plane, but not quite.
Slowly the plane keeps changing in Stockholm, but not in Quito. The
blinds are down, too. The fact that this happened does not bring on the
destruction of science. What is the fundamental hypothesis of
science, the fundamental philosophy? We stated it in the first chapter:
the sole test of the validity of any idea is experiment. If it
turns out that most experiments work out the same in Quito as they do in
Stockholm, then those “most experiments” will be used to formulate
some general law, and those experiments which do not come out the same
we will say were a result of the environment near Stockholm. We will
invent some way to summarize the results of the experiment, and we do
not have to be told ahead of time what this way will look like. If we
are told that the same experiment will always produce the same result,
that is all very well, but if when we try it, it does not, then
it does not. We just have to take what we see, and then formulate
all the rest of our ideas in terms of our actual experience.




Returning again to quantum mechanics and fundamental physics, we cannot
go into details of the quantum-mechanical principles at this time, of
course, because these are rather difficult to understand. We shall
assume that they are there, and go on to describe what some of the
consequences are. One of the consequences is that things which we used
to consider as waves also behave like particles, and particles behave
like waves; in fact everything behaves the same way. There is no
distinction between a wave and a particle. So quantum mechanics
unifies the idea of the field and its waves, and the particles,
all into one. Now it is true that when the frequency is low, the field
aspect of the phenomenon is more evident, or more useful as an
approximate description in terms of everyday experiences. But as the
frequency increases, the particle aspects of the phenomenon become more
evident with the equipment with which we usually make the measurements.
In fact, although we mentioned many frequencies, no phenomenon directly
involving a frequency has yet been detected above approximately
1012[image: -*-] cycles per second. We only deduce the higher
frequencies from the energy of the particles, by a rule which assumes
that the particle-wave idea of quantum mechanics is valid.




Thus we have a new view of electromagnetic interaction. We have a new
kind of particle to add to the electron, the proton, and the
neutron. That new particle is called a photon. The
new view of the interaction of electrons and photons that is
electromagnetic theory, but with everything quantum-mechanically
correct, is called quantum electrodynamics. This fundamental theory of the interaction of light
and matter, or electric field and charges, is our greatest success so
far in physics. In this one theory we have the basic rules for all
ordinary phenomena except for gravitation and nuclear processes. For
example, out of quantum electrodynamics
come all known electrical, mechanical, and chemical laws: the laws for
the collision of billiard balls, the motions of wires in magnetic
fields, the specific heat of carbon monoxide, the color of neon signs,
the density of salt, and the reactions of hydrogen and oxygen to make
water are all consequences of this one law. All these details can be
worked out if the situation is simple enough for us to make an
approximation, which is almost never, but often we can understand more
or less what is happening. At the present time no exceptions are found
to the quantum-electrodynamic laws
outside the nucleus, and there we do not know whether
there is an exception because we simply do not know what is going on in
the nucleus.





In principle, then, quantum electrodynamics is the theory of all chemistry, and of life, if life is
ultimately reduced to chemistry and therefore just to physics because
chemistry is already reduced (the part of physics which is involved in
chemistry being already known). Furthermore, the same quantum
electrodynamics, this great thing,
predicts a lot of new things. In the first place, it tells the
properties of very high-energy photons, gamma rays, etc. It predicted
another very remarkable thing: besides the electron, there should be
another particle of the same mass, but of opposite charge, called a
positron, and these two, coming together, could annihilate each
other with the emission of light or gamma rays. (After all, light and
gamma rays are all the same, they are just different points on a
frequency scale.) The generalization of this, that for each particle
there is an antiparticle, turns out to be true. In
the case of electrons, the antiparticle has another name—it is called
a positron, but for most other particles, it is called anti-so-and-so,
like antiproton or antineutron. In quantum electrodynamics, two numbers are put in and most of the other
numbers in the world are supposed to come out. The two numbers that are
put in are called the mass of the electron and the charge of the
electron. Actually, that is not quite true, for we have a whole set of
numbers for chemistry which tells how heavy the nuclei are. That leads
us to the next part.







2–4 Nuclei and particles


What are the nuclei made of, and how are they held together? It is found
that the nuclei are held together by enormous forces. When these are
released, the energy released is tremendous compared with chemical
energy, in the same ratio as the atomic bomb explosion is to a TNT
explosion, because, of course, the atomic bomb has to do with changes
inside the nucleus, while the explosion of TNT has to do with the
changes of the electrons on the outside of the atoms. The question is,
what are the forces which hold the protons and neutrons together in the
nucleus? Just as the electrical interaction can be connected to a
particle, a photon, Yukawa
suggested that the forces between neutrons and protons also have a field
of some kind, and that when this field jiggles it behaves like a
particle. Thus there could be some other particles in the world besides
protons and neutrons, and he was able to deduce the properties of these
particles from the already known characteristics of nuclear forces. For
example, he predicted they should have a mass of two or three hundred
times that of an electron; and lo and behold, in cosmic rays there was
discovered a particle of the right mass! But it later turned out to be
the wrong particle. It was called a μ[image: -*-]-meson, or muon.




However, a little while later, in 1947 or 1948, another particle was
found, the π[image: -*-]-meson, or pion, which satisfied
Yukawa’s criterion. Besides the
proton and the neutron, then, in order to get nuclear forces we must add
the pion. Now, you say, “Oh great!, with this theory we make quantum
nucleodynamics using the pions just like Yukawa wanted to do, and see if it works, and everything will be
explained.” Bad luck. It turns out that the calculations that are
involved in this theory are so difficult that no one has ever been able
to figure out what the consequences of the theory are, or to check it
against experiment, and this has been going on now for almost twenty
years!




So we are stuck with a theory, and we do not know whether it is right or
wrong, but we do know that it is a little wrong, or at least
incomplete. While we have been dawdling around theoretically, trying to
calculate the consequences of this theory, the experimentalists have
been discovering some things. For example, they had already discovered
this μ[image: -*-]-meson or muon, and we do not yet know where it fits. Also, in
cosmic rays, a large number of other “extra” particles were found. It
turns out that today we have approximately thirty particles, and it is
very difficult to understand the relationships of all these particles,
and what nature wants them for, or what the connections are from one to
another. We do not today understand these various particles as different
aspects of the same thing, and the fact that we have so many unconnected
particles is a representation of the fact that we have so much
unconnected information without a good theory. After the great successes
of quantum electrodynamics, there is a
certain amount of knowledge of nuclear physics which is rough knowledge,
sort of half experience and half theory, assuming a type of force
between protons and neutrons and seeing what will happen, but not really
understanding where the force comes from. Aside from that, we have made
very little progress. We have collected an enormous number of chemical
elements. In the chemical case, there suddenly appeared a relationship
among these elements which was unexpected, and which is embodied in the
periodic table of Mendeleev. For example, sodium and potassium
are about the same in their chemical properties and are found in the
same column in the Mendeleev chart. We have been seeking a
Mendeleev-type chart for the new particles. One such chart of the new
particles was made independently by Gell-Mann in the U.S.A. and Nishijima in Japan. The basis of their classification is a
new number, like the electric charge, which can be assigned to each
particle, called its “strangeness,” S[image: -*-].
This number is conserved, like the electric charge, in reactions which
take place by nuclear forces.






Table 2–2. Elementary Particles


[image: img][image: img]



In Table 2–2 are listed all the particles. We cannot discuss
them much at this stage, but the table will at least show you how much
we do not know. Underneath each particle its mass is given in a certain
unit, called the MeV. One MeV is equal to
1.783×10−27[image: -*-] gram. The reason this unit was chosen is
historical, and we shall not go into it now. More massive particles are
put higher up on the chart; we see that a neutron and a proton have
almost the same mass. In vertical columns we have put the particles with
the same electrical charge, all neutral objects in one column, all
positively charged ones to the right of this one, and all negatively
charged objects to the left.





Particles are shown with a solid line and “resonances” with a dashed
one. Several particles have been omitted from the table. These include
the important zero-mass, zero-charge particles, the photon and the
graviton, which do not fall into the baryon-meson-lepton classification
scheme, and also some of the newer resonances (K*[image: -*-], ϕ[image: -*-],
η[image: -*-]). The antiparticles of the mesons are listed in the table, but
the antiparticles of the leptons and baryons would have to be listed in
another table which would look exactly like this one reflected on the
zero-charge column. Although all of the particles except the electron,
neutrino, photon, graviton, and proton are unstable, decay products have
been shown only for the resonances. Strangeness assignments are not
applicable for leptons, since they do not interact strongly with nuclei.





All particles which are together with the neutrons and protons are
called baryons, and the following ones exist: There is a
“lambda,” with a mass of 1115[image: -*-] MeV, and three others, called sigmas,
minus, neutral, and plus, with several masses almost the same. There are
groups or multiplets with almost the same mass, within one or two
percent. Each particle in a multiplet has the same strangeness. The
first multiplet is the proton-neutron doublet, and then there is a
singlet (the lambda) then the sigma triplet, and finally the xi doublet.
Very recently, in 1961, even a few more particles were found. Or
are they particles? They live so short a time, they disintegrate
almost instantaneously, as soon as they are formed, that we do not know
whether they should be considered as new particles, or some kind of
“resonance” interaction of a certain definite energy between the
Λ[image: -*-] and π[image: -*-] products into which they disintegrate.




In addition to the baryons the other particles which are involved in the
nuclear interaction are called mesons. There are first the pions,
which come in three varieties, positive, negative, and neutral; they
form another multiplet. We have also found some new things called
K-mesons, and they occur as a doublet, K+[image: -*-] and K0[image: -*-]. Also, every
particle has its antiparticle, unless a particle is its own
antiparticle. For example, the π−[image: -*-] and the π+[image: -*-] are
antiparticles, but the π0[image: -*-] is its own antiparticle. The K−[image: -*-]
and K+[image: -*-] are antiparticles, and the K0[image: -*-] and [image: \Kzerobar][image: \Kzerobar]. In
addition, in 1961 we also found some more mesons or maybe mesons
which disintegrate almost immediately.  A thing called ω[image: -*-] which
goes into three pions has a mass 780[image: -*-] on this scale, and somewhat less
certain is an object which disintegrates into two pions. These
particles, called mesons and baryons, and the antiparticles of the
mesons are on the same chart, but the antiparticles of the baryons must
be put on another chart, “reflected” through the charge-zero column.




Just as Mendeleev’s chart was very good, except for the fact that there
were a number of rare earth elements which were hanging out loose from
it, so we have a number of things hanging out loose from this
chart—particles which do not interact strongly in nuclei, have nothing
to do with a nuclear interaction, and do not have a strong interaction
(I mean the powerful kind of interaction of nuclear energy). These are
called leptons, and they are the following: there is the electron, which
has a very small mass on this scale, only 0.510[image: -*-] MeV. Then there is
that other, the μ[image: -*-]-meson, the muon, which has a mass much higher,
206[image: -*-] times as heavy as an electron. So far as we can tell, by all
experiments so far, the difference between the electron and the muon is
nothing but the mass. Everything works exactly the same for the muon as
for the electron, except that one is heavier than the other. Why is
there another one heavier; what is the use for it? We do not know. In
addition, there is a lepton which is neutral, called a neutrino, and
this particle has zero mass. In fact, it is now known that there are
two different kinds of neutrinos, one related to electrons and
the other related to muons.




Finally, we have two other particles which do not interact strongly with
the nuclear ones: one is a photon, and perhaps, if the field of gravity
also has a quantum-mechanical analog (a quantum theory of gravitation
has not yet been worked out), then there will be a particle, a graviton,
which will have zero mass.




What is this “zero mass”? The masses given here are
the masses of the particles at rest. The fact that a particle has
zero mass means, in a way, that it cannot be at
rest. A photon is never at rest, it is always moving at
186,000[image: -*-] miles a second. We will understand more what mass means when
we understand the theory of relativity, which will come in due time.




Thus we are confronted with a large number of particles, which together
seem to be the fundamental constituents of matter. Fortunately, these
particles are not all different in their interactions with
one another. In fact, there seem to be just four kinds of
interaction between particles which, in the order of decreasing
strength, are the nuclear force, electrical interactions, the beta-decay
interaction, and gravity. The photon is coupled to all charged particles
and the strength of the interaction is measured by some number, which
is 1/137[image: -*-]. The detailed law of this coupling is known, that is quantum
electrodynamics. Gravity is coupled to
all energy, but its coupling is extremely weak, much weaker than
that of electricity. This law is also known. Then there are the
so-called weak decays—beta decay, which causes the neutron to
disintegrate into proton, electron, and neutrino, relatively slowly.
This law is only partly known. The so-called strong interaction, the
meson-baryon interaction, has a strength of 1 in this scale, and the
law is completely unknown, although there are a number of known rules,
such as that the number of baryons does not change in any reaction.





Table 2–3. Elementary Interactions
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This then, is the horrible condition of our physics today. To summarize
it, I would say this: outside the nucleus, we seem to know all; inside
it, quantum mechanics is valid—the principles of quantum mechanics
have not been found to fail. The stage on which we put all of our
knowledge, we would say, is relativistic space-time; perhaps gravity is
involved in space-time. We do not know how the universe got started, and
we have never made experiments which check our ideas of space and time
accurately, below some tiny distance, so we only know that our
ideas work above that distance. We should also add that the rules of the
game are the quantum-mechanical principles, and those principles apply,
so far as we can tell, to the new particles as well as to the old. The
origin of the forces in nuclei leads us to new particles, but
unfortunately they appear in great profusion and we lack a complete
understanding of their interrelationship, although we already know that
there are some very surprising relationships among them. We seem
gradually to be groping toward an understanding of the world of
subatomic particles, but we really do not know how far we have yet to go
in this task.







  
    

3 The Relation of Physics to Other Sciences



3–1 Introduction


Physics is the most fundamental and all-inclusive of the
sciences, and has had a profound effect on all scientific development.
In fact, physics is the present-day equivalent of what used to be called
natural philosophy, from which most of our modern sciences arose.
Students of many fields find themselves studying physics because of the
basic role it plays in all phenomena. In this chapter we shall try to
explain what the fundamental problems in the other sciences are, but of
course it is impossible in so small a space really to deal with the
complex, subtle, beautiful matters in these other fields. Lack of space
also prevents our discussing the relation of physics to engineering,
industry, society, and war, or even the most remarkable relationship
between mathematics and physics. (Mathematics is not a
science from our point of view, in the sense that it is not a
natural science. The test of its validity is not experiment.) We
must, incidentally, make it clear from the beginning that if a thing is
not a science, it is not necessarily bad. For example, love is not a
science. So, if something is said not to be a science, it does not mean
that there is something wrong with it; it just means that it is not a
science.







3–2 Chemistry


The science which is perhaps the most deeply affected by physics is
chemistry. Historically, the early days of chemistry dealt almost
entirely with what we now call inorganic chemistry, the chemistry of
substances which are not associated with living things. Considerable
analysis was required to discover the existence of the many elements and
their relationships—how they make the various relatively simple
compounds found in rocks, earth, etc. This early chemistry was very
important for physics. The interaction between the two sciences was very
great because the theory of atoms was substantiated to a large extent by
experiments in chemistry. The theory of chemistry, i.e., of the
reactions themselves, was summarized to a large extent in the periodic
chart of Mendeleev, which brings out many strange
relationships among the various elements, and it was the collection of
rules as to which substance is combined with which, and how, that
constituted inorganic chemistry. All these rules were ultimately
explained in principle by quantum mechanics, so that theoretical
chemistry is in fact physics. On the other hand, it must be emphasized
that this explanation is in principle. We have already discussed
the difference between knowing the rules of the game of chess, and being
able to play. So it is that we may know the rules, but we cannot play
very well. It turns out to be very difficult to predict precisely what
will happen in a given chemical reaction; nevertheless, the deepest part
of theoretical chemistry must end up in quantum mechanics.




There is also a branch of physics and chemistry which was developed by
both sciences together, and which is extremely important. This is the
method of statistics applied in a situation in which there are
mechanical laws, which is aptly called statistical
mechanics. In any chemical situation a
large number of atoms are involved, and we have seen that the atoms are
all jiggling around in a very random and complicated way. If we could
analyze each collision, and be able to follow in detail the motion of
each molecule, we might hope to figure out what would happen, but the
many numbers needed to keep track of all these molecules exceeds so
enormously the capacity of any computer, and certainly the capacity of
the mind, that it was important to develop a method for dealing with
such complicated situations. Statistical mechanics, then, is the science of the phenomena of heat, or
thermodynamics. Inorganic chemistry is, as a science, now reduced
essentially to what are called physical chemistry and quantum chemistry;
physical chemistry to study the rates at which reactions occur and what
is happening in detail (How do the molecules hit? Which pieces fly off
first?, etc.), and quantum chemistry to help us understand what happens
in terms of the physical laws.





The other branch of chemistry is organic chemistry, the chemistry
of the substances which are associated with living things. For a time it
was believed that the substances which are associated with living things
were so marvelous that they could not be made by hand, from inorganic
materials. This is not at all true—they are just the same as the
substances made in inorganic chemistry, but more complicated
arrangements of atoms are involved. Organic chemistry obviously has a
very close relationship to the biology which supplies its substances,
and to industry, and furthermore, much physical chemistry and quantum
mechanics can be applied to organic as well as to inorganic compounds.
However, the main problems of organic chemistry are not in these
aspects, but rather in the analysis and synthesis of the substances
which are formed in biological systems, in living things. This leads
imperceptibly, in steps, toward biochemistry, and then into biology
itself, or molecular biology.







3–3 Biology


Thus we come to the science of biology, which is the study of
living things. In the early days of biology, the biologists had to deal
with the purely descriptive problem of finding out what living
things there were, and so they just had to count such things as the
hairs of the limbs of fleas. After these matters were worked out with a
great deal of interest, the biologists went into the machinery
inside the living bodies, first from a gross standpoint, naturally,
because it takes some effort to get into the finer details.




There was an interesting early relationship between physics and biology
in which biology helped physics in the discovery of the
conservation of energy, which was first
demonstrated by Mayer in
connection with the amount of heat taken in and given out by a living
creature.




If we look at the processes of biology of living animals more closely,
we see many physical phenomena: the circulation of blood, pumps,
pressure, etc. There are nerves: we know what is happening when we step
on a sharp stone, and that somehow or other the information goes from
the leg up. It is interesting how that happens. In their study of
nerves, the biologists have come to the conclusion that nerves are very
fine tubes with a complex wall which is very thin; through this wall the
cell pumps ions, so that there are positive ions on the outside and
negative ions on the inside, like a capacitor. Now this membrane has an
interesting property; if it “discharges” in one place, i.e., if some
of the ions were able to move through one place, so that the electric
voltage is reduced there, that electrical influence makes itself felt on
the ions in the neighborhood, and it affects the membrane in such a way
that it lets the ions through at neighboring points also. This in turn
affects it farther along, etc., and so there is a wave of
“penetrability” of the membrane which runs down the fiber when it is
“excited” at one end by stepping on the sharp stone. This wave is
somewhat analogous to a long sequence of vertical dominoes; if the end
one is pushed over, that one pushes the next, etc. Of course this will
transmit only one message unless the dominoes are set up again; and
similarly in the nerve cell, there are processes which pump the ions
slowly out again, to get the nerve ready for the next impulse. So it is
that we know what we are doing (or at least where we are). Of course the
electrical effects associated with this nerve impulse can be picked up
with electrical instruments, and because there are electrical
effects, obviously the physics of electrical effects has had a great
deal of influence on understanding the phenomenon.




The opposite effect is that, from somewhere in the brain, a message is
sent out along a nerve. What happens at the end of the nerve? There the
nerve branches out into fine little things, connected to a structure
near a muscle, called an endplate. For reasons which are not exactly
understood, when the impulse reaches the end of the nerve, little
packets of a chemical called acetylcholine are shot
off (five or ten molecules at a time) and they affect the muscle fiber
and make it contract—how simple! What makes a muscle contract? A
muscle is a very large number of fibers close together, containing two
different substances, myosin and actomyosin, but the
machinery by which the chemical reaction induced by
acetylcholine can modify the dimensions of the
muscle is not yet known. Thus the fundamental processes in the muscle
that make mechanical motions are not known.





Biology is such an enormously wide field that there are hosts of other
problems that we cannot mention at all—problems on how vision works
(what the light does in the eye), how hearing works, etc. (The way in
which thinking works we shall discuss later under psychology.)
Now, these things concerning biology which we have just discussed are,
from a biological standpoint, really not fundamental, at the bottom of
life, in the sense that even if we understood them we still would not
understand life itself. To illustrate: the men who study nerves feel
their work is very important, because after all you cannot have animals
without nerves. But you can have life without nerves.
Plants have neither nerves nor muscles, but they are working, they are
alive, just the same. So for the fundamental problems of biology we must
look deeper; when we do, we discover that all living things have a great
many characteristics in common. The most common feature is that they are
made of cells, within each of which is complex machinery for
doing things chemically. In plant cells, for example, there is machinery
for picking up light and generating glucose, which is consumed in the
dark to keep the plant alive. When the plant is eaten the glucose itself
generates in the animal a series of chemical reactions very closely
related to photosynthesis (and its opposite effect
in the dark) in plants.
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Fig. 3–1. The Krebs cycle.





In the cells of living systems there are many elaborate chemical
reactions, in which one compound is changed into another and another. To
give some impression of the enormous efforts that have gone into the
study of biochemistry, the chart in Fig. 3–1 summarizes our
knowledge to date on just one small part of the many series of reactions
which occur in cells, perhaps a percent or so of it.




Here we see a whole series of molecules which change from one to another
in a sequence or cycle of rather small steps. It is called the Krebs
cycle, the respiratory cycle. Each of the chemicals and each of the
steps is fairly simple, in terms of what change is made in the molecule,
but—and this is a centrally important discovery in
biochemistry—these changes are relatively difficult to
accomplish in a laboratory. If we have one substance and another very
similar substance, the one does not just turn into the other, because
the two forms are usually separated by an energy barrier or “hill.”
Consider this analogy: If we wanted to take an object from one place to
another, at the same level but on the other side of a hill, we could
push it over the top, but to do so requires the addition of some energy.
Thus most chemical reactions do not occur, because there is what is
called an activation energy in the way. In order to add an
extra atom to our chemical requires that we get it close enough
that some rearrangement can occur; then it will stick. But if we cannot
give it enough energy to get it close enough, it will not go to
completion, it will just go part way up the “hill” and back down
again. However, if we could literally take the molecules in our hands
and push and pull the atoms around in such a way as to open a hole to
let the new atom in, and then let it snap back, we would have found
another way, around the hill, which would not require extra
energy, and the reaction would go easily. Now there actually are,
in the cells, very large molecules, much larger than the ones
whose changes we have been describing, which in some complicated way
hold the smaller molecules just right, so that the reaction can occur
easily. These very large and complicated things are called
enzymes. (They were first called ferments, because they were
originally discovered in the fermentation of sugar. In fact, some of the
first reactions in the cycle were discovered there.) In the presence of
an enzyme the reaction will go.




An enzyme is made of another substance called protein. Enzymes
are very big and complicated, and each one is different, each being
built to control a certain special reaction. The names of the enzymes
are written in Fig. 3–1 at each reaction. (Sometimes the
same enzyme may control two reactions.) We emphasize that the enzymes
themselves are not involved in the reaction directly. They do not
change; they merely let an atom go from one place to another. Having
done so, the enzyme is ready to do it to the next molecule, like a
machine in a factory. Of course, there must be a supply of certain atoms
and a way of disposing of other atoms. Take hydrogen, for example: there
are enzymes which have special units on them which carry the hydrogen
for all chemical reactions. For example, there are three or four
hydrogen-reducing enzymes which are used all over our cycle in different
places. It is interesting that the machinery which liberates some
hydrogen at one place will take that hydrogen and use it somewhere else.




The most important feature of the cycle of Fig. 3–1 is the
transformation from GDP to GTP (guanosine-di-phosphate to
guanosine-tri-phosphate) because the one substance has much more energy
in it than the other. Just as there is a “box” in certain enzymes for
carrying hydrogen atoms around, there are special energy-carrying
“boxes” which involve the triphosphate group. So, GTP has more energy
than GDP and if the cycle is going one way, we are producing molecules
which have extra energy and which can go drive some other cycle which
requires energy, for example the contraction of muscle. The
muscle will not contract unless there is GTP. We can take muscle
fiber, put it in water, and add GTP, and the fibers contract, changing
GTP to GDP if the right enzymes are present. So the real system is in
the GDP-GTP transformation; in the dark the GTP which has been stored up
during the day is used to run the whole cycle around the other way. An
enzyme, you see, does not care in which direction the reaction goes, for
if it did it would violate one of the laws of physics.




Physics is of great importance in biology and other sciences for still
another reason, that has to do with experimental techniques. In
fact, if it were not for the great development of experimental physics,
these biochemistry charts would not be known today. The reason is that
the most useful tool of all for analyzing this fantastically complex
system is to label the atoms which are used in the reactions.
Thus, if we could introduce into the cycle some carbon dioxide which has
a “green mark” on it, and then measure after three seconds where the
green mark is, and again measure after ten seconds, etc., we could trace
out the course of the reactions. What are the “green marks”?  They are
different isotopes. We recall that the chemical
properties of atoms are determined by the number of electrons,
not by the mass of the nucleus. But there can be, for example in carbon,
six neutrons or seven neutrons, together with the six protons which all
carbon nuclei have. Chemically, the two atoms C12[image: -*-] and C13[image: -*-] are
the same, but they differ in weight and they have different nuclear
properties, and so they are distinguishable.  By using these
isotopes of different weights, or even radioactive
isotopes like C14[image: -*-], which provide a more
sensitive means for tracing very small quantities, it is possible to
trace the reactions.





Now, we return to the description of enzymes and proteins. All proteins
are not enzymes, but all enzymes are proteins. There are many proteins,
such as the proteins in muscle, the structural proteins which are, for
example, in cartilage and hair, skin, etc., that are not themselves
enzymes. However, proteins are a very characteristic substance of life:
first of all they make up all the enzymes, and second, they make up much
of the rest of living material. Proteins have a very interesting and
simple structure. They are a series, or chain, of different amino
acids. There are twenty different amino acids, and they all can combine
with each other to form chains in which the backbone is CO-NH, etc.
Proteins are nothing but chains of various ones of these twenty amino
acids. Each of the amino acids probably serves some special purpose.
Some, for example, have a sulfur atom at a certain place; when two
sulfur atoms are in the same protein, they form a bond, that is, they
tie the chain together at two points and form a loop. Another has extra
oxygen atoms which make it an acidic substance, another has a basic
characteristic. Some of them have big groups hanging out to one side, so
that they take up a lot of space. One of the amino acids, called
proline, is not really an amino acid, but imino acid. There is a slight
difference, with the result that when proline is in the chain, there is
a kink in the chain. If we wished to manufacture a particular protein,
we would give these instructions: put one of those sulfur hooks here;
next, add something to take up space; then attach something to put a
kink in the chain. In this way, we will get a complicated-looking chain,
hooked together and having some complex structure; this is presumably
just the manner in which all the various enzymes are made. One of the
great triumphs in recent times (since 1960), was at last to discover the
exact spatial atomic arrangement of certain proteins, which involve some
fifty-six or sixty amino acids in a row. Over a thousand atoms (more
nearly two thousand, if we count the hydrogen atoms) have been located
in a complex pattern in two proteins. The first was hemoglobin. One of
the sad aspects of this discovery is that we cannot see anything from
the pattern; we do not understand why it works the way it does. Of
course, that is the next problem to be attacked.




Another problem is how do the enzymes know what to be? A red-eyed fly
makes a red-eyed fly baby, and so the information for the whole pattern
of enzymes to make red pigment must be passed from one fly to the next.
This is done by a substance in the nucleus of the cell, not a protein,
called DNA (short for des-oxyribose nucleic acid). This is the
key substance which is passed from one cell to another (for instance
sperm cells consist mostly of DNA) and carries the information
as to how to make the enzymes. DNA is the “blueprint.” What
does the blueprint look like and how does it work? First, the blueprint
must be able to reproduce itself. Secondly, it must be able to instruct
the protein. Concerning the reproduction, we might think that this
proceeds like cell reproduction. Cells simply grow bigger and then
divide in half. Must it be thus with DNA molecules, then, that
they too grow bigger and divide in half? Every atom certainly
does not grow bigger and divide in half! No, it is impossible to
reproduce a molecule except by some more clever way.



[image: -][image: -]
Fig. 3–2. Schematic diagram of DNA.





The structure of the substance DNA was studied for a long time,
first chemically to find the composition, and then with x-rays to find
the pattern in space.  The result was the following remarkable
discovery: The DNA molecule is a pair of chains, twisted upon
each other. The backbone of each of these chains, which are analogous to
the chains of proteins but chemically quite different, is a series of
sugar and phosphate groups, as shown in Fig. 3–2. Now we see
how the chain can contain instructions, for if we could split this chain
down the middle, we would have a series B A A D C …[image: -*-] and every living
thing could have a different series.  Thus perhaps, in some way, the
specific instructions for the manufacture of proteins are
contained in the specific series of the DNA.




Attached to each sugar along the line, and linking the two chains
together, are certain pairs of cross-links. However, they are not all of
the same kind; there are four kinds, called adenine,
thymine, cytosine, and
guanine, but let us call them A[image: -*-], B[image: -*-], C[image: -*-], and D[image: -*-]. The
interesting thing is that only certain pairs can sit opposite each
other, for example A[image: -*-] with B[image: -*-] and C[image: -*-] with D[image: -*-]. These pairs are put on
the two chains in such a way that they “fit together,” and have a
strong energy of interaction. However, C[image: -*-] will not fit with A[image: -*-], and
B[image: -*-] will not fit with C[image: -*-]; they will only fit in pairs, A[image: -*-] against B[image: -*-]
and C[image: -*-] against D[image: -*-]. Therefore if one is C[image: -*-], the other must be D[image: -*-],
etc. Whatever the letters may be in one chain, each one must have its
specific complementary letter on the other chain.




What then about reproduction? Suppose we split this chain in two. How
can we make another one just like it? If, in the substances of the
cells, there is a manufacturing department which brings up phosphate,
sugar, and A[image: -*-], B[image: -*-], C[image: -*-], D[image: -*-] units not connected in a chain, the only
ones which will attach to our split chain will be the correct ones, the
complements of B A A D C …[image: -*-], namely, A B B C D …[image: -*-] Thus what happens is
that the chain splits down the middle during cell division, one half
ultimately to go with one cell, the other half to end up in the other
cell; when separated, a new complementary chain is made by each
half-chain.




Next comes the question, precisely how does the order of the A[image: -*-], B[image: -*-],
C[image: -*-], D[image: -*-] units determine the arrangement of the amino acids in the
protein?  This is the central unsolved problem in biology today. The
first clues, or pieces of information, however, are these: There are in
the cell tiny particles called ribosomes, and it is now known that that
is the place where proteins are made. But the ribosomes are not in the
nucleus, where the DNA and its instructions are. Something seems
to be the matter. However, it is also known that little molecule pieces
come off the DNA—not as long as the big DNA molecule
that carries all the information itself, but like a small section of it.
This is called RNA, but that is not essential. It is a kind of copy of
the DNA, a short copy. The RNA, which somehow carries a message
as to what kind of protein to make goes over to the ribosome; that is
known. When it gets there, protein is synthesized at the ribosome. That
is also known. However, the details of how the amino acids come in and
are arranged in accordance with a code that is on the RNA are, as yet,
still unknown. We do not know how to read it. If we knew, for example,
the “lineup” A[image: -*-], B[image: -*-], C[image: -*-], C[image: -*-], A[image: -*-], we could not tell you what
protein is to be made.




Certainly no subject or field is making more progress on so many fronts
at the present moment, than biology, and if we were to name the most
powerful assumption of all, which leads one on and on in an attempt to
understand life, it is that all things are made of atoms, and
that everything that living things do can be understood in terms of the
jigglings and wigglings of atoms.







3–4 Astronomy


In this rapid-fire explanation of the whole world, we must now turn to
astronomy. Astronomy is older than physics. In fact, it got physics
started by showing the beautiful simplicity of the motion of the stars
and planets, the understanding of which was the beginning of
physics. But the most remarkable discovery in all of astronomy is that
the stars are made of atoms of the same kind as those on the
earth.1 How was this done? Atoms
liberate light which has definite frequencies, something like the timbre
of a musical instrument, which has definite pitches or frequencies of
sound. When we are listening to several different tones we can tell them
apart, but when we look with our eyes at a mixture of colors we cannot
tell the parts from which it was made, because the eye is nowhere near
as discerning as the ear in this connection. However, with a
spectroscope we can analyze the frequencies of the light waves
and in this way we can see the very tunes of the atoms that are in the
different stars. As a matter of fact, two of the chemical elements were
discovered on a star before they were discovered on the earth.
Helium was discovered on the sun, whence its name, and
technetium was discovered in certain cool stars. This, of course,
permits us to make headway in understanding the stars, because they are
made of the same kinds of atoms which are on the earth. Now we know a
great deal about the atoms, especially concerning their behavior under
conditions of high temperature but not very great density, so that we
can analyze by statistical mechanics the behavior of the stellar
substance. Even though we cannot reproduce the conditions on the earth,
using the basic physical laws we often can tell precisely, or very
closely, what will happen. So it is that physics aids astronomy. Strange
as it may seem, we understand the distribution of matter in the interior
of the sun far better than we understand the interior of the earth. What
goes on inside a star is better understood than one might guess
from the difficulty of having to look at a little dot of light through a
telescope, because we can calculate what the atoms in the stars
should do in most circumstances.




One of the most impressive discoveries was the origin of the energy of
the stars, that makes them continue to burn. One of the men who
discovered this was out with his girlfriend the night after he realized
that nuclear reactions must be going on in the stars in order to
make them shine. She said “Look at how pretty the stars shine!” He
said “Yes, and right now I am the only man in the world who knows
why they shine.” She merely laughed at him. She was not
impressed with being out with the only man who, at that moment, knew why
stars shine. Well, it is sad to be alone, but that is the way it is in
this world.




It is the nuclear “burning” of hydrogen which supplies the energy of
the sun; the hydrogen is converted into helium.
Furthermore, ultimately, the manufacture of various chemical elements
proceeds in the centers of the stars, from hydrogen. The stuff of which
we are made, was “cooked” once, in a star, and spit out. How do
we know?  Because there is a clue. The proportion of the different
isotopes—how much C12[image: -*-], how much C13[image: -*-], etc.,
is something which is never changed by chemical reactions,
because the chemical reactions are so much the same for the two. The
proportions are purely the result of nuclear reactions. By
looking at the proportions of the isotopes in the cold,
dead ember which we are, we can discover what the furnace was
like in which the stuff of which we are made was formed. That furnace
was like the stars, and so it is very likely that our elements were
“made” in the stars and spit out in the explosions which we call novae
and supernovae. Astronomy is so close to physics that we shall study
many astronomical things as we go along.







3–5 Geology


We turn now to what are called earth sciences, or geology.
First, meteorology and the weather. Of course the instruments of
meteorology are physical instruments, and the development of
experimental physics made these instruments possible, as was explained
before. However, the theory of meteorology has never been satisfactorily
worked out by the physicist. “Well,” you say, “there is nothing but
air, and we know the equations of the motions of air.” Yes we do. “So
if we know the condition of air today, why can’t we figure out the
condition of the air tomorrow?” First, we do not really know
what the condition is today, because the air is swirling and twisting
everywhere. It turns out to be very sensitive, and even unstable. If you
have ever seen water run smoothly over a dam, and then turn into a large
number of blobs and drops as it falls, you will understand what I mean
by unstable. You know the condition of the water before it goes over the
spillway; it is perfectly smooth; but the moment it begins to fall,
where do the drops begin? What determines how big the lumps are going to
be and where they will be? That is not known, because the water is
unstable. Even a smooth moving mass of air, in going over a mountain
turns into complex whirlpools and eddies. In many fields we find this
situation of turbulent flow that we cannot analyze today. Quickly
we leave the subject of weather, and discuss geology!




The question basic to geology is, what makes the earth the way it is?
The most obvious processes are in front of your very eyes, the erosion
processes of the rivers, the winds, etc. It is easy enough to understand
these, but for every bit of erosion there is an equal amount of
something else going on. Mountains are no lower today, on the average,
than they were in the past. There must be mountain-forming
processes. You will find, if you study geology, that there are
mountain-forming processes and volcanism, which nobody understands but
which is half of geology. The phenomenon of volcanoes is really not
understood. What makes an earthquake is, ultimately, not understood. It
is understood that if something is pushing something else, it snaps and
will slide—that is all right. But what pushes, and why? The theory is
that there are currents inside the earth—circulating currents, due to
the difference in temperature inside and outside—which, in their
motion, push the surface slightly. Thus if there are two opposite
circulations next to each other, the matter will collect in the region
where they meet and make belts of mountains which are in unhappy
stressed conditions, and so produce volcanoes and earthquakes.




What about the inside of the earth? A great deal is known about the
speed of earthquake waves through the earth and the density of
distribution of the earth. However, physicists have been unable to get a
good theory as to how dense a substance should be at the pressures that
would be expected at the center of the earth. In other words, we cannot
figure out the properties of matter very well in these circumstances. We
do much less well with the earth than we do with the conditions of
matter in the stars. The mathematics involved seems a little too
difficult, so far, but perhaps it will not be too long before someone
realizes that it is an important problem, and really works it out. The
other aspect, of course, is that even if we did know the density, we
cannot figure out the circulating currents. Nor can we really work out
the properties of rocks at high pressure. We cannot tell how fast the
rocks should “give”; that must all be worked out by experiment.







3–6 Psychology


Next, we consider the science of psychology. Incidentally,
psychoanalysis is not a science: it is at best a medical process, and
perhaps even more like witch-doctoring. It has a theory as to what
causes disease—lots of different “spirits,” etc. The witch doctor
has a theory that a disease like malaria is caused by a spirit which
comes into the air; it is not cured by shaking a snake over it, but
quinine does help malaria. So, if you are sick, I would advise that you
go to the witch doctor because he is the man in the tribe who knows the
most about the disease; on the other hand, his knowledge is not science.
Psychoanalysis has not been checked carefully by experiment, and there
is no way to find a list of the number of cases in which it works, the
number of cases in which it does not work, etc.




The other branches of psychology, which involve things like the
physiology of sensation—what happens in the eye, and what happens in
the brain—are, if you wish, less interesting. But some small but real
progress has been made in studying them. One of the most interesting
technical problems may or may not be called psychology. The central
problem of the mind, if you will, or the nervous system, is this: when
an animal learns something, it can do something different than it could
before, and its brain cell must have changed too, if it is made out of
atoms. In what way is it different?  We do not know where to
look, or what to look for, when something is memorized. We do not know
what it means, or what change there is in the nervous system, when a
fact is learned. This is a very important problem which has not been
solved at all. Assuming, however, that there is some kind of memory
thing, the brain is such an enormous mass of interconnecting wires and
nerves that it probably cannot be analyzed in a straightforward manner.
There is an analog of this to computing machines and computing elements,
in that they also have a lot of lines, and they have some kind of
element, analogous, perhaps, to the synapse, or connection of one nerve
to another. This is a very interesting subject which we have not the
time to discuss further—the relationship between thinking and
computing machines. It must be appreciated, of course, that this subject
will tell us very little about the real complexities of ordinary human
behavior. All human beings are so different. It will be a long time
before we get there. We must start much further back. If we could even
figure out how a dog works, we would have gone pretty far. Dogs
are easier to understand, but nobody yet knows how dogs work.







3–7 How did it get that way?


In order for physics to be useful to other sciences in a
theoretical way, other than in the invention of instruments, the
science in question must supply to the physicist a description of the
object in a physicist’s language. They can say “why does a frog
jump?,” and the physicist cannot answer. If they tell him what a frog
is, that there are so many molecules, there is a nerve here, etc., that
is different. If they will tell us, more or less, what the earth or the
stars are like, then we can figure it out. In order for physical theory
to be of any use, we must know where the atoms are located. In order to
understand the chemistry, we must know exactly what atoms are present,
for otherwise we cannot analyze it. That is but one limitation, of
course.




There is another kind of problem in the sister sciences which
does not exist in physics; we might call it, for lack of a better term,
the historical question. How did it get that way? If we understand all
about biology, we will want to know how all the things which are on the
earth got there. There is the theory of evolution, an important part of
biology. In geology, we not only want to know how the mountains are
forming, but how the entire earth was formed in the beginning, the
origin of the solar system, etc. That, of course, leads us to want to
know what kind of matter there was in the world. How did the stars
evolve? What were the initial conditions? That is the problem of
astronomical history. A great deal has been found out about the
formation of stars, the formation of elements from which we were made,
and even a little about the origin of the universe.





There is no historical question being studied in physics at the present
time. We do not have a question, “Here are the laws of physics, how did
they get that way?” We do not imagine, at the moment, that the laws of
physics are somehow changing with time, that they were different in the
past than they are at present. Of course they may be, and the
moment we find they are, the historical question of physics will
be wrapped up with the rest of the history of the universe, and then the
physicist will be talking about the same problems as astronomers,
geologists, and biologists.




Finally, there is a physical problem that is common to many fields, that
is very old, and that has not been solved. It is not the problem of
finding new fundamental particles, but something left over from a long
time ago—over a hundred years. Nobody in physics has really been able
to analyze it mathematically satisfactorily in spite of its importance
to the sister sciences. It is the analysis of circulating or
turbulent fluids. If we watch the evolution of a star, there comes a
point where we can deduce that it is going to start convection, and
thereafter we can no longer deduce what should happen. A few million
years later the star explodes, but we cannot figure out the reason. We
cannot analyze the weather. We do not know the patterns of motions that
there should be inside the earth. The simplest form of the problem is to
take a pipe that is very long and push water through it at high speed.
We ask: to push a given amount of water through that pipe, how much
pressure is needed? No one can analyze it from first principles and the
properties of water. If the water flows very slowly, or if we use a
thick goo like honey, then we can do it nicely. You will find that in
your textbook.  What we really cannot do is deal with actual, wet water
running through a pipe. That is the central problem which we ought to
solve some day, and we have not.




A poet once said, “The whole universe is in a glass of wine.” We will
probably never know in what sense he meant that, for poets do not write
to be understood. But it is true that if we look at a glass of wine
closely enough we see the entire universe. There are the things of
physics: the twisting liquid which evaporates depending on the wind and
weather, the reflections in the glass, and our imagination adds the
atoms. The glass is a distillation of the earth’s rocks, and in its
composition we see the secrets of the universe’s age, and the evolution
of stars. What strange array of chemicals are in the wine? How did they
come to be? There are the ferments, the enzymes, the substrates, and the
products. There in wine is found the great generalization: all life is
fermentation. Nobody can discover the chemistry of wine without
discovering, as did Louis Pasteur,
the cause of much disease. How vivid is the claret, pressing its
existence into the consciousness that watches it! If our small minds,
for some convenience, divide this glass of wine, this universe, into
parts—physics, biology, geology, astronomy, psychology, and so
on—remember that nature does not know it! So let us put it all back
together, not forgetting ultimately what it is for. Let it give us one
more final pleasure: drink it and forget it all!





	
  
  How I’m rushing through this! How much each sentence in
this brief story contains. “The stars are made of the same atoms as the
earth.” I usually pick one small topic like this to give a lecture on.
Poets say science takes away from the beauty of the stars—mere globs
of gas atoms. Nothing is “mere.” I too can see the stars on a desert
night, and feel them. But do I see less or more? The vastness of the
heavens stretches my imagination—stuck on this carousel my little eye
can catch one-million-year-old light. A vast pattern—of which I am a
part—perhaps my stuff was belched from some forgotten star, as one is
belching there. Or see them with the greater eye of Palomar, rushing all
apart from some common starting point when they were perhaps all
together. What is the pattern, or the meaning, or the why? It
does not do harm to the mystery to know a little about it. For far more
marvelous is the truth than any artists of the past imagined!  Why do
the poets of the present not speak of it? What men are poets who can
speak of Jupiter if he were like a man, but if he is an immense spinning
sphere of methane and ammonia must be silent?
  ↩





  
    

4 Conservation of Energy



4–1 What is energy?


In this chapter, we begin our more detailed study of the
different aspects of physics, having finished our description of things
in general. To illustrate the ideas and the kind of reasoning that might
be used in theoretical physics, we shall now examine one of the most
basic laws of physics, the conservation of energy.




There is a fact, or if you wish, a law, governing all natural
phenomena that are known to date. There is no known exception to this
law—it is exact so far as we know. The law is called the
conservation of energy. It states that there is a certain
quantity, which we call energy, that does not change in the manifold
changes which nature undergoes. That is a most abstract idea, because it
is a mathematical principle; it says that there is a numerical quantity
which does not change when something happens. It is not a description of
a mechanism, or anything concrete; it is just a strange fact that we can
calculate some number and when we finish watching nature go through her
tricks and calculate the number again, it is the same. (Something like
the bishop on a red square, and after a number of moves—details
unknown—it is still on some red square. It is a law of this nature.)
Since it is an abstract idea, we shall illustrate the meaning of it by
an analogy.




Imagine a child, perhaps “Dennis the Menace,” who has blocks which are
absolutely indestructible, and cannot be divided into pieces. Each is
the same as the other. Let us suppose that he has 28[image: -*-] blocks. His
mother puts him with his 28[image: -*-] blocks into a room at the beginning of the
day. At the end of the day, being curious, she counts the blocks very
carefully, and discovers a phenomenal law—no matter what he does with
the blocks, there are always 28[image: -*-] remaining! This continues for a number
of days, until one day there are only 27[image: -*-] blocks, but a little
investigating shows that there is one under the rug—she must look
everywhere to be sure that the number of blocks has not changed. One
day, however, the number appears to change—there are only 26[image: -*-] blocks.
Careful investigation indicates that the window was open, and upon
looking outside, the other two blocks are found. Another day, careful
count indicates that there are 30[image: -*-] blocks! This causes considerable
consternation, until it is realized that Bruce came to visit, bringing
his blocks with him, and he left a few at Dennis’ house. After she has
disposed of the extra blocks, she closes the window, does not let Bruce
in, and then everything is going along all right, until one time she
counts and finds only 25[image: -*-] blocks. However, there is a box in the room,
a toy box, and the mother goes to open the toy box, but the boy says
“No, do not open my toy box,” and screams. Mother is not allowed to
open the toy box. Being extremely curious, and somewhat ingenious, she
invents a scheme! She knows that a block weighs three ounces, so she
weighs the box at a time when she sees 28[image: -*-] blocks, and it weighs
16[image: -*-] ounces. The next time she wishes to check, she weighs the box
again, subtracts sixteen ounces and divides by three. She discovers the
following:



[image: -*-][image: -*-]
(4.1)





There then appear to be some new deviations, but careful study indicates
that the dirty water in the bathtub is changing its level. The child is
throwing blocks into the water, and she cannot see them because it is so
dirty, but she can find out how many blocks are in the water by adding
another term to her formula. Since the original height of the water was
6 inches and each block raises the water a quarter of an inch, this
new formula would be:



[image: -*-][image: -*-]
(4.2)





In the gradual increase in the complexity of her world, she finds a
whole series of terms representing ways of calculating how many blocks
are in places where she is not allowed to look. As a result, she finds a
complex formula, a quantity which has to be computed, which
always stays the same in her situation.




What is the analogy of this to the conservation of energy? The most
remarkable aspect that must be abstracted from this picture is that
there are no blocks. Take away the first terms in
(4.1) and (4.2) and we find ourselves calculating
more or less abstract things. The analogy has the following points.
First, when we are calculating the energy, sometimes some of it leaves
the system and goes away, or sometimes some comes in. In order to verify
the conservation of energy, we must be careful that we have not put any
in or taken any out. Second, the energy has a large number of
different forms, and there is a formula for each one. These are:
gravitational energy, kinetic energy, heat energy, elastic energy, electrical energy, chemical energy, radiant energy, nuclear energy, mass energy. If we total up the formulas for each
of these contributions, it will not change except for energy going in
and out.




It is important to realize that in physics today, we have no knowledge
of what energy is. We do not have a picture that energy comes in
little blobs of a definite amount. It is not that way. However, there
are formulas for calculating some numerical quantity, and when we add it
all together it gives “28[image: -*-]”—always the same number. It is an
abstract thing in that it does not tell us the mechanism or the
reasons for the various formulas.







4–2 Gravitational potential energy


Conservation of energy can be understood only if we have the formula for
all of its forms. I wish to discuss the formula for gravitational energy
near the surface of the Earth, and I wish to derive this formula in a
way which has nothing to do with history but is simply a line of
reasoning invented for this particular lecture to give you an
illustration of the remarkable fact that a great deal about nature can
be extracted from a few facts and close reasoning. It is an illustration
of the kind of work theoretical physicists become involved in. It is
patterned after a most excellent argument by Mr.
Carnot on the efficiency of
steam engines.1




Consider weight-lifting machines—machines which have the property that
they lift one weight by lowering another. Let us also make a hypothesis:
that there is no such thing as perpetual motion with these
weight-lifting machines. (In fact, that there is no perpetual motion at
all is a general statement of the law of conservation of energy.)  We
must be careful to define perpetual motion. First, let us do it for
weight-lifting machines. If, when we have lifted and lowered a lot of
weights and restored the machine to the original condition, we find that
the net result is to have lifted a weight, then we have a
perpetual motion machine because we can use that lifted weight to run
something else. That is, provided the machine which lifted the
weight is brought back to its exact original condition, and
furthermore that it is completely self-contained—that it has
not received the energy to lift that weight from some external
source—like Bruce’s blocks.



[image: -][image: -]
Fig. 4–1. Simple weight-lifting machine.





A very simple weight-lifting machine is shown in Fig. 4–1.
This machine lifts weights three units “strong.” We place three units
on one balance pan, and one unit on the other. However, in order to get
it actually to work, we must lift a little weight off the left pan. On
the other hand, we could lift a one-unit weight by lowering the
three-unit weight, if we cheat a little by lifting a little weight off
the other pan. Of course, we realize that with any actual lifting
machine, we must add a little extra to get it to run. This we disregard,
temporarily. Ideal machines, although they do not exist, do not
require anything extra. A machine that we actually use can be, in a
sense, almost reversible: that is, if it will lift the weight of
three by lowering a weight of one, then it will also lift nearly the
weight of one the same amount by lowering the weight of three.




We imagine that there are two classes of machines, those that are
not reversible, which includes all real machines, and those that
are reversible, which of course are actually not attainable no
matter how careful we may be in our design of bearings, levers, etc. We
suppose, however, that there is such a thing—a reversible
machine—which lowers one unit of weight (a pound or any other unit) by
one unit of distance, and at the same time lifts a three-unit weight.
Call this reversible machine, Machine A[image: -*-]. Suppose this particular
reversible machine lifts the three-unit weight a distance X[image: -*-]. Then
suppose we have another machine, Machine B[image: -*-], which is not necessarily
reversible, which also lowers a unit weight a unit distance, but which
lifts three units a distance Y[image: -*-]. We can now prove that Y[image: -*-] is not
higher than X[image: -*-]; that is, it is impossible to build a machine that will
lift a weight any higher than it will be lifted by a reversible
machine. Let us see why. Let us suppose that Y[image: -*-] were higher than X[image: -*-].
We take a one-unit weight and lower it one unit height with Machine B[image: -*-],
and that lifts the three-unit weight up a distance Y[image: -*-]. Then we could
lower the weight from Y[image: -*-] to X[image: -*-], obtaining free power, and use
the reversible Machine A[image: -*-], running backwards, to lower the three-unit
weight a distance X[image: -*-] and lift the one-unit weight by one unit height.
This will put the one-unit weight back where it was before, and leave
both machines ready to be used again! We would therefore have perpetual
motion if Y[image: -*-] were higher than X[image: -*-], which we assumed was impossible.
With those assumptions, we thus deduce that Y[image: -*-] is not higher
than X[image: -*-], so that of all machines that can be designed, the reversible
machine is the best.




We can also see that all reversible machines must lift to exactly
the same height. Suppose that B[image: -*-] were really reversible also. The
argument that Y[image: -*-] is not higher than X[image: -*-] is, of course, just as good as
it was before, but we can also make our argument the other way around,
using the machines in the opposite order, and prove that X[image: -*-] is
not higher than Y[image: -*-]. This, then, is a very remarkable observation
because it permits us to analyze the height to which different machines
are going to lift something without looking at the interior
mechanism. We know at once that if somebody makes an enormously
elaborate series of levers that lift three units a certain distance by
lowering one unit by one unit distance, and we compare it with a simple
lever which does the same thing and is fundamentally reversible, his
machine will lift it no higher, but perhaps less high. If his machine is
reversible, we also know exactly how high it will lift. To
summarize: every reversible machine, no matter how it operates, which
drops one pound one foot and lifts a three-pound weight always lifts it
the same distance, X[image: -*-]. This is clearly a universal law of great
utility. The next question is, of course, what is X[image: -*-]?



[image: -][image: -][image: -][image: -][image: -][image: -][image: -][image: -][image: -][image: -][image: -][image: -]
Fig. 4–2. A reversible machine.





Suppose we have a reversible machine which is going to lift this
distance X[image: -*-], three for one. We set up three balls in a rack which does
not move, as shown in Fig. 4–2. One ball is held on a stage
at a distance one foot above the ground. The machine can lift three
balls, lowering one by a distance 1. Now, we have arranged that the
platform which holds three balls has a floor and two shelves, exactly
spaced at distance X[image: -*-], and further, that the rack which holds the balls
is spaced at distance X[image: -*-], (a). First we roll the balls horizontally
from the rack to the shelves, (b), and we suppose that this takes no
energy because we do not change the height. The reversible machine then
operates: it lowers the single ball to the floor, and it lifts the rack
a distance X[image: -*-], (c). Now we have ingeniously arranged the rack so that
these balls are again even with the platforms. Thus we unload the balls
onto the rack, (d); having unloaded the balls, we can restore the
machine to its original condition. Now we have three balls on the upper
three shelves and one at the bottom. But the strange thing is that, in a
certain way of speaking, we have not lifted two of them at all
because, after all, there were balls on shelves 2 and 3 before. The
resulting effect has been to lift one ball a distance 3 X[image: -*-]. Now,
if 3 X[image: -*-] exceeds one foot, then we can lower the ball to return
the machine to the initial condition, (f), and we can run the apparatus
again. Therefore 3 X[image: -*-] cannot exceed one foot, for if 3 X[image: -*-] exceeds one
foot we can make perpetual motion. Likewise, we can prove that one
foot cannot exceed 3 X[image: -*-], by making the whole machine run the opposite
way, since it is a reversible machine. Therefore 3 X[image: -*-] is neither
greater nor less than a foot, and we discover then, by argument
alone, the law that [image: X=\tfrac{1}{3}][image: X=\tfrac{1}{3}] foot. The generalization is clear:
one pound falls a certain distance in operating a reversible machine;
then the machine can lift p[image: -*-] pounds this distance divided by p[image: -*-].
Another way of putting the result is that three pounds times the height
lifted, which in our problem was X[image: -*-], is equal to one pound times the
distance lowered, which is one foot in this case. If we take all the
weights and multiply them by the heights at which they are now, above
the floor, let the machine operate, and then multiply all the weights by
all the heights again, there will be no change. (We have to
generalize the example where we moved only one weight to the case where
when we lower one we lift several different ones—but that is easy.)




We call the sum of the weights times the heights gravitational
potential energy—the energy which an object has because of its
relationship in space, relative to the earth. The formula for
gravitational energy, then, so long as we are not too far from the earth
(the force weakens as we go higher) is

[image: -*-][image: -*-]
(4.3)




It is a very beautiful line of reasoning. The only problem is that
perhaps it is not true. (After all, nature does not have to go
along with our reasoning.) For example, perhaps perpetual motion is, in
fact, possible. Some of the assumptions may be wrong, or we may have
made a mistake in reasoning, so it is always necessary to check.
It turns out experimentally, in fact, to be true.




The general name of energy which has to do with location relative to
something else is called potential energy. In this particular case, of
course, we call it gravitational potential energy. If it is a
question of electrical forces against which we are working, instead of
gravitational forces, if we are “lifting” charges away from other
charges with a lot of levers, then the energy content is called
electrical potential energy. The general principle is that the
change in the energy is the force times the distance that the force is
pushed, and that this is a change in energy in general:

[image: -*-][image: -*-]
(4.4)




We will return to many of these other kinds of energy as we continue the
course.



[image: -][image: -][image: -][image: -]
Fig. 4–3. Inclined plane.





The principle of the conservation of energy is very useful for deducing
what will happen in a number of circumstances. In high school we learned
a lot of laws about pulleys and levers used in different ways. We can
now see that these “laws” are all the same thing, and that we
did not have to memorize 75[image: -*-] rules to figure it out. A simple example
is a smooth inclined plane which is, happily, a
three-four-five triangle (Fig. 4–3). We hang a one-pound
weight on the inclined plane with a pulley, and on
the other side of the pulley, a weight W[image: -*-].
We want to know how heavy W[image: -*-] must be to balance the one pound on the
plane. How can we figure that out? If we say it is just balanced, it is
reversible and so can move up and down, and we can consider the
following situation. In the initial circumstance, (a), the one pound
weight is at the bottom and weight W[image: -*-] is at the top. When W[image: -*-] has
slipped down in a reversible way, (b), we have a one-pound weight at the top
and the weight W[image: -*-] the slant distance, or five feet, from the plane
in which it was before. We lifted the one-pound weight only
three feet and we lowered W[image: -*-] pounds by five feet.
Therefore [image: W=\tfrac{3}{5}][image: W=\tfrac{3}{5}] of a pound. Note that we deduced this from
the conservation of energy, and not from force components.
Cleverness, however, is relative. It can be deduced in a way which is
even more brilliant, discovered by Stevinus and inscribed on his tombstone. Figure 4–4
explains that it has to be [image: \tfrac{3}{5}][image: \tfrac{3}{5}] of a pound, because the chain
does not go around. It is evident that the lower part of the chain is
balanced by itself, so that the pull of the five weights on one side
must balance the pull of three weights on the other, or whatever the
ratio of the legs. You see, by looking at this diagram, that W[image: -*-] must be
[image: \tfrac{3}{5}][image: \tfrac{3}{5}] of a pound. (If you get an epitaph like that on your
gravestone, you are doing fine.)



[image: -][image: -]
Fig. 4–4. The epitaph of Stevinus.





Let us now illustrate the energy principle with a more complicated
problem, the screw jack shown in Fig. 4–5.
A handle 20[image: -*-] inches long is used to turn the screw, which has
10[image: -*-] threads to the inch. We would like to know how much force would be
needed at the handle to lift one ton (2000[image: -*-] pounds). If we want to lift
the ton one inch, say, then we must turn the handle around ten times.
When it goes around once it goes approximately 126[image: -*-] inches. The handle
must thus travel 1260[image: -*-] inches, and if we used various pulleys, etc., we
would be lifting our one ton with an unknown smaller weight W[image: -*-] applied
to the end of the handle. So we find out that W[image: -*-] is about 1.6[image: -*-] pounds.
This is a result of the conservation of energy.




[image: -][image: -]
Fig. 4–5. A screw jack.
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Fig. 4–6. Weighted rod supported on one end.





Take now the somewhat more complicated example shown in
Fig. 4–6. A rod or bar, 8 feet long, is supported at one
end. In the middle of the bar is a weight of 60[image: -*-] pounds, and at a
distance of two feet from the support there is a weight of 100[image: -*-] pounds.
How hard do we have to lift the end of the bar in order to keep it
balanced, disregarding the weight of the bar? Suppose we put a pulley at
one end and hang a weight on the pulley. How big would the weight W[image: -*-]
have to be in order for it to balance? We imagine that the weight falls
any arbitrary distance—to make it easy for ourselves suppose it goes
down 4 inches—how high would the two load weights rise? The center
rises 2 inches, and the point a quarter of the way from the fixed end
lifts 1 inch. Therefore, the principle that the sum of the heights
times the weights does not change tells us that the weight W[image: -*-] times
4 inches down, plus 60[image: -*-] pounds times 2 inches up, plus 100[image: -*-] pounds
times 1 inch has to add up to nothing:



[image: -*-][image: -*-]
(4.5)





Thus we must have a 55[image: -*-]-pound weight to balance the bar. In this way we
can work out the laws of “balance”—the statics of complicated bridge
arrangements, and so on. This approach is called the principle of
virtual work, because in order to apply this argument we had to
imagine that the structure moves a little—even though it is not
really moving or even movable. We use the very small
imagined motion to apply the principle of conservation of energy.







4–3 Kinetic energy


To illustrate another type of energy we consider a pendulum
(Fig. 4–7). If we pull the mass aside and release it, it
swings back and forth. In its motion, it loses height in going from
either end to the center. Where does the potential energy go?
Gravitational energy disappears when it is down at the bottom;
nevertheless, it will climb up again. The gravitational energy must have
gone into another form. Evidently it is by virtue of its motion
that it is able to climb up again, so we have the conversion of
gravitational energy into some other form when it reaches the bottom.



[image: -][image: -]
Fig. 4–7. Pendulum.





We must get a formula for the energy of motion. Now, recalling our
arguments about reversible machines, we can easily see that in the
motion at the bottom must be a quantity of energy which permits it to
rise a certain height, and which has nothing to do with the
machinery by which it comes up or the path by which it
comes up. So we have an equivalence formula something like the one we
wrote for the child’s blocks. We have another form to represent the
energy. It is easy to say what it is. The kinetic energy at the bottom
equals the weight times the height that it could go, corresponding to
its velocity: K.E.=W H[image: -*-]. What we need is the formula which tells
us the height by some rule that has to do with the motion of objects. If
we start something out with a certain velocity, say straight up, it will
reach a certain height; we do not know what it is yet, but it depends on
the velocity—there is a formula for that.
Then to find the formula for kinetic energy for an object moving with
velocity V[image: -*-],
we must calculate the height that it could reach, and multiply by the
weight. We shall soon find that we can write it this way:

[image: -*-][image: -*-]
(4.6)




Of course, the fact that motion has energy has nothing to do with the
fact that we are in a gravitational field. It makes no difference
where the motion came from. This is a general formula for various
velocities. Both (4.3) and (4.6) are approximate
formulas, the first because it is incorrect when the heights are great,
i.e., when the heights are so high that gravity is weakening; the
second, because of the relativistic correction at high speeds. However,
when we do finally get the exact formula for the energy, then the law of
conservation of energy is correct.







4–4 Other forms of energy


We can continue in this way to illustrate the existence of energy in
other forms. First, consider elastic energy. If we pull down on a spring, we
must do some work, for when we have it down, we can lift weights with
it. Therefore in its stretched condition it has a possibility of doing
some work. If we were to evaluate the sums of weights times heights, it
would not check out—we must add something else to account for the fact
that the spring is under tension. Elastic energy is the formula for a spring when it
is stretched. How much energy is it? If we let go, the elastic
energy, as the spring
passes through the equilibrium point, is converted to kinetic energy and
it goes back and forth between compressing or stretching the spring and
kinetic energy of motion. (There is also some gravitational energy going
in and out, but we can do this experiment “sideways” if we like.) It
keeps going until the losses—Aha! We have cheated all the way through
by putting on little weights to move things or saying that the machines
are reversible, or that they go on forever, but we can see that things
do stop, eventually. Where is the energy when the spring has finished
moving up and down? This brings in another form of energy:
heat energy.




Inside a spring or a lever there are crystals which are made up of lots
of atoms, and with great care and delicacy in the arrangement of the
parts one can try to adjust things so that as something rolls on
something else, none of the atoms do any jiggling at all. But one must
be very careful. Ordinarily when things roll, there is bumping and
jiggling because of the irregularities of the material, and the atoms
start to wiggle inside. So we lose track of that energy; we find the
atoms are wiggling inside in a random and confused manner after the
motion slows down. There is still kinetic energy, all right, but it is
not associated with visible motion. What a dream! How do we know
there is still kinetic energy? It turns out that with thermometers you
can find out that, in fact, the spring or the lever is warmer,
and that there is really an increase of kinetic energy by a definite
amount. We call this form of energy heat energy, but we know that it is not really a
new form, it is just kinetic energy—internal motion. (One of the
difficulties with all these experiments with matter that we do on a
large scale is that we cannot really demonstrate the conservation of
energy and we cannot really make our reversible machines, because every
time we move a large clump of stuff, the atoms do not remain absolutely
undisturbed, and so a certain amount of random motion goes into the
atomic system. We cannot see it, but we can measure it with
thermometers, etc.)




There are many other forms of energy, and of course we cannot describe
them in any more detail just now. There is electrical
energy, which
has to do with pushing and pulling by electric charges. There is radiant
energy, the energy of
light, which we know is a form of electrical energy because light can be represented
as wigglings in the electromagnetic field. There is chemical energy, the
energy which is released in chemical reactions. Actually, elastic
energy is, to a
certain extent, like chemical energy, because chemical energy is the
energy of the attraction of the atoms, one for the other, and so is
elastic energy. Our
modern understanding is the following: chemical energy has two parts,
kinetic energy of the electrons inside the atoms, so part of it is
kinetic, and electrical energy of interaction of the electrons
and the protons—the rest of it, therefore, is electrical. Next we come
to nuclear energy, the energy which is involved with the arrangement of
particles inside the nucleus, and we have formulas for that, but we do
not have the fundamental laws. We know that it is not electrical, not
gravitational, and not purely kinetic, but we do not know what it is.
It seems to be an additional form of energy. Finally, associated with
the relativity theory, there is a modification of the laws of kinetic
energy, or whatever you wish to call it, so that kinetic energy is
combined with another thing called mass energy. An object has energy from its sheer
existence. If I have a positron and an electron, standing still
doing nothing—never mind gravity, never mind anything—and they come
together and disappear, radiant energy will be liberated, in a definite
amount, and the amount can be calculated. All we need know is the mass
of the object. It does not depend on what it is—we make two things
disappear, and we get a certain amount of energy. The formula was first
found by Einstein; it
is E=m c2[image: -*-].





It is obvious from our discussion that the law of conservation of energy
is enormously useful in making analyses, as we have illustrated in a few
examples without knowing all the formulas. If we had all the formulas
for all kinds of energy, we could analyze how many processes should work
without having to go into the details. Therefore conservation laws are
very interesting. The question naturally arises as to what other
conservation laws there are in physics. There are two other conservation
laws which are analogous to the conservation of energy. One is called
the conservation of linear momentum. The other is
called the conservation of angular momentum. We will
find out more about these later. In the last analysis, we do not
understand the conservation laws deeply. We do not understand the
conservation of energy. We do not understand energy as a certain number
of little blobs. You may have heard that photons come out in blobs and
that the energy of a photon is Planck’s
constant times the frequency. That is
true, but since the frequency of light can be anything, there is no law
that says that energy has to be a certain definite amount. Unlike
Dennis’ blocks, there can be any amount of energy, at least as presently
understood. So we do not understand this energy as counting something at
the moment, but just as a mathematical quantity, which is an abstract
and rather peculiar circumstance. In quantum mechanics it turns out that
the conservation of energy is very closely related to another important
property of the world, things do not depend on the absolute time.
We can set up an experiment at a given moment and try it out, and then
do the same experiment at a later moment, and it will behave in exactly
the same way. Whether this is strictly true or not, we do not know. If
we assume that it is true, and add the principles of quantum
mechanics, then we can deduce the principle of the conservation of
energy. It is a rather subtle and interesting thing, and it is not easy
to explain. The other conservation laws are also linked together. The
conservation of momentum is associated in quantum mechanics with the
proposition that it makes no difference where you do the
experiment, the results will always be the same. As independence in
space has to do with the conservation of momentum, independence of time
has to do with the conservation of energy, and finally, if we
turn our apparatus, this too makes no difference, and so the
invariance of the world to angular orientation is related to the
conservation of angular momentum. Besides these, there are three
other conservation laws, that are exact so far as we can tell today,
which are much simpler to understand because they are in the
nature of counting blocks.





The first of the three is the conservation of
charge, and that merely means that you count how many positive, minus
how many negative electrical charges you have, and the number is never
changed. You may get rid of a positive with a negative, but you do not
create any net excess of positives over negatives. Two other laws are
analogous to this one—one is called the conservation of
baryons. There are a number of strange particles, a neutron and a
proton are examples, which are called baryons. In any reaction whatever
in nature, if we count how many baryons are coming into a process, the
number of baryons2 which
come out will be exactly the same. There is another law, the
conservation of leptons. We can say that the group of particles
called leptons are: electron, mu meson, and neutrino. There is an
antielectron which is a positron, that is, a −1[image: -*-] lepton. Counting the
total number of leptons in a reaction reveals that the number in and out
never changes, at least so far as we know at present.




These are the six conservation laws, three of them subtle, involving
space and time, and three of them simple, in the sense of counting
something.




With regard to the conservation of energy, we should note that
available energy is another matter—there is a lot of jiggling
around in the atoms of the water of the sea, because the sea has a
certain temperature, but it is impossible to get them herded into a
definite motion without taking energy from somewhere else. That is,
although we know for a fact that energy is conserved, the energy
available for human utility is not conserved so easily. The laws which
govern how much energy is available are called the laws of
thermodynamics and involve a concept called entropy for irreversible
thermodynamic processes.




Finally, we remark on the question of where we can get our supplies of
energy today. Our supplies of energy are from the sun, rain, coal,
uranium, and hydrogen. The sun makes the rain, and the coal also, so
that all these are from the sun. Although energy is conserved, nature
does not seem to be interested in it; she liberates a lot of energy from
the sun, but only one part in two billion falls on the earth. Nature has
conservation of energy, but does not really care; she spends a lot of it
in all directions. We have already obtained energy from uranium; we can
also get energy from hydrogen, but at present only in an explosive and
dangerous condition. If it can be controlled in thermonuclear reactions,
it turns out that the energy that can be obtained from 10[image: -*-] quarts of
water per second is equal to all of the electrical power generated in
the United States. With 150[image: -*-] gallons of running water a minute, you
have enough fuel to supply all the energy which is used in the United
States today! Therefore it is up to the physicist to figure out how to
liberate us from the need for having energy. It can be done.






	
  
  Our point here is not so much the result,
(4.3), which in fact you may already know, as the possibility
of arriving at it by theoretical reasoning.
  ↩


	
  
  Counting antibaryons as −1[image: -*-] baryon.
  ↩






  
    

5 Time and Distance



5–1 Motion


In this chapter we shall consider some aspects of the
concepts of time and distance. It has been emphasized
earlier that physics, as do all the sciences, depends on
observation. One might also say that the development of the
physical sciences to their present form has depended to a large extent
on the emphasis which has been placed on the making of
quantitative observations. Only with quantitative observations
can one arrive at quantitative relationships, which are the heart of
physics.




Many people would like to place the beginnings of physics with the work
done 350 years ago by Galileo,
and to call him the first physicist. Until that time, the study of
motion had been a philosophical one based on arguments that could be
thought up in one’s head. Most of the arguments had been presented by
Aristotle and other Greek
philosophers, and were taken as “proven.” Galileo was skeptical, and did an experiment on motion
which was essentially this: He allowed a ball to roll down an inclined
trough and observed the motion. He did not, however, just look; he
measured how far the ball went in how long a time.




The way to measure a distance was well known long before
Galileo, but there were no
accurate ways of measuring time, particularly short times. Although he
later devised more satisfactory clocks (though not like the ones we
know), Galileo’s first
experiments on motion were done by using his pulse to count off equal
intervals of time. Let us do the same.




We may count off beats of a pulse as the ball rolls down the track:
“one … two … three … four … five … six
… seven … eight …” We ask a friend to make a small
mark at the location of the ball at each count; we can then measure the
distance the ball travelled from the point of release in one, or
two, or three, etc., equal intervals of time. Galileo expressed the result of his observations in
this way: if the location of the ball is marked at 1, 2, 3,
4, … units of time from the instant of its release, those marks
are distant from the starting point in proportion to the numbers
1, 4, 9, 16[image: -*-], … Today we would say the distance is
proportional to the square of the time:

[image: -*-][image: -*-]
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Fig. 5–1. A ball rolls down an inclined track.





The study of motion, which is basic to all of physics, treats
with the questions: where? and when?







5–2 Time


Let us consider first what we mean by time. What is time?
It would be nice if we could find a good definition of time. Webster
defines “a time” as “a period,” and the latter as “a time,” which
doesn’t seem to be very useful. Perhaps we should say: “Time is what
happens when nothing else happens.” Which also doesn’t get us very far.
Maybe it is just as well if we face the fact that time is one of the
things we probably cannot define (in the dictionary sense), and just say
that it is what we already know it to be: it is how long we wait!




What really matters anyway is not how we define time, but how we
measure it. One way of measuring time is to utilize something which
happens over and over again in a regular fashion—something which is
periodic. For example, a day. A day seems to happen over and over
again. But when you begin to think about it, you might well ask: “Are
days periodic; are they regular? Are all days the same length?” One
certainly has the impression that days in summer are longer than days in
winter. Of course, some of the days in winter seem to get awfully long
if one is very bored. You have certainly heard someone say, “My, but
this has been a long day!”




It does seem, however, that days are about the same length on the
average. Is there any way we can test whether the days are the same
length—either from one day to the next, or at least on the average?
One way is to make a comparison with some other periodic phenomenon. Let
us see how such a comparison might be made with an hour glass. With an
hour glass, we can “create” a periodic occurrence if we have someone
standing by it day and night to turn it over whenever the last grain of
sand runs out.




We could then count the turnings of the glass from each morning to the
next. We would find, this time, that the number of “hours” (i.e.,
turnings of the glass) was not the same each “day.” We should distrust
the sun, or the glass, or both. After some thought, it might occur to us
to count the “hours” from noon to noon. (Noon is here defined
not as 12:00 o’clock, but that instant when the sun is at its
highest point.) We would find, this time, that the number of “hours”
each day is the same.




We now have some confidence that both the “hour” and the “day” have
a regular periodicity, i.e., mark off successive equal intervals of
time, although we have not proved that either one is “really”
periodic. Someone might question whether there might not be some
omnipotent being who would slow down the flow of sand every night and
speed it up during the day. Our experiment does not, of course, give us
an answer to this sort of question. All we can say is that we find that
a regularity of one kind fits together with a regularity of another
kind. We can just say that we base our definition of time on the
repetition of some apparently periodic event.







5–3 Short times


We should now notice that in the process of checking on the
reproducibility of the day, we have received an important by-product. We
have found a way of measuring, more accurately, fractions of a
day. We have found a way of counting time in smaller pieces. Can we
carry the process further, and learn to measure even smaller intervals
of time?




Galileo decided that a given
pendulum always swings back and forth in equal intervals
of time so long as the size of the swing is kept small. A test comparing
the number of swings of a pendulum in one “hour” shows that such is
indeed the case. We can in this way mark fractions of an hour. If we use
a mechanical device to count the swings—and to keep them going—we
have the pendulum clock of our grandfathers.





Let us agree that if our pendulum oscillates 3600[image: -*-] times in one hour
(and if there are 24[image: -*-] such hours in a day), we shall call each period
of the pendulum one “second.” We have then divided our original unit
of time into approximately 105[image: -*-] parts. We can apply the same
principles to divide the second into smaller and smaller intervals. It
is, you will realize, not practical to make mechanical pendulums which
go arbitrarily fast, but we can now make electrical pendulums,
called oscillators, which can provide a periodic occurrence with a very
short period of swing. In these electronic oscillators it is an
electrical current which swings to and fro, in a manner analogous to the
swinging of the bob of the pendulum.




We can make a series of such electronic oscillators, each with a period
10[image: -*-] times shorter than the previous one. We may “calibrate” each
oscillator against the next slower one by counting the
number of swings it makes for one swing of the slower
oscillator. When the period of oscillation of our
clock is shorter than a fraction of a second, we cannot count the
oscillations without the help of some device which extends our powers of
observation. One such device is the electron-beam oscilloscope, which
acts as a sort of microscope for short times. This device plots on a
fluorescent screen a graph of electrical current (or voltage) versus
time.  By connecting the oscilloscope to two of our oscillators in
sequence, so that it plots a graph first of the current in one of our
oscillators and then of the current in the other, we get two graphs like
those shown in Fig. 5–2. We can readily determine the number
of periods of the faster oscillator in one period of
the slower oscillator.
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Fig. 5–2. Two views of an oscilloscope screen. In (a) the oscilloscope is
connected to one oscillator, in (b) it is connected to an oscillator
with a period one-tenth as long.





With modern electronic techniques, oscillators have been built with
periods as short as about 10−12[image: -*-] second, and they have been
calibrated (by comparison methods such as we have described) in terms of
our standard unit of time, the second. With the invention and perfection
of the “laser,” or light amplifier, in the past few
years, it has become possible to make oscillators with even shorter
periods than 10−12[image: -*-] second, but it has not yet been possible to
calibrate them by the methods which have been described, although it
will no doubt soon be possible.





Times shorter than 10−12[image: -*-] second have been measured, but by a
different technique. In effect, a different definition of
“time” has been used. One way has been to observe the distance
between two happenings on a moving object. If, for example, the
headlights of a moving automobile are turned on and then off, we can
figure out how long the lights were on if we know where
they were turned on and off and how fast the car was moving. The time is
the distance over which the lights were on divided by the speed.




Within the past few years, just such a technique was used to measure the
lifetime of the π0[image: -*-]-meson. By observing in a microscope the minute
tracks left in a photographic emulsion in which π0[image: -*-]-mesons had been
created one saw that a π0[image: -*-]-meson (known to be travelling at a
certain speed nearly that of light) went a distance of about
10−7[image: -*-] meter, on the average, before disintegrating. It lived for
only about 10−16[image: -*-] sec. It should be emphasized that we have here
used a somewhat different definition of “time” than before. So long as
there are no inconsistencies in our understanding, however, we feel
fairly confident that our definitions are sufficiently equivalent.




By extending our techniques—and if necessary our definitions—still
further we can infer the time duration of still faster physical events.
We can speak of the period of a nuclear vibration. We can speak of the
lifetime of the newly discovered strange resonances (particles)
mentioned in Chapter 2. Their complete life occupies a time
span of only 10−24[image: -*-] second, approximately the time it would take
light (which moves at the fastest known speed) to cross the nucleus of
hydrogen (the smallest known object).




What about still smaller times? Does “time” exist on a still smaller
scale? Does it make any sense to speak of smaller times if we cannot
measure—or perhaps even think sensibly about—something which happens
in a shorter time? Perhaps not. These are some of the open questions
which you will be asking and perhaps answering in the next twenty or
thirty years.








5–4 Long times


Let us now consider times longer than one day. Measurement of longer
times is easy; we just count the days—so long as there is someone
around to do the counting. First we find that there is another natural
periodicity: the year, about 365[image: -*-] days. We have also discovered that
nature has sometimes provided a counter for the years, in the form of
tree rings or river-bottom sediments. In some cases we can use these
natural time markers to determine the time which has passed since some
early event.




When we cannot count the years for the measurement of long times, we
must look for other ways to measure. One of the most successful is the
use of radioactive material as a “clock.” In this case we do not have
a periodic occurrence, as for the day or the pendulum, but a new kind of
“regularity.” We find that the radioactivity of a particular sample of
material decreases by the same fraction for successive equal
increases in its age. If we plot a graph of the radioactivity observed
as a function of time (say in days), we obtain a curve like that shown
in Fig. 5–3. We observe that if the radioactivity decreases
to one-half in T[image: -*-] days (called the “half-life”), then it decreases to
one-quarter in another T[image: -*-] days, and so on. In an arbitrary time
interval t[image: -*-] there are t/T[image: -*-] “half-lives,” and the fraction left after
this time t[image: -*-] is [image: (\tfrac{1}{2})^{t/T}][image: (\tfrac{1}{2})^{t/T}].



[image: -][image: -]
Fig. 5–3. The decrease with time of radioactivity. The activity decreases
by one-half in each “half-life,” T[image: -*-].





If we knew that a piece of material, say a piece of wood, had contained
an amount A[image: -*-] of radioactive material when it was formed, and we found
out by a direct measurement that it now contains the amount B[image: -*-], we
could compute the age of the object, t[image: -*-], by solving the equation

[image: -*-][image: -*-]





There are, fortunately, cases in which we can know the amount of
radioactivity that was in an object when it was formed. We know, for
example, that the carbon dioxide in the air contains a certain small
fraction of the radioactive carbon isotope
C14[image: -*-] (replenished continuously by the action of cosmic rays). If we
measure the total carbon content of an object, we know that a
certain fraction of that amount was originally the radioactive C14[image: -*-];
we know, therefore, the starting amount A[image: -*-] to use in the formula above.
Carbon-14 has a half-life of 5000[image: -*-] years. By careful measurements we
can measure the amount left after 20[image: -*-] half-lives or so and can
therefore “date” organic objects which grew as long as
100,000[image: -*-] years ago.




We would like to know, and we think we do know, the life of still older
things. Much of our knowledge is based on the measurements of other
radioactive isotopes which have different
half-lives. If we make measurements with an isotope with a longer half-life, then we are able to measure longer
times. Uranium, for example, has an isotope
whose half-life is about 109[image: -*-] years, so that if some material was
formed with uranium in it 109[image: -*-] years ago, only half the uranium would
remain today. When the uranium disintegrates, it changes into lead.
Consider a piece of rock which was formed a long time ago in some
chemical process. Lead, being of a chemical nature different from
uranium, would appear in one part of the rock and uranium would appear
in another part of the rock. The uranium and lead would be separate. If
we look at that piece of rock today, where there should only be uranium
we will now find a certain fraction of uranium and a certain fraction of
lead. By comparing these fractions, we can tell what percent of the
uranium disappeared and changed into lead. By this method, the age of
certain rocks has been determined to be several billion years. An
extension of this method, not using particular rocks but looking at the
uranium and lead in the oceans and using averages over the earth, has
been used to determine (within the past few years) that the age of the
earth itself is approximately 4.5[image: -*-] billion years.




It is encouraging that the age of the earth is found to be the same as
the age of the meteorites which land on the earth, as determined by the
uranium method. It appears that the earth was formed out of rocks
floating in space, and that the meteorites are, quite likely, some of
that material left over. At some time more than five billion years ago,
the universe started. It is now believed that at least our part of the
universe had its beginning about ten or twelve billion years ago. We do
not know what happened before then. In fact, we may well ask again: Does
the question make any sense? Does an earlier time have any meaning?
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5–5 Units and standards of time


We have implied that it is convenient if we start with some standard
unit of time, say a day or a second, and refer all other times to some
multiple or fraction of this unit. What shall we take as our basic
standard of time? Shall we take the human pulse? If we compare pulses,
we find that they seem to vary a lot. On comparing two clocks, one finds
they do not vary so much. You might then say, well, let us take a clock.
But whose clock? There is a story of a Swiss boy who wanted all of the
clocks in his town to ring noon at the same time. So he went around
trying to convince everyone of the value of this. Everyone thought it
was a marvelous idea so long as all of the other clocks rang noon when
his did! It is rather difficult to decide whose clock we should take as
a standard. Fortunately, we all share one clock—the earth. For a long
time the rotational period of the earth has been taken as the basic
standard of time. As measurements have been made more and more precise,
however, it has been found that the rotation of the earth is not exactly
periodic, when measured in terms of the best clocks. These “best”
clocks are those which we have reason to believe are accurate because
they agree with each other. We now believe that, for various reasons,
some days are longer than others, some days are shorter, and on the
average the period of the earth becomes a little longer as the centuries
pass.




Until very recently we had found nothing much better than the earth’s
period, so all clocks have been related to the length of the day, and
the second has been defined as 1/86,400[image: -*-] of an
average day. Recently we have been gaining experience with some natural
oscillators which we now believe would provide a more constant time
reference than the earth, and which are also based on a natural
phenomenon available to everyone. These are the so-called “atomic
clocks.” Their basic internal period is that of an atomic vibration
which is very insensitive to the temperature or any other external
effects. These clocks keep time to an accuracy of one part in 109[image: -*-] or
better. Within the past two years an improved atomic clock which operates on the vibration of the hydrogen atom has been
designed and built by Professor Norman Ramsey at Harvard University. He believes that this clock
might be 100[image: -*-] times more accurate still. Measurements now in progress
will show whether this is true or not.





We may expect that since it has been possible to build clocks much more
accurate than astronomical time, there will soon be an agreement among
scientists to define the unit of time in terms of one of the atomic
clock standards.







5–6 Large distances


Let us now turn to the question of distance. How far, or how big,
are things? Everybody knows that the way you measure distance is to
start with a stick and count. Or start with a thumb and count. You begin
with a unit and count. How does one measure smaller things? How does one
subdivide distance? In the same way that we subdivided time: we take a
smaller unit and count the number of such units it takes to make up the
longer unit. So we can measure smaller and smaller lengths.




But we do not always mean by distance what one gets by counting off with
a meter stick. It would be difficult to measure the horizontal distance
between two mountain tops using only a meter stick. We have found by
experience that distance can be measured in another fashion: by
triangulation. Although
this means that we are really using a different definition of distance,
when they can both be used they agree with each other. Space is more or
less what Euclid thought it was, so the
two types of definitions of distance agree. Since they do agree on the
earth it gives us some confidence in using triangulation for still larger distances. For example,
we were able to use triangulation to measure the height of the first Sputnik. We found that
it was roughly 5×105[image: -*-] meters high. By more careful measurements
the distance to the moon can be measured in the same way. Two telescopes
at different places on the earth can give us the two angles we need. It
has been found in this way that the moon is 4×108[image: -*-] meters away.
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Fig. 5–4. The height of a Sputnik is determined by triangulation.





We cannot do the same with the sun, or at least no one has been able to
yet. The accuracy with which one can focus on a given point on the sun
and with which one can measure angles is not good enough to permit us to
measure the distance to the sun. Then how can we measure the distance to
the sun? We must invent an extension of the idea of
triangulation. We measure
the relative distances of all the planets by astronomical observations
of where the planets appear to be, and we get a picture of the solar
system with the proper relative distances of everything, but with
no absolute distance. One absolute measurement is then required,
which has been obtained in a number of ways. One of the ways, which was
believed until recently to be the most accurate, was to measure the
distance from the earth to Eros, one of the small planetoids which
passes near the earth every now and then. By
triangulation on this
little object, one could get the one required scale measurement. Knowing
the relative distances of the rest, we can then tell the distance, for
example, from the earth to the sun, or from the earth to Pluto.




Within the past year there has been a big improvement in our knowledge
of the scale of the solar system. At the Jet Propulsion Laboratory the
distance from the earth to Venus was measured quite accurately by a
direct radar observation. This, of course, is a still different type of
inferred distance. We say we know the speed at which light travels (and
therefore, at which radar waves travel), and we assume that it is the
same speed everywhere between the earth and Venus. We send the radio
wave out, and count the time until the reflected wave comes back. From
the time we infer a distance, assuming we know the speed.
We have really another definition of a measurement of distance.




How do we measure the distance to a star, which is much farther away?
Fortunately, we can go back to our triangulation method, because the earth moving around
the sun gives us a large baseline for measurements of objects outside
the solar system. If we focus a telescope on a star in summer and in
winter, we might hope to determine these two angles accurately enough to
be able to measure the distance to a star.
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Fig. 5–5. The distance of nearby stars can be measured by triangulation,
using the diameter of the earth’s orbit as a baseline.





What if the stars are too far away for us to use
triangulation? Astronomers
are always inventing new ways of measuring distance. They find, for
example, that they can estimate the size and brightness of a star by its
color. The color and brightness of many nearby stars—whose distances
are known by triangulation—have been measured, and it is found that there is a
smooth relationship between the color and the intrinsic brightness of
stars (in most cases). If one now measures the color of a distant star,
one may use the color-brightness relationship to determine
the intrinsic brightness of the star. By measuring how bright the star
appears to us at the earth (or perhaps we should say how
dim it appears), we can compute how far away it is. (For a given
intrinsic brightness, the apparent brightness decreases with the square
of the distance.) A nice confirmation of the correctness of this method
of measuring stellar distances is given by the results obtained for
groups of stars known as globular clusters. A photograph of such a group
is shown in Fig. 5–6. Just from looking at the photograph
one is convinced that these stars are all together. The same result is
obtained from distance measurements by the color-brightness method.




[image: -]
Fig. 5–6. A cluster of stars near the center of our galaxy. Their
distance from the earth is 30,000[image: -*-] light-years, or about
3×1020[image: -*-] meters.





A study of many globular clusters gives another important bit of
information. It is found that there is a high concentration of such
clusters in a certain part of the sky and that most of them are about
the same distance from us. Coupling this information with other
evidence, we conclude that this concentration of clusters marks the
center of our galaxy. We then know the distance to the center of the
galaxy—about 1020[image: -*-] meters.




Knowing the size of our own galaxy, we have a key to the measurement of
still larger distances—the distances to other galaxies.
Figure 5–7 is a photograph of a galaxy, which has much the
same shape as our own. Probably it is the same size, too. (Other
evidence supports the idea that galaxies are all about the same size.)
If it is the same size as ours, we can tell its distance. We measure the
angle it subtends in the sky; we know its diameter, and we compute its
distance—triangulation
again!




[image: -]
Fig. 5–7. A spiral galaxy like our own. Presuming that its diameter is
similar to that of our own galaxy, we may compute its distance from its
apparent size. It is 30[image: -*-] million light-years (3×1023[image: -*-] meters)
from the earth.





Photographs of exceedingly distant galaxies have recently been obtained
with the giant Palomar telescope. One is shown in Fig. 5–8.
It is now believed that some of these galaxies are about halfway to the
limit of the universe—1026[image: -*-] meters away—the largest distance we
can contemplate!





[image: -]
Fig. 5–8. The most distant object, 3C295 in BOOTES
(indicated by the arrow), measured by the 200[image: -*-]-inch telescope to date
(1960).






5–7 Short distances


Now let’s think about smaller distances. Subdividing the meter is easy.
Without much difficulty we can mark off one thousand equal spaces which
add up to one meter. With somewhat more difficulty, but in a similar way
(using a good microscope), we can mark off a thousand equal subdivisions
of the millimeter to make a scale of microns (millionths of a meter). It
is difficult to continue to smaller scales, because we cannot “see”
objects smaller than the wavelength of visible light (about
5×10−7[image: -*-] meter).



[image: -]
Fig. 5–9. Electron micrograph of some virus molecules. The “large”
sphere is for calibration and is known to have a diameter of
2×10−7[image: -*-] meter (2000[image: -*-] Å).





We need not stop, however, at what we can see. With an electron
microscope, we can continue the process by making photographs on a still
smaller scale, say down to 10−8[image: -*-] meter (Fig. 5–9). By
indirect measurements—by a kind of triangulation on a microscopic
scale—we can continue to measure to smaller and smaller scales. First,
from an observation of the way light of short wavelength (x-radiation)
is reflected from a pattern of marks of known separation, we determine
the wavelength of the light vibrations. Then, from the pattern of the
scattering of the same light from a crystal, we can determine the
relative location of the atoms in the crystal, obtaining results which
agree with the atomic spacings also determined by chemical means. We
find in this way that atoms have a diameter of about 10−10[image: -*-] meter.




There is a large “gap” in physical sizes between the typical atomic
dimension of about 10−10[image: -*-] meter and the nuclear dimensions
10−15[image: -*-] meter, 10−5[image: -*-] times smaller.  For nuclear sizes, a
different way of measuring size becomes convenient. We measure the
apparent area, σ[image: -*-], called the effective cross
section. If we wish the radius, we can obtain it
from σ=π r2[image: -*-], since nuclei are nearly spherical.




Measurement of a nuclear cross section can be made by passing a
beam of high-energy particles through a thin slab of material and
observing the number of particles which do not get through. These
high-energy particles will plow right through the thin cloud of
electrons and will be stopped or deflected only if they hit the
concentrated weight of a nucleus. Suppose we have a piece of material
1 centimeter thick. There will be about 108[image: -*-] atomic layers. But the
nuclei are so small that there is little chance that any nucleus will
lie behind another. We might imagine that a highly magnified view
of the situation—looking along the particle beam—would look like
Fig. 5–10.
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Fig. 5–10. Imagined view through a block of carbon 1 cm thick if only the
nuclei were observed.





The chance that a very small particle will hit a nucleus on the trip
through is just the total area covered by the profiles of the nuclei
divided by the total area in the picture. Suppose that we know that in
an area A[image: -*-] of our slab of material there are N[image: -*-] atoms (each with one
nucleus, of course). Then the fraction of the area “covered” by the
nuclei is N σ/A[image: -*-]. Now let the number of particles of our beam which
arrive at the slab be n1[image: -*-] and the number which come out the other side
be n2[image: -*-]. The fraction which do not get through
is (n1−n2)/n1[image: -*-], which should just equal the fraction of the area
covered. We can obtain the radius of the nucleus from the
equation1
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From such an experiment we find that the radii of the nuclei are from
about 1 to 6 times 10−15[image: -*-] meter. The length unit
10−15[image: -*-] meter is called the fermi, in
honor of Enrico Fermi (1901–1954).




What do we find if we go to smaller distances? Can we measure smaller
distances? Such questions are not yet answerable. It has been suggested
that the still unsolved mystery of nuclear forces may be unravelled only
by some modification of our idea of space, or measurement, at such small
distances.
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It might be thought that it would be a good idea to use some natural
length as our unit of length—say the radius of the earth or some
fraction of it. The meter was originally intended to be such a unit and
was defined to be (π/2)×10−7[image: -*-] times the earth’s radius. It is
neither convenient nor very accurate to determine the unit of length in
this way. For a long time it has been agreed internationally that the
meter would be defined as the distance between two scratches on a bar
kept in a special laboratory in France. More recently, it has been
realized that this definition is neither as precise as would be useful,
nor as permanent or universal as one would like. It is currently being
considered that a new definition be adopted, an agreed-upon (arbitrary)
number of wavelengths of a chosen spectral line.







Measurements of distance and of time give results which depend on the
observer. Two observers moving with respect to each other will not
measure the same distances and times when measuring what appear to be
the same things. Distances and time intervals have different magnitudes,
depending on the coordinate system (or “frame of reference”) used for
making the measurements. We shall study this subject in more detail in a
later chapter.




Perfectly precise measurements of distances or times are not permitted
by the laws of nature. We have mentioned earlier that the errors in a
measurement of the position of an object must be at least as large as
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where ℏ[image: -*-] is a small fundamental physical constant called the
reduced Planck constant and Δ p[image: -*-] is the error in
our knowledge of the momentum (mass times velocity) of the object whose
position we are measuring. It was also mentioned that the uncertainty in
position measurements is related to the wave nature of particles.




The relativity of space and time implies that time measurements have
also a minimum error, given in fact by

[image: -*-][image: -*-]


where Δ E[image: -*-] is the error in our knowledge of the energy of the
process whose time period we are measuring. If we wish to know
more precisely when something happened we must know less
about what happened, because our knowledge of the energy involved
will be less. The time uncertainty is also related to the wave nature of
matter.






	
  
  This equation is right only if the area covered by the
nuclei is a small fraction of the total, i.e., if (n1−n2)/n1[image: -*-] is
much less than 1. Otherwise we must make a correction for the fact
that some nuclei will be partly obscured by the nuclei in front of
them.
  ↩





  
    

6 Probability


“The true logic of this world is in the calculus of probabilities.”
   —James Clerk Maxwell





6–1 Chance and likelihood


“Chance” is a word which is in common use in everyday
living. The radio reports speaking of tomorrow’s weather may say:
“There is a sixty percent chance of rain.” You might say: “There is a
small chance that I shall live to be one hundred years old.” Scientists
also use the word chance. A seismologist may be interested in the
question: “What is the chance that there will be an earthquake of a
certain size in Southern California next year?” A physicist might ask
the question: “What is the chance that a particular geiger counter will
register twenty counts in the next ten seconds?” A politician or
statesman might be interested in the question: “What is the chance that
there will be a nuclear war within the next ten years?” You may be
interested in the chance that you will learn something from this
chapter.




By chance, we mean something like a guess. Why do we make
guesses? We make guesses when we wish to make a judgment but have
incomplete information or uncertain knowledge. We want to make a guess
as to what things are, or what things are likely to happen. Often we
wish to make a guess because we have to make a decision. For example:
Shall I take my raincoat with me tomorrow? For what earth movement
should I design a new building? Shall I build myself a fallout shelter?
Shall I change my stand in international negotiations? Shall I go to
class today?




Sometimes we make guesses because we wish, with our limited knowledge,
to say as much as we can about some situation. Really, any
generalization is in the nature of a guess. Any physical theory is a
kind of guesswork. There are good guesses and there are bad guesses. The
theory of probability is a system for making better guesses. The
language of probability allows us to speak quantitatively about some
situation which may be highly variable, but which does have some
consistent average behavior.




Let us consider the flipping of a coin. If the toss—and the coin—are
“honest,” we have no way of knowing what to expect for the outcome of
any particular toss. Yet we would feel that in a large number of tosses
there should be about equal numbers of heads and tails. We say: “The
probability that a toss will land heads is 0.5[image: -*-].”




We speak of probability only for observations that we contemplate being
made in the future. By the “probability” of a particular outcome
of an observation we mean our estimate for the most likely fraction of a
number of repeated observations that will yield that particular
outcome. If we imagine repeating an observation—such as looking at a
freshly tossed coin—N[image: -*-] times, and if we call NA[image: -*-] our
estimate of the most likely number of our observations that will give
some specified result A[image: -*-], say the result “heads,” then by P (A)[image: -*-], the
probability of observing A[image: -*-], we mean

[image: -*-][image: -*-]
(6.1)







Our definition requires several comments. First of all, we may speak of
a probability of something happening only if the occurrence is a
possible outcome of some repeatable observation. It is not clear
that it would make any sense to ask: “What is the probability that
there is a ghost in that house?”




You may object that no situation is exactly repeatable. That is
right. Every different observation must at least be at a different time
or place. All we can say is that the “repeated” observations should,
for our intended purposes, appear to be equivalent. We should
assume, at least, that each observation was made from an equivalently
prepared situation, and especially with the same degree of ignorance at
the start. (If we sneak a look at an opponent’s hand in a card game, our
estimate of our chances of winning are different than if we do not!)




We should emphasize that N[image: -*-] and NA[image: -*-] in Eq. (6.1) are
not intended to represent numbers based on actual observations.
NA[image: -*-] is our best estimate of what would occur in N[image: -*-]
imagined observations. Probability depends, therefore, on our
knowledge and on our ability to make estimates. In effect, on our common
sense!  Fortunately, there is a certain amount of agreement in the
common sense of many things, so that different people will make the same
estimate. Probabilities need not, however, be “absolute” numbers.
Since they depend on our ignorance, they may become different if our
knowledge changes.




You may have noticed another rather “subjective” aspect of our
definition of probability. We have referred to NA[image: -*-] as “our estimate
of the most likely number …” We do not mean that we expect to
observe exactly NA[image: -*-], but that we expect a number
near NA[image: -*-], and that the number NA[image: -*-] is more likely than
any other number in the vicinity. If we toss a coin, say, 30[image: -*-] times, we
should expect that the number of heads would not be very likely to be
exactly 15[image: -*-], but rather only some number near to 15[image: -*-], say 12[image: -*-], 13[image: -*-],
14[image: -*-], 15[image: -*-], 16[image: -*-], or 17[image: -*-]. However, if we must choose, we would
decide that 15[image: -*-] heads is more likely than any other number. We
would write P (heads)=0.5[image: -*-].




Why did we choose 15[image: -*-] as more likely than any other number? We must
have argued with ourselves in the following manner: If the most likely
number of heads is NH[image: -*-] in a total number of tosses N[image: -*-], then the most
likely number of tails NT[image: -*-] is (N−NH)[image: -*-]. (We are assuming that every
toss gives either heads or tails, and no “other”
result!) But if the coin is “honest,” there is no preference for heads
or tails. Until we have some reason to think the coin (or toss) is
dishonest, we must give equal likelihoods for heads and tails. So we
must set NT=NH[image: -*-]. It follows that NT=[image: -*-]NH=[image: -*-]N/2[image: -*-], or P (H)=[image: -*-]P (T)=[image: -*-]0.5[image: -*-].




We can generalize our reasoning to any situation in which there
are m[image: -*-] different but “equivalent” (that is, equally likely) possible
results of an observation. If an observation can yield m[image: -*-] different
results, and we have reason to believe that any one of them is as likely
as any other, then the probability of a particular outcome A[image: -*-]
is P (A)=1/m[image: -*-].




If there are seven different-colored balls in an opaque box and we pick
one out “at random” (that is, without looking), the probability of
getting a ball of a particular color is [image: \tfrac{1}{7}][image: \tfrac{1}{7}]. The probability
that a “blind draw” from a shuffled deck of 52[image: -*-] cards will show the
ten of hearts is [image: \tfrac{1}{52}][image: \tfrac{1}{52}]. The probability of throwing a
double-one with dice is [image: \tfrac{1}{36}][image: \tfrac{1}{36}].







In Chapter 5 we described the size of a nucleus in terms of
its apparent area, or “cross section.” When we did so we were really
talking about probabilities. When we shoot a high-energy particle at a
thin slab of material, there is some chance that it will pass right
through and some chance that it will hit a nucleus. (Since the nucleus
is so small that we cannot see it, we cannot aim right at a
nucleus. We must “shoot blind.”) If there are n[image: -*-] atoms in our slab
and the nucleus of each atom has a cross-sectional area σ[image: -*-], then
the total area “shadowed” by the nuclei is n σ[image: -*-]. In a large
number N[image: -*-] of random shots, we expect that the number of hits NC[image: -*-] of
some nucleus will be in the ratio to N[image: -*-] as the shadowed area is
to the total area of the slab:

[image: -*-][image: -*-]
(6.2)




We may say, therefore, that the probability that any one
projectile particle will suffer a collision in passing through the slab
is

[image: -*-][image: -*-]
(6.3)




where n/A[image: -*-] is the number of atoms per unit area in our slab.








6–2 Fluctuations

[image: -][image: -]
Fig. 6–1. Observed sequences of heads and tails in three games of
30 tosses each.





We would like now to use our ideas about probability to consider in some
greater detail the question: “How many heads do I really expect
to get if I toss a coin N[image: -*-] times?” Before answering the question,
however, let us look at what does happen in such an “experiment.”
Figure 6–1 shows the results obtained in the first three
“runs” of such an experiment in which N=30[image: -*-]. The sequences of
“heads” and “tails” are shown just as they were obtained. The first
game gave 11[image: -*-] heads; the second also 11[image: -*-]; the third 16[image: -*-]. In three
trials we did not once get 15[image: -*-] heads. Should we begin to suspect the
coin? Or were we wrong in thinking that the most likely number of
“heads” in such a game is 15[image: -*-]? Ninety-seven more runs were made to
obtain a total of 100[image: -*-] experiments of 30[image: -*-] tosses each. The results of
the experiments are given in Table 6–1.1





Table 6–1. Number of heads in successive trials of 30 tosses of a coin.



[image: --][image: --]


Looking at the numbers in Table 6–1, we see that most of the
results are “near” 15[image: -*-], in that they are between 12[image: -*-] and 18[image: -*-]. We
can get a better feeling for the details of these results if we plot a
graph of the distribution of the results. We count the number of
games in which a score of k[image: -*-] was obtained, and plot this number for
each k[image: -*-]. Such a graph is shown in Fig. 6–2. A score of
15[image: -*-] heads was obtained in 13[image: -*-] games. A score of 14[image: -*-] heads was also
obtained 13[image: -*-] times. Scores of 16[image: -*-] and 17[image: -*-] were each obtained
more than 13[image: -*-] times. Are we to conclude that there is some bias
toward heads? Was our “best estimate” not good enough?  Should we
conclude now that the “most likely” score for a run of 30[image: -*-] tosses is
really 16[image: -*-] heads? But wait! In all the games taken together, there were
3000[image: -*-] tosses. And the total number of heads obtained was 1493[image: -*-]. The
fraction of tosses that gave heads is 0.498[image: -*-], very nearly, but slightly
less than half. We should certainly not assume that the
probability of throwing heads is greater than 0.5[image: -*-]!  The fact that one
particular set of observations gave 16[image: -*-] heads most often, is a
fluctuation. We still expect that the most likely number
of heads is 15[image: -*-].



[image: -][image: -]
Fig. 6–2. Summary of the results of 100 games of 30 tosses each. The
vertical bars show the number of games in which a score of k[image: -*-] heads was
obtained. The dashed curve shows the expected numbers of games with the
score k[image: -*-] obtained by a probability computation.





We may ask the question: “What is the probability that a game of
30[image: -*-] tosses will yield 15[image: -*-] heads—or 16[image: -*-], or any other number?” We
have said that in a game of one toss, the probability of obtaining
one head is 0.5[image: -*-], and the probability of obtaining no head
is 0.5[image: -*-]. In a game of two tosses there are four possible
outcomes: H H[image: -*-], H T[image: -*-], T H[image: -*-], T T[image: -*-]. Since each of these sequences is
equally likely, we conclude that (a) the probability of a score of two
heads is [image: \tfrac{1}{4}][image: \tfrac{1}{4}], (b) the probability of a score of one head
is [image: \tfrac{2}{4}][image: \tfrac{2}{4}], (c) the probability of a zero score
is [image: \tfrac{1}{4}][image: \tfrac{1}{4}]. There are two ways of obtaining one head, but
only one of obtaining either zero or two heads.





Consider now a game of 3 tosses. The third toss is equally likely to
be heads or tails. There is only one way to obtain 3 heads: we
must have obtained 2 heads on the first two tosses, and then
heads on the last. There are, however, three ways of obtaining
2 heads. We could throw tails after having thrown two heads (one way)
or we could throw heads after throwing only one head in the first two
tosses (two ways). So for scores of 3-H[image: -*-], 2-H[image: -*-], 1-H[image: -*-], 0-H[image: -*-]
we have that the number of equally likely ways is 1, 3, 3, 1,
with a total of 8 different possible sequences. The probabilities are
[image: \tfrac{1}{8}][image: \tfrac{1}{8}], [image: \tfrac{3}{8}][image: \tfrac{3}{8}], [image: \tfrac{3}{8}][image: \tfrac{3}{8}], [image: \tfrac{1}{8}][image: \tfrac{1}{8}].



[image: -][image: -]
Fig. 6–3. A diagram for showing the number of ways a score of 0, 1,
2, or 3 heads can be obtained in a game of 3 tosses.




[image: -][image: -]
Fig. 6–4. A diagram like that of Fig. 6–3, for a game of 6 tosses.





The argument we have been making can be summarized by a diagram like
that in Fig. 6–3. It is clear how the diagram should be
continued for games with a larger number of tosses.
Figure 6–4 shows such a diagram for a game of 6 tosses.
The number of “ways” to any point on the diagram is just the number of
different “paths” (sequences of heads and tails) which can be taken
from the starting point. The vertical position gives us the total number
of heads thrown. The set of numbers which appears in such a diagram is
known as Pascal’s triangle. The numbers are also known as
the binomial coefficients, because they also appear in the
expansion of (a+b)n[image: -*-]. If we call n[image: -*-] the number of tosses and k[image: -*-] the
number of heads thrown, then the numbers in the diagram are usually
designated by the symbol [image: \tbinom{n}{k}][image: \tbinom{n}{k}]. We may remark in passing that
the binomial coefficients can also be computed from

[image: -*-][image: -*-]
(6.4)




where n![image: -*-], called “n[image: -*-]-factorial,” represents the
product (n) (n−1) (n−2) ⋯ (3) (2) (1)[image: -*-].




We are now ready to compute the probability P (k,n)[image: -*-] of throwing
k[image: -*-] heads in n[image: -*-] tosses, using our definition Eq. (6.1). The
total number of possible sequences is 2n[image: -*-] (since there are
2 outcomes for each toss), and the number of ways of obtaining
k[image: -*-] heads is [image: \tbinom{n}{k}][image: \tbinom{n}{k}], all equally likely, so we have

[image: -*-][image: -*-]
(6.5)







Since P (k,n)[image: -*-] is the fraction of games which we expect to yield
k[image: -*-] heads, then in 100[image: -*-] games we should expect to find k[image: -*-] heads
100⋅P (k,n)[image: -*-] times. The dashed curve in Fig. 6–2 passes
through the points computed from 100⋅P (k,30)[image: -*-]. We see that we
expect to obtain a score of 15[image: -*-] heads in 14[image: -*-] or 15[image: -*-] games,
whereas this score was observed in 13[image: -*-] games. We expect a score
of 16[image: -*-] in 13[image: -*-] or 14[image: -*-] games, but we obtained that score in 16[image: -*-] games.
Such fluctuations are “part of the game.”




The method we have just used can be applied to the most general
situation in which there are only two possible outcomes of a single
observation. Let us designate the two outcomes by W[image: -*-] (for “win”)
and L[image: -*-] (for “lose”). In the general case, the probability of W[image: -*-]
or L[image: -*-] in a single event need not be equal. Let p[image: -*-] be the probability
of obtaining the result W[image: -*-]. Then q[image: -*-], the probability of L[image: -*-], is
necessarily (1−p)[image: -*-]. In a set of n[image: -*-] trials, the probability P (k,n)[image: -*-]
that W[image: -*-] will be obtained k[image: -*-] times is

[image: -*-][image: -*-]
(6.6)




This probability function is called the Bernoulli or, also, the
binomial probability.








6–3 The random walk


There is another interesting problem in which the idea of probability is
required. It is the problem of the “random walk.” In its simplest
version, we imagine a “game” in which a “player” starts at the
point x=0[image: -*-] and at each “move” is required to take a step
either forward (toward +x[image: -*-]) or backward (toward −x[image: -*-]).
The choice is to be made randomly, determined, for example, by
the toss of a coin. How shall we describe the resulting motion? In its
general form the problem is related to the motion of atoms (or other
particles) in a gas—called Brownian
motion—and also to the combination of
errors in measurements. You will see that the random-walk problem is
closely related to the coin-tossing problem we have already discussed.





First, let us look at a few examples of a random walk. We may
characterize the walker’s progress by the net distance DN[image: -*-] traveled in
N[image: -*-] steps. We show in the graph of Fig. 6–5 three examples
of the path of a random walker. (We have used for the random sequence of
choices the results of the coin tosses shown in Fig. 6–1.)



[image: -][image: -]
Fig. 6–5. The progress made in a random walk. The horizontal
coordinate N[image: -*-] is the total number of steps taken; the vertical
coordinate DN[image: -*-] is the net distance moved from the starting position.





What can we say about such a motion? We might first ask: “How far does
he get on the average?” We must expect that his average progress
will be zero, since he is equally likely to go either forward or
backward. But we have the feeling that as N[image: -*-] increases, he is more
likely to have strayed farther from the starting point. We might,
therefore, ask what is his average distance travelled in absolute
value, that is, what is the average of │D│[image: -*-]. It
is, however, more convenient to deal with another measure of
“progress,” the square of the distance: D2[image: -*-] is positive for either
positive or negative motion, and is therefore a reasonable
measure of such random wandering.




We can show that the expected value of [image: D_N^2][image: D_N^2] is just N[image: -*-], the number
of steps taken. By “expected value” we mean the probable value (our
best guess), which we can think of as the expected average
behavior in many repeated sequences. We represent such an
expected value by [image: \expval{D_N^2}][image: \expval{D_N^2}], and may refer to it also as the
“mean square distance.”  After one step,
D2[image: -*-] is always +1[image: -*-], so we have certainly [image: \expval{D_1^2}=1][image: \expval{D_1^2}=1]. (All
distances will be measured in terms of a unit of one step. We shall not
continue to write the units of distance.)





The expected value of [image: D_N^2][image: D_N^2] for N>1[image: -*-] can be obtained from DN−1[image: -*-].
If, after (N−1)[image: -*-] steps, we have DN−1[image: -*-], then after N[image: -*-] steps we have
DN=DN−1+1[image: -*-] or DN=DN−1−1[image: -*-]. For the squares,

[image: -*-][image: -*-]
(6.7)




In a number of independent sequences, we expect to obtain each value
one-half of the time, so our average expectation is just the average of
the two possible values. The expected value of [image: D_N^2][image: D_N^2] is then
[image: D_{N-1}^2+1][image: D_{N-1}^2+1]. In general, we should expect
for [image: D_{N-1}^2][image: D_{N-1}^2] its “expected value” [image: \expval{D_{N-1}^2}][image: \expval{D_{N-1}^2}] (by
definition!). So

[image: -*-][image: -*-]
(6.8)







We have already shown that [image: \expval{D_1^2}=1][image: \expval{D_1^2}=1]; it follows then that

[image: -*-][image: -*-]
(6.9)




a particularly simple result!




If we wish a number like a distance, rather than a distance squared, to
represent the “progress made away from the origin” in a random walk,
we can use the “root-mean-square distance” Drms[image: -*-]:

[image: -*-][image: -*-]
(6.10)









We have pointed out that the random walk is closely similar in its
mathematics to the coin-tossing game we considered at the beginning of
the chapter. If we imagine the direction of each step to be in
correspondence with the appearance of heads or tails in a coin toss,
then D[image: -*-] is just NH−NT[image: -*-], the difference in the number of heads and
tails. Since NH+NT=N[image: -*-], the total number of steps (and tosses), we
have D=2 NH−N[image: -*-]. We have derived earlier an expression for the expected
distribution of NH[image: -*-] (also called k[image: -*-]) and obtained the result of
Eq. (6.5). Since N[image: -*-] is just a constant, we have the
corresponding distribution for D[image: -*-]. (Since for every head more than
N/2[image: -*-] there is a tail “missing,” we have the factor of 2 between
NH[image: -*-] and D[image: -*-].)  The graph of Fig. 6–2 represents the
distribution of distances we might get in 30[image: -*-] random steps (where
k=15[image: -*-] is to be read D=0[image: -*-]; k=16[image: -*-], D=2[image: -*-]; etc.).




The variation of NH[image: -*-] from its expected value N/2[image: -*-] is

[image: -*-][image: -*-]
(6.11)




The rms deviation is

[image: -*-][image: -*-]
(6.12)







According to our result for Drms[image: -*-], we expect that the
“typical” distance in 30[image: -*-] steps ought to be √30=5.5[image: -*-], or a
typical k[image: -*-] should be about 5.5/2=2.8[image: -*-] units from 15[image: -*-]. We see that the
“width” of the curve in Fig. 6–2, measured from the
center, is just about 3 units, in agreement with this result.




We are now in a position to consider a question we have avoided until
now. How shall we tell whether a coin is “honest” or “loaded”? We
can give now at least a partial answer. For an honest coin, we expect
the fraction of the times heads appears to be 0.5[image: -*-], that is,

[image: -*-][image: -*-]
(6.13)




We also expect an actual NH[image: -*-] to deviate from N/2[image: -*-] by about
√N/2[image: -*-], or the fraction to deviate by

[image: -*-][image: -*-]


The larger N[image: -*-] is, the closer we expect the fraction NH/N[image: -*-] to
be to one-half.



[image: -][image: -]
Fig. 6–6. The fraction of the tosses that gave heads in a particular
sequence of N[image: -*-] tosses of a penny.





In Fig. 6–6 we have plotted the fraction NH/N[image: -*-] for the
coin tosses reported earlier in this chapter. We see the tendency for
the fraction of heads to approach 0.5[image: -*-] for large N[image: -*-]. Unfortunately,
for any given run or combination of runs there is no guarantee
that the observed deviation will be even near the expected
deviation. There is always the finite chance that a large
fluctuation—a long string of heads or tails—will give an arbitrarily
large deviation. All we can say is that if the deviation is near
the expected 1/2 √N[image: -*-] (say within a factor of 2 or 3), we have
no reason to suspect the honesty of the coin. If it is much larger, we
may be suspicious, but cannot prove, that the coin is loaded (or that
the tosser is clever!).




We have also not considered how we should treat the case of a “coin”
or some similar “chancy” object (say a stone that always lands in
either of two positions) that we have good reason to believe
should have a different probability for heads and tails. We have
defined [image: P(H)=\expval{N_H}/N][image: P(H)=\expval{N_H}/N]. How shall we know what to expect
for NH[image: -*-]? In some cases, the best we can do is to observe the number of
heads obtained in large numbers of tosses. For want of anything better,
we must set [image: \expval{N_H}=N_H(\text{observed})][image: \expval{N_H}=N_H(\text{observed})]. (How could we expect
anything else?) We must understand, however, that in such a case a
different experiment, or a different observer, might conclude that
P (H)[image: -*-] was different. We would expect, however, that the various
answers should agree within the deviation 1/2 √N[image: -*-] [if P (H)[image: -*-] is
near one-half]. An experimental physicist usually says that an
“experimentally determined” probability has an “error,” and writes

[image: -*-][image: -*-]
(6.14)




There is an implication in such an expression that there is a
“true” or “correct” probability which could be computed if we
knew enough, and that the observation may be in “error” due to a
fluctuation. There is, however, no way to make such thinking logically
consistent. It is probably better to realize that the probability
concept is in a sense subjective, that it is always based on uncertain
knowledge, and that its quantitative evaluation is subject to change as
we obtain more information.







6–4 A probability distribution


Let us return now to the random walk and consider a modification of it.
Suppose that in addition to a random choice of the direction (+[image: -*-]
or −[image: -*-]) of each step, the length of each step also varied in some
unpredictable way, the only condition being that on the average
the step length was one unit. This case is more representative of
something like the thermal motion of a molecule in a gas. If we call the
length of a step S[image: -*-], then S[image: -*-] may have any value at all, but most often
will be “near” 1. To be specific, we shall let [image: \expval{S^2}=1][image: \expval{S^2}=1] or,
equivalently, Srms=1[image: -*-]. Our derivation for [image: \expval{D^2}][image: \expval{D^2}]
would proceed as before except that Eq. (6.8) would be
changed now to read

[image: -*-][image: -*-]
(6.15)




We have, as before, that

[image: -*-][image: -*-]
(6.16)







What would we expect now for the distribution of distances D[image: -*-]? What is,
for example, the probability that D=0[image: -*-] after 30[image: -*-] steps? The answer is
zero! The probability is zero that D[image: -*-] will be any particular
value, since there is no chance at all that the sum of the backward
steps (of varying lengths) would exactly equal the sum of forward steps.
We cannot plot a graph like that of Fig. 6–2.




We can, however, obtain a representation similar to that of
Fig. 6–2, if we ask, not what is the probability of
obtaining D[image: -*-] exactly equal to 0, 1, or 2, but instead what is the
probability of obtaining D[image: -*-] near 0, 1, or 2. Let us
define P (x,Δ x)[image: -*-] as the probability that D[image: -*-] will lie in the
interval Δ x[image: -*-] located at x[image: -*-] (say from x[image: -*-] to x+Δ x[image: -*-]). We
expect that for small Δ x[image: -*-] the chance of D[image: -*-] landing in the
interval is proportional to Δ x[image: -*-], the width of the interval. So we
can write

[image: -*-][image: -*-]
(6.17)




The function p (x)[image: -*-] is called the probability
density.




The form of p (x)[image: -*-] will depend on N[image: -*-], the number of steps taken, and
also on the distribution of individual step lengths. We cannot
demonstrate the proofs here, but for large N[image: -*-], p (x)[image: -*-] is the
same for all reasonable distributions in individual step lengths,
and depends only on N[image: -*-]. We plot p (x)[image: -*-] for three values of N[image: -*-] in
Fig. 6–7. You will notice that the “half-widths” (typical
spread from x=0[image: -*-]) of these curves is √N[image: -*-], as we have shown it
should be.



[image: -][image: -]
Fig. 6–7. The probability density for ending up at the distance D[image: -*-] from
the starting place in a random walk of N[image: -*-] steps. (D[image: -*-] is measured in
units of the rms step length.)





You may notice also that the value of p (x)[image: -*-] near zero is inversely
proportional to √N[image: -*-]. This comes about because the curves are all
of a similar shape and their areas under the curves must all be equal.
Since p (x) Δ x[image: -*-] is the probability of finding D[image: -*-] in Δ x[image: -*-]
when Δ x[image: -*-] is small, we can determine the chance of finding D[image: -*-]
somewhere inside an arbitrary interval from x1[image: -*-] to x2[image: -*-], by
cutting the interval in a number of small increments Δ x[image: -*-] and
evaluating the sum of the terms p (x) Δ x[image: -*-] for each increment. The
probability that D[image: -*-] lands somewhere between x1[image: -*-] and x2[image: -*-], which we
may write P(x1<D<x2)[image: -*-], is equal to the shaded area in
Fig. 6–8. The smaller we take the increments Δ x[image: -*-], the
more correct is our result. We can write, therefore,



[image: -*-][image: -*-]
(6.18)









[image: -][image: -]
Fig. 6–8. The probability that the distance D[image: -*-] traveled in a random walk
is between x1[image: -*-] and x2[image: -*-] is the area under the curve of p (x)[image: -*-] from
x1[image: -*-] to x2[image: -*-].





The area under the whole curve is the probability that D[image: -*-] lands
somewhere (that is, has some value between x=−∞[image: -*-]
and x=+∞[image: -*-]). That probability is surely 1. We must have that

[image: -*-][image: -*-]
(6.19)




Since the curves in Fig. 6–7 get wider in proportion
to √N[image: -*-], their heights must be proportional to 1/√N[image: -*-] to
maintain the total area equal to 1.




The probability density function we have been
describing is one that is encountered most commonly. It is known as the
normal or gaussian probability density. It has the mathematical form

[image: -*-][image: -*-]
(6.20)




where σ[image: -*-] is called the standard deviation and is given, in our case, by σ=√N[image: -*-] or, if the
rms step size is different from 1, by σ=√N Srms[image: -*-].




We remarked earlier that the motion of a molecule, or of any particle,
in a gas is like a random walk. Suppose we open a bottle of an organic
compound and let some of its vapor escape into the air. If there are air
currents, so that the air is circulating, the currents will also carry
the vapor with them. But even in perfectly still air, the vapor
will gradually spread out—will diffuse—until it has penetrated
throughout the room. We might detect it by its color or odor. The
individual molecules of the organic vapor spread out in still air
because of the molecular motions caused by collisions with other
molecules. If we know the average “step” size, and the number of steps
taken per second, we can find the probability that one, or several,
molecules will be found at some distance from their starting point after
any particular passage of time. As time passes, more steps are taken and
the gas spreads out as in the successive curves of Fig. 6–7.
In a later chapter, we shall find out how the step sizes and step
frequencies are related to the temperature and pressure of a gas.




Earlier, we said that the pressure of a gas is due to the molecules
bouncing against the walls of the container. When we come later to make
a more quantitative description, we will wish to know how fast the
molecules are going when they bounce, since the impact they make will
depend on that speed. We cannot, however, speak of the speed of
the molecules. It is necessary to use a probability description. A
molecule may have any speed, but some speeds are more likely than
others. We describe what is going on by saying that the probability that
any particular molecule will have a speed between v[image: -*-] and v+Δ v[image: -*-]
is p (v) Δ v[image: -*-], where p (v)[image: -*-], a probability density, is a given
function of the speed v[image: -*-]. We shall see later how
Maxwell, using common sense
and the ideas of probability, was able to find a mathematical expression
for p (v)[image: -*-]. The form2  of the
function p (v)[image: -*-] is shown in Fig. 6–9. Velocities may have
any value, but are most likely to be near the most probable value vp[image: -*-].



[image: -][image: -]
Fig. 6–9. The distribution of velocities of the molecules in a gas.





We often think of the curve of Fig. 6–9 in a somewhat
different way. If we consider the molecules in a typical container (with
a volume of, say, one liter), then there are a very large number N[image: -*-] of
molecules present (N≈1022[image: -*-]). Since p (v) Δ v[image: -*-]
is the probability that one molecule will have its velocity
in Δ v[image: -*-], by our definition of probability we mean that the
expected number [image: \expval{\Delta N}][image: \expval{\Delta N}] to be found with a velocity
in the interval Δ v[image: -*-] is given by

[image: -*-][image: -*-]
(6.21)




We call N p (v)[image: -*-] the “distribution in velocity.” The area under the
curve between two velocities v1[image: -*-] and v2[image: -*-], for example the shaded
area in Fig. 6–9, represents [for the curve N p (v)[image: -*-]] the
expected number of molecules with velocities between v1[image: -*-] and v2[image: -*-].
Since with a gas we are usually dealing with large numbers of molecules,
we expect the deviations from the expected numbers to be small
(like 1/√N[image: -*-]), so we often neglect to say the “expected” number,
and say instead: “The number of molecules with velocities between v1[image: -*-]
and v2[image: -*-] is the area under the curve.” We should remember,
however, that such statements are always about probable numbers.







6–5 The uncertainty principle


The ideas of probability are certainly useful in describing the behavior
of the 1022[image: -*-] or so molecules in a sample of a gas, for it is clearly
impractical even to attempt to write down the position or velocity of
each molecule. When probability was first applied to such problems, it
was considered to be a convenience—a way of dealing with very
complex situations. We now believe that the ideas of probability are
essential to a description of atomic happenings. According to
quantum mechanics, the mathematical theory of
particles, there is always some uncertainty in the specification
of positions and velocities. We can, at best, say that there is a
certain probability that any particle will have a position near some
coordinate x[image: -*-].




We can give a probability density p1 (x)[image: -*-], such that p1 (x) Δ x[image: -*-]
is the probability that the particle will be found between x[image: -*-]
and x+Δ x[image: -*-]. If the particle is reasonably well localized, say
near x0[image: -*-], the function p1 (x)[image: -*-] might be given by the graph of
Fig. 6–10(a). Similarly, we must specify the velocity of the
particle by means of a probability density p2 (v)[image: -*-],
with p2 (v) Δ v[image: -*-] the probability that the velocity will be found
between v[image: -*-] and v+Δ v[image: -*-].



[image: -][image: -][image: -][image: -]
Fig. 6–10. Probability densities for observation of the position and
velocity of a particle.





It is one of the fundamental results of quantum mechanics that the two functions p1 (x)[image: -*-] and p2 (v)[image: -*-] cannot be chosen
independently and, in particular, cannot both be made arbitrarily
narrow. If we call the typical “width” of the p1 (x)[image: -*-] curve [Δ x][image: -*-], and that of the p2 (v)[image: -*-] curve [Δ v][image: -*-] (as shown in the
figure), nature demands that the product of the two widths be at
least as big as the number ℏ/2 m[image: -*-], where m[image: -*-] is the mass of the
particle. We may write this basic relationship as

[image: -*-][image: -*-]
(6.22)




This equation is a statement of the Heisenberg uncertainty
principle that we mentioned earlier.




Since the right-hand side of Eq. (6.22) is a constant, this
equation says that if we try to “pin down” a particle by forcing it to
be at a particular place, it ends up by having a high speed. Or if we
try to force it to go very slowly, or at a precise velocity, it
“spreads out” so that we do not know very well just where it is.
Particles behave in a funny way!





The uncertainty principle describes an inherent fuzziness that must
exist in any attempt to describe nature. Our most precise description of
nature must be in terms of probabilities. There are some
people who do not like this way of describing nature. They feel somehow
that if they could only tell what is really going on with a
particle, they could know its speed and position simultaneously. In the
early days of the development of quantum mechanics, Einstein was quite
worried about this problem. He used to shake his head and say, “But,
surely God does not throw dice in determining how electrons should go!”
He worried about that problem for a long time and he probably never
really reconciled himself to the fact that this is the best description
of nature that one can give. There are still one or two physicists who
are working on the problem who have an intuitive conviction that it is
possible somehow to describe the world in a different way and that all
of this uncertainty about the way things are can be removed. No one has
yet been successful.





The necessary uncertainty in our specification of the position of a
particle becomes most important when we wish to describe the structure
of atoms. In the hydrogen atom, which has a nucleus of one proton with
one electron outside of the nucleus, the uncertainty in the position of
the electron is as large as the atom itself! We cannot, therefore,
properly speak of the electron moving in some “orbit” around the
proton. The most we can say is that there is a certain
chance p (r) Δ V[image: -*-], of observing the electron in an element
of volume Δ V[image: -*-] at the distance r[image: -*-] from the proton. The
probability density p (r)[image: -*-] is given by quantum mechanics. For an undisturbed hydrogen atom p (r)=A e−2 r/a[image: -*-]. The
number a[image: -*-] is the “typical” radius, where the function is decreasing
rapidly. Since there is a small probability of finding the electron at
distances from the nucleus much greater than a[image: -*-], we may think of a[image: -*-] as
“the radius of the atom,” about 10−10[image: -*-] meter.




[image: -]
Fig. 6–11. A way of visualizing a hydrogen atom. The density (whiteness)
of the cloud represents the probability density for observing the
electron.





We can form an image of the hydrogen atom by imagining a “cloud” whose
density is proportional to the probability density for observing the
electron. A sample of such a cloud is shown in Fig. 6–11.
Thus our best “picture” of a hydrogen atom is a nucleus surrounded by
an “electron cloud” (although we really
mean a “probability cloud”). The electron is there somewhere, but
nature permits us to know only the chance of finding it at any
particular place.




In its efforts to learn as much as possible about nature, modern physics
has found that certain things can never be “known” with certainty.
Much of our knowledge must always remain uncertain. The most we
can know is in terms of probabilities.






	
  
  After the
first three games, the experiment was actually done by shaking
30[image: -*-] pennies violently in a box and then counting the number of heads
that showed.
  ↩


	
  
  Maxwell’s expression is
p (v)=C v2 e−a v2[image: -*-], where a[image: -*-] is a constant related to the temperature
and C[image: -*-] is chosen so that the total probability is one.
  ↩






  
    
                
                    7 The Theory of Gravitation

                
                    
                        7–1 Planetary motions

                    
                        In this chapter we shall discuss one of the most
                        far-reaching generalizations of the human mind. While we are admiring
                        the human mind, we should take some time off to stand in awe of a
                        nature that could follow with such completeness and generality
                        such an elegantly simple principle as the law of gravitation. What is
                        this law of gravitation? It is that every object in the universe
                        attracts every other object with a force which for any two bodies is
                        proportional to the mass of each and varies inversely as the square of
                        the distance between them. This statement can be expressed
                        mathematically by the equation
                        
[image: -*-][image: -*-]


                        If to this we add the fact that an object responds to a force by
                        accelerating in the direction of the force by an amount that is
                        inversely proportional to the mass of the object, we shall have said
                        everything required, for a sufficiently talented mathematician could
                        then deduce all the consequences of these two principles. However, since
                        you are not assumed to be sufficiently talented yet, we shall discuss
                        the consequences in more detail, and not just leave you with only these
                        two bare principles. We shall briefly relate the story of the discovery
                        of the law of gravitation and discuss some of its consequences, its
                        effects on history, the mysteries that such a law entails, and some
                        refinements of the law made by Einstein; we shall also discuss the
                        relationships of the law to the other laws of physics. All this cannot
                        be done in one chapter, but these subjects will be treated in due time
                        in subsequent chapters.

                    

                    
                        The story begins with the ancients observing the motions of planets
                        among the stars, and finally deducing that they went around the sun, a
                        fact that was rediscovered later by Copernicus. Exactly how the planets went around the
                        sun, with exactly what motion, took a little more work to
                        discover. In the beginning of the fifteenth century there were great
                        debates as to whether they really went around the sun or not. Tycho
                        Brahe had an idea that was different
                        from anything proposed by the ancients: his idea was that these debates
                        about the nature of the motions of the planets would best be resolved if
                        the actual positions of the planets in the sky were measured
                        sufficiently accurately. If measurement showed exactly how the planets
                        moved, then perhaps it would be possible to establish one or another
                        viewpoint. This was a tremendous idea—that to find something out, it
                        is better to perform some careful experiments than to carry on deep
                        philosophical arguments. Pursuing this idea, Tycho Brahe studied the positions of the planets for many years
                        in his observatory on the island of Hven, near Copenhagen. He made
                        voluminous tables, which were then studied by the mathematician
                        Kepler, after
                        Tycho’s death.
                        Kepler discovered from the data
                        some very beautiful and remarkable, but simple, laws regarding planetary
                        motion.

                    

                

                
                    
                        7–2 Kepler’s laws

                    
                        First of all, Kepler found that
                        each planet goes around the sun in a curve called an
                        ellipse, with the sun at a focus of the
                        ellipse. An ellipse is not just an oval,
                        but is a very specific and precise curve that can be obtained by using
                        two tacks, one at each focus, a loop of string, and a pencil; more
                        mathematically, it is the locus of all points the sum of whose distances
                        from two fixed points (the foci) is a constant. Or, if you will, it is a
                        foreshortened circle (Fig. 7–1).
                        

                    

                    [image: -][image: -]
                            Fig. 7–1. An ellipse.
                        

                    

                    
                        Kepler’s second observation was
                        that the planets do not go around the sun at a uniform speed, but move
                        faster when they are nearer the sun and more slowly when they are
                        farther from the sun, in precisely this way: Suppose a planet is
                        observed at any two successive times, let us say a week apart, and that
                        the radius vector1 is drawn to the planet for each
                        observed position. The orbital arc traversed by the planet during the
                        week, and the two radius vectors, bound a certain plane area, the shaded
                        area shown in Fig. 7–2. If two similar observations are made
                        a week apart, at a part of the orbit farther from the sun (where the
                        planet moves more slowly), the similarly bounded area is exactly the
                        same as in the first case. So, in accordance with the second law, the
                        orbital speed of each planet is such that the radius “sweeps out”
                        equal areas in equal times.

                    

                    [image: -][image: -]
                            Fig. 7–2. Kepler’s law of areas.
                        

                    

                    
                        Finally, a third law was discovered by Kepler much later; this law is of a different category from the
                        other two, because it deals not with only a single planet, but relates
                        one planet to another. This law says that when the orbital period and
                        orbit size of any two planets are compared, the periods are proportional
                        to the 3/2[image: -*-] power of the orbit size. In this statement the period is
                        the time interval it takes a planet to go completely around its orbit,
                        and the size is measured by the length of the greatest diameter of the
                        elliptical orbit, technically known as the major axis. More simply, if
                        the planets went in circles, as they nearly do, the time required to go
                        around the circle would be proportional to the 3/2[image: -*-] power of the
                        diameter (or radius). Thus Kepler’s three laws are:
                        

                            	
                                Each planet moves around the sun in an ellipse, with the sun
                                at one focus.

                            	
                                The radius vector from the sun to the planet sweeps out equal
                                areas in equal intervals of time.

                            	
                                The squares of the periods of any two planets are
                                proportional to the cubes of the semimajor axes of their respective
                                orbits: T∝a3/2[image: -*-].

                        

                        
                    

                

                
                    
                        7–3 Development of dynamics

                    
                        While Kepler was discovering
                        these laws, Galileo was studying
                        the laws of motion. The problem was, what makes the planets go around?
                        (In those days, one of the theories proposed was that the planets went
                        around because behind them were invisible angels, beating their wings
                        and driving the planets forward. You will see that this theory is now
                        modified! It turns out that in order to keep the planets going around,
                        the invisible angels must fly in a different direction and they have no
                        wings. Otherwise, it is a somewhat similar theory!)
                        Galileo discovered a very
                        remarkable fact about motion, which was essential for understanding
                        these laws. That is the principle of inertia—if something is
                        moving, with nothing touching it and completely undisturbed, it will go
                        on forever, coasting at a uniform speed in a straight line. (Why
                        does it keep on coasting? We do not know, but that is the way it is.)

                    

                    
                        Newton modified this idea, saying
                        that the only way to change the motion of a body is to use force.
                        If the body speeds up, a force has been applied in the direction
                            of motion. On the other hand, if its motion is changed to a new
                        direction, a force has been applied sideways.
                        Newton thus added the idea that a
                        force is needed to change the speed or the direction of motion of
                        a body. For example, if a stone is attached to a string and is whirling
                        around in a circle, it takes a force to keep it in the circle. We have
                        to pull on the string. In fact, the law is that the acceleration
                        produced by the force is inversely proportional to the mass, or the
                        force is proportional to the mass times the acceleration. The more
                        massive a thing is, the stronger the force required to produce a given
                        acceleration. (The mass can be measured by putting other stones on the
                        end of the same string and making them go around the same circle at the
                        same speed. In this way it is found that more or less force is required,
                        the more massive object requiring more force.) The brilliant idea
                        resulting from these considerations is that no tangential force
                        is needed to keep a planet in its orbit (the angels do not have to fly
                        tangentially) because the planet would coast in that direction anyway.
                        If there were nothing at all to disturb it, the planet would go off in a
                        straight line. But the actual motion deviates from the line on
                        which the body would have gone if there were no force, the deviation
                        being essentially at right angles to the motion, not in the
                        direction of the motion. In other words, because of the principle of
                        inertia, the force needed to control the motion of a planet
                        around the sun is not a force around the sun but toward
                        the sun. (If there is a force toward the sun, the sun might be the
                        angel, of course!)

                    

                

                
                    
                        7–4 Newton’s law of gravitation

                    
                        From his better understanding of the theory of motion,
                        Newton appreciated that the
                            sun could be the seat or organization of forces that govern the motion
                        of the planets. Newton proved to
                        himself (and perhaps we shall be able to prove it soon) that the very
                        fact that equal areas are swept out in equal times is a precise sign
                        post of the proposition that all deviations are precisely
                        radial—that the law of areas is a direct consequence of the
                        idea that all of the forces are directed exactly toward the sun.

                    

                    
                        Next, by analyzing Kepler’s third law it is possible to show that the
                        farther away the planet, the weaker the forces. If two planets at
                        different distances from the sun are compared, the analysis shows that
                        the forces are inversely proportional to the squares of the respective
                        distances. With the combination of the two laws,
                        Newton concluded that there must
                        be a force, inversely as the square of the distance, directed in a line
                        between the two objects.
                        

                    

                    
                        Being a man of considerable feeling for generalities,
                        Newton supposed, of course, that
                        this relationship applied more generally than just to the sun holding
                        the planets. It was already known, for example, that the planet Jupiter
                        had moons going around it as the moon of the earth goes around the
                        earth, and Newton felt certain
                        that each planet held its moons with a force. He already knew of the
                        force holding us on the earth, so he proposed that this was a
                        universal force—that everything pulls everything else.

                    

                    
                        The next problem was whether the pull of the earth on its people was the
                        “same” as its pull on the moon, i.e., inversely as the square of the
                        distance. If an object on the surface of the earth falls 16[image: -*-] feet in
                        the first second after it is released from rest, how far does the moon
                        fall in the same time? We might say that the moon does not fall at all.
                        But if there were no force on the moon, it would go off in a straight
                        line, whereas it goes in a circle instead, so it really falls in
                        from where it would have been if there were no force at all. We can
                        calculate from the radius of the moon’s orbit (which is about
                        240,000[image: -*-] miles) and how long it takes to go around the earth
                        (approximately 29[image: -*-] days), how far the moon moves in its orbit in
                        1 second, and can then calculate how far it falls in one
                        second.2 This distance turns out to be roughly 1/20[image: -*-] of an
                        inch in a second. That fits very well with the inverse square law,
                        because the earth’s radius is 4000[image: -*-] miles, and if something which is
                        4000[image: -*-] miles from the center of the earth falls 16[image: -*-] feet in a second,
                        something 240,000[image: -*-] miles, or 60[image: -*-] times as far away, should fall
                        only 1/3600[image: -*-] of 16[image: -*-] feet, which also is roughly 1/20[image: -*-] of an inch.
                        Wishing to put this theory of gravitation to a test by similar
                        calculations, Newton made his
                        calculations very carefully and found a discrepancy so large that he
                        regarded the theory as contradicted by facts, and did not publish his
                        results. Six years later a new measurement of the size of the earth
                        showed that the astronomers had been using an incorrect distance to the
                        moon. When Newton heard of this,
                        he made the calculation again, with the corrected figures, and obtained
                        beautiful agreement.

                    

                    [image: -][image: -]
                            Fig. 7–3. Apparatus for showing the independence of vertical and
                            horizontal motions.
                        

                    

                    
                        This idea that the moon “falls” is somewhat confusing, because, as you
                        see, it does not come any closer. The idea is sufficiently
                        interesting to merit further explanation: the moon falls in the sense
                        that it falls away from the straight line that it would pursue if
                            there were no forces. Let us take an example on the surface of the
                        earth. An object released near the earth’s surface will fall 16[image: -*-] feet
                        in the first second. An object shot out horizontally will also
                        fall 16[image: -*-] feet; even though it is moving horizontally, it still falls
                        the same 16[image: -*-] feet in the same time. Figure 7–3 shows an
                        apparatus which demonstrates this. On the horizontal track is a ball
                        which is going to be driven forward a little distance away. At the same
                        height is a ball which is going to fall vertically, and there is an
                        electrical switch arranged so that at the moment the first ball leaves
                        the track, the second ball is released. That they come to the same depth
                        at the same time is witnessed by the fact that they collide in midair.
                        An object like a bullet, shot horizontally, might go a long way in one
                        second—perhaps 2000[image: -*-] feet—but it will still fall 16[image: -*-] feet if it is
                        aimed horizontally. What happens if we shoot a bullet faster and faster?
                        Do not forget that the earth’s surface is curved. If we shoot it fast
                        enough, then when it falls 16[image: -*-] feet it may be at just the same height
                        above the ground as it was before. How can that be? It still falls, but
                        the earth curves away, so it falls “around” the earth. The question
                        is, how far does it have to go in one second so that the earth is
                        16[image: -*-] feet below the horizon? In Fig. 7–4 we see the earth
                        with its 4000[image: -*-]-mile radius, and the tangential, straight line path that
                        the bullet would take if there were no force. Now, if we use one of
                        those wonderful theorems in geometry, which says that our tangent is the
                        mean proportional between the two parts of the diameter cut by an equal
                        chord, we see that the horizontal distance travelled is the mean
                        proportional between the 16[image: -*-] feet fallen and the 8000[image: -*-]-mile diameter
                        of the earth. The square root of (16/5280)×8000[image: -*-] comes out very
                        close to 5 miles. Thus we see that if the bullet moves at 5 miles a
                        second, it then will continue to fall toward the earth at the same rate
                        of 16[image: -*-] feet each second, but will never get any closer because the
                        earth keeps curving away from it. Thus it was that Mr. Gagarin
                        maintained himself in space while going 25,000[image: -*-] miles around the
                        earth at approximately 5 miles per second. (He took a little longer
                        because he was a little higher.)

                    

                    [image: -][image: -]
                            Fig. 7–4. Acceleration toward the center of a circular path. From plane
                            geometry, x/S=(2 R−S)/x≈2 R/x[image: -*-], where R[image: -*-] is the radius
                            of the earth, 4000[image: -*-] miles; x[image: -*-] is the distance “travelled
                            horizontally” in one second; and S[image: -*-] is the distance “fallen” in
                            one second (16[image: -*-] feet).
                        

                    

                    
                        Any great discovery of a new law is useful only if we can take more out
                        than we put in. Now, Newton
                        used the second and third of Kepler’s laws to deduce his law of gravitation. What
                        did he predict?  First, his analysis of the moon’s motion was a
                        prediction because it connected the falling of objects on the earth’s
                        surface with that of the moon. Second, the question is, is the
                            orbit an ellipse? We shall see in a later chapter how it is possible to
                        calculate the motion exactly, and indeed one can prove that it should be
                        an ellipse,3  so no
                        extra fact is needed to explain Kepler’s first law. Thus
                        Newton made his first powerful
                        prediction.

                    

                    
                        The law of gravitation explains many phenomena not previously
                        understood. For example, the pull of the moon on the earth causes the
                        tides, hitherto mysterious. The moon pulls the water up under it and
                        makes the tides—people had thought of that before, but they were not
                        as clever as Newton, and so they
                        thought there ought to be only one tide during the day. The reasoning
                        was that the moon pulls the water up under it, making a high tide and a
                        low tide, and since the earth spins underneath, that makes the tide at
                        one station go up and down every 24[image: -*-] hours. Actually the tide goes up
                        and down in 12[image: -*-] hours. Another school of thought claimed that the high
                        tide should be on the other side of the earth because, so they argued,
                        the moon pulls the earth away from the water! Both of these theories are
                        wrong. It actually works like this: the pull of the moon for the earth
                        and for the water is “balanced” at the center. But the water which is
                        closer to the moon is pulled more than the average and the water
                        which is farther away from it is pulled less than the average.
                        Furthermore, the water can flow while the more rigid earth cannot. The
                        true picture is a combination of these two things.

                    

                    [image: -][image: -]
                            Fig. 7–5. The earth-moon system, with tides.
                        

                    

                    
                        What do we mean by “balanced”? What balances? If the moon pulls the
                        whole earth toward it, why doesn’t the earth fall right “up” to the
                        moon? Because the earth does the same trick as the moon, it goes in a
                        circle around a point which is inside the earth but not at its center.
                        The moon does not just go around the earth, the earth and the moon both
                        go around a central position, each falling toward this common position,
                        as shown in Fig. 7–5. This motion around the common center
                        is what balances the fall of each. So the earth is not going in a
                        straight line either; it travels in a circle. The water on the far side
                        is “unbalanced” because the moon’s attraction there is weaker than it
                        is at the center of the earth, where it just balances the “centrifugal
                        force.” The
                        result of this imbalance is that the water rises up, away from the
                        center of the earth. On the near side, the attraction from the moon is
                        stronger, and the imbalance is in the opposite direction in space, but
                        again away from the center of the earth. The net result is that
                        we get two tidal bulges.

                    

                

                
                    
                        7–5 Universal gravitation

                    
                        What else can we understand when we understand gravity? Everyone knows
                        the earth is round. Why is the earth round? That is easy; it is due to
                        gravitation. The earth can be understood to be round merely because
                        everything attracts everything else and so it has attracted itself
                        together as far as it can! If we go even further, the earth is not
                        exactly a sphere because it is rotating, and this brings in
                        centrifugal effects which tend to oppose gravity near the equator. It turns out that
                        the earth should be elliptical, and we even get the right shape for the
                        ellipse. We can thus deduce that the sun, the moon, and the earth should
                        be (nearly) spheres, just from the law of gravitation.
                        

                    

                    
                        What else can you do with the law of gravitation? If we look at the
                        moons of Jupiter we can understand everything about the way they move
                        around that planet. Incidentally, there was once a certain difficulty
                        with the moons of Jupiter that is worth remarking on. These satellites
                        were studied very carefully by Rømer, who noticed that the moons sometimes seemed to be ahead
                        of schedule, and sometimes behind. (One can find their schedules by
                        waiting a very long time and finding out how long it takes on the
                        average for the moons to go around.) Now they were ahead when
                        Jupiter was particularly close to the earth and they were
                        behind when Jupiter was farther from the earth. This would
                        have been a very difficult thing to explain according to the law of
                        gravitation—it would have been, in fact, the death of this wonderful
                        theory if there were no other explanation. If a law does not work even
                        in one place where it ought to, it is just wrong. But the reason
                        for this discrepancy was very simple and beautiful: it takes a little
                        while to see the moons of Jupiter because of the time it takes
                        light to travel from Jupiter to the earth. When Jupiter is closer to the
                        earth the time is a little less, and when it is farther from the earth,
                        the time is more. This is why moons appear to be, on the average, a
                        little ahead or a little behind, depending on whether they are closer to
                        or farther from the earth. This phenomenon showed that light does not
                        travel instantaneously, and furnished the first estimate of the speed of
                        light. This was done in 1676.

                    

                    
                        If all of the planets push and pull on each other, the force which
                        controls, let us say, Jupiter in going around the sun is not just the
                        force from the sun; there is also a pull from, say, Saturn. This force
                        is not really strong, since the sun is much more massive than Saturn,
                        but there is some pull, so the orbit of Jupiter should not be a
                        perfect ellipse, and it is not; it is slightly off, and “wobbles”
                        around the correct elliptical orbit. Such a motion is a little more
                        complicated. Attempts were made to analyze the motions of Jupiter,
                        Saturn, and Uranus on the basis of the law of gravitation. The effects
                        of each of these planets on each other were calculated to see whether or
                        not the tiny deviations and irregularities in these motions could be
                        completely understood from this one law. Lo and behold, for Jupiter and
                        Saturn, all was well, but Uranus was “weird.” It behaved in a very
                        peculiar manner. It was not travelling in an exact ellipse, but that was
                        understandable, because of the attractions of Jupiter and Saturn. But
                        even if allowance were made for these attractions, Uranus still
                        was not going right, so the laws of gravitation were in danger of being
                        overturned, a possibility that could not be ruled out. Two men,
                        Adams and Le Verrier, in England and
                        France, independently, arrived at another possibility: perhaps there is
                        another planet, dark and invisible, which men had not seen. This
                        planet, N[image: -*-], could pull on Uranus. They calculated where such a planet
                        would have to be in order to cause the observed perturbations. They sent
                        messages to the respective observatories, saying, “Gentlemen, point
                        your telescope to such and such a place, and you will see a new
                        planet.”  It often depends on with whom you are working as to whether
                        they pay any attention to you or not. They did pay attention to
                        Le Verrier; they looked, and
                        there planet N[image: -*-] was! The other observatory then also looked very
                        quickly in the next few days and saw it too.

                    

                    [image: -]
                            Fig. 7–6. A double-star system.
                        

                    

                    [image: -][image: -]
                            Fig. 7–7. Orbit of Sirius B with respect to Sirius A.
                        

                    

                    
                        This discovery shows that Newton’s laws are absolutely right in the solar system; but do they extend
                        beyond the relatively small distances of the nearest planets? The first
                        test lies in the question, do stars attract each other as
                        well as planets? We have definite evidence that they do in the
                        double stars. Figure 7–6 shows a
                        double star—two stars very close together (there is also a third star
                        in the picture so that we will know that the photograph was not turned).
                        The stars are also shown as they appeared several years later. We see
                        that, relative to the “fixed” star, the axis of the pair has rotated,
                        i.e., the two stars are going around each other. Do they rotate
                        according to Newton’s laws? Careful
                        measurements of the relative positions of one such double star system
                        are shown in Fig. 7–7. There we see a beautiful ellipse, the
                        measures starting in 1862 and going all the way around to 1904 (by now
                        it must have gone around once more). Everything coincides with
                        Newton’s laws, except that the star
                        Sirius A is not at the focus. Why should that be?  Because the
                        plane of the ellipse is not in the “plane of the sky.” We are not
                        looking at right angles to the orbit plane, and when an ellipse is
                        viewed at a tilt, it remains an ellipse but the focus is no longer at
                        the same place. Thus we can analyze double stars, moving about each
                        other, according to the requirements of the gravitational law.

                    

                    [image: -]
                            Fig. 7–8. A globular star cluster.
                        

                    

                    
                        That the law of gravitation is true at even bigger distances is
                        indicated in Fig. 7–8. If one cannot see gravitation acting
                        here, he has no soul. This figure shows one of the most beautiful things
                        in the sky—a globular star cluster. All of the dots are stars.
                        Although they look as if they are packed solid toward the center, that
                        is due to the fallibility of our instruments. Actually, the distances
                        between even the centermost stars are very great and they very rarely
                        collide. There are more stars in the interior than farther out, and as
                        we move outward there are fewer and fewer. It is obvious that there is
                        an attraction among these stars. It is clear that gravitation exists at
                        these enormous dimensions, perhaps 100,000[image: -*-] times the size of the
                        solar system. Let us now go further, and look at an entire
                            galaxy, shown in Fig. 7–9. The shape of this galaxy
                        indicates an obvious tendency for its matter to agglomerate. Of course
                        we cannot prove that the law here is precisely inverse square, only that
                        there is still an attraction, at this enormous dimension, that holds the
                        whole thing together. One may say, “Well, that is all very clever but
                        why is it not just a ball?”  Because it is spinning and has
                        angular momentum which it cannot give up
                        as it contracts; it must contract mostly in a plane. (Incidentally, if
                        you are looking for a good problem, the exact details of how the arms
                        are formed and what determines the shapes of these galaxies has not been
                        worked out.) It is, however, clear that the shape of the galaxy is due
                        to gravitation even though the complexities of its structure have not
                        yet allowed us to analyze it completely. In a galaxy we have a scale of
                        perhaps 50,000[image: -*-] to 100,000[image: -*-] light years. The earth’s distance from
                        the sun is [image: 8\tfrac{1}{3}][image: 8\tfrac{1}{3}] light minutes, so you can see how
                        large these dimensions are.

                    

                    [image: -]
                            Fig. 7–9. A galaxy (M81).
                        

                    

                    [image: -]
                            Fig. 7–10. A cluster of galaxies.
                        

                    

                    
                        Gravity appears to exist at even bigger dimensions, as indicated by
                        Fig. 7–10, which shows many “little” things clustered
                        together. This is a cluster of galaxies, just like a star
                        cluster. Thus galaxies attract each other at such distances that they
                        too are agglomerated into clusters. Perhaps gravitation exists even over
                        distances of tens of millions of light years; so far as we now
                        know, gravity seems to go out forever inversely as the square of the
                        distance.

                    

                    [image: -]
                            Fig. 7–11. An interstellar dust cloud.
                        

                    

                    
                        Not only can we understand the nebulae, but from the law of gravitation
                        we can even get some ideas about the origin of the stars. If we have a
                        big cloud of dust and gas, as indicated in Fig. 7–11, the
                        gravitational attractions of the pieces of dust for one another might
                        make them form little lumps. Barely visible in the figure are “little”
                        black spots which may be the beginning of the accumulations of dust and
                        gases which, due to their gravitation, begin to form stars. Whether we
                        have ever seen a star form or not is still debatable.
                        Figure 7–12 shows the one piece of evidence which suggests
                        that we have. At the left is a picture of a region of gas with some
                        stars in it taken in 1947, and at the right is another picture, taken
                        only 7 years later, which shows two new bright spots. Has gas
                        accumulated, has gravity acted hard enough and collected it into a ball
                        big enough that the stellar nuclear reaction starts in the interior and
                        turns it into a star? Perhaps, and perhaps not. It is unreasonable that
                        in only seven years we should be so lucky as to see a star change itself
                        into visible form; it is much less probable that we should see
                        two!

                    

                

                [image: -]
                        Fig. 7–12. The formation of new stars?
                    

                

                
                    
                        7–6 Cavendish’s experiment

                    [image: -][image: -]
                            Fig. 7–13. A simplified diagram of the apparatus used by Cavendish to
                            verify the law of universal gravitation for small objects and to
                            measure the gravitational constant G[image: -*-].
                        

                    

                    
                        Gravitation, therefore, extends over enormous distances. But if there is
                        a force between any pair of objects, we ought to be able to
                        measure the force between our own objects. Instead of having to watch
                        the stars go around each other, why can we not take a ball of lead and a
                        marble and watch the marble go toward the ball of lead? The difficulty
                        of this experiment when done in such a simple manner is the very
                        weakness or delicacy of the force. It must be done with extreme care,
                        which means covering the apparatus to keep the air out, making sure it
                        is not electrically charged, and so on; then the force can be measured.
                        It was first measured by Cavendish with an apparatus which is schematically indicated in
                        Fig. 7–13. This first demonstrated the direct force between
                        two large, fixed balls of lead and two smaller balls of lead on the ends
                        of an arm supported by a very fine fiber, called a torsion fiber. By
                        measuring how much the fiber gets twisted, one can measure the strength
                        of the force, verify that it is inversely proportional to the square of
                        the distance, and determine how strong it is. Thus, one may accurately
                        determine the coefficient G[image: -*-] in the formula
                        
[image: -*-][image: -*-]


                        All the masses and distances are known. You say, “We knew it already
                        for the earth.” Yes, but we did not know the mass of the earth.
                        By knowing G[image: -*-] from this experiment and by knowing how strongly the
                        earth attracts, we can indirectly learn how great is the mass of the
                        earth! This experiment has been called “weighing the earth” by some
                        people, and it can be used to determine the coefficient G[image: -*-] of the
                        gravity law. This is the only way in which the mass of the earth can be
                        determined. G[image: -*-] turns out to be
                        
[image: -*-][image: -*-]


                        

                    

                    
                        It is hard to exaggerate the importance of the effect on the history of
                        science produced by this great success of the theory of gravitation.
                        Compare the confusion, the lack of confidence, the incomplete knowledge
                        that prevailed in the earlier ages, when there were endless debates and
                        paradoxes, with the clarity and simplicity of this law—this fact that
                        all the moons and planets and stars have such a simple rule to
                        govern them, and further that man could understand it and deduce
                        how the planets should move! This is the reason for the success of the
                        sciences in following years, for it gave hope that the other phenomena
                        of the world might also have such beautifully simple laws.

                    

                

                
                    
                        7–7 What is gravity?

                    
                        But is this such a simple law? What about the machinery of it? All we
                        have done is to describe how the earth moves around the sun, but
                        we have not said what makes it go. Newton made no hypotheses about this; he was satisfied to find
                        what it did without getting into the machinery of it. No
                            one has since given any machinery. It is characteristic of the physical
                        laws that they have this abstract character. The law of conservation of
                        energy is a theorem concerning quantities that have to be calculated and
                        added together, with no mention of the machinery, and likewise the great
                        laws of mechanics are quantitative mathematical laws for which no
                        machinery is available. Why can we use mathematics to describe nature
                        without a mechanism behind it? No one knows. We have to keep going
                        because we find out more that way.

                    

                    
                        Many mechanisms for gravitation have been suggested. It is interesting
                        to consider one of these, which many people have thought of from time to
                        time. At first, one is quite excited and happy when he “discovers” it,
                        but he soon finds that it is not correct. It was first discovered about
                        1750. Suppose there were many particles moving in space at a very high
                        speed in all directions and being only slightly absorbed in going
                        through matter. When they are absorbed, they give an impulse to
                        the earth. However, since there are as many going one way as another,
                        the impulses all balance. But when the sun is nearby, the particles
                        coming toward the earth through the sun are partially absorbed, so fewer
                        of them are coming from the sun than are coming from the other side.
                        Therefore, the earth feels a net impulse toward the sun and it does not
                        take one long to see that it is inversely as the square of the
                        distance—because of the variation of the solid angle that the sun
                        subtends as we vary the distance. What is wrong with that machinery? It
                        involves some new consequences which are not true. This
                        particular idea has the following trouble: the earth, in moving around
                        the sun, would impinge on more particles which are coming from its
                        forward side than from its hind side (when you run in the rain, the rain
                        in your face is stronger than that on the back of your head!). Therefore
                        there would be more impulse given the earth from the front, and the
                        earth would feel a resistance to motion and would be slowing up
                        in its orbit. One can calculate how long it would take for the earth to
                        stop as a result of this resistance, and it would not take long enough
                        for the earth to still be in its orbit, so this mechanism does not work.
                        No machinery has ever been invented that “explains” gravity without
                        also predicting some other phenomenon that does not exist.

                    

                    
                        Next we shall discuss the possible relation of gravitation to other
                        forces. There is no explanation of gravitation in terms of other forces
                        at the present time. It is not an aspect of electricity or anything like
                        that, so we have no explanation. However, gravitation and other forces
                        are very similar, and it is interesting to note analogies. For example,
                        the force of electricity between two charged objects looks just like the
                        law of gravitation: the force of electricity is a constant, with a minus
                        sign, times the product of the charges, and varies inversely as the
                        square of the distance. It is in the opposite direction—likes repel.
                        But is it still not very remarkable that the two laws involve the same
                        function of distance? Perhaps gravitation and electricity are much more
                        closely related than we think. Many attempts have been made to unify
                        them; the so-called unified field theory is only a very elegant attempt
                        to combine electricity and gravitation; but, in comparing gravitation
                        and electricity, the most interesting thing is the relative
                            strengths of the forces. Any theory that contains them both must also
                        deduce how strong the gravity is.

                    

                    [image: -][image: -]
                            Fig. 7–14. The relative strengths of electrical and gravitational
                            interactions between two electrons.
                        

                    

                    
                        If we take, in some natural units, the repulsion of two electrons
                        (nature’s universal charge) due to electricity, and the attraction of
                        two electrons due to their masses, we can measure the ratio of
                        electrical repulsion to the gravitational attraction. The ratio is
                        independent of the distance and is a fundamental constant of nature. The
                        ratio is shown in Fig. 7–14. The gravitational attraction
                        relative to the electrical repulsion between two electrons is 1
                        divided by 4.17×1042[image: -*-]! The question is, where does such a large
                        number come from? It is not accidental, like the ratio of the volume of
                        the earth to the volume of a flea. We have considered two natural
                        aspects of the same thing, an electron. This fantastic number is a
                        natural constant, so it involves something deep in nature. Where could
                        such a tremendous number come from? Some say that we shall one day find
                        the “universal equation,” and in it, one of the roots will be this
                        number. It is very difficult to find an equation for which such a
                        fantastic number is a natural root. Other possibilities have been
                        thought of; one is to relate it to the age of the universe. Clearly, we
                        have to find another large number somewhere. But do we mean the
                        age of the universe in years? No, because years are not
                        “natural”; they were devised by men. As an example of something
                        natural, let us consider the time it takes light to go across a proton,
                        10−24[image: -*-] second. If we compare this time with the age of the
                            universe, 2×1010[image: -*-] years, the answer is 10−42[image: -*-]. It has
                        about the same number of zeros going off it, so it has been proposed
                        that the gravitational constant is related to the age of the universe.
                        If that were the case, the gravitational constant would change with
                        time, because as the universe got older the ratio of the age of the
                        universe to the time which it takes for light to go across a proton
                        would be gradually increasing. Is it possible that the gravitational
                        constant is changing with time? Of course the changes would be so
                        small that it is quite difficult to be sure.

                    

                    
                        One test which we can think of is to determine what would have been the
                        effect of the change during the past 109[image: -*-] years, which is
                        approximately the age from the earliest life on the earth to now, and
                        one-tenth of the age of the universe. In this time, the gravity constant
                        would have increased by about 10[image: -*-] percent. It turns out that if we
                        consider the structure of the sun—the balance between the weight of
                        its material and the rate at which radiant energy is generated inside it—we can
                        deduce that if the gravity were 10[image: -*-] percent stronger, the sun would be
                        much more than 10[image: -*-] percent brighter—by the sixth power of the
                        gravity constant! If we calculate what happens to the orbit of the earth
                        when the gravity is changing, we find that the earth was then
                        closer in. Altogether, the earth would be about 100[image: -*-] degrees
                        centigrade hotter, and all of the water would not have been in the sea,
                        but vapor in the air, so life would not have started in the sea. So we
                        do not now believe that the gravity constant is changing with the
                        age of the universe. But such arguments as the one we have just given
                        are not very convincing, and the subject is not completely closed.

                    

                    
                        It is a fact that the force of gravitation is proportional to the
                        mass, the quantity which is fundamentally a measure of
                        inertia—of how hard it is to hold something
                        which is going around in a circle. Therefore two objects, one heavy and
                        one light, going around a larger object in the same circle at the same
                        speed because of gravity, will stay together because to go in a circle
                        requires a force which is stronger for a bigger mass. That is,
                        the gravity is stronger for a given mass in just the right
                            proportion so that the two objects will go around together. If one
                        object were inside the other it would stay inside; it is a
                        perfect balance. Therefore, Gagarin or Titov would find things
                        “weightless” inside a space ship; if they happened to let go of a
                        piece of chalk, for example, it would go around the earth in exactly the
                        same way as the whole space ship, and so it would appear to remain
                        suspended before them in space. It is very interesting that this force
                        is exactly proportional to the mass with great precision, because
                        if it were not exactly proportional there would be some effect by which
                        inertia and weight would differ. The absence of such an effect has been
                        checked with great accuracy by an experiment done first by
                        Eötvös in 1909 and more
                        recently by Dicke. For all
                        substances tried, the masses and weights are exactly proportional within
                        1 part in 1,000,000,000[image: -*-], or less. This is a remarkable
                        experiment.

                    

                

                
                    
                        7–8 Gravity and relativity

                    
                        Another topic deserving discussion is Einstein’s modification of
                        Newton’s law of gravitation. In spite of all the excitement it created,
                        Newton’s law of gravitation is not correct! It was modified by Einstein
                        to take into account the theory of relativity. According to Newton, the
                        gravitational effect is instantaneous, that is, if we were to move a
                        mass, we would at once feel a new force because of the new position of
                        that mass; by such means we could send signals at infinite speed.
                        Einstein advanced arguments which suggest that we cannot send
                            signals faster than the speed of light, so the law of gravitation must
                        be wrong. By correcting it to take the delays into account, we have a
                        new law, called Einstein’s law of gravitation. One feature of this new
                        law which is quite easy to understand is this: In the Einstein
                        relativity theory, anything which has
                        energy has mass—mass in the sense that it is attracted
                        gravitationally. Even light, which has an energy, has a “mass.” When a
                        light beam, which has energy in it, comes past the sun there is an
                        attraction on it by the sun. Thus the light does not go straight, but is
                        deflected. During the eclipse of the sun, for example, the stars which
                        are around the sun should appear displaced from where they would be if
                        the sun were not there, and this has been observed.

                    

                    
                        Finally, let us compare gravitation with other theories. In recent years
                        we have discovered that all mass is made of tiny particles and that
                        there are several kinds of interactions, such as nuclear forces, etc.
                        None of these nuclear or electrical forces has yet been found to explain
                        gravitation. The quantum-mechanical aspects of nature have not yet been
                        carried over to gravitation. When the scale is so small that we need the
                        quantum effects, the gravitational effects are so weak that the need for
                        a quantum theory of gravitation has not yet developed. On the other
                        hand, for consistency in our physical theories it would be important to
                        see whether Newton’s law modified to Einstein’s law can be further
                        modified to be consistent with the uncertainty
                        principle. This last modification has not yet been completed.
                        

                    

                

                
                    	
                        
                        A radius vector is a line drawn from the sun
                        to any point in a planet’s orbit.
                        ↩
                    

                    	
                        
                        That is, how far the circle of the moon’s orbit falls
                        below the straight line tangent to it at the point where the moon was
                        one second before.
                        ↩
                    

                    	
                        
                        The proof is not given in this course.
                        ↩
                    

                

            

  
    

8 Motion



8–1 Description of motion


In order to find the laws governing the various changes that
take place in bodies as time goes on, we must be able to describe
the changes and have some way to record them. The simplest change to
observe in a body is the apparent change in its position with time,
which we call motion. Let us consider some solid object with a permanent
mark, which we shall call a point, that we can observe. We shall discuss
the motion of the little marker, which might be the radiator cap of an
automobile or the center of a falling ball, and shall try to describe
the fact that it moves and how it moves.




These examples may sound trivial, but many subtleties enter into the
description of change. Some changes are more difficult to describe than
the motion of a point on a solid object, for example the speed of drift
of a cloud that is drifting very slowly, but rapidly forming or
evaporating, or the change of a woman’s mind. We do not know a simple
way to analyze a change of mind, but since the cloud can be represented
or described by many molecules, perhaps we can describe the motion of
the cloud in principle by describing the motion of all its individual
molecules. Likewise, perhaps even the changes in the mind may have a
parallel in changes of the atoms inside the brain, but we have no such
knowledge yet.




At any rate, that is why we begin with the motion of points; perhaps we
should think of them as atoms, but it is probably better to be more rough
in the beginning and simply to think of some kind of small
objects—small, that is, compared with the distance moved. For
instance, in describing the motion of a car that is going a hundred
miles, we do not have to distinguish between the front and the back of
the car. To be sure, there are slight differences, but for rough
purposes we say “the car,” and likewise it does not matter that our
points are not absolute points; for our present purposes it is not
necessary to be extremely precise. Also, while we take a first look at
this subject we are going to forget about the three dimensions of the
world. We shall just concentrate on moving in one direction, as in a car
on one road. We shall return to three dimensions after we see how to
describe motion in one dimension. Now, you may say, “This is all some
kind of trivia,” and indeed it is. How can we describe such a
one-dimensional motion—let us say, of a car? Nothing could be simpler.
Among many possible ways, one would be the following. To determine the
position of the car at different times, we measure its distance from the
starting point and record all the observations. In
Table 8–1, s[image: -*-] represents the distance of the car, in
feet, from the starting point, and t[image: -*-] represents the time in minutes.
The first line in the table represents zero distance and zero time—the
car has not started yet. After one minute it has started and has gone
1200[image: -*-] feet. Then in two minutes, it goes farther—notice that it
picked up more distance in the second minute—it has accelerated; but
something happened between 3 and 4 and even more so at 5—it
stopped at a light perhaps? Then it speeds up again and goes
13,000[image: -*-] feet by the end of 6 minutes, 18,000[image: -*-] feet at the end of
7 minutes, and 23,500[image: -*-] feet in 8 minutes; at 9 minutes it has
advanced to only 24,000[image: -*-] feet, because in the last minute it was
stopped by a cop.





Table 8–1. 



[image: --][image: --]

[image: -][image: -]
Fig. 8–1. Graph of distance versus time for the car.





That is one way to describe the motion. Another way is by means of a
graph. If we plot the time horizontally and the distance vertically, we
obtain a curve something like that shown in Fig. 8–1. As the
time increases, the distance increases, at first very slowly and then
more rapidly, and very slowly again for a little while at 4 minutes;
then it increases again for a few minutes and finally, at 9 minutes,
appears to have stopped increasing. These observations can be made from
the graph, without a table. Obviously, for a complete description one
would have to know where the car is at the half-minute marks, too, but
we suppose that the graph means something, that the car has some
position at all the intermediate times.





Table 8–2. 



[image: --][image: --]

[image: -][image: -]
Fig. 8–2. Graph of distance versus time for a falling body.





The motion of a car is complicated. For another example we take
something that moves in a simpler manner, following more simple laws: a
falling ball. Table 8–2 gives the time in seconds and the
distance in feet for a falling body. At zero seconds the ball starts out
at zero feet, and at the end of 1 second it has fallen 16[image: -*-] feet. At
the end of 2 seconds, it has fallen 64[image: -*-] feet, at the end of
3 seconds, 144[image: -*-] feet, and so on; if the tabulated numbers are
plotted, we get the nice parabolic curve shown in Fig. 8–2.
The formula for this curve can be written as

[image: -*-][image: -*-]
(8.1)




This formula enables us to calculate the distances at any time. You
might say there ought to be a formula for the first graph too. Actually,
one may write such a formula abstractly, as

[image: -*-][image: -*-]
(8.2)




meaning that s[image: -*-] is some quantity depending on t[image: -*-] or, in mathematical
phraseology, s[image: -*-] is a function of t[image: -*-]. Since we do not know what the
function is, there is no way we can write it in definite algebraic form.




We have now seen two examples of motion, adequately described with very
simple ideas, no subtleties. However, there are
subtleties—several of them. In the first place, what do we mean by
time and space? It turns out that these deep
philosophical questions have to be analyzed very carefully in physics,
and this is not so easy to do. The theory of relativity shows that our
ideas of space and time are not as simple as one might think at first
sight. However, for our present purposes, for the accuracy that we need
at first, we need not be very careful about defining things precisely.
Perhaps you say, “That’s a terrible thing—I learned that in science
we have to define everything precisely.” We cannot define
anything precisely! If we attempt to, we get into that paralysis
of thought that comes to philosophers, who sit opposite each other, one
saying to the other, “You don’t know what you are talking about!” The
second one says, “What do you mean by know? What do you mean by
talking? What do you mean by you?,” and so on. In order
to be able to talk constructively, we just have to agree that we are
talking about roughly the same thing. You know as much about time as we
need for the present, but remember that there are some subtleties that
have to be discussed; we shall discuss them later.




Another subtlety involved, and already mentioned, is that it should be
possible to imagine that the moving point we are observing is always
located somewhere. (Of course when we are looking at it, there it is,
but maybe when we look away it isn’t there.) It turns out that in the
motion of atoms, that idea also is false—we cannot find a marker on an
atom and watch it move. That subtlety we shall have to get around in
quantum mechanics. But we are first going to learn what the problems are
before introducing the complications, and then we shall be in a
better position to make corrections, in the light of the more recent
knowledge of the subject. We shall, therefore, take a simple point of
view about time and space. We know what these concepts are in a rough
way, and those who have driven a car know what speed means.







8–2 Speed


Even though we know roughly what “speed” means, there are still some
rather deep subtleties; consider that the learned Greeks were never able
to adequately describe problems involving velocity. The subtlety comes
when we try to comprehend exactly what is meant by “speed.” The Greeks
got very confused about this, and a new branch of mathematics had to be
discovered beyond the geometry and algebra
of the Greeks, Arabs, and Babylonians. As an illustration of the
difficulty, try to solve this problem by sheer
algebra: A balloon is being inflated so that
the volume of the balloon is increasing at the rate of 100[image: -*-] cm³ per
second; at what speed is the radius increasing when the volume is
1000[image: -*-] cm³? The Greeks were somewhat confused by such problems, being
helped, of course, by some very confusing Greeks. To show that there
were difficulties in reasoning about speed at the time,
Zeno produced a large number
of paradoxes, of which we shall mention one to illustrate his point that
there are obvious difficulties in thinking about motion. “Listen,” he
says, “to the following argument: Achilles runs 10[image: -*-] times as fast as a
tortoise, nevertheless he can never catch the tortoise. For, suppose
that they start in a race where the tortoise is 100[image: -*-] meters ahead of
Achilles; then when Achilles has run the 100[image: -*-] meters to the place where
the tortoise was, the tortoise has proceeded 10[image: -*-] meters, having run
one-tenth as fast. Now, Achilles has to run another 10[image: -*-] meters to catch
up with the tortoise, but on arriving at the end of that run, he finds
that the tortoise is still 1 meter ahead of him; running another
meter, he finds the tortoise 10[image: -*-] centimeters ahead, and so on, ad
infinitum. Therefore, at any moment the tortoise is always ahead of
Achilles and Achilles can never catch, up with the tortoise.”  What is
wrong with that? It is that a finite amount of time can be divided into
an infinite number of pieces, just as a length of line can be divided
into an infinite number of pieces by dividing repeatedly by two. And so,
although there are an infinite number of steps (in the argument) to the
point at which Achilles reaches the tortoise, it doesn’t mean that there
is an infinite amount of time. We can see from this example that
there are indeed some subtleties in reasoning about speed.





In order to get to the subtleties in a clearer fashion, we remind you of
a joke which you surely must have heard. At the point where the lady in
the car is caught by a cop, the cop comes up to her and says, “Lady,
you were going 60[image: -*-] miles an hour!” She says, “That’s impossible, sir,
I was travelling for only seven minutes. It is ridiculous—how can I go
60[image: -*-] miles an hour when I wasn’t going an hour?”  How would you answer
her if you were the cop? Of course, if you were really the cop, then no
subtleties are involved; it is very simple: you say, “Tell that to the
judge!” But let us suppose that we do not have that escape and we make
a more honest, intellectual attack on the problem, and try to explain to
this lady what we mean by the idea that she was going 60[image: -*-] miles an
hour. Just what do we mean?  We say, “What we mean, lady, is
this: if you kept on going the same way as you are going now, in the
next hour you would go 60[image: -*-] miles.” She could say, “Well, my foot was
off the accelerator and the car was slowing down, so if I kept on going
that way it would not go 60[image: -*-] miles.” Or consider the falling ball and
suppose we want to know its speed at the time three seconds if the ball
kept on going the way it is going. What does that mean—kept on
accelerating, going faster? No—kept on going with the same
velocity. But that is what we are trying to
define! For if the ball keeps on going the way it is going, it will just
keep on going the way it is going. Thus we need to define the velocity
better. What has to be kept the same? The lady can also argue this way:
“If I kept on going the way I’m going for one more hour, I would run
into that wall at the end of the street!” It is not so easy to say what
we mean.




Many physicists think that measurement is the only definition of
anything. Obviously, then, we should use the instrument that measures
the speed—the speedometer—and say, “Look, lady, your speedometer
reads 60[image: -*-].” So she says, “My speedometer is broken and didn’t read at
all.”  Does that mean the car is standing still? We believe that there
is something to measure before we build the speedometer. Only then can
we say, for example, “The speedometer isn’t working right,” or “the
speedometer is broken.” That would be a meaningless sentence if the
velocity had no meaning independent of the speedometer. So we have in
our minds, obviously, an idea that is independent of the speedometer,
and the speedometer is meant only to measure this idea. So let us see if
we can get a better definition of the idea. We say, “Yes, of course,
before you went an hour, you would hit that wall, but if you went one
second, you would go 88[image: -*-] feet; lady, you were going 88[image: -*-] feet per
second, and if you kept on going, the next second it would be 88[image: -*-] feet,
and the wall down there is farther away than that.”  She says, “Yes,
but there’s no law against going 88[image: -*-] feet per second!  There is only a
law against going 60[image: -*-] miles an hour.”  “But,” we reply, “it’s the
same thing.” If it is the same thing, it should not be necessary
to go into this circumlocution about 88[image: -*-] feet per second. In fact, the
falling ball could not keep going the same way even one second because
it would be changing speed, and we shall have to define speed somehow.




Now we seem to be getting on the right track; it goes something like
this: If the lady kept on going for another 1/1000[image: -*-] of an hour, she
would go 1/1000[image: -*-] of 60[image: -*-] miles. In other words, she does not have to
keep on going for the whole hour; the point is that for a moment
she is going at that speed. Now what that means is that if she went just
a little bit more in time, the extra distance she goes would be the same
as that of a car that goes at a steady speed of 60[image: -*-] miles an
hour. Perhaps the idea of the 88[image: -*-] feet per second is right; we see how
far she went in the last second, divide by 88[image: -*-] feet, and if it comes
out 1 the speed was 60[image: -*-] miles an hour. In other words, we can find
the speed in this way: We ask, how far do we go in a very short time? We
divide that distance by the time, and that gives the speed. But the time
should be made as short as possible, the shorter the better, because
some change could take place during that time. If we take the time of a
falling body as an hour, the idea is ridiculous. If we take it as a
second, the result is pretty good for a car, because there is not much
change in speed, but not for a falling body; so in order to get the
speed more and more accurately, we should take a smaller and smaller
time interval. What we should do is take a millionth of a second, find 
out how far the car has gone, and
divide that distance by a millionth of a second. The result gives the
distance per second, which is what we mean by the velocity, so we can
define it that way. That is a successful answer for the lady, or rather,
that is the definition that we are going to use.




The foregoing definition involves a new idea, an idea that was not
available to the Greeks in a general form. That idea was to take an
infinitesimal distance and the corresponding infinitesimal
time, form the ratio, and watch what happens to that ratio as the time
that we use gets smaller and smaller and smaller. In other words, take a
limit of the distance travelled divided by the time required, as the
time taken gets smaller and smaller, ad infinitum. This idea was
invented by Newton and by
Leibniz,
independently, and is the beginning of a new branch of mathematics,
called the differential calculus.
Calculus was invented in order to describe motion, and its first
application was to the problem of defining what is meant by going
“60[image: -*-] miles an hour.”




Let us try to define velocity a little better. Suppose that in a short
time, ϵ[image: -*-], the car or other body goes a short distance x[image: -*-]; then
the velocity, v[image: -*-], is defined as

[image: -*-][image: -*-]


an approximation that becomes better and better as the ϵ[image: -*-] is
taken smaller and smaller. If a mathematical expression is desired, we
can say that the velocity equals the limit as the ϵ[image: -*-] is made to
go smaller and smaller in the expression x/ϵ[image: -*-], or

[image: -*-][image: -*-]
(8.3)




We cannot do the same thing with the lady in the car, because the table
is incomplete. We know only where she was at intervals of one minute; we
can get a rough idea that she was going 5000[image: -*-] ft/min during the
7th minute, but we do not know, at exactly the moment 7 minutes,
whether she had been speeding up and the speed was 4900[image: -*-] ft/min at the
beginning of the 6th minute, and is now 5100[image: -*-] ft/min, or something
else, because we do not have the exact details in between. So only if
the table were completed with an infinite number of entries could we
really calculate the velocity from such a table. On the other hand, when
we have a complete mathematical formula, as in the case of a falling
body (Eq. 8.1), then it is possible to calculate the
velocity, because we can calculate the position at any time whatsoever.




Let us take as an example the problem of determining the velocity of the
falling ball at the particular time 5 seconds. One way to do
this is to see from Table 8–2 what it did in the
5th second; it went 400−256=144[image: -*-] ft, so it is going 144[image: -*-] ft/sec;
however, that is wrong, because the speed is changing; on the
average it is 144[image: -*-] ft/sec during this interval, but the ball is
speeding up and is really going faster than 144[image: -*-] ft/sec. We want to
find out exactly how fast. The technique involved in this process
is the following: We know where the ball was at 5 sec. At 5.1[image: -*-] sec,
the distance that it has gone all together is 16 (5.1)2=416.16[image: -*-] ft (see
Eq. 8.1). At 5 sec it had already fallen 400[image: -*-] ft; in the
last tenth of a second it fell 416.16−400=16.16[image: -*-] ft. Since 16.16[image: -*-] ft
in 0.1[image: -*-] sec is the same as 161.6[image: -*-] ft/sec, that is the speed more or
less, but it is not exactly correct. Is that the speed at 5, or
at 5.1[image: -*-], or halfway between at 5.05[image: -*-] sec, or when is that the
speed? Never mind—the problem was to find the speed at
5 seconds, and we do not have exactly that; we have to do a better
job. So, we take one-thousandth of a second more than 5 sec, or
5.001[image: -*-] sec, and calculate the total fall as



[image: -*-][image: -*-]



In the last 0.001[image: -*-] sec the ball fell 0.160016[image: -*-] ft, and if we divide
this number by 0.001[image: -*-] sec we obtain the speed as 160.016[image: -*-] ft/sec. That
is closer, very close, but it is still not exact. It should now
be evident what we must do to find the speed exactly. To perform the
mathematics we state the problem a little more abstractly: to find the
velocity at a special time, t0[image: -*-], which in the original problem was
5 sec. Now the distance at t0[image: -*-], which we call s0[image: -*-], is [image: 16t_0^2][image: 16t_0^2],
or 400[image: -*-] ft in this case. In order to find the velocity, we ask, “At
the time t0+(a little bit)[image: -*-], or t0+ϵ[image: -*-], where is the
body?”  The new position
is [image: 16(t_0+\epsilon)^2=16t_0^2+32t_0\epsilon+16\epsilon^2][image: 16(t_0+\epsilon)^2=16t_0^2+32t_0\epsilon+16\epsilon^2]. So it is
farther along than it was before, because before it was only [image: 16t_0^2][image: 16t_0^2].
This distance we shall call s0+(a little bit more)[image: -*-], or s0+x[image: -*-]
(if x[image: -*-] is the extra bit). Now if we subtract the distance at t0[image: -*-] from
the distance at t0+ϵ[image: -*-], we get x[image: -*-], the extra distance gone,
as x=32 t0⋅ϵ+16 ϵ2[image: -*-]. Our first approximation to the
velocity is

[image: -*-][image: -*-]
(8.4)




The true velocity is the value of this ratio, x/ϵ[image: -*-], when
ϵ[image: -*-] becomes vanishingly small. In other words, after forming the
ratio, we take the limit as ϵ[image: -*-] gets smaller and smaller, that
is, approaches 0. The equation reduces to,

[image: -*-][image: -*-]


In our problem, t0=5[image: -*-] sec, so the solution is
v=[image: -*-]32×5=[image: -*-]160[image: -*-] ft/sec. A few lines above, where we took ϵ[image: -*-]
as 0.1[image: -*-] and 0.001[image: -*-] sec successively, the value we got for v[image: -*-] was a
little more than this, but now we see that the actual velocity is
precisely 160[image: -*-] ft/sec.







8–3 Speed as a derivative


The procedure we have just carried out is performed so often in
mathematics that for convenience special notations have been assigned to
our quantities ϵ[image: -*-] and x[image: -*-]. In this notation, the ϵ[image: -*-] used
above becomes Δ t[image: -*-] and x[image: -*-] becomes Δ s[image: -*-]. This Δ t[image: -*-]
means “an extra bit of t[image: -*-],” and carries an implication that it can be
made smaller. The prefix Δ[image: -*-] is not a multiplier, any more
than sinθ[image: -*-]
means s⋅i⋅n⋅θ[image: -*-]—it simply
defines a time increment, and reminds us of its special character.
Δ s[image: -*-] has an analogous meaning for the distance s[image: -*-]. Since Δ[image: -*-]
is not a factor, it cannot be cancelled in the ratio Δ s/Δ t[image: -*-]
to give s/t[image: -*-], any more than the ratio sinθ/sin2 θ[image: -*-] can be
reduced to 1/2[image: -*-] by cancellation. In this notation, velocity is equal to
the limit of Δ s/Δ t[image: -*-] when Δ t[image: -*-] gets smaller, or

[image: -*-][image: -*-]
(8.5)




This is really the same as our previous expression (8.3) with
ϵ[image: -*-] and x[image: -*-], but it has the advantage of showing that something
is changing, and it keeps track of what is changing.




Incidentally, to a good approximation we have another law, which says
that the change in distance of a moving point is the velocity times the
time interval, or Δ s=v Δ t[image: -*-]. This statement is true only if
the velocity is not changing during that time interval, and this
condition is true only in the limit as Δ t[image: -*-] goes to 0.
Physicists like to write it d s=v d t[image: -*-], because by d t[image: -*-] they
mean Δ t[image: -*-] in circumstances in which it is very small; with this
understanding, the expression is valid to a close approximation.
If Δ t[image: -*-] is too long, the velocity might change during the
interval, and the approximation would become less accurate. For a
time d t[image: -*-], approaching zero, d s=v d t[image: -*-] precisely. In this notation we
can write (8.5) as

[image: -*-][image: -*-]





The quantity d s/d t[image: -*-] which we found above is called the “derivative
of s[image: -*-] with respect to t[image: -*-]” (this language helps to keep track of what
was changed), and the complicated process of finding it is called
finding a derivative, or differentiating. The d s[image: -*-]’s and d t[image: -*-]’s which
appear separately are called differentials. To familiarize you
with the words, we say we found the derivative of the function 16 t2[image: -*-],
or the derivative (with respect to t[image: -*-]) of 16 t2[image: -*-] is 32 t[image: -*-]. When we get
used to the words, the ideas are more easily understood. For practice,
let us find the derivative of a more complicated function. We shall
consider the formula s=A t3+B t+C[image: -*-], which might describe the motion of a
point. The letters A[image: -*-], B[image: -*-], and C[image: -*-] represent constant numbers, as in
the familiar general form of a quadratic equation. Starting from the
formula for the motion, we wish to find the velocity at any time. To
find the velocity in the more elegant manner, we change t[image: -*-] to t+Δ t[image: -*-] and note that s[image: -*-] is then changed to s+some  Δ s[image: -*-]; then
we find the Δ s[image: -*-] in terms of Δ t[image: -*-]. That is to say,



[image: -*-][image: -*-]



but since

[image: -*-][image: -*-]


we find that

[image: -*-][image: -*-]


But we do not want Δ s[image: -*-]—we want Δ s[image: -*-] divided by Δ t[image: -*-]. We divide the preceding equation by Δ t[image: -*-], getting

[image: -*-][image: -*-]


As Δ t[image: -*-] goes toward 0 the limit of Δ s/Δ t[image: -*-]
is d s/d t[image: -*-] and is equal to

[image: -*-][image: -*-]


This is the fundamental process of calculus, differentiating functions.
The process is even more simple than it appears. Observe that when these
expansions contain any term with a square or a cube or any higher power
of Δ t[image: -*-], such terms may be dropped at once, since they will go
to 0 when the limit is taken. After a little practice the process gets
easier because one knows what to leave out. There are many rules or
formulas for differentiating various types of functions. These can be
memorized, or can be found in tables. A short list is found in
Table 8–3.





Table 8–3. A Short Table of Derivatives


s[image: -*-], u[image: -*-], v[image: -*-], w[image: -*-] are arbitrary functions of t[image: -*-]; a[image: -*-], b[image: -*-], c[image: -*-], and
n[image: -*-] are arbitrary constants


[image: --][image: --]





8–4 Distance as an integral



Table 8–4. Velocity of a Falling Ball



[image: --][image: --]


Now we have to discuss the inverse problem. Suppose that instead of a
table of distances, we have a table of speeds at different times,
starting from zero. For the falling ball, such speeds and times are
shown in Table 8–4. A similar table could be constructed for
the velocity of the car, by recording the speedometer reading every
minute or half-minute. If we know how fast the car is going at any time,
can we determine how far it goes? This problem is just the inverse of
the one solved above; we are given the velocity and asked to find the
distance. How can we find the distance if we know the speed? If the
speed of the car is not constant, and the lady goes sixty miles an hour
for a moment, then slows down, speeds up, and so on, how can we
determine how far she has gone? That is easy. We use the same idea, and
express the distance in terms of infinitesimals. Let us say, “In the
first second her speed was such and such, and from the formula Δ s=v Δ t[image: -*-] we can calculate how far the car went the first second at
that speed.” Now in the next second her speed is nearly the same, but
slightly different; we can calculate how far she went in the next second
by taking the new speed times the time. We proceed similarly for each
second, to the end of the run. We now have a number of little distances,
and the total distance will be the sum of all these little pieces. That
is, the distance will be the sum of the velocities times the times,
or s=∑v Δ t[image: -*-], where the Greek letter ∑[image: -*-] (sigma) is used
to denote addition. To be more precise, it is the sum of the velocity at
a certain time, let us say the i[image: -*-]-th time, multiplied by Δ t[image: -*-].

[image: -*-][image: -*-]
(8.6)




The rule for the times is that ti+1=ti+Δ t[image: -*-]. However, the
distance we obtain by this method will not be correct, because the
velocity changes during the time interval Δ t[image: -*-]. If we take the
times short enough, the sum is precise, so we take them smaller and
smaller until we obtain the desired accuracy. The true s[image: -*-] is

[image: -*-][image: -*-]
(8.7)




The mathematicians have invented a symbol for this limit, analogous to
the symbol for the differential. The Δ[image: -*-] turns into a d[image: -*-] to remind
us that the time is as small as it can be; the velocity is then
called v[image: -*-] at the time t[image: -*-], and the addition is written as a sum with a
great “s[image: -*-],” ∫[image: -*-] (from the Latin summa), which has become
distorted and is now unfortunately just called an integral sign. Thus we
write

[image: -*-][image: -*-]
(8.8)




This process of adding all these terms together is called integration,
and it is the opposite process to differentiation. The derivative of
this integral is v[image: -*-], so one operator (d[image: -*-]) undoes the other (∫[image: -*-]).
One can get formulas for integrals by taking the formulas for
derivatives and running them backwards, because they are related to each
other inversely. Thus one can work out his own table of integrals by
differentiating all sorts of functions. For every formula with a
differential, we get an integral formula if we turn it around.




Every function can be differentiated analytically, i.e., the process can
be carried out algebraically, and leads to a definite function. But it
is not possible in a simple manner to write an analytical value for any
integral at will. You can calculate it, for instance, by doing the above
sum, and then doing it again with a finer interval Δ t[image: -*-] and again
with a finer interval until you have it nearly right. In general, given
some particular function, it is not possible to find, analytically, what
the integral is. One may always try to find a function which, when
differentiated, gives some desired function; but one may not find it,
and it may not exist, in the sense of being expressible in terms of
functions that have already been given names.







8–5 Acceleration


The next step in developing the equations of motion is to introduce
another idea which goes beyond the concept of velocity to that of
change of velocity, and we now ask, “How does the velocity
change?” In previous chapters we have discussed cases in which
forces produce changes in velocity. You may have heard with great
excitement about some car that can get from rest to 60[image: -*-] miles an hour
in ten seconds flat. From such a performance we can see how fast the
speed changes, but only on the average. What we shall now discuss is the
next level of complexity, which is how fast the velocity is changing. In
other words, by how many feet per second does the velocity change in a
second, that is, how many feet per second, per second? We previously
derived the formula for the velocity of a falling body as v=32 t[image: -*-], which
is charted in Table 8–4, and now we want to find out how
much the velocity changes per second; this quantity is called the
acceleration.




Acceleration is defined as the time rate of change of velocity. From the
preceding discussion we know enough already to write the acceleration as
the derivative d v/d t[image: -*-], in the same way that the velocity is the
derivative of the distance. If we now differentiate the formula v=32 t[image: -*-]
we obtain, for a falling body,

[image: -*-][image: -*-]
(8.9)




[To differentiate the term 32 t[image: -*-] we can utilize the result obtained in a
previous problem, where we found that the derivative of B t[image: -*-] is
simply B[image: -*-] (a constant). So by letting B=32[image: -*-], we have at once that the
derivative of 32 t[image: -*-] is 32[image: -*-].] This means that the velocity of a falling
body is changing by 32[image: -*-] feet per second, per second always. We also see
from Table 8–4 that the velocity increases by 32[image: -*-] ft/sec in
each second. This is a very simple case, for accelerations are usually
not constant. The reason the acceleration is constant here is that the
force on the falling body is constant, and Newton’s law says that the
acceleration is proportional to the force.




As a further example, let us find the acceleration in the problem we
have already solved for the velocity. Starting with

[image: -*-][image: -*-]


we obtained, for v=d s/d t[image: -*-],

[image: -*-][image: -*-]


Since acceleration is the derivative of the velocity with respect to the
time, we need to differentiate the last expression above. Recall the
rule that the derivative of the two terms on the right equals the sum of
the derivatives of the individual terms. To differentiate the first of
these terms, instead of going through the fundamental process again we
note that we have already differentiated a quadratic term when we
differentiated 16 t2[image: -*-], and the effect was to double the numerical
coefficient and change the t2[image: -*-] to t[image: -*-]; let us assume that the same
thing will happen this time, and you can check the result yourself. The
derivative of 3 A t2[image: -*-] will then be 6 A t[image: -*-]. Next we differentiate B[image: -*-], a
constant term; but by a rule stated previously, the derivative of B[image: -*-] is
zero; hence this term contributes nothing to the acceleration. The final
result, therefore, is a=[image: -*-]d v/d t=[image: -*-]6 A t[image: -*-].




For reference, we state two very useful formulas, which can be obtained
by integration. If a body starts from rest and moves with a constant
acceleration, g[image: -*-], its velocity v[image: -*-] at any time t[image: -*-] is given by

[image: -*-][image: -*-]


The distance it covers in the same time is

[image: -*-][image: -*-]





Various mathematical notations are used in writing derivatives. Since
velocity is d s/d t[image: -*-] and acceleration is the time derivative of the
velocity, we can also write

[image: -*-][image: -*-]
(8.10)




which are common ways of writing a second derivative.




We have another law that the velocity is equal to the integral of the
acceleration. This is just the opposite of a=d v/d t[image: -*-]; we have already
seen that distance is the integral of the velocity, so distance can be
found by twice integrating the acceleration.




In the foregoing discussion the motion was in only one dimension, and
space permits only a brief discussion of motion in three dimensions.
Consider a particle P[image: -*-] which moves in three dimensions in any manner
whatsoever. At the beginning of this chapter, we opened our discussion
of the one-dimensional case of a moving car by observing the distance of
the car from its starting point at various times. We then discussed
velocity in terms of changes of these distances with time, and
acceleration in terms of changes in velocity. We can treat
three-dimensional motion analogously. It will be simpler to illustrate
the motion on a two-dimensional diagram, and then extend the ideas to
three dimensions. We establish a pair of axes at right angles to each
other, and determine the position of the particle at any moment by
measuring how far it is from each of the two axes. Thus each position is
given in terms of an x[image: -*-]-distance and a y[image: -*-]-distance, and the motion can
be described by constructing a table in which both these distances are
given as functions of time. (Extension of this process to three
dimensions requires only another axis, at right angles to the first two,
and measuring a third distance, the z[image: -*-]-distance. The distances are now
measured from coordinate planes instead of lines.)  Having
constructed a table with x[image: -*-]- and y[image: -*-]-distances, how can we determine
the velocity? We first find the components of velocity in each
direction. The horizontal part of the velocity, or x[image: -*-]-component, is the
derivative of the x[image: -*-]-distance with respect to the time, or

[image: -*-][image: -*-]
(8.11)




Similarly, the vertical part of the velocity, or
y[image: -*-]-component, is

[image: -*-][image: -*-]
(8.12)




In the third dimension,

[image: -*-][image: -*-]
(8.13)







Now, given the components of velocity, how can we find the velocity
along the actual path of motion? In the two-dimensional case, consider
two successive positions of the particle, separated by a short
distance Δ s[image: -*-] and a short time interval t2−t1=Δ t[image: -*-]. In the
time Δ t[image: -*-] the particle moves horizontally a distance Δ x≈vx Δ t[image: -*-], and vertically a distance Δ y≈vy Δ t[image: -*-]. (The symbol “≈[image: -*-]” is read “is approximately.”)
The actual distance moved is approximately

[image: -*-][image: -*-]
(8.14)




as shown in Fig. 8–3. The approximate velocity during this
interval can be obtained by dividing by Δ t[image: -*-] and by
letting Δ t[image: -*-] go to 0, as at the beginning of the chapter. We
then get the velocity as



[image: -*-][image: -*-]
(8.15)





For three dimensions the result is

[image: -*-][image: -*-]
(8.16)







In the same way as we defined velocities, we can define accelerations:
we have an x[image: -*-]-component of acceleration ax[image: -*-], which is the
derivative of vx[image: -*-], the x[image: -*-]-component of the velocity (that is,
ax=d2 x/d t2[image: -*-], the second derivative of x[image: -*-] with respect to t[image: -*-]), and
so on.



[image: -][image: -]
Fig. 8–3. Description of the motion of a body in two dimensions and the
computation of its velocity.





Let us consider one nice example of compound motion in a plane. We shall
take a motion in which a ball moves horizontally with a constant
velocity u[image: -*-], and at the same time goes vertically downward with a
constant acceleration −g[image: -*-]; what is the motion? We can
say d x/d t=[image: -*-]vx=[image: -*-]u[image: -*-]. Since the velocity vx[image: -*-] is constant,

[image: -*-][image: -*-]
(8.17)




and since the downward acceleration −g[image: -*-] is constant, the distance y[image: -*-]
the object falls can be written as

[image: -*-][image: -*-]
(8.18)




What is the curve of its path, i.e., what is the relation between y[image: -*-]
and x[image: -*-]? We can eliminate t[image: -*-] from Eq. (8.18), since t=x/u[image: -*-].
When we make this substitution we find that

[image: -*-][image: -*-]
(8.19)




This relation between y[image: -*-] and x[image: -*-] may be considered as the equation of
the path of the moving ball. When this equation is plotted we obtain a
curve that is called a parabola; any freely falling body that is shot
out in any direction will travel in a parabola, as shown in
Fig. 8–4.




[image: -][image: -]
Fig. 8–4. The parabola described by a falling body with an initial
horizontal velocity.








  
    

9 Newton’s Laws of Dynamics



9–1 Momentum and force


The discovery of the laws of dynamics, or the laws of
motion, was a dramatic moment in the history of science. Before
Newton’s time, the motions of
things like the planets were a mystery, but after
Newton there was complete
understanding. Even the slight deviations from Kepler’s
laws, due to the perturbations of the
planets, were computable. The motions of pendulums, oscillators with
springs and weights in them, and so on, could all be analyzed completely
after Newton’s laws were enunciated. So it is with this chapter: before
this chapter we could not calculate how a mass on a spring would move;
much less could we calculate the perturbations on the planet Uranus due
to Jupiter and Saturn. After this chapter we will be able to
compute not only the motion of the oscillating mass, but also the
perturbations on the planet Uranus produced by Jupiter and Saturn!




Galileo made a great advance in
the understanding of motion when he discovered the principle of
inertia:
if an object is left alone, is not disturbed, it continues to move with
a constant velocity in a straight line if it was originally moving, or
it continues to stand still if it was just standing still. Of course
this never appears to be the case in nature, for if we slide a block
across a table it stops, but that is because it is not left to
itself—it is rubbing against the table. It required a certain
imagination to find the right rule, and that imagination was supplied by
Galileo.




Of course, the next thing which is needed is a rule for finding how an
object changes its speed if something is affecting it.
That is, the contribution of Newton.
Newton wrote down three laws: The
First Law was a mere restatement of the Galilean principle of inertia
just described. The Second Law gave a specific way of determining how
the velocity changes under different influences called forces.
The Third Law describes the forces to some extent, and we shall discuss
that at another time. Here we shall discuss only the Second Law, which
asserts that the motion of an object is changed by forces in this way:
the time-rate-of-change of a quantity called momentum is
proportional to the force. We shall state this mathematically shortly,
but let us first explain the idea.




Momentum is not the same as velocity. A lot of words are
used in physics, and they all have precise meanings in physics,
although they may not have such precise meanings in everyday
language. Momentum is an example, and we must define it precisely. If
we exert a certain push with our arms on an object that is light, it
moves easily; if we push just as hard on another object that is much
heavier in the usual sense, then it moves much less rapidly. Actually,
we must change the words from “light” and “heavy” to less
massive and more massive, because there is a difference to be
understood between the weight of an object and its
inertia. (How hard it is to get it going is one thing, and how
much it weighs is something else.)  Weight and inertia are
proportional, and on the earth’s surface are often taken to be
numerically equal, which causes a certain confusion to the student. On
Mars, weights would be different but the amount of force needed to
overcome inertia would be the same.




We use the term mass as a quantitative measure of inertia, and
we may measure mass, for example, by swinging an object in a circle at
a certain speed and measuring how much force we need to keep it in the
circle. In this way we find a certain quantity of mass for every
object. Now the momentum of an object is a product of two
parts: its mass and its velocity. Thus Newton’s Second
Law may be written mathematically this way:

[image: -*-][image: -*-]
(9.1)




Now there are several points to be considered. In writing down any law
such as this, we use many intuitive ideas, implications, and
assumptions which are at first combined approximately into our
“law.”  Later we may have to come back and study in greater detail
exactly what each term means, but if we try to do this too soon we
shall get confused. Thus at the beginning we take several things for
granted. First, that the mass of an object is constant; it
isn’t really, but we shall start out with the Newtonian approximation
that mass is constant, the same all the time, and that, further, when
we put two objects together, their masses add. These ideas were
of course implied by Newton when he
wrote his equation, for otherwise it is meaningless. For example,
suppose the mass varied inversely as the velocity; then the momentum
would never change in any circumstance, so the law means nothing
unless you know how the mass changes with velocity. At first we say,
it does not change.




Then there are some implications concerning force. As a rough
approximation we think of force as a kind of push or pull that we make
with our muscles, but we can define it more accurately now that we
have this law of motion. The most important thing to realize is that
this relationship involves not only changes in the magnitude of
the momentum or of the velocity but also in their direction. If
the mass is constant, then Eq. (9.1) can also be written
as

[image: -*-][image: -*-]
(9.2)




The acceleration a[image: -*-] is the rate of change of the velocity, and
Newton’s Second Law says more than that the effect of a given force
varies inversely as the mass; it says also that the direction
of the change in the velocity and the direction of the force
are the same. Thus we must understand that a change in a velocity, or
an acceleration, has a wider meaning than in common language: The
velocity of a moving object can change by its speeding up, slowing
down (when it slows down, we say it accelerates with a negative
acceleration), or changing its direction of motion. An acceleration at
right angles to the velocity was discussed in Chapter 7.
There we saw that an object moving in a circle of radius R[image: -*-] with a
certain speed v[image: -*-] along the circle falls away from a straightline path
by a distance equal to [image: \tfrac{1}{2}(v^2/R)t^2][image: \tfrac{1}{2}(v^2/R)t^2] if t[image: -*-] is very small.
Thus the formula for acceleration at right angles to the motion is

[image: -*-][image: -*-]
(9.3)




and a force at right angles to the velocity will cause an object to
move in a curved path whose radius of curvature can be found by
dividing the force by the mass to get the acceleration, and then
using (9.3).







9–2 Speed and velocity


In order to make our language more precise, we shall make one further
definition in our use of the words speed and
velocity. Ordinarily we think of speed and velocity as being
the same, and in ordinary language they are the same. But in physics
we have taken advantage of the fact that there are two words
and have chosen to use them to distinguish two ideas. We carefully
distinguish velocity, which has both magnitude and direction, from
speed, which we choose to mean the magnitude of the velocity, but
which does not include the direction. We can formulate this more
precisely by describing how the x[image: -*-]-, y[image: -*-]-, and z[image: -*-]-coordinates of an
object change with time. Suppose, for example, that at a certain
instant an object is moving as shown in Fig. 9–1. In a
given small interval of time Δ t[image: -*-] it will move a certain
distance Δ x[image: -*-] in the x[image: -*-]-direction, Δ y[image: -*-] in the
y[image: -*-]-direction, and Δ z[image: -*-] in the z[image: -*-]-direction. The total effect
of these three coordinate changes is a displacement Δ s[image: -*-] along
the diagonal of a parallelepiped whose sides are Δ x[image: -*-], Δ y[image: -*-], and Δ z[image: -*-]. In terms of the velocity, the displacement Δ x[image: -*-] is the x[image: -*-]-component of the velocity times Δ t[image: -*-], and
similarly for Δ y[image: -*-] and Δ z[image: -*-]:








[image: -*-][image: -*-]
(9.4)









[image: -][image: -]
Fig. 9–1. A small displacement of an object.








9–3 Components of velocity, acceleration, and force


In Eq. (9.4) we have resolved the velocity into
components by telling how fast the object is moving in the
x[image: -*-]-direction, the y[image: -*-]-direction, and the z[image: -*-]-direction. The velocity
is completely specified, both as to magnitude and direction, if we
give the numerical values of its three rectangular components:



[image: -*-][image: -*-]
(9.5)





On the other hand, the speed of the object is

[image: -*-][image: -*-]
(9.6)






[image: -][image: -]
Fig. 9–2. A change in velocity in which both the magnitude and
direction change.





Next, suppose that, because of the action of a force, the velocity
changes to some other direction and a different magnitude, as shown in
Fig. 9–2. We can analyze this apparently complex
situation rather simply if we evaluate the changes in the x[image: -*-]-, y[image: -*-]-,
and z[image: -*-]-components of velocity. The change in the component of the
velocity in the x[image: -*-]-direction in a time Δ t[image: -*-] is Δ vx=ax Δ t[image: -*-], where ax[image: -*-] is what we call the x[image: -*-]-component of
the acceleration. Similarly, we see that Δ vy=ay Δ t[image: -*-]
and Δ vz=az Δ t[image: -*-]. In these terms, we see that Newton’s
Second Law, in saying that the force is in the same direction as the
acceleration, is really three laws, in the sense that the component of
the force in the x[image: -*-]-, y[image: -*-]-, or z[image: -*-]-direction is equal to the mass
times the rate of change of the corresponding component of velocity:

[image: -*-][image: -*-]
(9.7)




Just as the velocity and acceleration have been resolved into components
by projecting a line segment representing the quantity, and its
direction onto three coordinate axes, so, in the same way, a force in a
given direction is represented by certain components in the x[image: -*-]-, y[image: -*-]-,
and z[image: -*-]-directions:

[image: -*-][image: -*-]
(9.8)




where F[image: -*-] is the magnitude of the force and (x,F)[image: -*-] represents the
angle between the x[image: -*-]-axis and the direction of F[image: -*-], etc.




Newton’s Second Law is given in complete form in Eq. (9.7).
If we know the forces on an object and resolve them into x[image: -*-]-, y[image: -*-]-, and
z[image: -*-]-components, then we can find the motion of the object from these
equations. Let us consider a simple example. Suppose there are no forces
in the y[image: -*-]- and z[image: -*-]-directions, the only force being in the
x[image: -*-]-direction, say vertically. Equation (9.7) tells us that
there would be changes in the velocity in the vertical direction, but no
changes in the horizontal direction. This was demonstrated with a
special apparatus in Chapter 7 (see Fig. 7–3).
A falling body moves horizontally without any change in horizontal
motion, while it moves vertically the same way as it would move if the
horizontal motion were zero. In other words, motions in the x[image: -*-]-, y[image: -*-]-,
and z[image: -*-]-directions are independent if the forces are not
connected.







9–4 What is the force?


In order to use Newton’s laws, we have to have some formula for the
force; these laws say pay attention to the forces. If an object
is accelerating, some agency is at work; find it. Our program for the
future of dynamics must be to find the laws for the force.
Newton himself went on to give some
examples. In the case of gravity he gave a specific formula for the
force. In the case of other forces he gave some part of the information
in his Third Law, which we will study in the next chapter, having to do
with the equality of action and reaction.




Extending our previous example, what are the forces on objects near
the earth’s surface? Near the earth’s surface, the force in the
vertical direction due to gravity is proportional to the mass of the
object and is nearly independent of height for heights small compared
with the earth’s radius R[image: -*-]: F=[image: -*-]G m M/R2=[image: -*-]m g[image: -*-], where g=G M/R2[image: -*-] is
called the acceleration of gravity. Thus the law of gravity tells us that weight is
proportional to mass; the force is in the vertical direction and is the
mass times g[image: -*-]. Again we find that the motion in the horizontal
direction is at constant velocity. The interesting motion is in the
vertical direction, and Newton’s Second Law tells us

[image: -*-][image: -*-]
(9.9)




Cancelling the m[image: -*-]’s, we find that the acceleration in the
x[image: -*-]-direction is constant and equal to g[image: -*-]. This is of course the well
known law of free fall under gravity, which leads to the equations

[image: -*-][image: -*-]
(9.10)






[image: -][image: -]
Fig. 9–3. A mass on a spring.





As another example, let us suppose that we have been able to build a
gadget (Fig. 9–3) which applies a force proportional to
the distance and directed oppositely—a spring. If we forget about
gravity, which is of course balanced out by the initial stretch of the
spring, and talk only about excess forces, we see that if we
pull the mass down, the spring pulls up, while if we push it up the
spring pulls down. This machine has been designed carefully so that
the force is greater, the more we pull it up, in exact proportion to
the displacement from the balanced condition, and the force upward is
similarly proportional to how far we pull down. If we watch the
dynamics of this machine, we see a rather beautiful motion—up, down,
up, down, … The question is, will Newton’s equations correctly
describe this motion? Let us see whether we can exactly calculate how
it moves with this periodic oscillation, by applying Newton’s law (9.7). In the present
instance, the equation is

[image: -*-][image: -*-]
(9.11)




Here we have a situation where the velocity in the x[image: -*-]-direction
changes at a rate proportional to x[image: -*-]. Nothing will be gained by
retaining numerous constants, so we shall imagine either that the
scale of time has changed or that there is an accident in the units,
so that we happen to have k/m=1[image: -*-]. Thus we shall try to solve the
equation

[image: -*-][image: -*-]
(9.12)




To proceed, we must know what vx[image: -*-] is, but of course we know that the
velocity is the rate of change of the position.







9–5 Meaning of the dynamical equations


Now let us try to analyze just what Eq. (9.12)
means. Suppose that at a given time t[image: -*-] the object has a certain
velocity vx[image: -*-] and position x[image: -*-]. What is the velocity and what is the
position at a slightly later time t+ϵ[image: -*-]? If we can answer this
question our problem is solved, for then we can start with the given
condition and compute how it changes for the first instant, the next
instant, the next instant, and so on, and in this way we gradually
evolve the motion. To be specific, let us suppose that at the
time t=0[image: -*-] we are given that x=1[image: -*-] and vx=0[image: -*-]. Why does the object move at
all?  Because there is a force on it when it is at any position
except x=0[image: -*-]. If x>0[image: -*-], that force is upward. Therefore the velocity
which is zero starts to change, because of the law of motion. Once it
starts to build up some velocity the object starts to move up, and so
on. Now at any time t[image: -*-], if ϵ[image: -*-] is very small, we may express
the position at time t+ϵ[image: -*-] in terms of the position at time t[image: -*-]
and the velocity at time t[image: -*-] to a very good approximation as

[image: -*-][image: -*-]
(9.13)




The smaller the ϵ[image: -*-], the more accurate this expression is, but
it is still usefully accurate even if ϵ[image: -*-] is not vanishingly
small. Now what about the velocity? In order to get the velocity
later, the velocity at the time t+ϵ[image: -*-], we need to know how the
velocity changes, the acceleration. And how are we going to
find the acceleration? That is where the law of dynamics comes in. The
law of dynamics tells us what the acceleration is. It says the
acceleration is −x[image: -*-].

[image: -*-][image: -*-]
(9.14)

(9.15)




Equation (9.14) is merely kinematics; it says that a
velocity changes because of the presence of acceleration. But
Eq. (9.15) is dynamics, because it relates the
acceleration to the force; it says that at this particular time for this
particular problem, you can replace the acceleration by −x (t)[image: -*-].
Therefore, if we know both the x[image: -*-] and v[image: -*-] at a given time, we know the
acceleration, which tells us the new velocity, and we know the new
position—this is how the machinery works. The velocity changes a
little bit because of the force, and the position changes a little bit
because of the velocity.







9–6 Numerical solution of the equations


Now let us really solve the problem. Suppose that we take
ϵ=0.100[image: -*-] sec. After we do all the work if we find that this is
not small enough we may have to go back and do it again with
ϵ=0.010[image: -*-] sec. Starting with our initial value x (0)=1.00[image: -*-],
what is x (0.1)[image: -*-]? It is the old position x (0)[image: -*-] plus the velocity
(which is zero) times 0.10[image: -*-] sec. Thus x (0.1)[image: -*-] is still 1.00[image: -*-]
because it has not yet started to move. But the new velocity at
0.10[image: -*-] sec will be the old velocity v (0)=0[image: -*-] plus ϵ[image: -*-] times the
acceleration. The acceleration is −x (0)=−1.00[image: -*-]. Thus

[image: -*-][image: -*-]


Now at 0.20[image: -*-] sec

[image: -*-][image: -*-]


and

[image: -*-][image: -*-]


And so, on and on and on, we can calculate the rest of the motion, and
that is just what we shall do. However, for practical purposes there
are some little tricks by which we can increase the accuracy. If we
continued this calculation as we have started it, we would find the
motion only rather crudely because ϵ=0.100[image: -*-] sec is rather
crude, and we would have to go to a very small interval, say
ϵ=0.01[image: -*-]. Then to go through a reasonable total time interval
would take a lot of cycles of computation. So we shall organize the
work in a way that will increase the precision of our calculations,
using the same coarse interval ϵ=0.10[image: -*-] sec. This can be done
if we make a subtle improvement in the technique of the analysis.




Notice that the new position is the old position plus the time
interval ϵ[image: -*-] times the velocity. But the velocity when?
The velocity at the beginning of the time interval is one velocity and
the velocity at the end of the time interval is another velocity. Our
improvement is to use the velocity halfway between. If we know
the speed now, but the speed is changing, then we are not going to get
the right answer by going at the same speed as now. We should use some
speed between the “now” speed and the “then” speed at the end of
the interval. The same considerations also apply to the velocity: to
compute the velocity changes, we should use the acceleration midway
between the two times at which the velocity is to be found. Thus the
equations that we shall actually use will be something like this: the
position later is equal to the position before plus ϵ[image: -*-] times
the velocity at the time in the middle of the
interval. Similarly, the velocity at this halfway point is the
velocity at a time ϵ[image: -*-] before (which is in the middle of the
previous interval) plus ϵ[image: -*-] times the acceleration at the
time t[image: -*-]. That is, we use the equations

[image: -*-][image: -*-]
(9.16)




There remains only one slight problem: what is v (ϵ/2)[image: -*-]? At the
start, we are given v (0)[image: -*-], not v (−ϵ/2)[image: -*-]. To get our
calculation started, we shall use a special equation, namely,
v (ϵ/2)=v (0)+(ϵ/2) a (0)[image: -*-].





Table 9–1. 



[image: --][image: --]


Now we are ready to carry through our calculation. For convenience, we
may arrange the work in the form of a table, with columns for the time,
the position, the velocity, and the acceleration, and the in-between
lines for the velocity, as shown in Table 9–1. Such a table
is, of course, just a convenient way of representing the numerical
values obtained from the set of equations (9.16), and in fact
the equations themselves need never be written. We just fill in the
various spaces in the table one by one. This table now gives us a very
good idea of the motion: it starts from rest, first picks up a little
upward (negative) velocity and it loses some of its distance. The
acceleration is then a little bit less but it is still gaining speed.
But as it goes on it gains speed more and more slowly, until as it
passes x=0[image: -*-] at about t=1.50[image: -*-] sec we can confidently predict that it
will keep going, but now it will be on the other side; the position x[image: -*-]
will become negative, the acceleration therefore positive. Thus the
speed decreases. It is interesting to compare these numbers with the
function x=cost[image: -*-], which is done in Fig. 9–4. The
agreement is within the three significant figure accuracy of our
calculation! We shall see later that x=cost[image: -*-] is the exact
mathematical solution of our equation of motion, but it is an impressive
illustration of the power of numerical analysis that such an easy calculation should give such precise
results.




[image: -][image: -]
Fig. 9–4. Graph of the motion of a mass on a spring.








9–7 Planetary motions


The above analysis is very nice for the motion of an oscillating
spring, but can we analyze the motion of a planet around the sun? Let
us see whether we can arrive at an approximation to an ellipse for the
orbit. We shall suppose that the sun is infinitely heavy, in the sense
that we shall not include its motion. Suppose a planet starts at a
certain place and is moving with a certain velocity; it goes around
the sun in some curve, and we shall try to analyze, by Newton’s laws of
motion and his law of gravitation, what the curve is. How? At a given
moment it is at some position in space. If the radial distance from the
sun to this position is called r[image: -*-], then we know that there is a force
directed inward which, according to the law of gravity, is equal to a
constant times the product of the sun’s mass and the planet’s mass
divided by the square of the distance. To analyze this further we must
find out what acceleration will be produced by this force. We shall need
the components of the acceleration along two directions, which we
call x[image: -*-] and y[image: -*-]. Thus if we specify the position of the planet at a
given moment by giving x[image: -*-] and y[image: -*-] (we shall suppose that z[image: -*-] is always
zero because there is no force in the z[image: -*-]-direction and, if there is no
initial velocity vz[image: -*-], there will be nothing to make z[image: -*-] other than
zero), the force is directed along the line joining the planet to the
sun, as shown in Fig. 9–5.



[image: -][image: -]
Fig. 9–5. The force of gravity on a planet.





From this figure we see that the horizontal component of the force is
related to the complete force in the same manner as the horizontal
distance x[image: -*-] is to the complete hypotenuse r[image: -*-], because the two
triangles are similar. Also, if x[image: -*-] is positive, Fx[image: -*-] is
negative. That is, Fx/│F│=−x/r[image: -*-], or
Fx=[image: -*-]−│F│ x/r=[image: -*-]−G M m x/r3[image: -*-]. Now we use the dynamical law to find that
this force component is equal to the mass of the planet times the rate
of change of its velocity in the x[image: -*-]-direction. Thus we find the
following laws:

[image: -*-][image: -*-]
(9.17)




This, then, is the set of equations we must solve. Again, in order to
simplify the numerical work, we shall suppose that the unit of time,
or the mass of the sun, has been so adjusted (or luck is with us)
that G M≡1[image: -*-]. For our specific example we shall suppose that the
initial position of the planet is at x=0.500[image: -*-] and y=0.000[image: -*-], and that
the velocity is all in the, y[image: -*-]-direction at the start, and is of
magnitude 1.630[image: -*-]. Now how do we make the calculation? We again make a
table with columns for the time, the x[image: -*-]-position, the x[image: -*-]-velocity
vx[image: -*-], and the x[image: -*-]-acceleration ax[image: -*-]; then, separated by a double
line, three columns for position, velocity, and acceleration in the
y[image: -*-]-direction. In order to get the accelerations we are going to need
Eq. (9.17); it tells us that the acceleration in the
x[image: -*-]-direction is −x/r3[image: -*-], and the acceleration in the y[image: -*-]-direction
is −y/r3[image: -*-], and that r[image: -*-] is the square root of x2+y2[image: -*-]. Thus, given
x[image: -*-] and y[image: -*-], we must do a little calculating on the side, taking the
square root of the sum of the squares to find r[image: -*-] and then, to get
ready to calculate the two accelerations, it is useful also to
evaluate 1/r3[image: -*-]. This work can be done rather easily by using a table
of squares, cubes, and reciprocals: then we need only multiply x[image: -*-]
by 1/r3[image: -*-], which we do on a slide rule.




Our calculation thus proceeds by the following steps, using time
intervals ϵ=0.100[image: -*-]: Initial values at t=0[image: -*-]:

[image: -*-][image: -*-]


From these we find:

[image: -*-][image: -*-]


Thus we may calculate the velocities vx (0.05)[image: -*-] and vy (0.05)[image: -*-]:

[image: -*-][image: -*-]


Now our main calculations begin:

[image: -*-][image: -*-]


In this way we obtain the values given in Table 9–2, and
in 20[image: -*-] steps or so we have chased the planet halfway around the sun!
In Fig. 9–6 are plotted the x[image: -*-]- and y[image: -*-]-coordinates
given in Table 9–2. The dots represent the positions at
the succession of times a tenth of a unit apart; we see that at the
start the planet moves rapidly and at the end it moves slowly, and so
the shape of the curve is determined. Thus we see that we really
do know how to calculate the motion of planets!





Table 9–2. 
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Fig. 9–6. The calculated motion of a planet around the sun.





Now let us see how we can calculate the motion of Neptune, Jupiter,
Uranus, or any other planet. If we have a great many planets, and let
the sun move too, can we do the same thing? Of course we can. We
calculate the force on a particular planet, let us say planet
number i[image: -*-], which has a position xi,yi,zi[image: -*-] (i=1[image: -*-] may represent the sun,
i=2[image: -*-] Mercury, i=3[image: -*-] Venus, and so on). We must know the positions of
all the planets. The force acting on one is due to all the other
bodies which are located, let us say, at positions
xj,yj,zj[image: -*-]. Therefore the equations are

[image: -*-][image: -*-]
(9.18)




Further, we define ri j[image: -*-] as the distance between the two planets
i[image: -*-] and j[image: -*-]; this is equal to

[image: -*-][image: -*-]
(9.19)




Also, ∑[image: -*-] means a sum over all values of j[image: -*-]—all other
bodies—except, of course, for j=i[image: -*-]. Thus all we have to do is to
make more columns, lots more columns. We need nine columns for
the motions of Jupiter, nine for the motions of Saturn, and so
on. Then when we have all initial positions and velocities we can
calculate all the accelerations from Eq. (9.18) by first
calculating all the distances, using Eq. (9.19). How long
will it take to do it?  If you do it at home, it will take a very long
time! But in modern times we have machines which do arithmetic very
rapidly; a very good computing machine may take 1 microsecond, that
is, a millionth of a second, to do an addition. To do a multiplication
takes longer, say 10[image: -*-] microseconds. It may be that in one cycle of
calculation, depending on the problem, we may have
30[image: -*-] multiplications, or something like that, so one cycle will take
300[image: -*-] microseconds. That means that we can do 3000[image: -*-] cycles of
computation per second. In order to get an accuracy, of, say, one part
in a billion, we would need 4×105[image: -*-] cycles to correspond to one
revolution of a planet around the sun. That corresponds to a computation
time of 130[image: -*-] seconds or about two minutes. Thus it takes only two
minutes to follow Jupiter around the sun, with all the perturbations of
all the planets correct to one part in a billion, by this method! (It
turns out that the error varies about as the square of the
interval ϵ[image: -*-]. If we make the interval a thousand times smaller, it is a
million times more accurate. So, let us make the interval
10,000[image: -*-] times smaller.)




So, as we said, we began this chapter not knowing how to calculate even
the motion of a mass on a spring. Now, armed with the tremendous power
of Newton’s laws, we can not only calculate such simple motions but
also, given only a machine to handle the arithmetic, even the
tremendously complex motions of the planets, to as high a degree of
precision as we wish!







  
    

10 Conservation of Momentum



10–1 Newton’s Third Law


On the basis of Newton’s second law of motion, which gives
the relation between the acceleration of any body and the force acting
on it, any problem in mechanics can be solved in principle. For example,
to determine the motion of a few particles, one can use the numerical
method developed in the preceding chapter. But there are good reasons to
make a further study of Newton’s laws. First, there are quite simple cases of motion which can be
analyzed not only by numerical methods, but also by direct mathematical
analysis. For example, although we know that the acceleration of a
falling body is 32[image: -*-] ft/sec², and from this fact could calculate the
motion by numerical methods, it is much easier and more satisfactory to
analyze the motion and find the general solution, s=s0+v0 t+16 t2[image: -*-]. In
the same way, although we can work out the positions of a harmonic
oscillator
by numerical methods, it is also possible to show analytically that the
general solution is a simple cosine function of t[image: -*-], and so it is
unnecessary to go to all that arithmetical trouble when there is a
simple and more accurate way to get the result. In the same manner,
although the motion of one body around the sun, determined by
gravitation, can be calculated point by point by the numerical methods
of Chapter 9, which show the general shape of the orbit, it
is nice also to get the exact shape, which analysis reveals as a perfect
ellipse.





Unfortunately, there are really very few problems which can be solved
exactly by analysis. In the case of the harmonic
oscillator,
for example, if the spring force is not proportional to the
displacement, but is something more complicated, one must fall back on
the numerical method. Or if there are two bodies going around the sun,
so that the total number of bodies is three, then analysis cannot
produce a simple formula for the motion, and in practice the problem
must be done numerically. That is the famous three-body
problem, which so long challenged human powers
of analysis; it is very interesting how long it took people to
appreciate the fact that perhaps the powers of mathematical analysis
were limited and it might be necessary to use the numerical methods.
Today an enormous number of problems that cannot be done analytically
are solved by numerical methods, and the old three-body problem, which
was supposed to be so difficult, is solved as a matter of routine in
exactly the same manner that was described in the preceding chapter,
namely, by doing enough arithmetic. However, there are also situations
where both methods fail: the simple problems we can do by analysis, and
the moderately difficult problems by numerical, arithmetical methods,
but the very complicated problems we cannot do by either method. A
complicated problem is, for example, the collision of two automobiles,
or even the motion of the molecules of a gas. There are countless
particles in a cubic millimeter of gas, and it would be ridiculous to
try to make calculations with so many variables (about 1017[image: -*-]—a
hundred million billion). Anything like the motion of the molecules or
atoms of a gas or a block of iron, or the motion of the stars in a
globular cluster, instead of just two or three planets going around the
sun—such problems we cannot do directly, so we have to seek other
means.




In the situations in which we cannot follow details, we need to know
some general properties, that is, general theorems or principles which
are consequences of Newton’s laws.
One of these is the principle of conservation of energy, which was
discussed in Chapter 4. Another is the principle of
conservation of momentum, the subject of this chapter. Another reason
for studying mechanics further is that there are certain patterns of
motion that are repeated in many different circumstances, so it is good
to study these patterns in one particular circumstance. For example, we
shall study collisions; different kinds of collisions have much in
common. In the flow of fluids, it does not make much difference what the
fluid is, the laws of the flow are similar. Other problems that we shall
study are vibrations and oscillations and, in particular, the peculiar
phenomena of mechanical waves—sound, vibrations of rods, and so on.




In our discussion of Newton’s laws
it was explained that these laws are a kind of program that says “Pay
attention to the forces,” and that Newton told us only two things about the nature of forces. In the
case of gravitation, he gave us the complete law of the force. In the
case of the very complicated forces between atoms, he was not aware of
the right laws for the forces; however, he discovered one rule, one
general property of forces, which is expressed in his Third Law, and
that is the total knowledge that Newton had about the nature of forces—the law of gravitation
and this principle, but no other details.





This principle is that action equals reaction.




What is meant is something of this kind: Suppose we have two small
bodies, say particles, and suppose that the first one exerts a force
on the second one, pushing it with a certain force. Then,
simultaneously, according to Newton’s Third Law, the second particle
will push on the first with an equal force, in the opposite direction;
furthermore, these forces effectively act in the same line. This is
the hypothesis, or law, that Newton
proposed, and it seems to be quite accurate, though not exact (we shall
discuss the errors later). For the moment we shall take it to be true
that action equals reaction. Of course, if there is a third particle,
not on the same line as the other two, the law does not mean that
the total force on the first one is equal to the total force on the
second, since the third particle, for instance, exerts its own push on
each of the other two. The result is that the total effect on the first
two is in some other direction, and the forces on the first two
particles are, in general, neither equal nor opposite. However, the
forces on each particle can be resolved into parts, there being one
contribution or part due to each other interacting particle. Then each
pair of particles has corresponding components of mutual
interaction that are equal in magnitude and opposite in direction.







10–2 Conservation of momentum


Now what are the interesting consequences of the above relationship?
Suppose, for simplicity, that we have just two interacting particles,
possibly of different mass, and numbered 1 and 2. The forces
between them are equal and opposite; what are the consequences?
According to Newton’s Second Law, force is the time rate of change of
the momentum, so we conclude that the rate of change of momentum p1[image: -*-]
of particle 1 is equal to minus the rate of change of momentum p2[image: -*-]
of particle 2, or

[image: -*-][image: -*-]
(10.1)




Now if the rate of change is always equal and opposite, it
follows that the total change in the momentum of particle 1
is equal and opposite to the total change in the momentum of
particle 2; this means that if we add the momentum of
particle 1 to the momentum of particle 2, the rate of change of
the sum of these, due to the mutual forces (called internal forces)
between particles, is zero; that is

[image: -*-][image: -*-]
(10.2)




There is assumed to be no other force in the problem. If the rate of
change of this sum is always zero, that is just another way of saying
that the quantity (p1+p2)[image: -*-] does not change. (This quantity is also
written m1 v1+m2 v2[image: -*-], and is called the total momentum of
the two particles.) We have now obtained the result that the total
momentum of the two particles does not change because of any mutual
interactions between them. This statement expresses the law of
conservation of momentum in that particular example. We conclude that
if there is any kind of force, no matter how complicated, between two
particles, and we measure or calculate m1 v1+m2 v2[image: -*-], that is, the
sum of the two momenta, both before and after the forces act, the
results should be equal, i.e., the total momentum is a constant.




If we extend the argument to three or more interacting particles in
more complicated circumstances, it is evident that so far as internal
forces are concerned, the total momentum of all the particles stays
constant, since an increase in momentum of one, due to another, is
exactly compensated by the decrease of the second, due to the
first. That is, all the internal forces will balance out, and
therefore cannot change the total momentum of the particles. Then if
there are no forces from the outside (external forces), there are no
forces that can change the total momentum; hence the total momentum is
a constant.




It is worth describing what happens if there are forces that do
not come from the mutual actions of the particles in question:
suppose we isolate the interacting particles. If there are only mutual
forces, then, as before, the total momentum of the particles does not
change, no matter how complicated the forces. On the other hand,
suppose there are also forces coming from the particles outside the
isolated group. Any force exerted by outside bodies on inside bodies,
we call an external force. We shall later demonstrate that the
sum of all external forces equals the rate of change of the total
momentum of all the particles inside, a very useful theorem.




The conservation of the total momentum of a number of interacting
particles can be expressed as

[image: -*-][image: -*-]
(10.3)




if there are no net external forces. Here the masses and corresponding
velocities of the particles are numbered 1, 2, 3, 4, … The general statement of Newton’s Second Law for each particle,

[image: -*-][image: -*-]
(10.4)




is true specifically for the components of force and momentum
in any given direction; thus the x[image: -*-]-component of the force on a
particle is equal to the x[image: -*-]-component of the rate of change of
momentum of that particle, or

[image: -*-][image: -*-]
(10.5)




and similarly for the y[image: -*-]- and z[image: -*-]-directions. Therefore
Eq. (10.3) is really three equations, one for each direction.




In addition to the law of conservation of momentum, there is another
interesting consequence of Newton’s Second Law, to be proved later, but
merely stated now. This principle is that the laws of physics will look
the same whether we are standing still or moving with a uniform speed in
a straight line. For example, a child bouncing a ball in an airplane
finds that the ball bounces the same as though he were bouncing it on
the ground. Even though the airplane is moving with a very high
velocity, unless it changes its velocity, the laws look the same to the
child as they do when the airplane is standing still. This is the
so-called relativity principle. As we use it here we shall call
it “Galilean relativity” to
distinguish it from the more careful analysis made by Einstein, which we
shall study later.





We have just derived the law of conservation of momentum from
Newton’s laws, and we could go on
from here to find the special laws that describe impacts and collisions.
But for the sake of variety, and also as an illustration of a kind of
reasoning that can be used in physics in other circumstances where, for
example, one might not know Newton’s laws and might take a different approach, we shall discuss the laws
of impacts and collisions from a completely different point of view. We
shall base our discussion on the principle of Galilean
relativity, stated above, and shall
end up with the law of conservation of momentum.





We shall start by assuming that nature would look the same if we run
along at a certain speed and watch it as it would if we were standing
still. Before discussing collisions in which two bodies collide and
stick together, or come together and bounce apart, we shall first
consider two bodies that are held together by a spring or something
else, and are then suddenly released and pushed by the spring or
perhaps by a little explosion. Further, we shall consider motion in
only one direction. First, let us suppose that the two objects are
exactly the same, are nice symmetrical objects, and then we have a
little explosion between them. After the explosion, one of the bodies
will be moving, let us say toward the right, with a velocity v[image: -*-]. Then
it appears reasonable that the other body is moving toward the left
with a velocity v[image: -*-], because if the objects are alike there is no
reason for right or left to be preferred and so the bodies would do
something that is symmetrical. This is an illustration of a kind of
thinking that is very useful in many problems but would not be brought
out if we just started with the formulas.




The first result from our experiment is that equal objects will have
equal speed, but now suppose that we have two objects made of
different materials, say copper and aluminum, and we make the two
masses equal. We shall now suppose that if we do the experiment
with two masses that are equal, even though the objects are not
identical, the velocities will be equal. Someone might object: “But
you know, you could do it backwards, you did not have to
suppose that. You could define equal masses to mean two
masses that acquire equal velocities in this experiment.” We follow
that suggestion and make a little explosion between the copper and a
very large piece of aluminum, so heavy that the copper flies out and
the aluminum hardly budges. That is too much aluminum, so we reduce
the amount until there is just a very tiny piece, then when we make
the explosion the aluminum goes flying away, and the copper
hardly budges. That is not enough aluminum. Evidently there is some
right amount in between; so we keep adjusting the amount until the
velocities come out equal. Very well then—let us turn it around, and
say that when the velocities are equal, the masses are equal. This
appears to be just a definition, and it seems remarkable that we can
transform physical laws into mere definitions. Nevertheless, there
are some physical laws involved, and if we accept this
definition of equal masses, we immediately find one of the laws, as
follows.




Suppose we know from the foregoing experiment that two pieces of matter,
A[image: -*-] and B[image: -*-] (of copper and aluminum), have equal masses, and we compare
a third body, say a piece of gold, with the copper in the same manner as
above, making sure that its mass is equal to the mass of the copper. If
we now make the experiment between the aluminum and the gold, there is
nothing in logic that says these masses must be equal; however,
the experiment shows that they actually are. So now, by
experiment, we have found a new law. A statement of this law might be:
If two masses are each equal to a third mass (as determined by equal
velocities in this experiment), then they are equal to each other. (This
statement does not follow at all from a similar statement used as
a postulate regarding mathematical quantities.) From this example
we can see how quickly we start to infer things if we are careless. It
is not just a definition to say the masses are equal when the
velocities are equal, because to say the masses are equal is to imply
the mathematical laws of equality, which in turn makes a prediction
about an experiment.




As a second example, suppose that A[image: -*-] and B[image: -*-] are found to be equal by
doing the experiment with one strength of explosion, which gives a
certain velocity; if we then use a stronger explosion, will it be true
or not true that the velocities now obtained are equal? Again, in
logic there is nothing that can decide this question, but experiment
shows that it is true. So, here is another law, which might be
stated: If two bodies have equal masses, as measured by equal
velocities at one velocity, they will have equal masses when measured
at another velocity. From these examples we see that what appeared to
be only a definition really involved some laws of physics.




In the development that follows we shall assume it is true that equal
masses have equal and opposite velocities when an explosion occurs
between them. We shall make another assumption in the inverse case: If
two identical objects, moving in opposite directions with equal
velocities, collide and stick together by some kind of glue, then
which way will they be moving after the collision? This is again a
symmetrical situation, with no preference between right and left, so
we assume that they stand still. We shall also suppose that any two
objects of equal mass, even if the objects are made of different
materials, which collide and stick together, when moving with the same
velocity in opposite directions will come to rest after the collision.







10–3 Momentum is conserved!

[image: -][image: -]
Fig. 10–1. End view of linear air trough.




[image: -][image: -]
Fig. 10–2. Sectional view of gliders with explosive
interaction cylinder attachment.





We can verify the above assumptions experimentally: first, that if two
stationary objects of equal mass are separated by an explosion they will move
apart with the same speed, and second, if two objects of equal mass, coming
together with the same speed, collide and stick together they will stop. This we
can do by means of a marvelous invention called an air trough,1
which gets rid of friction, the thing which continually bothered
Galileo (Fig. 10–1). He
could not do experiments by sliding things because they do not slide freely,
but, by adding a magic touch, we can today get rid of friction. Our objects will
slide without difficulty, on and on at a constant velocity, as advertised by
Galileo. This is done by supporting the
objects on air. Because air has very low friction, an object glides along with
practically constant velocity when there is no applied force. First, we use two
glide blocks which have been made carefully to have the same weight, or mass
(their weight was measured really, but we know that this weight is proportional
to the mass), and we place a small explosive cap in a closed cylinder between
the two blocks (Fig. 10–2). We shall start the blocks from rest at
the center point of the track and force them apart by exploding the cap with an
electric spark. What should happen? If the speeds are equal when they fly apart,
they should arrive at the ends of the trough at the same time. On reaching the
ends they will both bounce back with practically opposite velocity, and will
come together and stop at the center where they started. It is a good test; when
it is actually done the result is just as we have described
(Fig. 10–3).




[image: -][image: -]
Fig. 10–3. Schematic view of action-reaction experiment with equal
masses.





Now the next thing we would like to figure out is what happens in a
less simple situation. Suppose we have two equal masses, one moving
with velocity v[image: -*-] and the other standing still, and they collide and
stick; what is going to happen? There is a mass 2 m[image: -*-] altogether when
we are finished, drifting with an unknown velocity. What velocity?
That is the problem. To find the answer, we make the assumption that
if we ride along in a car, physics will look the same as if we are
standing still. We start with the knowledge that two equal masses,
moving in opposite directions with equal speeds v[image: -*-], will stop dead
when they collide. Now suppose that while this happens, we are riding
by in an automobile, at a velocity −v[image: -*-]. Then what does it look like?
Since we are riding along with one of the two masses which are coming
together, that one appears to us to have zero velocity. The other
mass, however, going the other way with velocity v[image: -*-], will appear to
be coming toward us at a velocity 2 v[image: -*-] (Fig. 10–4). Finally,
the combined masses after collision will seem to be passing by with
velocity v[image: -*-]. We therefore conclude that an object with velocity 2 v[image: -*-],
hitting an equal one at rest, will end up with velocity v[image: -*-], or what is
mathematically exactly the same, an object with velocity v[image: -*-] hitting and
sticking to one at rest will produce an object moving with
velocity v/2[image: -*-]. Note that if we multiply the mass and the velocity beforehand
and
add them together, m v+0[image: -*-], we get the same answer as when we multiply
the mass and the velocity of everything afterwards, 2 m[image: -*-] times v/2[image: -*-]. So
that tells us what happens when a mass of velocity v[image: -*-] hits one standing
still.



[image: -][image: -]
Fig. 10–4. Two views of an inelastic collision between equal masses.





In exactly the same manner we can deduce what happens when equal
objects having any two velocities hit each other.




Suppose we have two equal bodies with velocities v1[image: -*-] and v2[image: -*-],
respectively, which collide and stick together. What is their
velocity v[image: -*-] after the collision? Again we ride by in an automobile, say
at velocity v2[image: -*-], so that one body appears to be at rest. The other
then appears to have a velocity v1−v2[image: -*-], and we have the same case
that we had before. When it is all finished they will be moving
at [image: \tfrac{1}{2}(v_1-v_2)][image: \tfrac{1}{2}(v_1-v_2)] with respect to the car. What then is the
actual speed on the ground?



[image: -][image: -]
Fig. 10–5. Two views of another inelastic collision between equal
masses.





It is [image: v=\tfrac{1}{2}(v_1-v_2)+v_2][image: v=\tfrac{1}{2}(v_1-v_2)+v_2] or [image: \tfrac{1}{2}(v_1+v_2)][image: \tfrac{1}{2}(v_1+v_2)]
(Fig. 10–5). Again we note that

[image: -*-][image: -*-]
(10.6)







Thus, using this principle, we can analyze any kind of collision in
which two bodies of equal mass hit each other and stick. In fact,
although we have worked only in one dimension, we can find out a great
deal about much more complicated collisions by imagining that we are
riding by in a car in some oblique direction. The principle is the
same, but the details get somewhat complicated.




In order to test experimentally whether an object moving with
velocity v[image: -*-], colliding with an equal one at rest, forms an object moving with
velocity v/2[image: -*-], we may perform the following experiment with our
air-trough apparatus. We place in the trough three equally massive
objects, two of which are initially joined together with our explosive
cylinder device, the third being very near to but slightly separated
from these and provided with a sticky bumper so that it will stick to
another object which hits it. Now, a moment after the explosion, we
have two objects of mass m[image: -*-] moving with equal and opposite
velocities v[image: -*-]. A moment after that, one of these collides with the third object
and makes an object of mass 2 m[image: -*-] moving, so we believe, with
velocity v/2[image: -*-]. How do we test whether it is really v/2[image: -*-]? By arranging the
initial positions of the masses on the trough so that the distances to
the ends are not equal, but are in the ratio 2:1[image: -*-]. Thus our first
mass, which continues to move with velocity v[image: -*-], should cover twice as
much distance in a given time as the two which are stuck together
(allowing for the small distance travelled by the second object before
it collided with the third). The mass m[image: -*-] and the mass 2 m[image: -*-] should
reach the ends at the same time, and when we try it, we find that they
do (Fig. 10–6).



[image: -][image: -]
Fig. 10–6. An experiment to verify that a mass m[image: -*-] with velocity v[image: -*-]
striking a mass m[image: -*-] with zero velocity gives 2 m[image: -*-] with velocity v/2[image: -*-].





The next problem that we want to work out is what happens if we have two
different masses. Let us take a mass m[image: -*-] and a mass 2 m[image: -*-] and apply our
explosive interaction. What will happen then? If, as a result of the
explosion, m[image: -*-] moves with velocity v[image: -*-], with what velocity does 2 m[image: -*-]
move?  The experiment we have just done may be repeated with zero
separation between the second and third masses, and when we try it we
get the same result, namely, the reacting masses m[image: -*-] and 2 m[image: -*-] attain
velocities −v[image: -*-] and v/2[image: -*-]. Thus the direct reaction between m[image: -*-] and 2 m[image: -*-]
gives the same result as the symmetrical reaction between m[image: -*-] and m[image: -*-],
followed by a collision between m[image: -*-] and a third mass m[image: -*-] in which they
stick together. Furthermore, we find that the masses m[image: -*-] and 2 m[image: -*-]
returning from the ends of the trough, with their velocities (nearly)
exactly reversed, stop dead if they stick together.



[image: -][image: -]
Fig. 10–7. Two views of an inelastic collision between m[image: -*-] and 2 m[image: -*-].





Now the next question we may ask is this. What will happen if a
mass m[image: -*-] with velocity v[image: -*-], say, hits and sticks to another mass 2 m[image: -*-] at
rest?  This is very easy to answer using our principle of
Galilean relativity, for we
simply watch the collision which we have just described from a car
moving with velocity −v/2[image: -*-] (Fig. 10–7). From the car, the
velocities are

[image: -*-][image: -*-]


and

[image: -*-][image: -*-]


After the collision, the mass 3 m[image: -*-] appears to us to be moving with
velocity v/2[image: -*-]. Thus we have the answer, i.e., the ratio of velocities
before and after collision is 3 to 1: if an object of mass m[image: -*-]
collides with a stationary object of mass 2 m[image: -*-], then the whole thing
moves off, stuck together, with a velocity 1/3[image: -*-] as much. The general
rule again is that the sum of the products of the masses and the
velocities stays the same: m v+0[image: -*-] equals 3 m[image: -*-] times v/3[image: -*-], so we are
gradually building up the theorem of the conservation of momentum,
piece by piece.




Now we have one against two. Using the same arguments, we can predict
the result of one against three, two against three, etc. The case of two
against three, starting from rest, is shown in Fig. 10–8.



[image: -][image: -]
Fig. 10–8. Action and reaction between 2 m[image: -*-] and 3 m[image: -*-].





In every case we find that the mass of the first object times its
velocity, plus the mass of the second object times its velocity, is
equal to the total mass of the final object times its velocity. These
are all examples, then, of the conservation of momentum. Starting from
simple, symmetrical cases, we have demonstrated the law for more
complex cases. We could, in fact, do it for any rational mass ratio,
and since every ratio is exceedingly close to a rational ratio, we can
handle every ratio as precisely as we wish.







10–4 Momentum and energy


All the foregoing examples are simple cases where the bodies collide
and stick together, or were initially stuck together and later
separated by an explosion. However, there are situations in which the
bodies do not cohere, as, for example, two bodies of equal mass
which collide with equal speeds and then rebound. For a brief moment
they are in contact and both are compressed. At the instant of maximum
compression they both have zero velocity and energy is stored in the
elastic bodies, as in a compressed spring. This energy is derived from
the kinetic energy the bodies had before the collision, which becomes
zero at the instant their velocity is zero. The loss of kinetic energy
is only momentary, however. The compressed condition is analogous to
the cap that releases energy in an explosion. The bodies are
immediately decompressed in a kind of explosion, and fly apart again;
but we already know that case—the bodies fly apart with equal
speeds. However, this speed of rebound is less, in general, than the
initial speed, because not all the energy is available for the
explosion, depending on the material. If the material is putty no
kinetic energy is recovered, but if it is something more rigid, some
kinetic energy is usually regained. In the collision the rest of the
kinetic energy is transformed into heat and vibrational energy—the
bodies are hot and vibrating. The vibrational energy also is soon
transformed into heat. It is possible to make the colliding bodies
from highly elastic materials, such as steel, with carefully designed
spring bumpers, so that the collision generates very little heat and
vibration. In these circumstances the velocities of rebound are
practically equal to the initial velocities; such a collision is
called elastic.




That the speeds before and after an elastic
collision are
equal is not a matter of conservation of momentum, but a matter of
conservation of kinetic energy. That the velocities of the bodies
rebounding after a symmetrical collision are equal to and opposite
each other, however, is a matter of conservation of momentum.




We might similarly analyze collisions between bodies of different
masses, different initial velocities, and various degrees of
elasticity, and determine the final velocities and the loss of kinetic
energy, but we shall not go into the details of these processes.




Elastic collisions are especially interesting for systems that have no
internal “gears, wheels, or parts.” Then when there is a collision
there is nowhere for the energy to be impounded, because the objects
that move apart are in the same condition as when they
collided. Therefore, between very elementary objects, the collisions
are always elastic or very nearly elastic. For instance, the
collisions between atoms or molecules in a gas are said to be
perfectly elastic. Although this is an excellent approximation, even
such collisions are not perfectly elastic; otherwise one could
not understand how energy in the form of light or heat radiation could
come out of a gas. Once in a while, in a gas collision, a low-energy
infrared ray is emitted, but this occurrence is very rare and the
energy emitted is very small. So, for most purposes, collisions of
molecules in gases are considered to be perfectly elastic.




As an interesting example, let us consider an elastic collision
between two objects of equal mass. If they come together with
the same speed, they would come apart at that same speed, by
symmetry. But now look at this in another circumstance, in which one
of them is moving with velocity v[image: -*-] and the other one is at rest. What
happens? We have been through this before. We watch the symmetrical
collision from a car moving along with one of the objects, and we find
that if a stationary body is struck elastically by another body of
exactly the same mass, the moving body stops, and the one that was
standing still now moves away with the same speed that the other one
had; the bodies simply exchange velocities.  This behavior can easily
be demonstrated with a suitable impact apparatus. More generally, if
both bodies are moving, with different velocities, they simply
exchange velocity at impact.




Another example of an almost elastic interaction is magnetism. If we
arrange a pair of U-shaped magnets in our glide blocks, so that they
repel each other, when one drifts quietly up to the other, it pushes
it away and stands perfectly still, and now the other goes along,
frictionlessly.




The principle of conservation of momentum is very useful, because it
enables us to solve many problems without knowing the details. We did
not know the details of the gas motions in the cap explosion, yet we
could predict the velocities with which the bodies came apart, for
example. Another interesting example is rocket propulsion. A rocket of
large mass, M[image: -*-], ejects a small piece, of mass m[image: -*-], with a terrific
velocity V[image: -*-] relative to the rocket. After this the rocket, if it were
originally standing still, will be moving with a small velocity,
v[image: -*-]. Using the principle of conservation of momentum, we can calculate
this velocity to be

[image: -*-][image: -*-]


So long as material is being ejected, the rocket continues to pick up
speed. Rocket propulsion is essentially the same as the recoil of a
gun: there is no need for any air to push against.







10–5 Relativistic momentum


In modern times the law of conservation of momentum has undergone
certain modifications. However, the law is still true today, the
modifications being mainly in the definitions of things. In the theory
of relativity it turns out that we do have conservation of momentum;
the particles have mass and the momentum is still given by m v[image: -*-], the
mass times the velocity, but the mass changes with the
velocity, hence the momentum also changes. The mass varies with
velocity according to the law

[image: -*-][image: -*-]
(10.7)




where m0[image: -*-] is the mass of the body at rest and c[image: -*-] is the speed of
light. It is easy to see from the formula that there is negligible
difference between m[image: -*-] and m0[image: -*-] unless v[image: -*-] is very large, and that
for ordinary velocities the expression for momentum reduces to the old
formula.




The components of momentum for a single particle are written as



[image: -*-][image: -*-]
(10.8)





where [image: v^2=v_x^2+v_y^2+v_z^2][image: v^2=v_x^2+v_y^2+v_z^2]. If the x[image: -*-]-components are summed over
all the interacting particles, both before and after a collision, the
sums are equal; that is, momentum is conserved in the
x[image: -*-]-direction. The same holds true in any direction.




In Chapter 4 we saw that the law of conservation of energy
is not valid unless we recognize that energy appears in different forms,
electrical energy, mechanical energy, radiant energy, heat energy, and so on. In some of these cases,
heat energy for example, the energy might be said to be “hidden.” This
example might suggest the question, “Are there also hidden forms of
momentum—perhaps heat momentum?” The answer is that it is very hard
to hide momentum for the following reasons.





The random motions of the atoms of a body furnish a measure of heat
energy, if the
squares of the velocities are summed. This sum will be a positive
result, having no directional character. The heat is there, whether or
not the body moves as a whole, and conservation of energy in the form of
heat is not very obvious. On the other hand, if one sums the
velocities, which have direction, and finds a result that is not
zero, that means that there is a drift of the entire body in some
particular direction, and such a gross momentum is readily observed.
Thus there is no random internal lost momentum, because the body has net
momentum only when it moves as a whole. Therefore momentum, as a
mechanical quantity, is difficult to hide. Nevertheless, momentum
can be hidden—in the electromagnetic
field,
for example. This case is another effect of relativity.





One of the propositions of Newton
was that interactions at a distance are instantaneous. It turns out that
such is not the case; in situations involving electrical forces, for
instance, if an electrical charge at one location is suddenly moved, the
effects on another charge, at another place, do not appear
instantaneously—there is a little delay. In those circumstances, even
if the forces are equal the momentum will not check out; there will be a
short time during which there will be trouble, because for a while the
first charge will feel a certain reaction force, say, and will pick up
some momentum, but the second charge has felt nothing and has not yet
changed its momentum. It takes time for the influence to cross the
intervening distance, which it does at 186,000[image: -*-] miles a second. In
that tiny time the momentum of the particles is not conserved. Of course
after the second charge has felt the effect of the first one and all is
quieted down, the momentum equation will check out all right, but during
that small interval momentum is not conserved. We represent this by
saying that during this interval there is another kind of momentum
besides that of the particle, m v[image: -*-], and that is momentum in the
electromagnetic field. If we add the field momentum
to the momentum of the particles, then momentum is conserved at any
moment all the time. The fact that the electromagnetic
field
can possess momentum and energy makes that field very real, and so, for
better understanding, the original idea that there are just the forces
between particles has to be modified to the idea that a particle makes a
field, and a field acts on another particle, and the field itself has
such familiar properties as energy content and momentum, just as
particles can have. To take another example: an electromagnetic
field
has waves, which we call light; it turns out that light also carries
momentum with it, so when light impinges on an object it carries in a
certain amount of momentum per second; this is equivalent to a force,
because if the illuminated object is picking up a certain amount of
momentum per second, its momentum is changing and the situation is
exactly the same as if there were a force on it. Light can exert
pressure by bombarding an object; this pressure is very small, but with
sufficiently delicate apparatus it is measurable.





Now in quantum mechanics it turns out that momentum is a different
thing—it is no longer m v[image: -*-]. It is hard to define exactly what is
meant by the velocity of a particle, but momentum still exists. In
quantum mechanics the difference is that when the particles are
represented as particles, the momentum is still m v[image: -*-], but when the
particles are represented as waves, the momentum is measured by the
number of waves per centimeter: the greater this number of waves, the
greater the momentum. In spite of the differences, the law of
conservation of momentum holds also in quantum mechanics. Even though
the law F=m a[image: -*-] is false, and all the derivations of
Newton were wrong for the
conservation of momentum, in quantum mechanics, nevertheless, in the
end, that particular law maintains itself!





	
  
  H. V. Neher and R. B. Leighton,
Amer. Jour. of Phys. 31, 255 (1963).
  ↩





  
    

11 Vectors



11–1 Symmetry in physics


In this chapter we introduce a subject that is technically
known in physics as symmetry in physical law. The word
“symmetry” is used here with a special meaning, and therefore needs to
be defined. When is a thing symmetrical—how can we define it? When we
have a picture that is symmetrical, one side is somehow the same as the
other side. Professor Hermann Weyl
has given this definition of symmetry: a thing is symmetrical if one can
subject it to a certain operation and it appears exactly the same after
the operation. For instance, if we look at a silhouette of a vase that
is left-and-right symmetrical, then turn it 180°[image: -*-] around the
vertical axis, it looks the same. We shall adopt the definition of
symmetry in Weyl’s more general
form, and in that form we shall discuss symmetry of physical laws.




Suppose we build a complex machine in a certain place, with a lot of
complicated interactions, and balls bouncing around with forces between
them, and so on. Now suppose we build exactly the same kind of equipment
at some other place, matching part by part, with the same dimensions and
the same orientation, everything the same only displaced laterally by
some distance. Then, if we start the two machines in the same initial
circumstances, in exact correspondence, we ask: will one machine behave
exactly the same as the other? Will it follow all the motions in exact
parallelism? Of course the answer may well be no, because if we
choose the wrong place for our machine it might be inside a wall and
interferences from the wall would make the machine not work.




All of our ideas in physics require a certain amount of common sense in
their application; they are not purely mathematical or abstract ideas.
We have to understand what we mean when we say that the phenomena are
the same when we move the apparatus to a new position. We mean that we
move everything that we believe is relevant; if the phenomenon is not
the same, we suggest that something relevant has not been moved, and we
proceed to look for it. If we never find it, then we claim that the laws
of physics do not have this symmetry. On the other hand, we may find
it—we expect to find it—if the laws of physics do have this
symmetry; looking around, we may discover, for instance, that the wall
is pushing on the apparatus. The basic question is, if we define things
well enough, if all the essential forces are included inside the
apparatus, if all the relevant parts are moved from one place to
another, will the laws be the same? Will the machinery work the same
way?




It is clear that what we want to do is to move all the equipment and
essential influences, but not everything in the
world—planets, stars, and all—for if we do that, we have the same
phenomenon again for the trivial reason that we are right back where we
started. No, we cannot move everything. But it turns out in
practice that with a certain amount of intelligence about what to move,
the machinery will work. In other words, if we do not go inside a wall,
if we know the origin of the outside forces, and arrange that those are
moved too, then the machinery will work the same in one location
as in another.







11–2 Translations


We shall limit our analysis to just mechanics, for which we now have
sufficient knowledge. In previous chapters we have seen that the laws of
mechanics can be summarized by a set of three equations for each
particle:



[image: -*-][image: -*-]
(11.1)





Now this means that there exists a way to measure x[image: -*-], y[image: -*-],
and z[image: -*-] on three perpendicular axes, and the forces along those
directions, such that these laws are true. These must be measured from
some origin, but where do we put the origin? All that
Newton would tell us at first is
that there is some place that we can measure from, perhaps the
center of the universe, such that these laws are correct. But we can
show immediately that we can never find the center, because if we use
some other origin it would make no difference. In other words, suppose
that there are two people—Joe, who has an origin in one place, and
Moe, who has a parallel system whose origin is somewhere else
(Fig. 11–1). Now when Joe measures the location of the point
in space, he finds it at x[image: -*-], y[image: -*-], and z[image: -*-] (we shall usually leave z[image: -*-]
out because it is too confusing to draw in a picture). Moe, on the other
hand, when measuring the same point, will obtain a different x[image: -*-] (in
order to distinguish it, we will call it x′[image: -*-]), and in principle a
different y[image: -*-], although in our example they are numerically equal. So we
have



[image: -*-][image: -*-]
(11.2)





Now in order to complete our analysis we must know what Moe would obtain
for the forces. The force is supposed to act along some line, and by the
force in the x[image: -*-]-direction we mean the part of the total which is in the
x[image: -*-]-direction, which is the magnitude of the force times this cosine of
its angle with the x[image: -*-]-axis. Now we see that Moe would use exactly the
same projection as Joe would use, so we have a set of equations



[image: -*-][image: -*-]
(11.3)





These would be the relationships between quantities as seen by Joe and
Moe.



[image: -][image: -]
Fig. 11–1. Two parallel coordinate systems.





The question is, if Joe knows Newton’s laws, and if Moe tries to write down Newton’s
laws, will they also be correct for him?
Does it make any difference from which origin we measure the points? In
other words, assuming that equations (11.1) are true, and the
Eqs. (11.2) and (11.3) give the
relationship of the measurements, is it or is it not true that

[image: -*-][image: -*-]
(11.4)







In order to test these equations we shall differentiate the formula
for x′[image: -*-] twice. First of all

[image: -*-][image: -*-]


Now we shall assume that Moe’s origin is fixed (not moving) relative to
Joe’s; therefore a[image: -*-] is a constant and d a/d t=0[image: -*-], so we find that

[image: -*-][image: -*-]


and therefore

[image: -*-][image: -*-]


therefore we know that Eq. (11.4a) becomes

[image: -*-][image: -*-]


(We also suppose that the masses measured by Joe and Moe are equal.)
Thus the acceleration times the mass is the same as the other fellow’s.
We have also found the formula for Fx′[image: -*-], for, substituting from
Eq. (11.1), we find that

[image: -*-][image: -*-]





Therefore the laws as seen by Moe appear the same; he can write
Newton’s laws too, with different
coordinates, and they will still be right. That means that there is no
unique way to define the origin of the world, because the laws will
appear the same, from whatever position they are observed.




This is also true: if there is a piece of equipment in one place with a
certain kind of machinery in it, the same equipment in another place
will behave in the same way. Why? Because one machine, when analyzed by
Moe, has exactly the same equations as the other one, analyzed by Joe.
Since the equations are the same, the phenomena appear the
same. So the proof that an apparatus in a new position behaves the same
as it did in the old position is the same as the proof that the
equations when displaced in space reproduce themselves. Therefore we say
that the laws of physics are symmetrical for translational
displacements, symmetrical in the sense that the laws do not change
when we make a translation of our coordinates. Of course it is quite
obvious intuitively that this is true, but it is interesting and
entertaining to discuss the mathematics of it.







11–3 Rotations


The above is the first of a series of ever more complicated propositions
concerning the symmetry of a physical law. The next proposition is that
it should make no difference in which direction we choose the
axes. In other words, if we build a piece of equipment in some place and
watch it operate, and nearby we build the same kind of apparatus but put
it up on an angle, will it operate in the same way?  Obviously it will
not if it is a Grandfather clock, for example! If a pendulum clock
stands upright, it works fine, but if it is tilted the pendulum falls
against the side of the case and nothing happens. The theorem is then
false in the case of the pendulum clock, unless we include the earth,
which is pulling on the pendulum. Therefore we can make a prediction
about pendulum clocks if we believe in the symmetry of physical law for
rotation: something else is involved in the operation of a pendulum
clock besides the machinery of the clock, something outside it that we
should look for. We may also predict that pendulum clocks will not work
the same way when located in different places relative to this
mysterious source of asymmetry, perhaps the earth. Indeed, we know that
a pendulum clock up in an artificial satellite, for example, would not
tick either, because there is no effective force, and on Mars it would
go at a different rate. Pendulum clocks do involve something more
than just the machinery inside, they involve something on the outside.
Once we recognize this factor, we see that we must turn the earth along
with the apparatus. Of course we do not have to worry about that, it is
easy to do; one simply waits a moment or two and the earth turns; then
the pendulum clock ticks again in the new position the same as it did
before. While we are rotating in space our angles are always changing,
absolutely; this change does not seem to bother us very much, for in the
new position we seem to be in the same condition as in the old. This has
a certain tendency to confuse one, because it is true that in the new
turned position the laws are the same as in the unturned position, but
it is not true that as we turn a thing it follows the same
laws as it does when we are not turning it. If we perform sufficiently
delicate experiments, we can tell that the earth is rotating, but
not that it had rotated. In other words, we cannot locate its
angular position, but we can tell that it is changing.



[image: -][image: -]
Fig. 11–2. Two coordinate systems having different angular
orientations.





Now we may discuss the effects of angular orientation upon physical
laws. Let us find out whether the same game with Joe and Moe works
again. This time, to avoid needless complication, we shall suppose that
Joe and Moe use the same origin (we have already shown that the axes can
be moved by translation to another place). Assume that Moe’s axes have
rotated relative to Joe’s by an angle θ[image: -*-]. The two coordinate
systems are shown in Fig. 11–2, which is restricted to two
dimensions. Consider any point P[image: -*-] having coordinates (x,y)[image: -*-] in Joe’s
system and (x′,y′)[image: -*-] in Moe’s system. We shall begin, as in the previous
case, by expressing the coordinates x′[image: -*-] and y′[image: -*-] in terms of x[image: -*-], y[image: -*-],
and θ[image: -*-]. To do so, we first drop perpendiculars from P[image: -*-] to all
four axes and draw A B[image: -*-] perpendicular to P Q[image: -*-]. Inspection of the figure
shows that x′[image: -*-] can be written as the sum of two lengths along the
x′[image: -*-]-axis, and y′[image: -*-] as the difference of two lengths along A B[image: -*-]. All
these lengths are expressed in terms of x[image: -*-], y[image: -*-], and θ[image: -*-] in
equations (11.5), to which we have added an equation for the
third dimension.

[image: -*-][image: -*-]
(11.5)




The next step is to analyze the relationship of forces as seen by the
two observers, following the same general method as before. Let us
assume that a force F[image: -*-], which has already been analyzed as having
components Fx[image: -*-] and Fy[image: -*-] (as seen by Joe), is acting on a particle of
mass m[image: -*-], located at point P[image: -*-] in Fig. 11–2. For simplicity,
let us move both sets of axes so that the origin is at P[image: -*-], as shown in
Fig. 11–3. Moe sees the components of F[image: -*-] along his axes
as Fx′[image: -*-] and Fy′[image: -*-]. Fx[image: -*-] has components along both the x′[image: -*-]- and
y′[image: -*-]-axes, and Fy[image: -*-] likewise has components along both these axes. To
express Fx′[image: -*-] in terms of Fx[image: -*-] and Fy[image: -*-], we sum these components
along the x′[image: -*-]-axis, and in a like manner we can express Fy′[image: -*-] in
terms of Fx[image: -*-] and Fy[image: -*-]. The results are

[image: -*-][image: -*-]
(11.6)




It is interesting to note an accident of sorts, which is of extreme
importance: the formulas (11.5) and (11.6), for
coordinates of P[image: -*-] and components of F[image: -*-], respectively, are of
identical form.



[image: -][image: -]
Fig. 11–3. Components of a force in the two systems.





As before, Newton’s laws are assumed
to be true in Joe’s system, and are expressed by
equations (11.1). The question, again, is whether Moe can
apply Newton’s laws—will the
results be correct for his system of rotated axes? In other words, if we
assume that Eqs. (11.5) and (11.6) give the
relationship of the measurements, is it true or not true that

[image: -*-][image: -*-]
(11.7)




To test these equations, we calculate the left and right sides
independently, and compare the results. To calculate the left sides, we
multiply equations (11.5) by m[image: -*-], and differentiate twice
with respect to time, assuming the angle θ[image: -*-] to be constant. This
gives



[image: -*-][image: -*-]
(11.8)





We calculate the right sides of equations (11.7) by
substituting equations (11.1) into
equations (11.6). This gives

[image: -*-][image: -*-]
(11.9)









Behold! The right sides of Eqs. (11.8)
and (11.9) are identical, so we conclude that if
Newton’s laws are correct on one set
of axes, they are also valid on any other set of axes. This result,
which has now been established for both translation and rotation of
axes, has certain consequences: first, no one can claim his particular
axes are unique, but of course they can be more convenient for
certain particular problems. For example, it is handy to have gravity
along one axis, but this is not physically necessary. Second, it means
that any piece of equipment which is completely self-contained, with all
the force-generating equipment completely inside the apparatus, would
work the same when turned at an angle.







11–4 Vectors


Not only Newton’s laws, but also the
other laws of physics, so far as we know today, have the two properties
which we call invariance (or symmetry) under translation of axes and
rotation of axes. These properties are so important that a mathematical
technique has been developed to take advantage of them in writing and
using physical laws.





The foregoing analysis involved considerable tedious mathematical work.
To reduce the details to a minimum in the analysis of such questions, a
very powerful mathematical machinery has been devised. This system,
called vector analysis, supplies the title
of this chapter; strictly speaking, however, this is a chapter on the
symmetry of physical laws. By the methods of the preceding analysis we
were able to do everything required for obtaining the results that we
sought, but in practice we should like to do things more easily and
rapidly, so we employ the vector technique.




We began by noting some characteristics of two kinds of quantities that
are important in physics. (Actually there are more than two, but let us
start out with two.) One of them, like the number of potatoes in a sack,
we call an ordinary quantity, or an undirected quantity, or a
scalar. Temperature is an example of such a
quantity. Other quantities that are important in physics do have
direction, for instance velocity: we have to keep track of which way a
body is going, not just its speed. Momentum and force also have
direction, as does displacement: when someone steps from one place to
another in space, we can keep track of how far he went, but if we wish
also to know where he went, we have to specify a direction.




All quantities that have a direction, like a step in space, are called
vectors.




A vector is three numbers. In order to represent a step in space, say
from the origin to some particular point P[image: -*-] whose location
is (x,y,z)[image: -*-], we really need three numbers, but we are going to invent a
single mathematical symbol, r[image: -*-], which is unlike any other
mathematical symbols we have so far used.1  It is not a single number, it represents
three numbers: x[image: -*-], y[image: -*-], and z[image: -*-]. It means three numbers, but not
really only those three numbers, because if we were to use a
different coordinate system, the three numbers would be changed to
x′[image: -*-], y′[image: -*-], and z′[image: -*-]. However, we want to keep our mathematics simple
and so we are going to use the same mark to represent the three
numbers (x,y,z)[image: -*-] and the three numbers (x′,y′,z′)[image: -*-]. That is, we use
the same mark to represent the first set of three numbers for one
coordinate system, but the second set of three numbers if we are using
the other coordinate system. This has the advantage that when we change
the coordinate system, we do not have to change the letters of our
equations. If we write an equation in terms of x,y,z[image: -*-], and then use
another system, we have to change to x′,y′,z′[image: -*-], but we shall just
write r[image: -*-], with the convention that it represents (x,y,z)[image: -*-] if we
use one set of axes, or (x′,y′,z′)[image: -*-] if we use another set of axes, and
so on. The three numbers which describe the quantity in a given
coordinate system are called the
components of the vector in
the direction of the coordinate axes of that system. That is, we use the
same symbol for the three letters that correspond to the same
object, as seen from different axes. The very fact that we can say
“the same object” implies a physical intuition about the reality of a
step in space, that is independent of the components in terms of which
we measure it. So the symbol r[image: -*-] will represent the same thing no
matter how we turn the axes.




Now suppose there is another directed physical quantity, any other
quantity, which also has three numbers associated with it, like force,
and these three numbers change to three other numbers by a certain
mathematical rule, if we change the axes. It must be the same rule that
changes (x,y,z)[image: -*-] into (x′,y′,z′)[image: -*-]. In other words, any physical
quantity associated with three numbers which transform as do the
components of a step in space is a vector. An equation like

[image: -*-][image: -*-]


would thus be true in any coordinate system if it were true in
one. This equation, of course, stands for the three equations

[image: -*-][image: -*-]


or, alternatively, for

[image: -*-][image: -*-]


The fact that a physical relationship can be expressed as a vector
equation assures us the relationship is unchanged by a mere rotation of
the coordinate system. That is the reason why vectors are so useful in
physics.




Now let us examine some of the properties of vectors. As examples of
vectors we may mention velocity, momentum, force, and acceleration. For
many purposes it is convenient to represent a vector quantity by an
arrow that indicates the direction in which it is acting. Why can we
represent force, say, by an arrow? Because it has the same mathematical
transformation properties as a “step in space.”  We thus represent it
in a diagram as if it were a step, using a scale such that one unit of
force, or one newton, corresponds to a certain
convenient length. Once we have done this, all forces can be represented
as lengths, because an equation like

[image: -*-][image: -*-]


where k[image: -*-] is some constant, is a perfectly legitimate equation. Thus we
can always represent forces by lines, which is very convenient, because
once we have drawn the line we no longer need the axes. Of course, we
can quickly calculate the three components as they change upon turning
the axes, because that is just a geometric problem.







11–5 Vector algebra


Now we must describe the laws, or rules, for combining vectors in
various ways. The first such combination is the addition of two
vectors: suppose that a[image: -*-] is a vector which in some particular
coordinate system has the three components (ax,ay,az)[image: -*-], and
that b[image: -*-] is another vector which has the three
components (bx,by,bz)[image: -*-]. Now let us invent three new
numbers (ax+bx,ay+by,az+bz)[image: -*-]. Do these form a vector? “Well,”
we might say, “they are three numbers, and every three numbers form a
vector.”  No, not every three numbers form a vector! In order
for it to be a vector, not only must there be three numbers, but these
must be associated with a coordinate system in such a way that if we
turn the coordinate system, the three numbers “revolve” on each other,
get “mixed up” in each other, by the precise laws we have already
described. So the question is, if we now rotate the coordinate system so
that (ax,ay,az)[image: -*-] become (ax′,ay′,az′)[image: -*-] and (bx,by,bz)[image: -*-]
become (bx′,by′,bz′)[image: -*-], what do (ax+bx,ay+by,az+bz)[image: -*-]
become?  Do they become (ax′+bx′,ay′+by′,az′+bz′)[image: -*-]
or not? The answer is, of course, yes, because the prototype
transformations of Eq. (11.5) constitute what we call a
linear transformation. If we apply those
transformations to ax[image: -*-] and bx[image: -*-] to get ax′+bx′[image: -*-], we find
that the transformed ax+bx[image: -*-] is indeed the same as ax′+bx′[image: -*-]. When a[image: -*-] and b[image: -*-] are “added together” in this sense,
they will form a vector which we may call c[image: -*-]. We would write this
as

[image: -*-][image: -*-]







Now c[image: -*-] has the interesting property

[image: -*-][image: -*-]


as we can immediately see from its components. Thus also,

[image: -*-][image: -*-]


We can add vectors in any order.



[image: -][image: -]
Fig. 11–4. The addition of vectors.





What is the geometric significance of a+b[image: -*-]? Suppose that
a[image: -*-] and b[image: -*-] were represented by lines on a piece of paper, what
would c[image: -*-] look like?  This is shown in Fig. 11–4. We see
that we can add the components of b[image: -*-] to those of a[image: -*-] most
conveniently if we place the rectangle representing the components
of b[image: -*-] next to that representing the components of a[image: -*-] in the
manner indicated. Since b[image: -*-] just “fits” into its rectangle, as
does a[image: -*-] into its rectangle, this is the same as putting the
“tail” of b[image: -*-] on the “head” of a[image: -*-], the arrow from the
“tail” of a[image: -*-] to the “head” of b[image: -*-] being the vector c[image: -*-].
Of course, if we added a[image: -*-] to b[image: -*-] the other way around, we would
put the “tail” of a[image: -*-] on the “head” of b[image: -*-], and by the
geometrical properties of parallelograms we would get the same result
for c[image: -*-]. Note that vectors can be added in this way without
reference to any coordinate axes.




Suppose we multiply a vector by a number α[image: -*-], what does this mean?
We define it to mean a new vector whose components are α ax[image: -*-], α ay[image: -*-], and α az[image: -*-]. We leave it as a problem for the
student to prove that it is a vector.




Now let us consider vector subtraction. We may define subtraction in the
same way as addition, but instead of adding, we subtract the components.
Or we might define subtraction by defining a negative vector, −b=−1 b[image: -*-], and then we would add the components. It comes to the same
thing. The result is shown in Fig. 11–5. This figure shows
d=[image: -*-]a−b=[image: -*-]a+(−b)[image: -*-]; we also note that the
difference a−b[image: -*-] can be found very easily from a[image: -*-]
and b[image: -*-] by using the equivalent relation a=b+d[image: -*-].
Thus the difference is even easier to find than the sum: we just draw
the vector from b[image: -*-] to a[image: -*-], to get a−b[image: -*-]!



[image: -][image: -]
Fig. 11–5. The subtraction of vectors.





Next we discuss velocity. Why is velocity a vector? If position is given
by the three coordinates (x,y,z)[image: -*-], what is the velocity? The velocity
is given by d x/d t[image: -*-], d y/d t[image: -*-], and d z/d t[image: -*-]. Is that a vector, or not? We
can find out by differentiating the expressions in Eq. (11.5)
to find out whether d x′/d t[image: -*-] transforms in the right way. We see
that the components d x/d t[image: -*-] and d y/d t[image: -*-] do transform according to
the same law as x[image: -*-] and y[image: -*-], and therefore the time derivative is
a vector. So the velocity is a vector. We can write the velocity in an
interesting way as

[image: -*-][image: -*-]


What the velocity is, and why it is a vector, can also be understood
more pictorially: How far does a particle move in a short time Δ t[image: -*-]?  Answer: Δ r[image: -*-], so if a particle is “here” at one instant
and “there” at another instant, then the vector difference of the
positions Δ r=r2−r1[image: -*-], which is in the direction
of motion shown in Fig. 11–6, divided by the time
interval Δ t=t2−t1[image: -*-], is the “average velocity” vector.



[image: -][image: -]
Fig. 11–6. The displacement of a particle in a short time interval Δ t=t2−t1[image: -*-].





In other words, by vector velocity we mean the limit, as Δ t[image: -*-] goes
to 0, of the difference between the radius vectors at the time t+Δ t[image: -*-] and the time t[image: -*-], divided by Δ t[image: -*-]:

[image: -*-][image: -*-]
(11.10)




Thus velocity is a vector because it is the difference of two vectors.
It is also the right definition of velocity because its components are
d x/d t[image: -*-], d y/d t[image: -*-], and d z/d t[image: -*-]. In fact, we see from this argument that
if we differentiate any vector with respect to time we produce a
new vector. So we have several ways of producing new vectors:
(1) multiply by a constant, (2) differentiate with respect to time,
(3) add or subtract two vectors.







11–6 Newton’s laws in vector notation


In order to write Newton’s laws in vector form, we have to go just one
step further, and define the acceleration vector. This is the time
derivative of the velocity vector, and it is easy to demonstrate that
its components are the second derivatives of x[image: -*-], y[image: -*-], and z[image: -*-] with
respect to t[image: -*-]:

[image: -*-][image: -*-]
(11.11)







[image: -*-][image: -*-]
(11.12)





With this definition, then, Newton’s laws can be written in this way:

[image: -*-][image: -*-]
(11.13)




or

[image: -*-][image: -*-]
(11.14)







Now the problem of proving the invariance of Newton’s laws under
rotation of coordinates is this: prove that a[image: -*-] is a vector; this we
have just done. Prove that F[image: -*-] is a vector; we suppose it is.
So if force is a vector, then, since we know acceleration is a vector,
Eq. (11.13) will look the same in any coordinate system.
Writing it in a form which does not explicitly contain x[image: -*-]’s, y[image: -*-]’s,
and z[image: -*-]’s has the advantage that from now on we need not write
three laws every time we write Newton’s equations or other laws
of physics. We write what looks like one law, but really, of
course, it is the three laws for any particular set of axes, because any
vector equation involves the statement that each of the components
is equal.



[image: -][image: -]
Fig. 11–7. A curved trajectory.




[image: -][image: -]
Fig. 11–8. Diagram for calculating the acceleration.







The fact that the acceleration is the rate of change of the vector
velocity helps us to calculate the acceleration in some rather
complicated circumstances. Suppose, for instance, that a particle is
moving on some complicated curve (Fig. 11–7) and that, at a
given instant t[image: -*-], it had a certain velocity v1[image: -*-], but that when we
go to another instant t2[image: -*-] a little later, it has a different
velocity v2[image: -*-]. What is the acceleration? Answer: Acceleration is
the difference in the velocity divided by the small time interval, so we
need the difference of the two velocities. How do we get the difference
of the velocities? To subtract two vectors, we put the vector across the
ends of v2[image: -*-] and v1[image: -*-]; that is, we draw Δ v[image: -*-] as the
difference of the two vectors, right? No! That only works when
the tails of the vectors are in the same place!  It has no
meaning if we move the vector somewhere else and then draw a line
across, so watch out! We have to draw a new diagram to subtract the
vectors. In Fig. 11–8, v1[image: -*-] and v2[image: -*-] are both
drawn parallel and equal to their counterparts in Fig. 11–7,
and now we can discuss the acceleration. Of course the acceleration is
simply Δ v/Δ t[image: -*-]. It is interesting to note that we can
compose the velocity difference out of two parts; we can think of
acceleration as having two components, Δ v∥[image: -*-],
in the direction tangent to the path and Δ v⟂[image: -*-] at right
angles to the path, as indicated in Fig. 11–8. The
acceleration tangent to the path is, of course, just the change in the
length of the vector, i.e., the change in the speed v[image: -*-]:

[image: -*-][image: -*-]
(11.15)




The other component of acceleration, at right angles to the curve, is
easy to calculate, using Figs. 11–7
and 11–8. In the short time Δ t[image: -*-] let the change in
angle between v1[image: -*-] and v2[image: -*-] be the small angle Δ θ[image: -*-].
If the magnitude of the velocity is called v[image: -*-], then of course

[image: -*-][image: -*-]


and the acceleration a[image: -*-] will be

[image: -*-][image: -*-]


Now we need to know Δ θ/Δ t[image: -*-], which can be found this
way: If, at the given moment, the curve is approximated as a circle of a
certain radius R[image: -*-], then in a time Δ t[image: -*-] the distance s[image: -*-] is, of
course, v Δ t[image: -*-], where v[image: -*-] is the speed.

[image: -*-][image: -*-]


Therefore, we find

[image: -*-][image: -*-]
(11.16)




as we have seen before.





11–7 Scalar product of vectors


Now let us examine a little further the properties of vectors. It is
easy to see that the length of a step in space would be the same
in any coordinate system. That is, if a particular step r[image: -*-] is
represented by x,y,z[image: -*-], in one coordinate system, and by x′,y′,z′[image: -*-] in
another coordinate system, surely the distance r=│r│[image: -*-] would be
the same in both. Now

[image: -*-][image: -*-]


and also

[image: -*-][image: -*-]


So what we wish to verify is that these two quantities are equal. It is
much more convenient not to bother to take the square root, so let us
talk about the square of the distance; that is, let us find out whether

[image: -*-][image: -*-]
(11.17)




It had better be—and if we substitute Eq. (11.5) we do
indeed find that it is. So we see that there are other kinds of
equations which are true for any two coordinate systems.




Something new is involved. We can produce a new quantity, a function of
x[image: -*-], y[image: -*-], and z[image: -*-], called a scalar function, a quantity which has
no direction but which is the same in both systems. Out of a vector we
can make a scalar. We have to find a general rule for that. It is clear
what the rule is for the case just considered: add the squares of the
components. Let us now define a new thing, which we
call a⋅a[image: -*-]. This is not a vector, but a scalar; it is a
number that is the same in all coordinate systems, and it is defined to
be the sum of the squares of the three components of the vector:

[image: -*-][image: -*-]
(11.18)




Now you say, “But with what axes?” It does not depend on the axes, the
answer is the same in every set of axes. So we have a new
kind of quantity, a new invariant or scalar
produced by one vector “squared.”  If we now define the following
quantity for any two vectors a[image: -*-] and b[image: -*-]:

[image: -*-][image: -*-]
(11.19)




we find that this quantity, calculated in the primed and unprimed
systems, also stays the same. To prove it we note that it is true of
a⋅a[image: -*-], b⋅b[image: -*-], and c⋅c[image: -*-], where
c=a+b[image: -*-]. Therefore the sum of the squares (ax+bx)2+(ay+by)2+(az+bz)2[image: -*-] will be invariant:

[image: -*-][image: -*-]
(11.20)




If both sides of this equation are expanded, there will be cross
products of just the type appearing in Eq. (11.19), as well
as the sums of squares of the components of a[image: -*-] and b[image: -*-]. The
invariance of terms of the form of Eq. (11.18) then leaves
the cross product terms (11.19) invariant also.




The quantity a⋅b[image: -*-] is called the scalar product of
two vectors, a[image: -*-] and b[image: -*-], and it has many interesting and useful
properties. For instance, it is easily proved that

[image: -*-][image: -*-]
(11.21)




Also, there is a simple geometrical way to calculate a⋅b[image: -*-],
without having to calculate the components of a[image: -*-] and b[image: -*-]:
a⋅b[image: -*-] is the product of the length of a[image: -*-] and the length
of b[image: -*-] times the cosine of the angle between them. Why?  Suppose
that we choose a special coordinate system in which the x[image: -*-]-axis lies
along a[image: -*-]; in those circumstances, the only component of a[image: -*-]
that will be there is ax[image: -*-], which is of course the whole length
of a[image: -*-]. Thus Eq. (11.19) reduces to a⋅b=ax bx[image: -*-] for this case, and this is the length of a[image: -*-] times the
component of b[image: -*-] in the direction of a[image: -*-], that is,
b cosθ[image: -*-]:

[image: -*-][image: -*-]


Therefore, in that special coordinate system, we have proved that
a⋅b[image: -*-] is the length of a[image: -*-] times the length of b[image: -*-]
times cosθ[image: -*-]. But if it is true in one coordinate system, it
is true in all, because a⋅b[image: -*-] is independent of the
coordinate system; that is our argument.




What good is the dot product? Are there any cases in physics where we
need it? Yes, we need it all the time. For instance, in
Chapter 4 the kinetic energy was called [image: \tfrac{1}{2}mv^2][image: \tfrac{1}{2}mv^2],
but if the object is moving in space it should be the velocity squared
in the x[image: -*-]-direction, the y[image: -*-]-direction, and the z[image: -*-]-direction, and so
the formula for kinetic energy according to vector analysis is

[image: -*-][image: -*-]
(11.22)




Energy does not have direction. Momentum has direction; it is a vector,
and it is the mass times the velocity vector.




Another example of a dot product is the work done by a force when
something is pushed from one place to the other. We have not yet defined
work, but it is equivalent to the energy change, the weights lifted,
when a force F[image: -*-] acts through a distance s[image: -*-]:

[image: -*-][image: -*-]
(11.23)









It is sometimes very convenient to talk about the component of a vector
in a certain direction (say the vertical direction because that is the
direction of gravity). For such purposes, it is useful to invent what we
call a unit vector
in the direction that we want to study. By a unit vector we mean one
whose dot product with itself is equal to unity. Let us call this unit
vector i[image: -*-]; then i⋅i=1[image: -*-]. Then, if we want the
component of some vector in the direction of i[image: -*-], we see that the
dot product a⋅i[image: -*-] will be a cosθ[image: -*-], i.e., the component
of a[image: -*-] in the direction of i[image: -*-]. This is a nice way to get the
component; in fact, it permits us to get all the components and
to write a rather amusing formula. Suppose that in a given system of
coordinates, x[image: -*-], y[image: -*-], and z[image: -*-], we invent three vectors: i[image: -*-], a unit
vector in the direction x[image: -*-]; j[image: -*-], a unit
vector in the direction y[image: -*-]; and k[image: -*-], a unit vector in the
direction z[image: -*-]. Note first that i⋅i=1[image: -*-]. What
is i⋅j[image: -*-]? When two vectors are at right angles, their dot
product is zero. Thus

[image: -*-][image: -*-]
(11.24)




Now with these definitions, any vector whatsoever can be written this
way:

[image: -*-][image: -*-]
(11.25)




By this means we can go from the components of a vector to the vector
itself.




This discussion of vectors is by no means complete. However, rather than
try to go more deeply into the subject now, we shall first learn to use
in physical situations some of the ideas so far discussed. Then, when we
have properly mastered this basic material, we shall find it easier to
penetrate more deeply into the subject without getting too confused. We
shall later find that it is useful to define another kind of product of
two vectors, called the vector product, and written
as a×b[image: -*-]. However, we shall undertake a discussion of such
matters in a later chapter.





	
  
  In type, vectors are
represented by boldface; in handwritten form an arrow is
used: →r[image: -*-].
  ↩





  
    

12 Characteristics of Force



12–1 What is a force?


Although it is interesting and worth while to study the physical laws
simply because they help us to understand and to use nature, one ought
to stop every once in a while and think, “What do they really mean?”
The meaning of any statement is a subject that has interested and
troubled philosophers from time immemorial, and the meaning of
physical laws is even more interesting, because it is generally
believed that these laws represent some kind of real knowledge. The
meaning of knowledge is a deep problem in philosophy, and it is always
important to ask, “What does it mean?”




Let us ask, “What is the meaning of the physical laws of
Newton, which we write
as F=m a[image: -*-]? What is the meaning of force, mass, and acceleration?” Well,
we can intuitively sense the meaning of mass, and we can define
acceleration if we know the meaning of position and time. We shall not
discuss those meanings, but shall concentrate on the new concept of
force. The answer is equally simple: “If a body is accelerating,
then there is a force on it.” That is what Newton’s
laws say, so the most precise and beautiful
definition of force imaginable might simply be to say that force is the
mass of an object times the acceleration. Suppose we have a law which
says that the conservation of momentum is valid if the sum of all the
external forces is zero; then the question arises, “What does it
mean, that the sum of all the external forces is zero?” A
pleasant way to define that statement would be: “When the total
momentum is a constant, then the sum of the external forces is zero.”
There must be something wrong with that, because it is just not saying
anything new. If we have discovered a fundamental law, which asserts
that the force is equal to the mass times the acceleration, and then
define the force to be the mass times the acceleration, we have
found out nothing. We could also define force to mean that a moving
object with no force acting on it continues to move with constant
velocity in a straight line. If we then observe an object not
moving in a straight line with a constant velocity, we might say that
there is a force on it. Now such things certainly cannot be the content
of physics, because they are definitions going in a circle. The
Newtonian statement above, however, seems to be a most precise
definition of force, and one that appeals to the mathematician;
nevertheless, it is completely useless, because no prediction whatsoever
can be made from a definition. One might sit in an armchair all day long
and define words at will, but to find out what happens when two balls
push against each other, or when a weight is hung on a spring, is
another matter altogether, because the way the bodies behave is
something completely outside any choice of definitions.




For example, if we were to choose to say that an object left to itself
keeps its position and does not move, then when we see something
drifting, we could say that must be due to a “gorce”—a gorce is the
rate of change of position. Now we have a wonderful new law, everything
stands still except when a gorce is acting. You see, that would be
analogous to the above definition of force, and it would contain no
information. The real content of Newton’s laws is this: that the
force is supposed to have some independent properties, in
addition to the law F=m a[image: -*-]; but the specific independent
properties that the force has were not completely described by
Newton or by anybody else, and
therefore the physical law F=m a[image: -*-] is an incomplete law. It implies that
if we study the mass times the acceleration and call the product the
force, i.e., if we study the characteristics of force as a program of
interest, then we shall find that forces have some simplicity; the law
is a good program for analyzing nature, it is a suggestion that the
forces will be simple.




Now the first example of such forces was the complete law of
gravitation, which was given by Newton, and in stating the law he answered the question, “What
is the force?” If there were nothing but
gravitation, then the combination of this law and the
force law (second law of motion) would be a complete theory, but there
is much more than gravitation, and we want to use Newton’s
laws in many different situations.
Therefore in order to proceed we have to tell something about the
properties of force.





For example, in dealing with force the tacit assumption is always made
that the force is equal to zero unless some physical body is present,
that if we find a force that is not equal to zero we also find
something in the neighborhood that is a source of the force. This
assumption is entirely different from the case of the “gorce” that
we introduced above. One of the most important characteristics of
force is that it has a material origin, and this is not just a
definition.




Newton also gave one rule about the
force: that the forces between interacting bodies are equal and
opposite—action equals reaction; that rule, it turns out, is not
exactly true. In fact, the law F=m a[image: -*-] is not exactly true; if it were a
definition we should have to say that it is always exactly true;
but it is not.




The student may object, “I do not like this imprecision, I should
like to have everything defined exactly; in fact, it says in some
books that any science is an exact subject, in which everything
is defined.”  If you insist upon a precise definition of force, you
will never get it! First, because Newton’s Second Law is not exact,
and second, because in order to understand physical laws you must
understand that they are all some kind of approximation.




Any simple idea is approximate; as an illustration, consider an
object, … what is an object? Philosophers are always saying,
“Well, just take a chair for example.” The moment they say that, you
know that they do not know what they are talking about any more. What
is a chair? Well, a chair is a certain thing over there
… certain?, how certain? The atoms are evaporating from it from
time to time—not many atoms, but a few—dirt falls on it and gets
dissolved in the paint; so to define a chair precisely, to say exactly
which atoms are chair, and which atoms are air, or which atoms are
dirt, or which atoms are paint that belongs to the chair is
impossible. So the mass of a chair can be defined only
approximately. In the same way, to define the mass of a single object
is impossible, because there are not any single, left-alone objects in
the world—every object is a mixture of a lot of things, so we can
deal with it only as a series of approximations and idealizations.




The trick is the idealizations. To an excellent approximation of
perhaps one part in 1010[image: -*-], the number of atoms in the chair does
not change in a minute, and if we are not too precise we may idealize
the chair as a definite thing; in the same way we shall learn about
the characteristics of force, in an ideal fashion, if we are not too
precise. One may be dissatisfied with the approximate view of nature
that physics tries to obtain (the attempt is always to increase the
accuracy of the approximation), and may prefer a mathematical
definition; but mathematical definitions can never work in the real
world. A mathematical definition will be good for mathematics, in
which all the logic can be followed out completely, but the physical
world is complex, as we have indicated in a number of examples, such
as those of the ocean waves and a glass of wine. When we try to
isolate pieces of it, to talk about one mass, the wine and the glass,
how can we know which is which, when one dissolves in the other? The
forces on a single thing already involve approximation, and if we have
a system of discourse about the real world, then that system, at least
for the present day, must involve approximations of some kind.




This system is quite unlike the case of mathematics, in which everything
can be defined, and then we do not know what we are talking
about. In fact, the glory of mathematics is that we do not have to
say what we are talking about. The glory is that the laws, the
arguments, and the logic are independent of what “it” is. If we have
any other set of objects that obey the same system of axioms as Euclid’s
geometry, then if we make new definitions and
follow them out with correct logic, all the consequences will be
correct, and it makes no difference what the subject was. In nature,
however, when we draw a line or establish a line by using a light beam
and a theodolite, as we do in surveying, are we measuring a line in the
sense of Euclid? No, we are making an
approximation; the cross hair has some width, but a geometrical line has
no width, and so, whether Euclidean geometry can be used for
surveying or not is a physical question, not a mathematical question.
However, from an experimental standpoint, not a mathematical standpoint,
we need to know whether the laws of Euclid apply to the kind of geometry that we use in measuring land; so we
make a hypothesis that it does, and it works pretty well; but it is not
precise, because our surveying lines are not really geometrical lines.
Whether or not those lines of Euclid,
which are really abstract, apply to the lines of experience is a
question for experience; it is not a question that can be answered by
sheer reason.




In the same way, we cannot just call F=m a[image: -*-] a definition, deduce
everything purely mathematically, and make mechanics a mathematical
theory, when mechanics is a description of nature. By establishing
suitable postulates it is always possible to make a system of
mathematics, just as Euclid did, but we
cannot make a mathematics of the world, because sooner or later we have
to find out whether the axioms are valid for the objects of nature. Thus
we immediately get involved with these complicated and “dirty” objects
of nature, but with approximations ever increasing in accuracy.







12–2 Friction


The foregoing considerations show that a true understanding of
Newton’s laws requires a discussion
of forces, and it is the purpose of this chapter to introduce such a
discussion, as a kind of completion of Newton’s
laws. We have already studied the
definitions of acceleration and related ideas, but now we have to study
the properties of force, and this chapter, unlike the previous chapters,
will not be very precise, because forces are quite complicated.





To begin with a particular force, let us consider the drag on an
airplane flying through the air. What is the law for that force?
(Surely there is a law for every force, we must have a law!)
One can hardly think that the law for that force will be simple. Try
to imagine what makes a drag on an airplane flying through the
air—the air rushing over the wings, the swirling in the back, the
changes going on around the fuselage, and many other complications,
and you see that there is not going to be a simple law. On the other
hand, it is a remarkable fact that the drag force on an airplane is
approximately a constant times the square of the velocity, or F≈c v2[image: -*-].




Now what is the status of such a law, is it analogous to F=m a[image: -*-]? Not at
all, because in the first place this law is an empirical thing that is
obtained roughly by tests in a wind tunnel. You say, “Well F=m a[image: -*-] might
be empirical too.” That is not the reason that there is a difference.
The difference is not that it is empirical, but that, as we understand
nature, this law is the result of an enormous complexity of events and
is not, fundamentally, a simple thing. If we continue to study it more
and more, measuring more and more accurately, the law will continue to
become more complicated, not less. In other words, as we
study this law of the drag on an airplane more and more closely, we find
out that it is “falser” and “falser,” and the more deeply we study
it, and the more accurately we measure, the more complicated the truth
becomes; so in that sense we consider it not to result from a simple,
fundamental process, which agrees with our original surmise. For
example, if the velocity is extremely low, so low that an ordinary
airplane is not flying, as when the airplane is dragged slowly through
the air, then the law changes, and the drag friction depends more nearly
linearly on the velocity. To take another example, the frictional drag
on a ball or a bubble or anything that is moving slowly through a
viscous liquid like honey, is proportional to the velocity, but for
motion so fast that the fluid swirls around (honey does not but water
and air do) then the drag becomes more nearly proportional to the square
of the velocity (F=c v2[image: -*-]), and if the velocity continues to increase,
then even this law begins to fail. People who say, “Well the
coefficient changes slightly,” are dodging the issue. Second, there are
other great complications: can this force on the airplane be divided or
analyzed as a force on the wings, a force on the front, and so on?
Indeed, this can be done, if we are concerned about the torques here and
there, but then we have to get special laws for the force on the wings,
and so on. It is an amazing fact that the force on a wing depends upon
the other wing: in other words, if we take the airplane apart and put
just one wing in the air, then the force is not the same as if the rest
of the plane were there. The reason, of course, is that some of the wind
that hits the front goes around to the wings and changes the force on
the wings. It seems a miracle that there is such a simple, rough,
empirical law that can be used in the design of airplanes, but this law
is not in the same class as the basic laws of physics, and
further study of it will only make it more and more complicated. A study
of how the coefficient c[image: -*-] depends on the shape of the front of the
airplane is, to put it mildly, frustrating. There just is no simple law
for determining the coefficient in terms of the shape of the airplane.
In contrast, the law of gravitation is simple, and further study only
indicates its greater simplicity.




We have just discussed two cases of friction, resulting from fast
movement in air and slow movement in honey. There is another kind of
friction, called dry friction or sliding friction, which occurs when
one solid body slides on another. In this case a force is needed to
maintain motion. This is called a frictional force, and its origin,
also, is a very complicated matter. Both surfaces of contact are
irregular, on an atomic level. There are many points of contact where
the atoms seem to cling together, and then, as the sliding body is
pulled along, the atoms snap apart and vibration ensues; something
like that has to happen. Formerly the mechanism of this friction was
thought to be very simple, that the surfaces were merely full of
irregularities and the friction originated in lifting the slider over
the bumps; but this cannot be, for there is no loss of energy in that
process, whereas power is in fact consumed. The mechanism of power
loss is that as the slider snaps over the bumps, the bumps deform and
then generate waves and atomic motions and, after a while, heat, in
the two bodies. Now it is very remarkable that again, empirically,
this friction can be described approximately by a simple law. This law
is that the force needed to overcome friction and to drag one object
over another depends upon the normal force (i.e., perpendicular to the
surface) between the two surfaces that are in contact. Actually, to a
fairly good approximation, the frictional force is proportional to
this normal force, and has a more or less constant coefficient; that
is,

[image: -*-][image: -*-]
(12.1)




where μ[image: -*-] is called the coefficient of
friction (Fig. 12–1). Although this coefficient is not
exactly constant, the formula is a good empirical rule for judging
approximately the amount of force that will be needed in certain
practical or engineering circumstances. If the normal force or the speed
of motion gets too big, the law fails because of the excessive heat
generated. It is important to realize that each of these empirical laws
has its limitations, beyond which it does not really work.



[image: -][image: -]
Fig. 12–1. The relation between frictional force and the normal force
for sliding contact.





That the formula F=μ N[image: -*-] is approximately correct can be
demonstrated by a simple experiment. We set up a plane, inclined at a
small angle θ[image: -*-], and place a block of weight W[image: -*-] on the plane. We
then tilt the plane at a steeper angle, until the block just begins to
slide from its own weight. The component of the weight downward along
the plane is W sinθ[image: -*-], and this must equal the frictional
force F[image: -*-] when the block is sliding uniformly. The component of the weight
normal to the plane is W cosθ[image: -*-], and this is the normal
force N[image: -*-]. With these values, the formula becomes W sinθ=μ W cosθ[image: -*-], from which we get
μ=[image: -*-]sinθ/cosθ=[image: -*-]tanθ[image: -*-]. If this law were exactly true,
an object would start to slide at some definite inclination. If the
same block is loaded by putting extra weight on it, then, although W[image: -*-]
is increased, all the forces in the formula are increased in the same
proportion, and W[image: -*-] cancels out. If μ[image: -*-] stays constant, the loaded
block will slide again at the same slope. When the angle θ[image: -*-] is
determined by trial with the original weight, it is found that with
the greater weight the block will slide at about the same angle. This
will be true even when one weight is many times as great as the other,
and so we conclude that the coefficient of friction is independent of
the weight.




In performing this experiment it is noticeable that when the plane is
tilted at about the correct angle θ[image: -*-], the block does not slide
steadily but in a halting fashion. At one place it may stop, at
another it may move with acceleration. This behavior indicates that
the coefficient of friction is only roughly a constant, and varies
from place to place along the plane. The same erratic behavior is
observed whether the block is loaded or not. Such variations are
caused by different degrees of smoothness or hardness of the plane,
and perhaps dirt, oxides, or other foreign matter. The tables that
list purported values of μ[image: -*-] for “steel on steel,” “copper on
copper,” and the like, are all false, because they ignore the factors
mentioned above, which really determine μ[image: -*-]. The friction is never
due to “copper on copper,” etc., but to the impurities clinging to
the copper.





In experiments of the type described above, the friction is nearly
independent of the velocity. Many people believe that the friction to
be overcome to get something started (static friction) exceeds the
force required to keep it sliding (sliding friction), but with dry
metals it is very hard to show any difference. The opinion probably
arises from experiences where small bits of oil or lubricant are
present, or where blocks, for example, are supported by springs or
other flexible supports so that they appear to bind.




It is quite difficult to do accurate quantitative experiments in
friction, and the laws of friction are still not analyzed very well,
in spite of the enormous engineering value of an accurate
analysis. Although the law F=μ N[image: -*-] is fairly accurate once the
surfaces are standardized, the reason for this form of the law is not
really understood. To show that the coefficient μ[image: -*-] is nearly
independent of velocity requires some delicate experimentation,
because the apparent friction is much reduced if the lower surface
vibrates very fast. When the experiment is done at very high speed,
care must be taken that the objects do not vibrate relative to one
another, since apparent decreases of the friction at high speed are
often due to vibrations. At any rate, this friction law is another of
those semiempirical laws that are not thoroughly understood, and in
view of all the work that has been done it is surprising that more
understanding of this phenomenon has not come about. At the present
time, in fact, it is impossible even to estimate the coefficient of
friction between two substances.




It was pointed out above that attempts to measure μ[image: -*-] by sliding
pure substances such as copper on copper will lead to spurious
results, because the surfaces in contact are not pure copper, but are
mixtures of oxides and other impurities. If we try to get absolutely
pure copper, if we clean and polish the surfaces, outgas the materials
in a vacuum, and take every conceivable precaution, we still do not
get μ[image: -*-]. For if we tilt the apparatus even to a vertical position,
the slider will not fall off—the two pieces of copper stick
together!  The coefficient μ[image: -*-], which is ordinarily less than unity
for reasonably hard surfaces, becomes several times unity! The reason
for this unexpected behavior is that when the atoms in contact are all
of the same kind, there is no way for the atoms to “know” that they
are in different pieces of copper. When there are other atoms, in the
oxides and greases and more complicated thin surface layers of
contaminants in between, the atoms “know” when they are not on the
same part. When we consider that it is forces between atoms that hold
the copper together as a solid, it should become clear that it is
impossible to get the right coefficient of friction for pure metals.




The same phenomenon can be observed in a simple home-made experiment
with a flat glass plate and a glass tumbler. If the tumbler is placed
on the plate and pulled along with a loop of string, it slides fairly
well and one can feel the coefficient of friction; it is a little
irregular, but it is a coefficient. If we now wet the glass plate and
the bottom of the tumbler and pull again, we find that it binds, and
if we look closely we shall find scratches, because the water is able
to lift the grease and the other contaminants off the surface, and
then we really have a glass-to-glass contact; this contact is so good
that it holds tight and resists separation so much that the glass is
torn apart; that is, it makes scratches.







12–3 Molecular forces

[image: -][image: -]
Fig. 12–2. The force between two atoms as a function of their distance
of separation.





We shall next discuss the characteristics of molecular forces. These
are forces between the atoms, and are the ultimate origin of
friction. Molecular forces have never
been satisfactorily explained on a basis of classical physics; it takes
quantum mechanics to understand them fully. Empirically, however, the
force between atoms is illustrated schematically in
Fig. 12–2, where the force F[image: -*-] between two atoms is plotted
as a function of the distance r[image: -*-] between them. There are different
cases: in the water molecule, for example, the negative charges sit more
on the oxygen, and the mean positions of the negative charges and of the
positive charges are not at the same point; consequently, another
molecule nearby feels a relatively large force, which is called a
dipole-dipole force. However, for many systems the charges are very much
better balanced, in particular for oxygen gas, which is perfectly
symmetrical. In this case, although the minus charges and the plus
charges are dispersed over the molecule, the distribution is such that
the center of the minus charges and the center of the plus charges
coincide. A molecule where the centers do not coincide is called a polar
molecule, and charge times the separation between centers is called the
dipole moment. A
nonpolar molecule is one in which the centers of the charges coincide.
For all nonpolar molecules, in which all the electrical forces are
neutralized, it nevertheless turns out that the force at very large
distances is an attraction and varies inversely as the seventh power of
the distance, or F=k/r7[image: -*-], where k[image: -*-] is a constant that depends on the
molecules. Why this is we shall learn only when we learn quantum
mechanics. When there are dipoles the forces are greater. When atoms or
molecules get too close they repel with a very large repulsion; that is
what keeps us from falling through the floor!




These molecular forces can be demonstrated in a fairly direct way: one
of these is the friction experiment with a sliding glass tumbler;
another is to take two very carefully ground and lapped surfaces which
are very accurately flat, so that the surfaces can be brought very
close together. An example of such surfaces is the Johansson blocks
that are used in machine shops as standards for making accurate length
measurements. If one such block is slid over another very carefully
and the upper one is lifted, the other one will adhere and also be
lifted by the molecular forces, exemplifying the direct attraction
between the atoms on one block for the atoms on the other block.




Nevertheless these molecular forces of attraction are still not
fundamental in the sense that gravitation is fundamental; they are due
to the vastly complex interactions of all the electrons and nuclei in
one molecule with all the electrons and nuclei in another. Any
simple-looking formula we get represents a summation of complications,
so we still have not got the fundamental phenomena.




Since the molecular forces attract at large distances and repel at
short distances, as shown in Fig. 12–2, we can make up
solids in which all the atoms are held together by their attractions
and held apart by the repulsion that sets in when they are too close
together. At a certain distance d[image: -*-] (where the graph in
Fig. 12–2 crosses the axis) the forces are zero, which means
that they are all balanced, so that the molecules stay that distance
apart from one another. If the molecules are pushed closer together than
the distance d[image: -*-] they all show a repulsion, represented by the portion
of the graph above the r[image: -*-]-axis. To push the molecules only slightly
closer together requires a great force, because the molecular repulsion
rapidly becomes very great at distances less than d[image: -*-]. If the molecules
are pulled slightly apart there is a slight attraction, which increases
as the separation increases. If they are pulled sufficiently hard, they
will separate permanently—the bond is broken.




If the molecules are pushed only a very small distance closer, or
pulled only a very small distance farther than d[image: -*-], the
corresponding distance along the curve of Fig. 12–2 is also
very small, and can then be approximated by a straight line. Therefore,
in many circumstances, if the displacement is not too great the
force is proportional to the displacement. This principle is known as
Hooke’s law, or the law of elasticity,
which says that the force in a body which tries to restore the body to
its original condition when it is distorted is proportional to the
distortion. This law, of course, holds true only if the distortion is
relatively small; when it gets too large the body will be torn apart or
crushed, depending on the kind of distortion. The amount of force for
which Hooke’s law is valid depends
upon the material; for instance, for dough or putty the force is very
small, but for steel it is relatively large. Hooke’s
law can be nicely demonstrated with a long
coil spring, made of steel and suspended vertically. A suitable weight
hung on the lower end of the spring produces a tiny twist throughout the
length of the wire, which results in a small vertical deflection in each
turn and adds up to a large displacement if there are many turns. If the
total elongation produced, say, by a 100[image: -*-]-gram weight, is measured, it
is found that additional weights of 100[image: -*-] grams will each produce an
additional elongation that is very nearly equal to the stretch that was
measured for the first 100[image: -*-] grams. This constant ratio of force to
displacement begins to change when the spring is overloaded, i.e.,
Hooke’s law no longer holds.








12–4 Fundamental forces. Fields


We shall now discuss the only remaining forces that are
fundamental. We call them fundamental in the sense that their laws are
fundamentally simple. We shall first discuss electrical force. Objects
carry electrical charges which consist simply of electrons or
protons. If any two bodies are electrically charged, there is an
electrical force between them, and if the magnitudes of the charges
are q1[image: -*-] and q2[image: -*-], respectively, the force varies inversely as the
square of the distance between the charges, or F=(const) q1 q2/r2[image: -*-]. For unlike charges, this law is like the law of
gravitation, but for like charges the force is repulsive and
the sign (direction) is reversed. The charges q1[image: -*-] and q2[image: -*-] can be
intrinsically either positive or negative, and in any specific
application of the formula the direction of the force will come out
right if the q[image: -*-]’s are given the proper plus or minus sign; the force
is directed along the line between the two charges. The constant in
the formula depends, of course, upon what units are used for the
force, the charge, and the distance. In current practice the charge is
measured in coulombs, the distance in meters, and the force in
newtons. Then, in order to get the force to come out properly in
newtons, the constant (which for historical reasons is
written 1/4 π ϵ0[image: -*-]) takes the numerical value

[image: -*-][image: -*-]


or

[image: -*-][image: -*-]


Thus the force law for static charges is

[image: -*-][image: -*-]
(12.2)




In nature, the most important charge of all is the charge on a single
electron,
which is 1.60×10−19[image: -*-] coulomb. In working with electrical forces
between fundamental particles rather than with large charges, many
people prefer the combination [image: (q_{\text{el}})^2/4\pi\epsO][image: (q_{\text{el}})^2/4\pi\epsO], in which
qel[image: -*-] is defined as the charge on an electron. This
combination occurs frequently, and to simplify calculations it has been
defined by the symbol e2[image: -*-]; its numerical value in the mks system of
units turns out to be (1.52×10−14)2[image: -*-]. The advantage of using
the constant in this form is that the force between two electrons in
newtons can then be written simply as e2/r2[image: -*-], with r[image: -*-] in meters,
without all the individual constants. Electrical forces are much more
complicated than this simple formula indicates, since the formula gives
the force between two objects only when the objects are standing still.
We shall consider the more general case shortly.





In the analysis of forces of the more fundamental kinds (not such forces
as friction, but the electrical force or the gravitational force), an
interesting and very important concept has been developed. Since at
first sight the forces are very much more complicated than is indicated
by the inverse-square laws and these laws hold true only when the
interacting bodies are standing still, an improved method is needed to
deal with the very complex forces that ensue when the bodies start to
move in a complicated way. Experience has shown that an approach known
as the concept of a “field” is of great utility for the analysis of
forces of this type. To illustrate the idea for, say, electrical force,
suppose we have two electrical charges, q1[image: -*-] and q2[image: -*-], located at
points P[image: -*-] and R[image: -*-] respectively. Then the force between the charges is
given by

[image: -*-][image: -*-]
(12.3)




To analyze this force by means of the field concept, we say that the
charge q1[image: -*-] at P[image: -*-] produces a “condition” at R[image: -*-], such that when
the charge q2[image: -*-] is placed at R[image: -*-] it “feels” the force. This is one
way, strange perhaps, of describing it; we say that the force F[image: -*-]
on q2[image: -*-] at R[image: -*-] can be written in two parts. It is q2[image: -*-] multiplied by
a quantity E[image: -*-] that would be there whether q2[image: -*-] were there or not
(provided we keep all the other charges in their right
places). E[image: -*-] is the “condition” produced by q1[image: -*-], we say,
and F[image: -*-] is the response of q2[image: -*-] to E[image: -*-]. E[image: -*-] is called an
electric field, and it is a vector. The formula for the
electric field E[image: -*-] that is produced at R[image: -*-] by a charge q1[image: -*-]
at P[image: -*-] is the charge q1[image: -*-] times the constant 1/4 π ϵ0[image: -*-] divided
by r2[image: -*-] (r[image: -*-] is the distance from P[image: -*-] to R[image: -*-]), and it is acting in the
direction of the radius vector (the radius vector r[image: -*-] divided by
its own length). The expression for E[image: -*-] is thus

[image: -*-][image: -*-]
(12.4)




We then write

[image: -*-][image: -*-]
(12.5)




which expresses the force, the field, and the charge in the
field. What is the point of all this? The point is to divide the
analysis into two parts. One part says that something produces
a field. The other part says that something is acted on by the
field. By allowing us to look at the two parts independently, this
separation of the analysis simplifies the calculation of a problem in
many situations. If many charges are present, we first work out the
total electric field produced at R[image: -*-] by all the charges, and then,
knowing the charge that is placed at R[image: -*-], we find the force on it.




In the case of gravitation, we can do exactly the same thing. In this
case, where the force F=−G m1 m2 r/r3[image: -*-], we can make an
analogous analysis, as follows: the force on a body in a gravitational
field is the mass of that body times the field C[image: -*-]. The force
on m2[image: -*-] is the mass m2[image: -*-] times the field C[image: -*-] produced by m1[image: -*-];
that is, F=m2 C[image: -*-]. Then the field C[image: -*-] produced by a body
of mass m1[image: -*-] is C=−G m1 r/r3[image: -*-] and it is directed radially,
as in the electrical case.




In spite of how it might at first seem, this separation of one part
from another is not a triviality. It would be trivial, just another
way of writing the same thing, if the laws of force were simple, but
the laws of force are so complicated that it turns out that the fields
have a reality that is almost independent of the objects which create
them. One can do something like shake a charge and produce an effect,
a field, at a distance; if one then stops moving the charge, the field
keeps track of all the past, because the interaction between two
particles is not instantaneous. It is desirable to have some way to
remember what happened previously. If the force upon some charge
depends upon where another charge was yesterday, which it does, then
we need machinery to keep track of what went on yesterday, and that is
the character of a field. So when the forces get more complicated, the
field becomes more and more real, and this technique becomes less and
less of an artificial separation.




In analyzing forces by the use of fields, we need two kinds of laws
pertaining to fields. The first is the response to a field, and that
gives the equations of motion. For example, the law of response of a
mass to a gravitational field is that the force is equal to the mass
times the gravitational field; or, if there is also a charge on the
body, the response of the charge to the electric field equals the
charge times the electric field. The second part of the analysis of
nature in these situations is to formulate the laws which determine
the strength of the field and how it is produced. These laws are
sometimes called the field equations. We shall learn more about
them in due time, but shall write down a few things about them now.




First, the most remarkable fact of all, which is true exactly and
which can be easily understood, is that the total electric field
produced by a number of sources is the vector sum of the electric
fields produced by the first source, the second source, and so on. In
other words, if we have numerous charges making a field, and if all by
itself one of them would make the field E1[image: -*-], another would make
the field E2[image: -*-], and so on, then we merely add the vectors to get
the total field. This principle can be expressed as

[image: -*-][image: -*-]
(12.6)




or, in view of the definition given above,

[image: -*-][image: -*-]
(12.7)







Can the same methods be applied to gravitation? The force between two
masses m1[image: -*-] and m2[image: -*-] was expressed by
Newton
as F=−G m1 m2 r/r3[image: -*-]. But according to the field concept, we may
say that m1[image: -*-] creates a field C[image: -*-] in all the surrounding space,
such that the force on m2[image: -*-] is given by

[image: -*-][image: -*-]
(12.8)




By complete analogy with the electrical case,

[image: -*-][image: -*-]
(12.9)




and the gravitational field produced by several masses is

[image: -*-][image: -*-]
(12.10)




In Chapter 9, in working out a case of planetary motion,
we used this principle in essence. We simply added all the force
vectors to get the resultant force on a planet. If we divide out the
mass of the planet in question, we get Eq. (12.10).




Equations (12.6) and (12.10) express what is known
as the principle of superposition of fields. This principle
states that the total field due to all the sources is the sum of the
fields due to each source. So far as we know today, for electricity this
is an absolutely guaranteed law, which is true even when the force law
is complicated because of the motions of the charges. There are apparent
violations, but more careful analysis has always shown these to be due
to the overlooking of certain moving charges. However, although the
principle of superposition applies exactly for electrical forces, it is
not exact for gravity if the field is too strong, and Newton’s
equation (12.10) is only approximate, according to
Einstein’s gravitational
theory.




Closely related to electrical force is another kind, called magnetic
force, and this too is analyzed in terms of a field. Some of the
qualitative relations between electrical and magnetic forces can be
illustrated by an experiment with an electron-ray tube
(Fig. 12–3). At one end of such a tube is a source that
emits a stream of electrons. Within the tube are arrangements for
accelerating the electrons to a high speed and sending some of them in a
narrow beam to a fluorescent screen at the other end of the tube. A spot
of light glows in the center of the screen where the electrons strike,
and this enables us to trace the electron path. On the way to the screen
the electron beam passes through a narrow space between a pair of
parallel metal plates, which are arranged, say, horizontally. A voltage
can be applied across the plates, so that either plate can be made
negative at will. When such a voltage is present, there is an electric
field between the plates.



[image: -][image: -]
Fig. 12–3. An electron-beam tube.





The first part of the experiment is to apply a negative voltage to the
lower plate, which means that extra electrons have been placed on the
lower plate. Since like charges repel, the light spot on the screen
instantly shifts upward. (We could also say this in another way—that
the electrons “felt” the field, and responded by deflecting upward.)
We next reverse the voltage, making the upper plate
negative. The light spot on the screen now jumps below the center,
showing that the electrons in the beam were repelled by those in the
plate above them. (Or we could say again that the electrons had
“responded” to the field, which is now in the reverse direction.)




The second part of the experiment is to disconnect the voltage from
the plates and test the effect of a magnetic field on the electron
beam. This is done by means of a horseshoe magnet, whose poles are far
enough apart to more or less straddle the tube. Suppose we hold the
magnet below the tube in the same orientation as the letter U, with
its poles up and part of the tube in between. We note that the light
spot is deflected, say, upward, as the magnet approaches the tube from
below. So it appears that the magnet repels the electron
beam. However, it is not that simple, for if we invert the magnet
without reversing the poles side-for-side, and now approach the tube
from above, the spot still moves upward, so the electron beam
is not repelled; instead, it appears to be attracted this
time. Now we start again, restoring the magnet to its original U
orientation and holding it below the tube, as before. Yes, the spot is
still deflected upward; but now turn the magnet 180[image: -*-] degrees around a
vertical axis, so that it is still in the U position but the poles are
reversed side-for-side. Behold, the spot now jumps downward, and stays
down, even if we invert the magnet and approach from above, as before.




To understand this peculiar behavior, we have to have a new
combination of forces. We explain it thus: Across the magnet from one
pole to the other there is a magnetic field. This field has a
direction which is always away from one particular pole (which we
could mark) and toward the other. Inverting the magnet did not change
the direction of the field, but reversing the poles side-for-side did
reverse its direction. For example, if the electron velocity were
horizontal in the x[image: -*-]-direction and the magnetic field were also
horizontal but in the y[image: -*-]-direction, the magnetic force on the
moving electrons would be in the z[image: -*-]-direction, i.e., up or down,
depending on whether the field was in the positive or negative
y[image: -*-]-direction.




Although we shall not at the present time give the correct law of
force between charges moving in an arbitrary manner, one relative to
the other, because it is too complicated, we shall give one aspect of
it: the complete law of the forces if the fields are known. The
force on a charged object depends upon its motion; if, when the object
is standing still at a given place, there is some force, this is taken
to be proportional to the charge, the coefficient being what we call
the electric field.  When the object moves the force may be
different, and the correction, the new “piece” of force, turns out
to be dependent exactly linearly on the velocity, but at
right angles to v[image: -*-] and to another vector quantity which we
call the magnetic induction B[image: -*-]. If
the components of the electric field E[image: -*-] and the magnetic
induction B[image: -*-] are, respectively, (Ex,Ey,Ez)[image: -*-]
and (Bx,By,Bz)[image: -*-], and if the velocity v[image: -*-] has the
components (vx,vy,vz)[image: -*-], then the total electric and magnetic force
on a moving charge q[image: -*-] has the components

[image: -*-][image: -*-]
(12.11)




If, for instance, the only component of the magnetic field were By[image: -*-]
and the only component of the velocity were vx[image: -*-], then the only term
left in the magnetic force would be a force in the z[image: -*-]-direction, at
right angles to both B[image: -*-] and v[image: -*-].







12–5 Pseudo forces


The next kind of force we shall discuss might be called a pseudo
force. In Chapter 11 we discussed the relationship between
two people, Joe and Moe, who use different coordinate systems. Let us
suppose that the positions of a particle as measured by Joe are x[image: -*-]
and by Moe are x′[image: -*-]; then the laws are as follows:

[image: -*-][image: -*-]


where s[image: -*-] is the displacement of Moe’s system relative to Joe’s. If we
suppose that the laws of motion are correct for Joe, how do they look
for Moe? We find first, that

[image: -*-][image: -*-]


Previously, we considered the case where s[image: -*-] was constant, and we
found that s[image: -*-] made no difference in the laws of motion, since d s/d t=0[image: -*-]; ultimately, therefore, the laws of physics were the same in both
systems. But another case we can take is that s=u t[image: -*-], where u[image: -*-] is a
uniform velocity in a straight line. Then s[image: -*-] is not constant, and
d s/d t[image: -*-] is not zero, but is u[image: -*-], a constant. However, the
acceleration d2 x/d t2[image: -*-] is still the same as d2 x′/d t2[image: -*-], because d u/d t=0[image: -*-]. This proves the law that we used in Chapter 10,
namely, that if we move in a straight line with uniform velocity the
laws of physics will look the same to us as when we are standing
still. That is the Galilean
transformation. But we wish to
discuss the interesting case where s[image: -*-] is still more complicated, say s=a t2/2[image: -*-]. Then d s/d t=a t[image: -*-] and d2 s/d t2=a[image: -*-], a uniform
acceleration; or in a still more complicated case, the acceleration
might be a function of time. This means that although the laws of motion
from the point of view of Joe would look like

[image: -*-][image: -*-]


the laws of motion as looked upon by Moe would appear as

[image: -*-][image: -*-]


That is, since Moe’s coordinate system is accelerating with respect to
Joe’s, the extra term m a[image: -*-] comes in, and Moe will have to correct his
forces by that amount in order to get Newton’s laws to work. In other
words, here is an apparent, mysterious new force of unknown origin
which arises, of course, because Moe has the wrong coordinate
system. This is an example of a pseudo force; other examples occur in
coordinate systems that are rotating.





Another example of pseudo force is what is often called “centrifugal
force.”
An observer in a rotating coordinate system, e.g., in a
rotating box, will find mysterious forces, not accounted for by any
known origin of force, throwing things outward toward the walls. These
forces are due merely to the fact that the observer does not have
Newton’s coordinate system, which is the simplest coordinate system.





Pseudo force can be illustrated by an interesting experiment in which
we push a jar of water along a table, with acceleration. Gravity, of
course, acts downward on the water, but because of the horizontal
acceleration there is also a pseudo force acting horizontally and in a
direction opposite to the acceleration. The resultant of gravity and
pseudo force makes an angle with the vertical, and during the
acceleration the surface of the water will be perpendicular to the
resultant force, i.e., inclined at an angle with the table, with the
water standing higher in the rearward side of the jar. When the push
on the jar stops and the jar decelerates because of friction, the
pseudo force is reversed, and the water stands higher in the forward
side of the jar (Fig. 12–4).



[image: -][image: -]
Fig. 12–4. Illustration of a pseudo force.





One very important feature of pseudo forces is that they are always
proportional to the masses; the same is true of gravity. The
possibility exists, therefore, that gravity itself is a pseudo
force. Is it not possible that perhaps gravitation is due simply to
the fact that we do not have the right coordinate system? After all,
we can always get a force proportional to the mass if we imagine that
a body is accelerating. For instance, a man shut up in a box that is
standing still on the earth finds himself held to the floor of the box
with a certain force that is proportional to his mass. But if there
were no earth at all and the box were standing still, the man inside
would float in space. On the other hand, if there were no earth at all
and something were pulling the box along with an
acceleration g[image: -*-], then the man in the box, analyzing physics, would find a pseudo
force which would pull him to the floor, just as gravity does.




Einstein put forward the famous hypothesis that accelerations give an
imitation of gravitation, that the forces of acceleration (the pseudo
forces) cannot be distinguished from those of gravity; it is not
possible to tell how much of a given force is gravity and how much is
pseudo force.




It might seem all right to consider gravity to be a pseudo force, to say
that we are all held down because we are accelerating upward, but how
about the people in Madagascar, on the other side of the earth—are
they accelerating too? Einstein found that gravity could be considered a
pseudo force only at one point at a time, and was led by his
considerations to suggest that the geometry of the world is more
complicated than ordinary Euclidean geometry. The present
discussion is only qualitative, and does not pretend to convey anything
more than the general idea. To give a rough idea of how gravitation
could be the result of pseudo forces, we present an illustration which
is purely geometrical and does not represent the real situation. Suppose
that we all lived in two dimensions, and knew nothing of a third. We
think we are on a plane, but suppose we are really on the surface of a
sphere. And suppose that we shoot an object along the ground, with no
forces on it. Where will it go? It will appear to go in a straight line,
but it has to remain on the surface of a sphere, where the shortest
distance between two points is along a great circle; so it goes along a
great circle. If we shoot another object similarly, but in another
direction, it goes along another great circle. Because we think we are
on a plane, we expect that these two bodies will continue to diverge
linearly with time, but careful observation will show that if they go
far enough they move closer together again, as though they were
attracting each other. But they are not attracting each
other—there is just something “weird” about this geometry. This
particular illustration does not describe correctly the way in which
Einstein’s geometry is “weird,” but it illustrates that if we distort
the geometry sufficiently it is possible that all gravitation is related
in some way to pseudo forces; that is the general idea of the
Einsteinian theory of gravitation.







12–6 Nuclear forces


We conclude this chapter with a brief discussion of the only other
known forces, which are called nuclear forces. These forces are
within the nuclei of atoms, and although they are much discussed, no
one has ever calculated the force between two nuclei, and indeed at
present there is no known law for nuclear forces. These forces have a
very tiny range which is just about the same as the size of the
nucleus, perhaps 10−13[image: -*-] centimeter. With particles so small and at
such a tiny distance, only the quantum-mechanical laws are valid, not
the Newtonian laws. In nuclear analysis we no
longer think in terms of forces, and in fact we can replace the force
concept with a concept of the energy of interaction of two particles, a
subject that will be discussed later. Any formula that can be written
for nuclear forces is a rather crude approximation which omits many
complications; one might be somewhat as follows: forces within a nucleus
do not vary inversely as the square of the distance, but die off
exponentially over a certain distance r[image: -*-], as expressed
by F=(1/r2) exp(−r/r0)[image: -*-], where the distance r0[image: -*-] is of the order of
10−13[image: -*-] centimeter. In other words, the forces disappear as soon as
the particles are any great distance apart, although they are very
strong within the 10−13[image: -*-] centimeter range. So far as they are
understood today, the laws of nuclear force are very complex; we do not
understand them in any simple way, and the whole problem of analyzing
the fundamental machinery behind nuclear forces is unsolved. Attempts at
a solution have led to the discovery of numerous strange particles, the
π[image: -*-]-mesons, for example, but the origin of these forces remains
obscure.







  
    

13 Work and Potential Energy (A)



13–1 Energy of a falling body


In Chapter 4 we discussed the conservation of
energy. In that discussion, we did not use Newton’s
laws, but it is, of course, of great
interest to see how it comes about that energy is in fact conserved in
accordance with these laws. For clarity we shall start with the simplest
possible example, and then develop harder and harder examples.





The simplest example of the conservation of energy is a vertically
falling object, one that moves only in a vertical direction. An object
which changes its height under the influence of gravity alone has a
kinetic energy T[image: -*-] (or K.E.) due to its motion during the fall, and a
potential energy m g h[image: -*-], abbreviated U[image: -*-] (or P.E.), whose sum is
constant:

[image: -*-][image: -*-]


or

[image: -*-][image: -*-]
(13.1)




Now we would like to show that this statement is true. What do we
mean, show it is true? From Newton’s Second Law we can easily tell how
the object moves, and it is easy to find out how the velocity varies
with time, namely, that it increases proportionally with the time, and
that the height varies as the square of the time. So if we measure the
height from a zero point where the object is stationary, it is no
miracle that the height turns out to be equal to the square of the
velocity times a number of constants. However, let us look at it a
little more closely.




Let us find out directly from Newton’s Second Law how the
kinetic energy should change, by taking the derivative of the kinetic
energy with respect to time and then using Newton’s
laws. When we
differentiate [image: \tfrac{1}{2}mv^2][image: \tfrac{1}{2}mv^2] with respect to time, we obtain

[image: -*-][image: -*-]
(13.2)




since m[image: -*-] is assumed constant. But from Newton’s Second Law,
m (d v/d t)=F[image: -*-], so that

[image: -*-][image: -*-]
(13.3)




In general, it will come out to be F⋅v[image: -*-], but in our
one-dimensional case let us leave it as the force times the velocity.




Now in our simple example the force is constant, equal to −m g[image: -*-], a
vertical force (the minus sign means that it acts downward), and the
velocity, of course, is the rate of change of the vertical position,
or height h[image: -*-], with time. Thus the rate of change of the kinetic
energy is −m g (d h/d t)[image: -*-], which quantity, miracle of miracles, is minus
the rate of change of something else! It is minus the time rate of
change of m g h[image: -*-]!  Therefore, as time goes on, the changes in kinetic
energy and in the quantity m g h[image: -*-] are equal and opposite, so that the
sum of the two quantities remains constant. Q.E.D.



[image: -][image: -]
Fig. 13–1. An object moving on a frictionless curve under the influence
of gravity.





We have shown, from Newton’s second law of motion, that energy is
conserved for constant forces when we add the potential energy m g h[image: -*-]
to the kinetic energy [image: \tfrac{1}{2}mv^2][image: \tfrac{1}{2}mv^2]. Now let us look into this
further and see whether it can be generalized, and thus advance our
understanding. Does it work only for a freely falling body, or is it
more general? We expect from our discussion of the conservation of
energy that it would work for an object moving from one point to
another in some kind of frictionless curve, under the influence of
gravity (Fig. 13–1). If the object reaches a certain
height h[image: -*-] from the original height H[image: -*-], then the same formula should
again be right, even though the velocity is now in some direction
other than the vertical. We would like to understand why the
law is still correct. Let us follow the same analysis, finding the
time rate of change of the kinetic energy. This will again
be m v (d v/d t)[image: -*-], but m (d v/d t)[image: -*-] is the rate of change of the magnitude of
the momentum, i.e., the force in the direction of motion—the
tangential force Ft[image: -*-]. Thus

[image: -*-][image: -*-]


Now the speed is the rate of change of distance along the curve,
d s/d t[image: -*-], and the tangential force Ft[image: -*-] is not −m g[image: -*-] but is weaker by
the ratio of the vertical distance d h[image: -*-] to the distance d s[image: -*-] along the
path. In other words,

[image: -*-][image: -*-]


so that

[image: -*-][image: -*-]


since the d s[image: -*-]’s cancel. Thus we get −m g (d h/d t)[image: -*-], which is equal to
the rate of change of −m g h[image: -*-], as before.




In order to understand exactly how the conservation of energy works in
general in mechanics, we shall now discuss a number of concepts which
will help us to analyze it.




First, we discuss the rate of change of kinetic energy in general in
three dimensions. The kinetic energy in three dimensions is

[image: -*-][image: -*-]


When we differentiate this with respect to time, we get three
terrifying terms:

[image: -*-][image: -*-]
(13.4)




But m (d vx/d t)[image: -*-] is the force Fx[image: -*-] acting on the object in the
x[image: -*-]-direction. Thus the right side of Eq. (13.4)
is Fx vx+Fy vy+Fz vz[image: -*-]. We recall our vector analysis and
recognize this as F⋅v[image: -*-]; therefore

[image: -*-][image: -*-]
(13.5)




This result can be derived more quickly as follows: if a[image: -*-]
and b[image: -*-] are two vectors, both of which may depend upon the time, the
derivative of a⋅b[image: -*-] is, in general,

[image: -*-][image: -*-]
(13.6)




We then use this in the form a=[image: -*-]b=[image: -*-]v[image: -*-]:



[image: -*-][image: -*-]
(13.7)










Because the concepts of kinetic energy, and energy in general, are so
important, various names have been given to the important terms in
equations such as these. [image: \tfrac{1}{2}mv^2][image: \tfrac{1}{2}mv^2] is, as we know, called
kinetic energy. F⋅v[image: -*-] is called
power: the force acting on an object times the
velocity of the object (vector “dot” product) is the power being
delivered to the object by that force. We thus have a marvelous theorem:
the rate of change of kinetic energy of an object is equal to the
power expended by the forces acting on it.




However, to study the conservation of energy, we want to analyze this
still more closely. Let us evaluate the change in kinetic energy in a
very short time d t[image: -*-]. If we multiply both sides of Eq. (13.7)
by d t[image: -*-], we find that the differential change in the kinetic energy is
the force “dot” the differential distance moved:

[image: -*-][image: -*-]
(13.8)




If we now integrate, we get

[image: -*-][image: -*-]
(13.9)




What does this mean? It means that if an object is moving in any way
under the influence of a force, moving in some kind of curved path, then the
change in K.E. when it goes from one point to another along the curve is
equal to the integral of the component of the force along the curve times the
differential displacement d s[image: -*-], the integral being carried out from one point to
the other. This integral also has a name; it is called the work done by
the force on the object. We see immediately that power equals work done
per second. We also see that it is only a component of force in the
direction of motion that contributes to the work done. In our simple example
the forces were only vertical, and had only a single component, say Fz[image: -*-], equal
to −m g[image: -*-]. No matter how the object moves in those circumstances, falling in a
parabola for example, F⋅s[image: -*-], which can be written as Fx d x+Fy d y+Fz d z[image: -*-], has nothing left of it but Fz d z=−m g d z[image: -*-], because the
other components of force are zero. Therefore, in our simple case,

[image: -*-][image: -*-]
(13.10)




so again we find that it is only the vertical height from which the
object falls that counts toward the potential energy.




A word about units. Since forces are measured in newtons, and we
multiply by a distance in order to obtain work, work is measured in
newton⋅[image: -*-]meters
(N⋅[image: -*-]m), but people do
not like to say newton-meters, they prefer to say
joules (J). A newton-meter is called a
joule; work is measured in joules. Power, then, is joules per second,
and that is also called a watt (W). If we
multiply watts by time, the result is the work done. The work done by
the electrical company in our houses, technically, is equal to the watts
times the time. That is where we get things like kilowatt hours,
1000[image: -*-] watts times 3600[image: -*-] seconds, or 3.6×106[image: -*-] joules.





Now we take another example of the law of conservation of
energy. Consider an object which initially has kinetic energy and is
moving very fast, and which slides against the floor with friction. It
stops. At the start the kinetic energy is not zero, but at the
end it is zero; there is work done by the forces, because
whenever there is friction there is always a component of force in a
direction opposite to that of the motion, and so energy is steadily
lost. But now let us take a mass on the end of a pivot swinging in a
vertical plane in a gravitational field with no friction. What happens
here is different, because when the mass is going up the force is
downward, and when it is coming down, the force is also downward. Thus
F⋅d s[image: -*-] has one sign going up and another sign coming
down. At each corresponding point of the downward and upward paths the
values of F⋅d s[image: -*-] are exactly equal in size but of
opposite sign, so the net result of the integral will be zero for this
case. Thus the kinetic energy with which the mass comes back to the
bottom is the same as it had when it left; that is the principle of
the conservation of energy. (Note that when there are friction forces
the conservation of energy seems at first sight to be invalid. We have
to find another form of energy. It turns out, in fact, that
heat is generated in an object when it rubs another with
friction, but at the moment we supposedly do not know that.)







13–2 Work done by gravity


The next problem to be discussed is much more difficult than the
above; it has to do with the case when the forces are not constant, or
simply vertical, as they were in the cases we have worked out. We want
to consider a planet, for example, moving around the sun, or a
satellite in the space around the earth.




We shall first consider the motion of an object which starts at some
point 1 and falls, say, directly toward the sun or toward the
earth (Fig. 13–2). Will there be a law of conservation
of energy in these circumstances? The only difference is that in this
case, the force is changing as we go along, it is not just a
constant. As we know, the force is −G M/r2[image: -*-] times the mass m[image: -*-], where
m[image: -*-] is the mass that moves. Now certainly when a body falls toward the
earth, the kinetic energy increases as the distance fallen increases,
just as it does when we do not worry about the variation of force with
height. The question is whether it is possible to find another formula
for potential energy different from m g h[image: -*-], a different function of
distance away from the earth, so that conservation of energy will
still be true.



[image: -][image: -]
Fig. 13–2. A small mass m[image: -*-] falls under the influence of gravity toward
a large mass M[image: -*-].





This one-dimensional case is easy to treat because we know that the
change in the kinetic energy is equal to the integral, from one end of
the motion to the other, of −G M m/r2[image: -*-] times the displacement d r[image: -*-]:

[image: -*-][image: -*-]
(13.11)




There are no cosines needed for this case because the force and the
displacement are in the same direction. It is easy to
integrate d r/r2[image: -*-]; the result is −1/r[image: -*-], so Eq. (13.11) becomes

[image: -*-][image: -*-]
(13.12)




Thus we have a different formula for potential energy.
Equation (13.12) tells us that the
quantity [image: (\tfrac{1}{2}mv^2 - GMm/r)][image: (\tfrac{1}{2}mv^2 - GMm/r)] calculated at point 1, at point 2, or
at any other place, has a constant value.




We now have the formula for the potential energy in a gravitational
field for vertical motion. Now we have an interesting problem. Can we
make perpetual motion in a gravitational field? The
gravitational field varies; in different places it is in different
directions and has different strengths. Could we do something like
this, using a fixed, frictionless track: start at some point and lift
an object out to some other point, then move it around an arc to a
third point, then lower it a certain distance, then move it in at a
certain slope and pull it out some other way, so that when we bring it
back to the starting point, a certain amount of work has been done by
the gravitational force, and the kinetic energy of the object is
increased? Can we design the curve so that it comes back moving a
little bit faster than it did before, so that it goes around and
around and around, and gives us perpetual motion? Since perpetual
motion is impossible, we ought to find out that this is also
impossible. We ought to discover the following proposition: since
there is no friction the object should come back with neither higher
nor lower velocity—it should be able to keep going around and around
any closed path. Stated in another way, the total work done in
going around a complete cycle should be zero for gravity forces,
because if it is not zero we can get energy out by going around. (If
the work turns out to be less than zero, so that we get less speed
when we go around one way, then we merely go around the other way,
because the forces, of course, depend only upon the position, not upon
the direction; if one way is plus, the other way would be minus, so
unless it is zero we will get perpetual motion by going around either
way.)



[image: -][image: -]
Fig. 13–3. A closed path in a gravitational field.





Is the work really zero? Let us try to demonstrate that it is. First
we shall explain more or less why it is zero, and then we shall
examine it a little better mathematically. Suppose that we use a
simple path such as that shown in Fig. 13–3, in which a
small mass is carried from point 1 to point 2, and then is made to
go around a circle to 3, back to 4, then to 5, 6, 7,
and 8, and finally back to 1. All of the lines are either purely
radial or circular, with M[image: -*-] as the center. How much work is done in
carrying m[image: -*-] around this path?  Between points 1 and 2, it is
G M m[image: -*-] times the difference of 1/r[image: -*-] between these two points:

[image: -*-][image: -*-]


From 2 to 3 the force is exactly at right angles to the curve, so
that W23≡0[image: -*-]. The work from 3 to 4 is

[image: -*-][image: -*-]


In the same fashion, we find that W45=0[image: -*-], W56=G M m (1/r6−1/r5)[image: -*-], W67=0[image: -*-], W78=G M m (1/r8−1/r7)[image: -*-], and W81=0[image: -*-]. Thus

[image: -*-][image: -*-]


But we note that r2=r3[image: -*-], r4=r5[image: -*-], r6=r7[image: -*-], and r8=r1[image: -*-]. Therefore W=0[image: -*-].



[image: -][image: -]
Fig. 13–4. A “smooth” closed path, showing a magnified segment of it
approximated by a series of radial and circumferential steps, and an
enlarged view of one step.





Of course we may wonder whether this is too trivial a curve. What if
we use a real curve? Let us try it on a real curve. First of
all, we might like to assert that a real curve could always be
imitated sufficiently well by a series of sawtooth jiggles like those
of Fig. 13–4, and that therefore, etc., Q.E.D., but
without a little analysis, it is not obvious at first that the work
done going around even a small triangle is zero. Let us magnify one of
the triangles, as shown in Fig. 13–4. Is the work done
in going from a[image: -*-] to b[image: -*-] and b[image: -*-] to c[image: -*-] on a triangle the same as the
work done in going directly from a[image: -*-] to c[image: -*-]?  Suppose that the force
is acting in a certain direction; let us take the triangle such that
the side b c[image: -*-] is in this direction, just as an example. We also
suppose that the triangle is so small that the force is essentially
constant over the entire triangle. What is the work done in going from
a[image: -*-] to c[image: -*-]? It is

[image: -*-][image: -*-]


since the force is constant. Now let us calculate the work done in
going around the other two sides of the triangle. On the vertical
side a b[image: -*-] the force is perpendicular to d s[image: -*-], so that here the work is
zero. On the horizontal side b c[image: -*-],

[image: -*-][image: -*-]


Thus we see that the work done in going along the sides of a small
triangle is the same as that done going on a slant, because
s cosθ[image: -*-] is equal to x[image: -*-]. We have proved previously that the
answer is zero for any path composed of a series of notches like those
of Fig. 13–3, and also that we do the same work if we
cut across the corners instead of going along the notches (so long as
the notches are fine enough, and we can always make them very fine);
therefore, the work done in going around any path in a
gravitational field is zero.





This is a very remarkable result. It tells us something we did not
previously know about planetary motion. It tells us that when a planet
moves around the sun (without any other objects around, no other forces)
it moves in such a manner that the square of the speed at any point
minus some constants divided by the radius at that point is always the
same at every point on the orbit. For example, the closer the planet is
to the sun, the faster it is going, but by how much? By the following
amount: if instead of letting the planet go around the sun, we were to
change the direction (but not the magnitude) of its velocity and make it
move radially, and then we let it fall from some special radius to the
radius of interest, the new speed would be the same as the speed it had
in the actual orbit, because this is just another example of a
complicated path. So long as we come back to the same distance, the
kinetic energy will be the same. So, whether the motion is the real,
undisturbed one, or is changed in direction by channels, by frictionless
constraints, the kinetic energy with which the planet arrives at a point
will be the same.





Thus, when we make a numerical analysis of the motion of the planet in
its orbit, as we did earlier, we can check whether or not we are
making appreciable errors by calculating this constant quantity, the
energy, at every step, and it should not change. For the orbit of
Table 9–2 the energy does change,1 it changes by some 1.5[image: -*-] percent from the
beginning to the end. Why? Either because for the numerical method we
use finite intervals, or else because we made a slight mistake somewhere
in arithmetic.




Let us consider the energy in another case: the problem of a mass on a
spring. When we displace the mass from its balanced position, the
restoring force is proportional to the displacement. In those
circumstances, can we work out a law for conservation of energy? Yes,
because the work done by such a force is

[image: -*-][image: -*-]
(13.13)




Therefore, for a mass on a spring we have that the kinetic energy of
the oscillating mass plus [image: \tfrac{1}{2}kx^2][image: \tfrac{1}{2}kx^2] is a constant. Let us see
how this works. We pull the mass down; it is standing still and so its
speed is zero. But x[image: -*-] is not zero, x[image: -*-] is at its maximum, so there is
some energy, the potential energy, of course. Now we release the mass
and things begin to happen (the details not to be discussed), but at
any instant the kinetic plus potential energy must be a constant. For
example, after the mass is on its way past the original equilibrium
point, the position x[image: -*-] equals zero, but that is when it has its
biggest v2[image: -*-], and as it gets more x2[image: -*-] it gets less v2[image: -*-], and so
on. So the balance of x2[image: -*-] and v2[image: -*-] is maintained as the mass goes
up and down. Thus we have another rule now, that the potential energy
for a spring is [image: \tfrac{1}{2}kx^2][image: \tfrac{1}{2}kx^2], if the force is −k x[image: -*-].







13–3 Summation of energy


Now we go on to the more general consideration of what happens when
there are large numbers of objects. Suppose we have the complicated
problem of many objects, which we label i=1[image: -*-], 2, 3, …, all
exerting gravitational pulls on each other. What happens then? We
shall prove that if we add the kinetic energies of all the particles,
and add to this the sum, over all pairs of particles, of their
mutual gravitational potential energy, −G M m/ri j[image: -*-], the total is a
constant:

[image: -*-][image: -*-]
(13.14)




How do we prove it? We differentiate each side with respect to time
and get zero. When we differentiate [image: \tfrac{1}{2}m_iv_i^2][image: \tfrac{1}{2}m_iv_i^2], we find
derivatives of the velocity that are the forces, just as in
Eq. (13.5). We replace these forces by the law of force that
we know from Newton’s law of gravity and then we notice that what is
left is minus the time derivative of

[image: -*-][image: -*-]


The time derivative of the kinetic energy is

[image: -*-][image: -*-]
(13.15)




The time derivative of the potential energy is

[image: -*-][image: -*-]


But

[image: -*-][image: -*-]


so that

[image: -*-][image: -*-]


since ri j=−rj i[image: -*-], while ri j=rj i[image: -*-]. Thus



[image: -*-][image: -*-]
(13.16)





Now we must note carefully what ∑i{∑j}[image: -*-]
and ∑pairs[image: -*-] mean. In Eq. (13.15),
∑i{∑j}[image: -*-] means that i[image: -*-] takes on all values
i=1[image: -*-], 2, 3, … in turn, and for each value of i[image: -*-], the
index j[image: -*-] takes on all values except i[image: -*-]. Thus if i=3[image: -*-], j[image: -*-] takes
on the values 1, 2, 4, …




In Eq. (13.16), on the other hand, ∑pairs[image: -*-] means
that given values of i[image: -*-] and j[image: -*-] occur only once. Thus the particle pair 1
and 3 contributes only one term to the sum. To keep track of this, we might
agree to let i[image: -*-] range over all values 1, 2, 3, …, and for each i[image: -*-]
let j[image: -*-] range only over values greater than i[image: -*-]. Thus if i=3[image: -*-], j[image: -*-]
could only have values 4, 5, 6, … But we notice that for each
i,j[image: -*-] value there are two contributions to the sum, one involving vi[image: -*-], and
the other vj[image: -*-], and that these terms have the same appearance as those of
Eq. (13.15), where all values of i[image: -*-] and j[image: -*-] (except i=j[image: -*-])
are included in the sum. Therefore, by matching the terms one by one, we see
that Eqs. (13.16) and (13.15) are precisely the
same, but of opposite sign, so that the time derivative of the kinetic plus
potential energy is indeed zero. Thus we see that, for many objects, the
kinetic energy is the sum of the contributions from each individual object, and
that the potential energy is also simple, it being also just a sum of
contributions, the energies between all the pairs. We can understand why
it should be the energy of every pair this way: Suppose that we want to find the
total amount of work that must be done to bring the objects to certain distances
from each other. We may do this in several steps, bringing them in from infinity
where there is no force, one by one. First we bring in number one, which
requires no work, since no other objects are yet present to exert force on it.
Next we bring in number two, which does take some work,
namely W12=−G m1 m2/r12[image: -*-]. Now, and this is an important point, suppose we
bring in the next object to position three. At any moment the force on
number 3 can be written as the sum of two forces—the force exerted by
number 1 and that exerted by number 2. Therefore the work done is the
sum of the works done by each, because if F3[image: -*-] can be resolved into the
sum of two forces,

[image: -*-][image: -*-]


then the work is

[image: -*-][image: -*-]


That is, the work done is the sum of the work done against the first
force and the second force, as if each acted independently. Proceeding
in this way, we see that the total work required to assemble the given
configuration of objects is precisely the value given in
Eq. (13.14) as the potential energy. It is because gravity
obeys the principle of superposition of forces that we can write the
potential energy as a sum over each pair of particles.







13–4 Gravitational field of large objects

[image: -][image: -]
Fig. 13–5. The gravitational field C[image: -*-] at a mass point produced by
an infinite plane sheet of matter.





Now we shall calculate the fields which are met in a few physical
circumstances involving distributions of mass. We have not so
far considered distributions of mass, only particles, so it is
interesting to calculate the forces when they are produced by more
than just one particle. First we shall find the gravitational force on
a mass that is produced by a plane sheet of material, infinite in
extent. The force on a unit mass at a given point P[image: -*-], produced by
this sheet of material (Fig. 13–5), will of course be
directed toward the sheet. Let the distance of the point from the
sheet be a[image: -*-], and let the amount of mass per unit area of this huge
sheet be μ[image: -*-]. We shall suppose μ[image: -*-] to be constant; it is a uniform
sheet of material. Now, what small field d C[image: -*-] is produced by the
mass d m[image: -*-] lying between ρ[image: -*-] and ρ+d ρ[image: -*-] from the point O[image: -*-]
of the sheet nearest point P[image: -*-]?  Answer: d C=−G (d m r/r3)[image: -*-]. But this field is directed along r[image: -*-], and we
know that only the x[image: -*-]-component of it will remain when we add all the
little vector d C[image: -*-]’s to produce C[image: -*-]. The x[image: -*-]-component
of d C[image: -*-] is

[image: -*-][image: -*-]


Now all masses d m[image: -*-] which are at the same distance r[image: -*-] from P[image: -*-] will
yield the same d Cx[image: -*-], so we may at once write for d m[image: -*-] the total mass
in the ring between ρ[image: -*-] and ρ+d ρ[image: -*-], namely d m=μ 2 π ρ d ρ[image: -*-] (2 π ρ d ρ[image: -*-] is the area of a ring of
radius ρ[image: -*-] and width d ρ[image: -*-], if d ρ≪ρ[image: -*-]). Thus

[image: -*-][image: -*-]


Then, since r2=ρ2+a2[image: -*-], ρ d ρ=r d r[image: -*-]. Therefore,



[image: -*-][image: -*-]
(13.17)





Thus the force is independent of distance a[image: -*-]! Why? Have we made a
mistake? One might think that the farther away we go, the weaker the
force would be. But no! If we are close, most of the matter is pulling
at an unfavorable angle; if we are far away, more of the matter is
situated more favorably to exert a pull toward the plane. At any
distance, the matter which is most effective lies in a certain
cone. When we are farther away the force is smaller by the inverse
square, but in the same cone, in the same angle, there is much
more matter, larger by just the square of the distance! This
analysis can be made rigorous by just noticing that the differential
contribution in any given cone is in fact independent of the distance,
because of the reciprocal variation of the strength of the force from
a given mass, and the amount of mass included in the cone, with
changing distance. The force is not really constant of course, because
when we go on the other side of the sheet it is reversed in sign.




We have also, in effect, solved an electrical problem: if we have an
electrically charged plate, with an amount σ[image: -*-] of charge per unit
area, then the electric field at a point outside the sheet is equal
to σ/2 ϵ0[image: -*-], and is in the outward direction if the sheet is
positively charged, and inward if the sheet is negatively charged. To
prove this, we merely note that −G[image: -*-], for gravity, plays the same role
as 1/4 π ϵ0[image: -*-] for electricity.




Now suppose that we have two plates, with a positive charge +σ[image: -*-]
on one and a negative charge −σ[image: -*-] on another at a distance D[image: -*-]
from the first. What is the field? Outside the two plates it is
zero. Why?  Because one attracts and the other repels, the force being
independent of distance, so that the two balance out! Also, the
field between the two plates is clearly twice as great as that
from one plate, namely E=σ/ϵ0[image: -*-], and is directed from the
positive plate to the negative one.




Now we come to a most interesting and important problem, whose
solution we have been assuming all the time, namely, that the force
produced by the earth at a point on the surface or outside it is the
same as if all the mass of the earth were located at its center. The
validity of this assumption is not obvious, because when we are close,
some of the mass is very close to us, and some is farther away, and so
on. When we add the effects all together, it seems a miracle that the
net force is exactly the same as we would get if we put all the mass
in the middle!



[image: -][image: -]
Fig. 13–6. A thin spherical shell of mass or charge.





We now demonstrate the correctness of this miracle. In order to do so, however,
we shall consider a thin uniform hollow shell instead of the whole earth. Let
the total mass of the shell be m[image: -*-], and let us calculate the potential
energy of a particle of mass m′[image: -*-] a distance R[image: -*-] away from the center of the
sphere (Fig. 13–6) and show that the potential energy is the same as
it would be if the mass m[image: -*-] were a point at the center. (The potential energy is
easier to work with than is the field because we do not have to worry about
angles, we merely add the potential energies of all the pieces of mass.) If we
call x[image: -*-] the distance of a certain plane section from the center, then all the
mass that is in a slice d x[image: -*-] is at the same distance r[image: -*-] from P[image: -*-], and the
potential energy due to this ring is −G m′ d m/r[image: -*-]. How much mass is in the small
slice d x[image: -*-]? An amount

[image: -*-][image: -*-]


where μ=m/4 π a2[image: -*-] is the surface density of mass on the spherical
shell. (It is a general rule that the area of a zone of a sphere is
proportional to its axial width.) Therefore the potential energy due
to d m[image: -*-] is

[image: -*-][image: -*-]


But we see that

[image: -*-][image: -*-]


Thus

[image: -*-][image: -*-]


or

[image: -*-][image: -*-]


Therefore,

[image: -*-][image: -*-]


and so

[image: -*-][image: -*-]
(13.18)




Thus, for a thin spherical shell, the potential energy of a mass m′[image: -*-], external
to the shell, is the same as though the mass of the shell were concentrated at
its center. The earth can be imagined as a series of spherical shells, each one
of which contributes an energy which depends only on its mass and the distance from its center to
the particle; adding them all together we get the total mass, and
therefore the earth acts as though all the material were at the center!




But notice what happens if our point is on the inside of the
shell. Making the same calculation, but with P[image: -*-] on the inside, we
still get the difference of the two r[image: -*-]’s, but now in the form a−R−(a+R)=−2 R[image: -*-], or minus twice the distance from the center. In
other words, W[image: -*-] comes out to be W=−G m′ m/a[image: -*-], which is
independent of R[image: -*-] and independent of position, i.e., the same
energy no matter where we are inside. Therefore no force; no
work is done when we move about inside. If the potential energy is the
same no matter where an object is placed inside the sphere, there can
be no force on it. So there is no force inside, there is only a force
outside, and the force outside is the same as though the mass were all
at the center.





	
  
  The energy per
unit mass is [image: \tfrac{1}{2}(v_x^2 + v_y^2) - 1/r][image: \tfrac{1}{2}(v_x^2 + v_y^2) - 1/r] in the units of
Table 9–2.
  ↩





  
    

14 Work and Potential Energy (conclusion)



14–1 Work


In the preceding chapter we have presented a great many new
ideas and results that play a central role in physics. These ideas are
so important that it seems worth while to devote a whole chapter to a
closer examination of them. In the present chapter we shall not repeat
the “proofs” or the specific tricks by which the results were
obtained, but shall concentrate instead upon a discussion of the ideas
themselves.




In learning any subject of a technical nature where mathematics plays a
role, one is confronted with the task of understanding and storing away
in the memory a huge body of facts and ideas, held together by certain
relationships which can be “proved” or “shown” to exist between
them. It is easy to confuse the proof itself with the relationship which
it establishes. Clearly, the important thing to learn and to remember is
the relationship, not the proof. In any particular circumstance we can
either say “it can be shown that” such and such is true, or we can
show it. In almost all cases, the particular proof that is used is
concocted, first of all, in such form that it can be written quickly and
easily on the chalkboard or on paper, and so that it will be as
smooth-looking as possible. Consequently, the proof may look deceptively
simple, when in fact, the author might have worked for hours trying
different ways of calculating the same thing until he has found the
neatest way, so as to be able to show that it can be shown in the
shortest amount of time! The thing to be remembered, when seeing a
proof, is not the proof itself, but rather that it can be shown
that such and such is true. Of course, if the proof involves some
mathematical procedures or “tricks” that one has not seen before,
attention should be given not to the trick exactly, but to the
mathematical idea involved.




It is certain that in all the demonstrations that are made in a course
such as this, not one has been remembered from the time when the
author studied freshman physics. Quite the contrary: he merely
remembers that such and such is true, and to explain how it can be
shown he invents a demonstration at the moment it is needed. Anyone
who has really learned a subject should be able to follow a similar
procedure, but it is no use remembering the proofs. That is why, in
this chapter, we shall avoid the proofs of the various statements made
previously, and merely summarize the results.




The first idea that has to be digested is work done by a force. The
physical word “work” is not the word in the ordinary sense of “Workers of the
world unite!,” but is a different idea. Physical work is expressed
as ∫F⋅d s[image: -*-], called “the line integral of F[image: -*-] dot d s[image: -*-],” which
means that if the force, for instance, is in one direction and the object on
which the force is working is displaced in a certain direction, then only
the component of force in the direction of the displacement does any work. If,
for instance, the force were constant and the displacement were a finite
distance Δ s[image: -*-], then the work done in moving the object through that
distance is only the component of force along Δ s[image: -*-] times Δ s[image: -*-].
The rule is “force times distance,” but we really mean only the component of
force in the direction of the displacement times Δ s[image: -*-] or, equivalently,
the component of displacement in the direction of force times F[image: -*-]. It is evident
that no work whatsoever is done by a force which is at right angles to the
displacement.




Now if the vector displacement Δ s[image: -*-] is resolved into
components, in other words, if the actual displacement
is Δ s[image: -*-] and we want to consider it effectively as a component of
displacement Δ x[image: -*-] in the x[image: -*-]-direction, Δ y[image: -*-] in the
y[image: -*-]-direction, and Δ z[image: -*-] in the z[image: -*-]-direction, then the work done
in carrying an object from one place to another can be calculated in
three parts, by calculating the work done along x[image: -*-], along y[image: -*-], and
along z[image: -*-]. The work done in going along x[image: -*-] involves only that
component of force, namely Fx[image: -*-], and so on, so the work is
Fx Δ x+Fy Δ y+Fz Δ z[image: -*-]. When the force is not
constant, and we have a complicated curved motion, then we must
resolve the path into a lot of little Δ s[image: -*-]’s, add the work
done in carrying the object along each Δ s[image: -*-], and take the
limit as Δ s[image: -*-] goes to zero. This is the meaning of the “line
integral.”




Everything we have just said is contained in the
formula W=∫F⋅d s[image: -*-].
It is all very well to say that it is a
marvelous formula, but it is another thing to understand what it
means, or what some of the consequences are.




The word “work” in physics has a meaning so different from that of
the word as it is used in ordinary circumstances that it must be
observed carefully that there are some peculiar circumstances in which
it appears not to be the same. For example, according to the physical
definition of work, if one holds a hundred-pound weight off the ground
for a while, he is doing no work. Nevertheless, everyone knows that he
begins to sweat, shake, and breathe harder, as if he were running up a
flight of stairs. Yet running upstairs is considered as doing
work (in running downstairs, one gets work out of the world,
according to physics), but in simply holding an object in a fixed
position, no work is done. Clearly, the physical definition of work
differs from the physiological definition, for reasons we shall
briefly explore.




It is a fact that when one holds a weight he has to do “physiological”
work. Why should he sweat? Why should he need to consume food to hold
the weight up? Why is the machinery inside him operating at full
throttle, just to hold the weight up? Actually, the weight could be held
up with no effort by just placing it on a table; then the table, quietly
and calmly, without any supply of energy, is able to maintain the same
weight at the same height! The physiological situation is something like
the following. There are two kinds of muscles in the human body and in
other animals: one kind, called striated or
skeletal muscle, is the type of muscle we have in our arms, for
example, which is under voluntary control; the other kind, called
smooth muscle,
is like the muscle in the intestines or, in the clam, the greater
adductor muscle that closes the shell. The smooth muscles work very slowly, but they
can hold a “set”; that is to say, if the clam tries to close its shell
in a certain position, it will hold that position, even if there is a
very great force trying to change it. It will hold a position under load
for hours and hours without getting tired because it is very much like a
table holding up a weight, it “sets” into a certain position, and the
molecules just lock there temporarily with no work being done, no effort
being generated by the clam. The fact that we have to generate effort to
hold up a weight is simply due to the design of striated muscle. What
happens is that when a nerve impulse reaches a muscle fiber, the fiber
gives a little twitch and then relaxes, so that when we hold something
up, enormous volleys of nerve impulses are coming in to the muscle,
large numbers of twitches are maintaining the weight, while the other
fibers relax. We can see this, of course: when we hold a heavy weight
and get tired, we begin to shake. The reason is that the volleys are
coming irregularly, and the muscle is tired and not reacting fast
enough. Why such an inefficient scheme? We do not know exactly why, but
evolution has not been able to develop fast smooth muscle. Smooth muscle would be much more effective
for holding up weights because you could just stand there and it would
lock in; there would be no work involved and no energy would be
required. However, it has the disadvantage that it is very
slow-operating.





Returning now to physics, we may ask why we want to calculate
the work done. The answer is that it is interesting and useful to do
so, since the work done on a particle by the resultant of all the
forces acting on it is exactly equal to the change in kinetic energy
of that particle. That is, if an object is being pushed, it picks up
speed, and

[image: -*-][image: -*-]








14–2 Constrained motion


Another interesting feature of forces and work is this: suppose that
we have a sloping or a curved track, and a particle that must move
along the track, but without friction. Or we may have a pendulum with
a string and a weight; the string constrains the weight to move in a
circle about the pivot point. The pivot point may be changed by having
the string hit a peg, so that the path of the weight is along two
circles of different radii. These are examples of what we call
fixed, frictionless constraints.




In motion with a fixed frictionless constraint, no work is done by the
constraint because the forces of constraint are always at right angles
to the motion. By the “forces of constraint” we mean those forces
which are applied to the object directly by the constraint
itself—the contact force with the track, or the tension in the
string.





The forces involved in the motion of a particle on a slope moving
under the influence of gravity are quite complicated, since there is a
constraint force, a gravitational force, and so on. However, if we
base our calculation of the motion on conservation of energy and
the gravitational force alone, we get the right result. This
seems rather strange, because it is not strictly the right way to do
it—we should use the resultant force. Nevertheless, the work
done by the gravitational force alone will turn out to be the change
in the kinetic energy, because the work done by the constraint part of
the force is zero (Fig. 14–1).



[image: -][image: -]
Fig. 14–1. Forces acting on a sliding body (no friction).





The important feature here is that if a force can be analyzed as the
sum of two or more “pieces” then the work done by the resultant
force in going along a certain curve is the sum of the works done by
the various “component” forces into which the force is
analyzed. Thus if we analyze the force as being the vector sum of
several effects, gravitational plus constraint forces, etc., or the
x[image: -*-]-component of all forces and the y[image: -*-]-component of all forces, or
any other way that we wish to split it up, then the work done by the
net force is equal to the sum of the works done by all the parts into
which we have divided the force in making the analysis.







14–3 Conservative forces


In nature there are certain forces, that of gravity, for example,
which have a very remarkable property which we call “conservative”
(no political ideas involved, it is again one of those “crazy
words”). If we calculate how much work is done by a force in moving
an object from one point to another along some curved path, in general
the work depends upon the curve, but in special cases it does not. If
it does not depend upon the curve, we say that the force is a
conservative force. In other words, if the integral of the force times
the distance in going from position 1 to position 2 in
Fig. 14–2 is calculated along curve A[image: -*-] and then along B[image: -*-],
we get the same number of joules, and if this is true for this pair of
points on every curve, and if the same proposition works no
matter which pair of points we use, then we say the force is
conservative. In such circumstances, the work integral going from 1
to 2 can be evaluated in a simple manner, and we can give a formula for
the result. Ordinarily it is not this easy, because we also have to
specify the curve, but when we have a case where the work does not
depend on the curve, then, of course, the work depends only upon the
positions of 1 and 2.



[image: -][image: -]
Fig. 14–2. Possible paths between two points in a field of force.





To demonstrate this idea, consider the following. We take a
“standard” point P[image: -*-], at an arbitrary location
(Fig. 14–2). Then, the work line-integral from 1 to 2,
which we want to calculate, can be evaluated as the work done in going
from 1 to P[image: -*-] plus the work done in going from P[image: -*-] to 2, because the
forces are conservative and the work does not depend upon the curve.
Now, the work done in going from position P[image: -*-] to a particular position
in space is a function of that position in space. Of course it really
depends on P[image: -*-] also, but we hold the arbitrary point P[image: -*-] fixed
permanently for the analysis. If that is done, then the work done in
going from point P[image: -*-] to point 2 is some function of the final position
of 2. It depends upon where 2 is; if we go to some other point we
get a different answer.




We shall call this function of position −U (x,y,z)[image: -*-], and when we wish
to refer to some particular point 2 whose coordinates
are (x2,y2,z2)[image: -*-], we shall write U (2)[image: -*-], as an abbreviation
for U (x2,y2,z2)[image: -*-]. The work done in going from point 1 to point P[image: -*-]
can be written also by going the other way along the integral,
reversing all the d s[image: -*-]’s. That is, the work done in going from 1
to P[image: -*-] is minus the work done in going from the point P[image: -*-] to 1:

[image: -*-][image: -*-]


Thus the work done in going from P[image: -*-] to 1 is −U (1)[image: -*-], and from P[image: -*-]
to 2 the work is −U (2)[image: -*-]. Therefore the integral from 1 to 2 is
equal to −U (2)[image: -*-] plus [−U (1)[image: -*-] backwards], or +U (1)−U (2)[image: -*-]:

[image: -*-][image: -*-]
(14.1)




The quantity U (1)−U (2)[image: -*-] is called the change in the potential energy,
and we call U[image: -*-] the potential energy. We shall say that when the object
is located at position 2, it has potential energy U (2)[image: -*-] and at
position 1 it has potential energy U (1)[image: -*-]. If it is located at
position P[image: -*-], it has zero potential energy. If we had used any other
point, say Q[image: -*-], instead of P[image: -*-], it would turn out (and we shall leave it
to you to demonstrate) that the potential energy is changed only
by the addition of a constant. Since the conservation of energy depends
only upon changes, it does not matter if we add a constant to the
potential energy. Thus the point P[image: -*-] is arbitrary.




Now, we have the following two propositions: (1) that the work done by
a force is equal to the change in kinetic energy of the particle, but
(2) mathematically, for a conservative force, the work done is minus
the change in a function U[image: -*-] which we call the potential energy. As a
consequence of these two, we arrive at the proposition that if
only conservative forces act, the kinetic energy T[image: -*-] plus the
potential energy U[image: -*-] remains constant:

[image: -*-][image: -*-]
(14.2)







Let us now discuss the formulas for the potential energy for a number
of cases. If we have a gravitational field that is uniform, if we are
not going to heights comparable with the radius of the earth, then the
force is a constant vertical force and the work done is simply the
force times the vertical distance. Thus

[image: -*-][image: -*-]
(14.3)




and the point P[image: -*-] which corresponds to zero potential energy happens to
be any point in the plane z=0[image: -*-]. We could also have said that the
potential energy is m g (z−6)[image: -*-] if we had wanted to—all the results
would, of course, be the same in our analysis except that the value of
the potential energy at z=0[image: -*-] would be −6 m g[image: -*-]. It makes no difference,
because only differences in potential energy count.




The energy needed to compress a linear spring a distance x[image: -*-] from an
equilibrium point is

[image: -*-][image: -*-]
(14.4)




and the zero of potential energy is at the point x=0[image: -*-], the
equilibrium position of the spring. Again we could add any constant we
wish.




The potential energy of gravitation for point masses M[image: -*-] and m[image: -*-], a
distance r[image: -*-] apart, is

[image: -*-][image: -*-]
(14.5)




The constant has been chosen here so that the potential is zero at
infinity. Of course the same formula applies to electrical charges,
because it is the same law:

[image: -*-][image: -*-]
(14.6)







Now let us actually use one of these formulas, to see whether we
understand what it means. Question: How fast do we have to
shoot a rocket away from the earth in order for it to leave?
Solution: The kinetic plus potential energy must be a constant;
when it “leaves,” it will be millions of miles away, and if it is
just barely able to leave, we may suppose that it is moving with zero
speed out there, just barely going. Let a[image: -*-] be the radius of the
earth, and M[image: -*-] its mass. The kinetic plus potential energy is then
initially given by [image: \tfrac{1}{2}mv^2 - GmM/a][image: \tfrac{1}{2}mv^2 - GmM/a]. At the end of the
motion the two energies must be equal. The kinetic energy is taken to
be zero at the end of the motion, because it is supposed to be just
barely drifting away at essentially zero speed, and the potential
energy is G m M[image: -*-] divided by infinity, which is zero. So everything is
zero on one side and that tells us that the square of the velocity
must be 2 G M/a[image: -*-]. But G M/a2[image: -*-] is what we call the acceleration of
gravity, g[image: -*-]. Thus

[image: -*-][image: -*-]





At what speed must a satellite travel in order to keep going around
the earth? We worked this out long ago and found that v2=G M/a[image: -*-]. Therefore to go away from the earth, we need
√2[image: -*-] times the velocity we need to just go around the earth near
its
surface. We need, in other words, twice as much energy (because
energy goes as the square of the velocity) to leave the earth as we do
to go around it. Therefore the first thing that was done historically
with satellites was to get one to go around the earth, which requires
a speed of five miles per second. The next thing was to send a
satellite away from the earth permanently; this required twice the
energy, or about seven miles per second.




Now, continuing our discussion of the characteristics of potential
energy, let us consider the interaction of two molecules, or two
atoms, two oxygen atoms for instance. When they are very far apart,
the force is one of attraction, which varies as the inverse seventh
power of the distance, and when they are very close the force is a
very large repulsion. If we integrate the inverse seventh power to
find the work done, we find that the potential energy U[image: -*-], which is a
function of the radial distance between the two oxygen atoms, varies
as the inverse sixth power of the distance for large distances.



[image: -][image: -]
Fig. 14–3. The potential energy between two atoms as a function of the
distance between them.





If we sketch the curve of the potential energy U (r)[image: -*-] as in
Fig. 14–3, we thus start out at large r[image: -*-] with an inverse
sixth power, but if we come in sufficiently near we reach a point d[image: -*-]
where there is a minimum of potential energy. The minimum of potential
energy at r=d[image: -*-] means this: if we start at d[image: -*-] and move a small
distance, a very small distance, the work done, which is the change in
potential energy when we move this distance, is nearly zero, because
there is very little change in potential energy at the bottom of the
curve. Thus there is no force at this point, and so it is the
equilibrium point. Another way to see that it is the equilibrium point
is that it takes work to move away from d[image: -*-] in either direction. When
the two oxygen atoms have settled down, so that no more energy can be
liberated from the force between them, they are in the lowest energy
state, and they will be at this separation d[image: -*-]. This is the way an
oxygen molecule looks when it is cold. When we heat it up, the atoms
shake and move farther apart, and we can in fact break them apart, but
to do so takes a certain amount of work or energy, which is the
potential energy difference between r=d[image: -*-] and r=∞[image: -*-]. When we try
to push the atoms very close together the energy goes up very rapidly,
because they repel each other.




The reason we bring this out is that the idea of force is not
particularly suitable for quantum mechanics; there the idea of
energy is most natural. We find that although forces and
velocities “dissolve” and disappear when we consider the more
advanced forces between nuclear matter and between molecules and so
on, the energy concept remains. Therefore we find curves of potential
energy in quantum mechanics books, but very rarely do we ever see a
curve for the force between two molecules, because by that time people
who are doing analyses are thinking in terms of energy rather than of
force.




Next we note that if several conservative forces are acting on an object
at the same time, then the potential energy of the object is the sum of
the potential energies from each of the separate forces. This is the
same proposition that we mentioned before, because if the force can be
represented as a vector sum of forces, then the work done by the total
force is the sum of the works done by the partial forces, and it can
therefore be analyzed as changes in the potential energies of each of
them separately. Thus the total potential energy is the sum of all the
little pieces.




We could generalize this to the case of a system of many objects
interacting with one another, like Jupiter, Saturn, Uranus, etc., or
oxygen, nitrogen, carbon, etc., which are acting with respect to one
another in pairs due to forces all of which are conservative. In these
circumstances the kinetic energy in the entire system is simply the
sum of the kinetic energies of all of the particular atoms or planets
or whatever, and the potential energy of the system is the sum, over
the pairs of particles, of the potential energy of mutual interaction
of a single pair, as though the others were not there. (This is really
not true for molecular forces, and the formula is somewhat more
complicated; it certainly is true for Newtonian gravitation, and it is
true as an approximation for molecular forces. For molecular forces
there is a potential energy, but it is sometimes a more complicated
function of the positions of the atoms than simply a sum of terms from
pairs.) In the special case of gravity, therefore, the potential
energy is the sum, over all the pairs i[image: -*-] and j[image: -*-],
of −G mi mj/ri j[image: -*-], as was indicated in Eq. (13.14).
Equation (13.14) expressed mathematically the following
proposition: that the total kinetic energy plus the total potential
energy does not change with time. As the various planets wheel about,
and turn and twist and so on, if we calculate the total kinetic energy
and the total potential energy we find that the total remains constant.







14–4 Nonconservative forces


We have spent a considerable time discussing conservative forces; what
about nonconservative forces? We shall take a deeper view of this than
is usual, and state that there are no nonconservative forces! As a
matter of fact, all the fundamental forces in nature appear to be
conservative. This is not a consequence of Newton’s
laws. In fact, so far as
Newton himself knew, the forces
could be nonconservative, as friction apparently is. When we say
friction apparently is, we are taking a modern view, in which it
has been discovered that all the deep forces, the forces between the
particles at the most fundamental level, are conservative.




If, for example, we analyze a system like that great globular star
cluster that we saw a picture of, with the thousands of stars all
interacting, then the formula for the total potential energy is simply
one term plus another term, etc., summed over all pairs of stars, and
the kinetic energy is the sum of the kinetic energies of all the
individual stars. But the globular cluster as a whole is drifting in
space too, and, if we were far enough away from it and did not see the
details, could be thought of as a single object. Then if forces were
applied to it, some of those forces might end up driving it forward as
a whole, and we would see the center of the whole thing moving. On the
other hand, some of the forces can be, so to speak, “wasted” in
increasing the kinetic or potential energy of the “particles”
inside. Let us suppose, for instance, that the action of these forces
expands the whole cluster and makes the particles move faster. The
total energy of the whole thing is really conserved, but seen from the
outside with our crude eyes which cannot see the confusion of motions
inside, and just thinking of the kinetic energy of the motion of the
whole object as though it were a single particle, it would appear that
energy is not conserved, but this is due to a lack of appreciation of
what it is that we see. And that, it turns out, is the case: the total
energy of the world, kinetic plus potential, is a constant when we
look closely enough.




When we study matter in the finest detail at the atomic level, it is not
always easy to separate the total energy of a thing into two
parts, kinetic energy and potential energy, and such separation is not
always necessary. It is almost always possible to do it, so let
us say that it is always possible, and that the
potential-plus-kinetic energy of the world is constant. Thus the total
potential-plus-kinetic energy inside the whole world is constant, and if
the “world” is a piece of isolated material, the energy is constant if
there are no external forces. But as we have seen, some of the kinetic
and potential energy of a thing may be internal, for instance the
internal molecular motions, in the sense that we do not notice it. We
know that in a glass of water everything is jiggling around, all the
parts are moving all the time, so there is a certain kinetic energy
inside, which we ordinarily may not pay any attention to. We do not
notice the motion of the atoms, which produces heat, and so we do not
call it kinetic energy, but heat is primarily kinetic energy. Internal
potential energy may also be in the form, for instance, of chemical
energy: when we burn gasoline energy is liberated because the potential
energies of the atoms in the new atomic arrangement are lower than in
the old arrangement. It is not strictly possible to treat heat as being
pure kinetic energy, for a little of the potential gets in, and vice
versa for chemical energy, so we put the two together and say that the
total kinetic and potential energy inside an object is partly heat,
partly chemical energy, and so on. Anyway, all these different forms of
internal energy are sometimes considered as “lost” energy in the sense
described above; this will be made clearer when we study thermodynamics.




As another example, when friction is present it is not true that
kinetic energy is lost, even though a sliding object stops and the
kinetic energy seems to be lost. The kinetic energy is not lost
because, of course, the atoms inside are jiggling with a greater
amount of kinetic energy than before, and although we cannot see that,
we can measure it by determining the temperature. Of course if we
disregard the heat energy, then the conservation of energy theorem
will appear to be false.




Another situation in which energy conservation appears to be false is
when we study only part of a system. Naturally, the conservation of
energy theorem will appear not to be true if something is interacting
with something else on the outside and we neglect to take that
interaction into account.




In classical physics potential energy involved only gravitation and
electricity, but now we have nuclear energy and other energies
also. Light, for example, would involve a new form of energy in the
classical theory, but we can also, if we want to, imagine that the
energy of light is the kinetic energy of a photon, and then our
formula (14.2) would still be right.







14–5 Potentials and fields


We shall now discuss a few of the ideas associated with potential
energy and with the idea of a field. Suppose we have two large
objects A[image: -*-] and B[image: -*-] and a third very small one which is attracted
gravitationally by the two, with some resultant force F[image: -*-]. We have
already noted in Chapter 12 that the gravitational force
on a particle can be written as its mass, m[image: -*-], times another vector,
C[image: -*-], which is dependent only upon the position of the
particle:

[image: -*-][image: -*-]


We can analyze gravitation, then, by imagining that there is a certain
vector C[image: -*-] at every position in space which “acts” upon a mass
which we may place there, but which is there itself whether we
actually supply a mass for it to “act” on or not. C[image: -*-] has three
components, and each of those components is a function of (x,y,z)[image: -*-], a
function of position in space. Such a thing we call a field,
and we say that the objects A[image: -*-] and B[image: -*-] generate the field,
i.e., they “make” the vector C[image: -*-]. When an object is put in a
field, the force on it is equal to its mass times the value of the
field vector at the point where the object is put.




We can also do the same with the potential energy. Since the potential
energy, the integral of [image: (-\textbf{force})\cdot(d\FLPs)][image: (-\textbf{force})\cdot(d\FLPs)] can be
written as m[image: -*-] times the integral
of [image: (-\textbf{field})\cdot(d\FLPs)][image: (-\textbf{field})\cdot(d\FLPs)], a mere change of scale, we see
that the potential energy U (x,y,z)[image: -*-] of an object located at a
point (x,y,z)[image: -*-] in space can be written as m[image: -*-] times another function
which we may call the potential Ψ[image: -*-]. The
integral ∫C⋅d s=−Ψ[image: -*-], just as ∫F⋅d s=−U[image: -*-]; there is only a scale factor between the two:



[image: -*-][image: -*-]
(14.7)





By having this function Ψ (x,y,z)[image: -*-] at every point in space, we can
immediately calculate the potential energy of an object at any point
in space, namely, U (x,y,z)=m Ψ (x,y,z)[image: -*-]—rather a trivial
business, it seems. But it is not really trivial, because it is
sometimes much nicer to describe the field by giving the value
of Ψ[image: -*-] everywhere in space instead of having to give C[image: -*-]. Instead
of having to write three complicated components of a vector function,
we can give instead the scalar function Ψ[image: -*-]. Furthermore, it is
much easier to calculate Ψ[image: -*-] than any given component of C[image: -*-]
when the field is produced by a number of masses, for since the
potential is a scalar we merely add, without worrying about
direction. Also, the field C[image: -*-] can be recovered easily
from Ψ[image: -*-], as we shall shortly see. Suppose we have point masses m1[image: -*-],
m2[image: -*-], … at the points 1, 2, … and we wish to know the
potential Ψ[image: -*-] at some arbitrary point p[image: -*-]. This is simply the sum
of the potentials at p[image: -*-] due to the individual masses taken one by
one:

[image: -*-][image: -*-]
(14.8)






[image: -][image: -]
Fig. 14–4. Potential due to a spherical shell of radius a[image: -*-].





In the last chapter we used this formula, that the potential is the
sum of the potentials from all the different objects, to calculate the
potential due to a spherical shell of matter by adding the
contributions to the potential at a point from all parts of the
shell. The result of this calculation is shown graphically in
Fig. 14–4.  It is negative, having the value zero at r=∞[image: -*-] and varying as 1/r[image: -*-] down to the radius a[image: -*-], and then is
constant inside the shell. Outside the shell the potential is −G m/r[image: -*-],
where m[image: -*-] is the mass of the shell, which is exactly the same as it
would have been if all the mass were located at the center. But it is
not everywhere exactly the same, for inside the shell the
potential turns out to be −G m/a[image: -*-], and is a constant! When the
potential is constant, there is no field, or when the potential energy
is constant there is no force, because if we move an object from one
place to another anywhere inside the sphere the work done by the force
is exactly zero.  Why? Because the work done in moving the object from
one place to the other is equal to minus the change in the potential
energy (or, the corresponding field integral is the change of the
potential). But the potential energy is the same at any two
points inside, so there is zero change in potential energy, and
therefore no work is done in going between any two points inside the
shell. The only way the work can be zero for all directions of
displacement is that there is no force at all.




This gives us a clue as to how we can obtain the force or the field,
given the potential energy. Let us suppose that the potential energy
of an object is known at the position (x,y,z)[image: -*-] and we want to know
what the force on the object is. It will not do to know the potential
at only this one point, as we shall see; it requires knowledge of the
potential at neighboring points as well. Why? How can we calculate the
x[image: -*-]-component of the force? (If we can do this, of course, we can also
find the y[image: -*-]- and z[image: -*-]-components, and we will then know the whole
force.)  Now, if we were to move the object a small distance Δ x[image: -*-], the work done by the force on the object would be the
x[image: -*-]-component of the force times Δ x[image: -*-], if Δ x[image: -*-] is
sufficiently small, and this should equal the change in potential
energy in going from one point to the other:

[image: -*-][image: -*-]
(14.9)




We have merely used the formula ∫F⋅d s=−Δ U[image: -*-], but
for a very short path. Now we divide by Δ x[image: -*-] and so find
that the force is

[image: -*-][image: -*-]
(14.10)







Of course this is not exact. What we really want is the limit
of (14.10) as Δ x[image: -*-] gets smaller and smaller, because it
is only exactly right in the limit of infinitesimal Δ x[image: -*-].
This we recognize as the derivative of U[image: -*-] with respect to x[image: -*-], and we
would be inclined, therefore, to write −d U/d x[image: -*-]. But U[image: -*-] depends on
x[image: -*-], y[image: -*-], and z[image: -*-], and the mathematicians have invented a different symbol to
remind us to be very careful when we are differentiating such a
function, so as to remember that we are considering that only x[image: -*-]
varies, and y[image: -*-] and z[image: -*-] do not vary. Instead of a d[image: -*-] they simply make
a “backwards 6,” or ∂[image: -*-]. (A ∂[image: -*-] should have been used
in the beginning of calculus because we always want to cancel that d[image: -*-],
but we never want to cancel a ∂[image: -*-]!) So they write ∂U/∂x[image: -*-],
and furthermore, in moments of duress, if they want to be very
careful, they put a line beside it with a little y z[image: -*-] at the bottom
(∂U/∂xy z[image: -*-]), which means “Take the derivative of U[image: -*-] with
respect to x[image: -*-], keeping y[image: -*-] and z[image: -*-] constant.” Most often we leave out
the remark about what is kept constant because it is usually evident
from the context, so we usually do not use the line with the y[image: -*-]
and z[image: -*-]. However, always use a ∂[image: -*-] instead of a d[image: -*-] as a
warning that it is a derivative with some other variables kept constant.
This is called a partial derivative; it is a derivative in
which we vary only x[image: -*-].




Therefore, we find that the force in the x[image: -*-]-direction is minus the
partial derivative of U[image: -*-] with respect to x[image: -*-]:

[image: -*-][image: -*-]
(14.11)




In a similar way, the force in the y[image: -*-]-direction can be found by
differentiating U[image: -*-] with respect to y[image: -*-], keeping x[image: -*-] and z[image: -*-] constant,
and the third component, of course, is the derivative with respect
to z[image: -*-], keeping y[image: -*-] and x[image: -*-] constant:

[image: -*-][image: -*-]
(14.12)




This is the way to get from the potential energy to the force. We get
the field from the potential in exactly the same way:



[image: -*-][image: -*-]
(14.13)










Incidentally, we shall mention here another notation, which we shall
not actually use for quite a while: Since C[image: -*-] is a vector and has
x[image: -*-]-, y[image: -*-]-, and z[image: -*-]-components, the symbolized ∂/∂x[image: -*-], ∂/∂y[image: -*-],
and ∂/∂z[image: -*-] which produce the x[image: -*-]-, y[image: -*-]-,
and z[image: -*-]-components are something like vectors. The mathematicians have
invented a glorious new symbol, ∇[image: -*-], called “grad” or
“gradient”, which is not a quantity but an operator that
makes a vector from a scalar. It has the following “components”: The
x[image: -*-]-component of this “grad” is ∂/∂x[image: -*-] the y[image: -*-]-component
is ∂/∂y[image: -*-], and the z[image: -*-]-component is ∂/∂z[image: -*-], and then we have
the fun of writing our formulas this way:

[image: -*-][image: -*-]
(14.14)




Using ∇[image: -*-] gives us a quick way of testing whether we have a
real vector equation or not, but actually Eqs. (14.14)
mean precisely the same as Eqs. (14.11), (14.12)
and (14.13); it is just another way of writing them, and
since we do not want to write three equations every time, we just
write ∇U[image: -*-] instead.




One more example of fields and potentials has to do with the
electrical case. In the case of electricity the force on a stationary
object is the charge times the electric field: F=q E[image: -*-]. (In
general, of course, the x[image: -*-]-component of force in an electrical
problem has also a part which depends on the magnetic field. It is
easy to show from Eq. (12.11) that the force on a
particle due to magnetic fields is always at right angles to its
velocity, and also at right angles to the field. Since the force due
to magnetism on a moving charge is at right angles to the velocity,
no work is done by the magnetism on the moving charge because
the motion is at right angles to the force. Therefore, in calculating
theorems of kinetic energy in electric and magnetic fields we can
disregard the contribution from the magnetic field, since it does not
change the kinetic energy.) We suppose that there is only an electric
field. Then we can calculate the energy, or work done, in the same way
as for gravity, and calculate a quantity ϕ[image: -*-] which is minus the
integral of E⋅d s[image: -*-], from the arbitrary fixed point to the
point where we make the calculation, and then the potential energy in
an electric field is just charge times this quantity ϕ[image: -*-]:

[image: -*-][image: -*-]




[image: -][image: -]
Fig. 14–5. Field between parallel plates.





Let us take, as an example, the case of two parallel metal plates, each
with a surface charge of ±σ[image: -*-] per unit area. This is called a
parallel-plate capacitor. We found previously
that there is zero force outside the plates and that there is a constant
electric field between them, directed from +[image: -*-] to −[image: -*-] and of
magnitude σ/ϵ0[image: -*-] (Fig. 14–5). We would like to know
how much work would be done in carrying a charge from one plate to the
other. The work would be the [image: (\textbf{force})\cdot(d\FLPs)][image: (\textbf{force})\cdot(d\FLPs)]
integral, which can be written as charge times the potential value at
plate 1 minus that at plate 2:

[image: -*-][image: -*-]


We can actually work out the integral because the force is constant,
and if we call the separation of the plates d[image: -*-], then the integral is
easy:

[image: -*-][image: -*-]


The difference in potential, Δ ϕ=σ d/ϵ0[image: -*-], is called
the voltage difference, and ϕ[image: -*-] is measured in volts. When
we say a pair of plates is charged to a certain voltage, what we mean
is that the difference in electrical potential of the two plates is
so-and-so many volts. For a capacitor made of two parallel
plates carrying a surface charge ±σ[image: -*-], the voltage, or difference
in potential, of the pair of plates is σ d/ϵ0[image: -*-].








  
    

15 The Special Theory of Relativity



15–1 The principle of relativity


For over 200 years the equations of motion enunciated by
Newton were believed to describe
nature correctly, and the first time that an error in these laws was
discovered, the way to correct it was also discovered. Both the error
and its correction were discovered by Einstein in 1905.




Newton’s Second Law, which we have expressed by the equation

[image: -*-][image: -*-]


was stated with the tacit assumption that m[image: -*-] is a constant, but we now
know that this is not true, and that the mass of a body
increases with velocity. In Einstein’s corrected formula m[image: -*-] has the value

[image: -*-][image: -*-]
(15.1)




where the “rest mass” m0[image: -*-] represents the mass of a body that is not
moving and c[image: -*-] is the speed of light, which is about
3×105[image: -*-] km⋅[image: -*-]sec−1[image: -*-] or about
186,000[image: -*-] mi⋅[image: -*-]sec−1[image: -*-].





For those who want to learn just enough about it so they can solve
problems, that is all there is to the theory of relativity—it just
changes Newton’s laws by introducing
a correction factor to the mass. From the formula itself it is easy to
see that this mass increase is very small in ordinary circumstances. If
the velocity is even as great as that of a satellite, which goes around
the earth at 5 mi/sec, then v/c=5/186,000[image: -*-]: putting this value
into the formula shows that the correction to the mass is only one part
in two to three billion, which is nearly impossible to observe.
Actually, the correctness of the formula has been amply confirmed by the
observation of many kinds of particles, moving at speeds ranging up to
practically the speed of light. However, because the effect is
ordinarily so small, it seems remarkable that it was discovered
theoretically before it was discovered experimentally. Empirically, at a
sufficiently high velocity, the effect is very large, but it was not
discovered that way. Therefore it is interesting to see how a law that
involved so delicate a modification (at the time when it was first
discovered) was brought to light by a combination of experiments and
physical reasoning. Contributions to the discovery were made by a number
of people, the final result of whose work was
Einstein’s discovery.




There are really two Einstein
theories of relativity. This chapter is concerned with the Special
Theory of Relativity, which dates from 1905. In 1915
Einstein published an
additional theory, called the General Theory of Relativity. This latter
theory deals with the extension of the Special Theory to the case of the
law of gravitation; we shall not discuss the General Theory here.




The principle of relativity was first stated by Newton, in one of his corollaries to the laws of motion:
“The motions of bodies included in a given space are the same among
themselves, whether that space is at rest or moves uniformly forward in
a straight line.” This means, for example, that if a space ship is
drifting along at a uniform speed, all experiments performed in the
space ship and all the phenomena in the space ship will appear the same
as if the ship were not moving, provided, of course, that one does not
look outside. That is the meaning of the principle of relativity. This
is a simple enough idea, and the only question is whether it is
true that in all experiments performed inside a moving system the
laws of physics will appear the same as they would if the system were
standing still. Let us first investigate whether Newton’s
laws appear the same in the moving system.




[image: -][image: -]
Fig. 15–1. Two coordinate systems in uniform relative motion along their
x[image: -*-]-axes.





Suppose that Moe is moving in the x[image: -*-]-direction with a uniform
velocity u[image: -*-], and he measures the position of a certain point, shown
in Fig. 15–1. He designates the “x[image: -*-]-distance” of the
point in his coordinate system as x′[image: -*-]. Joe is at rest, and measures the
position of the same point, designating its x[image: -*-]-coordinate in his system
as x[image: -*-]. The relationship of the coordinates in the two systems is clear
from the diagram. After time t[image: -*-] Moe’s origin has moved a distance u t[image: -*-],
and if the two systems originally coincided,

[image: -*-][image: -*-]
(15.2)




If we substitute this transformation of coordinates into Newton’s
laws we find that these laws transform to
the same laws in the primed system; that is, the laws of Newton are of
the same form in a moving system as in a stationary system, and
therefore it is impossible to tell, by making mechanical experiments,
whether the system is moving or not.




The principle of relativity has been used in mechanics for a long time.
It was employed by various people, in particular
Huygens, to obtain the rules
for the collision of billiard balls, in much the same way as we used it
in Chapter 10 to discuss the conservation of momentum. In
the 19th century interest in it was heightened as the result of
investigations into the phenomena of electricity, magnetism, and light.
A long series of careful studies of these phenomena by many people
culminated in Maxwell’s equations of the electromagnetic field,
which describe electricity, magnetism, and light in one uniform system.
However, the Maxwell equations did not
seem to obey the principle of relativity. That is, if we transform
Maxwell’s equations by the substitution of
equations (15.2), their form does not remain the same;
therefore, in a moving space ship the electrical and optical phenomena
should be different from those in a stationary ship. Thus one could use
these optical phenomena to determine the speed of the ship; in
particular, one could determine the absolute speed of the ship by making
suitable optical or electrical measurements. One of the consequences of
Maxwell’s equations is that if there is a disturbance in the
field such that light is generated, these electromagnetic waves go out
in all directions equally and at the same speed c[image: -*-], or
186,000[image: -*-] mi/sec. Another consequence of the equations is that if the
source of the disturbance is moving, the light emitted goes through
space at the same speed c[image: -*-]. This is analogous to the case of sound, the
speed of sound waves being likewise independent of the motion of the
source.




This independence of the motion of the source, in the case of light,
brings up an interesting problem:




Suppose we are riding in a car that is going at a speed u[image: -*-], and light
from the rear is going past the car with speed c[image: -*-]. Differentiating the
first equation in (15.2) gives

[image: -*-][image: -*-]


which means that according to the Galilean
transformation the apparent speed
of the passing light, as we measure it in the car, should not be c[image: -*-] but
should be c−u[image: -*-]. For instance, if the car is going 100,000[image: -*-] mi/sec,
and the light is going 186,000[image: -*-] mi/sec, then apparently the light
going past the car should go 86,000[image: -*-] mi/sec. In any case, by
measuring the speed of the light going past the car (if the
Galilean transformation is
correct for light), one could determine the speed of the car. A number
of experiments based on this general idea were performed to determine
the velocity of the earth, but they all failed—they gave no
velocity at all. We shall discuss one of these experiments in detail,
to show exactly what was done and what was the matter; something
was the matter, of course, something was wrong with the equations
of physics. What could it be?







15–2 The Lorentz transformation


When the failure of the equations of physics in the above case came to
light, the first thought that occurred was that the trouble must lie in
the new Maxwell equations of electrodynamics,
which were only 20 years old at the time. It seemed almost obvious that
these equations must be wrong, so the thing to do was to change them in
such a way that under the Galilean
transformation the principle of
relativity would be satisfied. When this was tried, the new terms that
had to be put into the equations led to predictions of new electrical
phenomena that did not exist at all when tested experimentally, so this
attempt had to be abandoned. Then it gradually became apparent that
Maxwell’s laws of electrodynamics were correct, and the trouble must be
sought elsewhere.





In the meantime, H. A. Lorentz noticed a remarkable and curious thing when he made the
following substitutions in the Maxwell equations:

[image: -*-][image: -*-]
(15.3)




namely, Maxwell’s equations remain in the same form when this
transformation is applied to them! Equations (15.3) are known
as a Lorentz transformation. Einstein, following a suggestion originally made by
Poincaré, then proposed that
all the physical laws should be of such a kind that they
remain unchanged under a Lorentz transformation. In other words,
we should change, not the laws of electrodynamics, but the laws of
mechanics. How shall we change Newton’s laws so that they will remain unchanged by the Lorentz
transformation? If this goal is set, we then have to rewrite Newton’s
equations in such a way that the conditions we have imposed are
satisfied. As it turned out, the only requirement is that the mass m[image: -*-]
in Newton’s equations must be replaced by the form shown in
Eq. (15.1). When this change is made, Newton’s
laws and the laws of electrodynamics will
harmonize. Then if we use the Lorentz transformation in comparing Moe’s
measurements with Joe’s, we shall never be able to detect whether either
is moving, because the form of all the equations will be the same in
both coordinate systems!




It is interesting to discuss what it means that we replace the old
transformation between the coordinates and time with a new one, because
the old one (Galilean) seems to be self-evident, and the new one
(Lorentz) looks peculiar. We wish to know whether it is logically and
experimentally possible that the new, and not the old, transformation
can be correct. To find that out, it is not enough to study the laws of
mechanics but, as Einstein did,
we too must analyze our ideas of space and time in order
to understand this transformation. We shall have to discuss these ideas
and their implications for mechanics at some length, so we say in
advance that the effort will be justified, since the results agree with
experiment.







15–3 The Michelson-Morley experiment


As mentioned above, attempts were made to determine the absolute
velocity of the earth through the hypothetical “ether” that was
supposed to pervade all space. The most famous of these experiments is
one performed by Michelson
and Morley in 1887. It was 18
years later before the negative results of the experiment were finally
explained, by Einstein.



[image: -][image: -]
Fig. 15–2. Schematic diagram of the Michelson-Morley experiment.





The Michelson-Morley experiment was performed with an apparatus like
that shown schematically in Fig. 15–2. This apparatus is
essentially comprised of a light source A[image: -*-], a partially silvered glass
plate B[image: -*-], and two mirrors C[image: -*-] and E[image: -*-], all mounted on a rigid base. The
mirrors are placed at equal distances L[image: -*-] from B[image: -*-]. The plate B[image: -*-] splits
an oncoming beam of light, and the two resulting beams continue in
mutually perpendicular directions to the mirrors, where they are
reflected back to B[image: -*-]. On arriving back at B[image: -*-], the two beams are
recombined as two superposed beams, D[image: -*-] and F[image: -*-]. If the time taken for
the light to go from B[image: -*-] to E[image: -*-] and back is the same as the time from
B[image: -*-] to C[image: -*-] and back, the emerging beams D[image: -*-] and F[image: -*-] will be in phase and
will reinforce each other, but if the two times differ slightly, the
beams will be slightly out of phase and interference will result. If the
apparatus is “at rest” in the ether, the times should be precisely
equal, but if it is moving toward the right with a velocity u[image: -*-], there
should be a difference in the times. Let us see why.




First, let us calculate the time required for the light to go from B[image: -*-]
to E[image: -*-] and back. Let us say that the time for light to go from plate B[image: -*-]
to mirror E[image: -*-] is t1[image: -*-], and the time for the return is t2[image: -*-]. Now, while
the light is on its way from B[image: -*-] to the mirror, the apparatus moves a
distance u t1[image: -*-], so the light must traverse a distance L+u t1[image: -*-], at the
speed c[image: -*-]. We can also express this distance as c t1[image: -*-], so we have

[image: -*-][image: -*-]


(This result is also obvious from the point of view that the velocity of
light relative to the apparatus is c−u[image: -*-], so the time is the
length L[image: -*-] divided by c−u[image: -*-].) In a like manner, the time t2[image: -*-] can be
calculated. During this time the plate B[image: -*-] advances a distance u t2[image: -*-],
so the return distance of the light is L−u t2[image: -*-]. Then we have

[image: -*-][image: -*-]


Then the total time is

[image: -*-][image: -*-]


For convenience in later comparison of times we write this as

[image: -*-][image: -*-]
(15.4)









Our second calculation will be of the time t3[image: -*-] for the light to go
from B[image: -*-] to the mirror C[image: -*-]. As before, during time t3[image: -*-] the mirror C[image: -*-]
moves to the right a distance u t3[image: -*-] to the position C′[image: -*-]; in the same
time, the light travels a distance c t3[image: -*-] along the hypotenuse of a
triangle, which is B C′[image: -*-]. For this right triangle we have

[image: -*-][image: -*-]


or

[image: -*-][image: -*-]


from which we get

[image: -*-][image: -*-]


For the return trip from C′[image: -*-] the distance is the same, as can be seen
from the symmetry of the figure; therefore the return time is also the
same, and the total time is 2 t3[image: -*-]. With a little rearrangement of the
form we can write

[image: -*-][image: -*-]
(15.5)







We are now able to compare the times taken by the two beams of light. In
expressions (15.4) and (15.5) the numerators are
identical, and represent the time that would be taken if the apparatus
were at rest. In the denominators, the term u2/c2[image: -*-] will be small,
unless u[image: -*-] is comparable in size to c[image: -*-]. The denominators represent the
modifications in the times caused by the motion of the apparatus. And
behold, these modifications are not the same—the time to go
to C[image: -*-] and back is a little less than the time to E[image: -*-] and back, even
though the mirrors are equidistant from B[image: -*-], and all we have to do is to
measure that difference with precision.




Here a minor technical point arises—suppose the two lengths L[image: -*-] are
not exactly equal? In fact, we surely cannot make them exactly equal. In
that case we simply turn the apparatus 90[image: -*-] degrees, so that B C[image: -*-] is in
the line of motion and B E[image: -*-] is perpendicular to the
motion. Any small difference in length then becomes unimportant, and
what we look for is a shift in the interference fringes when we
rotate the apparatus.




In carrying out the experiment, Michelson and Morley
oriented the apparatus so that the line B E[image: -*-] was nearly parallel to the
earth’s motion in its orbit (at certain times of the day and night).
This orbital speed is about 18[image: -*-] miles per second, and any “ether
drift” should be at least that much at some time of the day or night
and at some time during the year. The apparatus was amply sensitive to
observe such an effect, but no time difference was found—the velocity
of the earth through the ether could not be detected. The result of the
experiment was null.




The result of the Michelson-Morley experiment was very puzzling and most
disturbing. The first fruitful idea for finding a way out of the impasse
came from Lorentz. He
suggested that material bodies contract when they are moving, and that
this foreshortening is only in the direction of the motion, and also,
that if the length is L0[image: -*-] when a body is at rest, then when it moves
with speed u[image: -*-] parallel to its length, the new length, which we
call L∥[image: -*-] (L[image: -*-]-parallel), is given by

[image: -*-][image: -*-]
(15.6)




When this modification is applied to the Michelson-Morley
interferometer apparatus the distance from B[image: -*-]
to C[image: -*-] does not change, but the distance from B[image: -*-] to E[image: -*-] is shortened
to L √1−u2/c2[image: -*-]. Therefore Eq. (15.5) is not
changed, but the L[image: -*-] of Eq. (15.4) must be changed in
accordance with Eq. (15.6). When this is done we obtain

[image: -*-][image: -*-]
(15.7)




Comparing this result with Eq. (15.5), we see that t1+t2=2 t3[image: -*-]. So if the apparatus shrinks in the manner just described, we
have a way of understanding why the Michelson-Morley experiment gives no
effect at all. Although the contraction hypothesis successfully
accounted for the negative result of the experiment, it was open to the
objection that it was invented for the express purpose of explaining
away the difficulty, and was too artificial. However, in many other
experiments to discover an ether wind, similar difficulties arose, until
it appeared that nature was in a “conspiracy” to thwart man by
introducing some new phenomenon to undo every phenomenon that he thought
would permit a measurement of u[image: -*-].




It was ultimately recognized, as Poincaré pointed out, that a complete conspiracy is itself a
law of nature! Poincaré then
proposed that there is such a law of nature, that it is not
possible to discover an ether wind by any experiment; that is,
there is no way to determine an absolute velocity.







15–4 Transformation of time


In checking out whether the contraction idea is in harmony with the
facts in other experiments, it turns out that everything is correct
provided that the times are also modified, in the manner
expressed in the fourth equation of the set (15.3). That is
because the time t3[image: -*-], calculated for the trip from B[image: -*-] to C[image: -*-] and
back, is not the same when calculated by a man performing the experiment
in a moving space ship as when calculated by a stationary observer who
is watching the space ship. To the man in the ship the time is
simply 2 L/c[image: -*-], but to the other observer it is (2 L/c)/√1−u2/c2[image: -*-] (Eq. 15.5). In other words, when the outsider sees
the man in the space ship lighting a cigar, all the actions appear to be
slower than normal, while to the man inside, everything moves at a
normal rate. So not only must the lengths shorten, but also the
time-measuring instruments (“clocks”) must apparently slow down. That
is, when the clock in the space ship records 1 second elapsed, as seen
by the man in the ship, it shows 1/√1−u2/c2[image: -*-] second to the
man outside.




This slowing of the clocks in a moving system is a very peculiar
phenomenon, and is worth an explanation. In order to understand this, we
have to watch the machinery of the clock and see what happens when it is
moving. Since that is rather difficult, we shall take a very simple kind
of clock. The one we choose is rather a silly kind of clock, but it will
work in principle: it is a rod (meter stick) with a mirror at each end,
and when we start a light signal between the mirrors, the light keeps
going up and down, making a click every time it comes down, like a
standard ticking clock. We build two such clocks, with exactly the same
lengths, and synchronize them by starting them together; then they agree
always thereafter, because they are the same in length, and light always
travels with speed c[image: -*-]. We give one of these clocks to the man to take
along in his space ship, and he mounts the rod perpendicular to the
direction of motion of the ship; then the length of the rod will not
change. How do we know that perpendicular lengths do not change? The men
can agree to make marks on each other’s y[image: -*-]-meter stick as they pass
each other. By symmetry, the two marks must come at the same y[image: -*-]-
and y′[image: -*-]-coordinates, since otherwise, when they get together to compare
results, one mark will be above or below the other, and so we could tell
who was really moving.



[image: -][image: -][image: -][image: -][image: -][image: -]
Fig. 15–3. (a) A “light clock” at rest in the S′[image: -*-] system. (b) The same
clock, moving through the S[image: -*-] system. (c) Illustration of the diagonal
path taken by the light beam in a moving “light clock.”





Now let us see what happens to the moving clock. Before the man took it
aboard, he agreed that it was a nice, standard clock, and when he goes
along in the space ship he will not see anything peculiar. If he did, he
would know he was moving—if anything at all changed because of the
motion, he could tell he was moving. But the principle of relativity
says this is impossible in a uniformly moving system, so nothing has
changed. On the other hand, when the external observer looks at the
clock going by, he sees that the light, in going from mirror to mirror,
is “really” taking a zigzag path, since the rod is moving sidewise all
the while. We have already analyzed such a zigzag motion in connection
with the Michelson-Morley experiment.
If in a given time the rod moves forward a distance proportional to u[image: -*-]
in Fig. 15–3, the distance the light travels in the same
time is proportional to c[image: -*-], and the vertical distance is therefore
proportional to √c2−u2[image: -*-].





That is, it takes a longer time for light to go from end to end
in the moving clock than in the stationary clock. Therefore the apparent
time between clicks is longer for the moving clock, in the same
proportion as shown in the hypotenuse of the triangle (that is the
source of the square root expressions in our equations). From the figure
it is also apparent that the greater u[image: -*-] is, the more slowly the moving
clock appears to run. Not only does this particular kind of clock run
more slowly, but if the theory of relativity is correct, any other
clock, operating on any principle whatsoever, would also appear to run
slower, and in the same proportion—we can say this without further
analysis. Why is this so?




To answer the above question, suppose we had two other clocks made
exactly alike with wheels and gears, or perhaps based on radioactive
decay, or something else. Then we adjust these clocks so they both run
in precise synchronism with our first clocks. When light goes up and
back in the first clocks and announces its arrival with a click, the new
models also complete some sort of cycle, which they simultaneously
announce by some doubly coincident flash, or bong, or other signal. One
of these clocks is taken into the space ship, along with the first kind.
Perhaps this clock will not run slower, but will continue to keep
the same time as its stationary counterpart, and thus disagree with the
other moving clock. Ah no, if that should happen, the man in the ship
could use this mismatch between his two clocks to determine the speed of
his ship, which we have been supposing is impossible. We need not
know anything about the machinery of the new clock that might cause the
effect—we simply know that whatever the reason, it will appear to run
slow, just like the first one.




Now if all moving clocks run slower, if no way of measuring time
gives anything but a slower rate, we shall just have to say, in a
certain sense, that time itself appears to be slower in a space
ship. All the phenomena there—the man’s pulse rate, his thought
processes, the time he takes to light a cigar, how long it takes to grow
up and get old—all these things must be slowed down in the same
proportion, because he cannot tell he is moving. The biologists and
medical men sometimes say it is not quite certain that the time it takes
for a cancer to develop will be longer in a space ship, but from the
viewpoint of a modern physicist it is nearly certain; otherwise one
could use the rate of cancer development to determine the speed of the
ship!




A very interesting example of the slowing of time with motion is
furnished by mu-mesons (muons), which are particles that disintegrate
spontaneously after an average lifetime of 2.2×10−6[image: -*-] sec. They
come to the earth in cosmic rays, and can also be produced artificially
in the laboratory. Some of them disintegrate in midair, but the
remainder disintegrate only after they encounter a piece of material and
stop. It is clear that in its short lifetime a muon cannot travel, even
at the speed of light, much more than 600[image: -*-] meters. But although the
muons are created at the top of the atmosphere, some 10[image: -*-] kilometers up,
yet they are actually found in a laboratory down here, in cosmic rays.
How can that be? The answer is that different muons move at various
speeds, some of which are very close to the speed of light. While from
their own point of view they live only about 2 μ[image: -*-]sec, from our
point of view they live considerably longer—enough longer that they
may reach the earth. The factor by which the time is increased has
already been given as 1/√1−u2/c2[image: -*-]. The average life has been
measured quite accurately for muons of different velocities, and the
values agree closely with the formula.




We do not know why the meson disintegrates or what its machinery is, but
we do know its behavior satisfies the principle of relativity. That is
the utility of the principle of relativity—it permits us to make
predictions, even about things that otherwise we do not know much about.
For example, before we have any idea at all about what makes the meson
disintegrate, we can still predict that when it is moving at nine-tenths
of the speed of light, the apparent length of time that it lasts is
(2.2×10−6)/√1−92/102[image: -*-] sec; and our prediction
works—that is the good thing about it.







15–5 The Lorentz contraction


Now let us return to the Lorentz transformation (15.3) and
try to get a better understanding of the relationship between
the (x,y,z,t)[image: -*-] and the (x′,y′,z′,t′)[image: -*-] coordinate systems, which we
shall call the S[image: -*-] and S′[image: -*-] systems, or Joe and Moe systems,
respectively. We have already noted that the first equation is based on
the Lorentz suggestion of contraction along the x[image: -*-]-direction; how can
we prove that a contraction takes place? In the Michelson-Morley
experiment, we now appreciate that
the transverse arm B C[image: -*-] cannot change length, by the principle of
relativity; yet the null result of the experiment demands that the
times must be equal. So, in order for the experiment to give a
null result, the longitudinal arm B E[image: -*-] must appear shorter, by the
square root √1−u2/c2[image: -*-]. What does this contraction mean, in
terms of measurements made by Joe and Moe?  Suppose that Moe, moving
with the S′[image: -*-] system in the x[image: -*-]-direction, is measuring the
x′[image: -*-]-coordinate of some point with a meter stick. He lays the stick down
x′[image: -*-] times, so he thinks the distance is x′[image: -*-] meters. From the viewpoint
of Joe in the S[image: -*-] system, however, Moe is using a foreshortened ruler,
so the “real” distance measured is x′ √1−u2/c2[image: -*-] meters. Then
if the S′[image: -*-] system has travelled a distance u t[image: -*-] away from the
S[image: -*-] system, the S[image: -*-] observer would say that the same point, measured in
his coordinates, is at a distance x=x′ √1−u2/c2+u t[image: -*-], or

[image: -*-][image: -*-]


which is the first equation of the Lorentz transformation.







15–6 Simultaneity


In an analogous way, because of the difference in time scales, the
denominator expression is introduced into the fourth equation of the
Lorentz transformation.  The most interesting term in that equation is
the u x/c2[image: -*-] in the numerator, because that is quite new and unexpected.
Now what does that mean? If we look at the situation carefully we see
that events that occur at two separated places at the same time, as seen
by Moe in S′[image: -*-], do not happen at the same time as viewed by Joe
in S[image: -*-].  If one event occurs at point x1[image: -*-] at time t0[image: -*-] and the other
event at x2[image: -*-] and t0[image: -*-] (the same time), we find that the two
corresponding times [image: t_1'][image: t_1'] and [image: t_2'][image: t_2'] differ by an amount

[image: -*-][image: -*-]


This circumstance is called “failure of simultaneity at a distance,”
and to make the idea a little clearer let us consider the following
experiment.




Suppose that a man moving in a space ship (system S′[image: -*-]) has placed a
clock at each end of the ship and is interested in making sure that the
two clocks are in synchronism. How can the clocks be synchronized? There
are many ways. One way, involving very little calculation, would be
first to locate exactly the midpoint between the clocks. Then from this
station we send out a light signal which will go both ways at the same
speed and will arrive at both clocks, clearly, at the same time. This
simultaneous arrival of the signals can be used to synchronize the
clocks. Let us then suppose that the man in S′[image: -*-] synchronizes his clocks
by this particular method. Let us see whether an observer in system S[image: -*-]
would agree that the two clocks are synchronous. The man in S′[image: -*-] has a
right to believe they are, because he does not know that he is moving.
But the man in S[image: -*-] reasons that since the ship is moving forward, the
clock in the front end was running away from the light signal, hence the
light had to go more than halfway in order to catch up; the rear clock,
however, was advancing to meet the light signal, so this distance was
shorter. Therefore the signal reached the rear clock first, although the
man in S′[image: -*-] thought that the signals arrived simultaneously. We thus see
that when a man in a space ship thinks the times at two locations are
simultaneous, equal values of t′[image: -*-] in his coordinate system must
correspond to different values of t[image: -*-] in the other coordinate
system!







15–7 Four-vectors


Let us see what else we can discover in the Lorentz transformation. It
is interesting to note that the transformation between the x[image: -*-]’s
and t[image: -*-]’s is analogous in form to the transformation of the x[image: -*-]’s
and y[image: -*-]’s that we studied in Chapter 11 for a rotation of
coordinates. We then had

[image: -*-][image: -*-]
(15.8)




in which the new x′[image: -*-] mixes the old x[image: -*-] and y[image: -*-], and the new y′[image: -*-] also
mixes the old x[image: -*-] and y[image: -*-]; similarly, in the Lorentz transformation we
find a new x′[image: -*-] which is a mixture of x[image: -*-] and t[image: -*-], and a new t′[image: -*-] which
is a mixture of t[image: -*-] and x[image: -*-]. So the Lorentz transformation is analogous
to a rotation, only it is a “rotation” in space and time, which
appears to be a strange concept. A check of the analogy to rotation can
be made by calculating the quantity

[image: -*-][image: -*-]
(15.9)




In this equation the first three terms on each side represent, in
three-dimensional geometry, the square of the distance between a point
and the origin (surface of a sphere) which remains unchanged (invariant)
regardless of rotation of the coordinate axes. Similarly,
Eq. (15.9) shows that there is a certain combination which
includes time, that is invariant to a Lorentz transformation. Thus, the
analogy to a rotation is complete, and is of such a kind that vectors,
i.e., quantities involving “components” which transform the same way
as the coordinates and time, are also useful in connection with
relativity.




Thus we contemplate an extension of the idea of vectors, which we have
so far considered to have only space components, to include a time
component. That is, we expect that there will be vectors with four
components, three of which are like the components of an ordinary
vector, and with these will be associated a fourth component, which is
the analog of the time part.




This concept will be analyzed further in the next chapters, where we
shall find that if the ideas of the preceding paragraph are applied to
momentum, the transformation gives three space parts that are like
ordinary momentum components, and a fourth component, the time part,
which is the energy.







15–8 Relativistic dynamics


We are now ready to investigate, more generally, what form the laws of
mechanics take under the Lorentz transformation. [We have thus far
explained how length and time change, but not how we get the modified
formula for m[image: -*-] (Eq. 15.1). We shall do this in the next
chapter.] To see the consequences of Einstein’s modification of m[image: -*-] for Newtonian mechanics, we
start with the Newtonian law that force is the rate of change of
momentum, or

[image: -*-][image: -*-]


Momentum is still given by m v[image: -*-], but when we use the new m[image: -*-] this becomes

[image: -*-][image: -*-]
(15.10)




This is Einstein’s modification of Newton’s
laws. Under this modification, if action
and reaction are still equal (which they may not be in detail, but are
in the long run), there will be conservation of momentum in the same way
as before, but the quantity that is being conserved is not the
old m v[image: -*-] with its constant mass, but instead is the quantity shown
in (15.10), which has the modified mass. When this change is
made in the formula for momentum, conservation of momentum still works.





Now let us see how momentum varies with speed. In Newtonian mechanics it
is proportional to the speed and, according (15.10), over a
considerable range of speed, but small compared with c[image: -*-], it is nearly
the same in relativistic mechanics, because the square-root expression
differs only slightly from 1. But when v[image: -*-] is almost equal to c[image: -*-], the
square-root expression approaches zero, and the momentum therefore goes
toward infinity.




What happens if a constant force acts on a body for a long time? In
Newtonian mechanics the body keeps picking up speed until it goes faster
than light. But this is impossible in relativistic mechanics. In
relativity, the body keeps picking up, not speed, but momentum, which
can continually increase because the mass is increasing. After a while
there is practically no acceleration in the sense of a change of
velocity, but the momentum continues to increase. Of course, whenever a
force produces very little change in the velocity of a body, we say that
the body has a great deal of inertia, and that is exactly what our
formula for relativistic mass says (see Eq. 15.10)—it says
that the inertia is very great when v[image: -*-] is nearly as great as c[image: -*-]. As an
example of this effect, to deflect the high-speed electrons in the
synchrotron that is used here at Caltech, we need a
magnetic field that is 2000[image: -*-] times stronger than would be expected on
the basis of Newton’s laws. In other
words, the mass of the electrons in the synchrotron
is 2000[image: -*-] times as great as their normal mass, and is as great as that
of a proton! That m[image: -*-] should be 2000[image: -*-] times m0[image: -*-] means that 1−v2/c2[image: -*-] must be 1/4,000,000[image: -*-], and that means that v[image: -*-] differs from
c[image: -*-] by one part in 8,000,000[image: -*-], so the electrons are getting pretty
close to the speed of light. If the electrons and light were both to
start from the synchrotron (estimated as 700[image: -*-] feet
away) and rush out to Bridge Lab, which would arrive first? The light,
of course, because light always travels faster.1 How much
earlier? That is too hard to tell—instead, we tell by what distance
the light is ahead: it is about 1/1000[image: -*-] of an inch, or
[image: \tfrac{1}{4}][image: \tfrac{1}{4}] the thickness of a piece of paper!  When the electrons
are going that fast their masses are enormous, but their speed cannot
exceed the speed of light.




Now let us look at some further consequences of relativistic change of
mass. Consider the motion of the molecules in a small tank of gas. When
the gas is heated, the speed of the molecules is increased, and
therefore the mass is also increased and the gas is heavier. An
approximate formula to express the increase of mass, for the case when
the velocity is small, can be found by expanding m0/√1−v2/c2=m0 (1−v2/c2)−1/2[image: -*-] in a power series, using the binomial
theorem. We get

[image: -*-][image: -*-]


We see clearly from the formula that the series converges rapidly when
v[image: -*-] is small, and the terms after the first two or three are negligible.
So we can write

[image: -*-][image: -*-]
(15.11)




in which the second term on the right expresses the increase of mass due
to molecular velocity. When the temperature increases the v2[image: -*-]
increases proportionately, so we can say that the increase in mass is
proportional to the increase in temperature. But
since [image: \tfrac{1}{2}m_0v^2][image: \tfrac{1}{2}m_0v^2] is the kinetic energy in the old-fashioned
Newtonian sense, we can also say that the increase in mass of all this
body of gas is equal to the increase in kinetic energy divided by c2[image: -*-],
or Δ m=Δ (K.E.)/c2[image: -*-].







15–9 Equivalence of mass and energy


The above observation led Einstein to the suggestion that the mass of a body can be expressed
more simply than by the formula (15.1), if we say that the
mass is equal to the total energy content divided by c2[image: -*-]. If
Eq. (15.11) is multiplied by c2[image: -*-] the result is

[image: -*-][image: -*-]
(15.12)




Here, the term on the left expresses the total energy of a body, and we
recognize the last term as the ordinary kinetic energy.
Einstein interpreted the large
constant term, m0 c2[image: -*-], to be part of the total energy of the body, an
intrinsic energy known as the “rest energy.”




Let us follow out the consequences of assuming, with
Einstein, that the energy
of a body always equals m c2[image: -*-]. As an interesting result, we shall find
the formula (15.1) for the variation of mass with speed,
which we have merely assumed up to now. We start with the body at rest,
when its energy is m0 c2[image: -*-]. Then we apply a force to the body, which
starts it moving and gives it kinetic energy; therefore, since the
energy has increased, the mass has increased—this is implicit in the
original assumption. So long as the force continues, the energy and the
mass both continue to increase. We have already seen
(Chapter 13) that the rate of change of energy with time
equals the force times the velocity, or

[image: -*-][image: -*-]
(15.13)




We also have (Chapter 9, Eq. 9.1) that F=d (m v)/d t[image: -*-]. When these relations are put together with the definition
of E[image: -*-], Eq. (15.13) becomes

[image: -*-][image: -*-]
(15.14)




We wish to solve this equation for m[image: -*-]. To do this we first use the
mathematical trick of multiplying both sides by 2 m[image: -*-], which changes the
equation to

[image: -*-][image: -*-]
(15.15)




We need to get rid of the derivatives, which can be accomplished by
integrating both sides. The quantity (2 m) d m/d t[image: -*-] can be recognized as
the time derivative of m2[image: -*-], and (2 m v)⋅d (m v)/d t[image: -*-] is the
time derivative of (m v)2[image: -*-]. So, Eq. (15.15) is the same as

[image: -*-][image: -*-]
(15.16)




If the derivatives of two quantities are equal, the quantities
themselves differ at most by a constant, say C[image: -*-]. This permits us to
write

[image: -*-][image: -*-]
(15.17)




We need to define the constant C[image: -*-] more explicitly. Since
Eq. (15.17) must be true for all velocities, we can choose a
special case where v=0[image: -*-], and say that in this case the mass is m0[image: -*-].
Substituting these values into Eq. (15.17) gives

[image: -*-][image: -*-]


We can now use this value of C[image: -*-] in Eq. (15.17), which
becomes

[image: -*-][image: -*-]
(15.18)




Dividing by c2[image: -*-] and rearranging terms gives

[image: -*-][image: -*-]


from which we get

[image: -*-][image: -*-]
(15.19)




This is the formula (15.1), and is exactly what is necessary
for the agreement between mass and energy in Eq. (15.12).





Ordinarily these energy changes represent extremely slight changes in
mass, because most of the time we cannot generate much energy from a
given amount of material; but in an atomic bomb of explosive energy
equivalent to 20[image: -*-] kilotons of TNT, for example, it can be shown that
the dirt after the explosion is lighter by 1 gram than the initial
mass of the reacting material, because of the energy that was released,
i.e., the released energy had a mass of 1 gram, according to the
relationship Δ E=Δ (m c2)[image: -*-]. This theory of equivalence of mass
and energy has been beautifully verified by experiments in which matter
is annihilated—converted totally to energy: An electron and a positron
come together at rest, each with a rest mass m0[image: -*-]. When they come
together they disintegrate and two gamma rays emerge, each with the
measured energy of m0 c2[image: -*-]. This experiment furnishes a direct
determination of the energy associated with the existence of the rest
mass of a particle.





	
  
  The electrons
would actually win the race versus visible light because of the
index of refraction of air. A gamma ray would make out better.
  ↩





  
    

16 Relativistic Energy and Momentum



16–1 Relativity and the philosophers


In this chapter we shall continue to discuss the principle
of relativity of Einstein and
Poincaré, as it affects our
ideas of physics and other branches of human thought.




Poincaré made the following
statement of the principle of relativity: “According to the principle
of relativity, the laws of physical phenomena must be the same for a
fixed observer as for an observer who has a uniform motion of
translation relative to him, so that we have not, nor can we possibly
have, any means of discerning whether or not we are carried along in
such a motion.”




When this idea descended upon the world, it caused a great stir among
philosophers, particularly the “cocktail-party philosophers,” who say,
“Oh, it is very simple: Einstein’s theory says all is relative!”  In fact, a surprisingly
large number of philosophers, not only those found at cocktail parties
(but rather than embarrass them, we shall just call them
“cocktail-party philosophers”), will say, “That all is relative is a
consequence of Einstein, and it
has profound influences on our ideas.” In addition, they say “It has
been demonstrated in physics that phenomena depend upon your frame of
reference.” We hear that a great deal, but it is difficult to find out
what it means. Probably the frames of reference that were originally
referred to were the coordinate systems which we use in the analysis of
the theory of relativity. So the fact that “things depend upon your
frame of reference” is supposed to have had a profound effect on modern
thought. One might well wonder why, because, after all, that things
depend upon one’s point of view is so simple an idea that it certainly
cannot have been necessary to go to all the trouble of the physical
relativity theory in order to discover it. That what one sees depends
upon his frame of reference is certainly known to anybody who walks
around, because he sees an approaching pedestrian first from the front
and then from the back; there is nothing deeper in most of the
philosophy which is said to have come from the theory of relativity than
the remark that “A person looks different from the front than from the
back.” The old story about the elephant that several blind men describe
in different ways is another example, perhaps, of the theory of
relativity from the philosopher’s point of view.




But certainly there must be deeper things in the theory of relativity
than just this simple remark that “A person looks different from the
front than from the back.” Of course relativity is deeper than this,
because we can make definite predictions with it. It certainly
would be rather remarkable if we could predict the behavior of nature
from such a simple observation alone.




There is another school of philosophers who feel very uncomfortable
about the theory of relativity, which asserts that we cannot determine
our absolute velocity without looking at something outside, and who
would say, “It is obvious that one cannot measure his velocity without
looking outside. It is self-evident that it is meaningless to
talk about the velocity of a thing without looking outside; the
physicists are rather stupid for having thought otherwise, but it has
just dawned on them that this is the case. If only we philosophers had
realized what the problems were that the physicists had, we could have
decided immediately by brainwork that it is impossible to tell how fast
one is moving without looking outside, and we could have made an
enormous contribution to physics.” These philosophers are always with
us, struggling in the periphery to try to tell us something, but they
never really understand the subtleties and depths of the problem.




Our inability to detect absolute motion is a result of experiment
and not a result of plain thought, as we can easily illustrate. In the
first place, Newton believed that
it was true that one could not tell how fast he is going if he is moving
with uniform velocity in a straight line. In fact,
Newton first stated the principle
of relativity, and one quotation made in the last chapter was a
statement of Newton’s. Why then
did the philosophers not make all this fuss about “all is relative,”
or whatever, in Newton’s time?
Because it was not until Maxwell’s theory of electrodynamics was
developed that there were physical laws that suggested that one
could measure his velocity without looking outside; soon it was
found experimentally that one could not.




Now, is it absolutely, definitely, philosophically
necessary that one should not be able to tell how fast he is
moving without looking outside? One of the consequences of relativity
was the development of a philosophy which said, “You can only define
what you can measure!  Since it is self-evident that one cannot measure
a velocity without seeing what he is measuring it relative to, therefore
it is clear that there is no meaning to absolute velocity. The
physicists should have realized that they can talk only about what they
can measure.” But that is the whole problem: whether or not one
can define absolute velocity is the same as the problem of
whether or not one can detect in an experiment, without looking
outside, whether he is moving. In other words, whether or not a thing is
measurable is not something to be decided a priori by thought
alone, but something that can be decided only by experiment. Given the
fact that the velocity of light is 186,000[image: -*-] mi/sec, one will find few
philosophers who will calmly state that it is self-evident that if light
goes 186,000[image: -*-] mi/sec inside a car, and the car is going
100,000[image: -*-] mi/sec, that the light also goes 186,000[image: -*-] mi/sec past an
observer on the ground. That is a shocking fact to them; the very ones
who claim it is obvious find, when you give them a specific fact, that
it is not obvious.




Finally, there is even a philosophy which says that one cannot detect
any motion except by looking outside. It is simply not true in
physics. True, one cannot perceive a uniform motion in a
straight line, but if the whole room were rotating we
would certainly know it, for everybody would be thrown to the
wall—there would be all kinds of “centrifugal”
effects. That
the earth is turning on its axis can be determined without looking at
the stars, by means of the so-called Foucault pendulum, for
example. Therefore it is not true that “all is relative”; it is only
uniform velocity that cannot be detected without looking outside.
Uniform rotation about a fixed axis can be. When this is
told to a philosopher, he is very upset that he did not really
understand it, because to him it seems impossible that one should be
able to determine rotation about an axis without looking outside. If the
philosopher is good enough, after some time he may come back and say,
“I understand. We really do not have such a thing as absolute rotation;
we are really rotating relative to the stars, you see. And so
some influence exerted by the stars on the object must cause the
centrifugal force.”





Now, for all we know, that is true; we have no way, at the present time,
of telling whether there would have been centrifugal
force if there
were no stars and nebulae around. We have not been able to do the
experiment of removing all the nebulae and then measuring our rotation,
so we simply do not know. We must admit that the philosopher may be
right. He comes back, therefore, in delight and says, “It is absolutely
necessary that the world ultimately turn out to be this way:
absolute rotation means nothing; it is only relative to
the nebulae.” Then we say to him, “Now, my friend, is it or is
it not obvious that uniform velocity in a straight line, relative
to the nebulae should produce no effects inside a car?”  Now that the
motion is no longer absolute, but is a motion relative to the
nebulae, it becomes a mysterious question, and a question that can be
answered only by experiment.




What, then, are the philosophic influences of the theory of
relativity? If we limit ourselves to influences in the sense of
what kind of new ideas and suggestions are made to the physicist
by the principle of relativity, we could describe some of them as
follows. The first discovery is, essentially, that even those ideas
which have been held for a very long time and which have been very
accurately verified might be wrong. It was a shocking discovery, of
course, that Newton’s laws are
wrong, after all the years in which they seemed to be accurate. Of
course it is clear, not that the experiments were wrong, but that they
were done over only a limited range of velocities, so small that the
relativistic effects would not have been evident. But nevertheless, we
now have a much more humble point of view of our physical
laws—everything can be wrong!




Secondly, if we have a set of “strange” ideas, such as that time goes
slower when one moves, and so forth, whether we like them or do
not like them is an irrelevant question. The only relevant
question is whether the ideas are consistent with what is found
experimentally. In other words, the “strange ideas” need only agree
with experiment, and the only reason that we have to discuss the
behavior of clocks and so forth is to demonstrate that although the
notion of the time dilation is strange, it is consistent with the
way we measure time.




Finally, there is a third suggestion which is a little more technical
but which has turned out to be of enormous utility in our study of other
physical laws, and that is to look at the symmetry of the laws
or, more specifically, to look for the ways in which the laws can be
transformed and leave their form the same. When we discussed the theory
of vectors, we noted that the fundamental laws of motion are not changed
when we rotate the coordinate system, and now we learn that they are not
changed when we change the space and time variables in a particular way,
given by the Lorentz transformation. So this idea of studying the
patterns or operations under which the fundamental laws are not changed
has proved to be a very useful one.







16–2 The twin paradox


To continue our discussion of the Lorentz transformation and
relativistic effects, we consider a famous so-called “paradox” of
Peter and Paul, who are supposed to be twins, born at the same time.
When they are old enough to drive a space ship, Paul flies away at very
high speed. Because Peter, who is left on the ground, sees Paul going so
fast, all of Paul’s clocks appear to go slower, his heart beats go
slower, his thoughts go slower, everything goes slower, from Peter’s
point of view. Of course, Paul notices nothing unusual, but if he
travels around and about for a while and then comes back, he will be
younger than Peter, the man on the ground! That is actually right; it is
one of the consequences of the theory of relativity which has been
clearly demonstrated. Just as the mu-mesons last longer when they are
moving, so also will Paul last longer when he is moving. This is called
a “paradox” only by the people who believe that the principle of
relativity means that all motion is relative; they say, “Heh,
heh, heh, from the point of view of Paul, can’t we say that Peter
was moving and should therefore appear to age more slowly? By symmetry,
the only possible result is that both should be the same age when they
meet.” But in order for them to come back together and make the
comparison, Paul must either stop at the end of the trip and make a
comparison of clocks or, more simply, he has to come back, and the one
who comes back must be the man who was moving, and he knows this,
because he had to turn around. When he turned around, all kinds of
unusual things happened in his space ship—the rockets went off, things
jammed up against one wall, and so on—while Peter felt nothing.




So the way to state the rule is to say that the man who has felt
the accelerations, who has seen things fall against the walls, and so
on, is the one who would be the younger; that is the difference between
them in an “absolute” sense, and it is certainly correct. When we
discussed the fact that moving mu-mesons live longer, we used as an
example their straight-line motion in the atmosphere. But we can also
make mu-mesons in a laboratory and cause them to go in a curve with a
magnet, and even under this accelerated motion, they last exactly as
much longer as they do when they are moving in a straight line. Although
no one has arranged an experiment explicitly so that we can get rid of
the paradox, one could compare a mu-meson which is left standing with
one that had gone around a complete circle, and it would surely be found
that the one that went around the circle lasted longer. Although we have
not actually carried out an experiment using a complete circle, it is
really not necessary, of course, because everything fits together all
right. This may not satisfy those who insist that every single fact be
demonstrated directly, but we confidently predict the result of the
experiment in which Paul goes in a complete circle.







16–3 Transformation of velocities


The main difference between the relativity of Einstein and the
relativity of Newton is that the laws of transformation connecting the
coordinates and times between relatively moving systems are different.
The correct transformation law, that of Lorentz, is

[image: -*-][image: -*-]
(16.1)




These equations correspond to the relatively simple case in which the
relative motion of the two observers is along their common x[image: -*-]-axes. Of
course other directions of motion are possible, but the most general
Lorentz transformation is rather complicated, with all four quantities
mixed up together. We shall continue to use this simpler form, since it
contains all the essential features of relativity.




Let us now discuss more of the consequences of this transformation.
First, it is interesting to solve these equations in reverse. That is,
here is a set of linear equations, four equations with four unknowns,
and they can be solved in reverse, for x,y,z,t[image: -*-] in terms of
x′,y′,z′,t′[image: -*-]. The result is very interesting, since it tells us how a
system of coordinates “at rest” looks from the point of view of one
that is “moving.” Of course, since the motions are relative and of
uniform velocity, the man who is “moving” can say, if he wishes, that
it is really the other fellow who is moving and he himself who is at
rest. And since he is moving in the opposite direction, he should get
the same transformation, but with the opposite sign of velocity. That is
precisely what we find by manipulation, so that is consistent. If it did
not come out that way, we would have real cause to worry!

[image: -*-][image: -*-]
(16.2)







Next we discuss the interesting problem of the addition of velocities in
relativity. We recall that one of the original puzzles was that light
travels at 186,000[image: -*-] mi/sec in all systems, even when they are in
relative motion. This is a special case of the more general problem
exemplified by the following. Suppose that an object inside a space ship
is going at 100,000[image: -*-] mi/sec and the space ship itself is going at
100,000[image: -*-] mi/sec; how fast is the object inside the space ship moving
from the point of view of an observer outside? We might want to say
200,000[image: -*-] mi/sec, which is faster than the speed of light. This is
very unnerving, because it is not supposed to be going faster than the
speed of light! The general problem is as follows.




Let us suppose that the object inside the ship, from the point of view
of the man inside, is moving with velocity v[image: -*-], and that the space ship
itself has a velocity u[image: -*-] with respect to the ground. We want to know
with what velocity vx[image: -*-] this object is moving from the point of view of
the man on the ground. This is, of course, still but a special case in
which the motion is in the x[image: -*-]-direction. There will also be a
transformation for velocities in the y[image: -*-]-direction, or for any angle;
these can be worked out as needed. Inside the space ship the velocity
is vx′[image: -*-], which means that the displacement x′[image: -*-] is equal to the
velocity times the time:

[image: -*-][image: -*-]
(16.3)




Now we have only to calculate what the position and time are from the
point of view of the outside observer for an object which has the
relation (16.2) between x′[image: -*-] and t′[image: -*-]. So we simply
substitute (16.3) into (16.2), and obtain

[image: -*-][image: -*-]
(16.4)




But here we find x[image: -*-] expressed in terms of t′[image: -*-]. In order to get the
velocity as seen by the man on the outside, we must divide his
distance by his time, not by the other man’s time! So we
must also calculate the time as seen from the outside, which is

[image: -*-][image: -*-]
(16.5)




Now we must find the ratio of x[image: -*-] to t[image: -*-], which is

[image: -*-][image: -*-]
(16.6)




the square roots having cancelled. This is the law that we seek: the
resultant velocity, the “summing” of two velocities, is not just the
algebraic sum of two velocities (we know that it cannot be or we get in
trouble), but is “corrected” by 1+u v/c2[image: -*-].




Now let us see what happens. Suppose that you are moving inside the
space ship at half the speed of light, and that the space ship itself is
going at half the speed of light. Thus u[image: -*-] is [image: \tfrac{1}{2}c][image: \tfrac{1}{2}c] and v[image: -*-]
is [image: \tfrac{1}{2}c][image: \tfrac{1}{2}c], but in the denominator u v[image: -*-] is one-fourth, so that

[image: -*-][image: -*-]


So, in relativity, “half” and “half” does not make “one,” it makes
only “4/5[image: -*-].” Of course low velocities can be added quite easily in
the familiar way, because so long as the velocities are small compared
with the speed of light we can forget about the (1+u v/c2)[image: -*-] factor;
but things are quite different and quite interesting at high velocity.




Let us take a limiting case. Just for fun, suppose that inside the space
ship the man was observing light itself. In other words, v=c[image: -*-],
and yet the space ship is moving. How will it look to the man on the
ground? The answer will be

[image: -*-][image: -*-]


Therefore, if something is moving at the speed of light inside the ship,
it will appear to be moving at the speed of light from the point of view
of the man on the ground too! This is good, for it is, in fact, what the
Einstein theory of relativity
was designed to do in the first place—so it had better work!




Of course, there are cases in which the motion is not in the direction
of the uniform translation. For example, there may be an object inside
the ship which is just moving “upward” with the velocity vy′[image: -*-] with
respect to the ship, and the ship is moving “horizontally.” Now, we
simply go through the same thing, only using y[image: -*-]’s instead of x[image: -*-]’s,
with the result

[image: -*-][image: -*-]


so that if vx′=0[image: -*-],

[image: -*-][image: -*-]
(16.7)




Thus a sidewise velocity is no longer vy′[image: -*-], but vy′ √1−u2/c2[image: -*-]. We found this result by substituting and combining the
transformation equations, but we can also see the result directly from
the principle of relativity for the following reason (it is always good
to look again to see whether we can see the reason). We have already
(Fig. 15–3) seen how a possible clock might work when it is
moving; the light appears to travel at an angle at the speed c[image: -*-] in the
fixed system, while it simply goes vertically with the same speed in the
moving system. We found that the vertical component of the
velocity in the fixed system is less than that of light by the
factor √1−u2/c2[image: -*-] (see Eq. 15.3). But now suppose
that we let a material particle go back and forth in this same
“clock,” but at some integral fraction 1/n[image: -*-] of the speed of light
(Fig. 16–1). Then when the particle has gone back and forth
once, the light will have gone exactly n[image: -*-] times. That is, each
“click” of the “particle” clock will coincide with each
n[image: -*-]th “click” of the light clock. This fact must still be true
when the whole system is moving, because the physical phenomenon of
coincidence will be a coincidence in any frame. Therefore, since the
speed cy[image: -*-] is less than the speed of light, the speed vy[image: -*-] of the
particle must be slower than the corresponding speed by the same
square-root ratio!  That is why the square root appears in any vertical
velocity.




[image: -][image: -]
Fig. 16–1. Trajectories described by a light ray and particle inside a
moving clock.








16–4 Relativistic mass


We learned in the last chapter that the mass of an object increases with
velocity, but no demonstration of this was given, in the sense that we
made no arguments analogous to those about the way clocks have to
behave. However, we can show that, as a consequence of relativity
plus a few other reasonable assumptions, the mass must vary in this way.
(We have to say “a few other assumptions” because we cannot prove
anything unless we have some laws which we assume to be true, if we
expect to make meaningful deductions.) To avoid the need to study the
transformation laws of force, we shall analyze a
collision, where we need know nothing about the
laws of force, except that we shall assume the conservation of momentum
and energy. Also, we shall assume that the momentum of a particle which
is moving is a vector and is always directed in the direction of the
velocity. However, we shall not assume that the momentum is a
constant times the velocity, as Newton did, but only that it is some function of velocity.
We thus write the momentum vector as a certain coefficient times the
vector velocity:

[image: -*-][image: -*-]
(16.8)




We put a subscript v[image: -*-] on the coefficient to remind us that it is a
function of velocity, and we shall agree to call this coefficient mv[image: -*-]
the “mass.” Of course, when the velocity is small, it is the same mass
that we would measure in the slow-moving experiments that we are used
to. Now we shall try to demonstrate that the formula for mv[image: -*-] must
be m0/√1−v2/c2[image: -*-], by arguing from the principle of relativity
that the laws of physics must be the same in every coordinate system.




Suppose that we have two particles, like two protons, that are
absolutely equal, and they are moving toward each other with exactly
equal velocities. Their total momentum is zero. Now what can happen?
After the collision, their directions of motion must be exactly opposite
to each other, because if they are not exactly opposite, there will be a
nonzero total vector momentum, and momentum would not have been
conserved. Also they must have the same speeds, since they are exactly
similar objects; in fact, they must have the same speed they started
with, since we suppose that the energy is conserved in these collisions.
So the diagram of an elastic collision, a reversible collision, will
look like Fig. 16–2(a): all the arrows are the same length,
all the speeds are equal. We shall suppose that such collisions can
always be arranged, that any angle θ[image: -*-] can occur, and that any
speed could be used in such a collision. Next, we notice that this same
collision can be viewed differently by turning the axes, and just for
convenience we shall turn the axes, so that the horizontal splits
it evenly, as in Fig. 16–2(b). It is the same collision
redrawn, only with the axes turned.



[image: -][image: -][image: -][image: -]
Fig. 16–2. Two views of an elastic collision between equal objects moving
at the same speed in opposite directions.





Now here is the real trick: let us look at this collision from the point
of view of someone riding along in a car that is moving with a speed
equal to the horizontal component of the velocity of one particle. Then
how does the collision look? It looks as though particle 1 is just
going straight up, because it has lost its horizontal component, and it
comes straight down again, also because it does not have that component.
That is, the collision appears as shown in Fig. 16–3(a).
Particle 2, however, was going the other way, and as we ride past it
appears to fly by at some terrific speed and at a smaller angle, but we
can appreciate that the angles before and after the collision are the
same. Let us denote by u[image: -*-] the horizontal component of the
velocity of particle 2, and by w[image: -*-] the vertical velocity of
particle 1.



[image: -][image: -][image: -][image: -]
Fig. 16–3. Two more views of the collision, from moving cars.





Now the question is, what is the vertical velocity u tanα[image: -*-]? If we
knew that, we could get the correct expression for the momentum, using
the law of conservation of momentum in the vertical direction. Clearly,
the horizontal component of the momentum is conserved: it is the same
before and after the collision for both particles, and is zero for
particle 1. So we need to use the conservation law only for the upward
velocity u tanα[image: -*-]. But we can get the upward velocity,
simply by looking at the same collision going the other way!  If we look
at the collision of Fig. 16–3(a) from a car moving to the
left with speed u[image: -*-], we see the same collision, except “turned over,”
as shown in Fig. 16–3(b). Now particle 2 is the one that
goes up and down with speed w[image: -*-], and particle 1 has picked up the
horizontal speed u[image: -*-]. Of course, now we know what the
velocity u tanα[image: -*-] is: it is w √1−u2/c2[image: -*-] (see
Eq. 16.7). We know that the change in the vertical momentum
of the vertically moving particle is

[image: -*-][image: -*-]


(2, because it moves up and back down). The obliquely moving particle
has a certain velocity v[image: -*-] whose components we have found to be u[image: -*-]
and w √1−u2/c2[image: -*-], and whose mass is mv[image: -*-]. The change in
vertical momentum of this particle is therefore Δ p′=2 mv w √1−u2/c2[image: -*-] because, in accordance with our assumed
law (16.8), the momentum component is always the mass
corresponding to the magnitude of the velocity times the component of
the velocity in the direction of interest. Thus in order for the total
momentum to be zero the vertical momenta must cancel and the ratio of
the mass moving with speed v[image: -*-] and the mass moving with speed w[image: -*-] must
therefore be

[image: -*-][image: -*-]
(16.9)







Let us take the limiting case that w[image: -*-] is infinitesimal. If w[image: -*-] is very
tiny indeed, it is clear that v[image: -*-] and u[image: -*-] are practically equal. In this
case, mw→m0[image: -*-] and mv→mu[image: -*-]. The grand result is

[image: -*-][image: -*-]
(16.10)




It is an interesting exercise now to check whether or not
Eq. (16.9) is indeed true for arbitrary values of w[image: -*-],
assuming that Eq. (16.10) is the right formula for the mass.
Note that the velocity v[image: -*-] needed in Eq. (16.9) can be
calculated from the right-angle triangle:

[image: -*-][image: -*-]


It will be found to check out automatically, although we used it only in
the limit of small w[image: -*-].



[image: -][image: -]
Fig. 16–4. Two views of an inelastic collision between equally massive
objects.





Now, let us accept that momentum is conserved and that the mass depends
upon the velocity according to (16.10) and go on to find what
else we can conclude.  Let us consider what is commonly called an
inelastic collision. For simplicity, we shall suppose that two
objects of the same kind, moving oppositely with equal speeds w[image: -*-], hit
each other and stick together, to become some new, stationary object, as
shown in Fig. 16–4(a). The mass m[image: -*-] of each corresponds
to w[image: -*-], which, as we know, is m0/√1−w2/c2[image: -*-]. If we assume the
conservation of momentum and the principle of relativity, we can
demonstrate an interesting fact about the mass of the new object which
has been formed. We imagine an infinitesimal velocity u[image: -*-] at right
angles to w[image: -*-] (we can do the same with finite values of u[image: -*-], but it is
easier to understand with an infinitesimal velocity), then look at this
same collision as we ride by in an elevator at the velocity −u[image: -*-]. What
we see is shown in Fig. 16–4(b). The composite object has an
unknown mass M[image: -*-]. Now object 1 moves with an upward component of
velocity u[image: -*-] and a horizontal component which is practically equal
to w[image: -*-], and so also does object 2. After the collision we have the
mass M[image: -*-] moving upward with velocity u[image: -*-], considered very small compared
with the speed of light, and also small compared with w[image: -*-]. Momentum must
be conserved, so let us estimate the momentum in the upward direction
before and after the collision. Before the collision we have p≈2 mw u[image: -*-], and after the collision the momentum is evidently p′=Mu u[image: -*-],
but Mu[image: -*-] is essentially the same as M0[image: -*-] because u[image: -*-] is so small.
These momenta must be equal because of the conservation of momentum, and
therefore

[image: -*-][image: -*-]
(16.11)




The mass of the object which is formed when two equal objects
collide must be twice the mass of the objects which come together. You
might say, “Yes, of course, that is the conservation of mass.” But not
“Yes, of course,” so easily, because these masses have been
enhanced over the masses that they would be if they were standing
still, yet they still contribute, to the total M[image: -*-], not the mass they
have when standing still, but more. Astonishing as that may seem,
in order for the conservation of momentum to work when two objects come
together, the mass that they form must be greater than the rest masses
of the objects, even though the objects are at rest after the collision!








16–5 Relativistic energy


In the last chapter we demonstrated that as a result of the dependence
of the mass on velocity and Newton’s laws, the changes in the kinetic energy of an object resulting from
the total work done by the forces on it always comes out to be

[image: -*-][image: -*-]
(16.12)




We even went further, and guessed that the total energy is the total
mass times c2[image: -*-]. Now we continue this discussion.




Suppose that our two equally massive objects that collide can still be
“seen” inside M[image: -*-]. For instance, a proton and a neutron are “stuck
together,” but are still moving about inside of M[image: -*-]. Then, although we
might at first expect the mass M[image: -*-] to be 2 m0[image: -*-], we have found that it
is not 2 m0[image: -*-], but 2 mw[image: -*-]. Since 2 mw[image: -*-] is what is put in, but 2 m0[image: -*-]
are the rest masses of the things inside, the excess mass of the
composite object is equal to the kinetic energy brought in. This means,
of course, that energy has inertia. In the last chapter we
discussed the heating of a gas, and showed that because the gas
molecules are moving and moving things are heavier, when we put energy
into the gas its molecules move faster and so the gas gets heavier. But
in fact the argument is completely general, and our discussion of the
inelastic collision shows that the mass is there whether or not it is
kinetic energy. In other words, if two particles come together
and produce potential or any other form of energy; if the pieces are
slowed down by climbing hills, doing work against internal forces, or
whatever; then it is still true that the mass is the total energy that
has been put in. So we see that the conservation of mass which we have
deduced above is equivalent to the conservation of energy, and therefore
there is no place in the theory of relativity for strictly inelastic
collisions, as there was in Newtonian mechanics. According to Newtonian
mechanics it is all right for two things to collide and so form an
object of mass 2 m0[image: -*-] which is in no way distinct from the one that
would result from putting them together slowly. Of course we know from
the law of conservation of energy that there is more kinetic energy
inside, but that does not affect the mass, according to Newton’s
laws. But now we see that this is
impossible; because of the kinetic energy involved in the collision, the
resulting object will be heavier; therefore, it will be a
different object. When we put the objects together gently they
make something whose mass is 2 m0[image: -*-]; when we put them together
forcefully, they make something whose mass is greater. When the mass is
different, we can tell that it is different. So, necessarily, the
conservation of energy must go along with the conservation of momentum
in the theory of relativity.




This has interesting consequences. For example, suppose that we have an
object whose mass M[image: -*-] is measured, and suppose something happens so that
it flies into two equal pieces moving with speed w[image: -*-], so that they each
have a mass mw[image: -*-]. Now suppose that these pieces encounter enough
material to slow them up until they stop; then they will have
mass m0[image: -*-]. How much energy will they have given to the material when
they have stopped? Each will give an amount (mw−m0) c2[image: -*-], by the
theorem that we proved before. This much energy is left in the material
in some form, as heat, potential energy, or whatever. Now 2 mw=M[image: -*-], so
the liberated energy is E=(M−2 m0) c2[image: -*-]. This equation was used to
estimate how much energy would be liberated under fission in the atomic
bomb, for example. (Although the fragments are not exactly equal, they
are nearly equal.) The mass of the uranium atom was known—it had been
measured ahead of time—and the atoms into which it split, iodine,
xenon, and so on, all were of known mass. By masses, we do not mean the
masses while the atoms are moving, we mean the masses when the atoms are
at rest. In other words, both M[image: -*-] and m0[image: -*-] are known. So by
subtracting the two numbers one can calculate how much energy will be
released if M[image: -*-] can be made to split in “half.”  For this reason poor
old Einstein was called the
“father” of the atomic bomb in all the newspapers. Of course, all that
meant was that he could tell us ahead of time how much energy would be
released if we told him what process would occur. The energy that should
be liberated when an atom of uranium undergoes fission was estimated
about six months before the first direct test, and as soon as the energy
was in fact liberated, someone measured it directly (and if
Einstein’s formula had not
worked, they would have measured it anyway), and the moment they
measured it they no longer needed the formula. Of course, we should not
belittle Einstein, but rather
should criticize the newspapers and many popular descriptions of what
causes what in the history of physics and technology. The problem of how
to get the thing to occur in an effective and rapid manner is a
completely different matter.




The result is just as significant in chemistry. For instance, if we were
to weigh the carbon dioxide molecule and compare its mass with that of
the carbon and the oxygen, we could find out how much energy would be
liberated when carbon and oxygen form carbon dioxide. The only trouble
here is that the differences in masses are so small that it is
technically very difficult to do.




Now let us turn to the question of whether we should add m0 c2[image: -*-] to the
kinetic energy and say from now on that the total energy of an object
is m c2[image: -*-]. First, if we can still see the component pieces of
rest mass m0[image: -*-] inside M[image: -*-], then we could say that some of the mass M[image: -*-]
of the compound object is the mechanical rest mass of the parts, part of
it is kinetic energy of the parts, and part of it is potential energy of
the parts. But we have discovered, in nature, particles of various kinds
which undergo reactions just like the one we have treated above, in
which with all the study in the world, we cannot see the parts
inside. For instance, when a K-meson disintegrates into two pions it
does so according to the law (16.11), but the idea that a K
is made out of 2 π[image: -*-]’s is a useless idea, because it also
disintegrates into 3 π[image: -*-]’s!




Therefore we have a new idea: we do not have to know what things
are made of inside; we cannot and need not identify, inside a particle,
which of the energy is rest energy of the parts into which it is going
to disintegrate. It is not convenient and often not possible to separate
the total m c2[image: -*-] energy of an object into rest energy of the inside
pieces, kinetic energy of the pieces, and potential energy of the
pieces; instead, we simply speak of the total energy of the
particle. We “shift the origin” of energy by adding a
constant m0 c2[image: -*-] to everything, and say that the total energy of a
particle is the mass in motion times c2[image: -*-], and when the object is
standing still, the energy is the mass at rest times c2[image: -*-].





Finally, we find that the velocity v[image: -*-], momentum P[image: -*-], and total
energy E[image: -*-] are related in a rather simple way. That the mass in motion
at speed v[image: -*-] is the mass m0[image: -*-] at rest divided by √1−v2/c2[image: -*-],
surprisingly enough, is rarely used. Instead, the following relations
are easily proved, and turn out to be very useful:

[image: -*-][image: -*-]
(16.13)




and

[image: -*-][image: -*-]
(16.14)










  
    
                
                    17 Space-Time

                
                    
                        17–1 The geometry of space-time

                    
                        The theory of relativity
                        shows us that the relationships of positions and times as measured in
                        one coordinate system and another are not what we would have expected on
                        the basis of our intuitive ideas. It is very important that we
                        thoroughly understand the relations of space and time implied by the
                        Lorentz transformation, and therefore we shall consider this matter more
                        deeply in this chapter.
                        

                    

                    
                        The Lorentz transformation
                        between the positions and times (x,y,z,t)[image: -*-] as measured by an observer
                        “standing still,” and the corresponding coordinates and
                        time (x′,y′,z′,t′)[image: -*-] measured inside a “moving” space ship, moving
                        with velocity u[image: -*-] are
                        
[image: -*-][image: -*-]
(17.1)




                        Let us compare these equations with Eq. (11.5), which also
                        relates measurements in two systems, one of which in this instance is
                        rotated relative to the other:
                        
[image: -*-][image: -*-]
(17.2)




                        In this particular case, Moe and Joe are measuring with axes having an
                        angle θ[image: -*-] between the x′[image: -*-]- and x[image: -*-]-axes. In each case, we note
                        that the “primed” quantities are “mixtures” of the “unprimed”
                        ones: the new x′[image: -*-] is a mixture of x[image: -*-] and y[image: -*-], and the new y′[image: -*-] is also
                        a mixture of x[image: -*-] and y[image: -*-].

                        

                        
                        An analogy is useful: When we look at an object, there is an obvious
                        thing we might call the “apparent width,” and another we might call
                        the “depth.” But the two ideas, width and depth, are not
                        fundamental properties of the object, because if we step aside
                        and look at the same thing from a different angle, we get a different
                        width and a different depth, and we may develop some formulas for
                        computing the new ones from the old ones and the angles involved.
                        Equations (17.2) are these formulas. One might say that a
                        given depth is a kind of “mixture” of all depth and all width. If it
                        were impossible ever to move, and we always saw a given object from the
                        same position, then this whole business would be irrelevant—we would
                        always see the “true” width and the “true” depth, and they would
                        appear to have quite different qualities, because one appears as a
                        subtended optical angle and the other involves some focusing of the eyes
                        or even intuition; they would seem to be very different things and would
                        never get mixed up. It is because we can walk around that we
                        realize that depth and width are, somehow or other, just two different
                        aspects of the same thing.

                    

                    
                        Can we not look at the Lorentz transformations in the same way?
                        Here also we have a mixture—of positions and the time. A difference
                        between a space measurement and a time measurement produces a new space
                        measurement. In other words, in the space measurements of one man there
                        is mixed in a little bit of the time, as seen by the other. Our analogy
                        permits us to generate this idea: The “reality” of an object that we
                        are looking at is somehow greater (speaking crudely and intuitively)
                        than its “width” and its “depth” because they depend upon
                        how we look at it; when we move to a new position, our brain
                        immediately recalculates the width and the depth. But our brain does not
                        immediately recalculate coordinates and time when we move at high speed,
                        because we have had no effective experience of going nearly as fast as
                        light to appreciate the fact that time and space are also of the same
                        nature. It is as though we were always stuck in the position of having
                        to look at just the width of something, not being able to move our heads
                        appreciably one way or the other; if we could, we understand now, we
                        would see some of the other man’s time—we would see “behind,” so to
                        speak, a little bit.

                    

                    
                        Thus we shall try to think of objects in a new kind of world, of space
                        and time mixed together, in the same sense that the objects in our
                        ordinary space-world are real, and can be looked at from different
                        directions. We shall then consider that objects occupying space and
                        lasting for a certain length of time occupy a kind of a “blob” in a
                        new kind of world, and that we look at this “blob” from different
                        points of view when we are moving at different velocities. This new
                        world, this geometrical entity in which the “blobs” exist by occupying
                        position and taking up a certain amount of time, is called
                        space-time. A given point (x,y,z,t)[image: -*-] in space-time is called an
                        event. Imagine, for example, that we plot the x[image: -*-]-positions
                        horizontally, y[image: -*-] and z[image: -*-] in two other directions, both mutually at
                        “right angles” and at “right angles” to the paper (!), and time,
                        vertically. Now, how does a moving particle, say, look on such a
                        diagram? If the particle is standing still, then it has a certain x[image: -*-],
                        and as time goes on, it has the same x[image: -*-], the same x[image: -*-], the same x[image: -*-]; so
                        its “path” is a line that runs parallel to the t[image: -*-]-axis
                        (Fig. 17–1 a). On the other hand, if it drifts outward, then
                        as the time goes on x[image: -*-] increases (Fig. 17–1 b). So a
                        particle, for example, which starts to drift out and then slows up
                        should have a motion something like that shown in
                        Fig. 17–1(c). A particle, in other words, which is permanent
                        and does not disintegrate is represented by a line in space-time. A
                        particle which disintegrates would be represented by a forked line,
                        because it would turn into two other things which would start from that
                        point.

                    

                    [image: -][image: -]
                            Fig. 17–1. Three particle paths in space-time: (a) a particle at rest
                            at x=x0[image: -*-]; (b) a particle which starts at x=x0[image: -*-] and moves with
                            constant speed; (c) a particle which starts at high speed but slows
                            down; (d) a light path.
                        

                    

                    
                        What about light? Light travels at the speed c[image: -*-], and that would be
                        represented by a line having a certain fixed slope
                        (Fig. 17–1 d).

                    

                    
                        Now according to our new idea, if a given event occurs to a particle,
                        say if it suddenly disintegrates at a certain space-time point into two
                        new ones which follow some new tracks, and this interesting event
                        occurred at a certain value of x[image: -*-] and a certain value of t[image: -*-], then we
                        would expect that, if this makes any sense, we just have to take a new
                        pair of axes and turn them, and that will give us the new t[image: -*-] and the
                        new x[image: -*-] in our new system, as shown in Fig. 17–2(a). But
                        this is wrong, because Eq. (17.1) is not exactly the
                        same mathematical transformation as Eq. (17.2). Note, for
                        example, the difference in sign between the two, and the fact that one
                        is written in terms of cosθ[image: -*-] and sinθ[image: -*-], while the other is
                        written with algebraic quantities. (Of course, it is not impossible that
                        the algebraic quantities could be written as cosine and sine, but
                        actually they cannot.) But still, the two expressions are very
                        similar. As we shall see, it is not really possible to think of
                        space-time as a real, ordinary geometry because of that difference in
                        sign. In fact, although we shall not emphasize this point, it turns out
                        that a man who is moving has to use a set of axes which are inclined
                        equally to the light ray, using a special kind of projection parallel to
                        the x′[image: -*-]- and t′[image: -*-]-axes, for his x′[image: -*-] and t′[image: -*-], as shown in
                        Fig. 17–2(b). We shall not deal with the geometry, since it
                        does not help much; it is easier to work with the equations.

                    

                    [image: -][image: -][image: -][image: -]                        
                            Fig. 17–2. Two views of a disintegrating particle.
                        

                    

                

                
                    
                        17–2 Space-time intervals

                    
                        Although the geometry of space-time is not Euclidean in the ordinary sense, there is a geometry which is
                        very similar, but peculiar in certain respects. If this idea of geometry
                        is right, there ought to be some functions of coordinates and time which
                        are independent of the coordinate system. For example, under ordinary
                        rotations, if we take two points, one at the origin, for simplicity, and
                        the other one somewhere else, both systems would have the same origin,
                        and the distance from here to the other point is the same in both. That
                        is one property that is independent of the particular way of measuring
                        it. The square of the distance is x2+y2+z2[image: -*-]. Now what about
                        space-time? It is not hard to demonstrate that we have here, also,
                        something which stays the same, namely, the combination c2 t2−x2−y2−z2[image: -*-] is the same before and after the transformation:
                        
[image: -*-][image: -*-]
(17.3)




                        This quantity is therefore something which, like the distance, is
                        “real” in some sense; it is called the interval between the two
                        space-time points, one of which is, in this case, at the origin.
                        (Actually, of course, it is the interval squared, just as x2+y2+z2[image: -*-] is the distance squared.) We give it a different name because it is
                        in a different geometry, but the interesting thing is only that some
                        signs are reversed and there is a c[image: -*-] in it.

                    

                    
                        Let us get rid of the c[image: -*-]; that is an absurdity if we are going to have
                        a wonderful space with x[image: -*-]’s and y[image: -*-]’s that can be interchanged. One of
                        the confusions that could be caused by someone with no experience would
                        be to measure widths, say, by the angle subtended at the eye, and
                        measure depth in a different way, like the strain on the muscles needed
                        to focus them, so that the depths would be measured in feet and the
                        widths in meters. Then one would get an enormously complicated mess of
                        equations in making transformations such as (17.2), and would
                        not be able to see the clarity and simplicity of the thing for a very
                        simple technical reason, that the same thing is being measured in two
                        different units. Now in Eqs. (17.1)
                        and (17.3) nature is telling us that time and space are
                        equivalent; time becomes space; they should be measured in the
                            same units. What distance is a “second”? It is easy to figure out
                        from (17.3) what it is. It is 3×108[image: -*-] meters, the
                            distance that light would go in one second. In other words, if we were
                        to measure all distances and times in the same units, seconds, then our
                        unit of distance would be 3×108[image: -*-] meters, and the equations would
                        be simpler. Or another way that we could make the units equal is to
                        measure time in meters. What is a meter of time? A meter of time is the
                        time it takes for light to go one meter, and is therefore
                        1/3×10−8[image: -*-] sec, or 3.3[image: -*-] billionths of a second! We would like,
                        in other words, to put all our equations in a system of units in
                        which c=1[image: -*-]. If time and space are measured in the same units, as
                        suggested, then the equations are obviously much simplified. They are
                        
[image: -*-][image: -*-]
(17.4)

(17.5)




                        If we are ever unsure or “frightened” that after we have this system
                        with c=1[image: -*-] we shall never be able to get our equations right again, the
                        answer is quite the opposite. It is much easier to remember them without
                        the c[image: -*-]’s in them, and it is always easy to put the c[image: -*-]’s back, by
                        looking after the dimensions. For instance, in √1−u2[image: -*-], we know
                        that we cannot subtract a velocity squared, which has units, from the
                        pure number 1, so we know that we must divide u2[image: -*-] by c2[image: -*-] in order
                        to make that unitless, and that is the way it goes.

                        

                        
                        The difference between space-time and ordinary space, and the character
                        of an interval as related to the distance, is very interesting.
                        According to formula (17.5), if we consider a point which in
                        a given coordinate system had zero time, and only space, then the
                        interval squared would be negative and we would have an imaginary
                        interval, the square root of a negative number. Intervals can be either
                        real or imaginary in the theory. The square of an interval may be either
                        positive or negative, unlike distance, which has a positive square. When
                        an interval is imaginary, we say that the two points have a
                        space-like interval between them (instead of imaginary), because
                        the interval is more like space than like time. On the other hand, if
                        two objects are at the same place in a given coordinate system, but
                        differ only in time, then the square of the time is positive and the
                        distances are zero and the interval squared is positive; this is called
                        a time-like interval. In our diagram of space-time, therefore, we
                        would have a representation something like this: at 45°[image: -*-] there are
                        two lines (actually, in four dimensions these will be “cones,” called
                        light cones) and points on these lines are all at zero
                        interval from the origin. Where light goes from a given point is always
                        separated from it by a zero interval, as we see from
                        Eq. (17.5). Incidentally, we have just proved that if light
                        travels with speed c[image: -*-] in one system, it travels with speed c[image: -*-] in
                        another, for if the interval is the same in both systems, i.e., zero in
                        one and zero in the other, then to state that the propagation speed of
                        light is invariant is the same as saying that the interval is zero.
                        

                    

                

                
                    
                        17–3 Past, present, and future

                    [image: -][image: -]
                            Fig. 17–3. The space-time region surrounding a point at the origin.
                        

                    

                    
                        The space-time region surrounding a given space-time point can be
                        separated into three regions, as shown in Fig. 17–3. In one
                        region we have space-like intervals, and in two regions, time-like
                        intervals. Physically, these three regions into which space-time around
                        a given point is divided have an interesting physical relationship to
                        that point: a physical object or a signal can get from a point in
                        region 2 to the event O[image: -*-] by moving along at a speed less than the
                        speed of light. Therefore events in this region can affect the
                        point O[image: -*-], can have an influence on it from the past. In fact, of
                        course, an object at P[image: -*-] on the negative t[image: -*-]-axis is precisely in the
                        “past” with respect to O[image: -*-]; it is the same space-point as O[image: -*-], only
                        earlier. What happened there then, affects O[image: -*-] now. (Unfortunately, that
                        is the way life is.) Another object at Q[image: -*-] can get to O[image: -*-] by moving with
                        a certain speed less than c[image: -*-], so if this object were in a space ship
                        and moving, it would be, again, the past of the same space-point. That
                        is, in another coordinate system, the axis of time might go through both
                        O[image: -*-] and Q[image: -*-]. So all points of region 2 are in the “past” of O[image: -*-], and
                        anything that happens in this region can affect O[image: -*-]. Therefore
                        region 2 is sometimes called the affective past, or affecting past; it is the locus of all events which can affect
                        point O[image: -*-] in any way.

                    

                    
                        Region 3, on the other hand, is a region which we can affect
                        from O[image: -*-], we can “hit” things by shooting “bullets” out at
                        speeds less than c[image: -*-]. So this is the world whose future can be affected
                        by us, and we may call that the affective future. Now the interesting thing about all the rest of space-time,
                        i.e., region 1, is that we can neither affect it now from O[image: -*-],
                        nor can it affect us now at O[image: -*-], because nothing can go faster
                        than the speed of light. Of course, what happens at R[image: -*-] can
                        affect us later; that is, if the sun is exploding “right now,”
                        it takes eight minutes before we know about it, and it cannot possibly
                        affect us before then.

                    

                    
                        What we mean by “right now” is a mysterious thing which we cannot
                        define and we cannot affect, but it can affect us later, or we could
                        have affected it if we had done something far enough in the past. When
                        we look at the star Alpha Centauri, we see it as it was four years ago;
                        we might wonder what it is like “now.” “Now” means at the same time
                        from our special coordinate system. We can only see Alpha Centauri by
                        the light that has come from our past, up to four years ago, but we do
                        not know what it is doing “now”; it will take four years before what
                        it is doing “now” can affect us. Alpha Centauri “now” is an idea or
                        concept of our mind; it is not something that is really definable
                        physically at the moment, because we have to wait to observe it; we
                        cannot even define it right “now.” Furthermore, the “now” depends on
                        the coordinate system. If, for example, Alpha Centauri were moving, an
                        observer there would not agree with us because he would put his axes at
                        an angle, and his “now” would be a different time. We have
                        already talked about the fact that simultaneity is not a unique thing.

                    

                    
                        There are fortune tellers, or people who tell us
                        they can know the future, and there are many wonderful stories about the
                        man who suddenly discovers that he has knowledge about the affective
                        future. Well, there are lots of paradoxes
                        produced by that because if we know something is going to happen, then
                        we can make sure we will avoid it by doing the right thing at the right
                        time, and so on. But actually there is no fortune teller who can even
                        tell us the present!  There is no one who can tell us what is
                        really happening right now, at any reasonable distance, because that is
                        unobservable. We might ask ourselves this question, which we leave to
                        the student to try to answer: Would any paradox be produced if it were
                        suddenly to become possible to know things that are in the space-like
                        intervals of region 1?

                    

                

                
                    
                        17–4 More about four-vectors

                    
                        Let us now return to our consideration of the analogy of the Lorentz
                        transformation and rotations of the space axes. We have learned the
                        utility of collecting together other quantities which have the same
                        transformation properties as the coordinates, to form what we call
                        vectors, directed lines. In the case of ordinary rotations, there
                        are many quantities that transform the same way as x[image: -*-], y[image: -*-], and z[image: -*-]
                        under rotation: for example, the velocity has three components, an
                        x[image: -*-], y[image: -*-], and z[image: -*-]-component; when seen in a different coordinate system,
                        none of the components is the same, instead they are all transformed to
                        new values. But, somehow or other, the velocity “itself” has a greater
                        reality than do any of its particular components, and we represent it by
                        a directed line.
                        

                    

                    
                        We therefore ask: Is it or is it not true that there are quantities
                        which transform, or which are related, in a moving system and in a
                        nonmoving system, in the same way as x[image: -*-], y[image: -*-], z[image: -*-], and t[image: -*-]? From our
                        experience with vectors, we know that three of the quantities, like x[image: -*-],
                        y[image: -*-], z[image: -*-], would constitute the three components of an ordinary
                        space-vector, but the fourth quantity would look like an ordinary scalar
                        under space rotation, because it does not change so long as we do not go
                        into a moving coordinate system. Is it possible, then, to associate with
                        some of our known “three-vectors” a fourth object, that we could call
                        the “time component,” in such a manner that the four objects together
                        would “rotate” the same way as position and time in space-time? We
                        shall now show that there is, indeed, at least one such thing (there are
                        many of them, in fact): the three components of momentum, and the
                            energy as the time component, transform together to make what we call a
                        “four-vector.” In demonstrating this, since it is quite inconvenient
                        to have to write c[image: -*-]’s everywhere, we shall use the same trick
                        concerning units of the energy, the mass, and the momentum, that we used
                        in Eq. (17.4). Energy and mass, for example, differ only by a
                        factor c2[image: -*-] which is merely a question of units, so we can say energy
                        is the mass. Instead of having to write the c2[image: -*-], we put E=m[image: -*-], and
                        then, of course, if there were any trouble we would put in the right
                        amounts of c[image: -*-] so that the units would straighten out in the last
                        equation, but not in the intermediate ones.

                    

                    
                        Thus our equations for energy and momentum are
                        
[image: -*-][image: -*-]
(17.6)




                        Also in these units, we have
                        
[image: -*-][image: -*-]
(17.7)




                        For example, if we measure energy in electron volts, what does a mass of
                        1 electron volt mean? It means the mass whose rest energy is
                        1 electron volt, that is, m0 c2[image: -*-] is one electron volt. For example,
                        the rest mass of an electron is 0.511×106[image: -*-] eV.

                        

                        
                        Now what would the momentum and energy look like in a new coordinate
                        system? To find out, we shall have to transform Eq. (17.6),
                        which we can do because we know how the velocity transforms. Suppose
                        that, as we measure it, an object has a velocity v[image: -*-], but we look upon
                        the same object from the point of view of a space ship which itself is
                        moving with a velocity u[image: -*-], and in that system we use a prime to
                        designate the corresponding thing. In order to simplify things at first,
                        we shall take the case that the velocity v[image: -*-] is in the direction of u[image: -*-].
                        (Later, we can do the more general case.)  What is v′[image: -*-], the velocity as
                        seen from the space ship? It is the composite velocity, the
                        “difference” between v[image: -*-] and u[image: -*-]. By the law which we worked out
                        before,
                        
[image: -*-][image: -*-]
(17.8)




                        Now let us calculate the new energy E′[image: -*-], the energy as the fellow in
                        the space ship would see it. He would use the same rest mass, of course,
                        but he would use v′[image: -*-] for the velocity. What we have to do is
                        square v′[image: -*-], subtract it from one, take the square root, and take the
                        reciprocal:
                        
[image: -*-][image: -*-]


                        Therefore
                        
[image: -*-][image: -*-]
(17.9)




                        

                        
                        The energy E′[image: -*-] is then simply m0[image: -*-] times the above expression. But we
                        want to express the energy in terms of the unprimed energy and momentum,
                        and we note that
                        
                        
                        
[image: -*-][image: -*-]


                        
                       or
                        
[image: -*-][image: -*-]
(17.10)




                        which we recognize as being exactly of the same form as
                        
[image: -*-][image: -*-]


                        Next we must find the new momentum [image: p_x'][image: p_x']. This is just the energy E′[image: -*-]
                        times v′[image: -*-], and is also simply expressed in terms of E[image: -*-] and p[image: -*-]:
                        
                        
                        
[image: -*-][image: -*-]


                         
                        Thus
                        
[image: -*-][image: -*-]
(17.11)




                        which we recognize as being of precisely the same form as
                        
[image: -*-][image: -*-]


                        

                        
                        Thus the transformations for the new energy and momentum in terms of the
                        old energy and momentum are exactly the same as the transformations
                        for t′[image: -*-] in terms of t[image: -*-] and x[image: -*-], and x′[image: -*-] in terms of x[image: -*-] and t[image: -*-]: all
                        we have to do is, every time we see t[image: -*-] in (17.4)
                        substitute E[image: -*-], and every time we see x[image: -*-] substitute px[image: -*-], and then the
                        equations (17.4) will become the same as Eqs.
                        (17.10) and (17.11). This would imply, if
                        everything works right, an additional rule that [image: p_y' = p_y][image: p_y' = p_y] and
                        that [image: p_z' = p_z][image: p_z' = p_z]. To prove this would require our going back and
                        studying the case of motion up and down. Actually, we did study the case
                        of motion up and down in the last chapter. We analyzed a complicated
                        collision and we noticed that, in fact, the transverse momentum is
                        not changed when viewed from a moving system; so we have already
                        verified that [image: p_y' = p_y][image: p_y' = p_y] and [image: p_z' = p_z][image: p_z' = p_z]. The complete
                        transformation, then, is
                        
[image: -*-][image: -*-]
(17.12)




                        

                        
                        In these transformations, therefore, we have discovered four quantities
                        which transform like x[image: -*-], y[image: -*-], z[image: -*-], and t[image: -*-], and which we call the
                        four-vector momentum. Since the momentum is a four-vector, it can
                        be represented on a space-time diagram of a moving particle as an
                        “arrow” tangent to the path, as shown in Fig. 17–4. This
                        arrow has a time component equal to the energy, and its space components
                        represent its three-vector momentum; this arrow is more “real” than
                        either the energy or the momentum, because those just depend on how we
                        look at the diagram.

                    

                    [image: -][image: -]
                            Fig. 17–4. The four-vector momentum of a particle.
                        

                    

                

                
                    
                        17–5 Four-vector algebra

                    
                        The notation for four-vectors is different than it is for three-vectors.
                        In the case of three-vectors, if we were to talk about the ordinary
                        three-vector momentum we would write it p[image: -*-]. If we wanted to be more
                        specific, we could say it has three components which are, for the axes
                        in question, px[image: -*-], py[image: -*-], and pz[image: -*-], or we could simply refer to a
                        general component as pi[image: -*-], and say that i[image: -*-] could either be x[image: -*-], y[image: -*-],
                        or z[image: -*-], and that these are the three components; that is, imagine
                        that i[image: -*-] is any one of three directions, x[image: -*-], y[image: -*-], or z[image: -*-]. The notation
                        that we use for four-vectors is analogous to this: we write pμ[image: -*-]
                        for the four-vector, and μ[image: -*-] stands for the four possible
                        directions t[image: -*-], x[image: -*-], y[image: -*-], or z[image: -*-].

                    

                    
                        We could, of course, use any notation we want; do not laugh at
                        notations; invent them, they are powerful. In fact, mathematics is, to a
                        large extent, invention of better notations. The whole idea of a
                        four-vector, in fact, is an improvement in notation so that the
                        transformations can be remembered easily. Aμ[image: -*-], then, is a general
                        four-vector, but for the special case of momentum, the pt[image: -*-] is
                        identified as the energy, px[image: -*-] is the momentum in the x[image: -*-]-direction,
                        py[image: -*-] is that in the y[image: -*-]-direction, and pz[image: -*-] is that in the
                        z[image: -*-]-direction. To add four-vectors, we add the corresponding components.
                        

                    

                    
                        If there is an equation among four-vectors, then the equation is true
                        for each component. For instance, if the law of conservation of
                        three-vector momentum is to be true in particle collisions, i.e., if the
                        sum of the momenta for a large number of interacting or colliding
                        particles is to be a constant, that must mean that the sums of all
                        momenta in the x[image: -*-]-direction, in the y[image: -*-]-direction, and in the
                        z[image: -*-]-direction, for all the particles, must each be constant. This law
                        alone would be impossible in relativity because it is incomplete;
                        it is like talking about only two of the components of a three-vector.
                        It is incomplete because if we rotate the axes, we mix the various
                        components, so we must include all three components in our law. Thus, in
                        relativity, we must complete the law of conservation of momentum by
                        extending it to include the time component. This is
                        absolutely necessary to go with the other three, or there cannot
                        be relativistic invariance. The conservation of energy is the
                        fourth equation which goes with the conservation of momentum to make a
                        valid four-vector relationship in the geometry of space and time. Thus
                        the law of conservation of energy and momentum in four-dimensional
                        notation is
                        
[image: -*-][image: -*-]
(17.13)




                        or, in a slightly different notation
                        
[image: -*-][image: -*-]
(17.14)




                        where i=1[image: -*-], 2, … refers to the particles going into the
                        collision, j=1[image: -*-], 2, … refers to the particles coming out of
                        the collision, and μ=x[image: -*-], y[image: -*-], z[image: -*-], or t[image: -*-]. You say, “In which
                        axes?”  It makes no difference. The law is true for each component,
                        using any axes.

                    

                    
                        In vector analysis we discussed one other thing, the dot product of two
                        vectors. Let us now consider the corresponding thing in space-time. In
                        ordinary rotation we discovered there was an unchanged quantity x2+y2+z2[image: -*-]. In four dimensions, we find that the corresponding quantity
                        is t2−x2−y2−z2[image: -*-] (Eq. 17.3). How can we write that?
                        One way would be to write some kind of four-dimensional thing with a
                        square dot between, like Aμ⊡Bμ[image: -*-]; one of the notations
                        which is actually used is
                        
[image: -*-][image: -*-]
(17.15)




                        The prime on ∑[image: -*-] means that the first term, the “time” term, is
                        positive, but the other three terms have minus signs. This quantity,
                        then, will be the same in any coordinate system, and we may call it the
                        square of the length of the four-vector. For instance, what is the
                        square of the length of the four-vector momentum of a single particle?
                        This will be equal to [image: p_t^2 - p_x^2 - p_y^2 - p_z^2][image: p_t^2 - p_x^2 - p_y^2 - p_z^2] or, in other
                        words, E2−p2[image: -*-], because we know that pt[image: -*-] is E[image: -*-]. What is E2−p2[image: -*-]? It must be something which is the same in every coordinate system.
                        In particular, it must be the same for a coordinate system which is
                        moving right along with the particle, in which the particle is standing
                        still. If the particle is standing still, it would have no momentum. So
                        in that coordinate system, it is purely its energy, which is the same as
                        its rest mass. Thus [image: E^2 - p^2 = m_0^2][image: E^2 - p^2 = m_0^2]. So we see that the square of
                        the length of this vector, the four-vector momentum, is equal
                        to [image: m_0^2][image: m_0^2].

                    

                    
                        From the square of a vector, we can go on to invent the “dot product,”
                        or the product which is a scalar: if aμ[image: -*-] is one four-vector
                        and bμ[image: -*-] is another four-vector, then the scalar product is
                        
[image: -*-][image: -*-]
(17.16)




                        It is the same in all coordinate systems.

                    

                    
                        Finally, we shall mention certain things whose rest mass m0[image: -*-] is zero.
                        A photon of light, for example. A photon is
                        like a particle, in that it carries an energy and a momentum. The energy
                        of a photon is a certain constant, called Planck’s
                        constant, times the frequency of the
                        photon: E=h ν[image: -*-]. Such a photon also carries a momentum,
                        and the momentum of a photon (or of any other particle, in
                        fact) is h[image: -*-] divided by the wavelength: p=h/λ[image: -*-]. But, for a
                        photon, there is a definite relationship between the frequency and the
                        wavelength: ν=c/λ[image: -*-]. (The number of waves per second, times the
                        wavelength of each, is the distance that the light goes in one second,
                        which, of course, is c[image: -*-].)  Thus we see immediately that the energy of a
                        photon must be the momentum times c[image: -*-], or if c=1[image: -*-], the energy
                            and momentum are equal. That is to say, the rest mass is zero. Let us
                        look at that again; that is quite curious. If it is a particle of zero
                        rest mass, what happens when it stops? It never stops! It always
                        goes at the speed c[image: -*-]. The usual formula for energy is m0/√1−v2[image: -*-]. Now can we say that m0=0[image: -*-] and v=1[image: -*-], so the energy is 0?
                        We cannot say that it is zero; the photon really can (and does)
                        have energy even though it has no rest mass, but this it possesses by
                        perpetually going at the speed of light!

                    

                    
                        We also know that the momentum of any particle is equal to its total
                        energy times its velocity: if c=1[image: -*-], p=v E[image: -*-] or, in ordinary units,
                        p=v E/c2[image: -*-]. For any particle moving at the speed of light, p=E[image: -*-] if
                        c=1[image: -*-]. The formulas for the energy of a photon as seen from a moving
                        system are, of course, given by Eq. (17.12), but for the
                        momentum we must substitute the energy times c[image: -*-] (or times 1 in this
                        case). The different energies after transformation means that there are
                        different frequencies. This is called the Doppler
                        effect, and one can calculate it easily
                        from Eq. (17.12), using also E=p[image: -*-] and E=h ν[image: -*-].
                        

                    

                    
                        As Minkowski said, “Space of
                        itself, and time of itself will sink into mere shadows, and only a kind
                        of union between them shall survive.”

                    

                

            

  
    

18 Rotation in Two Dimensions



18–1 The center of mass


In the previous chapters we have been studying the mechanics
of points, or small particles whose internal structure does not concern
us. For the next few chapters we shall study the application of
Newton’s laws to more complicated
things. When the world becomes more complicated, it also becomes more
interesting, and we shall find that the phenomena associated with the
mechanics of a more complex object than just a point are really quite
striking. Of course these phenomena involve nothing but combinations of
Newton’s laws, but it is sometimes
hard to believe that only F=m a[image: -*-] is at work.





The more complicated objects we deal with can be of several kinds:
water flowing, galaxies whirling, and so on. The simplest
“complicated” object to analyze, at the start, is what we call a
rigid body, a solid object that is turning as
it moves about. However, even such a simple object may have a most
complex motion, and we shall therefore first consider the simplest
aspects of such motion, in which an extended body rotates about a
fixed axis. A given point on such a body then moves in a plane
perpendicular to this axis. Such rotation of a body about a fixed axis
is called plane rotation or rotation
in two dimensions. We shall later generalize the results to three
dimensions, but in doing so we shall find that, unlike the case of
ordinary particle mechanics, rotations are subtle and hard to understand
unless we first get a solid grounding in two dimensions.




The first interesting theorem concerning the motion of complicated
objects can be observed at work if we throw an object made of a lot of
blocks and spokes, held together by strings, into the air. Of course
we know it goes in a parabola, because we studied that for a
particle. But now our object is not a particle; it wobbles and
it jiggles, and so on. It does go in a parabola though; one can see
that. What goes in a parabola? Certainly not the point on the
corner of the block, because that is jiggling about; neither is it the
end of the wooden stick, or the middle of the wooden stick, or the
middle of the block. But something goes in a parabola, there is
an effective “center” which moves in a parabola. So our first
theorem about complicated objects is to demonstrate that there
is a mean position which is mathematically definable, but not
necessarily a point of the material itself, which goes in a
parabola. That is called the theorem of the center of the mass, and
the proof of it is as follows.




We may consider any object as being made of lots of little particles,
the atoms, with various forces among them. Let i[image: -*-] represent an index
which defines one of the particles. (There are millions of them,
so i[image: -*-] goes to 1023[image: -*-], or something.) Then the force on the
i[image: -*-]th particle is, of course, the mass times the acceleration of that
particle:

[image: -*-][image: -*-]
(18.1)







In the next few chapters our moving objects will be ones in which all
the parts are moving at speeds very much slower than the speed of
light, and we shall use the nonrelativistic approximation for all
quantities. In these circumstances the mass is constant, so that

[image: -*-][image: -*-]
(18.2)




If we now add the force on all the particles, that is, if we take the
sum of all the Fi[image: -*-]’s for all the different indexes, we get the
total force, F[image: -*-]. On the other side of the equation, we get the
same thing as though we added before the differentiation:

[image: -*-][image: -*-]
(18.3)




Therefore the total force is the second derivative of the masses times
their positions, added together.




Now the total force on all the particles is the same as the
external force. Why? Although there are all kinds of forces on
the particles because of the strings, the wigglings, the pullings and
pushings, and the atomic forces, and who knows what, and we have to
add all these together, we are rescued by Newton’s Third Law. Between
any two particles the action and reaction are equal, so that when we
add all the equations together, if any two particles have forces
between them it cancels out in the sum; therefore the net result is
only those forces which arise from other particles which are not
included in whatever object we decide to sum over. So if
Eq. (18.3) is the sum over a certain number of the particles,
which together are called “the object,” then the external force
on the total object is equal to the sum of all the forces on all
its constituent particles.




Now it would be nice if we could write Eq. (18.3) as the
total mass times some acceleration. We can. Let us say M[image: -*-] is the sum
of all the masses, i.e., the total mass. Then if we define a
certain vector R[image: -*-] to be

[image: -*-][image: -*-]
(18.4)




Eq. (18.3) will be simply

[image: -*-][image: -*-]
(18.5)




since M[image: -*-] is a constant. Thus we find that the external force is the
total mass times the acceleration of an imaginary point whose location
is R[image: -*-]. This point is called the center of mass of the
body. It is a point somewhere in the “middle” of the object, a kind
of average r[image: -*-] in which the different ri[image: -*-]’s have weights or
importances proportional to the masses.




We shall discuss this important theorem in more detail in a later
chapter, and we shall therefore limit our remarks to two points: First,
if the external forces are zero, if the object were floating in empty
space, it might whirl, and jiggle, and twist, and do all kinds of
things. But the center of mass, this artificially invented,
calculated position, somewhere in the middle, will move with a
constant velocity. In particular, if it is initially at rest, it will
stay at rest. So if we have some kind of a box, perhaps a space ship,
with people in it, and we calculate the location of the center of mass
and find it is standing still, then the center of mass will continue to
stand still if no external forces are acting on the box. Of course, the
space ship may move a little in space, but that is because the people
are walking back and forth inside; when one walks toward the front, the
ship goes toward the back so as to keep the average position of all the
masses in exactly the same place.




Is rocket propulsion therefore absolutely impossible because one
cannot move the center of mass? No; but of course we find that to
propel an interesting part of the rocket, an uninteresting part must
be thrown away. In other words, if we start with a rocket at zero
velocity and we spit some gas out the back end, then this little blob
of gas goes one way as the rocket ship goes the other, but the center
of mass is still exactly where it was before. So we simply move the
part that we are interested in against the part we are not interested
in.




The second point concerning the center of mass, which is the reason we
introduced it into our discussion at this time, is that it may be
treated separately from the “internal” motions of an object, and may
therefore be ignored in our discussion of rotation.







18–2 Rotation of a rigid body


Now let us discuss rotations. Of course an ordinary object does not
simply rotate, it wobbles, shakes, and bends, so to simplify matters
we shall discuss the motion of a nonexistent ideal object which we
call a rigid body. This means an object in which the forces
between the atoms are so strong, and of such character, that the
little forces that are needed to move it do not bend it. Its shape
stays essentially the same as it moves about. If we wish to study the
motion of such a body, and agree to ignore the motion of its center of
mass, there is only one thing left for it to do, and that is to
turn. We have to describe that. How? Suppose there is some line
in the body which stays put (perhaps it includes the center of mass
and perhaps not), and the body is rotating about this particular line
as an axis. How do we define the rotation? That is easy enough, for if
we mark a point somewhere on the object, anywhere except on the axis,
we can always tell exactly where the object is, if we only know where
this point has gone to. The only thing needed to describe the position
of that point is an angle. So rotation consists of a study of
the variations of the angle with time.




In order to study rotation, we observe the angle through which a body
has turned. Of course, we are not referring to any particular angle
inside the object itself; it is not that we draw some angle
on the object. We are talking about the angular change of
the position of the whole thing, from one time to another.




First, let us study the kinematics of rotations. The angle will change
with time, and just as we talked about position and velocity in one
dimension, we may talk about angular position and angular
velocity in plane
rotation. In fact, there is a very interesting relationship between
rotation in two dimensions and one-dimensional displacement, in which
almost every quantity has its analog. First, we have the angle θ[image: -*-]
which defines how far the body has gone around; this replaces the
distance y[image: -*-], which defines how far it has gone along. In the
same manner, we have a velocity of turning, ω=d θ/d t[image: -*-], which
tells us how much the angle changes in a second, just as v=d s/d t[image: -*-]
describes how fast a thing moves, or how far it moves in a second. If
the angle is measured in radians, then the angular
velocity ω[image: -*-]
will be so and so many radians per second. The greater the angular
velocity, the
faster the object is turning, the faster the angle changes. We can go
on: we can differentiate the angular velocity with respect to time, and we
can call α=[image: -*-]d ω/d t=[image: -*-]d2 θ/d t2[image: -*-] the angular
acceleration. That would be the analog of the ordinary acceleration.




[image: -][image: -]
Fig. 18–1. Kinematics of two-dimensional rotation.





Now of course we shall have to relate the dynamics of rotation to the
laws of dynamics of the particles of which the object is made, so we
must find out how a particular particle moves when the angular
velocity is such and such. To do this, let us take a certain particle
which is located at a distance r[image: -*-] from the axis and say it is in a
certain location P (x,y)[image: -*-] at a given instant, in the usual manner
(Fig. 18–1). If at a moment Δ t[image: -*-] later the angle
of the whole object has turned through Δ θ[image: -*-], then this
particle is carried with it. It is at the same radius away from O[image: -*-] as
it was before, but is carried to Q[image: -*-]. The first thing we would like to
know is how much the distance x[image: -*-] changes and how much the
distance y[image: -*-] changes. If O P[image: -*-] is called r[image: -*-], then the length P Q[image: -*-]
is r Δ θ[image: -*-], because of the way angles are defined. The change
in x[image: -*-], then, is simply the projection of r Δ θ[image: -*-] in the
x[image: -*-]-direction:

[image: -*-][image: -*-]
(18.6)




Similarly,

[image: -*-][image: -*-]
(18.7)




If the object is turning with a given angular velocity ω[image: -*-], we
find, by dividing both sides of (18.6) and (18.7)
by Δ t[image: -*-], that the velocity of the particle is

[image: -*-][image: -*-]
(18.8)




Of course if we want to find the magnitude of the velocity, we just
write



[image: -*-][image: -*-]
(18.9)





It should not be mysterious that the value of the magnitude of this
velocity is ω r[image: -*-]; in fact, it should be self-evident, because
the distance that it moves is r Δ θ[image: -*-] and the distance it
moves per second is r Δ θ/Δ t[image: -*-], or r ω[image: -*-].




Let us now move on to consider the dynamics of rotation. Here a new
concept, force, must be introduced. Let us inquire whether we can invent
something which we shall call the torque (L.
torquere, to twist) which bears the same relationship to rotation as
force does to linear movement. A force is the thing that is needed to make
linear motion, and the thing that makes something rotate is a “rotary force”
or a “twisting force,” i.e., a torque. Qualitatively, a torque is a “twist”;
what is a torque quantitatively? We shall get to the theory of torques
quantitatively by studying the work done in turning an object, for one
very nice way of defining a force is to say how much work it does when it acts
through a given displacement. We are going to try to maintain the analogy
between linear and angular quantities by equating the work that we do when we
turn something a little bit when there are forces acting on it, to the
torque times the angle it turns through. In other words, the
definition of the torque is going to be so arranged that the theorem of work has
an absolute analog: force times distance is work, and torque times angle is
going to be work. That tells us what torque is. Consider, for instance, a rigid
body of some kind with various forces acting on it, and an axis about which the
body rotates. Let us at first concentrate on one force and suppose that this
force is applied at a certain point (x,y)[image: -*-]. How much work would be done if we
were to turn the object through a very small angle? That is easy.  The work done
is

[image: -*-][image: -*-]
(18.10)




We need only to substitute Eqs. (18.6) and (18.7)
for Δ x[image: -*-] and Δ y[image: -*-] to obtain

[image: -*-][image: -*-]
(18.11)




That is, the amount of work that we have done is, in fact, equal to
the angle through which we have turned the object, multiplied by a
strange-looking combination of the force and the distance. This
“strange combination” is what we call the torque. So, defining the
change in work as the torque times the angle, we now have the formula
for torque in terms of the forces. (Obviously, torque is not a
completely new idea independent of Newtonian mechanics—torque must
have a definite definition in terms of the force.)




When there are several forces acting, the work that is done is, of
course, the sum of the works done by all the forces, so that Δ W[image: -*-] will be a whole lot of terms, all added together, for all the
forces, each of which is proportional, however,
to Δ θ[image: -*-]. We can take the Δ θ[image: -*-] outside and therefore
can say that the change in the work is equal to the sum of all the
torques due to all the different forces that are acting,
times Δ θ[image: -*-]. This sum we might call the total torque, τ[image: -*-]. Thus
torques add by the ordinary laws of algebra, but we shall later see
that this is only because we are working in a plane. It is like
one-dimensional kinematics, where the forces simply add algebraically,
but only because they are all in the same direction. It is more
complicated in three dimensions. Thus, for two-dimensional rotation,

[image: -*-][image: -*-]
(18.12)




and

[image: -*-][image: -*-]
(18.13)




It must be emphasized that the torque is about a given axis. If a
different axis is chosen, so that all the xi[image: -*-] and yi[image: -*-] are changed,
the value of the torque is (usually) changed too.




Now we pause briefly to note that our foregoing introduction of
torque, through the idea of work, gives us a most important result for
an object in equilibrium: if all the forces on an object are in
balance both for translation and rotation, not only is the net
force zero, but the total of all the torques is also
zero, because if an object is in equilibrium, no work is done by
the forces for a small displacement. Therefore, since Δ W=τ Δ θ=0[image: -*-], the sum of all the torques must be zero. So
there are two conditions for equilibrium: that the sum of the forces
is zero, and that the sum of the torques is zero. Prove that it
suffices to be sure that the sum of torques about any one axis
(in two dimensions) is zero.



[image: -][image: -]
Fig. 18–2. The torque produced by a force.





Now let us consider a single force, and try to figure out,
geometrically, what this strange thing x Fy−y Fx[image: -*-] amounts to. In
Fig. 18–2 we see a force F[image: -*-] acting at a
point r[image: -*-]. When the object has rotated through a small
angle Δ θ[image: -*-], the work done, of course, is the component of force in
the direction of the displacement times the displacement. In other
words, it is only the tangential component of the force that counts,
and this must be multiplied by the distance r Δ θ[image: -*-].
Therefore we see that the torque is also equal to
the tangential component of force (perpendicular to the radius) times
the radius. That makes sense in terms of our ordinary idea of the
torque, because if the force were completely radial, it would not put
any “twist” on the body; it is evident that the twisting effect
should involve only the part of the force which is not pulling out
from the center, and that means the tangential component. Furthermore,
it is clear that a given force is more effective on a long arm than
near the axis. In fact, if we take the case where we push right
on the axis, we are not twisting at all!  So it makes sense
that the amount of twist, or torque, is proportional both to the
radial distance and to the tangential component of the force.




There is still a third formula for the torque which is very
interesting. We have just seen that the torque is the force times the
radius times the sine of the angle α[image: -*-], in Fig. 18–2.
But if we extend the line of action of the force and draw the line O S[image: -*-],
the perpendicular distance to the line of action of the force (the
lever arm of the force) we notice that this lever arm is shorter
than r[image: -*-] in just the same proportion as the tangential part of the force
is less than the total force. Therefore the formula for the torque can
also be written as the magnitude of the force times the length of the
lever arm.




The torque is also often called the moment of the
force. The origin of
this term is obscure, but it may be related to the fact that “moment”
is derived from the Latin movimentum, and that the capability of
a force to move an object (using the force on a lever or crowbar)
increases with the length of the lever arm. In mathematics “moment”
means weighted by how far away it is from an axis.







18–3 Angular momentum


Although we have so far considered only the special case of a rigid
body, the properties of torques and their mathematical relationships
are interesting also even when an object is not rigid. In fact, we can
prove a very remarkable theorem: just as external force is the rate of
change of a quantity p[image: -*-], which we call the total momentum of a
collection of particles, so the external torque is the rate of change
of a quantity L[image: -*-] which we call the angular momentum of the
group of particles.



[image: -][image: -]
Fig. 18–3. A particle moves about an axis O[image: -*-].





To prove this, we shall suppose that there is a system of particles on
which there are some forces acting and find out what happens to the
system as a result of the torques due to these forces. First, of
course, we should consider just one particle. In
Fig. 18–3 is one particle of mass m[image: -*-], and an axis O[image: -*-]; the
particle is not necessarily rotating in a circle about O[image: -*-], it may be
moving in an ellipse, like a planet going around the sun, or in some
other curve. It is moving somehow, and there are forces on it, and it
accelerates according to the usual formula that the x[image: -*-]-component of
force is the mass times the x[image: -*-]-component of acceleration, etc. But let
us see what the torque does. The torque equals x Fy−y Fx[image: -*-], and
the force in the x[image: -*-]- or y[image: -*-]-direction is the mass times the
acceleration in the x[image: -*-]- or y[image: -*-]-direction:

[image: -*-][image: -*-]
(18.14)




Now, although this does not appear to be the derivative of any simple
quantity, it is in fact the derivative of the quantity x m (d y/d t)−y m (d x/d t)[image: -*-]:



[image: -*-][image: -*-]
(18.15)





So it is true that the torque is the rate of change of something with
time! So we pay attention to the “something,” we give it a name: we
call it L[image: -*-], the angular momentum:

[image: -*-][image: -*-]
(18.16)







Although our present discussion is nonrelativistic, the second form
for L[image: -*-] given above is relativistically correct. So we have found that
there is also a rotational analog for the momentum, and that this
analog, the angular momentum, is given by an expression in terms of
the components of linear momentum that is just like the formula for
torque in terms of the force components! Thus, if we want to know the
angular momentum of a particle about an axis, we take only the
component of the momentum that is tangential, and multiply it by the
radius. In other words, what counts for angular momentum is not how
fast it is going away from the origin, but how much it is going
around the origin. Only the tangential part of the momentum
counts for angular momentum. Furthermore, the farther out the line of
the momentum extends, the greater the angular momentum. And also,
because the geometrical facts are the same whether the quantity is
labeled p[image: -*-] or F[image: -*-], it is true that there is a lever arm (not
the same as the lever arm of the force on the particle!) which is
obtained by extending the line of the momentum and finding the
perpendicular distance to the axis. Thus the angular momentum is the
magnitude of the momentum times the momentum lever arm. So we have
three formulas for angular momentum, just as we have three formulas
for the torque:

[image: -*-][image: -*-]
(18.17)




Like torque, angular momentum depends upon the position of the axis
about which it is to be calculated.




Before proceeding to a treatment of more than one particle, let us
apply the above results to a planet going around the sun. In which
direction is the force? The force is toward the sun. What, then, is
the torque on the object? Of course, this depends upon where we take
the axis, but we get a very simple result if we take it at the sun
itself, for the torque is the force times the lever arm, or the
component of force perpendicular to r[image: -*-], times r[image: -*-]. But there is no
tangential force, so there is no torque about an axis at the sun!
Therefore, the angular momentum of the planet going around the sun
must remain constant. Let us see what that means. The tangential
component of velocity, times the mass, times the radius, will be
constant, because that is the angular momentum, and the rate of change
of the angular momentum is the torque, and, in this problem, the
torque is zero. Of course since the mass is also a constant, this
means that the tangential velocity times the radius is a constant. But
this is something we already knew for the motion of a planet. Suppose
we consider a small amount of time Δ t[image: -*-]. How far will the planet
move when it moves from P[image: -*-] to Q[image: -*-] (Fig. 18–3)? How much
area will it sweep through? Disregarding the very tiny
area Q Q′ P[image: -*-] compared with the much larger area O P Q[image: -*-], it is simply half the
base P Q[image: -*-] times the height, O R[image: -*-]. In other words, the area that is
swept through in unit time will be equal to the velocity times the
lever arm of the velocity (times one-half). Thus the rate of change of
area is proportional to the angular momentum, which is constant. So
Kepler’s law about
equal areas in equal times is a word description of the statement of the
law of conservation of angular momentum, when there is no torque
produced by the force.








18–4 Conservation of angular momentum


Now we shall go on to consider what happens when there is a large
number of particles, when an object is made of many pieces with many
forces acting between them and on them from the outside. Of course, we
already know that, about any given fixed axis, the torque on the
i[image: -*-]th particle (which is the force on the i[image: -*-]th particle times the lever arm
of that force) is equal to the rate of change of the angular momentum
of that particle, and that the angular momentum of the i[image: -*-]th particle
is its momentum times its momentum lever arm. Now suppose we add the
torques τi[image: -*-] for all the particles and call it the total
torque τ[image: -*-]. Then this will be the rate of change of the sum of the angular
momenta of all the particles Li[image: -*-], and that defines a new quantity
which we call the total angular momentum L[image: -*-]. Just as the total
momentum of an object is the sum of the momenta of all the
parts, so the angular momentum is the sum of the angular momenta of
all the parts. Then the rate of change of the total L[image: -*-] is the total
torque:

[image: -*-][image: -*-]
(18.18)




Now it might seem that the total torque is a complicated thing. There
are all those internal forces and all the outside forces to be
considered. But, if we take Newton’s law of action and reaction to
say, not simply that the action and reaction are equal, but also that
they are directed exactly oppositely along the same line
(Newton may or may not actually have
said this, but he tacitly assumed it), then the two torques on
the reacting objects, due to their mutual interaction, will be equal and
opposite because the lever arms for any axis are equal. Therefore the
internal torques balance out pair by pair, and so we have the remarkable
theorem that the rate of change of the total angular momentum
about any axis is equal to the external torque about that axis!

[image: -*-][image: -*-]
(18.19)




Thus we have a very powerful theorem concerning the motion of large
collections of particles, which permits us to study the over-all
motion without having to look at the detailed machinery inside. This
theorem is true for any collection of objects, whether they form a
rigid body or not.




One extremely important case of the above theorem is the law of
conservation of angular momentum: if no external torques act upon a
system of particles, the angular momentum remains constant.




A special case of great importance is that of a rigid body, that is,
an object of a definite shape that is just turning around. Consider an
object that is fixed in its geometrical dimensions, and which is
rotating about a fixed axis. Various parts of the object bear the same
relationship to one another at all times. Now let us try to find the
total angular momentum of this object. If the mass of one of its
particles is mi[image: -*-], and its position or location is at (xi,yi)[image: -*-],
then the problem is to find the angular momentum of that particle,
because the total angular momentum is the sum of the angular momenta
of all such particles in the body. For an object going around in a
circle, the angular momentum, of course, is the mass times the
velocity times the distance from the axis, and the velocity is equal
to the angular velocity times the distance from the axis:

[image: -*-][image: -*-]
(18.20)




or, summing over all the particles i[image: -*-], we get

[image: -*-][image: -*-]
(18.21)




where

[image: -*-][image: -*-]
(18.22)







This is the analog of the law that the momentum is mass times
velocity. Velocity is replaced by angular velocity, and we see that
the mass is replaced by a new thing which we call the moment of
inertia I[image: -*-],
which is analogous to the mass. Equations (18.21)
and (18.22) say that a body has inertia for turning which
depends, not just on the masses, but on how far away they are
from the axis. So, if we have two objects of the same mass, when we put
the masses farther away from the axis, the inertia for turning will be
higher. This is easily demonstrated by the apparatus shown in
Fig. 18–4, where a weight M[image: -*-] is kept from falling very fast
because it has to turn the large weighted rod. At first, the masses m[image: -*-]
are close to the axis, and M[image: -*-] speeds up at a certain rate. But when we
change the moment of inertia by putting the two masses m[image: -*-]
much farther away from the axis, then we see that M[image: -*-] accelerates much
less rapidly than it did before, because the body has much more inertia
against turning. The moment of inertia is the inertia against turning,
and is the sum of the contributions of all the masses, times their
distances squared, from the axis.



[image: -][image: -]
Fig. 18–4. The “inertia for turning” depends upon the lever arm of the
masses.





There is one important difference between mass and moment of inertia
which is very dramatic. The mass of an object never changes, but its
moment of inertia can be changed. If we stand on a frictionless
rotatable stand with our arms outstretched, and hold some weights in
our hands as we rotate slowly, we may change our moment of inertia by
drawing our arms in, but our mass does not change. When we do this,
all kinds of wonderful things happen, because of the law of the
conservation of angular momentum: If the external torque is zero, then
the angular momentum, the moment of inertia times omega, remains
constant. Initially, we were rotating with a large moment of
inertia I1[image: -*-] at a low angular velocity ω1[image: -*-], and the angular momentum
was I1 ω1[image: -*-]. Then we changed our moment of inertia by pulling
our arms in, say to a smaller value I2[image: -*-]. Then the product I ω[image: -*-],
which has to stay the same because the total angular momentum has to
stay the same, was I2 ω2[image: -*-]. So I1 ω1=I2 ω2[image: -*-]. That
is, if we reduce the moment of inertia, we have to
increase the angular velocity.







  
    

19 Center of Mass; Moment of Inertia



19–1 Properties of the center of mass


In the previous chapter we found that if a great many forces are
acting on a complicated mass of particles, whether the particles
comprise a rigid or a nonrigid body, or a cloud of stars, or anything
else, and we find the sum of all the forces (that is, of course, the
external forces, because the internal forces balance out), then if we
consider the body as a whole, and say it has a total mass M[image: -*-], there
is a certain point “inside” the body, called the center of
mass, such that the net resulting external force produces an
acceleration of this point, just as though the whole mass were
concentrated there. Let us now discuss the center of mass in a little
more detail.




The location of the center of mass (abbreviated CM) is given by the
equation

[image: -*-][image: -*-]
(19.1)




This is, of course, a vector equation which is really three equations,
one for each of the three directions. We shall consider only the
x[image: -*-]-direction, because if we can understand that one, we can
understand the other two. What does XCM=∑mi xi/∑mi[image: -*-]
mean? Suppose for a moment that the object is divided into little
pieces, all of which have the same mass m[image: -*-]; then the total mass is
simply the number N[image: -*-] of pieces times the mass of one piece, say one
gram, or any unit. Then this equation simply says that we add all
the x[image: -*-]’s, and then divide by the number of things that we have added:
XCM=[image: -*-]m ∑xi/m N=[image: -*-]∑xi/N[image: -*-]. In other words,
XCM[image: -*-] is the average of all the x[image: -*-]’s, if the masses are
equal. But suppose one of them were twice as heavy as the others. Then
in the sum, that x[image: -*-] would come in twice. This is easy to understand,
for we can think of this double mass as being split into two equal
ones, just like the others; then in taking the average, of course, we
have to count that x[image: -*-] twice because there are two masses there. Thus
X[image: -*-] is the average position, in the x[image: -*-]-direction, of all the masses,
every mass being counted a number of times proportional to the mass,
as though it were divided into “little grams.” From this it is easy
to prove that X[image: -*-] must be somewhere between the largest and the
smallest x[image: -*-], and, therefore lies inside the envelope including the
entire body. It does not have to be in the material of the
body, for the body could be a circle, like a hoop, and the center of
mass is in the center of the hoop, not in the hoop itself.




Of course, if an object is symmetrical in some way, for instance, a
rectangle, so that it has a plane of symmetry, the center of mass lies
somewhere on the plane of symmetry. In the case of a rectangle there
are two planes, and that locates it uniquely. But if it is just any
symmetrical object, then the center of gravity lies somewhere on the
axis of symmetry, because in those circumstances there are as many
positive as negative x[image: -*-]’s.



[image: -][image: -]
Fig. 19–1. The CM of a compound body lies on the line joining the CM’s
of the two composite parts.





Another interesting proposition is the following very curious
one. Suppose that we imagine an object to be made of two pieces, A[image: -*-]
and B[image: -*-] (Fig. 19–1). Then the center of mass of the
whole object can be calculated as follows. First, find the center of
mass of piece A[image: -*-], and then of piece B[image: -*-]. Also, find the total mass of
each piece, MA[image: -*-] and MB[image: -*-]. Then consider a new problem, in which a
point mass MA[image: -*-] is at the center of mass of object A[image: -*-], and
another point mass MB[image: -*-] is at the center of mass of
object B[image: -*-]. The center of mass of these two point masses is then the center
of mass of the whole object. In other words, if the centers of mass of
various parts of an object have been worked out, we do not have to
start all over again to find the center of mass of the whole object;
we just have to put the pieces together, treating each one as a point
mass situated at the center of mass of that piece. Let us see why that
is. Suppose that we wanted to calculate the center of mass of a
complete object, some of whose particles are considered to be members
of object A[image: -*-] and some members of object B[image: -*-]. The total sum ∑mi xi[image: -*-] can then be split into two pieces—the sum [image: \sum_A m_ix_i][image: \sum_A m_ix_i]
for the A[image: -*-] object only, and the sum [image: \sum_B m_ix_i][image: \sum_B m_ix_i] for object B[image: -*-]
only. Now if we were computing the center of mass of object A[image: -*-] alone,
we would have exactly the first of these sums, and we know that this
by itself is MA XA[image: -*-], the total mass of all the particles in A[image: -*-]
times the position of the center of mass of A[image: -*-], because that is the
theorem of the center of mass, applied to object A[image: -*-]. In the same
manner, just by looking at object B[image: -*-], we get MB XB[image: -*-], and of course,
adding the two yields M XCM[image: -*-]:

[image: -*-][image: -*-]
(19.2)




Now since M[image: -*-] is evidently the sum of MA[image: -*-] and MB[image: -*-], we see that
Eq. (19.2) can be interpreted as a special example of the
center of mass formula for two point objects, one of mass MA[image: -*-]
located at XA[image: -*-] and the other of mass MB[image: -*-] located at XB[image: -*-].





The theorem concerning the motion of the center of mass is very
interesting, and has played an important part in the development of
our understanding of physics. Suppose we assume that Newton’s law is
right for the small component parts of a much larger object. Then this
theorem shows that Newton’s law is also correct for the larger object,
even if we do not study the details of the object, but only the total
force acting on it and its mass. In other words, Newton’s law has the
peculiar property that if it is right on a certain small scale, then
it will be right on a larger scale. If we do not consider a baseball
as a tremendously complex thing, made of myriads of interacting
particles, but study only the motion of the center of mass and the
external forces on the ball, we find F=m a[image: -*-], where F[image: -*-] is
the external force on the baseball, m[image: -*-] is its mass, and a[image: -*-] is
the acceleration of its center of mass. So F=m a[image: -*-] is a law
which reproduces itself on a larger scale. (There ought to be a good
word, out of the Greek, perhaps, to describe a law which reproduces
the same law on a larger scale.)




Of course, one might suspect that the first laws that would be
discovered by human beings would be those that would reproduce
themselves on a larger scale. Why? Because the actual scale of the
fundamental gears and wheels of the universe are of atomic dimensions,
which are so much finer than our observations that we are nowhere near
that scale in our ordinary observations. So the first things that we
would discover must be true for objects of no special size relative to
an atomic scale. If the laws for small particles did not reproduce
themselves on a larger scale, we would not discover those laws very
easily. What about the reverse problem? Must the laws on a small scale
be the same as those on a larger scale? Of course it is not necessarily
so in nature, that at an atomic level the laws have to be the same as on
a large scale. Suppose that the true laws of motion of atoms were given
by some strange equation which does not have the property that
when we go to a larger scale we reproduce the same law, but instead has
the property that if we go to a larger scale, we can approximate
it by a certain expression such that, if we extend that expression up
and up, it keeps reproducing itself on a larger and larger scale.
That is possible, and in fact that is the way it works. Newton’s
laws are the “tail end” of the atomic
laws, extrapolated to a very large size. The actual laws of motion of
particles on a fine scale are very peculiar, but if we take large
numbers of them and compound them, they approximate, but only
approximate, Newton’s laws.
Newton’s laws then permit us to go
on to a higher and higher scale, and it still seems to be the same law.
In fact, it becomes more and more accurate as the scale gets larger and
larger. This self-reproducing factor of Newton’s
laws is thus really not a fundamental
feature of nature, but is an important historical feature. We would
never discover the fundamental laws of the atomic particles at first
observation because the first observations are much too crude. In fact,
it turns out that the fundamental atomic laws, which we call quantum
mechanics, are quite different from Newton’s
laws, and are difficult to understand
because all our direct experiences are with large-scale objects and the
small-scale atoms behave like nothing we see on a large scale. So we
cannot say, “An atom is just like a planet going around the sun,” or
anything like that. It is like nothing we are familiar with
because there is nothing like it. As we apply quantum mechanics
to larger and larger things, the laws about the behavior of many atoms
together do not reproduce themselves, but produce new
laws, which are Newton’s laws,
which then continue to reproduce themselves from, say, micro-microgram
size, which still is billions and billions of atoms, on up to the size
of the earth, and above.





Let us now return to the center of mass. The center of mass is sometimes called
the center of gravity, for the reason that, in many cases, gravity may be
considered uniform. Let us suppose that we have small enough dimensions that the
gravitational force is not only proportional to the mass, but is everywhere
parallel to some fixed line. Then consider an object in which there are
gravitational forces on each of its constituent masses. Let mi[image: -*-] be the mass of
one part. Then the gravitational force on that part is mi[image: -*-] times g[image: -*-]. Now the
question is, where can we apply a single force to balance the gravitational
force on the whole thing, so that the entire object, if it is a rigid body, will
not turn? The answer is that this force must go through the center of mass, and
we show this in the following way. In order that the body will not turn, the
torque produced by all the forces must add up to zero, because if there is a
torque, there is a change of angular momentum, and thus a rotation. So we must
calculate the total of all the torques on all the particles, and see how much
torque there is about any given axis; it should be zero if this axis is at the
center of mass. Now, measuring x[image: -*-] horizontally and y[image: -*-] vertically, we know that
the torques are the forces in the y[image: -*-]-direction, times the lever arm x[image: -*-] (that
is to say, the force times the lever arm around which we want to measure the
torque). Now the total torque is the sum

[image: -*-][image: -*-]
(19.3)




so if the total torque is to be zero, the sum ∑mi xi[image: -*-] must be zero. But
∑mi xi=M XCM[image: -*-], the total mass times the distance of the center
of mass from the axis. Thus the x[image: -*-]-distance of the center of mass from the axis
is zero.




Of course, we have checked the result only for the x[image: -*-]-distance, but
if we use the true center of mass the object will balance in any
position, because if we turned it 90[image: -*-] degrees, we would have y[image: -*-]’s
instead of x[image: -*-]’s. In other words, when an object is supported at its
center of mass, there is no torque on it because of a parallel
gravitational field. In case the object is so large that the
nonparallelism of the gravitational forces is significant, then the
center where one must apply the balancing force is not simple to
describe, and it departs slightly from the center of mass. That is why
one must distinguish between the center of mass and the center of
gravity. The fact that an object supported exactly at the center of
mass will balance in all positions has another interesting
consequence. If, instead of gravitation, we have a pseudo force due to
acceleration, we may use exactly the same mathematical procedure to
find the position to support it so that there are no torques produced
by the inertial force of acceleration. Suppose that the object is held
in some manner inside a box, and that the box, and everything
contained in it, is accelerating. We know that, from the point of view
of someone at rest relative to this accelerating box, there will be an
effective force due to inertia. That is, to make the object go along
with the box, we have to push on it to accelerate it, and this force
is “balanced” by the “force of inertia,” which is a pseudo force
equal to the mass times the acceleration of the box. To the man in the
box, this is the same situation as if the object were in a uniform
gravitational field whose “g[image: -*-]” value is equal to the
acceleration a[image: -*-]. Thus the inertial force due to accelerating an object has no
torque about the center of mass.




This fact has a very interesting consequence. In an inertial frame that
is not accelerating, the torque is always equal to the rate of change of
the angular momentum. However, about an axis through the center of mass
of an object which is accelerating, it is still true that
the torque is equal to the rate of change of the angular momentum. Even
if the center of mass is accelerating, we may still choose one special
axis, namely, one passing through the center of mass, such that it will
still be true that the torque is equal to the rate of change of angular
momentum around that axis. Thus the theorem that torque equals the rate
of change of angular momentum is true in two general cases: (1) a fixed
axis in inertial space, (2) an axis through the center of mass, even
though the object may be accelerating.







19–2 Locating the center of mass


The mathematical techniques for the calculation of centers of mass are
in the province of a mathematics course, and such problems provide good
exercise in integral calculus. After one has learned calculus, however,
and wants to know how to locate centers of mass, it is nice to know
certain tricks which can be used to do so. One such trick makes use of
what is called the theorem of Pappus. It works
like this: if we take any closed area in a plane and generate a solid by
moving it through space such that each point is always moved
perpendicular to the plane of the area, the resulting solid has a total
volume equal to the area of the cross section times the distance that
the center of mass moved! Certainly this is true if we move the area in
a straight line perpendicular to itself, but if we move it in a circle
or in some other curve, then it generates a rather peculiar volume. For
a curved path, the outside goes around farther, and the inside goes
around less, and these effects balance out. So if we want to locate the
center of mass of a plane sheet of uniform density, we can remember that
the volume generated by spinning it about an axis is the distance that
the center of mass goes around, times the area of the sheet.



[image: -][image: -]
Fig. 19–2. A right triangle and a right circular cone generated by
rotating the triangle.





For example, if we wish to find the center of mass of a right triangle of
base D[image: -*-] and height H[image: -*-] (Fig. 19–2), we might solve the problem in
the following way. Imagine an axis along H[image: -*-], and rotate the triangle about that
axis through a full 360[image: -*-] degrees. This generates a cone. The distance that the
x[image: -*-]-coordinate of the center of mass has moved is 2 π x[image: -*-]. The area which is
being moved is the area of the triangle, [image: \tfrac{1}{2}HD][image: \tfrac{1}{2}HD]. So the x[image: -*-]-distance
of the center of mass times the area of the triangle is the volume swept out,
which is of course π D2 H/3[image: -*-]. Thus [image: (2\pi x)(\tfrac{1}{2}HD) = \pi D^2H/3][image: (2\pi x)(\tfrac{1}{2}HD) = \pi D^2H/3],
or x=D/3[image: -*-]. In a similar manner, by rotating about the other axis, or by
symmetry, we find y=H/3[image: -*-]. In fact, the center of mass of any uniform
triangular area is where the three medians, the lines from the vertices through
the centers of the opposite sides, all meet. That point is 1/3[image: -*-] of the way
along each median. Clue: Slice the triangle up into a lot of little
pieces, each parallel to a base. Note that the median line bisects every piece,
and therefore the center of mass must lie on this line.




Now let us try a more complicated figure. Suppose that it is desired
to find the position of the center of mass of a uniform semicircular
disc—a disc sliced in half. Where is the center of mass? For a full
disc, it is at the center, of course, but a half-disc is more
difficult. Let r[image: -*-] be the radius and x[image: -*-] be the distance of the center
of mass from the straight edge of the disc. Spin it around this edge
as axis to generate a sphere. Then the center of mass has gone around
2 π x[image: -*-], the area is π r2/2[image: -*-] (because it is only half a
circle). The volume generated is, of course, 4 π r3/3[image: -*-], from which
we find that

[image: -*-][image: -*-]


or

[image: -*-][image: -*-]





There is another theorem of Pappus which is a
special case of the above one, and therefore equally true. Suppose that,
instead of the solid semicircular disc, we have a semicircular piece of
wire with uniform mass density along the wire, and we want to find its
center of mass. In this case there is no mass in the interior, only on
the wire. Then it turns out that the area which is swept by a
plane curved line, when it moves as before, is the distance that the
center of mass moves times the length of the line. (The line can
be thought of as a very narrow area, and the previous theorem can be
applied to it.)







19–3 Finding the moment of inertia


Now let us discuss the problem of finding the moments of
inertia of various objects. The formula for the moment of inertia
about the z[image: -*-]-axis of an object is

[image: -*-][image: -*-]


or

[image: -*-][image: -*-]
(19.4)




That is, we must sum the masses, each one multiplied by the square of
its distance [image: (x_i^2 + y_i^2)][image: (x_i^2 + y_i^2)] from the axis. Note that it is not the
three-dimensional distance, only the two-dimensional distance squared,
even for a three-dimensional object. For the most part, we shall
restrict ourselves to two-dimensional objects, but the formula for
rotation about the z[image: -*-]-axis is just the same in three dimensions.



[image: -][image: -]
Fig. 19–3. A straight rod of length L[image: -*-] rotating about an axis through
one end.





As a simple example, consider a rod rotating about a perpendicular
axis through one end (Fig. 19–3). Now we must sum all
the masses times the x[image: -*-]-distances squared (the y[image: -*-]’s being all zero
in this case). What we mean by “the sum,” of course, is the integral
of x2[image: -*-] times the little elements of mass. If we divide the rod into
small elements of length d x[image: -*-], the corresponding elements of mass are
proportional to d x[image: -*-], and if d x[image: -*-] were the length of the whole rod the
mass would be M[image: -*-]. Therefore

[image: -*-][image: -*-]


and so

[image: -*-][image: -*-]
(19.5)




The dimensions of moment of inertia are always mass times length
squared, so all we really had to work out was the factor 1/3[image: -*-].




Now what is I[image: -*-] if the rotation axis is at the center of the rod? We
could just do the integral over again, letting x[image: -*-] range from
[image: -\tfrac{1}{2}L][image: -\tfrac{1}{2}L] to [image: +\tfrac{1}{2}L][image: +\tfrac{1}{2}L]. But let us notice a few things
about the moment of inertia. We can imagine the rod as two rods, each
of mass M/2[image: -*-] and length L/2[image: -*-]; the moments of inertia of the two
small rods are equal, and are both given by the
formula (19.5). Therefore the moment of inertia is

[image: -*-][image: -*-]
(19.6)




Thus it is much easier to turn a rod about its center, than to swing
it around an end.




Of course, we could go on to compute the moments of inertia of various
other bodies of interest. However, while such computations provide a
certain amount of important exercise in the calculus, they are not
basically of interest to us as such. There is, however, an interesting
theorem which is very useful. Suppose we have an object, and we want
to find its moment of inertia around some axis. That means we want the
inertia needed to carry it by rotation about that axis. Now if we
support the object on pivots at the center of mass, so that the object
does not turn as it rotates about the axis (because there is no torque
on it from inertial effects, and therefore it will not turn when we
start moving it), then the forces needed to swing it around are the
same as though all the mass were concentrated at the center of mass,
and the moment of inertia would be simply [image: I_1 = MR_{\text{CM}}^2][image: I_1 = MR_{\text{CM}}^2],
where RCM[image: -*-] is the distance from the axis to the center of
mass. But of course that is not the right formula for the moment of
inertia of an object which is really being rotated as it revolves,
because not only is the center of it moving in a circle, which would
contribute an amount I1[image: -*-] to the moment of inertia, but also we must
turn it about its center of mass. So it is not unreasonable that we
must add to I1[image: -*-] the moment of inertia Ic[image: -*-] about the center of
mass. So it is a good guess that the total moment of inertia about any
axis will be

[image: -*-][image: -*-]
(19.7)







This theorem is called the parallel-axis
theorem, and may be easily proved. The
moment of inertia about any axis is the mass times the sum of
the xi[image: -*-]’s and the yi[image: -*-]’s, each squared: [image: I=\sum (x_i^2 + y_i^2)m_i][image: I=\sum (x_i^2 + y_i^2)m_i].
We shall concentrate on the x[image: -*-]’s, but of course the y[image: -*-]’s work the same
way. Now x[image: -*-] is the distance of a particular point mass from the origin,
but let us consider how it would look if we measured x′[image: -*-] from the CM,
instead of x[image: -*-] from the origin. To get ready for this analysis, we write

[image: -*-][image: -*-]


Then we just square this to find

[image: -*-][image: -*-]


So, when this is multiplied by mi[image: -*-] and summed over all i[image: -*-], what
happens?  Taking the constants outside the summation sign, we get

[image: -*-][image: -*-]


The third sum is easy; it is just [image: MX_{\text{CM}}^2][image: MX_{\text{CM}}^2]. In the second
sum there are two pieces, one of them is [image: \sum m_ix_i'][image: \sum m_ix_i'], which is the
total mass times the x′[image: -*-]-coordinate of the center of mass. But this
contributes nothing, because x′[image: -*-] is measured from the center
of mass, and in these axes the average position of all the particles,
weighted by the masses, is zero. The first sum, of course, is the
x[image: -*-] part of Ic[image: -*-]. Thus we arrive at Eq. (19.7), just as we
guessed.




Let us check (19.7) for one example. Let us just see
whether it works for the rod. For an axis through one end, the moment
of inertia should be M L2/3[image: -*-], for we calculated that. The center of
mass of a rod, of course, is in the center of the rod, at a
distance L/2[image: -*-]. Therefore we should find that M L2/3=M L2/12+M (L/2)2[image: -*-]. Since one-quarter plus one-twelfth is one-third, we have
made no fundamental error.




Incidentally, we did not really need to use an integral to find the
moment of inertia (19.5). If we simply assume that it is
M L2[image: -*-] times γ[image: -*-], an unknown coefficient, and then use the
argument about the two halves to get [image: \tfrac{1}{4}\gamma][image: \tfrac{1}{4}\gamma]
for (19.6), then from our argument about transferring the
axes we could prove that [image: \gamma = \tfrac{1}{4}\gamma + \tfrac{1}{4}][image: \gamma = \tfrac{1}{4}\gamma + \tfrac{1}{4}],
so γ[image: -*-] must be 1/3[image: -*-]. There is always another way to do it!




In applying the parallel-axis theorem, it is of course important to
remember that the axis for Ic[image: -*-] must be parallel to the axis
about which the moment of inertia is wanted.




One further property of the moment of inertia is worth mentioning
because it is often helpful in finding the moment of inertia of
certain kinds of objects. This property is that if one has a
plane figure and a set of coordinate axes with origin in the
plane and z[image: -*-]-axis perpendicular to the plane, then the moment of
inertia of this figure about the z[image: -*-]-axis is equal to the sum of the
moments of inertia about the x[image: -*-]- and y[image: -*-]-axes. This is easily proved
by noting that

[image: -*-][image: -*-]


(since zi=0[image: -*-]). Similarly,

[image: -*-][image: -*-]


but

[image: -*-][image: -*-]





As an example, the moment of inertia of a uniform rectangular plate of
mass M[image: -*-], width w[image: -*-], and length L[image: -*-], about an axis perpendicular to
the plate and through
its center is simply

[image: -*-][image: -*-]


because its moment of inertia about an axis in its plane and parallel
to its length is M w2/12[image: -*-], i.e., just as for a rod of length w[image: -*-], and
the moment of inertia about the other axis in its plane is M L2/12[image: -*-],
just as for a rod of length L[image: -*-].




To summarize, the moment of inertia of an object about a given axis,
which we shall call the z[image: -*-]-axis, has the following properties:


	
The moment of inertia is
[image: -*-][image: -*-]



	
If the object is made of a number of parts, each of whose
moment of inertia is known, the total moment of inertia is the sum of
the moments of inertia of the pieces.

	
The moment of inertia about any given axis is equal to the
moment of inertia about a parallel axis through the CM plus the total
mass times the square of the distance from the axis to the CM.

	
If the object is a plane figure, the moment of inertia
about an axis perpendicular to the plane is equal to the sum of the
moments of inertia about any two mutually perpendicular axes lying in
the plane and intersecting at the perpendicular axis.






The moments of inertia of a number of elementary shapes having uniform
mass densities are given in Table 19–1, and the moments of
inertia of some other objects, which may be deduced from
Table 19–1, using the above properties, are given in
Table 19–2.





Table 19–1. 



[image: --][image: --]



Table 19–2. 



[image: --][image: --]





19–4 Rotational kinetic energy


Now let us go on to discuss dynamics further. In the analogy between
linear motion and angular motion that we discussed in
Chapter 18, we used the work theorem, but we did not talk
about kinetic energy. What is the kinetic energy of a rigid body,
rotating about a certain axis with an angular velocity ω[image: -*-]? We can
immediately guess the correct answer by using our analogies. The moment
of inertia corresponds to the mass, angular velocity corresponds to
velocity, and so the kinetic energy ought to be [image: \tfrac{1}{2}I\omega^2][image: \tfrac{1}{2}I\omega^2],
and indeed it is, as will now be demonstrated.  Suppose the object is
rotating about some axis so that each point has a velocity whose
magnitude is ω ri[image: -*-], where ri[image: -*-] is the radius from the particular
point to the axis.  Then if mi[image: -*-] is the mass of that point, the total
kinetic energy of the whole thing is just the sum of the kinetic
energies of all of the little pieces:

[image: -*-][image: -*-]


Now ω2[image: -*-] is a constant, the same for all points. Thus

[image: -*-][image: -*-]
(19.8)







At the end of Chapter 18 we pointed out that there are
some interesting phenomena associated with an object which is not
rigid, but which changes from one rigid condition with a definite
moment of inertia, to another rigid condition. Namely, in our example
of the turntable, we had a certain moment of inertia I1[image: -*-] with our
arms stretched out, and a certain angular velocity ω1[image: -*-]. When we
pulled our arms in, we had a different moment of inertia, I2[image: -*-], and a
different angular velocity, ω2[image: -*-], but again we were “rigid.”
The angular momentum remained constant, since there was no torque
about the vertical axis of the turntable. This means that I1 ω1=I2 ω2[image: -*-]. Now what about the energy? That is an interesting
question. With our arms pulled in, we turn faster, but our moment of
inertia is less, and it looks as though the energies might be
equal. But they are not, because what does balance is
I ω[image: -*-], not I ω2[image: -*-]. So if we compare the kinetic energy before
and after, the kinetic energy before is [image: \tfrac{1}{2}I_1\omega_1^2 = \tfrac{1}{2}L\omega_1][image: \tfrac{1}{2}I_1\omega_1^2 = \tfrac{1}{2}L\omega_1], where L=[image: -*-]I1 ω1=[image: -*-]I2 ω2[image: -*-] is the
angular momentum. Afterward, by the same argument, we have [image: T = \tfrac{1}{2}L\omega_2][image: T = \tfrac{1}{2}L\omega_2] and since ω2>ω1[image: -*-] the kinetic
energy of rotation is greater than it was before. So we had a certain
energy when our arms were out, and when we pulled them in, we were
turning faster and had more kinetic energy. What happened to the
theorem of the conservation of energy?  Somebody must have done some
work. We did work! When did we do any work? When we move a weight
horizontally, we do not do any work. If we hold a thing out and pull
it in, we do not do any work. But that is when we are not rotating!
When we are rotating, there is centrifugal
force on the
weights. They are trying to fly out, so when we are going around we
have to pull the weights in against the centrifugal
force. So, the
work we do against the centrifugal
force ought to
agree with the
difference in rotational energy, and of course it does. That is where
the extra kinetic energy comes from.





There is still another interesting feature which we can treat only
descriptively, as a matter of general interest. This feature is a
little more advanced, but is worth pointing out because it is quite
curious and produces many interesting effects.




Consider that turntable experiment again. Consider the body and the
arms separately, from the point of view of the man who is
rotating. After the weights are pulled in, the whole object is
spinning faster, but observe, the central part of the body is
not changed, yet it is turning faster after the event than
before. So, if we were to draw a circle around the inner body, and
consider only objects inside the circle, their angular momentum
would change; they are going faster. Therefore there must be a
torque exerted on the body while we pull in our arms. No torque can be
exerted by the centrifugal
force, because that is
radial. So that
means that among the forces that are developed in a rotating system,
centrifugal force
is not the entire story, there is another
force. This other force is called Coriolis force, and it has
the very strange property that when we move something in a rotating
system, it seems to be pushed sidewise. Like the centrifugal
force, it
is an apparent force. But if we live in a system that is rotating, and
move something radially, we find that we must also push it sidewise to
move it radially. This sidewise push which we have to exert is what
turned our body around.




Now let us develop a formula to show how this Coriolis force really
works. Suppose Moe is sitting on a carousel that appears to him to be
stationary. But from the point of view of Joe, who is standing on the
ground and who knows the right laws of mechanics, the carousel is
going around. Suppose that we have drawn a radial line on the
carousel, and that Moe is moving some mass radially along this
line. We would like to demonstrate that a sidewise force is required
to do that. We can do this by paying attention to the angular momentum
of the mass. It is always going around with the same angular velocity
ω[image: -*-], so that the angular momentum is

[image: -*-][image: -*-]


So when the mass is close to the center, it has relatively little
angular momentum, but if we move it to a new position farther out, if
we increase r[image: -*-], m[image: -*-] has more angular momentum, so a torque must
be exerted in order to move it along the radius. (To walk along the
radius in a carousel, one has to lean over and push sidewise. Try it
sometime.) The torque that is required is the rate of change of L[image: -*-]
with time as m[image: -*-] moves along the radius. If m[image: -*-] moves only along the
radius, omega stays constant, so that the torque is

[image: -*-][image: -*-]


where Fc[image: -*-] is the Coriolis force. What we really want to know is what
sidewise force has to be exerted by Moe in order to move m[image: -*-]
out at speed vr=d r/d t[image: -*-]. This is Fc=[image: -*-]τ/r=[image: -*-]2 m ω vr[image: -*-].




Now that we have a formula for the Coriolis force, let us look at the
situation a little more carefully, to see whether we can understand
the origin of this force from a more elementary point of view. We note
that the Coriolis force is the same at every radius, and is evidently
present even at the origin! But it is especially easy to understand it
at the origin, just by looking at what happens from the inertial
system of Joe, who is standing on the ground. Figure 19–4
shows three successive views of m[image: -*-] just as it passes the origin at t=0[image: -*-]. Because of the rotation of the carousel, we see that m[image: -*-] does
not move in a straight line, but in a curved path tangent to a
diameter of the carousel where r=0[image: -*-]. In order for m[image: -*-] to go in a
curve, there must be a force to accelerate it in absolute space. This
is the Coriolis force.



[image: -][image: -]
Fig. 19–4. Three successive views of a point moving radially on a
rotating turntable.





This is not the only case in which the Coriolis force occurs. We can
also show that if an object is moving with constant speed around the
circumference of a circle, there is also a Coriolis force. Why? Moe sees
a velocity vM[image: -*-] around the circle. On the other hand, Joe sees m[image: -*-]
going around the circle with the velocity vJ=vM+ω r[image: -*-],
because m[image: -*-] is also carried by the carousel. Therefore we know what the
force really is, namely, the total centripetal force due to the velocity vJ[image: -*-], or
[image: mv_J^2/r][image: mv_J^2/r]; that is the actual force. Now from Moe’s point of view, this
centripetal force has three pieces. We may write it all out as follows:

[image: -*-][image: -*-]


Now, Fr[image: -*-] is the force that Moe would see. Let us try to understand it.
Would Moe appreciate the first term? “Yes,” he would say, “even if I
were not turning, there would be a centripetal force if I were to run around a circle
with velocity vM[image: -*-].” This is simply the centripetal
force that Moe
would expect, having nothing to do with rotation. In addition, Moe is
quite aware that there is another centripetal force that would act even on objects
which are standing still on his carousel. This is the third term. But
there is another term in addition to these, namely the second term,
which is again 2 m ω v[image: -*-]. The Coriolis force Fc[image: -*-] was tangential
when the velocity was radial, and now it is radial when the velocity is
tangential. In fact, one expression has a minus sign relative to the
other. The force is always in the same direction, relative to the
velocity, no matter in which direction the velocity is. The force is at
right angles to the velocity, and of magnitude 2 m ω v[image: -*-].







  
    

20 Rotation in space



20–1 Torques in three dimensions


In this chapter we shall discuss one of the most remarkable and
amusing consequences of mechanics, the behavior of a rotating
wheel. In order to do this we must first extend the mathematical
formulation of rotational motion, the principles of angular
momentum, torque,
and so on, to three-dimensional space. We shall not use these
equations in all their generality and study all their consequences,
because this would take many years, and we must soon turn to other
subjects. In an introductory course we can present only the fundamental
laws and apply them to a very few situations of special interest.




First, we notice that if we have a rotation in three dimensions, whether
of a rigid body or any other system, what we deduced
for two dimensions is still right. That is, it is still true that x Fy−y Fx[image: -*-] is the torque “in the x y[image: -*-]-plane,” or the torque “around the
z[image: -*-]-axis.” It also turns out that this torque is still equal to the
rate of change of x py−y px[image: -*-], for if we go back over the derivation
of Eq. (18.15) from Newton’s laws we see that we did
not have to assume that the motion was in a plane; when we differentiate
x py−y px[image: -*-], we get x Fy−y Fx[image: -*-], so this theorem is still right. The
quantity x py−y px[image: -*-], then, we call the angular momentum belonging to
the x y[image: -*-]-plane, or the angular momentum about the z[image: -*-]-axis. This being
true, we can use any other pair of axes and get another equation. For
instance, we can use the y z[image: -*-]-plane, and it is clear from symmetry that
if we just substitute y[image: -*-] for x[image: -*-] and z[image: -*-] for y[image: -*-], we would find y Fz−z Fy[image: -*-] for the torque and y pz−z py[image: -*-] would be the angular momentum
associated with the y z[image: -*-]-plane. Of course we could have another plane,
the z x[image: -*-]-plane, and for this we would find z Fx−x Fz=d/d t (z px−x pz)[image: -*-].





That these three equations can be deduced for the motion of a single
particle is quite clear. Furthermore, if we added such things as x py−y px[image: -*-] together for many particles and called it the total angular
momentum, we would have three kinds for the three planes x y[image: -*-], y z[image: -*-],
and z x[image: -*-], and if we did the same with the forces, we would talk about
the torque in the planes x y[image: -*-], y z[image: -*-], and z x[image: -*-] also. Thus we would have
laws that the external torque associated with any plane is equal to
the rate of change of the angular momentum associated with that
plane. This is just a generalization of what we wrote in two
dimensions.




But now one may say, “Ah, but there are more planes; after all, can
we not take some other plane at some angle, and calculate the torque
on that plane from the forces? Since we would have to write another
set of equations for every such plane, we would have a lot of
equations!”  Interestingly enough, it turns out that if we were to
work out the combination x′ Fy′−y′ Fx′[image: -*-] for another plane,
measuring the x′[image: -*-], Fy′[image: -*-], etc., in that plane, the result can be
written as some combination of the three expressions for the
x y[image: -*-]-, y z[image: -*-]- and z x[image: -*-]-planes. There is nothing new. In other words, if
we know what the three torques in the x y[image: -*-]-, y z[image: -*-]-, and z x[image: -*-]-planes
are, then the torque in any other plane, and correspondingly the
angular momentum also, can be written as some combination of these:
six percent of one and ninety-two percent of another, and so on. This
property we shall now analyze.




Suppose that in the x y z[image: -*-]-axes, Joe has worked out all his torques and
his angular momenta in his planes. But Moe has axes x′,y′,z′[image: -*-] in some
other direction. To make it a little easier, we shall suppose that
only the x[image: -*-]- and y[image: -*-]-axes have been turned. Moe’s x′[image: -*-] and y′[image: -*-] are
new, but his z′[image: -*-] happens to be the same. That is, he has new planes,
let us say, for y z[image: -*-] and z x[image: -*-]. He therefore has new torques and
angular momenta which he would work out. For example, his torque in
the x′ y′[image: -*-]-plane would be equal to x′ Fy′−y′ Fx′[image: -*-] and so
forth. What we must now do is to find the relationship between the new
torques and the old torques, so we will be able to make a connection
from one set of axes to the other. Someone may say, “That looks just
like what we did with vectors.” And indeed, that is exactly what we
are intending to do. Then he may say, “Well, isn’t torque just a
vector?” It does turn out to be a vector, but we do not know
that right away without making an analysis. So in the following steps
we shall make the analysis. We shall not discuss every step in detail,
since we only want to illustrate how it works. The torques calculated
by Joe are

[image: -*-][image: -*-]
(20.1)










We digress at this point to note that in such cases as this one may
get the wrong sign for some quantity if the coordinates are not
handled in the right way. Why not write τy z=z Fy−y Fz[image: -*-]? The
problem arises from the fact that a coordinate system may be either
“right-handed” or “left-handed.” Having chosen (arbitrarily) a
sign for, say τx y[image: -*-], then the correct expressions for the other
two quantities may always be found by interchanging the letters x y z[image: -*-]
in either order

[image: -][image: -]
  or
  [image: -][image: -]







Moe now calculates the torques in his system:

[image: -*-][image: -*-]
(20.2)




Now we suppose that one coordinate system is rotated by a fixed
angle θ[image: -*-], such that the z[image: -*-]- and z′[image: -*-]-axes are the same. (This
angle θ[image: -*-] has nothing to do with rotating objects or what is going on
inside the coordinate system. It is merely the relationship between
the axes used by one man and the axes used by the other, and is
supposedly constant.) Thus the coordinates of the two systems are
related by

[image: -*-][image: -*-]
(20.3)




Likewise, because force is a vector it transforms into the new system
in the same way as do x[image: -*-], y[image: -*-], and z[image: -*-], since a thing is a vector if
and only if the various components transform in the same way as x[image: -*-], y[image: -*-],
and z[image: -*-]:

[image: -*-][image: -*-]
(20.4)







Now we can find out how the torque transforms by merely substituting
for x′[image: -*-], y′[image: -*-], and z′[image: -*-] the expressions (20.3), and for
Fx′[image: -*-], Fy′[image: -*-], Fz′[image: -*-] those given by (20.4), all
into (20.2). So, we have a rather long string of terms for
τx′ y′[image: -*-] and (rather surprisingly at first) it turns out that it
comes right down to x Fy−y Fx[image: -*-], which we recognize to be the torque
in the x y[image: -*-]-plane:



[image: -*-][image: -*-]
(20.5)





That result is clear, for if we only turn our axes in the
plane, the twist around z[image: -*-] in that plane is no different than it was
before, because it is the same plane! What will be more interesting is
the expression for τy′ z′[image: -*-], because that is a new plane. We now
do exactly the same thing with the y′ z′[image: -*-]-plane, and it comes out as
follows:

[image: -*-][image: -*-]
(20.6)




Finally, we do it for z′ x′[image: -*-]:

[image: -*-][image: -*-]
(20.7)







We wanted to get a rule for finding torques in new axes in terms of
torques in old axes, and now we have the rule. How can we ever
remember that rule? If we look carefully
at (20.5), (20.6), and (20.7), we see
that there is a close relationship between these equations and the
equations for x[image: -*-], y[image: -*-], and z[image: -*-]. If, somehow, we could call τx y[image: -*-]
the z[image: -*-]-component of something, let us call it the z[image: -*-]-component
of τ[image: -*-], then it would be all right; we would
understand (20.5) as a vector transformation, since the
z[image: -*-]-component would be unchanged, as it should be. Likewise, if we
associate with the y z[image: -*-]-plane the x[image: -*-]-component of our newly invented
vector, and with the z x[image: -*-]-plane, the y[image: -*-]-component, then these
transformation expressions would read

[image: -*-][image: -*-]
(20.8)




which is just the rule for vectors!





Therefore we have proved that we may identify the combination of x Fy−y Fx[image: -*-] with what we ordinarily call the z[image: -*-]-component of a certain
artificially invented vector. Although a torque is a twist on a plane,
and it has no a priori vector character, mathematically it does
behave like a vector. This vector is at right angles to the plane of
the twist, and its length is proportional to the strength of the
twist. The three components of such a quantity will transform like a
real vector.




So we represent torques by vectors; with each plane on which the
torque is supposed to be acting, we associate a line at right angles,
by a rule. But “at right angles” leaves the sign unspecified. To get
the sign right, we must adopt a rule which will tell us that if the
torque were in a certain sense on the x y[image: -*-]-plane, then the axis that
we want to associate with it is in the “up” z[image: -*-]-direction. That is,
somebody has to define “right” and “left” for us. Supposing that
the coordinate system is x[image: -*-], y[image: -*-], z[image: -*-] in a right-hand system, then
the rule will be the following: if we think of the twist as if we were
turning a screw having a right-hand thread, then the direction of the
vector that we will associate with that twist is in the direction that
the screw would advance.




Why is torque a vector? It is a miracle of good luck that we can
associate a single axis with a plane, and therefore that we can
associate a vector with the torque; it is a special property of
three-dimensional space. In two dimensions, the torque is an ordinary
scalar, and there need be no direction associated with it. In three
dimensions, it is a vector. If we had four dimensions, we would be in
great difficulty, because (if we had time, for example, as the fourth
dimension) we would not only have planes like x y[image: -*-], y z[image: -*-], and z x[image: -*-], we
would also have t x[image: -*-]-, t y[image: -*-]-, and t z[image: -*-]-planes. There would be
six of them, and one cannot represent six quantities as one
vector in four dimensions.




We will be living in three dimensions for a long time, so it is well
to notice that the foregoing mathematical treatment did not depend
upon the fact that x[image: -*-] was position and F[image: -*-] was force; it only
depended on the transformation laws for vectors. Therefore if, instead
of x[image: -*-], we used the x[image: -*-]-component of some other vector, it is not
going to make any difference. In other words, if we were to calculate
ax by−ay bx[image: -*-], where a[image: -*-] and b[image: -*-] are vectors, and call it
the z[image: -*-]-component of some new quantity c[image: -*-], then these new quantities
form a vector c[image: -*-]. We need a mathematical notation for the
relationship of the new vector, with its three components, to the
vectors a[image: -*-] and b[image: -*-]. The notation that has been devised for
this is c=a×b[image: -*-]. We have then, in addition to the
ordinary scalar product in the theory of vector analysis, a new kind
of product, called the vector product.
Thus, if c=a×b[image: -*-], this is the same as writing

[image: -*-][image: -*-]
(20.9)




If we reverse the order of a[image: -*-] and b[image: -*-], calling
a[image: -*-], b[image: -*-] and b[image: -*-], a[image: -*-], we would have the sign of c[image: -*-]
reversed, because cz[image: -*-] would be bx ay−by ax[image: -*-]. Therefore the
cross product is unlike ordinary multiplication, where a b=b a[image: -*-]; for
the cross product, b×a=−a×b[image: -*-]. From this,
we can prove at once that if a=b[image: -*-], the cross product is
zero. Thus, a×a=0[image: -*-].




The cross product is very important for representing the features of
rotation, and it is important that we understand the geometrical
relationship of the three vectors a[image: -*-], b[image: -*-], and c[image: -*-]. Of
course the relationship in components is given in Eq. (20.9)
and from that one can determine what the relationship is in geometry.
The answer is, first, that the vector c[image: -*-] is perpendicular to both
a[image: -*-] and b[image: -*-]. (Try to calculate c⋅a[image: -*-], and see if it
does not reduce to zero.) Second, the magnitude of c[image: -*-] turns out to
be the magnitude of a[image: -*-] times the magnitude of b[image: -*-] times the
sine of the angle between the two. In which direction does c[image: -*-]
point?  Imagine that we turn a[image: -*-] into b[image: -*-] through an angle less
than 180°[image: -*-]; a screw with a right-hand thread turning in this way
will advance in the direction of c[image: -*-]. The fact that we say a
right-hand screw instead of a left-hand screw is a
convention, and is a perpetual reminder that if a[image: -*-] and b[image: -*-] are
“honest” vectors in the ordinary sense, the new kind of “vector”
which we have created by a×b[image: -*-] is artificial, or slightly
different in its character from a[image: -*-] and b[image: -*-], because it was made
up with a special rule. If a[image: -*-] and b[image: -*-] are called ordinary
vectors, we have a special name for them, we call them polar
vectors. Examples of
such vectors are the coordinate r[image: -*-], force F[image: -*-],
momentum p[image: -*-], velocity v[image: -*-], electric field E[image: -*-], etc.; these
are ordinary polar vectors. Vectors which involve just one cross product
in their definition are called axial vectors or pseudo vectors. Examples of
pseudo vectors are, of course, torque τ[image: -*-] and the angular
momentum L[image: -*-].
It also turns out that the angular
velocity ω[image: -*-] is a pseudo vector, as is the magnetic
field B[image: -*-].




In order to complete the mathematical properties of vectors, we should
know all the rules for their multiplication, using dot and cross
products. In our applications at the moment, we will need very little
of this, but for the sake of completeness we shall write down all of
the rules for vector multiplication so that we can use the results
later. These are

[image: -*-][image: -*-]
(20.10)










20–2 The rotation equations using cross products


Now let us ask whether any equations in physics can be written using
the cross product. The answer, of course, is that a great many
equations can be so written. For instance, we see immediately that the
torque is equal to the position vector cross the force:

[image: -*-][image: -*-]
(20.11)




This is a vector summary of the three equations τx=y Fz−z Fy[image: -*-], etc. By the same token, the angular momentum vector, if there
is only one particle present, is the distance from the origin
multiplied by the vector momentum:

[image: -*-][image: -*-]
(20.12)




For three-dimensional space rotation, the dynamical law analogous to
the law F=d p/d t[image: -*-] of Newton, is that the torque vector is
the rate of change with time of the angular momentum vector:

[image: -*-][image: -*-]
(20.13)




If we sum (20.13) over many particles, the external torque
on a system is the rate of change of the total angular momentum:

[image: -*-][image: -*-]
(20.14)







Another theorem: If the total external torque is zero, then the total
vector angular momentum of the system is a constant. This is called the
law of conservation of angular momentum. If there
is no torque on a given system, its angular momentum cannot change.




What about angular velocity? Is it a vector? We have already discussed
turning a solid object about a fixed axis, but for a moment suppose
that we are turning it simultaneously about two axes. It might
be turning about an axis inside a box, while the box is turning about
some other axis. The net result of such combined motions is that the
object simply turns about some new axis! The wonderful thing about
this new axis is that it can be figured out this way. If the rate of
turning in the x y[image: -*-]-plane is written as a vector in the z[image: -*-]-direction
whose length is equal to the rate of rotation in the plane, and if
another vector is drawn in the y[image: -*-]-direction, say, which is the rate
of rotation in the z x[image: -*-]-plane, then if we add these together as a
vector, the magnitude of the result tells us how fast the object is
turning, and the direction tells us in what plane, by the rule of the
parallelogram. That is to say, simply, angular velocity is a
vector, where we draw the magnitudes of the rotations in the three
planes as projections at right angles to those planes.1




As a simple application of the use of the angular velocity vector, we
may evaluate the power being expended by the torque acting on a rigid
body. The power, of course, is the rate of change of work with time;
in three dimensions, the power turns out to be P=τ⋅ω[image: -*-].




All the formulas that we wrote for plane rotation can be generalized
to three dimensions. For example, if a rigid body is turning about a
certain axis with angular velocity ω[image: -*-], we might ask, “What
is the velocity of a point at a certain radial position r[image: -*-]?” We
shall leave it as a problem for the student to show that the velocity
of a particle in a rigid body is given by v=ω×r[image: -*-], where ω[image: -*-] is the angular velocity and
r[image: -*-] is the position. Also, as another example of cross products,
we had a formula for Coriolis force,
which can also be written using cross products: Fc=2 m v×ω[image: -*-]. That is, if a particle is moving with
velocity v[image: -*-] in a coordinate system which is, in fact, rotating with angular
velocity ω[image: -*-], and we want to think in terms of the rotating
coordinate system, then we have to add the pseudo force Fc[image: -*-].







20–3 The gyroscope

[image: -][image: -][image: -][image: -]
Fig. 20–1. Before: axis is horizontal; moment about vertical
axis=0[image: -*-]. After: axis is vertical; momentum about
vertical axis is still zero; man and chair spin in direction
opposite to spin of the wheel.





Let us now return to the law of conservation of angular momentum. This
law may be demonstrated with a rapidly spinning wheel, or gyroscope,
as follows (see Fig. 20–1). If we sit on a swivel chair
and hold the spinning wheel with its axis horizontal, the wheel has an
angular momentum about the horizontal axis.  Angular momentum around a
vertical axis cannot change because of the (frictionless) pivot
of the chair, so if we turn the axis of the wheel into the vertical,
then the wheel would have angular momentum about the vertical axis,
because it is now spinning about this axis. But the system
(wheel, ourself, and chair) cannot have a vertical component,
so we and the chair have to turn in the direction opposite to the spin
of the wheel, to balance it.



[image: -][image: -]
Fig. 20–2. A gyroscope.





First let us analyze in more detail the thing we have just
described. What is surprising, and what we must understand, is the
origin of the forces which turn us and the chair around as we turn the
axis of the gyroscope toward the vertical. Figure 20–2
shows the wheel spinning rapidly about the y[image: -*-]-axis. Therefore its
angular velocity is about that axis and, it turns out, its angular
momentum is likewise in that direction. Now suppose that we wish to
rotate the wheel about the x[image: -*-]-axis at a small angular
velocity Ω[image: -*-]; what forces are required? After a short
time Δ t[image: -*-], the
axis has turned to a new position, tilted at an angle Δ θ[image: -*-]
with the horizontal. Since the major part of the angular momentum is
due to the spin on the axis (very little is contributed by the slow
turning), we see that the angular momentum vector has changed. What is
the change in angular momentum?  The angular momentum does not change
in magnitude, but it does change in direction by an
amount Δ θ[image: -*-]. The magnitude of the vector Δ L[image: -*-] is
thus Δ L=L0 Δ θ[image: -*-], so that the torque, which is the
time rate of change of the angular momentum, is τ=Δ L/Δ t=L0 Δ θ/Δ t=L0 Ω[image: -*-]. Taking the directions of
the various quantities into account, we see that

[image: -*-][image: -*-]
(20.15)




Thus, if Ω[image: -*-] and L0[image: -*-] are both horizontal, as shown in
the figure, τ[image: -*-] is vertical. To produce such a torque,
horizontal forces F[image: -*-] and −F[image: -*-] must be applied at the ends of
the axle. How are these forces applied? By our hands, as we try to
rotate the axis of the wheel into the vertical direction. But Newton’s
Third Law demands that equal and opposite forces (and equal and
opposite torques) act on us. This causes us to rotate in
the opposite sense about the vertical axis z[image: -*-].



[image: -][image: -]
Fig. 20–3. A rapidly spinning top. Note that the direction of the torque
vector is the direction of the precession.





This result can be generalized for a rapidly spinning top. In the
familiar case of a spinning top, gravity acting on its center of mass
furnishes a torque about the point of contact with the floor (see
Fig. 20–3). This torque is in the horizontal direction,
and causes the top to precess with its axis moving in a circular cone
about the vertical. If Ω[image: -*-] is the (vertical) angular velocity
of precession, we again find that

[image: -*-][image: -*-]


Thus, when we apply a torque to a rapidly spinning top, the direction
of the precessional motion is in the direction of the torque, or at
right angles to the forces producing the torque.




We may now claim to understand the precession of gyroscopes, and
indeed we do, mathematically. However, this is a mathematical thing
which, in a sense, appears as a “miracle.” It will turn out, as we
go to more and more advanced physics, that many simple things can be
deduced mathematically more rapidly than they can be really understood
in a fundamental or simple sense. This is a strange characteristic,
and as we get into more and more advanced work there are circumstances
in which mathematics will produce results which no one has
really been able to understand in any direct fashion. An example is
the Dirac equation, which appears
in a very simple and beautiful form, but whose consequences are hard to
understand. In our particular case, the precession of a top looks like
some kind of a miracle involving right angles and circles, and twists
and right-hand screws. What we should try to do is to understand it in a
more physical way.



[image: -][image: -]
Fig. 20–4. The motion of particles in the spinning wheel of Fig. 20–2,
whose axis is turning, is in curved lines.





How can we explain the torque in terms of the real forces and the
accelerations? We note that when the wheel is precessing, the
particles that are going around the wheel are not really moving in a
plane because the wheel is precessing (see Fig. 20–4). As we
explained previously (Fig. 19–4), the particles which are
crossing through the precession axis are moving in curved paths,
and this requires application of a lateral force. This is supplied by
our pushing on the axle, which then communicates the force to the rim
through the spokes. “Wait,” someone says, “what about the particles
that are going back on the other side?” It does not take long to decide
that there must be a force in the opposite direction on that
side. The net force that we have to apply is therefore zero. The
forces balance out, but one of them must be applied at one side
of the wheel, and the other must be applied at the other side of the
wheel. We could apply these forces directly, but because the wheel is
solid we are allowed to do it by pushing on the axle, since forces can
be carried up through the spokes.




What we have so far proved is that if the wheel is precessing, it can
balance the torque due to gravity or some other applied torque. But
all we have shown is that this is a solution of an
equation. That is, if the torque is given, and if we get the
spinning started right, then the wheel will precess smoothly and
uniformly. But we have not proved (and it is not true) that a uniform
precession is the most general motion a spinning body can
undergo as the result of a given torque. The general motion involves
also a “wobbling” about the mean precession. This “wobbling” is
called nutation.




Some people like to say that when one exerts a torque on a gyroscope,
it turns and it precesses, and that the torque produces the
precession. It is very strange that when one suddenly lets go of a
gyroscope, it does not fall under the action of gravity, but
moves sidewise instead! Why is it that the downward force of
the gravity, which we know and feel, makes it go
sidewise? All the formulas in the world like (20.15)
are not going to tell us, because (20.15) is a special
equation, valid only after the gyroscope is precessing nicely. What
really happens, in detail, is the following. If we were to hold the
axis absolutely fixed, so that it cannot precess in any manner (but
the top is spinning) then there is no torque acting, not even a torque
from gravity, because it is balanced by our fingers. But if we
suddenly let go, then there will instantaneously be a torque from
gravity. Anyone in his right mind would think that the top would fall,
and that is what it starts to do, as can be seen if the top is not
spinning too fast.




The gyro actually does fall, as we would expect. But as soon as it
falls, it is then turning, and if this turning were to continue, a
torque would be required. In the absence of a torque in this
direction, the gyro begins to “fall” in the direction opposite that
of the missing force. This gives the gyro a component of motion around
the vertical axis, as it would have in steady precession. But the
actual motion “overshoots” the steady precessional velocity, and the
axis actually rises again to the level from which it started. The path
followed by the end of the axle is a cycloid (the path followed by a
pebble that is stuck in the tread of an automobile tire). Ordinarily,
this motion is too quick for the eye to follow, and it damps out
quickly because of the friction in the gimbal bearings, leaving only
the steady precessional drift (Fig. 20–5). The slower
the wheel spins, the more obvious the nutation is.




[image: -][image: -]
Fig. 20–5. Actual motion of tip of axis of gyroscope under gravity just
after releasing axis previously held fixed.





When the motion settles down, the axis of the gyro is a little bit
lower than it was at the start. Why? (These are the more complicated
details, but we bring them in because we do not want the reader to get
the idea that the gyroscope is an absolute miracle. It is a
wonderful thing, but it is not a miracle.) If we were holding the axis
absolutely horizontally, and suddenly let go, then the simple
precession equation would tell us that it precesses, that it goes
around in a horizontal plane. But that is impossible! Although we
neglected it before, it is true that the wheel has some moment
of inertia about the precession axis, and if it is moving about that
axis, even slowly, it has a weak angular momentum about the
axis. Where did it come from? If the pivots are perfect, there is no
torque about the vertical axis. How then does it get to precess
if there is no change in the angular momentum? The answer is that the
cycloidal motion of the end of the axis damps down to the average,
steady motion of the center of the equivalent rolling circle. That is,
it settles down a little bit low. Because it is low, the spin angular
momentum now has a small vertical component, which is exactly what is
needed for the precession. So you see it has to go down a little, in
order to go around. It has to yield a little bit to the gravity; by
turning its axis down a little bit, it maintains the rotation about
the vertical axis. That, then, is the way a gyroscope works.







20–4 Angular momentum of a solid body

[image: -][image: -]
Fig. 20–6. The angular momentum of a rotating body is not necessarily
parallel to the angular velocity.





Before we leave the subject of rotations in three dimensions, we shall
discuss, at least qualitatively, a few effects that occur in
three-dimensional rotations that are not self-evident. The main effect
is that, in general, the angular momentum of a rigid body is not
necessarily in the same direction as the angular velocity. Consider a
wheel that is fastened onto a shaft in a lopsided fashion, but with the
axis through the center of gravity, to be sure (Fig. 20–6).
When we spin the wheel around the axis, anybody knows that there will be
shaking at the bearings because of the lopsided way we have it mounted.
Qualitatively, we know that in the rotating system there is centrifugal
force acting on
the wheel, trying to throw its mass as far as possible from the axis.
This tends to line up the plane of the wheel so that it is perpendicular
to the axis. To resist this tendency, a torque is exerted by the
bearings. If there is a torque exerted by the bearings, there must be a
rate of change of angular momentum. How can there be a rate of change of
angular momentum when we are simply turning the wheel about the axis?
Suppose we break the angular velocity ω[image: -*-] into components
ω1[image: -*-] and ω2[image: -*-] perpendicular and parallel to the plane
of the wheel. What is the angular momentum?  The moments of inertia
about these two axes are different, so the angular momentum
components, which (in these particular, special axes only) are equal to
the moments of inertia times the corresponding angular velocity
components, are in a different ratio than are the angular
velocity components. Therefore the angular momentum vector is in a
direction in space not along the axis. When we turn the object,
we have to turn the angular momentum vector in space, so we must exert
torques on the shaft.




Although it is much too complicated to prove here, there is a very
important and interesting property of the moment of inertia which is
easy to describe and to use, and which is the basis of our above
analysis. This property is the following: Any rigid body, even an
irregular one like a potato, possesses three mutually perpendicular
axes through the CM, such that the moment of inertia about one of
these axes has the greatest possible value for any axis through the
CM, the moment of inertia about another of the axes has the
minimum possible value, and the moment of inertia about the
third axis is intermediate between these two (or equal to one of
them). These axes are called the principal axes of the body,
and they have the important property that if the body is rotating
about one of them, its angular momentum is in the same direction as
the angular velocity. For a body having axes of symmetry, the
principal axes are along the symmetry axes.



[image: -][image: -]
Fig. 20–7. The angular velocity and angular momentum of a rigid body (A>B>C[image: -*-]).





If we take the x[image: -*-]-, y[image: -*-]-, and z[image: -*-]-axes along the principal axes, and
call the corresponding principal moments of inertia A[image: -*-], B[image: -*-], and C[image: -*-],
we may easily evaluate the angular momentum and the kinetic energy of
rotation of the body for any angular velocity ω[image: -*-]. If we
resolve ω[image: -*-] into components ωx[image: -*-], ωy[image: -*-],
and ωz[image: -*-] along the x[image: -*-]-, y[image: -*-]-, z[image: -*-]-axes, and use unit vectors
i[image: -*-], j[image: -*-], k[image: -*-], also along x[image: -*-], y[image: -*-], z[image: -*-], we may write the
angular momentum as

[image: -*-][image: -*-]
(20.16)




The kinetic energy of rotation is

[image: -*-][image: -*-]
(20.17)








	
  
  That
this is true can be derived by compounding the displacements of the
particles of the body during an infinitesimal time Δ t[image: -*-]. It is
not self-evident, and is left to those who are interested to try to
figure it out.
  ↩





  
    

21 The Harmonic Oscillator



21–1 Linear differential equations


In the study of physics, usually the course is divided into a series
of subjects, such as mechanics, electricity, optics, etc., and one
studies one subject after the other. For example, this course has so
far dealt mostly with mechanics. But a strange thing occurs again and
again: the equations which appear in different fields of physics, and
even in other sciences, are often almost exactly the same, so that
many phenomena have analogs in these different fields. To take the
simplest example, the propagation of sound waves is in many ways
analogous to the propagation of light waves. If we study acoustics in
great detail we discover that much of the work is the same as it would
be if we were studying optics in great detail. So the study of a
phenomenon in one field may permit an extension of our knowledge in
another field. It is best to realize from the first that such
extensions are possible, for otherwise one might not understand the
reason for spending a great deal of time and energy on what appears to
be only a small part of mechanics.




The harmonic oscillator, which we are about to study, has close
analogs in many other fields; although we start with a mechanical
example of a weight on a spring, or a pendulum with a small swing, or
certain other mechanical devices, we are really studying a certain
differential equation. This equation appears again and again in
physics and in other sciences, and in fact it is a part of so many
phenomena that its close study is well worth our while. Some of the
phenomena involving this equation are the oscillations of a mass on a
spring; the oscillations of charge flowing back and forth in an
electrical circuit; the vibrations of a tuning fork which is
generating sound waves; the analogous vibrations of the electrons in
an atom, which generate light waves; the equations for the operation
of a servosystem, such as a thermostat trying to adjust a temperature;
complicated interactions in chemical reactions; the growth of a colony
of bacteria in interaction with the food supply and the poisons the
bacteria produce; foxes eating rabbits eating grass, and so on; all
these phenomena follow equations which are very similar to one
another, and this is the reason why we study the mechanical oscillator
in such detail. The equations are called linear differential
equations with constant coefficients. A linear differential equation
with constant coefficients is a differential equation consisting of a
sum of several terms, each term being a derivative of the dependent
variable with respect to the independent variable, and multiplied by
some constant. Thus



[image: -*-][image: -*-]
(21.1)





is called a linear differential equation of order n[image: -*-] with constant
coefficients (each ai[image: -*-] is constant).







21–2 The harmonic oscillator

[image: -][image: -]
Fig. 21–1. A mass on a spring: a simple example of a harmonic
oscillator.





Perhaps the simplest mechanical system whose motion follows a linear
differential equation with constant coefficients is a mass on a
spring: first the spring stretches to balance the gravity; once it is
balanced, we then discuss the vertical displacement of the mass from
its equilibrium position (Fig. 21–1). We shall call this
upward displacement x[image: -*-], and we shall also suppose that the spring is
perfectly linear, in which case the force pulling back when the spring
is stretched is precisely proportional to the amount of stretch. That
is, the force is −k x[image: -*-] (with a minus sign to remind us that it pulls
back). Thus the mass times the acceleration must equal −k x[image: -*-]:

[image: -*-][image: -*-]
(21.2)




For simplicity, suppose it happens (or we change our unit of time
measurement) that the ratio k/m=1[image: -*-]. We shall first study the
equation

[image: -*-][image: -*-]
(21.3)




Later we shall come back to Eq. (21.2) with the k[image: -*-]
and m[image: -*-] explicitly present.




We have already analyzed Eq. (21.3) in detail
numerically; when we first introduced the subject of mechanics we
solved this equation (see Eq. 9.12) to find the
motion. By numerical integration we found a curve (Fig. 9–4)
which showed that if m[image: -*-] was initially displaced, but at rest, it would
come down and go through zero; we did not then follow it any farther,
but of course we know that it just keeps going up and down—it
oscillates. When we calculated the motion numerically, we found
that it went through the equilibrium point at t=1.570[image: -*-]. The length of
the whole cycle is four times this long, or t0=6.28[image: -*-] “sec.”  This
was found numerically, before we knew much calculus. We assume that in
the meantime the Mathematics Department has brought forth a function
which, when differentiated twice, is equal to itself with a minus sign.
(There are, of course, ways of getting at this function in a direct
fashion, but they are more complicated than already knowing what the
answer is.) The function is x=cost[image: -*-]. If we differentiate this we
find d x/d t=−sint[image: -*-] and d2 x/d t2=[image: -*-]−cost=[image: -*-]−x[image: -*-]. The function x=cost[image: -*-] starts, at t=0[image: -*-], with x=1[image: -*-], and no initial velocity; that
was the situation with which we started when we did our numerical work.
Now that we know that x=cost[image: -*-], we can calculate a precise
value for the time at which it should pass x=0[image: -*-]. The answer
is t=π/2[image: -*-], or 1.57080[image: -*-]. We were wrong in the last figure because of the
errors of numerical analysis, but it was very close!




Now to go further with the original problem, we restore the time units
to real seconds. What is the solution then? First of all, we might
think that we can get the constants k[image: -*-] and m[image: -*-] in by multiplying
cost[image: -*-] by something. So let us try the equation x=A cost[image: -*-]; then
we find d x/d t=−A sint[image: -*-], and d2 x/d t2=[image: -*-]−A cost=[image: -*-]−x[image: -*-]. Thus we
discover to our horror that we did not succeed in solving
Eq. (21.2), but we got Eq. (21.3) again! That
fact illustrates one of the most important properties of linear
differential equations: if we multiply a solution of the equation
by any constant, it is again a solution. The mathematical reason for
this is clear. If x[image: -*-] is a solution, and we multiply both sides of the
equation, say by A[image: -*-], we see that all derivatives are also multiplied
by A[image: -*-], and therefore A x[image: -*-] is just as good a solution of the original
equation as x[image: -*-] was. The physics of it is the following. If we have a
weight on a spring, and pull it down twice as far, the force is twice as
much, the resulting acceleration is twice as great, the velocity it
acquires in a given time is twice as great, the distance covered in a
given time is twice as great; but it has to cover twice as great
a distance in order to get back to the origin because it is pulled down
twice as far. So it takes the same time to get back to the
origin, irrespective of the initial displacement. In other words, with a
linear equation, the motion has the same time pattern, no matter
how “strong” it is.




That was the wrong thing to do—it only taught us that we can
multiply the solution by anything, and it satisfies the same equation,
but not a different equation. After a little cut and try to get to an
equation with a different constant multiplying x[image: -*-], we find that we
must alter the scale of time. In other words,
Eq. (21.2) has a solution of the form

[image: -*-][image: -*-]
(21.4)




(It is important to realize that in the present case, ω0[image: -*-] is
not an angular velocity of a spinning body, but we run out of letters
if we are not allowed to use the same letter for more than one thing.)
The reason we put a subscript “0” on ω[image: -*-] is that we are going
to have more omegas before long; let us remember that ω0[image: -*-]
refers to the natural motion of this oscillator. Now we try
Eq. (21.4) and this time we are more successful, because
d x/d t=−ω0 sinω0 t[image: -*-] and d2 x/d t2=[image: -*-][image: -\omega_0^2\cos\omega_0t =][image: -\omega_0^2\cos\omega_0t =][image: -\omega_0^2x][image: -\omega_0^2x].  So at last we have solved the
equation that we really wanted to solve. The equation [image: d^2x/dt^2 =-\omega_0^2x][image: d^2x/dt^2 =-\omega_0^2x] is the same as Eq. (21.2) if [image: \omega_0^2 = k/m][image: \omega_0^2 = k/m].




The next thing we must investigate is the physical significance
of ω0[image: -*-]. We know that the cosine function repeats itself when the
angle it refers to is 2 π[image: -*-]. So x=cosω0 t[image: -*-] will repeat its
motion, it will go through a complete cycle, when the “angle”
changes by 2 π[image: -*-]. The quantity ω0 t[image: -*-] is often called the
phase of the motion. In order to change ω0 t[image: -*-] by 2 π[image: -*-],
the time must change by an amount t0[image: -*-], called the period of
one complete oscillation; of course t0[image: -*-] must
be such that ω0 t0=2 π[image: -*-]. That is, ω0 t0[image: -*-] must account
for one cycle of the angle, and then everything will repeat itself—if
we increase t[image: -*-] by t0[image: -*-], we add 2 π[image: -*-] to the phase. Thus

[image: -*-][image: -*-]
(21.5)




Thus if we had a heavier mass, it would take longer to oscillate back
and forth on a spring. That is because it has more inertia, and so,
while the forces are the same, it takes longer to get the mass
moving. Or, if the spring is stronger, it will move more quickly, and
that is right: the period is less if the spring is stronger.




Note that the period of oscillation of a mass on a spring does not
depend in any way on how it has been started, how far down we
pull it. The period is determined, but the amplitude of the
oscillation is not determined by the equation of
motion (21.2). The amplitude is determined, in fact,
by how we let go of it, by what we call the initial conditions or
starting conditions.




Actually, we have not quite found the most general possible solution
of Eq. (21.2). There are other solutions. It should be
clear why: because all of the cases covered by x=a cosω0 t[image: -*-]
start with an initial displacement and no initial velocity. But it is
possible, for instance, for the mass to start at x=0[image: -*-], and we may
then give it an impulsive kick, so that it has some speed at t=0[image: -*-]. Such a motion is not represented by a cosine—it is represented
by a sine. To put it another way, if x=cosω0 t[image: -*-] is a
solution, then is it not obvious that if we were to happen to walk
into the room at some time (which we would call “t=0[image: -*-]”) and saw
the mass as it was passing x=0[image: -*-], it would keep on going just the
same?  Therefore, x=cosω0 t[image: -*-] cannot be the most general
solution; it must be possible to shift the beginning of time, so to
speak. As an example, we could write the solution this way: x=a cosω0 (t−t1)[image: -*-], where t1[image: -*-] is some constant. This also
corresponds to shifting the origin of time to some new
instant. Furthermore, we may expand
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and write

[image: -*-][image: -*-]


where A=a cosΔ[image: -*-] and B=−a sinΔ[image: -*-]. Any one of these
forms is a possible way to write the complete, general solution
of (21.2): that is, every solution of the differential
equation [image: d^2x/dt^2 =-\omega_0^2x][image: d^2x/dt^2 =-\omega_0^2x] that exists in the world can be
written as

[image: -*-][image: -*-]
(21.6)









Some of the quantities in (21.6) have names: ω0[image: -*-] is
called the angular frequency; it is the number of radians
by which the phase changes in a second. That is determined by the
differential equation. The other constants are not determined by the
equation, but by how the motion is started. Of these constants, a[image: -*-]
measures the maximum displacement attained by the mass, and is called
the amplitude of oscillation. The
constant Δ[image: -*-] is sometimes called the phase of the
oscillation, but that is a confusion, because other people call ω0 t+Δ[image: -*-] the phase, and say the phase changes with time. We might say
that Δ[image: -*-] is a phase shift from some
defined zero. Let us put it differently. Different Δ[image: -*-]’s correspond
to motions in different phases. That is true, but whether we want to
call Δ[image: -*-] the phase, or not, is another question.







21–3 Harmonic motion and circular motion

[image: -][image: -]
Fig. 21–2. A particle moving in a circular path at constant speed.





The fact that cosines are involved in the solution of
Eq. (21.2) suggests that there might be some relationship to
circles. This is artificial, of course, because there is no circle
actually involved in the linear motion—it just goes up and down. We
may point out that we have, in fact, already solved that differential
equation when we were studying the mechanics of circular motion. If a
particle moves in a circle with a constant speed v[image: -*-], the radius vector
from the center of the circle to the particle turns through an angle
whose size is proportional to the time. If we call this angle θ=v t/R[image: -*-] (Fig. 21–2) then d θ/d t=[image: -*-]ω0=[image: -*-]v/R[image: -*-]. We
know that there is an acceleration a=[image: -*-]v2/R=[image: -*-][image: \omega_0^2R][image: \omega_0^2R] toward the
center. Now we also know that the position x[image: -*-], at a given moment, is
the radius of the circle times cosθ[image: -*-], and that y[image: -*-] is the radius
times sinθ[image: -*-]:

[image: -*-][image: -*-]


Now what about the acceleration? What is the x[image: -*-]-component of
acceleration, d2 x/d t2[image: -*-]? We have already worked that out
geometrically; it is the magnitude of the acceleration times the
cosine of the projection angle, with a minus sign because it is toward
the center.

[image: -*-][image: -*-]
(21.7)




In other words, when a particle is moving in a circle, the horizontal
component of its motion has an acceleration which is proportional to
the horizontal displacement from the center. Of course we also have
the solution for motion in a circle: x=R cosω0 t[image: -*-].
Equation (21.7) does not depend upon the radius of the
circle, so for a circle of any radius, one finds the same equation for a
given ω0[image: -*-]. Thus, for several reasons, we expect that the
displacement of a mass on a spring will turn out to be proportional to
cosω0 t[image: -*-], and will, in fact, be exactly the same motion as we
would see if we looked at the x[image: -*-]-component of the position of an object
rotating in a circle with angular velocity ω0[image: -*-]. As a check on
this, one can devise an experiment to show that the up-and-down motion
of a mass on a spring is the same as that of a point going around in a
circle. In Fig. 21–3 an arc light projected on a screen
casts shadows of a crank pin on a shaft and of a vertically oscillating
mass, side by side. If we let go of the mass at the right time from the
right place, and if the shaft speed is carefully adjusted so that the
frequencies match, each should follow the other exactly. One can also
check the numerical solution we obtained earlier with the cosine
function, and see whether that agrees very well.



[image: -][image: -]
Fig. 21–3. Demonstration of the equivalence between simple harmonic
motion and uniform circular motion.





Here we may point out that because uniform motion in a circle is so
closely related mathematically to oscillatory up-and-down motion, we
can analyze oscillatory motion in a simpler way if we imagine it to be
a projection of something going in a circle. In other words, although
the distance y[image: -*-] means nothing in the oscillator problem, we may still
artificially supplement Eq. (21.2) with another equation
using y[image: -*-], and put the two together. If we do this, we will be able to
analyze our one-dimensional oscillator with circular motions,
which is a lot easier than having to solve a differential
equation. The trick in doing this is to use complex numbers, a
procedure we shall introduce in the next chapter.







21–4 Initial conditions


Now let us consider what determines the constants A[image: -*-] and B[image: -*-], or a[image: -*-]
and Δ[image: -*-]. Of course these are determined by how we start the
motion. If we start the motion with just a small displacement, that is
one type of oscillation; if we start with an initial displacement and
then push up when we let go, we get still a different motion. The
constants A[image: -*-] and B[image: -*-], or a[image: -*-] and Δ[image: -*-], or any other way of
putting it, are determined, of course, by the way the motion started,
not by any other features of the situation. These are called the
initial conditions. We would like to connect the initial
conditions with the constants. Although this can be done using any one
of the forms (21.6), it turns out to be easiest if we use
Eq. (21.6c). Suppose that at t=0[image: -*-] we have started with
an initial displacement x0[image: -*-] and a certain velocity v0[image: -*-].  This is
the most general way we can start the motion. (We cannot specify the
acceleration with which it started, true, because that is
determined by the spring, once we specify x0[image: -*-].) Now let us calculate
A[image: -*-] and B[image: -*-]. We start with the equation for x[image: -*-],

[image: -*-][image: -*-]


Since we shall later need the velocity also, we differentiate x[image: -*-] and
obtain

[image: -*-][image: -*-]


These expressions are valid for all t[image: -*-], but we have special knowledge
about x[image: -*-] and v[image: -*-] at t=0[image: -*-]. So if we put t=0[image: -*-] into these equations,
on the left we get x0[image: -*-] and v0[image: -*-], because that is what x[image: -*-] and v[image: -*-]
are at t=0[image: -*-]; also, we know that the cosine of zero is unity, and
the sine of zero is zero. Therefore we get

[image: -*-][image: -*-]


and

[image: -*-][image: -*-]


So for this particular case we find that

[image: -*-][image: -*-]


From these values of A[image: -*-] and B[image: -*-], we can get a[image: -*-] and Δ[image: -*-] if we
wish.




That is the end of our solution, but there is one physically
interesting thing to check, and that is the conservation of
energy. Since there are no frictional losses, energy ought to be
conserved. Let us use the formula

[image: -*-][image: -*-]


then

[image: -*-][image: -*-]


Now let us find out what the kinetic energy T[image: -*-] is, and what the
potential energy U[image: -*-] is. The potential energy at any moment
is [image: \tfrac{1}{2}kx^2][image: \tfrac{1}{2}kx^2], where x[image: -*-] is the displacement and k[image: -*-] is the
constant of the spring. If we substitute for x[image: -*-], using our expression
above, we get

[image: -*-][image: -*-]


Of course the potential energy is not constant; the potential never
becomes negative, naturally—there is always some energy in the
spring, but the amount of energy fluctuates with x[image: -*-]. The kinetic
energy, on the other hand, is [image: \tfrac{1}{2}mv^2][image: \tfrac{1}{2}mv^2], and by substituting
for v[image: -*-] we get

[image: -*-][image: -*-]


Now the kinetic energy is zero when x[image: -*-] is at the maximum, because
then there is no velocity; on the other hand, it is maximal when x[image: -*-]
is passing through zero, because then it is moving fastest. This
variation of the kinetic energy is just the opposite of that of the
potential energy. But the total energy ought to be a constant. If we
note that [image: k = m\omega_0^2][image: k = m\omega_0^2], we see that



[image: -*-][image: -*-]



The energy is dependent on the square of the amplitude; if we have
twice the amplitude, we get an oscillation which has four times the
energy. The average potential energy is half the maximum and,
therefore, half the total, and the average kinetic energy is likewise
half the total energy.







21–5 Forced oscillations


Next we shall discuss the forced harmonic oscillator, i.e., one
in which there is an external driving force acting. The equation then
is the following:

[image: -*-][image: -*-]
(21.8)




We would like to find out what happens in these circumstances. The
external driving force can have various kinds of functional dependence
on the time; the first one that we shall analyze is very simple—we
shall suppose that the force is oscillating:

[image: -*-][image: -*-]
(21.9)




Notice, however, that this ω[image: -*-] is not necessarily ω0[image: -*-]: we
have ω[image: -*-] under our control; the forcing may be done at different
frequencies. So we try to solve Eq. (21.8) with the
special force (21.9). What is the solution
of (21.8)? One special solution, (we shall discuss the more
general cases later) is

[image: -*-][image: -*-]
(21.10)




where the constant is to be determined. In other words, we might
suppose that if we kept pushing back and forth, the mass would follow
back and forth in step with the force. We can try it anyway. So we
put (21.10) and (21.9) into (21.8), and
get

[image: -*-][image: -*-]
(21.11)




We have also put in [image: k = m\omega_0^2][image: k = m\omega_0^2], so that we will understand the
equation better at the end. Now because the cosine appears everywhere,
we can divide it out, and that shows that (21.10) is, in
fact, a solution, provided we pick C[image: -*-] just right. The answer is that
C[image: -*-] must be

[image: -*-][image: -*-]
(21.12)




That is, m[image: -*-] oscillates at the same frequency as the force, but with
an amplitude which depends on the frequency of the force, and also
upon the frequency of the natural motion of the oscillator. It means,
first, that if ω[image: -*-] is very small compared with ω0[image: -*-], then
the displacement and the force are in the same direction. On the other
hand, if we shake it back and forth very fast, then (21.12)
tells us that C[image: -*-] is negative if ω[image: -*-] is above the natural
frequency ω0[image: -*-] of the harmonic oscillator. (We will call
ω0[image: -*-] the natural frequency of the harmonic oscillator, and
ω[image: -*-] the applied frequency.) At very high frequency the
denominator may become very large, and there is then not much
amplitude.




Of course the solution we have found is the solution only if things
are started just right, for otherwise there is a part which usually
dies out after a while. This other part is called the transient
response to F (t)[image: -*-], while (21.10) and (21.12)
are called the steady-state response.




According to our formula (21.12), a very remarkable thing
should also occur: if ω[image: -*-] is almost exactly the same as
ω0[image: -*-], then C[image: -*-] should approach infinity. So if we adjust the
frequency of the force to be “in time” with the natural frequency,
then we should get an enormous displacement. This is well known to
anybody who has pushed a child on a swing. It does not work very well
to close our eyes and push at a certain speed at random. If we happen
to get the right timing, then the swing goes very high, but if we have
the wrong timing, then sometimes we may be pushing when we should be
pulling, and so on, and it does not work.




If we make ω[image: -*-] exactly equal to ω0[image: -*-], we find that it
should oscillate at an infinite amplitude, which is, of course,
impossible. The reason it does not is that something goes wrong with
the equation, there are some other frictional terms, and other forces,
which are not in (21.8) but which occur in the real
world. So the amplitude does not reach infinity for some reason; it
may be that the spring breaks!







  
    

22 Algebra



22–1 Addition and multiplication


In our study of oscillating systems we shall have occasion
to use one of the most remarkable, almost astounding, formulas in all of
mathematics. From the physicist’s point of view we could bring forth
this formula in two minutes or so, and be done with it. But science is
as much for intellectual enjoyment as for practical utility, so instead
of just spending a few minutes on this amazing jewel, we shall surround
the jewel by its proper setting in the grand design of that branch of
mathematics which is called elementary algebra.




Now you may ask, “What is mathematics doing in a physics lecture?”
We have several possible excuses: first, of course, mathematics is an
important tool, but that would only excuse us for giving the formula
in two minutes. On the other hand, in theoretical physics we discover
that all our laws can be written in mathematical form; and that this
has a certain simplicity and beauty about it. So, ultimately, in order
to understand nature it may be necessary to have a deeper
understanding of mathematical relationships. But the real reason is
that the subject is enjoyable, and although we humans cut nature up in
different ways, and we have different courses in different
departments, such compartmentalization is really artificial, and we
should take our intellectual pleasures where we find them.




Another reason for looking more carefully at algebra now, even though
most of us studied algebra in high school, is that that was the first
time we studied it; all the equations were unfamiliar, and it was hard
work, just as physics is now. Every so often it is a great pleasure to
look back to see what territory has been covered, and what the great
map or plan of the whole thing is. Perhaps some day somebody in the
Mathematics Department will present a lecture on mechanics in such a
way as to show what it was we were trying to learn in the physics
course!




The subject of algebra will not be developed from the point of view of
a mathematician, exactly, because the mathematicians are mainly
interested in how various mathematical facts are demonstrated, and how
many assumptions are absolutely required, and what is not
required. They are not so interested in the result of what they
prove. For example, we may find the Pythagorean theorem quite
interesting, that the sum of the squares of the sides of a right
triangle is equal to the square of the hypotenuse; that is an
interesting fact, a curiously simple thing, which may be appreciated
without discussing the question of how to prove it, or what axioms are
required. So, in the same spirit, we shall describe qualitatively, if
we may put it that way, the system of elementary algebra. We say
elementary algebra because there is a branch of mathematics
called modern algebra in which some of the rules such as a b=b a[image: -*-], are abandoned, and it is still called algebra, but we shall not
discuss that.




To discuss this subject we start in the middle. We suppose that we
already know what integers are, what zero is, and what it means to
increase a number by one unit. You may say, “That is not in the
middle!” But it is the middle from a mathematical standpoint, because
we could go even further back and describe the theory of sets in order
to derive some of these properties of integers. But we are not
going in that direction, the direction of mathematical philosophy and
mathematical logic, but rather in the other direction, from the
assumption that we know what integers are and we know how to count.




If we start with a certain number a[image: -*-], an integer, and we count
successively one unit b[image: -*-] times, the number we arrive at we call
a+b[image: -*-], and that defines addition of integers.




Once we have defined addition, then we can consider this: if we start
with nothing and add a[image: -*-] to it, b[image: -*-] times in succession, we call the
result multiplication of integers; we call it b[image: -*-] times a[image: -*-].




Now we can also have a succession of multiplications: if we
start with 1 and multiply by a[image: -*-], b[image: -*-] times in succession, we call
that raising to a power: ab[image: -*-].




Now as a consequence of these definitions it can be easily shown that
all of the following relationships are true:



[image: -*-][image: -*-]
(22.1)





These results are well known and we shall not belabor the point, we
merely list them. Of course, 1 and 0 have special properties; for
example, a+0[image: -*-] is a[image: -*-], a[image: -*-] times 1=a[image: -*-], and a[image: -*-] to the first power
is a[image: -*-].




In this discussion we must also assume a few other properties like
continuity and ordering, which are very hard to define; we will let
the rigorous theory do it. Furthermore, it is definitely true that we
have written down too many “rules”; some of them may be deducible
from the others, but we shall not worry about such matters.







22–2 The inverse operations


In addition to the direct operations of addition, multiplication, and
raising to a power, we have also the inverse operations, which
are defined as follows. Let us assume that a[image: -*-] and c[image: -*-] are given, and
that we wish to find what values of b[image: -*-] satisfy such equations as a+b=c[image: -*-], a b=c[image: -*-], ba=c[image: -*-]. If a+b=c[image: -*-], b[image: -*-] is defined as c−a[image: -*-],
which is called subtraction. The operation called division is
also clear: if a b=c[image: -*-], then b=c/a[image: -*-] defines division—a solution
of the equation a b=c[image: -*-] “backwards.” Now if we have a power ba=c[image: -*-] and we ask ourselves, “What is b[image: -*-]?,” it is called the
a[image: -*-]th root of c[image: -*-]: b=a√c[image: -*-]. For instance, if we ask
ourselves the following question, “What integer, raised to the third
power, equals 8?,” then the answer is called the cube root
of 8; it is 2. Because ba[image: -*-] and ab[image: -*-] are not equal, there are
two inverse problems associated with powers, and the other
inverse problem would be, “To what power must we raise 2 to
get 8?”  This is called taking the logarithm. If
ab=c[image: -*-], we
write b=logac[image: -*-]. The fact that it has a cumbersome notation
relative to the others does not mean that it is any less elementary,
at least applied to integers, than the other processes. Although
logarithms come late in an algebra class, in practice they
are, of
course, just as simple as roots; they are just a different kind of
solution of an algebraic equation. The direct and inverse operations
are summarized as follows:

[image: -*-][image: -*-]
(22.2)









Now here is the idea. These relationships, or rules, are correct for
integers, since they follow from the definitions of addition,
multiplication, and raising to a power. We are going to discuss
whether or not we can broaden the class of objects which a[image: -*-], b[image: -*-],
and c[image: -*-] represent so that they will obey these same rules, although the
processes for a+b[image: -*-], and so on, will not be definable in terms of
the direct action of adding 1, for instance, or successive
multiplications by integers.







22–3 Abstraction and generalization


When we try to solve simple algebraic equations using all these
definitions, we soon discover some insoluble problems, such as the
following. Suppose that we try to solve the equation b=3−5[image: -*-]. That
means, according to our definition of subtraction, that we must find a
number which, when added to 5, gives 3. And of course there
is no such number, because we consider only positive integers;
this is an insoluble problem. However, the plan, the great idea, is
this: abstraction and generalization. From the whole structure
of algebra, rules plus integers, we abstract the original definitions
of addition and multiplication, but we leave the rules (22.1)
and (22.2), and assume these to be true in general on
a wider class of numbers, even though they are originally derived on a
smaller class. Thus, rather than using integers symbolically to define
the rules, we use the rules as the definition of the symbols, which then
represent a more general kind of number. As an example, by working with
the rules alone we can show that 3−5=0−2[image: -*-]. In fact we can show
that one can make all subtractions, provided we define a whole
set of new numbers: 0−1[image: -*-], 0−2[image: -*-], 0−3[image: -*-], 0−4[image: -*-], and so on,
called the negative integers. Then we may use all the other
rules, like a (b+c)=a b+a c[image: -*-] and so forth, to find what the rules
are for multiplying negative numbers, and we will discover, in fact,
that all of the rules can be maintained with negative as well as
positive integers.




So we have increased the range of objects over which the rules work,
but the meaning of the symbols is different.




One cannot say, for instance, that −2[image: -*-] times 5 really means to
add 5 together successively −2[image: -*-] times. That means nothing. But
nevertheless everything will work out all right according to the
rules.




An interesting problem comes up in taking powers. Suppose that we wish
to discover what a(3−5)[image: -*-] means. We know only that 3−5[image: -*-] is a
solution of the problem, (3−5)+5=3[image: -*-]. Knowing that, we know that
a(3−5) a5=a3[image: -*-]. Therefore a(3−5)=a3/a5[image: -*-], by the
definition of division. With a little more work, this can be reduced
to 1/a2[image: -*-]. So we find that the negative powers are the reciprocals of
the positive powers, but 1/a2[image: -*-] is a meaningless symbol, because if
a[image: -*-] is a positive or negative integer, the square of it is greater
than 1, and we do not yet know what we mean by 1 divided by a
number greater than 1!




Onward! The great plan is to continue the process of generalization;
whenever we find another problem that we cannot solve we extend our
realm of numbers. Consider division: we cannot find a number which is
an integer, even a negative integer, which is equal to the result of
dividing 3 by 5. But if we suppose that all fractional numbers
also satisfy the rules, then we can talk about multiplying and adding
fractions, and everything works as well as it did before.




Take another example of powers: what is a3/5[image: -*-]? We know only that
(3/5) 5=3[image: -*-], since that was the definition of 3/5[image: -*-]. So we know also
that (a(3/5))5=[image: -*-]a(3/5) (5)=[image: -*-]a3[image: -*-], because this is one of the
rules. Then by the definition of roots we find that a(3/5)=5√a3[image: -*-].




In this way, then, we can define what we mean by putting fractions in
the various symbols, by using the rules themselves to help us
determine the definition—it is not arbitrary. It is a remarkable
fact that all the rules still work for positive and negative integers,
as well as for fractions!




We go on in the process of generalization. Are there any other
equations we cannot solve? Yes, there are. For example, it is
impossible to solve this equation: b=[image: -*-]21/2=[image: -*-]√2[image: -*-]. It is
impossible to find a number which is rational (a fraction) whose
square is equal to 2. It is very easy for us in modern days to
answer this question. We know the decimal system, and so we have no
difficulty in appreciating the meaning of an unending decimal as a
type of approximation to the square root of 2. Historically, this
idea presented great difficulty to the Greeks. To really define
precisely what is meant here requires that we add some
substance of continuity and ordering, and it is, in fact, quite the
most difficult step in the processes of generalization just at this
point. It was made, formally and rigorously, by
Dedekind. However, without
worrying about the mathematical rigor of the thing, it is quite easy to
understand that what we mean is that we are going to find a whole
sequence of approximate fractions, perfect fractions (because any
decimal, when stopped somewhere, is of course rational), which just
keeps on going, getting closer and closer to the desired result. That is
good enough for what we wish to discuss, and it permits us to involve
ourselves in irrational numbers, and to calculate things like the square
root of 2 to any accuracy that we desire, with enough work.







22–4 Approximating irrational numbers


The next problem comes with what happens with the irrational
powers. Suppose that we want to define, for instance,
10√2[image: -*-]. In principle, the answer is simple enough. If we
approximate the square root of 2 to a certain number of decimal
places, then the power is rational, and we can take the approximate
root, using the above method, and get an approximation
to 10√2[image: -*-]. Then we may run it up a few more decimal places (it
is again rational), take the appropriate root, this time a much higher
root because there is a much bigger denominator in the fraction, and
get a better approximation. Of course we are going to get some
enormously high roots involved here, and the work is quite
difficult. How can we cope with this problem?




In the computations of square roots, cube roots, and other small
roots, there is an arithmetical process available by which we can get
one decimal place after another. But the amount of labor needed to
calculate irrational powers and the logarithms that go with them (the
inverse problem) is so great that there is no simple arithmetical
process we can use. Therefore tables have been built up which permit
us to calculate these powers, and these are called the tables of
logarithms, or the tables of powers, depending on which way the table
is set up. It is merely a question of saving time; if we must raise
some number to an irrational power, we can look it up rather than
having to compute it. Of course, such a computation is just a
technical problem, but it is an interesting one, and of great
historical value. In the first place, not only do we have the problem
of solving x=10√2[image: -*-], but we also have the problem of solving
10x=2[image: -*-], or x=log102[image: -*-]. This is not a problem where we have
to define a new kind of number for the result, it is merely a
computational problem. The answer is simply an irrational number, an
unending decimal, not a new kind of a number.




Let us now discuss the problem of calculating solutions of such
equations. The general idea is really very simple. If we could
calculate 101[image: -*-], and 104/10[image: -*-], and 101/100[image: -*-], and 104/1000[image: -*-]
and so on, and multiply them all together, we would get
101.414 …[image: -*-] or 10√2[image: -*-], and that is the general idea on
which things work. But instead of calculating 101/10[image: -*-] and so on,
we shall calculate 101/2[image: -*-], 101/4[image: -*-], and so on. Before we start,
we should explain why we make so much work with 10[image: -*-], instead of some
other number. Of course, we realize that logarithm tables are of great
practical utility, quite aside from the mathematical problem of taking
roots, since with any base at all,

[image: -*-][image: -*-]
(22.3)




We are all familiar with the fact that one can use this fact in a
practical way to multiply numbers if we have a table of
logarithms. The only question is, with what base b[image: -*-] shall we compute?
It makes no difference what base is used; we can use the same
principle all the time, and if we are using logarithms to any
particular base, we can find logarithms to any other base merely by a
change in scale, a multiplying factor. If we multiply
Eq. (22.3) by 61[image: -*-], it is just as true, and if we had a table
of logs with a base b[image: -*-], and somebody else multiplied all of our table
by 61[image: -*-], there would be no essential difference. Suppose that we know
the logarithms of all the numbers to the base b[image: -*-]. In other words, we
can solve the equation ba=c[image: -*-] for any c[image: -*-] because we have a table.
The problem is to find the logarithm of the same number c[image: -*-] to some
other base, let us say the base x[image: -*-]. We would like to solve xa′=c[image: -*-]. It is easy to do, because we can always write x=bt[image: -*-], which
defines t[image: -*-], knowing x[image: -*-] and b[image: -*-]. As a matter of fact, t=logbx[image: -*-].
Then if we put that in and solve for a′[image: -*-], we see that (bt)a′=ba′ t=c[image: -*-]. In other words, t a′[image: -*-] is the logarithm of c[image: -*-] in base b[image: -*-].
Thus a′=a/t[image: -*-]. Thus logs to base x[image: -*-] are just 1/t[image: -*-], which is a
constant, times the logs to the base, b[image: -*-]. Therefore any log table is
equivalent to any other log table if we multiply by a constant, and the
constant is 1/logbx[image: -*-]. This permits us to choose a particular base,
and for convenience we take the base 10[image: -*-]. (The question may arise as to
whether there is any natural base, any base in which things are somehow
simpler, and we shall try to find an answer to that later. At the moment
we shall just use the base 10[image: -*-].)





Table 22–1. Successive Square Roots of Ten



[image: --][image: --]


Now let us see how to calculate logarithms. We begin by computing
successive square roots of 10[image: -*-], by cut and try. The results are shown
in Table 22–1. The powers of 10[image: -*-] are given in the first
column, and the result, 10s[image: -*-], is given in the third column. Thus
101=10[image: -*-]. The one-half power of 10[image: -*-] we can easily work out,
because that is the square root of 10[image: -*-], and there is a known, simple
process for taking square roots of any number.1 Using this process, we find
the first square root to be 3.16228[image: -*-]. What good is that? It already
tells us something, it tells us how to take 100.5[image: -*-], so we now know
at least one logarithm, if we happen to need the logarithm
of 3.16228[image: -*-], we know the answer is close to 0.50000[image: -*-]. But we must do a
little bit better than that; we clearly need more information. So we
take the square root again, and find 101/4[image: -*-], which
is 1.77828[image: -*-]. Now we have the logarithm of more numbers than we had
before, 1.250[image: -*-] is the logarithm of 17.78[image: -*-] and, incidentally, if it
happens that somebody asks for 100.75[image: -*-], we can get it, because
that is 10(0.5+0.25)[image: -*-]; it is therefore the product of the second
and third numbers. If we can get enough numbers in column s[image: -*-] to be
able to make up almost any number, then by multiplying the proper
things in column 3, we can get 10[image: -*-] to any power; that is the plan. So
we evaluate ten successive square roots of 10[image: -*-], and that is the main
work which is involved in the calculations.




Why don’t we keep on going for more and more accuracy? Because we
begin to notice something. When we raise 10[image: -*-] to a very small power,
we get 1 plus a small amount. The reason for this is clear, because
we are going to have to take the 1000[image: -*-]th power of 101/1000[image: -*-] to
get back to 10[image: -*-], so we had better not start with too big a number; it
has to be close to 1. What we notice is that the small numbers that
are added to 1 begin to look as though we are merely dividing by 2
each time; we see 1815[image: -*-] becomes 903[image: -*-], then 450[image: -*-], 225[image: -*-]; so it is
clear that, to an excellent approximation, if we take another root, we
shall get 1.00112[image: -*-] something, and rather than actually take
all the square roots, we guess at the ultimate limit. When we
take a small fraction Δ/1024[image: -*-] as Δ[image: -*-] approaches zero,
what will the answer be? Of course it will be some number close
to 1+0.0022511 Δ[image: -*-]. Not exactly 1+0.0022511 Δ[image: -*-], however—we
can get a better value by the following trick: we subtract the 1,
and then divide by the power s[image: -*-]. This ought to correct all the
excesses to the same value. We see that they are very closely
equal. At the top of the table they are not equal, but as they come
down, they get closer and closer to a constant value. What is the
value? Again we look to see how the series is going, how it has
changed with s[image: -*-]. It changed by 211[image: -*-], by 104[image: -*-], by 53[image: -*-], by
26[image: -*-]. These changes are obviously half of each other, very closely, as
we go down. Therefore, if we kept going, the changes would be
13[image: -*-], 7, 3, 2 and 1, more or less, or a total of 26[image: -*-]. Thus we have
only 26[image: -*-] more to go, and so we find that the true number
is 2.3025[image: -*-]. (Actually, we shall later see that the exact number
should be 2.3026[image: -*-], but to keep it realistic, we shall not alter
anything in the arithmetic.) From this table we can now calculate any
power of 10[image: -*-], by compounding the power out of 1024[image: -*-]ths.




Let us now actually calculate a logarithm, because the process we
shall use is where logarithm tables actually come from. The procedure
is shown in Table 22–2, and the numerical values are shown
in Table 22–1 (columns 2 and 3).





Table 22–2. Calculation of a logarithm: log102[image: -*-]



[image: --][image: --]


Suppose we want the logarithm of 2. That is, we want to know to what
power we must raise 10[image: -*-] to get 2. Can we raise 10[image: -*-] to the
1/2[image: -*-] power?  No; that is too big. In other words, we can see that the
answer is going to be bigger than 1/4[image: -*-], and less than 1/2[image: -*-]. Let us
take the factor 101/4[image: -*-] out; we divide 2 by 1.778 …[image: -*-], and get
1.124 …[image: -*-], and so on, and now we know that we have taken away
0.250000[image: -*-] from the logarithm. The number 1.124 …[image: -*-], is now the
number whose logarithm we need. When we are finished we shall add back
the 1/4[image: -*-], or 256/1024[image: -*-]. Now we look in the table for the next number
just below 1.124 …[image: -*-], and that is 1.074607[image: -*-]. We therefore divide
by 1.074607[image: -*-] and get 1.046598[image: -*-]. From that we discover that 2 can
be made up of a product of numbers that are in Table 22–1,
as follows:



[image: -*-][image: -*-]



There was one factor (1.000573)[image: -*-] left over, naturally, which is
beyond the range of our table. To get the logarithm of this factor, we
use our result that 10Δ/1024≈1+2.3025 Δ/1024[image: -*-]. We find Δ=0.254[image: -*-]. Therefore our answer is 10[image: -*-] to
the following power: (256+32+16+4+0.254)/1024[image: -*-]. Adding those
together, we get 308.254/1024[image: -*-]. Dividing, we get 0.30103[image: -*-], so we
know that the log102=0.30103[image: -*-], which happens to be right
to 5 figures!




This is how logarithms were originally computed by Mr. Briggs of Halifax, in 1620. He said, “I computed successively
54[image: -*-] square roots of 10[image: -*-].” We know he really computed only the first 27[image: -*-],
because the rest of them can be obtained by this trick with Δ[image: -*-]. His work
involved calculating the square root of 10[image: -*-] twenty-seven times, which is not
much more than the ten times we did; however, it was more work because he
calculated to sixteen decimal places, and then reduced his answer to fourteen
when he published it, so that there were no rounding errors. He made tables of
logarithms to fourteen decimal places by this method, which is quite tedious.
But all logarithm tables for three hundred years were borrowed from
Mr. Briggs’ tables by reducing the number
of decimal places. Only in modern times, with the WPA and computing machines,
have new tables been independently computed. There are much more efficient
methods of computing logarithms today, using certain series expansions.





In the above process, we discovered something rather interesting, and
that is that for very small powers ϵ[image: -*-] we can calculate
10ϵ[image: -*-] easily; we have discovered that 10ϵ=1+2.3025 ϵ[image: -*-], by sheer numerical analysis. Of course this also
means that 10n/2.3025=1+n[image: -*-] if n[image: -*-] is very small. Now logarithms
to any other base are merely multiples of logarithms to the
base 10[image: -*-]. The base 10[image: -*-] was used only because we have 10[image: -*-] fingers, and
the arithmetic of it is easy, but if we ask for a mathematically
natural base, one that has nothing to do with the number of fingers on
human beings, we might try to change our scale of logarithms in some
convenient and natural manner, and the method which people have chosen
is to redefine the logarithms by multiplying all the logarithms to the
base 10[image: -*-] by 2.3025 …[image: -*-] This then corresponds to using some other
base, and this is called the natural base, or base e[image: -*-]. Note
that loge(1+n)≈n[image: -*-], or en≈1+n[image: -*-] as n→0[image: -*-].




It is easy enough to find out what e[image: -*-] is: e=101/2.3025[image: -*-]
or 100.434294 …[image: -*-], an irrational power. Our table of the successive
square roots of 10[image: -*-] can be used to compute, not just logarithms, but
also 10[image: -*-] to any power, so let us use it to calculate this natural
base e[image: -*-]. For convenience we transform 0.434294 …[image: -*-] into
444.73/1024[image: -*-]. Now, 444.73[image: -*-] is 256+128+32+16+8+4+0.73[image: -*-]. Therefore e[image: -*-], since it is an exponent of a sum, will be a
product of the numbers



[image: -*-][image: -*-]



(The only problem is the last one, which is 0.73[image: -*-], and which is not
in the table, but we know that if Δ[image: -*-] is small enough, the answer
is 1+2.3025 Δ[image: -*-].) When we multiply all these together, we get
2.7184[image: -*-] (it should be 2.7183[image: -*-], but it is good enough). The use of
such tables, then, is the way in which irrational powers and the
logarithms of irrational numbers are all calculated. That takes care
of the irrationals.







22–5 Complex numbers


Now it turns out that after all that work we still cannot solve
every equation!  For instance, what is the square root of −1[image: -*-]?
Suppose we have to find x2=−1[image: -*-].  The square of no rational, of no
irrational, of nothing that we have discovered so far, is equal
to −1[image: -*-]. So we again have to generalize our numbers to a still wider
class. Let us suppose that a specific solution of x2=−1[image: -*-] is called
something, we shall call it i[image: -*-]; i[image: -*-] has the property, by definition,
that its square is −1[image: -*-]. That is about all we are going to say about
it; of course, there is more than one root of the equation x2=−1[image: -*-]. Someone could write i[image: -*-], but another could say, “No, I prefer
−i[image: -*-]. My i[image: -*-] is minus your i[image: -*-].” It is just as good a solution, and
since the only definition that i[image: -*-] has is that i2=−1[image: -*-], it must be
true that any equation we can write is equally true if the sign of i[image: -*-]
is changed everywhere. This is called taking the complex
conjugate. Now we are going to make up numbers by adding
successive i[image: -*-]’s, and multiplying i[image: -*-]’s by numbers, and adding other numbers,
and
so on, according to all of our rules. In this way we find that numbers
can all be written in the form p+i q[image: -*-], where p[image: -*-] and q[image: -*-] are what we
call real numbers, i.e., the numbers we have been defining up
until now. The number i[image: -*-] is called the unit imaginary number.
Any real multiple of i[image: -*-] is called pure imaginary. The most
general number, a[image: -*-], is of the form p+i q[image: -*-] and is called a
complex number. Things do not get any worse if, for instance,
we multiply two such numbers, let us say (r+i s) (p+i q)[image: -*-]. Then,
using the rules, we get

[image: -*-][image: -*-]
(22.4)




since i i=[image: -*-]i2=[image: -*-]−1[image: -*-]. Therefore all the numbers that now belong in
the rules (22.1) have this mathematical form.




Now you say, “This can go on forever! We have defined powers of
imaginaries and all the rest, and when we are all finished, somebody
else will come along with another equation which cannot be solved,
like x6+3 x2=−2[image: -*-]. Then we have to generalize all over again!”
But it turns out that with this one more invention, just the
square root of −1[image: -*-], every algebraic equation can be solved!
This is a fantastic fact, which we must leave to the Mathematics
Department to prove. The proofs are very beautiful and very
interesting, but certainly not self-evident. In fact, the most obvious
supposition is that we are going to have to invent again and again and
again. But the greatest miracle of all is that we do not. This is the
last invention. After this invention of complex numbers, we find that
the rules still work with complex numbers, and we are finished
inventing new things. We can find the complex power of any complex
number, we can solve any equation that is written algebraically, in
terms of a finite number of those symbols. We do not find any new
numbers. The square root of i[image: -*-], for instance, has a definite result,
it is not something new; and ii[image: -*-] is something. We will discuss that
now.




We have already discussed multiplication, and addition is also easy;
if we add two complex numbers, (p+i q)+(r+i s)[image: -*-], the answer is
(p+r)+i (q+s)[image: -*-]. Now we can add and multiply complex numbers. But
the real problem, of course, is to compute complex powers of
complex numbers. It turns out that the problem is actually no more
difficult than computing complex powers of real numbers. So let us
concentrate now on the problem of calculating 10[image: -*-] to a complex power,
not just an irrational power, but 10(r+i s)[image: -*-]. Of course, we must at
all times use our rules (22.1) and (22.2). Thus

[image: -*-][image: -*-]
(22.5)




But 10r[image: -*-] we already know how to compute, and we can always multiply
anything by anything else; therefore the problem is to compute only
10i s[image: -*-]. Let us call it some complex number, x+i y[image: -*-]. Problem:
given s[image: -*-], find x[image: -*-], find y[image: -*-]. Now if

[image: -*-][image: -*-]


then the complex conjugate of this equation must also be true, so that

[image: -*-][image: -*-]


(Thus we see that we can deduce a number of things without actually
computing anything, by using our rules.) We deduce another interesting
thing by multiplying these together:



[image: -*-][image: -*-]
(22.6)





Thus if we find x[image: -*-], we have y[image: -*-] also.




Now the problem is how to compute 10[image: -*-] to an imaginary
power. What guide is there? We may work over our rules until we can go
no further, but here is a reasonable guide: if we can compute it for
any particular s[image: -*-], we can get it for all the rest. If we know
10i s[image: -*-] for any one s[image: -*-] and then we want it for twice that s[image: -*-], we
can square the number, and so on. But how can we find 10i s[image: -*-] for
even one special value of s[image: -*-]? To do so we shall make one additional
assumption, which is not quite in the category of all the other rules,
but which leads to reasonable results and permits us to make progress:
when the power is small, we shall suppose that the “law”
10ϵ=1+2.3025 ϵ[image: -*-] is right, as ϵ[image: -*-] gets very
small, not only for real ϵ[image: -*-], but for complex ϵ[image: -*-]
as well. Therefore, we begin with the supposition that this law is
true in general, and that tells us that 10i s=1+2.3025⋅i s[image: -*-],
for s→0[image: -*-]. So we assume that if s[image: -*-] is very small, say one part
in 1024[image: -*-], we have a rather good approximation to 10i s[image: -*-].




Now we make a table by which we can compute all the imaginary
powers of 10[image: -*-], that is, compute x[image: -*-] and y[image: -*-]. It is done as
follows. The first power we start with is the 1/1024[image: -*-] power, which we
presume is very nearly 1+2.3025 i/1024[image: -*-]. Thus we start with

[image: -*-][image: -*-]
(22.7)




and if we keep multiplying the number by itself, we can get to a
higher imaginary power. In fact, we may just reverse the procedure we
used in making our logarithm table, and calculate the square, 4th
power, 8th power, etc., of (22.7), and thus build up the
values shown in Table 22–3. We notice an interesting
thing, that the x[image: -*-] numbers are positive at first, but then swing
negative. We shall look into that a little bit more in a moment. But
first we may be curious to find for what number s[image: -*-] the real part
of 10i s[image: -*-] is zero. The y[image: -*-]-value would be 1, and so we would
have 10i s=1 i[image: -*-], or i s=log10i[image: -*-]. As an example of how to use
this table, just as we calculated log102[image: -*-] before, let us now use
Table 22–3 to find log10i[image: -*-].





Table 22–3. Successive Squares of
10i/1024=1+0.0022486 i[image: -*-]



[image: --][image: --]


Which of the numbers in Table 22–3 do we have to multiply
together to get a pure imaginary result? After a little trial and
error, we discover that to reduce x[image: -*-] the most, it is best to multiply
“512[image: -*-]” by “128[image: -*-].” This gives 0.13056+0.99159 i[image: -*-]. Then we
discover that we should multiply this by a number whose imaginary part
is about equal to the size of the real part we are trying to
remove. Thus we choose “64[image: -*-]” whose y[image: -*-]-value is 0.14349[image: -*-], since
that is closest to 0.13056[image: -*-]. This then gives −0.01308+1.00008 i[image: -*-]. Now we have overshot, and must divide by 0.99996+0.00900 i[image: -*-]. How do we do that? By changing the sign of i[image: -*-] and
multiplying by 0.99996−0.00900 i[image: -*-] (which works if x2+y2=1[image: -*-]). Continuing in this way, we find that the entire power to which
10[image: -*-] must be raised to give i[image: -*-] is i (512+128+64−4−2+0.20)/1024[image: -*-], or 698.20 i/1024[image: -*-]. If we raise 10[image: -*-] to that power, we can
get i[image: -*-]. Therefore log10i=0.68184 i[image: -*-].







22–6 Imaginary exponents



Table 22–4. Successive Powers of
10i/8[image: -*-]



[image: --][image: --]


To further investigate the subject of taking complex imaginary powers,
let us look at the powers of 10[image: -*-] taking successive powers, not
doubling the power each time, in order to follow Table 22–3
further and to see what happens to those minus signs. This is shown in
Table 22–4, in which we take 10i/8[image: -*-], and just keep
multiplying it. We see that x[image: -*-] decreases, passes through zero, swings
almost to −1[image: -*-] (if we could get in between p=10[image: -*-] and p=11[image: -*-] it
would obviously swing to −1[image: -*-]), and swings back. The y[image: -*-]-value is going
back and forth too.



[image: -][image: -]
Figure 22–1 





In Fig. 22–1 the dots represent the numbers that appear
in Table 22–4, and the lines are just drawn to help you
visually. So we see that the numbers x[image: -*-] and y[image: -*-] oscillate; 10i s[image: -*-]
repeats itself, it is a periodic thing, and as such, it
is easy enough to explain, because if a certain power is i[image: -*-], then the
fourth power of that would be i2[image: -*-] squared. It would be +1[image: -*-]
again, and therefore, since 100.68 i[image: -*-] is equal to i[image: -*-], by taking
the fourth power we discover that 102.72 i[image: -*-] is equal to +1[image: -*-].
Therefore, if we wanted 103.00 i[image: -*-], for instance, we could write it
as 102.72 i[image: -*-] times 100.28 i[image: -*-]. In other words, it has a period,
it repeats. Of course, we recognize what the curves look like! They
look like the sine and cosine, and we shall call them, for a while,
the algebraic sine and algebraic cosine. However, instead of using the
base 10[image: -*-], we shall put them into our natural base, which only changes
the horizontal scale; so we denote 2.3025 s[image: -*-] by t[image: -*-], and write
10i s=ei t[image: -*-], where t[image: -*-] is a real number. Now ei t=x+i y[image: -*-],
and we shall write this as the algebraic cosine of t[image: -*-] plus i[image: -*-] times
the algebraic sine of t[image: -*-]. Thus

[image: -*-][image: -*-]
(22.8)




What are the properties of [image: \operatorname{\underline{\cos}} t][image: \operatorname{\underline{\cos}} t]
and [image: \operatorname{\underline{\sin}} t][image: \operatorname{\underline{\sin}} t]? First, we know, for instance,
that x2+y2[image: -*-] must be 1; we have proved that before, and it is
just as true for base e[image: -*-] as for base 10[image: -*-]. Therefore
[image: \operatorname{\underline{\cos}}^2 t+ \operatorname{\underline{\sin}}^2 t= 1][image: \operatorname{\underline{\cos}}^2 t+ \operatorname{\underline{\sin}}^2 t= 1]. We also know that, for small
t[image: -*-], ei t=1+i t[image: -*-], and therefore [image: \operatorname{\underline{\cos}} t][image: \operatorname{\underline{\cos}} t] is nearly 1, and [image: \operatorname{\underline{\sin}} t][image: \operatorname{\underline{\sin}} t] is nearly
t[image: -*-], and so it goes, that all of the various properties of these
remarkable functions, which come from taking imaginary powers,
are the same as the sine and cosine of trigonometry.




Is the period the same? Let us find out. e[image: -*-] to what power is equal
to i[image: -*-]? What is the logarithm of i[image: -*-] to the base e[image: -*-]? We worked it out
before, in the base 10[image: -*-] it was 0.68184 i[image: -*-], but when we change our
logarithmic scale to e[image: -*-], we have to multiply by 2.3025[image: -*-], and if we
do that it comes out 1.570[image: -*-]. So this will be called “algebraic
π/2[image: -*-].”  But, we see, it differs from the regular π/2[image: -*-] by only
one place in the last point, and that, of course, is the result of
errors in our arithmetic! So we have created two new functions in a
purely algebraic manner, the cosine and the sine, which belong to
algebra, and only to algebra. We wake up at the end to discover the
very functions that are natural to geometry. So there is a connection,
ultimately, between algebra and geometry.




We summarize with this, the most remarkable formula in mathematics:

[image: -*-][image: -*-]
(22.9)




This is our jewel.




We may relate the geometry to the algebra by representing complex
numbers in a plane; the horizontal position of a point is x[image: -*-], the
vertical position of a point is y[image: -*-] (Fig. 22–2). We
represent every complex number, x+i y[image: -*-]. Then if the radial distance to
this point is called r[image: -*-] and the angle is called θ[image: -*-], the
algebraic law is that x+i y[image: -*-] is written in the form r ei θ[image: -*-],
where the geometrical relationships between x[image: -*-], y[image: -*-], r[image: -*-],
and θ[image: -*-] are as shown. This, then, is the unification of algebra and
geometry.



[image: -][image: -]
Fig. 22–2. x+i y=r ei θ[image: -*-].





When we began this chapter, armed only with the basic notions of
integers and counting, we had little idea of the power of the
processes of abstraction and generalization. Using the set of
algebraic “laws,” or properties of numbers, Eq. (22.1),
and the definitions of inverse operations (22.2), we have
been able here, ourselves, to manufacture not only numbers but useful
things like tables of logarithms, powers, and trigonometric functions
(for these are what the imaginary powers of real numbers are), all
merely by extracting ten successive square roots of ten!





	
  
  There is a
definite arithmetic procedure, but the easiest way to find the square
root of any number N[image: -*-] is to choose some a[image: -*-] fairly close, find N/a[image: -*-],
average [image: a' = \tfrac{1}{2}[a + (N/a)]][image: a' = \tfrac{1}{2}[a + (N/a)]], and use this average a′[image: -*-] for
the next choice for a[image: -*-]. The convergence is very rapid—the number of
significant figures doubles each time.
  ↩





  
    

23 Resonance



23–1 Complex numbers and harmonic motion


In the present chapter we shall continue our discussion of the
harmonic oscillator and, in particular, the forced harmonic
oscillator, using a new technique in the analysis. In the preceding
chapter we introduced the idea of complex numbers, which have real and
imaginary parts and which can be represented on a diagram in which the
ordinate represents the imaginary part and the abscissa represents the
real part. If a[image: -*-] is a complex number, we may write it as a=ar+i ai[image: -*-], where the subscript r[image: -*-] means the real part of a[image: -*-], and the
subscript i[image: -*-] means the imaginary part of a[image: -*-]. Referring to
Fig. 23–1, we see that we may also write a complex number a=x+i y[image: -*-] in the form x+i y=r ei θ[image: -*-], where r2=x2+y2=(x+i y) (x−i y)=a a*[image: -*-]. (The complex conjugate of a[image: -*-], written
a*[image: -*-], is obtained by reversing the sign of i[image: -*-] in a[image: -*-].) So we shall
represent a complex number in either of two forms, a real plus an
imaginary part, or a magnitude r[image: -*-] and a phase angle θ[image: -*-],
so-called. Given r[image: -*-] and θ[image: -*-], x[image: -*-] and y[image: -*-] are clearly r cosθ[image: -*-]
and r sinθ[image: -*-] and, in reverse, given a complex number x+i y[image: -*-], r=√x2+y2[image: -*-] and tanθ=y/x[image: -*-], the ratio of the imaginary to
the real part.



[image: -][image: -]
Fig. 23–1. A complex number may be represented by a point in the
“complex plane.”





We are going to apply complex numbers to our analysis of physical
phenomena by the following trick. We have examples of things that
oscillate; the oscillation may have a driving force which is a certain
constant times cosω t[image: -*-]. Now such a force, F=F0 cosω t[image: -*-], 
can be written as the real part of a complex number F=F0 ei ω t[image: -*-] because ei ω t=cosω t+i sinω t[image: -*-]. 
The reason we do this is that it is easier to work with an
exponential function than with a cosine. So the whole trick is to
represent our oscillatory functions as the real parts of certain
complex functions. The complex number F[image: -*-] that we have so defined is
not a real physical force, because no force in physics is really
complex; actual forces have no imaginary part, only a real part. We
shall, however, speak of the “force” F0 ei ω t[image: -*-], but of
course the actual force is the real part of that expression.




Let us take another example. Suppose we want to represent a force
which is a cosine wave that is out of phase with a delayed
phase Δ[image: -*-]. This, of course, would be the real part of F0 ei (ω t−Δ)[image: -*-], but exponentials being what they are, we may write
ei (ω t−Δ)=ei ω t e−i Δ[image: -*-]. Thus we see that
the algebra of exponentials is much easier than that of sines and
cosines; this is the reason we choose to use complex numbers. We shall
often write

[image: -*-][image: -*-]
(23.1)




We write a little caret ([image: \hat{\enspace}][image: \hat{\enspace}]) over the F[image: -*-] to remind
ourselves that this quantity is a complex number: here the number is

[image: -*-][image: -*-]





Now let us solve an equation, using complex numbers, to see whether we
can work out a problem for some real case. For example, let us try to
solve

[image: -*-][image: -*-]
(23.2)




where F[image: -*-] is the force which drives the oscillator and x[image: -*-] is the
displacement. Now, absurd though it may seem, let us suppose that x[image: -*-]
and F[image: -*-] are actually complex numbers, for a mathematical purpose
only. That is to say, x[image: -*-] has a real part and an imaginary part times
i[image: -*-], and F[image: -*-] has a real part and an imaginary part times i[image: -*-].  Now if
we had a solution of (23.2) with complex numbers, and
substituted the complex numbers in the equation, we would get

[image: -*-][image: -*-]


or

[image: -*-][image: -*-]


Now, since if two complex numbers are equal, their real parts must be
equal and their imaginary parts must be equal, we deduce that
the real part of x[image: -*-] satisfies the equation with the real part
of the force. We must emphasize, however, that this separation into a
real part and an imaginary part is not valid in general, but is
valid only for equations which are linear, that is, for
equations in which x[image: -*-] appears in every term only in the first power
or the zeroth power. For instance, if there were in the equation a
term λ x2[image: -*-], then when we substitute xr+i xi[image: -*-], we would get
λ (xr+i xi)2[image: -*-], but when separated into real and imaginary
parts this would yield [image: \lambda(x_r^2 - x_i^2)][image: \lambda(x_r^2 - x_i^2)] as the real part and
2 i λ xr xi[image: -*-] as the imaginary part. So we see that the real part
of the equation would not involve just [image: \lambda x_r^2][image: \lambda x_r^2], but also
[image: -\lambda x_i^2][image: -\lambda x_i^2]. In this case we get a different equation than the
one we wanted to solve, with xi[image: -*-], the completely artificial thing we
introduced in our analysis, mixed in.




Let us now try our new method for the problem of the forced oscillator,
that we already know how to solve. We want to solve
Eq. (23.2) as before, but we say that we are going to try to
solve

[image: -*-][image: -*-]
(23.3)




where [image: \hat{F}e^{i\omega t}][image: \hat{F}e^{i\omega t}] is a complex number. Of course x[image: -*-] will
also be complex, but remember the rule: take the real part to find out
what is really going on. So we try to solve (23.3) for the
forced solution; we shall discuss other solutions later. The forced
solution has the same frequency as the applied force, and has some
amplitude of oscillation and some phase, and so it can be represented
also by some complex number [image: \hat{x}][image: \hat{x}] whose magnitude represents the
swing of x[image: -*-] and whose phase represents the time delay in the same way
as for the force. Now a wonderful feature of an exponential function
is that [image: d(\hat{x}e^{i\omega t})/dt = i\omega\hat{x}e^{i\omega t}][image: d(\hat{x}e^{i\omega t})/dt = i\omega\hat{x}e^{i\omega t}]. When we differentiate an exponential function, we bring down the
exponent as a simple multiplier. The second derivative does the same
thing, it brings down another i ω[image: -*-], and so it is very simple to
write immediately, by inspection, what the equation is for [image: \hat{x}][image: \hat{x}]:
every time we see a differentiation, we simply multiply
by i ω[image: -*-]. (Differentiation is now as easy as multiplication!  This
idea of using exponentials in linear differential equations is almost
as great as the invention of logarithms, in which multiplication is
replaced by addition. Here differentiation is replaced by
multiplication.) Thus our equation becomes

[image: -*-][image: -*-]
(23.4)




(We have cancelled the common factor ei ω t[image: -*-].) See how simple
it is!  Differential equations are immediately converted, by sight,
into mere algebraic equations; we virtually have the solution by
sight, that

[image: -*-][image: -*-]


since (i ω)2=−ω2[image: -*-]. This may be slightly simplified by
substituting [image: k/m = \omega_0^2][image: k/m = \omega_0^2], which gives

[image: -*-][image: -*-]
(23.5)




This, of course, is the solution we had before; for since
[image: m(\omega_0^2 - \omega^2)][image: m(\omega_0^2 - \omega^2)] is a real number, the phase angles of [image: \hat{F}][image: \hat{F}]
and of [image: \hat{x}][image: \hat{x}] are the same (or perhaps 180°[image: -*-] apart,
if [image: \omega^2 > \omega_0^2][image: \omega^2 > \omega_0^2]), as advertised previously. The magnitude
of [image: \hat{x}][image: \hat{x}], which measures how far it oscillates, is related to the
size of the [image: \hat{F}][image: \hat{F}] by the factor [image: 1/m(\omega_0^2-\omega^2)][image: 1/m(\omega_0^2-\omega^2)], and
this factor becomes enormous when ω[image: -*-] is nearly equal
to ω0[image: -*-]. So we get a very strong response when we apply the right
frequency ω[image: -*-] (if we hold a pendulum on the end of a string and
shake it at just the right frequency, we can make it swing very high).







23–2 The forced oscillator with damping


That, then, is how we analyze oscillatory motion with the more elegant
mathematical technique. But the elegance of the technique is not at
all exhibited in such a problem that can be solved easily by other
methods. It is only exhibited when one applies it to more difficult
problems. Let us therefore solve another, more difficult problem,
which furthermore adds a relatively realistic feature to the previous
one. Equation (23.5) tells us that if the
frequency ω[image: -*-] were exactly equal to ω0[image: -*-], we would have an infinite
response. Actually, of course, no such infinite response occurs
because some other things, like friction, which we have so far
ignored, limits the response. Let us therefore add to
Eq. (23.2) a friction term.




Ordinarily such a problem is very difficult because of the character
and complexity of the frictional term. There are, however, many
circumstances in which the frictional force is proportional to
the speed with which the object moves. An example of such friction is
the friction for slow motion of an object in oil or a thick
liquid. There is no force when it is just standing still, but the
faster it moves the faster the oil has to go past the object, and the
greater is the resistance. So we shall assume that there is, in
addition to the terms in (23.2), another term, a resistance
force proportional to the velocity: Ff=−c d x/d t[image: -*-]. It will be
convenient, in our mathematical analysis, to write the constant c[image: -*-] as
m[image: -*-] times γ[image: -*-] to simplify the equation a little. This is just the
same trick we use with k[image: -*-] when we replace it by [image: m\omega_0^2][image: m\omega_0^2], just
to simplify the algebra. Thus our equation will be

[image: -*-][image: -*-]
(23.6)




or, writing c=m γ[image: -*-] and [image: k = m\omega_0^2][image: k = m\omega_0^2] and dividing out the
mass m[image: -*-],

[image: -*-][image: -*-]
(23.6a)







Now we have the equation in the most convenient form to solve. If
γ[image: -*-] is very small, that represents very little friction; if
γ[image: -*-] is very large, there is a tremendous amount of friction. How
do we solve this new linear differential equation? Suppose that the
driving force is equal to F0 cos(ω t+Δ)[image: -*-]; we could put
this into (23.6a) and try to solve it, but we shall instead
solve it by our new method. Thus we write F[image: -*-] as the real part
of [image: \hat{F}e^{i\omega t}][image: \hat{F}e^{i\omega t}] and x[image: -*-] as the real part of [image: \hat{x}e^{i\omega t}][image: \hat{x}e^{i\omega t}], and substitute these into Eq. (23.6a). It is not
even necessary to do the actual substituting, for we can see by
inspection that the equation would become

[image: -*-][image: -*-]
(23.7)




[As a matter of fact, if we tried to solve Eq. (23.6a) by
our old straightforward way, we would really appreciate the magic of
the “complex” method.] If we divide by ei ω t[image: -*-] on both
sides, then we can obtain the response [image: \hat{x}][image: \hat{x}] to the given
force [image: \hat{F}][image: \hat{F}]; it is

[image: -*-][image: -*-]
(23.8)







Thus again [image: \hat{x}][image: \hat{x}] is given by [image: \hat{F}][image: \hat{F}] times a certain
factor. There is no technical name for this factor, no particular
letter for it, but we may call it R[image: -*-] for discussion purposes:

[image: -*-][image: -*-]


and

[image: -*-][image: -*-]
(23.9)




(Although the letters γ[image: -*-] and ω0[image: -*-] are in very common use,
this R[image: -*-] has no particular name.) This factor R[image: -*-] can either be
written as p+i q[image: -*-], or as a certain magnitude ρ[image: -*-] times
ei θ[image: -*-]. If it is written as a certain magnitude times
ei θ[image: -*-], let us see what it means.  Now [image: \hat{F}= F_0e^{i\Delta}][image: \hat{F}= F_0e^{i\Delta}], and the actual force F[image: -*-] is the real part of
F0 ei Δ ei ω t[image: -*-], that is, F0 cos(ω t+Δ)[image: -*-]. Next, Eq. (23.9) tells us that [image: \hat{x}][image: \hat{x}] is
equal to [image: \hat{F}R][image: \hat{F}R]. So, writing R=ρ ei θ[image: -*-] as another
name for R[image: -*-], we get

[image: -*-][image: -*-]


Finally, going even further back, we see that the physical x[image: -*-], which
is the real part of the complex [image: \hat{x}e^{i\omega t}][image: \hat{x}e^{i\omega t}], is equal to
the real part of ρ F0 ei (θ+Δ) ei ω t[image: -*-]. But
ρ[image: -*-] and F0[image: -*-] are real, and the real part
of ei (θ+Δ+ω t)[image: -*-] is simply cos(ω t+Δ+θ)[image: -*-]. Thus

[image: -*-][image: -*-]
(23.10)




This tells us that the amplitude of the response is the magnitude of
the force F[image: -*-] multiplied by a certain magnification factor, ρ[image: -*-];
this gives us the “amount” of oscillation. It also tells us,
however, that x[image: -*-] is not oscillating in phase with the force, which
has the phase Δ[image: -*-], but is shifted by an extra
amount θ[image: -*-]. Therefore ρ[image: -*-] and θ[image: -*-] represent the size of the
response and the phase shift of the response.




Now let us work out what ρ[image: -*-] is. If we have a complex number, the
square of the magnitude is equal to the number times its complex
conjugate; thus

[image: -*-][image: -*-]
(23.11)







In addition, the phase angle θ[image: -*-] is easy to find, for if we write

[image: -*-][image: -*-]


we see that

[image: -*-][image: -*-]
(23.12)




It is minus because tan(−θ)=−tanθ[image: -*-]. A negative value
for θ[image: -*-] results for all ω[image: -*-], and this corresponds to the
displacement x[image: -*-] lagging the force F[image: -*-].



[image: -][image: -]
Fig. 23–2. Plot of ρ2[image: -*-] versus ω[image: -*-].




[image: -][image: -]
Fig. 23–3. Plot of θ[image: -*-] versus ω[image: -*-].





Figure 23–2 shows how ρ2[image: -*-] varies as a function of
frequency (ρ2[image: -*-] is physically more interesting than ρ[image: -*-],
because ρ2[image: -*-] is proportional to the square of the amplitude, or
more or less to the energy that is developed in the oscillator
by the force). We see that if γ[image: -*-] is very small, then
[image: 1/(\omega_0^2 - \omega^2)^2][image: 1/(\omega_0^2 - \omega^2)^2] is the most important term, and the
response tries to go up toward infinity when ω[image: -*-] equals
ω0[image: -*-]. Now the “infinity” is not actually infinite because if
ω=ω0[image: -*-], then 1/γ2 ω2[image: -*-] is still there. The phase
shift varies as shown in Fig. 23–3.




In certain circumstances we get a slightly different formula
than (23.8), also called a “resonance” formula, and one
might think that it represents a different phenomenon, but it does not.
The reason is that if γ[image: -*-] is very small the most interesting part
of the curve is near ω=ω0[image: -*-], and we may
replace (23.8) by an approximate formula which is very
accurate if γ[image: -*-] is small and ω[image: -*-] is near ω0[image: -*-]. Since
[image: \omega_0^2 - \omega^2 = (\omega_0-\omega)(\omega_0 + \omega)][image: \omega_0^2 - \omega^2 = (\omega_0-\omega)(\omega_0 + \omega)], if
ω[image: -*-] is near ω0[image: -*-] this is nearly the same as
2 ω0 (ω0−ω)[image: -*-] and γ ω[image: -*-] is nearly the same as
γ ω0[image: -*-]. Using these in (23.8), we see that
[image: \omega_0^2-\omega^2 + i\gamma\omega \approx 2\omega_0(\omega_0-\omega+i\gamma/2)][image: \omega_0^2-\omega^2 + i\gamma\omega \approx 2\omega_0(\omega_0-\omega+i\gamma/2)], so that

[image: -*-][image: -*-]
(23.13)




It is easy to find the corresponding formula for ρ2[image: -*-]. It is

[image: -*-][image: -*-]





We shall leave it to the student to show the following: if we call the
maximum height of the curve of ρ2[image: -*-] vs. ω[image: -*-] one unit, and
we ask for the width Δ ω[image: -*-] of the curve, at one half the
maximum height, the full width at half the maximum height of the curve
is Δ ω=γ[image: -*-], supposing that γ[image: -*-] is small. The
resonance is sharper and sharper as the frictional effects are made
smaller and smaller.




As another measure of the width, some people use a quantity Q[image: -*-] which
is defined as Q=ω0/γ[image: -*-]. The narrower the resonance, the
higher the Q[image: -*-]: Q=1000[image: -*-] means a resonance whose width is only
1000[image: -*-]th of the frequency scale. The Q[image: -*-] of the resonance curve shown
in Fig. 23–2 is 5.




The importance of the resonance phenomenon is that it occurs in many
other circumstances, and so the rest of this chapter will describe
some of these other circumstances.







23–3 Electrical resonance


The simplest and broadest technical applications of resonance are in
electricity. In the electrical world there are a number of objects
which can be connected to make electric circuits. These passive
circuit elements, as they are often called, are of three main types,
although each one has a little bit of the other two mixed in. Before
describing them in greater detail, let us note that the whole idea of
our mechanical oscillator being a mass on the end of a spring is only
an approximation. All the mass is not actually at the “mass”; some
of the mass is in the inertia of the spring. Similarly, all of the
spring is not at the “spring”; the mass itself has a little
elasticity, and although it may appear so, it is not absolutely
rigid, and as it goes up and down, it flexes ever so slightly under
the action of the spring pulling it. The same thing is true in
electricity. There is an approximation in which we can lump things
into “circuit elements” which are assumed to have pure, ideal
characteristics. It is not the proper time to discuss that
approximation here, we shall simply assume that it is true in the
circumstances.



[image: -][image: -]
Fig. 23–4. The three passive circuit elements.





The three main kinds of circuit elements are the following. The first is
called a capacitor (Fig. 23–4); an
example is two plane metallic plates spaced a very small distance apart
by an insulating material. When the plates are charged there is a
certain voltage difference, that is, a certain difference in potential,
between them. The same difference of potential appears between the
terminals A[image: -*-] and B[image: -*-], because if there were any difference along the
connecting wire, electricity would flow right away. So there is a
certain voltage difference V[image: -*-] between the plates if there is a certain
electric charge +q[image: -*-] and −q[image: -*-] on them, respectively. Between the plates
there will be a certain electric field; we have even found a formula for
it (Chapters 13 and 14):

[image: -*-][image: -*-]
(23.14)




where d[image: -*-] is the spacing and A[image: -*-] is the area of the plates. Note that
the potential difference is a linear function of the charge. If we do
not have parallel plates, but insulated electrodes which are of any
other shape, the difference in potential is still precisely
proportional to the charge, but the constant of proportionality may
not be so easy to compute. However, all we need to know is that the
potential difference across a capacitor is proportional to the
charge: V=q/C[image: -*-]; the proportionality constant is 1/C[image: -*-], where C[image: -*-]
is the capacitance of the object.




The second kind of circuit element is called a resistor;
it
offers resistance to the flow of electrical current. It turns out that
metallic wires and many other substances resist the flow of
electricity in this manner: if there is a voltage difference across a
piece of some substance, there exists an electric current I=d q/d t[image: -*-]
that is proportional to the electric voltage difference:

[image: -*-][image: -*-]
(23.15)




The proportionality coefficient is called the
resistance R[image: -*-]. This relationship may already
be familiar to you; it is Ohm’s law.





If we think of the charge q[image: -*-] on a capacitor as being analogous to the
displacement x[image: -*-] of a mechanical system, we see that the current, I=d q/d t[image: -*-], is analogous to velocity, 1/C[image: -*-] is analogous to a spring
constant k[image: -*-], and R[image: -*-] is analogous to the resistive coefficient
c=m γ[image: -*-] in Eq. (23.6). Now it is very interesting that
there exists another circuit element which is the analog of mass!
This is a coil which builds up a magnetic field within itself when there
is a current in it. A changing magnetic field develops in the
coil a voltage that is proportional to d I/d t[image: -*-] (this is how a
transformer works, in fact). The magnetic field is proportional to a
current, and the induced voltage (so-called) in such a coil is
proportional to the rate of change of the current:

[image: -*-][image: -*-]
(23.16)




The coefficient L[image: -*-] is the self-inductance, and
is analogous to the mass in a mechanical oscillating circuit.



[image: -][image: -]
Fig. 23–5. An oscillatory electrical circuit with resistance,
inductance, and capacitance.





Suppose we make a circuit in which we have connected the three circuit
elements in series (Fig. 23–5); then the voltage across
the whole thing from 1 to 2 is the work done in carrying a charge
through, and it consists of the sum of several pieces: across the
inductor, VL=L d2 q/d t2[image: -*-]; across the resistance, VR=R d q/d t[image: -*-]; across the capacitor, VC=q/C[image: -*-]. The sum of these is
equal to the applied voltage, V[image: -*-]:

[image: -*-][image: -*-]
(23.17)




Now we see that this equation is exactly the same as the mechanical
equation (23.6), and of course it can be solved in exactly
the same manner. We suppose that V (t)[image: -*-] is oscillatory: we are driving
the circuit with a generator with a pure sine wave oscillation. Then
we can write our V (t)[image: -*-] as a complex [image: \hat{V}][image: \hat{V}] with the understanding
that it must be ultimately multiplied by ei ω t[image: -*-], and the real
part taken in order to find the true V[image: -*-]. Likewise, the charge q[image: -*-] can
thus be analyzed, and then in exactly the same manner as in
Eq. (23.8) we write the corresponding equation: the second
derivative of [image: \hat{q}][image: \hat{q}] is [image: (i\omega)^2\hat{q}][image: (i\omega)^2\hat{q}]; the first derivative
is [image: (i\omega)\hat{q}][image: (i\omega)\hat{q}]. Thus Eq. (23.17) translates to

[image: -*-][image: -*-]


or

[image: -*-][image: -*-]


which we can write in the form

[image: -*-][image: -*-]
(23.18)




where [image: \omega_0^2 = 1/LC][image: \omega_0^2 = 1/LC] and γ=R/L[image: -*-]. It is exactly the same
denominator as we had in the mechanical case, with exactly the same
resonance properties! The correspondence between the electrical and
mechanical cases is outlined in Table 23–1.





Table 23–1. 



[image: --][image: --]


We must mention a small technical point. In the electrical literature,
a different notation is used. (From one field to another, the subject
is not really any different, but the way of writing the notations is
often different.) First, j[image: -*-] is commonly used instead of i[image: -*-] in
electrical engineering, to denote √−1[image: -*-]. (After all, i[image: -*-] must be
the current!) Also, the engineers would rather have a relationship
between [image: \hat{V}][image: \hat{V}] and [image: \hat{I}][image: \hat{I}] than between [image: \hat{V}][image: \hat{V}] and [image: \hat{q}][image: \hat{q}],
just because they are more used to it that way. Thus, since [image: \hat{I}= d\hat{q}/dt = i\omega\hat{q}][image: \hat{I}= d\hat{q}/dt = i\omega\hat{q}], we can just substitute
[image: \hat{I}/i\omega][image: \hat{I}/i\omega] for [image: \hat{q}][image: \hat{q}] and get

[image: -*-][image: -*-]
(23.19)




Another way is to rewrite Eq. (23.17), so that it looks
more familiar; one often sees it written this way:

[image: -*-][image: -*-]
(23.20)




At any rate, we find the relation (23.19) between
voltage [image: \hat{V}][image: \hat{V}] and current [image: \hat{I}][image: \hat{I}] which is just the same
as (23.18) except divided by i ω[image: -*-], and that produces
Eq. (23.19). The quantity R+i ω L+1/i ω C[image: -*-] is a
complex number, and is used so much in electrical engineering that it
has a name: it is called the complex impedance, [image: \hat{Z}][image: \hat{Z}]. Thus we can write
[image: \hat{V}=\hat{Z}\hat{I}][image: \hat{V}=\hat{Z}\hat{I}]. The reason that the engineers like to do this
is that they learned something when they were young: V=R I[image: -*-] for
resistances, when they only knew about resistances and dc. Now
they have become more educated and have ac circuits, so they
want the equation to look the same. Thus they write
[image: \hat{V}=\hat{Z}\hat{I}][image: \hat{V}=\hat{Z}\hat{I}], the only difference being that the resistance
is replaced by a more complicated thing, a complex quantity. So they
insist that they cannot use what everyone else in the world uses for
imaginary numbers, they have to use a j[image: -*-] for that; it is a miracle that
they did not insist also that the letter Z[image: -*-] be an R[image: -*-]! (Then they get
into trouble when they talk about current densities, for which they also
use j[image: -*-]. The difficulties of science are to a large extent the
difficulties of notations, the units, and all the other artificialities
which are invented by man, not by nature.)







23–4 Resonance in nature


Although we have discussed the electrical case in detail, we could
also bring up case after case in many fields, and show exactly how the
resonance equation is the same. There are many circumstances in nature
in which something is “oscillating” and in which the resonance
phenomenon occurs. We said that in an earlier chapter; let us now
demonstrate it. If we walk around our study, pulling books off the
shelves and simply looking through them to find an example of a curve
that corresponds to Fig. 23–2 and comes from the same
equation, what do we find? Just to demonstrate the wide range obtained
by taking the smallest possible sample, it takes only five or six
books to produce quite a series of phenomena which show resonances.



[image: -][image: -]
Fig. 23–6. Response of the atmosphere to external excitation. a[image: -*-] is the
required response if the atmospheric S2[image: -*-]-tide is of gravitational
origin; peak amplification is 100:1[image: -*-]. b[image: -*-] is derived from observed
magnification and phase of M2[image: -*-]-tide. [Munk and MacDonald,
“Rotation of the Earth,” Cambridge University Press (1960)]





The first two are from mechanics, the first on a large scale: the
atmosphere of the whole earth. If the atmosphere, which we suppose
surrounds the earth evenly on all sides, is pulled to one side by the
moon or, rather, squashed prolate into a double tide, and if we could
then let it go, it would go sloshing up and down; it is an
oscillator. This oscillator is driven by the moon, which is
effectively revolving about the earth; any one component of the force,
say in the x[image: -*-]-direction, has a cosine component, and so the response
of the earth’s atmosphere to the tidal pull of the moon is that of an
oscillator. The expected response of the atmosphere is shown in
Fig. 23–6, curve b[image: -*-] (curve a[image: -*-] is another theoretical curve
under discussion in the book from which this is taken out of context).
Now one might think that we only have one point on this resonance curve,
since we only have the one frequency, corresponding to the rotation of
the earth under the moon, which occurs at a period of
12.42[image: -*-] hours—12[image: -*-] hours for the earth (the tide is a double bump), plus a
little more because the moon is going around. But from the size
of the atmospheric tides, and from the phase, the amount of
delay, we can get both ρ[image: -*-] and θ[image: -*-]. From those we can get
ω0[image: -*-] and γ[image: -*-], and thus draw the entire curve! This is an
example of very poor science. From two numbers we obtain two numbers,
and from those two numbers we draw a beautiful curve, which of course
goes through the very point that determined the curve! It is of no use
unless we can measure something else, and in the case of
geophysics that is often very difficult. But in this particular case
there is another thing which we can show theoretically must have the
same timing as the natural frequency ω0[image: -*-]: that is, if someone
disturbed the atmosphere, it would oscillate with the
frequency ω0[image: -*-]. Now there was such a sharp disturbance in 1883; the
Krakatoa volcano exploded and half the island blew off, and it made such
a terrific explosion in the atmosphere that the period of oscillation of
the atmosphere could be measured. It came out to [image: 10\tfrac{1}{2}][image: 10\tfrac{1}{2}] hours.
The ω0[image: -*-] obtained from Fig. 23–6 comes out
10[image: -*-] hours and 20[image: -*-] minutes, so there we have at least one check on the
reality of our understanding of the atmospheric tides.




Next we go to the small scale of mechanical oscillation. This time we
take a sodium chloride crystal, which has sodium ions and chlorine
ions next to each other, as we described in an early chapter. These
ions are electrically charged, alternately plus and minus. Now there
is an interesting oscillation possible. Suppose that we could drive
all the plus charges to the right and all the negative charges to the
left, and let go; they would then oscillate back and forth, the sodium
lattice against the chlorine lattice. How can we ever drive such a
thing? That is easy, for if we apply an electric field on the crystal,
it will push the plus charge one way and the minus charge the other
way! So, by having an external electric field we can perhaps get the
crystal to oscillate. The frequency of the electric field needed is so
high, however, that it corresponds to infrared
radiation!
So we try to find a resonance curve by measuring the absorption of
infrared light by sodium chloride. Such a curve is shown in
Fig. 23–7. The abscissa is not frequency, but is given in
terms of wavelength, but that is just a technical matter, of course,
since for a wave there is a definite relation between frequency and
wavelength; so it is really a frequency scale, and a certain frequency
corresponds to the resonant frequency.




[image: -][image: -]
Fig. 23–7. Transmission of infrared radiation through a thin (0.17 μ[image: -*-]m) sodium
chloride film. [After R. B. Barnes, Z.
Physik 75, 723 (1932). Kittel, Introduction to Solid State
Physics, Wiley, 1956.]





But what about the width? What determines the width? There are many
cases in which the width that is seen on the curve is not really the
natural width γ[image: -*-] that one would have theoretically. There are
two reasons why there can be a wider curve than the theoretical
curve. If the objects do not all have the same frequency, as might
happen if the crystal were strained in certain regions, so that in
those regions the oscillation frequency were slightly different than
in other regions, then what we have is many resonance curves on top of
each other; so we apparently get a wider curve. The other kind of
width is simply this: perhaps we cannot measure the frequency
precisely enough—if we open the slit of the spectrometer fairly
wide, so although we thought we had only one frequency, we actually
had a certain range Δ ω[image: -*-], then we may not have the resolving
power needed to see a narrow curve. Offhand, we cannot say whether the
width in Fig. 23–7 is natural, or whether it is due to
inhomogeneities in the crystal or the finite width of the slit of the
spectrometer.



[image: -][image: -]
Fig. 23–8. Magnetic energy loss in paramagnetic organic compound as function of
applied magnetic field intensity. [Holden et al., Phys.
Rev. 75, 1614 (1949)]





Now we turn to a more esoteric example, and that is the swinging of a
magnet. If we have a magnet, with north and south poles, in a constant
magnetic field, the N end of the magnet will be pulled one way and the
S end the other way, and there will in general be a torque on it, so
it will vibrate about its equilibrium position, like a compass
needle. However, the magnets we are talking about are
atoms. These atoms have an angular momentum, the torque does
not produce a simple motion in the direction of the field, but
instead, of course, a precession. Now, looked at from the side,
any one component is “swinging,” and we can disturb or drive that
swinging and measure an absorption. The curve in Fig. 23–8
represents a typical such resonance curve. What has been done here is
slightly different technically. The frequency of the lateral field that
is used to drive this swinging is always kept the same, while we would
have expected that the investigators would vary that and plot the curve.
They could have done it that way, but technically it was easier for them
to leave the frequency ω[image: -*-] fixed, and change the strength of the
constant magnetic field, which corresponds to changing ω0[image: -*-] in our
formula. They have plotted the resonance curve against ω0[image: -*-].
Anyway, this is a typical resonance with a certain ω0[image: -*-]
and γ[image: -*-].




[image: -][image: -]
Fig. 23–9. The intensity of gamma-radiation from lithium as a function of the
energy of the bombarding protons. The dashed curve is a theoretical one
calculated for protons with an angular momentum ℓ=0[image: -*-]. [Bonner and Evans,
Phys. Rev. 73, 666 (1948)]





Now we go still further. Our next example has to do with atomic
nuclei. The motions of protons and neutrons in nuclei are oscillatory
in certain ways, and we can demonstrate this by the following
experiment. We bombard a lithium atom with protons, and we discover
that a certain reaction, producing γ[image: -*-]-rays, actually has a very
sharp maximum typical of resonance. We note in Fig. 23–9,
however, one difference from other cases: the horizontal scale is not a
frequency, it is an energy! The reason is that in quantum
mechanics what we think of classically as the energy will turn out to be
really related to a frequency of a wave amplitude. When we analyze
something which in simple large-scale physics has to do with a
frequency, we find that when we do quantum-mechanical experiments with
atomic matter, we get the corresponding curve as a function of energy.
In fact, this curve is a demonstration of this relationship, in a sense.
It shows that frequency and energy have some deep interrelationship,
which of course they do.



[image: -][image: -]
Fig. 23–10. [Courtesy of Dr. R. Mössbauer]





Now we turn to another example which also involves a nuclear energy
level, but now a much, much narrower one. The ω0[image: -*-] in
Fig. 23–10 corresponds to an energy of 100,000[image: -*-] electron
volts, while the width γ[image: -*-] is approximately 10−5[image: -*-] electron
volt; in other words, this has a Q[image: -*-] of 1010[image: -*-]! When this curve was
measured it was the largest Q[image: -*-] of any oscillator that had ever been
measured. It was measured by Dr. Mössbauer, and it was the basis of his Nobel prize.  The
horizontal scale here is velocity, because the technique for obtaining
the slightly different frequencies was to use the Doppler
effect, by moving the source relative to
the absorber. One can see how delicate the experiment is when we realize
that the speed involved is a few centimeters per second! On the actual
scale of the figure, zero frequency would correspond to a point about
1010[image: -*-] cm to the left—slightly off the paper!




[image: -][image: -]
Fig. 23–11. Momentum dependence of the cross section for the reactions
(a) K−+p→Λ+π++π−[image: -*-] and (b) [image: \text{K}^- + \text{p} \to \overline{\text{K}}{}^0 + \text{n}][image: \text{K}^- + \text{p} \to \overline{\text{K}}{}^0 + \text{n}]. The lower curves in (a)
and (b) represent the presumed nonresonant backgrounds, while the upper curves
contain in addition the superposed resonance. [Ferro-Luzzi et al.,
Phys. Rev. Lett. 8, 28 (1962)]





Finally, if we look in an issue of the Physical Review, say
that of January 1, 1962, will we find a resonance curve? Every issue
has a resonance curve, and Fig. 23–11 is the resonance
curve for this one. This resonance curve turns out to be very
interesting. It is the resonance found in a certain reaction among
strange particles, a reaction in which a K−[image: -*-] and a proton
interact. The resonance is detected by seeing how many of some kinds
of particles come out, and depending on what and how many come out,
one gets different curves, but of the same shape and with the peak at
the same energy. We thus determine that there is a resonance at a
certain energy for the K−[image: -*-] meson. That presumably means that there
is some kind of a state, or condition, corresponding to this
resonance, which can be attained by putting together a K−[image: -*-] and a
proton. This is a new particle, or resonance. Today we do not know
whether to call a bump like this a “particle” or simply a
resonance. When there is a very sharp resonance, it corresponds
to a very definite energy, just as though there were a particle
of that energy present in nature. When the resonance gets wider, then
we do not know whether to say there is a particle which does not last
very long, or simply a resonance in the reaction probability. In the
second chapter, this point is made about the particles, but when the
second chapter was written this resonance was not known, so our chart
should now have still another particle in it!







  
    

24 Transients



24–1 The energy of an oscillator


Although this chapter is entitled “transients,” certain
parts of it are, in a way, part of the last chapter on forced
oscillation. One of the features of a forced oscillation which we have
not yet discussed is the energy in the oscillation. Let us now
consider that energy.




In a mechanical oscillator, how much kinetic energy is there? It is
proportional to the square of the velocity. Now we come to an
important point. Consider an arbitrary quantity A[image: -*-], which may be the
velocity or something else that we want to discuss. When we write [image: A = \hat{A}e^{i\omega t}][image: A = \hat{A}e^{i\omega t}], a complex number, the true and honest A[image: -*-], in
the physical world, is only the real part; therefore if, for
some reason, we want to use the square of A[image: -*-], it is not right
to square the complex number and then take the real part, because the
real part of the square of a complex number is not just the square of
the real part, but also involves the imaginary part. So when we
wish to find the energy we have to get away from the complex notation
for a while to see what the inner workings are.




Now the true physical A[image: -*-] is the real part of A0 ei (ω t+Δ)[image: -*-], that is, A=A0 cos(ω t+Δ)[image: -*-], where
[image: \hat{A}][image: \hat{A}], the complex number, is written as A0 ei Δ[image: -*-]. Now the
square of this real physical quantity is [image: A^2 = A_0^2 \cos^2\,(\omega t + \Delta)][image: A^2 = A_0^2 \cos^2\,(\omega t + \Delta)]. The square of the quantity, then, goes up and down from
a maximum to zero, like the square of the cosine. The square of the
cosine has a maximum of 1 and a minimum of 0, and its average
value is 1/2[image: -*-].




In many circumstances we are not interested in the energy at any
specific moment during the oscillation; for a large number of
applications we merely want the average of A2[image: -*-], the mean of
the square of A[image: -*-] over a period of time large compared with the period
of oscillation. In those circumstances, the average of the cosine
squared may be used, so we have the following theorem: if A[image: -*-] is
represented by a complex number, then the mean of A2[image: -*-] is equal
to [image: \tfrac{1}{2}A_0^2][image: \tfrac{1}{2}A_0^2]. Now [image: A_0^2][image: A_0^2] is the square of the magnitude of the
complex [image: \hat{A}][image: \hat{A}]. (This can be written in many ways—some people
like to write [image: \abs{\hat{A}}^2][image: \abs{\hat{A}}^2]; others write, [image: \hat{A}\hat{A}\cconj][image: \hat{A}\hat{A}\cconj],
[image: \hat{A}][image: \hat{A}] times its complex conjugate.)  We shall use this theorem
several times.




Now let us consider the energy in a forced oscillator. The equation
for the forced oscillator is

[image: -*-][image: -*-]
(24.1)




In our problem, of course, F (t)[image: -*-] is a cosine function of t[image: -*-]. Now let
us analyze the situation: how much work is done by the outside
force F[image: -*-]?  The work done by the force per second, i.e., the power, is the
force times the velocity. (We know that the differential work in a
time d t[image: -*-] is F d x[image: -*-], and the power is F d x/d t[image: -*-].) Thus



[image: -*-][image: -*-]
(24.2)





But the first two terms on the right can also be written as
[image: d/dt[\tfrac{1}{2}m(dx/dt)^2 + \tfrac{1}{2}m\omega_0^2x^2]][image: d/dt[\tfrac{1}{2}m(dx/dt)^2 + \tfrac{1}{2}m\omega_0^2x^2]], as is
immediately verified by differentiating. That is to say, the term in
brackets is a pure derivative of two terms that are easy to
understand—one is the kinetic energy of motion, and the other is the
potential energy of the spring. Let us call this quantity the
stored energy, that is, the energy stored in the
oscillation. Suppose that we want the average power over many cycles
when the oscillator is being forced and has been running for a long
time. In the long run, the stored energy does not change—its
derivative gives zero average effect. In other words, if we average
the power in the long run, all the energy ultimately ends up in
the resistive term γ m (d x/d t)2[image: -*-]. There is some energy
stored in the oscillation, but that does not change with time, if we
average over many cycles. Therefore the mean power [image: \avg{P}][image: \avg{P}] is

[image: -*-][image: -*-]
(24.3)







Using our method of writing complex numbers, and our theorem that
[image: \avg{A^2} = \tfrac{1}{2}A_0^2][image: \avg{A^2} = \tfrac{1}{2}A_0^2], we may find this mean power. Thus if [image: x= \hat{x}e^{i\omega t}][image: x= \hat{x}e^{i\omega t}], then [image: dx/dt = i\omega\hat{x}e^{i\omega t}][image: dx/dt = i\omega\hat{x}e^{i\omega t}]. Therefore, in these circumstances, the average power could be
written as

[image: -*-][image: -*-]
(24.4)







In the notation for electrical circuits, d x/d t[image: -*-] is replaced by the
current I[image: -*-] (I[image: -*-] is d q/d t[image: -*-], where q[image: -*-] corresponds to x[image: -*-]), and
m γ[image: -*-] corresponds to the resistance R[image: -*-]. Thus the rate of the
energy loss—the power used up by the forcing function—is the
resistance in the circuit times the average square of the current:

[image: -*-][image: -*-]
(24.5)




This energy, of course, goes into heating the resistor; it is
sometimes called the heating loss or the Joule heating.




Another interesting feature to discuss is how much energy is
stored. That is not the same as the power, because although
power was at first used to store up some energy, after that the system
keeps on absorbing power, insofar as there are any heating (resistive)
losses. At any moment there is a certain amount of stored energy, so
we would like to calculate the mean stored energy [image: \avg{E}][image: \avg{E}] also. We
have already calculated what the average of (d x/d t)2[image: -*-] is, so we find

[image: -*-][image: -*-]
(24.6)




Now, when an oscillator is very efficient, and if ω[image: -*-] is near
ω0[image: -*-], so that [image: \abs{\hat{x}}][image: \abs{\hat{x}}] is large, the stored energy is
very high—we can get a large stored energy from a relatively small
force. The force does a great deal of work in getting the oscillation
going, but then to keep it steady, all it has to do is to fight the
friction. The oscillator can have a great deal of energy if the
friction is very low, and even though it is oscillating strongly, not
much energy is being lost. The efficiency of an oscillator can be
measured by how much energy is stored, compared with how much work the
force does per oscillation.




How does the stored energy compare with the amount of work that is
done in one cycle? This is called the Q[image: -*-] of the system, and Q[image: -*-] is
defined as 2 π[image: -*-] times the mean stored energy, divided by the work
done per cycle. (If we were to say the work done per radian
instead of per cycle, then the 2 π[image: -*-] disappears.)

[image: -*-][image: -*-]
(24.7)




Q[image: -*-] is not a very useful number unless it is very large. When it is
relatively large, it gives a measure of how good the oscillator
is. People have tried to define Q[image: -*-] in the simplest and most useful
way; various definitions differ a bit from one another, but if Q[image: -*-] is
very large, all definitions are in agreement. The most generally
accepted definition is Eq. (24.7), which depends
on ω[image: -*-]. For a good oscillator, close to resonance, we can
simplify (24.7) a little by setting ω=ω0[image: -*-], and we
then have Q=ω0/γ[image: -*-], which is the definition of Q[image: -*-] that we
used before.




What is Q[image: -*-] for an electrical circuit? To find out, we merely have to
translate L[image: -*-] for m[image: -*-], R[image: -*-] for m γ[image: -*-], and 1/C[image: -*-] for [image: m\omega_0^2][image: m\omega_0^2]
(see Table 23–1). The Q[image: -*-] at resonance is L ω/R[image: -*-],
where ω[image: -*-] is the resonance frequency. If we consider a circuit
with a high Q[image: -*-], that means that the amount of energy stored in the
oscillation is very large compared with the amount of work done per
cycle by the machinery that drives the oscillations.







24–2 Damped oscillations


We now turn to our main topic of discussion: transients. By a
transient is meant a solution of the differential equation when
there is no force present, but when the system is not simply at
rest. (Of course, if it is standing still at the origin with no force
acting, that is a nice problem—it stays there!) Suppose the
oscillation starts another way: say it was driven by a force for a
while, and then we turn off the force. What happens then? Let us first
get a rough idea of what will happen for a very high Q[image: -*-] system. So
long as a force is acting, the stored energy stays the same, and there
is a certain amount of work done to maintain it. Now suppose we turn
off the force, and no more work is being done; then the losses which
are eating up the energy of the supply are no longer eating up its
energy—there is no more driver. The losses will have to
consume, so to speak, the energy that is stored. Let us suppose that
Q/2 π=1000[image: -*-]. Then the work done per cycle is 1/1000[image: -*-] of the
stored energy. Is it not reasonable, since it is oscillating with no
driving force, that in one cycle the system will still lose a
thousandth of its energy E[image: -*-], which ordinarily would have been
supplied from the outside, and that it will continue oscillating,
always losing 1/1000[image: -*-] of its energy per cycle? So, as a guess, for a
relatively high Q[image: -*-] system, we would suppose that the following
equation might be roughly right (we will later do it exactly, and it
will turn out that it was right!):

[image: -*-][image: -*-]
(24.8)




This is rough because it is true only for large Q[image: -*-]. In each radian
the system loses a fraction 1/Q[image: -*-] of the stored energy E[image: -*-]. Thus in a
given amount of time d t[image: -*-] the energy will change by an
amount ω d t/Q[image: -*-], since the number of radians associated with the
time d t[image: -*-] is ω d t[image: -*-]. What is the frequency? Let us suppose that the
system moves so nicely, with hardly any force, that if we let go it
will oscillate at essentially the same frequency all by itself. So we
will guess that ω[image: -*-] is the resonant frequency ω0[image: -*-]. Then we
deduce from Eq. (24.8) that the stored energy will vary
as

[image: -*-][image: -*-]
(24.9)




This would be the measure of the energy at any moment. What
would the formula be, roughly, for the amplitude of the oscillation as
a function of the time? The same? No! The amount of energy in a
spring, say, goes as the square of the displacement; the
kinetic energy goes as the square of the velocity; so the total
energy goes as the square of the displacement. Thus the
displacement, the amplitude of oscillation, will decrease half as fast
because of the square. In other words, we guess that the solution for
the damped transient motion will be an oscillation of frequency close
to the resonance frequency ω0[image: -*-], in which the amplitude of the
sine-wave motion will diminish as e−γ t/2[image: -*-]:

[image: -*-][image: -*-]
(24.10)




This equation and Fig. 24–1 give us an idea of what we
should expect; now let us try to analyze the motion precisely
by solving the differential equation of the motion itself.



[image: -][image: -]
Fig. 24–1. A damped cosine oscillation.





So, starting with Eq. (24.1), with no outside force, how
do we solve it? Being physicists, we do not have to worry about the
method as much as we do about what the solution
is. Armed with our previous experience, let us try as a
solution an exponential curve, x=A ei α t[image: -*-]. (Why do we try
this? It is the easiest thing to differentiate!) We put this
into (24.1) (with F (t)=0[image: -*-]), using the rule that each time
we differentiate x[image: -*-] with respect to time, we multiply by i α[image: -*-]. So
it is really quite simple to substitute. Thus our equation looks like
this:

[image: -*-][image: -*-]
(24.11)




The net result must be zero for all times, which is impossible
unless (a) A=0[image: -*-], which is no solution at all—it stands still, or
(b)

[image: -*-][image: -*-]
(24.12)




If we can solve this and find an α[image: -*-], then we will have a
solution in which A[image: -*-] need not be zero!

[image: -*-][image: -*-]
(24.13)







For a while we shall assume that γ[image: -*-] is fairly small compared
with ω0[image: -*-], so that [image: \omega_0^2-\gamma^2/4][image: \omega_0^2-\gamma^2/4] is definitely
positive, and there is nothing the matter with taking the square
root. The only bothersome thing is that we get two solutions!
Thus

[image: -*-][image: -*-]
(24.14)




and

[image: -*-][image: -*-]
(24.15)




Let us consider the first one, supposing that we had not noticed that
the square root has two possible values. Then we know that a solution
for x[image: -*-] is x1=A ei α1 t[image: -*-], where A[image: -*-] is any constant
whatever. Now, in substituting α1[image: -*-], because it is going to come
so many times and it takes so long to write, we shall call
[image: \sqrt{\omega_0^2-\gamma^2/4}=\omega_\gamma][image: \sqrt{\omega_0^2-\gamma^2/4}=\omega_\gamma]. Thus
i α1=−γ/2+i ωγ[image: -*-], and we get x=A e(−γ/2+i ωγ) t[image: -*-], or what is the same, because of the
wonderful properties of an exponential,

[image: -*-][image: -*-]
(24.16)




First, we recognize this as an oscillation, an oscillation at a
frequency ωγ[image: -*-], which is not exactly the
frequency ω0[image: -*-], but is rather close to ω0[image: -*-] if it is a good
system. Second, the amplitude of the oscillation is decreasing
exponentially! If we take, for instance, the real part
of (24.16), we get

[image: -*-][image: -*-]
(24.17)




This is very much like our guessed-at solution (24.10),
except that the frequency really is ωγ[image: -*-]. This is the only
error, so it is the same thing—we have the right idea. But
everything is not all right! What is not all right is that
there is another solution.




The other solution is α2[image: -*-], and we see that the difference is
only that the sign of ωγ[image: -*-] is reversed:

[image: -*-][image: -*-]
(24.18)




What does this mean? We shall soon prove that if x1[image: -*-] and x2[image: -*-] are
each a possible solution of Eq. (24.1) with F=0[image: -*-], then
x1+x2[image: -*-] is also a solution of the same equation! So the general
solution x[image: -*-] is of the mathematical form

[image: -*-][image: -*-]
(24.19)




Now we may wonder why we bother to give this other solution, since we
were so happy with the first one all by itself. What is the extra one
for, because of course we know we should only take the real part?
We know that we must take the real part, but how did the
mathematics know that we only wanted the real part? When we had
a nonzero driving force F (t)[image: -*-], we put in an artificial force
to go with it, and the imaginary part of the equation, so to
speak, was driven in a definite way. But when we put F (t)≡0[image: -*-],
our convention that x[image: -*-] should be only the real part of whatever we
write down is purely our own, and the mathematical equations do not
know it yet. The physical world has a real solution, but the
answer that we were so happy with before is not real, it is
complex. The equation does not know that we are
arbitrarily going to take the real part, so it has to present us, so
to speak, with a complex conjugate type of solution, so that by
putting them together we can make a truly real solution; that
is what α2[image: -*-] is doing for us. In order for x[image: -*-] to be real,
B e−i ωγ t[image: -*-] will have to be the complex conjugate
of A ei ωγ t[image: -*-] that the imaginary parts disappear. So it turns
out that B[image: -*-] is the complex conjugate of A[image: -*-], and our real solution is

[image: -*-][image: -*-]
(24.20)




So our real solution is an oscillation with a phase shift and a
damping—just as advertised.







24–3 Electrical transients

[image: -][image: -]
Fig. 24–2. An electrical circuit for demonstrating transients.





Now let us see if the above really works. We construct the electrical circuit
shown in Fig. 24–2, in which we apply to an oscilloscope the voltage
across the inductance L[image: -*-] after we suddenly turn on a voltage by closing the
switch S[image: -*-]. It is an oscillatory circuit, and it generates a transient of some
kind. It corresponds to a circumstance in which we suddenly apply a force and
the system starts to oscillate. It is the electrical analog of a damped
mechanical oscillator, and we watch the oscillation on an oscilloscope, where we
should see the curves that we were trying to analyze. (The horizontal motion of
the oscilloscope is driven at a uniform speed, while the vertical motion is the
voltage across the inductor. The rest of the circuit is only a technical detail.
We would like to repeat the experiment many, many times, since the persistence
of vision is not good enough to see only one trace on the screen. So we do the
experiment again and again by closing the switch 60[image: -*-] times a second; each time
we close the switch, we also start the oscilloscope horizontal sweep, and it
draws the curve over and over.) In Figs. 24–3
to 24–6 we see examples of damped oscillations, actually
photographed on an oscilloscope  screen. Figure 24–3 shows a damped
oscillation in a circuit which has a high Q[image: -*-], a small γ[image: -*-]. It does not die
out very fast; it oscillates many times on the way down.



[image: -][image: -]
Figure 24–3 




[image: -][image: -]
Figure 24–4 




[image: -][image: -]
Figure 24–5 




[image: -][image: -]
Figure 24–6 





But let us see what happens as we decrease Q[image: -*-], so that the
oscillation dies out more rapidly. We can decrease Q[image: -*-] by increasing
the resistance R[image: -*-] in the circuit. When we increase the resistance in
the circuit, it dies out faster (Fig. 24–4). Then if we
increase the resistance in the circuit still more, it dies out faster
still (Fig. 24–5). But when we put in more than a
certain amount, we cannot see any oscillation at all! The question is,
is this because our eyes are not good enough? If we increase the
resistance still more, we get a curve like that of
Fig. 24–6, which does not appear to have any oscillations,
except perhaps one. Now, how can we explain that by mathematics?




The resistance is, of course, proportional to the γ[image: -*-] term in the
mechanical device. Specifically, γ[image: -*-] is R/L[image: -*-]. Now if we increase
the γ[image: -*-] in the solutions (24.14) and (24.15)
that we were so happy with before, chaos sets in when γ/2[image: -*-] exceeds
ω0[image: -*-]; we must write it a different way, as

[image: -*-][image: -*-]


Those are now the two solutions and, following the same line of
mathematical reasoning as previously, we again find two solutions:
ei α1 t[image: -*-] and ei α2 t[image: -*-]. If we now substitute for
α1[image: -*-], we get

[image: -*-][image: -*-]


a nice exponential decay with no oscillations. Likewise, the other
solution is

[image: -*-][image: -*-]


Note that the square root cannot exceed γ/2[image: -*-], because even if
ω0=0[image: -*-], one term just equals the other. But [image: \omega_0^2][image: \omega_0^2] is
taken away from γ2/4[image: -*-], so the square root is less than
γ/2[image: -*-], and the term in parentheses is, therefore, always a
positive number. Thank goodness!  Why? Because if it were negative, we
would find e[image: -*-] raised to a positive factor times t[image: -*-], which
would mean it was exploding! In putting more and more resistance into
the circuit, we know it is not going to explode—quite the
contrary. So now we have two solutions, each one by itself a dying
exponential, but one having a much faster “dying rate” than the
other. The general solution is of course a combination of the two; the
coefficients in the combination depending upon how the motion
starts—what the initial conditions of the problem are. In the
particular way this circuit happens to be starting, the A[image: -*-] is
negative and the B[image: -*-] is positive, so we get the difference of two
exponential curves.




Now let us discuss how we can find the two coefficients A[image: -*-] and B[image: -*-]
(or A[image: -*-] and A*[image: -*-]), if we know how the motion was started.




Suppose that at t=0[image: -*-] we know that x=x0[image: -*-], and d x/d t=v0[image: -*-]. If
we put t=0[image: -*-], x=x0[image: -*-], and d x/d t=v0[image: -*-] into the expressions



[image: -*-][image: -*-]



we find, since e0=[image: -*-]ei 0=[image: -*-]1,

[image: -*-][image: -*-]


where A=AR+i AI[image: -*-], and A*=AR−i AI[image: -*-]. Thus we find

[image: -*-][image: -*-]


and

[image: -*-][image: -*-]
(24.21)




This completely determines A[image: -*-] and A*[image: -*-], and therefore the
complete curve of the transient solution, in terms of how it
begins. Incidentally, we can write the solution another way if we note
that

[image: -*-][image: -*-]


We may then write the complete solution as

[image: -*-][image: -*-]
(24.22)




where [image: \omega_\gamma=+\sqrt{\omega_0^2-\gamma^2/4}][image: \omega_\gamma=+\sqrt{\omega_0^2-\gamma^2/4}]. This is the
mathematical expression for the way an oscillation dies out. We shall
not make direct use of it, but there are a number of points we should
like to emphasize that are true in more general cases.




First of all the behavior of such a system with no external force is
expressed by a sum, or superposition, of pure exponentials in time
(which we wrote as ei α t[image: -*-]). This is a good solution to try in
such circumstances. The values of α[image: -*-] may be complex in general,
the imaginary parts representing damping. Finally the intimate
mathematical relation of the sinusoidal and exponential function
discussed in Chapter 22 often appears physically as a
change from oscillatory to exponential behavior when some physical
parameter (in this case resistance, γ[image: -*-]) exceeds some critical
value.







  
    

25 Linear Systems and Review



25–1 Linear differential equations


In this chapter we shall discuss certain aspects of oscillating
systems that are found somewhat more generally than just in the
particular systems we have been discussing. For our particular system,
the differential equation that we have been solving is

[image: -*-][image: -*-]
(25.1)




Now this particular combination of “operations” on the variable x[image: -*-]
has the interesting property that if we substitute (x+y)[image: -*-] for x[image: -*-],
then we get the sum of the same operations on x[image: -*-] and y[image: -*-]; or, if we
multiply x[image: -*-] by a[image: -*-], then we get just a[image: -*-] times the same
combination. This is easy to prove. Just as a “shorthand” notation,
because we get tired of writing down all those letters
in (25.1), we shall use the symbol [image: \uL(x)][image: \uL(x)] instead. When we
see this, it means the left-hand side of (25.1), with x[image: -*-]
substituted in. With this system of writing, [image: \uL(x + y)][image: \uL(x + y)] would mean the
following:



[image: -*-][image: -*-]
(25.2)





(We underline the [image: \uL][image: \uL] so as to remind ourselves that it is not an
ordinary function.) We sometimes call this an operator
notation, but it makes no difference what we call it, it is just
“shorthand.”




Our first statement was that

[image: -*-][image: -*-]
(25.3)




which of course follows from the fact that a (x+y)=a x+a y[image: -*-], d (x+y)/d t=d x/d t+d y/d t[image: -*-], etc.




Our second statement was, for constant a[image: -*-],

[image: -*-][image: -*-]
(25.4)




[Actually, (25.3) and (25.4) are very closely
related, because if we put x+x[image: -*-] into (25.3), this is the
same as setting a=2[image: -*-] in (25.4), and so on.]




In more complicated problems, there may be more derivatives, and more
terms in [image: \uL][image: \uL]; the question of interest is whether the two
equations (25.3) and (25.4) are maintained or not.
If they are, we call such a problem a linear problem. In this
chapter we shall discuss some of the properties that exist because the
system is linear, to appreciate the generality of some of the results
that we have obtained in our special analysis of a special equation.




Now let us study some of the properties of linear differential
equations, having illustrated them already with the specific
equation (25.1) that we have studied so closely. The first
property of interest is this: suppose that we have to solve the
differential equation for a transient, the free oscillation with no
driving force. That is, we want to solve

[image: -*-][image: -*-]
(25.5)




Suppose that, by some hook or crook, we have found a particular
solution, which we shall call x1[image: -*-]. That is, we have an x1[image: -*-] for
which [image: \uL(x_1) = 0][image: \uL(x_1) = 0]. Now we notice that a x1[image: -*-], is also a solution to
the same equation; we can multiply this special solution by any
constant whatever, and get a new solution. In other words, if we had a
motion of a certain “size,” then a motion twice as “big” is again
a solution. Proof: [image: \uL(ax_1) =][image: \uL(ax_1) =][image: a\uL(x_1) =][image: a\uL(x_1) =]a⋅0=0[image: -*-].




Next, suppose that, by hook or by crook, we have not only found
one solution x1[image: -*-], but also another solution, x2[image: -*-]. (Remember
that when we substituted x=ei α t[image: -*-] for finding the
transients, we found two values for α[image: -*-], that is, two
solutions, x1[image: -*-] and x2[image: -*-].) Now let us show that the combination
(x1+x2)[image: -*-] is also a solution. In other words, if we put x=x1+x2[image: -*-], x[image: -*-] is again a solution of the equation. Why?  Because, if
[image: \uL(x_1) = 0][image: \uL(x_1) = 0] and [image: \uL(x_2) = 0][image: \uL(x_2) = 0], then [image: \uL(x_1 + x_2) = \uL(x_1) + \uL(x_2) = 0 + 0 = 0][image: \uL(x_1 + x_2) = \uL(x_1) + \uL(x_2) = 0 + 0 = 0]. So if we have found a number of solutions for
the motion of a linear system we can add them together.




Combining these two ideas, we see, of course, that we can also add six
of one and two of the other: if x1[image: -*-] is a solution, so is α x1[image: -*-]. Therefore any sum of these two solutions, such as (α x1+β x2)[image: -*-], is also a solution. If we happen to be able to find three
solutions, then we find that any combination of the three solutions is
again a solution, and so on. It turns out that the number of what we
call independent solutions1 that we have obtained for our oscillator problem is only
two. The number of independent solutions that one finds in the
general case depends upon what is called the number of degrees
of freedom. We shall not discuss this in
detail now, but if we have a second-order differential equation, there
are only two independent solutions, and we have found both of them; so
we have the most general solution.




Now let us go on to another proposition, which applies to the
situation in which the system is subjected to an outside
force. Suppose the equation is

[image: -*-][image: -*-]
(25.6)




and suppose that we have found a special solution of it. Let us say
that Joe’s solution is xJ[image: -*-], and that [image: \uL(x_J) = F(t)][image: \uL(x_J) = F(t)]. Suppose we
want to find yet another solution; suppose we add to Joe’s solution
one of those that was a solution of the free equation (25.5),
say x1[image: -*-]. Then we see by (25.3) that



[image: -*-][image: -*-]
(25.7)





Therefore, to the “forced” solution we can add any “free”
solution, and we still have a solution. The free solution is called a
transient solution.




When we have no force acting, and suddenly turn one on, we do not
immediately get the steady solution that we solved for with the sine
wave solution, but for a while there is a transient which sooner or
later dies out, if we wait long enough. The “forced” solution does
not die out, since it keeps on being driven by the force. Ultimately,
for long periods of time, the solution is unique, but initially the
motions are different for different circumstances, depending on how
the system was started.







25–2 Superposition of solutions


Now we come to another interesting proposition. Suppose that we have a
certain particular driving force Fa[image: -*-] (let us say an oscillatory one
with a certain ω=ωa[image: -*-], but our conclusions will be true
for any functional form of Fa[image: -*-]) and we have solved for the forced
motion (with or without the transients; it makes no difference). Now
suppose some other force is acting, let us say Fb[image: -*-], and we solve the
same problem, but for this different force. Then suppose someone comes
along and says, “I have a new problem for you to solve; I have the
force Fa+Fb[image: -*-].” Can we do it? Of course we can do it, because the
solution is the sum of the two solutions xa[image: -*-] and xb[image: -*-] for the
forces taken separately—a most remarkable circumstance indeed. If we
use (25.3), we see that



[image: -*-][image: -*-]
(25.8)










This is an example of what is called the principle of
superposition for linear systems, and it is very important. It means
the following: if we have a complicated force which can be broken up
in any convenient manner into a sum of separate pieces, each of which
is in some way simple, in the sense that for each special piece into
which we have divided the force we can solve the equation, then the
answer is available for the whole force, because we may simply
add the pieces of the solution back together, in the same
manner as the total force is compounded out of pieces
(Fig. 25–1).



[image: -][image: -]
Fig. 25–1. An example of the principle of superposition for linear
systems.





Let us give another example of the principle of superposition. In
Chapter 12 we said that it was one of the great facts of
the laws of electricity that if we have a certain distribution of
charges qa[image: -*-] and calculate the electric field Ea[image: -*-] arising from
these charges at a certain place P[image: -*-], and if, on the other hand, we
have another set of charges qb[image: -*-] and we calculate the field Eb[image: -*-]
due to these at the corresponding place, then if both charge
distributions are present at the same time, the field E[image: -*-] at P[image: -*-]
is the sum of Ea[image: -*-] due to one set plus Eb[image: -*-] due to
the other. In other words, if we know the field due to a certain
charge, then the field due to many charges is merely the vector sum of
the fields of these charges taken individually. This is exactly
analogous to the above proposition that if we know the result of two
given forces taken at one time, then if the force is considered as a
sum of them, the response is a sum of the corresponding individual
responses.



[image: -][image: -]
Fig. 25–2. The principle of superposition in electrostatics.





The reason why this is true in electricity is that the great laws of
electricity, Maxwell’s equations, which determine the electric field,
turn out to be differential equations which are linear, i.e.,
which have the property (25.3). What corresponds to the
force is the charge generating the electric field, and the
equation which determines the electric field in terms of the charge is
linear.




As another interesting example of this proposition, let us ask how it is
possible to “tune in” to a particular radio station at the same time
as all the radio stations are broadcasting. The radio station transmits,
fundamentally, an oscillating electric field of very high frequency
which acts on our radio antenna. It is true that the amplitude of the
oscillation of the field is changed, modulated, to carry the signal of
the voice, but that is very slow, and we are not going to worry about
it. When one hears “This station is broadcasting at a frequency of
780[image: -*-] kilocycles,” this indicates that 780,000[image: -*-] oscillations per
second is the frequency of the electric field of the station antenna,
and this drives the electrons up and down at that frequency in our
antenna. Now at the same time we may have another radio station in the
same town radiating at a different frequency, say 550[image: -*-] kilocycles per
second; then the electrons in our antenna are also being driven by that
frequency.  Now the question is, how is it that we can separate the
signals coming into the one radio at 780[image: -*-] kilocycles from those coming
in at 550[image: -*-] kilocycles? We certainly do not hear both stations at the
same time.




By the principle of superposition, the response of the electric
circuit in the radio, the first part of which is a linear circuit, to
the forces that are acting due to the electric field Fa+Fb[image: -*-],
is xa+xb[image: -*-]. It therefore looks as though we will never disentangle
them. In fact, the very proposition of superposition seems to insist
that we cannot avoid having both of them in our system. But
remember, for a resonant circuit, the response curve, the
amount of x[image: -*-] per unit F[image: -*-], as a function of the frequency, looks like
Fig. 25–3. If it were a very high Q[image: -*-] circuit, the
response would show a very sharp maximum. Now suppose that the two
stations are comparable in strength, that is, the two forces
are of the same magnitude. The response that we get is the sum
of xa[image: -*-] and xb[image: -*-]. But, in Fig. 25–3, xa[image: -*-] is
tremendous, while xb[image: -*-] is small. So, in spite of the fact that the
two signals are equal in strength, when they go through the sharp
resonant circuit of the radio tuned for ωa[image: -*-], the frequency of
the transmission of one station, then the response to this station is
much greater than to the other. Therefore the complete response, with
both signals acting, is almost all made up of ωa[image: -*-], and we have
selected the station we want.



[image: -][image: -]
Fig. 25–3. A sharply tuned resonance curve.





Now what about the tuning? How do we tune it? We change ω0[image: -*-] by
changing the L[image: -*-] or the C[image: -*-] of the circuit, because the frequency of
the circuit has to do with the combination of L[image: -*-] and C[image: -*-]. In
particular, most radios are built so that one can change the
capacitance. When we retune the radio, we can make a new setting of
the dial, so that the natural frequency of the circuit is shifted,
say, to ωc[image: -*-]. In those circumstances we hear neither one station
nor the other; we get silence, provided there is no other station at
frequency ωc[image: -*-]. If we keep on changing the capacitance until the
resonance curve is at ωb[image: -*-], then of course we hear the other
station. That is how radio tuning works; it is again the principle of
superposition, combined with a resonant response.2




To conclude this discussion, let us describe qualitatively what
happens if we proceed further in analyzing a linear problem with a
given force, when the force is quite complicated. Out of the many
possible procedures, there are two especially useful general ways that
we can solve the problem. One is this: suppose that we can solve it
for special known forces, such as sine waves of different
frequencies. We know it is child’s play to solve it for sine waves. So
we have the so-called “child’s play” cases. Now the question is
whether our very complicated force can be represented as the sum of
two or more “child’s play” forces. In Fig. 25–1 we
already had a fairly complicated curve, and of course we can make it
more complicated still if we add in more sine waves. So it is
certainly possible to obtain very complicated curves. And, in fact,
the reverse is also true: practically every curve can be obtained by
adding together infinite numbers of sine waves of different
wavelengths (or frequencies) for each one of which we know the
answer. We just have to know how much of each sine wave to put in to
make the given F[image: -*-], and then our answer, x[image: -*-], is the corresponding sum
of the F[image: -*-] sine waves, each multiplied by its effective ratio of x[image: -*-]
to F[image: -*-]. This method of solution is called the method of
Fourier transforms
or Fourier analysis. We are not going to actually carry
out such an analysis just now; we only wish to describe the idea
involved.




Another way in which our complicated problem can be solved is the
following very interesting one. Suppose that, by some tremendous
mental effort, it were possible to solve our problem for a special
force, namely an impulse. The force is quickly turned on and
then off; it is all over. Actually we need only solve for an impulse
of some unit strength, any other strength can be gotten by
multiplication by an appropriate factor. We know that the response x[image: -*-]
for an impulse is a damped oscillation. Now what can we say about some
other force, for instance a force like that of Fig. 25–4?



[image: -][image: -]
Fig. 25–4. A complicated force may be treated as a succession of sharp
impulses.





Such a force can be likened to a succession of blows with a
hammer. First there is no force, and all of a sudden there is a steady
force—impulse, impulse, impulse, impulse, … and then it
stops. In other words, we imagine the continuous force to be a series
of impulses, very close together. Now, we know the result for an
impulse, so the result for a whole series of impulses will be a whole
series of damped oscillations: it will be the curve for the first
impulse, and then (slightly later) we add to that the curve for the
second impulse, and the curve for the third impulse, and so on. Thus
we can represent, mathematically, the complete solution for arbitrary
functions if we know the answer for an impulse. We get the answer for
any other force simply by integrating. This method is called the
Green’s function method. A Green’s function is a
response to an impulse, and the method of analyzing any force by putting
together the response of impulses is called the Green’s function
method.




The physical principles involved in both of these schemes are so
simple, involving just the linear equation, that they can be readily
understood, but the mathematical problems that are involved,
the complicated integrations and so on, are a little too advanced for
us to attack right now. You will most likely return to this some day
when you have had more practice in mathematics. But the idea is
very simple indeed.




Finally, we make some remarks on why linear systems are so
important. The answer is simple: because we can solve them! So most of
the time we solve linear problems. Second (and most important), it
turns out that the fundamental laws of physics are often
linear. The Maxwell equations for the laws of
electricity are linear,
for example. The great laws of quantum mechanics turn out, so far as
we know, to be linear equations. That is why we spend so much
time on linear equations: because if we understand linear equations,
we are ready, in principle, to understand a lot of things.




We mention another situation where linear equations are found. When
displacements are small, many functions can be approximated
linearly. For example, if we have a simple pendulum, the correct
equation for its motion is

[image: -*-][image: -*-]
(25.9)




This equation can be solved by elliptic functions, but the easiest way
to solve it is numerically, as was shown in Chapter 9 on
Newton’s Laws of Motion. A nonlinear equation cannot be solved,
ordinarily, any other way but numerically. Now for small
θ[image: -*-], sinθ[image: -*-] is practically equal to θ[image: -*-], and we have a
linear equation. It turns out that there are many circumstances where
small effects are linear: for the example here the swing of a pendulum
through small arcs. As another example, if we pull a little bit on a
spring, the force is proportional to the extension. If we pull hard,
we break the spring, and the force is a completely different function
of the distance!  Linear equations are important. In fact they are so
important that perhaps fifty percent of the time we are solving linear
equations in physics and in engineering.







25–3 Oscillations in linear systems


Let us now review the things we have been talking about in the past
few chapters. It is very easy for the physics of oscillators to become
obscured by the mathematics. The physics is actually very simple, and
if we may forget the mathematics for a moment we shall see that we can
understand almost everything that happens in an oscillating
system. First, if we have only the spring and the weight, it is easy
to understand why the system oscillates—it is a consequence of
inertia. We pull the mass down and the force pulls it back up; as it
passes zero, which is the place it likes to be, it cannot just
suddenly stop; because of its momentum it keeps on going and swings to
the other side, and back and forth. So, if there were no friction, we
would surely expect an oscillatory motion, and indeed we get one. But
if there is even a little bit of friction, then on the return cycle,
the swing will not be quite as high as it was the first time.




Now what happens, cycle by cycle? That depends on the kind and amount
of friction. Suppose that we could concoct a kind of friction force
that always remains in the same proportion to the other forces, of
inertia and in the spring, as the amplitude of oscillation varies. In
other words, for smaller oscillations the friction should be weaker
than for big oscillations. Ordinary friction does not have this
property, so a special kind of friction must be carefully invented for
the very purpose of creating a friction that is directly proportional
to the velocity—so that for big oscillations it is stronger and for
small oscillations it is weaker. If we happen to have that kind of
friction, then at the end of each successive cycle the system is in
the same condition as it was at the start, except a little bit
smaller. All the forces are smaller in the same proportion: the spring
force is reduced, the inertial effects are lower because the
accelerations are now weaker, and the friction is less too, by our
careful design. When we actually have that kind of friction, we find
that each oscillation is exactly the same as the first one, except
reduced in amplitude. If the first cycle dropped the amplitude, say,
to 90[image: -*-] percent of what it was at the start, the next will drop it to
90[image: -*-] percent of 90[image: -*-] percent, and so on: the sizes of the
oscillations are reduced by the same fraction of themselves in every
cycle. An exponential function is a curve which does just that. It
changes by the same factor in each equal interval of time. That is to
say, if the amplitude of one cycle, relative to the preceding one, is
called a[image: -*-], then the amplitude of the next is a2[image: -*-], and of the next,
a3[image: -*-]. So the amplitude is some constant raised to a power equal to
the number of cycles traversed:

[image: -*-][image: -*-]
(25.10)




But of course n∝t[image: -*-], so it is perfectly clear that the general
solution will be some kind of an oscillation, sine or cosine ω t[image: -*-], times an amplitude which goes as bt[image: -*-] more or less. But b[image: -*-] can
be written as e−c[image: -*-], if b[image: -*-] is positive and less than 1. So this
is why the solution looks like e−c t cosω0 t[image: -*-]. It is very
simple.




What happens if the friction is not so artificial; for example,
ordinary rubbing on a table, so that the friction force is a certain
constant amount, and is independent of the size of the oscillation
that reverses its direction each half-cycle? Then the equation is no
longer linear, it becomes hard to solve, and must be solved by the
numerical method given in Chapter 9, or by considering
each half-cycle separately. The numerical method is the most powerful
method of all, and can solve any equation. It is only when we have a
simple problem that we can use mathematical analysis.




Mathematical analysis is not the grand thing it is said to be; it
solves only the simplest possible equations. As soon as the equations
get a little more complicated, just a shade—they cannot be solved
analytically. But the numerical method, which was advertised at the
beginning of the course, can take care of any equation of physical
interest.




Next, what about the resonance curve? Why is there a resonance? First,
imagine for a moment that there is no friction, and we have something
which could oscillate by itself. If we tapped the pendulum just right
each time it went by, of course we could make it go like mad. But if
we close our eyes and do not watch it, and tap at arbitrary equal
intervals, what is going to happen? Sometimes we will find ourselves
tapping when it is going the wrong way. When we happen to have the
timing just right, of course, each tap is given at just the right
time, and so it goes higher and higher and higher. So without friction
we get a curve which looks like the solid curve in Fig. 25–5
for different frequencies. Qualitatively, we understand the resonance
curve; in order to get the exact shape of the curve it is probably just
as well to do the mathematics. The curve goes toward infinity
as ω→ω0[image: -*-], where ω0[image: -*-] is the natural frequency of the
oscillator.



[image: -][image: -]
Fig. 25–5. Resonance curves with various amounts of friction present.





Now suppose there is a little bit of friction; then when the
displacement of the oscillator is small, the friction does not affect
it much; the resonance curve is the same, except when we are near
resonance. Instead of becoming infinite near resonance, the curve is
only going to get so high that the work done by our tapping each time
is enough to compensate for the loss of energy by friction during the
cycle. So the top of the curve is rounded off—it does not go to
infinity. If there is more friction, the top of the curve is rounded
off still more. Now someone might say, “I thought the widths of the
curves depended on the friction.” That is because the curve is
usually plotted so that the top of the curve is called one
unit. However, the mathematical expression is even simpler to
understand if we just plot all the curves on the same scale; then all
that happens is that the friction cuts down the top! If there is less
friction, we can go farther up into that little pinnacle before the
friction cuts it off, so it looks relatively narrow. That is, the
higher the peak of the curve, the narrower the width at half the
maximum height.




Finally, we take the case where there is an enormous amount of
friction. It turns out that if there is too much friction, the system
does not oscillate at all. The energy in the spring is barely able to
move it against the frictional force, and so it slowly oozes down to
the equilibrium point.







25–4 Analogs in physics


The next aspect of this review is to note that masses and springs are
not the only linear systems; there are others. In particular, there
are electrical systems called linear circuits, in which we find a
complete analog to mechanical systems. We did not learn exactly
why each of the objects in an electrical circuit works in the
way it does—that is not to be understood at the present moment; we
may assert it as an experimentally verifiable fact that they behave as
stated.




For example, let us take the simplest possible circumstance. We have a
piece of wire, which is just a resistance, and we have applied to it a
difference in potential, V[image: -*-]. Now the V[image: -*-] means this: if we carry a
charge q[image: -*-] through the wire from one terminal to another terminal, the
work done is q V[image: -*-]. The higher the voltage difference, the more work
was done when the charge, as we say, “falls” from the high potential
end of the terminal to the low potential end. So charges release
energy in going from one end to the other. Now the charges do not
simply fly from one end straight to the other end; the atoms in the
wire offer some resistance to the current, and this resistance obeys
the following law for almost all ordinary substances: if there is a
current I[image: -*-], that is, so and so many charges per second tumbling down,
the number per second that comes tumbling through the wire is
proportional to how hard we push them—in other words, proportional
to how much voltage there is:

[image: -*-][image: -*-]
(25.11)




The coefficient R[image: -*-] is called the resistance, and the equation is
called Ohm’s Law. The unit of
resistance is the
ohm; it is equal to one volt per ampere. In mechanical
situations, to get such a frictional force in proportion to the velocity
is difficult; in an electrical system it is very easy, and this law is
extremely accurate for most metals.





We are often interested in how much work is done per second, the power
loss, or the energy liberated by the charges as they tumble down the
wire. When we carry a charge q[image: -*-] through a voltage V[image: -*-], the work
is q V[image: -*-], so the work done per second would be V (d q/d t)[image: -*-], which is the
same as V I[image: -*-], or also I R⋅I=I2 R[image: -*-]. This is called the
heating loss—this is how much heat is generated in the
resistance per second, by the conservation of energy. It is this heat
that makes an ordinary incandescent light bulb work.




Of course, there are other interesting properties of mechanical systems,
such as the mass (inertia), and it turns out that there is an electrical
analog to inertia also. It is possible to make something called an
inductor, having a property called
inductance, such that a current, once started through the
inductance, does not want to stop. It requires a voltage in order
to change the current! If the current is constant, there is no voltage
across an inductance. dc circuits do not know anything about
inductance; it is only when we change the current that the
effects of inductance show up. The equation is

[image: -*-][image: -*-]
(25.12)




and the unit of inductance, called the henry, is such that one volt applied to an inductance of one henry
produces a change of one ampere per second in the current.
Equation (25.12) is the analog of Newton’s law for
electricity, if we wish: V[image: -*-] corresponds to F[image: -*-], L[image: -*-] corresponds to m[image: -*-],
and I[image: -*-] corresponds to velocity! All of the consequent equations for the
two kinds of systems will have the same derivations because, in all the
equations, we can change any letter to its corresponding analog letter
and we get the same equation; everything we deduce will have a
correspondence in the two systems.




Now what electrical thing corresponds to the mechanical spring, in
which there was a force proportional to the stretch? If we start with
F=k x[image: -*-] and replace F→V[image: -*-] and x→q[image: -*-], we get V=α q[image: -*-]. It
turns out that there is such a thing, in fact it is the only
one of the three circuit elements we can really understand, because we
did study a pair of parallel plates, and we found that if there were a
charge of certain equal, opposite amounts on each plate, the electric
field between them would be proportional to the size of the charge. So
the work done in moving a unit charge across the gap from one plate to
the other is precisely proportional to the charge. This work is the
definition of the voltage difference, and it is the line
integral of the electric field from one plate to another. It turns
out, for historical reasons, that the constant of proportionality is
not called C[image: -*-], but 1/C[image: -*-]. It could have been called C[image: -*-], but it was
not. So we have

[image: -*-][image: -*-]
(25.13)




The unit of capacitance, C[image: -*-], is the farad; a
charge of one coulomb on each plate of a one-farad capacitor yields a
voltage difference of one volt.





There are our analogies, and the equation corresponding to the
oscillating circuit becomes the following, by direct substitution of
L[image: -*-] for m[image: -*-], q[image: -*-] for x[image: -*-], etc:

[image: -*-][image: -*-]
(25.14)

(25.15)




Now everything we learned about (25.14) can be transformed
to apply to (25.15). Every consequence is the same;
so much the same that there is a brilliant thing we can do.




Suppose we have a mechanical system which is quite complicated, not
just one mass on a spring, but several masses on several springs, all
hooked together. What do we do? Solve it? Perhaps; but look, we can
make an electrical circuit which will have the same equations
as the thing we are trying to analyze! For instance, if we wanted to
analyze a mass on a spring, why can we not build an electrical circuit
in which we use an inductance proportional to the mass, a resistance
proportional to the corresponding m γ[image: -*-], 1/C[image: -*-] proportional
to k[image: -*-], all in the same ratio? Then, of course, this electrical circuit
will be the exact analog of our mechanical one, in the sense that
whatever q[image: -*-] does, in response to V[image: -*-] (V[image: -*-] also is made to correspond
to the forces that are acting), so the x[image: -*-] would do in response to the
force!  So if we have a complicated thing with a whole lot of
interconnecting elements, we can interconnect a whole lot of
resistances, inductances, and capacitances, to imitate the
mechanically complicated system. What is the advantage to that? One
problem is just as hard (or as easy) as the other, because they are
exactly equivalent. The advantage is not that it is any easier to
solve the mathematical equations after we discover that we have
an electrical circuit (although that is the method used by
electrical engineers!), but instead, the real reason for looking at
the analog is that it is easier to make the electrical circuit,
and to change something in the system.




Suppose we have designed an automobile, and want to know how much it
is going to shake when it goes over a certain kind of bumpy road. We
build an electrical circuit with inductances to represent the inertia
of the wheels, spring constants as capacitances to represent the
springs of the wheels, and resistors to represent the shock absorbers,
and so on for the other parts of the automobile. Then we need a bumpy
road. All right, we apply a voltage from a generator, which
represents such and such a kind of bump, and then look at how the left
wheel jiggles by measuring the charge on some capacitor. Having
measured it (it is easy to do), we find that it is bumping too
much. Do we need more shock absorber, or less shock absorber? With a
complicated thing like an automobile, do we actually change the shock
absorber, and solve it all over again? No!, we simply turn a dial;
dial number ten is shock absorber number three, so we put in more
shock absorber. The bumps are worse—all right, we try less. The
bumps are still worse; we change the stiffness of the spring
(dial 17[image: -*-]), and we adjust all these things electrically, with merely
the turn of a knob.




This is called an analog computer.
It is a device which
imitates the problem that we want to solve by making another problem,
which has the same equation, but in another circumstance of nature,
and which is easier to build, to measure, to adjust, and to destroy!







25–5 Series and parallel impedances


Finally, there is an important item which is not quite in the nature
of review. This has to do with an electrical circuit in which there is
more than one circuit element. For example, when we have an inductor,
a resistor, and a capacitor connected as in Fig. 24–2,
we note that all the charge went through every one of the three, so
that the current in such a singly connected thing is the same at all
points along the wire. Since the current is the same in each one, the
voltage across R[image: -*-] is I R[image: -*-], the voltage across L[image: -*-] is L (d I/d t)[image: -*-], and
so on. So, the total voltage drop is the sum of these, and this leads
to Eq. (25.15). Using complex numbers, we found that we
could solve the equation for the steady-state motion in response to a
sinusoidal force. We thus found that [image: \hat{V}= \hat{Z}\hat{I}][image: \hat{V}= \hat{Z}\hat{I}]. Now
[image: \hat{Z}][image: \hat{Z}] is called the impedance of this particular circuit. It
tells us that if we apply a sinusoidal voltage, [image: \hat{V}][image: \hat{V}], we get a
current [image: \hat{I}][image: \hat{I}].



[image: -][image: -][image: -][image: -]
Fig. 25–6. Two impedances, connected in series and in parallel.





Now suppose we have a more complicated circuit which has two pieces,
which by themselves have certain impedances, [image: \hat{Z}_1][image: \hat{Z}_1]
and [image: \hat{Z}_2][image: \hat{Z}_2] and we put them in series (Fig. 25–6a)
and apply a voltage. What happens?  It is now a little more complicated,
but if [image: \hat{I}][image: \hat{I}] is the current through [image: \hat{Z}_1][image: \hat{Z}_1], the voltage
difference across [image: \hat{Z}_1][image: \hat{Z}_1], is [image: \hat{V}_1=\hat{I}\hat{Z}_1][image: \hat{V}_1=\hat{I}\hat{Z}_1];
similarly, the voltage across [image: \hat{Z}_2][image: \hat{Z}_2]
is [image: \hat{V}_2=\hat{I}\hat{Z}_2][image: \hat{V}_2=\hat{I}\hat{Z}_2]. The same current goes through both.
Therefore the total voltage is the sum of the voltages across the two
sections and is equal to [image: \hat{V}= \hat{V}_1 + \hat{V}_2 =(\hat{Z}_1 + \hat{Z}_2)\hat{I}][image: \hat{V}= \hat{V}_1 + \hat{V}_2 =(\hat{Z}_1 + \hat{Z}_2)\hat{I}]. This means that the voltage on the complete circuit
can be written [image: \hat{V}=\hat{I}\hat{Z}_s][image: \hat{V}=\hat{I}\hat{Z}_s], where the [image: \hat{Z}_s][image: \hat{Z}_s] of the
combined system in series is the sum of the two [image: \hat{Z}][image: \hat{Z}]’s of the
separate pieces:

[image: -*-][image: -*-]
(25.16)







This is not the only way things may be connected. We may also connect
them in another way, called a parallel connection
(Fig. 25–6b). Now we see that a given voltage across the
terminals, if the connecting wires are perfect conductors, is
effectively applied to both of the impedances, and will cause currents
in each independently. Therefore the current through [image: \hat{Z}_1][image: \hat{Z}_1] is
equal to [image: \hat{I}_1 = \hat{V}/\hat{Z}_1][image: \hat{I}_1 = \hat{V}/\hat{Z}_1]. The current in [image: \hat{Z}_2][image: \hat{Z}_2]
is [image: \hat{I}_2 = \hat{V}/\hat{Z}_2][image: \hat{I}_2 = \hat{V}/\hat{Z}_2]. It is the same voltage. Now the
total current which is supplied to the terminals is the sum of
the currents in the two sections: [image: \hat{I}= \hat{V}/\hat{Z}_1 + \hat{V}/\hat{Z}_2][image: \hat{I}= \hat{V}/\hat{Z}_1 + \hat{V}/\hat{Z}_2]. This can be written as

[image: -*-][image: -*-]


Thus

[image: -*-][image: -*-]
(25.17)







More complicated circuits can sometimes be simplified by taking pieces of them,
working out the succession of impedances of the pieces, and combining the
circuit together step by step, using the above rules. If we have any kind of
circuit with many impedances connected in all kinds of ways, and if we include
the voltages in the form of little generators having no impedance (when we pass
charge through it, the generator adds a voltage V[image: -*-]), then the following
principles apply: (1) At any junction, the sum of the currents into a junction
is zero. That is, all the current which comes in must come back out. (2) If we
carry a charge around any loop, and back to where it started, the net work done
is zero. These rules are called Kirchhoff’s
laws for electrical circuits. Their systematic
application to complicated circuits often simplifies the analysis of such
circuits. We mention them here in conjunction with Eqs.
(25.16) and (25.17), in case you have already come across
such circuits that you need to analyze in laboratory work. They will be
discussed again in more detail next year.







	
  
  Solutions which cannot be
expressed as linear combinations of each other are called
independent.
  ↩


	
  
  In modern
superheterodyne receivers the actual operation is more complex. The
amplifiers are all tuned to a fixed frequency (called IF frequency)
and an oscillator of variable tunable frequency is combined with the
input signal in a nonlinear circuit to produce a new frequency
(the difference of signal and oscillator frequency) equal to the IF
frequency, which is then amplified. This will be discussed in
Chapter 50.
  ↩






  
    
                
                    26 Optics: The Principle of Least Time

                
                    
                        26–1 Light

                    
                        This is the first of a number of chapters on the subject of
                        electromagnetic radiation. Light, with which we
                        see, is only one small part of a vast spectrum of the same kind of
                        thing, the various parts of this spectrum being distinguished by
                        different values of a certain quantity which varies. This variable
                        quantity could be called the “wavelength.” As it
                        varies in the visible spectrum, the light apparently changes color from
                        red to violet. If we explore the spectrum systematically, from long
                        wavelengths toward shorter ones, we would begin with what are usually
                        called radiowaves. Radiowaves are technically available in a wide
                        range of wavelengths, some even longer than those used in regular
                        broadcasts; regular broadcasts have wavelengths corresponding to about
                        500[image: -*-] meters. Then there are the so-called “short waves,” i.e., radar
                        waves, millimeter waves, and so on. There are no actual boundaries
                        between one range of wavelengths and another, because nature did not
                        present us with sharp edges. The number associated with a given name for
                        the waves are only approximate and, of course, so are the names we give
                        to the different ranges.

                    

                    
                        Then, a long way down through the millimeter waves, we come to what we
                        call the infrared, and thence to the visible
                        spectrum. Then going in the other direction, we get into a region which
                        is called the ultraviolet. Where the ultraviolet
                        stops, the x-rays begin, but we
                        cannot define precisely where this is; it is roughly at 10−8[image: -*-] m, or
                        10−2[image: -*-] μ[image: -*-]m. These are “soft” x-rays; then there are ordinary
                        x-rays and very hard x-rays; then γ[image: -*-]-rays, and so on, for smaller
                        and smaller values of this dimension called the wavelength.
                        

                    

                    
                        Within this vast range of wavelengths, there are three or more regions
                        of approximation which are especially interesting. In one of these, a
                        condition exists in which the wavelengths involved are very small
                        compared with the dimensions of the equipment available for their
                        study; furthermore, the photon energies, using the quantum theory, are
                        small compared with the energy sensitivity of the equipment. Under
                        these conditions we can make a rough first approximation by a method
                        called geometrical optics. If, on the other hand, the
                        wavelengths are comparable to the dimensions of the equipment, which is
                        difficult to arrange with visible light but easier with radiowaves, and
                        if the photon energies are still negligibly small, then a very useful
                        approximation can be made by studying the behavior of the waves, still
                        disregarding the quantum mechanics. This method is based on the
                        classical theory of electromagnetic radiation, which will be
                        discussed in a later chapter. Next, if we go to very short wavelengths,
                        where we can disregard the wave character but the photons have a very
                        large energy compared with the sensitivity of our equipment,
                        things get simple again. This is the simple photon picture, which
                        we will describe only very roughly. The complete picture, which unifies
                        the whole thing into one model, will not be available to us for a long
                        time.

                    

                    
                        In this chapter our discussion is limited to the geometrical optics
                        region, in which we forget about the wavelength and the photon
                        character of the light, which will all be explained in due time. We do
                        not even bother to say what the light is, but just find out
                        how it behaves on a large scale compared with the dimensions of
                        interest. All this must be said in order to emphasize the fact that
                        what we are going to talk about is only a very crude approximation;
                        this is one of the chapters that we shall have to “unlearn”
                        again. But we shall very quickly unlearn it, because we shall almost
                        immediately go on to a more accurate method.

                    

                    
                        Although geometrical optics is just an approximation, it is of very
                        great importance technically and of great interest historically. We
                        shall present this subject more historically than some of the others
                        in order to give some idea of the development of a physical theory or
                        physical idea.

                    

                    
                        First, light is, of course, familiar to everybody, and has been
                        familiar since time immemorial. Now one problem is, by what process do
                        we see light? There have been many theories, but it finally
                        settled down to one, which is that there is something which enters the
                        eye—which bounces off objects into the eye. We have heard that idea
                        so long that we accept it, and it is almost impossible for us to
                        realize that very intelligent men have proposed contrary
                        theories—that something comes out of the eye and feels for the
                        object, for example. Some other important observations are that, as
                        light goes from one place to another, it goes in straight
                            lines, if there is nothing in the way, and that the rays do not seem
                        to interfere with one another. That is, light is crisscrossing in all
                        directions in the room, but the light that is passing across our line
                        of vision does not affect the light that comes to us from some
                        object. This was once a most powerful argument against the corpuscular
                        theory; it was used by Huygens.
                        If light were like a lot of arrows shooting along, how could other
                        arrows go through them so easily? Such philosophical arguments are not
                        of much weight. One could always say that light is made up of arrows
                        which go through each other!

                    

                

                
                    
                        26–2 Reflection and refraction

                    [image: -][image: -]
                            Fig. 26–1. The angle of incidence is equal to the angle of reflection.
                        

                    

                    
                        The discussion above gives enough of the basic idea of
                        geometrical optics—now we have to go a little further into the
                        quantitative features. Thus far we have light going only in straight
                        lines between two points; now let us study the behavior of light when
                        it hits various materials. The simplest object is a mirror, and the
                        law for a mirror is that when the light hits the mirror, it does not
                        continue in a straight line, but bounces off the mirror into a new
                        straight line, which changes when we change the inclination of the
                        mirror. The question for the ancients was, what is the relation
                        between the two angles involved? This is a very simple relation,
                        discovered long ago. The light striking a mirror travels in such a way
                        that the two angles, between each beam and the mirror, are equal. For
                        some reason it is customary to measure the angles from the normal to
                        the mirror surface. Thus the so-called law of reflection is
                        
[image: -*-][image: -*-]
(26.1)




                        

                    

                    
                        That is a simple enough proposition, but a more difficult problem is
                        encountered when light goes from one medium into another, for example
                        from air into water; here also, we see that it does not go in a
                        straight line. In the water the ray is at an inclination to its path
                        in the air; if we change the angle θi[image: -*-] so that it comes down
                        more nearly vertically, then the angle of “breakage” is not as
                        great. But if we tilt the beam of light at quite an angle, then the
                        deviation angle is very large.  The question is, what is the relation
                        of one angle to the other? This also puzzled the ancients for a long
                        time, and here they never found the answer! It is, however, one of the
                        few places in all of Greek physics that one may find any experimental
                        results listed. Claudius
                        Ptolemy
                        made a list of the angle in water for each of a number of
                        different angles in air. Table 26–1 shows the angles in the
                        air, in degrees, and the corresponding angle as measured in the water.
                        (Ordinarily it is said that Greek scientists never did any experiments.
                        But it would be impossible to obtain this table of values without
                        knowing the right law, except by experiment. It should be noted,
                        however, that these do not represent independent careful measurements
                        for each angle but only some numbers interpolated from a few
                        measurements, for they all fit perfectly on a parabola.)

                    

                    [image: -][image: -]
                            Fig. 26–2. A light ray is refracted when it passes from one medium into
                            another.
                        

                    

                    
                                                           
                                     
                                        
                                            Table 26–1. 
                                        

                                        
                                    [image: --][image: --]

                                    
                    
                        This, then, is one of the important steps in the development of
                        physical law: first we observe an effect, then we measure it and list
                        it in a table; then we try to find the rule by which one thing
                        can be connected with another. The above numerical table was made in
                        140 a.d., but it was not until 1621 that someone finally
                        found the rule connecting the two angles! The rule, found by
                        Willebrord Snell, a Dutch
                        mathematician, is as follows: if θi[image: -*-] is the angle in air and
                        θr[image: -*-] is the angle in the water, then it turns out that the sine
                        of θi[image: -*-] is equal to some constant multiple of the sine of θr[image: -*-]:
                        
[image: -*-][image: -*-]
(26.2)




                        For water the number n[image: -*-] is approximately 1.33[image: -*-].
                        Equation (26.2) is called Snell’s
                            law; it permits us to predict how the
                        light is going to bend when it goes from air into water.
                        Table 26–2 shows the angles in air and in water according to
                        Snell’s law. Note the remarkable agreement with
                        Ptolemy’s list.

                    

                    
                                 
                                        
                                            Table 26–2. 
                                        

                                        
                                    [image: --][image: --]

                
                

                
                    
                        26–3 Fermat’s principle of least time

                    
                        Now in the further development of science, we want more than just a
                        formula. First we have an observation, then we have numbers that we
                        measure, then we have a law which summarizes all the numbers. But the
                        real glory of science is that we can find a way of
                            thinking such that the law is evident.

                    

                    
                        The first way of thinking that made the law about the behavior of
                        light evident was discovered by
                        Fermat
                        in about 1650, and it is called the principle of least
                            time, or Fermat’s principle. His idea
                        is this: that out of all possible paths that it might take to get from
                        one point to another, light takes the path which requires the
                        shortest time.

                    

                    
                        Let us first show that this is true for the case of the mirror, that
                        this simple principle contains both the law
                        of straight-line propagation and the law for the mirror. So, we are
                        growing in our understanding! Let us try to find the solution to the
                        following problem. In Fig. 26–3 are shown two points,
                        A[image: -*-] and B[image: -*-], and a plane mirror, M M′[image: -*-]. What is the way to get from
                        A[image: -*-] to B[image: -*-] in the shortest time?  The answer is to go straight from
                        A[image: -*-] to B[image: -*-]! But if we add the extra rule that the light has
                        to strike the mirror and come back in the shortest time, the
                        answer is not so easy. One way would be to go as quickly as possible
                        to the mirror and then go to B[image: -*-], on the path A D B[image: -*-]. Of course, we
                        then have a long path D B[image: -*-]. If we move over a little to the right,
                        to E[image: -*-], we slightly increase the first distance, but we greatly
                        decrease the second one, and so the total path length, and
                        therefore the travel time, is less. How can we find the point C[image: -*-] for
                        which the time is the shortest? We can find it very nicely by a
                        geometrical trick.

                    

                    [image: -][image: -]
                            Fig. 26–3. Illustration of the principle of least time.
                        

                    

                    
                        We construct on the other side of M M′[image: -*-] an artificial point B′[image: -*-],
                        which is the same distance below the plane M M′[image: -*-] as the point B[image: -*-] is
                        above the plane. Then we draw the line E B′[image: -*-]. Now because B F M[image: -*-] is a
                        right angle and B F=F B′[image: -*-], E B[image: -*-] is equal to E B′[image: -*-]. Therefore the sum
                        of the two distances, A E+E B[image: -*-], which is proportional to the time it
                        will take if the light travels with constant velocity, is also the sum
                        of the two lengths A E+E B′[image: -*-]. Therefore the problem becomes, when is
                        the sum of these two lengths the least? The answer is easy: when the
                        line goes through point C[image: -*-] as a straight line from A[image: -*-]
                        to B′[image: -*-]! In other words, we have to find the point where we go toward the
                        artificial point, and that will be the correct one. Now if A C B′[image: -*-] is a
                        straight line, then angle B C F[image: -*-] is equal to angle B′ C F[image: -*-] and thence to
                        angle A C M[image: -*-]. Thus the statement that the angle of
                        incidence equals
                        the angle of reflection is equivalent to the
                        statement that the light goes to the mirror in such a way that it comes
                        back to the point B[image: -*-] in the least possible time. Originally, the
                        statement was made by Hero of Alexandria that the light travels in such
                        a way that it goes to the mirror and to the other point in the shortest
                        possible distance, so it is not a modern theory. It was this that
                        inspired Fermat to suggest to
                        himself that perhaps refraction operated on a similar basis. But for
                        refraction, light obviously does not use the path of shortest
                        distance, so Fermat tried
                        the idea that it takes the shortest time.

                    

                    
                        Before we go on to analyze refraction, we should make one more remark
                        about the mirror. If we have a source of light at the point B[image: -*-] and it
                        sends light toward the mirror, then we see that the light which goes
                        to A[image: -*-] from the point B[image: -*-] comes to A[image: -*-] in exactly the same manner as
                        it would have come to A[image: -*-] if there were an object at B′[image: -*-], and
                        no mirror. Now of course the eye detects only the light which
                        enters it physically, so if we have an object at B[image: -*-] and a mirror
                        which makes the light come into the eye in exactly the same manner as
                        it would have come into the eye if the object were at B′[image: -*-], then the
                        eye-brain system interprets that, assuming it does not know too much,
                        as being an object at B′[image: -*-]. So the illusion that there is an
                        object behind the mirror is merely due to the fact that the light
                        which is entering the eye is entering in exactly the same manner,
                        physically, as it would have entered had there been an object
                        back there (except for the dirt on the mirror, and our knowledge of
                        the existence of the mirror, and so on, which is corrected in the
                        brain).

                    

                    
                        Now let us demonstrate that the principle of
                        least time will give Snell’s law of
                        refraction. We must, however, make an assumption about the speed of
                        light in water. We shall assume that the speed of light in water is
                        lower than the speed of light in air by a certain factor, n[image: -*-].
                        

                    

                    [image: -][image: -]
                            Fig. 26–4. Illustration of Fermat’s principle for refraction.
                        

                    

                    [image: -][image: -]
                            Fig. 26–5. The minimum time corresponds to point C[image: -*-], but nearby points
                            correspond to nearly the same time.
                        

                    

                    
                        In Fig. 26–4, our problem is again to go from A[image: -*-] to B[image: -*-]
                        in the shortest time. To illustrate that the best thing to do
                        is not just to go in a straight line, let us imagine that a beautiful
                        girl has fallen out of a boat, and she is screaming for help in the
                        water at point B[image: -*-]. The line marked x[image: -*-] is the shoreline. We are at
                        point A[image: -*-] on land, and we see the accident, and we can run and can
                        also swim. But we can run faster than we can swim. What do we do? Do
                        we go in a straight line? (Yes, no doubt!) However, by using a little
                        more intelligence we would realize that it would be advantageous to
                        travel a little greater distance on land in order to decrease the
                        distance in the water, because we go so much slower in the
                        water. (Following this line of reasoning out, we would say the right
                        thing to do is to compute very carefully what should be done!)
                        At any rate, let us try to show that the final solution to the problem
                        is the path A C B[image: -*-], and that this path takes the shortest time of all
                        possible ones. If it is the shortest path, that means that if we take
                        any other, it will be longer. So, if we were to plot the time it takes
                        against the position of point X[image: -*-], we would get a curve something like
                        that shown in Fig. 26–5, where point C[image: -*-] corresponds to
                        the shortest of all possible times. This means that if we move the
                        point X[image: -*-] to points near C[image: -*-], in the first approximation there
                        is essentially no change in time because the slope is zero at
                        the bottom of the curve. So our way of finding the law will be to
                        consider that we move the place by a very small amount, and to demand
                        that there be essentially no change in time. (Of course there is an
                        infinitesimal change of a second order; we ought to have a
                        positive increase for displacements in either direction from C[image: -*-].) So
                        we consider a nearby point X[image: -*-] and we calculate how long it would take
                        to go from A[image: -*-] to B[image: -*-] by the two paths, and compare the new path with
                        the old path. It is very easy to do. We want the difference, of
                        course, to be nearly zero if the distance X C[image: -*-] is short. First, look
                        at the path on land. If we draw a perpendicular X E[image: -*-], we see that this
                        path is shortened by the amount E C[image: -*-]. Let us say we gain by not having
                        to go that extra distance. On the other hand, in the water, by drawing
                        a corresponding perpendicular, C F[image: -*-], we find that we have to go the
                        extra distance X F[image: -*-], and that is what we lose. Or, in time, we
                        gain the time it would have taken to go the distance E C[image: -*-], but we lose
                        the time it would have taken to go the distance X F[image: -*-]. Those times must
                        be equal since, in the first approximation, there is to be no change
                        in time. But supposing that in the water the speed is 1/n[image: -*-] times as
                        fast as in air, then we must have
                        
[image: -*-][image: -*-]
(26.3)




                        Therefore we see that when we have the right point, X C sinE X C=n⋅X C sinX C F[image: -*-] or, cancelling the common hypotenuse length X C[image: -*-]
                        and noting that
                        
                        
                        
[image: -*-][image: -*-]


                       
                        we have
                        
[image: -*-][image: -*-]
(26.4)




                        So we see that to get from one point to another in the least time when
                        the ratio of speeds is n[image: -*-], the light should enter at such an angle
                        that the ratio of the sines of the angles θi[image: -*-] and θr[image: -*-] is
                        the ratio of the speeds in the two media.

                    

                

                
                    
                        26–4 Applications of Fermat’s principle

                    
                        Now let us consider some of the interesting consequences of the
                        principle of least time. First is the
                        principle of reciprocity. If to go from A[image: -*-]
                        to B[image: -*-] we have found the path of the least time, then to go in the
                        opposite direction (assuming that light goes at the same speed in any
                        direction), the shortest time will be the same path, and therefore, if
                        light can be sent one way, it can be sent the other way.
                        

                    

                    [image: -][image: -]
                            Fig. 26–6. A beam of light is offset as it passes through a transparent
                            block.
                        

                    

                    
                        An example of interest is a glass block with plane parallel faces, set
                        at an angle to a light beam. Light, in going through the block from a
                        point A[image: -*-] to a point B[image: -*-] (Fig. 26–6) does not go through
                        in a straight line, but instead it decreases the time in the block by
                        making the angle in the block less inclined, although it loses a
                        little bit in the air. The beam is simply displaced parallel to itself
                        because the angles in and out are the same.

                    

                    [image: -][image: -]
                            Fig. 26–7. Near the horizon, the apparent sun is higher than the true
                            sun by about 1/2[image: -*-] degree.
                        

                    

                    
                        A third interesting phenomenon is the fact that when we see the sun
                        setting, it is already below the horizon! It does not look as
                        though it is below the horizon, but it is (Fig. 26–7). The
                        earth’s atmosphere is thin at the top and dense at the bottom. Light
                        travels more slowly in air than it does in a vacuum, and so the light of
                        the sun can get to point S[image: -*-] beyond the horizon more quickly if, instead
                        of just going in a straight line, it avoids the dense regions where it
                        goes slowly by getting through them at a steeper tilt. When it appears
                        to go below the horizon, it is actually already well below the horizon.
                        Another example of this phenomenon is the mirage that one often sees
                        while driving on hot roads. One sees “water” on the road, but when he
                        gets there, it is as dry as the desert! The phenomenon is the following.
                        What we are really seeing is the sky light “reflected” on the road:
                        light from the sky, heading for the road, can end up in the eye, as
                        shown in Fig. 26–8. Why? The air is very hot just above
                        the road but it is cooler up higher. Hotter air is more expanded than
                        cooler air and is thinner, and this decreases the speed of light less.
                        That is to say, light goes faster in the hot region than in the cool
                        region. Therefore, instead of the light deciding to come in the
                        straightforward way, it also has a least-time path by which it goes into
                        the region where it goes faster for awhile, in order to save time. So,
                        it can go in a curve.

                    

                    [image: -][image: -]
                            Fig. 26–8. A mirage.
                        

                    

                    
                        As another important example of the principle of least time, suppose that we would like to arrange a
                        situation where we have all the light that comes out of one point,
                        P[image: -*-], collected back together at another point, P′[image: -*-]
                        (Fig. 26–9). That means, of course, that the light can go in
                        a straight line from P[image: -*-] to P′[image: -*-]. That is all right. But how can we
                        arrange that not only does it go straight, but also so that the light
                        starting out from P[image: -*-] toward Q[image: -*-] also ends up at P′[image: -*-]? We want to bring
                        all the light back to what we call a focus. How? If the light
                        always takes the path of least time, then certainly it should not want
                        to go over all these other paths. The only way that the light can be
                        perfectly satisfied to take several adjacent paths is to make those
                        times exactly equal!  Otherwise, it would select the one of least
                        time. Therefore the problem of making a focusing system is merely to
                        arrange a device so that it takes the same time for the light to go on
                        all the different paths!

                    

                    [image: -][image: -]
                            Fig. 26–9. An optical “black box.”
                        

                    

                    
                        This is easy to do. Suppose that we had a piece of glass in which
                        light goes slower than it does in the air (Fig. 26–10). Now
                        consider a ray which goes in air in the path P Q P′[image: -*-]. That is a longer
                        path than from P[image: -*-] directly to P′[image: -*-] and no doubt takes a longer time.
                        But if we were to insert a piece of glass of just the right thickness
                        (we shall later figure out how thick) it might exactly compensate the
                        excess time that it would take the light to go at an angle! In those
                        circumstances we can arrange that the time the light takes to go
                        straight through is the same as the time it takes to go in the
                        path P Q P′[image: -*-]. Likewise, if we take a ray P R R′ P′[image: -*-] which is partly inclined, it
                        is not quite as long as P Q P′[image: -*-], and we do not have to compensate as much
                        as for the straight one, but we do have to compensate somewhat. We end
                        up with a piece of glass that looks like Fig. 26–10. With
                        this shape, all the light which comes from P[image: -*-] will go to P′[image: -*-]. This, of
                        course, is well known to us, and we call such a device a converging
                        lens. In the next chapter we shall actually calculate what shape
                        the lens has to have to make a perfect focus.

                    

                    [image: -][image: -]
                            Fig. 26–10. A focusing optical system.
                        

                    

                    
                        Take another example: suppose we wish to arrange some mirrors so that
                        the light from P[image: -*-] always goes to P′[image: -*-] (Fig. 26–11). On
                        any path, it goes to some mirror and comes back, and all times must be
                        equal. Here the light always travels in air, so the time and the
                        distance are proportional. Therefore the statement that all the times
                        are the same is the same as the statement that the total distance is
                        the same. Thus the sum of the two distances r1[image: -*-] and r2[image: -*-] must be a
                        constant. An ellipse is that curve which has the property that
                        the sum of the distances from two points is a constant for every point
                        on the ellipse; thus we can be sure that the light from one focus will
                        come to the other.

                    

                    [image: -][image: -]
                            Fig. 26–11. An ellipsoidal mirror.
                        

                    

                    
                        The same principle works for gathering the light of a star. The great
                        200[image: -*-]-inch Palomar telescope is built on the following
                        principle. Imagine a star billions of miles away; we would like to
                        cause all the light that comes in to come to a focus. Of course we
                        cannot draw the rays that go all the way up to the star, but we still
                        want to check whether the times are equal. Of course we know that when
                        the various rays have arrived at some plane K K′[image: -*-], perpendicular to
                        the rays, all the times in this plane are equal
                        (Fig. 26–12). The rays must then come down to the mirror and
                        proceed toward P′[image: -*-] in equal times. That is, we must find a curve which
                        has the property that the sum of the distances X X′+X′ P′[image: -*-] is a
                        constant, no matter where X[image: -*-] is chosen. An easy way to find it is to
                        extend the length of the line X X′[image: -*-] down to a plane L L′[image: -*-]. Now if we
                        arrange our curve so that A′ A′′=A′ P′[image: -*-], B′ B′′=B′ P′[image: -*-], C′ C′′=C′ P′[image: -*-], and so on, we will have our curve, because then of course, A A′+A′ P′=A A′+A′ A′′[image: -*-] will be constant. Thus our curve is the locus of all
                        points equidistant from a line and a point. Such a curve is called a
                        parabola; the mirror is made in the shape of a parabola.

                    

                    [image: -][image: -]
                            Fig. 26–12. A paraboloidal mirror.
                        

                    

                    
                        The above examples illustrate the principle upon which such optical
                        devices can be designed. The exact curves can be calculated using the
                        principle that, to focus perfectly, the travel times must be exactly
                        equal for all light rays, as well as being less than for any other
                        nearby path.

                    

                    
                        We shall discuss these focusing optical devices further in the next
                        chapter; let us now discuss the further development of the
                        theory. When a new theoretical principle is developed, such as the
                        principle of least time, our first
                        inclination might be to say, “Well, that is very pretty; it is
                        delightful; but the question is, does it help at all in understanding
                        the physics?” Someone may say, “Yes, look at how many things we can
                        now understand!” Another says, “Very well, but I can understand
                        mirrors, too. I need a curve such that every tangent plane makes equal
                        angles with the two rays. I can figure out a lens, too, because every
                        ray that comes to it is bent through an angle given by Snell’s
                        law.” Evidently the statement of least time
                        and the statement that angles are equal on reflection, and that the
                        sines of the angles are proportional on refraction, are the same. So is
                        it merely a philosophical question, or one of beauty?  There can be
                        arguments on both sides.
                        

                    

                    
                        However, the importance of a powerful principle is that it
                            predicts new things.

                    

                    
                        It is easy to show that there are a number of new things predicted by
                        Fermat’s principle. First, suppose that
                        there are three media, glass, water, and air, and we perform a
                        refraction experiment and measure the index n[image: -*-] for one medium against
                        another. Let us call n12[image: -*-] the index of air (1) against water
                        (2); n13[image: -*-] the index of air (1) against glass (3). If we
                        measured water against glass, we should find another index, which we
                        shall call n23[image: -*-]. But there is no a priori reason why there
                        should be any connection between n12[image: -*-], n13[image: -*-], and n23[image: -*-]. On
                        the other hand, according to the idea of least time, there is a
                        definite relationship. The index n12[image: -*-] is the ratio of two things,
                        the speed in air to the speed in water; n13[image: -*-] is the ratio of the
                        speed in air to the speed in glass; n23[image: -*-] is the ratio of the speed
                        in water to the speed in glass. Therefore we cancel out the air, and
                        get
                        
[image: -*-][image: -*-]
(26.5)




                        In other words, we predict that the index for a new pair of
                        materials can be obtained from the indexes of the individual
                        materials, both against air or against vacuum. So if we measure the
                        speed of light in all materials, and from this get a single number for
                        each material, namely its index relative to vacuum, called ni[image: -*-]
                        (n1[image: -*-] is the speed in vacuum relative to the speed in air, etc.),
                        then our formula is easy. The index for any two materials i[image: -*-] and j[image: -*-]
                        is
                        
[image: -*-][image: -*-]
(26.6)




                        Using only Snell’s law, there is no
                        basis for a prediction of this kind.1 But of course this prediction
                        works. The relation (26.5) was known very early, and was a
                        very strong argument for the principle of
                        least time.
                        

                    

                    
                        Another argument for the principle of least
                        time, another prediction, is that if we measure the speed of
                        light in water, it will be lower than in air. This is a prediction of
                        a completely different type. It is a brilliant prediction, because all
                        we have so far measured are angles; here we have a theoretical
                        prediction which is quite different from the observations from which
                        Fermat deduced the idea of least time. It
                        turns out, in fact, that the speed in water is slower than the
                        speed in air, by just the proportion that is needed to get the right
                        index!
                        

                    

                

                
                    
                        26–5 A more precise statement of Fermat’s principle

                    
                        Actually, we must make the statement of the principle of least time a little more accurately. It was not stated
                        correctly above. It is incorrectly called the
                        principle of least time and we have gone
                        along with the incorrect description for convenience, but we must now
                        see what the correct statement is. Suppose we had a mirror as in
                        Fig. 26–3. What makes the light think it has to go to
                        the mirror?  The path of least time is clearly A B[image: -*-]. So some
                        people might say, “Sometimes it is a maximum time.” It is not
                        a maximum time, because certainly a curved path would take a still
                        longer time!  The correct statement is the following: a ray going in a
                        certain particular path has the property that if we make a small
                        change (say a one percent shift) in the ray in any manner whatever,
                        say in the location at which it comes to the mirror, or the shape of
                        the curve, or anything, there will be no first-order change in
                        the time; there will be only a second-order change in the
                        time. In other words, the principle is that
                        light takes a path such that there are many other paths nearby which
                        take almost exactly the same time.
                        

                    

                    
                        The following is another difficulty with the principle of least time, and one which people who do not like this
                        kind of a theory could never stomach. With Snell’s theory we can
                        “understand” light. Light goes along, it sees a surface, it bends
                        because it does something at the surface. The idea of causality, that
                        it goes from one point to another, and another, and so on, is easy to
                        understand. But the principle of least time
                        is a completely different philosophical principle about the way nature
                        works. Instead of saying it is a causal thing, that when we do one
                        thing, something else happens, and so on, it says this: we set up the
                        situation, and light decides which is the shortest time, or the
                        extreme one, and chooses that path. But what does it do,
                        how does it find out? Does it smell the nearby paths,
                        and check them against each other? The answer is, yes, it does, in a
                        way. That is the feature which is, of course, not known in geometrical
                        optics, and which is involved in the idea of wavelength; the
                        wavelength tells us approximately how far away the light must
                        “smell” the path in order to check it. It is hard to demonstrate
                        this fact on a large scale with light, because the wavelengths are so
                        terribly short. But with radiowaves, say 3-cm waves, the distances
                        over which the radiowaves are checking are larger. If we have a source
                        of radiowaves, a detector, and a slit, as in Fig. 26–13,
                        the rays of course go from S[image: -*-] to D[image: -*-] because it is a straight line,
                        and if we close down the slit it is all right—they still go. But now
                        if we move the detector aside to D′[image: -*-], the waves will not go through
                        the wide slit from S[image: -*-] to D′[image: -*-], because they check several paths
                        nearby, and say, “No, my friend, those all correspond to different
                        times.”  On the other hand, if we prevent the radiation from
                        checking the paths by closing the slit down to a very narrow crack,
                        then there is but one path available, and the radiation takes it! With
                        a narrow slit, more radiation reaches D′[image: -*-] than reaches it with a wide
                        slit!

                    

                    [image: -][image: -]
                            Fig. 26–13. The passage of radiowaves through a narrow slit.
                        

                    

                    
                        One can do the same thing with light, but it is hard to demonstrate on
                        a large scale. The effect can be seen under the following simple
                        conditions. Find a small, bright light, say an unfrosted bulb in a
                        street light far away or the reflection of the sun in a curved
                        automobile bumper. Then put two fingers in front of one eye, so as to
                        look through the crack, and squeeze the light to zero very gently. You
                        will see that the image of the light, which was a little dot before,
                        becomes quite elongated, and even stretches into a long line. The
                        reason is that the fingers are very close together, and the light
                        which is supposed to come in a straight line is spread out at an
                        angle, so that when it comes into the eye it comes in from several
                        directions. Also you will notice, if you are very careful, side
                        maxima, a lot of fringes along the edges too. Furthermore, the whole
                        thing is colored. All of this will be explained in due time, but for
                        the present it is a demonstration that light does not always go in
                        straight lines, and it is one that is very easily performed.

                    

                

                
                    
                        26–6 How it works

                    
                        Finally, we give a very crude view of what actually happens, how the
                        whole thing really works, from what we now believe is the correct,
                        quantum-dynamically accurate viewpoint, but of course only
                        qualitatively described. In following the light from A[image: -*-] to B[image: -*-] in
                        Fig. 26–3, we find that the light does not seem to be in
                        the form of waves at all. Instead the rays seem to be made up of
                        photons, and they actually produce clicks in a photon counter, if we
                        are using one. The brightness of the light is proportional to the
                        average number of photons that come in per second, and what we
                        calculate is the chance that a photon gets from A[image: -*-] to B[image: -*-], say
                        by hitting the mirror. The law for that chance is the following
                        very strange one. Take any path and find the time for that path; then
                        make a complex number, or draw a little complex vector, ρ ei θ[image: -*-], whose angle θ[image: -*-] is proportional to the
                            time. The number of turns per second is the frequency of the
                        light. Now take another path; it has, for instance, a different time,
                        so the vector for it is turned through a different angle—the angle
                        being always proportional to the time. Take all the available
                        paths and add on a little vector for each one; then the answer is that
                        the chance of arrival of the photon is proportional to the square of
                        the length of the final vector, from the beginning to the end!

                    

                    [image: -][image: -]
                            Fig. 26–14. The summation of probability amplitudes for many neighboring
                            paths.
                        

                    

                    
                        Now let us show how this implies the principle of least time for a mirror. We consider all rays, all
                        possible paths A D B[image: -*-], A E B[image: -*-], A C B[image: -*-], etc., in Fig. 26–3. The
                        path A D B[image: -*-] makes a certain small contribution, but the next path, A E B[image: -*-],
                        takes a quite different time, so its angle θ[image: -*-] is quite different.
                        Let us say that point C[image: -*-] corresponds to minimum time, where if we
                        change the paths the times do not change. So for awhile the times do
                        change, and then they begin to change less and less as we get near
                        point C[image: -*-] (Fig. 26–14). So the arrows which we have to add are
                        coming almost exactly at the same angle for awhile near C[image: -*-], and then
                        gradually the time begins to increase again, and the phases go around
                        the other way, and so on. Eventually, we have quite a tight knot. The
                        total probability is the distance from one end to the other, squared.
                        Almost all of that accumulated probability occurs in the region
                            where all the arrows are in the same direction (or in the same phase).
                        All the contributions from the paths which have very different
                        times as we change the path, cancel themselves out by pointing in
                        different directions. That is why, if we hide the extreme parts of the
                        mirror, it still reflects almost exactly the same, because all we did
                        was to take out a piece of the diagram inside the spiral ends, and that
                        makes only a very small change in the light. So this is the relationship
                        between the ultimate picture of photons with a probability of arrival
                        depending on an accumulation of arrows, and the principle of least time.
                        

                    

                

                	
                    
                    Although it can be deduced
                    if the additional assumption is made that adding a layer of one
                    substance to the surface of another does not change the eventual angle
                    of refraction in the latter material.
                    ↩
                


            

  
    

27 Geometrical Optics



27–1 Introduction


In this chapter we shall discuss some elementary applications of the
ideas of the previous chapter to a number of practical devices, using
the approximation called geometrical optics. This is a most
useful approximation in the practical design of many optical systems
and instruments. Geometrical optics is either very simple or else it
is very complicated. By that we mean that we can either study it only
superficially, so that we can design instruments roughly, using rules
that are so simple that we hardly need deal with them here at all,
since they are practically of high school level, or else, if we want
to know about the small errors in lenses and similar details, the
subject gets so complicated that it is too advanced to discuss here!
If one has an actual, detailed problem in lens design, including
analysis of aberrations, then he is advised to read about the subject
or else simply to trace the rays through the various surfaces (which
is what the book tells how to do), using the law of refraction from
one side to the other, and to find out where they come out and see if
they form a satisfactory image. People have said that this is too
tedious, but today, with computing machines, it is the right way to do
it. One can set up the problem and make the calculation for one ray
after another very easily. So the subject is really ultimately quite
simple, and involves no new principles. Furthermore, it turns out that
the rules of either elementary or advanced optics are seldom
characteristic of other fields, so that there is no special reason to
follow the subject very far, with one important exception.




The most advanced and abstract theory of geometrical optics was worked
out by Hamilton, and it turns out that this has very important
applications in mechanics. It is actually even more important in
mechanics than it is in optics, and so we leave Hamilton’s theory for
the subject of advanced analytical mechanics, which is studied in the
senior year or in graduate school. So, appreciating that geometrical
optics contributes very little, except for its own sake, we now go on
to discuss the elementary properties of simple optical systems on the
basis of the principles outlined in the last chapter.



[image: -][image: -]
Figure 27–1 





In order to go on, we must have one geometrical formula, which is the
following: if we have a triangle with a small altitude h[image: -*-] and a long
base d[image: -*-], then the diagonal s[image: -*-] (we are going to need it to find the
difference in time between two different routes) is longer than the
base (Fig. 27–1). How much longer? The
difference Δ=s−d[image: -*-] can be found in a number of ways. One way is this. We
see that s2−d2=h2[image: -*-], or (s−d) (s+d)=h2[image: -*-]. But s−d=Δ[image: -*-], and s+d≈2 s[image: -*-]. Thus

[image: -*-][image: -*-]
(27.1)



This is all the geometry we need to discuss the formation of images by
curved surfaces!







27–2 The focal length of a spherical surface


The first and simplest situation to discuss is a single refracting
surface, separating two media with different indices of refraction
(Fig. 27–2). We leave the case of arbitrary indices of
refraction to the student, because ideas are always the most
important thing, not the specific situation, and the problem is easy
enough to do in any case. So we shall suppose that, on the left, the
speed is 1 and on the right it is 1/n[image: -*-], where n[image: -*-] is the index of
refraction. The light travels more slowly in the glass by a factor n[image: -*-].



[image: -][image: -]
Fig. 27–2. Focusing by a single refracting surface.





Now suppose that we have a point at O[image: -*-], at a distance s[image: -*-] from the
front surface of the glass, and another point O′[image: -*-] at a distance s′[image: -*-]
inside the glass, and we desire to arrange the curved surface in such
a manner that every ray from O[image: -*-] which hits the surface, at any
point P[image: -*-], will be bent so as to proceed toward the point O′[image: -*-]. For that to
be true, we have to shape the surface in such a way that the time it
takes for the light to go from O[image: -*-] to P[image: -*-], that is, the distance O P[image: -*-]
divided by the speed of light (the speed here is unity), plus n⋅O′ P[image: -*-], which is the time it takes to go from P[image: -*-] to O′[image: -*-], is equal to a
constant independent of the point P[image: -*-]. This condition supplies us with
an equation for determining the surface. The answer is that the
surface is a very complicated fourth-degree curve, and the student may
entertain himself by trying to calculate it by analytic geometry. It
is simpler to try a special case that corresponds to s→∞[image: -*-],
because then the curve is a second-degree curve and is more
recognizable. It is interesting to compare this curve with the
parabolic curve we found for a focusing mirror when the light is
coming from infinity.




So the proper surface cannot easily be made—to focus the light from
one point to another requires a rather complicated surface. It turns
out in practice that we do not try to make such complicated surfaces
ordinarily, but instead we make a compromise. Instead of trying to get
all the rays to come to a focus, we arrange it so that only the
rays fairly close to the axis O O′[image: -*-] come to a focus. The farther ones
may deviate if they want to, unfortunately, because the ideal surface
is complicated, and we use instead a spherical surface with the right
curvature at the axis. It is so much easier to fabricate a sphere than
other surfaces that it is profitable for us to find out what happens
to rays striking a spherical surface, supposing that only the rays
near the axis are going to be focused perfectly. Those rays which are
near the axis are sometimes called paraxial rays, and what we are analyzing are the conditions for the focusing of
paraxial rays. We shall discuss later the errors
that are introduced by the fact that all rays are not always close to
the axis.





Thus, supposing P[image: -*-] is close to the axis, we drop a perpendicular P Q[image: -*-]
such that the height P Q[image: -*-] is h[image: -*-]. For a moment, we imagine that the
surface is a plane passing through P[image: -*-]. In that case, the time needed
to go from O[image: -*-] to P[image: -*-] would exceed the time from O[image: -*-] to Q[image: -*-], and also,
the time from P[image: -*-] to O′[image: -*-] would exceed the time from Q[image: -*-] to O′[image: -*-]. But
that is why the glass must be curved, because the total excess time
must be compensated by the delay in passing from V[image: -*-] to Q[image: -*-]! Now the
excess time along route O P[image: -*-] is h2/2 s[image: -*-], and the excess time
on the other route is n h2/2 s′[image: -*-]. This excess time, which must be
matched by the delay in going along V Q[image: -*-], differs from what it would
have been in a vacuum, because there is a medium present. In other
words, the time to go from V[image: -*-] to Q[image: -*-] is not as if it were straight in
the air, but it is slower by the factor n[image: -*-], so that the excess delay
in this distance is then (n−1) V Q[image: -*-]. And now, how large is V Q[image: -*-]? If
the point C[image: -*-] is the center of the sphere and if its radius is R[image: -*-], we
see by the same formula that the distance V Q[image: -*-] is equal
to h2/2 R[image: -*-]. Therefore we discover that the law that connects the
distances s[image: -*-] and s′[image: -*-], and that gives us the radius of curvature R[image: -*-]
of the surface that we need, is

[image: -*-][image: -*-]
(27.2)




or

[image: -*-][image: -*-]
(27.3)




If we have a position O[image: -*-] and another position O′[image: -*-], and want to focus
light from O[image: -*-] to O′[image: -*-], then we can calculate the required radius of
curvature R[image: -*-] of the surface by this formula.





Now it turns out, interestingly, that the same lens, with the same
curvature R[image: -*-], will focus for other distances, namely, for any pair of
distances such that the sum of the two reciprocals, one multiplied
by n[image: -*-], is a constant. Thus a given lens will (so long as we limit
ourselves to paraxial rays) focus not only from O[image: -*-] to O′[image: -*-], but
between an infinite number of other pairs of points, so long as those
pairs of points bear the relationship that 1/s+n/s′[image: -*-] is a constant,
characteristic of the lens.




In particular, an interesting case is that in which s→∞[image: -*-]. We
can see from the formula that as one s[image: -*-] increases, the other
decreases. In other words, if point O[image: -*-] goes out, point O′[image: -*-] comes in,
and vice versa. As point O[image: -*-] goes toward infinity, point O′[image: -*-] keeps
moving in until it reaches a certain distance, called the focal
length f′[image: -*-], inside the material. If parallel rays come in, they will
meet the axis at a distance f′[image: -*-]. Likewise, we could imagine it the
other way. (Remember the reciprocity rule: if light will go from O[image: -*-]
to O′[image: -*-], of course it will also go from O′[image: -*-] to O[image: -*-].) Therefore, if we
had a light source inside the glass, we might want to know where the
focus is. In particular, if the light in the glass were at infinity
(same problem) where would it come to a focus outside? This distance
is called f[image: -*-]. Of course, we can also put it the other way. If we had
a light source at f[image: -*-] and the light went through the surface, then it
would go out as a parallel beam. We can easily find out what f[image: -*-]
and f′[image: -*-] are:

[image: -*-][image: -*-]
(27.4)

(27.5)







We see an interesting thing: if we divide each focal length by the
corresponding index of refraction we get the same result! This theorem,
in fact, is general. It is true of any system of lenses, no matter how
complicated, so it is interesting to remember. We did not prove here
that it is general—we merely noted it for a single surface, but it
happens to be true in general that the two focal lengths of a system are
related in this way. Sometimes Eq. (27.3) is written in the
form

[image: -*-][image: -*-]
(27.6)




This is more useful than (27.3) because we can measure f[image: -*-]
more easily than we can measure the curvature and index of refraction
of the lens: if we are not interested in designing a lens or in
knowing how it got that way, but simply lift it off a shelf, the
interesting quantity is f[image: -*-], not the n[image: -*-] and the 1 and the R[image: -*-]!




Now an interesting situation occurs if s[image: -*-] becomes less than f[image: -*-]. What
happens then? If s<f[image: -*-], then (1/s)>(1/f)[image: -*-], and therefore s′[image: -*-] is
negative; our equation says that the light will focus only with a
negative value of s′[image: -*-], whatever that means! It does mean something
very interesting and very definite. It is still a useful formula, in
other words, even when the numbers are negative. What it means is
shown in Fig. 27–3. If we draw the rays which are
diverging from O[image: -*-], they will be bent, it is true, at the surface, and
they will not come to a focus, because O[image: -*-] is so close in that they
are “beyond parallel.”  However, they diverge as if they had come
from a point O′[image: -*-] outside the glass. This is an apparent image,
sometimes called a virtual image. The
image O′[image: -*-] in Fig. 27–2 is called a real image. If
the light really comes to a point, it is a real image. But if the light
appears to be coming from a point, a fictitious point
different from the original point, it is a virtual image. So when s′[image: -*-]
comes out negative, it means that O′[image: -*-] is on the other side of the
surface, and everything is all right.



[image: -][image: -]
Fig. 27–3. A virtual image.





Now consider the interesting case where R[image: -*-] is equal to infinity; then
we have (1/s)+(n/s′)=0[image: -*-]. In other words, s′=−n s[image: -*-], which means
that if we look from a dense medium into a rare medium and see a point
in the rare medium, it appears to be deeper by a factor n[image: -*-]. Likewise,
we can use the same equation backwards, so that if we look into a
plane surface at an object that is at a certain distance inside the
dense medium, it will appear as though the light is coming from not as
far back (Fig. 27–4). When we look at the bottom of a
swimming pool from above, it does not look as deep as it really is, by
a factor 3/4[image: -*-], which is the reciprocal of the index of refraction of
water.



[image: -][image: -]
Fig. 27–4. A plane surface re-images the light from O′[image: -*-] to O[image: -*-].





We could go on, of course, to discuss the spherical mirror. But if one
appreciates the ideas involved, he should be able to work it out for
himself. Therefore we leave it to the student to work out the formula
for the spherical mirror, but we mention that it is well to adopt
certain conventions concerning the distances involved:


	The object distance s[image: -*-] is positive if the point O[image: -*-] is to the
left of the surface.

	The image distance s′[image: -*-] is positive if the point O′[image: -*-] is to the
right of the surface.

	The radius of curvature of the surface is positive if the center
is to the right of the surface.



In Fig. 27–2, for example, s[image: -*-], s′[image: -*-], and R[image: -*-] are all
positive; in Fig. 27–3, s[image: -*-] and R[image: -*-] are positive, but
s′[image: -*-] is negative. If we had used a concave surface, our
formula (27.3) would still give the correct result if we
merely make R[image: -*-] a negative quantity.




In working out the corresponding formula for a mirror, using the above
conventions, you will find that if you put n=−1[image: -*-] throughout the
formula (27.3) (as though the material behind the mirror
had an index −1[image: -*-]), the right formula for a mirror results!




Although the derivation of formula (27.3) is simple and
elegant, using least time, one can of course work out the same formula
using Snell’s law, remembering that the angles are so small that the
sines of angles can be replaced by the angles themselves.







27–3 The focal length of a lens


Now we go on to consider another situation, a very practical one. Most
of the lenses that we use have two surfaces, not just one. How does this
affect matters? Suppose that we have two surfaces of different
curvature, with glass filling the space between them
(Fig. 27–5). We want to study the problem of focusing from a
point O[image: -*-] to an alternate point O′[image: -*-]. How can we do that? The answer is
this: First, use formula (27.3) for the first surface,
forgetting about the second surface. This will tell us that the light
which was diverging from O[image: -*-] will appear to be converging or diverging,
depending on the sign, from some other point, say O′[image: -*-]. Now we consider
a new problem. We have a different surface, between glass and air, in
which rays are converging toward a certain point O′[image: -*-]. Where will they
actually converge? We use the same formula again! We find that they
converge at O′′[image: -*-]. Thus, if necessary, we can go through 75[image: -*-] surfaces
by just using the same formula in succession, from one to the next!



[image: -][image: -]
Fig. 27–5. Image formation by a two-surface lens.





There are some rather high-class formulas that would save us
considerable energy in the few times in our lives that we might have
to chase the light through five surfaces, but it is easier just to
chase it through five surfaces when the problem arises than it is to
memorize a lot of formulas, because it may be we will never have to
chase it through any surfaces at all!




In any case, the principle is that when we go through one surface we
find a new position, a new focal point, and then take that point as
the starting point for the next surface, and so on. In order to
actually do this, since on the second surface we are going from n[image: -*-]
to 1 rather than from 1 to n[image: -*-], and since in many systems there is
more than one kind of glass, so that there are indices n1[image: -*-], n2[image: -*-],
…, we really need a generalization of formula (27.3)
for a case where there are two different indices, n1[image: -*-] and n2[image: -*-],
rather than only n[image: -*-]. Then it is not difficult to prove that the
general form of (27.3) is

[image: -*-][image: -*-]
(27.7)






[image: -][image: -]
Fig. 27–6. A thin lens with two positive radii.





Particularly simple is the special case in which the two surfaces are
very close together—so close that we may ignore small errors due to
the thickness. If we draw the lens as shown in Fig. 27–6, we
may ask this question: How must the lens be built so as to focus light
from O[image: -*-] to O′[image: -*-]? Suppose the light comes exactly to the edge of the
lens, at point P[image: -*-]. Then the excess time in going from O[image: -*-] to O′[image: -*-] is
(n1 h2/2 s)+(n1 h2/2 s′)[image: -*-], ignoring for a moment the presence of the
thickness T[image: -*-] of glass of index n2[image: -*-]. Now, to make the time for the
direct path equal to that for the path O P O′[image: -*-], we have to use a piece of
glass whose thickness T[image: -*-] at the center is such that the delay
introduced in going through this thickness is enough to compensate for
the excess time above. Therefore the thickness of the lens at the center
must be given by the relationship

[image: -*-][image: -*-]
(27.8)




We can also express T[image: -*-] in terms of the radii R1[image: -*-] and R2[image: -*-] of the
two surfaces. Paying attention to our convention (3), we thus find,
for R1<R2[image: -*-] (a convex lens),

[image: -*-][image: -*-]
(27.9)




Therefore, we finally get

[image: -*-][image: -*-]
(27.10)




Now we note again that if one of the points is at infinity, the other
will be at a point which we will call the focal length f[image: -*-]. The focal
length f[image: -*-] is given by

[image: -*-][image: -*-]
(27.11)




where n=n2/n1[image: -*-].




Now, if we take the opposite case, where s[image: -*-] goes to infinity, we see
that s′[image: -*-] is at the focal length f′[image: -*-]. This time the focal lengths are
equal. (This is another special case of the general rule that the
ratio of the two focal lengths is the ratio of the indices of
refraction in the two media in which the rays focus. In this
particular optical system, the initial and final indices are the same,
so the two focal lengths are equal.)




Forgetting for a moment about the actual formula for the focal length,
if we bought a lens that somebody designed with certain radii of
curvature and a certain index, we could measure the focal length, say,
by seeing where a point at infinity focuses. Once we had the focal
length, it would be better to write our equation in terms of the focal
length directly, and the formula then is

[image: -*-][image: -*-]
(27.12)









Now let us see how the formula works and what it implies in different
circumstances. First, it implies that if s[image: -*-] or s′[image: -*-] is infinite the
other one is f[image: -*-]. That means that parallel light focuses at a
distance f[image: -*-], and this in effect defines f[image: -*-]. Another interesting thing
it says is that both points move in the same direction. If one moves
to the right, the other does also. Another thing it says is that s[image: -*-]
and s′[image: -*-] are equal if they are both equal to 2 f[image: -*-]. In other words, if
we want a symmetrical situation, we find that they will both focus at
a distance 2 f[image: -*-].







27–4 Magnification

[image: -][image: -]
Fig. 27–7. The geometry of imaging by a thin lens.





So far we have discussed the focusing action only for points on the
axis. Now let us discuss also the imaging of objects not exactly on
the axis, but a little bit off, so that we can understand the
properties of magnification. When we set up a lens so as to
focus light from a small filament onto a “point” on a screen, we
notice that on the screen we get a “picture” of the same filament,
except of a larger or smaller size than the true filament. This must
mean that the light comes to a focus from each point of the
filament. In order to understand this a little better, let us analyze
the thin lens system shown schematically in Fig. 27–7. We
know the following facts:


	Any ray that comes in parallel on one side proceeds toward a
certain particular point called the focus on the other side, at a
distance f[image: -*-] from the lens.

	Any ray that arrives at the lens from the focus on one side
comes out parallel to the axis on the other side.



This is all we need to establish formula (27.12) by
geometry, as follows: Suppose we have an object at some distance x[image: -*-]
from the focus; let the height of the object be y[image: -*-]. Then we know that
one of the rays, namely P Q[image: -*-], will be bent so as to pass through the
focus R[image: -*-] on the other side. Now if the lens will focus point P[image: -*-] at
all, we can find out where if we find out where just one other ray
goes, because the new focus will be where the two intersect again. We
need only use our ingenuity to find the exact direction of one
other ray. But we remember that a parallel ray goes through the focus
and vice versa: a ray which goes through the focus will come
out parallel!  So we draw ray P T[image: -*-] through U[image: -*-]. (It is true that the
actual rays which are doing the focusing may be much more limited than
the two we have drawn, but they are harder to figure, so we make
believe that we can make this ray.) Since it would come out parallel,
we draw T S[image: -*-] parallel to X W[image: -*-]. The intersection S[image: -*-] is the point we
need. This will determine the correct place and the correct
height. Let us call the height y′[image: -*-] and the distance from the focus,
x′[image: -*-]. Now we may derive a lens formula. Using the similar triangles
P V U[image: -*-] and T X U[image: -*-], we find

[image: -*-][image: -*-]
(27.13)




Similarly, from triangles S W R[image: -*-] and Q X R[image: -*-], we get

[image: -*-][image: -*-]
(27.14)




Solving each for y′/y[image: -*-], we find that

[image: -*-][image: -*-]
(27.15)




Equation (27.15) is the famous lens formula; in it is everything we need to know about lenses: It tells us
the magnification, y′/y[image: -*-], in terms of the distances and the focal
lengths. It also connects the two distances x[image: -*-] and x′[image: -*-] with f[image: -*-]:

[image: -*-][image: -*-]
(27.16)




which is a much neater form to work with than Eq. (27.12). We
leave it to the student to demonstrate that if we call s=x+f[image: -*-]
and s′=x′+f[image: -*-], Eq. (27.12) is the same as
Eq. (27.16).







27–5 Compound lenses


Without actually deriving it, we shall briefly describe the general
result when we have a number of lenses. If we have a system of several
lenses, how can we possibly analyze it? That is easy. We start with
some object and calculate where its image is for the first lens, using
formula (27.16) or (27.12) or any other
equivalent formula, or by drawing diagrams. So we find an image. Then
we treat this image as the source for the next lens, and use the
second lens with whatever its focal length is to again find an
image. We simply chase the thing through the succession of
lenses. That is all there is to it. It involves nothing new in
principle, so we shall not go into it. However, there is a very
interesting net result of the effects of any sequence of lenses on
light that starts and ends up in the same medium, say air. Any optical
instrument—a telescope or a microscope with any number of lenses and
mirrors—has the following property: There exist two planes, called
the principal planes of the system (these planes are often
fairly close to the first surface of the first lens and the last
surface of the last lens), which have the following properties: (1) If
light comes into the system parallel from the first side, it comes out
at a certain focus, at a distance from the second principal
plane equal to the focal length, just as though the system were a thin
lens situated at this plane. (2) If parallel light comes in the other
way, it comes to a focus at the same distance f[image: -*-] from the
first principal plane, again as if a thin lens where situated
there. (See Fig. 27–8.)



[image: -][image: -]
Fig. 27–8. Illustration of the principal planes of an optical system.





Of course, if we measure the distances x[image: -*-] and x′[image: -*-], and y[image: -*-] and y′[image: -*-]
as before, the formula (27.16) that we have written for the
thin lens is absolutely general, provided that we measure the focal
length from the principal planes and not from the center of the
lens. It so happens that for a thin lens the principal planes are
coincident. It is just as though we could take a thin lens, slice it
down the middle, and separate it, and not notice that it was
separated. Every ray that comes in pops out immediately on the other
side of the second plane from the same point as it went into the first
plane! The principal planes and the focal length may be found either
by experiment or by calculation, and then the whole set of properties
of the optical system are described. It is very interesting that the
result is not complicated when we are all finished with such a big,
complicated optical system.







27–6 Aberrations


Before we get too excited about how marvelous lenses are, we must
hasten to add that there are also serious limitations, because of the
fact that we have limited ourselves, strictly speaking, to paraxial
rays, the rays near the axis. A real lens having a finite size will,
in general, exhibit aberrations. For example, a ray that is on
the axis, of course, goes through the focus; a ray that is very close
to the axis will still come to the focus very well. But as we go
farther out, the ray begins to deviate from the focus, perhaps by
falling short, and a ray striking near the top edge comes down and
misses the focus by quite a wide margin. So, instead of getting a
point image, we get a smear. This effect is called spherical
aberration, because it is a property of the spherical surfaces we use in
place of the right shape. This could be remedied, for any specific
object distance, by re-forming the shape of the lens surface, or perhaps
by using several lenses arranged so that the aberrations of the
individual lenses tend to cancel each other.




Lenses have another fault: light of different colors has different
speeds, or different indices of refraction, in the glass, and
therefore the focal length of a given lens is different for different
colors. So if we image a white spot, the image will have colors,
because when we focus for the red, the blue is out of focus, or vice
versa. This property is called chromatic
aberration.




There are still other faults. If the object is off the axis, then the
focus really isn’t perfect any more, when it gets far enough off the
axis. The easiest way to verify this is to focus a lens and then tilt
it so that the rays are coming in at a large angle from the axis. Then
the image that is formed will usually be quite crude, and there may be
no place where it focuses well. There are thus several kinds of errors
in lenses that the optical designer tries to remedy by using many
lenses to compensate each other’s errors.




How careful do we have to be to eliminate aberrations? Is it possible
to make an absolutely perfect optical system? Suppose we had built an
optical system that is supposed to bring light exactly to a
point. Now, arguing from the point of view of least time, can we find
a condition on how perfect the system has to be? The system will have
some kind of an entrance opening for the light. If we take the
farthest ray from the axis that can come to the focus (if the system
is perfect, of course), the times for all rays are exactly equal. But
nothing is perfect, so the question is, how wrong can the time be for
this ray and not be worth correcting any further? That depends on how
perfect we want to make the image. But suppose we want to make the
image as perfect as it possibly can be made. Then, of course, our
impression is that we have to arrange that every ray takes as nearly
the same time as possible. But it turns out that this is not true,
that beyond a certain point we are trying to do something that is too
fine, because the theory of geometrical optics does not work!




Remember that the principle of least time is not an accurate
formulation, unlike the principle of conservation of energy or the
principle of conservation of momentum. The principle of least time is
only an approximation, and it is interesting to know how much
error can be allowed and still not make any apparent difference. The
answer is that if we have arranged that between the maximal ray—the
worst ray, the ray that is farthest out—and the central ray, the
difference in time is less than about the period that corresponds to
one oscillation of the light, then there is no use improving it any
further. Light is an oscillatory thing with a definite frequency that
is related to the wavelength, and if we have arranged that the time
difference for different rays is less than about a period, there is no
use going any further.







27–7 Resolving power


Another interesting question—a very important technical question
with all optical instruments—is how much resolving power they
have. If we build a microscope, we want to see the objects that we are
looking at. That means, for instance, that if we are looking at a
bacterium with a spot on each end, we want to see that there
are two dots when we magnify them. One might think that all we have to
do is to get enough magnification—we can always add another lens,
and we can always magnify again and again, and with the cleverness of
designers, all the spherical aberrations and chromatic aberrations can
be cancelled out, and there is no reason why we cannot keep on
magnifying the image. So the limitations of a microscope are not that
it is impossible to build a lens that magnifies more than
2000[image: -*-] diameters. We can build a system of lenses that magnifies
10,000[image: -*-] diameters, but we still could not see two points that are too
close together because of the limitations of geometrical optics,
because of the fact that least time is not precise.



[image: -][image: -]
Fig. 27–9. The resolving power of an optical system.





To discover the rule that determines how far apart two points have to
be so that at the image they appear as separate points can be stated
in a very beautiful way associated with the time it takes for
different rays. Suppose that we disregard the aberrations now, and
imagine that for a particular point P[image: -*-] (Fig. 27–9) all
the rays from object to image T[image: -*-] take exactly the same time. (It is
not true, because it is not a perfect system, but that is another
problem.) Now take another nearby point, P′[image: -*-], and ask whether its
image will be distinct from T[image: -*-]. In other words, whether we can make
out the difference between them. Of course, according to geometrical
optics, there should be two point images, but what we see may be
rather smeared and we may not be able to make out that there are two
points. The condition that the second point is focused in a distinctly
different place from the first one is that the two times for the
extreme rays P′ S T[image: -*-] and P′ R T[image: -*-] on each side of the big opening of the
lenses to go from one end to the other, must not be equal from
the two possible object points to a given image point. Why? Because,
if the times were equal, of course both would focus at the same
point. So the times are not going to be equal. But by how much do they
have to differ so that we can say that both do not come to a
common focus, so that we can distinguish the two image points?  The
general rule for the resolution of any optical instrument is this: two
different point sources can be resolved only if one source is focused
at such a point that the times for the maximal rays from the other
source to reach that point, as compared with its own true image point,
differ by more than one period. It is necessary that the difference in
time between the top ray and the bottom ray to the wrong focus
shall exceed a certain amount, namely, approximately the period of
oscillation of the light:

[image: -*-][image: -*-]
(27.17)




where ν[image: -*-] is the frequency of the light (number of oscillations per
second; also speed divided by wavelength). If the distance of
separation of the two points is called D[image: -*-], and if the opening angle
of the lens is called θ[image: -*-], then one can demonstrate
that (27.17) is exactly equivalent to the statement that D[image: -*-]
must exceed λ/n sinθ[image: -*-], where n[image: -*-] is the index of refraction
at P[image: -*-] and λ[image: -*-] is the wavelength. The smallest things that we can
see are therefore approximately the wavelength of light. A corresponding
formula exists for telescopes, which tells us the smallest difference in
angle between two stars that can just be distinguished.1





	
  
  The
angle is about λ/D[image: -*-], where D[image: -*-] is the lens diameter. Can you see
why?
  ↩





  
    
                
                    28 Electromagnetic Radiation

                
                    
                        28–1 Electromagnetism

                    
                        The most dramatic moments in the development of physics are those in
                        which great syntheses take place, where phenomena which previously had
                        appeared to be different are suddenly discovered to be but different
                        aspects of the same thing. The history of physics is the history of
                        such syntheses, and the basis of the success of physical science is
                        mainly that we are able to synthesize.

                    

                    
                        Perhaps the most dramatic moment in the development of physics during the
                        19th century occurred to J. C. Maxwell one day in the 1860s, when he combined the laws of electricity and
                        magnetism with the laws of the behavior of light. As a result, the properties of
                        light were partly unravelled—that old and subtle stuff that is so important
                        and mysterious that it was felt necessary to arrange a special creation for
                        it when writing Genesis. Maxwell
                        could say, when he was finished with his discovery, “Let there be electricity
                        and magnetism, and there is light!”

                    

                    
                        For this culminating moment there was a long preparation in the
                        gradual discovery and unfolding of the laws of electricity and
                        magnetism. This story we shall reserve for detailed study next
                        year. However, the story is, briefly, as follows. The gradually
                        discovered properties of electricity and magnetism, of electric forces
                        of attraction and repulsion, and of magnetic forces, showed that
                        although these forces were rather complex, they all fell off inversely
                        as the square of the distance. We know, for example, that the simple
                        Coulomb law
                        for stationary charges is that the electric force field
                        varies inversely as the square of the distance. As a consequence, for
                        sufficiently great distances there is very little influence of one
                        system of charges on another.
                        Maxwell noted that the
                        equations or the laws that had been discovered up to this time were
                        mutually inconsistent when he tried to put them all together, and in
                        order for the whole system to be consistent, he had to add another term
                        to his equations. With this new term there came an amazing prediction,
                        which was that a part of the electric and magnetic fields would fall off
                        much more slowly with the distance than the inverse square, namely,
                        inversely as the first power of the distance! And so he realized that
                        electric currents in one place can affect other charges far away, and he
                        predicted the basic effects with which we are familiar today—radio
                        transmission, radar, and so on.

                    

                    
                        It seems a miracle that someone talking in Europe can, with mere
                        electrical influences, be heard thousands of miles away in Los
                        Angeles. How is it possible? It is because the fields do not vary as
                        the inverse square, but only inversely as the first power of the
                        distance. Finally, then, even light itself was recognized to be
                        electric and magnetic influences extending over vast distances,
                        generated by an almost incredibly rapid oscillation of the electrons
                        in the atoms. All these phenomena we summarize by the word
                        radiation or, more specifically, electromagnetic
                            radiation, there being one or two other kinds of radiation
                        also. Almost always, radiation means electromagnetic radiation.

                    

                    
                        And thus is the universe knit together. The atomic motions of a
                        distant star still have sufficient influence at this great distance to
                        set the electrons in our eye in motion, and so we know about the
                        stars. If this law did not exist, we would all be literally in the
                        dark about the exterior world! And the electric surgings in a galaxy
                        five billion light years away—which is the farthest object we have
                        found so far—can still influence in a significant and detectable way
                        the currents in the great “dish” in front of a radio telescope. And
                        so it is that we see the stars and the galaxies.

                    

                    
                        This remarkable phenomenon is what we shall discuss in the present
                        chapter. At the beginning of this course in physics we outlined a
                        broad picture of the world, but we are now better prepared to
                        understand some aspects of it, and so we shall now go over some parts
                        of it again in greater detail. We begin by describing the position of
                        physics at the end of the 19th century. All that was then known about
                        the fundamental laws can be summarized as follows.

                    

                    
                        First, there were laws of forces: one force was the law of
                        gravitation, which we have written down several times; the force on an
                        object of mass m[image: -*-], due to another of mass M[image: -*-], is given by
                        
[image: -*-][image: -*-]
(28.1)




                        where er[image: -*-] is a unit vector directed from m[image: -*-] to M[image: -*-], and r[image: -*-] is
                        the distance between them.

                    

                    
                        Next, the laws of electricity and magnetism, as known at the end of
                        the 19th century, are these: the electrical forces acting on a
                        charge q[image: -*-] can be described by two fields, called E[image: -*-] and B[image: -*-], and
                        the velocity v[image: -*-] of the charge q[image: -*-], by the equation
                        
[image: -*-][image: -*-]
(28.2)




                        To complete this law, we have to say what the formulas for E[image: -*-]
                        and B[image: -*-] are in a given circumstance: if a number of charges are
                        present, E[image: -*-] and the B[image: -*-] are each the sum of contributions,
                        one from each individual charge. So if we can find the E[image: -*-]
                        and B[image: -*-] produced by a single charge, we need only to add all the
                        effects from all the charges in the universe to get the total E[image: -*-]
                        and B[image: -*-]!  This is the principle of
                        superposition.
                        

                    

                    
                        What is the formula for the electric and magnetic field produced by
                        one individual charge? It turns out that this is very complicated, and
                        it takes a great deal of study and sophistication to appreciate
                        it. But that is not the point. We write down the law now only to
                        impress the reader with the beauty of nature, so to speak, i.e., that
                        it is possible to summarize all the fundamental knowledge on
                        one page, with notations that he is now familiar with. This law for
                        the fields of an individual charge is complete and accurate, so far as
                        we know (except for quantum mechanics) but it looks rather
                        complicated. We shall not study all the pieces now; we only write it
                        down to give an impression, to show that it can be written, and so
                        that we can see ahead of time roughly what it looks like. As a matter
                        of fact, the most useful way to write the correct laws of
                        electricity and magnetism is not the way we shall now write them, but
                        involves what are called field equations, which we shall learn
                        about next year. But the mathematical notations for these are
                        different and new, and so we write the law in an inconvenient form for
                        calculation, but in notations that we now know.
                        

                    

                    
                        The electric field, E[image: -*-], is given by
                        
[image: -*-][image: -*-]
(28.3)




                        What do the various terms tell us? Take the first term,
                        E=−q er′/4 π ϵ0 r′2[image: -*-]. That, of course, is
                        Coulomb’s law, which we
                        already know: q[image: -*-] is the charge that is producing the
                        field; er′[image: -*-] is the unit vector in the direction from the
                        point P[image: -*-] where E[image: -*-] is measured, r[image: -*-] is the distance from P[image: -*-]
                        to q[image: -*-]. But, Coulomb’s law is wrong.
                        The discoveries of the 19th century
                        showed that influences cannot travel faster than a certain fundamental
                        speed c[image: -*-], which we now call the speed of light. It is not correct
                        that the first term is Coulomb’s law,
                        not only because it is not
                        possible to know where the charge is now and at what distance
                        it is now, but also because the only thing that can affect the
                        field at a given place and time is the behavior of the charges in the
                        past. How far in the past?  The time delay, or
                        retarded time,
                        so-called, is the time it takes, at speed c[image: -*-], to get from the charge to
                        the field point P[image: -*-]. The delay is r′/c[image: -*-].

                    

                    
                        So to allow for this time delay, we put a little prime on r[image: -*-], meaning
                        how far away it was when the information now arriving at P[image: -*-]
                        left q[image: -*-]. Just for a moment suppose that the charge carried a light,
                        and that the light could only come to P[image: -*-] at the speed c[image: -*-]. Then when
                        we look at q[image: -*-], we would not see where it is now, of course, but where
                        it was at some earlier time. What appears in our formula is the
                        apparent direction er′[image: -*-]—the direction it used to
                        be—the so-called retarded direction—and at the
                        retarded distance r′[image: -*-]. That would be easy enough to
                        understand, too, but it is also wrong. The whole thing is much more
                        complicated.

                    

                    
                        There are several more terms. The next term is as though nature were
                        trying to allow for the fact that the effect is retarded, if we might
                        put it very crudely. It suggests that we should calculate the delayed
                        Coulomb field and add a correction to it, which is its rate of change
                        times the time delay that we use. Nature seems to be attempting to
                        guess what the field at the present time is going to be, by taking the
                        rate of change and multiplying by the time that is delayed. But we are
                        not yet through. There is a third term—the second derivative, with
                        respect to t[image: -*-], of the unit vector in the direction of the charge. Now
                        the formula is finished, and that is all there is to the
                        electric field from an arbitrarily moving charge.

                    

                    
                        The magnetic field is given by
                        
[image: -*-][image: -*-]
(28.4)




                        We have written these down only for the purpose of showing the beauty
                        of nature or, in a way, the power of mathematics. We do not pretend to
                        understand why it is possible to write so much in such a small
                        space, but (28.3) and (28.4) contain the
                        machinery by which electric generators work, how light operates, all
                        the phenomena of electricity and magnetism. Of course, to complete the
                        story we also need to know something about the behavior of the
                        materials involved—the properties of matter—which are not
                        described properly by (28.3).

                    

                    
                        To finish with our description of the world of the 19th century we
                        must mention one other great synthesis which occurred in that century,
                        one with which Maxwell had a
                        great deal to do also, and that was the synthesis of the phenomena of
                        heat and mechanics. We shall study that subject soon.

                    

                    
                        What had to be added in the 20th century was that the dynamical laws of
                        Newton were found to be all wrong, and quantum mechanics had to be
                        introduced to correct them. Newton’s laws
                        are approximately
                        valid when the scale of things is sufficiently large. These
                        quantum-mechanical laws, combined with the laws of electricity, have
                        only recently been combined to form a set of laws called quantum
                            electrodynamics. In addition, there were
                        discovered a number of new phenomena, of which the first was
                        radioactivity, discovered by
                        Becquerel in
                        1898—he just sneaked it in under the 19th century.
                        This phenomenon of radioactivity was followed up to produce our
                        knowledge of nuclei and new kinds of forces that are not gravitational
                        and not electrical, but new particles with different interactions, a
                        subject which has still not been unravelled.

                    

                    
                        For those purists who know more (the professors who happen to be
                        reading this), we should add that when we say that (28.3)
                        is a complete expression of the knowledge of electrodynamics, we are
                        not being entirely accurate. There was a problem that was not quite
                        solved at the end of the 19th century. When we try to calculate the
                        field from all the charges including the charge itself that we
                            want the field to act on, we get into trouble trying to find the
                        distance, for example, of a charge from itself, and dividing something
                        by that distance, which is zero. The problem of how to handle the part
                        of this field which is generated by the very charge on which we want
                        the field to act is not yet solved today. So we leave it there; we do
                        not have a complete solution to that puzzle yet, and so we shall avoid
                        the puzzle for as long as we can.

                    

                

                
                    
                        28–2 Radiation

                    
                        That, then, is a summary of the world picture. Now let us use it to
                        discuss the phenomena called radiation. To discuss these phenomena, we
                        must select from Eq. (28.3) only that piece which varies
                        inversely as the distance and not as the square of the distance. It
                        turns out that when we finally do find that piece, it is so simple in
                        its form that it is legitimate to study optics and electrodynamics in
                        an elementary way by taking it as “the law” of the electric field
                        produced by a moving charge far away. We shall take it temporarily as
                        a given law which we will learn about in detail next year.

                    

                    
                        Of the terms appearing in (28.3), the first one evidently
                        goes inversely as the square of the distance, and the second is only a
                        correction for delay, so it is easy to show that both of them vary
                        inversely as the square of the distance. All of the effects we are
                        interested in come from the third term, which is not very complicated,
                        after all. What this term says is: look at the charge and note the
                        direction of the unit vector (we can project the end of it onto the
                        surface of a unit sphere). As the charge moves around, the unit vector
                        wiggles, and the acceleration of that unit vector is what we are
                            looking for. That is all. Thus
                        
[image: -*-][image: -*-]
(28.5)




                        is a statement of the laws of radiation, because that is the only
                        important term when we get far enough away that the fields are varying
                        inversely as the distance. (The parts that go as the square have
                        fallen off so much that we are not interested in them.)

                    

                    
                        Now we can go a little bit further in studying (28.5) to
                        see what it means. Suppose a charge is moving in any manner
                        whatsoever, and we are observing it from a distance. We imagine for a
                        moment that in a sense it is “lit up” (although it is light that we
                        are trying to explain); we imagine it as a little white dot. Then we
                        would see this white dot running around. But we don’t see
                        exactly how it is running around right now, because of
                        the delay that we have been talking about. What counts is how it was
                        moving earlier. The unit vector er′[image: -*-] is pointed toward
                        the apparent position of the charge. Of course, the end
                        of er′[image: -*-] goes on a slight curve, so that its acceleration has two
                        components. One is the transverse piece, because the end of it goes up
                        and down, and the other is a radial piece because it stays on a
                        sphere. It is easy to demonstrate that the latter is much smaller and
                        varies as the inverse square of r[image: -*-] when r[image: -*-] is very great. This is
                        easy to see, for when we imagine that we move a given source farther
                        and farther away, then the wigglings of er′[image: -*-] look smaller and
                        smaller, inversely as the distance, but the radial component of
                        acceleration is varying much more rapidly than inversely as the
                        distance. So for practical purposes all we have to do is project the
                        motion on a plane at unit distance. Therefore we find the following
                        rule: Imagine that we look at the moving charge and that everything we
                        see is delayed—like a painter trying to paint a scene on a screen at
                        a unit distance. A real painter, of course, does not take into account
                        the fact that light is going at a certain speed, but paints the world
                        as he sees it. We want to see what his picture would look like. So we
                        see a dot, representing the charge, moving about in the picture. The
                        acceleration of that dot is proportional to the electric field. That
                        is all—all we need.

                    

                    
                        Thus Eq. (28.5) is the complete and correct formula for
                        radiation; even relativity effects are all contained in it. However,
                        we often want to apply it to a still simpler circumstance in which the
                        charges are moving only a small distance at a relatively slow
                        rate. Since they are moving slowly, they do not move an appreciable
                        distance from where they start, so that the delay time is practically
                        constant. Then the law is still simpler, because the delay time is
                        fixed. Thus we imagine that the charge is executing a very tiny motion
                        at an effectively constant distance. The delay at the distance r[image: -*-]
                        is r/c[image: -*-]. Then our rule becomes the following: If the charged object is
                        moving in a very small motion and it is laterally displaced by the
                        distance x (t)[image: -*-], then the angle that the unit vector er′[image: -*-] is
                        displaced is x/r[image: -*-], and since r[image: -*-] is practically constant, the
                        x[image: -*-]-component of d2 er′/d t2[image: -*-] is simply the acceleration
                        of x[image: -*-] itself at an earlier time divided by r[image: -*-], and so finally we get
                        the law we want, which is
                        
[image: -*-][image: -*-]
(28.6)




                        

                    

                    
                        Only the component of ax[image: -*-] perpendicular to the line of sight is
                        important. Let us see why that is. Evidently, if the charge is moving
                        in and out straight at us, the unit vector in that direction does not
                        wiggle at all, and it has no acceleration. So it is only the sidewise
                        motion which is important, only the acceleration that we see projected
                        on the screen.

                    

                

                
                    
                        28–3 The dipole radiator

                    
                        As our fundamental “law” of electromagnetic radiation, we are going
                        to assume that (28.6) is true, i.e., that the electric
                        field produced by an accelerating charge which is moving
                        nonrelativistically at a very large distance r[image: -*-] approaches that
                        form. The electric field varies inversely as r[image: -*-] and is proportional
                        to the acceleration of the charge, projected onto the “plane of
                        sight,” and this acceleration is not today’s acceleration, but the
                        acceleration that it had at an earlier time, the amount of delay being
                        a time, r/c[image: -*-]. In the remainder of this chapter we shall discuss this
                        law so that we can understand it better physically, because we are
                        going to use it to understand all of the phenomena of light and radio
                        propagation, such as reflection, refraction, interference,
                        diffraction, and scattering. It is the central law, and is all we
                        need. All the rest of Eq. (28.3) was written down only to
                        set the stage, so that we could appreciate where (28.6)
                        fits and how it comes about.

                    

                    [image: -][image: -]
                            Fig. 28–1. A high-frequency signal generator drives charges up and down
                            on two wires.
                        

                    

                    
                        We shall discuss (28.3) further next year. In the meantime,
                        we shall accept it as true, but not just on a theoretical basis. We
                        may devise a number of experiments which illustrate the character of
                        the law. In order to do so, we need an accelerating charge. It should
                        be a single charge, but if we can make a great many charges move
                        together, all the same way, we know that the field will be the sum of
                        the effects of each of the individual charges; we just add them
                        together. As an example, consider two pieces of wire connected to a
                        generator, as shown in Fig. 28–1. The idea is that the
                        generator makes a potential difference, or a field, which pulls
                        electrons away from piece A[image: -*-] and pushes them into B[image: -*-] at one moment,
                        and then, an infinitesimal time later, it reverses the effect and
                        pulls the electrons out of B[image: -*-] and pumps them back into A[image: -*-]!
                        So in these two wires charges, let us say, are accelerating upward in
                        wire A[image: -*-] and upward in wire B[image: -*-] for one moment, and a moment later
                        they are accelerating downward in wire A[image: -*-] and downward in wire B[image: -*-].
                        The fact that we need two wires and a generator is merely that
                        this is a way of doing it. The net result is that we merely have a
                        charge accelerating up and down as though A[image: -*-] and B[image: -*-] were one single
                        wire. A wire that is very short compared with the distance light
                        travels in one oscillation period is called an electric dipole
                            oscillator. Thus we have the circumstance that we need to apply our
                        law, which tells us that this charge makes an electric field, and so
                        we need an instrument to detect an electric field, and the instrument
                        we use is the same thing—a pair of wires like A[image: -*-] and B[image: -*-]!
                        If an electric field is applied to such a device, it will produce a
                        force which will pull the electrons up on both wires or down on both
                        wires. This signal is detected by means of a rectifier mounted between
                        A[image: -*-] and B[image: -*-], and a tiny, fine wire carries the information into an
                        amplifier, where it is amplified so we can hear the audiofrequency
                        tone with which the radiofrequency is modulated. When this probe feels
                        an electric field, there will be a loud noise coming out of the
                        loudspeaker, and when there is no electric field driving it, there
                        will be no noise.

                    

                    
                        Because the room in which the waves we are measuring has other objects
                        in it, our electric field will shake electrons in these other objects;
                        the electric field makes these other charges go up and down, and in
                        going up and down, these also produce an effect on our probe. Thus for
                        a successful experiment we must hold things fairly close together, so
                        that the influences from the walls and from ourselves—the reflected
                        waves—are relatively small. So the phenomena will not turn out to
                        appear to be precisely and perfectly in accord with
                        Eq. (28.6), but will be close enough that we shall be able to
                        appreciate the law.

                    

                    [image: -][image: -]
                            Fig. 28–2. The instantaneous electric field on a sphere centered at a
                            localized, linearly oscillating charge.
                        

                    

                    
                        Now we turn the generator on and hear the audio signal. We find a
                        strong field when the detector D[image: -*-] is parallel to the generator G[image: -*-] at
                        point 1 (Fig. 28–2). We find the same amount of field
                        also at any other azimuth angle about the axis of G[image: -*-], because it has
                        no directional effects. On the other hand, when the detector is at 3
                        the field is zero. That is all right, because our formula said that
                        the field should be the acceleration of the charge projected
                            perpendicular to the line of sight. Therefore when we look down
                        on G[image: -*-], the charge is moving toward and away from D[image: -*-], and there is no
                        effect. So that checks the first rule, that there is no effect when
                        the charge is moving directly toward us. Secondly, the formula says
                        that the electric field should be perpendicular to r[image: -*-] and in the
                        plane of G[image: -*-] and r[image: -*-]; so if we put D[image: -*-] at 1 but rotate it
                        90°[image: -*-], we should get no signal. And this is just what we find,
                        the electric field is indeed vertical, and not horizontal. When we
                        move D[image: -*-] to some intermediate angle, we see that the strongest signal
                        occurs when it is oriented as shown, because although G[image: -*-] is vertical,
                        it does not produce a field that is simply parallel to itself—it is
                        the projection of the acceleration perpendicular to the line of
                            sight that counts. The signal is weaker at 2 than it is at 1,
                        because of the projection effect.

                    

                

                
                    
                        28–4 Interference

                    
                        Next, we may test what happens when we have two sources side by side
                        several wavelengths apart (Fig. 28–3). The law is that the
                        two sources should add their effects at point 1 when both of the
                        sources are connected to the same generator and are both moving up and
                        down the same way, so that the total electric field is the sum of the
                        two and is twice as strong as it was before.

                    

                    [image: -][image: -]
                            Fig. 28–3. Illustration of interference of sources.
                        

                    

                    
                        Now comes an interesting possibility. Suppose we make the charges in
                        S1[image: -*-] and S2[image: -*-] both accelerate up and down, but delay the timing
                        of S2[image: -*-] so that they are 180°[image: -*-] out of phase. Then the field
                        produced by S1[image: -*-] will be in one direction and the field produced
                        by S2[image: -*-] will be in the opposite direction at any instant, and therefore
                        we should get no effect at point 1. The phase of oscillation
                        is neatly adjustable by means of a pipe which is carrying the signal
                        to S2[image: -*-]. By changing the length of this pipe we change the time it
                        takes the signal to arrive at S2[image: -*-] and thus we change the phase of
                        that oscillation. By adjusting this length, we can indeed find a place
                        where there is no more signal left, in spite of the fact that both
                        S1[image: -*-] and S2[image: -*-] are moving! The fact that they are both moving can be
                        checked, because if we cut one out, we can see the motion of the
                        other. So the two of them together can produce zero if
                        everything is adjusted correctly.
                        

                    

                    
                        Now, it is very interesting to show that the addition of the two
                        fields is in fact a vector addition. We have just checked it
                        for up and down motion, but let us check two nonparallel
                        directions. First, we restore S1[image: -*-] and S2[image: -*-] to the same phase; that
                        is, they are again moving together. But now we turn S1[image: -*-] through
                        90°[image: -*-], as shown in Fig. 28–4. Now we should have at
                        point 1 the sum of two effects, one of which is vertical and the
                        other horizontal. The electric field is the vector sum of these two
                        in-phase signals—they are both strong at the same time and go
                        through zero together; the total field should be a signal R[image: -*-]
                        at 45°[image: -*-]. If we turn D[image: -*-] to get the maximum noise, it should be at
                        about 45°[image: -*-], and not vertical. And if we turn it at right angles
                        to that direction, we should get zero, which is easy to
                        measure. Indeed, we observe just such behavior!

                    

                    [image: -][image: -]
                            Fig. 28–4. Illustration of the vector character of the combination of
                            sources.
                        

                    

                    
                        Now, how about the retardation? How can we demonstrate that the signal
                        is retarded? We could, with a great deal of equipment, measure the
                        time at which it arrives, but there is another, very simple
                        way. Referring again to Fig. 28–3, suppose that S1[image: -*-]
                        and S2[image: -*-] are in phase. They are both shaking together, and they
                        produce equal electric fields at point 1. But suppose we go to a
                        certain place 2 which is closer to S2[image: -*-] and farther
                        from S1[image: -*-]. Then, in accordance with the principle that the acceleration
                        should be retarded by an amount equal to r/c[image: -*-], if the retardations
                        are not equal, the signals are no longer in phase. Thus it should be
                        possible to find a position at which the distances of D[image: -*-] from S1[image: -*-]
                        and S2[image: -*-] differ by some amount Δ[image: -*-], in such a manner that there
                        is no net signal. That is, the distance Δ[image: -*-] is to be the distance
                        light goes in one-half an oscillation of the generator. We may go
                        still further, and find a point where the difference is greater by a
                        whole cycle; that is to say, the signal from the first antenna reaches
                        point 3 with a delay in time that is greater than that of the second
                        antenna by just the length of time it takes for the electric current
                        to oscillate once, and therefore the two electric fields produced
                        at 3 are in phase again. At point 3 the signal is strong again.

                    

                    
                        This completes our discussion of the experimental verification of some
                        of the important features of Eq. (28.6). Of course we
                        have not really checked the 1/r[image: -*-] variation of the electric field
                        strength, or the fact that there is also a magnetic field that goes
                        along with the electric field. To do so would require rather
                        sophisticated techniques and would hardly add to our understanding at
                        this point. In any case, we have checked those features that are of
                        the greatest importance for our later applications, and we shall come
                        back to study some of the other properties of electromagnetic waves
                        next year.

                    

                

            

  
    

29 Interference



29–1 Electromagnetic waves


In this chapter we shall discuss the subject of the preceding chapter
more mathematically. We have qualitatively demonstrated that there are
maxima and minima in the radiation field from two sources, and our
problem now is to describe the field in mathematical detail, not just
qualitatively.



[image: -][image: -]
Fig. 29–1. The electric field E[image: -*-] due to a positive charge whose
retarded acceleration is a′[image: -*-].





We have already physically analyzed the meaning of
formula (28.6) quite satisfactorily, but there are a few
points to be made about it mathematically. In the first place, if a
charge is accelerating up and down along a line, in a motion of very
small amplitude, the field at some angle θ[image: -*-] from the axis of the
motion is in a direction at right angles to the line of sight and in the
plane containing both the acceleration and the line of sight
(Fig. 29–1). If the distance is called r[image: -*-], then at time t[image: -*-]
the electric field has the magnitude

[image: -*-][image: -*-]
(29.1)




where a (t−r/c)[image: -*-] is the acceleration at the time (t−r/c)[image: -*-], called
the retarded acceleration.




Now it would be interesting to draw a picture of the field under
different conditions. The thing that is interesting, of course, is the
factor a (t−r/c)[image: -*-], and to understand it we can take the simplest
case, θ=90°[image: -*-], and plot the field graphically. What we had
been thinking of before is that we stand in one position and ask how
the field there changes with time. But instead of that, we are now
going to see what the field looks like at different positions in space
at a given instant. So what we want is a “snapshot” picture which
tells us what the field is in different places. Of course it depends
upon the acceleration of the charge. Suppose that the charge at first
had some particular motion: it was initially standing still, and it
suddenly accelerated in some manner, as shown in Fig. 29–2,
and then stopped. Then, a little bit later, we measure the field at a
different place. Then we may assert that the field will appear as shown
in Fig. 29–3. At each point the field is determined by the
acceleration of the charge at an earlier time, the amount earlier being
the delay r/c[image: -*-]. The field at farther and farther points is determined
by the acceleration at earlier and earlier times. So the curve in
Fig. 29–3 is really, in a sense, a “reversed” plot of the
acceleration as a function of time; the distance is related to time by a
constant scale factor c[image: -*-], which we often take as unity. This is easily
seen by considering the mathematical behavior of a (t−r/c)[image: -*-].
Evidently, if we add a little time Δ t[image: -*-], we get the same value for
a (t−r/c)[image: -*-] as we would have if we had subtracted a little distance:
Δ r=−c Δ t[image: -*-].



[image: -][image: -]
Fig. 29–2. The acceleration of a certain charge as a function of time.




[image: -][image: -]
Fig. 29–3. The electric field as a function of position at a later
time. (The 1/r[image: -*-] variation is ignored.)





Stated another way: if we add a little time Δ t[image: -*-], we can restore
a (t−r/c)[image: -*-] to its former value by adding a little
distance Δ r=c Δ t[image: -*-]. That is, as time goes on the field
moves as a wave outward from the source. That is the reason why we
sometimes say light is propagated as waves. It is equivalent to saying
that the field is delayed, or to saying that the electric field is
moving outward as time goes on.




An interesting special case is that where the charge q[image: -*-] is moving up
and down in an oscillatory manner. The case which we studied
experimentally in the last chapter was one in which the displacement x[image: -*-]
at any time t[image: -*-] was equal to a certain constant x0[image: -*-], the
magnitude of the oscillation, times cosω t[image: -*-]. Then the
acceleration is

[image: -*-][image: -*-]
(29.2)




where a0[image: -*-] is the maximum acceleration, −ω2 x0[image: -*-]. Putting this
formula into (29.1), we find

[image: -*-][image: -*-]
(29.3)




Now, ignoring the angle θ[image: -*-] and the constant factors, let us see
what that looks like as a function of position or as a function of
time.







29–2 Energy of radiation


First of all, at any particular moment or in any particular place, the
strength of the field varies inversely as the distance r[image: -*-], as we
mentioned previously. Now we must point out that the energy
content of a wave, or the energy effects that such an electric field
can have, are proportional to the square of the field, because
if, for instance, we have some kind of a charge or an oscillator in
the electric field, then if we let the field act on the oscillator, it
makes it move. If this is a linear oscillator, the acceleration,
velocity, and displacement produced by the electric field acting on
the charge are all proportional to the field. So the kinetic energy
which is developed in the charge is proportional to the square
of the field. So we shall take it that the energy that a field can
deliver to a system is proportional somehow to the square of the
field.



[image: -][image: -]
Fig. 29–4. The energy flowing within the cone O A B C D[image: -*-] is independent of
the distance r[image: -*-] at which it is measured.





This means that the energy that the source can deliver decreases as we
get farther away; in fact, it varies inversely as the square of
the distance. But that has a very simple interpretation: if we wanted
to pick up all the energy we could from the wave in a certain cone at
a distance r1[image: -*-] (Fig. 29–4), and we do the same at
another distance r2[image: -*-], we find that the amount of energy per unit
area at any one place goes inversely as the square of r[image: -*-], but the
area of the surface intercepted by the cone goes directly as
the square of r[image: -*-]. So the energy that we can take out of the wave
within a given conical angle is the same, no matter how far away we
are! In particular, the total energy that we could take out of the
whole wave by putting absorbing oscillators all around is a certain
fixed amount. So the fact that the amplitude of E[image: -*-] varies as 1/r[image: -*-] is
the same as saying that there is an energy flux which is never lost,
an energy which goes on and on, spreading over a greater and greater
effective area. Thus we see that after a charge has oscillated, it has
lost some energy which it can never recover; the energy keeps going
farther and farther away without diminution. So if we are far enough
away that our basic approximation is good enough, the charge cannot
recover the energy which has been, as we say, radiated away. Of course
the energy still exists somewhere, and is available to be picked up by
other systems. We shall study this energy “loss” further in
Chapter 32.




Let us now consider more carefully how the wave (29.3)
varies as a function of time at a given place, and as a function of
position at a given time. Again we ignore the 1/r[image: -*-] variation and the
constants.







29–3 Sinusoidal waves


First let us fix the position r[image: -*-], and watch the field as a function
of time. It is oscillatory at the angular frequency ω[image: -*-]. The angular
frequency ω[image: -*-] can be defined as the rate of change of phase
with time (radians per second). We have already studied such a thing,
so it should be quite familiar to us by now. The period is the
time needed for one oscillation, one complete cycle, and we have worked
that out too; it is 2 π/ω[image: -*-], because ω[image: -*-] times the period is
one cycle of the cosine.




Now we introduce a new quantity which is used a great deal in
physics. This has to do with the opposite situation, in which we
fix t[image: -*-] and look at the wave as a function of distance r[image: -*-]. Of course we
notice that, as a function of r[image: -*-], the wave (29.3) is also
oscillatory. That is, aside from 1/r[image: -*-], which we are ignoring, we see
that E[image: -*-] oscillates as we change the position. So, in analogy with
ω[image: -*-], we can define a quantity called the wave
number, symbolized as k[image: -*-]. This is defined as
the rate of change of phase with distance (radians per meter).
That is, as we move in space at a fixed time, the phase changes.




There is another quantity that corresponds to the period, and we might
call it the period in space, but it is usually called the
wavelength, symbolized λ[image: -*-]. The wavelength is
the distance occupied by one complete cycle. It is easy to see, then,
that the wavelength is 2 π/k[image: -*-], because k[image: -*-] times the wavelength would
be the number of radians that the whole thing changes, being the product
of the rate of change of the radians per meter, times the number of
meters, and we must make a 2 π[image: -*-] change for one cycle. So k λ=2 π[image: -*-] is exactly analogous to ω t0=2 π[image: -*-].





Now in our particular wave there is a definite relationship between
the frequency and the wavelength, but the above definitions of k[image: -*-]
and ω[image: -*-] are actually quite general. That is, the wavelength and the
frequency may not be related in the same way in other physical
circumstances. However, in our circumstance the rate of change of
phase with distance is easily determined, because if we call ϕ=ω (t−r/c)[image: -*-] the phase, and differentiate (partially) with respect
to distance r[image: -*-], the rate of change, ∂ϕ/∂r[image: -*-], is

[image: -*-][image: -*-]
(29.4)




There are many ways to represent the same thing, such as


[image: -*-][image: -*-]
(29.5)

(29.6)



[image: -*-][image: -*-]
(29.7)

(29.8)




Why is the wavelength equal to c[image: -*-] times the period? That’s very easy,
of course, because if we sit still and wait for one period to elapse,
the waves, travelling at the speed c[image: -*-], will move a distance c t0[image: -*-],
and will of course have moved over just one wavelength.




In a physical situation other than that of light, k[image: -*-] is not
necessarily related to ω[image: -*-] in this simple way. If we call the
distance along an axis x[image: -*-], then the formula for a cosine wave moving
in a direction x[image: -*-] with a wave number k[image: -*-] and an angular
frequency ω[image: -*-] will be written in general as cos(ω t−k x)[image: -*-].





Now that we have introduced the idea of wavelength, we may say
something more about the circumstances in which (29.1) is a
legitimate formula. We recall that the field is made up of several
pieces, one of which varies inversely as r[image: -*-], another part which
varies inversely as r2[image: -*-], and others which vary even faster. It would
be worth while to know in what circumstances the 1/r[image: -*-] part of the
field is the most important part, and the other parts are relatively
small. Naturally, the answer is “if we go ‘far enough’ away,”
because terms which vary inversely as the square ultimately become
negligible compared with the 1/r[image: -*-] term. How far is “far enough”?
The answer is, qualitatively, that the other terms are of
order λ/r[image: -*-] smaller than the 1/r[image: -*-] term. Thus, so long as we are
beyond a few wavelengths, (29.1) is an excellent
approximation to the field. Sometimes the region beyond a few
wavelengths is called the “wave zone.”








29–4 Two dipole radiators


Next let us discuss the mathematics involved in combining the effects
of two oscillators to find the net field at a given point. This is
very easy in the few cases that we considered in the previous
chapter. We shall first describe the effects qualitatively, and then
more quantitatively. Let us take the simple case, where the
oscillators are situated with their centers in the same horizontal
plane as the detector, and the line of vibration is vertical.



[image: -][image: -][image: -][image: -]
Fig. 29–5. The intensities in various directions from two dipole
oscillators one-half wavelength apart. Left: in phase (α=0[image: -*-]). Right: one-half period out of phase (α=π[image: -*-]).





Figure 29–5(a) represents the top view of two such
oscillators, and in this particular example they are half a wavelength
apart in a N–S direction, and are oscillating together in the same
phase, which we call zero phase. Now we would like to know the
intensity of the radiation in various directions. By the intensity we
mean the amount of energy that the field carries past us per second,
which is proportional to the square of the field, averaged in time. So
the thing to look at, when we want to know how bright the light is, is
the square of the electric field, not the electric field itself. (The
electric field tells the strength of the force felt by a stationary
charge, but the amount of energy that is going past, in watts per
square meter, is proportional to the square of the electric field. We
shall derive the constant of proportionality in Chapter 31.) If
we look at the array from the W side, both oscillators contribute
equally and in phase, so the electric field is twice as strong as it
would be from a single oscillator. Therefore the intensity is
four times as strong as it would be if there were only one
oscillator. (The numbers in Fig. 29–5 represent how
strong the intensity would be in this case, compared with what it
would be if there were only a single oscillator of unit strength.)
Now, in either the N or S direction along the line of the oscillators,
since they are half a wavelength apart, the effect of one oscillator
turns out to be out of phase by exactly half an oscillation from the
other, and therefore the fields add to zero. At a certain particular
intermediate angle (in fact, at 30°[image: -*-]) the intensity is 2, and
it falls off, 4, 2, 0, and so forth. We have to learn how to
find these numbers at other angles. It is a question of adding two
oscillations with different phases.




Let us quickly look at some other cases of interest. Suppose the
oscillators are again one-half a wavelength apart, but the
phase α[image: -*-] of one is set half a period behind the other in its
oscillation (Fig. 29–5b). In the W direction the
intensity is now zero, because one oscillator is “pushing” when the
other one is “pulling.” But in the N direction the signal from the
near one comes at a certain time, and that of the other comes half a
period later. But the latter was originally half a period
behind in timing, and therefore it is now exactly in time with
the first one, and so the intensity in this direction is
4 units. The intensity in the direction at 30°[image: -*-] is still 2, as
we can prove later.




Now we come to an interesting case which shows up a possibly useful
feature. Let us remark that one of the reasons that phase relations of
oscillators are interesting is for beaming radio transmitters. For
instance, if we build an antenna system and want to send a radio
signal, say, to Hawaii, we set the antennas up as in
Fig. 29–5(a) and we broadcast with our two antennas in
phase, because Hawaii is to the west of us. Then we decide that tomorrow
we are going to broadcast toward Alberta, Canada. Since that is north,
not west, all we have to do is to reverse the phase of one of our
antennas, and we can broadcast to the north. So we can build antenna
systems with various arrangements. Ours is one of the simplest possible
ones; we can make them much more complicated, and by changing the phases
in the various antennas we can send the beams in various directions and
send most of the power in the direction in which we wish to transmit,
without ever moving the antenna! In both of the preceding cases,
however, while we are broadcasting toward Alberta we are wasting a lot
of power on Easter Island, and it would be interesting to ask whether it
is possible to send it in only one direction. At first sight we
might think that with a pair of antennas of this nature the result is
always going to be symmetrical. So let us consider a case that comes out
unsymmetrical, to show the possible variety.



[image: -][image: -]
Fig. 29–6. A pair of dipole antennas giving maximum power in one
direction.





If the antennas are separated by one-quarter wavelength, and if the N
one is one-fourth period behind the S one in time, then what happens
(Fig. 29–6)? In the W direction we get 2, as we will
see later. In the S direction we get zero, because the signal
from S comes at a certain time; that from N comes 90°[image: -*-] later in
time, but it is already 90°[image: -*-] behind in its built-in
phase, therefore it arrives, altogether, 180°[image: -*-] out of phase, and
there is no effect. On the other hand, in the N direction, the N
signal arrives earlier than the S signal by 90°[image: -*-] in time,
because it is a quarter wavelength closer. But its phase is set so,
that it is oscillating 90°[image: -*-] behind in time, which just
compensates the delay difference, and therefore the two signals appear
together in phase, making the field strength twice as large,
and the energy four times as great.




Thus, by using some cleverness in spacing and phasing our antennas, we
can send the power all in one direction. But still it is distributed
over a great range of angles. Can we arrange it so that it is focused
still more sharply in a particular direction? Let us consider the case
of Hawaii again, where we are sending the beam east and west but it is
spread over quite an angle, because even at 30°[image: -*-] we are still
getting half the intensity—we are wasting the power. Can we do
better than that? Let us take a situation in which the separation is
ten wavelengths (Fig. 29–7), which is more nearly
comparable to the situation in which we experimented in the previous
chapter, with separations of several wavelengths rather than a small
fraction of a wavelength. Here the picture is quite different.



[image: -][image: -]
Fig. 29–7. The intensity pattern for two dipoles separated by 10 λ[image: -*-].





If the oscillators are ten wavelengths apart (we take the in-phase
case to make it easy), we see that in the E–W direction, they are in
phase, and we get a strong intensity, four times what we would get if
one of them were there alone. On the other hand, at a very small angle
away, the arrival times differ by 180°[image: -*-] and the intensity is
zero. To be precise, if we draw a line from each oscillator to a
distant point and the difference Δ[image: -*-] in the two distances
is λ/2[image: -*-], half an oscillation, then they will be out of phase. So
this first null occurs when that happens. (The figure is not drawn to
scale; it is only a rough sketch.) This means that we do indeed have a
very sharp beam in the direction we want, because if we just move over
a little bit we lose all our intensity. Unfortunately for practical
purposes, if we were thinking of making a radio broadcasting array and
we doubled the distance Δ[image: -*-], then we would be a whole cycle out of
phase, which is the same as being exactly in phase again! Thus we
get many successive maxima and minima, just as we found with the
[image: 2\tfrac{1}{2}\lambda][image: 2\tfrac{1}{2}\lambda] spacing in Chapter 28.




Now how can we arrange to get rid of all these extra maxima, or
“lobes,” as they are called? We could get rid of the unwanted lobes
in a rather interesting way. Suppose that we were to place another set
of antennas between the two that we already have. That is, the outside
ones are still 10 λ[image: -*-] apart, but between them, say
every 2 λ[image: -*-], we have put another antenna, and we drive them all in
phase. There are now six antennas, and if we looked at the intensity
in the E–W direction, it would, of course, be much higher with six
antennas than with one. The field would be six times and the intensity
thirty-six times as great (the square of the field). We get 36[image: -*-] units
of intensity in that direction. Now if we look at neighboring points,
we find a zero as before, roughly, but if we go farther, to where we
used to get a big “bump,” we get a much smaller “bump” now. Let us
try to see why.



[image: -][image: -]
Fig. 29–8. A six-dipole antenna array and part of its intensity
pattern.





The reason is that although we might expect to get a big bump when the
distance Δ[image: -*-] is exactly equal to the wavelength, it is true that
dipoles 1 and 6 are then in phase and are cooperating in trying to
get some strength in that direction. But numbers 3 and 4 are
roughly [image: \tfrac{1}{2}][image: \tfrac{1}{2}] a wavelength out of phase with 1 and 6, and
although 1 and 6 push together, 3 and 4 push together too, but
in opposite phase. Therefore there is very little intensity in this
direction—but there is something; it does not balance exactly. This
kind of thing keeps on happening; we get very little bumps, and we
have the strong beam in the direction where we want it. But in this
particular example, something else will happen: namely, since the
distance between successive dipoles is 2 λ[image: -*-], it is possible to
find an angle where the distance δ[image: -*-] between successive
dipoles is exactly one wavelength, so that the effects from all of
them are in phase again. Each one is delayed relative to the next one
by 360°[image: -*-], so they all come back in phase, and we have another
strong beam in that direction! It is easy to avoid this in practice
because it is possible to put the dipoles closer than one wavelength
apart. If we put in more antennas, closer than one wavelength apart,
then this cannot happen. But the fact that this can happen at
certain angles, if the spacing is bigger than one wavelength, is a
very interesting and useful phenomenon in other applications—not
radio broadcasting, but in diffraction gratings.







29–5 The mathematics of interference


Now we have finished our analysis of the phenomena of dipole radiators
qualitatively, and we must learn how to analyze them
quantitatively. To find the effect of two sources at some particular
angle in the most general case, where the two oscillators have some
intrinsic relative phase α[image: -*-] from one another and the strengths
A1[image: -*-] and A2[image: -*-] are not equal, we find that we have to add two cosines
having the same frequency, but with different phases. It is very easy
to find this phase difference; it is made up of a delay due to the
difference in distance, and the intrinsic, built-in phase of the
oscillation. Mathematically, we have to find the sum R[image: -*-] of two waves:
R=A1 cos(ω t+ϕ1)+A2 cos(ω t+ϕ2)[image: -*-]. How
do we do it?




It is really very easy, and we presume that we already know how to do
it. However, we shall outline the procedure in some detail. First, we
can, if we are clever with mathematics and know enough about cosines
and sines, simply work it out. The easiest such case is the one where
A1[image: -*-] and A2[image: -*-] are equal, let us say they are both equal to A[image: -*-]. In
those circumstances, for example (we could call this the trigonometric
method of solving the problem), we have

[image: -*-][image: -*-]
(29.9)




Once, in our trigonometry class, we may have learned the rule that

[image: -*-][image: -*-]
(29.10)




If we know that, then we can immediately write R[image: -*-] as

[image: -*-][image: -*-]
(29.11)




So we find that we have an oscillatory wave with a new phase and a new
amplitude. In general, the result will be an oscillatory wave
with a new amplitude AR[image: -*-], which we may call the resultant amplitude,
oscillating at the same frequency but with a phase
difference ϕR[image: -*-], called the resultant phase. In view of this, our particular
case has the following result: that the resultant amplitude is

[image: -*-][image: -*-]
(29.12)




and the resultant phase is the average of the two phases, and we have
completely solved our problem.



[image: -][image: -]
Fig. 29–9. A geometrical method for combining two cosine waves. The
entire diagram is thought of as rotating counterclockwise with
angular frequency ω[image: -*-].





Now suppose that we cannot remember that the sum of two cosines is
twice the cosine of half the sum times the cosine of half the
difference. Then we may use another method of analysis which is more
geometrical. Any cosine function of ω t[image: -*-] can be considered as
the horizontal projection of a rotating vector. Suppose there
were a vector A1[image: -*-] of length A1[image: -*-] rotating with time, so that
its angle with the horizontal axis is ω t+ϕ1[image: -*-]. (We shall
leave out the ω t[image: -*-] in a minute, and see that it makes no
difference.)  Suppose that we take a snapshot at the time t=0[image: -*-],
although, in fact, the picture is rotating with angular
velocity ω[image: -*-] (Fig. 29–9). The projection of A1[image: -*-] along
the horizontal axis is precisely A1 cos(ω t+ϕ1)[image: -*-]. Now
at t=0[image: -*-] the second wave could be represented by another vector,
A2[image: -*-], of length A2[image: -*-] and at an angle ϕ2[image: -*-], and also
rotating. They are both rotating with the same angular
velocity ω[image: -*-], and therefore the relative positions of the two are
fixed. The system goes around like a rigid body. The horizontal
projection of A2[image: -*-] is A2 cos(ω t+ϕ2)[image: -*-]. But we know
from the theory of vectors that if we add the two vectors in the
ordinary way, by the parallelogram rule, and draw the resultant
vector AR[image: -*-], the x[image: -*-]-component of the resultant is the sum of the
x[image: -*-]-components of the other two vectors. That solves our problem. It
is easy to check that this gives the correct result for the special
case we treated above, where A1=[image: -*-]A2=[image: -*-]A[image: -*-]. In this case, we see from
Fig. 29–9 that AR[image: -*-] lies midway between A1[image: -*-]
and A2[image: -*-] and makes an angle [image: \tfrac{1}{2}(\phi_2 - \phi_1)][image: \tfrac{1}{2}(\phi_2 - \phi_1)] with
each. Therefore we see that [image: A_R = 2A\cos\tfrac{1}{2}(\phi_2 - \phi_1)][image: A_R = 2A\cos\tfrac{1}{2}(\phi_2 - \phi_1)], as before. Also, as we see from the triangle, the phase
of AR[image: -*-], as it goes around, is the average angle of A1[image: -*-]
and A2[image: -*-] when the two amplitudes are equal. Clearly, we can also
solve for the case where the amplitudes are not equal, just as
easily. We can call that the geometrical way of solving the
problem.





There is still another way of solving the problem, and that is the
analytical way. That is, instead of having actually to draw a
picture like Fig. 29–9, we can write something down
which says the same thing as the picture: instead of drawing the
vectors, we write a complex number to represent each of the
vectors. The real parts of the complex numbers are the actual physical
quantities. So in our particular case the waves could be written in
this way: A1 ei (ω t+ϕ1)[image: -*-] [the real part of this is
A1cos(ωt+ϕ1)][image: -*-] and A2 ei (ω t+ϕ2)[image: -*-]. Now
we can add the two:



[image: -*-][image: -*-]
(29.13)





or

[image: -*-][image: -*-]
(29.14)




This solves the problem that we wanted to solve, because it represents
the result as a complex number of magnitude AR[image: -*-] and phase ϕR[image: -*-].




To see how this method works, let us find the amplitude AR[image: -*-] which is
the “length” of [image: \hat{R}][image: \hat{R}]. To get the “length” of a complex
quantity, we always multiply the quantity by its complex conjugate,
which gives the length squared. The complex conjugate is the same
expression, but with the sign of the i[image: -*-]’s reversed. Thus we have

[image: -*-][image: -*-]
(29.15)




In multiplying this out, we get [image: A_1^2 + A_2^2][image: A_1^2 + A_2^2] (here the e[image: -*-]’s
cancel), and for the cross terms we have

[image: -*-][image: -*-]


Now

[image: -*-][image: -*-]


That is to say, ei θ+e−i θ=2 cosθ[image: -*-]. Our final
result is therefore

[image: -*-][image: -*-]
(29.16)







As we see, this agrees with the length of AR[image: -*-] in
Fig. 29–9, using the rules of trigonometry.




Thus the sum of the two effects has the intensity [image: A_1^2][image: A_1^2] we would get
with one of them alone, plus the intensity [image: A_2^2][image: A_2^2] we would get with
the other one alone, plus a correction. This correction we call the
interference effect. It is really only the difference between
what we get simply by adding the intensities, and what actually
happens. We call it interference whether it is positive or
negative. (Interference in ordinary language usually suggests
opposition or hindrance, but in physics we often do not use language
the way it was originally designed!) If the interference term is
positive, we call that case constructive interference, horrible
though it may sound to anybody other than a physicist! The opposite
case is called destructive interference.



[image: -][image: -]
Fig. 29–10. Two oscillators of equal amplitude, with a phase
difference α[image: -*-] between them.





Now let us see how to apply our general formula (29.16) for
the case of two oscillators to the special situations which we have
discussed qualitatively. To apply this general formula, it is only
necessary to find what phase difference, ϕ1−ϕ2[image: -*-], exists
between the signals arriving at a given point. (It depends only on the
phase difference, of course, and not on the phase itself.) So let us
consider the case where the two oscillators, of equal amplitude, are
separated by some distance d[image: -*-] and have an intrinsic relative
phase α[image: -*-]. (When one is at phase zero, the phase of the other
is α[image: -*-].)  Then we ask what the intensity will be in some azimuth
direction θ[image: -*-] from the E–W line. [Note that this is not
the same θ[image: -*-] as appears in (29.1). We are torn between
using an unconventional symbol like [image: \cancel{\text{U}}\!\!,][image: \cancel{\text{U}}\!\!,] or the conventional
symbol θ[image: -*-] (Fig. 29–10).] The phase relationship is
found by noting that the difference in distance from P[image: -*-] to the two
oscillators is d sinθ[image: -*-], so that the phase difference
contribution from this is the number of wavelengths in d sinθ[image: -*-],
multiplied by 2 π[image: -*-]. (Those who are more sophisticated might want to
multiply the wave number k[image: -*-], which is the rate of change of phase
with distance, by d sinθ[image: -*-]; it is exactly the same.) The phase
difference due to the distance difference is thus 2 π d sinθ/λ[image: -*-], but, due to the timing of the oscillators, there
is an additional phase α[image: -*-]. So the phase difference at arrival
would be

[image: -*-][image: -*-]
(29.17)




This takes care of all the cases. Thus all we have to do is substitute
this expression into (29.16) for the case A1=A2[image: -*-], and
we can calculate all the various results for two antennas of equal
intensity.




Now let us see what happens in our various cases. The reason we know,
for example, that the intensity is 2 at 30°[image: -*-] in
Fig. 29–5 is the following: the two oscillators
are [image: \tfrac{1}{2}\lambda][image: \tfrac{1}{2}\lambda] apart, so at 30°[image: -*-], d sinθ=λ/4[image: -*-].
Thus ϕ2−ϕ1=[image: -*-]2 π λ/4 λ=[image: -*-]π/2[image: -*-], and so the
interference term is zero. (We are adding two vectors at 90°[image: -*-].)
The result is the hypotenuse of a 45°[image: -*-] right-angle triangle, which
is √2[image: -*-] times the unit amplitude; squaring it, we get twice the
intensity of one oscillator alone. All the other cases can be worked out
in this same way.







  
    

30 Diffraction



30–1 The resultant amplitude due to n[image: -*-] equal oscillators


This chapter is a direct continuation of the previous one, although
the name has been changed from Interference to
Diffraction. No one has ever been able to define the difference
between interference and diffraction satisfactorily. It is just a
question of usage, and there is no specific, important physical
difference between them. The best we can do, roughly speaking, is to
say that when there are only a few sources, say two, interfering, then
the result is usually called interference, but if there is a large
number of them, it seems that the word diffraction is more often
used. So, we shall not worry about whether it is interference or
diffraction, but continue directly from where we left off in the
middle of the subject in the last chapter.





Thus we shall now discuss the situation where there are n[image: -*-] equally
spaced oscillators, all of equal amplitude but different from one
another in phase, either because they are driven differently in phase,
or because we are looking at them at an angle such that there is a
difference in time delay. For one reason or another, we have to add
something like this:



[image: -*-][image: -*-]
(30.1)





where ϕ[image: -*-] is the phase difference between one oscillator and the
next one, as seen in a particular direction. Specifically, ϕ=α+2 π d sinθ/λ[image: -*-]. Now we must add all the terms
together. We shall do this geometrically. The first one is of
length A[image: -*-], and it has zero phase. The next is also of length A[image: -*-] and it has
a phase equal to ϕ[image: -*-]. The next one is again of length A[image: -*-] and it
has a phase equal to 2 ϕ[image: -*-], and so on. So we are evidently going
around an equiangular polygon with n[image: -*-] sides (Fig. 30–1).



[image: -][image: -]
Fig. 30–1. The resultant amplitude of n=6[image: -*-] equally spaced sources
with net successive phase differences ϕ[image: -*-].





Now the vertices, of course, all lie on a circle, and we can find the
net amplitude most easily if we find the radius of that
circle. Suppose that Q[image: -*-] is the center of the circle. Then we know
that the angle O Q S[image: -*-] is just a phase angle ϕ[image: -*-]. (This is because
the radius Q S[image: -*-] bears the same geometrical relation to A2[image: -*-]
as Q O[image: -*-] bears to A1[image: -*-], so they form an angle ϕ[image: -*-] between them.)
Therefore the radius r[image: -*-] must be such that A=2 r sinϕ/2[image: -*-], which
fixes r[image: -*-]. But the large angle O Q T[image: -*-] is equal to n ϕ[image: -*-], and we thus
find that AR=2 r sinn ϕ/2[image: -*-]. Combining these two results to
eliminate r[image: -*-], we get

[image: -*-][image: -*-]
(30.2)




The resultant intensity is thus

[image: -*-][image: -*-]
(30.3)







Now let us analyze this expression and study some of its
consequences. In the first place, we can check it for n=1[image: -*-]. It
checks: I=I0[image: -*-]. Next, we check it for n=2[image: -*-]: writing sinϕ=2 sinϕ/2 cosϕ/2[image: -*-], we find that AR=2 A cosϕ/2[image: -*-], which
agrees with (29.12).




Now the idea that led us to consider the addition of several sources
was that we might get a much stronger intensity in one direction than
in another; that the nearby maxima which would have been present if
there were only two sources will have gone down in strength. In order
to see this effect, we plot the curve that comes from (30.3),
taking n[image: -*-] to be enormously large and plotting the region near ϕ=0[image: -*-]. In the first place, if ϕ[image: -*-] is exactly 0, we have 0/0[image: -*-], but if
ϕ[image: -*-] is infinitesimal, the ratio of the two sines squared is simply
n2[image: -*-], since the sine and the angle are approximately equal. Thus the
intensity of the maximum of the curve is equal to n2[image: -*-] times the
intensity of one oscillator. That is easy to see, because if they are
all in phase, then the little vectors have no relative angle and all n[image: -*-]
of them add up so the amplitude is n[image: -*-] times, and the intensity
n2[image: -*-] times, stronger.




As the phase ϕ[image: -*-] increases, the ratio of the two sines begins to
fall off, and the first time it reaches zero is when n ϕ/2=π[image: -*-],
because sinπ=0[image: -*-]. In other words, ϕ=2 π/n[image: -*-] corresponds to
the first minimum in the curve (Fig. 30–2). In terms of
what is happening with the arrows in Fig. 30–1, the
first minimum occurs when all the arrows come back to the starting
point; that means that the total accumulated angle in all the arrows,
the total phase difference between the first and last oscillator, must
be 2 π[image: -*-] to complete the circle.



[image: -][image: -]
Fig. 30–2. The intensity as a function of phase angle for a large number
of oscillators of equal strength.





Now we go to the next maximum, and we want to see that it is really
much smaller than the first one, as we had hoped. We shall not go
precisely to the maximum position, because both the numerator and the
denominator of (30.3) are variant, but sinϕ/2[image: -*-] varies
quite slowly compared with sinn ϕ/2[image: -*-] when n[image: -*-] is large, so when
sin2n ϕ/2=1[image: -*-] we are very close to the maximum. The next maximum
of sin2n ϕ/2[image: -*-] comes at n ϕ/2=3 π/2[image: -*-], or ϕ=3 π/n[image: -*-]. This corresponds to the arrows having traversed the circle
one and a half times. On putting ϕ=3 π/n[image: -*-] into the formula to
find the size of the maximum, we find that sin23 π/2=1[image: -*-] in the
numerator (because that is why we picked this angle), and in the
denominator we have sin23 π/2 n[image: -*-]. Now if n[image: -*-] is sufficiently
large, then this angle is very small and the sine is equal to the
angle; so for all practical purposes, we can put sin3 π/2 n=3 π/2 n[image: -*-]. Thus we find that the intensity at this maximum is I=I0 (4 n2/9 π2)[image: -*-]. But n2 I0[image: -*-] was the maximum intensity, and so we
have 4/9 π2[image: -*-] times the maximum intensity, which is about 0.045[image: -*-],
less than 5 percent, of the maximum intensity! Of course there are
decreasing intensities farther out. So we have a very sharp central
maximum with very weak subsidiary maxima on the sides.




It is possible to prove that the area of the whole curve, including
all the little bumps, is equal to 2 π n I0[image: -*-], or twice the area of
the dotted rectangle in Fig. 30–2.



[image: -][image: -]
Fig. 30–3. A linear array of n[image: -*-] equal oscillators, driven with
phases αs=s α[image: -*-].





Now let us consider further how we may apply Eq. (30.3)
in different circumstances, and try to understand what is
happening. Let us consider our sources to be all on a line, as drawn
in Fig. 30–3. There are n[image: -*-] of them, all spaced by a
distance d[image: -*-], and we shall suppose that the intrinsic relative phase,
one to the next, is α[image: -*-]. Then if we are observing in a given
direction θ[image: -*-] from the normal, there is an additional phase 2 π d sinθ/λ[image: -*-] because of the time delay between each
successive two, which we talked about before. Thus
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(30.4)







First, we shall take the case α=0[image: -*-]. That is, all oscillators
are in phase, and we want to know what the intensity is as a function
of the angle θ[image: -*-]. In order to find out, we merely have to put
ϕ=k d sinθ[image: -*-] into formula (30.3) and see what
happens. In the first place, there is a maximum when ϕ=0[image: -*-]. That
means that when all the oscillators are in phase there is a strong
intensity in the direction θ=0[image: -*-]. On the other hand, an
interesting question is, where is the first minimum?  That occurs when
ϕ=2 π/n[image: -*-]. In other words, when 2 π d sinθ/λ=2 π/n[image: -*-], we get the first minimum of the curve. If we get rid of
the 2 π[image: -*-]’s so we can look at it a little better, it says that
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(30.5)




Now let us understand physically why we get a minimum at that
position. n d[image: -*-] is the total length L[image: -*-] of the array. Referring to
Fig. 30–3, we see that n d sinθ=L sinθ=Δ[image: -*-]. What (30.5) says is that when Δ[image: -*-] is equal to
one wavelength, we get a minimum. Now why do we get a minimum
when Δ=λ[image: -*-]?  Because the contributions of the various
oscillators are then uniformly distributed in phase from 0°[image: -*-]
to 360°[image: -*-]. The arrows (Fig. 30–1) are going around a
whole circle—we are adding equal vectors in all directions, and such
a sum is zero. So when we have an angle such that Δ=λ[image: -*-],
we get a minimum. That is the first minimum.




There is another important feature about formula (30.3),
which is that if the angle ϕ[image: -*-] is increased by any multiple
of 2 π[image: -*-], it makes no difference to the formula. So we will get other
strong maxima at ϕ=2 π[image: -*-], 4 π[image: -*-], 6 π[image: -*-], and so forth. Near
each of these great maxima the pattern of Fig. 30–2 is
repeated. We may ask ourselves, what is the geometrical circumstance
that leads to these other great maxima?  The condition is that ϕ=2 π m[image: -*-], where m[image: -*-] is any integer. That is, 2 π d sinθ/λ=2 π m[image: -*-]. Dividing by 2 π[image: -*-], we see that
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(30.6)




This looks like the other formula, (30.5). No, that formula
was n d sinθ=λ[image: -*-]. The difference is that here we have to
look at the individual sources, and when we say d sinθ=m λ[image: -*-], that means that we have an angle θ[image: -*-] such that δ=m λ[image: -*-]. In other words, each source is now contributing a certain
amount, and successive ones are out of phase by a whole multiple
of 360°[image: -*-], and therefore are contributing in phase, because
out of phase by 360°[image: -*-] is the same as being in phase. So they all
contribute in phase and produce just as good a maximum as the one for
m=0[image: -*-] that we discussed before. The subsidiary bumps, the whole
shape of the pattern, is just like the one near ϕ=0[image: -*-], with
exactly the same minima on each side, etc. Thus such an array will
send beams in various directions—each beam having a strong central
maximum and a certain number of weak “side lobes.” The various
strong beams are referred to as the zero-order beam, the first-order
beam, etc., according to the value of m[image: -*-]. m[image: -*-] is called the
order of the beam.




We call attention to the fact that if d[image: -*-] is less than λ[image: -*-],
Eq. (30.6) can have no solution except m=0[image: -*-], so that
if the spacing is too small there is only one possible beam, the
zero-order one centered at θ=0[image: -*-]. (Of course, there is also a
beam in the opposite direction.) In order to get subsidiary great
maxima, we must have the spacing d[image: -*-] of the array greater than one
wavelength.







30–2 The diffraction grating


In technical work with antennas and wires it is possible to arrange
that all the phases of the little oscillators, or antennas, are
equal. The question is whether and how we can do a similar thing with
light. We cannot at the present time literally make little
optical-frequency radio stations and hook them up with infinitesimal
wires and drive them all with a given phase. But there is a very easy
way to do what amounts to the same thing.




Suppose that we had a lot of parallel wires, equally spaced at a
spacing d[image: -*-], and a radiofrequency source very far away, practically at
infinity, which is generating an electric field which arrives at each
one of the wires at the same phase (it is so far away that the time
delay is the same for all of the wires). (One can work out cases with
curved arrays, but let us take a plane one.) Then the external
electric field will drive the electrons up and down in each wire. That
is, the field which is coming from the original source will shake the
electrons up and down, and in moving, these represent new
generators. This phenomenon is called scattering: a light wave from
some source can induce a motion of the electrons in a piece of
material, and these motions generate their own waves. Therefore all
that is necessary is to set up a lot of wires, equally spaced, drive
them with a radiofrequency source far away, and we have the situation
that we want, without a whole lot of special wiring. If the incidence
is normal, the phases will be equal, and we will get exactly the
circumstance we have been discussing. Therefore, if the wire spacing
is greater than the wavelength, we will get a strong intensity of
scattering in the normal direction, and in certain other directions
given by (30.6).




This can also be done with light! Instead of wires, we use a
flat piece of glass and make notches in it such that each of the
notches scatters a little differently than the rest of the glass. If
we then shine light on the glass, each one of the notches will
represent a source, and if we space the lines very finely, but not
closer than a wavelength (which is technically almost impossible
anyway), then we would expect a miraculous phenomenon: the light not
only will pass straight through, but there will also be a strong beam
at a finite angle, depending on the spacing of the notches! Such
objects have actually been made and are in common use—they are
called diffraction gratings.




In one of its forms, a diffraction grating consists of nothing but a
plane glass sheet, transparent and colorless, with scratches on
it. There are often several hundred scratches to the millimeter,
very carefully arranged so as to be equally spaced. The effect
of such a grating can be seen by arranging a projector so as to throw
a narrow, vertical line of light (the image of a slit) onto a
screen. When we put the grating into the beam, with its scratches
vertical, we see that the line is still there but, in addition, on
each side we have another strong patch of light which is
colored. This, of course, is the slit image spread out over a
wide angular range, because the angle θ[image: -*-] in (30.6)
depends upon λ[image: -*-], and lights of different colors, as we know,
correspond to different frequencies, and therefore different
wavelengths. The longest visible wavelength is red, and since d sinθ=λ[image: -*-], that requires a larger θ[image: -*-]. And we do, in fact,
find that red is at a greater angle out from the central image! There
should also be a beam on the other side, and indeed we see one on the
screen. Then, there might be another solution of (30.6)
when m=2[image: -*-]. We do see that there is something vaguely there—very
weak—and there are even other beams beyond.




We have just argued that all these beams ought to be of the same
strength, but we see that they actually are not and, in fact, not even
the first ones on the right and left are equal! The reason is that the
grating has been carefully built to do just this. How? If the grating
consists of very fine notches, infinitesimally wide, spaced evenly,
then all the intensities would indeed be equal. But, as a matter of
fact, although we have taken the simplest case, we could also have
considered an array of pairs of antennas, in which each member
of the pair has a certain strength and some relative phase. In this
case, it is possible to get intensities which are different in the
different orders. A grating is often made with little “sawtooth”
cuts instead of little symmetrical notches. By carefully arranging
the, “sawteeth,” more light may be sent into one particular order of
spectrum than into the others. In a practical grating, we would like
to have as much light as possible in one of the orders. This may seem
a complicated point to bring in, but it is a very clever thing to do,
because it makes the grating more useful.



[image: -][image: -]
Fig. 30–4. The path difference for rays scattered from adjacent rulings
of a grating is d sinθout−d sinθin[image: -*-].





So far, we have taken the case where all the phases of the sources are
equal. But we also have a formula for ϕ[image: -*-] when the phases differ
from one to the next by an angle α[image: -*-]. That requires wiring up our
antennas with a slight phase shift between each one. Can we do that
with light?  Yes, we can do it very easily, for suppose that there
were a source of light at infinity, at an angle such that the
light is coming in at an angle θin[image: -*-], and let us say
that we wish to discuss the scattered beam, which is leaving at an
angle θout[image: -*-] (Fig. 30–4). The
θout[image: -*-] is the same θ[image: -*-] as we have had before, but
the θin[image: -*-] is merely a means for arranging that the phase
of each source is different: the light coming from the distant driving
source first hits one scratch, then the next, then the next, and so on,
with a phase shift from one to the other, which, as we see, is α=−2 π d sinθin/λ[image: -*-]. Therefore we have the formula
for a grating in which light both comes in and goes out at an angle:
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(30.7)




Let us try to find out where we get strong intensity in these
circumstances. The condition for strong intensities is, of course,
that ϕ[image: -*-] should be a multiple of 2 π[image: -*-]. There are several
interesting points to be noted.




One case of rather great interest is that which corresponds to m=0[image: -*-], where d[image: -*-] is less than λ[image: -*-]; in fact, this is the only
solution. In this case we see that sinθout=sinθin[image: -*-], which means that the light comes out in the
same direction as the light which was exciting the grating. We
might think that the light “goes right through.” No, it is
different light that we are talking about. The light that goes
right through is from the original source; what we are talking about
is the new light which is generated by scattering. It turns out
that the scattered light is going in the same direction as the
original light, in fact it can interfere with it—a feature which we
will study later.




There is another solution for this same case. For a given
θin[image: -*-], θout[image: -*-] may be the
supplement of θin[image: -*-]. So not only do we get a
beam in the same direction as the incoming beam but also one in
another direction, which, if we consider it carefully, is such that
the angle of incidence is equal to the angle of
scattering. This we call the reflected beam.




So we begin to understand the basic machinery of reflection: the light
that comes in generates motions of the atoms in the reflector, and the
reflector then regenerates a new wave, and one of the solutions
for the direction of scattering, the only solution if the
spacing of the scatterers is small compared with one wavelength, is
that the angle at which the light comes out is equal to the angle at
which it comes in!




Next, we discuss the special case when d→0[image: -*-]. That is, we have
just a solid piece of material, so to speak, but of finite length. In
addition, we want the phase shift from one scatterer to the next to go
to zero. In other words, we put more and more antennas between the
other ones, so that each of the phase differences is getting smaller,
but the number of antennas is increasing in such a way that the total
phase difference, between one end of the line and the other, is
constant. Let us see what happens to (30.3) if we keep the
difference in phase n ϕ[image: -*-] from one end to the other constant (say
n ϕ=Φ[image: -*-]), letting the number go to infinity and the phase shift
ϕ[image: -*-] of each one go to zero. But now ϕ[image: -*-] is so small that sinϕ=ϕ[image: -*-], and if we also recognize n2 I0[image: -*-] as Im[image: -*-], the maximum
intensity at the center of the beam, we find
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(30.8)




This limiting case is what is shown in Fig. 30–2.




In such circumstances we find the same general kind of a picture as
for finite spacing with d<λ[image: -*-]; all the side lobes are
practically the same as before, but there are no higher-order
maxima. If the scatterers are all in phase, we get a maximum in the
direction θout=0[image: -*-], and a minimum when the
distance Δ[image: -*-] is equal to λ[image: -*-], just as for finite d[image: -*-] and n[image: -*-]. So we
can even analyze a continuous distribution of scatterers or
oscillators, by using integrals instead of summing.



[image: -][image: -]
Fig. 30–5. The intensity pattern of a continuous line of oscillators has
a single strong maximum and many weak “side lobes.”





As an example, suppose there were a long line of oscillators, with the
charge oscillating along the direction of the line
(Fig. 30–5). From such an array the greatest intensity is
perpendicular to the line. There is a little bit of intensity up and
down from the equatorial plane, but it is very slight. With this result,
we can handle a more complicated situation. Suppose we have a set of
such lines, each producing a beam only in a plane perpendicular to the
line. To find the intensity in various directions from a series of long
wires, instead of infinitesimal wires, is the same problem as it was for
infinitesimal wires, so long as we are in the central plane
perpendicular to the wires; we just add the contribution from each of
the long wires. That is why, although we actually analyzed only tiny
antennas, we might as well have used a grating with long, narrow slots.
Each of the long slots produces an effect only in its own direction, not
up and down, but they are all set next to each other horizontally, so
they produce interference that way.




Thus we can build up more complicated situations by having various
distributions of scatterers in lines, planes, or in space. The first
thing we did was to consider scatterers in a line, and we have just
extended the analysis to strips; we can work it out by just doing the
necessary summations, adding the contributions from the individual
scatterers. The principle is always the same.







30–3 Resolving power of a grating


We are now in a position to understand a number of interesting
phenomena.  For example, consider the use of a grating for separating
wavelengths. We noticed that the whole spectrum was spread out on the
screen, so a grating can be used as an instrument for separating light
into its different wavelengths. One of the interesting questions is:
supposing that there were two sources of slightly different frequency,
or slightly different wavelength, how close together in wavelength
could they be such that the grating would be unable to tell that there
were really two different wavelengths there? The red and the blue were
clearly separated. But when one wave is red and the other is slightly
redder, very close, how close can they be? This is called the
resolving power of the grating, and one way of analyzing the
problem is as follows. Suppose that for light of a certain color we
happen to have the maximum of the diffracted beam occurring at a
certain angle. If we vary the wavelength the phase 2 π d sinθ/λ[image: -*-] is different, so of course the maximum occurs at a
different angle. That is why the red and blue are spread out. How
different in angle must it be in order for us to be able to see it? If
the two maxima are exactly on top of each other, of course we cannot
see them. If the maximum of one is far enough away from the other,
then we can see that there is a double bump in the distribution of
light. In order to be able to just make out the double bump, the
following simple criterion, called Rayleigh’s criterion,
is usually used (Fig. 30–6). It is that the first minimum
from one bump should sit at the maximum of the other. Now it is very
easy to calculate, when one minimum sits on the other maximum, how much
the difference in wavelength is. The best way to do it is geometrically.



[image: -][image: -]
Fig. 30–6. Illustration of the Rayleigh criterion. The maximum of one
pattern falls on the first minimum of the other.





In order to have a maximum for wavelength λ′[image: -*-], the
distance Δ[image: -*-] (Fig. 30–3) must be n λ′[image: -*-], and if we are
looking at the m[image: -*-]th-order beam, it is m n λ′[image: -*-]. In other words,
2 π d sinθ/λ′=2 π m[image: -*-], so n d sinθ[image: -*-], which
is Δ[image: -*-], is m λ′[image: -*-] times n[image: -*-], or m n λ′[image: -*-]. For the other
beam, of wavelength λ[image: -*-], we want to have a minimum at
this angle. That is, we want Δ[image: -*-] to be exactly one
wavelength λ[image: -*-] more than m n λ[image: -*-]. That is, Δ=m n λ+λ=m n λ′[image: -*-]. Thus if λ′=λ+Δ λ[image: -*-], we
find

[image: -*-][image: -*-]
(30.9)




The ratio λ/Δ λ[image: -*-] is called the resolving power
of a grating; we see that it is equal to the total number of lines in
the grating, times the order. It is not hard to prove that this
formula is equivalent to the formula that the error in frequency is
equal to the reciprocal time difference between extreme paths that are
allowed to interfere:1

[image: -*-][image: -*-]


In fact, that is the best way to remember it, because the general
formula works not only for gratings, but for any other instrument
whatsoever, while the special formula (30.9) depends on the
fact that we are using a grating.







30–4 The parabolic antenna


Now let us consider another problem in resolving power. This has to do
with the antenna of a radio telescope, used for determining the
position of radio sources in the sky, i.e., how large they are in
angle. Of course if we use any old antenna and find signals, we would
not know from what direction they came. We are very interested to know
whether the source is in one place or another. One way we can find out
is to lay out a whole series of equally spaced dipole wires on the
Australian landscape. Then we take all the wires from these antennas
and feed them into the same receiver, in such a way that all the
delays in the feed lines are equal. Thus the receiver receives signals
from all of the dipoles in phase. That is, it adds all the waves from
every one of the dipoles in the same phase. Now what happens? If the
source is directly above the array, at infinity or nearly so, then its
radiowaves will excite all the antennas in the same phase, so they all
feed the receiver together.




Now suppose that the radio source is at a slight angle θ[image: -*-] from
the vertical. Then the various antennas are receiving signals a little
out of phase. The receiver adds all these out-of-phase signals
together, and so we get nothing, if the angle θ[image: -*-] is too big. How
big may the angle be? Answer: we get zero if the
angle Δ/L=θ[image: -*-] (Fig. 30–3) corresponds to a
360°[image: -*-] phase shift, that is, if Δ[image: -*-] is the
wavelength λ[image: -*-]. This is because the vector contributions form together a
complete polygon with zero resultant. The smallest angle that can be
resolved by an antenna array of length L[image: -*-] is θ=λ/L[image: -*-]. Notice that the receiving pattern of an antenna such as
this is exactly the same as the intensity distribution we would get if
we turned the receiver around and made it into a transmitter. This is
an example of what is called a reciprocity
principle. It turns out, in fact, to be
generally true for any arrangement of antennas, angles, and so on, that
if we first work out what the relative intensities would be in various
directions if the receiver were a transmitter instead, then the relative
directional sensitivity of a receiver with the same external wiring, the
same array of antennas, is the same as the relative intensity of
emission would be if it were a transmitter.




Some radio antennas are made in a different way. Instead of having a
whole lot of dipoles in a long line, with a lot of feed wires, we may
arrange them not in a line but in a curve, and put the receiver at a
certain point where it can detect the scattered waves. This curve is
cleverly designed so that if the radiowaves are coming down from
above, and the wires scatter, making a new wave, the wires are so
arranged that the scattered waves reach the receiver all at the same
time (Fig. 26–12). In other words, the curve is a
parabola, and when the source is exactly on its axis, we get a
very strong intensity at the focus. In this case we understand very
clearly what the resolving power of such an instrument is. The
arranging of the antennas on a parabolic curve is not an essential
point. It is only a convenient way to get all the signals to the same
point with no relative delay and without feed wires. The angle such an
instrument can resolve is still θ=λ/L[image: -*-], where L[image: -*-] is the
separation of the first and last antennas. It does not depend on the
spacing of the antennas and they may be very close together or in fact
be all one piece of metal. Now we are describing a telescope mirror,
of course. We have found the resolving power of a telescope!
(Sometimes the resolving power is written θ=1.22 λ/L[image: -*-],
where L[image: -*-] is the diameter of the telescope. The reason that it is not
exactly λ/L[image: -*-] is this: when we worked out that θ=λ/L[image: -*-], we assumed that all the lines of dipoles were equal in
strength, but when we have a circular telescope, which is the way we
usually arrange a telescope, not as much signal comes from the outside
edges, because it is not like a square, where we get the same
intensity all along a side. We get somewhat less because we are using
only part of the telescope there; thus we can appreciate that the
effective diameter is a little shorter than the true diameter, and
that is what the 1.22[image: -*-] factor tells us. In any case, it seems a
little pedantic to put such precision into the resolving power
formula.2)







30–5 Colored films; crystals


The above, then, are some of the effects of interference obtained by
adding the various waves. But there are a number of other examples,
and even though we do not understand the fundamental mechanism yet, we
will some day, and we can understand even now how the interference
occurs. For example, when a light wave hits a surface of a material
with an index n[image: -*-], let us say at normal incidence, some of the light
is reflected. The reason for the reflection we are not in a
position to understand right now; we shall discuss it later. But
suppose we know that some of the light is reflected both on entering
and leaving a refracting medium. Then, if we look at the reflection of
a light source in a thin film, we see the sum of two waves; if the
thicknesses are small enough, these two waves will produce an
interference, either constructive or destructive, depending on the
signs of the phases. It might be, for instance, that for red light, we
get an enhanced reflection, but for blue light, which has a different
wavelength, perhaps we get a destructively interfering reflection, so
that we see a bright red reflection. If we change the thickness, i.e.,
if we look at another place where the film is thicker, it may be
reversed, the red interfering and the blue not, so it is bright blue,
or green, or yellow, or whatnot. So we see colors when we look
at thin films and the colors change if we look at different angles,
because we can appreciate that the timings are different at different
angles. Thus we suddenly appreciate another hundred thousand
situations involving the colors that we see on oil films, soap bubbles,
etc. at different angles. But the principle is all the same: we are
only adding waves at different phases.




As another important application of diffraction, we may mention the
following. We used a grating and we saw the diffracted image on the
screen. If we had used monochromatic light, it would have been at a
certain specific place. Then there were various higher-order images
also. From the positions of the images, we could tell how far apart
the lines on the grating were, if we knew the wavelength of the
light. From the difference in intensity of the various images, we
could find out the shape of the grating scratches, whether the grating
was made of wires, sawtooth notches, or whatever, without being
able to see them. This principle is used to discover the positions of
the atoms in a crystal. The only complication is that a crystal
is three-dimensional; it is a repeating three-dimensional array of
atoms. We cannot use ordinary light, because we must use something
whose wavelength is less than the space between the atoms or we get no
effect; so we must use radiation of very short wavelength, i.e.,
x-rays. So, by
shining x-rays into a crystal and by noticing how intense is the
reflection in the various orders, we can determine the arrangement of
the atoms inside without ever being able to see them with the eye! It is
in this way that we know the arrangement of the atoms in various
substances, which permitted us to draw those pictures in the first
chapter, showing the arrangement of atoms in salt, and so on. We shall
later come back to this subject and discuss it in more detail, and
therefore we say no more about this most remarkable idea at present.








30–6 Diffraction by opaque screens


Now we come to a very interesting situation. Suppose that we have an
opaque sheet with holes in it, and a light on one side of it. We want
to know what the intensity is on the other side. What most people say
is that the light shines through the holes, and produces an effect on
the other side. It will turn out that one gets the right answer, to an
excellent approximation, if he assumes that there are sources
distributed with uniform density across the open holes, and that the
phases of these sources are the same as they would have been if the
opaque material were absent. Of course, actually there are no
sources at the holes, in fact that is the only place that there are
certainly no sources. Nevertheless, we get the correct
diffraction patterns by considering the holes to be the only places
that there are sources; that is a rather peculiar fact. We
shall explain later why this is true, but for now let us just suppose
that it is.




In the theory of diffraction there is another kind of diffraction that
we should briefly discuss. It is usually not discussed in an
elementary course as early as this, only because the mathematical
formulas involved in adding these little vectors are a little
elaborate. Otherwise it is exactly the same as we have been doing all
along. All the interference phenomena are the same; there is nothing
very much more advanced involved, only the circumstances are more
complicated and it is harder to add the vectors together, that is all.
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Fig. 30–7. A distant light source casts a shadow of an opaque object on
a screen.





Suppose that we have light coming in from infinity, casting a shadow
of an object. Figure 30–7 shows a screen on which the
shadow of an object A B[image: -*-] is made by a light source very far away
compared with one wavelength. Now we would expect that outside the
shadow, the intensity is all bright, and inside it, it is all dark. As
a matter of fact, if we plot the intensity as a function of position
near the shadow edge, the intensity rises and then overshoots, and
wobbles, and oscillates about in a very peculiar manner near this edge
(Fig. 30–9). We now shall discuss the reason for
this. If we use the theorem that we have not yet proved, then we can
replace the actual problem by a set of effective sources uniformly
distributed over the open space beyond the object.




We imagine a large number of very closely spaced antennas, and we want
the intensity at some point P[image: -*-]. That looks just like what we have
been doing. Not quite; because our screen is not at infinity. We do
not want the intensity at infinity, but at a finite point. To
calculate the intensity at some particular place, we have to add the
contributions from all the antennas. First there is an antenna at D[image: -*-],
exactly opposite P[image: -*-]; if we go up a little bit in angle, let us say a
height h[image: -*-], then there is an increase in delay (there is also a change
in amplitude because of the change in distance, but this is a very
small effect if we are at all far away, and is much less important
than the difference in the phases). Now the path difference E P−D P[image: -*-]
is approximately h2/2 s[image: -*-], so that the phase difference is proportional to the
square of how far we go from D[image: -*-], while in our previous work
s[image: -*-] was infinite, and the phase difference was linearly
proportional to h[image: -*-]. When the phases are linearly proportional, each
vector adds at a constant angle to the next vector. What we now need
is a curve which is made by adding a lot of infinitesimal vectors with
the requirement that the angle they make shall increase, not linearly,
but as the square of the length of the curve. To construct that
curve involves slightly advanced mathematics, but we can always
construct it by actually drawing the arrows and measuring the
angles. In any case, we get the marvelous curve (called Cornu’s
spiral) shown in Fig. 30–8. Now how do we use this
curve?



[image: -][image: -]
Fig. 30–8. The addition of amplitudes for many in-phase oscillators
whose phase delays vary as the square of the distance from point D[image: -*-]
of the previous figure.





If we want the intensity, let us say, at point P[image: -*-], we add a lot of
contributions of different phases from point D[image: -*-] on up to infinity,
and from D[image: -*-] down only to point BP[image: -*-]. So we start at BP[image: -*-] in
Fig. 30–8, and draw a series of arrows of ever-increasing
angle. Therefore the total contribution above point BP[image: -*-] all goes along
the spiraling curve. If we were to stop integrating at some place, then
the total amplitude would be a vector from B[image: -*-] to that point; in this
particular problem we are going to infinity, so the total answer is the
vector BP ∞[image: -*-]. Now the position on the curve which
corresponds to point BP[image: -*-] on the object depends upon where point P[image: -*-] is
located, since point D[image: -*-], the inflection point, always corresponds to
the position of point P[image: -*-]. Thus, depending upon where P[image: -*-] is located
above B[image: -*-], the beginning point will fall at various positions on the
lower left part of the curve, and the resultant
vector BP ∞[image: -*-], will have many maxima and minima
(Fig. 30–9).



[image: -][image: -]
Fig. 30–9. The intensity near the edge of a shadow. The geometrical
shadow edge is at x0[image: -*-].





On the other hand, if we are at Q[image: -*-], on the other side of P[image: -*-], then we
are using only one end of the spiral curve, and not the other end. In
other words, we do not even start at D[image: -*-], but at BQ[image: -*-], so on this
side we get an intensity which continuously falls off as Q[image: -*-] goes
farther into the shadow.




One point that we can immediately calculate with ease, to show that we
really understand it, is the intensity exactly opposite the edge. The
intensity here is 1/4[image: -*-] that of the incident light. Reason: Exactly at
the edge (so the endpoint B[image: -*-] of the arrow is at D[image: -*-] in
Fig. 30–8) we have half the curve that we would have had if
we were far into the bright region. If our point R[image: -*-] is far into the
light we go from one end of the curve to the other, that is, one full
unit vector; but if we are at the edge of the shadow, we have only half
the amplitude—1/4[image: -*-] the intensity.




In this chapter we have been finding the intensity produced in various
directions from various distributions of sources. As a final example
we shall derive a formula which we shall need for the next chapter on
the theory of the index of refraction. Up to this point relative
intensities have been sufficient for our purpose, but this time we
shall find the complete formula for the field in the following
situation.







30–7 The field of a plane of oscillating charges


Suppose that we have a plane full of sources, all oscillating
together, with their motion in the plane and all having the same
amplitude and phase. What is the field at a finite, but very large,
distance away from the plane? (We cannot get very close, of course,
because we do not have the right formulas for the field close to the
sources.) If we let the plane of the charges be the x y[image: -*-]-plane, then
we want to find the field at the point P[image: -*-] far out on the z[image: -*-]-axis
(Fig. 30–10). We suppose that there are η[image: -*-] charges
per unit area of the plane, and that each one of them has a
charge q[image: -*-]. All of the charges move with simple harmonic motion, with the
same direction, amplitude, and phase. We let the motion of each
charge, with respect to its own average position, be
x0 cosω t[image: -*-]. Or, using the complex notation and remembering that
the real part represents the actual motion, the motion can be
described by x0 ei ω t[image: -*-].



[image: -][image: -]
Fig. 30–10. Radiation field of a sheet of oscillating charges.





Now we find the field at the point P[image: -*-] from all of the charges by
finding the field there from each charge q[image: -*-], and then adding the
contributions from all the charges. We know that the radiation field
is proportional to the acceleration of the charge, which is
−ω2 x0 ei ω t[image: -*-] (and is the same for every charge). The
electric field that we want at the point P[image: -*-] due to a charge at the
point Q[image: -*-] is proportional to the acceleration of the charge q[image: -*-], but
we have to remember that the field at the point P[image: -*-] at the instant t[image: -*-]
is given by the acceleration of the charge at the earlier time t′=t−r/c[image: -*-], where r/c[image: -*-] is the time it takes the waves to travel the
distance r[image: -*-] from Q[image: -*-] to P[image: -*-]. Therefore the field at P[image: -*-] is
proportional to

[image: -*-][image: -*-]
(30.10)




Using this value for the acceleration as seen from P[image: -*-] in our formula
for the electric field at large distances from a radiating charge, we
get



[image: -*-][image: -*-]
(30.11)










Now this formula is not quite right, because we should have used
not the acceleration of the charge but its component
perpendicular to the line Q P[image: -*-]. We shall suppose, however, that the
point P[image: -*-] is so far away, compared with the distance of the point Q[image: -*-]
from the axis (the distance ρ[image: -*-] in Fig. 30–10), for
those changes that we need to take into account, that we can leave out
the cosine factor (which would be nearly equal to 1 anyway).




To get the total field at P[image: -*-], we now add the effects of all the
charges in the plane. We should, of course, make a vector
sum. But since the direction of the electric field is nearly the same
for all the charges, we may, in keeping with the approximation we have
already made, just add the magnitudes of the fields. To our
approximation the field at P[image: -*-] depends only on the distance r[image: -*-], so
all charges at the same r[image: -*-] produce equal fields. So we add, first,
the fields of those charges in a ring of width d ρ[image: -*-] and
radius ρ[image: -*-]. Then, by taking the integral over all ρ[image: -*-], we will obtain
the total field.




The number of charges in the ring is the product of the surface area
of the ring, 2 π ρ d ρ[image: -*-], and η[image: -*-], the number of charges per
unit area. We have, then,



[image: -*-][image: -*-]
(30.12)










We wish to evaluate this integral from ρ=0[image: -*-] to ρ=∞[image: -*-]. The variable t[image: -*-], of course, is to be held fixed while we do
the integral, so the only varying quantities are ρ[image: -*-]
and r[image: -*-]. Leaving out all the constant factors, including the
factor ei ω t[image: -*-], for the moment, the integral we wish is

[image: -*-][image: -*-]
(30.13)




To do this integral we need to use the relation between r[image: -*-] and ρ[image: -*-]:

[image: -*-][image: -*-]
(30.14)




Since z[image: -*-] is independent of ρ[image: -*-], when we take the differential of
this equation, we get

[image: -*-][image: -*-]


which is lucky, since in our integral we can replace ρ d ρ[image: -*-]
by r d r[image: -*-] and the r[image: -*-] will cancel the one in the denominator. The
integral we want is then the simpler one

[image: -*-][image: -*-]
(30.15)




To integrate an exponential is very easy. We divide by the coefficient
of r[image: -*-] in the exponent and evaluate the exponential at the limits. But
the limits of r[image: -*-] are not the same as the limits of ρ[image: -*-]. When ρ=0[image: -*-], we have r=z[image: -*-], so the limits of r[image: -*-] are z[image: -*-] to infinity. We
get for the integral

[image: -*-][image: -*-]
(30.16)




where we have written ∞[image: -*-] for (ω/c) ∞[image: -*-], since they both just
mean a very large number!




Now e−i ∞[image: -*-] is a mysterious quantity. Its real part, for
example, is cos(−∞)[image: -*-], which, mathematically speaking, is
completely indefinite (although we would expect it to be
somewhere—or everywhere (?)—between +1[image: -*-] and −1[image: -*-]!). But in a
physical situation, it can mean something quite reasonable, and
usually can just be taken to be zero. To see that this is so in our
case, we go back to consider again the original
integral (30.15).




We can understand (30.15) as a sum of many small complex
numbers, each of magnitude Δ r[image: -*-], and with the angle θ=−ω r/c[image: -*-] in the complex plane. We can try to evaluate the sum by a
graphical method. In Fig. 30–11 we have drawn the first
five pieces of the sum. Each segment of the curve has the
length Δ r[image: -*-] and is placed at the angle Δ θ=−ω Δ r/c[image: -*-] with respect to the preceding piece. The sum for these first five
pieces is represented by the arrow from the starting point to the end
of the fifth segment. As we continue to add pieces we shall trace out
a polygon until we get back to the starting point (approximately) and
then start around once more. Adding more pieces, we just go round and
round, staying close to a circle whose radius is easily shown to
be c/ω[image: -*-]. We can see now why the integral does not give a definite
answer!



[image: -][image: -]
Fig. 30–11. Graphical  solution  of [image: \int_z^\infty e^{-i\omega r/c}\,dr][image: \int_z^\infty e^{-i\omega r/c}\,dr].





But now we have to go back to the physics of the situation. In
any real situation the plane of charges cannot be infinite in
extent, but must sometime stop. If it stopped suddenly, and was
exactly circular in shape, our integral would have some value on the
circle in Fig. 30–11. If, however, we let the number of
charges in the plane gradually taper off at some large distance from
the center (or else stop suddenly but in an irregular shape so for
larger ρ[image: -*-] the entire ring of width d ρ[image: -*-] no longer contributes),
then the coefficient η[image: -*-] in the exact integral would decrease
toward zero. Since we are adding smaller pieces but still turning
through the same angle, the graph of our integral would then become a
curve which is a spiral. The spiral would eventually end up at the
center of our original circle, as drawn in Fig. 30–12. The
physically correct integral is the complex number A[image: -*-] in the
figure represented by the interval from the starting point to the center
of the circle, which is just equal to

[image: -*-][image: -*-]
(30.17)




as you can work out for yourself. This is the same result we would get
from Eq. (30.16) if we set e−i ∞=0[image: -*-].



[image: -][image: -]
Fig. 30–12. Graphical  solution  of [image: \int_z^\infty\eta e^{-i\omega   r/c}\,dr][image: \int_z^\infty\eta e^{-i\omega   r/c}\,dr].





(There is also another reason why the contribution to the integral
tapers off for large values of r[image: -*-], and that is the factor we have
omitted for the projection of the acceleration on the plane
perpendicular to the line P Q[image: -*-].)




We are, of course, interested only in physical situations, so we will
take e−i ∞[image: -*-] equal to zero. Returning to our original
formula (30.12) for the field and putting back all of the
factors that go with the integral, we have the result



[image: -*-][image: -*-]
(30.18)





(remembering that 1/i=−i[image: -*-]).




It is interesting to note that (i ω x0 ei ω t[image: -*-]) is just
equal to the velocity of the charges, so that we can also write
the equation for the field as



[image: -*-][image: -*-]
(30.19)





which is a little strange, because the retardation is just by the
distance z[image: -*-], which is the shortest distance from P[image: -*-] to the plane of
charges. But that is the way it comes out—fortunately a rather
simple formula. (We may add, by the way, that although our derivation
is valid only for distances far from the plane of oscillatory charges,
it turns out that the formula (30.18) or (30.19)
is correct at any distance z[image: -*-], even for z<λ[image: -*-].)






	
  
  In our case T=Δ/c=m n λ/c[image: -*-], where c[image: -*-] is the speed of light. The frequency ν=c/λ[image: -*-], so Δ ν=c Δ λ/λ2[image: -*-].
  ↩


	
  
  This is because Rayleigh’s criterion is a rough idea
in the first place. It tells you where it begins to get very hard to
tell whether the image was made by one or by two stars.  Actually, if
sufficiently careful measurements of the exact intensity distribution
over the diffracted image spot can be made, the fact that two sources
make the spot can be proved even if θ[image: -*-] is less than λ/L[image: -*-].
  ↩






  
    

31 The Origin of the Refractive Index



31–1 The index of refraction


We have said before that light goes slower in water than in air, and
slower, slightly, in air than in vacuum. This effect is described by
the index of refraction n[image: -*-]. Now we would like to understand how such
a slower velocity could come about. In particular, we should try to
see what the relation is to some physical assumptions, or statements,
we made earlier, which were the following:


	That the total electric field in any physical circumstance can
always be represented by the sum of the fields from all the charges in
the universe.

	That the field from a single charge is given by its acceleration
evaluated with a retardation at the speed c[image: -*-], always (for the
radiation field).







But, for a piece of glass, you might think: “Oh, no, you should
modify all this. You should say it is retarded at the speed c/n[image: -*-].”
That, however, is not right, and we have to understand why it is not.




It is approximately true that light or any electrical wave
does appear to travel at the speed c/n[image: -*-] through a material
whose index of refraction is n[image: -*-], but the fields are still produced by
the motions of all the charges—including the charges moving
in the material—and with these basic contributions of the field
travelling at the ultimate velocity c[image: -*-]. Our problem is to understand
how the apparently slower velocity comes about.



[image: -][image: -]
Fig. 31–1. Electric waves passing through a layer of transparent
material.





We shall try to understand the effect in a very simple case. A source
which we shall call “the external source” is placed a large
distance away from a thin plate of transparent material, say glass. We
inquire about the field at a large distance on the opposite side of
the plate. The situation is illustrated by the diagram of
Fig. 31–1, where S[image: -*-] and P[image: -*-] are imagined to be very far
away from the plate. According to the principles we have stated earlier,
an electric field anywhere that is far from all moving charges is the
(vector) sum of the fields produced by the external source (at S[image: -*-])
and the fields produced by each of the charges in the
plate of glass, every one with its proper retardation at the
velocity c[image: -*-]. Remember that the contribution of each charge is not
changed by the presence of the other charges. These are our basic
principles. The field at P[image: -*-] can be written thus:

[image: -*-][image: -*-]
(31.1)




or

[image: -*-][image: -*-]
(31.2)




where Es[image: -*-] is the field due to the source alone and would be
precisely the field at P[image: -*-] if there were no material
present. We expect the field at P[image: -*-] to be different from Es[image: -*-] if
there are any other moving charges.




Why should there be charges moving in the glass? We know that all
material consists of atoms which contain electrons. When the electric
field of the source acts on these atoms it drives the electrons
up and down, because it exerts a force on the electrons. And moving
electrons generate a field—they constitute new radiators. These new
radiators are related to the source S[image: -*-], because they are driven by
the field of the source. The total field is not just the field of the
source S[image: -*-], but it is modified by the additional contribution from the
other moving charges. This means that the field is not the same as the
one which was there before the glass was there, but is modified, and
it turns out that it is modified in such a way that the field inside
the glass appears to be moving at a different speed. That is the idea
which we would like to work out quantitatively.




Now this is, in the exact case, pretty complicated, because although
we have said that all the other moving charges are driven by the
source field, that is not quite true. If we think of a particular
charge, it feels not only the source, but like anything else in the
world, it feels all of the charges that are moving. It feels,
in particular, the charges that are moving somewhere else in the
glass. So the total field which is acting on a particular
charge is a combination of the fields from the other charges,
whose motions depend on what this particular charge is doing!
You can see that it would take a complicated set of equations to get
the complete and exact formula. It is so complicated that we postpone
this problem until next year.




Instead we shall work out a very simple case in order to understand
all the physical principles very clearly. We take a circumstance in
which the effects from the other atoms are very small relative to the
effects from the source. In other words, we take a material in which
the total field is not modified very much by the motion of the other
charges. That corresponds to a material in which the index of
refraction is very close to 1, which will happen, for example, if
the density of the atoms is very low. Our calculation will be valid
for any case in which the index is for any reason very close
to 1. In this way we shall avoid the complications of the most general,
complete solution.




Incidentally, you should notice that there is another effect caused by
the motion of the charges in the plate. These charges will also
radiate waves back toward the source S[image: -*-]. This backward-going field is
the light we see reflected from the surfaces of transparent
materials. It does not come from just the surface. The backward
radiation comes from everywhere in the interior, but it turns out that
the total effect is equivalent to a reflection from the
surfaces. These reflection effects are beyond our approximation at the
moment because we shall be limited to a calculation for a material
with an index so close to 1 that very little light is reflected.






[image: -][image: -]
Fig. 31–2. Relation between refraction and velocity change.





Before we proceed with our study of how the index of refraction comes
about, we should understand that all that is required to understand
refraction is to understand why the apparent wave velocity is
different in different materials. The bending of light rays
comes about just because the effective speed of the waves is
different in the materials. To remind you how that comes about we have
drawn in Fig. 31–2 several successive crests of an
electric wave which arrives from a vacuum onto the surface of a block
of glass. The arrow perpendicular to the wave crests indicates the
direction of travel of the wave. Now all oscillations in the wave must
have the same frequency. (We have seen that driven oscillations
have the same frequency as the driving source.) This means, also, that
the wave crests for the waves on both sides of the surface must have
the same spacing along the surface because they must travel
together, so that a charge sitting at the boundary will feel only one
frequency. The shortest distance between crests of the wave,
however, is the wavelength which is the velocity divided by the
frequency. On the vacuum side it is λ0=2 π c/ω[image: -*-], and
on the other side it is λ=2 π v/ω[image: -*-] or 2 π c/ω n[image: -*-], if v=c/n[image: -*-] is the velocity of the wave. From the figure we can
see that the only way for the waves to “fit” properly at the
boundary is for the waves in the material to be travelling at a
different angle with respect to the surface. From the geometry of the
figure you can see that for a “fit” we must have λ0/sinθ0=λ/sinθ[image: -*-], or sinθ0/sinθ=n[image: -*-],
which is Snell’s law. We shall, for the
rest of our discussion, consider only why light has an effective speed
of c/n[image: -*-] in material of index n[image: -*-], and no longer worry, in this chapter,
about the bending of the light direction.








We go back now to the situation shown in Fig. 31–1. We
see that what we have to do is to calculate the field produced at P[image: -*-]
by all the oscillating charges in the glass plate. We shall call this
part of the field Ea[image: -*-], and it is just the sum written as the second
term in Eq. (31.2). When we add it to the term Es[image: -*-], due
to the source, we will have the total field at P[image: -*-].




This is probably the most complicated thing that we are going to do
this year, but it is complicated only in that there are many pieces
that have to be put together; each piece, however, is very
simple. Unlike other derivations where we say, “Forget the
derivation, just look at the answer!,” in this case we do not need
the answer so much as the derivation. In other words, the thing to
understand now is the physical machinery for the production of the
index.




To see where we are going, let us first find out what the “correction
field” Ea[image: -*-] would have to be if the total field at P[image: -*-] is going to
look like radiation from the source that is slowed down while passing
through the thin plate. If the plate had no effect on it, the field of
a wave travelling to the right (along the z[image: -*-]-axis) would be

[image: -*-][image: -*-]
(31.3)




or, using the exponential notation,

[image: -*-][image: -*-]
(31.4)







Now what would happen if the wave travelled more slowly in going
through the plate? Let us call the thickness of the plate Δ z[image: -*-]. If the plate were not there the wave would travel the
distance Δ z[image: -*-] in the time Δ z/c[image: -*-]. But if it appears to travel at
the speed c/n[image: -*-] then it should take the longer time n Δ z/c[image: -*-] or
the additional time Δ t=(n−1) Δ z/c[image: -*-]. After
that it would continue to travel at the speed c[image: -*-] again. We can take
into account the extra delay in getting through the plate by
replacing t[image: -*-] in Eq. (31.4) by (t−Δ t)[image: -*-] or by [t−(n−1) Δ z/c][image: -*-]. So the wave after insertion of the plate should be
written

[image: -*-][image: -*-]
(31.5)




We can also write this equation as

[image: -*-][image: -*-]
(31.6)




which says that the wave after the plate is obtained from the wave
which could exist without the plate, i.e., from Es[image: -*-], by multiplying
by the factor e−i ω (n−1) Δ z/c[image: -*-]. Now we know that
multiplying an oscillating function like ei ω t[image: -*-] by a
factor ei θ[image: -*-] just says that we change the phase of the oscillation by
the angle θ[image: -*-], which is, of course, what the extra delay in
passing through the thickness Δ z[image: -*-] has done. It has retarded the
phase by the amount ω (n−1) Δ z/c[image: -*-] (retarded, because of
the minus sign in the exponent).




We have said earlier that the plate should add a field Ea[image: -*-] to
the original field Es=E0 ei ω (t−z/c)[image: -*-], but we have found
instead that the effect of the plate is to multiply the field
by a factor which shifts its phase. However, that is really all right
because we can get the same result by adding a suitable complex
number. It is particularly easy to find the right number to add in the
case that Δ z[image: -*-] is small, for you will remember that if x[image: -*-] is a
small number then ex[image: -*-] is nearly equal to (1+x)[image: -*-]. We can write,
therefore,

[image: -*-][image: -*-]
(31.7)




Using this approximation in Eq. (31.6), we have

[image: -*-][image: -*-]
(31.8)




The first term is just the field from the source, and the second term
must just be equal to Ea[image: -*-], the field produced to the right of the
plate by the oscillating charges of the plate—expressed here in
terms of the index of refraction n[image: -*-], and depending, of course, on the
strength of the wave from the source.







What we have been doing is easily visualized if we look at the complex
number diagram in Fig. 31–3. We first draw the
number Es[image: -*-] (we chose some values for z[image: -*-] and t[image: -*-] so that Es[image: -*-] comes out
horizontal, but this is not necessary). The delay due to slowing down
in the plate would delay the phase of this number, that is, it would
rotate Es[image: -*-] through a negative angle. But this is equivalent to
adding the small vector Ea[image: -*-] at roughly right angles to Es[image: -*-]. But
that is just what the factor −i[image: -*-] means in the second term of
Eq. (31.8). It says that if Es[image: -*-] is real, then Ea[image: -*-] is
negative imaginary or that, in general, Es[image: -*-] and Ea[image: -*-] make a right
angle.





[image: -][image: -]
Fig. 31–3. Diagram for the transmitted wave at a particular t[image: -*-] and z[image: -*-].






31–2 The field due to the material


We now have to ask: Is the field Ea[image: -*-] obtained in the second term of
Eq. (31.8) the kind we would expect from oscillating
charges in the plate? If we can show that it is, we will then have
calculated what the index n[image: -*-] should be! [Since n[image: -*-] is the only
nonfundamental number in Eq. (31.8).] We turn now to
calculating what field Ea[image: -*-] the charges in the material will
produce. (To help you keep track of the many symbols we have used up
to now, and will be using in the rest of our calculation, we have put
them all together in Table 31–1.)





Table 31–1. Symbols used in the calculations



[image: --][image: --]


If the source S[image: -*-] (of Fig. 31–1) is far off to the left,
then the field Es[image: -*-] will have the same phase everywhere on the plate,
so we can write that in the neighborhood of the plate

[image: -*-][image: -*-]
(31.9)




Right at the plate, where z=0[image: -*-], we will have

[image: -*-][image: -*-]
(31.10)







Each of the electrons in the atoms of the plate will feel this
electric field and will be driven up and down (we assume the direction
of E0[image: -*-] is vertical) by the electric force q E[image: -*-]. To find what motion
we expect for the electrons, we will assume that the atoms are little
oscillators, that is, that the electrons are fastened elastically to
the atoms, which means that if a force is applied to an electron its
displacement from its normal position will be proportional to the
force.




You may think that this is a funny model of an atom if you have heard
about electrons whirling around in orbits. But that is just an
oversimplified picture. The correct picture of an atom, which is given
by the theory of wave mechanics, says that, so far as problems
involving light are concerned, the electrons behave as though they
were held by springs. So we shall suppose that the electrons have a
linear restoring force which, together with their mass m[image: -*-], makes them
behave like little oscillators, with a resonant
frequency ω0[image: -*-]. We have already studied such oscillators, and we know that
the equation of their motion is written this way:

[image: -*-][image: -*-]
(31.11)




where F[image: -*-] is the driving force.




For our problem, the driving force comes from the electric field of
the wave from the source, so we should use

[image: -*-][image: -*-]
(31.12)




where qe[image: -*-] is the electric charge on the electron and for Es[image: -*-] we
use the expression Es=E0 ei ω t[image: -*-] from (31.10). Our
equation of motion for the electron is then

[image: -*-][image: -*-]
(31.13)




We have solved this equation before, and we know that the solution is

[image: -*-][image: -*-]
(31.14)




where, by substituting in (31.13), we find that

[image: -*-][image: -*-]
(31.15)




so that

[image: -*-][image: -*-]
(31.16)




We have what we needed to know—the motion of the electrons in the
plate. And it is the same for every electron, except that the mean
position (the “zero” of the motion) is, of course, different for
each electron.




Now we are ready to find the field Ea[image: -*-] that these atoms produce at
the point P[image: -*-], because we have already worked out (at the end of
Chapter 30) what field is produced by a sheet of charges
that all move together. Referring back to Eq. (30.19), we
see that the field Ea[image: -*-] at P[image: -*-] is just a negative constant times the
velocity of the charges retarded in time by the amount z/c[image: -*-].
Differentiating x[image: -*-] in Eq. (31.16) to get the
velocity, and sticking in the retardation [or just putting x0[image: -*-] from
(31.15) into (30.18)] yields

[image: -*-][image: -*-]
(31.17)




Just as we expected, the driven motion of the electrons produced an
extra wave which travels to the right (that is what the
factor ei ω (t−z/c)[image: -*-] says), and the amplitude of this wave is
proportional to the number of atoms per unit area in the plate (the
factor η[image: -*-]) and also proportional to the strength of the source
field (the factor E0[image: -*-]). Then there are some factors which depend on
the atomic properties (qe[image: -*-], m[image: -*-], and ω0[image: -*-]), as we should
expect.




The most important thing, however, is that this
formula (31.17) for Ea[image: -*-] looks very much like the expression
for Ea[image: -*-] that we got in Eq. (31.8) by saying that the
original wave was delayed in passing through a material with an index of
refraction n[image: -*-]. The two expressions will, in fact, be identical if

[image: -*-][image: -*-]
(31.18)




Notice that both sides are proportional to Δ z[image: -*-], since η[image: -*-],
which is the number of atoms per unit area, is equal
to N Δ z[image: -*-], where N[image: -*-] is the number of atoms per unit volume
of the plate. Substituting N Δ z[image: -*-] for η[image: -*-] and cancelling the
Δ z[image: -*-], we get our main result, a formula for the index of
refraction in terms of the properties of the atoms of the
material—and of the frequency of the light:

[image: -*-][image: -*-]
(31.19)




This equation gives the “explanation” of the index of refraction
that we wished to obtain.







31–3 Dispersion


Notice that in the above process we have obtained something very
interesting. For we have not only a number for the index of refraction
which can be computed from the basic atomic quantities, but we have
also learned how the index of refraction should vary with the
frequency ω[image: -*-] of the light. This is something we would never
understand from the simple statement that “light travels slower in a
transparent material.” We still have the problem, of course, of
knowing how many atoms per unit volume there are, and what is their
natural frequency ω0[image: -*-]. We do not know this just yet, because it
is different for every different material, and we cannot get a general
theory of that now. Formulation of a general theory of the properties
of different substances—their natural frequencies, and so on—is
possible only with quantum atomic mechanics. Also, different materials
have different properties and different indexes, so we cannot expect,
anyway, to get a general formula for the index which will apply to all
substances.




However, we shall discuss the formula we have obtained, in various
possible circumstances. First of all, for most ordinary gases (for
instance, for air, most colorless gases, hydrogen, helium, and so on)
the natural frequencies of the electron oscillators correspond to
ultraviolet light. These frequencies are higher than the frequencies
of visible light, that is, ω0[image: -*-] is much larger than ω[image: -*-] of
visible light, and to a first approximation, we can disregard
ω2[image: -*-] in comparison with [image: \omega_0^2][image: \omega_0^2]. Then we find that the
index is nearly constant. So for a gas, the index is nearly
constant. This is also true for most other transparent substances,
like glass. If we look at our expression a little more closely,
however, we notice that as ω[image: -*-] rises, taking a little bit more
away from the denominator, the index also rises. So n[image: -*-] rises slowly
with frequency. The index is higher for blue light than for red
light. That is the reason why a prism bends the light more in the blue
than in the red.




The phenomenon that the index depends upon the frequency is called the
phenomenon of dispersion, because it is the basis of the fact
that light is “dispersed” by a prism into a spectrum. The equation
for the index of refraction as a function of frequency is called a
dispersion equation. So we have obtained a
dispersion equation. (In the past few years “dispersion equations”
have been finding a new use in the theory of elementary particles.)




Our dispersion equation suggests other interesting effects. If we have
a natural frequency ω0[image: -*-] which lies in the visible region, or if
we measure the index of refraction of a material like glass in the
ultraviolet, where ω[image: -*-] gets near ω0[image: -*-], we see that at
frequencies very close to the natural frequency the index can get
enormously large, because the denominator can go to zero. Next,
suppose that ω[image: -*-] is greater than ω0[image: -*-]. This would occur,
for example, if we take a material like glass, say, and shine x-ray
radiation on it. In fact, since many materials which are opaque to
visible light, like graphite for instance, are transparent to
x-rays, we can also talk about the index of refraction of
carbon for x-rays. All the natural frequencies of the
carbon atoms would be much lower than the frequency we are using in the
x-rays, since
x-ray radiation has a very high
frequency. The index of refraction is that given by our dispersion
equation if we set ω0[image: -*-] equal to zero (we neglect [image: \omega_0^2][image: \omega_0^2] in
comparison with ω2[image: -*-]).





A similar situation would occur if we beam radiowaves (or light) on a
gas of free electrons. In the upper atmosphere electrons are liberated
from their atoms by ultraviolet light from the sun and they sit up
there as free electrons. For free electrons ω0=0[image: -*-] (there is
no elastic restoring force). Setting ω0=0[image: -*-] in our dispersion
equation yields the correct formula for the index of refraction for
radiowaves in the stratosphere, where N[image: -*-] is now to represent the
density of free electrons (number per unit volume) in the
stratosphere. But let us look again at the equation, if we beam
x-rays on matter, or radiowaves
(or any electric waves) on free electrons the
term [image: (\omega_0^2-\omega^2)][image: (\omega_0^2-\omega^2)] becomes negative, and we obtain the
result that n[image: -*-] is less than one. That means that the effective
speed of the waves in the substance is faster than c[image: -*-]! Can that
be correct?




It is correct. In spite of the fact that it is said that you cannot
send signals any faster than the speed of light, it is nevertheless
true that the index of refraction of materials at a particular
frequency can be either greater or less than 1. This just means that
the phase shift which is produced by the scattered light can be
either positive or negative. It can be shown, however, that the speed
at which you can send a signal is not determined by the index
at one frequency, but depends on what the index is at many
frequencies. What the index tells us is the speed at which the
nodes (or crests) of the wave travel. The node of a wave
is not a signal by itself. In a perfect wave, which has no modulations
of any kind, i.e., which is a steady oscillation, you cannot really
say when it “starts,” so you cannot use it for a timing signal. In
order to send a signal you have to change the wave somehow,
make a notch in it, make it a little bit fatter or thinner. That means
that you have to have more than one frequency in the wave, and it can
be shown that the speed at which signals travel is not
dependent upon the index alone, but upon the way that the index
changes with the frequency. This subject we must also delay (until
Chapter 48). Then we will calculate for you the actual
speed of signals through such a piece of glass, and you will
see that it will not be faster than the speed of light, although the
nodes, which are mathematical points, do travel faster than the speed
of light.




Just to give a slight hint as to how that happens, you will note that
the real difficulty has to do with the fact that the responses of the
charges are opposite to the field, i.e., the sign has gotten
reversed. Thus in our expression for x[image: -*-] (Eq. 31.16) the
displacement of the charge is in the direction opposite to the driving
field, because [image: (\omega_0^2 - \omega^2)][image: (\omega_0^2 - \omega^2)] is negative for small
ω0[image: -*-]. The formula says that when the electric field is pulling
in one direction, the charge is moving in the opposite direction.




How does the charge happen to be going in the opposite direction? It
certainly does not start off in the opposite direction when the field
is first turned on. When the motion first starts there is a transient,
which settles down after awhile, and only then is the phase of
the oscillation of the charge opposite to the driving field. And it is
then that the phase of the transmitted field can appear to be
advanced with respect to the source wave. It is this
advance in phase which is meant when we say that the “phase
velocity” or velocity of the nodes is greater than c[image: -*-]. In
Fig. 31–4 we give a schematic idea of how the waves might
look for a case where the wave is suddenly turned on (to make a signal).
You will see from the diagram that the signal (i.e., the
start of the wave) is not earlier for the wave which ends
up with an advance in phase.



[image: -][image: -]
Fig. 31–4. Wave “signals.”





Let us now look again at our dispersion equation. We should remark
that our analysis of the refractive index gives a result that is
somewhat simpler than you would actually find in nature. To be
completely accurate we must add some refinements. First, we should
expect that our model of the atomic oscillator should have some
damping force (otherwise once started it would oscillate forever, and
we do not expect that to happen). We have worked out before
(Eq. 23.8) the motion of a damped oscillator and the result
is that the denominator in Eq. (31.16), and therefore
in (31.19), is changed from [image: (\omega_0^2 - \omega^2)][image: (\omega_0^2 - \omega^2)]
to [image: (\omega_0^2 - \omega^2 + i\gamma\omega)][image: (\omega_0^2 - \omega^2 + i\gamma\omega)], where γ[image: -*-] is the damping
coefficient.




We need a second modification to take into account the fact that there
are several resonant frequencies for a particular kind of atom. It is
easy to fix up our dispersion equation by imagining that there are
several different kinds of oscillators, but that each oscillator acts
separately, and so we simply add the contributions of all the
oscillators. Let us say that there are Nk[image: -*-] electrons per unit of
volume, whose natural frequency is ωk[image: -*-] and whose damping factor
is γk[image: -*-]. We would then have for our dispersion equation

[image: -*-][image: -*-]
(31.20)




We have, finally, a complete expression which describes the index of
refraction that is observed for many substances.1 The index
described by this formula varies with frequency roughly like the curve
shown in Fig. 31–5.



[image: -][image: -]
Fig. 31–5. The index of refraction as a function of frequency.





You will note that so long as ω[image: -*-] is not too close to one of the
resonant frequencies, the slope of the curve is positive. Such a
positive slope is called “normal” dispersion (because it is clearly the
most common occurrence). Very near the resonant frequencies, however,
there is a small range of ω[image: -*-]’s for which the slope is negative.
Such a negative slope is often referred to as “anomalous” (meaning
abnormal) dispersion, because it seemed
unusual when it was first observed, long before anyone even knew there
were such things as electrons. From our point of view both slopes are
quite “normal”!








31–4 Absorption


Perhaps you have noticed something a little strange about the last
form (Eq. 31.20) we obtained for our dispersion
equation. Because of the term i γ[image: -*-] we put in to take account of
damping, the index of refraction is now a complex number! What
does that mean?  By working out what the real and imaginary
parts of n[image: -*-] are we could write

[image: -*-][image: -*-]
(31.21)




where n′[image: -*-] and n′′[image: -*-] are real numbers. (We use the minus sign in front
of the i n′′[image: -*-] because then n′′[image: -*-] will turn out to be a positive
number, as you can show for yourself.)




We can see what such a complex index means by going back to
Eq. (31.6), which is the equation of the wave after it goes
through a plate of material with an index n[image: -*-]. If we put our complex n[image: -*-]
into this equation, and do some rearranging, we get

[image: -*-][image: -*-]
(31.22)




The last factors, marked B in Eq. (31.22), are just the
form we had before, and again describe a wave whose phase has been
delayed by the angle ω (n′−1) Δ z/c[image: -*-] in traversing the
material. The first term (A) is new and is an exponential factor with
a real exponent, because there were two i[image: -*-]’s that
cancelled. Also, the exponent is negative, so the factor is a real
number less than one. It describes a decrease in the magnitude
of the field and, as we should expect, by an amount which is more the
larger Δ z[image: -*-] is. As the wave goes through the material, it is
weakened. The material is “absorbing” part of the wave. The wave
comes out the other side with less energy. We should not be surprised
at this, because the damping we put in for the oscillators is indeed a
friction force and must be expected to cause a loss of energy. We see
that the imaginary part n′′[image: -*-] of a complex index of refraction
represents an absorption (or “attenuation”) of
the wave. In fact, n′′[image: -*-] is sometimes referred to as the “absorption
index.”





We may also point out that an imaginary part to the index n[image: -*-]
corresponds to bending the arrow Ea[image: -*-] in Fig. 31–3
toward the origin. It is clear why the transmitted field is then
decreased.




Normally, for instance as in glass, the absorption of light is very
small. This is to be expected from our Eq. (31.20),
because the imaginary part of the denominator, i γk ω[image: -*-], is
much smaller than the term [image: (\omega_k^2 - \omega^2)][image: (\omega_k^2 - \omega^2)]. But if the light
frequency ω[image: -*-] is very close to ωk[image: -*-] then the resonance
term [image: (\omega_k^2 - \omega^2)][image: (\omega_k^2 - \omega^2)] can become small compared with
i γk ω[image: -*-] and the index becomes almost completely
imaginary. The absorption of the light becomes the dominant effect. It
is just this effect that gives the dark lines in the spectrum of light
which we receive from the sun. The light from the solar surface has
passed through the sun’s atmosphere (as well as the earth’s), and the
light has been strongly absorbed at the resonant frequencies of the
atoms in the solar atmosphere.




The observation of such spectral lines in the sunlight allows us to
tell the resonant frequencies of the atoms and hence the chemical
composition of the sun’s atmosphere. The same kind of observations
tell us about the materials in the stars. From such measurements we
know that the chemical elements in the sun and in the stars are the
same as those we find on the earth.







31–5 The energy carried by an electric wave


We have seen that the imaginary part of the index means absorption. We
shall now use this knowledge to find out how much energy is carried by
a light wave. We have given earlier an argument that the energy
carried by light is proportional to [image: \overline{E^2}][image: \overline{E^2}], the time average
of the square of the electric field in the wave. The decrease in E[image: -*-]
due to absorption must mean a loss of energy, which would go into some
friction of the electrons and, we might guess, would end up as heat in
the material.




If we consider the light arriving on a unit area, say one square
centimeter, of our plate in Fig. 31–1, then we can write
the following energy equation (if we assume that energy is conserved,
as we do!):



[image: -*-][image: -*-]
(31.23)





For the first term we can write [image: \alpha\overline{E_s^2}][image: \alpha\overline{E_s^2}], where
α[image: -*-] is the as yet unknown constant of proportionality which
relates the average value of E2[image: -*-] to the energy being carried. For
the second term we must include the part from the radiating atoms of
the material, so we should use [image: \alpha\overline{(E_s+E_a)^2}][image: \alpha\overline{(E_s+E_a)^2}], or
(evaluating the square) [image: \alpha(\overline{E_s^2} + 2\overline{E_sE_a} + \overline{E_a^2})][image: \alpha(\overline{E_s^2} + 2\overline{E_sE_a} + \overline{E_a^2})].




All of our calculations have been made for a thin layer of material
whose index is not too far from 1, so that Ea[image: -*-] would always be
much less than Es[image: -*-] (just to make the calculations easier). In
keeping with our approximations, we should, therefore, leave out the
term [image: \overline{E_a^2}][image: \overline{E_a^2}], because it is much smaller than
[image: \overline{E_sE_a}][image: \overline{E_sE_a}]. You may say: “Then you should leave out
[image: \overline{E_sE_a}][image: \overline{E_sE_a}] also, because it is much smaller than
[image: \overline{E_s^2}][image: \overline{E_s^2}].”  It is true that [image: \overline{E_sE_a}][image: \overline{E_sE_a}] is much
smaller than [image: \overline{E_s^2}][image: \overline{E_s^2}], but we must keep [image: \overline{E_sE_a}][image: \overline{E_sE_a}]
or our approximation will be the one that would apply if we neglected
the presence of the material completely!  One way of checking that our
calculations are consistent is to see that we always keep terms which
are proportional to N Δ z[image: -*-], the area density of atoms in the
material, but we leave out terms which are proportional to (N Δ z)2[image: -*-] or any higher power of N Δ z[image: -*-]. Ours is what should be
called a “low-density approximation.”




In the same spirit, we might remark that our energy equation has
neglected the energy in the reflected wave. But that is OK because
this term, too, is proportional to (N Δ z)2[image: -*-], since the
amplitude of the reflected wave is proportional to N Δ z[image: -*-].




For the last term in Eq. (31.23) we wish to compute the
rate at which the incoming wave is doing work on the electrons. We
know that work is force times distance, so the rate of doing
work (also called power) is the force times the velocity. It is really
F⋅v[image: -*-], but we do not need to worry about the dot product
when the velocity and force are along the same direction as they are
here (except for a possible minus sign). So for each atom we take
[image: \overline{q_eE_sv}][image: \overline{q_eE_sv}] for the average rate of doing work. Since there
are N Δ z[image: -*-] atoms in a unit area, the last term in
Eq. (31.23) should be [image: N\,\Delta z\,q_e\overline{E_sv}][image: N\,\Delta z\,q_e\overline{E_sv}]. Our
energy equation now looks like

[image: -*-][image: -*-]
(31.24)




The [image: \overline{E_s^2}][image: \overline{E_s^2}] terms cancel, and we have

[image: -*-][image: -*-]
(31.25)




We now go back to Eq. (30.19), which tells us that for
large z[image: -*-]

[image: -*-][image: -*-]
(31.26)




(recalling that η=N Δ z[image: -*-]). Putting Eq. (31.26)
into the left-hand side of (31.25), we get

[image: -*-][image: -*-]


However, [image: E_s(\text{at \(z\)})][image: E_s(\text{at \(z\)})] is Es (at atoms)[image: -*-] retarded
by z/c[image: -*-]. Since the average is independent of time, it is the same now as
retarded by z/c[image: -*-], or is [image: \overline{E_s(\text{at atoms})\cdot v}][image: \overline{E_s(\text{at atoms})\cdot v}], the
same average that appears on the right-hand side of (31.25).
The two sides are therefore equal if

[image: -*-][image: -*-]
(31.27)




We have discovered that if energy is to be conserved, the energy
carried in an electric wave per unit area and per unit time (or what
we have called the intensity) must be given by [image: \epsO c\overline{E^2}][image: \epsO c\overline{E^2}]. If we call the intensity [image: \overline{S}][image: \overline{S}], we have

[image: -*-][image: -*-]
(31.28)




where the bar means the time average. We have a nice
bonus result from our theory of the refractive index!







31–6 Diffraction of light by a screen


It is now a good time to take up a somewhat different matter which we
can handle with the machinery of this chapter. In the last chapter we
said that when you have an opaque screen and the light can come
through some holes, the distribution of intensity—the diffraction
pattern—could be obtained by imagining instead that the holes are
replaced by sources (oscillators) uniformly distributed over the
hole. In other words, the diffracted wave is the same as though the
hole were a new source. We have to explain the reason for that,
because the hole is, of course, just where there are no
sources, where there are no accelerating charges.




Let us first ask: “What is an opaque screen?” Suppose we have
a completely opaque screen between a source S[image: -*-] and an observer
at P[image: -*-], as in Fig. 31–6(a). If the screen is “opaque”
there is no field at P[image: -*-]. Why is there no field there? According to
the basic principles we should obtain the field at P[image: -*-] as the
field Es[image: -*-] of the source delayed, plus the field from all the other charges
around. But, as we have seen above, the charges in the screen will be
set in motion by the field Es[image: -*-], and these motions generate a new
field which, if the screen is opaque, must exactly cancel the
field Es[image: -*-] on the back side of the screen. You say: “What a miracle
that it balances exactly!  Suppose it was not exactly right!”
If it were not exactly right (remember that this opaque screen has
some thickness), the field toward the rear part of the screen would
not be exactly zero. So, not being zero, it would set into motion some
other charges in the material of the screen, and thus make a little
more field, trying to get the total balanced out. So if we make the
screen thick enough, there is no residual field, because there is
enough opportunity to finally get the thing quieted down. In terms of
our formulas above we would say that the screen has a large and
imaginary index, so the wave is absorbed exponentially as it goes
through. You know, of course, that a thin enough sheet of the most
opaque material, even gold, is transparent.



[image: -][image: -][image: -][image: -][image: -][image: -]
Fig. 31–6. Diffraction by a screen.





Now let us see what happens with an opaque screen which has holes in
it, as in Fig. 31–6(b). What do we expect for the field
at P[image: -*-]? The field at P[image: -*-] can be represented as a sum of two
parts—the field due to the source S[image: -*-] plus the field due to the
wall, i.e., due to the motions of the charges in the walls. We might
expect the motions of the charges in the walls to be complicated, but
we can find out what fields they produce in a rather simple
way.




Suppose that we were to take the same screen, but plug up the holes,
as indicated in part (c) of the figure. We imagine that the plugs are
of exactly the same material as the wall. Mind you, the plugs go where
the holes were in case (b). Now let us calculate the field at P[image: -*-]. The
field at P[image: -*-] is certainly zero in case (c), but it is also
equal to the field from the source plus the field due to all the
motions of the atoms in the walls and in the plugs. We can write the
following equations:

[image: -*-][image: -*-]


where the primes refer to the case where the plugs are in place, but
Es[image: -*-] is, of course, the same in both cases. Now if we subtract the
two equations, we get

[image: -*-][image: -*-]


Now if the holes are not too small (say many wavelengths across), we
would not expect the presence of the plugs to change the fields which
arrive at the walls except possibly for a little bit around the edges
of the holes. Neglecting this small effect, we can set
[image: E_{\text{wall}}=E_{\text{wall}}'][image: E_{\text{wall}}=E_{\text{wall}}'] and obtain that

[image: -*-][image: -*-]


We have the result that the field at P[image: -*-] when there are holes
in a screen (case b) is the same (except for sign) as the field that
is produced by that part of a complete opaque wall which is
located where the holes are! (The sign is not too interesting,
since we are usually interested in intensity which is proportional to
the square of the field.) It seems like an amazing backwards-forwards
argument. It is, however, not only true (approximately for not too
small holes), but useful, and is the justification for the usual
theory of diffraction.




The field [image: E_{\text{plug}}'][image: E_{\text{plug}}'] is computed in any particular case by
remembering that the motion of the charges everywhere in the
screen is just that which will cancel out the field Es[image: -*-] on the back
of the screen. Once we know these motions, we add the radiation fields
at P[image: -*-] due just to the charges in the plugs.




We remark again that this theory of diffraction is only approximate,
and will be good only if the holes are not too small. For holes which
are too small the [image: E_{\text{plug}}'][image: E_{\text{plug}}'] term will be small and then the
difference between [image: E_{\text{wall}}'][image: E_{\text{wall}}'] and Ewall[image: -*-] (which
difference we have taken to be zero) may be comparable to or larger
than the small [image: E_{\text{plug}}'][image: E_{\text{plug}}'] term, and our approximation will no
longer be valid.





	
  
  Actually,
although in quantum mechanics Eq. (31.20) is still valid,
its interpretation is somewhat different. In quantum mechanics even an
atom with one electron, like hydrogen, has several resonant
frequencies. Therefore Nk[image: -*-] is not really the number of electrons
having the frequency ωk[image: -*-], but is replaced instead by N fk[image: -*-],
where N[image: -*-] is the number of atoms per unit volume and fk[image: -*-] (called the
oscillator strength) is a factor that tells how strongly the atom
exhibits each of its resonant frequencies ωk[image: -*-].
  ↩





  
    

32 Radiation Damping. Light Scattering



32–1 Radiation resistance


In the last chapter we learned that when a system is oscillating,
energy is carried away, and we deduced a formula for the energy which
is radiated by an oscillating system. If we know the electric field,
then the average of the square of the field times ϵ0 c[image: -*-] is the
amount of energy that passes per square meter per second through a
surface normal to the direction in which the radiation is going:

[image: -*-][image: -*-]
(32.1)




Any oscillating charge radiates energy; for instance, a driven antenna
radiates energy. If the system radiates energy, then in order to
account for the conservation of energy we must find that power is
being delivered along the wires which lead into the antenna. That is,
to the driving circuit the antenna acts like a resistance, or a
place where energy can be “lost” (the energy is not really lost, it
is really radiated out, but so far as the circuit is concerned, the
energy is lost). In an ordinary resistance, the energy which is
“lost” passes into heat; in this case the energy which is “lost”
goes out into space. But from the standpoint of circuit theory,
without considering where the energy goes, the net effect on
the circuit is the same—energy is “lost” from that
circuit. Therefore the antenna appears to the generator as having a
resistance, even though it may be made with perfectly good copper. In
fact, if it is well built it will appear as almost a pure resistance,
with very little inductance or capacitance, because we would like to
radiate as much energy as possible out of the antenna. This resistance
that an antenna shows is called the radiation resistance.




If a current I[image: -*-] is going to the antenna, then the average rate at
which power is delivered to the antenna is the average of the square
of the current times the resistance. The rate at which power is
radiated by the antenna is proportional to the square of the
current in the antenna, of course, because all the fields are
proportional to the currents, and the energy liberated is proportional
to the square of the field. The coefficient of proportionality between
radiated power and [image: \avg{I^2}][image: \avg{I^2}] is the radiation resistance.




An interesting question is, what is this radiation resistance due to?
Let us take a simple example: let us say that currents are driven up
and down in an antenna. We find that we have to put work in, if the
antenna is to radiate energy. If we take a charged body and accelerate
it up and down it radiates energy; if it were not charged it would not
radiate energy. It is one thing to calculate from the conservation of
energy that energy is lost, but another thing to answer the question,
against what force are we doing the work? That is an
interesting and very difficult question which has never been
completely and satisfactorily answered for electrons, although it has
been for antennas. What happens is this: in an antenna, the fields
produced by the moving charges in one part of the antenna react on the
moving charges in another part of the antenna. We can calculate these
forces and find out how much work they do, and so find the right rule
for the radiation resistance. When we say “We can calculate—” that
is not quite right—we cannot, because we have not yet studied
the laws of electricity at short distances; only at large distances do
we know what the electric field is. We saw the
formula (28.3), but at present it is too complicated for
us to calculate the fields inside the wave zone. Of course, since
conservation of energy is valid, we can calculate the result all right
without knowing the fields at short distances. (As a matter of fact, by
using this argument backwards it turns out that one can find the formula
for the forces at short distances only by knowing the field at very
large distances, by using the laws of conservation of energy, but we
shall not go into that here.)




The problem in the case of a single electron is this: if there is only
one charge, what can the force act on? It has been proposed, in the
old classical theory, that the charge was a little ball, and that one
part of the charge acted on the other part. Because of the delay in
the action across the tiny electron, the force is not exactly in phase
with the motion. That is, if we have the electron standing still, we
know that “action equals reaction.” So the various internal forces
are equal, and there is no net force. But if the electron is
accelerating, then because of the time delay across it, the force
which is acting on the front from the back is not exactly the same as
the force on the back from the front, because of the delay in the
effect. This delay in the timing makes for a lack of balance, so, as a
net effect, the thing holds itself back by its bootstraps! This model
of the origin of the resistance to acceleration, the radiation
resistance of a moving charge, has run into many difficulties, because
our present view of the electron is that it is not a “little
ball”; this problem has never been solved. Nevertheless we can
calculate exactly, of course, what the net radiation resistance force
must be, i.e., how much loss there must be when we accelerate a
charge, in spite of not knowing directly the mechanism of how that
force works.







32–2 The rate of radiation of energy


Now we shall calculate the total energy radiated by an accelerating
charge. To keep the discussion general, we shall take the case of a
charge accelerating any which way, but nonrelativistically. At a
moment when the acceleration is, say, vertical, we know that the
electric field that is generated is the charge multiplied by the
projection of the retarded acceleration, divided by the distance. So
we know the electric field at any point, and we therefore know the
square of the electric field and thus the energy ϵ0 c E2[image: -*-] leaving
through a unit area per second.




The quantity ϵ0 c[image: -*-] appears quite often in expressions involving
radiowave propagation. Its reciprocal is called the impedance of a
vacuum, and it is an easy number to
remember: it has the value 1/ϵ0 c=377[image: -*-] ohms. So the power in watts
per square meter is equal to the average of the field squared, divided
by 377[image: -*-].



[image: -][image: -]
Fig. 32–1. The area of a spherical segment is 2 π r sinθ⋅r d θ[image: -*-].





Using our expression (29.1) for the electric field, we find
that

[image: -*-][image: -*-]
(32.2)




is the power per square meter radiated in the direction θ[image: -*-]. We
notice that it goes inversely as the square of the distance, as we
said before. Now suppose we wanted the total energy radiated in all
directions: then we must integrate (32.2) over all
directions. First we multiply by the area, to find the amount that
flows within a little angle d θ[image: -*-] (Fig. 32–1). We
need the area of a spherical section. The way to think of it is this:
if r[image: -*-] is the radius, then the width of the annular segment
is r d θ[image: -*-], and the circumference is 2 π r sinθ[image: -*-], because
r sinθ[image: -*-] is the radius of the circle. So the area of the little
piece of the sphere is 2 π r sinθ[image: -*-] times r d θ[image: -*-]:

[image: -*-][image: -*-]
(32.3)




By multiplying the flux [(32.2), the power per square
meter] by the area in square meters included in the small
angle d θ[image: -*-], we find the amount of energy that is liberated in this
direction between θ[image: -*-] and θ+d θ[image: -*-]; then we integrate
that over all the angles θ[image: -*-] from 0 to 180°[image: -*-]:

[image: -*-][image: -*-]
(32.4)




By writing sin3θ=(1−cos2θ) sinθ[image: -*-] it is not hard
to show that [image: \int_0^\pi\sin^3\theta\,d\theta=4/3][image: \int_0^\pi\sin^3\theta\,d\theta=4/3]. Using that fact,
we finally get

[image: -*-][image: -*-]
(32.5)




This expression deserves some remarks. First of all, since the
vector a′[image: -*-] had a certain direction, the a′2[image: -*-] in (32.5)
would be the square of the vector a′[image: -*-], that is,
a′⋅a′[image: -*-], the length of the vector, squared. Secondly, the
flux (32.2) was calculated using the retarded acceleration;
that is, the acceleration at the time at which the energy now passing
through the sphere was radiated. We might like to say that this energy
was in fact liberated at this earlier time. This is not exactly true;
it is only an approximate idea. The exact time when the energy is
liberated cannot be defined precisely. All we can really calculate
precisely is what happens in a complete motion, like an oscillation or
something, where the acceleration finally ceases. Then what we find is
that the total energy flux per cycle is the average of acceleration
squared, for a complete cycle. This is what should really appear
in (32.5). Or, if it is a motion with an acceleration that is
initially and finally zero, then the total energy that has flown out is
the time integral of (32.5).




To illustrate the consequences of formula (32.5) when we
have an oscillating system, let us see what happens if the
displacement x[image: -*-] of the charge is oscillating so that the acceleration a[image: -*-]
is −ω2 x0 ei ω t[image: -*-]. The average of the acceleration
squared over a cycle (remember that we have to be very careful when we
square things that are written in complex notation—it really is the
cosine, and the average of cos2ω t[image: -*-] is one-half) thus is

[image: -*-][image: -*-]


Therefore

[image: -*-][image: -*-]
(32.6)







The formulas we are now discussing are relatively advanced and more or
less modern; they date from the beginning of the twentieth century,
and they are very famous. Because of their historical value, it is
important for us to be able to read about them in older books. In
fact, the older books also used a system of units different from our
present mks system. However, all these complications can be
straightened out in the final formulas dealing with electrons by the
following rule: The quantity [image: q_e^2/4\pi\epsO][image: q_e^2/4\pi\epsO], where qe[image: -*-] is the
electronic charge (in coulombs), has, historically, been written
as e2[image: -*-]. It is very easy to calculate that e[image: -*-] in the mks system is
numerically equal to 1.5188×10−14[image: -*-], because we know that,
numerically, qe=1.60206×10−19[image: -*-] and 1/4 π ϵ0=8.98748×109[image: -*-]. Therefore we shall often use the convenient
abbreviation

[image: -*-][image: -*-]
(32.7)




If we use the above numerical value of e[image: -*-] in the older formulas and
treat them as though they were written in mks units, we will get the
right numerical results. For example, the older form
of (32.5) is [image: P = \tfrac{2}{3}e^2a'^2/c^3][image: P = \tfrac{2}{3}e^2a'^2/c^3]. Again, the
potential energy of a proton and an electron at distance r[image: -*-] is
[image: q_e^2/4\pi\epsO r][image: q_e^2/4\pi\epsO r] or e2/r[image: -*-], with e=1.5188×10−14[image: -*-] (mks).







32–3 Radiation damping


Now the fact that an oscillator loses a certain energy would mean that
if we had a charge on the end of a spring (or an electron in an atom)
which has a natural frequency ω0[image: -*-], and we start it oscillating
and let it go, it will not oscillate forever, even if it is in empty
space millions of miles from anything. There is no oil, no resistance,
in an ordinary sense; no “viscosity.” But nevertheless it will not
oscillate, as we might once have said, “forever,” because if it is
charged it is radiating energy, and therefore the oscillation will
slowly die out. How slowly? What is the Q[image: -*-] of such an oscillator,
caused by the electromagnetic effects, the so-called radiation
resistance or radiation damping of the oscillator? The Q[image: -*-] of any
oscillating system is the total energy content of the oscillator at
any time divided by the energy loss per radian:

[image: -*-][image: -*-]


Or (another way to write it), since d W/d ϕ=[image: -*-](d W/d t)/(d ϕ/d t)=[image: -*-]
(d W/d t)/ω[image: -*-],

[image: -*-][image: -*-]
(32.8)




If for a given Q[image: -*-] this tells us how the energy of the oscillation
dies out, d W/d t=−(ω/Q) W[image: -*-], which has the solution W=W0 e−ω t/Q[image: -*-] if W0[image: -*-] is the initial energy (at t=0[image: -*-]).




To find the Q[image: -*-] for a radiator, we go back to (32.8) and
use (32.6) for d W/d t[image: -*-].




Now what do we use for the energy W[image: -*-] of the oscillator? The kinetic
energy of the oscillator is [image: \tfrac{1}{2}mv^2][image: \tfrac{1}{2}mv^2], and the mean
kinetic energy is [image: m\omega^2x_0^2/4][image: m\omega^2x_0^2/4]. But we remember that for the
total energy of an oscillator, on the average half is kinetic and half
is potential energy, and so we double our result, and find for the
total energy of the oscillator

[image: -*-][image: -*-]
(32.9)




What do we use for the frequency in our formulas? We use the natural
frequency ω0[image: -*-] because, for all practical purposes, that is the
frequency at which our atom is radiating, and for m[image: -*-] we use the
electron mass me[image: -*-]. Then, making the necessary divisions and
cancellations, the formula comes down to

[image: -*-][image: -*-]
(32.10)




(In order to see it better and in a more historical form we write it
using our abbreviation [image: q_e^2/4\pi\epsO = e^2][image: q_e^2/4\pi\epsO = e^2], and the
factor ω0/c[image: -*-] which was left over has been written as 2 π/λ[image: -*-].)
Since Q[image: -*-] is dimensionless, the combination e2/me c2[image: -*-] must be a
property only of the electron charge and mass, an intrinsic property
of the electron, and it must be a length. It has been given a
name, the classical electron radius, because the early atomic models, which were invented
to explain the radiation resistance on the basis of the force of one
part of the electron acting on the other parts, all needed to have an
electron whose dimensions were of this general order of magnitude.
However, this quantity no longer has the significance that we believe
that the electron really has such a radius. Numerically, the
magnitude of the radius is

[image: -*-][image: -*-]
(32.11)







Now let us actually calculate the Q[image: -*-] of an atom that is emitting
light—let us say a sodium atom. For a sodium atom, the wavelength is
roughly 6000[image: -*-] angstroms, in the yellow part of the visible spectrum,
and this is a typical wavelength. Thus

[image: -*-][image: -*-]
(32.12)




so the Q[image: -*-] of an atom is of the order 108[image: -*-]. This means that an
atomic oscillator will oscillate for 108[image: -*-] radians or about
107[image: -*-] oscillations, before its energy falls by a factor 1/e[image: -*-]. The frequency
of oscillation of light corresponding to 6000[image: -*-] angstroms, ν=c/λ[image: -*-], is on the order of 1015[image: -*-] cycles/sec, and therefore the
lifetime, the time it takes for the energy of a radiating atom to die
out by a factor 1/e[image: -*-], is on the order of 10−8[image: -*-] sec. In ordinary
circumstances, freely emitting atoms usually take about this long to
radiate. This is valid only for atoms which are in empty space, not
being disturbed in any way. If the electron is in a solid and it has
to hit other atoms or other electrons, then there are additional
resistances and different damping.




The effective resistance term γ[image: -*-] in the resistance law for the
oscillator can be found from the relation 1/Q=γ/ω0[image: -*-], and we
remember that the size of γ[image: -*-] determines how wide the resonance
curve is (Fig. 23–2). Thus we have just computed the
widths of spectral lines for freely radiating atoms! Since
λ=2 π c/ω[image: -*-], we find that

[image: -*-][image: -*-]
(32.13)










32–4 Independent sources


In preparation for our second topic, the scattering of light, we must
now discuss a certain feature of the phenomenon of interference that
we neglected to discuss previously. This is the question of when
interference does not occur. If we have two sources S1[image: -*-]
and S2[image: -*-], with amplitudes A1[image: -*-] and A2[image: -*-], and we make an observation in
a certain direction in which the phases of arrival of the two signals
are ϕ1[image: -*-] and ϕ2[image: -*-] (a combination of the actual time of
oscillation and the delayed time, depending on the position of
observation), then the energy that we receive can be found by
compounding the two complex number vectors A1[image: -*-] and A2[image: -*-], one at
angle ϕ1[image: -*-] and the other at angle ϕ2[image: -*-] (as we did in
Chapter 29) and we find that the resultant energy is
proportional to

[image: -*-][image: -*-]
(32.14)




Now if the cross term 2 A1 A2 cos(ϕ1−ϕ2)[image: -*-] were not there,
then the total energy that would be received in a given direction
would simply be the sum of the energies, [image: A_1^2 + A_2^2][image: A_1^2 + A_2^2], that would
be liberated by each source separately, which is what we usually
expect. That is, the combined intensity of light shining on something
from two sources is the sum of the intensities of the two lights. On
the other hand, if we have things set just right and we have a cross
term, it is not such a sum, because there is also some
interference. If there are circumstances in which this term is of no
importance, then we would say the interference is apparently lost. Of
course, in nature it is always there, but we may not be able to detect
it.




Let us consider some examples. Suppose, first, that the two sources
are 7,000,000,000[image: -*-] wavelengths apart, not an impossible
arrangement. Then in a given direction it is true that there is a very
definite value of these phase differences. But, on the other hand, if
we move just a hair in one direction, a few wavelengths, which is no
distance at all (our eye already has a hole in it that is so large
that we are averaging the effects over a range very wide compared with
one wavelength) then we change the relative phase, and the cosine
changes very rapidly. If we take the average of the intensity
over a little region, then the cosine, which goes plus, minus, plus,
minus, as we move around, averages to zero.




So if we average over regions where the phase varies very rapidly with
position, we get no interference.




Another example. Suppose that the two sources are two independent
radio oscillators—not a single oscillator being fed by two wires,
which guarantees that the phases are kept together, but two
independent sources—and that they are not precisely tuned at
the same frequency (it is very hard to make them at exactly the same
frequency without actually wiring them together). In this case we have
what we call two independent sources. Of course, since the
frequencies are not exactly equal, although they started in phase, one
of them begins to get a little ahead of the other, and pretty soon
they are out of phase, and then it gets still further ahead, and
pretty soon they are in phase again. So the phase difference between
the two is gradually drifting with time, but if our observation is so
crude that we cannot see that little time, if we average over a much
longer time, then although the intensity swells and falls like what we
call “beats” in sound, if these swellings and fallings are too rapid
for our equipment to follow, then again this term averages out.




In other words, in any circumstance in which the phase shift averages
out, we get no interference!




One finds many books which say that two distinct light sources never
interfere.  This is not a statement of physics, but is merely a
statement of the degree of sensitivity of the technique of the
experiments at the time the book was written. What happens in a light
source is that first one atom radiates, then another atom radiates,
and so forth, and we have just seen that atoms radiate a train of
waves only for about 10−8[image: -*-] sec; after 10−8[image: -*-] sec, some atom has
probably taken over, then another atom takes over, and so on. So the
phases can really only stay the same for about 10−8[image: -*-] sec.
Therefore, if we average for very much more than 10−8[image: -*-] sec,
we do not see an interference from two different sources, because they
cannot hold their phases steady for longer than 10−8[image: -*-] sec. With
photocells, very high-speed detection is possible, and one can show
that there is an interference which varies with time, up and down, in
about 10−8[image: -*-] sec. But most detection equipment, of course, does not
look at such fine time intervals, and thus sees no
interference. Certainly with the eye, which has a tenth-of-a-second
averaging time, there is no chance whatever of seeing an interference
between two different ordinary sources.




Recently it has become possible to make light sources which get around
this effect by making all the atoms emit together in time. The
device which does this is a very complicated thing, and has to be
understood in a quantum-mechanical way. It is called a
laser, and it is possible to produce from a
laser a source in which the time during which the phase is
kept constant, is very much longer than 10−8[image: -*-] sec. It can be of the
order of a hundredth, a tenth, or even one second, and so, with ordinary
photocells, one can pick up the frequency between two different
lasers. One can easily detect the pulsing of the beats
between two laser sources. Soon, no doubt, someone will be
able to demonstrate two sources shining on a wall, in which the beats
are so slow that one can see the wall get bright and dark!





Another case in which the interference averages out is that in which,
instead of having only two sources, we have many. In
this case, we would write the expression for [image: A_R^2][image: A_R^2] as the sum of a
whole lot of amplitudes, complex numbers, squared, and we would get
the square of each one, all added together, plus cross terms between
every pair, and if the circumstances are such that the latter average
out, then there will be no effects of interference. It may be that the
various sources are located in such random positions that, although
the phase difference between A2[image: -*-] and A3[image: -*-] is also definite, it is
very different from that between A1[image: -*-] and A2[image: -*-], etc. So we would get
a whole lot of cosines, many plus, many minus, all averaging out.




So it is that in many circumstances we do not see the effects of
interference, but see only a collective, total intensity equal to the
sum of all the intensities.







32–5 Scattering of light


The above leads us to an effect which occurs in air as a consequence
of the irregular positions of the atoms. When we were discussing the
index of refraction, we saw that an incoming beam of light will make
the atoms radiate again. The electric field of the incoming beam
drives the electrons up and down, and they radiate because of their
acceleration. This scattered radiation combines to give a beam in the
same direction as the incoming beam, but of somewhat different phase,
and this is the origin of the index of refraction.




But what can we say about the amount of re-radiated light in some
other direction? Ordinarily, if the atoms are very beautifully located
in a nice pattern, it is easy to show that we get nothing in other
directions, because we are adding a lot of vectors with their phases
always changing, and the result comes to zero. But if the objects are
randomly located, then the total intensity in any direction is
the sum of the intensities that are scattered by each atom, as
we have just discussed. Furthermore, the atoms in a gas are in actual
motion, so that although the relative phase of two atoms is a definite
amount now, later the phase would be quite different, and therefore
each cosine term will average out. Therefore, to find out how
much light is scattered in a given direction by a gas, we merely study
the effects of one atom and multiply the intensity it radiates
by the number of atoms.




Earlier, we remarked that the phenomenon of scattering of light of
this nature is the origin of the blue of the sky. The sunlight goes
through the air, and when we look to one side of the sun—say
at 90°[image: -*-] to the beam—we see blue light; what we now have to
calculate is how much light we see and why it is blue.



[image: -][image: -]
Fig. 32–2. A beam of radiation falls on an atom and causes the charges
(electrons) in the atom to move. The moving electrons in turn
radiate in various directions.





If the incident beam has the electric field1 [image: \FLPE = \hat{\FLPE}_0e^{i\omega t}][image: \FLPE = \hat{\FLPE}_0e^{i\omega t}] at the point where the atom is located, we
know that an electron in the atom will vibrate up and down in response
to this E[image: -*-] (Fig. 32–2). From Eq. (23.8), the
response will be

[image: -*-][image: -*-]
(32.15)




We could include the damping and the possibility that the atom acts
like several oscillators of different frequency and sum over the
various frequencies, but for simplicity let us just take one
oscillator and neglect the damping. Then the response to the external
electric field, which we have already used in the calculation of the
index of refraction, is simply

[image: -*-][image: -*-]
(32.16)




We could now easily calculate the intensity of light that is emitted
in various directions, using formula (32.2) and the
acceleration corresponding to the above [image: \hat{\FLPx}][image: \hat{\FLPx}].




Rather than do this, however, we shall simply calculate the
total amount of light scattered in all directions, just
to save time. The total amount of light energy per second, scattered
in all directions by the single atom, is of course given by
Eq. (32.6). So, putting together the various pieces and
regrouping them, we get

[image: -*-][image: -*-]
(32.17)




for the total scattered power, radiated in all directions.




We have written the result in the above form because it is then easy
to remember: First, the total energy that is scattered is proportional
to the square of the incident field. What does that mean? Obviously,
the square of the incident field is proportional to the energy which
is coming in per second. In fact, the energy incident per square meter
per second is ϵ0 c[image: -*-] times the average [image: \avg{E^2}][image: \avg{E^2}] of the square of
the electric field, and if E0[image: -*-] is the maximum value of E[image: -*-], then
[image: \avg{E^2} = \tfrac{1}{2}E_0^2][image: \avg{E^2} = \tfrac{1}{2}E_0^2]. In other words, the total energy
scattered is proportional to the energy per square meter that comes
in; the brighter the sunlight that is shining in the sky, the brighter
the sky is going to look.




Next, what fraction of the incoming light is scattered? Let us
imagine a “target” with a certain area, let us say σ[image: -*-], in the
beam (not a real, material target, because this would diffract light,
and so on; we mean an imaginary area drawn in space). The total amount
of energy that would pass through this surface σ[image: -*-] in a given
circumstance is proportional both to the incoming intensity and
to σ[image: -*-], and the total power would be

[image: -*-][image: -*-]
(32.18)







Now we invent an idea: we say that the atom scatters a total amount of
intensity which is the amount which would fall on a certain
geometrical area, and we give the answer by giving that area. That
answer, then, is independent of the incident intensity; it gives the
ratio of the energy scattered to the energy incident per square
meter. In other words, the ratio

[image: -*-][image: -*-]


The significance of this area is that, if all the energy that impinged
on that area were to be spewed in all directions, then that is the
amount of energy that would be scattered by the atom.




This area is called a cross section for scattering; the idea of cross section is used
constantly, whenever some phenomenon occurs in proportion to the
intensity of a beam. In such cases one always describes the amount of
the phenomenon by saying what the effective area would have to be to
pick up that much of the beam. It does not mean in any way that this
oscillator actually has such an area. If there were nothing
present but a free electron shaking up and down there would be no area
directly associated with it, physically. It is merely a way of
expressing the answer to a certain kind of problem; it tells us what
area the incident beam would have to hit in order to account for that
much energy coming off. Thus, for our case,

[image: -*-][image: -*-]
(32.19)




(the subscript s[image: -*-] is for “scattering”).




Let us look at some examples. First, if we go to a very low natural
frequency ω0[image: -*-], or to completely unbound electrons, for which
ω0=0[image: -*-], then the frequency ω[image: -*-] cancels out and the cross
section is a constant. This low-frequency limit, or the free electron
cross section, is known as the Thomson scattering cross
section. It is an area
whose dimensions are approximately 10−15[image: -*-] meter, more or less, on a
side, i.e., 10−30[image: -*-] square meter, which is rather small!




On the other hand, if we take the case of light in the air, we
remember that for air the natural frequencies of the oscillators are
higher than the frequency of the light that we use. This means that,
to a first approximation, we can disregard ω2[image: -*-] in the
denominator, and we find that the scattering is proportional to the
fourth power of the frequency. That is to say, light which is
of higher frequency by, say, a factor of two, is sixteen times
more intensely scattered, which is a quite sizable difference. This
means that blue light, which has about twice the frequency of the
reddish end of the spectrum, is scattered to a far greater extent than
red light. Thus when we look at the sky it looks that glorious blue
that we see all the time!




There are several points to be made about the above results. One
interesting question is, why do we ever see the clouds? Where
do the clouds come from? Everybody knows it is the condensation of
water vapor. But, of course, the water vapor is already in the
atmosphere before it condenses, so why don’t we see it then?
After it condenses it is perfectly obvious. It wasn’t there, now it
is there. So the mystery of where the clouds come from is not
really such a childish mystery as “Where does the water come from,
Daddy?,” but has to be explained.




We have just explained that every atom scatters light, and of course
the water vapor will scatter light, too. The mystery is why, when the
water is condensed into clouds, does it scatter such a
tremendously greater amount of light?




Consider what would happen if, instead of a single atom, we had an
agglomerate of atoms, say two, very close together compared with the
wavelength of the light. Remember, atoms are only an angstrom or so
across, while the wavelength of light is some 5000[image: -*-] angstroms, so
when they form a clump, a few atoms together, they can be very
close together compared with the wavelength of light. Then when the
electric field acts, both of the atoms will move together. The
electric field that is scattered will then be the sum of the two
electric fields in phase, i.e., double the amplitude that there was
with a single atom, and the energy which is scattered is
therefore four times what it is with a single atom, not twice!
So lumps of atoms radiate or scatter more energy than they do as
single atoms. Our argument that the phases are independent is based on
the assumption that there is a real and large difference in phase
between any two atoms, which is true only if they are several
wavelengths apart and randomly spaced, or moving. But if they are
right next to each other, they necessarily scatter in phase, and they
have a coherent interference which produces an increase in the
scattering.




If we have N[image: -*-] atoms in a lump, which is a tiny droplet of water, then
each one will be driven by the electric field in about the same way as
before (the effect of one atom on the other is not important; it is
just to get the idea anyway) and the amplitude of scattering from each
one is the same, so the total field which is scattered is N[image: -*-]-fold
increased. The intensity of the light which is scattered is
then the square, or N2[image: -*-]-fold, increased. We would have expected, if
the atoms were spread out in space, only N[image: -*-] times as much as 1,
whereas we get N2[image: -*-] times as much as 1! That is to say, the
scattering of water in lumps of N[image: -*-] molecules each is N[image: -*-] times more
intense than the scattering of the single atoms. So as the water
agglomerates the scattering increases. Does it increase ad
infinitum?  No! When does this analysis begin to fail? How many atoms
can we put together before we cannot drive this argument any further?
Answer: If the water drop gets so big that from one end to the
other is a wavelength or so, then the atoms are no longer all in phase
because they are too far apart. So as we keep increasing the size of
the droplets we get more and more scattering, until such a time that a
drop gets about the size of a wavelength, and then the scattering does
not increase anywhere nearly as rapidly as the drop gets
bigger. Furthermore, the blue disappears, because for long wavelengths
the drops can be bigger, before this limit is reached, than they can
be for short wavelengths. Although the short waves scatter more per
atom than the long waves, there is a bigger enhancement for the red
end of the spectrum than for the blue end when all the drops are
bigger than the wavelength, so the color is shifted from the blue
toward the red.




Now we can make an experiment that demonstrates this. We can make
particles that are very small at first, and then gradually grow in
size. We use a solution of sodium thiosulfate (hypo) with sulfuric
acid, which precipitates very fine grains of sulfur. As the sulfur
precipitates, the grains first start very small, and the scattering is
a little bluish. As it precipitates more it gets more intense, and
then it will get whitish as the particles get bigger. In addition, the
light which goes straight through will have the blue taken out. That
is why the sunset is red, of course, because the light that comes
through a lot of air, to the eye has had a lot of blue light scattered
out, so it is yellow-red.




Finally, there is one other important feature which really belongs in
the next chapter, on polarization, but it is so interesting that we
point it out now. This is that the electric field of the scattered
light tends to vibrate in a particular direction. The electric field
in the incoming light is oscillating in some way, and the driven
oscillator goes in this same direction, and if we are situated about
at right angles to the beam, we will see polarized
light, that is to
say, light in which the electric field is going only one way. In
general, the atoms can vibrate in any direction at right angles to the
beam, but if they are driven directly toward or away from us, we do not
see it. So if the incoming light has an electric field which changes and
oscillates in any direction, which we call unpolarized light, then the
light which is coming out at 90°[image: -*-] to the beam vibrates in only one
direction! (See Fig. 32–3.)




[image: -][image: -]
Fig. 32–3. Illustration of the origin of the polarization of radiation
scattered at right angles to the incident beam.





There is a substance called polaroid which has the property that when
light goes through it, only the piece of the electric field which is
along one particular axis can get through. We can use this to test for
polarization, and indeed we find the light scattered by the hypo
solution to be strongly polarized.
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33 Polarization



33–1 The electric vector of light


In this chapter we shall consider those phenomena which depend on the
fact that the electric field that describes the light is a vector. In
previous chapters we have not been concerned with the direction of
oscillation of the electric field, except to note that the electric
vector lies in a plane perpendicular to the direction of
propagation. The particular direction in this plane has not concerned
us. We now consider those phenomena whose central feature is the
particular direction of oscillation of the electric field.




In ideally monochromatic light, the electric field must oscillate at a
definite frequency, but since the x[image: -*-]-component and the y[image: -*-]-component
can oscillate independently at a definite frequency, we must first
consider the resultant effect produced by superposing two independent
oscillations at right angles to each other. What kind of electric
field is made up of an x[image: -*-]-component and a y[image: -*-]-component which
oscillate at the same frequency? If one adds to an x[image: -*-]-vibration a
certain amount of y[image: -*-]-vibration at the same phase, the result is a
vibration in a new direction in the x y[image: -*-]-plane. Figure 33–1
illustrates the superposition of different amplitudes for the
x[image: -*-]-vibration and the y[image: -*-]-vibration. But the resultants shown in
Fig. 33–1 are not the only possibilities; in all of these
cases we have assumed that the x[image: -*-]-vibration and the y[image: -*-]-vibration are
in phase, but it does not have to be that way. It could be that
the x[image: -*-]-vibration and the y[image: -*-]-vibration are out of phase.
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Fig. 33–1. Superposition of x[image: -*-]-vibrations and y[image: -*-]-vibrations in phase.





When the x[image: -*-]-vibration and the y[image: -*-]-vibration are not in phase, the
electric field vector moves around in an ellipse, and we can
illustrate this in a familiar way. If we hang a ball from a support by
a long string, so that it can swing freely in a horizontal plane, it
will execute sinusoidal oscillations. If we imagine horizontal x[image: -*-]-
and y[image: -*-]-coordinates with their origin at the rest position of the
ball, the ball can swing in either the x[image: -*-]- or y[image: -*-]-direction with the
same pendulum frequency. By selecting the proper initial displacement
and initial velocity, we can set the ball in oscillation along either
the x[image: -*-]-axis or the y[image: -*-]-axis, or along any straight line in the
x y[image: -*-]-plane. These motions of the ball are analogous to the
oscillations of the electric field vector illustrated in
Fig. 33–1. In each instance, since the x[image: -*-]-vibrations and
the y[image: -*-]-vibrations reach their maxima and minima at the same time, the
x[image: -*-]- and y[image: -*-]-oscillations are in phase. But we know that the most
general motion of the ball is motion in an ellipse, which corresponds to
oscillations in which the x[image: -*-]- and y[image: -*-]-directions are not in the
same phase. The superposition of x[image: -*-]- and y[image: -*-]-vibrations which are not
in phase is illustrated in Fig. 33–2 for a variety of
angles between the phase of the x[image: -*-]-vibration and that of the
y[image: -*-]-vibration. The general result is that the electric vector moves
around an ellipse. The motion in a straight line is a particular case
corresponding to a phase difference of zero (or an integral multiple
of π[image: -*-]); motion in a circle corresponds to equal amplitudes with a phase
difference of 90°[image: -*-] (or any odd integral multiple of π/2[image: -*-]).
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Fig. 33–2. Superposition of x[image: -*-]-vibrations and y[image: -*-]-vibrations with equal
amplitudes but various relative phases. The components Ex[image: -*-] and Ey[image: -*-]
are expressed in both real and complex notations.





In Fig. 33–2 we have labeled the electric field vectors
in the x[image: -*-]- and y[image: -*-]-directions with complex numbers, which are a
convenient representation in which to express the phase difference. Do
not confuse the real and imaginary components of the complex electric
vector in this notation with the x[image: -*-]- and y[image: -*-]-coordinates of the
field. The x[image: -*-]- and y[image: -*-]-coordinates plotted in Fig. 33–1
and Fig. 33–2 are actual electric fields that we can
measure. The real and imaginary components of a complex electric field
vector are only a mathematical convenience and have no physical
significance.




Now for some terminology. Light is linearly polarized
(sometimes called plane polarized) when the electric field oscillates
on a straight line; Fig. 33–1 illustrates linear
polarization. When the end of the electric field vector travels in an
ellipse, the light is elliptically polarized. When the end of
the electric field vector travels around a circle, we have
circular polarization. If the end of the
electric vector, when we look at it as the light comes straight toward
us, goes around in a counterclockwise direction, we call it right-hand
circular polarization. Figure 33–2(g) illustrates right-hand
circular polarization, and Fig. 33–2(c) shows left-hand
circular polarization. In both cases the light is coming out of the
paper. Our convention for labeling left-hand and right-hand circular
polarization is consistent with that which is used today for all the
other particles in physics which exhibit polarization (e.g., electrons).
However, in some books on optics the opposite conventions are used, so
one must be careful.




We have considered linearly, circularly, and elliptically polarized
light, which covers everything except for the case of
unpolarized light. Now how can the light be unpolarized when we
know that it must vibrate in one or another of these ellipses? If the
light is not absolutely monochromatic, or if the x[image: -*-]- and y[image: -*-]-phases
are not kept perfectly together, so that the electric vector first
vibrates in one direction, then in another, the polarization is
constantly changing. Remember that one atom emits during
10−8[image: -*-] sec, and if one atom emits a certain polarization, and then another
atom emits light with a different polarization, the polarizations will
change every 10−8[image: -*-] sec. If the polarization changes more rapidly
than we can detect it, then we call the light unpolarized, because all
the effects of the polarization average out. None of the interference
effects of polarization would show up with unpolarized light. But as
we see from the definition, light is unpolarized only if we are unable
to find out whether the light is polarized or not.







33–2 Polarization of scattered light


The first example of the polarization effect that we have already
discussed is the scattering of light. Consider a beam of light, for
example from the sun, shining on the air. The electric field will
produce oscillations of charges in the air, and motion of these
charges will radiate light with its maximum intensity in a plane
normal to the direction of vibration of the charges. The beam from the
sun is unpolarized, so the direction of polarization changes
constantly, and the direction of vibration of the charges in the air
changes constantly. If we consider light scattered at 90°[image: -*-], the
vibration of the charged particles radiates to the observer only when
the vibration is perpendicular to the observer’s line of sight, and
then light will be polarized along the direction of vibration. So
scattering is an example of one means of producing polarization.







33–3 Birefringence


Another interesting effect of polarization is the fact that there are
substances for which the index of refraction is different for light
linearly polarized in one direction and linearly polarized in
another. Suppose that we had some material which consisted of long,
nonspherical molecules, longer than they are wide, and suppose that
these molecules were arranged in the substance with their long axes
parallel. Then what happens when the oscillating electric field passes
through this substance? Suppose that because of the structure of the
molecule, the electrons in the substance respond more easily to
oscillations in the direction parallel to the axes of the molecules
than they would respond if the electric field tries to push them at
right angles to the molecular axis. In this way we expect a different
response for polarization in one direction than for polarization at
right angles to that direction. Let us call the direction of the axes
of the molecules the optic axis. When the
polarization is in the direction of the optic axis the
index of refraction is different than it would be if the direction of
polarization were at right angles to it. Such a substance is called
birefringent. It has two refrangibilities, i.e., two indexes of
refraction, depending on the direction of the polarization inside the
substance. What kind of a substance can be birefringent? In a
birefringent substance there must be a certain amount of lining up, for
one reason or another, of unsymmetrical molecules. Certainly a cubic
crystal, which has the symmetry of a cube, cannot be birefringent. But
long needlelike crystals undoubtedly contain molecules that are
asymmetric, and one observes this effect very easily.





Let us see what effects we would expect if we were to shine polarized
light through a plate of a birefringent substance. If the polarization
is parallel to the optic axis, the light will go through with one
velocity; if the polarization is perpendicular to the axis, the light
is transmitted with a different velocity. An interesting situation
arises when, say, light is linearly polarized at 45°[image: -*-] to the
optic axis. Now the 45°[image: -*-] polarization, we have already noticed,
can be represented as a superposition of the x[image: -*-]- and the
y[image: -*-]-polarizations of equal amplitude and in phase, as shown in
Fig. 33–2(a). Since the x[image: -*-]- and y[image: -*-]-polarizations travel
with different velocities, their phases change at a different rate as
the light passes through the substance. So, although at the start the
x[image: -*-]- and y[image: -*-]-vibrations are in phase, inside the material the phase
difference between x[image: -*-]- and y[image: -*-]-vibrations is proportional to the depth
in the substance. As the light proceeds through the material the
polarization changes as shown in the series of diagrams in
Fig. 33–2. If the thickness of the plate is just right to
introduce a 90°[image: -*-] phase shift between the x[image: -*-]-
and y[image: -*-]-polarizations, as in Fig. 33–2(c), the light will come
out circularly polarized. Such a thickness is called a quarter-wave
plate, because it introduces a quarter-cycle phase difference between
the x[image: -*-]- and the y[image: -*-]-polarizations. If linearly polarized light is sent
through two quarter-wave plates, it will come out plane-polarized again,
but at right angles to the original direction, as we can see from
Fig. 33–2(e).




One can easily illustrate this phenomenon with a piece of
cellophane. Cellophane is made of long, fibrous molecules, and is not
isotropic, since the fibers lie preferentially in a certain
direction. To demonstrate birefringence we need a beam of linearly
polarized light, and we can obtain this conveniently by passing
unpolarized light through a sheet of polaroid. Polaroid, which we will
discuss later in more detail, has the useful property that it
transmits light that is linearly polarized parallel to the axis of the
polaroid with very little absorption, but light polarized in a
direction perpendicular to the axis of the polaroid is strongly
absorbed. When we pass unpolarized light through a sheet of polaroid,
only that part of the unpolarized beam which is vibrating parallel to
the axis of the polaroid gets through, so that the transmitted beam is
linearly polarized. This same property of polaroid is also useful in
detecting the direction of polarization of a linearly polarized beam,
or in determining whether a beam is linearly polarized or not. One
simply passes the beam of light through the polaroid sheet and rotates
the polaroid in the plane normal to the beam. If the beam is linearly
polarized, it will not be transmitted through the sheet when the axis
of the polaroid is normal to the direction of polarization. The
transmitted beam is only slightly attenuated when the axis of the
polaroid sheet is rotated through 90°[image: -*-]. If the transmitted
intensity is independent of the orientation of the polaroid, the beam
is not linearly polarized.



[image: -][image: -]
Fig. 33–3. An experimental demonstration of the birefringence of
cellophane. The electric vectors in the light are indicated by the
dotted lines. The pass axes of the polaroid sheets and optic axes of
the cellophane are indicated by arrows. The incident beam is
unpolarized.





To demonstrate the birefringence of cellophane, we use two sheets of
polaroid, as shown in Fig. 33–3. The first gives us a
linearly polarized beam which we pass through the cellophane and then
through the second polaroid sheet, which serves to detect any effect
the cellophane may have had on the polarized light passing through
it. If we first set the axes of the two polaroid sheets perpendicular
to each other and remove the cellophane, no light will be transmitted
through the second polaroid. If we now introduce the cellophane
between the two polaroid sheets, and rotate the sheet about the beam
axis, we observe that in general the cellophane makes it possible for
some light to pass through the second polaroid. However, there are two
orientations of the cellophane sheet, at right angles to each other,
which permit no light to pass through the second polaroid. These
orientations in which linearly polarized light is transmitted through
the cellophane with no effect on the direction of polarization must be
the directions parallel and perpendicular to the optic axis of the
cellophane sheet.




We suppose that the light passes through the cellophane with two
different velocities in these two different orientations, but it is
transmitted without changing the direction of polarization. When the
cellophane is turned halfway between these two orientations, as shown
in Fig. 33–3, we see that the light transmitted through
the second polaroid is bright.




It just happens that ordinary cellophane used in commercial packaging
is very close to a half-wave thickness for most of the colors in white
light. Such a sheet will turn the axis of linearly polarized light
through 90°[image: -*-] if the incident linearly polarized beam makes an
angle of 45°[image: -*-] with the optic axis, so that the beam emerging
from the cellophane is then vibrating in the right direction to pass
through the second polaroid sheet.




If we use white light in our demonstration, the cellophane sheet will
be of the proper half-wave thickness only for a particular component
of the white light, and the transmitted beam will have the color of
this component. The color transmitted depends on the thickness of the
cellophane sheet, and we can vary the effective thickness of the
cellophane by tilting it so that the light passes through the
cellophane at an angle, consequently through a longer path in the
cellophane. As the sheet is tilted the transmitted color changes. With
cellophane of different thicknesses one can construct filters that
will transmit different colors. These filters have the interesting
property that they transmit one color when the two polaroid sheets
have their axes perpendicular, and the complementary color when the
axes of the two polaroid sheets are parallel.




Another interesting application of aligned molecules is quite
practical. Certain plastics are composed of very long and complicated
molecules all twisted together. When the plastic is solidified very
carefully, the molecules are all twisted in a mass, so that there are
as many aligned in one direction as another, and so the plastic is not
particularly birefringent. Usually there are strains and stresses
introduced when the material is solidified, so the material is not
perfectly homogeneous. However, if we apply tension to a piece of this
plastic material, it is as if we were pulling a whole tangle of
strings, and there will be more strings preferentially aligned
parallel to the tension than in any other direction. So when a stress
is applied to certain plastics, they become birefringent, and one can
see the effects of the birefringence by passing polarized light
through the plastic. If we examine the transmitted light through a
polaroid sheet, patterns of light and dark fringes will be observed
(in color, if white light is used). The patterns move as stress is
applied to the sample, and by counting the fringes and seeing where
most of them are, one can determine what the stress is. Engineers use
this phenomenon as a means of finding the stresses in odd-shaped
pieces that are difficult to calculate.




Another interesting example of a way of obtaining birefringence is by
means of a liquid substance. Consider a liquid composed of long
asymmetric molecules which carry a plus or minus average charge near
the ends of the molecule, so that the molecule is an electric
dipole. In the collisions in the liquid the molecules will ordinarily
be randomly oriented, with as many molecules pointed in one direction
as in another. If we apply an electric field the molecules will tend
to line up, and the moment they line up the liquid becomes
birefringent. With two polaroid sheets and a transparent cell
containing such a polar liquid, we can devise an arrangement with the
property that light is transmitted only when the electric field is
applied. So we have an electrical switch for light, which is called a
Kerr cell. This effect, that an electric field
can produce birefringence in certain liquids, is called the
Kerr effect.








33–4 Polarizers


So far we have considered substances in which the refractive index is
different for light polarized in different directions. Of very
practical value are those crystals and other substances in which not
only the index, but also the coefficient of absorption, is different
for light polarized in different directions. By the same arguments
which supported the idea of birefringence, it is understandable that
absorption can vary with the direction in which the charges are forced
to vibrate in an anisotropic substance. Tourmaline is an old, famous
example and polaroid is another. Polaroid consists of a thin layer of
small crystals of herapathite (a salt of iodine and quinine), all
aligned with their axes parallel. These crystals absorb light when the
oscillations are in one direction, and they do not absorb appreciably
when the oscillations are in the other direction.




Suppose that we send light into a polaroid sheet polarized linearly at
an angle θ[image: -*-] to the passing direction. What intensity will come
through?  This incident light can be resolved into a component
perpendicular to the pass direction which is proportional
to sinθ[image: -*-], and a component along the pass direction which is
proportional to cosθ[image: -*-]. The amplitude which comes out of the
polaroid is only the cosine θ[image: -*-] part; the sinθ[image: -*-] component
is absorbed. The amplitude which passes through the polaroid is
smaller than the amplitude which entered, by a
factor cosθ[image: -*-]. The energy which passes through the polaroid, i.e., the
intensity of the light, is proportional to the square
of cosθ[image: -*-]. Cos2θ[image: -*-], then, is the intensity
transmitted when the light enters polarized at an angle θ[image: -*-] to
the pass direction. The absorbed intensity, of course, is sin2θ[image: -*-].




An interesting paradox is presented by the following situation. We
know that it is not possible to send a beam of light through two
polaroid sheets with their axes crossed at right angles. But if we
place a third polaroid sheet between the first two, with its
pass axis at 45°[image: -*-] to the crossed axes, some light is
transmitted. We know that polaroid absorbs light, it does not create
anything. Nevertheless, the addition of a third polaroid at 45°[image: -*-]
allows more light to get through. The analysis of this phenomenon is
left as an exercise for the student.




One of the most interesting examples of polarization is not in
complicated crystals or difficult substances, but in one of the simplest
and most familiar of situations—the reflection of light from a
surface. Believe it or not, when light is reflected from a glass surface
it may be polarized, and the physical explanation of this is very
simple. It was discovered empirically by
Brewster
that light reflected from a surface is completely
polarized if the reflected beam and the beam refracted into the material
form a right angle. The situation is illustrated in
Fig. 33–4. If the incident beam is polarized in the plane of
incidence, there will be no reflection at all. Only if the incident beam
is polarized normal to the plane of incidence will it be reflected. The
reason is very easy to understand. In the reflecting material the light
is polarized transversely, and we know that it is the motion of the
charges in the material which generates the emergent beam, which we call
the reflected beam. The source of this so-called reflected light is not
simply that the incident beam is reflected; our deeper understanding of
this phenomenon tells us that the incident beam drives an oscillation of
the charges in the material, which in turn generates the reflected beam.
From Fig. 33–4 it is clear that only oscillations normal
to the paper can radiate in the direction of reflection, and
consequently the reflected beam will be polarized normal to the plane of
incidence. If the incident beam is polarized in the plane of incidence,
there will be no reflected light.



[image: -][image: -]
Fig. 33–4. Reflection of linearly polarized light at Brewster’s
angle. The polarization direction is indicated by dashed arrows;
round dots indicate polarization normal to the paper.





This phenomenon is readily demonstrated by reflecting a linearly
polarized beam from a flat piece of glass. If the glass is turned to
present different angles of incidence to the polarized beam, sharp
attenuation of the reflected intensity is observed when the angle of
incidence passes through Brewster’s angle. This attenuation is observed only if the plane of polarization
lies in the plane of incidence. If the plane of polarization is normal
to the plane of incidence, the usual reflected intensity is observed at
all angles.








33–5 Optical activity


Another most remarkable effect of polarization is observed in
materials composed of molecules which do not have reflection symmetry:
molecules shaped something like a corkscrew, or like a gloved hand, or
any shape which, if viewed through a mirror, would be reversed in the
same way that a left-hand glove reflects as a right-hand
glove. Suppose all of the molecules in the substance are the same,
i.e., none is a mirror image of any other. Such a substance may show
an interesting effect called optical activity, whereby as linearly
polarized light passes through the substance, the direction of
polarization rotates about the beam axis.



[image: -][image: -]
Fig. 33–5. A molecule with a shape that is not symmetric when reflected
in a mirror. A beam of light, linearly polarized in the
y[image: -*-]-direction, falls on the molecule.





To understand the phenomenon of optical activity requires some
calculation, but we can see qualitatively how the effect might come
about, without actually carrying out the calculations. Consider an
asymmetric molecule in the shape of a spiral, as shown in
Fig. 33–5. Molecules need not actually be shaped like a
corkscrew in order to exhibit optical activity, but this is a simple
shape which we shall take as a typical example of those that do not have
reflection symmetry. When a light beam linearly polarized along the
y[image: -*-]-direction falls on this molecule, the electric field will drive
charges up and down the helix, thereby generating a current in the
y[image: -*-]-direction and radiating an electric field Ey[image: -*-] polarized in the
y[image: -*-]-direction. However, if the electrons are constrained to move along
the spiral, they must also move in the x[image: -*-]-direction as they are driven
up and down. When a current is flowing up the spiral, it is also flowing
into the paper at z=z1[image: -*-] and out of the paper at z=z1+A[image: -*-], if
A[image: -*-] is the diameter of our molecular spiral. One might suppose that the
current in the x[image: -*-]-direction would produce no net radiation, since the
currents are in opposite directions on opposite sides of the spiral.
However, if we consider the x[image: -*-]-components of the electric field
arriving at z=z2[image: -*-], we see that the field radiated by the current
at z=z1+A[image: -*-] and the field radiated from z=z1[image: -*-] arrive at z2[image: -*-]
separated in time by the amount A/c[image: -*-], and thus separated in phase
by π+ω A/c[image: -*-]. Since the phase difference is not exactly π[image: -*-], the
two fields do not cancel exactly, and we are left with a small
x[image: -*-]-component in the electric field generated by the motion of the
electrons in the molecule, whereas the driving electric field had only a
y[image: -*-]-component. This small x[image: -*-]-component, added to the large
y[image: -*-]-component, produces a resultant field that is tilted slightly with
respect to the y[image: -*-]-axis, the original direction of polarization. As the
light moves through the material, the direction of polarization rotates
about the beam axis. By drawing a few examples and considering the
currents that will be set in motion by an incident electric field, one
can convince himself that the existence of optical activity and the sign
of the rotation are independent of the orientation of the molecules.




Corn syrup is a common substance which possesses optical activity. The
phenomenon is easily demonstrated with a polaroid sheet to produce a
linearly polarized beam, a transmission cell containing corn syrup,
and a second polaroid sheet to detect the rotation of the direction of
polarization as the light passes through the corn syrup.







33–6 The intensity of reflected light


Let us now consider quantitatively the reflection coefficient as a
function of angle. Figure 33–6(a) shows a beam of light
striking a glass surface, where it is partly reflected and partly
refracted into the glass. Let us suppose that the incident beam, of
unit amplitude, is linearly polarized normal to the plane of the
paper. We will call the amplitude of the reflected wave b[image: -*-], and the
amplitude of the refracted wave a[image: -*-]. The refracted and reflected waves
will, of course, be linearly polarized, and the electric field vectors
of the incident, reflected, and refracted waves are all parallel to
each other. Figure 33–6(b) shows the same situation, but
now we suppose that the incident wave, of unit amplitude, is polarized
in the plane of the paper. Now let us call the amplitude of the
reflected and refracted wave B[image: -*-] and A[image: -*-], respectively.
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Fig. 33–6. An incident wave of unit amplitude is reflected and refracted
at a glass surface. In (a) the incident wave is linearly polarized
normal to the plane of the paper. In (b) the incident wave is linearly
polarized in the direction shown by the dashed arrows.





We wish to calculate how strong the reflection is in the two situations
illustrated in Fig. 33–6(a) and 33–6(b).
We already know that when the angle between the reflected beam and
refracted beam is a right angle, there will be no reflected wave in
Fig. 33–6(b), but let us see if we cannot get a quantitative
answer—an exact formula for B[image: -*-] and b[image: -*-] as a function of the angle of
incidence, i[image: -*-].




The principle that we must understand is as follows. The currents that
are generated in the glass produce two waves. First, they produce the
reflected wave. Moreover, we know that if there were no currents
generated in the glass, the incident wave would continue straight into
the glass. Remember that all the sources in the world make the net
field. The source of the incident light beam produces a field of unit
amplitude, which would move into the glass along the dotted line in the
figure. This field is not observed, and therefore the currents
generated in the glass must produce a field of amplitude −1[image: -*-], which
moves along the dotted line. Using this fact, we will calculate the
amplitude of the refracted waves, a[image: -*-] and A[image: -*-].




In Fig. 33–6(a) we see that the field of amplitude b[image: -*-]
is radiated by the motion of charges inside the glass which are
responding to a field a[image: -*-] inside the glass, and that therefore b[image: -*-] is
proportional to a[image: -*-]. We might suppose that since our two figures are
exactly the same, except for the direction of polarization, the
ratio B/A[image: -*-] would be the same as the ratio b/a[image: -*-]. This is not quite true,
however, because in Fig. 33–6(b) the polarization
directions are not all parallel to each other, as they are in
Fig. 33–6(a). It is only the component of A[image: -*-] which is
perpendicular to B[image: -*-], A cos(i+r)[image: -*-], which is effective in
producing B[image: -*-]. The correct expression for the proportionality is then

[image: -*-][image: -*-]
(33.1)







Now we use a trick. We know that in both (a) and (b) of
Fig. 33–6 the electric field in the glass must produce
oscillations of the charges, which generate a field of amplitude −1[image: -*-],
polarized parallel to the incident beam, and moving in the direction of
the dotted line. But we see from part (b) of the figure that only the
component of A[image: -*-] that is normal to the dashed line has the right
polarization to produce this field, whereas in Fig. 33–6(a)
the full amplitude a[image: -*-] is effective, since the polarization of wave a[image: -*-]
is parallel to the polarization of the wave of amplitude −1[image: -*-]. Therefore
we can write

[image: -*-][image: -*-]
(33.2)




since the two amplitudes on the left side of Eq. (33.2)
each produce the wave of amplitude −1[image: -*-].




Dividing Eq. (33.1) by Eq. (33.2), we obtain

[image: -*-][image: -*-]
(33.3)




a result which we can check against what we already know. If we set
(i+r)=90°[image: -*-], Eq. (33.3) gives B=0[image: -*-], as
Brewster says it should be, so our results so far are at least not
obviously wrong.




We have assumed unit amplitudes for the incident waves, so that
│B│2/12[image: -*-] is the reflection coefficient for waves polarized in
the plane of incidence, and │b│2/12[image: -*-] is the reflection
coefficient for waves polarized normal to the plane of incidence. The
ratio of these two reflection coefficients is determined by
Eq. (33.3).




Now we perform a miracle, and compute not just the ratio, but each
coefficient │B│2[image: -*-] and │b│2[image: -*-] individually! We know from the
conservation of energy that the energy in the refracted wave must be
equal to the incident energy minus the energy in the reflected wave,
1−│B│2[image: -*-] in one case, 1−│b│2[image: -*-] in the other. Furthermore,
the energy which passes into the glass in Fig. 33–6(b)
is to the energy which passes into the glass in Fig. 33–6(a)
as the ratio of the squares of the refracted amplitudes,
│A│2/│a│2[image: -*-]. One might ask whether we really know how to
compute the energy inside the glass, because, after all, there are
energies of motion of the atoms in addition to the energy in the
electric field. But it is obvious that all of the various contributions
to the total energy will be proportional to the square of the amplitude
of the electric field. Therefore we can write

[image: -*-][image: -*-]
(33.4)







We now substitute Eq. (33.2) to eliminate A/a[image: -*-] from the
expression above, and express B[image: -*-] in terms of b[image: -*-] by means of
Eq. (33.3):

[image: -*-][image: -*-]
(33.5)




This equation contains only one unknown amplitude, b[image: -*-]. Solving for
│b│2[image: -*-], we obtain

[image: -*-][image: -*-]
(33.6)




and, with the aid of (33.3),

[image: -*-][image: -*-]
(33.7)




So we have found the reflection coefficient │b│2[image: -*-] for an
incident wave polarized perpendicular to the plane of incidence, and
also the reflection coefficient │B│2[image: -*-] for an incident wave
polarized in the plane of incidence!




It is possible to go on with arguments of this nature and deduce that
b[image: -*-] is real. To prove this, one must consider a case where light is
coming from both sides of the glass surface at the same time, a
situation not easy to arrange experimentally, but fun to analyze
theoretically. If we analyze this general case, we can prove that b[image: -*-]
must be real, and therefore, in fact, that b=±sin(i−r)/sin(i+r)[image: -*-]. It is even possible to determine the sign by
considering the case of a very, very thin layer in which there is
reflection from the front and from the back surfaces, and calculating
how much light is reflected. We know how much light should be
reflected by a thin layer, because we know how much current is
generated, and we have even worked out the fields produced by such
currents.




One can show by these arguments that

[image: -*-][image: -*-]
(33.8)




These expressions for the reflection coefficients as a function of the
angles of incidence and refraction are called
Fresnel’s reflection formulas.




If we consider the limit as the angles i[image: -*-] and r[image: -*-] go to zero, we
find, for the case of normal incidence, that B2≈b2≈(i−r)2/(i+r)2[image: -*-] for both polarizations, since the sines are
practically equal to the angles, as are also the tangents. But we know
that sini/sinr=n[image: -*-], and when the angles are small, i/r≈n[image: -*-]. It is thus easy to show that the coefficient of reflection for
normal incidence is

[image: -*-][image: -*-]





It is interesting to find out how much light is reflected at normal
incidence from the surface of water, for example. For water, n[image: -*-]
is 4/3[image: -*-], so that the reflection coefficient is (1/7)2≈2 %[image: -*-]. At
normal incidence, only two percent of the light is reflected from the
surface of water.







33–7 Anomalous refraction


The last polarization effect we shall consider was actually one of the
first to be discovered: anomalous refraction. Sailors visiting Iceland
brought back to Europe crystals of Iceland spar (CaCO3) which had
the amusing property of making anything seen through the crystal
appear doubled, i.e., as two images. This came to the attention of
Huygens, and played an important
role in the discovery of polarization. As is often the case, the
phenomena which are discovered first are the hardest, ultimately, to
explain. It is only after we understand a physical concept thoroughly
that we can carefully select those phenomena which most clearly and
simply demonstrate the concept.



[image: -][image: -][image: -][image: -]
Fig. 33–7. The upper diagram shows the path of the ordinary ray through
a doubly refracting crystal. The extraordinary ray is shown in the
lower diagram. The optic axis lies in the plane of the paper.





Anomalous refraction is a particular case of the same
birefringence that we considered earlier. Anomalous
refraction comes about when the optic axis, the long axis of our
asymmetric molecules, is not parallel to the surface of the
crystal. In Fig. 33–7 are drawn two pieces of birefringent
material, with the optic axis as shown. In
the upper figure, the incident beam falling on the material is linearly
polarized in a direction perpendicular to the optic axis of the
material. When this beam strikes the surface of the material, each point
on the surface acts as a source of a wave which travels into the crystal
with velocity v⟂[image: -*-], the velocity of light in the crystal when the
plane of polarization is normal to the optic axis. The
wavefront is just the envelope or locus of all these
little spherical waves, and this wavefront moves
straight through the crystal and out the other side. This is just the
ordinary behavior we would expect, and this ray is called the
ordinary ray.




In the lower figure the linearly polarized light falling on the
crystal has its direction of polarization turned through 90°[image: -*-],
so that the optic axis lies in the plane of polarization. When we now
consider the little waves originating at any point on the surface of
the crystal, we see that they do not spread out as spherical
waves. Light travelling along the optic axis travels with
velocity v⟂[image: -*-] because the polarization is perpendicular to the optic axis,
whereas the light travelling perpendicular to the optic axis travels
with velocity v∥[image: -*-] because the polarization is parallel to
the optic axis. In a birefringent material
v∥≠v⟂[image: -*-], and in the figure v∥<v⟂[image: -*-]. A
more complete analysis will show that the waves spread out on the
surface of an ellipsoid, with the optic axis as major axis of the
ellipsoid. The envelope of all these elliptical waves is the
wavefront which proceeds through the crystal in the
direction shown. Again, at the back surface the beam will be deflected
just as it was at the front surface, so that the light emerges parallel
to the incident beam, but displaced from it. Clearly, this beam does not
follow Snell’s law, but goes in an extraordinary direction. It is
therefore called the extraordinary ray.




When an unpolarized beam strikes an anomalously refracting crystal, it
is separated into an ordinary ray, which travels straight through in
the normal manner, and an extraordinary ray which is displaced as it
passes through the crystal. These two emergent rays are linearly
polarized at right angles to each other. That this is true can be
readily demonstrated with a sheet of polaroid to analyze the
polarization of the emergent rays. We can also demonstrate that our
interpretation of this phenomenon is correct by sending linearly
polarized light into the crystal. By properly orienting the direction
of polarization of the incident beam, we can make this light go
straight through without splitting, or we can make it go through
without splitting but with a displacement.



[image: -][image: -]
Fig. 33–8. Two oppositely rotating vectors of equal amplitude add to
produce a vector in a fixed direction, but with an oscillating
amplitude.





We have represented all the various polarization cases in Figs.
33–1 and 33–2 as superpositions of two special
polarization cases, namely x[image: -*-] and y[image: -*-] in various amounts and phases.
Other pairs could equally well have been used. Polarization along any
two perpendicular axes x′[image: -*-], y′[image: -*-] inclined to x[image: -*-] and y[image: -*-] would serve as
well [for example, any polarization can be made up of superpositions of
cases (a) and (e) of Fig. 33–2]. It is interesting, however,
that this idea can be extended to other cases also. For example, any
linear polarization can be made up by superposing suitable
amounts at suitable phases of right and left circular
polarizations [cases (c) and (g) of Fig. 33–2], since two
equal vectors rotating in opposite directions add to give a single
vector oscillating in a straight line (Fig. 33–8). If the
phase of one is shifted relative to the other, the line is inclined.
Thus all the pictures of Fig. 33–1 could be labeled “the
superposition of equal amounts of right and left circularly polarized
light at various relative phases.” As the left slips behind the right
in phase, the direction of the linear polarization changes. Therefore
optically active materials are, in a sense,
birefringent. Their properties can be
described by saying that they have different indexes for right- and
left-hand circularly polarized light. Superposition of right and left
circularly polarized light of different intensities produces
elliptically polarized light.




[image: -][image: -]
Fig. 33–9. A charge moving in a circle in response to circularly
polarized light.





Circularly polarized light has another interesting property—it carries
angular momentum (about the direction of propagation). To illustrate this, suppose
that such light falls on an atom represented by a harmonic oscillator
that can be displaced equally well in any direction in the plane x y[image: -*-].
Then the x[image: -*-]-displacement of the electron will respond to the
Ex[image: -*-] component of the field, while the y[image: -*-]-component responds, equally,
to the equal Ey[image: -*-] component of the field but 90°[image: -*-] behind in
phase. That is, the responding electron goes around in a circle, with
angular velocity ω[image: -*-], in response to the rotating electric field of
the light (Fig. 33–9). Depending on the damping
characteristics of the response of the oscillator, the direction of the
displacement a[image: -*-] of the electron, and the direction of the
force qe E[image: -*-] on it need not be the same but they rotate around
together. The E[image: -*-] may have a component at right angles to a[image: -*-],
so work is done on the system and a torque τ[image: -*-] is exerted. The work
done per second is τ ω[image: -*-]. Over a period of time T[image: -*-] the energy
absorbed is τ ω T[image: -*-], while τ T[image: -*-] is the angular momentum
delivered to the matter absorbing the energy. We see therefore that
a beam of right circularly polarized light containing a total
energy E[image: -*-] carries an angular momentum (with vector directed along
the direction of propagation) E/ω[image: -*-]. For when this beam is
absorbed that angular momentum is delivered to the absorber. Left-hand
circular light carries angular momentum of the opposite
sign, −E/ω[image: -*-].







  
    

34 Relativistic Effects in Radiation



34–1 Moving sources


In the present chapter we shall describe a number of miscellaneous
effects in connection with radiation, and then we shall be finished
with the classical theory of light propagation. In our analysis of
light, we have gone rather far and into considerable detail. The only
phenomena of any consequence associated with electromagnetic radiation
that we have not discussed is what happens if radiowaves are contained
in a box with reflecting walls, the size of the box being comparable
to a wavelength, or are transmitted down a long tube. The phenomena of
so-called cavity resonators and waveguides we shall
discuss later; we shall first use another physical
example—sound—and then we shall return to this subject. Except for
this, the present chapter is our last consideration of the classical
theory of light.




We can summarize all the effects that we shall now discuss by
remarking that they have to do with the effects of moving
sources. We no longer assume that the source is localized, with all
its motion being at a relatively low speed near a fixed point.




We recall that the fundamental laws of electrodynamics say that, at
large distances from a moving charge, the electric field is given by
the formula

[image: -*-][image: -*-]
(34.1)




The second derivative of the unit vector eR′[image: -*-] which points in
the apparent direction of the charge, is the determining feature of
the electric field. This unit vector does not point toward the
present position of the charge, of course, but rather in the
direction that the charge would seem to be, if the information travels
only at the finite speed c[image: -*-] from the charge to the observer.




Associated with the electric field is a magnetic field, always at
right angles to the electric field and at right angles to the apparent
direction of the source, given by the formula

[image: -*-][image: -*-]
(34.2)







Until now we have considered only the case in which motions are
nonrelativistic in speed, so that there is no appreciable motion in
the direction of the source to be considered. Now we shall be more
general and study the case where the motion is at an arbitrary
velocity, and see what different effects may be expected in those
circumstances. We shall let the motion be at an arbitrary speed, but
of course we shall still assume that the detector is very far from the
source.



[image: -][image: -]
Fig. 34–1. The path of a moving charge. The true position at the
time τ[image: -*-] is at T[image: -*-], but the retarded position is at A[image: -*-].





We already know from our discussion in Chapter 28 that the
only things that count in d2 eR′/d t2[image: -*-] are the changes in the
direction of eR′[image: -*-]. Let the coordinates of the charge
be (x,y,z)[image: -*-], with z[image: -*-] measured along the direction of observation
(Fig. 34–1). At a given moment in time, say the
moment τ[image: -*-], the three components of the position are x (τ)[image: -*-], y (τ)[image: -*-],
and z (τ)[image: -*-]. The distance R[image: -*-] is very nearly equal to R (τ)=R0+z (τ)[image: -*-]. Now the direction of the vector eR′[image: -*-] depends
mainly on x[image: -*-] and y[image: -*-], but hardly at all upon z[image: -*-]: the transverse
components of the unit vector are x/R[image: -*-] and y/R[image: -*-], and when we
differentiate these components we get things like R2[image: -*-] in the
denominator:

[image: -*-][image: -*-]


So, when we are far enough away the only terms we have to worry about
are the variations of x[image: -*-] and y[image: -*-]. Thus we take out the factor R0[image: -*-]
and get

[image: -*-][image: -*-]
(34.3)




where R0[image: -*-] is the distance, more or less, to q[image: -*-]; let us take it as
the distance O P[image: -*-] to the origin of the coordinates (x,y,z)[image: -*-]. Thus the
electric field is a constant multiplied by a very simple thing, the
second derivatives of the x[image: -*-]- and y[image: -*-]-coordinates. (We could put it
more mathematically by calling x[image: -*-] and y[image: -*-] the transverse
components of the position vector r[image: -*-] of the charge, but this
would not add to the clarity.)




Of course, we realize that the coordinates must be measured at the
retarded time. Here we find that z (τ)[image: -*-] does affect the
retardation. What time is the retarded time? If the time of
observation is called t[image: -*-] (the time at P[image: -*-]) then the time τ[image: -*-] to
which this corresponds at A[image: -*-] is not the time t[image: -*-], but is delayed by
the total distance that the light has to go, divided by the speed of
light. In the first approximation, this delay is R0/c[image: -*-], a constant
(an uninteresting feature), but in the next approximation we must
include the effects of the position in the z[image: -*-]-direction at the
time τ[image: -*-], because if q[image: -*-] is a little farther back, there is a little
more retardation. This is an effect that we have neglected before, and
it is the only change needed in order to make our results valid for
all speeds.




What we must now do is to choose a certain value of t[image: -*-] and calculate
the value of τ[image: -*-] from it, and thus find out where x[image: -*-] and y[image: -*-] are
at that τ[image: -*-]. These are then the retarded x[image: -*-] and y[image: -*-], which we call
x′[image: -*-] and y′[image: -*-], whose second derivatives determine the field. Thus
τ[image: -*-] is determined by

[image: -*-][image: -*-]


and

[image: -*-][image: -*-]
(34.4)




Now these are complicated equations, but it is easy enough to make a
geometrical picture to describe their solution. This picture will give
us a good qualitative feeling for how things work, but it still takes
a lot of detailed mathematics to deduce the precise results of a
complicated problem.







34–2 Finding the “apparent” motion


The above equation has an interesting simplification. If we disregard
the uninteresting constant delay R0/c[image: -*-], which just means that we
must change the origin of t[image: -*-] by a constant, then it says that

[image: -*-][image: -*-]
(34.5)




Now we need to find x′[image: -*-] and y′[image: -*-] as functions of t[image: -*-], not τ[image: -*-], and
we can do this in the following way: Eq. (34.5) says that
we should take the actual motion and add a constant (the speed of
light) times τ[image: -*-]. What that turns out to mean is shown in
Fig. 34–2.

[image: -][image: -]
Fig. 34–2. A geometrical solution of Eq. (34.5) to find x′ (t)[image: -*-].




 We take the actual motion of the charge (shown at
left) and imagine that as it is going around it is being swept away from
the point P[image: -*-] at the speed c[image: -*-] (there are no contractions from
relativity or anything like that; this is just a mathematical addition
of the c τ[image: -*-]). In this way we get a new motion, in which the
line-of-sight coordinate is c t[image: -*-], as shown at the right. (The figure
shows the result for a rather complicated motion in a plane, but of
course the motion may not be in one plane—it may be even more
complicated than motion in a plane.) The point is that the horizontal
(i.e., line-of-sight) distance now is no longer the old z[image: -*-], but is z+c τ[image: -*-], and therefore is c t[image: -*-]. Thus we have found a picture of the
curve, x′[image: -*-] (and y′[image: -*-]) against t[image: -*-]!  All we have to do to find the field
is to look at the acceleration of this curve, i.e., to differentiate it
twice. So the final answer is: in order to find the electric field for a
moving charge, take the motion of the charge and translate it back at
the speed c[image: -*-] to “open it out”; then the curve, so drawn, is a curve
of the x′[image: -*-] and y′[image: -*-] positions of the function of t[image: -*-]. The acceleration
of this curve gives the electric field as a function of t[image: -*-]. Or, if we
wish, we can now imagine that this whole “rigid” curve moves forward
at the speed c[image: -*-] through the plane of sight, so that the point of
intersection with the plane of sight has the coordinates x′[image: -*-] and y′[image: -*-].
The acceleration of this point makes the electric field. This solution
is just as exact as the formula we started with—it is simply a
geometrical representation.



[image: -][image: -]
Fig. 34–3. The x′ (t)[image: -*-] curve for a particle moving at constant
speed v=0.94 c[image: -*-] in a circle.





If the motion is relatively slow, for instance if we have an
oscillator just going up and down slowly, then when we shoot that
motion away at the speed of light, we would get, of course, a simple
cosine curve, and that gives a formula we have been looking at for a
long time: it gives the field produced by an oscillating charge. A
more interesting example is an electron moving rapidly, very nearly at
the speed of light, in a circle. If we look in the plane of the
circle, the retarded x′ (t)[image: -*-] appears as shown in Fig. 34–3.
What is this curve? If we imagine a radius vector from the center of the
circle to the charge, and if we extend this radial line a little bit
past the charge, just a shade if it is going fast, then we come to a
point on the line that goes at the speed of light. Therefore, when we
translate the motion back at the speed of light, that corresponds to
having a wheel with a charge on it rolling backward (without slipping)
at the speed c[image: -*-]; thus we find a curve which is very close to a
cycloid—it is called a curtate cycloid.
If the charge is going very nearly at the speed of light, the “cusps”
are very sharp indeed; if it went at exactly the speed of light, they
would be actual cusps, infinitely sharp. “Infinitely sharp” is
interesting; it means that near a cusp the second derivative is
enormous. Once in each cycle we get a sharp pulse of electric field.
This is not at all what we would get from a nonrelativistic motion,
where each time the charge goes around there is an oscillation which is
of about the same “strength” all the time. Instead, there are very
sharp pulses of electric field spaced at time intervals T0[image: -*-] apart,
where T0[image: -*-] is the period of revolution. These strong electric fields
are emitted in a narrow cone in the direction of motion of the charge.
When the charge is moving away from P[image: -*-], there is very little curvature
and there is very little radiated field in the direction of P[image: -*-].








34–3 Synchrotron radiation


We have very fast electrons moving in circular paths in the
synchrotron; they are travelling at very nearly the speed c[image: -*-], and it
is possible to see the above radiation as actual light! Let us
discuss this in more detail.



[image: -][image: -]
Fig. 34–4. A charged particle moves in a circular (or helical) path in a
uniform magnetic field.





In the synchrotron we have electrons which go around in circles in a
uniform magnetic field. First, let us see why they go in circles. From
Eq. (28.2), we know that the force on a particle in a
magnetic field is given by

[image: -*-][image: -*-]
(34.6)




and it is at right angles both to the field and to the velocity. As
usual, the force is equal to the rate of change of momentum with
time. If the field is directed upward out of the paper, the momentum
of the particle and the force on it are as shown in
Fig. 34–4. Since the force is at right angles to the
velocity, the kinetic energy, and therefore the speed, remains
constant. All the magnetic field does is to change the
direction of motion. In a short time Δ t[image: -*-], the momentum
vector changes at right angles to itself by an amount Δ p=F Δ t[image: -*-], and therefore p[image: -*-] turns through an
angle Δ θ=[image: -*-]Δ p/p=[image: -*-]q v B Δ t/p[image: -*-], since │F│=q v B[image: -*-].
But in this same time the particle has gone a distance Δ s=v Δ t[image: -*-]. Evidently, the two lines A B[image: -*-] and C D[image: -*-] will intersect at a
point O[image: -*-] such that O A=[image: -*-]O C=[image: -*-]R[image: -*-], where Δ s=R Δ θ[image: -*-].
Combining this with the previous expressions, we find
R Δ θ/Δ t=[image: -*-]R ω=[image: -*-]v=[image: -*-]q v B R/p[image: -*-], from which we find

[image: -*-][image: -*-]
(34.7)




and

[image: -*-][image: -*-]
(34.8)




Since this same argument can be applied during the next instant, the
next, and so on, we conclude that the particle must be moving in a
circle of radius R[image: -*-], with angular velocity ω[image: -*-].




The result that the momentum of the particle is equal to a charge
times the radius times the magnetic field is a very important law that
is used a great deal. It is important for practical purposes because
if we have elementary particles which all have the same charge and we
observe them in a magnetic field, we can measure the radii of
curvature of their orbits and, knowing the magnetic field, thus
determine the momenta of the particles. If we multiply both sides of
Eq. (34.7) by c[image: -*-], and express q[image: -*-] in terms of the
electronic charge, we can measure the momentum in units of the
electron volt. In those units our
formula is

[image: -*-][image: -*-]
(34.9)




where B[image: -*-], R[image: -*-], and the speed of light are all expressed in the mks
system, the latter being 3×108[image: -*-], numerically.




The mks unit of magnetic field is called a weber per square
meter. There is an older unit which is still in common use, called a
gauss. One weber/m² is equal to
104[image: -*-] gauss. To give an idea of how big magnetic fields are, the
strongest magnetic field that one can usually make in iron is about
1.5×104[image: -*-] gauss; beyond that, the advantage of using iron
disappears. Today, electromagnets wound with superconducting wire are
able to produce steady fields of over 105[image: -*-] gauss strength—that is,
10[image: -*-] mks units. The field of the earth is a few tenths of a gauss at
the equator.





Returning to Eq. (34.9), we could imagine the synchrotron
running at a billion electron volts, so p c[image: -*-] would be 109[image: -*-] for a
billion electron volts. (We shall come back to the energy in just a
moment.)  Then, if we had a B[image: -*-] corresponding to, say,
10,000[image: -*-] gauss, which is a good substantial field, one mks unit, then we see
that R[image: -*-] would have to be 3.3[image: -*-] meters. The actual radius of the
Caltech synchrotron is 3.7[image: -*-] meters, the field is a little bigger, and
the energy is 1.5[image: -*-] billion, but it is the same idea. So now we have a
feeling for why the synchrotron has the size it has.




We have calculated the momentum, but we know that the total energy,
including the rest energy, is given by W=√p2 c2+m2 c4[image: -*-], and
for an electron the rest energy corresponding to m c2[image: -*-] is
0.511×106[image: -*-] eV, so when p c[image: -*-] is 109[image: -*-] eV we can neglect m c2[image: -*-],
and so for all practical purposes W=p c[image: -*-] when the speeds are
relativistic. It is practically the same to say the energy of an
electron is a billion electron volts as to say the momentum times c[image: -*-]
is a billion electron volts. If W=109[image: -*-] eV, it is easy to show that
the speed differs from the speed of light by but one part in eight
million!




We turn now to the radiation emitted by such a particle. A particle
moving on a circle of radius 3.3[image: -*-] meters, or 20[image: -*-] meters
circumference, goes around once in roughly the time it takes light to
go 20[image: -*-] meters. So the wavelength that should be emitted by such a
particle would be 20[image: -*-] meters—in the shortwave radio region. But
because of the piling up effect that we have been discussing
(Fig. 34–3), and because the distance by which we must
extend the radius to reach the speed c[image: -*-] is only one part in eight
million of the radius, the cusps of the
curtate cycloid
are enormously sharp compared with the distance between them. The
acceleration, which involves a second derivative with respect to time,
gets twice the “compression factor” of 8×106[image: -*-] because the time
scale is reduced by eight million twice in the neighborhood of the cusp.
Thus we might expect the effective wavelength to be much shorter, to the
extent of 64[image: -*-] times 1012[image: -*-] smaller than 20[image: -*-] meters, and that
corresponds to the x-ray region.
(Actually, the cusp itself is not the entire determining factor; one
must also include a certain region about the cusp. This changes the
factor to the 3/2[image: -*-] power instead of the square, but still leaves us
above the optical region.) Thus, even though a slowly moving electron
would have radiated 20[image: -*-]-meter radiowaves, the relativistic effect cuts
down the wavelength so much that we can see it!  Clearly, the
light should be polarized, with the electric field perpendicular
to the uniform magnetic field.



[image: -][image: -]
Fig. 34–5. The light which strikes a grating as a single, sharp pulse is
scattered in various directions as different colors.





To further appreciate what we would observe, suppose that we were to
take such light (to simplify things, because these pulses are so far
apart in time, we shall just take one pulse) and direct it onto a
diffraction grating, which is a lot of scattering wires. After this
pulse comes away from the grating, what do we see? (We should see red
light, blue light, and so on, if we see any light at all.) What
do we see? The pulse strikes the grating head-on, and all the
oscillators in the grating, together, are violently moved up and then
back down again, just once. They then produce effects in various
directions, as shown in Fig. 34–5. But the point P[image: -*-] is
closer to one end of the grating than to the other, so at this point
the electric field arrives first from wire A[image: -*-], next from B[image: -*-], and so
on; finally, the pulse from the last wire arrives. In short, the sum
of the reflections from all the successive wires is as shown in
Fig. 34–6(a); it is an electric field which is a series of
pulses, and it is very like a sine wave whose wavelength is the distance
between the pulses, just as it would be for monochromatic light striking
the grating! So, we get colored light all right. But, by the same
argument, will we not get light from any kind of a “pulse”?  No.
Suppose that the curve were much smoother; then we would add all the
scattered waves together, separated by a small time between them
(Fig. 34–6b). Then we see that the field would not shake at
all, it would be a very smooth curve, because each pulse does not vary
much in the time interval between pulses.



[image: -][image: -][image: -][image: -]
Fig. 34–6. The total electric field due to a series of (a) sharp pulses
and (b) smooth pulses.





The electromagnetic radiation emitted by relativistic charged
particles circulating in a magnetic field is called synchrotron
radiation. It is so named for obvious reasons, but it is not limited
specifically to synchrotrons, or even to earthbound laboratories. It
is exciting and interesting that it also occurs in nature!







34–4 Cosmic synchrotron radiation

[image: -]
Fig. 34–7. The crab nebula as seen in all colors (no filter).





In the year 1054 the Chinese and Japanese civilizations were among the
most advanced in the world; they were conscious of the external
universe, and they recorded, most remarkably, an explosive bright star
in that year. (It is amazing that none of the European monks, writing
all the books of the middle ages, even bothered to write that a star
exploded in the sky, but they did not.) Today we may take a picture of
that star, and what we see is shown in Fig. 34–7. On the
outside is a big mass of red filaments, which is produced by the atoms
of the thin gas “ringing” at their natural frequencies; this makes a
bright line spectrum with different frequencies in it. The red happens
in this case to be due to nitrogen. On the other hand, in the central
region is a mysterious, fuzzy patch of light in a continuous
distribution of frequency, i.e., there are no special frequencies
associated with particular atoms. Yet this is not dust “lit up” by
nearby stars, which is one way by which one can get a continuous
spectrum. We can see stars through it, so it is transparent, but it is
emitting light.




[image: -][image: -]

Fig. 34–8. The crab nebula as seen through a blue filter and a
polaroid. (a) Electric vector vertical. (b) Electric vector
horizontal.





In Fig. 34–8 we look at the same object, using light in
a region of the spectrum which has no bright spectral line, so that we
see only the central region. But in this case, also, polarizers have
been put on the telescope, and the two views correspond to two
orientations 90°[image: -*-] apart. We see that the pictures are different!
That is to say, the light is polarized. The reason, presumably, is
that there is a local magnetic field, and many very energetic
electrons are going around in that magnetic field.




We have just illustrated how the electrons could go around the field
in a circle. We can add to this, of course, any uniform motion in the
direction of the field, since the force, q v×B[image: -*-], has no
component in this direction and, as we have already remarked, the
synchrotron radiation is evidently polarized in a direction at right
angles to the projection of the magnetic field onto the plane of
sight.




Putting these two facts together, we see that in a region where one
picture is bright and the other one is black, the light must have its
electric field completely polarized in one direction. This means that
there is a magnetic field at right angles to this direction, while in
other regions, where there is a strong emission in the other picture,
the magnetic field must be the other way. If we look carefully at
Fig. 34–8, we may notice that there is, roughly
speaking, a general set of “lines” that go one way in one picture
and at right angles to this in the other. The pictures show a kind of
fibrous structure. Presumably, the magnetic field lines will tend to
extend relatively long distances in their own direction, and so,
presumably, there are long regions of magnetic field with all the
electrons spiralling one way, while in another region the field is the
other way and the electrons are also spiralling that way.




What keeps the electron energy so high for so long a time? After all,
it is 900[image: -*-] years since the explosion—how can they keep going so
fast?  How they maintain their energy and how this whole thing keeps
going is still not thoroughly understood.







34–5 Bremsstrahlung

[image: -][image: -][image: -][image: -]
Fig. 34–9. A fast electron passing near a nucleus radiates energy in the
direction of its motion.





We shall next remark briefly on one other interesting effect of a very
fast-moving particle that radiates energy. The idea is very similar to
the one we have just discussed. Suppose that there are charged
particles in a piece of matter and a very fast electron, say, comes by
(Fig. 34–9). Then, because of the electric field around
the atomic nucleus the electron is pulled, accelerated, so that the
curve of its motion has a slight kink or bend in it. If the electron
is travelling at very nearly the speed of light, what is the electric
field produced in the direction C[image: -*-]? Remember our rule: we take the
actual motion, translate it backwards at speed c[image: -*-], and that gives us
a curve whose curvature measures the electric field. It was coming
toward us at the speed v[image: -*-], so we get a backward motion, with the
whole picture compressed into a smaller distance in proportion as c−v[image: -*-] is smaller than c[image: -*-]. So, if 1−v/c≪1[image: -*-], there is a very sharp
and rapid curvature at B′[image: -*-], and when we take the second derivative of
that we get a very high field in the direction of the motion. So when
very energetic electrons move through matter they spit radiation in a
forward direction. This is called bremsstrahlung. As a matter of
fact, the synchrotron is used, not so much to make high-energy electrons
(actually if we could get them out of the machine more conveniently we
would not say this) as to make very energetic photons—gamma rays—by
passing the energetic electrons through a solid tungsten “target,” and
letting them radiate photons from this bremsstrahlung effect.







34–6 The Doppler effect

[image: -][image: -][image: -][image: -]
Fig. 34–10. The x[image: -*-]-z[image: -*-] and x′[image: -*-]-t[image: -*-] curves of a moving oscillator.





Now we go on to consider some other examples of the effects of moving
sources. Let us suppose that the source is a stationary atom which is
oscillating at one of its natural frequencies, ω0[image: -*-]. Then we
know that the frequency of the light we would observe is ω0[image: -*-].
But now let us take another example, in which we have a
similar oscillator oscillating with a frequency ω1[image: -*-], and at the
same time the whole atom, the whole oscillator, is moving along in a
direction toward the observer at velocity v[image: -*-]. Then the actual motion
in space, of course, is as shown in Fig. 34–10(a). Now
we play our usual game, we add c τ[image: -*-]; that is to say, we translate
the whole curve backward and we find then that it oscillates as in
Fig. 34–10(b). In a given amount of time τ[image: -*-], when
the oscillator would have gone a distance v τ[image: -*-], on the x′[image: -*-]
vs. c t[image: -*-] diagram it goes a distance (c−v) τ[image: -*-]. So all the oscillations
of frequency ω1[image: -*-] in the time Δ τ[image: -*-] are now found in the
interval Δ t=(1−v/c) Δ τ[image: -*-]; they are squashed together,
and as this curve comes by us at speed c[image: -*-], we will see light of a
higher frequency, higher by just the compression factor (1−v/c)[image: -*-]. Thus we observe

[image: -*-][image: -*-]
(34.10)







We can, of course, analyze this situation in various other
ways. Suppose that the atom were emitting, instead of sine waves, a
series of pulses, pip, pip, pip, pip, at a certain frequency ω1[image: -*-].
At what frequency would they be received by us? The first
one that arrives has a certain delay, but the next one is delayed less
because in the meantime the atom moves closer to the
receiver. Therefore, the time between the “pips” is decreased by the
motion. If we analyze the geometry of the situation, we find that the
frequency of the pips is increased by the factor 1/(1−v/c)[image: -*-].




Is ω=ω0/(1−v/c)[image: -*-], then, the frequency that would be
observed if we took an ordinary atom, which had a natural frequency
ω0[image: -*-], and moved it toward the receiver at speed v[image: -*-]? No; as we
well know, the natural frequency ω1[image: -*-] of a moving atom is not
the same as that measured when it is standing still, because of the
relativistic dilation in the rate of passage of time. Thus if
ω0[image: -*-] were the true natural frequency, then the modified natural
frequency ω1[image: -*-] would be

[image: -*-][image: -*-]
(34.11)




Therefore the observed frequency ω[image: -*-] is

[image: -*-][image: -*-]
(34.12)







The shift in frequency observed in the above situation is called the
Doppler effect: if something moves toward us the light it emits
appears more violet, and if it moves away it appears more red.




We shall now give two more derivations of this same interesting and
important result. Suppose, now, that the source is standing
still and is emitting waves at frequency ω0[image: -*-], while the
observer is moving with speed v[image: -*-] toward the source. After a
certain period of time t[image: -*-] the observer will have moved to a new
position, a distance v t[image: -*-] from where he was at t=0[image: -*-]. How many
radians of phase will he have seen go by? A certain number,
ω0 t[image: -*-], went past any fixed point, and in addition the observer
has swept past some more by his own motion, namely a number v t k0[image: -*-]
(the number of radians per meter times the distance). So the total
number of radians in the time t[image: -*-], or the observed frequency, would
be ω1=ω0+k0 v[image: -*-]. We have made this analysis from the
point of view of a man at rest; we would like to know how it would
look to the man who is moving. Here we have to worry again about the
difference in clock rate for the two observers, and this time that
means that we have to divide by √1−v2/c2[image: -*-]. So if
k0[image: -*-] is the wave number, the number of radians per meter in the
direction of motion, and ω0[image: -*-] is the frequency, then the
observed frequency for a moving man is

[image: -*-][image: -*-]
(34.13)







For the case of light, we know that k0=ω0/c[image: -*-]. So, in this
particular problem, the equation would read

[image: -*-][image: -*-]
(34.14)




which looks completely unlike formula (34.12)! Is the
frequency that we would observe if we move toward a source different
than the frequency that we would see if the source moved toward us? Of
course not! The theory of relativity says that these two must be
exactly equal. If we were expert enough mathematicians we would
probably recognize that these two mathematical expressions are
exactly equal!  In fact, the necessary equality of the two
expressions is one of the ways by which some people like to
demonstrate that relativity requires a time dilation, because if we
did not put those square-root factors in, they would no longer be
equal.




Since we know about relativity, let us analyze it in still a third way,
which may appear a little more general. (It is really the same thing,
since it makes no difference how we do it!) According to the
relativity theory there is a relationship between position and time as
observed by one man and position and time as seen by another who is
moving relative to him. We wrote down those relationships long ago
(Chapter 16). This is the Lorentz
transformation and its inverse:

[image: -*-][image: -*-]
(34.15)




If we were standing still on the ground, the form of a wave would
be cos(ω t−k x)[image: -*-]; all the nodes and maxima and minima would
follow this form. But what would a man in motion, observing the same
physical wave, see? Where the field is zero, the positions of all the
nodes are the same (when the field is zero, everyone
measures the field as zero); that is a relativistic invariant. So the
form is the same for the other man too, except that we must transform
it into his frame of reference:

[image: -*-][image: -*-]


If we regroup the terms inside the brackets, we get



[image: -*-][image: -*-]
(34.16)





This is again a wave, a cosine wave, in which there is a certain
frequency ω′[image: -*-], a constant multiplying t′[image: -*-], and some other
constant, k′[image: -*-], multiplying x′[image: -*-]. We call k′[image: -*-] the wave number, or the
number of waves per meter, for the other man. Therefore the other man
will see a new frequency and a new wave number given by

[image: -*-][image: -*-]
(34.17)

(34.18)




If we look at (34.17), we see that it is the same
formula (34.13), that we obtained by a more physical
argument.







34–7 The ω,k[image: -*-] four-vector


The relationships indicated in Eqs. (34.17)
and (34.18) are very interesting, because these say that the new
frequency ω′[image: -*-] is a combination of the old frequency ω[image: -*-] and the old
wave number k[image: -*-], and that the new wave number is a combination of the old wave
number and frequency. Now the wave number is the rate of change of phase with
distance, and the frequency is the rate of change of phase with time, and in
these expressions we see a close analogy with the Lorentz transformation of the
position and time: if ω[image: -*-] is thought of as being like t[image: -*-], and k[image: -*-] is
thought of as being like x[image: -*-] divided by c2[image: -*-], then the new ω′[image: -*-] will be
like t′[image: -*-], and the new k′[image: -*-] will be like x′/c2[image: -*-]. That is to say, under
the Lorentz transformation ω[image: -*-] and k[image: -*-] transform the same way as do t[image: -*-]
and x[image: -*-]. They constitute what we call a four-vector; when a quantity has
four components transforming like time and space, it is a four-vector.
Everything seems all right, then, except for one little thing: we said that a
four-vector has to have four components; where are the other two
components? We have seen that ω[image: -*-] and k[image: -*-] are like time and space in one
space direction, but not in all directions, and so we must next study the
problem of the propagation of light in three space dimensions, not just in one
direction, as we have been doing up until now.



[image: -][image: -]
Fig. 34–11. A plane wave travelling in an oblique direction.





Suppose that we have a coordinate system, x[image: -*-], y[image: -*-], z[image: -*-], and a wave which
is travelling along and whose wavefronts are as shown in
Fig. 34–11. The wavelength of the wave is λ[image: -*-], but the
direction of motion of the wave does not happen to be in the direction
of one of the axes. What is the formula for such a wave? The answer is
clearly cos(ω t−k s)[image: -*-], where k=2 π/λ[image: -*-] and s[image: -*-] is the
distance along the direction of motion of the wave—the component of
the spatial position in the direction of motion. Let us put it this way:
if r[image: -*-] is the vector position of a point in space, then s[image: -*-]
is r⋅ek[image: -*-], where ek[image: -*-] is a unit vector in the direction
of motion. That is, s[image: -*-] is just r cos(rek)[image: -*-], the component
of distance in the direction of motion. Therefore our wave
is cos(ω t−k ek⋅r)[image: -*-].




Now it turns out to be very convenient to define a vector k[image: -*-],
which is called the wave vector, which has a magnitude equal to
the wave number, 2 π/λ[image: -*-], and is pointed in the direction of
propagation of the waves:

[image: -*-][image: -*-]
(34.19)




Using this vector, our wave can be written as cos(ω t−k⋅r)[image: -*-], or as cos(ω t−kx x−ky y−kz z)[image: -*-]. What
is the significance of a component of k[image: -*-], say kx[image: -*-]? Clearly,
kx[image: -*-] is the rate of change of phase with respect to x[image: -*-]. Referring to
Fig. 34–11, we see that the phase changes as we
change x[image: -*-], just as if there were a wave along x[image: -*-], but of a longer
wavelength. The “wavelength in the x[image: -*-]-direction” is longer than a
natural, true wavelength by the secant of the angle α[image: -*-] between
the actual direction of propagation and the x[image: -*-]-axis:

[image: -*-][image: -*-]
(34.20)




Therefore the rate of change of phase, which is proportional to the
reciprocal of λx[image: -*-], is smaller by the
factor cosα[image: -*-]; that is just how kx[image: -*-] would vary—it would be the
magnitude of k[image: -*-], times the cosine of the angle between k[image: -*-]
and the x[image: -*-]-axis!




That, then, is the nature of the wave vector that we use to represent a
wave in three dimensions. The four quantities ω[image: -*-], kx[image: -*-],
ky[image: -*-], kz[image: -*-] transform in relativity as a four-vector, where ω[image: -*-]
corresponds to the time, and kx[image: -*-], ky[image: -*-], kz[image: -*-] correspond to the x[image: -*-]-,
y[image: -*-]-, and z[image: -*-]-components of the four-vector.




In our previous discussion of special relativity
(Chapter 17), we learned that there are ways of making
relativistic dot products with four-vectors. If we use the position
vector xμ[image: -*-], where μ[image: -*-] stands for the four components (time and
three space ones), and if we call the wave vector kμ[image: -*-], where the
index μ[image: -*-] again has four values, time and three space ones, then the
dot product of xμ[image: -*-] and kμ[image: -*-] is written ∑′kμ xμ[image: -*-] (see
Chapter 17). This dot product is an invariant, independent
of the coordinate system; what is it equal to?  By the definition of
this dot product in four dimensions, it is

[image: -*-][image: -*-]
(34.21)




We know from our study of vectors that ∑′kμ xμ[image: -*-] is invariant
under the Lorentz transformation, since kμ[image: -*-] is a four-vector. But
this quantity is precisely what appears inside the cosine for a plane
wave, and it ought to be invariant under a Lorentz
transformation. We cannot have a formula with something that changes
inside the cosine, since we know that the phase of the wave cannot
change when we change the coordinate system.







34–8 Aberration

[image: -][image: -]
Fig. 34–12. A distant source S[image: -*-] is viewed by (a) a stationary telescope,
and (b) a laterally moving telescope.





In deriving Eqs. (34.17) and (34.18), we have taken a simple example where k[image: -*-] happened to be in a direction
of motion, but of course we can generalize it to other cases also. For
example, suppose there is a source sending out light in a certain
direction from the point of view of a man at rest, but we are moving
along on the earth, say (Fig. 34–12). From which direction
does the light appear to come? To find out, we will have to write down
the four components of kμ[image: -*-] and apply the Lorentz transformation. The
answer, however, can be found by the following argument: we have to
point our telescope at an angle to see the light. Why? Because light is
coming down at the speed c[image: -*-], and we are moving sidewise at the
speed v[image: -*-], so the telescope has to be tilted forward so that as the
light comes down it goes “straight” down the tube. It is very easy to
see that the horizontal distance is v t[image: -*-] when the vertical distance
is c t[image: -*-], and therefore, if θ′[image: -*-] is the angle of tilt, tanθ′=v/c[image: -*-]. How nice!  How nice, indeed—except for one little thing:
θ′[image: -*-] is not the angle at which we would have to set the
telescope relative to the earth, because we made our analysis
from the point of view of a “fixed” observer. When we said the
horizontal distance is v t[image: -*-], the man on the earth would have found a
different distance, since he measured with a “squashed” ruler. It
turns out that, because of that contraction effect,

[image: -*-][image: -*-]
(34.22)




which is equivalent to

[image: -*-][image: -*-]
(34.23)




It will be instructive for the student to derive this result, using
the Lorentz transformation.




This effect, that a telescope has to be tilted, is called
aberration, and it has been observed. How can we observe
it?  Who can say where a given star should be? Suppose we
do have to look in the wrong direction to see a star; how do we
know it is the wrong direction?  Because the earth goes around the
sun. Today we have to point the telescope one way; six months later we
have to tilt the telescope the other way. That is how we can tell that
there is such an effect.








34–9 The momentum of light


Now we turn to a different topic. We have never, in all our discussion
of the past few chapters, said anything about the effects of the
magnetic field that is associated with light. Ordinarily, the
effects of the magnetic field are very small, but there is one
interesting and important effect which is a consequence of the
magnetic field. Suppose that light is coming from a source and is
acting on a charge and driving that charge up and down. We will
suppose that the electric field is in the x[image: -*-]-direction, so the motion
of the charge is also in the x[image: -*-]-direction: it has a position x[image: -*-] and
a velocity v[image: -*-], as shown in Fig. 34–13. The magnetic
field is at right angles to the electric field. Now as the electric
field acts on the charge and moves it up and down, what does the
magnetic field do?  The magnetic field acts on the charge (say an
electron) only when it is moving; but the electron is moving,
it is driven by the electric field, so the two of them work together:
While the thing is going up and down it has a velocity and there is a
force on it, B[image: -*-] times v[image: -*-] times q[image: -*-]; but in which direction is
this force?  It is in the direction of the propagation of
light. Therefore, when light is shining on a charge and it is
oscillating in response to that light, there is a driving force in the
direction of the light beam. This is called radiation
pressure or
light pressure.




[image: -][image: -]
Fig. 34–13. The magnetic force on a charge which is driven by the
electric field is in the direction of the light beam.





Let us determine how strong the radiation pressure is. Evidently it
is F=q v B[image: -*-] or, since everything is oscillating, it is the time
average of this, [image: \avg{F}][image: \avg{F}]. From (34.2) the strength of
the magnetic field is the same as the strength of the electric field
divided by c[image: -*-], so we need to find the average of the electric field,
times the velocity, times the charge, times 1/c[image: -*-]: [image: \avg{F} = q\avg{vE}/c][image: \avg{F} = q\avg{vE}/c]. But the charge q[image: -*-] times the field E[image: -*-] is the electric
force on a charge, and the force on the charge times the velocity is
the work d W/d t[image: -*-] being done on the charge!  Therefore the force, the
“pushing momentum,” that is delivered per second by the light, is
equal to 1/c[image: -*-] times the energy absorbed from the light per
second! That is a general rule, since we did not say how strong the
oscillator was, or whether some of the charges cancel out. In
any circumstance where light is being absorbed, there is a
pressure. The momentum that the light delivers is always equal to the
energy that is absorbed, divided by c[image: -*-]:

[image: -*-][image: -*-]
(34.24)







That light carries energy we already know. We now understand that it
also carries momentum, and further, that the momentum carried
is always 1/c[image: -*-] times the energy.




When light is emitted from a source there is a recoil effect: the same
thing in reverse. If an atom is emitting an energy W[image: -*-] in some
direction, then there is a recoil momentum p=W/c[image: -*-]. If light is
reflected normally from a mirror, we get twice the force.




That is as far as we shall go using the classical theory of light. Of
course we know that there is a quantum theory, and that in many
respects light acts like a particle. The energy of a light-particle is
a constant times the frequency:

[image: -*-][image: -*-]
(34.25)




We now appreciate that light also carries a momentum equal to the
energy divided by c[image: -*-], so it is also true that these effective
particles, these photons, carry a momentum

[image: -*-][image: -*-]
(34.26)




The direction of the momentum is, of course, the direction of
propagation of the light. So, to put it in vector form,

[image: -*-][image: -*-]
(34.27)




We also know, of course, that the energy and momentum of a particle
should form a four-vector. We have just discovered that ω[image: -*-]
and k[image: -*-] form a four-vector. Therefore it is a good thing
that (34.27) has the same constant in both cases; it means
that the quantum theory and the theory of relativity are mutually
consistent.




Equation (34.27) can be written more elegantly as pμ=ℏ kμ[image: -*-], a relativistic equation, for a particle associated with
a wave. Although we have discussed this only for photons, for which
k[image: -*-] (the magnitude of k[image: -*-]) equals ω/c[image: -*-] and p=W/c[image: -*-], the
relation is much more general. In quantum mechanics all
particles, not only photons, exhibit wavelike properties, but the
frequency and wave number of the waves is related to the energy and
momentum of particles by (34.27) (called the de Broglie
relations) even when p[image: -*-] is not equal to W/c[image: -*-].




In the last chapter we saw that a beam of right or left circularly
polarized light also carries angular momentum in an amount
proportional to the energy E[image: -*-] of the wave. In the quantum
picture, a beam of circularly polarized light is regarded as a stream
of photons, each carrying an angular momentum ±ℏ[image: -*-], along the
direction of propagation. That is what becomes of polarization in the
corpuscular point of view—the photons carry angular momentum like
spinning rifle bullets. But this “bullet” picture is really as
incomplete as the “wave” picture, and we shall have to discuss these
ideas more fully in a later chapter on Quantum Behavior.







  
    

35 Color Vision



35–1 The human eye


The phenomenon of colors depends partly on the physical world. We
discuss the colors of soap films and so on as being produced by
interference. But also, of course, it depends on the eye, or what
happens behind the eye, in the brain. Physics characterizes the light
that enters the eye, but after that, our sensations are the result of
photochemical-neural processes and psychological responses.




There are many interesting phenomena associated with vision which
involve a mixture of physical phenomena and physiological processes,
and the full appreciation of natural phenomena, as we see them, must
go beyond physics in the usual sense. We make no apologies for making
these excursions into other fields, because the separation of fields,
as we have emphasized, is merely a human convenience, and an unnatural
thing. Nature is not interested in our separations, and many of the
interesting phenomena bridge the gaps between fields.




In Chapter 3 we have already discussed the relation of
physics to the other sciences in general terms, but now we are going
to look in some detail at a specific field in which physics and other
sciences are very, very closely interrelated. That area is
vision. In particular, we shall discuss color vision. In
the present chapter we shall discuss mainly the observable phenomena
of human vision, and in the next chapter we shall consider the
physiological aspects of vision, both in man and in other animals.




It all begins with the eye; so, in order to understand what phenomena
we see, some knowledge of the eye is required. In the next chapter we
shall discuss in some detail how the various parts of the eye work,
and how they are interconnected with the nervous system. For the
present, we shall describe only briefly how the eye functions
(Fig. 35–1).



[image: -][image: -]
Fig. 35–1. The eye.





Light enters the eye through the cornea; we have
already discussed how it is bent and is imaged on a layer called the
retina in the back of the eye, so that different
parts of the retina receive light from different parts of
the visual field outside. The retina is not absolutely
uniform: there is a place, a spot, in the center of our field of view
which we use when we are trying to see things very carefully, and at
which we have the greatest acuity of vision; it is called the
fovea or macula. The side parts of the eye,
as we can immediately appreciate from our experience in looking at
things, are not as effective for seeing detail as is the center of the
eye. There is also a spot in the retina where the nerves
carrying all the information run out; that is a blind spot. There is no
sensitive part of the retina here, and it is possible to
demonstrate that if we close, say, the left eye and look straight at
something, and then move a finger or another small object slowly out of
the field of view it suddenly disappears somewhere. The only practical
use of this fact that we know of is that some physiologist became quite
a favorite in the court of a king of France by pointing this out to him;
in the boring sessions that he had with his courtiers, the king could
amuse himself by “cutting off their heads” by looking at one and
watching another’s head disappear.




[image: -]
Fig. 35–2. The structure of the retina. (Light enters from below.)





Figure 35–2 shows a magnified view of the inside of the
retina in somewhat schematic form. In different parts of the
retina
there are different kinds of structures. The objects that occur more
densely near the periphery of the retina are called
rods. Closer to the fovea, we find, besides these
rod cells, also cone cells. We shall describe the structure of
these cells later. As we get close to the fovea, the
number of cones increases, and in the fovea itself there
are in fact nothing but cone cells, packed very tightly, so tightly
that the cone cells are much finer, or narrower here than anywhere
else. So we must appreciate that we see with the cones right in the
middle of the field of view, but as we go to the periphery we have the
other cells, the rods. Now the interesting thing is that in the retina
each of the cells which is sensitive to light is not connected by a
fiber directly to the optic nerve, but is connected
to many other cells, which are themselves connected to each other. There
are several kinds of cells: there are cells that carry the information
toward the optic nerve, but there are others that are
mainly interconnected “horizontally.” There are essentially four kinds
of cells, but we shall not go into these details now. The main thing we
emphasize is that the light signal is already being “thought about.”
That is to say, the information from the various cells does not
immediately go to the brain, spot for spot, but in the retina a certain
amount of the information has already been digested, by a combining of
the information from several visual receptors. It is important to
understand that some brain-function phenomena occur in the eye itself.








35–2 Color depends on intensity


One of the most striking phenomena of vision is the dark adaptation of
the eye. If we go into the dark from a brightly lighted room, we
cannot see very well for a while, but gradually things become more and
more apparent, and eventually we can see something where we could see
nothing before. If the intensity of the light is very low, the things
that we see have no color. It is known that this dark-adapted
vision is almost entirely due to the rods, while the vision in bright
light is due to the cones. As a result, there are a number of
phenomena that we can easily appreciate because of this transfer of
function from the cones and rods together, to just the rods.




There are many situations in which, if the light intensity were
stronger, we could see color, and we would find these things quite
beautiful. One example is that through a telescope we nearly always see
“black and white” images of faint nebulae, but W. C.
Miller of the Mt. Wilson and
Palomar Observatories had the patience to make color pictures of
some of these objects. Nobody has ever really seen these colors with the
eye, but they are not artificial colors, it is merely that the light
intensity is not strong enough for the cones in our eye to see them.
Among the more spectacular such objects are the ring nebula and the Crab
nebula. The former shows a beautiful blue inner part, with a bright red
outer halo, and the latter shows a general bluish haze permeated by
bright red-orange filaments.




In the bright light, apparently, the rods are at very low sensitivity
but, in the dark, as time goes on they pick up their ability to see
light. The variations in light intensity for which one can adapt is
over a million to one. Nature does not do all this with just one kind
of cell, but she passes her job from bright-light-seeing cells, the
color-seeing cells, the cones, to low-intensity, dark-adapted cells,
the rods. Among the interesting consequences of this shift is, first,
that there is no color, and second, that there is a difference in the
relative brightness of differently colored objects. It turns out that
the rods see better toward the blue than the cones do, and the cones
can see, for example, deep red light, while the rods find that
absolutely impossible to see. So red light is black so far as the rods
are concerned. Thus two pieces of colored paper, say blue and red, in
which the red might be even brighter than the blue in good light,
will, in the dark, appear completely reversed. It is a very striking
effect. If we are in the dark and can find a magazine or something
that has colors and, before we know for sure what the colors are, we
judge the lighter and darker areas, and if we then carry the magazine
into the light, we may see this very remarkable shift between which
was the brightest color and which was not. The phenomenon is called
the Purkinje effect.
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Fig. 35–3. The spectral sensitivity of the eye. Dashed curve, rods;
solid curve, cones.





In Fig. 35–3, the dashed curve represents the
sensitivity of the eye in the dark, i.e., using the rods, while the
solid curve represents it in the light. We see that the peak
sensitivity of the rods is in the green region and that of the cones
is more in the yellow region. If there is a red-colored page (red is
about 650[image: -*-] mμ[image: -*-]) we can see it if it is brightly lighted, but in
the dark it is almost invisible.




Another effect of the fact that rods take over in the dark, and that
there are no rods in the fovea, is that when we look
straight at something in the dark, our vision is not quite as acute as
when we look to one side. A faint star or nebula can sometimes be seen
better by looking a little to one side than directly at it, because we
do not have sensitive rods in the middle of the fovea.





Another interesting effect of the fact that the number of cones
decreases as we go farther to the side of the field of view is that
even in a bright light color disappears as the object goes far to one
side. The way to test that is to look in some particular fixed
direction, let a friend walk in from one side with colored cards, and
try to decide what color they are before they are right in front of
you. One finds that he can see that the cards are there long before he
can determine the color. When doing this, it is advisable to come in
from the side opposite the blind spot, because it is otherwise rather
confusing to almost see the color, then not see anything, then to see
the color again.




Another interesting phenomenon is that the periphery of the retina is
very sensitive to motion. Although we cannot see very well from the
corner of our eye, if a little bug moves and we do not expect anything
to be moving over there, we are immediately sensitive to it. We are
all “wired up” to look for something jiggling to the side of the
field.







35–3 Measuring the color sensation


Now we go to the cone vision, to the brighter vision, and we come to
the question which is most characteristic of cone vision, and that is
color. As we know, white light can be split by a prism into a whole
spectrum of wavelengths which appear to us to have different colors;
that is what colors are, of course: appearances. Any source of light
can be analyzed by a grating or a prism, and one can determine the
spectral distribution, i.e., the “amount” of each wavelength. A
certain light may have a lot of blue, considerable red, very little
yellow, and so on. That is all very precise in the sense of physics,
but the question is, what color will it appear to be? It is
evident that the different colors depend somehow upon the spectral
distribution of the light, but the problem is to find what
characteristics of the spectral distribution produce the various
sensations. For example, what do we have to do to get a green color?
We all know that we can simply take a piece of the spectrum which is
green. But is that the only way to get green, or orange, or any
other color?




Is there more than one spectral distribution which produces the same
apparent visual effect? The answer is, definitely yes. There is
a very limited number of visual effects, in fact just a
three-dimensional manifold of them, as we shall shortly see, but there
is an infinite number of different curves that we can draw for the
light that comes from different sources. Now the question we have to
discuss is, under what conditions do different distributions of light
appear as exactly the same color to the eye?




The most powerful psycho-physical technique in color judgment is to
use the eye as a null instrument. That is, we do not try to
define what constitutes a green sensation, or to measure in what
circumstances we get a green sensation, because it turns out that this
is extremely complicated. Instead, we study the conditions under which
two stimuli are indistinguishable. Then we do not have to
decide whether two people see the same sensation in different
circumstances, but only whether, if for one person two sensations are
the same, they are also the same for another. We do not have to decide
whether, when one sees something green, what it feels like inside is
the same as what it feels like inside someone else when he sees
something green; we do not know anything about that.





To illustrate the possibilities, we may use a series of four projector
lamps which have filters on them, and whose brightnesses are
continuously adjustable over a wide range: one has a red filter and
makes a spot of red light on the screen, the next one has a green
filter and makes a green spot, the third one has a blue filter, and
the fourth one is a white circle with a black spot in the middle of
it. Now if we turn on some red light, and next to it put some green,
we see that in the area of overlap it produces a sensation which is
not what we call reddish green, but a new color, yellow in this
particular case. By changing the proportions of the red and the green,
we can go through various shades of orange and so forth. If we have
set it for a certain yellow, we can also obtain that same yellow, not
by mixing these two colors but by mixing some other ones, perhaps a
yellow filter with white light, or something like that, to get the
same sensation. In other words, it is possible to make various colors
in more than one way by mixing the lights from various filters.




What we have just discovered may be expressed analytically as
follows. A particular yellow, for example, can be represented by a
certain symbol Y[image: -*-], which is the “sum” of certain amounts of
red-filtered light (R[image: -*-]) and green-filtered light (G[image: -*-]). By using two
numbers, say r[image: -*-] and g[image: -*-], to describe how bright the R[image: -*-] and G[image: -*-] are,
we can write a formula for this yellow:

[image: -*-][image: -*-]
(35.1)




The question is, can we make all the different colors by adding
together two or three lights of different, fixed colors? Let us see
what can be done in that connection. We certainly cannot get all the
different colors by mixing only red and green, because, for instance,
blue never appears in such a mixture. However, by putting in some blue
the central region, where all three spots overlap, may be made to
appear to be a fairly nice white. By mixing the various colors and
looking at this central region, we find that we can get a considerable
range of colors in that region by changing the proportions, and so it
is not impossible that all the colors can be made by mixing
these three colored lights. We shall discuss to what extent this is
true; it is in fact essentially correct, and we shall shortly see how
to define the proposition better.




In order to illustrate our point, we move the spots on the screen so
that they all fall on top of each other, and then we try to match a
particular color which appears in the annular ring made by the fourth
lamp. What we once thought was “white” coming from the fourth lamp
now appears yellowish. We may try to match that by adjusting the red
and green and blue as best we can by a kind of trial and error, and we
find that we can approach rather closely this particular shade of
“cream” color. So it is not hard to believe that we can make all
colors. We shall try to make yellow in a moment, but before we do
that, there is one color that might be very hard to make. People who
give lectures on color make all the “bright” colors, but they never
make brown, and it is hard to recall ever having seen brown
light. As a matter of fact, this color is never used for any stage
effect, one never sees a spotlight with brown light; so we think it
might be impossible to make brown. In order to find out whether it is
possible to make brown, we point out that brown light is merely
something that we are not used to seeing without its background. As a
matter of fact, we can make it by mixing some red and yellow. To prove
that we are looking at brown light, we merely increase the brightness
of the annular background against which we see the very same light,
and we see that that is, in fact, what we call brown! Brown is always
a dark color next to a lighter background. We can easily change the
character of the brown. For example, if we take some green out we get
a reddish brown, apparently a chocolaty reddish brown, and if we put
more green into it, in proportion, we get that horrible color which
all the uniforms of the Army are made of, but the light from that
color is not so horrible by itself; it is of yellowish green, but seen
against a light background.




Now we put a yellow filter in front of the fourth light and try to
match that. (The intensity must of course be within the range of the
various lamps; we cannot match something which is too bright, because
we do not have enough power in the lamp.) But we can match the
yellow; we use a green and red mixture, and put in a touch of blue to
make it even more perfect. Perhaps we are ready to believe that, under
good conditions, we can make a perfect match of any given color.




Now let us discuss the laws of color mixture. In the first place, we
found that different spectral distributions can produce the same
color; next, we saw that “any” color can be made by adding together
three special colors, red, blue, and green. The most interesting
feature of color mixing is this: if we have a certain light, which we
may call X[image: -*-], and if it appears indistinguishable from Y[image: -*-], to the eye
(it may be a different spectral distribution, but it appears
indistinguishable), we call these colors “equal,” in the sense that
the eye sees them as equal, and we write

[image: -*-][image: -*-]
(35.2)




Here is one of the great laws of color: if two spectral distributions
are indistinguishable, and we add to each one a certain light,
say Z[image: -*-] (if we write X+Z[image: -*-], this means that we shine both lights on
the same patch), and then we take Y[image: -*-] and add the same amount of the
same other light, Z[image: -*-], the new mixtures are also
indistinguishable:

[image: -*-][image: -*-]
(35.3)




We have just matched our yellow; if we now shine pink light on the
whole thing, it will still match. So adding any other light to the
matched lights leaves a match. In other words, we can summarize all
these color phenomena by saying that once we have a match between two
colored lights, seen next to each other in the same circumstances,
then this match will remain, and one light can be substituted for the
other light in any other color mixing situation. In fact, it turns
out, and it is very important and interesting, that this matching of
the color of lights is not dependent upon the characteristics of the
eye at the moment of observation: we know that if we look for a long
time at a bright red surface, or a bright red light, and then look at
a white paper, it looks greenish, and other colors are also distorted
by our having looked so long at the bright red. If we now have a match
between, say, two yellows, and we look at them and make them match,
then we look at a bright red surface for a long time, and then turn
back to the yellow, it may not look yellow any more; I do not know
what color it will look, but it will not look yellow. Nevertheless
the yellows will still look matched, and so, as the eye adapts
to various levels of intensity, the color match still works, with the
obvious exception of when we go into the region where the intensity of
the light gets so low that we have shifted from
cones to
rods; then the color
match is no longer a color match, because we are using a different
system.





The second principle of color mixing of lights is this: any
color at all can be made from three different colors, in our case,
red, green, and blue lights. By suitably mixing the three together we
can make anything at all, as we demonstrated with our two
examples. Further, these laws are very interesting mathematically. For
those who are interested in the mathematics of the thing, it turns out
as follows. Suppose that we take our three colors, which were red,
green, and blue, but label them A[image: -*-], B[image: -*-], and C[image: -*-], and call them our
primary colors. Then any color could be made by certain amounts
of these three: say an amount a[image: -*-] of color A[image: -*-], an amount b[image: -*-] of
color B[image: -*-], and an amount c[image: -*-] of color C[image: -*-] makes X[image: -*-]:

[image: -*-][image: -*-]
(35.4)




Now suppose another color Y[image: -*-] is made from the same three colors:

[image: -*-][image: -*-]
(35.5)




Then it turns out that the mixture of the two lights (it is one of the
consequences of the laws that we have already mentioned) is obtained
by taking the sum of the components of X[image: -*-] and Y[image: -*-]:



[image: -*-][image: -*-]
(35.6)





It is just like the mathematics of the addition of vectors, where
(a,b,c)[image: -*-] are the components of one vector, and (a′,b′,c′)[image: -*-] are those
of another vector, and the new light Z[image: -*-] is then the “sum” of the
vectors. This subject has always appealed to physicists and
mathematicians. In fact, Schrödinger wrote a wonderful
paper on color vision in which he developed this theory of vector
analysis as applied to the mixing of colors.1





Now a question is, what are the correct primary colors to use? There
is no such thing as “the” correct primary colors for the mixing of
lights. There may be, for practical purposes, three paints that are
more useful than others for getting a greater variety of mixed
pigments, but we are not discussing that matter now. Any three
differently colored lights whatsoever2 can always
be mixed in the correct proportion to produce any color
whatsoever. Can we demonstrate this fantastic fact? Instead of using
red, green, and blue, let us use red, blue, and yellow in our
projector. Can we use red, blue, and yellow to make, say, green?




By mixing these three colors in various proportions, we get quite an
array of different colors, ranging over quite a spectrum. But as a
matter of fact, after a lot of trial and error, we find that nothing
ever looks like green. The question is, can we make green? The
answer is yes. How? By projecting some red onto the green, then
we can make a match with a certain mixture of yellow and blue! So we
have matched them, except that we had to cheat by putting the red on
the other side. But since we have some mathematical sophistication, we
can appreciate that what we really showed was not that X[image: -*-] could
always be made, say, of red, blue, and yellow, but by putting the red
on the other side we found that red plus X[image: -*-] could be made out of blue
and yellow. Putting it on the other side of the equation, we can
interpret that as a negative amount, so if we will allow that
the coefficients in equations like (35.4) can be both
positive and negative, and if we interpret negative amounts to mean
that we have to add those to the other side, then any
color can be matched by any three, and there is no such thing as
“the” fundamental primaries.




We may ask whether there are three colors that come only with positive
amounts for all mixings. The answer is no. Every set of three
primaries requires negative amounts for some colors, and therefore
there is no unique way to define a primary. In elementary books they
are said to be red, green, and blue, but that is merely because with
these a wider range of colors is available without minus signs
for some of the combinations.







35–4 The chromaticity diagram

[image: -][image: -]
Fig. 35–4. The standard chromaticity diagram.





Now let us discuss the combination of colors on a mathematical level
as a geometrical proposition. If any one color is represented by
Eq. (35.4), we can plot it as a vector in space by plotting
along three axes the amounts a[image: -*-], b[image: -*-], and c[image: -*-], and then a certain color
is a point. If another color is a′[image: -*-], b′[image: -*-], c′[image: -*-], that color is located
somewhere else. The sum of the two, as we know, is the color which comes
from adding these as vectors. We can simplify this diagram and represent
everything on a plane by the following observation: if we had a certain
color light, and merely doubled a[image: -*-] and b[image: -*-] and c[image: -*-], that is, if we make
them all stronger in the same ratio, it is the same color, but brighter.
So if we agree to reduce everything to the same light intensity,
then we can project everything onto a plane, and this has been done in
Fig. 35–4. It follows that any color obtained by mixing a
given two in some proportion will lie somewhere on a line drawn between
the two points. For instance, a fifty-fifty mixture would appear halfway
between them, and 1/4[image: -*-] of one and 3/4[image: -*-] of the other would appear
1/4[image: -*-] of the way from one point to the other, and so on.  If we use a blue and
a green and a red, as primaries, we see that all the colors that we can
make with positive coefficients are inside the dotted triangle, which
contains almost all of the colors that we can ever see, because all the
colors that we can ever see are enclosed in the oddly shaped area
bounded by the curve. Where did this area come from? Once somebody made
a very careful match of all the colors that we can see against three
special ones. But we do not have to check all colors that we can
see, we only have to check the pure spectral colors, the lines of the
spectrum. Any light can be considered as a sum of various positive
amounts of various pure spectral colors—pure from the physical
standpoint. A given light will have a certain amount of red, yellow,
blue, and so on—spectral colors. So if we know how much of each of our
three chosen primaries is needed to make each of these pure components,
we can calculate how much of each is needed to make our given color.
So, if we find out what the color coefficients of all the
spectral colors are for any given three primary colors, then we can work
out the whole color mixing table.



[image: -][image: -]
Fig. 35–5. The color coefficients of pure spectral colors in terms of a
certain set of standard primary colors.





An example of such experimental results for mixing three lights
together is given in Fig. 35–5. This figure shows the
amount of each of three different particular primaries, red, green and
blue, which is required to make each of the spectral colors. Red is at
the left end of the spectrum, yellow is next, and so on, all the way
to blue. Notice that at some points minus signs are necessary. It is
from such data that it is possible to locate the position of all of
the colors on a chart, where the x[image: -*-]- and the y[image: -*-]-coordinates are
related to the amounts of the different primaries that are used. That
is the way that the curved boundary line has been found. It is the
locus of the pure spectral colors. Now any other color can be made by
adding spectral lines, of course, and so we find that anything that
can be produced by connecting one part of this curve to another is a
color that is available in nature.  The straight line connects the
extreme violet end of the spectrum with the extreme red end. It is the
locus of the purples. Inside the boundary are colors that can be made
with lights, and outside it are colors that cannot be made with
lights, and nobody has ever seen them (except, possibly, in
after-images!).







35–5 The mechanism of color vision


Now the next aspect of the matter is the question, why do colors
behave in this way? The simplest theory, proposed by
Young and
Helmholtz, supposes that in
the eye there are three different pigments which receive the light and
that these have different absorption spectra, so that one pigment
absorbs strongly, say, in the red, another absorbs strongly in the blue,
another absorbs in the green. Then when we shine a light on them we will
get different amounts of absorptions in the three regions, and these
three pieces of information are somehow maneuvered in the brain or in
the eye, or somewhere, to decide what the color is. It is easy to
demonstrate that all of the rules of color mixing would be a consequence
of this proposition. There has been considerable debate about the thing
because the next problem, of course, is to find the absorption
characteristics of each of the three pigments. It turns out,
unfortunately, that because we can transform the color coordinates in
any manner we want to, we can only find all kinds of linear combinations
of absorption curves by the color-mixing experiments, but not the curves
for the individual pigments. People have tried in various ways to obtain
a specific curve which does describe some particular physical property
of the eye. One such curve is called a brightness curve,
demonstrated in Fig. 35–3. In this figure are two curves,
one for eyes in the dark, the other for eyes in the light; the latter is
the cone brightness curve. This is measured by finding what is the
smallest amount of colored light we need in order to be able to just see
it. This measures how sensitive the eye is in different spectral
regions. There is another very interesting way to measure this. If we
take two colors and make them appear in an area, by flickering back and
forth from one to the other, we see a flicker if the frequency is too
low. However, as the frequency increases, the flicker will ultimately
disappear at a certain frequency that depends on the brightness of the
light, let us say at 16[image: -*-] repetitions per second. Now if we adjust the
brightness or the intensity of one color against the other, there comes
an intensity where the flicker at 16 cycles disappears. To get flicker
with the brightness so adjusted, we have to go to a much lower frequency
in order to see a flicker of the color. So, we get what we call a
flicker of the brightness at a higher frequency and, at a lower
frequency, a flicker of the color. It is possible to match two colors
for “equal brightness” by this flicker technique. The results are
almost, but not exactly, the same as those obtained by measuring the
threshold sensitivity of the eye for seeing weak light by the
cones. Most workers use the
flicker system as a definition of the brightness curve.





Now, if there are three color-sensitive pigments in the eye, the
problem is to determine the shape of the absorption spectrum of each
one. How? We know there are people who are color blind—eight percent
of the male population, and one-half of one percent of the female
population. Most of the people who are color blind or abnormal in
color vision have a different degree of sensitivity than others to a
variation of color, but they still need three colors to
match. However, there are some who are called dichromats, for
whom any color can be matched using only two primary
colors. The obvious suggestion, then, is to say that they are missing
one of the three pigments. If we can find three kinds of color-blind
dichromats who have different color-mixing rules, one kind should be
missing the red, another the green, and another the
blue pigmentation. By measuring all these types we can
determine the three curves! It turns out that there are three
types of dichromatic color blindness; there are two common types and a
third very rare type, and from these three it has been possible to
deduce the pigment absorption spectra.
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Fig. 35–6. Loci of colors confused by deuteranopes.





Figure 35–6 shows the color mixing of a particular type of
color-blind person called a deuteranope. For him, the loci of constant
colors are not points, but certain lines, along each of which the color
appears to him to be the same. If the theory that he is missing one of
the three pieces of information is right, all these lines should
intersect at a point. If we carefully measure on this graph, they
do intersect perfectly. Obviously, therefore, this has been made
by a mathematician and does not represent real data! As a matter of
fact, if we look at the latest paper with real data, it turns out that
in the graph of Fig. 35–6, the point of focus of all the
lines is not exactly at the right place. Using the lines in the above
figure, we cannot find reasonable spectra; we need negative and positive
absorptions in different regions. But using the new data of
Yustova, it turns out that
each of the absorption curves is everywhere positive.
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Fig. 35–7. Loci of colors confused by protanopes.





Figure 35–7 shows a different kind of color blindness, that
of the protanope, which has a focus near the red end of the boundary
curve. Yustova gets
approximately the same position in this case. Using the three different
kinds of color blindness, the three pigment response curves have finally
been determined, and are shown in Fig. 35–8. Finally?
Perhaps. There is a question as to whether the three-pigment idea
is right, whether color blindness results from lack of one pigment, and
even whether the color-mix data on color blindness are right. Different
workers get different results. This field is still very much under
development.
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Fig. 35–8. The spectral sensitivity curves of a normal trichromat’s
receptors.








35–6 Physiochemistry of color vision


Now, what about checking these curves against actual pigments in the
eye? The pigments that can be obtained from a retina consist mainly of
a pigment called visual purple. The most remarkable
features of
this are, first, that it is in the eye of almost every vertebrate
animal, and second, that its response curve fits beautifully with the
sensitivity of the eye, as seen in Fig. 35–9, in which
are plotted on the same scale the absorption of visual purple and the
sensitivity of the dark-adapted eye. This pigment is evidently the
pigment that we see with in the dark: visual purple is the
pigment for
the rods, and it has nothing
to do with color vision. This fact was
discovered in 1877. Even today it can be said that the color pigments
of the cones have never been obtained in a test tube. In 1958 it could
be said that the color pigments had never been seen at all. But since
that time, two of them have been detected by
Rushton by a very simple and beautiful technique.
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Fig. 35–9. The sensitivity curve of the dark-adapted eye, compared with
the absorption curve of visual purple.





The trouble is, presumably, that since the eye is so weakly sensitive
to bright light compared with light of low intensity, it needs a lot
of visual purple to see with, but not much of the color
pigments for seeing colors. Rushton’s idea
is to leave the pigment in the eye, and measure it anyway. What
he does is this. There is an instrument called an ophthalmoscope for
sending light into the eye through the lens and then focusing the light
that comes back out. With it one can measure how much is reflected. So
one measures the reflection coefficient of light which has gone
twice through the pigment (reflected by a back layer in the
eyeball, and coming out through the pigment of the cone again). Nature
is not always so beautifully designed. The cones are interestingly
designed so that the light that comes into the cone bounces around and
works its way down into the little sensitive points at the apex. The
light goes right down into the sensitive point, bounces at the bottom
and comes back out again, having traversed a considerable amount of the
color-vision pigment; also, by looking at the fovea, where
there are no rods, one is not confused by visual purple. But the color
of the retina has been seen a long time ago: it is a sort of orangey
pink; then there are all the blood vessels, and the color of the
material at the back, and so on. How do we know when we are looking at
the pigment? Answer: First we take a color-blind person, who has
fewer pigments and for whom it is therefore easier to make the analysis.
Second, the various pigments, like visual purple, have an intensity
change when they are bleached by light; when we shine light on them they
change their concentration. So, while looking at the absorption spectrum
of the eye, Rushton put
another beam in the whole eye, which changes the concentration of
the pigment, and he measured the change in the spectrum, and the
difference, of course, has nothing to do with the amount of blood or the
color of the reflecting layers, and so on, but only the pigment, and in
this manner Rushton obtained
a curve for the pigment of the protanope eye, which is given in
Fig. 35–10.
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Fig. 35–10. Absorption spectrum of the color pigment of a protanope
colorblind eye (squares) and a normal eye (dots).





The second curve in Fig. 35–10 is a curve obtained with a
normal eye. This was obtained by taking a normal eye and, having already
determined what one pigment was, bleaching the other one in the red
where the first one is insensitive. Red light has no effect on the
protanope eye, but does in the normal eye, and thus one can obtain the
curve for the missing pigment. The shape of one curve fits beautifully
with Yustova’s green curve,
but the red curve is a little bit displaced. So perhaps we are getting
on the right track. Or perhaps not—the latest work with deuteranopes
does not show any definite pigment missing.




Color is not a question of the physics of the light itself. Color is a
sensation, and the sensation for different colors is different
in different circumstances. For instance, if we have a pink light,
made by superimposing crossing beams of white light and red light (all
we can make with white and red is pink, obviously), we may show that
white light may appear blue. If we place an object in the beams, it
casts two shadows—one illuminated by the white light alone and the
other by the red. For most people the “white” shadow of an object
looks blue, but if we keep expanding this shadow until it covers the
entire screen, we see that it suddenly appears white, not blue! We can
get other effects of the same nature by mixing red, yellow, and white
light. Red, yellow, and white light can produce only orangey yellows,
and so on. So if we mix such lights roughly equally, we get only
orange light. Nevertheless, by casting different kinds of shadows in
the light, with various overlaps of colors, one gets quite a series of
beautiful colors which are not in the light themselves (that is only
orange), but in our sensations. We clearly see many
different colors that are quite unlike the “physical” ones in the
beam. It is very important to appreciate that a retina is already
“thinking” about the light; it is comparing what it sees in one
region with what it sees in another, although not consciously. What we
know of how it does that is the subject of the next chapter.
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36 Mechanisms of Seeing



36–1 The sensation of color


In discussing the sense of sight, we have to realize that (outside
of
a gallery of modern art!) one does not see random spots of color or
spots of light. When we look at an object we see a man or a
thing; in other words, the brain interprets what we see. How it
does that, no one knows, and it does it, of course, at a very high
level. Although we evidently do learn to recognize what a man looks
like after much experience, there are a number of features of vision
which are more elementary but which also involve combining information
from different parts of what we see. To help us understand how we make
an interpretation of an entire image, it is worth while to study the
earliest stages of the putting together of information from the
different retinal cells. In the present chapter we shall concentrate
mainly on that aspect of vision, although we shall also mention a
number of side issues as we go along.




An example of the fact that we have an accumulation, at a very
elementary level, of information from several parts of the eye at the
same time, beyond our voluntary control or ability to learn, was that
blue shadow which was produced by white light when both white and red
were shining on the same screen. This effect at least involves the
knowledge that the background of the screen is pink, even though, when
we are looking at the blue shadow, it is only “white” light coming
into a particular spot in the eye; somewhere, pieces of information
have been put together. The more complete and familiar the context is,
the more the eye will make corrections for peculiarities. In fact,
Land has shown that if we mix that apparent blue and the red in
various proportions, by using two photographic transparencies with
absorption in front of the red and the white in different proportions,
it can be made to represent a real scene, with real objects, rather
faithfully. In this case we get a lot of intermediate apparent colors
too, analogous to what we would get by mixing red and blue-green; it
seems to be an almost complete set of colors, but if we look very hard
at them, they are not so very good. Even so, it is surprising how much
can be obtained from just red and white. The more the scene looks like
a real situation, the more one is able to compensate for the fact that
all the light is actually nothing but pink!




[image: -][image: -]
Fig. 36–1. When a disc like the above is spun, colors appear in only one
of the two darker “rings.” If the spin direction is reversed, the
colors appear in the other ring.





Another example is the appearance of “colors” in a black-and-white
rotating disc, whose black and white areas are as shown in
Fig. 36–1. When the disc is rotated, the variations of light
and dark at any one radius are exactly the same; it is only the
background that is different for the two kinds of “stripes.” Yet one
of the “rings” appears colored with one color and the other with
another.1  No one yet understands the reason for
those colors, but it is clear that information is being put together at
a very elementary level, in the eye itself, most likely.




Almost all present-day theories of color vision agree that the
color-mixing data indicate that there are only three pigments in the
cones of the eye, and that it
is the spectral absorption in those three pigments that fundamentally
produces the color sense. But the total sensation that is associated
with the absorption characteristics of the three pigments acting
together is not necessarily the sum of the individual sensations. We all
agree that yellow simply does not seem to be reddish green; in
fact it might be a tremendous surprise to most people to discover that
light is, in fact, a mixture of colors, because presumably the sensation
of light is due to some other process than a simple mixture like a chord
in music, where the three notes are there at the same time and if we
listen hard we can hear them individually. We cannot look hard and see
the red and the green.




The earliest theories of vision said that there are three pigments and
three kinds of cones,
each kind containing one pigment; that a nerve
runs from each cone to the brain, so that the three pieces of
information are carried to the brain; and then in the brain, anything
can happen. This, of course, is an incomplete idea: it does no good to
discover that the information is carried along the optic nerve to the
brain, because we have not even started to solve the problem. We must
ask more basic questions: Does it make any difference where the
information is put together? Is it important that it be carried right
up into the brain in the optic nerve, or could the retina do some
analysis first? We have seen a picture of the retina as an extremely
complicated thing with lots of interconnections (Fig. 35–2)
and it might make some analyses.





As a matter of fact, people who study anatomy and the development of
the eye have shown that the retina is, in fact, the brain: in the
development of the embryo, a piece of the brain comes out in front,
and long fibers grow back, connecting the eyes to the brain. The
retina is organized in just the way the brain is organized and, as
someone has beautifully put it, “The brain has developed a way to
look out upon the world.” The eye is a piece of brain that is
touching light, so to speak, on the outside. So it is not at all
unlikely that some analysis of the color has already been made in the
retina.




This gives us a very interesting opportunity. None of the other senses
involves such a large amount of calculation, so to speak, before the
signal gets into a nerve that one can make measurements on. The
calculations for all the rest of the senses usually happen in the
brain itself, where it is very difficult to get at specific places to
make measurements, because there are so many interconnections. Here,
with the visual sense, we have the light, three layers of cells making
calculations, and the results of the calculations being transmitted
through the optic nerve. So we have the first chance to observe
physiologically how, perhaps, the first layers of the brain work in
their first steps. It is thus of double interest, not simply
interesting for vision, but interesting to the whole problem of
physiology.




The fact that there are three pigments does not mean that there must
be three kinds of sensations. One of the other theories of color
vision has it that there are really opposing color schemes
(Fig. 36–2). That is, one of the nerve fibers carries a lot
of impulses if there is yellow being seen, and less than usual for blue.
Another nerve fiber carries green and red information in the same way,
and another, white and black. In other words, in this theory someone has
already started to make a guess as to the system of wiring, the method
of calculation.
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Fig. 36–2. Neural connections according to an “opponent” theory of
color vision.





The problems we are trying to solve by guessing at these first
calculations are questions about the apparent colors that are seen on
a pink background, what happens when the eye is adapted to different
colors, and also the so-called psychological phenomena. The
psychological phenomena are of the nature, for instance, that white
does not “feel” like red and yellow and blue, and this theory was
advanced because the psychologists say that there are four
apparent pure colors: “There are four stimuli which have a remarkable
capacity to evoke psychologically simple blue, yellow, green, and red
hues respectively. Unlike sienna, magenta, purple, or most of the
discriminable colors, these simple hues are unmixed in the sense that
none partakes of the nature of the other; specifically, blue is not
yellowish, reddish, or greenish, and so on; these are psychologically
primary hues.” That is a psychological fact, so-called. To find out
from what evidence this psychological fact was deduced, we must search
very hard indeed through all the literature: In the modern literature
all we find on the subject are repeats of the same statement, or of
one by a German psychologist, who uses as one of his authorities
Leonardo da Vinci, who, of
course, we all know was a great artist. He says, “Leonardo thought
there were five colors.” Then, looking still further, we find, in a
still older book, the evidence for the subject. The book says something
like this: “Purple is reddish-blue, orange is reddish-yellow, but can
red be seen as purplish-orange? Are not red and yellow more unitary than
purple or orange? The average person, asked to state which colors are
unitary, names red, yellow, and blue, these three, and some observers
add a fourth, green. Psychologists are accustomed to accept the four as
salient hues.” So that is the situation in the psychological analysis
of this matter: if everybody says there are three, and somebody says
there are four, and they want it to be four, it will be four. That shows
the difficulty with psychological researches. It is clear that we have
such feelings, but it is very difficult to obtain much information about
them.




So the other direction to go is the physiological direction, to find
out experimentally what actually happens in the brain, the eye, the
retina, or wherever, and perhaps to discover that some combinations of
impulses from various cells move along certain nerve
fibers. Incidentally, primary pigments do not have to be in separate
cells; one could have cells in which are mixtures of the various
pigments, cells with the red and the green pigments, cells with all
three (the information of all three is then white information), and so
on. There are many ways of hooking the system up, and we have to find
out which way nature has used. It would be hoped, ultimately, that
when we understand the physiological connections we will have a little
bit of understanding of some of those aspects of the psychology, so we
look in that direction.







36–2 The physiology of the eye


We begin by talking not only about color vision, but about vision in
general, just to remind ourselves about the interconnections in the
retina, shown in Fig. 35–2. The retina is really like
the surface of the brain. Although the actual picture through a
microscope is a little more complicated looking than this somewhat
schematized drawing, by careful analysis one can see all these
interconnections. There is no question that one part of the surface of
the retina is connected to other parts, and that the information that
comes out on the long axons, which produce the optic nerve, are
combinations of information from many cells. There are three layers of
cells in the succession of function: there are retinal cells, which
are the ones that the light affects, an intermediate cell which takes
information from a single or a few retinal cells and gives it out
again to several cells in a third layer of cells and carries it to the
brain. There are all kinds of cross connections between cells in the
layers.




We now turn to some aspects of the structure and performance of the
eye (see Fig. 35–1). The focusing of the light is
accomplished mainly by the cornea, by the fact that it has a curved
surface which “bends” the light. This is why we cannot see clearly
under water, because we then do not have enough difference between the
index of the cornea, which is 1.37[image: -*-], and that of the water, which
is 1.33[image: -*-]. Behind the cornea is water, practically, with an index
of 1.33[image: -*-], and behind that is a lens which has a very interesting
structure: it is a series of layers, like an onion, except that it is
all transparent, and it has an index of 1.40[image: -*-] in the middle and
1.38[image: -*-] at the outside. (It would be nice if we could make optical
glass in which we could adjust the index throughout, for then we would
not have to curve it as much as we do when we have a uniform index.)
Furthermore, the shape of the cornea is not that of a sphere. A
spherical lens has a certain amount of spherical
aberration. The cornea is “flatter” at the outside than is a sphere, in
just such a manner that the spherical aberration is less for the cornea
than it would be if we put a spherical lens in there!  The light is
focused by the cornea-lens system onto the retina. As we look at things
that are closer and farther away, the lens tightens and loosens and
changes the focus to adjust for the different distances. To adjust for
the total amount of light there is the iris, which is what we call the
color of the eye, brown or blue, depending on who it is; as the amount
of light increases and decreases, the iris moves in and out.
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Fig. 36–3. The neural interconnections for the mechanical operation of
the eyes.





Let us now look at the neural machinery for controlling the
accommodation of the lens, the motion of the eye, the muscles which
turn the eye in the socket, and the iris, shown schematically in
Fig. 36–3. Of all the information that comes out of the
optic nerve A[image: -*-], the great majority is divided into one of two bundles
(which we will talk about later) and thence to the brain. But there
are a few fibers, of interest to us now, which do not run directly to
the visual cortex of the brain where we “see” the
images, but instead go into the mid-brain H[image: -*-]. These are the fibers
which measure the average light and make adjustment for the iris; or, if
the image looks foggy, they try to correct the lens; or, if there is a
double image, they try to adjust the eye for binocular
vision. At any
rate, they go through the mid-brain and feed back into the eye. At K[image: -*-]
are the muscles which run the accommodation of the lens, and at L[image: -*-]
another one that runs into the iris. The iris has two muscle systems.
One is a circular muscle L[image: -*-] which, when it is excited, pulls in and
closes down the iris; it acts very rapidly and the nerves are directly
connected from the brain through short axons into the iris. The opposite
muscles are radial muscles, so that, when the things get dark and the
circular muscle relaxes, these radial muscles pull out. Here we have, as
in many places in the body, a pair of muscles which work in opposite
directions, and in almost every such case the nerve systems which
control the two are very delicately adjusted, so that when signals are
sent in to tighten one, signals are automatically sent in to loosen the
other. The iris is a peculiar exception: the nerves which make the iris
contract are the ones we have already described, but the nerves which
make the iris expand come out from no one knows exactly where, go
down into the spinal cord back of the chest, into the thoracic sections,
out of the spinal cord, up through the neck ganglia, and all the way
around and back up into the head in order to run the other end of the
iris. In fact, the signal goes through a completely different nervous
system, not the central nervous system at all, but the sympathetic
nervous system, so it is a very strange way of making things go.




We have already emphasized another strange thing about the eye, that
the light-sensitive cells are on the wrong side, so that the light has
to go through several layers of other cells before it gets to the
receptors—it is built inside out! So some of the features are
wonderful and some are apparently stupid.
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Fig. 36–4. The neural connections from the eyes to the visual cortex.





Figure 36–4 shows the connections of the eye to the part of
the brain which is most directly concerned with the visual process. The
optic nerve fibers run into a certain area just beyond D[image: -*-], called the
lateral geniculate, whereupon they run out to a section of the brain
called the visual cortex. Notice that some of the
fibers from each eye are sent over to the other side of the brain, so
the picture formed is incomplete. The optic nerves from the left side of
the right eye run across the optic chiasma B[image: -*-], while the ones on the
left side of the left eye come around and go this same way. So the left
side of the brain receives all the information which comes from the left
side of the eyeball of each eye, i.e., on the right side of the visual
field, while the right side of the brain sees the left side of the
visual field. This is the manner in which the information from each of
the two eyes is put together in order to tell how far away things are.
This is the system of binocular vision.





The connections between the retina and the visual cortex are interesting. If a spot in the retina is excised or destroyed
in any way, then the whole fiber will die, and we can thereby find out
where it is connected. It turns out that, essentially, the connections
are one to one—for each spot in the retina there is one spot in the
visual cortex—and spots that are very close
together in the retina are very close together in the visual
cortex. So the visual cortex
still represents the spatial arrangement of the rods and cones, but of course much distorted. Things
which are in the center of the field, which occupy a very small part of
the retina, are expanded over many, many cells in the visual
cortex. It is clear that it is useful to have
things which are originally close together, still close together. The
most remarkable aspect of the matter, however, is the following. The
place where one would think it would be most important to have things
close together would be right in the middle of the visual field. Believe
it or not, the up-and-down line in our visual field as we look at
something is of such a nature that the information from all the points
on the right side of that line is going into the left side of the brain,
and information from the points on the left side is going into the right
side of the brain, and the way this area is made, there is a cut right
down through the middle, so that the things that are very close together
right in the middle are very far apart in the brain! Somehow, the
information has to go from one side of the brain to the other through
some other channels, which is quite surprising.





The question of how this network ever gets “wired” together is very
interesting. The problem of how much is already wired and how much is
learned is an old one. It used to be thought long ago that perhaps it
does not have to be wired carefully at all, it is only just roughly
interconnected, and then, by experience, the young child learns that
when a thing is “up there” it produces some sensation in the
brain. (Doctors always tell us what the young child “feels,” but how
do they know what a child feels at the age of one?) The child,
at the age of one, supposedly sees that an object is “up there,”
gets a certain sensation, and learns to reach “there,” because when
he reaches “here,” it does not work. That approach probably is not
correct, because we already see that in many cases there are these
special detailed interconnections. More illuminating are some most
remarkable experiments done with a salamander. (Incidentally, with the
salamander there is a direct crossover connection, without the optic
chiasma, because the eyes are on each side of the head and have no
common area. Salamanders do not have binocular
vision.) The experiment
is this. We can cut the optic nerve in a salamander and the nerve will
grow out from the eyes again. Thousands and thousands of cell fibers
will thus re-establish themselves. Now, in the optic nerve the fibers
do not stay adjacent to each other—it is like a great, sloppily made
telephone cable, all the fibers twisting and turning, but when it gets
to the brain they are all sorted out again. When we cut the optic
nerve of the salamander, the interesting question is, will it ever get
straightened out? The answer is remarkable: yes. If we cut the optic
nerve of the salamander and it grows back, the salamander has good
visual acuity again. However, if we cut the optic nerve and turn
the eye upside down and let it grow back again, it has good visual
acuity all right, but it has a terrible error: when the salamander
sees a fly “up here,” it jumps at it “down there,” and it never
learns. Therefore there is some mysterious way by which the thousands
and thousands of fibers find their right places in the brain.




This problem of how much is wired in, and how much is not, is an
important problem in the theory of the development of creatures. The
answer is not known, but is being studied intensively.




The same experiment in the case of a goldfish shows that there is a
terrible knot, like a great scar or complication, in the optic nerve
where we cut it, but in spite of all this the fibers grow back to
their right places in the brain.




In order to do this, as they grow into the old channels of the optic
nerve they must make several decisions about the direction in which
they should grow. How do they do this? There seem to be chemical clues
that different fibers respond to differently. Think of the enormous
number of growing fibers, each of which is an individual differing in
some way from its neighbors; in responding to whatever the chemical
clues are, it responds in a unique enough way to find its proper place
for ultimate connection in the brain! This is an interesting—a
fantastic—thing. It is one of the great recently discovered
phenomena of biology and is undoubtedly connected to many older
unsolved problems of growth, organization, and development of
organisms, and particularly of embryos.




One other interesting phenomenon has to do with the motion of the
eye. The eyes must be moved in order to make the two images coincide
in different circumstances. These motions are of different kinds: one
is to follow something, which requires that both eyes must go in the
same direction, right or left, and the other is to point them toward
the same place at various distances away, which requires that they
must move oppositely. The nerves going into the muscles of the eye are
already wired up for just such purposes. There is one set of nerves
which will pull the muscles on the inside of one eye and the outside
of the other, and relax the opposite muscles, so that the two eyes
move together. There is another center where an excitation will cause
the eyes to move in toward each other from parallel. Either eye can be
turned out to the corner if the other eye moves toward the nose, but
it is impossible consciously or unconsciously to turn both eyes
out at the same time, not because there are no muscles,
but because there is no way to send a signal to turn both eyes out,
unless we have had an accident or there is something the matter, for
instance if a nerve has been cut. Although the muscles of one eye can
certainly steer that eye about, not even a Yogi is able to move
both eyes out freely under voluntary control, because there
does not seem to be any way to do it. We are already wired to a
certain extent. This is an important point, because most of the
earlier books on anatomy and psychology, and so on, do not appreciate
or do not emphasize the fact that we are so completely wired
already—they say that everything is just learned.







36–3 The rod cells
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Fig. 36–5. Electron micrograph of a rod cell.





Let us now examine in more detail what happens in the rod
cells. Figure 36–5 shows an electron micrograph of the
middle of a rod cell (the rod cell keeps going up out of the
field). There are layer after layer of plane structures, shown
magnified at the right, which contain the substance rhodopsin (visual
purple), the dye, or pigment, which produces the effects of vision in
the rods. The rhodopsin, which is the pigment, is a big protein which
contains a special group called retinene, which can be taken off the
protein, and which is, undoubtedly, the main cause of the absorption
of light. We do not understand the reason for the planes, but it is
very likely that there is some reason for holding all the rhodopsin
molecules parallel. The chemistry of the thing has been worked out to
a large extent, but there might be some physics to it. It may be that
all of the molecules are arranged in some kind of a row so that when
one is excited an electron which is generated, say, may run all the
way down to some place at the end to get the signal out, or
something. This subject is very important, and has not been worked
out. It is a field in which both biochemistry and solid state physics,
or something like it, will ultimately be used.
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Fig. 36–6. The structure of retinene.





This kind of a structure, with layers, appears in other circumstances
where light is important, for example in the chloroplast in plants,
where the light causes photosynthesis. If we magnify those, we find
the same thing with almost the same kind of layers, but there we have
chlorophyll, of course, instead of retinene. The chemical form of
retinene is shown in Fig. 36–6. It has a series of
alternate double bonds along the side chain, which is characteristic
of nearly all strongly absorbing organic substances, like chlorophyll,
blood, and so on. This substance is impossible for human beings to
manufacture in their own cells—we have to eat it. So we eat it in
the form of a special substance, which is exactly the same as retinene
except that there is a hydrogen tied on the right end; it is called
vitamin A, and if we do not eat enough of it, we do not get a supply
of retinene, and the eye becomes what we call night blind,
because there is then not enough pigment in the rhodopsin to see with
the rods at night.




The reason why such a series of double bonds absorbs light very
strongly is also known. We may just give a hint: The alternating
series of double bonds is called a conjugated double bond; a
double bond means that there is an extra electron there, and this
extra electron is easily shifted to the right or left. When light
strikes this molecule, the electron of each double bond is shifted
over by one step. All the electrons in the whole chain shift, like a
string of dominoes falling over, and though each one moves only a
little distance (we would expect that, in a single atom, we could move
the electron only a little distance), the net effect is the same as
though the one at the end was moved over to the other end! It is the
same as though one electron went the whole distance back and forth,
and so, in this manner, we get a much stronger absorption under the
influence of the electric field, than if we could only move the
electron a distance which is associated with one atom. So, since it is
easy to move the electrons back and forth, retinene absorbs light very
strongly; that is the machinery of the physical-chemical end of it.







36–4 The compound (insect) eye


Let us now return to biology. The human eye is not the only kind of
eye. In the vertebrates, almost all eyes are essentially like the
human eye. However, in the lower animals there are many other kinds of
eyes: eye spots, various eye cups, and other less sensitive things,
which we have no time to discuss. But there is one other highly
developed eye among the invertebrates, the compound eye of the
insect. (Most insects having large compound eyes also have various
additional simpler eyes as well.) A bee is an insect whose vision has
been studied very carefully. It is easy to study the properties of the
vision of bees because they are attracted to honey, and we can make
experiments in which we identify the honey by putting it on blue paper
or red paper, and see which one they come to. By this method some very
interesting things have been discovered about the vision of the bee.




In the first place, in trying to measure how acutely bees could see
the color difference between two pieces of “white” paper, some
researchers found they were not very good, and others found they were
fantastically good. Even if the two pieces of white paper were almost
exactly the same, the bees could still tell the difference. The
experimenters used zinc white for one piece of paper and lead white
for the other, and although these look exactly the same to us, the bee
could easily distinguish them, because they reflect a different amount
in the ultraviolet. In this way it was discovered that the bee’s eye
is sensitive over a wider range of the spectrum than is our own. Our
eye works from 7000[image: -*-] angstroms to 4000[image: -*-] angstroms, from red to
violet, but the bee’s can see down to 3000[image: -*-] angstroms into the
ultraviolet!  This makes for a number of different interesting
effects. In the first place, bees can distinguish between many flowers
which to us look alike. Of course, we must realize that the colors of
flowers are not designed for our eyes, but for the bee; they
are signals to attract the bees to a specific flower. We all know that
there are many “white” flowers. Apparently white is not very
interesting to the bees, because it turns out that all of the white
flowers have different proportions of reflection in the
ultraviolet; they do not reflect one hundred percent of the
ultraviolet as would a true white. All the light is not coming back,
the ultraviolet is missing, and that is a color, just as, for us, if
the blue is missing, it comes out yellow. So, all the flowers are
colored for the bees. However, we also know that red cannot be seen by
bees. Thus we might expect that all red flowers should look black to
the bee. Not so! A careful study of red flowers shows, first, that
even with our own eye we can see that a great majority of red flowers
have a bluish tinge because they are mainly reflecting an additional
amount in the blue, which is the part that the bee sees. Furthermore,
experiments also show that flowers vary in their reflection of the
ultraviolet over different parts of the petals, and so on. So if we
could see the flowers as bees see them they would be even more
beautiful and varied!




It has been shown, however, that there are a few red flowers which do
not reflect in the blue or in the ultraviolet, and
would, therefore, appear black to the bee! This was of quite
some concern to the people who worry about this matter, because black
does not seem like an interesting color, since it is hard to tell from
a dirty old shadow. It actually turned out that these flowers were
not visited by bees, these are the flowers that are visited by
hummingbirds, and hummingbirds can see the red!




Another interesting aspect of the vision of the bee is that bees can
apparently tell the direction of the sun by looking at a patch of blue
sky, without seeing the sun itself. We cannot easily do this. If we
look out the window at the sky and see that it is blue, in which
direction is the sun? The bee can tell, because the bee is quite
sensitive to the polarization of light, and the scattered light
of the sky is polarized.2 There is still some
debate about how this sensitivity operates. Whether it is because the
reflections of the light are different in different circumstances, or
the bee’s eye is directly sensitive, is not yet
known.3




It is also said that the bee can notice flicker up to 200[image: -*-] oscillations
per second, while we see it only up to 20[image: -*-]. The motions
of bees in the hives are very quick; the feet move and the wings
vibrate, but it is very hard for us to see these motions with our
eye. However, if we could see more rapidly we would be able to see the
motion. It is probably very important to the bee that its eye has such
a rapid response.



[image: -][image: -]
Fig. 36–7. The structure of an ommatidium (a single cell of a compound
eye).





Now let us discuss the visual acuity we could expect from the bee. The
eye of a bee is a compound eye, and it is made of a large number of
special cells called ommatidia, which are arranged conically on
the surface of a sphere (roughly) on the outside of the bee’s
head. Figure 36–7 shows a picture of one such
ommatidium. At the top there is a transparent area, a kind of
“lens,” but actually it is more like a filter or light pipe to make
the light come down along the narrow fiber, which is where the
absorption presumably occurs. Out of the other end of it comes the
nerve fiber. The central fiber is surrounded on its sides by six cells
which, in fact, have secreted the fiber. That is enough description
for our purposes; the point is that it is a conical thing and many can
fit next to each other all over the surface of the eye of the bee.



[image: -][image: -]
Fig. 36–8. Schematic view of packing of ommatidia in the eye of a bee.





Now let us discuss the resolution of the eye of the bee. If we draw
lines (Fig. 36–8) to represent the ommatidia on the
surface, which we suppose is a sphere of radius r[image: -*-], we may actually
calculate how wide each ommatidium is by using our brains, and
assuming that evolution is as clever as we are! If we have a very
large ommatidium we do not have much resolution. That is, one cell
gets a piece of information from one direction, and the adjacent cell
gets a piece of information from another direction, and so on, and the
bee cannot see things in between very well. So the uncertainty of
visual acuity in the eye will surely correspond to an angle, the angle
of the end of the ommatidium relative to the center of curvature of
the eye. (The eye cells, of course, exist only at the surface of the
sphere; inside that is the head of the bee.) This angle, from one
ommatidium to the next, is, of course, the diameter of the ommatidia
divided by the radius of the eye surface:

[image: -*-][image: -*-]
(36.1)




So, we may say, “The finer we make the δ[image: -*-], the more the visual
acuity. So why doesn’t the bee just use very, very fine ommatidia?”
Answer: We know enough physics to realize that if we are trying
to get light down into a narrow slot, we cannot see accurately in a
given direction because of the diffraction effect. The light that
comes from several directions can enter and, due to diffraction, we
will get light coming in at angle Δ θd[image: -*-] such that

[image: -*-][image: -*-]
(36.2)







Now we see that if we make the δ[image: -*-] too small, then each ommatidium does not
look in only one direction, because of diffraction! If we make them too big,
each one sees in a definite direction, but there are not enough of them to get a
good view of the scene. So we adjust the distance δ[image: -*-] in order to make
minimal the total effect of these two. If we add the two together, and find the
place where the sum has a minimum (Fig. 36–9), we find that

[image: -*-][image: -*-]
(36.3)




which gives us a distance

[image: -*-][image: -*-]
(36.4)




If we guess that r[image: -*-] is about 3 millimeters, take the light that the
bee sees as 4000[image: -*-] angstroms, and put the two together and take the
square root, we find

[image: -*-][image: -*-]
(36.5)




The book says the diameter is 30[image: -*-] μ[image: -*-]m, so that is rather good
agreement!  So, apparently, it really works, and we can understand
what determines the size of the bee’s eye! It is also easy to put the
above number back in and find out how good the bee’s eye actually is
in angular resolution; it is very poor relative to our own. We can see
things that are thirty times smaller in apparent size than the bee;
the bee has a rather fuzzy out-of-focus image relative to what we can
see. Nevertheless it is all right, and it is the best they can do. We
might ask why the bees do not develop a good eye like our own, with a
lens and so on. There are several interesting reasons. In the first
place, the bee is too small; if it had an eye like ours, but on his
scale, the opening would be about 30[image: -*-] μ[image: -*-]m in size and diffraction
would be so important that it would not be able to see very well
anyway. The eye is not good if it is too small. Secondly, if it were
as big as the bee’s head, then the eye would occupy the whole head of
the bee. The beauty of the compound eye is that it takes up no space,
it is just a very thin layer on the surface of the bee. So when we
argue that they should have done it our way, we must remember that
they had their own problems!



[image: -][image: -]
Fig. 36–9. The optimum size for an ommatidium is δm[image: -*-].








36–5 Other eyes


Besides the bees, many other animals can see color. Fish, butterflies,
birds, and reptiles can see color, but it is believed that most
mammals cannot. The primates can see color. The birds certainly see
color, and that accounts for the colors of birds. There would be no
point in having such brilliantly colored males if the females could
not notice it! That is, the evolution of the sexual “whatever it is”
that the birds have is a result of the female being able to see
color. So next time we look at a peacock and think of what a brilliant
display of gorgeous color it is, and how delicate all the colors are,
and what a wonderful aesthetic sense it takes to appreciate all that,
we should not compliment the peacock, but should compliment the visual
acuity and aesthetic sense of the peahen, because that is what
has generated the beautiful scene!



[image: -]
Fig. 36–10. The eye of an octopus.





All invertebrates have poorly developed eyes or compound eyes, but all
the vertebrates have eyes very similar to our own, with one
exception. If we consider the highest form of animal, we usually say,
“Here we are!,” but if we take a less prejudiced point of view and
restrict ourselves to the invertebrates, so that we cannot include
ourselves, and ask what is the highest invertebrate animal, most
zoologists agree that the octopus is the highest animal! It is
very interesting that, besides the development of its brain and its
reactions and so on, which are rather good for an invertebrate, it has
also developed, independently, a different eye. It is not a compound
eye or an eye spot—it has a cornea, it has lids, it has
an iris, it has a lens, it has two regions of water, it has a retina behind.
It is essentially the same as the eye of the vertebrates! It is a remarkable
example of a coincidence in evolution where nature has twice
discovered the same solution to a problem, with one slight
improvement. In the octopus it also turns out, amazingly, that the
retina is a piece of the brain that has come out in the same way in
its embryonic development as is true for vertebrates, but the
interesting thing which is different is that the cells which are
sensitive to light are on the inside, and the cells which do
the calculation are in back of them, rather than “inside out,” as in
our eye. So we see, at least, that there is no good reason for its
being inside out. The other time nature tried it, she got it
straightened out! (See Fig. 36–10.) The biggest eyes in
the world are those of the giant squid; they have been found up to
15[image: -*-] inches in diameter!







36–6 Neurology of vision


One of the main points of our subject is the interconnection of
information from one part of the eye to the other. Let us consider the
compound eye of the horseshoe crab, on which considerable
experimentation has been done. First of all, we must appreciate what
kind of information can come along nerves. A nerve carries a kind of
disturbance which has an electrical effect that is easy to detect, a
kind of wavelike disturbance which runs down the nerve and produces an
effect at the other end: a long piece of the nerve cell, called the
axon, carries the information along, and a certain kind of impulse,
called a “spike,” goes along if it is excited at one end. When one
spike goes down the nerve, another cannot immediately follow. All the
spikes are of the same size, so it is not that we get higher
spikes when the thing is more strongly excited, but that we get
more spikes per second. The size of the spike is
determined by the fiber. It is important to appreciate this in order
to see what happens next.



[image: -][image: -]

Fig. 36–11. The compound eye of the horseshoe crab. (a) Normal view.
(b) Cross section.

Figures 36-7, 11, 12, 13 reprinted with permission
from Goldsmith, Sensory Communication, W. A. Rosenblith, ed. Copyright 1961, Massachusetts Institute of Technology.






Figure 36–11(a) shows the compound eye of the horseshoe
crab; it is not very much of an eye, it has only about a thousand
ommatidia. Figure 36–11(b) is a cross section through the
system; one can see the ommatidia, with the nerve fibers that run out
of them and go into the brain. But note that even in a horseshoe crab
there are little interconnections. They are much less elaborate than
in the human eye, and it gives us a chance to study a simpler example.




Let us now look at the experiments which have been done by putting
fine electrodes into the optic nerve of the horseshoe crab, and
shining light on only one of the ommatidia, which is easy to do with
lenses. If we turn a light on at some instant t0[image: -*-], and measure the
electrical pulses that come out, we find that there is a slight delay
and then a rapid series of discharges which gradually slow down to a
uniform rate, as shown in Fig. 36–12(a). When the light
goes out, the discharge stops. Now it is very interesting that if,
while our amplifier is connected to this same nerve fiber, we shine
light on a different ommatidium nothing happens; no signal.



[image: -][image: -][image: -][image: -]
Fig. 36–12. The response to light of the nerve fibers of the eye of the
horseshoe crab.





Now we do another experiment: we shine the light on the original
ommatidium and get the same response, but if we now turn light on
another one nearby as well, the pulses are interrupted briefly and
then run at a much lower rate (Fig. 36–12b). The rate of
one is inhibited by the impulses which are coming out of the other! In
other words, each nerve fiber carries the information from one
ommatidium, but the amount that it carries is inhibited by the signals
from the others. So, for example, if the whole eye is more or less
uniformly illuminated, the information coming from any one ommatidium
will be relatively weak, because it is inhibited by so many. In fact
the inhibition is additive—if we shine light on several nearby
ommatidia the inhibition is very great. The inhibition is greater when
the ommatidia are closer, and if the ommatidia are far enough away
from one another, inhibition is practically zero. So it is additive
and depends on the distance; here is a first example of information
from different parts of the eye being combined in the eye itself. We
can see, perhaps, if we think about it awhile, that this is a device
to enhance contrast at the edges of objects, because if a part
of the scene is light and a part is black, then the ommatidia in the
lighted area give impulses that are inhibited by all the other light
in the neighborhood, so it is relatively weak. On the other hand, an
ommatidium at the boundary which is given a “white” impulse is also
inhibited by others in the neighborhood, but there are not as many of
them, since some are black; the net signal is therefore stronger. The
result would be a curve, something like that of Fig. 36–13.
The crab will see an enhancement of the contour.



[image: -][image: -]
Fig. 36–13. The net response of horseshoe crab ommatidia near a sharp
change in illumination.





The fact that there is an enhancement of contours has long been known;
in fact it is a remarkable thing that has been commented on by
psychologists many times. In order to draw an object, we have only to
draw its outline. How used we are to looking at pictures that have
only the outline! What is the outline? The outline is only the edge
difference between light and dark or one color and another. It is not
something definite. It is not, believe it or not, that every object
has a line around it! There is no such line. It is only in our own
psychological makeup that there is a line; we are beginning to
understand the reasons why the “line” is enough of a clue to get the
whole thing. Presumably our own eye works in some similar
manner—much more complicated, but similar.




Finally, we shall briefly describe the more elaborate work, the
beautiful, advanced work that has been done on the frog. Doing a
corresponding experiment on a frog, by putting very fine, beautifully
built needlelike probes into the optic nerve of a frog, one can obtain
the signals that are going along one particular axon and, just as in
the case of the horseshoe crab, we find that the information does not
depend on just one spot in the eye, but is a sum of information over
several spots.





Table 36–1. Types of response in optic nerve fibers of a frog



[image: --][image: --]


The most recent picture of the operation of the frog’s eye is the
following. One can find four different kinds of optic nerve fibers, in
the sense that there are four different kinds of responses. These
experiments were not done by shining on-and-off impulses of light,
because that is not what a frog sees. A frog just sits there and his
eyes never move, unless the lily pad is flopping back and forth, and
in that case his eyes wobble just right so that the image stays
put. He does not turn his eyes. If anything moves in his field of
vision, like a little bug (he has to be able to see something small
moving in the fixed background), it turns out that there are four
different kinds of fibers which discharge, whose properties are
summarized in Table 36–1. Sustained edge detection,
nonerasable, means that if we bring an object with an edge into the
field of view of the frog, then there are a lot of impulses in this
particular fiber while the object is moving, but they die down to a
sustained impulse that continues as long as the edge is there, even if
it is standing still. If we turn out the light, the impulses stop. If
we turn it on again while the edge is still in view, they start
again. They are not erasable. Another kind of fiber is very similar,
except that if the edge is straight it does not work. It must be a
convex edge with dark behind it! How complicated must be the system of
interconnections in the retina of the eye of the frog in order for it
to understand that a convex surface has moved in! Furthermore,
although this fiber does sustain somewhat, it does not sustain as long
as the other, and if we turn out the light and turn it on again it
does not build up again. It depends on the moving in of the
convex surface. The eye sees it move in and remembers that it is
there, but if we merely turn out the light for a moment, it simply
forgets it and no longer sees it.




Another example is change-in-contrast detection. If there is an edge
moving in or out there are pulses, but if the thing stands still there
are no pulses at all.




Then there is a dimming detector. If the light intensity is going down
it creates pulses, but if it stays down or stays up, the impulse
stops; it only works while the light is dimming.




Then, finally, there are a few fibers which are dark detectors—a
most amazing thing—they fire all the time! If we increase the light,
they fire less rapidly, but all the time. If we decrease the light,
they fire more rapidly, all the time. In the dark they fire like mad,
perpetually saying, “It is dark! It is dark! It is dark!”




Now these responses seem to be rather complicated to classify, and we
might wonder whether perhaps the experiments are being
misinterpreted. But it is very interesting that these same classes are
very clearly separated in the anatomy of the frog! By other
measurements, after these responses had been classified
(afterwards, that is what is important about this), it was
discovered that the speed of the signals on the different
fibers was not the same, so here was another, independent way to check
which kind of a fiber we have found!




Another interesting question is from how big an area is one particular
fiber making its calculations? The answer is different for the
different classes.




[image: -]
Fig. 36–14. The tectum of a frog.





Figure 36–14 shows the surface of the so-called tectum of
a frog, where the nerves come into the brain from the optic nerve. All
the nerve fibers coming in from the optic nerve make connections in
various layers of the tectum. This layered structure is analogous to
the retina; that is partly why we know that the brain and retina are
very similar. Now, by taking an electrode and moving it down in
succession through the layers, we can find out which kinds of optic
nerves end where, and the beautiful and wonderful result is that the
different kinds of fibers end in different layers! The first ones end
in number 1 type, the second in number 2, the threes and fives end
in the same place, and deepest of all is number four. (What a
coincidence, they got the numbers almost in the right order! No, that
is why they numbered them that way, the first paper had the numbers in
a different order!)




We may briefly summarize what we have just learned this way: There are
three pigments, presumably. There may be many different kinds of
receptor cells containing the three pigments in different proportions,
but there are many cross connections which may permit additions and
subtractions through addition and reinforcement in the nervous
system. So before we really understand color vision, we will have to
understand the final sensation. This subject is still an open one, but
these researches with microelectrodes and so on will perhaps
ultimately give us more information on how we see color.
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  The colors depend on speed of rotation, on the
brightness of illumination, and to some extent on who looks at them and
how intently he stares at them.
  ↩


	
  
  The human eye also has a slight
sensitivity to the polarization of light, and one can learn to
tell the direction of the sun! The phenomenon that is involved here is
called Haidinger’s brush; it is a faint, yellowish
hourglass-like pattern seen at the center of the visual field when one
looks at a broad, featureless expanse using polarizing glasses. It can
also be seen in the blue sky without polarizing glasses if one rotates
his head back and forth about the axis of vision.
  ↩


	
  
  Evidence obtained since this lecture was given
indicates that the eye is directly sensitive.
  ↩






  
    

37 Quantum Behavior



37–1 Atomic mechanics


In the last few chapters we have treated the essential ideas
necessary for an understanding of most of the important phenomena of
light—or electromagnetic radiation in general. (We have left a few
special topics for next year. Specifically, the theory of the index of
dense materials and total internal reflection.) What we have dealt with
is called the “classical theory” of electric waves, which turns out to
be a completely adequate description of nature for a large number of
effects.  We have not had to worry yet about the fact that light energy
comes in lumps or “photons.”




We would like to take up as our next subject the problem of the behavior
of relatively large pieces of matter—their mechanical and thermal
properties, for instance. In discussing these, we will find that the
“classical” (or older) theory fails almost immediately, because matter
is really made up of atomic-sized particles. Still, we will deal only
with the classical part, because that is the only part that we can
understand using the classical mechanics we have been learning. But we
shall not be very successful. We shall find that in the case of matter,
unlike the case of light, we shall be in difficulty relatively soon. We
could, of course, continuously skirt away from the atomic effects, but
we shall instead interpose here a short excursion in which we will
describe the basic ideas of the quantum properties of matter, i.e., the
quantum ideas of atomic physics, so that you will have some feeling for
what it is we are leaving out. For we will have to leave out some
important subjects that we cannot avoid coming close to.




So we will give now the introduction to the subject of quantum
mechanics, but will not be able actually to get into the subject until
much later.




“Quantum mechanics” is the description of the behavior of matter in
all its details and, in particular, of the happenings on an atomic
scale. Things on a very small scale behave like nothing that you have
any direct experience about. They do not behave like waves, they do not
behave like particles, they do not behave like clouds, or billiard
balls, or weights on springs, or like anything that you have ever seen.




Newton thought that light was made
up of particles, but then it was discovered, as we have seen here, that
it behaves like a wave. Later, however (in the beginning of the
twentieth century) it was found that light did indeed sometimes behave
like a particle. Historically, the electron, for
example, was thought to behave like a particle, and then it was found
that in many respects it behaved like a wave. So it really behaves like
neither. Now we have given up. We say: “It is like neither.”




There is one lucky break, however—electrons behave just like light.
The quantum behavior of atomic objects (electrons, protons, neutrons,
photons, and so on) is the same for all, they are all “particle
waves,” or whatever you want to call them. So what we learn about the
properties of electrons (which we shall use for our examples) will apply
also to all “particles,” including photons of light.




The gradual accumulation of information about atomic and small-scale
behavior during the first quarter of the 20th century, which gave some
indications about how small things do behave, produced an increasing
confusion which was finally resolved in 1926 and 1927 by
Schrödinger,
Heisenberg, and
Born. They finally obtained a
consistent description of the behavior of matter on a small scale. We
take up the main features of that description in this chapter.




Because atomic behavior is so unlike ordinary experience, it is very
difficult to get used to and it appears peculiar and mysterious to
everyone, both to the novice and to the experienced physicist. Even the
experts do not understand it the way they would like to, and it is
perfectly reasonable that they should not, because all of direct, human
experience and of human intuition applies to large objects. We know how
large objects will act, but things on a small scale just do not act that
way. So we have to learn about them in a sort of abstract or imaginative
fashion and not by connection with our direct experience.




In this chapter we shall tackle immediately the basic element of the
mysterious behavior in its most strange form. We choose to examine a
phenomenon which is impossible, absolutely impossible, to explain
in any classical way, and which has in it the heart of quantum
mechanics. In reality, it contains the only mystery. We cannot
explain the mystery in the sense of “explaining” how it works. We will
tell you how it works. In telling you how it works we will have
told you about the basic peculiarities of all quantum mechanics.







37–2 An experiment with bullets

[image: -][image: -]
Fig. 37–1. Interference experiment with bullets.





To try to understand the quantum behavior of electrons, we shall compare
and contrast their behavior, in a particular experimental setup, with
the more familiar behavior of particles like bullets, and with the
behavior of waves like water waves. We consider first the behavior of
bullets in the experimental setup shown diagrammatically in
Fig. 37–1. We have a machine gun that shoots a stream of
bullets. It is not a very good gun, in that it sprays the bullets
(randomly) over a fairly large angular spread, as indicated in the
figure. In front of the gun we have a wall (made of armor plate) that
has in it two holes just about big enough to let a bullet through.
Beyond the wall is a backstop (say a thick wall of wood) which will
“absorb” the bullets when they hit it. In front of the wall we have an
object which we shall call a “detector” of bullets. It might be a box
containing sand. Any bullet that enters the detector will be stopped and
accumulated. When we wish, we can empty the box and count the number of
bullets that have been caught. The detector can be moved back and forth
(in what we will call the x[image: -*-]-direction). With this apparatus, we can
find out experimentally the answer to the question: “What is the
probability that a bullet which passes through the holes in the wall
will arrive at the backstop at the distance x[image: -*-] from the center?”
First, you should realize that we should talk about probability, because
we cannot say definitely where any particular bullet will go. A bullet
which happens to hit one of the holes may bounce off the edges of the
hole, and may end up anywhere at all. By “probability” we mean the
chance that the bullet will arrive at the detector, which we can measure
by counting the number which arrive at the detector in a certain time
and then taking the ratio of this number to the total number that
hit the backstop during that time. Or, if we assume that the gun always
shoots at the same rate during the measurements, the probability we want
is just proportional to the number that reach the detector in some
standard time interval.




For our present purposes we would like to imagine a somewhat idealized
experiment in which the bullets are not real bullets, but are
indestructible bullets—they cannot break in half. In our
experiment we find that bullets always arrive in lumps, and when we find
something in the detector, it is always one whole bullet. If the rate at
which the machine gun fires is made very low, we find that at any given
moment either nothing arrives, or one and only one—exactly
one—bullet arrives at the backstop. Also, the size of the lump
certainly does not depend on the rate of firing of the gun. We shall
say: “Bullets always arrive in identical lumps.” What we
measure with our detector is the probability of arrival of a lump. And
we measure the probability as a function of x[image: -*-]. The result of such
measurements with this apparatus (we have not yet done the experiment,
so we are really imagining the result) are plotted in the graph drawn in
part (c) of Fig. 37–1. In the graph we plot the probability
to the right and x[image: -*-] vertically, so that the x[image: -*-]-scale fits the diagram
of the apparatus. We call the probability P12[image: -*-] because the bullets
may have come either through hole 1 or through hole 2. You will not
be surprised that P12[image: -*-] is large near the middle of the graph but
gets small if x[image: -*-] is very large. You may wonder, however, why P12[image: -*-]
has its maximum value at x=0[image: -*-]. We can understand this fact if we do
our experiment again after covering up hole 2, and once more while
covering up hole 1. When hole 2 is covered, bullets can pass only
through hole 1, and we get the curve marked P1[image: -*-] in part (b) of the
figure. As you would expect, the maximum of P1[image: -*-] occurs at the value
of x[image: -*-] which is on a straight line with the gun and hole 1. When
hole 1 is closed, we get the symmetric curve P2[image: -*-] drawn in the
figure. P2[image: -*-] is the probability distribution for bullets that pass
through hole 2. Comparing parts (b) and (c) of Fig. 37–1,
we find the important result that

[image: -*-][image: -*-]
(37.1)




The probabilities just add together. The effect with both holes open is
the sum of the effects with each hole open alone. We shall call this
result an observation of “no interference,” for a reason that
you will see later. So much for bullets. They come in lumps, and their
probability of arrival shows no interference.







37–3 An experiment with waves

[image: -][image: -]
Fig. 37–2. Interference experiment with water waves.





Now we wish to consider an experiment with water waves. The apparatus is
shown diagrammatically in Fig. 37–2. We have a shallow
trough of water. A small object labeled the “wave source” is jiggled
up and down by a motor and makes circular waves. To the right of the
source we have again a wall with two holes, and beyond that is a second
wall, which, to keep things simple, is an “absorber,” so that there is
no reflection of the waves that arrive there. This can be done by
building a gradual sand “beach.” In front of the beach we place a
detector which can be moved back and forth in the x[image: -*-]-direction, as
before. The detector is now a device which measures the “intensity” of
the wave motion. You can imagine a gadget which measures the height of
the wave motion, but whose scale is calibrated in proportion to the
square of the actual height, so that the reading is proportional
to the intensity of the wave. Our detector reads, then, in proportion to
the energy being carried by the wave—or rather, the rate at
which energy is carried to the detector.




With our wave apparatus, the first thing to notice is that the intensity
can have any size. If the source just moves a very small amount,
then there is just a little bit of wave motion at the detector. When
there is more motion at the source, there is more intensity at the
detector. The intensity of the wave can have any value at all. We would
not say that there was any “lumpiness” in the wave intensity.




Now let us measure the wave intensity for various values of x[image: -*-] (keeping
the wave source operating always in the same way). We get the
interesting-looking curve marked I12[image: -*-] in part (c) of the figure.




We have already worked out how such patterns can come about when we
studied the interference of electric waves. In this case we would
observe that the original wave is diffracted at the holes, and new
circular waves spread out from each hole. If we cover one hole at a time
and measure the intensity distribution at the absorber we find the
rather simple intensity curves shown in part (b) of the figure. I1[image: -*-] is
the intensity of the wave from hole 1 (which we find by measuring when
hole 2 is blocked off) and I2[image: -*-] is the intensity of the wave from
hole 2 (seen when hole 1 is blocked).




The intensity I12[image: -*-] observed when both holes are open is certainly
not the sum of I1[image: -*-] and I2[image: -*-]. We say that there is
“interference” of the two waves. At some places (where the
curve I12[image: -*-] has its maxima) the waves are “in phase” and the wave
peaks add together to give a large amplitude and, therefore, a large
intensity. We say that the two waves are “interfering constructively”
at such places. There will be such constructive interference wherever
the distance from the detector to one hole is a whole number of
wavelengths larger (or shorter) than the distance from the detector to
the other hole.




At those places where the two waves arrive at the detector with a phase
difference of π[image: -*-] (where they are “out of phase”) the resulting wave
motion at the detector will be the difference of the two amplitudes. The
waves “interfere destructively,” and we get a low value for the wave
intensity. We expect such low values wherever the distance between
hole 1 and the detector is different from the distance between
hole 2 and the detector by an odd number of half-wavelengths. The low
values of I12[image: -*-] in Fig. 37–2 correspond to the places
where the two waves interfere destructively.




You will remember that the quantitative relationship between
I1[image: -*-], I2[image: -*-], and I12[image: -*-] can be expressed in the following way: The
instantaneous height of the water wave at the detector for the wave from
hole 1 can be written as (the real part of) [image: \hat{h}_1e^{i\omega t}][image: \hat{h}_1e^{i\omega t}],
where the “amplitude” [image: \hat{h}_1][image: \hat{h}_1] is, in general, a complex number.
The intensity is proportional to the mean squared height or, when we use
the complex numbers, to [image: \abs{\hat{h}_1}^2][image: \abs{\hat{h}_1}^2]. Similarly, for hole 2 the
height is [image: \hat{h}_2e^{i\omega t}][image: \hat{h}_2e^{i\omega t}] and the intensity is proportional
to [image: \abs{\hat{h}_2}^2][image: \abs{\hat{h}_2}^2]. When both holes are open, the wave heights add
to give the height [image: (\hat{h}_1 + \hat{h}_2)e^{i\omega t}][image: (\hat{h}_1 + \hat{h}_2)e^{i\omega t}] and the
intensity [image: \abs{\hat{h}_1 + \hat{h}_2}^2][image: \abs{\hat{h}_1 + \hat{h}_2}^2]. Omitting the constant of
proportionality for our present purposes, the proper relations for
interfering waves are

[image: -*-][image: -*-]
(37.2)







You will notice that the result is quite different from that obtained
with bullets (Eq. 37.1). If we expand [image: \abs{\hat{h}_1 + \hat{h}_2}^2][image: \abs{\hat{h}_1 + \hat{h}_2}^2] we see that

[image: -*-][image: -*-]
(37.3)




where δ[image: -*-] is the phase difference between [image: \hat{h}_1][image: \hat{h}_1]
and [image: \hat{h}_2][image: \hat{h}_2]. In terms of the intensities, we could write

[image: -*-][image: -*-]
(37.4)




The last term in (37.4) is the “interference term.” So much
for water waves. The intensity can have any value, and it shows
interference.







37–4 An experiment with electrons

[image: -][image: -]
Fig. 37–3. Interference experiment with electrons.





Now we imagine a similar experiment with electrons. It is shown
diagrammatically in Fig. 37–3. We make an electron gun which
consists of a tungsten wire heated by an electric current and surrounded
by a metal box with a hole in it. If the wire is at a negative voltage
with respect to the box, electrons emitted by the wire will be
accelerated toward the walls and some will pass through the hole. All
the electrons which come out of the gun will have (nearly) the same
energy. In front of the gun is again a wall (just a
thin metal plate) with two holes in it.  Beyond the wall is another
plate which will serve as a “backstop.” In front of the backstop we
place a movable detector. The detector might be a geiger counter or,
perhaps better, an electron multiplier, which is connected to a
loudspeaker.




We should say right away that you should not try to set up this
experiment (as you could have done with the two we have already
described). This experiment has never been done in just this way. The
trouble is that the apparatus would have to be made on an impossibly
small scale to show the effects we are interested in. We are doing a
“thought experiment,” which we have chosen because it is easy to think
about. We know the results that would be obtained because there
are many experiments that have been done, in which the scale and
the proportions have been chosen to show the effects we shall describe.




The first thing we notice with our electron experiment is that we hear
sharp “clicks” from the detector (that is, from the loudspeaker). And
all “clicks” are the same. There are no “half-clicks.”




We would also notice that the “clicks” come very erratically.
Something like: click ….. click-click … click
……..
click …. click-click
…… click …, etc., just as you have, no doubt,
heard a geiger counter operating. If we count the clicks which arrive in
a sufficiently long time—say for many minutes—and then count again
for another equal period, we find that the two numbers are very nearly
the same. So we can speak of the average rate at which the clicks
are heard (so-and-so-many clicks per minute on the average).




As we move the detector around, the rate at which the clicks
appear is faster or slower, but the size (loudness) of each click is
always the same. If we lower the temperature of the wire in the gun the
rate of clicking slows down, but still each click sounds the same. We
would notice also that if we put two separate detectors at the backstop,
one or the other would click, but never both at once. (Except
that once in a while, if there were two clicks very close together in
time, our ear might not sense the separation.) We conclude, therefore,
that whatever arrives at the backstop arrives in “lumps.” All the
“lumps” are the same size: only whole “lumps” arrive, and they
arrive one at a time at the backstop. We shall say: “Electrons always
arrive in identical lumps.”




Just as for our experiment with bullets, we can now proceed to find
experimentally the answer to the question: “What is the relative
probability that an electron ‘lump’ will arrive at the backstop at
various distances x[image: -*-] from the center?” As before, we obtain the
relative probability by observing the rate of clicks, holding the
operation of the gun constant. The probability that lumps will arrive at
a particular x[image: -*-] is proportional to the average rate of clicks at
that x[image: -*-].




The result of our experiment is the interesting curve marked P12[image: -*-] in
part (c) of Fig. 37–3. Yes! That is the way electrons go.







37–5 The interference of electron waves


Now let us try to analyze the curve of Fig. 37–3 to see
whether we can understand the behavior of the electrons. The first thing
we would say is that since they come in lumps, each lump, which we may
as well call an electron, has come either through hole 1 or through
hole 2. Let us write this in the form of a “Proposition”:



	
Proposition A:

	
Each electron either goes through hole 1 or it goes through hole 2.








Assuming Proposition A, all electrons that arrive at the backstop can be
divided into two classes: (1) those that come through hole 1, and
(2) those that come through hole 2. So our observed curve must be the
sum of the effects of the electrons which come through hole 1 and the
electrons which come through hole 2. Let us check this idea by
experiment. First, we will make a measurement for those electrons that
come through hole 1. We block off hole 2 and make our counts of the
clicks from the detector. From the clicking rate, we get P1[image: -*-]. The
result of the measurement is shown by the curve marked P1[image: -*-] in part (b)
of Fig. 37–3. The result seems quite reasonable. In a
similar way, we measure P2[image: -*-], the probability distribution for the
electrons that come through hole 2. The result of this measurement is
also drawn in the figure.




The result P12[image: -*-] obtained with both holes open is clearly not
the sum of P1[image: -*-] and P2[image: -*-], the probabilities for each hole alone. In
analogy with our water-wave experiment, we say: “There is
interference.”

[image: -*-][image: -*-]
(37.5)







How can such an interference come about? Perhaps we should say: “Well,
that means, presumably, that it is not true that the lumps go
either through hole 1 or hole 2, because if they did, the
probabilities should add. Perhaps they go in a more complicated way.
They split in half and …” But no! They cannot, they always arrive
in lumps … “Well, perhaps some of them go through 1, and then
they go around through 2, and then around a few more times, or by some
other complicated path … then by closing hole 2, we changed the
chance that an electron that started out through hole 1 would
finally get to the backstop …” But notice! There are some points
at which very few electrons arrive when both holes are open, but
which receive many electrons if we close one hole, so closing one
hole increased the number from the other. Notice, however, that
at the center of the pattern, P12[image: -*-] is more than twice as large
as P1+P2[image: -*-]. It is as though closing one hole decreased the
number of electrons which come through the other hole. It seems hard to
explain both effects by proposing that the electrons travel in
complicated paths.




It is all quite mysterious. And the more you look at it the more
mysterious it seems. Many ideas have been concocted to try to explain
the curve for P12[image: -*-] in terms of individual electrons going around in
complicated ways through the holes. None of them has succeeded. None of
them can get the right curve for P12[image: -*-] in terms of P1[image: -*-] and P2[image: -*-].




Yet, surprisingly enough, the mathematics for relating P1[image: -*-]
and P2[image: -*-] to P12[image: -*-] is extremely simple. For P12[image: -*-] is just like the
curve I12[image: -*-] of Fig. 37–2, and that was simple.
What is going on at the backstop can be described by two complex numbers
that we can call [image: \hat{\phi}_1][image: \hat{\phi}_1] and [image: \hat{\phi}_2][image: \hat{\phi}_2] (they are functions
of x[image: -*-], of course). The absolute square of [image: \hat{\phi}_1][image: \hat{\phi}_1] gives the
effect with only hole 1 open. That is, [image: P_1 = \abs{\hat{\phi}_1}^2][image: P_1 = \abs{\hat{\phi}_1}^2].
The effect with only hole 2 open is given by [image: \hat{\phi}_2][image: \hat{\phi}_2] in the
same way. That is, [image: P_2 = \abs{\hat{\phi}_2}^2][image: P_2 = \abs{\hat{\phi}_2}^2]. And the combined effect
of the two holes is just [image: P_{12} = \abs{\hat{\phi}_1 + \hat{\phi}_2}^2][image: P_{12} = \abs{\hat{\phi}_1 + \hat{\phi}_2}^2].
The mathematics is the same as that we had for the water waves!
(It is hard to see how one could get such a simple result from a
complicated game of electrons going back and forth through the plate on
some strange trajectory.)




We conclude the following: The electrons arrive in lumps, like
particles, and the probability of arrival of these lumps is distributed
like the distribution of intensity of a wave. It is in this sense that
an electron behaves “sometimes like a particle and sometimes like a
wave.”




Incidentally, when we were dealing with classical waves we defined the
intensity as the mean over time of the square of the wave amplitude, and
we used complex numbers as a mathematical trick to simplify the
analysis. But in quantum mechanics it turns out that the amplitudes
must be represented by complex numbers. The real parts alone will
not do. That is a technical point, for the moment, because the formulas
look just the same.




Since the probability of arrival through both holes is given so simply,
although it is not equal to (P1+P2)[image: -*-], that is really all there is
to say. But there are a large number of subtleties involved in the fact
that nature does work this way. We would like to illustrate some of
these subtleties for you now. First, since the number that arrives at a
particular point is not equal to the number that arrives through 1
plus the number that arrives through 2, as we would have concluded
from Proposition A, undoubtedly we should conclude that
Proposition A is false. It is not true that the electrons
go either through hole 1 or hole 2. But that conclusion can
be tested by another experiment.







37–6 Watching the electrons

[image: -][image: -]
Fig. 37–4. A different electron experiment.





We shall now try the following experiment. To our electron apparatus we
add a very strong light source, placed behind the wall and between the
two holes, as shown in Fig. 37–4. We know that electric
charges scatter light. So when an electron passes, however it does pass,
on its way to the detector, it will scatter some light to our eye, and
we can see where the electron goes. If, for instance, an electron
were to take the path via hole 2 that is sketched in
Fig. 37–4, we should see a flash of light coming from the
vicinity of the place marked A[image: -*-] in the figure. If an electron passes
through hole 1 we would expect to see a flash from the vicinity of the
upper hole. If it should happen that we get light from both places at
the same time, because the electron divides in half … Let us just
do the experiment!




Here is what we see: every time that we hear a “click” from our
electron detector (at the backstop), we also see a flash of light
either near hole 1 or near hole 2, but never
both at once! And we observe the same result no matter where we put the
detector. From this observation we conclude that when we look at the
electrons we find that the electrons go either through one hole or the
other. Experimentally, Proposition A is necessarily true.




What, then, is wrong with our argument against Proposition A?
Why isn’t P12[image: -*-] just equal to P1+P2[image: -*-]? Back to experiment!
Let us keep track of the electrons and find out what they are doing. For
each position (x[image: -*-]-location) of the detector we will count the electrons
that arrive and also keep track of which hole they went through,
by watching for the flashes. We can keep track of things this way:
whenever we hear a “click” we will put a count in Column 1 if we see
the flash near hole 1, and if we see the flash near hole 2, we will
record a count in Column 2.  Every electron which arrives is recorded
in one of two classes: those which come through 1 and those which come
through 2. From the number recorded in Column 1 we get the
probability [image: P_1'][image: P_1'] that an electron will arrive at the detector via
hole 1; and from the number recorded in Column 2 we get [image: P_2'][image: P_2'], the
probability that an electron will arrive at the detector via hole 2.
If we now repeat such a measurement for many values of x[image: -*-], we get the
curves for [image: P_1'][image: P_1'] and [image: P_2'][image: P_2'] shown in part (b) of Fig. 37–4.




Well, that is not too surprising! We get for [image: P_1'][image: P_1'] something quite
similar to what we got before for P1[image: -*-] by blocking off hole 2; and
[image: P_2'][image: P_2'] is similar to what we got by blocking hole 1. So there is
not any complicated business like going through both holes. When
we watch them, the electrons come through just as we would expect them
to come through. Whether the holes are closed or open, those which we
see come through hole 1 are distributed in the same way whether
hole 2 is open or closed.




But wait! What do we have now for the total probability,
the probability that an electron will arrive at the detector by any
route?  We already have that information. We just pretend that we never
looked at the light flashes, and we lump together the detector clicks
which we have separated into the two columns. We must just
add the numbers. For the probability that an electron will arrive
at the backstop by passing through either hole, we do find
[image: P_{12}' = P_1' + P_2'][image: P_{12}' = P_1' + P_2']. That is, although we succeeded in watching
which hole our electrons come through, we no longer get the old
interference curve P12[image: -*-], but a new one, [image: P_{12}'][image: P_{12}'] showing no
interference!  If we turn out the light P12[image: -*-] is restored.




We must conclude that when we look at the electrons the
distribution of them on the screen is different than when we do not
look. Perhaps it is turning on our light source that disturbs things? It
must be that the electrons are very delicate, and the light, when it
scatters off the electrons, gives them a jolt that changes their motion.
We know that the electric field of the light acting on a charge will
exert a force on it. So perhaps we should expect the motion to be
changed. Anyway, the light exerts a big influence on the electrons. By
trying to “watch” the electrons we have changed their motions. That
is, the jolt given to the electron when the photon is scattered by it is
such as to change the electron’s motion enough so that if it
might have gone to where P12[image: -*-] was at a maximum it will
instead land where P12[image: -*-] was a minimum; that is why we no longer see
the wavy interference effects.




You may be thinking: “Don’t use such a bright source! Turn the
brightness down! The light waves will then be weaker and will not
disturb the electrons so much. Surely, by making the light dimmer and
dimmer, eventually the wave will be weak enough that it will have a
negligible effect.” O.K. Let’s try it. The first thing we observe is
that the flashes of light scattered from the electrons as they pass by
does not get weaker. It is always the same-sized flash.
The only thing that happens as the light is made dimmer is that
sometimes we hear a “click” from the detector but see no flash
at all. The electron has gone by without being “seen.” What we are
observing is that light also acts like electrons, we knew
that it was “wavy,” but now we find that it is also “lumpy.” It
always arrives—or is scattered—in lumps that we call
“photons.” As we turn down the intensity of the
light source we do not change the size of the photons, only the
rate at which they are emitted. That explains why, when
our source is dim, some electrons get by without being seen. There did
not happen to be a photon around at the time the electron went through.




This is all a little discouraging. If it is true that whenever we
“see” the electron we see the same-sized flash, then those electrons
we see are always the disturbed ones. Let us try the experiment
with a dim light anyway. Now whenever we hear a click in the detector we
will keep a count in three columns: in Column (1) those electrons seen
by hole 1, in Column (2) those electrons seen by hole 2, and in
Column (3) those electrons not seen at all. When we work up our data
(computing the probabilities) we find these results: Those “seen by
hole 1” have a distribution like [image: P_1'][image: P_1']; those “seen by hole 2”
have a distribution like [image: P_2'][image: P_2'] (so that those “seen by either hole 1
or 2” have a distribution like [image: P_{12}'][image: P_{12}']); and those “not seen at
all” have a “wavy” distribution just like P12[image: -*-] of
Fig. 37–3!  If the electrons are not seen, we have
interference!




That is understandable. When we do not see the electron, no photon
disturbs it, and when we do see it, a photon has disturbed it. There is
always the same amount of disturbance because the light photons all
produce the same-sized effects and the effect of the photons being
scattered is enough to smear out any interference effect.




Is there not some way we can see the electrons without disturbing
them? We learned in an earlier chapter that the momentum carried by a
“photon” is inversely proportional to its wavelength (p=h/λ[image: -*-]). Certainly the jolt given to the electron when the photon is
scattered toward our eye depends on the momentum that photon carries.
Aha! If we want to disturb the electrons only slightly we should not
have lowered the intensity of the light, we should have lowered
its frequency (the same as increasing its wavelength). Let us use
light of a redder color. We could even use infrared light, or radiowaves
(like radar), and “see” where the electron went with the help of some
equipment that can “see” light of these longer wavelengths. If we use
“gentler” light perhaps we can avoid disturbing the electrons so much.




Let us try the experiment with longer waves. We shall keep repeating our
experiment, each time with light of a longer wavelength. At first,
nothing seems to change. The results are the same. Then a terrible thing
happens. You remember that when we discussed the microscope we pointed
out that, due to the wave nature of the light, there is a
limitation on how close two spots can be and still be seen as two
separate spots. This distance is of the order of the wavelength of
light. So now, when we make the wavelength longer than the distance
between our holes, we see a big fuzzy flash when the light is
scattered by the electrons. We can no longer tell which hole the
electron went through! We just know it went somewhere! And it is just
with light of this color that we find that the jolts given to the
electron are small enough so that [image: P_{12}'][image: P_{12}'] begins to look
like P12[image: -*-]—that we begin to get some interference effect. And it is
only for wavelengths much longer than the separation of the two holes
(when we have no chance at all of telling where the electron went) that
the disturbance due to the light gets sufficiently small that we again
get the curve P12[image: -*-] shown in Fig. 37–3.




In our experiment we find that it is impossible to arrange the light in
such a way that one can tell which hole the electron went through, and
at the same time not disturb the pattern. It was suggested by
Heisenberg that the then new
laws of nature could only be consistent if there were some basic
limitation on our experimental capabilities not previously recognized.
He proposed, as a general principle, his uncertainty
principle, which we can state in terms of our experiment as follows: “It
is impossible to design an apparatus to determine which hole the
electron passes through, that will not at the same time disturb the
electrons enough to destroy the interference pattern.” If an apparatus
is capable of determining which hole the electron goes through, it
cannot be so delicate that it does not disturb the pattern in an
essential way. No one has ever found (or even thought of) a way around
the uncertainty principle. So we must assume that
it describes a basic characteristic of nature.





The complete theory of quantum mechanics which we now use to describe
atoms and, in fact, all matter depends on the correctness of the
uncertainty principle. Since quantum mechanics
is such a successful theory, our belief in the uncertainty
principle is reinforced. But if a way to “beat” the uncertainty
principle were ever discovered, quantum mechanics would give inconsistent
results and would have to be discarded as a valid theory of nature.





“Well,” you say, “what about Proposition A? It is true, or is it
not true, that the electron either goes through hole 1 or it
goes through hole 2?” The only answer that can be given is that we
have found from experiment that there is a certain special way that we
have to think in order that we do not get into inconsistencies. What we
must say (to avoid making wrong predictions) is the following. If one
looks at the holes or, more accurately, if one has a piece of apparatus
which is capable of determining whether the electrons go through
hole 1 or hole 2, then one can say that it goes either
through hole 1 or hole 2. But, when one does not try
to tell which way the electron goes, when there is nothing in the
experiment to disturb the electrons, then one may not say that an
electron goes either through hole 1 or hole 2. If one does say that,
and starts to make any deductions from the statement, he will make
errors in the analysis. This is the logical tightrope on which we must
walk if we wish to describe nature successfully.







If the motion of all matter—as well as electrons—must be described
in terms of waves, what about the bullets in our first experiment? Why
didn’t we see an interference pattern there? It turns out that for the
bullets the wavelengths were so tiny that the interference patterns
became very fine. So fine, in fact, that with any detector of finite
size one could not distinguish the separate maxima and minima. What we
saw was only a kind of average, which is the classical curve. In
Fig. 37–5 we have tried to indicate schematically what
happens with large-scale objects. Part (a) of the figure shows the
probability distribution one might predict for bullets, using quantum
mechanics. The rapid wiggles are supposed to represent the interference
pattern one gets for waves of very short wavelength. Any physical
detector, however, straddles several wiggles of the probability curve,
so that the measurements show the smooth curve drawn in part (b) of the
figure.



[image: -][image: -]
Fig. 37–5. Interference pattern with bullets: (a) actual (schematic),
(b) observed.








37–7 First principles of quantum mechanics


We will now write a summary of the main conclusions of our experiments.
We will, however, put the results in a form which makes them true for a
general class of such experiments. We can write our summary more simply
if we first define an “ideal experiment” as one in which there are no
uncertain external influences, i.e., no jiggling or other things going
on that we cannot take into account. We would be quite precise if we
said: “An ideal experiment is one in which all of the initial and final
conditions of the experiment are completely specified.” What we will
call “an event” is, in general, just a specific set of initial and
final conditions. (For example: “an electron leaves the gun, arrives at
the detector, and nothing else happens.”) Now for our summary.




Summary


	
The probability of an event in an ideal experiment is given
by the square of the absolute value of a complex number ϕ[image: -*-] which is
called the probability amplitude:
[image: -*-][image: -*-]
(37.6)






	
When an event can occur in several alternative ways, the
probability amplitude for the event is the sum of the probability
amplitudes for each way considered separately. There is interference:
[image: -*-][image: -*-]
(37.7)





	
If an experiment is performed which is capable of determining
whether one or another alternative is actually taken, the probability of
the event is the sum of the probabilities for each alternative. The
interference is lost:
[image: -*-][image: -*-]
(37.8)










One might still like to ask: “How does it work? What is the machinery
behind the law?” No one has found any machinery behind the law. No one
can “explain” any more than we have just “explained.” No one will
give you any deeper representation of the situation. We have no ideas
about a more basic mechanism from which these results can be deduced.




We would like to emphasize a very important difference between
classical and quantum mechanics. We have been talking about the
probability that an electron will arrive in a given circumstance. We
have implied that in our experimental arrangement (or even in the best
possible one) it would be impossible to predict exactly what would
happen. We can only predict the odds! This would mean, if it were true,
that physics has given up on the problem of trying to predict exactly
what will happen in a definite circumstance. Yes! physics has given up. We do not know how to predict what would happen in a
given circumstance, and we believe now that it is impossible, that the
only thing that can be predicted is the probability of different events.
It must be recognized that this is a retrenchment in our earlier ideal
of understanding nature. It may be a backward step, but no one has seen
a way to avoid it.




We make now a few remarks on a suggestion that has sometimes been made
to try to avoid the description we have given: “Perhaps the electron
has some kind of internal works—some inner variables—that we do not
yet know about. Perhaps that is why we cannot predict what will happen.
If we could look more closely at the electron we could be able to tell
where it would end up.” So far as we know, that is impossible. We would
still be in difficulty. Suppose we were to assume that inside the
electron there is some kind of machinery that determines where it is
going to end up. That machine must also determine which hole it
is going to go through on its way. But we must not forget that what is
inside the electron should not be dependent on what we do, and in
particular upon whether we open or close one of the holes. So if an
electron, before it starts, has already made up its mind (a) which hole
it is going to use, and (b) where it is going to land, we should
find P1[image: -*-] for those electrons that have chosen hole 1, P2[image: -*-] for
those that have chosen hole 2, and necessarily the
sum P1+P2[image: -*-] for those that arrive through the two holes. There seems
to be no way around this. But we have verified experimentally that that
is not the case. And no one has figured a way out of this puzzle. So at
the present time we must limit ourselves to computing probabilities. We
say “at the present time,” but we suspect very strongly that it is
something that will be with us forever—that it is impossible to beat
that puzzle—that this is the way nature really is.







37–8 The uncertainty principle


This is the way Heisenberg
stated the uncertainty principle originally: If you make the measurement
on any object, and you can determine the x[image: -*-]-component of its momentum
with an uncertainty Δ p[image: -*-], you cannot, at the same time, know its
x[image: -*-]-position more accurately than Δ x≥ℏ/2 Δ p[image: -*-]. The
uncertainties in the position and momentum at any instant must have
their product greater than or equal to half the reduced Planck constant.
This is a special case of the uncertainty principle that was stated above
more generally. The more general statement was that one cannot design
equipment in any way to determine which of two alternatives is taken,
without, at the same time, destroying the pattern of interference.





Let us show for one particular case that the kind of relation given by
Heisenberg must be true in
order to keep from getting into trouble. We imagine a modification of
the experiment of Fig. 37–3, in which the wall with the
holes consists of a plate mounted on rollers so that it can move freely
up and down (in the x[image: -*-]-direction), as shown in Fig. 37–6.
By watching the motion of the plate carefully we can try to tell which
hole an electron goes through. Imagine what happens when the detector is
placed at x=0[image: -*-]. We would expect that an electron which passes through
hole 1 must be deflected downward by the plate to reach the detector.
Since the vertical component of the electron momentum is changed, the
plate must recoil with an equal momentum in the opposite direction. The
plate will get an upward kick. If the electron goes through the lower
hole, the plate should feel a downward kick. It is clear that for every
position of the detector, the momentum received by the plate will have a
different value for a traversal via hole 1 than for a traversal via
hole 2. So! Without disturbing the electrons at all, but just
by watching the plate, we can tell which path the electron used.



[image: -][image: -]
Fig. 37–6. An experiment in which the recoil of the wall is measured.





Now in order to do this it is necessary to know what the momentum of the
screen is, before the electron goes through. So when we measure the
momentum after the electron goes by, we can figure out how much the
plate’s momentum has changed. But remember, according to the uncertainty
principle we cannot at the same time know the position of the plate with
an arbitrary accuracy. But if we do not know exactly where the
plate is we cannot say precisely where the two holes are. They will be
in a different place for every electron that goes through. This means
that the center of our interference pattern will have a different
location for each electron. The wiggles of the interference pattern will
be smeared out. We shall show quantitatively in the next chapter that if
we determine the momentum of the plate sufficiently accurately to
determine from the recoil measurement which hole was used, then the
uncertainty in the x[image: -*-]-position of the plate will, according to the
uncertainty principle, be enough to shift the pattern observed at the
detector up and down in the x[image: -*-]-direction about the distance from a
maximum to its nearest minimum. Such a random shift is just enough to
smear out the pattern so that no interference is observed.




The uncertainty principle “protects” quantum mechanics.
Heisenberg recognized that
if it were possible to measure the momentum and the position
simultaneously with a greater accuracy, the quantum mechanics would
collapse. So he proposed that it must be impossible. Then people sat
down and tried to figure out ways of doing it, and nobody could figure
out a way to measure the position and the momentum of anything—a
screen, an electron, a billiard ball, anything—with any greater
accuracy. Quantum mechanics maintains its perilous but accurate
existence.







  
    

38 The Relation of Wave and Particle Viewpoints



38–1 Probability wave amplitudes


In this chapter we shall discuss the relationship of the
wave and particle viewpoints. We already know, from the last chapter,
that neither the wave viewpoint nor the particle viewpoint is correct.
Usually we have tried to present things accurately, or at least
precisely enough that they will not have to be changed when we learn
more—it may be extended, but it will not be changed! But when we try
to talk about the wave picture or the particle picture, both are
approximate, and both will change. Therefore what we learn in this
chapter will not be accurate in a certain sense; it is a kind of
half-intuitive argument that will be made more precise later, but
certain things will be changed a little bit when we interpret them
correctly in quantum mechanics. The reason for doing such a thing, of
course, is that we are not going to go directly into quantum mechanics,
but we want to have at least some idea of the kinds of effects that we
will find. Furthermore, all our experiences are with waves and with
particles, and so it is rather handy to use the wave and particle ideas
to get some understanding of what happens in given circumstances before
we know the complete mathematics of the quantum-mechanical amplitudes.
We shall try to illustrate the weakest places as we go along, but most
of it is very nearly correct—it is just a matter of interpretation.




First of all, we know that the new way of representing the world in
quantum mechanics—the new framework—is to give an amplitude for
every event that can occur, and if the event involves the reception of
one particle then we can give the amplitude to find that one particle
at different places and at different times. The probability of finding
the particle is then proportional to the absolute square of the
amplitude. In general, the amplitude to find a particle in different
places at different times varies with position and time.




In a special case the amplitude varies sinusoidally in space and time
like ei (ω t−k⋅r)[image: -*-] (do not forget that these
amplitudes are complex numbers, not real numbers) and involves a
definite frequency ω[image: -*-] and wave number k[image: -*-]. Then it turns out
that this corresponds to a classical limiting situation where we would
have believed that we have a particle whose energy E[image: -*-] was known and
is related to the frequency by

[image: -*-][image: -*-]
(38.1)




and whose momentum p[image: -*-] is also known and is related to the wave
number by

[image: -*-][image: -*-]
(38.2)







This means that the idea of a particle is limited. The idea of a
particle—its location, its momentum, etc.—which we use so much, is
in certain ways unsatisfactory. For instance, if an amplitude to find
a particle at different places is given by ei (ω t−k⋅r)[image: -*-], whose absolute square is a constant, that would
mean that the probability of finding a particle is the same at all
points. That means we do not know where it is—it can be
anywhere—there is a great uncertainty in its location.




On the other hand, if the position of a particle is more or less well
known and we can predict it fairly accurately, then the probability of
finding it in different places must be confined to a certain region,
whose length we call Δ x[image: -*-]. Outside this region, the probability
is zero. Now this probability is the absolute square of an amplitude,
and if the absolute square is zero, the amplitude is also zero, so
that we have a wave train whose length is Δ x[image: -*-]
(Fig. 38–1), and the wavelength (the distance between nodes
of the waves in the train) of that wave train is what corresponds to the
particle momentum.



[image: -][image: -]
Fig. 38–1. A wave packet of length Δ x[image: -*-].





Here we encounter a strange thing about waves; a very simple thing
which has nothing to do with quantum mechanics strictly. It is
something that anybody who works with waves, even if he knows no
quantum mechanics, knows: namely, we cannot define a unique
wavelength for a short wave train. Such a wave train does not
have a definite wavelength; there is an indefiniteness in the
wave number that is related to the finite length of the train, and
thus there is an indefiniteness in the momentum.







38–2 Measurement of position and momentum


Let us consider two examples of this idea—to see the reason why
there is an uncertainty in the position and/or the momentum, if
quantum mechanics is right. We have also seen before that if there
were not such a thing—if it were possible to measure the position
and the momentum of anything simultaneously—we would have a paradox;
it is fortunate that we do not have such a paradox, and the fact that
such an uncertainty comes naturally from the wave picture shows that
everything is mutually consistent.



[image: -][image: -]
Fig. 38–2. Diffraction of particles passing through a slit.





Here is one example which shows the relationship between the position
and the momentum in a circumstance that is easy to understand. Suppose
we have a single slit, and particles are coming from very far away
with a certain energy—so that they are all coming essentially
horizontally (Fig. 38–2). We are going to concentrate on
the vertical components of momentum. All of these particles have a
certain horizontal momentum p0[image: -*-], say, in a classical sense. So, in
the classical sense, the vertical momentum py[image: -*-], before the particle
goes through the hole, is definitely known. The particle is moving
neither up nor down, because it came from a source that is far
away—and so the vertical momentum is of course zero. But now let us
suppose that it goes through a hole whose width is B[image: -*-]. Then after it
has come out through the hole, we know the position vertically—the
y[image: -*-] position—with considerable accuracy—namely ±B[image: -*-].1 That is, the uncertainty in position,
Δ y[image: -*-], is of order B[image: -*-]. Now we might also want to say, since we
know the momentum is absolutely horizontal, that Δ py[image: -*-] is zero;
but that is wrong. We once knew the momentum was horizontal,
but we do not know it any more. Before the particles passed through
the hole, we did not know their vertical positions. Now that we have
found the vertical position by having the particle come through the
hole, we have lost our information on the vertical momentum! Why?
According to the wave theory, there is a spreading out, or
diffraction, of the waves after they go through the slit, just as for
light. Therefore there is a certain probability that particles coming
out of the slit are not coming exactly straight. The pattern is spread
out by the diffraction effect, and the angle of spread, which we can
define as the angle of the first minimum, is a measure of the
uncertainty in the final angle.




How does the pattern become spread? To say it is spread means that
there is some chance for the particle to be moving up or down, that
is, to have a component of momentum up or down. We say chance
and particle because we can detect this diffraction pattern
with a particle counter, and when the counter receives the particle,
say at C[image: -*-] in Fig. 38–2, it receives the entire
particle, so that, in a classical sense, the particle has a vertical
momentum, in order to get from the slit up to C[image: -*-].





To get a rough idea of the spread of the momentum, the vertical
momentum py[image: -*-] has a spread which is equal to p0 Δ θ[image: -*-],
where p0[image: -*-] is the horizontal momentum. And how big is Δ θ[image: -*-]
in the spread-out pattern? We know that the first minimum occurs at an
angle Δ θ[image: -*-] such that the waves from one edge of the slit
have to travel one wavelength farther than the waves from the other
side—we worked that out before (Chapter 30). Therefore
Δ θ[image: -*-] is λ/B[image: -*-], and so Δ py[image: -*-] in this experiment
is p0 λ/B[image: -*-]. Note that if we make B[image: -*-] smaller and make a more
accurate measurement of the position of the particle, the diffraction
pattern gets wider. Remember, when we closed the slits on the
experiment with the microwaves, we had more intensity farther out. So
the narrower we make the slit, the wider the pattern gets, and the
more is the likelihood that we would find that the particle has
sidewise momentum. Thus the uncertainty in the vertical momentum is
inversely proportional to the uncertainty of y[image: -*-]. In fact, we see that
the product of the two is equal to p0 λ[image: -*-]. But λ[image: -*-] is the
wavelength and p0[image: -*-] is the momentum, and in accordance with quantum
mechanics, the wavelength times the momentum is Planck’s constant h[image: -*-].
So we obtain the rule that the uncertainties in the vertical momentum
and in the vertical position have a product of the order h[image: -*-]:

[image: -*-][image: -*-]
(38.3)




We cannot prepare a system in which we know the vertical position of a
particle and can predict how it will move vertically with greater
certainty than given by (38.3). That is, the uncertainty in
the vertical momentum must
exceed ℏ/2 Δ y[image: -*-],
where Δ y[image: -*-] is the uncertainty in our knowledge of the position.




Sometimes people say quantum mechanics is all wrong. When the particle
arrived from the left, its vertical momentum was zero. And now that it
has gone through the slit, its position is known. Both position and
momentum seem to be known with arbitrary accuracy. It is quite true
that we can receive a particle, and on reception determine what its
position is and what its momentum would have had to have been to have
gotten there. That is true, but that is not what the uncertainty
relation (38.3) refers to. Equation (38.3) refers
to the predictability of a situation, not remarks about the
past. It does no good to say “I knew what the momentum was
before it went through the slit, and now I know the position,” because
now the momentum knowledge is lost. The fact that it went through the
slit no longer permits us to predict the vertical momentum. We are
talking about a predictive theory, not just measurements after the fact.
So we must talk about what we can predict.




Now let us take the thing the other way around. Let us take another
example of the same phenomenon, a little more quantitatively. In the
previous example we measured the momentum by a classical
method. Namely, we considered the direction and the velocity and the
angles, etc., so we got the momentum by classical analysis. But since
momentum is related to wave number, there exists in nature still
another way to measure the momentum of a particle—photon or
otherwise—which has no classical analog, because it uses
Eq. (38.2). We measure the wavelengths of the waves.
Let us try to measure momentum in this way.



[image: -][image: -]
Fig. 38–3. Determination of momentum by using a diffraction grating.





Suppose we have a grating with a large number of lines
(Fig. 38–3), and send a beam of particles at the grating. We
have often discussed this problem: if the particles have a definite
momentum, then we get a very sharp pattern in a certain direction,
because of the interference. And we have also talked about how
accurately we can determine that momentum, that is to say, what the
resolving power of such a grating is. Rather than derive it again, we
refer to Chapter 30, where we found that the relative
uncertainty in the wavelength that can be measured with a given grating
is 1/N m[image: -*-], where N[image: -*-] is the number of lines on the grating and m[image: -*-] is
the order of the diffraction pattern. That is,

[image: -*-][image: -*-]
(38.4)







Now formula (38.4) can be rewritten as

[image: -*-][image: -*-]
(38.5)




where L[image: -*-] is the distance shown in Fig. 38–3. This
distance is the difference between the total distance that the
particle or wave or whatever it is has to travel if it is reflected
from the bottom of the grating, and the distance that it has to travel
if it is reflected from the top of the grating. That is, the waves
which form the diffraction pattern are waves which come from different
parts of the grating. The first ones that arrive come from the bottom
end of the grating, from the beginning of the wave train, and the rest
of them come from later parts of the wave train, coming from different
parts of the grating, until the last one finally arrives, and that
involves a point in the wave train a distance L[image: -*-] behind the first
point. So in order that we shall have a sharp line in our spectrum
corresponding to a definite momentum, with an uncertainty given
by (38.4), we have to have a wave train of at least length L[image: -*-].
If the wave train is too short we are not using the entire grating.
The waves which form the spectrum are being reflected from only a very
short sector of the grating if the wave train is too short, and the
grating will not work right—we will find a big angular spread. In
order to get a narrower one, we need to use the whole grating, so that
at least at some moment the whole wave train is scattering
simultaneously from all parts of the grating. Thus the wave train must
be of length L[image: -*-] in order to have an uncertainty in the wavelength less
than that given by (38.5). Incidentally,

[image: -*-][image: -*-]
(38.6)




Therefore

[image: -*-][image: -*-]
(38.7)




where L[image: -*-] is the length of the wave train.




This means that if we have a wave train whose length is less than L[image: -*-],
the uncertainty in the wave number must exceed 2 π/L[image: -*-]. Or the
uncertainty in a wave number times the length of the wave train—we
will call that for a moment Δ x[image: -*-]—exceeds 2 π[image: -*-]. We call it
Δ x[image: -*-] because that is the uncertainty in the location of the
particle. If the wave train exists only in a finite length, then that
is where we could find the particle, within an uncertainty Δ x[image: -*-]. Now this property of waves, that the length of the wave train
times the uncertainty of the wave number associated with it is at
least 2 π[image: -*-], is a property that is known to everyone who studies
them. It has nothing to do with quantum mechanics. It is simply that
if we have a finite train, we cannot count the waves in it very
precisely. Let us try another way to see the reason for that.





Suppose that we have a finite train of length L[image: -*-]; then because of the
way it has to decrease at the ends, as in Fig. 38–1, the
number of waves in the length L[image: -*-] is uncertain by something
like ±1[image: -*-]. But the number of waves in L[image: -*-] is k L/2 π[image: -*-]. Thus k[image: -*-] is
uncertain, and we again get the result (38.7), a property
merely of waves. The same thing works whether the waves are in space
and k[image: -*-] is the number of radians per centimeter and L[image: -*-] is the length
of the train, or the waves are in time and ω[image: -*-] is the number of
radians per second and T[image: -*-] is the “length” in time that the
wave train comes in. That is, if we have a wave train lasting only for
a certain finite time T[image: -*-], then the uncertainty in the frequency is
given by

[image: -*-][image: -*-]
(38.8)




We have tried to emphasize that these are properties of waves alone,
and they are well known, for example, in the theory of sound.




The point is that in quantum mechanics we interpret the wave number as
being a measure of the momentum of a particle, with the rule that p=ℏ k[image: -*-], so that relation (38.7) tells us that Δ p≈h/Δ x[image: -*-]. This, then, is a limitation of the classical idea
of momentum. (Naturally, it has to be limited in some ways if we are
going to represent particles by waves!) It is nice that we have found a
rule that gives us some idea of when there is a failure of classical
ideas.







38–3 Crystal diffraction


Next let us consider the reflection of particle waves from a
crystal. A crystal is a thick thing which has a whole lot of similar
atoms—we will include some complications later—in a nice
array. The question is how to set the array so that we get a strong
reflected maximum in a given direction for a given beam of, say, light
(x-rays), electrons, neutrons, or anything else. In order to obtain a
strong reflection, the scattering from all of the atoms must be in
phase. There cannot be equal numbers in phase and out of phase, or the
waves will cancel out. The way to arrange things is to find the
regions of constant phase, as we have already explained; they are
planes which make equal angles with the initial and final directions
(Fig. 38–4).



[image: -][image: -]
Fig. 38–4. Scattering of waves by crystal planes.





If we consider two parallel planes, as in Fig. 38–4, the
waves scattered from the two planes will be in phase provided the
difference in distance travelled by a wavefront is an integral number
of wavelengths. This difference can be seen to be 2 d sinθ[image: -*-],
where d[image: -*-] is the perpendicular distance between the planes. Thus the
condition for coherent reflection is

[image: -*-][image: -*-]
(38.9)







If, for example, the crystal is such that the atoms happen to lie on
planes obeying condition (38.9) with n=1[image: -*-], then there
will be a strong reflection. If, on the other hand, there are other
atoms of the same nature (equal in density) halfway between, then the
intermediate planes will also scatter equally strongly and will
interfere with the others and produce no effect. So d[image: -*-]
in (38.9) must refer to adjacent planes; we cannot
take a plane five layers farther back and use this formula!




As a matter of interest, actual crystals are not usually as simple as
a single kind of atom repeated in a certain way. Instead; if we make a
two-dimensional analog, they are much like wallpaper, in which there
is some kind of figure which repeats all over the wallpaper. By
“figure” we mean, in the case of atoms, some arrangement—calcium
and a carbon and three oxygens, etc., for calcium carbonate, and so
on—which may involve a relatively large number of atoms. But
whatever it is, the figure is repeated in a pattern. This basic figure
is called a unit cell.




The basic pattern of repetition defines what we call the lattice
type; the lattice type can be immediately determined by looking at
the reflections and seeing what their symmetry is. In other words,
where we find any reflections at all determines the lattice
type, but in order to determine what is in each of the elements of the
lattice one must take into account the intensity of the
scattering at the various directions. Which directions scatter
depends on the type of lattice, but how strongly each scatters
is determined by what is inside each unit cell, and
in that way the structure of crystals is worked out.





Two photographs of x-ray diffraction patterns are shown in Figs. 38–5
and 38–6; they illustrate scattering from rock salt and myoglobin,
respectively.





[image: -]
Figure 38–5 



[image: -]
Figure 38–6 






Incidentally, an interesting thing happens if the spacings of the
nearest planes are less than λ/2[image: -*-]. In this case (38.9)
has no solution for n[image: -*-]. Thus if λ[image: -*-] is bigger than twice the
distance between adjacent planes then there is no side diffraction
pattern, and the light—or whatever it is—will go right through the
material without bouncing off or getting lost. So in the case of light,
where λ[image: -*-] is much bigger than the spacing, of course it does go
through and there is no pattern of reflection from the planes of the
crystal.



[image: -][image: -]
Fig. 38–7. Diffusion of pile neutrons through graphite block.





This fact also has an interesting consequence in the case of piles
which make neutrons (these are obviously particles, for anybody’s
money!). If we take these neutrons and let them into a long block of
graphite, the neutrons diffuse and work their way along
(Fig. 38–7). They diffuse because they are bounced by the
atoms, but strictly, in the wave theory, they are bounced by the atoms
because of diffraction from the crystal planes. It turns out that if we
take a very long piece of graphite, the neutrons that come out the far
end are all of long wavelength! In fact, if one plots the intensity as a
function of wavelength, we get nothing except for wavelengths longer
than a certain minimum (Fig. 38–8). In other words, we can
get very slow neutrons that way. Only the slowest neutrons come through;
they are not diffracted or scattered by the crystal planes of the
graphite, but keep going right through like light through glass, and are
not scattered out the sides. There are many other demonstrations of the
reality of neutron waves and waves of other particles.





[image: -][image: -]
Fig. 38–8. Intensity of neutrons out of graphite rod as function of
wavelength.






38–4 The size of an atom


We now consider another application of the uncertainty
relation, Eq. (38.3).  It must not be taken too seriously; the
idea is right but the analysis is not very accurate. The idea has to do
with the determination of the size of atoms, and the fact that,
classically, the electrons would radiate light and spiral in until they
settle down right on top of the nucleus. But that cannot be right
quantum-mechanically because then we would know where each electron was
and how fast it was moving.





Suppose we have a hydrogen atom, and measure the position of the
electron; we must not be able to predict exactly where the electron will
be, or the momentum spread will then turn out to be infinite. Every time
we look at the electron, it is somewhere, but it has an amplitude to be
in different places so there is a probability of it being found in
different places. These places cannot all be at the nucleus; we shall
suppose there is a spread in position of order a[image: -*-]. That is, the
distance of the electron from the nucleus is usually about a[image: -*-]. We shall
determine a[image: -*-] by minimizing the total energy of the atom.




The spread in momentum is roughly ℏ/a[image: -*-] because of the uncertainty
relation,
so that if
we try to measure the momentum of the electron in some manner, such as
by scattering x-rays off it and looking for the Doppler
effect from a moving scatterer, we would
expect not to get zero every time—the electron is not standing
still—but the momenta must be of the order p≈ℏ/a[image: -*-]. Then
the kinetic energy is roughly [image: \tfrac{1}{2}mv^2 = p^2/2m = \hbar^2/2ma^2][image: \tfrac{1}{2}mv^2 = p^2/2m = \hbar^2/2ma^2]. (In a sense, this is a kind of dimensional analysis to
find out in what way the kinetic energy depends upon
the reduced
Planck constant,
upon m[image: -*-], and upon the size of the atom. We need not trust our answer to
within factors like 2, π[image: -*-], etc. We have not even defined a[image: -*-] very
precisely.) Now the potential energy is minus e2[image: -*-] over the distance
from the center, say −e2/a[image: -*-], where, we remember, e2[image: -*-] is the charge
of an electron squared, divided by 4 π ϵ0[image: -*-]. Now the point is that
the potential energy is reduced if a[image: -*-] gets smaller, but the smaller a[image: -*-]
is, the higher the momentum required, because of the uncertainty
principle, and therefore the higher the kinetic energy.
The total energy is

[image: -*-][image: -*-]
(38.10)




We do not know what a[image: -*-] is, but we know that the atom is going to
arrange itself to make some kind of compromise so that the energy is
as little as possible. In order to minimize E[image: -*-], we differentiate with
respect to a[image: -*-], set the derivative equal to zero, and solve
for a[image: -*-]. The derivative of E[image: -*-] is

[image: -*-][image: -*-]
(38.11)




and setting d E/d a=0[image: -*-] gives for a[image: -*-] the value

[image: -*-][image: -*-]
(38.12)




This particular distance is called the Bohr
radius, and we have thus learned that atomic
dimensions are of the order of angstroms, which is right: This is pretty
good—in fact, it is amazing, since until now we have had no basis for
understanding the size of atoms!  Atoms are completely impossible from
the classical point of view, since the electrons would spiral into the
nucleus.




Now if we put the value (38.12) for a0[image: -*-]
into (38.10) to find the energy, it comes out

[image: -*-][image: -*-]
(38.13)




What does a negative energy mean? It means that the electron has less
energy when it is in the atom than when it is free. It means it is
bound. It means it takes energy to kick the electron out; it takes
energy of the order of 13.6[image: -*-] eV to ionize a hydrogen atom. We have no
reason to think that it is not two or three times this—or half of
this—or (1/π)[image: -*-] times this, because we have used such a sloppy
argument. However, we have cheated, we have used all the constants in
such a way that it happens to come out the right number! This number,
13.6[image: -*-] electron volts, is called a Rydberg of
energy; it is the ionization energy of hydrogen.





So we now understand why we do not fall through the floor. As we walk,
our shoes with their masses of atoms push against the floor with
its mass of atoms. In order to squash the atoms closer
together, the electrons would be confined to a smaller space and, by
the uncertainty principle, their momenta would have
to be higher on the average, and that means high energy; the resistance
to atomic compression is a quantum-mechanical effect and not a classical
effect. Classically, we would expect that if we were to draw all the
electrons and protons closer together, the energy would be reduced still
further, and the best arrangement of positive and negative charges in
classical physics is all on top of each other. This was well known in
classical physics and was a puzzle because of the existence of the atom.
Of course, the early scientists invented some ways out of the
trouble—but never mind, we have the right way out, now!
(Maybe.)




Incidentally, although we have no reason to understand it at the
moment, in a situation where there are many electrons it turns out
that they try to keep away from each other. If one electron is
occupying a certain space, then another does not occupy the same
space. More precisely, there are two spin cases, so that two can sit
on top of each other, one spinning one way and one the other way. But
after that we cannot put any more there. We have to put others in
another place, and that is the real reason that matter has
strength. If we could put all the electrons in the same place it would
condense even more than it does. It is the fact that the electrons
cannot all get on top of each other that makes tables and everything
else solid.




Obviously, in order to understand the properties of matter, we will
have to use quantum mechanics and not be satisfied with classical
mechanics.







38–5 Energy levels


We have talked about the atom in its lowest possible energy condition,
but it turns out that the electron can do other things. It can jiggle
and wiggle in a more energetic manner, and so there are many different
possible motions for the atom. According to quantum mechanics, in a
stationary condition there can only be definite energies for an
atom. We make a diagram (Fig. 38–9) in which we plot the
energy vertically, and we make a horizontal line for each allowed
value of the energy. When the electron is free, i.e., when its energy
is positive, it can have any energy; it can be moving at any
speed. But bound energies are not arbitrary. The atom must have one or
another out of a set of allowed values, such as those in
Fig. 38–9.



[image: -][image: -]
Fig. 38–9. Energy diagram for an atom, showing several possible
transitions.





Now let us call the allowed values of the energy E0[image: -*-], E1[image: -*-],
E2[image: -*-], E3[image: -*-]. If an atom is initially in one of these “excited states,” E1[image: -*-],
E2[image: -*-], etc., it does not remain in that state
forever. Sooner or later it drops to a lower state and radiates energy
in the form of light. The frequency of the light that is emitted is
determined by conservation of energy plus the quantum-mechanical
understanding that the frequency of the light is related to the energy
of the light by (38.1). Therefore the frequency of the
light which is liberated in a transition from energy E3[image: -*-] to
energy E1[image: -*-] (for example) is

[image: -*-][image: -*-]
(38.14)




This, then, is a characteristic frequency of the atom and defines a
spectral emission line. Another possible transition would be from
E3[image: -*-] to E0[image: -*-]. That would have a different frequency

[image: -*-][image: -*-]
(38.15)




Another possibility is that if the atom were excited to the state E1[image: -*-]
it could drop to the ground state E0[image: -*-], emitting a photon of frequency

[image: -*-][image: -*-]
(38.16)




The reason we bring up three transitions is to point out an
interesting relationship. It is easy to see from
(38.14), (38.15), and (38.16) that

[image: -*-][image: -*-]
(38.17)




In general, if we find two spectral lines, we shall expect to find
another line at the sum of the frequencies (or the difference in the
frequencies), and that all the lines can be understood by finding a
series of levels such that every line corresponds to the difference in
energy of some pair of levels. This remarkable coincidence in spectral
frequencies was noted before quantum mechanics was discovered, and it
is called the Ritz combination principle. This is again a
mystery from the point of view of classical mechanics. Let us not
belabor the point that classical mechanics is a failure in the atomic
domain; we seem to have demonstrated that pretty well.




We have already talked about quantum mechanics as being represented by
amplitudes which behave like waves, with certain frequencies and wave
numbers. Let us observe how it comes about from the point of view of
amplitudes that the atom has definite energy states. This is something
we cannot understand from what has been said so far, but we are all
familiar with the fact that confined waves have definite
frequencies. For instance, if sound is confined to an organ pipe, or
anything like that, then there is more than one way that the sound can
vibrate, but for each such way there is a definite frequency. Thus an
object in which the waves are confined has certain resonance
frequencies. It is therefore a property of waves in a confined
space—a subject which we will discuss in detail with formulas later
on—that they exist only at definite frequencies. And since the
general relation exists between frequencies of the amplitude and
energy, we are not surprised to find definite energies associated with
electrons bound in atoms.







38–6 Philosophical implications


Let us consider briefly some philosophical implications of quantum
mechanics. As always, there are two aspects of the problem: one is the
philosophical implication for physics, and the other is the
extrapolation of philosophical matters to other fields. When
philosophical ideas associated with science are dragged into another
field, they are usually completely distorted. Therefore we shall
confine our remarks as much as possible to physics itself.




First of all, the most interesting aspect is the idea of the uncertainty
principle; making an observation affects the phenomenon. It has always
been known that making observations affects a phenomenon, but the point
is that the effect cannot be disregarded or minimized or decreased
arbitrarily by rearranging the apparatus. When we look for a certain
phenomenon we cannot help but disturb it in a certain minimum way, and
the disturbance is necessary for the consistency of the
viewpoint.  The observer was sometimes important in prequantum physics,
but only in a rather trivial sense. The problem has been raised: if a
tree falls in a forest and there is nobody there to hear it, does it
make a noise? A real tree falling in a real forest makes a
sound, of course, even if nobody is there. Even if no one is present to
hear it, there are other traces left. The sound will shake some leaves,
and if we were careful enough we might find somewhere that some thorn
had rubbed against a leaf and made a tiny scratch that could not be
explained unless we assumed the leaf were vibrating. So in a certain
sense we would have to admit that there is a sound made. We might ask:
was there a sensation of sound? No, sensations have to do,
presumably, with consciousness. And whether ants are conscious and
whether there were ants in the forest, or whether the tree was
conscious, we do not know. Let us leave the problem in that form.




Another thing that people have emphasized since quantum mechanics was
developed is the idea that we should not speak about those things which
we cannot measure. (Actually relativity theory also said this.) Unless a
thing can be defined by measurement, it has no place in a theory. And
since an accurate value of the momentum of a localized particle cannot
be defined by measurement it therefore has no place in the theory. The
idea that this is what was the matter with classical theory is a
false position. It is a careless analysis of the situation. Just
because we cannot measure position and momentum precisely does
not a priori mean that we cannot talk about them. It only
means that we need not talk about them. The situation in the
sciences is this: A concept or an idea which cannot be measured or
cannot be referred directly to experiment may or may not be useful. It
need not exist in a theory. In other words, suppose we compare the
classical theory of the world with the quantum theory of the world, and
suppose that it is true experimentally that we can measure position and
momentum only imprecisely. The question is whether the ideas of
the exact position of a particle and the exact momentum of a particle
are valid or not. The classical theory admits the ideas; the quantum
theory does not. This does not in itself mean that classical physics is
wrong. When the new quantum mechanics was discovered, the classical
people—which included everybody except
Heisenberg,
Schrödinger, and
Born—said: “Look, your theory is not
any good because you cannot answer certain questions like: what is the
exact position of a particle?, which hole does it go through?, and some
others.” Heisenberg’s answer
was: “I do not need to answer such questions because you cannot ask
such a question experimentally.” It is that we do not have to.
Consider two theories (a) and (b); (a) contains an idea that cannot be
checked directly but which is used in the analysis, and the other, (b),
does not contain the idea. If they disagree in their predictions, one
could not claim that (b) is false because it cannot explain this idea
that is in (a), because that idea is one of the things that cannot be
checked directly. It is always good to know which ideas cannot be
checked directly, but it is not necessary to remove them all. It is not
true that we can pursue science completely by using only those concepts
which are directly subject to experiment.




In quantum mechanics itself there is a wave function amplitude, there
is a potential, and there are many constructs that we cannot measure
directly. The basis of a science is its ability to predict. To
predict means to tell what will happen in an experiment that has never
been done. How can we do that? By assuming that we know what is there,
independent of the experiment. We must extrapolate the experiments to
a region where they have not been done. We must take our concepts and
extend them to places where they have not yet been checked. If we do
not do that, we have no prediction. So it was perfectly sensible for
the classical physicists to go happily along and suppose that the
position—which obviously means something for a baseball—meant
something also for an electron. It was not stupidity. It was a
sensible procedure. Today we say that the law of relativity is
supposed to be true at all energies, but someday somebody may come
along and say how stupid we were. We do not know where we are
“stupid” until we “stick our neck out,” and so the whole idea is
to put our neck out. And the only way to find out that we are wrong is
to find out what our predictions are. It is absolutely
necessary to make constructs.




We have already made a few remarks about the indeterminacy of quantum
mechanics. That is, that we are unable now to predict what will happen
in physics in a given physical circumstance which is arranged as
carefully as possible. If we have an atom that is in an excited state
and so is going to emit a photon, we cannot say when it will
emit the photon. It has a certain amplitude to emit the photon at any
time, and we can predict only a probability for emission; we cannot
predict the future exactly. This has given rise to all kinds of
nonsense and questions on the meaning of freedom of will, and of the
idea that the world is uncertain.




Of course we must emphasize that classical physics is also
indeterminate, in a sense. It is usually thought that this
indeterminacy, that we cannot predict the future, is an important
quantum-mechanical thing, and this is said to explain the behavior of
the mind, feelings of free will, etc. But if the world were
classical—if the laws of mechanics were classical—it is not quite
obvious that the mind would not feel more or less the same. It is true
classically that if we knew the position and the velocity of every
particle in the world, or in a box of gas, we could predict exactly
what would happen. And therefore the classical world is
deterministic. Suppose, however, that we have a finite accuracy and do
not know exactly where just one atom is, say to one part in a
billion. Then as it goes along it hits another atom, and because we
did not know the position better than to one part in a billion, we
find an even larger error in the position after the collision. And
that is amplified, of course, in the next collision, so that if we
start with only a tiny error it rapidly magnifies to a very great
uncertainty. To give an example: if water falls over a dam, it
splashes. If we stand nearby, every now and then a drop will land on
our nose. This appears to be completely random, yet such a behavior
would be predicted by purely classical laws. The exact position of all
the drops depends upon the precise wigglings of the water before it
goes over the dam. How? The tiniest irregularities are magnified in
falling, so that we get complete randomness. Obviously, we cannot
really predict the position of the drops unless we know the motion of
the water absolutely exactly.




Speaking more precisely, given an arbitrary accuracy, no matter how
precise, one can find a time long enough that we cannot make
predictions valid for that long a time. Now the point is that this
length of time is not very large. It is not that the time is millions
of years if the accuracy is one part in a billion. The time goes, in
fact, only logarithmically with the error, and it turns out that in
only a very, very tiny time we lose all our information. If the
accuracy is taken to be one part in billions and billions and
billions—no matter how many billions we wish, provided we do stop
somewhere—then we can find a time less than the time it took to
state the accuracy—after which we can no longer predict what is
going to happen! It is therefore not fair to say that from the
apparent freedom and indeterminacy of the human mind, we should have
realized that classical “deterministic” physics could not ever hope
to understand it, and to welcome quantum mechanics as a release from a
“completely mechanistic” universe. For already in classical
mechanics there was indeterminability from a practical point of view.





	
  
  More precisely, the error in our knowledge of y[image: -*-] is ±B/2[image: -*-]. But we are now only interested in the general idea, so we won’t
worry about factors of 2.
  ↩





  
    

39 The Kinetic Theory of Gases



39–1 Properties of matter


With this chapter we begin a new subject which will occupy
us for some time. It is the first part of the analysis of the properties
of matter from the physical point of view, in which, recognizing that
matter is made out of a great many atoms, or elementary parts, which
interact electrically and obey the laws of mechanics, we try to
understand why various aggregates of atoms behave the way they do.




It is obvious that this is a difficult subject, and we emphasize at the
beginning that it is in fact an extremely difficult subject, and
that we have to deal with it differently than we have dealt with the
other subjects so far. In the case of mechanics and in the case of
light, we were able to begin with a precise statement of some laws, like
Newton’s laws, or the formula for
the field produced by an accelerating charge, from which a whole host of
phenomena could be essentially understood, and which would produce a
basis for our understanding of mechanics and of light from that time on.
That is, we may learn more later, but we do not learn different physics,
we only learn better methods of mathematical analysis to deal with the
situation.




We cannot use this approach effectively in studying the properties of
matter. We can discuss matter only in a most elementary way; it is
much too complicated a subject to analyze directly from its specific
basic laws, which are none other than the laws of mechanics and
electricity. But these are a bit too far away from the properties we
wish to study; it takes too many steps to get from Newton’s
laws to
the properties of matter, and these steps are, in themselves, fairly
complicated. We will now start to take some of these steps, but while
many of our analyses will be quite accurate, they will eventually get
less and less accurate. We will have only a rough understanding of the
properties of matter.





One of the reasons that we have to perform the analysis so imperfectly
is that the mathematics of it requires a deep understanding of the
theory of probability; we are not going to want to know where every
atom is actually moving, but rather, how many move here and there on
the average, and what the odds are for different effects. So this
subject involves a knowledge of the theory of probability, and our
mathematics is not yet quite ready and we do not want to strain it too
hard.




Secondly, and more important from a physical standpoint, the actual
behavior of the atoms is not according to classical mechanics, but
according to quantum mechanics, and a correct understanding of the
subject cannot be attained until we understand quantum
mechanics. Here, unlike the case of billiard balls and automobiles,
the difference between the classical mechanical laws and the
quantum-mechanical laws is very important and very significant, so
that many things that we will deduce by classical physics will be
fundamentally incorrect. Therefore there will be certain things to be
partially unlearned; however, we shall indicate in every case when a
result is incorrect, so that we will know just where the “edges”
are. One of the reasons for discussing quantum mechanics in the
preceding chapters was to give an idea as to why, more or less,
classical mechanics is incorrect in the various directions.




Why do we deal with the subject now at all? Why not wait half a year, or
a year, until we know the mathematics of probability better, and we
learn a little quantum mechanics, and then we can do it in a more
fundamental way? The answer is that it is a difficult subject, and the
best way to learn is to do it slowly! The first thing to do is to get
some idea, more or less, of what ought to happen in different
circumstances, and then, later, when we know the laws better, we will
formulate them better.




Anyone who wants to analyze the properties of matter in a real problem
might want to start by writing down the fundamental equations and then
try to solve them mathematically. Although there are people who try to
use such an approach, these people are the failures in this field; the
real successes come to those who start from a physical point of
view, people who have a rough idea where they are going and then begin
by making the right kind of approximations, knowing what is big and
what is small in a given complicated situation. These problems are so
complicated that even an elementary understanding, although inaccurate
and incomplete, is worthwhile having, and so the subject will be one
that we shall go over again and again, each time with more and more
accuracy, as we go through our course in physics.




Another reason for beginning the subject right now is that we have
already used many of these ideas in, for example, chemistry, and we
have even heard of some of them in high school. It is interesting to
know the physical basis for these things.




As an interesting example, we all know that equal volumes of gases, at
the same pressure and temperature, contain the same number of molecules.
The law of multiple proportions, that when two gases combine in a
chemical reaction the volumes needed always stand in simple integral
proportions, was understood ultimately by
Avogadro to mean that
equal volumes have equal
numbers of atoms. Now why do they have equal numbers of atoms?
Can we deduce from Newton’s laws that the
number of atoms should
be equal? We shall address ourselves to that specific matter in this
chapter. In succeeding chapters, we shall discuss various other
phenomena involving pressures, volumes, temperature, and heat.





We shall also find that the subject can be attacked from a nonatomic
point of view, and that there are many interrelationships of the
properties of substances. For instance, when we compress something, it
heats; if we heat it, it expands. There is a relationship between
these two facts which can be deduced independently of the machinery
underneath. This subject is called thermodynamics.
The deepest
understanding of thermodynamics comes, of course, from
understanding
the actual machinery underneath, and that is what we shall do: we
shall take the atomic viewpoint from the beginning and use it to
understand the various properties of matter and the laws of
thermodynamics.





Let us, then, discuss the properties of gases from the standpoint of
Newton’s laws of mechanics.








39–2 The pressure of a gas


First, we know that a gas exerts a pressure, and we must clearly
understand what this is due to. If our ears were a few times more
sensitive, we would hear a perpetual rushing noise. Evolution has not
developed the ear to that point, because it would be useless if it
were so much more sensitive—we would hear a perpetual racket. The
reason is that the eardrum is in contact with the air, and air is a
lot of molecules in perpetual motion and these bang against the
eardrums. In banging against the eardrums they make an irregular
tattoo—boom, boom, boom—which we do not hear because the atoms are
so small, and the sensitivity of the ear is not quite enough to notice
it. The result of this perpetual bombardment is to push the drum away,
but of course there is an equal perpetual bombardment of atoms on the
other side of the eardrum, so the net force on it is zero. If we were
to take the air away from one side, or change the relative amounts of
air on the two sides, the eardrum would then be pushed one way or the
other, because the amount of bombardment on one side would be greater
than on the other. We sometimes feel this uncomfortable effect when we
go up too fast in an elevator or an airplane, especially if we also
have a bad cold (when we have a cold, inflammation closes the tube
which connects the air on the inside of the eardrum with the outside
air through the throat, so that the two pressures cannot readily
equalize).



[image: -][image: -]
Fig. 39–1. Atoms of a gas in a box with a frictionless piston.





In considering how to analyze the situation quantitatively, we imagine
that we have a volume of gas in a box, at one end of which is a piston
which can be moved (Fig. 39–1). We would like to find out
what force on the piston results from the fact that there are atoms in
this box. The volume of the box is V[image: -*-], and as the atoms move around
inside the box with various velocities they bang against the piston.
Suppose there is nothing, a vacuum, on the outside of the piston. What
of it?  If the piston were left alone, and nobody held onto it, each
time it got banged it would pick up a little momentum and it would
gradually get pushed out of the box. So in order to keep it from being
pushed out of the box, we have to hold it with a force F[image: -*-]. The problem
is, how much force? One way of expressing the force is to talk about the
force per unit area: if A[image: -*-] is the area of the piston, then the force on
the piston will be written as a number times the area. We define the
pressure, then, as equal to the force that we have to apply on a piston,
divided by the area of the piston:
[image: -*-][image: -*-]
(39.1)




To make sure we understand the idea (we have to derive it for another
purpose anyway), the differential work d W[image: -*-] done on the gas in
compressing it by moving the piston in a differential amount −d x[image: -*-]
would be the force times the distance that we compress it, which,
according to (39.1), would be the pressure times the area,
times the distance, which is equal to minus the pressure times the
change in the volume:

[image: -*-][image: -*-]
(39.2)




(The area A[image: -*-] times the distance d x[image: -*-] is the volume change.) The minus
sign is there because, as we compress it, we decrease the
volume; if we think about it we can see that if a gas is compressed,
work is done on it.




How much force do we have to apply to balance the banging of the
molecules? The piston receives from each collision a certain amount of
momentum. A certain amount of momentum per second will pour into the
piston, and it will start to move. To keep it from moving, we must
pour back into it the same amount of momentum per second from our
force. Of course, the force is the amount of momentum per
second that we must pour in. There is another way to put it: if we let
go of the piston it will pick up speed because of the bombardments;
with each collision we get a little more speed, and the speed thus
accelerates. The rate at which the piston picks up speed, or
accelerates, is proportional to the force on it. So we see that the
force, which we already have said is the pressure times the area, is
equal to the momentum per second delivered to the piston by the
colliding molecules.




To calculate the momentum per second is easy—we can do it in two
parts: first, we find the momentum delivered to the piston by one
particular atom in a collision with the piston, then we have to
multiply by the number of collisions per second that the atoms have
with the wall. The force will be the product of these two factors. Now
let us see what the two factors are: In the first place, we shall
suppose that the piston is a perfect “reflector” for the atoms. If
it is not, the whole theory is wrong, and the piston will start to
heat up and things will change, but eventually, when equilibrium has
set in, the net result is that the collisions are effectively
perfectly elastic. On the average, every particle that comes in leaves
with the same energy. So we shall imagine that the gas is in a steady
condition, and we lose no energy to the piston because the piston is
standing still. In those circumstances, if a particle comes in with a
certain speed, it comes out with the same speed and, we will say, with
the same mass.





If v[image: -*-] is the velocity of an atom, and vx[image: -*-] is the x[image: -*-]-component
of v[image: -*-], then m vx[image: -*-] is the x[image: -*-]-component of momentum “in”; but
we also have an equal component of momentum “out,” and so the total
momentum delivered to the piston by the particle, in one collision,
is 2 m vx[image: -*-], because it is “reflected.”




Now, we need the number of collisions made by the atoms in a second,
or in a certain amount of time d t[image: -*-]; then we divide by d t[image: -*-]. How many
atoms are hitting?  Let us suppose that there are N[image: -*-] atoms in the
volume V[image: -*-], or n=N/V[image: -*-] in each unit volume. To find how many atoms
hit the piston, we note that, given a certain amount of time t[image: -*-], if a
particle has a certain velocity toward the piston it will hit during
the time t[image: -*-], provided it is close enough. If it is too far away, it
goes only part way toward the piston in the time t[image: -*-], but does not
reach the piston. Therefore it is clear that only those molecules
which are within a distance vx t[image: -*-] from the piston are going to hit
the piston in the time t[image: -*-]. Thus the number of collisions in a
time t[image: -*-] is equal to the number of atoms which are in the region within a
distance vx t[image: -*-], and since the area of the piston is A[image: -*-], the
volume occupied by the atoms which are going to hit the piston
is vx t A[image: -*-]. But the number of atoms that are going to hit the
piston is that volume times the number of atoms per unit volume,
n vx t A[image: -*-]. Of course we do not want the number that hit in a time t[image: -*-],
we want the number that hit per second, so we divide by the time t[image: -*-],
to get n vx A[image: -*-]. (This time t[image: -*-] could be made very short; if we feel we
want to be more elegant, we call it d t[image: -*-], then differentiate, but it
is the same thing.)




So we find that the force is

[image: -*-][image: -*-]
(39.3)




See, the force is proportional to the area, if we keep the
particle density fixed as we change the area! The pressure is then

[image: -*-][image: -*-]
(39.4)







Now we notice a little trouble with this analysis: First, all the
molecules do not have the same velocity, and they do not move in the
same direction. So, all the [image: v_x^2][image: v_x^2]’s are different! So what we must
do, of course, is to take an average of the [image: v_x^2][image: v_x^2]’s, since
each one makes its own contribution. What we want is the square
of vx[image: -*-], averaged over all the molecules:

[image: -*-][image: -*-]
(39.5)




Did we forget to include the factor 2? No; of all the atoms, only half
are headed toward the piston. The other half are headed the other way,
so the number of atoms per unit volume that are hitting the
piston is only n/2[image: -*-].




Now as the atoms bounce around, it is clear that there is nothing
special about the “x[image: -*-]-direction”; the atoms may also be moving up
and down, back and forth, in and out. Therefore it is going to be true
that [image: \avg{v_x^2}][image: \avg{v_x^2}], the average motion of the atoms in one direction,
and the average in the other two directions, are all going to be
equal:

[image: -*-][image: -*-]
(39.6)




It is only a matter of rather tricky mathematics to notice, therefore,
that they are each equal to one-third of their sum, which is of course
the square of the magnitude of the velocity:

[image: -*-][image: -*-]
(39.7)




This has the advantage that we do not have to worry about any
particular direction, and so we write our pressure formula again in
this form:

[image: -*-][image: -*-]
(39.8)




The reason we wrote the last factor as [image: \avg{mv^2/2}][image: \avg{mv^2/2}] is that this is
the kinetic energy of the center-of-mass motion of the
molecule. We find, therefore, that

[image: -*-][image: -*-]
(39.9)




With this equation we can calculate how much the pressure is, if we
know the speeds.





As a very simple example let us take helium gas, or any other gas,
like mercury vapor, or potassium vapor of high enough temperature, or
argon, in which all the molecules are single atoms, for which we may
suppose that there is no internal motion in the atom. If we had a
complex molecule, there might be some internal motion, mutual
vibrations, or something. We suppose that we may disregard that; this
is actually a serious matter that we will have to come back to, but it
turns out to be all right. We suppose that the internal motion of the
atoms can be disregarded, and therefore, for this purpose, that the
kinetic energy of the center-of-mass motion is all the energy there
is. So for a monatomic gas, the kinetic energy is
the total energy. In general, we are going to call U[image: -*-] the total energy
(it is sometimes called the total internal energy—we may wonder
why, since there is no external energy to a gas), i.e., all the
energy of all the molecules in the gas, or the object, whatever it is.




For a monatomic gas we will suppose that the total
energy U[image: -*-] is equal to a number of atoms times the average kinetic
energy of each, because we are disregarding any possibility of
excitation or motion inside the atoms themselves. Then, in these
circumstances, we would have

[image: -*-][image: -*-]
(39.10)









Incidentally, we can stop here and find the answer to the following
question: Suppose that we take a can of gas and compress the gas
slowly, how much pressure do we need to squeeze the volume down? It is
easy to find out, since the pressure is [image: \tfrac{2}{3}][image: \tfrac{2}{3}] the energy
divided by V[image: -*-]. As we squeeze it down, we do work on the gas and we
thereby increase the energy U[image: -*-]. So we are going to have some kind of
a differential equation: If we start out in a given circumstance with
a certain energy and a certain volume, we then know the pressure. Now
we start to squeeze, but the moment we do, the energy U[image: -*-] increases
and the volume V[image: -*-] decreases, so the pressure goes up.




So, we have to solve a differential equation, and we will solve it in
a moment. We must first emphasize, however, that as we are compressing
this gas, we are supposing that all the work goes into increasing the
energy of the atoms inside. We may ask, “Isn’t that necessary? Where
else could it go?” It turns out that it can go another place. There
are what we call “heat leaks” through the walls: the hot (i.e.,
fast-moving) atoms that bombard the walls, heat the walls, and energy
goes away. We shall suppose for the present that this is not the case.




For somewhat wider generality, although we are still making some very
special assumptions about our gas, we shall write, not [image: PV = \tfrac{2}{3}U][image: PV = \tfrac{2}{3}U], but

[image: -*-][image: -*-]
(39.11)




It is written (γ−1)[image: -*-] times U[image: -*-] for conventional reasons,
because we will deal with a few other cases later where the number in
front of U[image: -*-] will not be [image: \tfrac{2}{3}][image: \tfrac{2}{3}], but will be a different
number. So, in order to do the thing in general, we call it γ−1[image: -*-], because people have been calling it that for almost one hundred
years. This γ[image: -*-], then, is [image: \tfrac{5}{3}][image: \tfrac{5}{3}] for a monatomic
gas like helium, because [image: \tfrac{5}{3} - 1][image: \tfrac{5}{3} - 1]
is [image: \tfrac{2}{3}][image: \tfrac{2}{3}].





We have already noticed that when we compress a gas the work done
is −P d V[image: -*-]. A compression in which there is no heat energy added or
removed is called an adiabatic
compression,
from the Greek
a (not) +[image: -*-] dia (through) +[image: -*-] bainein (to
go). (The word adiabatic is used in physics in several ways, and it is
sometimes hard to see what is common about them.) That is, for an
adiabatic compression
all the work done goes into changing the
internal energy. That is the key—that there are no other losses of
energy—for then we have P d V=−d U[image: -*-]. But since U=P V/(γ−1)[image: -*-], we may write

[image: -*-][image: -*-]
(39.12)




So we have P d V=−(P d V+V d P)/(γ−1)[image: -*-], or, rearranging
the terms, γ P d V=−V d P[image: -*-], or

[image: -*-][image: -*-]
(39.13)




Fortunately, assuming that γ[image: -*-] is constant, as it is for a
monatomic gas, we can integrate this: it gives
γ lnV+lnP=lnC[image: -*-], where lnC[image: -*-] is the constant of
integration. If we take the exponential of both sides, we get the law

[image: -*-][image: -*-]
(39.14)




In other words, under adiabatic conditions, where the temperature
rises as we compress because no heat is being lost, the pressure times
the volume to the [image: \tfrac{5}{3}][image: \tfrac{5}{3}] power is a constant for a monatomic
gas! Although we derived it theoretically, this
is, in fact, the way monatomic gases behave
experimentally.








39–3 Compressibility of radiation


We may give one other example of the kinetic theory of a gas, one
which is not used in chemistry so much, but is used in astronomy. We
have a large number of photons in a box in which the temperature is
very high. (The box is, of course, the gas in a very hot star. The sun
is not hot enough; there are still too many atoms, but at still higher
temperatures in certain very hot stars, we may neglect the atoms and
suppose that the only objects that we have in the box are photons.)
Now then, a photon has a certain momentum p[image: -*-]. (We always find
that we are in terrible trouble when we do kinetic theory: p[image: -*-] is the
pressure, but p[image: -*-] is the momentum; v[image: -*-] is the volume, but v[image: -*-] is the
velocity; T[image: -*-] is the temperature, but T[image: -*-] is the kinetic energy or the
time or the torque; one must keep one’s wits about one!) This p[image: -*-]
is momentum, it is a vector. Going through the same analysis as
before, it is the x[image: -*-]-component of the vector p[image: -*-] which generates
the “kick,” and twice the x[image: -*-]-component of the vector p[image: -*-] is the
momentum which is given in the kick. Thus 2 px[image: -*-] replaces 2 m vx[image: -*-], and
in evaluating the number of collisions, vx[image: -*-] is still vx[image: -*-], so when
we get all the way through, we find that the pressure in
Eq. (39.4) is, instead,

[image: -*-][image: -*-]
(39.15)




Then, in the averaging, it becomes n[image: -*-] times the average of px vx[image: -*-]
(the same factor of 2) and, finally, putting in the other two
directions, we find

[image: -*-][image: -*-]
(39.16)




This checks with the formula (39.9), because the momentum
is m v[image: -*-]; it is a little more general, that is all. The pressure
times the volume is the total number of atoms
times [image: \tfrac{1}{3}(\FLPp\cdot\FLPv)][image: \tfrac{1}{3}(\FLPp\cdot\FLPv)], averaged.




Now, for photons, what is p⋅v[image: -*-]? The momentum and the
velocity are in the same direction, and the velocity is the speed of
light, so this is the momentum of each of the objects, times the speed
of light. The momentum times the speed of light of every photon is its
energy: E=p c[image: -*-], so these terms are the energies of each of
the photons, and we should, of course, take an average energy, times
the number of photons. So we have [image: \tfrac{1}{3}][image: \tfrac{1}{3}] of the energy inside
the gas:

[image: -*-][image: -*-]
(39.17)




For photons, then, since we have [image: \tfrac{1}{3}][image: \tfrac{1}{3}] in front, (γ−1)[image: -*-] in (39.11) is [image: \tfrac{1}{3}][image: \tfrac{1}{3}], or [image: \gamma = \tfrac{4}{3}][image: \gamma = \tfrac{4}{3}], and we have discovered that radiation in a box obeys
the law

[image: -*-][image: -*-]
(39.18)




So we know the compressibility of radiation! That is what is used in
an analysis of the contribution of radiation pressure in a star, that
is how we calculate it, and how it changes when we compress it. What
wonderful things are already within our power!







39–4 Temperature and kinetic energy


So far we have not dealt with temperature; we have purposely
been avoiding the temperature. As we compress a gas, we know that the
energy of the molecules increases, and we are used to saying that the
gas gets hotter; we would like to understand what this has to do with
the temperature. If we try to do the experiment, not adiabatically but
at what we call constant temperature, what are we doing? We
know that if we take two boxes of gas and let them sit next to each
other long enough, even if at the start they were at what we call
different temperatures, they will in the end come to the same
temperature. Now what does that mean? That means that they get to a
condition that they would get to if we left them alone long enough!
What we mean by equal temperature is just that—the final condition
when things have been sitting around interacting with each other long
enough.



[image: -][image: -]
Fig. 39–2. Atoms of two different monatomic gases are
separated by a movable piston.





Let us consider, now, what happens if we have two gases in containers
separated by a movable piston as in Fig. 39–2 (just for
simplicity we shall take two monatomic gases, say
helium and neon). In container (1) the atoms have mass m1[image: -*-],
velocity v1[image: -*-], and there are n1[image: -*-] per unit volume, and in the other container
the atoms have mass m2[image: -*-], velocity v2[image: -*-], there are n2[image: -*-] atoms per
unit volume. What are the conditions for equilibrium?





Obviously, the bombardment from the left side must be such that it
moves the piston to the right and compresses the other gas until its
pressure builds up, and the thing will thus slosh back and forth, and
will gradually come to rest at a place where the pressures are equal
on both sides. So we can arrange that the pressures are equal; that
just means that the internal energies per unit volume are equal, or
that the numbers n[image: -*-] times the average kinetic energies on each side
are equal. What we have to try to prove, eventually, is that the
numbers themselves are equal. So far, all we know is that the
numbers times the kinetic energies are equal,

[image: -*-][image: -*-]


from (39.8), because the pressures are equal. We must
realize that this is not the only condition over the long run, but
something else must happen more slowly as the true complete
equilibrium corresponding to equal temperatures sets in.





To see the idea, suppose that the pressure on the left side were
developed by having a very high density but a low velocity. By having
a large n[image: -*-] and a small v[image: -*-], we can get the same pressure as by having
a small n[image: -*-] and a large v[image: -*-]. The atoms may be moving slowly but be
packed nearly solidly, or there may be fewer but they are hitting
harder. Will it stay like that forever? At first we might think so,
but then we think again and find we have forgotten one important
point. That is, that the intermediate piston does not receive a steady
pressure; it wiggles, just like the eardrum that we were first talking
about, because the bangings are not absolutely uniform. There is not a
perpetual, steady pressure, but a tattoo—the pressure varies, and so
the thing jiggles. Suppose that the atoms on the right side are not
jiggling much, but those on the left are few and far between and very
energetic. The piston will, now and then, get a big impulse from the
left, and will be driven against the slow atoms on the right, giving
them more speed. (As each atom collides with the piston, it either
gains or loses energy, depending upon whether the piston is moving one
way or the other when the atom strikes it.) So, as a result of the
collisions, the piston finds itself jiggling, jiggling, jiggling, and
this shakes the other gas—it gives energy to the other atoms, and
they build up faster motions, until they balance the jiggling that the
piston is giving to them. The system comes to some equilibrium where
the piston is moving at such a mean square speed that it picks up
energy from the atoms at about the same rate as it puts energy back
into them. So the piston picks up a certain mean irregularity in
speed, and it is our problem to find it. When we do find it, we can
solve our problem better, because the gases will adjust their
velocities until the rate at which they are trying to pour energy into
each other through the piston will become equal.




It is quite difficult to figure out the details of the piston in this
particular circumstance; although it is ideally simple to understand,
it turns out to be a little harder to analyze. Before we analyze that,
let us analyze another problem in which we have a box of gas but now
we have two different kinds of molecules in it, having masses m1[image: -*-]
and m2[image: -*-], velocities v1[image: -*-] and v2[image: -*-], and so forth; there is now a
much more intimate relationship. If all of the No. 2 molecules are
standing still, that condition is not going to last, because they get
kicked by the No. 1 molecules and so pick up speed. If they are
all going much faster than the No. 1 molecules, then maybe that
will not last either—they will pass the energy back to the No. 1
molecules. So when both gases are in the same box, the problem is to
find the rule that determines the relative speeds of the two.



[image: -][image: -]
Fig. 39–3. A collision between unequal atoms, viewed in the CM system.
u1=│v1−vCM│[image: -*-], u2=│v2−vCM│[image: -*-].





This is still a very difficult problem, but we will solve it as follows. First
we consider the following sub-problem (again this is one of those cases
where—never mind the derivation—in the end the result is very simple to
remember, but the derivation is just ingenious). Let us suppose that we have two
molecules, of different mass, colliding, and that the collision is viewed in the
center-of-mass (CM) system. In order to remove a complication, we look at the
collision in the CM. As we know from the laws of collision, by the
conservation of momentum and energy, after the molecules collide the only way
they can move is such that each maintains its own original speed—and they just
change their direction. So we have an average collision that looks like
that in Fig. 39–3. Suppose, for a moment, that we watch all the
collisions with the CM at rest. Suppose we imagine that they are all initially
moving horizontally. Of course, after the first collision some of them are
moving at an angle. In other words, if they were all going horizontally, then at
least some would later be moving vertically. Now in some other collision, they
would be coming in from another direction, and then they would be twisted at
still another angle. So even if they were completely organized in the beginning,
they would get sprayed around at all angles, and then the sprayed ones would get
sprayed some more, and sprayed some more, and sprayed some more. Ultimately,
what will be the distribution? Answer: It will be equally likely to find
any pair moving in any direction in space. After that further collisions could
not change the distribution.




They are equally likely to go in all directions, but how do we say
that? There is of course no likelihood that they will go in any
specific direction, because a specific direction is too exact, so we
have to talk about per unit “something.” The idea is that any area
on a sphere centered at a collision point will have just as many
molecules going through it as go through any other equal area on the
sphere. So the result of the collisions will be to distribute the
directions so that equal areas on a sphere will have equal
probabilities.




Incidentally, if we just want to discuss the original direction and some
other direction an angle θ[image: -*-] from it, it is an interesting property
that the differential area of a sphere of unit radius
is sinθ d θ[image: -*-] times 2 π[image: -*-] (see Fig. 32–1). And
sinθ d θ[image: -*-] is the same as the differential of −cosθ[image: -*-].
So what it means is that the cosine of the angle θ[image: -*-] between any
two directions is equally likely to be anything from −1[image: -*-] to +1[image: -*-].




Next, we have to worry about the actual case, where we do not have the
collision in the CM system, but we have two atoms which are coming
together with vector velocities v1[image: -*-] and v2[image: -*-]. What happens
now? We can analyze this collision with the vector velocities
v1[image: -*-] and v2[image: -*-] in the following way: We first say that there
is a certain CM; the velocity of the CM is given by the “average”
velocity, with weights proportional to the masses, so the velocity of
the CM is vCM=(m1 v1+m2 v2)/(m1+m2)[image: -*-]. If we watch this collision in the CM system, then we see a
collision just like that in Fig. 39–3, with a certain
relative velocity w[image: -*-] coming in. The relative velocity is just
v1−v2[image: -*-]. Now the idea is that, first, the whole CM is
moving, and in the CM there is a relative velocity w[image: -*-], and the
molecules collide and come off in some new direction. All this happens
while the CM keeps right on moving, without any change.




Now then, what is the distribution resulting from this? From our
previous argument we conclude this: that at equilibrium, all
directions for w[image: -*-] are equally likely, relative to the direction of
the motion of the CM.1 There will be no
particular correlation, in the end, between the direction of the motion
of the relative velocity and that of the motion of the CM. Of course, if
there were, the collisions would spray it about, so it is all sprayed
around. So the cosine of the angle between w[image: -*-]
and vCM[image: -*-] is zero on the average. That is,

[image: -*-][image: -*-]
(39.19)




But w⋅vCM[image: -*-] can be expressed in terms of
v1[image: -*-] and v2[image: -*-] as well:



[image: -*-][image: -*-]
(39.20)










First, let us look at the v1⋅v2[image: -*-]; what is the average
of v1⋅v2[image: -*-]? That is, what is the average of the
component of velocity of one molecule in the direction of another?
Surely there is just as much likelihood of finding any given molecule
moving one way as another. The average of the velocity v2[image: -*-]
in any direction is zero. Certainly, then, in the direction
of v1[image: -*-], v2[image: -*-] has zero average. So, the average
of v1⋅v2[image: -*-] is zero!  Therefore, we conclude that the
average of [image: m_1v_1^2][image: m_1v_1^2] must be equal to the average of [image: m_2v_2^2][image: m_2v_2^2]. That
is, the average kinetic energy of the two must be equal:

[image: -*-][image: -*-]
(39.21)




If we have two kinds of atoms in a gas, it can be shown, and we
presume to have shown it, that the average of the kinetic energy of
one is the same as the average of the kinetic energy of the other,
when they are both in the same gas in the same box in
equilibrium. That means that the heavy ones will move slower than the
light ones; this is easily shown by experimentation with “atoms” of
different masses in an air trough.



[image: -][image: -]
Fig. 39–4. Two gases in a box with a semipermeable membrane.





Now we would like to go one step further, and say that if we have two
different gases separated in a box, they will also have equal
average kinetic energy when they have finally come to equilibrium,
even though they are not in the same box. We can make the argument in
a number of ways. One way is to argue that if we have a fixed
partition with a tiny hole in it (Fig. 39–4) so that one
gas could leak out through the holes while the other could not,
because the molecules are too big, and these had attained equilibrium,
then we know that in one part, where they are mixed, they have the
same average kinetic energy, but some come through the hole without
loss of kinetic energy, so the average kinetic energy in the pure gas
and in the mixture must be the same. That is not too satisfactory,
because maybe there are no holes, for this kind of molecule, that
separate one kind from the other.




Let us now go back to the piston problem. We can give an argument
which shows that the kinetic energy of this piston must also
be [image: \tfrac{1}{2}m_2v_2^2][image: \tfrac{1}{2}m_2v_2^2]. Actually, that would be the kinetic energy due
to the purely horizontal motion of the piston, so, forgetting its up
and down motion, it will have to be the same
as [image: \tfrac{1}{2}m_2v_{2_x}^2][image: \tfrac{1}{2}m_2v_{2_x}^2]. Likewise, from the equilibrium on the
other side, we can prove that the kinetic energy of the piston
is [image: \tfrac{1}{2}m_1v_{1_x}^2][image: \tfrac{1}{2}m_1v_{1_x}^2]. Although this is not in the middle of the
gas, but is on one side of the gas, we can still make the argument,
although it is a little more difficult, that the average kinetic
energy of the piston and of the gas molecules are equal as a result of
all the collisions.




If this still does not satisfy us, we may make an artificial example
by which the equilibrium is generated by an object which can be hit on
all sides. Suppose that we have a short rod with a ball on each end
sticking through the piston, on a frictionless sliding universal
joint. Each ball is round, like one of the molecules, and can be hit
on all sides. This whole object has a certain total mass, m[image: -*-]. Now, we
have the gas molecules with mass m1[image: -*-] and mass m2[image: -*-] as before. The
result of the collisions, by the analysis that was made before, is
that the kinetic energy of m[image: -*-] because of collisions with the
molecules on one side must be [image: \tfrac{1}{2}m_1v_1^2][image: \tfrac{1}{2}m_1v_1^2], on the
average. Likewise, because of the collisions with molecules on the
other side, it has to be [image: \tfrac{1}{2}m_2v_2^2][image: \tfrac{1}{2}m_2v_2^2] on the average. So,
therefore, both sides have to have the same kinetic energy when
they are in thermal equilibrium. So, although we only proved it for a
mixture of gases, it is easily extended to the case where there are
two different, separate gases at the same temperature.





Thus when we have two gases at the same temperature, the mean
kinetic energy of the CM motions are equal.




The mean molecular kinetic energy is a property only of the
“temperature.” Being a property of the “temperature,” and
not of the gas, we can use it as a definition of the
temperature. The mean kinetic energy of a molecule is thus some
function of the temperature. But who is to tell us what scale to use
for the temperature? We may arbitrarily define the scale of
temperature so that the mean energy is linearly proportional to the
temperature. The best way to do it would be to call the mean energy
itself “the temperature.” That would be the simplest possible
function. Unfortunately, the scale of temperature has been chosen
differently, so instead of calling it temperature directly we use a
constant conversion factor between the energy of a molecule and a
degree of absolute temperature called a degree Kelvin. The constant of
proportionality is k=1.38×10−23[image: -*-] joule for every degree
Kelvin.2 So if T[image: -*-] is absolute temperature, our definition says
that the mean molecular kinetic energy is [image: \tfrac{3}{2}kT][image: \tfrac{3}{2}kT].
(The [image: \tfrac{3}{2}][image: \tfrac{3}{2}] is put in as a matter of convenience, so as to get rid
of it somewhere else.)




We point out that the kinetic energy associated with the component of
motion in any particular direction is only [image: \tfrac{1}{2}kT][image: \tfrac{1}{2}kT]. The three
independent directions that are involved make it [image: \tfrac{3}{2}kT][image: \tfrac{3}{2}kT].







39–5 The ideal gas law


Now, of course, we can put our definition of temperature into
Eq. (39.9) and so find the law for the pressure of gases as a
function of the temperature: it is that the pressure times the volume is
equal to the total number of atoms times the universal constant k[image: -*-],
times the temperature:

[image: -*-][image: -*-]
(39.22)




Furthermore, at the same temperature and pressure and volume, the
number of atoms is determined; it too is a universal constant!
So equal volumes of different gases, at the same pressure and
temperature, have the same number of molecules, because of
Newton’s laws. That is an amazing
conclusion!





In practice, when dealing with molecules, because the numbers are so
large, the chemists have artificially chosen a specific number, a very
large number, and called it something else. They have a number which
they call a mole. A mole is merely a handy
number. Why they did not choose 1024[image: -*-] objects, so it would come out
even, is a historical question. They happened to choose, for the
convenient number of objects on which they standardize, N0=6.02×1023[image: -*-] objects, and this is called a mole of objects. So
instead of measuring the number of molecules in units, they measure in
terms of numbers of moles.3 In terms of N0[image: -*-] we can write
the number of moles, times the number of atoms in a mole, times k T[image: -*-],
and if we want to, we can take the number of atoms in a mole times k[image: -*-],
which is a mole’s worth of k[image: -*-], and call it something else, and we
do—we call it R[image: -*-]. A mole’s worth of k[image: -*-] is 8.317[image: -*-] joules: R=N0 k=8.317[image: -*-] J⋅[image: -*-]mole⋅−1°[image: -*-]K−1[image: -*-]. Thus we also find
the gas law written as the number of moles (also called N[image: -*-]) times R T[image: -*-],
or the number of atoms, times k T[image: -*-]:

[image: -*-][image: -*-]
(39.23)




It is the same thing, just a different scale for measuring numbers. We
use 1 as a unit, and chemists use 6×1023[image: -*-] as a unit!




We now make one more remark about our gas law, and that has to do with
the law for objects other than monatomic molecules. We have dealt only
with the CM motion of the atoms of a monatomic gas.
What happens if there are forces present? First, consider the case that
the piston is held by a horizontal spring, and there are forces on it.
The exchange of jiggling motion between atoms and piston at any moment
does not depend on where the piston is at that moment, of course. The
equilibrium conditions are the same. No matter where the piston is, its
speed of motion must be such that it passes energy to the molecules in
just the right way. So it makes no difference about the spring. The
speed at which the piston has to move, on the average, is the
same. So our theorem, that the mean value of the kinetic energy in one
direction is [image: \tfrac{1}{2}kT][image: \tfrac{1}{2}kT], is true whether there are forces
present or not.




Consider, for example, a diatomic molecule composed of atoms mA[image: -*-]
and mB[image: -*-]. What we have proved is that the motion of the CM of part A[image: -*-]
and that of part B[image: -*-] are such that [image: \avg{\tfrac{1}{2}m_Av_A^2} = \avg{\tfrac{1}{2}m_Bv_B^2} = \tfrac{3}{2}kT][image: \avg{\tfrac{1}{2}m_Av_A^2} = \avg{\tfrac{1}{2}m_Bv_B^2} = \tfrac{3}{2}kT]. How can this be, if they
are held together? Although they are held together, when they are
spinning and turning in there, when something hits them, exchanging
energy with them, the only thing that counts is how fast they
are moving. That alone determines how fast they exchange energy in
collisions. At the particular instant, the force is not an essential
point. Therefore the same principle is right, even when there are
forces.




Let us prove, finally, that the gas law is consistent also with a
disregard of the internal motion. We did not really include the internal
motions before; we just treated a monatomic gas.
But we shall now show that an entire object, considered as a single body
of total mass M[image: -*-], has a velocity of the CM such that

[image: -*-][image: -*-]
(39.24)




In other words, we can consider either the separate pieces or the
whole thing! Let us see the reason for that: The mass of the diatomic
molecule is M=mA+mB[image: -*-], and the velocity of the center of mass is
equal to vCM=(mA vA+mB vB)/M[image: -*-].
Now we need [image: \avg{v_{\text{CM}}^2}][image: \avg{v_{\text{CM}}^2}]. If we square vCM[image: -*-],
we get

[image: -*-][image: -*-]





Now we multiply [image: \tfrac{1}{2}M][image: \tfrac{1}{2}M] and take the average, and thus we get

[image: -*-][image: -*-]


(We have used the fact that (mA+mB)/M=1[image: -*-].) Now what
is [image: \avg{\FLPv_A\cdot\FLPv_B}][image: \avg{\FLPv_A\cdot\FLPv_B}]? (It had better be zero!) To find out, let
us use our assumption that the relative velocity, w=vA−vB[image: -*-] is not any more likely to point in one direction than in
another—that is, that its average component in any direction is
zero. Thus we assume that

[image: -*-][image: -*-]


But what is w⋅vCM[image: -*-]? It is

[image: -*-][image: -*-]


Therefore, since [image: \avg{m_Av_A^2} = \avg{m_Bv_B^2}][image: \avg{m_Av_A^2} = \avg{m_Bv_B^2}], the first and last
terms cancel out on the average, and we are left with

[image: -*-][image: -*-]


Thus if mA≠mB[image: -*-], we find that [image: \avg{\FLPv_A\cdot\FLPv_B} = 0][image: \avg{\FLPv_A\cdot\FLPv_B} = 0],
and therefore that the bodily motion of the entire molecule, regarded
as a single particle of mass M[image: -*-], has a kinetic energy, on the
average, equal to [image: \tfrac{3}{2}kT][image: \tfrac{3}{2}kT].




Incidentally, we have also proved at the same time that the average
kinetic energy of the internal motions of the diatomic
molecule, disregarding the bodily motion of the CM,
is [image: \tfrac{3}{2}kT][image: \tfrac{3}{2}kT]! For, the total kinetic energy of the parts of the
molecule is [image: \tfrac{1}{2}m_Av_A^2 + \tfrac{1}{2}m_Bv_B^2][image: \tfrac{1}{2}m_Av_A^2 + \tfrac{1}{2}m_Bv_B^2], whose
average is [image: \tfrac{3}{2}kT + \tfrac{3}{2}kT][image: \tfrac{3}{2}kT + \tfrac{3}{2}kT], or 3 k T[image: -*-]. The kinetic
energy of the center-of-mass motion is [image: \tfrac{3}{2}kT][image: \tfrac{3}{2}kT], so the
average kinetic energy of the rotational and vibratory motions of the
two atoms inside the molecule is the difference, [image: \tfrac{3}{2}kT][image: \tfrac{3}{2}kT].




The theorem concerning the average energy of the CM motion is general:
for any object considered as a whole, with forces present or no, for
every independent direction of motion that there is, the average
kinetic energy in that motion is [image: \tfrac{1}{2}kT][image: \tfrac{1}{2}kT]. These “independent
directions of motion” are sometimes called the degrees of
freedom of the system. The number of degrees
of freedom of a molecule composed of r[image: -*-] atoms
is 3 r[image: -*-], since each atom needs three coordinates to define its position.
The entire kinetic energy of the molecule can be expressed either as the
sum of the kinetic energies of the separate atoms, or as the sum of the
kinetic energy of the CM motion plus the kinetic energy of the internal
motions. The latter can sometimes be expressed as a sum of rotational
kinetic energy of the molecule and vibrational energy, but this is an
approximation. Our theorem, applied to the r[image: -*-]-atom molecule, says that
the molecule will have, on the average, 3 r k T/2[image: -*-] joules of kinetic
energy, of which [image: \tfrac{3}{2}kT][image: \tfrac{3}{2}kT] is kinetic energy of the
center-of-mass motion of the entire molecule, and the rest,
[image: \tfrac{3}{2}(r - 1)kT][image: \tfrac{3}{2}(r - 1)kT], is internal vibrational and rotational kinetic
energy.







	
  
  This argument, which was the one used by
Maxwell, involves some subtleties. Although the conclusion is correct,
the result does not follow purely from the considerations of
symmetry that we used before, since, by going to a reference frame
moving through the gas, we may find a distorted velocity distribution.
We have not found a simple proof of this result.
  ↩


	
  
  The centigrade scale is just this Kelvin scale with a
zero chosen at 273.15[image: -*-] °K, so T=273.15+centigradetemperature[image: -*-].
  ↩


	
  
  What the chemists call molecular
weights are the masses in grams of a mole of a molecule. The mole is
defined so that the mass of a mole of carbon atoms of
isotope 12[image: -*-] (i.e., having 6 protons and 6 neutrons
in the nucleus) is exactly 12[image: -*-] grams.
  ↩






  
    

40 The Principles of Statistical Mechanics



40–1 The exponential atmosphere


We have discussed some of the properties of large numbers of
intercolliding atoms. The subject is called kinetic theory, a
description of matter from the point of view of collisions between the
atoms. Fundamentally, we assert that the gross properties of matter
should be explainable in terms of the motion of its parts.




We limit ourselves for the present to conditions of thermal
equilibrium, that is, to a subclass of all the phenomena of
nature. The laws of mechanics which apply just to thermal equilibrium
are called statistical mechanics, and in this section we want
to become acquainted with some of the central theorems of this
subject.





We already have one of the theorems of statistical mechanics, namely,
the mean value of the kinetic energy for any motion at the absolute
temperature T[image: -*-] is [image: \tfrac{1}{2}kT][image: \tfrac{1}{2}kT] for each independent motion, i.e.,
for each degree of freedom. That tells us
something about the mean square velocities of the atoms. Our objective
now is to learn more about the positions of the atoms, to discover how
many of them are going to be in different places at thermal equilibrium,
and also to go into a little more detail on the distribution of the
velocities. Although we have the mean square velocity, we do not know
how to answer a question such as how many of them are going three times
faster than the root mean square, or how many of them are going
one-quarter of the root mean square speed. Or have they all the same
speed exactly?





So, these are the two questions that we shall try to answer: How are
the molecules distributed in space when there are forces acting on
them, and how are they distributed in velocity?




It turns out that the two questions are completely independent, and
that the distribution of velocities is always the same. We already
received a hint of the latter fact when we found that the average
kinetic energy is the same, [image: \tfrac{1}{2}kT][image: \tfrac{1}{2}kT] per degree of freedom, no
matter what forces are acting on the molecules. The distribution of
the velocities of the molecules is independent of the forces, because
the collision rates do not depend upon the forces.




Let us begin with an example: the distribution of the molecules in an
atmosphere like our own, but without the winds and other kinds of
disturbance. Suppose that we have a column of gas extending to a great
height, and at thermal equilibrium—unlike our atmosphere, which as
we know gets colder as we go up. We could remark that if the
temperature differed at different heights, we could demonstrate lack
of equilibrium by connecting a rod to some balls at the bottom
(Fig. 40–1), where they would pick up [image: \tfrac{1}{2}kT][image: \tfrac{1}{2}kT] from
the molecules there and would shake, via the rod, the balls at the top
and those would shake the molecules at the top. So, ultimately, of
course, the temperature becomes the same at all heights in a
gravitational field.



[image: -][image: -]
Fig. 40–1. The pressure at height h[image: -*-] must exceed that at h+d h[image: -*-] by
the weight of the intervening gas.





If the temperature is the same at all heights, the problem is to
discover by what law the atmosphere becomes tenuous as we go up. If
N[image: -*-] is the total number of molecules in a volume V[image: -*-] of gas at
pressure P[image: -*-], then we know P V=N k T[image: -*-], or P=n k T[image: -*-], where n=N/V[image: -*-]
is the number of molecules per unit volume. In other words, if we know
the number of molecules per unit volume, we know the pressure, and
vice versa: they are proportional to each other, since the temperature
is constant in this problem. But the pressure is not constant, it
must increase as the altitude is reduced, because it has to hold, so
to speak, the weight of all the gas above it. That is the clue by
which we may determine how the pressure changes with height. If we
take a unit area at height h[image: -*-], then the vertical force from below, on
this unit area, is the pressure P[image: -*-]. The vertical force per unit area
pushing down at a height h+d h[image: -*-] would be the same, in the absence of
gravity, but here it is not, because the force from below must exceed
the force from above by the weight of gas in the section between h[image: -*-]
and h+d h[image: -*-]. Now m g[image: -*-] is the force of gravity on each molecule, where
g[image: -*-] is the acceleration due to gravity, and n d h[image: -*-] is the total
number of molecules in the unit section. So this gives us the
differential equation Ph+d h−Ph=[image: -*-]d P=[image: -*-]−m g n d h[image: -*-]. Since P=n k T[image: -*-], and T[image: -*-] is constant, we can eliminate either P[image: -*-] or n[image: -*-],
say P[image: -*-], and get

[image: -*-][image: -*-]


for the differential equation, which tells us how the density goes
down as we go up in energy.




We thus have an equation for the particle density n[image: -*-], which varies
with height, but which has a derivative which is proportional to
itself. Now a function which has a derivative proportional to itself
is an exponential, and the solution of this differential equation is

[image: -*-][image: -*-]
(40.1)




Here the constant of integration, n0[image: -*-], is obviously the density
at h=0[image: -*-] (which can be chosen anywhere), and the density goes down
exponentially with height.



[image: -][image: -]
Fig. 40–2. The normalized density as a function of height in the earth’s
gravitational field for oxygen and for hydrogen, at constant
temperature.





Note that if we have different kinds of molecules with different
masses, they go down with different exponentials. The ones which were
heavier would decrease with altitude faster than the light
ones. Therefore we would expect that because oxygen is heavier than
nitrogen, as we go higher and higher in an atmosphere with nitrogen
and oxygen the proportion of nitrogen would increase. This does not
really happen in our own atmosphere, at least at reasonable heights,
because there is so much agitation which mixes the gases back together
again. It is not an isothermal atmosphere.
Nevertheless, there is a tendency for lighter materials, like
hydrogen, to dominate at very great heights in the atmosphere, because
the lowest masses continue to exist, while the other exponentials have
all died out (Fig. 40–2).







40–2 The Boltzmann law


Here we note the interesting fact that the numerator in the exponent
of Eq. (40.1) is the potential energy of an
atom. Therefore we can also state this particular law as: the density
at any point is proportional to

[image: -*-][image: -*-]





That may be an accident, i.e., may be true only for this particular
case of a uniform gravitational field. However, we can show that it is
a more general proposition. Suppose that there were some kind of force
other than gravity acting on the molecules in a gas. For example, the
molecules may be charged electrically, and may be acted on by an
electric field or another charge that attracts them. Or, because of
the mutual attractions of the atoms for each other, or for the wall,
or for a solid, or something, there is some force of attraction which
varies with position and which acts on all the molecules. Now suppose,
for simplicity, that the molecules are all the same, and that the
force acts on each individual one, so that the total force on a piece
of gas would be simply the number of molecules times the force on each
one. To avoid unnecessary complication, let us choose a coordinate
system with the x[image: -*-]-axis in the direction of the force, F[image: -*-].




In the same manner as before, if we take two parallel planes in the
gas, separated by a distance d x[image: -*-], then the force on each atom, times
the n[image: -*-] atoms per cm³ (the generalization of the previous n m g[image: -*-]),
times d x[image: -*-], must be balanced by the pressure change: F n d x=d P=k T d n[image: -*-]. Or, to put this law in a form which will be useful to us
later,

[image: -*-][image: -*-]
(40.2)




For the present, observe that −F d x[image: -*-] is the work we would do in
taking a molecule from x[image: -*-] to x+d x[image: -*-], and if F[image: -*-] comes from a
potential, i.e., if the work done can be represented by a potential
energy at all, then this would also be the difference in the potential
energy (P.E.). The negative differential of potential energy is the
work done, F d x[image: -*-], and we find that d (lnn)=−d (P.E.)/k T[image: -*-],
or, after integrating,

[image: -*-][image: -*-]
(40.3)




Therefore what we noticed in a special case turns out to be true in
general. (What if F[image: -*-] does not come from a potential?
Then (40.2) has no solution at all. Energy can be generated,
or lost by the atoms running around in cyclic paths for which the work
done is not zero, and no equilibrium can be maintained at all. Thermal
equilibrium cannot exist if the external forces on the atoms are not
conservative.)  Equation (40.3), known as Boltzmann’s
law, is another of the principles of statistical
mechanics: that the probability of finding molecules in a given spatial
arrangement varies exponentially with the negative of the potential
energy of that arrangement, divided by k T[image: -*-].




This, then, could tell us the distribution of molecules: Suppose that
we had a positive ion in a liquid, attracting negative ions around it,
how many of them would be at different distances? If the potential
energy is known as a function of distance, then the proportion of them
at different distances is given by this law, and so on, through many
applications.







40–3 Evaporation of a liquid


In more advanced statistical mechanics one tries to solve the
following important problem. Consider an assembly of molecules which
attract each other, and suppose that the force between any two, say
i[image: -*-] and j[image: -*-], depends only on their separation ri j[image: -*-], and can be
represented as the derivative of a potential
function V (ri j)[image: -*-]. Figure 40–3 shows a form such a function
might have. For r>r0[image: -*-], the energy decreases as the molecules come
together, because they attract, and then the energy increases very
sharply as they come still closer together, because they repel
strongly, which is characteristic of the way molecules behave, roughly
speaking.



[image: -][image: -]
Fig. 40–3. A potential-energy function for two molecules, which depends
only on their separation.





Now suppose we have a whole box full of such molecules, and we would
like to know how they arrange themselves on the average. The answer
is e−P.E./k T[image: -*-].  The total potential energy in this case would
be the sum over all the pairs, supposing that the forces are all in
pairs (there may be three-body forces in more complicated things, but
in electricity, for example, the potential energy is all in
pairs). Then the probability for finding molecules in any particular
combination of ri j[image: -*-]’s will be proportional to

[image: -*-][image: -*-]





Now, if the temperature is very high, so that k T≫│V (r0)│[image: -*-],
the exponent is relatively small almost everywhere, and the
probability of finding a molecule is almost independent of
position. Let us take the case of just two molecules: the
e−P.E./k T[image: -*-] would be the probability of finding them at
various mutual distances r[image: -*-]. Clearly, where the potential goes most
negative, the probability is largest, and where the potential goes
toward infinity, the probability is almost zero, which occurs for very
small distances. That means that for such atoms in a gas, there is no
chance that they are on top of each other, since they repel so
strongly. But there is a greater chance of finding them per unit
volume at the point r0[image: -*-] than at any other point. How much greater,
depends on the temperature. If the temperature is very large compared
with the difference in energy between r=r0[image: -*-] and r=∞[image: -*-], the
exponential is always nearly unity. In this case, where the mean
kinetic energy (about k T[image: -*-]) greatly exceeds the potential energy, the
forces do not make much difference. But as the temperature falls, the
probability of finding the molecules at the preferred distance r0[image: -*-]
gradually increases relative to the probability of finding them
elsewhere and, in fact, if k T[image: -*-] is much less than │V (r0)│[image: -*-], we
have a relatively large positive exponent in that neighborhood. In
other words, in a given volume they are much more likely to be
at the distance of minimum energy than far apart. As the temperature
falls, the atoms fall together, clump in lumps, and reduce to liquids,
and solids, and molecules, and as you heat them up they evaporate.




The requirements for the determination of exactly how things
evaporate, exactly how things should happen in a given circumstance,
involve the following. First, to discover the correct molecular-force
law V (r)[image: -*-], which must come from something else, quantum mechanics,
say, or experiment. But, given the law of force between the molecules,
to discover what a billion molecules are going to do merely consists
of studying the function e−∑Vi j/k T[image: -*-]. Surprisingly enough,
since it is such a simple function and such an easy idea, given the
potential, the labor is enormously complicated; the difficulty
is the tremendous number of variables.




In spite of such difficulties, the subject is quite exciting and
interesting. It is often called an example of a “many-body problem,”
and it really has been a very interesting thing. In that single
formula must be contained all the details, for example, about the
solidification of gas, or the forms of the crystals that the solid can
take, and people have been trying to squeeze it out, but the
mathematical difficulties are very great, not in writing the law, but
in dealing with so enormous a number of variables.




That then, is the distribution of particles in space. That is the end
of classical statistical mechanics, practically speaking, because if
we know the forces, we can, in principle, find the distribution in
space, and the distribution of velocities is something that we can
work out once and for all, and is not something that is different for
the different cases. The great problems are in getting particular
information out of our formal solution, and that is the main subject
of classical statistical mechanics.







40–4 The distribution of molecular speeds


Now we go on to discuss the distribution of velocities, because
sometimes it is interesting or useful to know how many of them are
moving at different speeds. In order to do that, we may make use of
the facts which we discovered with regard to the gas in the
atmosphere. We take it to be a perfect gas, as we have already assumed
in writing the potential energy, disregarding the energy of mutual
attraction of the atoms. The only potential energy that we included in
our first example was gravity. We would, of course, have something
more complicated if there were forces between the atoms. Thus we
assume that there are no forces between the atoms and, for a moment,
disregard collisions also, returning later to the justification of
this. Now we saw that there are fewer molecules at the height h[image: -*-] than
there are at the height 0; according to formula (40.1),
they decrease exponentially with height. How can there be fewer at
greater heights? After all, do not all the molecules which are moving
up at height 0 arrive at h[image: -*-]? No!, because some of those which are
moving up at 0 are going too slowly, and cannot climb the potential
hill to h[image: -*-]. With that clue, we can calculate how many must be moving
at various speeds, because from (40.1) we know how
many are moving with less than enough speed to climb a given
distance h[image: -*-]. Those are just the ones that account for the fact that the
density at h[image: -*-] is lower than at 0.



[image: -][image: -]
Fig. 40–4. Only those molecules moving up at h=0[image: -*-] with sufficient
velocity can arrive at height h[image: -*-].





Now let us put that idea a little more precisely: let us count how
many molecules are passing from below to above the plane h=0[image: -*-] (by
calling it height=0[image: -*-], we do not mean that there is a floor there;
it is just a convenient label, and there is gas at
negative h[image: -*-]). These gas molecules are moving around in every direction, but
some of them are moving through the plane, and at any moment a certain
number per second of them are passing through the plane from below to
above with different velocities. Now we note the following: if we
call u[image: -*-] the velocity which is just needed to get up to the height h[image: -*-]
(kinetic energy m u2/2=m g h[image: -*-]), then the number of molecules per
second which are passing upward through the lower plane in a vertical
direction with velocity component greater than u[image: -*-] is exactly the same
as the number which pass through the upper plane with any
upward velocity. Those molecules whose vertical velocity does not
exceed u[image: -*-] cannot get through the upper plane. So therefore we see
that



[image: -*-][image: -*-]



But the number which pass through h[image: -*-] with any velocity greater than 0
is less than the number which pass through the lower height with any
velocity greater than 0, because the number of atoms is greater; that
is all we need. We know already that the distribution of velocities is
the same, after the argument we made earlier about the temperature being
constant all the way through the atmosphere. So, since the velocity
distributions are the same, and it is just that there are more
atoms lower down, clearly the number n>0 (h)[image: -*-], passing with
positive velocity at height h[image: -*-], and the number n>0 (0)[image: -*-], passing
with positive velocity at height 0, are in the same ratio as the
densities at the two heights, which is e−m g h/k T[image: -*-]. But n>0 (h)=n>u (0)[image: -*-], and therefore we find that

[image: -*-][image: -*-]


since [image: \tfrac{1}{2}mu^2 = mgh][image: \tfrac{1}{2}mu^2 = mgh]. Thus, in words, the number of
molecules per unit area per second passing the height 0 with a
z[image: -*-]-component of velocity greater than u[image: -*-] is e−m u2/2 k T[image: -*-] times
the total number that are passing through the plane with velocity
greater than zero.




Now this is not only true at the arbitrarily chosen height 0, but of
course it is true at any other height, and thus the distributions of
velocities are all the same! (The final statement does not
involve the height h[image: -*-], which appeared only in the intermediate
argument.) The result is a general proposition that gives us the
distribution of velocities. It tells us that if we drill a little hole
in the side of a gas pipe, a very tiny hole, so that the collisions
are few and far between, i.e., are farther apart than the diameter of
the hole, then the particles which are coming out will have different
velocities, but the fraction of particles which come out at a velocity
greater than u[image: -*-] is e−m u2/2 k T[image: -*-].




Now we return to the question about the neglect of collisions: Why
does it not make any difference? We could have pursued the same
argument, not with a finite height h[image: -*-], but with an infinitesimal
height h[image: -*-], which is so small that there would be no room for
collisions between 0 and h[image: -*-]. But that was not necessary: the
argument is evidently based on an analysis of the energies involved,
the conservation of energy, and in the collisions that occur there is
an exchange of energies among the molecules. However, we do not really
care whether we follow the same molecule if energy is merely exchanged
with another molecule. So it turns out that even if the problem is
analyzed more carefully (and it is more difficult, naturally, to do a
rigorous job), it still makes no difference in the result.




It is interesting that the velocity distribution we have found is just

[image: -*-][image: -*-]
(40.4)







This way of describing the distribution of velocities, by giving the
number of molecules that pass a given area with a certain minimum
z[image: -*-]-component, is not the most convenient way of giving the velocity
distribution. For instance, inside the gas, one more often wants to
know how many molecules are moving with a z[image: -*-]-component of velocity
between two given values, and that, of course, is not directly given
by Eq. (40.4). We would like to state our result in the
more conventional form, even though what we already have written is
quite general. Note that it is not possible to say that any
molecule has exactly some stated velocity; none of them has a
velocity exactly equal to 1.7962899173[image: -*-] meters per second.  So
in order to make a meaningful statement, we have to ask how many are
to be found in some range of velocities. We have to say how
many have velocities between 1.796[image: -*-] and 1.797[image: -*-], and so on. On
mathematical terms, let f (u) d u[image: -*-] be the fraction of all the
molecules which have velocities between u[image: -*-] and u+d u[image: -*-] or, what is
the same thing (if d u[image: -*-] is infinitesimal), all that have a
velocity u[image: -*-] with a range d u[image: -*-]. Figure 40–5 shows a possible form
for the function f (u)[image: -*-], and the shaded part, of width d u[image: -*-] and mean
height f (u)[image: -*-], represents this fraction f (u) d u[image: -*-]. That is, the ratio
of the shaded area to the total area of the curve is the relative
proportion of molecules with velocity u[image: -*-] within d u[image: -*-]. If we define
f (u)[image: -*-] so that the fraction having a velocity in this range is given
directly by the shaded area, then the total area must be 100[image: -*-] percent
of them, that is,

[image: -*-][image: -*-]
(40.5)






[image: -][image: -]
Fig. 40–5. A velocity distribution function. The shaded area is
f (u) d u[image: -*-], the fraction of particles having velocities within a
range d u[image: -*-] about u[image: -*-].





Now we have only to get this distribution by comparing it with the
theorem we derived before. First we ask, what is the number of
molecules passing through an area per second with a velocity greater
than u[image: -*-], expressed in terms of f (u)[image: -*-]? At first we might think it is
merely the integral of [image: \int_u^\infty f(u)\,du][image: \int_u^\infty f(u)\,du], but it is not,
because we want the number that are passing the area per
second. The faster ones pass more often, so to speak, than the slower
ones, and in order to express how many pass, you have to multiply by
the velocity. (We discussed that in the previous chapter when we
talked about the number of collisions.)  In a given time t[image: -*-] the total
number which pass through the surface is all of those which have been
able to arrive at the surface, and the number which arrive come from a
distance u t[image: -*-]. So the number of molecules which arrive is not simply
the number which are there, but the number that are there per unit
volume, multiplied by the distance that they sweep through in racing
for the area through which they are supposed to go, and that distance
is proportional to u[image: -*-]. Thus we need the integral of u[image: -*-]
times f (u) d u[image: -*-], an infinite integral with a lower limit u[image: -*-], and this
must be the same as we found before, namely e−m u2/2 k T[image: -*-], with a
proportionality constant which we will get later:

[image: -*-][image: -*-]
(40.6)







Now if we differentiate the integral with respect to u[image: -*-], we get the
thing that is inside the integral, i.e., the integrand (with a minus
sign, since u[image: -*-] is the lower limit), and if we differentiate the other
side, we get u[image: -*-] times the same exponential (and some constants). The
u[image: -*-]’s cancel and we find

[image: -*-][image: -*-]
(40.7)




We retain the d u[image: -*-] on both sides as a reminder that it is a
distribution, and it tells what the proportion is for velocity
between u[image: -*-] and u+d u[image: -*-].




The constant C[image: -*-] must be so determined that the integral is unity,
according to Eq. (40.5). Now we can 
prove1 that

[image: -*-][image: -*-]


Using this fact, it is easy to find that C=√m/2 π k T[image: -*-].




Since velocity and momentum are proportional, we may say that the
distribution of momenta is also proportional to e−K.E./k T[image: -*-]
per unit momentum range.  It turns out that this theorem is true in
relativity too, if it is in terms of momentum, while if it is in
velocity it is not, so it is best to learn it in momentum instead of
in velocity:

[image: -*-][image: -*-]
(40.8)




So we find that the probabilities of different conditions of energy,
kinetic and potential, are both given by e−energy/k T[image: -*-], a
very easy thing to remember and a rather beautiful proposition.




So far we have, of course, only the distribution of the velocities
“vertically.” We might want to ask, what is the probability that a
molecule is moving in another direction? Of course these distributions
are connected, and one can obtain the complete distribution from the
one we have, because the complete distribution depends only on the
square of the magnitude of the velocity, not upon the
z[image: -*-]-component. It must be something that is independent of direction,
and there is only one function involved, the probability of different
magnitudes. We have the distribution of the z[image: -*-]-component, and
therefore we can get the distribution of the other components from
it. The result is that the probability is still proportional
to e−K.E./k T[image: -*-], but now the kinetic energy involves three parts,
[image: mv_x^2/2][image: mv_x^2/2], [image: mv_y^2/2][image: mv_y^2/2], and [image: mv_z^2/2][image: mv_z^2/2], summed in the exponent. Or we
can write it as a product:

[image: -*-][image: -*-]
(40.9)




You can see that this formula must be right because, first, it is a
function only of v2[image: -*-], as required, and second, the probabilities of
various values of vz[image: -*-] obtained by integrating over all vx[image: -*-]
and vy[image: -*-] is just (40.7). But this one function (40.9)
can do both those things!







40–5 The specific heats of gases


Now we shall look at some ways to test the theory, and to see how
successful is the classical theory of gases. We saw earlier that if U[image: -*-]
is the internal energy of N[image: -*-] molecules, then P V=[image: -*-]N k T=[image: -*-](γ−1) U[image: -*-]
holds, sometimes, for some gases, maybe. If it is a monatomic
gas, we know this is also equal to
[image: \tfrac{2}{3}][image: \tfrac{2}{3}] of the kinetic energy of the center-of-mass motion of the
atoms. If it is a monatomic gas, then the kinetic
energy is equal to the internal energy, and therefore [image: \gamma - 1 = \tfrac{2}{3}][image: \gamma - 1 = \tfrac{2}{3}]. But suppose it is, say, a more complicated molecule, that
can spin and vibrate, and let us suppose (it turns out to be true
according to classical mechanics) that the energies of the internal
motions are also proportional to k T[image: -*-]. Then at a given temperature, in
addition to kinetic energy [image: \tfrac{3}{2}kT][image: \tfrac{3}{2}kT], it has internal vibrational
and rotational energies. So the total U[image: -*-] includes not just the kinetic
energy, but also the rotational and vibrational energies, and we get a
different value of γ[image: -*-]. Technically, the best way to
measure γ[image: -*-] is by measuring the specific heat, which is the change
in energy with temperature. We will return to that approach later. For
our present purposes, we may suppose γ[image: -*-] is found experimentally
from the P Vγ[image: -*-] curve for adiabatic compression.




Let us make a calculation of γ[image: -*-] for some cases. First, for a
monatomic gas U[image: -*-] is the total energy, the same as
the kinetic energy, and we know already that γ[image: -*-] should
be [image: \tfrac{5}{3}][image: \tfrac{5}{3}]. For a diatomic gas, we may take, as an example, oxygen,
hydrogen iodide, hydrogen, etc., and suppose that the diatomic gas can
be represented as two atoms held together by some kind of force like the
one of Fig. 40–3. We may also suppose, and it turns out to
be quite true, that at the temperatures that are of interest for the
diatomic gas, the pairs of atoms tend strongly to be separated by r0[image: -*-],
the distance of potential minimum. If this were not true, if the
probability were not strongly varying enough to make the great majority
sit near the bottom, we would have to remember that oxygen gas is a
mixture of O2 and single oxygen atoms in a nontrivial ratio. We know
that there are, in fact, very few single oxygen atoms, which means that
the potential energy minimum is very much greater in magnitude than k T[image: -*-],
as we have seen. Since they are clustered strongly around r0[image: -*-],
the only part of the curve that is needed is the part near the minimum,
which may be approximated by a parabola. A parabolic potential implies a
harmonic oscillator, and in fact, to an excellent approximation, the
oxygen molecule can be represented as two atoms connected by a spring.




Now what is the total energy of this molecule at temperature T[image: -*-]? We
know that for each of the two atoms, each of the kinetic energies
should be [image: \tfrac{3}{2}kT][image: \tfrac{3}{2}kT], so the kinetic energy of both of them
is [image: \tfrac{3}{2}kT + \tfrac{3}{2}kT][image: \tfrac{3}{2}kT + \tfrac{3}{2}kT]. We can also put this in a different
way: the same [image: \tfrac{3}{2}][image: \tfrac{3}{2}] plus [image: \tfrac{3}{2}][image: \tfrac{3}{2}] can also be looked at
as kinetic energy of the center of mass ([image: \tfrac{3}{2}][image: \tfrac{3}{2}]), kinetic
energy of rotation ([image: \tfrac{2}{2}][image: \tfrac{2}{2}]), and kinetic energy of vibration
([image: \tfrac{1}{2}][image: \tfrac{1}{2}]). We know that the kinetic energy of vibration
is [image: \frac{1}{2}][image: \frac{1}{2}], since there is just one dimension involved and each
degree of freedom has [image: \tfrac{1}{2}kT][image: \tfrac{1}{2}kT]. Regarding the rotation, it can
turn about either of two axes, so there are two independent
motions. We assume that the atoms are some kind of points, and cannot
spin about the line joining them; this is something to bear in mind,
because if we get a disagreement, maybe that is where the trouble
is. But we have one more thing, which is the potential energy
of vibration; how much is that?  In a harmonic oscillator the average
kinetic energy and average potential energy are equal, and therefore
the potential energy of vibration is [image: \tfrac{1}{2}kT][image: \tfrac{1}{2}kT], also. The grand
total of energy is [image: U = \tfrac{7}{2}kT][image: U = \tfrac{7}{2}kT], or k T[image: -*-] is
[image: \tfrac{2}{7}U][image: \tfrac{2}{7}U] per atom. That means, then, that γ[image: -*-] is [image: \tfrac{9}{7}][image: \tfrac{9}{7}]
instead of [image: \tfrac{5}{3}][image: \tfrac{5}{3}], i.e., γ=1.286[image: -*-].




We may compare these numbers with the relevant measured values shown in
Table 40–1. Looking first at helium, which is a monatomic
gas, we find very nearly [image: \tfrac{5}{3}][image: \tfrac{5}{3}], and the
error is probably experimental, although at such a low temperature there
may be some forces between the atoms. Krypton and argon, both monatomic,
agree also within the accuracy of the experiment.






Table 40–1. Values of the specific heat ratio, γ[image: -*-],
for various gases



[image: --][image: --]


We turn to the diatomic gases and find hydrogen with 1.404[image: -*-], which
does not agree with the theory, 1.286[image: -*-]. Oxygen, 1.399[image: -*-], is very
similar, but again not in agreement. Hydrogen iodide again is similar
at 1.40[image: -*-]. It begins to look as though the right answer is 1.40[image: -*-], but
it is not, because if we look further at bromine we see 1.32[image: -*-], and at
iodine we see 1.30[image: -*-]. Since 1.30[image: -*-] is reasonably close to 1.286[image: -*-],
iodine may be said to agree rather well, but oxygen is far off. So
here we have a dilemma. We have it right for one molecule, we do not
have it right for another molecule, and we may need to be pretty
ingenious in order to explain both.




Let us look further at a still more complicated molecule with large
numbers of parts, for example, C2H6, which is ethane. It has
eight different atoms, and they are all vibrating and rotating in
various combinations, so the total amount of internal energy must be
an enormous number of k T[image: -*-]’s, at least 12 k T[image: -*-] for kinetic energy
alone, and γ−1[image: -*-] must be very close to zero, or γ[image: -*-] almost
exactly 1. In fact, it is lower, but 1.22[image: -*-] is not so much
lower, and is higher than the [image: 1\tfrac{1}{12}][image: 1\tfrac{1}{12}] calculated from the
kinetic energy alone, and it is just not understandable!




Furthermore, the whole mystery is deep, because the diatomic molecule
cannot be made rigid by a limit. Even if we made the couplings stiffer
indefinitely, although it might not vibrate much, it would
nevertheless keep vibrating. The vibrational energy inside is
still k T[image: -*-], since it does not depend on the strength of the coupling. But if
we could imagine absolute rigidity, stopping all vibration to
eliminate a variable, then we would get [image: U = \tfrac{5}{2}kT][image: U = \tfrac{5}{2}kT]
and γ=1.40[image: -*-] for the diatomic case. This looks good for H2 or
O2. On the other hand, we would still have problems, because
γ[image: -*-] for either hydrogen or oxygen varies with temperature! From
the measured values shown in Fig. 40–6, we see that for
H2, γ[image: -*-] varies from about 1.6[image: -*-] at −185°[image: -*-]C to 1.3[image: -*-]
at 2000°[image: -*-]C. The variation is more substantial in the case of
hydrogen than for oxygen, but nevertheless, even in oxygen, γ[image: -*-]
tends definitely to go up as we go down in temperature.



[image: -][image: -]
Fig. 40–6. Experimental values of γ[image: -*-] as a function of temperature
for hydrogen and oxygen. Classical theory predicts γ=1.286[image: -*-],
independent of temperature.








40–6 The failure of classical physics


So, all in all, we might say that we have some difficulty. We might
try some force law other than a spring, but it turns out that anything
else will only make γ[image: -*-] higher. If we include more forms of
energy, γ[image: -*-] approaches unity more closely, contradicting the
facts. All the classical theoretical things that one can think of will
only make it worse. The fact is that there are electrons in each atom,
and we know from their spectra that there are internal motions; each
of the electrons should have at least [image: \tfrac{1}{2}kT][image: \tfrac{1}{2}kT] of kinetic
energy, and something for the potential energy, so when these are
added in, γ[image: -*-] gets still smaller. It is ridiculous. It is wrong.




The first great paper on the dynamical theory of gases was by
Maxwell in 1859. On the basis
of ideas we have been discussing, he was able accurately to explain a
great many known relations, such as Boyle’s law, the
diffusion theory, the viscosity of gases, and things we shall talk about
in the next chapter. He listed all these great successes in a final
summary, and at the end he said, “Finally, by establishing a necessary
relation between the motions of translation and rotation (he is talking
about the [image: \tfrac{1}{2}kT][image: \tfrac{1}{2}kT] theorem) of all particles not spherical, we
proved that a system of such particles could not possibly satisfy the
known relation between the two specific heats.”  He is referring
to γ[image: -*-] (which we shall see later is related to two ways of measuring
specific heat), and he says we know we cannot get the right answer.




Ten years later, in a lecture, he said, “I have now put before you
what I consider to be the greatest difficulty yet encountered by the
molecular theory.” These words represent the first discovery that the
laws of classical physics were wrong. This was the first indication
that there was something fundamentally impossible, because a
rigorously proved theorem did not agree with experiment. About 1905, Sir James 
Hopwood Jeans and Lord Rayleigh (John William Strutt) were to talk about this 
puzzle again. One often hears it said that physicists at the latter part
of the nineteenth century thought they knew all the significant physical
laws and that all they had to do was to calculate more decimal places.
Someone may have said that once, and others copied it. But a thorough
reading of the literature of the time shows they were all worrying about
something. Jeans said about this
puzzle that it is a very mysterious phenomenon, and it seems as though
as the temperature falls, certain kinds of motions “freeze out.”




If we could assume that the vibrational motion, say, did not exist at
low temperature and did exist at high temperature, then we could
imagine that a gas might exist at a temperature sufficiently low that
vibrational motion does not occur, so γ=1.40[image: -*-], or a higher
temperature at which it begins to come in, so γ[image: -*-] falls. The same
might be argued for the rotation. If we can eliminate the rotation,
say it “freezes out” at sufficiently low temperature, then we can
understand the fact that the γ[image: -*-] of hydrogen approaches 1.66[image: -*-] as
we go down in temperature. How can we understand such a phenomenon? Of
course that these motions “freeze out” cannot be understood by
classical mechanics. It was only understood when quantum mechanics was
discovered.




Without proof, we may state the results for statistical mechanics of
the quantum-mechanical theory. We recall that according to quantum
mechanics, a system which is bound by a potential, for the vibrations,
for example, will have a discrete set of energy levels, i.e., states of different energy. Now the question is: how
is statistical mechanics to be modified according to quantum-mechanical
theory? It turns out, interestingly enough, that although most problems
are more difficult in quantum mechanics than in classical mechanics,
problems in statistical mechanics are much easier in quantum theory! The
simple result we have in classical mechanics, that n=n0 e−energy/k T[image: -*-], becomes the following very important theorem:
If the energies of the set of molecular states are called, say,
E0[image: -*-], E1[image: -*-], E2[image: -*-], …, Ei[image: -*-], …, then in thermal equilibrium
the probability of finding a molecule in the particular state of having
energy Ei[image: -*-] is proportional to e−Ei/k T[image: -*-]. That gives the
probability of being in various states. In other words, the relative
chance, the probability, of being in state E1[image: -*-] relative to the chance
of being in state E0[image: -*-], is

[image: -*-][image: -*-]
(40.10)




which, of course, is the same as

[image: -*-][image: -*-]
(40.11)




since P1=n1/N[image: -*-] and P0=n0/N[image: -*-]. So it is less likely to be in a
higher energy state than in a lower one. The ratio of the number of
atoms in the upper state to the number in the lower state is
e[image: -*-] raised to the power (minus the energy difference, over k T[image: -*-])—a very
simple proposition.




Now it turns out that for a harmonic oscillator the energy
levels are evenly spaced. Calling the
lowest energy E0=0[image: -*-] (it actually is not zero, it is a little
different, but it does not matter if we shift all energies by a
constant), the first one is then E1=ℏ ω[image: -*-], and the second one
is 2 ℏ ω[image: -*-], and the third one is 3 ℏ ω[image: -*-], and so on.





Now let us see what happens. We suppose we are studying the vibrations
of a diatomic molecule, which we approximate as a harmonic
oscillator. Let us ask what is the relative chance of finding a
molecule in state E1[image: -*-] instead of in state E0[image: -*-]. The answer is that
the chance of finding it in state E1[image: -*-], relative to that of finding
it in state E0[image: -*-], goes down as e−ℏ ω/k T[image: -*-]. Now suppose
that k T[image: -*-] is much less than ℏ ω[image: -*-], and we have a
low-temperature circumstance. Then the probability of its being in
state E1[image: -*-] is extremely small. Practically all the atoms are in
state E0[image: -*-]. If we change the temperature but still keep it very small, then
the chance of its being in state E1=ℏ ω[image: -*-] remains
infinitesimal—the energy of the oscillator remains nearly zero; it
does not change with temperature so long as the temperature is much
less than ℏ ω[image: -*-]. All oscillators are in the bottom state, and
their motion is effectively “frozen”; there is no contribution
of it to the specific heat. We can judge, then, from
Table 40–1, that at 100°[image: -*-]C, which is 373[image: -*-] degrees
absolute, k T[image: -*-] is much less than the vibrational energy in the oxygen or
hydrogen molecules, but not so in the iodine molecule. The reason for
the difference is that an iodine atom is very heavy, compared with
hydrogen, and although the forces may be comparable in iodine and
hydrogen, the iodine molecule is so heavy that the natural frequency of
vibration is very low compared with the natural frequency of hydrogen.
With ℏ ω[image: -*-] higher than k T[image: -*-] at room temperature for hydrogen,
but lower for iodine, only the latter, iodine, exhibits the classical
vibrational energy. As we increase the temperature of a gas, starting
from a very low value of T[image: -*-], with the molecules almost all in their
lowest state, they gradually begin to have an appreciable probability to
be in the second state, and then in the next state, and so on. When the
probability is appreciable for many states, the behavior of the gas
approaches that given by classical physics, because the quantized states
become nearly indistinguishable from a continuum of energies, and the
system can have almost any energy. Thus, as the temperature rises, we
should again get the results of classical physics, as indeed seems to be
the case in Fig. 40–6. It is possible to show in the same
way that the rotational states of atoms are also quantized, but the
states are so much closer together that in ordinary circumstances k T[image: -*-]
is bigger than the spacing. Then many levels are excited, and the
rotational kinetic energy in the system participates in the classical
way. The one example where this is not quite true at room temperature is
for hydrogen.




This is the first time that we have really deduced, by comparison with
experiment, that there was something wrong with classical physics, and we have
looked for a resolution of the difficulty in quantum mechanics in much the same
way as it was done originally. It took 30 or 40 years before the next difficulty
was discovered, and that had to do again with statistical mechanics, but this
time the mechanics of a photon gas. That problem was solved by
Planck, in the early years of the 20th
century.





	
  
  To get the value of the integral, let
[image: -*-][image: -*-]


Then
[image: -*-][image: -*-]


which is a double integral over the whole x y[image: -*-]-plane. But this can
also be written in polar coordinates as
[image: -*-][image: -*-]


  ↩





  
    

41 The Brownian Movement



41–1 Equipartition of energy


The Brownian movement was discovered in 1827 by
Robert Brown, a botanist. While he
was studying microscopic life, he noticed little particles of plant
pollens jiggling around in the liquid he was looking at in the
microscope, and he was wise enough to realize that these were not
living, but were just little pieces of dirt moving around in the water.
In fact he helped to demonstrate that this had nothing to do with life
by getting from the ground an old piece of quartz in which there was
some water trapped. It must have been trapped for millions and millions
of years, but inside he could see the same motion. What one sees is that
very tiny particles are jiggling all the time.




This was later proved to be one of the effects of molecular
motion, and we can understand it qualitatively
by thinking of a great push ball on a playing field, seen from a great
distance, with a lot of people underneath, all pushing the ball in
various directions. We cannot see the people because we imagine that we
are too far away, but we can see the ball, and we notice that it moves
around rather irregularly. We also know, from the theorems that we have
discussed in previous chapters, that the mean kinetic energy of a small
particle suspended in a liquid or a gas will be [image: \tfrac{3}{2}kT][image: \tfrac{3}{2}kT] even
though it is very heavy compared with a molecule. If it is very heavy,
that means that the speeds are relatively slow, but it turns out,
actually, that the speed is not really so slow. In fact, we cannot see
the speed of such a particle very easily because although the mean
kinetic energy is [image: \tfrac{3}{2}kT][image: \tfrac{3}{2}kT], which represents a speed of a
millimeter or so per second for an object a micron or two in diameter,
this is very hard to see even in a microscope, because the particle
continuously reverses its direction and does not get anywhere. How far
it does get we will discuss at the end of the present chapter. This
problem was first solved by Einstein at the beginning of the 20th century.




Incidentally, when we say that the mean kinetic energy of this
particle is [image: \tfrac{3}{2}kT][image: \tfrac{3}{2}kT], we claim to have derived this result
from the kinetic theory, that is, from Newton’s laws. We shall find
that we can derive all kinds of things—marvelous things—from the
kinetic theory, and it is most interesting that we can apparently get
so much from so little. Of course we do not mean that Newton’s
laws
are “little”—they are enough to do it, really—what we mean is
that we did not do very much. How do we get so much out? The
answer is that we have been perpetually making a certain important
assumption, which is that if a given system is in thermal equilibrium
at some temperature, it will also be in thermal equilibrium with
anything else at the same temperature. For instance, if we
wanted to see how a particle would move if it was really colliding
with water, we could imagine that there was a gas present, composed of
another kind of particle, little fine pellets that (we suppose) do not
interact with water, but only hit the particle with “hard”
collisions. Suppose the particle has a prong sticking out of it; all
our pellets have to do is hit the prong. We know all about this
imaginary gas of pellets at temperature T[image: -*-]—it is an ideal
gas. Water is complicated, but an ideal gas is simple. Now, our
particle has to be in equilibrium with the gas of pellets. Therefore,
the mean motion of the particle must be what we get for gaseous
collisions, because if it were not moving at the right speed relative
to the water but, say, was moving faster, that would mean that the
pellets would pick up energy from it and get hotter than the
water. But we had started them at the same temperature, and we assume
that if a thing is once in equilibrium, it stays in
equilibrium—parts of it do not get hotter and other parts colder,
spontaneously.





This proposition is true and can be proved from the laws of mechanics,
but the proof is very complicated and can be established only by using
advanced mechanics. It is much easier to prove in quantum mechanics than
it is in classical mechanics. It was proved first by
Boltzmann, but for now we simply
take it to be true, and then we can argue that our particle has to have
[image: \tfrac{3}{2}kT][image: \tfrac{3}{2}kT] of energy if it is hit with artificial pellets, so it
also must have [image: \tfrac{3}{2}kT][image: \tfrac{3}{2}kT] when it is being hit with water at the
same temperature and we take away the pellets; so it
is [image: \tfrac{3}{2}kT][image: \tfrac{3}{2}kT]. It is a strange line of argument, but perfectly valid.




In addition to the motion of colloidal particles for which the Brownian
movement was first discovered, there are a number of other phenomena,
both in the laboratory and in other situations, where one can see
Brownian movement. If we are trying to build the most delicate possible
equipment, say a very small mirror on a thin quartz fiber for a very
sensitive ballistic galvanometer (Fig. 41–1), the mirror
does not stay put, but jiggles all the time—all the time—so
that when we shine a light on it and look at the position of the spot,
we do not have a perfect instrument because the mirror is always
jiggling. Why?  Because the average kinetic energy of rotation of this
mirror has to be, on the average, [image: \tfrac{1}{2}kT][image: \tfrac{1}{2}kT].



[image: -][image: -][image: -][image: -]
Fig. 41–1. (a) A sensitive light-beam galvanometer. Light from a
source L[image: -*-] is reflected from a small mirror onto a scale. (b) A
schematic record of the reading of the scale as a function of the time.





What is the mean-square angle over which the mirror will wobble?
Suppose we find the natural vibration period of the mirror by tapping
on one side and seeing how long it takes to oscillate back and forth,
and we also know the moment of inertia, I[image: -*-]. We know the formula for
the kinetic energy of rotation—it is given by Eq. (19.8):
[image: T = \tfrac{1}{2}I\omega^2][image: T = \tfrac{1}{2}I\omega^2]. That is the kinetic energy, and the
potential energy that goes with it will be proportional to the square of
the angle—it is [image: V = \tfrac{1}{2}\alpha\theta^2][image: V = \tfrac{1}{2}\alpha\theta^2]. But, if we know the
period t0[image: -*-] and calculate from that the natural frequency ω0=2 π/t0[image: -*-], then the potential energy is [image: V = \tfrac{1}{2}I\omega_0^2\theta^2][image: V = \tfrac{1}{2}I\omega_0^2\theta^2]. Now we know that the average kinetic
energy is [image: \tfrac{1}{2}kT][image: \tfrac{1}{2}kT], but since it is a harmonic oscillator the
average potential energy is also [image: \tfrac{1}{2}kT][image: \tfrac{1}{2}kT]. Thus

[image: -*-][image: -*-]


or

[image: -*-][image: -*-]
(41.1)




In this way we can calculate the oscillations of a galvanometer
mirror, and thereby find what the limitations of our instrument will
be. If we want to have smaller oscillations, we have to cool the
mirror. An interesting question is, where to cool it. This
depends upon where it is getting its “kicks” from. If it is through
the fiber, we cool it at the top—if the mirror is surrounded by a
gas and is getting hit mostly by collisions in the gas, it is better
to cool the gas. As a matter of fact, if we know where the
damping of the oscillations comes from, it turns out that that
is always the source of the fluctuations also, a point which we
will come back to.



[image: -][image: -][image: -][image: -]
Fig. 41–2. A high-Q[image: -*-] resonant circuit. (a) Actual circuit, at
temperature T[image: -*-]. (b) Artificial circuit, with an ideal (noiseless)
resistance and a “noise generator” G[image: -*-].





The same thing works, amazingly enough, in electrical
circuits. Suppose that we are building a very sensitive, accurate
amplifier for a definite frequency and have a resonant circuit
(Fig. 41–2) in the input so as to make it very sensitive to
this certain frequency, like a radio receiver, but a really good one.
Suppose we wish to go down to the very lowest limit of things, so we
take the voltage, say off the inductance, and send it into the rest of
the amplifier. Of course, in any circuit like this, there is a certain
amount of loss. It is not a perfect resonant circuit, but it is a very
good one and there is a little resistance, say (we put the resistor in
so we can see it, but it is supposed to be small). Now we would like to
find out: How much does the voltage across the inductance fluctuate?
Answer: We know that [image: \tfrac{1}{2}LI^2][image: \tfrac{1}{2}LI^2] is the “kinetic
energy”—the energy associated with a coil in a resonant circuit
(Chapter 25). Therefore the mean value of [image: \tfrac{1}{2}LI^2][image: \tfrac{1}{2}LI^2]
is equal to [image: \tfrac{1}{2}kT][image: \tfrac{1}{2}kT]—that tells us what the rms current is and
we can find out what the rms voltage is from the rms current. For if we
want the voltage across the inductance the formula is [image: \hat{V}_L = i\omega L\hat{I}][image: \hat{V}_L = i\omega L\hat{I}], and the mean absolute square voltage on the
inductance is [image: \avg{V_L^2} = L^2\omega_0^2\avg{I^2}][image: \avg{V_L^2} = L^2\omega_0^2\avg{I^2}], and putting in
[image: \tfrac{1}{2}L\avg{I^2} = \tfrac{1}{2}kT][image: \tfrac{1}{2}L\avg{I^2} = \tfrac{1}{2}kT], we obtain

[image: -*-][image: -*-]
(41.2)




So now we can design circuits and tell when we are going to get what is
called Johnson noise, the noise associated with thermal
fluctuations!




Where do the fluctuations come from this time? They come again from the
resistor—they come from the fact that the
electrons in the resistor are jiggling around because
they are in thermal equilibrium with the matter in the
resistor, and they make fluctuations in the density of
electrons. They thus make tiny electric fields which drive the resonant
circuit.




Electrical engineers represent the answer in another way. Physically,
the resistor is effectively the source of noise.
However, we may replace the real circuit having an honest, true physical
resistor which is making noise, by an artificial circuit
which contains a little generator that is going to represent the
noise, and now the resistor is otherwise ideal—no
noise comes from it. All the noise is in the artificial generator. And
so if we knew the characteristics of the noise generated by a
resistor, if we had the formula for that, then we could
calculate what the circuit is going to do in response to that noise. So,
we need a formula for the noise fluctuations. Now the noise that is
generated by the resistor is at all frequencies, since
the resistor by itself is not resonant. Of course the
resonant circuit only “listens” to the part that is near the right
frequency, but the resistor has many different
frequencies in it. We may describe how strong the generator is, as
follows: The mean power that the resistor would absorb
if it were connected directly across the noise generator would
be [image: \avg{E^2}/R][image: \avg{E^2}/R], if E[image: -*-] were the voltage from the generator. But we
would like to know in more detail how much power there is at every
frequency. There is very little power in any one frequency; it is a
distribution. Let P (ω) d ω[image: -*-] be the power that the generator
would deliver in the frequency range d ω[image: -*-] into the very same
resistor. Then we can prove (we shall prove it for
another case, but the mathematics is exactly the same) that the power
comes out 
[image: -*-][image: -*-]
(41.3)




and is independent of the resistance when put this way.







41–2 Thermal equilibrium of radiation


Now we go on to consider a still more advanced and interesting
proposition that is as follows. Suppose we have a charged oscillator
like those we were talking about when we were discussing light, let us
say an electron oscillating up and down in an atom. If it oscillates up
and down, it radiates light. Now suppose that this oscillator is in a
very thin gas of other atoms, and that from time to time the atoms
collide with it. Then in equilibrium, after a long time, this oscillator
will pick up energy such that its kinetic energy of oscillation
is [image: \tfrac{1}{2}kT][image: \tfrac{1}{2}kT], and since it is a harmonic oscillator, its entire
energy will become k T[image: -*-]. That is, of course, a wrong description so far,
because the oscillator carries electric charge, and if it has an
energy k T[image: -*-] it is shaking up and down and radiating light.
Therefore it is impossible to have equilibrium of real matter alone
without the charges in it emitting light, and as light is emitted,
energy flows away, the oscillator loses its k T[image: -*-] as time goes on, and
thus the whole gas which is colliding with the oscillator gradually
cools off. And that is, of course, the way a warm stove cools, by
radiating the light into the sky, because the atoms are jiggling their
charge and they continually radiate, and slowly, because of this
radiation, the jiggling motion slows down.




On the other hand, if we enclose the whole thing in a box so that the
light does not go away to infinity, then we can eventually get
thermal equilibrium. We may either put the gas in a box where we can say
that there are other radiators in the box walls sending light back or,
to take a nicer example, we may suppose the box has mirror walls. It is
easier to think about that case. Thus we assume that all the radiation
that goes out from the oscillator keeps running around in the box. Then,
of course, it is true that the oscillator starts to radiate, but pretty
soon it can maintain its k T[image: -*-] of energy in spite of the fact that it is
radiating, because it is being illuminated, we may say, by its own light
reflected from the walls of the box. That is, after a while there is a
great deal of light rushing around in the box, and although the
oscillator is radiating some, the light comes back and returns some of
the energy that was radiated.




We shall now determine how much light there must be in such a box at
temperature T[image: -*-] in order that the shining of the light on this
oscillator will generate just enough energy to account for the light
it radiated.




Let the gas atoms be very few and far between, so that we have an
ideal oscillator with no resistance except radiation resistance. Then
we consider that at thermal equilibrium the oscillator is doing two
things at the same time. First, it has a mean energy k T[image: -*-], and we
calculate how much radiation it emits. Second, this radiation should
be exactly the amount that would result because of the fact that the
light shining on the oscillator is scattered. Since there is nowhere
else the energy can go, this effective radiation is really just
scattered light from the light that is in there.




Thus we first calculate the energy that is radiated by the oscillator
per second, if the oscillator has a certain energy. (We borrow from
Chapter 32 on radiation resistance a number of equations
without going back over their derivation.) The energy radiated per
radian divided by the energy of the oscillator is called 1/Q[image: -*-]
(Eq. 32.8): 1/Q=(d W/d t)/ω0 W[image: -*-]. Using the
quantity γ[image: -*-], the damping constant, this can also be written as 1/Q=γ/ω0[image: -*-], where ω0[image: -*-] is the natural frequency of the
oscillator—if gamma is very small, Q[image: -*-] is very large. The energy
radiated per second is then

[image: -*-][image: -*-]
(41.4)




The energy radiated per second is thus simply gamma times the energy
of the oscillator. Now the oscillator should have an average
energy k T[image: -*-], so we see that gamma k T[image: -*-] is the average amount of energy
radiated per second:

[image: -*-][image: -*-]
(41.5)




Now we only have to know what gamma is. Gamma is easily found from
Eq. (32.12). It is

[image: -*-][image: -*-]
(41.6)




where r0=e2/m c2[image: -*-] is the classical electron radius, and we have
set λ=2 π c/ω0[image: -*-].




Our final result for the average rate of radiation of light near the
frequency ω0[image: -*-] is therefore

[image: -*-][image: -*-]
(41.7)







Next we ask how much light must be shining on the oscillator. It must
be enough that the energy absorbed from the light (and thereupon
scattered) is just exactly this much. In other words, the emitted
light is accounted for as scattered light from the light that
is shining on the oscillator in the cavity. So we must now calculate
how much light is scattered from the oscillator if there is a certain
amount—unknown—of radiation incident on it. Let
I (ω) d ω[image: -*-] be the amount of light energy there is at the
frequency ω[image: -*-], within a certain range d ω[image: -*-] (because there is
no light at exactly a certain frequency; it is spread all over
the spectrum). So I (ω)[image: -*-] is a certain spectral
distribution which we are now going to find—it is the color of a
furnace at temperature T[image: -*-] that we see when we open the door and look
in the hole. Now how much light is absorbed? We worked out the amount
of radiation absorbed from a given incident light beam, and we
calculated it in terms of a cross section. It is just as though
we said that all of the light that falls on a certain cross section is
absorbed. So the total amount that is re-radiated (scattered) is the
incident intensity I (ω) d ω[image: -*-] multiplied by the cross
section σ[image: -*-].




The formula for the cross section that we derived (Eq. 32.19)
did not have the damping included. It is not hard to go through the
derivation again and put in the resistance term, which we neglected. If
we do that, and calculate the cross section the same way, we get

[image: -*-][image: -*-]
(41.8)







Now, as a function of frequency, σs[image: -*-] is of significant size only
for ω[image: -*-] very near to the natural frequency ω0[image: -*-]. (Remember
that the Q[image: -*-] for a radiating oscillator is about 108[image: -*-].) The oscillator
scatters very strongly when ω[image: -*-] is equal to ω0[image: -*-], and very
weakly for other values of ω[image: -*-]. Therefore we can replace ω[image: -*-]
by ω0[image: -*-] and [image: \omega^2 - \omega_0^2][image: \omega^2 - \omega_0^2] by 2 ω0 (ω−ω0)[image: -*-], and we get

[image: -*-][image: -*-]
(41.9)




Now the whole curve is localized near ω=ω0[image: -*-]. (We do not
really have to make any approximations, but it is much easier to do the
integrals if we simplify the equation a bit.) Now we multiply the
intensity in a given frequency range by the cross section of scattering,
to get the amount of energy scattered in the range d ω[image: -*-]. The
total energy scattered is then the integral of this for
all ω[image: -*-]. Thus

[image: -*-][image: -*-]
(41.10)







Now we set d Ws/d t=3 γ k T[image: -*-]. Why three? Because when we
made our analysis of the cross section in Chapter 32, we
assumed that the polarization was such that the light could drive the
oscillator. If we had used an oscillator which could move only in one
direction, and the light, say, was polarized in the wrong way, it
would not give any scattering. So we must either average the cross
section of an oscillator which can go only in one direction, over all
directions of incidence and polarization of the light or, more easily,
we can imagine an oscillator which will follow the field no matter
which way the field is pointing. Such an oscillator, which can
oscillate equally in three directions, would have 3 k T[image: -*-] average energy
because there are 3 degrees of freedom in that oscillator. So we
should use 3 γ k T[image: -*-] because of the 3 degrees of freedom.



[image: -][image: -]
Fig. 41–3. The factors in the integrand (41.10). The peak is the
resonance curve 1/[(ω−ω0)2+γ2/4][image: -*-]. To a
good approximation the factor I (ω)[image: -*-] can be replaced
by I (ω0)[image: -*-].





Now we have to do the integral. Let us suppose that the unknown
spectral distribution I (ω)[image: -*-] of the light is a smooth curve and
does not vary very much across the very narrow frequency region where
σs[image: -*-] is peaked (Fig. 41–3). Then the only
significant contribution comes when ω[image: -*-] is very close
to ω0[image: -*-], within an amount gamma, which is very small. So therefore,
although I (ω)[image: -*-] may be an unknown and complicated function, the
only place where it is important is near ω=ω0[image: -*-], and
there we may replace the smooth curve by a flat one—a
“constant”—at the same height. In other words, we simply take
I (ω)[image: -*-] outside the integral sign and call it I (ω0)[image: -*-]. We
may also take the rest of the constants out in front of the integral,
and what we have left is

[image: -*-][image: -*-]
(41.11)




Now, the integral should go from 0 to ∞[image: -*-], but 0 is so far
from ω0[image: -*-] that the curve is all finished by that time, so we go
instead to minus ∞[image: -*-]—it makes no difference and it is much
easier to do the integral. The integral is an inverse tangent function
of the form ∫d x/(x2+a2)[image: -*-]. If we look it up in a book we see
that it is equal to π/a[image: -*-]. So what it comes to for our case
is 2 π/γ[image: -*-]. Therefore we get, with some rearranging,

[image: -*-][image: -*-]
(41.12)




Then we substitute the formula (41.6) for gamma (do not
worry about writing ω0[image: -*-]; since it is true of any ω0[image: -*-], we
may just call it ω[image: -*-]) and the formula for I (ω)[image: -*-] then comes
out

[image: -*-][image: -*-]
(41.13)




And that gives us the distribution of light in a hot furnace. It is
called the blackbody radiation. Black, because the hole in the
furnace that we look at is black when the temperature is zero.




Inside a closed box at temperature T[image: -*-], (41.13) is the
distribution of energy of the radiation, according to classical
theory. First, let us notice a remarkable feature of that
expression. The charge of the oscillator, the mass of the oscillator,
all properties specific to the oscillator, cancel out, because
once we have reached equilibrium with one oscillator, we must be at
equilibrium with any other oscillator of a different mass, or we will
be in trouble. So this is an important kind of check on the
proposition that equilibrium does not depend on what we are in
equilibrium with, but only on the temperature. Now let us draw
a picture of the I (ω)[image: -*-] curve (Fig. 41–4). It tells
us how much light we have at different frequencies.



[image: -][image: -]
Fig. 41–4. The blackbody intensity distribution at two temperatures,
according to classical physics (solid curves). The dashed curves
show the actual distribution.





The amount of intensity that there is in our box, per unit frequency
range, goes, as we see, as the square of the frequency, which means
that if we have a box at any temperature at all, and if we look at the
x-rays that are coming out, there will be a lot of them!




Of course we know this is false. When we open the furnace and take a
look at it, we do not burn our eyes out from x-rays at all. It is
completely false. Furthermore, the total energy in the box, the
total of all this intensity summed over all frequencies, would be the
area under this infinite curve. Therefore, something is fundamentally,
powerfully, and absolutely wrong.




Thus was the classical theory absolutely incapable of correctly
describing the distribution of light from a blackbody, just as it was
incapable of correctly describing the specific heats of
gases. Physicists went back and forth over this derivation from many
different points of view, and there is no escape. This is the
prediction of classical physics. Equation (41.13) is called
Rayleigh’s law, and it is
the prediction of classical physics, and is obviously absurd.







41–3 Equipartition and the quantum oscillator


The difficulty above was another part of the continual problem of
classical physics, which started with the difficulty of the specific
heat of gases, and now has been focused on the distribution of light
in a blackbody. Now, of course, at the time that theoreticians studied
this thing, there were also many measurements of the actual
curve. And it turned out that the correct curve looked like the dashed
curves in Fig. 41–4. That is, the x-rays were not
there. If we lower the temperature, the whole curve goes down in
proportion to T[image: -*-], according to the classical theory, but the observed
curve also cuts off sooner at a lower temperature. Thus the
low-frequency end of the curve is right, but the high-frequency end is
wrong. Why? When Sir James Jeans
was worrying about the specific heats of gases, he noted that motions
which have high frequency are “frozen out” as the temperature goes too
low. That is, if the temperature is too low, if the frequency is too
high, the oscillators do not have k T[image: -*-] of energy on the average.
Now recall how our derivation of (41.13) worked: It all
depends on the energy of an oscillator at thermal equilibrium. What
the k T[image: -*-] of (41.5) was, and what the same k T[image: -*-]
in (41.13) is, is the mean energy of a harmonic oscillator of
frequency ω[image: -*-] at temperature T[image: -*-]. Classically, this is k T[image: -*-], but
experimentally, no!—not when the temperature is too low or the
oscillator frequency is too high. And so the reason that the curve falls
off is the same reason that the specific heats of gases fail. It is
easier to study the blackbody curve than it is the specific heats of
gases, which are so complicated, therefore our attention is focused on
determining the true blackbody curve, because this curve is a curve
which correctly tells us, at every frequency, what the average energy of
harmonic oscillators actually is as a function of temperature.





Planck studied this curve. He first
determined the answer empirically, by fitting the observed curve with a
nice function that fitted very well. Thus he had an empirical formula
for the average energy of a harmonic oscillator as a function of
frequency. In other words, he had the right formula instead
of k T[image: -*-], and then by fiddling around he found a simple derivation for it
which involved a very peculiar assumption. That assumption was that
the harmonic oscillator can take up energies only ℏ ω[image: -*-] at
a time. The idea that they can have any energy at all is false.
Of course, that was the beginning of the end of classical mechanics.



[image: -][image: -]
Fig. 41–5. The energy levels of a harmonic oscillator are equally
spaced: En=n ℏ ω[image: -*-].





The very first correctly determined quantum-mechanical formula will
now be derived. Suppose that the permitted energy levels of a harmonic
oscillator were equally spaced at ℏ ω0[image: -*-] apart, so that the
oscillator could take on only these different energies
(Fig. 41–5). Planck made a
somewhat more complicated argument than the one that is being given
here, because that was the very beginning of quantum mechanics and he
had to prove some things. But we are going to take it as a fact (which
he demonstrated in this case) that the probability of occupying a level
of energy E[image: -*-] is P (E)=α e−E/k T[image: -*-]. If we go along with that, we
will obtain the right result.




Suppose now that we have a lot of oscillators, and each is a vibrator
of frequency ω0[image: -*-]. Some of these vibrators will be in the bottom
quantum state, some will be in the next one, and so forth. What we
would like to know is the average energy of all these oscillators. To
find out, let us calculate the total energy of all the oscillators and
divide by the number of oscillators. That will be the average energy
per oscillator in thermal equilibrium, and will also be the energy
that is in equilibrium with the blackbody radiation and that should go
in Eq. (41.13) in place of k T[image: -*-]. Thus we let N0[image: -*-] be the
number of oscillators that are in the ground state (the lowest energy
state); N1[image: -*-] the number of oscillators in the state E1[image: -*-]; N2[image: -*-] the
number that are in state E2[image: -*-]; and so on. According to the hypothesis
(which we have not proved) that in quantum mechanics the law that
replaced the probability e−P.E./k T[image: -*-]
or e−K.E./k T[image: -*-] in classical mechanics is that the probability
goes down as e−Δ E/k T[image: -*-], where Δ E[image: -*-] is the excess
energy, we shall assume that the number N1[image: -*-] that are in the first
state will be the number N0[image: -*-] that are in the ground state,
times e−ℏ ω/k T[image: -*-]. Similarly, N2[image: -*-], the number of oscillators in
the second state, is N2=N0 e−2 ℏ ω/k T[image: -*-]. To simplify the
algebra, let us call e−ℏ ω/k T=x[image: -*-]. Then we simply have
N1=N0 x[image: -*-], N2=N0 x2[image: -*-], …, Nn=N0 xn[image: -*-].




The total energy of all the oscillators must first be worked out. If
an oscillator is in the ground state, there is no energy. If it is in
the first state, the energy is ℏ ω[image: -*-], and there are N1[image: -*-] of
them. So N1 ℏ ω[image: -*-], or ℏ ω N0 x[image: -*-] is how much energy we
get from those. Those that are in the second state have
2 ℏ ω[image: -*-], and there are N2[image: -*-] of them, so N2⋅2 ℏ ω=2 ℏ ω N0 x2[image: -*-] is how much energy we get, and so on. Then we
add it all together to get Etot=N0 ℏ ω (0+x+2 x2+3 x3+⋯)[image: -*-].




And now, how many oscillators are there? Of course, N0[image: -*-] is the
number that are in the ground state, N1[image: -*-] in the first state, and so
on, and we add them together: Ntot=N0 (1+x+x2+x3+⋯)[image: -*-]. Thus the average energy is

[image: -*-][image: -*-]
(41.14)




Now the two sums which appear here we shall leave for the reader to
play with and have some fun with. When we are all finished summing and
substituting for x[image: -*-] in the sum, we should get—if we make no
mistakes in the sum—

[image: -*-][image: -*-]
(41.15)




This, then, was the first quantum-mechanical formula ever known, or
ever discussed, and it was the beautiful culmination of decades of
puzzlement. Maxwell knew that
there was something wrong, and the problem was, what was right?
Here is the quantitative answer of what is right instead of k T[image: -*-]. This
expression should, of course, approach k T[image: -*-] as ω→0[image: -*-] or as T→∞[image: -*-]. See if you can prove that it does—learn how to do the
mathematics.




This is the famous cutoff factor that Jeans was looking for, and if we use it instead of k T[image: -*-]
in (41.13), we obtain for the distribution of light in a
black box

[image: -*-][image: -*-]
(41.16)




We see that for a large ω[image: -*-], even though we have ω3[image: -*-] in
the numerator, there is an e[image: -*-] raised to a tremendous power in the
denominator, so the curve comes down again and does not “blow
up”—we do not get ultraviolet light and x-rays where we do not
expect them!




One might complain that in our derivation of (41.16) we
used the quantum theory for the energy levels of the harmonic
oscillator, but the classical theory in determining the cross
section σs[image: -*-]. But the quantum theory of light interacting with a
harmonic oscillator gives exactly the same result as that given by the
classical theory. That, in fact, is why we were justified in spending
so much time on our analysis of the index of refraction and the
scattering of light, using a model of atoms like little
oscillators—the quantum formulas are substantially the same.




Now let us return to the Johnson noise in a resistor. We
have
already remarked that the theory of this noise power is really the same
theory as that of the classical blackbody distribution. In fact, rather
amusingly, we have already said that if the resistance in a circuit were
not a real resistance, but were an antenna (an antenna acts like a
resistance because it radiates energy), a radiation resistance, it would
be easy for us to calculate what the power would be. It would be just
the power that runs into the antenna from the light that is all around,
and we would get the same distribution, changed by only one or two
factors. We can suppose that the resistor is a generator with an
unknown
power spectrum P (ω)[image: -*-]. The spectrum is determined by the fact that
this same generator, connected to a resonant circuit of any
frequency, as in Fig. 41–2(b), generates in the inductance
a voltage of the magnitude given in Eq. (41.2). One is thus
led to the same integral as in (41.10), and the same method
works to give Eq. (41.3). For low temperatures the k T[image: -*-]
in (41.3) must of course be replaced by (41.15).
The two theories (blackbody radiation and Johnson noise) are also
closely related physically, for we may of course connect a resonant
circuit to an antenna, so the resistance R[image: -*-] is a pure
radiation resistance. Since (41.2) does not depend on
the physical origin of the resistance, we know the generator G[image: -*-] for a
real resistance and for radiation resistance is the same. What is the
origin of the generated power P (ω)[image: -*-] if the resistance R[image: -*-] is only
an ideal antenna in equilibrium with its environment at temperature T[image: -*-]?
It is the radiation I (ω)[image: -*-] in the space at temperature T[image: -*-] which
impinges on the antenna and, as “received signals,” makes an effective
generator. Therefore one can deduce a direct relation of P (ω)[image: -*-]
and I (ω)[image: -*-], leading then from (41.13) to (41.3).




All the things we have been talking about—the so-called
Johnson noise and Planck’s distribution, and the correct theory
of the Brownian movement which we are about to describe—are
developments of the first decade or so of the 20th century. Now with those
points and that history in mind, we return to the Brownian movement.







41–4 The random walk

[image: -][image: -]
Fig. 41–6. A random walk of 36[image: -*-] steps of length l[image: -*-]. How far is S36[image: -*-]
from B[image: -*-]? Ans: about 6 l[image: -*-] on the average.





Let us consider how the position of a jiggling particle should change
with time, for very long times compared with the time between “kicks.”
Consider a little Brownian movement particle
which is jiggling about because it is bombarded on all sides by
irregularly jiggling water molecules. Query: After a given length of
time, how far away is it likely to be from where it began? This problem
was solved by Einstein and
Smoluchowski. If we imagine
that we divide the time into little intervals, let us say a hundredth of
a second or so, then after the first hundredth of a second it moves
here, and in the next hundredth it moves some more, in the next
hundredth of a second it moves somewhere else, and so on. In terms of
the rate of bombardment, a hundredth of a second is a very long time.
The reader may easily verify that the number of collisions a single
molecule of water receives in a second is about 1014[image: -*-], so in a
hundredth of a second it has 1012[image: -*-] collisions, which is a lot!
Therefore, after a hundredth of a second it is not going to remember
what happened before. In other words, the collisions are all
random, so that one “step” is not related to the previous
“step.” It is like the famous drunken sailor problem: the sailor comes
out of the bar and takes a sequence of steps, but each step is chosen at
an arbitrary angle, at random (Fig. 41–6). The question is:
After a long time, where is the sailor?  Of course we do not know!  It
is impossible to say. What do we mean—he is just somewhere more or
less random. Well then, on the average, where is he? On the
average, how far away from the bar has he gone? We have already
answered this question, because once we were discussing the
superposition of light from a whole lot of different sources at
different phases, and that meant adding a lot of arrows at different
angles (Chapter 32). There we discovered that the mean
square of the distance from one end to the other of the chain of random
steps, which was the intensity of the light, is the sum of the
intensities of the separate pieces. And so, by the same kind of
mathematics, we can prove immediately that if RN[image: -*-] is the vector
distance from the origin after N[image: -*-] steps, the mean square of the
distance from the origin is proportional to the number N[image: -*-] of steps.
That is, [image: \avg{R_N^2} = NL^2][image: \avg{R_N^2} = NL^2], where L[image: -*-] is the length of each step.
Since the number of steps is proportional to the time in our present
problem, the mean square distance is
proportional to the time:

[image: -*-][image: -*-]
(41.17)




This does not mean that the mean distance is proportional to
the time. If the mean distance were proportional to the time it would
mean that the drifting is at a nice uniform velocity. The sailor
is making some relatively sensible headway, but only such that
his mean square distance is proportional to time. That is the
characteristic of a random walk.




We may show very easily that in each successive step the square of the
distance increases, on the average, by L2[image: -*-]. For if we write RN=RN−1+L[image: -*-], we find that [image: \FLPR_N^2][image: \FLPR_N^2] is

[image: -*-][image: -*-]


and averaging over many trials, we have [image: \avg{R_N^2} = \avg{R_{N - 1}^2} + L^2][image: \avg{R_N^2} = \avg{R_{N - 1}^2} + L^2], since [image: \avg{\FLPR_{N - 1}\cdot\FLPL} = 0][image: \avg{\FLPR_{N - 1}\cdot\FLPL} = 0]. Thus, by
induction,

[image: -*-][image: -*-]
(41.18)







Now we would like to calculate the coefficient α[image: -*-] in
Eq. (41.17), and to do so we must add a feature. We are going
to suppose that if we were to put a force on this particle (having
nothing to do with the Brownian movement—we are
taking a side issue for the moment), then it would react in the
following way against the force. First, there would be inertia. Let m[image: -*-]
be the coefficient of inertia, the effective mass of the object (not
necessarily the same as the real mass of the real particle, because the
water has to move around the particle if we pull on it). Thus if we talk
about motion in one direction, there is a term like m (d2 x/d t2)[image: -*-] on
one side. And next, we want also to assume that if we kept a steady pull
on the object, there would be a drag on it from the fluid, proportional
to its velocity. Besides the inertia of the fluid, there is a resistance
to flow due to the viscosity and the complexity of the fluid. It is
absolutely essential that there be some irreversible losses,
something like resistance, in order that there be fluctuations. There is
no way to produce the k T[image: -*-] unless there are also losses. The source of
the fluctuations is very closely related to these losses. What the
mechanism of this drag is, we will discuss soon—we shall talk about
forces that are proportional to the velocity and where they come from.
But let us suppose for now that there is such a resistance. Then the
formula for the motion under an external force, when we are pulling on
it in a normal manner, is

[image: -*-][image: -*-]
(41.19)




The quantity μ[image: -*-] can be determined directly from experiment. For
example, we can watch the drop fall under gravity. Then we know that
the force is m g[image: -*-], and μ[image: -*-] is m g[image: -*-] divided by the speed of fall the
drop ultimately acquires. Or we could put the drop in a centrifuge and
see how fast it sediments. Or if it is charged, we can put an electric
field on it. So μ[image: -*-] is a measurable thing, not an artificial thing,
and it is known for many types of colloidal particles, etc.




Now let us use the same formula in the case where the force is not
external, but is equal to the irregular forces of the Brownian
movement. We shall then try to determine the
mean square distance that the object goes. Instead of taking the
distances in three dimensions, let us take just one dimension, and
find the mean of x2[image: -*-], just to prepare ourselves. (Obviously the mean
of x2[image: -*-] is the same as the mean of y2[image: -*-] is the same as the mean
of z2[image: -*-], and therefore the mean square of the distance is just 3 times
what we are going to calculate.) The x[image: -*-]-component of the irregular
forces is, of course, just as irregular as any other component. What
is the rate of change of x2[image: -*-]? It is d (x2)/d t=2 x (d x/d t)[image: -*-], so what
we have to find is the average of the position times the velocity. We
shall show that this is a constant, and that therefore the mean square
radius will increase proportionally to the time, and at what rate. Now
if we multiply Eq. (41.19) by x[image: -*-], m x (d2 x/d t2)+μ x (d x/d t)=x Fx[image: -*-]. We want the time average of x (d x/d t)[image: -*-], so let us
take the average of the whole equation, and study the three terms. Now
what about x[image: -*-] times the force?  If the particle happens to have gone
a certain distance x[image: -*-], then, since the irregular force is
completely irregular and does not know where the particle
started from, the next impulse can be in any direction relative
to x[image: -*-]. If x[image: -*-] is positive, there is no reason why the average force
should also be in that direction. It is just as likely to be one way
as the other. The bombardment forces are not driving it in a definite
direction. So the average value of x[image: -*-] times F[image: -*-] is zero. On the other
hand, for the term m x (d2 x/d t2)[image: -*-] we will have to be a little fancy,
and write this as

[image: -*-][image: -*-]


Thus we put in these two terms and take the average of both. So let us
see how much the first term should be. Now x[image: -*-] times the
velocity has a mean that does not change with time, because when it gets
to some position it has no remembrance of where it was before, so things
are no longer changing with time. So this quantity, on the average, is
zero. We have left the quantity m v2[image: -*-], and that is the only thing we
know: m v2/2[image: -*-] has a mean value [image: \tfrac{1}{2}kT][image: \tfrac{1}{2}kT]. Therefore we find that

[image: -*-][image: -*-]


implies

[image: -*-][image: -*-]


or

[image: -*-][image: -*-]
(41.20)




Therefore the object has a mean square distance [image: \avg{R^2}][image: \avg{R^2}], at the
end of a certain amount of t[image: -*-], equal to

[image: -*-][image: -*-]
(41.21)




And so we can actually determine how far the particles go! We
first must determine how they react to a steady force, how fast they
drift under a known force (to find μ[image: -*-]), and then we can determine
how far they go in their random motions. This equation was of
considerable importance historically, because it was one of the first
ways by which the constant k[image: -*-] was determined. After all, we can
measure μ[image: -*-], the time, how far the particles go, and we can take an
average. The reason that the determination of k[image: -*-] was important is
that in the law P V=R T[image: -*-] for a mole, we know that R[image: -*-], which can also
be measured, is equal to the number of atoms in a mole times k[image: -*-]. A
mole was originally defined as so and so many grams of
oxygen-16 (now carbon is used), so the number of atoms in a
mole was not known, originally. It is, of course, a very interesting
and important problem. How big are atoms?  How many are there? So one
of the earliest determinations of the number of atoms was by the
determination of how far a dirty little particle would move if we
watched it patiently under a microscope for a certain length of
time. And thus Boltzmann’s constant k[image: -*-] and the Avogadro number N0[image: -*-] were
determined because R[image: -*-] had already been measured.








  
    

42 Applications of Kinetic Theory



42–1 Evaporation


In this chapter we shall discuss some further applications of
kinetic
theory. In the previous chapter we emphasized one particular aspect of
kinetic theory, namely, that the average kinetic energy in any degree
of freedom of a molecule or other object is [image: \tfrac{1}{2}kT][image: \tfrac{1}{2}kT]. The
central feature of what we shall now discuss, on the other hand, is
the fact that the probability of finding a particle in different
places, per unit volume, varies as e−potential energy/k T[image: -*-];
we shall make a number of applications of this.




The phenomena which we want to study are relatively complicated: a
liquid evaporating, or electrons in a metal coming out of the surface,
or a chemical reaction in which there are a large number of atoms
involved. In such cases it is no longer possible to make from the
kinetic theory any simple and correct statements, because the
situation is too complicated. Therefore, this chapter, except where
otherwise emphasized, is quite inexact. The idea to be emphasized is
only that we can understand, from the kinetic theory, more or
less how things ought to behave. By using thermodynamic arguments, or
some empirical measurements of certain critical quantities, we can get
a more accurate representation of the phenomena.




However, it is very useful to know even only more or less why
something behaves as it does, so that when the situation is a new one,
or one that we have not yet started to analyze, we can say, more or
less, what ought to happen. So this discussion is highly inaccurate
but essentially right—right in idea, but a little bit simplified,
let us say, in the specific details.




The first example that we shall consider is the evaporation of a
liquid. Suppose we have a box with a large volume, partially filled
with liquid in equilibrium and with the vapor at a certain
temperature. We shall suppose that the molecules of the vapor are
relatively far apart, and that inside the liquid, the molecules are
packed close together. The problem is to find out how many molecules
there are in the vapor phase, compared with the number there are in
the liquid. How dense is the vapor at a given temperature, and how
does it depend on the temperature?




Let us say that n[image: -*-] equals the number of molecules per unit volume in
the vapor. That number, of course, varies with the temperature. If we
add heat, we get more evaporation. Now let another quantity, 1/Va[image: -*-],
equal the number of atoms per unit volume in the liquid: We suppose
that each molecule in the liquid occupies a certain volume, so that if
there are more molecules of liquid, then all together they occupy a
bigger volume. Thus if Va[image: -*-] is the volume occupied by one molecule,
the number of molecules in a unit volume is a unit volume divided by
the volume of each molecule. Furthermore, we suppose that there is a
force of attraction between the molecules to hold them together in the
liquid. Otherwise we cannot understand why it condenses. Thus suppose
that there is such a force and that there is an energy of binding of
the molecules in the liquid which is lost when they go into the
vapor. That is, we are going to suppose that, in order to take a
single molecule out of the liquid into the vapor, a certain amount of
work W[image: -*-] has to be done. There is a certain difference, W[image: -*-], in the
energy of a molecule in the liquid from what it would have if it were
in the vapor, because we have to pull it away from the other molecules
which attract it.




Now we use the general principle that the number of atoms per unit
volume in two different regions is n2/n1=e−(E2−E1)/k T[image: -*-]. So
the number n[image: -*-] per unit volume in the vapor, divided by the
number 1/Va[image: -*-] per unit volume in the liquid, is equal to

[image: -*-][image: -*-]
(42.1)




because that is the general rule. It is like the atmosphere in
equilibrium under gravity, where the gas at the bottom is denser than
that at the top because of the work m g h[image: -*-] needed to lift the gas
molecules to the height h[image: -*-]. In the liquid, the molecules are denser
than in the vapor because we have to pull them out through the energy
“hill” W[image: -*-], and the ratio of the densities is e−W/k T[image: -*-].




This is what we wanted to deduce—that the vapor density varies
as e[image: -*-] to the minus some energy or other over k T[image: -*-]. The factors in front
are not really interesting to us, because in most cases the vapor
density is very much lower than the liquid density. In those
circumstances, where we are not near the critical point where they are
almost the same, but where the vapor density is much lower than the
liquid density, then the fact that n[image: -*-] is very much less than 1/Va[image: -*-]
is occasioned by the fact that W[image: -*-] is very much greater than k T[image: -*-]. So
formulas such as (42.1) are interesting only when W[image: -*-]
is very much bigger than k T[image: -*-], because in those circumstances, since we
are raising e[image: -*-] to minus a tremendous amount, if we change T[image: -*-] a
little bit, that tremendous power changes a bit, and the change
produced in the exponential factor is very much more important than
any change that might occur in the factors out in front. Why should
there be any changes in such factors as Va[image: -*-]? Because ours was an
approximate analysis. After all, there is not really a definite volume
for each molecule; as we change the temperature, the volume Va[image: -*-] does
not stay constant—the liquid expands. There are other little
features like that, and so the actual situation is more
complicated. There are slowly varying temperature-dependent factors
all over the place. In fact, we might say that W[image: -*-] itself varies
slightly with temperature, because at a higher temperature, at a
different molecular volume, there would be different average
attractions, and so on. So, while we might think that if we have a
formula in which everything varies in an unknown way with temperature
then we have no formula at all, if we realize that the exponent W/k T[image: -*-]
is, in general, very large, we see that in the curve of the vapor
density as a function of temperature most of the variation is
occasioned by the exponential factor, and if we take W[image: -*-] as a constant
and the coefficient 1/Va[image: -*-] as nearly constant, it is a good
approximation for short intervals along the curve. Most of the
variation, in other words, is of the general nature e−W/k T[image: -*-].




It turns out that there are many, many phenomena in nature which are
characterized by having to borrow an energy from somewhere, and in
which the central feature of the temperature variation is e[image: -*-] to the
minus the energy over k T[image: -*-]. This is a useful fact only when the energy
is large compared with k T[image: -*-], so that most of the variation is
contained in the variation of the k T[image: -*-] and not in the constant and in
other factors.





Now let us consider another way of obtaining a somewhat similar result for the
evaporation, but looking at it in more detail. To arrive at (42.1),
we simply applied a rule which is valid at equilibrium, but in order to
understand things better, there is no harm in trying to look at the details of
what is going on. We may also describe what is going on in the following way:
the molecules that are in the vapor continually bombard the surface of the
liquid; when they hit it, they may bounce off or they may get stuck. There is an
unknown factor for that—maybe 50[image: -*-]–50[image: -*-], maybe 10[image: -*-] to 90[image: -*-]—we do not know.
Let us say they always get stuck—we can analyze it over again later on the
assumption that they do not always get stuck. Then at a given moment there will
be a certain number of atoms which are condensing onto the surface of the
liquid. The number of condensing molecules, the number that arrive on a unit
area per unit time, is the number n[image: -*-] per unit volume times the velocity v[image: -*-].
This velocity of the molecules is related to the temperature, because we know
that [image: \tfrac{1}{2}mv^2][image: \tfrac{1}{2}mv^2] is equal to [image: \tfrac{3}{2}kT][image: \tfrac{3}{2}kT] on the average. So v[image: -*-] is
some kind of a mean velocity. Of course we should integrate over the angles and
get some kind of an average, but it is roughly proportional to the
root-mean-square
velocity, within some factor. Thus

[image: -*-][image: -*-]
(42.2)




is the rate at which the molecules arrive per unit area and are condensing.




At the same time, however, the atoms in the liquid are jiggling about,
and from time to time one of them gets kicked out. Now we have to
estimate how fast they get kicked out. The idea will be that at
equilibrium the number that are kicked out per second and the number
that arrive per second are equal.




How many get kicked out? In order to get kicked out, a particular
molecule has to have acquired by accident an excess energy over its
neighbors—a considerable excess energy, because it is attracted very
strongly by the other molecules in the liquid. Ordinarily it does not
leave because it is so strongly attracted, but in the collisions
sometimes one of them gets an extra energy by accident. And the chance
that it gets the extra energy W[image: -*-] which it needs in our case is very
small if W≫k T[image: -*-]. In fact, e−W/k T[image: -*-] is the chance that an atom
has picked up more than this much energy. That is the general
principle in kinetic theory: in order to borrow an excess energy W[image: -*-]
over the average, the odds are e[image: -*-] to the minus the energy that we
have to borrow, over k T[image: -*-]. Now suppose that some molecules have
borrowed this energy. We now have to estimate how many leave the
surface per second. Of course, just because a molecule has the
necessary energy does not mean that it will actually evaporate, since
it may be buried too deeply inside the liquid or, even if it is near
the surface, it may be travelling in the wrong direction. The number
that are going to leave a unit area per second is going to be
something like this: the number of atoms there are near the surface,
per unit area, divided by the time it takes one to escape, multiplied
by the probability e−W/k T[image: -*-] that they are ready to escape in the
sense that they have enough energy.




We shall suppose that each molecule at the surface of the liquid
occupies a certain cross-sectional area A[image: -*-]. Then the number of
molecules per unit area of liquid surface will be 1/A[image: -*-]. And now, how
long does it take a molecule to escape? If the molecules have a
certain average speed v[image: -*-], and have to move, say, one molecular
diameter D[image: -*-], the thickness of the first layer, then the time it takes
to get across that thickness is the time needed to escape, if the
molecule has enough energy. The time will be D/v[image: -*-]. Thus the number
evaporating should be approximately

[image: -*-][image: -*-]
(42.3)




Now the area of each atom times the thickness of the layer is
approximately the same as the volume Va[image: -*-] occupied by a single
atom. And so, in order to get equilibrium, we must have Nc=Ne[image: -*-],
or

[image: -*-][image: -*-]
(42.4)




We may cancel the v[image: -*-]’s, since they are equal; even though one is the
velocity of a molecule in the vapor and the other is the velocity of
an evaporating molecule, these are the same, because we know their
mean kinetic energy (in one direction) is [image: \tfrac{1}{2}kT][image: \tfrac{1}{2}kT]. But one
may object, “No! No! These are the especially fast-moving ones; these
are the ones that have picked up excess energy.” Not really, because
the moment they start to pull away from the liquid, they have to
lose that excess energy against the potential energy. So, as
they come to the surface they are slowed down to the velocity v[image: -*-]! It
is the same as it was in our discussion of the distribution of
molecular velocities in the atmosphere—at the bottom, the molecules
had a certain distribution of energy. The ones that arrive at the top
have the same distribution of energy, because the slow ones did
not arrive at all, and the fast ones were slowed down. The molecules
that are evaporating have the same distribution of energy as the ones
inside—a rather remarkable fact. Anyway, it is useless to try to
argue so closely about our formula because of other inaccuracies, such
as the probability of bouncing back rather than entering the liquid,
and so on. Thus we have a rough idea of the rate of evaporation and
condensation, and we see, of course, that the vapor density n[image: -*-] varies
in the same way as before, but now we have understood it in some
detail rather than just as an arbitrary formula.




This deeper understanding permits us to analyze some things. For
example, suppose that we were to pump away the vapor at such a great
rate that we removed the vapor as fast as it formed (if we had very
good pumps and the liquid was evaporating very slowly), how fast would
evaporation occur if we maintained a liquid temperature T[image: -*-]? Suppose
that we have already experimentally measured the equilibrium vapor
density, so that we know, at the given temperature, how many molecules
per unit volume are in equilibrium with the liquid. Now we would like
to know how fast it will evaporate. Even though we have used
only a rough analysis so far as the evaporation part of it is
concerned, the number of vapor molecules arriving was not done
so badly, aside from the unknown factor of reflection coefficient. So
therefore we may use the fact that the number that are leaving, at
equilibrium, is the same as the number that arrive. True, the vapor is
being swept away and so the molecules are only coming out, but if the
vapor were left alone, it would attain the equilibrium density at
which the number that come back would equal the number that are
evaporating. Therefore, we can easily see that the number that are
coming off the surface per second is equal to the unknown reflection
coefficient R[image: -*-] times the number that would come down to the surface
per second were the vapor still there, because that is how many would
balance the evaporation at equilibrium:

[image: -*-][image: -*-]
(42.5)




Of course, the number of molecules that hit the liquid from the vapor
is easy to calculate, since we do not need to know as much about the
forces as we do when we are worrying about how they get to escape
through the liquid surface; it is much easier to make the argument the
other way.







42–2 Thermionic emission


We may give another example of a very practical situation that is
similar to the evaporation of a liquid—so similar that it is not
worth making a separate analysis. It is essentially the same
problem. In a radio tube there is a source of electrons, namely a
heated tungsten filament, and a positively charged plate to attract
the electrons. Any electron that escapes from the surface of the
tungsten is immediately swept away to the plate. That is our ideal
“pump,” which is “pumping” the electrons away all the time. Now
the question is: How many electrons per second can we get out of a
piece of tungsten, and how does that number vary with temperature? The
answer to that problem is the same as (42.5), because it
turns out that in a piece of metal, electrons are attracted to the
ions, or to atoms, of the metal. They are attracted, if we may say it
crudely, to the metal. In order to get an electron out of a piece of
metal, it takes a certain amount of energy or work to pull it
out. This work varies with the different kinds of metal. In fact, it
varies even with the character of the surface of a given kind of
metal, but the total work may be a few electron volts, which,
incidentally, is typical of the energy involved in chemical
reactions. We can remember the latter fact by remembering that the
voltage in a chemical cell like a flashlight battery, which is
produced by chemical reactions, is about one volt.





How can we find out how many electrons come out per second? It would
be quite difficult to analyze the effects on the electrons going out;
it is easier to analyze the situation the other way. So, we could
start out by imagining that we did not draw the electrons away, and
that the electrons were like a gas, and could come back to the
metal. Then there would be a certain density of electrons at
equilibrium which would, of course, be given by exactly the same
formula as (42.1), where Va[image: -*-] is the volume per electron
in the metal, roughly, and W[image: -*-] is equal to qe ϕ[image: -*-], where ϕ[image: -*-] is
the so-called work function, or the voltage needed to pull an
electron off the surface. This would tell us how many electrons would
have to be in the surrounding space and striking the metal in order to
balance the ones that are coming out. And thus it is easy to calculate
how many are coming out if we sweep away all of them, because the
number that are coming out is exactly equal to the number that would
be going in with the above density of electron “vapor.” In other
words, the answer is that the current of electricity that comes in per
unit area is equal to the charge on each times the number that arrive
per second per unit area, which is the number per unit volume times
the velocity, as we have seen many times:

[image: -*-][image: -*-]
(42.6)




Now one electron volt corresponds to k T[image: -*-] at a temperature of
11,600[image: -*-] degrees. The filament of the tube may be operating at a
temperature of, say, 1100[image: -*-] degrees, so the exponential factor is
something like e−10[image: -*-]; when we change the temperature a little bit,
the exponential factor changes a lot. Thus, again, the central feature
of the formula is the e−qe ϕ/k T[image: -*-]. As a matter of fact, the
factor in front is quite wrong—it turns out that the behavior of
electrons in a metal is not correctly described by the classical
theory, but by quantum mechanics, but this only changes the factor in
front a little. Actually, no one has ever been able to get the thing
straightened out very well, even though many people have used the
high-class quantum-mechanical theory for their calculations. The big
problem is, does W[image: -*-] change slightly with temperature? If it does, one
cannot distinguish a W[image: -*-] changing slowly with temperature from a
different coefficient in front. That is, if W[image: -*-] changed linearly, say,
with temperature, so that W=W0+α k T[image: -*-], then we would have

[image: -*-][image: -*-]


Thus a linearly temperature-dependent W[image: -*-] is equivalent to a shifted
“constant.” It is really quite difficult and usually fruitless to
try to obtain the coefficient in the front accurately.







42–3 Thermal ionization


Now we go on to another example of the same idea; always the same
idea. This has to do with ionization. Suppose that in a gas we have a
whole lot of atoms which are in the neutral state, say, but the gas is
hot and the atoms can become ionized. We would like to know how many
ions there are in a given circumstance if we have a certain density of
atoms per unit volume at a certain temperature. Again we consider a
box in which there are N[image: -*-] atoms which can hold electrons. (If an
electron has come off an atom, it is called an ion, and if the
atom is neutral, we simply call it an atom.) Then suppose that, at any
given moment, the number of neutral atoms is na[image: -*-], the number of ions
is ni[image: -*-], and the number of electrons is ne[image: -*-], all per unit
volume. The problem is: What is the relationship of these three
numbers?




In the first place, we have two conditions or constraints on the
numbers. For instance, as we vary different conditions, like the
temperature and so on, na+ni[image: -*-] would remain constant, because this
would be simply the number N[image: -*-] of atomic nuclei that are in the
box. If we keep the number of nuclei per unit volume fixed, and
change, say, the temperature, then as the ionization proceeded some
atoms would turn to ions, but the total number of atoms plus ions
would be unchanged. That is, na+ni=N[image: -*-]. Another condition is
that if the entire gas is to be electrically neutral (and if we
neglect double or triple ionization), that means that the number of
ions is equal to the number of electrons at all times, or ni=ne[image: -*-]. These are subsidiary equations that simply express the
conservation of charge and the conservation of atoms.




These equations are true, and we ultimately will use them when we
consider a real problem. But we want to obtain another relationship
between the quantities. We can do this as follows. We again use the
idea that it takes a certain amount of energy to lift the electron out
of the atom, which we call the ionization energy, and we would write it as W[image: -*-], in order to make all of the
formulas look the same. So we let W[image: -*-] equal the energy needed to pull an
electron out of an atom and make an ion. Now we again say that the
number of free electrons per unit volume in the “vapor” is equal to
the number of bound electrons per unit volume in the atoms, times e[image: -*-] to
the minus the energy difference between being bound and being free,
over k T[image: -*-]. That is the basic equation again. How can we write it? The
number of free electrons per unit volume would, of course, be ne[image: -*-],
because that is the definition of ne[image: -*-]. Now what about the number of
electrons per unit volume that are bound to atoms? The total number of
places that we could put the electrons is apparently na+ni[image: -*-], and we
will suppose that when they are bound each one is bound within a certain
volume Va[image: -*-]. So the total amount of volume which is available to
electrons which would be bound is (na+ni) Va[image: -*-], so we might want to
write our formula as

[image: -*-][image: -*-]


The formula is wrong, however, in one essential feature, which is the
following: when an electron is already on an atom, another electron
cannot come to that volume anymore! In other words, all the volumes of
all the possible sites are not really available for the one electron
which is trying to make up its mind whether or not to be in the vapor
or in the condensed position, because in this problem there is an
extra feature that when one electron is where another electron is, it
is not allowed to go—it is repelled. For that reason, it comes out
that we should count only that part of the volume which is available
for an electron to sit on or not. That is, those which are already
occupied do not count in the total available volume, but the only
volume which is allowed is that of the ions, where there are
vacant places for the electron to go. Then, in those circumstances, we
find that a nicer way to write our formula is

[image: -*-][image: -*-]
(42.7)




This formula is called the Saha ionization equation. Now let us see if we can
understand qualitatively why a formula like this is right, by arguing
about the kinetic things that are happening.




First, every once in a while an electron comes to an ion and they
combine to make an atom. And also, every once in a while, an atom gets
into a collision and breaks up into an ion and an electron. Now those
two rates must be equal. How fast do electrons and ions find each other?
The rate is certainly increased if the number of electrons per unit
volume is increased. It is also increased if the number of ions per unit
volume is increased. That is, the total rate at which recombination is
occurring is certainly proportional to the number of electrons times the
number of ions. Now the total rate at which ionization is occurring due
to collisions must be dependent linearly on how many atoms there are to
ionize. And so the rates will balance when there is some relationship
between the product ne ni[image: -*-] and the number of atoms, na[image: -*-]. The fact
that this relationship happens to be given by this particular formula,
where W[image: -*-] is the ionization energy, is of course a little bit more
information, but we can easily understand that the formula would
necessarily involve the concentrations of the electrons, ions, and atoms
in the combination ne ni/na[image: -*-] to produce a constant independent of
the n[image: -*-]’s, and dependent only on temperature, the atomic cross sections,
and other constant factors.




We may also note that, since the equation involves the numbers
per unit volume, if we were to do two experiments with a given
total number N[image: -*-] of atoms plus ions, that is, a certain fixed number
of nuclei, but using boxes with different volumes, the n[image: -*-]’s would all
be smaller in the larger box. But since the ratio ne ni/na[image: -*-] stays
the same, the total number of electrons and ions must be
greater in the larger box. To see this, suppose that there are
N[image: -*-] nuclei inside a box of volume V[image: -*-], and that a fraction f[image: -*-] of them are
ionized. Then ne=[image: -*-]f N/V=[image: -*-]ni[image: -*-], and na=(1−f) N/V[image: -*-]. Then our
equation becomes

[image: -*-][image: -*-]
(42.8)




In other words, if we take a smaller and smaller density of atoms, or
make the volume of the container bigger and bigger, the fraction f[image: -*-]
of electrons and ions must increase. That ionization, just from
“expansion” as the density goes down, is the reason why we believe
that at very low densities, such as in the cold space between the
stars, there may be ions present, even though we might not understand
it from the point of view of the available energy. Although it takes
many, many k T[image: -*-] of energy to make them, there are ions present.




Why can there be ions present when there is so much space around,
while if we increase the density, the ions tend to disappear?
Answer: Consider an atom. Every once in a while, light, or
another atom, or an ion, or whatever it is that maintains thermal
equilibrium, strikes it. Very rarely, because it takes such a terrific
amount of excess energy, an electron comes off and an ion is left. Now
that electron, if the space is enormous, wanders and wanders and does
not come near anything for years, perhaps. But once in a very great
while, it does come back to an ion and they combine to make an
atom. So the rate at which electrons are coming out from the atoms is
very slow. But if the volume is enormous, an electron which has
escaped takes so long to find another ion to recombine with that its
probability of recombination is very, very small; thus, in spite of
the large excess energy needed, there may be a reasonable number of
electrons.







42–4 Chemical kinetics


The same situation that we have just called “ionization” is also
found in a chemical reaction. For instance, if two objects A[image: -*-] and B[image: -*-]
combine into a compound A B[image: -*-], then if we think about it for a while we
see that A B[image: -*-] is what we have called an atom, B[image: -*-] is what we call an
electron, and A[image: -*-] is what we call an ion. With these substitutions the
equations of equilibrium are exactly the same in form:

[image: -*-][image: -*-]
(42.9)




This formula, of course, is not exact, since the “constant” c[image: -*-]
depends on how much volume is allowed for the A[image: -*-] and B[image: -*-] to combine,
and so on, but by thermodynamic arguments one can identify what the
meaning of the W[image: -*-] in the exponential factor is, and it turns out that
it is very close to the energy needed in the reaction.




Suppose that we tried to understand this formula as a result of
collisions, much in the way that we understood the evaporation
formula, by arguing about how many electrons came off and how many of
them came back per unit time. Suppose that A[image: -*-] and B[image: -*-] combine in a
collision every once in a while to form a compound A B[image: -*-]. And suppose
that the compound A B[image: -*-] is a complicated molecule which jiggles around
and is hit by other molecules, and from time to time it gets enough
energy to explode and break up again into A[image: -*-] and B[image: -*-].



[image: -][image: -]
Fig. 42–1. The energy relationship for the reaction A+B→A B[image: -*-].





Now it actually turns out, in chemical reactions, that if the atoms
come together with too small an energy, even though energy may be
released in the reaction A+B→A B[image: -*-], the fact that A[image: -*-] and B[image: -*-] may
touch each other does not necessarily make the reaction start. It
usually is required that the collision be rather hard, in fact, to get
the reaction to go at all—a “soft” collision between A[image: -*-] and B[image: -*-]
may not do it, even though energy may be released in the process. So
let us suppose that it is very common in chemical reactions that, in
order for A[image: -*-] and B[image: -*-] to form A B[image: -*-], they cannot just hit each other,
but they have to hit each other with sufficient energy. This
energy is called the activation energy—the energy needed to “activate” the
reaction. Call
A*[image: -*-] the activation energy, the excess energy needed in a
collision in order that the reaction may really occur. Then the
rate Rf[image: -*-] at which A[image: -*-] and B[image: -*-] produce A B[image: -*-] would involve the number of
atoms of A[image: -*-] times the number of atoms of B[image: -*-], times the rate at which
a single atom would strike a certain cross section σA B[image: -*-],
times a factor e−A*/k T[image: -*-] which is the probability that they
have enough energy:

[image: -*-][image: -*-]
(42.10)




Now we have to find the opposite rate, Rr[image: -*-]. There is a certain
chance that A B[image: -*-] will fly apart. In order to fly apart, it not only
must have the energy W[image: -*-] which it needs in order to get apart at all
but, just as it was hard for A[image: -*-] and B[image: -*-] to come together, so there is
a kind of hill that A[image: -*-] and B[image: -*-] have to climb over to get apart again;
they must have not only enough energy just to get ready to pull apart,
but a certain excess.  It is like climbing a hill to get into a deep
valley; they have to climb the hill coming in and they have to climb
out of the valley and then over the hill coming back
(Fig. 42–1). Thus the rate at which A B[image: -*-] goes to A[image: -*-] and B[image: -*-]
will be proportional to the number nA B[image: -*-] that are present,
times e−(W+A*)/k T[image: -*-]:

[image: -*-][image: -*-]
(42.11)




The c′[image: -*-] will involve the volume of atoms and the rate of collisions,
which we can work out, as we did the case of evaporation, with areas
and times and thicknesses; but we shall not do this. The main feature
of interest to us is that when these two rates are equal, the ratio of
them is equal to unity. This tells us that nA nB/nA B=c e−W/k T[image: -*-], as before, where c[image: -*-] involves the cross sections,
velocities, and other factors independent of the n[image: -*-]’s.




The interesting thing is that the rate of the reaction also varies
as e−const/k T[image: -*-], although the constant is not the same as that
which governs the concentrations; the activation energy A*[image: -*-] is
quite different from the energy W[image: -*-]. W[image: -*-] governs the proportions
of A[image: -*-], B[image: -*-], and A B[image: -*-] that we have in equilibrium, but if we want to
know how fast A+B[image: -*-] goes to A B[image: -*-], that is not a question of
equilibrium, and here a different energy, the activation
energy, governs the
rate of reaction through
an exponential factor.




Furthermore, A*[image: -*-] is not a fundamental constant
like W[image: -*-]. Suppose that at the surface of the wall—or at some other
place—A[image: -*-] and B[image: -*-] could temporarily stick there in such a way that
they could combine more easily. In other words, we might find a
“tunnel” through the hill, or perhaps a lower hill. By the
conservation of energy, when we are all finished we have still made
A B[image: -*-] out of A[image: -*-] and B[image: -*-], so the energy difference W[image: -*-] will be quite
independent of the way the reaction occurred, but the activation
energy A*[image: -*-] will depend very much on the way the reaction
occurs. This is why the rates of chemical reactions are very sensitive
to outside conditions. We can change the rate by putting in a surface
of a different kind, we can put it in a “different barrel” and it
will go at a different rate, if it depends on the nature of the
surface. Or if we put in a third kind of object it may change the rate
very much; some things produce enormous changes in rate simply by
changing the A*[image: -*-] a little bit—they are called
catalysts. A reaction might practically not occur at all
because A*[image: -*-] is too big at the given temperature, but when we
put in this special stuff, the catalyst, then the reaction goes
very
fast indeed, because A*[image: -*-] is reduced.





Incidentally, there is some trouble with such a reaction, A[image: -*-] plus B[image: -*-],
making A B[image: -*-], because we cannot conserve both energy and momentum
when we try to put two objects together to make one that is more
stable. Therefore, we need at least a third object C[image: -*-], so the actual
reaction is much more complicated. The forward rate would involve the
product nA nB nC[image: -*-], and it might seem that our formula is going
wrong, but no! When we look at the rate at which A B[image: -*-] goes the other
way, we find that it also needs to collide with C[image: -*-], so there is
an nA B nC[image: -*-] in the reverse rate; the nC[image: -*-]’s cancel out in the formula
for the equilibrium concentrations. The law of equilibrium,
(42.9), which we first wrote down is absolutely guaranteed
to be true, no matter what the mechanism of the reaction may be!







42–5 Einstein’s laws of radiation


We now turn to an interesting analogous situation having to do with
the blackbody radiation law. In the last chapter we worked out the
distribution law for the radiation in a cavity the way
Planck did, considering the radiation
from an oscillator. The oscillator had to have a certain mean energy,
and since it was oscillating, it would radiate and would keep pumping
radiation into the cavity until it piled up enough radiation to balance
the absorption and emission. In that way we found that the intensity of
radiation at frequency ω[image: -*-] was given by the formula

[image: -*-][image: -*-]
(42.12)




This result involved the assumption that the oscillator which was
generating the radiation had definite, equally spaced energy
levels. We did not say that light had to be a photon or anything like
that. There was no discussion about how, when an atom goes from one
level to another, the energy must come out in one unit of energy,
ℏ ω[image: -*-], in the form of light.
Planck’s original idea was
that the matter was quantized but not
the light: material oscillators cannot take up just any energy, but have
to take it in lumps. Furthermore, the trouble with the derivation is
that it was partially classical. We calculated the rate of radiation
from an oscillator according to classical physics; then we turned around
and said, “No, this oscillator has a lot of energy levels.” So
gradually, in order to find the right result, the completely
quantum-mechanical result, there was a slow development which culminated
in the quantum mechanics of 1927. But in the meantime, there was an
attempt by Einstein to convert
Planck’s viewpoint that only
oscillators of matter were quantized, to the idea that light was really
photons and could be considered in a certain way as particles with
energy ℏ ω[image: -*-]. Furthermore,
Bohr
had pointed out that any system of atoms has energy
levels, but they are not necessarily equally spaced like
Planck’s oscillator. And so it became
necessary to rederive or at least rediscuss the radiation law from a
more completely quantum-mechanical viewpoint.



[image: -][image: -]
Fig. 42–2. Transitions between two energy levels of an atom.





Einstein assumed that
Planck’s final formula was right, and
he used that formula to obtain some new information, previously unknown,
about the interaction of radiation with matter. His discussion went as
follows: Consider any two of the many energy levels of an atom, say the
m[image: -*-]th level and the n[image: -*-]th level (Fig. 42–2). Now
Einstein proposed that when such
an atom has light of the right frequency shining on it, it can absorb
that photon of light and make a transition from state n[image: -*-] to state m[image: -*-],
and that the probability that this occurs per second depends upon the
two levels, of course, but is proportional to how intense the
light is that is shining on it. Let us call the proportionality
constant Bn m[image: -*-], merely to remind us that this is not a universal
constant of nature, but depends on the particular pair of levels: some
levels are easy to excite; some levels are hard to excite. Now what is
the formula going to be for the rate of emission from m[image: -*-] to n[image: -*-]?
Einstein proposed that this must
have two parts to it. First, even if there were no light present, there
would be some chance that an atom in an excited state would fall to a
lower state, emitting a photon; this we call spontaneous
emission. It is analogous to the idea that an
oscillator with a certain
amount of energy, even in classical physics, does not keep that energy,
but loses it by radiation. Thus the analog of spontaneous radiation of a
classical system is that if the atom is in an excited state there is a
certain probability Am n[image: -*-], which depends on the levels again, for it
to go down from m[image: -*-] to n[image: -*-], and this probability is independent of
whether light is shining on the atom or not. But then
Einstein went further, and by
comparison with the classical theory and by other arguments, concluded
that emission was also influenced by the presence of light—that when
light of the right frequency is shining on an atom, it has an increased
rate of emitting a photon that is proportional to the intensity of the
light, with a proportionality constant Bm n[image: -*-]. Later, if we deduce
that this coefficient is zero, then we will have found that
Einstein was wrong. Of course we
will find he was right.




Thus Einstein assumed that there are
three kinds
of processes: an absorption proportional to the intensity of light, an
emission proportional to the intensity of light, called induced
emission or sometimes stimulated emission, and a spontaneous
emission independent of light.





Now suppose that we have, in equilibrium at temperature T[image: -*-], a certain
number of atoms Nn[image: -*-] in the state n[image: -*-] and another number Nm[image: -*-] in the
state m[image: -*-]. Then the total number of atoms that are going from n[image: -*-]
to m[image: -*-] is the number that are in the state n[image: -*-] times the rate per second
that, if one is in n[image: -*-], it goes up to m[image: -*-]. So we have a formula for
the number that are going from n[image: -*-] to m[image: -*-] per second:

[image: -*-][image: -*-]
(42.13)




The number that will go from m[image: -*-] to n[image: -*-] is expressed in the same
manner, as the number Nm[image: -*-] that are in m[image: -*-], times the chance per
second that each one goes down to n[image: -*-]. This time our expression is

[image: -*-][image: -*-]
(42.14)




Now we shall suppose that in thermal equilibrium the number of atoms
going up must equal the number coming down. That is one way, at least,
in which the number will be sure to stay constant in each
level.1 So we take these two rates to be equal at
equilibrium. But we have one other piece of information: we know how
large Nm[image: -*-] is compared with Nn[image: -*-]—the ratio of those two
is e−(Em−En)/k T[image: -*-]. Now Einstein
assumed that
the only light which is effective in making the transition from n[image: -*-]
to m[image: -*-] is the light which has the frequency corresponding to the energy
difference, so Em−En=ℏ ω[image: -*-] in all our formulas. Thus

[image: -*-][image: -*-]
(42.15)







Thus if we set the two rates equal: Nn Bn m I (ω)=Nm [Am n+Bm n I (ω)][image: -*-], and divide by Nm[image: -*-], we get

[image: -*-][image: -*-]
(42.16)




From this equation, we can calculate I (ω)[image: -*-]. It is simply

[image: -*-][image: -*-]
(42.17)




But Planck has already told us that
the formula must be (42.12). Therefore we can deduce
something: First, that Bn m[image: -*-] must equal Bm n[image: -*-], since otherwise we
cannot get the (eℏ ω/k T−1)[image: -*-]. So
Einstein discovered some things
that he did not know how to
calculate, namely that the induced emission probability and the
absorption probability must be equal. This is interesting. And
furthermore, in order for (42.17) and (42.12) to
agree,

[image: -*-][image: -*-]
(42.18)




So if we know, for instance, the absorption rate for a given level, we
can deduce the spontaneous emission rate and the induced emission
rate, or any combination.





This is as far as Einstein or
anyone else could go using such arguments. To actually compute the
absolute spontaneous emission rate or the other rates for any specific
atomic transition, of course, requires a knowledge of the machinery of
the atom, called quantum electrodynamics,
which was not discovered until eleven years later. This work of
Einstein was done in 1916.





The possibility of induced emission has, today, found interesting
applications.  If there is light present, it will tend to induce the
downward transition. The transition then adds its ℏ ω[image: -*-] to the
available light energy, if there were some atoms sitting in the upper
state. Now we can arrange, by some nonthermal method, to have a gas in
which the number in the state m[image: -*-] is very much greater than the number
in the state n[image: -*-]. This is far out of equilibrium, and so is not given
by the formula e−ℏ ω/k T[image: -*-], which is for equilibrium. We can
even arrange it so that the number in the upper state is very large,
while the number in the lower state is practically zero. Then light
which has the frequency corresponding to the energy difference Em−En[image: -*-] will not be strongly absorbed, because there are not many atoms in
state n[image: -*-] to absorb it. On the other hand, when that light is present,
it will induce the emission from this upper state! So, if we had a lot
of atoms in the upper state, there would be a sort of chain reaction,
in which, the moment the atoms began to emit, more would be caused to
emit, and the whole lot of them would dump down together. This is what
is called a laser, or, in the case of the far
infrared, a maser.



[image: -][image: -]
Fig. 42–3. By exciting, say by blue light, a higher state h[image: -*-], which may
emit a photon leaving atoms in state m[image: -*-], the number in this state m[image: -*-]
becomes sufficiently large to start laser action.





Various tricks can be used to obtain the atoms in state m[image: -*-]. There may
be higher levels to which the atoms can get if we shine in a strong
beam of light of high frequency. From these high levels, they may
trickle down, emitting various photons, until they all get stuck in
the state m[image: -*-]. If they tend to stay in the state m[image: -*-] without emitting,
the state is called metastable. And then they are all dumped down
together by induced emissions. One more technical point—if we put this
system in an ordinary box, it would radiate in so many different
directions spontaneously, compared with the induced effect, that we
would still be in trouble. But we can enhance the induced effect,
increase its efficiency, by putting nearly perfect mirrors on each side
of the box, so that the light which is emitted gets another chance, and
another chance, and another chance, to induce more emission. Although
the mirrors are almost one hundred percent reflecting, there is a slight
amount of transmission of the mirror, and a little light gets out. In
the end, of course, from the conservation of energy, all the light goes
out in a nice uniform straight direction which makes the strong light
beams that are possible today with lasers.






	
  
  This is not the only way one can arrange to keep the
numbers of atoms in the various levels constant, but it is the way it
actually works. That every process must, in thermal equilibrium, be
balanced by its exact opposite is called the principle of
detailed balancing.
  ↩





  
    

43 Diffusion



43–1 Collisions between molecules


We have considered so far only the molecular motions in a gas which is
in thermal equilibrium. We want now to discuss what happens when
things are near, but not exactly in, equilibrium. In a situation far
from equilibrium, things are extremely complicated, but in a situation
very close to equilibrium we can easily work out what happens. To see
what happens, we must, however, return to the kinetic
theory. Statistical mechanics and thermodynamics deal with the
equilibrium situation, but away from equilibrium we can only analyze
what occurs atom by atom, so to speak.




As a simple example of a nonequilibrium circumstance, we shall
consider the diffusion of ions in a gas. Suppose that in a gas there
is a relatively small concentration of ions—electrically charged
molecules. If we put an electric field on the gas, then each ion will
have a force on it which is different from the forces on the neutral
molecules of the gas. If there were no other molecules present, an ion
would have a constant acceleration until it reached the wall of the
container. But because of the presence of the other molecules, it
cannot do that; its velocity increases only until it collides with a
molecule and loses its momentum. It starts again to pick up more
speed, but then it loses its momentum again. The net effect is that an
ion works its way along an erratic path, but with a net motion in the
direction of the electric force. We shall see that the ion has an
average “drift” with a mean speed which is proportional to the
electric field—the stronger the field, the faster it goes. While the
field is on, and while the ion is moving along, it is, of course,
not in thermal equilibrium, it is trying to get to equilibrium,
which is to be sitting at the end of the container. By means of the
kinetic theory we can compute the drift velocity.




It turns out that with our present mathematical abilities we cannot
really compute precisely what will happen, but we can obtain
approximate results which exhibit all the essential features. We can
find out how things will vary with pressure, with temperature, and so
on, but it will not be possible to get precisely the correct numerical
factors in front of all the terms. We shall, therefore, in our
derivations, not worry about the precise value of numerical
factors. They can be obtained only by a very much more sophisticated
mathematical treatment.





Before we consider what happens in nonequilibrium situations, we shall
need to look a little closer at what goes on in a gas in thermal
equilibrium. We shall need to know, for example, what the average time
between successive collisions of a molecule is.




Any molecule experiences a sequence of collisions with other
molecules—in a random way, of course. A particular molecule will, in
a long period of time T[image: -*-], have a certain number, N[image: -*-], of hits. If we
double the length of time, there will be twice as many hits. So the
number of collisions is proportional to the time T[image: -*-]. We would like to
write it this way:

[image: -*-][image: -*-]
(43.1)




We have written the constant of proportionality as 1/τ[image: -*-], where
τ[image: -*-] will have the dimensions of a time. The constant τ[image: -*-] is the
average time between collisions. Suppose, for example, that in an hour
there are 60[image: -*-] collisions; then τ[image: -*-] is one minute. We would say
that τ[image: -*-] (one minute) is the average time between the
collisions.




We may often wish to ask the following question: “What is the
chance that a molecule will experience a collision during the
next small interval of time d t[image: -*-]?” The answer, we may
intuitively understand, is d t/τ[image: -*-]. But let us try to make a more
convincing argument. Suppose that there were a very large number N[image: -*-]
of molecules. How many will have collisions in the next interval of
time d t[image: -*-]? If there is equilibrium, nothing is changing on the
average with time. So N[image: -*-] molecules waiting the time d t[image: -*-] will have
the same number of collisions as one molecule waiting for the
time N d t[image: -*-]. That number we know is N d t/τ[image: -*-]. So the number of
hits of N[image: -*-] molecules is N d t/τ[image: -*-] in a time d t[image: -*-], and the chance,
or probability, of a hit for any one molecule is just 1/N[image: -*-] as large,
or (1/N) (N d t/τ)=d t/τ[image: -*-], as we guessed above. That is to say,
the fraction of the molecules which will suffer a collision in the
time d t[image: -*-] is d t/τ[image: -*-]. To take an example, if τ[image: -*-] is one minute,
then in one second the fraction of particles which will suffer
collisions is 1/60[image: -*-]. What this means, of course, is that 1/60[image: -*-] of
the molecules happen to be close enough to what they are going to hit
next that their collisions will occur in the next second.




When we say that τ[image: -*-], the mean time between collisions, is one
minute, we do not mean that all the collisions will occur at times
separated by exactly one minute. A particular particle does not have a
collision, wait one minute, and then have another collision. The times
between successive collisions are quite variable. We will not need it
for our later work here, but we may make a small diversion to answer
the question: “What are the times between collisions?” We
know that for the case above, the average time is one minute,
but we might like to know, for example, what is the chance that we get
no collision for two minutes?




We shall find the answer to the general question: “What is the
probability that a molecule will go for a time t[image: -*-] without having a
collision?” At some arbitrary instant—that we call t=0[image: -*-]—we
begin to watch a particular molecule. What is the chance that it gets
by until t[image: -*-] without colliding with another molecule? To compute the
probability, we observe what is happening to all N0[image: -*-] molecules in a
container. After we have waited a time t[image: -*-], some of them will have had
collisions. We let N (t)[image: -*-] be the number that have not had
collisions up to the time t[image: -*-]. N (t)[image: -*-] is, of course, less than
N0[image: -*-]. We can find N (t)[image: -*-] because we know how it changes with time. If
we know that N (t)[image: -*-] molecules have got by until t[image: -*-], then N (t+d t)[image: -*-],
the number which get by until t+d t[image: -*-], is less than N (t)[image: -*-] by
the number that have collisions in d t[image: -*-]. The number that collide
in d t[image: -*-] we have written above in terms of the mean time τ[image: -*-] as d N=N (t) d t/τ[image: -*-]. We have the equation

[image: -*-][image: -*-]
(43.2)




The quantity on the left-hand side, N (t+d t)[image: -*-], can be written,
according to the definitions of calculus, as N (t)+(d N/d t) d t[image: -*-]. Making this substitution, Eq. (43.2) yields

[image: -*-][image: -*-]
(43.3)




The number that are being lost in the interval d t[image: -*-] is proportional to
the number that are present, and inversely proportional to the mean
life τ[image: -*-]. Equation (43.3) is easily integrated if we
rewrite it as

[image: -*-][image: -*-]
(43.4)




Each side is a perfect differential, so the integral is

[image: -*-][image: -*-]
(43.5)




which says the same thing as

[image: -*-][image: -*-]
(43.6)




We know that the constant must be just N0[image: -*-], the total number of
molecules present, since all of them start at t=0[image: -*-] to wait for
their “next” collision. We can write our result as

[image: -*-][image: -*-]
(43.7)




If we wish the probability of no collision, P (t)[image: -*-], we can get
it by dividing N (t)[image: -*-] by N0[image: -*-], so

[image: -*-][image: -*-]
(43.8)




Our result is: the probability that a particular molecule survives a
time t[image: -*-] without a collision is e−t/τ[image: -*-], where τ[image: -*-] is the
mean time between collisions. The probability starts out at 1 (or
certainty) for t=0[image: -*-], and gets less as t[image: -*-] gets bigger and
bigger. The probability that the molecule avoids a collision for a
time equal to τ[image: -*-] is e−1≈0.37[image: -*-]. The chance is less than
one-half that it will have a greater than average time between
collisions. That is all right, because there are enough molecules
which go collision-free for times much longer than the mean
time before colliding, so that the average time can still be τ[image: -*-].




We originally defined τ[image: -*-] as the average time between
collisions. The result we have obtained in Eq. (43.7)
also says that the mean time from an arbitrary starting instant
to the next collision is also τ[image: -*-]. We can demonstrate
this somewhat surprising fact in the following way. The number of
molecules which experience their next collision in the
interval d t[image: -*-] at the time t[image: -*-] after an arbitrarily chosen starting time
is N (t) d t/τ[image: -*-]. Their “time until the next collision” is, of
course, just t[image: -*-]. The “average time until the next collision” is
obtained in the usual way:

[image: -*-][image: -*-]


Using N (t)[image: -*-] obtained in (43.7) and evaluating the
integral, we find indeed that τ[image: -*-] is the average time from
any instant until the next collision.







43–2 The mean free path


Another way of describing the molecular collisions is to talk not
about the time between collisions, but about how far the
particle moves between collisions. If we say that the average time
between collisions is τ[image: -*-], and that the molecules have a mean
velocity v[image: -*-], we can expect that the average distance between
collisions, which we shall call l[image: -*-], is just the product of τ[image: -*-]
and v[image: -*-]. This distance between collisions is usually called the mean
free path:

[image: -*-][image: -*-]
(43.9)







In this chapter we shall be a little careless about what kind of
average we mean in any particular case. The various possible
averages—the mean, the root-mean-square, etc.—are all nearly equal
and differ by factors which are near to one. Since a detailed analysis
is required to obtain the correct numerical factors anyway, we need
not worry about which average is required at any particular point. We
may also warn the reader that the algebraic symbols we are using for
some of the physical quantities (e.g., l[image: -*-] for the mean free path) do
not follow a generally accepted convention, mainly because there is no
general agreement.




Just as the chance that a molecule will have a collision in a short
time d t[image: -*-] is equal to d t/τ[image: -*-], the chance that it will have a
collision in going a distance d x[image: -*-] is d x/l[image: -*-]. Following the same line
of argument used above, the reader can show that the probability that
a molecule will go at least the distance x[image: -*-] before having its next
collision is e−x/l[image: -*-].




The average distance a molecule goes before colliding with another
molecule—the mean free path l[image: -*-]—will depend on how many molecules
there are around and on the “size” of the molecules, i.e., how big a
target they represent. The effective “size” of a target in a
collision we usually describe by a “collision cross
section,” the same idea that is used in nuclear physics, or in
light-scattering problems.




[image: -][image: -][image: -][image: -]
Fig. 43–1. Collision cross section.





Consider a moving particle which travels a distance d x[image: -*-] through a gas
which has n0[image: -*-] scatterers (molecules) per unit volume
(Fig. 43–1). If we look at each unit of area perpendicular
to the direction of motion of our selected particle, we will find there
n0 d x[image: -*-] molecules. If each one presents an effective collision area
or, as it is usually called, “collision cross
section,” σc[image: -*-], then the total area covered by the scatterers
is σc n0 d x[image: -*-].





By “collision cross section” we mean the area within
which the center of our particle must be located if it is to collide
with a particular molecule. If molecules were little spheres (a
classical picture) we would expect that σc=π (r1+r2)2[image: -*-],
where r1[image: -*-] and r2[image: -*-] are the radii of the two colliding objects. The
chance that our particle will have a collision is the ratio of the area
covered by scattering molecules to the total area, which we have taken
to be one. So the probability of a collision in going a distance d x[image: -*-] is
just σc n0 d x[image: -*-]:

[image: -*-][image: -*-]
(43.10)









We have seen above that the chance of a collision in d x[image: -*-] can also be
written in terms of the mean free path l[image: -*-] as d x/l[image: -*-]. Comparing this
with (43.10), we can relate the mean free path to the
collision cross section:

[image: -*-][image: -*-]
(43.11)




which is easier to remember if we write it as

[image: -*-][image: -*-]
(43.12)









This formula can be thought of as saying that there should be one
collision, on the average, when the particle goes through a
distance l[image: -*-] in which the scattering molecules could just cover the
total area. In a cylindrical volume of length l[image: -*-] and a base of unit
area, there are n0 l[image: -*-] scatterers; if each one has an area σc[image: -*-]
the total area covered is n0 l σc[image: -*-], which is just one unit of
area. The whole area is not covered, of course, because some
molecules are partly hidden behind others. That is why some molecules
go farther than l[image: -*-] before having a collision. It is only on the
average that the molecules have a collision by the time they go the
distance l[image: -*-]. From measurements of the mean free path l[image: -*-] we can
determine the scattering cross section σc[image: -*-], and compare the
result with calculations based on a detailed theory of atomic
structure. But that is a different subject!  So we return to the
problem of nonequilibrium states.







43–3 The drift speed


We want to describe what happens to a molecule, or several molecules,
which are different in some way from the large majority of the
molecules in a gas. We shall refer to the “majority” molecules as
the “background” molecules, and we shall call the molecules which
are different from the background molecules “special” molecules or,
for short, the S[image: -*-]-molecules. A molecule could be special for any
number of reasons: It might be heavier than the background
molecules. It might be a different chemical. It might have an electric
charge—i.e., be an ion in a background of uncharged
molecules. Because of their different masses or charges the
S[image: -*-]-molecules may have forces on them which are different from the
forces on the background molecules. By considering what happens to
these S[image: -*-]-molecules we can understand the basic effects which come
into play in a similar way in many different phenomena. To list a few:
the diffusion of gases, electric currents in batteries, sedimentation,
centrifugal separation, etc.





We begin by concentrating on the basic process: an S[image: -*-]-molecule in a
background gas is acted on by some specific force F[image: -*-] (which might
be, e.g., gravitational or electrical) and in addition by the
not-so-specific forces due to collisions with the background
molecules. We would like to describe the general behavior of
the S[image: -*-]-molecule. What happens to it, in detail, is that it
darts around hither and yon as it collides over and over again with
other molecules. But if we watch it carefully we see that it does make
some net progress in the direction of the force F[image: -*-]. We say that
there is a drift, superposed on its random motion. We would
like to know what the speed of its drift is—its drift
velocity—due to the force F[image: -*-].




If we start to observe an S[image: -*-]-molecule at some instant we may expect
that it is somewhere between two collisions. In addition to the
velocity it was left with after its last collision it is picking up
some velocity component due to the force F[image: -*-]. In a short time (on
the average, in a time τ[image: -*-]) it will experience a collision and
start out on a new piece of its trajectory. It will have a new
starting velocity, but the same acceleration from F[image: -*-].




To keep things simple for the moment, we shall suppose that after each
collision our S[image: -*-]-molecule gets a completely “fresh” start. That is,
that it keeps no remembrance of its past acceleration by F[image: -*-]. This
might be a reasonable assumption if our S[image: -*-]-molecule were much lighter
than the background molecules, but it is certainly not valid in
general. We shall discuss later an improved assumption.




For the moment, then, our assumption is that the S[image: -*-]-molecule leaves
each collision with a velocity which may be in any direction with
equal likelihood. The starting velocity will take it equally in all
directions and will not contribute to any net motion, so we shall not
worry further about its initial velocity after a collision. In
addition to its random motion, each S[image: -*-]-molecule will have, at any
moment, an additional velocity in the direction of the force F[image: -*-],
which it has picked up since its last collision. What is the
average value of this part of the velocity? It is just
the acceleration F/m[image: -*-] (where m[image: -*-] is the mass of the S[image: -*-]-molecule)
times the average time since the last collision. Now the
average time since the last collision must be the same
as the average time until the next collision, which we
have called τ[image: -*-], above. The average velocity from F[image: -*-],
of course, is just what is called the drift velocity, so we have the
relation

[image: -*-][image: -*-]
(43.13)




This basic relation is the heart of our subject. There may be some
complication in determining what τ[image: -*-] is, but the basic process is
defined by Eq. (43.13).




You will notice that the drift velocity is proportional to the
force. There is, unfortunately, no generally used name for the
constant of proportionality. Different names have been used for each
different kind of force. If in an electrical problem the force is
written as the charge times the electric field, F=q E[image: -*-], then
the constant of proportionality between the velocity and the electric
field E[image: -*-] is usually called the “mobility.” In spite of the
possibility of some confusion, we shall use the term
mobility for the ratio of the drift velocity to the force for
any force. We write

[image: -*-][image: -*-]
(43.14)




in general, and we shall call μ[image: -*-] the mobility. We have from
Eq. (43.13) that

[image: -*-][image: -*-]
(43.15)




The mobility is proportional to the mean time between collisions
(there are fewer collisions to slow it down) and inversely
proportional to the mass (more inertia means less speed picked up
between collisions).




To get the correct numerical coefficient in Eq. (43.13),
which is correct as given, takes some care. Without intending to
confuse, we should still point out that the arguments have a subtlety
which can be appreciated only by a careful and detailed study. To
illustrate that there are difficulties, in spite of appearances, we
shall make over again the argument which led to Eq. (43.13)
in a reasonable but erroneous way (and the way one will find in
many textbooks!).




We might have said: The mean time between collisions is τ[image: -*-]. After
a collision the particle starts out with a random velocity, but it
picks up an additional velocity between collisions, which is equal to
the acceleration times the time. Since it takes the time τ[image: -*-] to
arrive at the next collision it gets there with the
velocity (F/m) τ[image: -*-]. At the beginning of the collision it had zero
velocity. So between the two collisions it has, on the average, a
velocity one-half of the final velocity, so the mean drift velocity
is [image: \tfrac{1}{2}F\tau/m][image: \tfrac{1}{2}F\tau/m]. (Wrong!)  This result is wrong and the result
in Eq. (43.13) is right, although the arguments may sound
equally satisfactory. The reason the second result is wrong is
somewhat subtle, and has to do with the following: The argument is
made as though all collisions were separated by the mean
time τ[image: -*-]. The fact is that some times are shorter and others are longer
than the mean. Short times occur more often but make
less contribution to the drift velocity because they have less
chance “to really get going.” If one takes proper account of the
distribution of free times between collisions, one can show
that there should not be the factor [image: \tfrac{1}{2}][image: \tfrac{1}{2}] that was obtained
from the second argument. The error was made in trying to relate by a
simple argument the average final velocity to the average
velocity itself. This relationship is not simple, so it is best to
concentrate on what is wanted: the average velocity itself. The first
argument we gave determines the average velocity directly—and
correctly! But we can perhaps see now why we shall not in general try
to get all of the correct numerical coefficients in our elementary
derivations!




We return now to our simplifying assumption that each collision knocks
out all memory of the past motion—that a fresh start is made after
each collision. Suppose our S[image: -*-]-molecule is a heavy object in a
background of lighter molecules. Then our S[image: -*-]-molecule will not lose
its “forward” momentum in each collision. It would take several
collisions before its motion was “randomized” again. We should
assume, instead, that at each collision—in each time τ[image: -*-] on the
average—it loses a certain fraction of its momentum. We shall not
work out the details, but just state that the result is equivalent to
replacing τ[image: -*-], the average collision time, by a new—and
longer—τ[image: -*-] which corresponds to the average “forgetting time,”
i.e., the average time to forget its forward momentum. With such an
interpretation of τ[image: -*-] we can use our formula (43.15) for
situations which are not quite as simple as we first assumed.







43–4 Ionic conductivity


We now apply our results to a special case. Suppose we have a gas in a
vessel in which there are also some ions—atoms or molecules with a
net electric charge. We show the situation schematically in
Fig. 43–2. If two opposite walls of the container are
metallic plates, we can connect them to the terminals of a battery and
thereby produce an electric field in the gas. The electric field will
result in a force on the ions, so they will begin to drift toward one or
the other of the plates. An electric current will be induced, and the
gas with its ions will behave like a resistor. By computing the ion flow
from the drift velocity we can compute the resistance. We ask,
specifically: How does the flow of electric current depend on the
voltage difference V[image: -*-] that we apply across the two plates?



[image: -][image: -]
Fig. 43–2. Electric current from an ionized gas.





We consider the case that our container is a rectangular box of
length b[image: -*-] and cross-sectional area A[image: -*-] (Fig. 43–2). If the
potential difference, or voltage, from one plate to the other is V[image: -*-],
the electric field E[image: -*-] between the plates is V/b[image: -*-]. (The electric
potential is the work done in carrying a unit charge from one plate to
the other. The force on a unit charge is E[image: -*-]. If E[image: -*-] is the
same everywhere between the plates, which is a good enough
approximation for now, the work done on a unit charge is just E b[image: -*-],
so V=E b[image: -*-].) The special force on an ion of the gas is q E[image: -*-], where
q[image: -*-] is the charge on the ion. The drift velocity of the ion is then
μ[image: -*-] times this force, or

[image: -*-][image: -*-]
(43.16)




An electric current I[image: -*-] is the flow of charge in a unit time. The
electric current to one of the plates is given by the total charge of
the ions which arrive at the plate in a unit of time. If the ions
drift toward the plate with the velocity vdrift[image: -*-], then
those which are within a distance (vdrift⋅T[image: -*-]) will
arrive at the plate in the time T[image: -*-]. If there are ni[image: -*-] ions per unit
volume, the number which reach the plate in the time T[image: -*-] is (ni⋅A⋅vdrift⋅T[image: -*-]). Each ion carries the charge q[image: -*-], so
we have that

[image: -*-][image: -*-]
(43.17)




The current I[image: -*-] is the charge collected in T[image: -*-] divided by T[image: -*-], so

[image: -*-][image: -*-]
(43.18)




Substituting vdrift[image: -*-] from (43.16), we have

[image: -*-][image: -*-]
(43.19)




We find that the current is proportional to the voltage, which is just
the form of Ohm’s law, and the
resistance R[image: -*-] is the inverse of
the proportionality constant:

[image: -*-][image: -*-]
(43.20)




We have a relation between the resistance and the molecular properties
ni[image: -*-], q[image: -*-], and μ[image: -*-], which depends in turn on m[image: -*-] and τ[image: -*-]. If we
know ni[image: -*-] and q[image: -*-] from atomic measurements, a measurement of R[image: -*-]
could be used to determine μ[image: -*-], and from μ[image: -*-] also τ[image: -*-].







43–5 Molecular diffusion


We turn now to a different kind of problem, and a different kind of
analysis: the theory of diffusion. Suppose that we have a container of
gas in thermal equilibrium, and that we introduce a small amount of a
different kind of gas at some place in the container. We shall call
the original gas the “background” gas and the new one the
“special” gas. The special gas will start to spread out through the
whole container, but it will spread slowly because of the presence of
the background gas. This slow spreading-out process is called
diffusion. The diffusion is controlled mainly by the molecules
of the special gas getting knocked about by the molecules of the
background gas. After a large number of collisions, the special
molecules end up spread out more or less evenly throughout the whole
volume. We must be careful not to confuse diffusion of a gas
with the gross transport that may occur due to convection
currents. Most commonly, the mixing of two gases occurs by a
combination of convection and diffusion. We are interested now only in
the case that there are no “wind” currents. The gas is
spreading only by molecular motions, by diffusion. We wish to compute
how fast diffusion takes place.




We now compute the net flow of molecules of the “special” gas
due to the molecular motions. There will be a net flow only when there
is some nonuniform distribution of the molecules, otherwise all of the
molecular motions would average to give no net flow. Let us consider
first the flow in the x[image: -*-]-direction. To find the flow, we consider an
imaginary plane surface perpendicular to the x[image: -*-]-axis and count the
number of special molecules that cross this plane. To obtain the net
flow, we must count as positive those molecules which cross in the
direction of positive x[image: -*-] and subtract from this number the
number which cross in the negative x[image: -*-]-direction. As we have seen many
times, the number which cross a surface area in a time Δ T[image: -*-] is
given by the number which start the interval Δ T[image: -*-] in a volume
which extends the distance v Δ T[image: -*-] from the plane. (Note that
v[image: -*-], here, is the actual molecular velocity, not the drift velocity.)




We shall simplify our algebra by giving our surface one unit of
area. Then the number of special molecules which pass from left to
right (taking the +x[image: -*-]-direction to the right) is n− v Δ T[image: -*-],
where n−[image: -*-] is the number of special molecules per unit volume to the
left (within a factor of 2 or so, but we are ignoring such
factors!). The number which cross from right to left is, similarly,
n+ v Δ T[image: -*-], where n+[image: -*-] is the number density of special
molecules on the right-hand side of the plane. If we call the
molecular current J[image: -*-], by which we mean the net flow of molecules per
unit area per unit time, we have

[image: -*-][image: -*-]
(43.21)




or

[image: -*-][image: -*-]
(43.22)







What shall we use for n−[image: -*-] and n+[image: -*-]? When we say “the density on the
left,” how far to the left do we mean? We should choose the
density at the place from which the molecules started their “flight,”
because the number which start such trips is determined by the
number present at that place. So by n−[image: -*-] we should mean the density a
distance to the left equal to the mean free path l[image: -*-], and by n+[image: -*-], the
density at the distance l[image: -*-] to the right of our imaginary surface.




It is convenient to consider that the distribution of our special
molecules in space is described by a continuous function of x[image: -*-], y[image: -*-],
and z[image: -*-] which we shall call na[image: -*-]. By na (x,y,z)[image: -*-] we mean the number
density of special molecules in a small volume element centered
on (x,y,z)[image: -*-]. In terms of na[image: -*-] we can express the difference (n+−n−)[image: -*-] as

[image: -*-][image: -*-]
(43.23)




Substituting this result in Eq. (43.22) and neglecting
the factor of 2, we get

[image: -*-][image: -*-]
(43.24)




We have found that the flow of special molecules is proportional to
the derivative of the density, or to what is sometimes called the
“gradient” of the density.




It is clear that we have made several rough approximations. Besides
various factors of two we have left out, we have used v[image: -*-] where we
should have used vx[image: -*-], and we have assumed that n+[image: -*-] and n−[image: -*-] refer
to places at the perpendicular distance l[image: -*-] from our surface, whereas
for those molecules which do not travel perpendicular to the surface
element, l[image: -*-] should correspond to the slant distance from the
surface. All of these refinements can be made; the result of a more
careful analysis shows that the right-hand side of
Eq. (43.24) should be multiplied by 1/3[image: -*-]. So a better answer
is

[image: -*-][image: -*-]
(43.25)




Similar equations can be written for the currents in the y[image: -*-]-
and z[image: -*-]-directions.




The current Jx[image: -*-] and the density gradient d na/d x[image: -*-] can be measured
by macroscopic observations. Their experimentally determined ratio is
called the “diffusion coefficient,” D[image: -*-]. That is,

[image: -*-][image: -*-]
(43.26)




We have been able to show that for a gas we expect

[image: -*-][image: -*-]
(43.27)







So far in this chapter we have considered two distinct processes:
mobility, the drift of molecules due to “outside” forces; and
diffusion, the spreading determined only by the internal
forces, the random collisions. There is, however, a relation between
them, since they both depend basically on the thermal motions, and the
mean free path l[image: -*-] appears in both calculations.




If, in Eq. (43.25), we substitute l=v τ[image: -*-] and τ=μ m[image: -*-], we have

[image: -*-][image: -*-]
(43.28)




But m v2[image: -*-] depends only on the temperature. We recall that

[image: -*-][image: -*-]
(43.29)




so

[image: -*-][image: -*-]
(43.30)




We find that D[image: -*-], the diffusion coefficient, is just k T[image: -*-]
times μ[image: -*-], the mobility coefficient:

[image: -*-][image: -*-]
(43.31)




And it turns out that the numerical coefficient in (43.31)
is exactly right—no extra factors have to be thrown in to adjust for
our rough assumptions. We can show, in fact, that (43.31)
must always be correct—even in complicated situations (for
example, the case of a suspension in a liquid) where the details of
our simple calculations would not apply at all.




To show that (43.31) must be correct in general, we shall
derive it in a different way, using only our basic principles of
statistical mechanics. Imagine a situation in which there is a
gradient of “special” molecules, and we have a diffusion current
proportional to the density gradient, according to
Eq. (43.26). We now apply a force field in the x[image: -*-]-direction,
so that each special molecule feels the force F[image: -*-]. According to the
definition of the mobility μ[image: -*-] there will be a drift velocity
given by

[image: -*-][image: -*-]
(43.32)




By our usual arguments, the drift current (the net
number of molecules which pass a unit of area in a unit of time) will
be

[image: -*-][image: -*-]
(43.33)




or

[image: -*-][image: -*-]
(43.34)




We now adjust the force F[image: -*-] so that the drift current due
to F[image: -*-] just balances the diffusion, so that there is no net
flow of our special molecules. We have Jx+Jdrift=0[image: -*-],
or

[image: -*-][image: -*-]
(43.35)







Under the “balance” conditions we find a steady (with time) gradient
of density given by

[image: -*-][image: -*-]
(43.36)







But notice! We are describing an equilibrium condition, so our
equilibrium laws of statistical mechanics apply. According to
these laws the probability of finding a molecule at the coordinate x[image: -*-]
is proportional to e−U/k T[image: -*-], where U[image: -*-] is the potential energy. In
terms of the number density na[image: -*-], this means that

[image: -*-][image: -*-]
(43.37)




If we differentiate (43.37) with respect to x[image: -*-], we find

[image: -*-][image: -*-]
(43.38)




or

[image: -*-][image: -*-]
(43.39)




In our situation, since the force F[image: -*-] is in the x[image: -*-]-direction, the
potential energy U[image: -*-] is just −F x[image: -*-], and −d U/d x=F[image: -*-].
Equation (43.39) then gives

[image: -*-][image: -*-]
(43.40)




[This is just exactly Eq. (40.2), from which we
deduced e−U/k T[image: -*-] in the first place, so we have come in a
circle]. Comparing (43.40) with (43.36), we get
exactly Eq. (43.31). We have shown that
Eq. (43.31), which gives the diffusion current in terms of
the mobility, has the correct coefficient and is very generally true.
Mobility and diffusion are intimately connected. This relation was first
deduced by Einstein.







43–6 Thermal conductivity


The methods of the kinetic theory that we have been using above can be
used also to compute the thermal conductivity of a gas. If the
gas at the top of a container is hotter than the gas at the bottom,
heat will flow from the top to the bottom.  (We think of the top being
hotter because otherwise convection currents would be set up and the
problem would no longer be one of heat conduction.) The
transfer of heat from the hotter gas to the colder gas is by the
diffusion of the “hot” molecules—those with more energy—downward
and the diffusion of the “cold” molecules upward. To compute the
flow of thermal energy we can ask about the energy carried downward
across an element of area by the downward-moving molecules, and about
the energy carried upward across the surface by the upward-moving
molecules. The difference will give us the net downward flow of
energy.




The thermal conductivity κ[image: -*-] is defined as the ratio of the rate
at which thermal energy is carried across a unit surface area, to the
temperature gradient:

[image: -*-][image: -*-]
(43.41)




Since the details of the calculations are quite similar to those we have
done above in considering molecular diffusion, we shall leave it as an
exercise for the reader to show that

[image: -*-][image: -*-]
(43.42)




where k T/(γ−1)[image: -*-] is the average energy of a molecule at the
temperature T[image: -*-].




If we use our relation n l σc=1[image: -*-], the heat conductivity can be
written as

[image: -*-][image: -*-]
(43.43)







We have a rather surprising result. We know that the average velocity
of gas molecules depends on the temperature but not on the
density. We expect σc[image: -*-] to depend only on the size of
the molecules. So our simple result says that the thermal
conductivity κ[image: -*-] (and therefore the rate of flow of heat in any
particular circumstance) is independent of the density of the
gas! The change in the number of “carriers” of energy with a change
in density is just compensated by the larger distance the “carriers”
can go between collisions.




One may ask: “Is the heat flow independent of the gas density in the
limit as the density goes to zero? When there is no gas at all?”
Certainly not! The formula (43.43) was derived, as were all
the others in this chapter, under the assumption that the mean free
path between collisions is much smaller than any of the dimensions of
the container. Whenever the gas density is so low that a molecule has
a fair chance of crossing from one wall of its container to the other
without having a collision, none of the calculations of this chapter
apply. We must in such cases go back to kinetic theory and calculate
again the details of what will occur.







  
    

44 The Laws of Thermodynamics



44–1 Heat engines; the first law


So far we have been discussing the properties of matter from the
atomic point of view, trying to understand roughly what will happen if
we suppose that things are made of atoms obeying certain
laws. However, there are a number of relationships among the
properties of substances which can be worked out without consideration
of the detailed structure of the materials. The determination of the
relationships among the various properties of materials, without
knowing their internal structure, is the subject of
thermodynamics. Historically, thermodynamics was developed
before an understanding of the internal structure of matter was
achieved.




To give an example: we know from the kinetic theory that the pressure
of a gas is caused by molecular bombardment, and we know that if we
heat a gas, so that the bombardment increases, the pressure must
increase. Conversely, if the piston in a container of the gas is moved
inward against the force of bombardment, the energy of the molecules
bombarding the piston will increase, and consequently the temperature
will increase. So, on the one hand, if we increase the temperature at
a given volume, we increase the pressure. On the other hand, if we
compress the gas, we will find that the temperature will rise. From
the kinetic theory, one can derive a quantitative relationship between
these two effects, but instinctively one might guess that they are
related in some necessary fashion which is independent of the details
of the collisions.




Let us consider another example. Many people are familiar with this
interesting property of rubber: If we take a rubber band and pull it,
it gets warm. If one puts it between his lips, for example, and pulls
it out, he can feel a distinct warming, and this warming is reversible
in the sense that if he relaxes the rubber band quickly while it is
between his lips, it is distinctly cooled. That means that when we
stretch a rubber band it heats, and when we release the tension of the
band it cools. Now our instincts might suggest that if we heated a
band, it might pull: that the fact that pulling a band heats it might
imply that heating a band should cause it to contract. And, in fact,
if we apply a gas flame to a rubber band holding a weight, we will see
that the band contracts abruptly (Fig. 44–1). So it is
true that when we heat a rubber band it pulls, and this fact is
definitely related to the fact that when we release the tension of it,
it cools.



[image: -][image: -]
Fig. 44–1. The heated rubber band.





The internal machinery of rubber that causes these effects is quite
complicated. We will describe it from a molecular point of view to
some extent, although our main purpose in this chapter is to
understand the relationship of these effects independently of the
molecular model. Nevertheless, we can show from the molecular model
that the effects are closely related. One way to understand the
behavior of rubber is to recognize that this substance consists of an
enormous tangle of long chains of molecules, a kind of “molecular
spaghetti,” with one extra complication: between the chains there are
cross-links—like spaghetti that is sometimes welded together where
it crosses another piece of spaghetti—a grand tangle. When we pull
out such a tangle, some of the chains tend to line up along the
direction of the pull. At the same time, the chains are in thermal
motion, so they hit each other continually. It follows that such a
chain, if stretched, would not by itself remain stretched, because it
would be hit from the sides by the other chains and other molecules,
and would tend to kink up again. So the real reason why a rubber band
tends to contract is this: when one pulls it out, the chains are
lengthwise, and the thermal agitations of the molecules on the sides
of the chains tend to kink the chains up, and make them shorten. One
can then appreciate that if the chains are held stretched and the
temperature is increased, so that the vigor of the bombardment on the
sides of the chains is also increased, the chains tend to pull in, and
they are able to pull a stronger weight when heated. If, after being
stretched for a time, a rubber band is allowed to relax, each chain
becomes soft, and the molecules striking it lose energy as they pound
into the relaxing chain. So the temperature falls.




We have seen how these two processes, contraction when heated and
cooling during relaxation, can be related by the kinetic theory, but it
would be a tremendous challenge to determine from the theory the precise
relationship between the two. We would have to know how many collisions
there were each second and what the chains look like, and we would have
to take account of all kinds of other complications. The detailed
mechanism is so complex that we cannot, by kinetic theory, really
determine exactly what happens; still, a definite relation between the
two effects we observe can be worked out without knowing anything about
the internal machinery!



[image: -][image: -]
Fig. 44–2. The rubber band heat engine.





The whole subject of thermodynamics depends essentially upon the
following kind of consideration: because a rubber band is “stronger”
at higher temperatures than it is at lower temperatures, it ought to
be possible to lift weights, and to move them around, and thus to do
work with heat. In fact, we have already seen experimentally that a
heated rubber band can lift a weight. The study of the way that one
does work with heat is the beginning of the science of
thermodynamics. Can we make an engine which uses the heating effect on
a rubber band to do work? One can make a silly looking engine that
does just this. It consists of a bicycle wheel in which all the spokes
are rubber bands (Fig. 44–2). If one heats the rubber
bands on one side of the wheel with a pair of heat lamps, they become
“stronger” than the rubber bands on the other side. The center of
gravity of the wheel will be pulled to one side, away from the
bearing, so that the wheel turns. As it turns, cool rubber bands move
toward the heat, and the heated bands move away from the heat and
cool, so that the wheel turns slowly so long as the heat is
applied. The efficiency of this engine is extremely low. Four hundred
watts of power pour into the two lamps, but it is just possible to
lift a fly with such an engine! An interesting question, however, is
whether we can get heat to do the work in more efficient ways.




In fact, the science of thermodynamics began with an analysis, by the
great engineer Sadi Carnot, of the problem of how to build the best and
most efficient engine, and this constitutes one of the few famous cases
in which engineering has contributed fundamentally to physical theory.
Another example that comes to mind is the more recent analysis of
information theory by Claude
Shannon.
These two analyses, incidentally, turn out to be closely
related.




Now the way a steam engine ordinarily operates is that heat from a
fire boils some water, and the steam so formed expands and pushes on a
piston which makes a wheel go around. So the steam pushes the
piston—what then? One has to finish the job: a stupid way to
complete the cycle would be to let the steam escape into the air, for
then one has to keep supplying water. It is cheaper—more
efficient—to let the steam go into another box, where it is
condensed by cool water, and then pump the water back into the boiler,
so that it circulates continuously. Heat is thus supplied to the
engine and converted into work. Now would it be better to use alcohol?
What property should a substance have so that it makes the best possible
engine? That was the question to which Carnot addressed himself, and one
of the by-products was the discovery of the type of relationship that we
have just explained above.




The results of thermodynamics are all contained implicitly in certain
apparently simple statements called the laws of thermodynamics.
At the time when Carnot lived, the first law of thermodynamics, the
conservation of energy, was not known. Carnot’s arguments were so
carefully drawn, however, that they are valid even though the first law
was not known in his time! Some time afterwards,
Clapeyron made a
simpler derivation that could be understood more easily than Carnot’s
very subtle reasoning. But it turned out that
Clapeyron
assumed, not the conservation of energy in general, but that heat
was conserved according to the caloric theory, which was later shown to
be false. So it has often been said that Carnot’s logic was wrong. But
his logic was quite correct. Only
Clapeyron’s
simplified version, that everybody read, was incorrect.




The so-called second law of thermodynamics was thus discovered by Carnot
before the first law! It would be interesting to give Carnot’s argument
that did not use the first law, but we shall not do so because we want
to learn physics, not history. We shall use the first law from the
start, in spite of the fact that a great deal can be done without it.




Let us begin by stating the first law, the conservation of energy: if
one has a system and puts heat into it, and does work on it, then its
energy is increased by the heat put in and the work done. We can write
this as follows: The heat Q[image: -*-] put into the system, plus the work W[image: -*-]
done on the system, is the increase in the energy U[image: -*-] of the system;
the latter energy is sometimes called the internal energy:

[image: -*-][image: -*-]
(44.1)




The change in U[image: -*-] can be represented as adding a little heat Δ Q[image: -*-] and adding a little work Δ W[image: -*-]:

[image: -*-][image: -*-]
(44.2)




which is a differential form of the same law. We know that very well,
from an earlier chapter.







44–2 The second law


Now, what about the second law of thermodynamics? We know that if we
do work against friction, say, the work lost to us is equal to the
heat produced. If we do work in a room at temperature T[image: -*-], and we do
the work slowly enough, the room temperature does not change much, and
we have converted work into heat at a given temperature. What about
the reverse possibility? Is it possible to convert the heat back into
work at a given temperature? The second law of thermodynamics asserts
that it is not. It would be very convenient to be able to convert heat
into work merely by reversing a process like friction. If we consider
only the conservation of energy, we might think that heat energy, such
as that in the vibrational motions of molecules, might provide a goodly
supply of useful energy. But Carnot assumed that it is impossible to
extract the energy of heat at a single temperature. In other words, if
the whole world were at the same temperature, one could not convert any
of its heat energy into work: while the process of making work go into
heat can take place at a given temperature, one cannot reverse it to get
the work back again. Specifically, Carnot assumed that heat cannot be
taken in at a certain temperature and converted into work with no
other change in the system or the surroundings.




That last phrase is very important. Suppose we have a can of compressed
air at a certain temperature, and we let the air expand. It can do work;
it can make hammers go, for example. It cools off a little in the
expansion, but if we had a big sea, like the ocean, at a given
temperature—a heat reservoir—we could warm it up again. So we have
taken the heat out of the sea, and we have done work with the compressed
air. But Carnot was not wrong, because we did not leave everything
as it was. If we recompress the air that we let expand, we will find we
are doing extra work, and when we are finished we will discover that we
not only got no work out of the system at temperature T[image: -*-], but we
actually put some in. We must talk only about situations in which the
net result of the whole process is to take heat away and convert
it into work, just as the net result of the process of doing work
against friction is to take work and convert it into heat. If we move in
a circle, we can bring the system back precisely to its starting point,
with the net result that we did work against friction and produced heat.
Can we reverse the process? Turn a switch, so that everything goes
backwards, so the friction does work against us, and cools the sea?
According to Carnot: no! So let us suppose that this is impossible.




If it were possible it would mean, among other things, that we could
take heat out of a cold body and put it into a hot body at no cost, as
it were. Now we know it is natural that a hot thing can warm up a cool
thing; if we simply put a hot body and a cold one together, and change
nothing else, our experience assures us that it is not going to happen
that the hot one gets hotter, and the cold one gets colder! But if we
could obtain work by extracting the heat out of the ocean, say, or from
anything else at a single temperature, then that work could be converted
back into heat by friction at some other temperature. For instance, the
other arm of a working machine could be rubbing something that is
already hot. The net result would be to take heat from a “cold” body,
the ocean, and to put it into a hot body. Now, the hypothesis of Carnot,
the second law of thermodynamics, is sometimes stated as follows: heat
cannot, of itself, flow from a cold to a hot object. But, as we have
just seen, these two statements are equivalent: first, that one cannot
devise a process whose only result is to convert heat to work at a
single temperature, and second, that one cannot make heat flow by itself
from a cold to a hot place. We shall mostly use the first form.




Carnot’s analysis of heat engines is quite similar to the argument that
we gave about weight-lifting engines in our discussion of the
conservation of energy in Chapter 4. In fact, that argument
was patterned after Carnot’s argument about heat engines, and so the
present treatment will sound very much the same.



[image: -][image: -]
Fig. 44–3. Heat engine.





Suppose we build a heat engine that has a “boiler” somewhere at a
temperature T1[image: -*-]. A certain heat Q1[image: -*-] is taken from the boiler, the
steam engine does some work W[image: -*-], and it then delivers some heat Q2[image: -*-]
into a “condenser” at another temperature T2[image: -*-]
(Fig. 44–3). Carnot did not say how much heat, because he
did not know the first law, and he did not use the law that Q2[image: -*-] was
equal to Q1[image: -*-] because he did not believe it. Although everybody thought
that, according to the caloric theory, the heats Q1[image: -*-] and Q2[image: -*-] would
have to be the same, Carnot did not say they were the same—that is
part of the cleverness of his argument. If we do use the first law, we
find that the heat delivered, Q2[image: -*-], is the heat Q1[image: -*-] that was put in
minus the work W[image: -*-] that was done:

[image: -*-][image: -*-]
(44.3)




(If we have some kind of cyclic process where water is pumped back
into the boiler after it is condensed, we will say that we have
heat Q1[image: -*-] absorbed and work W[image: -*-] done, during each cycle, for a certain
amount of water that goes around the cycle.)




Now we shall build another engine, and see if we cannot get more work
from the same amount of heat being delivered at the temperature T1[image: -*-],
with the condenser still at the temperature T2[image: -*-]. We shall use the
same amount of heat Q1[image: -*-] from the boiler, and we shall try to get
more work than we did out of the steam engine, perhaps by using
another fluid, such as alcohol.







44–3 Reversible engines


Now we must analyze our engines. One thing is clear: we will lose
something if the engines contain devices in which there is
friction. The best engine will be a frictionless engine. We assume,
then, the same idealization that we did when we studied the
conservation of energy; that is, a perfectly frictionless engine.



[image: -][image: -]
Fig. 44–4. Reversible heat transfer.





We must also consider the analog of frictionless motion,
“frictionless” heat transfer. If we put a hot object at a high
temperature against a cold object, so that the heat flows, then it is
not possible to make that heat flow in a reverse direction by a very
small change in the temperature of either object. But when we have a
practically frictionless machine, if we push it with a little force
one way, it goes that way, and if we push it with a little force the
other way, it goes the other way. We need to find the analog of
frictionless motion: heat transfer whose direction we can reverse with
only a tiny change. If the difference in temperature is finite, that
is impossible, but if one makes sure that heat flows always between
two things at essentially the same temperature, with just an
infinitesimal difference to make it flow in the desired direction, the
flow is said to be reversible (Fig. 44–4). If we heat
the object on the left a little, heat will flow to the right; if we
cool it a little, heat will flow to the left. So we find that the
ideal engine is a so-called reversible engine, in which every
process is reversible in the sense that, by minor changes,
infinitesimal changes, we can make the engine go in the opposite
direction. That means that nowhere in the machine must there be any
appreciable friction, and nowhere in the machine must there be any
place where the heat of the reservoirs, or the flame of the boiler, is
in direct contact with something definitely cooler or warmer.



[image: -][image: -][image: -][image: -][image: -][image: -][image: -][image: -]
Fig. 44–5. Steps in Carnot cycle.





Let us now consider an idealized engine in which all the processes are
reversible. To show that such a thing is possible in principle, we
will give an example of an engine cycle which may or may not be
practical, but which is at least reversible, in the sense of Carnot’s
idea. Suppose that we have a gas in a cylinder equipped with a
frictionless piston. The gas is not necessarily a perfect gas. The
fluid does not even have to be a gas, but to be specific let us say we
do have a perfect gas. Also, suppose that we have two heat pads, T1[image: -*-]
and T2[image: -*-]—great big things that have definite temperatures, T1[image: -*-]
and T2[image: -*-]. We will suppose in this case that T1[image: -*-] is higher
than T2[image: -*-]. Let us first heat the gas and at the same time expand it, while
it is in contact with the heat pad at T1[image: -*-]. As we do this, pulling
the piston out very slowly as the heat flows into the gas, we will
make sure that the temperature of the gas never gets very far
from T1[image: -*-]. If we pull the piston out too fast, the temperature of the gas
will fall too much below T1[image: -*-] and then the process will not be quite
reversible, but if we pull it out slowly enough, the temperature of
the gas will never depart much from T1[image: -*-]. On the other hand, if we
push the piston back slowly, the temperature would be only
infinitesimally higher than T1[image: -*-], and the heat would pour back. We
see that such an isothermal (constant-temperature)
expansion, done
slowly and gently enough, is a reversible process.




[image: -][image: -]
Fig. 44–6. The Carnot cycle.





To understand what we are doing, we shall use a plot
(Fig. 44–6) of the pressure of the gas against its volume.
As the gas expands, the pressure falls. The curve marked (1) tells us
how the pressure and volume change if the temperature is kept fixed at
the value T1[image: -*-]. For an ideal gas this curve would be P V=N k T1[image: -*-].
During an isothermal expansion the pressure falls as the volume
increases until we stop at the point b[image: -*-]. At the same time, a certain
heat Q1[image: -*-] must flow into the gas from the reservoir, for if the gas
were expanded without being in contact with the reservoir it would cool
off, as we already know. Having completed the isothermal expansion,
stopping at the point b[image: -*-], let us take the cylinder away from the
reservoir and continue the expansion. This time we permit no heat to
enter the cylinder. Again we perform the expansion slowly, so there is
no reason why we cannot reverse it, and we again assume there is no
friction. The gas continues to expand and the temperature falls, since
there is no longer any heat entering the cylinder.




We let the gas expand, following the curve marked (2), until the
temperature falls to T2[image: -*-], at the point marked c[image: -*-]. This kind of
expansion, made without adding heat, is called an adiabatic
expansion.
For an ideal gas, we already know that curve (2) has the
form P Vγ=constant[image: -*-], where γ[image: -*-] is a constant
greater than 1, so that the adiabatic curve has a more negative
slope than the isothermal curve. The gas cylinder has now reached the
temperature T2[image: -*-], so that if we put it on the heat pad at
temperature T2[image: -*-] there will be no irreversible changes. Now we slowly compress
the gas while it is in contact with the reservoir at T2[image: -*-], following
the curve marked (3) (Fig. 44–5, Step 3). Because the
cylinder is in contact with the reservoir, the temperature does not
rise, but heat Q2[image: -*-] flows from the cylinder into the reservoir at the
temperature T2[image: -*-]. Having compressed the gas isothermally along
curve (3) to the point d[image: -*-], we remove the cylinder from the heat pad at
temperature T2[image: -*-] and compress it still further, without letting any
heat flow out. The temperature will rise, and the pressure will follow
the curve marked (4). If we carry out each step properly, we can
return to the point a[image: -*-] at temperature T1[image: -*-] where we started, and
repeat the cycle.




We see that on this diagram we have carried the gas around a complete
cycle, and during one cycle we have put Q1[image: -*-] in at temperature T1[image: -*-],
and have removed Q2[image: -*-] at temperature T2[image: -*-]. Now the point is that
this cycle is reversible, so that we could represent all the steps the
other way around. We could have gone backwards instead of forwards: we
could have started at point a[image: -*-], at temperature T1[image: -*-], expanded along
the curve (4), expanded further at the temperature T2[image: -*-], absorbing
heat Q2[image: -*-], and so on, going around the cycle backward. If we go
around the cycle in one direction, we must do work on the gas; if we
go in the other direction, the gas does work on us.




Incidentally, it is easy to find out what the total amount of work is,
because the work during any expansion is the pressure times the change
in volume, ∫P d V[image: -*-]. On this particular diagram, we have
plotted P[image: -*-] vertically and V[image: -*-] horizontally. So if we call the vertical
distance y[image: -*-] and the horizontal distance x[image: -*-], this is ∫y d x[image: -*-]—in other words, the area under the curve. So the area under
each of the numbered curves is a measure of the work done by or on the
gas in the corresponding step. It is easy to see that the net work
done is the shaded area of the picture.



[image: -][image: -]
Fig. 44–7. Reversible engine A[image: -*-] being driven backwards by engine B[image: -*-].





Now that we have given a single example of a reversible machine, we
shall suppose that other such engines are also possible. Let us assume
that we have a reversible engine A[image: -*-] which takes Q1[image: -*-] at T1[image: -*-], does
work W[image: -*-], and delivers some heat at T2[image: -*-]. Now let us assume we have
any other engine B[image: -*-], made by man, already designed or not yet
invented, made of rubber bands, steam, or whatever, reversible or not,
which is designed so that it takes in the same amount of heat Q1[image: -*-]
at T1[image: -*-], and rejects the heat at the lower temperature T2[image: -*-]
(Fig. 44–7). Assume that engine B[image: -*-] does some work, W′[image: -*-].
Now we shall show that W′[image: -*-] is not greater than W[image: -*-]—that no engine can
do more work than a reversible one. Why?  Suppose that, indeed, W′[image: -*-]
were bigger than W[image: -*-]. Then we could take the heat Q1[image: -*-] out of the
reservoir at T1[image: -*-], and with engine B[image: -*-] we could do work W′[image: -*-] and
deliver some heat to the reservoir at T2[image: -*-]; we do not care how much.
That done, we could save some of the work W′[image: -*-], which is supposed to be
greater than W[image: -*-]; we could use a part of it, W[image: -*-], and save the
remainder, W′−W[image: -*-], for useful work. With the work W[image: -*-] we could run
engine A[image: -*-] backwards because it is a reversible engine. It will
absorb some heat from the reservoir at T2[image: -*-] and deliver Q1[image: -*-] back to
the reservoir at T1[image: -*-]. After this double cycle, the net result would be
that we would have put everything back the way it was before, and we
would have done some excess work, namely W′−W[image: -*-], and all we
would have done would be to extract energy from the reservoir at T2[image: -*-]!
We were careful to restore the heat Q1[image: -*-] to the reservoir at T1[image: -*-]. So
that reservoir can be small and “inside” our combined machine A+B[image: -*-],
whose net effect is therefore to extract a net heat W′−W[image: -*-] from the
reservoir at T2[image: -*-] and convert it into work. But to obtain useful work
from a reservoir at a single temperature with no other changes is
impossible according to Carnot’s postulate; it cannot be done. Therefore
no engine which absorbs a given amount of heat from a higher
temperature T1[image: -*-] and delivers it at the temperature T2[image: -*-] can do more work than a
reversible engine operating under the same temperature conditions.




Now suppose that engine B[image: -*-] is also reversible. Then, of course, not
only must W′[image: -*-] be not greater than W[image: -*-], but now we can reverse the
argument and show that W[image: -*-] cannot be greater than W′[image: -*-]. So, if both
engines are reversible they must both do the same amount of work, and
we thus come to Carnot’s brilliant conclusion: that if an engine is
reversible, it makes no difference how it is designed, because the
amount of work one will obtain if the engine absorbs a given amount of
heat at temperature T1[image: -*-] and delivers heat at some other
temperature T2[image: -*-] does not depend on the design of the engine. It is a
property of the world, not a property of a particular engine.




If we could find out what the law is that determines how much work we
obtain when we absorb the heat Q1[image: -*-] at T1[image: -*-] and deliver heat
at T2[image: -*-], this quantity would be a universal thing, independent of the
substance. Of course if we knew the properties of a particular
substance, we could work it out and then say that all other substances
must give the same amount of work in a reversible engine. That is the
key idea, the clue by which we can find the relationship between how
much, for instance, a rubber band contracts when we heat it, and how
much it cools when we let it contract. Imagine that we put that rubber
band in a reversible machine, and that we make it go around a
reversible cycle. The net result, the total amount of work done, is
that universal function, that great function which is independent of
substance. So we see that a substance’s properties must be limited in
a certain way; one cannot make up anything he wants, or he would be
able to invent a substance which he could use to produce more than the
maximum allowable work when he carried it around a reversible
cycle. This principle, this limitation, is the only real rule that
comes out of the thermodynamics.







44–4 The efficiency of an ideal engine


Now we shall try to find the law which determines the work W[image: -*-] as a
function of Q1[image: -*-], T1[image: -*-], and T2[image: -*-]. It is clear that W[image: -*-] is
proportional to Q1[image: -*-], for if we consider two reversible engines in
parallel, both working together and both double engines, the
combination is also a reversible engine. If each one absorbed
heat Q1[image: -*-], the two together absorb 2 Q1[image: -*-] and the work done is 2 W[image: -*-], and
so on. So it is not unreasonable that W[image: -*-] is proportional to Q1[image: -*-].




Now the next important step is to find this universal law. We can, and
will, do so by studying a reversible engine with the one particular
substance whose laws we know, a perfect gas. It is also possible to
obtain the rule by a purely logical argument, using no particular
substance at all. This is one of the very beautiful pieces of
reasoning in physics and we are reluctant not to show it to you, so
for those who would like to see it we shall discuss it in just a
moment. But first we shall use the much less abstract and simpler
method of direct calculation for a perfect gas.




We need only obtain formulas for Q1[image: -*-] and Q2[image: -*-] (for W[image: -*-] is just Q1−Q2[image: -*-]), the heats exchanged with the reservoirs during the isothermal
expansion or contraction. For example, how much heat Q1[image: -*-] is absorbed
from the reservoir at temperature T1[image: -*-] during the isothermal
expansion [marked (1) in Fig. 44–6] from point a[image: -*-], at
pressure pa[image: -*-], volume Va[image: -*-], temperature T1[image: -*-], to point b[image: -*-] with
pressure pb[image: -*-], volume Vb[image: -*-], and the same temperature T1[image: -*-]? For a
perfect gas each molecule has an energy that depends only on the
temperature, and since the temperature and the number of molecules are
the same at a[image: -*-] and at b[image: -*-], the internal energy is the
same. There is no change in U[image: -*-]; all the work done by the gas,

[image: -*-][image: -*-]


during the expansion is energy Q1[image: -*-] taken from the reservoir. During
the expansion, p V=N k T1[image: -*-], or

[image: -*-][image: -*-]


or

[image: -*-][image: -*-]
(44.4)




or

[image: -*-][image: -*-]


is the heat taken from the reservoir at T1[image: -*-]. In the same way, for
the compression at T2[image: -*-] [curve (3) of Fig. 44–6] the
heat delivered to the reservoir at T2[image: -*-] is

[image: -*-][image: -*-]
(44.5)




To finish our analysis we need only find a relation between Vc/Vd[image: -*-]
and Vb/Va[image: -*-]. This we do by noting that (2) is an adiabatic expansion
from b[image: -*-] to c[image: -*-], during which p Vγ[image: -*-] is a constant. Since p V=N k T[image: -*-], we can write this as (p V) Vγ−1=const[image: -*-] or, in
terms of T[image: -*-] and V[image: -*-], as T Vγ−1=const[image: -*-], or

[image: -*-][image: -*-]
(44.6)




Likewise, since (4), the compression from d[image: -*-] to a[image: -*-], is also adiabatic,
we find

[image: -*-][image: -*-]
(44.6a)




If we divide this equation by the previous one, we find that Vb/Va[image: -*-]
must equal Vc/Vd[image: -*-], so the ln[image: -*-]’s in (44.4)
and (44.5) are equal, and that

[image: -*-][image: -*-]
(44.7)




This is the relation we were seeking. Although proved for a perfect
gas engine, we know it must be true for any reversible engine at
all.




[image: -][image: -]
Fig. 44–8. Engines 1 and 2 together are equivalent to engine 3.





Now we shall see how this universal law could also be obtained by
logical argument, without knowing the properties of any specific
substances, as follows. Suppose that we have three engines and three
temperatures, let us say T1[image: -*-], T2[image: -*-], and T3[image: -*-]. Let one engine
absorb heat Q1[image: -*-] from the temperature T1[image: -*-] and do a certain amount
of work W13[image: -*-], and let it deliver heat Q3[image: -*-] to the
temperature T3[image: -*-] (Fig. 44–8). Let another engine run backwards
between T2[image: -*-] and T3[image: -*-]. Suppose that we let the second engine be of
such a size that it will absorb the same heat Q3[image: -*-], and deliver the
heat Q2[image: -*-]. We will have to put a certain amount of work, W32[image: -*-],
into it—negative because the engine is running backwards. When the
first machine goes through a cycle, it absorbs heat Q1[image: -*-] and delivers
Q3[image: -*-] at the temperature T3[image: -*-]; then the second machine takes the same
heat Q3[image: -*-] out of the reservoir at the temperature T3[image: -*-] and delivers
it into the reservoir at temperature T2[image: -*-]. Therefore the net result
of the two machines in tandem is to take the heat Q1[image: -*-] from T1[image: -*-],
and deliver Q2[image: -*-] at T2[image: -*-]. The two machines are thus equivalent to a
third one, which absorbs Q1[image: -*-] at T1[image: -*-], does work W12[image: -*-], and
delivers heat Q2[image: -*-] at T2[image: -*-], because W12=W13−W32[image: -*-], as
one can immediately show from the first law, as follows:



[image: -*-][image: -*-]
(44.8)





We can now obtain the laws which relate the efficiencies of the
engines, because there clearly must be some kind of relationship
between the efficiencies of engines running between the temperatures
T1[image: -*-] and T3[image: -*-], and between T2[image: -*-] and T3[image: -*-], and between T1[image: -*-]
and T2[image: -*-].




We can make the argument very clear in the following way: We have just
seen that we can always relate the heat absorbed at T1[image: -*-] to the heat
delivered at T2[image: -*-] by finding the heat delivered at some other
temperature T3[image: -*-]. Therefore we can get all the engines’ properties if
we introduce a standard temperature, analyzing everything with that
standard temperature. In other words, if we knew the efficiency of an
engine running between a certain temperature T[image: -*-] and a certain
arbitrary standard temperature, then we could work out the efficiency
for any other difference in temperature. Because we assume we are
using only reversible engines, we can work from the initial
temperature down to the standard temperature and back up to the final
temperature again. We shall define the standard temperature
arbitrarily as one degree. We shall also adopt a special symbol
for the heat which is delivered at this standard temperature: we shall
call it QS[image: -*-]. In other words, when a reversible engine absorbs the
heat Q[image: -*-] at temperature T[image: -*-], it will deliver, at the unit temperature,
a heat QS[image: -*-]. If one engine, absorbing heat Q1[image: -*-] at T1[image: -*-],
delivers the heat QS[image: -*-] at one degree, and if an engine absorbing
heat Q2[image: -*-] at temperature T2[image: -*-] will also deliver the same heat QS[image: -*-] at
one degree, then it follows that an engine which absorbs heat Q1[image: -*-] at
the temperature T1[image: -*-] will deliver heat Q2[image: -*-] if it runs between T1[image: -*-]
and T2[image: -*-], as we have already proved by considering engines running
between three temperatures. So all we really have to do is to find how
much heat Q1[image: -*-] we need to put in at the temperature T1[image: -*-] in order to
deliver a certain amount of heat QS[image: -*-] at the unit temperature. If we
discover that, we have everything. The heat Q[image: -*-], of course, is a
function of the temperature T[image: -*-]. It is easy to see that the heat must
increase as the temperature increases, for we know that it takes work
to run an engine backwards and deliver heat at a higher
temperature. It is also easy to see that the heat Q1[image: -*-] must be
proportional to QS[image: -*-]. So the great law is something like this: for a
given amount of heat QS[image: -*-] delivered at one degree from an engine
running at temperature T[image: -*-] degrees, the heat Q[image: -*-] absorbed must be that
amount QS[image: -*-] times some increasing function of the temperature:

[image: -*-][image: -*-]
(44.9)










44–5 The thermodynamic temperature


At this stage we are not going to try to find the formula for the
above increasing function of the temperature in terms of our familiar
mercury temperature scale, but instead we shall define
temperature by a new scale. At one time “the temperature” was
defined arbitrarily by dividing the expansion of water into even
degrees of a certain size. But when one then measures temperature with
a mercury thermometer, one finds that the degrees are no longer
even. But now we can make a definition of temperature which is
independent of any particular substance.  We can use that function f (T)[image: -*-],
which does not depend on what device we use, because the
efficiency of these reversible engines is independent of their working
substances. Since the function we found is rising with temperature, we
will define the function itself as the temperature, measured in
units of the standard one-degree temperature, as follows:

[image: -*-][image: -*-]
(44.10)




where

[image: -*-][image: -*-]
(44.11)




This means that we can tell how hot an object is by finding out how
much heat is absorbed by a reversible engine working between the
temperature of the object and the unit temperature
(Fig. 44–9). If seven times more heat is taken out of a
boiler than is delivered at a one-degree condenser, the temperature of
the boiler will be called seven degrees, and so forth. So, by measuring
how much heat is absorbed at different temperatures, we determine the
temperature. The temperature defined in this way is called the
absolute thermodynamic temperature, and it is independent of the
substance. We shall use this definition exclusively from now
on.1



[image: -][image: -]
Fig. 44–9. Absolute thermodynamic temperature.





Now we see that when we have two engines, one working between T1[image: -*-]
and one degree, the other working between T2[image: -*-] and one degree,
delivering the same heat at unit temperature, then the heats absorbed
must be related by

[image: -*-][image: -*-]
(44.12)




But that means that if we have a single engine running between T1[image: -*-]
and T2[image: -*-], then the result of the whole analysis, the grand finale, is
that Q1[image: -*-] is to T1[image: -*-] as Q2[image: -*-] is to T2[image: -*-], if the engine absorbs
energy Q1[image: -*-] at temperature T1[image: -*-] and delivers heat Q2[image: -*-] at
temperature T2[image: -*-]. Whenever the engine is reversible, this
relationship between the heats must follow. That is all there is to
it: that is the center of the universe of thermodynamics.




If this is all there is to thermodynamics, why is it considered such a
difficult subject? In doing a problem involving a given mass of some
substance, the condition of the substance at any moment can be
described by telling what its temperature is and what its volume
is. If we know the temperature and volume of a substance, and that the
pressure is some function of the temperature and volume, then we know
the internal energy. One could say, “I do not want to do it that
way. Tell me the temperature and the pressure, and I will tell you the
volume. I can think of the volume as a function of temperature and
pressure, and the internal energy as a function of temperature and
pressure, and so on.” That is why thermodynamics is hard, because
everyone uses a different approach. If we could only sit down once and
decide on our variables, and stick to them, it would be fairly easy.




Now we start to make deductions. Just as F=m a[image: -*-] is the center of the
universe in mechanics, and it goes on and on and on after that, in the
same way the principle just found is all there is to
thermodynamics. But can one make conclusions out of it?




We begin. To obtain our first conclusion, we shall combine both laws,
the law of conservation of energy and this law which relates the heats
Q2[image: -*-] and Q1[image: -*-], and we can easily obtain the efficiency of a
reversible engine. From the first law, we have W=Q1−Q2[image: -*-]. According to our new principle,

[image: -*-][image: -*-]


so the work becomes

[image: -*-][image: -*-]
(44.13)




which tells us the efficiency of the engine—how much work we get out
of so much heat. The efficiency of an engine is proportional to the
difference in the temperatures between which the engine runs, divided
by the higher temperature:

[image: -*-][image: -*-]
(44.14)




The efficiency cannot be greater than unity and the absolute
temperature cannot be less than zero, absolute zero. So, since T2[image: -*-] must be positive, the efficiency is always less
than unity. That is our first conclusion.








44–6 Entropy


Equation (44.7) or (44.12) can be interpreted in
a special way. Working always with reversible engines, a heat Q1[image: -*-] at
temperature T1[image: -*-] is “equivalent” to Q2[image: -*-] at T2[image: -*-] if Q1/T1=Q2/T2[image: -*-], in the sense that as one is absorbed the other is
delivered. This suggests that if we call Q/T[image: -*-] something, we can say:
in a reversible process as much Q/T[image: -*-] is absorbed as is liberated;
there is no gain or loss of Q/T[image: -*-]. This Q/T[image: -*-] is called
entropy, and we say “there is no net change in entropy in a
reversible cycle.” If T[image: -*-] is 1°[image: -*-], then the entropy
is QS/1°[image: -*-] or, as we symbolized it, QS/1°=S[image: -*-]. Actually,
S[image: -*-] is the letter usually used for entropy, and it is numerically
equal to the heat (which we have called QS[image: -*-]) delivered to
a 1°[image: -*-]-reservoir (entropy is not itself a heat, it is heat divided
by a temperature, hence it is measured in joules per degree).




Now it is interesting that besides the pressure, which is a function
of the temperature and the volume, and the internal energy, which is a
function of temperature and volume, we have found another quantity
which is a function of the condition, i.e., the entropy of the
substance. Let us try to explain how we compute it, and what we mean
when we call it a “function of the condition.” Consider the system
in two different conditions, much as we had in the experiment where we
did the adiabatic and isothermal expansions. (Incidentally, there is
no need that a heat engine have only two reservoirs, it could have
three or four different temperatures at which it takes in and delivers
heats, and so on.) We can move around on a p V[image: -*-] diagram all over the
place, and go from one condition to another. In other words, we could
say the gas is in a certain condition a[image: -*-], and then it goes over to
some other condition, b[image: -*-], and we will require that this transition,
made from a[image: -*-] to b[image: -*-], be reversible. Now suppose that all along the
path from a[image: -*-] to b[image: -*-] we have little reservoirs at different
temperatures, so that the heat d Q[image: -*-] removed from the substance at each
little step is delivered to each reservoir at the temperature
corresponding to that point on the path. Then let us connect all these
reservoirs, by reversible heat engines, to a single reservoir at the
unit temperature. When we are finished carrying the substance from a[image: -*-]
to b[image: -*-], we shall bring all the reservoirs back to their original
condition. Any heat d Q[image: -*-] that has been absorbed from the substance at
temperature T[image: -*-] has now been converted by a reversible machine, and a
certain amount of entropy d S[image: -*-] has been delivered at the unit
temperature as follows:

[image: -*-][image: -*-]
(44.15)








[image: -][image: -]
Fig. 44–10. Change in entropy during a reversible transformation.





Let us compute the total amount of entropy which has been
delivered. The entropy difference, or the entropy needed to go from
a[image: -*-] to b[image: -*-] by this particular reversible transformation, is the total
entropy, the total of the entropy taken out of the little reservoirs,
and delivered at the unit temperature:

[image: -*-][image: -*-]
(44.16)




The question is, does the entropy difference depend upon the path
taken? There is more than one way to go from a[image: -*-] to b[image: -*-]. Remember that
in the Carnot cycle we could go from a[image: -*-] to c[image: -*-] in Fig. 44–6
by first expanding isothermally and then adiabatically; or we could
first expand adiabatically and then isothermally. So the question is
whether the entropy change which occurs when we go from a[image: -*-] to b[image: -*-] in
Fig. 44–10 is the same on one route as it is on another.
It must be the same, because if we went all the way around the
cycle, going forward on one path and backward on another, we would have
a reversible engine, and there would be no loss of heat to the reservoir
at unit temperature. In a totally reversible cycle, no heat must be
taken from the reservoir at the unit temperature, so the entropy needed
to go from a[image: -*-] to b[image: -*-] is the same over one path as it is over another.
It is independent of path, and depends only on the endpoints. We
can, therefore, say that there is a certain function, which we call the
entropy of the substance, that depends only on the condition, i.e., only
on the volume and temperature.



[image: -][image: -]
Fig. 44–11. Change in entropy in a completely reversible cycle.





We can find a function S (V,T)[image: -*-] which has the property that if we
compute the change in entropy, as the substance is moved along any
reversible path, in terms of the heat rejected at unit temperature,
then

[image: -*-][image: -*-]
(44.17)




where d Q[image: -*-] is the heat removed from the substance at temperature T[image: -*-].
This total entropy change is the difference between the entropy
calculated at the initial and final points:

[image: -*-][image: -*-]
(44.18)




This expression does not completely define the entropy, but rather
only the difference of entropy between two different
conditions. Only if we can evaluate the entropy for one special
condition can we really define S[image: -*-] absolutely.




For a long time it was believed that absolute entropy meant
nothing—that only differences could be defined—but finally
Nernst proposed what he called
the heat theorem, which is also called
the third law of thermodynamics. It is very simple. We will say what it
is, but we will not explain why it is true. Nernst’s postulate states
simply that the entropy of any object at absolute zero is zero. We know of one case of T[image: -*-] and V[image: -*-], namely T=0[image: -*-], where
S[image: -*-] is zero; and so we can get the entropy at any other point.





To give an illustration of these ideas, let us calculate the entropy
of a perfect gas. In an isothermal (and therefore reversible)
expansion, ∫d Q/T[image: -*-] is Q/T[image: -*-], since T[image: -*-] is constant. Therefore
(from 44.4) the change in entropy is

[image: -*-][image: -*-]


so S (V,T)=N k lnV[image: -*-] plus some function of T[image: -*-] only. How does S[image: -*-]
depend on T[image: -*-]? We know that for a reversible adiabatic expansion,
no heat is exchanged. Thus the entropy does not change even
though V[image: -*-] changes, provided that T[image: -*-] changes also, such that
T Vγ−1=constant[image: -*-]. Can you see that this implies
that

[image: -*-][image: -*-]


where a[image: -*-] is some constant independent of both V[image: -*-] and T[image: -*-]? [a[image: -*-]
is called the chemical constant. It depends on the gas in question, and
may be determined experimentally from the Nernst theorem by measuring the heat liberated in cooling and condensing
the gas until it is brought to a solid (or for helium, a liquid)
at 0°[image: -*-], by integrating ∫d Q/T[image: -*-]. It can also be determined
theoretically by means of Planck’s constant and quantum mechanics, but
we shall not study it in this course.]





Now we shall remark on some of the properties of the entropy of
things. We first remember that if we go along a reversible cycle from
a[image: -*-] to b[image: -*-], then the entropy of the substance will change by Sb−Sa[image: -*-]. And we remember that as we go along the path, the entropy—the
heat delivered at unit temperature—increases according to the
rule d S=d Q/T[image: -*-], where d Q[image: -*-] is the heat we remove from the substance when
its temperature is T[image: -*-].




We already know that if we have a reversible cycle, the total
entropy of everything is not changed, because the heat Q1[image: -*-] absorbed
at T1[image: -*-] and the heat Q2[image: -*-] delivered at T2[image: -*-] correspond to equal and
opposite changes in entropy, so that the net change in the entropy is
zero. So for a reversible cycle there is no change in the entropy of
anything, including the reservoirs. This rule may look like the
conservation of energy again, but it is not; it applies only to
reversible cycles. If we include irreversible cycles there is no law
of conservation of entropy.




We shall give two examples. First, suppose that we do irreversible
work on an object by friction, generating a heat Q[image: -*-] on some object at
temperature T[image: -*-]. The entropy is increased by Q/T[image: -*-]. The heat Q[image: -*-] is
equal to the work, and thus when we do a certain amount of work by
friction against an object whose temperature is T[image: -*-], the entropy of
the whole world increases by W/T[image: -*-].




Another example of irreversibility is this: If we put together two
objects that are at different temperatures, say T1[image: -*-] and T2[image: -*-], a
certain amount of heat will flow from one to the other by
itself. Suppose, for instance, we put a hot stone in cold water. Then
when a certain heat Δ Q[image: -*-] is transferred from T1[image: -*-] to T2[image: -*-], how
much does the entropy of the hot stone change? It decreases by Δ Q/T1[image: -*-]. How much does the water entropy change? It increases
by Δ Q/T2[image: -*-]. The heat will, of course, flow only from the higher
temperature T1[image: -*-] to the lower temperature T2[image: -*-], so that Δ Q[image: -*-]
is positive if T1[image: -*-] is greater than T2[image: -*-]. So the change in entropy
of the whole world is positive, and it is the difference of the two
fractions:

[image: -*-][image: -*-]
(44.19)









So the following proposition is true: in any process that is
irreversible, the entropy of the whole world is increased. Only in
reversible processes does the entropy remain constant. Since no
process is absolutely reversible, there is always at least a small
gain in the entropy; a reversible process is an idealization in which
we have made the gain of entropy minimal.




Unfortunately, we are not going to enter into the field of
thermodynamics very far. Our purpose is only to illustrate the principal
ideas involved and the reasons why it is possible to make such
arguments, but we will not use thermodynamics very much in this course.
Thermodynamics is used very often by engineers and, particularly, by
chemists. So we must learn our thermodynamics in practice in chemistry
or engineering. Because it is not worthwhile duplicating everything, we
shall just give some discussion of the origin of the theory, rather than
much detail for special applications.




The two laws of thermodynamics are often stated this way:



	First law:  
	the energy of the universe is always constant.



	
	



	Second law:  
	the entropy of the universe is always increasing.




That is not a very good statement of the second law; it does not say,
for example, that in a reversible cycle the entropy stays the same,
and it does not say exactly what the entropy is. It is just a clever
way of remembering the two laws, but it does not really tell us
exactly where we stand. We have summarized the laws discussed in this
chapter in Table 44–1. In the next chapter we shall apply
these laws to discover the relationship between the heat generated in
the expansion of a rubber band, and the extra tension when it is
heated.





Table 44–1. Summary of the laws of thermodynamics




	
	First law:



	
	
Heat put into a system+[image: -*-]Work done on a system=Increase in
internal energy of the system:
[image: -*-][image: -*-]



Second law:





	
	
A process whose 
only net result is to take heat from a
reservoir and convert it to work is impossible.
No heat engine taking heat Q1[image: -*-] from T1[image: -*-] and delivering heat Q2[image: -*-]
at T2[image: -*-] can do more work than a reversible engine, for which
[image: -*-][image: -*-]



The entropy of a system is defined this way:





	
	

	
(a) If heat Δ Q[image: -*-] is added reversibly to a system at
temperature T[image: -*-], the increase in entropy of the system is Δ S=Δ Q/T[image: -*-].



	
(b) At T=0[image: -*-], S=0[image: -*-] (
third law).






In a 
reversible change, the total entropy of all parts of the
system (including reservoirs) does not change.
In 
irreversible change, the total entropy of the system always
increases.










	
  
  We have previously defined our scale of temperature in a
different way, namely by stating that the mean kinetic energy of a
molecule in a perfect gas is proportional to the temperature, or that
the perfect gas law says p V[image: -*-] is proportional to T[image: -*-]. Is this new
definition equivalent? Yes, since the final result (44.7)
derived from the gas law is the same as that derived here. We shall
discuss this point again in the next chapter.
  ↩





  
    

45 Illustrations of Thermodynamics



45–1 Internal energy


Thermodynamics is a rather difficult and complex subject
when we come to apply it, and it is not appropriate for us to go very
far into the applications in this course. The subject is of very great
importance, of course, to engineers and chemists, and those who are
interested in the subject can learn about the applications in physical
chemistry or in engineering thermodynamics. There are also good equation
reference books, such as Zemansky’s Heat and Thermodynamics,
where one can learn more about the subject. In the Encyclopedia
Britannica, fourteenth edition, one can find excellent articles on
thermodynamics and thermochemistry, and in the article on chemistry, the
sections on physical chemistry, vaporization, liquefication of gases,
and so on.




The subject of thermodynamics is complicated because there are so many
different ways of describing the same thing. If we wish to describe
the behavior of a gas, we can say that the pressure depends on the
temperature and on the volume, or we can say that the volume depends
on the temperature and the pressure. Or with respect to the internal
energy U[image: -*-], we might say that it depends on the temperature and
volume, if those are the variables we have chosen—but we might also
say that it depends on the temperature and the pressure, or the
pressure and the volume, and so on. In the last chapter we discussed
another function of temperature and volume, called the entropy S[image: -*-],
and we can of course construct as many other functions of these
variables as we like: U−T S[image: -*-] is a function of temperature and
volume. So we have a large number of different quantities which can be
functions of many different combinations of variables.




To keep the subject simple in this chapter, we shall decide at the
start to use temperature and volume as the independent
variables. Chemists use temperature and pressure, because they are
easier to measure and control in chemical experiments, but we shall
use temperature and volume throughout this chapter, except in one
place where we shall see how to make the transformation into the
chemists’ system of variables.




We shall first, then, consider only one system of independent
variables: temperature and volume. Secondly, we shall discuss only two
dependent functions: the internal energy and the pressure. All the
other functions can be derived from these, so it is not necessary to
discuss them. With these limitations, thermodynamics is still a fairly
difficult subject, but it is not quite so impossible!




First we shall review some mathematics. If a quantity is a function of
two variables, the idea of the derivative of the quantity requires a
little more careful thought than for the case where there is only one
variable. What do we mean by the derivative of the pressure with
respect to the temperature? The pressure change accompanying a change
in the temperature depends partly, of course, on what happens to the
volume while T[image: -*-] is changing. We must specify the change in V[image: -*-]
before the concept of a derivative with respect to T[image: -*-] has a precise
meaning. We might ask, for example, for the rate of change of P[image: -*-] with
respect to T[image: -*-] if V[image: -*-] is held constant. This ratio is just the
ordinary derivative that we usually write as d P/d T[image: -*-]. We customarily
use a special symbol, ∂P/∂T[image: -*-], to remind us that P[image: -*-] depends on
another variable V[image: -*-] as well as on T[image: -*-], and that this other variable
is held constant. We shall not only use the symbol ∂[image: -*-] to call
attention to the fact that the other variable is held constant, but we
shall also write the variable that is held constant as a subscript,
(∂P/∂T)V[image: -*-]. Since we have only two independent variables, this
notation is redundant, but it will help us keep our wits about us in
the thermodynamic jungle of partial derivatives.




Let us suppose that the function f (x,y)[image: -*-] depends on the two
independent variables x[image: -*-] and y[image: -*-]. By (∂f/∂x)y[image: -*-] we mean simply
the ordinary derivative, obtained in the usual way, if we treat y[image: -*-] as
a constant:

[image: -*-][image: -*-]


Similarly, we define

[image: -*-][image: -*-]


For example, if f (x,y)=x2+y x[image: -*-], then (∂f/∂x)y=2 x+y[image: -*-],
and (∂f/∂y)x=x[image: -*-]. We can extend this idea to higher
derivatives: ∂2f/∂y2[image: -*-] or ∂2f/∂y ∂x[image: -*-]. The latter symbol indicates that we first differentiate
f[image: -*-] with respect to x[image: -*-], treating y[image: -*-] as a constant, then
differentiate the result with respect to y[image: -*-], treating x[image: -*-] as a
constant. The actual order of differentiation is immaterial:
∂2f/∂x ∂y=∂2f/∂y ∂x[image: -*-].




We will need to compute the change Δ f[image: -*-] in f (x,y)[image: -*-] when x[image: -*-]
changes to x+Δ x[image: -*-] and y[image: -*-] changes to y+Δ y[image: -*-]. We
assume throughout the following that Δ x[image: -*-] and Δ y[image: -*-] are
infinitesimally small:



[image: -*-][image: -*-]
(45.1)





The last equation is the fundamental relation that expresses Δ f[image: -*-] in terms of Δ x[image: -*-] and Δ y[image: -*-].




As an example of the use of this relation, let us calculate the change
in the internal energy U (T,V)[image: -*-] when the temperature changes from T[image: -*-]
to T+Δ T[image: -*-] and the volume changes from V[image: -*-] to V+Δ V[image: -*-]. Using Eq. (45.1), we write

[image: -*-][image: -*-]
(45.2)




In our last chapter we found another expression for the change Δ U[image: -*-] in the internal energy when a quantity of heat Δ Q[image: -*-] was added
to the gas:

[image: -*-][image: -*-]
(45.3)




In comparing Eqs. (45.2) and (45.3) one might at
first be inclined to think that P=−(∂U/∂V)T[image: -*-], but this is not correct.
To obtain the correct relation, let us first suppose that we add a quantity of
heat Δ Q[image: -*-] to the gas while keeping the volume constant, so that Δ V=0[image: -*-]. With Δ V=0[image: -*-], Eq. (45.3) tells us that Δ U=Δ Q[image: -*-], and Eq. (45.2) tells us that Δ U=(∂U/∂T)V Δ T[image: -*-], so that (∂U/∂T)V=Δ Q/Δ T[image: -*-]. The
ratio Δ Q/Δ T[image: -*-], the amount of heat one must put into a substance in
order to change its temperature by one degree with the volume held constant, is
called the specific heat at constant volume and is
designated by the symbol CV[image: -*-]. By this argument we have shown that

[image: -*-][image: -*-]
(45.4)







Now let us again add a quantity of heat Δ Q[image: -*-] to the gas, but this
time we will hold T[image: -*-] constant and allow the volume to change by Δ V[image: -*-]. The analysis in this case is more complex, but we can calculate
Δ U[image: -*-] by the argument of Carnot, making use of the
Carnot cycle we introduced in the last chapter.



[image: -][image: -]
Fig. 45–1. Pressure-volume diagram for a Carnot cycle. The curves marked
T[image: -*-] and T−Δ T[image: -*-] are isothermal lines; the steeper curves are
adiabatic lines. Δ V[image: -*-] is the volume change as heat Δ Q[image: -*-]
is added to the gas at constant temperature T[image: -*-]. Δ P[image: -*-] is the
pressure change at constant volume as the gas temperature is changed
from T[image: -*-] to T−Δ T[image: -*-].





The pressure-volume diagram for the Carnot cycle is shown in
Fig. 45–1. As we have already shown, the total amount of
work done by the gas in a reversible cycle is Δ Q (Δ T/T)[image: -*-],
where Δ Q[image: -*-] is the amount of heat energy added to the gas as it
expands isothermally at temperature T[image: -*-] from volume V[image: -*-] to V+Δ V[image: -*-], and T−Δ T[image: -*-] is the final temperature reached by the gas as it
expands adiabatically on the second leg of the cycle. Now we will show
that this work done is also given by the shaded area in
Fig. 45–1. In any circumstances, the work done by the gas
is ∫P d V[image: -*-], and is positive when the gas expands and negative when the
gas is compressed. If we plot P[image: -*-] vs. V[image: -*-], the variation of P[image: -*-]
and V[image: -*-] is represented by a curve which gives the value of P[image: -*-] corresponding
to a particular value of V[image: -*-]. As the volume changes from one value to
another, the work done by the gas, the integral ∫P d V[image: -*-], is the
area under the curve connecting the initial and final values of V[image: -*-].
When we apply this idea to the Carnot cycle, we see that as we go around
the cycle, paying attention to the sign of the work done by the gas, the
net work done by the gas is just the shaded area in
Fig. 45–1.




Now we want to evaluate the shaded area geometrically. The cycle we
have used in Fig. 45–1 differs from that used in the
previous chapter in that we now suppose that Δ T[image: -*-] and Δ Q[image: -*-]
are infinitesimally small. We are working between adiabatic lines and
isothermal lines that are very close together, and the figure
described by the heavy lines in Fig. 45–1 will approach
a parallelogram as the increments Δ T[image: -*-] and Δ Q[image: -*-] approach
zero. The area of this parallelogram is just Δ V Δ P[image: -*-],
where Δ V[image: -*-] is the change in volume as energy Δ Q[image: -*-] is added
to the gas at constant temperature, and Δ P[image: -*-] is the change in
pressure as the temperature changes by Δ T[image: -*-] at constant
volume. One can easily show that the shaded area in
Fig. 45–1 is given by Δ V Δ P[image: -*-] by recognizing
that the shaded area is equal to the area enclosed by the dotted lines
in Fig. 45–2, which in turn differs from the rectangle
bounded by Δ P[image: -*-] and Δ V[image: -*-] only by the addition and
subtraction of the equal triangular areas in Fig. 45–2.



[image: -][image: -]
Fig. 45–2. Shaded area=area enclosed by dashed lines=area of
rectangle=Δ P Δ V[image: -*-].





Now let us summarize the results of the arguments we have developed so
far:



[image: -*-][image: -*-]
(45.5)





Equation (45.5) expresses the essential result of
Carnot’s argument. The whole of
thermodynamics can be deduced from Eq. (45.5) and the First
Law, which is stated in Eq. (45.3).
Equation (45.5) is essentially the Second Law, although it
was originally deduced by
Carnot
in a slightly different form, since he did not use our
definition of temperature.




Now we can proceed to calculate (∂U/∂V)T[image: -*-]. By how much would
the internal energy U[image: -*-] change if we changed the volume by Δ V[image: -*-]?
First, U[image: -*-] changes because heat is put in, and second, U[image: -*-] changes
because work is done. The heat put in is

[image: -*-][image: -*-]


according to Eq. (45.5), and the work done on the
substance is −P Δ V[image: -*-]. Therefore the change Δ U[image: -*-] in
internal energy has two pieces:

[image: -*-][image: -*-]
(45.6)




Dividing both sides by Δ V[image: -*-], we find for the rate of change
of U[image: -*-] with V[image: -*-] at constant T[image: -*-]

[image: -*-][image: -*-]
(45.7)




In our thermodynamics, in which T[image: -*-] and V[image: -*-] are the only variables and P[image: -*-]
and U[image: -*-] are the only functions, Eqs. (45.3)
and (45.7) are the basic equations from which all the results of the
subject can be deduced.







45–2 Applications


Now let us discuss the meaning of Eq. (45.7) and see why it
answers the questions which we proposed in our last chapter. We
considered the following problem: in kinetic theory it is obvious that
an increase in temperature leads to an increase in pressure, because of
the bombardments of the atoms on a piston. For the same physical reason,
when we let the piston move back, heat is taken out of the gas and, in
order to keep the temperature constant, heat will have to be put back
in. The gas cools when it expands, and the pressure rises when it is
heated. There must be some connection between these two phenomena, and
this connection is given explicitly in Eq. (45.7). If we
hold the volume fixed and increase the temperature, the pressure rises
at a rate (∂P/∂T)V[image: -*-]. Related to that fact is this: if we
increase the volume, the gas will cool unless we pour some heat in to
maintain the temperature constant, and (∂U/∂V)T[image: -*-] tells us the
amount of heat needed to maintain the temperature.
Equation (45.7) expresses the fundamental interrelationship
between these two effects. That is what we promised we would find when
we came to the laws of thermodynamics. Without knowing the internal
mechanism of the gas, and knowing only that we cannot make perpetual
motion of the second type, we can deduce the relationship between the
amount of heat needed to maintain a constant temperature when the gas
expands, and the pressure change when the gas is heated at constant
volume!




Now that we have the result we wanted for a gas, let us consider the
rubber band. When we stretch a rubber band, we find that its
temperature rises, and when we heat a rubber band, we find that it
pulls itself in. What is the equation that gives the same relation for
a rubber band as Eq. (45.3) gives for gas? For a rubber
band the situation will be something like this: when heat Δ Q[image: -*-]
is put in, the internal energy is changed by Δ U[image: -*-] and some work
is done. The only difference will be that the work done by the rubber
band is −F Δ L[image: -*-] instead of P Δ V[image: -*-], where F[image: -*-] is the
force on the band, and L[image: -*-] is the length of the band. The force F[image: -*-] is
a function of temperature and of length of the band. Replacing
P Δ V[image: -*-] in Eq. (45.3) by −F Δ L[image: -*-], we get

[image: -*-][image: -*-]
(45.8)




Comparing Eqs. (45.3) and (45.8), we see that the
rubber band equation is obtained by a mere substitution of one letter for
another. Furthermore, if we substitute L[image: -*-] for V[image: -*-], and −F[image: -*-] for P[image: -*-], all of our
discussion of the Carnot cycle applies to the rubber band. We can
immediately deduce, for instance, that the heat Δ Q[image: -*-] needed to change the
length by Δ L[image: -*-] is given by the analog to Eq. (45.5): Δ Q=−T (∂F/∂T)L Δ L[image: -*-]. This equation tells us that if we keep the
length of a rubber band fixed and heat the band, we can calculate how much the
force will increase in terms of the heat needed to keep the temperature constant
when the band is relaxed a little bit. So we see that the same equation applies
to both gas and a rubber band. In fact, if one can write Δ U=Δ Q+A Δ B[image: -*-], where A[image: -*-] and B[image: -*-] represent different quantities, force and
length, pressure and volume, etc., one can apply the results obtained for a gas
by substituting A[image: -*-] and B[image: -*-] for −P[image: -*-] and V[image: -*-]. For example, consider the electric
potential difference, or “voltage,” E[image: -*-] in a battery and the charge Δ Z[image: -*-]
that moves through the battery. We know that the work done in a reversible
electric cell, like a storage battery, is E Δ Z[image: -*-]. (Since we include no
P Δ V[image: -*-] term in the work, we require that our battery maintain a constant
volume.) Let us see what thermodynamics can tell us about the performance of a
battery. If we substitute E[image: -*-] for P[image: -*-] and Z[image: -*-] for V[image: -*-] in Eq. (45.6),
we obtain

[image: -*-][image: -*-]
(45.9)




Equation (45.9) says that the internal energy U[image: -*-] is
changed when a charge Δ Z[image: -*-] moves through the cell. Why
is Δ U/Δ Z[image: -*-] not simply the voltage E[image: -*-] of the battery? (The
answer is that a real battery gets warm when charge moves through the
cell. The internal energy of the battery is changed, first, because
the battery did some work on the outside circuit, and second, because
the battery is heated.) The remarkable thing is that the second part
can again be expressed in terms of the way in which the battery
voltage changes with temperature. Incidentally, when the charge moves
through the cell, chemical reactions occur, and Eq. (45.9)
suggests a nifty way of measuring the amount of energy required to
produce a chemical reaction. All we need to do is construct a cell that
works on the reaction, measure the voltage, and measure how much the
voltage changes with temperature when we draw no charge from the
battery!




Now we have assumed that the volume of the battery can be maintained
constant, since we have omitted the P Δ V[image: -*-] term when we set the
work done by the battery equal to E Δ Z[image: -*-]. It turns out that it
is technically quite difficult to keep the volume constant. It is much
easier to keep the cell at constant atmospheric pressure. For that
reason, the chemists do not like any of the equations we have written
above: they prefer equations which describe performance under constant
pressure. We chose at the beginning of this chapter to use V[image: -*-]
and T[image: -*-] as independent variables. The chemists prefer P[image: -*-] and T[image: -*-], and
we will now consider how the results we have obtained so far can be
transformed into the chemists’ system of variables. Remember that in
the following treatment confusion can easily set in because we are
shifting gears from T[image: -*-] and V[image: -*-] to T[image: -*-] and P[image: -*-].




We started in Eq. (45.3) with Δ U=Δ Q−P Δ V[image: -*-]; P Δ V[image: -*-] may be replaced by E Δ Z[image: -*-]
or A Δ B[image: -*-]. If we could somehow replace the last term, P Δ V[image: -*-], by V Δ P[image: -*-], then we would have interchanged V[image: -*-] and P[image: -*-], and
the chemists would be happy. Well, a clever man noticed that the
differential of the product P V[image: -*-] is d (P V)=P d V+V d P[image: -*-], and if he
added this equality to Eq. (45.3), he obtained

[image: -*-][image: -*-]


In order that the result look like Eq. (45.3), we define
U+P V[image: -*-] to be something new, called the
enthalpy, H[image: -*-], and we write Δ H=Δ Q+V Δ P[image: -*-].




Now we are ready to transform our results into chemists’ language with
the following rules: U→H[image: -*-], P→−V[image: -*-], V→P[image: -*-]. For example, the
fundamental relationship that chemists would use instead of
Eq. (45.7) is

[image: -*-][image: -*-]


It should now be clear how one transforms to the chemists’ variables
T[image: -*-] and P[image: -*-]. We now go back to our original variables: for the
remainder of this chapter, T[image: -*-] and V[image: -*-] are the independent variables.




Now let us apply the results we have obtained to a number of physical
situations. Consider first the ideal gas. From kinetic theory we know
that the internal energy of a gas depends only on the motion of the
molecules and the number of molecules. The internal energy depends
on T[image: -*-], but not on V[image: -*-]. If we change V[image: -*-], but keep T[image: -*-] constant, U[image: -*-] is
not changed. Therefore (∂U/∂V)T=0[image: -*-], and Eq. (45.7)
tells us that for an ideal gas

[image: -*-][image: -*-]
(45.10)




Equation (45.10) is a differential equation that can tell
us something about P[image: -*-]. We take account of the partial derivatives in
the following way: Since the partial derivative is at constant V[image: -*-], we
will replace the partial derivative by an ordinary derivative and
write explicitly, to remind us, “constant V[image: -*-].”
Equation (45.10) then becomes

[image: -*-][image: -*-]
(45.11)




which we can integrate to get

[image: -*-][image: -*-]
(45.12)




We know that for an ideal gas the pressure per mole is equal to

[image: -*-][image: -*-]
(45.13)




which is consistent with (45.12), since V[image: -*-] and R[image: -*-] are
constants. Why did we bother to go through this calculation if we
already knew the results? Because we have been using two
independent definitions of temperature! At one stage we assumed that
the kinetic energy of the molecules was proportional to the
temperature, an assumption that defines one scale of temperature which
we will call the ideal gas scale. The T[image: -*-] in Eq. (45.13)
is based on the gas scale. We also call temperatures measured on the
gas scale kinetic temperatures. Later, we defined the
temperature in a second way which was completely independent of any
substance. From arguments based on the Second Law we defined what we
might call the “grand thermodynamic absolute temperature” T[image: -*-],
the T[image: -*-] that appears in Eq. (45.12). What we proved here is
that the pressure of an ideal gas (defined as one for which the
internal energy does not depend on the volume) is proportional to the
grand thermodynamic absolute temperature. We also know that the
pressure is proportional to the temperature measured on the gas
scale. Therefore we can deduce that the kinetic temperature is
proportional to the “grand thermodynamic absolute temperature.” That
means, of course, that if we were sensible we could make two scales
agree. In this instance, at least, the two scales have been
chosen so that they coincide; the proportionality constant has been
chosen to be 1. Most of the time man chooses trouble for himself,
but in this case he made them equal!







45–3 The Clausius-Clapeyron equation


The vaporization of a liquid is another application of the results we
have derived. Suppose we have some liquid in a cylinder, such that we
can compress it by pushing on the piston, and we ask ourselves, “If
we keep the temperature constant, how does the pressure vary with
volume?” In other words, we want to draw an isothermal line on the
P[image: -*-]-V[image: -*-] diagram. The substance in the cylinder is not the ideal gas
that we considered earlier; now it may be in the liquid or the vapor
phase, or both may be present. If we apply sufficient pressure, the
substance will condense to a liquid. Now if we squeeze still harder,
the volume changes very little, and our isothermal line rises rapidly
with decreasing volume, as shown at the left in Fig. 45–3.



[image: -][image: -]
Fig. 45–3. Isothermal lines for a condensable vapor
compressed in a cylinder. At the left, the substance is in the liquid phase.
At the right, the substance is vaporized. In the center, both liquid and
vapor are present in the cylinder.





If we increase the volume by pulling the piston out, the pressure
drops until we reach the point at which the liquid starts to boil, and
then vapor starts to form. If we pull the piston out farther, all that
happens is that more liquid vaporizes. When there is part liquid and
part vapor in the cylinder, the two phases are in equilibrium—liquid
is evaporating and vapor is condensing at the same rate. If we make
more room for the vapor, more vapor is needed to maintain the
pressure, so a little more liquid evaporates, but the pressure remains
constant. On the flat part of the curve in Fig. 45–3 the
pressure does not change, and the value of the pressure here is called
the vapor pressure at temperature T[image: -*-]. As we continue to
increase the volume, there comes a time when there is no more liquid
to evaporate. At this juncture, if we expand the volume further, the
pressure will fall as for an ordinary gas, as shown at the right of
the P[image: -*-]-V[image: -*-] diagram. The lower curve in Fig. 45–3 is the
isothermal line at a slightly lower temperature T−Δ T[image: -*-]. The
pressure in the liquid phase is slightly reduced because liquid
expands with an increase in temperature (for most substances, but not
for water near the freezing point) and, of course, the vapor pressure
is lower at the lower temperature.



[image: -][image: -]
Fig. 45–4. Pressure-volume diagram for a Carnot cycle with a condensable
vapor in the cylinder. At the left, the substance is in the liquid
state. A quantity of heat L[image: -*-] is added at temperature T[image: -*-] to
vaporize the liquid. The vapor expands adiabatically as T[image: -*-] changes
to T−Δ T[image: -*-].





We will now make a cycle out of the two isothermal lines by connecting
them (say by adiabatic lines) at both ends of the upper flat section, as
shown in Fig. 45–4. We are going to use the argument of
Carnot, which tells us that the
heat added to the substance in changing it from a liquid to a vapor is
related to the work done by the substance as it goes around the cycle.
Let us call L[image: -*-] the heat needed to vaporize the substance in the
cylinder. As in the argument immediately preceding
Eq. (45.5), we know that L (Δ T/T)=[image: -*-]work done by the
substance. As before, the work done by the substance is the shaded area,
which is approximately Δ P (VG−VL)[image: -*-], where Δ P[image: -*-] is the
difference in vapor pressure at the two temperatures T[image: -*-] and T−Δ T[image: -*-], VG[image: -*-] is the volume of the gas, and VL[image: -*-] is the volume of the
liquid, both volumes measured at the vapor pressure at temperature T[image: -*-].
Setting these two expressions for the area equal, we get L Δ T/T=Δ P (VG−VL)[image: -*-], or

[image: -*-][image: -*-]
(45.14)




Equation (45.14) gives the relationship between the rate of
change of vapor pressure with temperature and the amount of heat
required to evaporate the liquid. This relationship was deduced by
Carnot, but it is called the
Clausius-Clapeyron equation.




Now let us compare Eq. (45.14) with the results deduced
from kinetic theory. Usually VG[image: -*-] is very much larger than VL[image: -*-]. So
VG−VL≈VG=R T/P[image: -*-] per mole. If we further assume that L[image: -*-]
is a constant, independent of temperature—not a very good
approximation—then we would have ∂P/∂T=L/(R T2/P)[image: -*-]. The
solution of this differential equation is

[image: -*-][image: -*-]
(45.15)




Let us compare this with the pressure variation with temperature that
we deduced earlier from kinetic theory. Kinetic theory indicated the
possibility, at least roughly, that the number of molecules per unit volume of vapor
above a liquid would be

[image: -*-][image: -*-]
(45.16)




where UG−UL[image: -*-] is the internal energy per mole in the gas minus the
internal energy per mole in the liquid, i.e., the energy needed to
vaporize a mole of liquid. Equation (45.15) from
thermodynamics and Eq. (45.16) from kinetic theory are very
closely related because the pressure is n k T[image: -*-], but they are not exactly
the same. However, they will turn out to be exactly the same if we
assume UG−UL=const[image: -*-], instead of L=const[image: -*-]. If we
assume UG−UL=const[image: -*-], independent of temperature, then the
argument leading to Eq. (45.15) will produce
Eq. (45.16). Since the pressure is constant while the volume
is changing, the change in internal energy UG−UL[image: -*-] is equal to the
heat L[image: -*-] put in minus the work done P (VG−VL)[image: -*-],
so L=(UG+P VG)−(UL+P VL)[image: -*-].




This comparison shows the advantages and disadvantages of thermodynamics over
kinetic theory: First of all, Eq. (45.14) obtained by thermodynamics
is exact, while Eq. (45.16) can only be approximated, for instance,
if U[image: -*-] is nearly constant, and if the model is right. Second, we may not
understand correctly how the gas goes into the liquid; nevertheless,
Eq. (45.14) is right, while (45.16) is only approximate.
Third, although our treatment applies to a gas condensing into a liquid, the
argument is true for any other change of state. For instance, the
solid-to-liquid transition has the same kind of curve as that shown in
Figs. 45–3 and 45–4. Introducing the latent heat
for melting, M[image: -*-]/mole, the formula analogous to Eq. (45.14) then
is (∂Pmelt/∂T)V=M/[T (Vliq−Vsolid)][image: -*-].
Although we may not understand the kinetic theory of the melting process, we
nevertheless have a correct equation. However, when we can understand the
kinetic theory, we have another advantage. Equation (45.14) is only a
differential relationship, and we have no way of obtaining the constants of
integration. In the kinetic theory we can obtain the constants also if we have a
good model that describes the phenomenon completely. So there are advantages and
disadvantages to each. When knowledge is weak and the situation is complicated,
thermodynamic relations are really the most powerful. When the situation is very
simple and a theoretical analysis can be made, then it is better to try to get
more information from theoretical analysis.




One more example: blackbody radiation. We have discussed a box
containing radiation and nothing else. We have talked about the
equilibrium between the oscillator and the radiation. We also found
that the photons hitting the wall of the box would exert the
pressure P[image: -*-], and we found P V=U/3[image: -*-], where U[image: -*-] is the total energy of all the
photons and V[image: -*-] is the volume of the box. If we substitute U=3 P V[image: -*-]
in the basic Eq. (45.7), we find1

[image: -*-][image: -*-]
(45.17)




Since the volume of our box is constant, we can replace
(∂P/∂T)V[image: -*-] by d P/d T[image: -*-] to obtain an ordinary differential equation
we can integrate: lnP=4 lnT+const[image: -*-], or P=const×T4[image: -*-]. The pressure of radiation varies as the fourth
power of the temperature, and the total energy density of the radiation,
U/V=3 P[image: -*-], also varies as T4[image: -*-]. It is usual to write U/V=(4 σ/c) T4[image: -*-], where c[image: -*-] is the speed of light and σ[image: -*-] is called
the Stefan-Boltzmann constant.
It is not possible to get σ[image: -*-] from thermodynamics alone. Here is a
good example of its power, and its limitations. To know that U/V[image: -*-] goes
as T4[image: -*-] is a great deal, but to know how big U/V[image: -*-] actually is at any
temperature requires that we go into the kind of detail that only a
complete theory can supply. For blackbody radiation we have such a
theory and we can derive an expression for the constant σ[image: -*-] in the
following manner.




Let I (ω) d ω[image: -*-] be the intensity distribution, the energy
flow through 1 m² in one second with frequency between ω[image: -*-]
and ω+d ω[image: -*-]. The energy density
distribution=energy/volume=I (ω) d ω/c[image: -*-] is

[image: -*-][image: -*-]


From our earlier discussions, we know that

[image: -*-][image: -*-]


Substituting this expression for I (ω)[image: -*-] in our equation for U/V[image: -*-], we get

[image: -*-][image: -*-]


If we substitute x=ℏ ω/k T[image: -*-], the expression becomes

[image: -*-][image: -*-]


This integral is just some number that we can get, approximately, by
drawing a curve and taking the area by counting squares. It is
roughly 6.5[image: -*-]. The mathematicians among us can show that the integral is
exactly π4/15[image: -*-].2
Comparing this expression with U/V=(4 σ/c) T4[image: -*-], we find

[image: -*-][image: -*-]





If we make a small hole in our box, how much energy will flow per
second through the hole of unit area? To go from energy density to
energy flow, we multiply the energy density U/V[image: -*-] by c[image: -*-]. We also
multiply by [image: \tfrac{1}{4}][image: \tfrac{1}{4}], which arises as follows: first, a factor
of [image: \tfrac{1}{2}][image: \tfrac{1}{2}], because only the energy which is flowing out
escapes; and second, another factor [image: \tfrac{1}{2}][image: \tfrac{1}{2}], because energy
which approaches the hole at an angle to the normal is less effective
in getting through the hole by a cosine factor. The average value of
the cosine is [image: \tfrac{1}{2}][image: \tfrac{1}{2}]. It is clear now why we write U/V=(4 σ/c) T4[image: -*-]: so that we can ultimately say that the flux from a
small hole is σ T4[image: -*-] per unit area.






	
  
  In this case
(∂P/∂V)T=0[image: -*-], because in order to keep the oscillator in
equilibrium at a given temperature, the radiation in the neighborhood of
the oscillator has to be the same, regardless of the volume of the box.
The total quantity of photons inside the box must therefore be
proportional to its volume, so the internal energy per unit volume, and
thus the pressure, depends only on the temperature.
  ↩


	
  
  Since (ex−1)−1=e−x+e−2 x+⋯[image: -*-], the integral is
[image: -*-][image: -*-]


But [image: \int_0^\infty e^{-nx}\,dx = 1/n][image: \int_0^\infty e^{-nx}\,dx = 1/n], and differentiating with
respect to n[image: -*-] three times gives [image: \int_0^\infty x^3e^{-nx}\,dx = 6/n^4][image: \int_0^\infty x^3e^{-nx}\,dx = 6/n^4], so the integral is [image: 6(1 + \tfrac{1}{16} + \tfrac{1}{81} + \dotsb)][image: 6(1 + \tfrac{1}{16} + \tfrac{1}{81} + \dotsb)] and a good estimate comes from adding the first few terms. In
Chapter 50 we will find a way to show that the sum of the
reciprocal fourth powers of the integers is, in fact, π4/90[image: -*-].
  ↩






  
    

46 Ratchet and pawl1




46–1 How a ratchet works


In this chapter we discuss the ratchet and pawl, a very
simple device which allows a shaft to turn only one way. The possibility
of having something turn only one way requires some detailed and careful
analysis, and there are some very interesting consequences.




The plan of the discussion came about in attempting to devise an
elementary explanation, from the molecular or kinetic point of view, for
the fact that there is a maximum amount of work which can be extracted
from a heat engine. Of course we have seen the essence of Carnot’s
argument, but it would be nice to find an explanation which is
elementary in the sense that we can see what is happening physically.
Now, there are complicated mathematical demonstrations which follow from
Newton’s laws to demonstrate that we
can get only a certain amount of work out when heat flows from one place
to another, but there is great difficulty in converting this into an
elementary demonstration. In short, we do not understand it, although we
can follow the mathematics.





In Carnot’s argument, the fact that more than a certain amount of work
cannot be extracted in going from one temperature to another is deduced
from another axiom, which is that if everything is at the same
temperature, heat cannot be converted to work by means of a cyclic
process. First, let us back up and try to see, in at least one
elementary example, why this simpler statement is true.



[image: -][image: -]
Fig. 46–1. The ratchet and pawl machine.





Let us try to invent a device which will violate the Second Law of
Thermodynamics, that is, a gadget which will generate work from a heat reservoir
with everything at the same temperature. Let us say we have a box of gas at a
certain temperature, and inside there is an axle with vanes in it. (See
Fig. 46–1 but take T1=[image: -*-]T2=[image: -*-]T[image: -*-], say.)  Because of the
bombardments of gas molecules on the vane, the vane oscillates and jiggles. All
we have to do is to hook onto the other end of the axle a wheel which can turn
only one way—the ratchet and pawl. Then when the shaft tries to jiggle one
way, it will not turn, and when it jiggles the other, it will turn. Then the
wheel will slowly turn, and perhaps we might even tie a flea onto a string
hanging from a drum on the shaft, and lift the flea! Now let us ask if this is
possible. According to Carnot’s hypothesis, it is impossible. But if we just
look at it, we see, prima facie, that it seems quite possible. So we must
look more closely. Indeed, if we look at the ratchet and pawl, we see a number
of complications.




First, our idealized ratchet is as simple as possible, but even so, there is a
pawl, and there must be a spring in the pawl. The pawl must return after coming
off a tooth, so the spring is necessary.




Another feature of this ratchet and pawl, not shown in the figure, is quite
essential. Suppose the device were made of perfectly elastic parts. After the
pawl is lifted off the end of the tooth and is pushed back by the spring, it
will bounce against the wheel and continue to bounce. Then, when another
fluctuation came, the wheel could turn the other way, because the tooth could
get underneath during the moment when the pawl was up! Therefore an essential
part of the irreversibility of our wheel is a damping or deadening mechanism
which stops the bouncing. When the damping happens, of course, the energy that
was in the pawl goes into the wheel and shows up as heat. So, as it turns, the
wheel will get hotter and hotter. To make the thing simpler, we can put a gas
around the wheel to take up some of the heat. Anyway, let us say the gas keeps
rising in temperature, along with the wheel. Will it go on forever? No! The pawl
and wheel, both at some temperature T[image: -*-], also have Brownian
motion. This motion is such that, every once in a
while, by accident, the pawl lifts itself up and over a tooth just at the moment
when the Brownian motion on the vanes is
trying to turn the axle backwards. And as things get hotter, this happens more
often.





So, this is the reason this device does not work in perpetual
motion. When the
vanes get kicked, sometimes the pawl lifts up and goes over the end. But
sometimes, when it tries to turn the other way, the pawl has already
lifted due to the fluctuations of the motions on the wheel side, and the
wheel goes back the other way! The net result is nothing. It is not hard
to demonstrate that when the temperature on both sides is equal, there
will be no net average motion of the wheel. Of course the wheel will do
a lot of jiggling this way and that way, but it will not do what we
would like, which is to turn just one way.





Let us look at the reason. It is necessary to do work against the spring in
order to lift the pawl to the top of a tooth. Let us call this
energy ϵ[image: -*-], and let θ[image: -*-] be the angle between the teeth. The chance
that the system can accumulate enough energy, ϵ[image: -*-], to get the pawl over
the top of the tooth, is e−ϵ/k T[image: -*-]. But the probability that the pawl
will accidentally be up is also e−ϵ/k T[image: -*-]. So the number of times that
the pawl is up and the wheel can turn backwards freely is equal to the number of
times that we have enough energy to turn it forward when the pawl is down. We
thus get a “balance,” and the wheel will not go around.







46–2 The ratchet as an engine


Let us now go further. Take the example where the temperature of the vanes
is T1[image: -*-] and the temperature of the wheel, or ratchet, is T2[image: -*-], and T2[image: -*-] is
less than T1[image: -*-]. Because the wheel is cold and the fluctuations of the pawl are
relatively infrequent, it will be very hard for the pawl to attain an
energy ϵ[image: -*-]. Because of the high temperature T1[image: -*-], the vanes will often
attain the energy ϵ[image: -*-], so our gadget will go in one direction, as
designed.




We would now like to see if it can lift weights. Onto the drum in the
middle we tie a string, and put a weight, such as our flea, on the
string. We let L[image: -*-] be the torque due to the weight. If L[image: -*-] is not too
great, our machine will lift the weight because the Brownian
fluctuations make
it more likely to move in one direction than the other. We want to find
how much weight it can lift, how fast it goes around, and so on.





First we consider a forward motion, the usual way one designs a ratchet to run.
In order to make one step forward, how much energy has to be borrowed from the
vane end? We must borrow an energy ϵ[image: -*-] to lift the pawl. The wheel turns
through an angle θ[image: -*-] against a torque L[image: -*-], so we also need the
energy L θ[image: -*-]. The total amount of energy that we have to borrow is
thus ϵ+L θ[image: -*-]. The probability that we get this energy is
proportional to e−(ϵ+L θ)/k T1[image: -*-]. Actually, it is not only a
question of getting the energy, but we also would like to know the number of
times per second it has this energy. The probability per second is proportional
to e−(ϵ+L θ)/k T1[image: -*-], and we shall call the proportionality
constant 1/τ[image: -*-]. It will cancel out in the end anyway. When a forward step
happens, the work done on the weight is L θ[image: -*-]. The energy taken from the
vane is ϵ+L θ[image: -*-]. The spring gets wound up with energy ϵ[image: -*-],
then it goes clatter, clatter, bang, and this energy goes into heat. All the
energy taken out goes to lift the weight and to drive the pawl, which then falls
back and gives heat to the other side.




Now we look at the opposite case, which is backward motion. What happens here?
To get the wheel to go backwards all we have to do is supply the energy to lift
the pawl high enough so that the ratchet will slip. This is still
energy ϵ[image: -*-]. Our probability per second for the pawl to lift this high is
now (1/τ) e−ϵ/k T2[image: -*-]. Our proportionality constant is the same, but
this time k T2[image: -*-] shows up because of the different temperature. When this
happens, the work is released because the wheel slips backward. It loses one
notch, so it releases work L θ[image: -*-]. The energy taken from the ratchet system
is ϵ[image: -*-], and the energy given to the gas at T1[image: -*-] on the vane side
is L θ+ϵ[image: -*-]. It takes a little thinking to see the reason for that.
Suppose the pawl has lifted itself up accidentally by a fluctuation. Then when
it falls back and the spring pushes it down against the tooth, there is a force
trying to turn the wheel, because the tooth is pushing on an inclined plane.
This force is doing work, and so is the force due to the weights. So both
together make up the total force, and all the energy which is slowly released
appears at the vane end as heat. (Of course it must, by conservation of energy,
but one must be careful to think the thing through!) We notice that all these
energies are exactly the same, but reversed. So, depending upon which of these
two rates is greater, the weight is either slowly lifted or slowly released. Of
course, it is constantly jiggling around, going up for a while and down for a
while, but we are talking about the average behavior.




Suppose that for a particular weight the rates happen to be equal. Then we add
an infinitesimal weight to the string. The weight will slowly go down, and work
will be done on the machine. Energy will be taken from the wheel and given to
the vanes. If instead we take off a little bit of weight, then the imbalance is
the other way. The weight is lifted, and heat is taken from the vane and put
into the wheel. So we have the conditions of Carnot’s reversible cycle, provided
that the weight is just such that these two are equal. This condition is
evidently that (ϵ+L θ)/T1=ϵ/T2[image: -*-]. Let us say that the
machine is slowly lifting the weight. Energy Q1[image: -*-] is taken from the vanes and
energy Q2[image: -*-] is delivered to the wheel, and these energies are in the
ratio (ϵ+L θ)/ϵ[image: -*-]. If we are lowering the weight, we also
have Q1/Q2=(ϵ+L θ)/ϵ[image: -*-]. Thus (Table 46–1) we
have

[image: -*-][image: -*-]


Furthermore, the work we get out is to the energy taken from the vane as
L θ[image: -*-] is to L θ+ϵ[image: -*-], hence as (T1−T2)/T1[image: -*-]. We see that
our device cannot extract more work than this, operating reversibly. This is the
result that we expected from Carnot’s argument, and the main result of this
lecture. However, we can use our device to understand a few other phenomena,
even out of equilibrium, and therefore beyond the range of thermodynamics.






Table 46–1. Summary of operation of ratchet and pawl.



[image: --][image: --]


Let us now calculate how fast our one-way device would turn if everything
were at the same temperature and we hung a weight on the drum. If we pull very,
very hard, of course, there are all kinds of complications. The pawl slips over
the ratchet, or the spring breaks, or something. But suppose we pull gently
enough that everything works nicely. In those circumstances, the above analysis
is right for the probability of the wheel going forward and backward, if we
remember that the two temperatures are equal. In each step an angle θ[image: -*-] is
obtained, so the angular velocity is θ[image: -*-] times the probability of one of
these jumps per second. It goes forward with probability (1/τ) e−(ϵ+L θ)/k T[image: -*-] and backward with probability (1/τ) e−ϵ/k T[image: -*-], so
that for the angular velocity we have

[image: -*-][image: -*-]
(46.1)




If we plot ω[image: -*-] against L[image: -*-], we get the curve shown in
Fig. 46–2. We see that it makes a great difference whether L[image: -*-] is
positive or negative. If L[image: -*-] increases in the positive range, which happens when
we try to drive the wheel backward, the backward velocity approaches a constant.
As L[image: -*-] becomes negative, ω[image: -*-] really “takes off” forward, since e[image: -*-] to a
tremendous power is very great!



[image: -][image: -]
Fig. 46–2. Angular velocity of the ratchet as a function of torque.





The angular velocity that was obtained from different forces is thus
very unsymmetrical. Going one way it is easy: we get a lot of angular
velocity for a little force. Going the other way, we can put on a lot
of force, and yet the wheel hardly goes around.




We find the same thing in an electrical rectifier. Instead of
the force, we have the electric field, and instead of the angular
velocity, we have the electric current. In the case of a rectifier,
the voltage is not proportional to resistance, and the situation is
unsymmetrical. The same analysis that we made for the mechanical
rectifier will also work for an electrical rectifier. In fact, the
kind of formula we obtained above is typical of the current-carrying
capacities of rectifiers as a function of their voltages.




Now let us take all the weights away, and look at the original
machine. If T2[image: -*-] were less than T1[image: -*-], the ratchet would go forward,
as anybody would believe. But what is hard to believe, at first sight,
is the opposite. If T2[image: -*-] is greater than T1[image: -*-], the ratchet goes
around the opposite way! A dynamic ratchet with lots of heat in it
runs itself backwards, because the ratchet pawl is bouncing. If the
pawl, for a moment, is on the incline somewhere, it pushes the
inclined plane sideways. But it is always pushing on an
inclined plane, because if it happens to lift up high enough to get
past the point of a tooth, then the inclined plane slides by, and it
comes down again on an inclined plane. So a hot ratchet and pawl is
ideally built to go around in a direction exactly opposite to that for
which it was originally designed!




In spite of all our cleverness of lopsided design, if the two
temperatures are exactly equal there is no more propensity to turn one
way than the other. The moment we look at it, it may be turning one
way or the other, but in the long run, it gets nowhere. The fact that
it gets nowhere is really the fundamental deep principle on which all
of thermodynamics is based.







46–3 Reversibility in mechanics


What deeper mechanical principle tells us that, in the long run, if
the temperature is kept the same everywhere, our gadget will turn
neither to the right nor to the left? We evidently have a fundamental
proposition that there is no way to design a machine which, left to
itself, will be more likely to be turning one way than the other after
a long enough time. We must try to see how this follows from the laws
of mechanics.




The laws of mechanics go something like this: the mass times the
acceleration is the force, and the force on each particle is some
complicated function of the positions of all the other
particles. There are other situations in which forces depend on
velocity, such as in magnetism, but let us not consider that now. We
take a simpler case, such as gravity, where forces depend only on
position. Now suppose that we have solved our set of equations and we
have a certain motion x (t)[image: -*-] for each particle. In a complicated
enough system, the solutions are very complicated, and what happens
with time turns out to be very surprising. If we write down any
arrangement we please for the particles, we will see this arrangement
actually occur if we wait long enough! If we follow our solution for a
long enough time, it tries everything that it can do, so to
speak. This is not absolutely necessary in the simplest devices, but
when systems get complicated enough, with enough atoms, it
happens. Now there is something else the solution can do. If we solve
the equations of motion, we may get certain functions such as t+t2+t3[image: -*-]. We claim that another solution would be −t+t2−t3[image: -*-]. In
other words, if we substitute −t[image: -*-] everywhere for t[image: -*-] throughout the
entire solution, we will once again get a solution of the same
equation. This follows from the fact that if we substitute −t[image: -*-] for
t[image: -*-] in the original differential equation, nothing is changed, since
only second derivatives with respect to t[image: -*-] appear. This means that if
we have a certain motion, then the exact opposite motion is also
possible. In the complete confusion which comes if we wait long
enough, it finds itself going one way sometimes, and it finds itself
going the other way sometimes. There is nothing more beautiful about
one of the motions than about the other. So it is impossible to design
a machine which, in the long run, is more likely to be going one way
than the other, if the machine is sufficiently complicated.




One might think up an example for which this is obviously untrue. If
we take a wheel, for instance, and spin it in empty space, it will go
the same way forever. So there are some conditions, like the
conservation of angular momentum, which violate the above
argument. This just requires that the argument be made with a little
more care. Perhaps the walls take up the angular momentum, or
something like that, so that we have no special conservation
laws. Then, if the system is complicated enough, the argument is
true. It is based on the fact that the laws of mechanics are
reversible.




For historical interest, we would like to remark on a device invented
by Maxwell, who first worked
out the dynamical theory of gases. He supposed the following situation:
We have two boxes of gas at the same temperature, with a little hole
between them. At the hole sits a little demon (who may be a machine of
course!). There is a door on the hole, which can be opened or closed by
the demon. He watches the molecules coming from the left. Whenever he
sees a fast molecule, he opens the door. When he sees a slow one, he
leaves it closed. If we want him to be an extra special demon, he can
have eyes at the back of his head, and do the opposite to the molecules
from the other side. He lets the slow ones through to the left, and the
fast through to the right. Pretty soon the left side will get cold and
the right side hot. Then, are the ideas of thermodynamics violated
because we could have such a demon?




It turns out, if we build a finite-sized demon, that the demon himself
gets so warm that he cannot see very well after a while. The simplest
possible demon, as an example, would be a trap door held over the hole
by a spring. A fast molecule comes through, because it is able to lift
the trap door. The slow molecule cannot get through, and bounces
back. But this thing is nothing but our ratchet and pawl in another
form, and ultimately the mechanism will heat up. If we assume that the
specific heat of the demon is not infinite, it must heat up. It has
but a finite number of internal gears and wheels, so it cannot get rid
of the extra heat that it gets from observing the molecules. Soon it
is shaking from Brownian motion so
much that it cannot tell whether it is coming or going, much less
whether the molecules are coming or going, so it does not work.








46–4 Irreversibility


Are all the laws of physics reversible? Evidently not! Just try to
unscramble an egg! Run a moving picture backwards, and it takes only a
few minutes for everybody to start laughing. The most natural
characteristic of all phenomena is their obvious irreversibility.




Where does irreversibility come from? It does not come from
Newton’s laws. If we claim that the behavior
of everything is
ultimately to be
understood in terms of the laws of physics, and if it also turns out
that all the equations have the fantastic property that if we put t=−t[image: -*-] we have another solution, then every phenomenon is reversible. How
then does it come about in nature on a large scale that things are not
reversible? Obviously there must be some law, some obscure but
fundamental equation, perhaps in electricity, maybe in neutrino
physics, in which it does matter which way time goes.




Let us discuss that question now. We already know one of those laws,
which says that the entropy is always increasing. If we have a hot
thing and a cold thing, the heat goes from hot to cold. So the law of
entropy is one such law. But we expect to understand the law of
entropy from the point of view of mechanics. In fact, we have just
been successful in obtaining all the consequences of the argument that
heat cannot flow backwards by itself from just mechanical arguments,
and we thereby obtained an understanding of the Second Law. Apparently
we can get irreversibility from reversible equations. But was
it only a mechanical argument that we used? Let us look into it
more closely.




Since our question has to do with the entropy, our problem is to try
to find a microscopic description of entropy. If we say we have a
certain amount of energy in something, like a gas, then we can get a
microscopic picture of it, and say that every atom has a certain
energy. All these energies added together give us the total
energy. Similarly, maybe every atom has a certain entropy. If we add
everything up, we would have the total entropy. It does not work so
well, but let us see what happens.




As an example, we calculate the entropy difference between a gas at a
certain temperature at one volume, and a gas at the same temperature
at another volume. We remember, from Chapter 44, that we
had, for the change in entropy,

[image: -*-][image: -*-]


In the present case, the energy of the gas is the same before and
after expansion, since the temperature does not change. So we have to
add enough heat to equal the work done by the gas or, for each little
change in volume,

[image: -*-][image: -*-]


Putting this in for d Q[image: -*-], we get

[image: -*-][image: -*-]


as we obtained in Chapter 44. For instance, if we expand
the volume by a factor of 2, the entropy change is N k ln2[image: -*-].




Let us now consider another interesting example. Suppose we have a box
with a barrier in the middle. On one side is neon (“black”
molecules), and on the other, argon (“white” molecules). Now we take
out the barrier, and let them mix. How much has the entropy changed?
It is possible to imagine that instead of the barrier we have a
piston, with holes in it that let the whites through but not the
blacks, and another kind of piston which is the other way around. If
we move one piston to each end, we see that, for each gas, the problem
is like the one we just solved. So we get an entropy change of N k ln2[image: -*-], which means that the entropy has increased by k ln2[image: -*-] per
molecule. The 2 has to do with the extra room that the molecule has,
which is rather peculiar. It is not a property of the molecule itself,
but of how much room the molecule has to run around in. This is
a strange situation, where entropy increases but where everything has
the same temperature and the same energy! The only thing that is
changed is that the molecules are distributed differently.




We well know that if we just pull the barrier out, everything will get
mixed up after a long time, due to the collisions, the jiggling, the
banging, and so on. Every once in a while a white molecule goes toward
a black, and a black one goes toward a white, and maybe they
pass. Gradually the whites worm their way, by accident, across into
the space of blacks, and the blacks worm their way, by accident, into
the space of whites. If we wait long enough we get a mixture.
Clearly, this is an irreversible process in the real world, and ought
to involve an increase in the entropy.




Here we have a simple example of an irreversible process which is
completely composed of reversible events. Every time there is a
collision between any two molecules, they go off in certain
directions. If we took a moving picture of a collision in reverse,
there would be nothing wrong with the picture. In fact, one kind of
collision is just as likely as another. So the mixing is completely
reversible, and yet it is irreversible. Everyone knows that if we
started with white and with black, separated, we would get a mixture
within a few minutes. If we sat and looked at it for several more
minutes, it would not separate again but would stay mixed. So we have
an irreversibility which is based on reversible situations. But we
also see the reason now. We started with an arrangement which
is, in some sense, ordered. Due to the chaos of the collisions,
it becomes disordered. It is the change from an ordered
arrangement to a disordered arrangement which is the source of the
irreversibility.





It is true that if we took a motion picture of this, and showed it
backwards, we would see it gradually become ordered. Someone would
say, “That is against the laws of physics!” So we would run the film
over again, and we would look at every collision. Every one would be
perfect, and every one would be obeying the laws of physics. The
reason, of course, is that every molecule’s velocities are just right,
so if the paths are all followed back, they get back to their original
condition. But that is a very unlikely circumstance to have. If we
start with the gas in no special arrangement, just whites and blacks,
it will never get back.







46–5 Order and entropy


So we now have to talk about what we mean by disorder and what we mean
by order. It is not a question of pleasant order or unpleasant
disorder. What is different in our mixed and unmixed cases is the
following. Suppose we divide the space into little volume elements. If
we have white and black molecules, how many ways could we distribute
them among the volume elements so that white is on one side, and black
on the other? On the other hand, how many ways could we distribute
them with no restriction on which goes where? Clearly, there are many
more ways to arrange them in the latter case. We measure “disorder”
by the number of ways that the insides can be arranged, so that from
the outside it looks the same. The logarithm of that number of
ways is the entropy. The number of ways in the separated case is
less, so the entropy is less, or the “disorder” is less.




So with the above technical definition of disorder we can understand
the proposition. First, the entropy measures the disorder. Second, the
universe always goes from “order” to “disorder,” so entropy always
increases. Order is not order in the sense that we like the
arrangement, but in the sense that the number of different ways we can
hook it up, and still have it look the same from the outside, is
relatively restricted. In the case where we reversed our motion
picture of the gas mixing, there was not as much disorder as we
thought. Every single atom had exactly the correct speed and direction
to come out right! The entropy was not high after all, even though it
appeared so.




What about the reversibility of the other physical laws? When we
talked about the electric field which comes from an accelerating
charge, it was said that we must take the retarded field. At a time
t[image: -*-] and at a distance r[image: -*-] from the charge, we take the field due to
the acceleration at a time t−r/c[image: -*-], not t+r/c[image: -*-]. So it looks, at
first, as if the law of electricity is not reversible. Very strangely,
however, the laws we used come from a set of equations called
Maxwell’s equations, which
are, in fact, reversible. Furthermore, it is possible to argue that if
we were to use only the advanced field, the field due to the state of
affairs at t+r/c[image: -*-], and do it absolutely consistently in a completely
enclosed space, everything happens exactly the same way as if we use
retarded fields! This apparent irreversibility in electricity, at least
in an enclosure, is thus not an irreversibility at all. We have some
feeling for that already, because we know that when we have an
oscillating charge which generates fields which are bounced from the
walls of an enclosure we ultimately get to an equilibrium in which there
is no one-sidedness. The retarded field approach is only a convenience
in the method of solution.





So far as we know, all the fundamental laws of physics, like Newton’s
equations, are reversible. Then where does irreversibility come from?
It comes from order going to disorder, but we do not understand this
until we know the origin of the order. Why is it that the situations
we find ourselves in every day are always out of equilibrium? One
possible explanation is the following. Look again at our box of mixed
white and black molecules. Now it is possible, if we wait long enough,
by sheer, grossly improbable, but possible, accident, that the
distribution of molecules gets to be mostly white on one side and
mostly black on the other. After that, as times goes on and accidents
continue, they get more mixed up again.




Thus one possible explanation of the high degree of order in the
present-day world is that it is just a question of luck. Perhaps our
universe happened to have had a fluctuation of some kind in the past,
in which things got somewhat separated, and now they are running back
together again. This kind of theory is not unsymmetrical, because we
can ask what the separated gas looks like either a little in the
future or a little in the past. In either case, we see a grey smear at
the interface, because the molecules are mixing again. No matter which
way we run time, the gas mixes. So this theory would say the
irreversibility is just one of the accidents of life.




We would like to argue that this is not the case. Suppose we do not
look at the whole box at once, but only at a piece of the box. Then,
at a certain moment, suppose we discover a certain amount of order. In
this little piece, white and black are separate. What should we deduce
about the condition in places where we have not yet looked? If we
really believe that the order arose from complete disorder by a
fluctuation, we must surely take the most likely fluctuation which
could produce it, and the most likely condition is not that the
rest of it has also become disentangled! Therefore, from the
hypothesis that the world is a fluctuation, all of the predictions are
that if we look at a part of the world we have never seen before, we
will find it mixed up, and not like the piece we just looked at. If
our order were due to a fluctuation, we would not expect order
anywhere but where we have just noticed it.





Now we assume the separation is because the past of the universe was
really ordered. It is not due to a fluctuation, but the whole thing
used to be white and black. This theory now predicts that there will
be order in other places—the order is not due to a fluctuation, but
due to a much higher ordering at the beginning of time. Then we would
expect to find order in places where we have not yet looked.




The astronomers, for example, have only looked at some of the
stars. Every day they turn their telescopes to other stars, and the
new stars are doing the same thing as the other stars. We therefore
conclude that the universe is not a fluctuation, and that the
order is a memory of conditions when things started. This is not to
say that we understand the logic of it. For some reason, the universe
at one time had a very low entropy for its energy content, and since
then the entropy has increased. So that is the way toward the
future. That is the origin of all irreversibility, that is what makes
the processes of growth and decay, that makes us remember the past and
not the future, remember the things which are closer to that moment in
the history of the universe when the order was higher than now, and
why we are not able to remember things where the disorder is higher
than now, which we call the future. So, as we commented in an earlier
chapter, the entire universe is in a glass of wine, if we look at it
closely enough. In this case the glass of wine is complex, because
there is water and glass and light and everything else.





Another delight of our subject of physics is that even simple and
idealized things, like the ratchet and pawl, work only because they
are part of the universe. The ratchet and pawl works in only one
direction because it has some ultimate contact with the rest of the
universe. If the ratchet and pawl were in a box and isolated for some
sufficient time, the wheel would be no more likely to go one way than
the other. But because we pull up the shades and let the light out,
because we cool off on the earth and get heat from the sun, the
ratchets and pawls that we make can turn one way. This one-wayness is
interrelated with the fact that the ratchet is part of the
universe. It is part of the universe not only in the sense that it
obeys the physical laws of the universe, but its one-way behavior is
tied to the one-way behavior of the entire universe. It cannot be
completely understood until the mystery of the beginnings of the
history of the universe are reduced still further from speculation to
scientific understanding.





	
  
  See Parrondo and Español, Am. J.
Phys. 64, 1125 (1996) for a critical analysis of this chapter.
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47 Sound. The wave equation



47–1 Waves


In this chapter we shall discuss the phenomenon of waves. This
is a phenomenon which appears in many contexts throughout physics, and
therefore our attention should be concentrated on it not only because
of the particular example considered here, which is sound, but also
because of the much wider application of the ideas in all branches of
physics.




It was pointed out when we studied the harmonic oscillator that there
are not only mechanical examples of oscillating systems but electrical
ones as well. Waves are related to oscillating systems, except that
wave oscillations appear not only as time-oscillations at one place,
but propagate in space as well.




We have really already studied waves. When we studied light, in
learning about the properties of waves in that subject, we paid
particular attention to the interference in space of waves from
several sources at different locations and all at the same
frequency. There are two important wave phenomena that we have not yet
discussed which occur in light, i.e., electromagnetic waves, as well
as in any other form of waves. The first of these is the phenomenon of
interference in time rather than interference in space. If we
have two sources of sound which have slightly different frequencies
and if we listen to both at the same time, then sometimes the waves
come with the crests together and sometimes with the crest and trough
together (see Fig. 47–1). The rising and falling of the
sound that results is the phenomenon of beats or, in other
words, of interference in time. The second phenomenon involves the
wave patterns which result when the waves are confined within a given
volume and reflect back and forth from walls.



[image: -][image: -]
Fig. 47–1. Interference in time of two sound sources with slightly
different frequencies, resulting in beats.





These effects could have been discussed, of course, for the case of
electromagnetic waves. The reason for not having done this is that by
using one example we would not generate the feeling that we are
actually learning about many different subjects at the same time. In
order to emphasize the general applicability of waves beyond
electrodynamics, we consider here a different example, in particular
sound waves.




Other examples of waves are water waves consisting of long swells that
we see coming in to the shore, or the smaller water waves consisting
of surface tension ripples. As another example, there are two kinds of
elastic waves in solids; a compressional (or longitudinal) wave in
which the particles of the solid oscillate back and forth along the
direction of propagation of the wave (sound waves in a gas are of this
kind), and a transverse wave in which the particles of the solid
oscillate in a direction perpendicular to the direction of
propagation. Earthquake waves contain elastic waves of both kinds,
generated by a motion at some place in the earth’s crust.




Still another example of waves is found in modern physics. These are
waves which give the probability amplitude of finding a particle at a
given place—the “matter waves” which we have already
discussed. Their frequency is proportional to the energy and their
wave number is proportional to the momentum. They are the waves of
quantum mechanics.





In this chapter we shall consider only waves for which the velocity is
independent of the wavelength. This is, for example, the case for
light in a vacuum. The speed of light is then the same for radiowaves,
blue light, green light, or for any other wavelength. Because of this
behavior, when we began to describe the wave phenomenon we did not
notice at first that we had wave propagation. Instead, we said that if
a charge is moved at one place, the electric field at a distance x[image: -*-]
was proportional to the acceleration, not at the time t[image: -*-], but at the
earlier time t−x/c[image: -*-]. Therefore if we were to picture the electric
field in space at some instant of time, as in Fig. 47–2,
the electric field at a time t[image: -*-] later would have moved the
distance c t[image: -*-], as indicated in the figure. Mathematically, we can say that in
the one-dimensional example we are taking, the electric field is a
function of x−c t[image: -*-]. We see that at t=0[image: -*-], it is some function
of x[image: -*-]. If we consider a later time, we need only to increase x[image: -*-]
somewhat to get the same value of the electric field. For example, if
the maximum field occurred at x=3[image: -*-] at time zero, then to find the
new position of the maximum field at time t[image: -*-] we need

[image: -*-][image: -*-]


We see that this kind of function represents the propagation of a
wave.



[image: -][image: -]
Fig. 47–2. The solid curve shows what the electric field might be like
at some instant of time and the dashed curve shows what the electric
field is at a time t[image: -*-] later.





Such a function, f (x−c t)[image: -*-], then represents a wave. We may summarize
this description of a wave by saying simply that

[image: -*-][image: -*-]


when Δ x=c Δ t[image: -*-]. There is, of course, another
possibility, i.e., that instead of a source to the left as indicated
in Fig. 47–2, we have a source on the right, so that the
wave propagates toward negative x[image: -*-]. Then the wave would be described
by g (x+c t)[image: -*-].




There is the additional possibility that more than one wave exists in
space at the same time, and so the electric field is the sum of the
two fields, each one propagating independently. This behavior of
electric fields may be described by saying that if f1 (x−c t)[image: -*-] is a
wave, and if f2 (x−c t)[image: -*-] is another wave, then their sum is also a
wave. This is called the principle of superposition. The same
principle is valid in sound.





We are familiar with the fact that if a sound is produced, we hear
with complete fidelity the same sequence of sounds as was
generated. If we had high frequencies travelling faster than low
frequencies, a short, sharp noise would be heard as a succession of
musical sounds. Similarly, if red light travelled faster than blue
light, a flash of white light would be seen first as red, then as
white, and finally as blue. We are familiar with the fact that this is
not the case. Both sound and light travel with a speed in air which is
very nearly independent of frequency. Examples of wave propagation for
which this independence is not true will be considered in
Chapter 48.




In the case of light (electromagnetic waves) we gave a rule which
determined the electric field at a point as a result of the
acceleration of a charge. One might expect now that what we should do
is give a rule whereby some quality of the air, say the pressure, is
determined at a given distance from a source in terms of the source
motion, delayed by the travel time of the sound. In the case of light
this procedure was acceptable because all that we knew was that a
charge at one place exerts a force on another charge at another
place. The details of propagation from the one place to the other were
not absolutely essential. In the case of sound, however, we know that
it propagates through the air between the source and the hearer, and
it is certainly a natural question to ask what, at any given moment,
the pressure of the air is. We would like, in addition, to know
exactly how the air moves. In the case of electricity we could accept
a rule, since we could say that we do not yet know the laws of
electricity, but we cannot make the same remark with regard to
sound. We would not be satisfied with a rule stating how the sound
pressure moves through the air, because the process ought to be
understandable as a consequence of the laws of mechanics. In short,
sound is a branch of mechanics, and so it is to be understood in terms
of Newton’s laws. The propagation of sound from one place to another
is merely a consequence of mechanics and the properties of gases, if
it propagates in a gas, or of the properties of liquids or solids, if
it propagates through such mediums. Later we shall derive the
properties of light and its wave propagation in a similar way from the
laws of electrodynamics.








47–2 The propagation of sound


We shall give a derivation of the properties of the propagation of
sound between the source and the receiver as a consequence of
Newton’s laws, and we shall not consider the interaction with the
source and the receiver. Ordinarily we emphasize a result rather than
a particular derivation of it. In this chapter we take the opposite
view. The point here, in a certain sense, is the derivation
itself. This problem of explaining new phenomena in terms of old ones,
when we know the laws of the old ones, is perhaps the greatest art of
mathematical physics. The mathematical physicist has two problems: one
is to find solutions, given the equations, and the other is to find
the equations which describe a new phenomenon. The derivation here is
an example of the second kind of problem.




We shall take the simplest example here—the propagation of sound in
one dimension. To carry out such a derivation it is necessary first to
have some kind of understanding of what is going on. Fundamentally
what is involved is that if an object is moved at one place in the
air, we observe that there is a disturbance which travels through the
air. If we ask what kind of disturbance, we would say that we would
expect that the motion of the object produces a change of pressure. Of
course, if the object is moved gently, the air merely flows around it,
but what we are concerned with is a rapid motion, so that there is not
sufficient time for such a flow. Then, with the motion, the air is
compressed and a change of pressure is produced which pushes on
additional air. This air is in turn compressed, which leads again to
an extra pressure, and a wave is propagated.




We now want to formulate such a process. We have to decide what
variables we need. In our particular problem we would need to know how
much the air has moved, so that the air displacement in the
sound wave is certainly one relevant variable. In addition we would
like to describe how the air density changes as it is
displaced. The air pressure also changes, so this is another
variable of interest. Then, of course, the air has a velocity,
so that we shall have to describe the velocity of the air
particles. The air particles also have accelerations—but as
we list these many variables we soon realize that the velocity and
acceleration would be known if we knew how the air displacement
varies with time.




As we said, we shall consider the wave in one dimension. We can do
this if we are sufficiently far from the source that what we call the
wavefronts are very nearly planes. We thus make our argument
simpler by taking the least complicated example. We shall then be able
to say that the displacement, χ[image: -*-], depends only on x[image: -*-] and t[image: -*-], and
not on y[image: -*-] and z[image: -*-]. Therefore the description of the air is given
by χ (x,t)[image: -*-].




Is this description complete? It would appear to be far from complete,
for we know none of the details of how the air molecules are
moving. They are moving in all directions, and this state of affairs
is certainly not described by means of this function χ (x,t)[image: -*-]. From
the point of view of kinetic theory, if we have a higher density of
molecules at one place and a lower density adjacent to that place, the
molecules would move away from the region of higher density to the one
of lower density, so as to equalize this difference. Apparently we
would not get an oscillation and there would be no sound. What is
necessary to get the sound wave is this situation: as the molecules
rush out of the region of higher density and higher pressure, they
give momentum to the molecules in the adjacent region of lower
density. For sound to be generated, the regions over which the density
and pressure change must be much larger than the distance the
molecules travel before colliding with other molecules. This distance
is the mean free path and the distance between pressure crests and
troughs must be much larger than this. Otherwise the molecules would
move freely from the crest to the trough and immediately smear out the
wave.




It is clear that we are going to describe the gas behavior on a scale
large compared with the mean free path, and so the properties of the
gas will not be described in terms of the individual molecules. The
displacement, for example, will be the displacement of the center of
mass of a small element of the gas, and the pressure or density will
be the pressure or density in this region. We shall call the
pressure P[image: -*-] and the density ρ[image: -*-], and they will be functions of x[image: -*-]
and t[image: -*-]. We must keep in mind that this description is an approximation
which is valid only when these gas properties do not vary too rapidly
with distance.







47–3 The wave equation


The physics of the phenomenon of sound waves thus involves three features:


	The gas moves and changes the density.

	The change in density corresponds to a change in pressure.

	Pressure inequalities generate gas motion.



Let us consider II first. For a gas, a liquid, or a solid, the
pressure is some function of the density. Before the sound wave
arrives, we have equilibrium, with a pressure P0[image: -*-] and a
corresponding density ρ0[image: -*-]. A pressure P[image: -*-] in the medium is
connected to the density by some characteristic relation P=f (ρ)[image: -*-]
and, in particular, the equilibrium pressure P0[image: -*-] is given by P0=f (ρ0)[image: -*-]. The changes of pressure in sound from the equilibrium
value are extremely small. A convenient unit for measuring pressure is
the bar, where 1 bar=105[image: -*-] N/m². The pressure of
1 standard atmosphere is very nearly 1 bar: 1 atm=1.0133[image: -*-] bars.
In sound we use a logarithmic scale of intensities since the
sensitivity of the ear is roughly logarithmic. This scale is the
decibel scale, in which the acoustic pressure level for the pressure
amplitude P[image: -*-] is defined as



[image: -*-][image: -*-]
(47.1)





where the reference pressure Pref=2×10−10[image: -*-] bar. A
pressure amplitude of P=[image: -*-]103 Pref=[image: -*-]2×10−7[image: -*-]
bar1 corresponds to a
moderately intense sound of 60[image: -*-] decibels. We see that the pressure
changes in sound are extremely small compared with the equilibrium, or
mean, pressure of 1 atm. The displacements and the density changes
are correspondingly extremely small. In explosions we do not have such
small changes; the excess pressures produced can be greater than
1 atm. These large pressure changes lead to new effects which we shall
consider later. In sound we do not often consider acoustic intensity
levels over 100[image: -*-] dB; 120[image: -*-] dB is a level which is painful to the
ear. Therefore, for sound, if we write

[image: -*-][image: -*-]
(47.2)




we shall always have the pressure change Pe[image: -*-] very small compared
with P0[image: -*-] and the density change ρe[image: -*-] very small compared
with ρ0[image: -*-]. Then

[image: -*-][image: -*-]
(47.3)




where P0=f (ρ0)[image: -*-] and f′ (ρ0)[image: -*-] stands for the derivative
of f (ρ)[image: -*-] evaluated at ρ=ρ0[image: -*-]. We can take the second step in
this equality only because ρe[image: -*-] is very small. We find in this way
that the excess pressure Pe[image: -*-] is proportional to the excess
density ρe[image: -*-], and we may call the proportionality factor κ[image: -*-]:

[image: -*-][image: -*-]
(47.4)




The relation we needed for II is this very simple one.



[image: -][image: -]
Fig. 47–3. The displacement of the air at x[image: -*-] is χ (x,t)[image: -*-], and at x+Δ x[image: -*-] it is χ (x+Δ x,t)[image: -*-]. The original volume of
the air for a unit area of the plane wave is Δ x[image: -*-]; the new
volume is Δ x+χ (x+Δ x,t)−χ (x,t)[image: -*-].





Let us now consider I. We shall suppose that the position of a portion
of air undisturbed by the sound wave is x[image: -*-] and the displacement at
the time t[image: -*-] due to the sound is χ (x,t)[image: -*-], so that its new position
is x+χ (x,t)[image: -*-], as in Fig. 47–3. Now the undisturbed
position of a nearby portion of air is x+Δ x[image: -*-], and its new
position is x+Δ x+χ (x+Δ x,t)[image: -*-]. We can now find the
density changes in the following way. Since we are limiting ourselves
to plane waves, we can take a unit area perpendicular to the
x[image: -*-]-direction, which is the direction of propagation of the sound
wave. The amount of air, per unit area, in Δ x[image: -*-] is then
ρ0 Δ x[image: -*-], where ρ0[image: -*-] is the undisturbed, or equilibrium,
air density. This air, when displaced by the sound wave, now lies
between x+χ (x,t)[image: -*-] and x+Δ x+χ (x+Δ x,t)[image: -*-], so
that we have the same matter in this interval that was in Δ x[image: -*-]
when undisturbed. If ρ[image: -*-] is the new density, then



[image: -*-][image: -*-]
(47.5)





Since Δ x[image: -*-] is small, we can write χ (x+Δ x,t)−χ (x,t)=(∂χ/∂x) Δ x[image: -*-]. This derivative is a partial
derivative, since χ[image: -*-] depends on the time as well as on x[image: -*-]. Our
equation then is

[image: -*-][image: -*-]
(47.6)




or

[image: -*-][image: -*-]
(47.7)




Now in sound waves all changes are small so that ρe[image: -*-] is small,
χ[image: -*-] is small, and ∂χ/∂x[image: -*-] is also small. Therefore in the
relation that we have just found,

[image: -*-][image: -*-]
(47.8)




we can neglect ρe ∂χ/∂x[image: -*-] compared with
ρ0 ∂χ/∂x[image: -*-]. Thus we get the relation we needed for I:

[image: -*-][image: -*-]
(47.9)




This equation is what we would expect physically. If the displacements
vary with x[image: -*-], then there will be density changes. The sign is also
right: if the displacement χ[image: -*-] increases with x[image: -*-], so that the air
is stretched out, the density must go down.



[image: -][image: -]
Fig. 47–4. The net force in the positive x[image: -*-]-direction produced by the
pressure acting on unit area perpendicular to x[image: -*-]
is −(∂P/∂x) Δ x[image: -*-].





We now need the third equation, which is the equation of the motion
produced by the pressure. If we know the relation between the force
and the pressure, we can then get the equation of motion. If we take a
thin slab of air of length Δ x[image: -*-] and of unit area perpendicular
to x[image: -*-], then the mass of air in this slab is ρ0 Δ x[image: -*-] and it
has the acceleration ∂2χ/∂t2[image: -*-], so the mass times
the acceleration for this slab of matter is ρ0 Δ x (∂2χ/∂t2)[image: -*-]. (It makes no difference for small
Δ x[image: -*-] whether the acceleration ∂2χ/∂t2[image: -*-] is
evaluated at an edge of the slab or at some intermediate position.) If
now we find the force on this matter for a unit area perpendicular
to x[image: -*-], it will then be equal to ρ0 Δ x (∂2χ/∂t2)[image: -*-]. We have the force in the
+x[image: -*-]-direction, at x[image: -*-], of amount P (x,t)[image: -*-] per unit area, and we have
the force in the opposite direction, at x+Δ x[image: -*-], of amount P (x+Δ x,t)[image: -*-] per unit area (Fig. 47–4):



[image: -*-][image: -*-]
(47.10)





since Δ x[image: -*-] is small and since the only part of P[image: -*-] which changes
is the excess pressure Pe[image: -*-]. We now have III:

[image: -*-][image: -*-]
(47.11)




and so we have enough equations to interconnect things and reduce down
to one variable, say to χ[image: -*-]. We can eliminate Pe[image: -*-] from III by
using II, so that we get

[image: -*-][image: -*-]
(47.12)




and then we can use I to eliminate ρe[image: -*-]. In this way we find that
ρ0[image: -*-] cancels out and that we are left with

[image: -*-][image: -*-]
(47.13)




We shall call [image: c_s^2 = \kappa][image: c_s^2 = \kappa], so that we can write

[image: -*-][image: -*-]
(47.14)




This is the wave equation which describes the behavior of sound in
matter.







47–4 Solutions of the wave equation


We now can see whether this equation really does describe the
essential properties of sound waves in matter. We want to deduce that
a sound pulse, or disturbance, will move with a constant speed. We
want to verify that two different pulses can move through each
other—the principle of superposition. We also want to verify that
sound can go either to the right or to the left. All these properties
should be contained in this one equation.




We have remarked that any plane-wave disturbance which moves with a
constant velocity v[image: -*-] has the form f (x−v t)[image: -*-]. Now we have to see
whether χ (x,t)=f (x−v t)[image: -*-] is a solution of the wave
equation. When we calculate ∂χ/∂x[image: -*-], we get the derivative of
the function, ∂χ/∂x=f′ (x−v t)[image: -*-]. Differentiating once
more, we find

[image: -*-][image: -*-]
(47.15)







The differentiation of this same function with respect to t[image: -*-] gives
−v[image: -*-] times the derivative of the function, or ∂χ/∂t=−v f′ (x−v t)[image: -*-], and the second time derivative is

[image: -*-][image: -*-]
(47.16)




It is evident that f (x−v t)[image: -*-] will satisfy the wave equation provided
the wave velocity v[image: -*-] is equal to cs[image: -*-].




We find, therefore, from the laws of mechanics that any sound
disturbance propagates with the velocity cs[image: -*-], and in addition we
find that

[image: -*-][image: -*-]


and so we have related the wave velocity to a property of the
medium.




If we consider a wave travelling in the opposite direction, so that
χ (x,t)=g (x+v t)[image: -*-], it is easy to see that such a disturbance
also satisfies the wave equation. The only difference between such a
wave and one travelling from left to right is in the sign of v[image: -*-], but
whether we have x+v t[image: -*-] or x−v t[image: -*-] as the variable in the function
does not affect the sign of ∂2χ/∂t2[image: -*-], since it
involves only v2[image: -*-]. It follows that we have a solution for waves
propagating in either direction with speed cs[image: -*-].




An extremely interesting question is that of superposition. Suppose
one solution of the wave equation has been found, say χ1[image: -*-]. This
means that the second derivative of χ1[image: -*-] with respect to x[image: -*-] is
equal to [image: 1/c_s^2][image: 1/c_s^2] times the second derivative of χ1[image: -*-] with
respect to t[image: -*-]. Now any other solution χ2[image: -*-] has this same
property. If we superpose these two solutions, we have

[image: -*-][image: -*-]
(47.17)




and we wish to verify that χ (x,t)[image: -*-] is also a wave, i.e., that
χ[image: -*-] satisfies the wave equation. We can easily prove this result,
since we have

[image: -*-][image: -*-]
(47.18)




and, in addition,

[image: -*-][image: -*-]
(47.19)




It follows that [image: \partial^2\chi/\partial x^2 = (1/c_s^2)\,\partial^2\chi/\partial t^2][image: \partial^2\chi/\partial x^2 = (1/c_s^2)\,\partial^2\chi/\partial t^2], so we have verified the
principle of superposition. The
proof of the principle of superposition follows from the fact that the
wave equation is linear in χ[image: -*-].




We can now expect that a plane light wave propagating in the
x[image: -*-]-direction, polarized so that the electric field is in the
y[image: -*-]-direction, will satisfy the wave equation

[image: -*-][image: -*-]
(47.20)




where c[image: -*-] is the speed of light. This wave equation is one of the
consequences of Maxwell’s equations. The equations of electrodynamics will lead to the wave
equation for light just as the equations of mechanics lead to the wave
equation for sound.








47–5 The speed of sound


Our deduction of the wave equation for sound has given us a
formula which connects the wave speed with the rate of change
of pressure with the density at the normal pressure:

[image: -*-][image: -*-]
(47.21)




In evaluating this rate of change, it is essential to know how the
temperature varies. In a sound wave, we would expect that in the
region of compression the temperature would be raised, and that in the
region of rarefaction the temperature would be lowered.
Newton was the first to calculate
the rate of change of pressure with density, and he supposed that the
temperature remained unchanged. He argued that the heat was conducted
from one region to the other so rapidly that the temperature could not
rise or fall. This argument gives the isothermal speed of sound, and it
is wrong. The correct deduction was given later by
Laplace, who put forward
the opposite idea—that the pressure and temperature change
adiabatically in a sound wave. The heat flow from the compressed region
to the rarefied region is negligible so long as the wavelength is long
compared with the mean free path. Under this condition the slight amount
of heat flow in a sound wave does not affect the speed, although it
gives a small absorption of the sound energy. We can expect correctly
that this absorption increases as the wavelength approaches the mean
free path, but these wavelengths are smaller by factors of about a
million than the wavelengths of audible sound.




The actual variation of pressure with density in a sound wave is the
one that allows no heat flow. This corresponds to the adiabatic
variation, which we found to be P Vγ=const[image: -*-], where V[image: -*-]
was the volume. Since the density ρ[image: -*-] varies inversely with V[image: -*-],
the adiabatic connection between P[image: -*-] and ρ[image: -*-] is

[image: -*-][image: -*-]
(47.22)




from which we get d P/d ρ=γ P/ρ[image: -*-]. We then have for the
speed of sound the relation

[image: -*-][image: -*-]
(47.23)




We can also write [image: c_s^2 = \gamma PV/\rho V][image: c_s^2 = \gamma PV/\rho V] and make use of the
relation P V=N k T[image: -*-]. Further, we see that ρ V[image: -*-] is the mass of gas,
which can also be expressed as N m[image: -*-], or as μ[image: -*-] per mole, where m[image: -*-] is the
mass of a molecule and μ[image: -*-] is the molecular weight. In this way we
find that

[image: -*-][image: -*-]
(47.24)




from which it is evident that the speed of sound depends only on the
gas temperature and not on the pressure or the density. We also have
observed that

[image: -*-][image: -*-]
(47.25)




where [image: \avg{v^2}][image: \avg{v^2}] is the mean square of the speed of the molecules. It
follows that [image: c_s^2 = (\gamma/3)\avg{v^2}][image: c_s^2 = (\gamma/3)\avg{v^2}], or

[image: -*-][image: -*-]
(47.26)




This equation states that the speed of sound is some number which is
roughly 1/(3)1/2[image: -*-] times some average speed, vav[image: -*-], of
the molecules (the square root of the mean square velocity). In other
words, the speed of sound is of the same order of magnitude as the
speed of the molecules, and is actually somewhat less than this
average speed.




Of course we could expect such a result, because a disturbance like a
change in pressure is, after all, propagated by the motion of the
molecules. However, such an argument does not tell us the precise
propagation speed; it could have turned out that sound was carried
primarily by the fastest molecules, or by the slowest molecules. It is
reasonable and satisfying that the speed of sound is roughly
[image: \tfrac{1}{2}][image: \tfrac{1}{2}] of the average molecular speed vav[image: -*-].





	
  
  With
this choice of Pref[image: -*-], the P[image: -*-] is not the
peak pressure in the sound wave but the “root-mean-square” pressure,
which is 1/(2)1/2[image: -*-] times the peak pressure.
  ↩





  
    

48 Beats



48–1 Adding two waves


Some time ago we discussed in considerable detail the properties of
light waves and their
interference—that is, the effects of the superposition of two waves
from different sources. In all these analyses we assumed that the
frequencies of the sources were all the same. In this chapter we shall
discuss some of the phenomena which result from the interference of two
sources which have different frequencies.




It is easy to guess what is going to happen. Proceeding in the same
way as we have done previously, suppose we have two equal oscillating
sources of the same frequency whose phases are so adjusted, say, that
the signals arrive in phase at some point P[image: -*-]. At that point, if it is
light, the light is very strong; if it is sound, it is very loud; or
if it is electrons, many of them arrive. On the other hand, if the
arriving signals were 180°[image: -*-] out of phase, we would get no signal
at P[image: -*-], because the net amplitude there is then a minimum. Now suppose
that someone twists the “phase knob” of one of the sources and
changes the phase at P[image: -*-] back and forth, say, first making it
0°[image: -*-] and then 180°[image: -*-], and so on. Of course, we would then
find variations in the net signal strength. Now we also see that if
the phase of one source is slowly changing relative to that of the
other in a gradual, uniform manner, starting at zero, going up to ten,
twenty, thirty, forty degrees, and so on, then what we would measure
at P[image: -*-] would be a series of strong and weak “pulsations,” because
when the phase shifts through 360°[image: -*-] the amplitude returns to a
maximum. Of course, to say that one source is shifting its phase
relative to another at a uniform rate is the same as saying that the
number of oscillations per second is slightly different for the two.




So we know the answer: if we have two sources at slightly different
frequencies we should find, as a net result, an oscillation with a
slowly pulsating intensity. That is all there really is to the
subject!



[image: -][image: -]
Fig. 48–1. The superposition of two cosine waves with frequencies in the
ratio 8:10[image: -*-]. The precise repetition of the pattern within each
“beat” is not typical of the general case.





It is very easy to formulate this result mathematically also. Suppose,
for example, that we have two waves, and that we do not worry for the
moment about all the spatial relations, but simply analyze what
arrives at P[image: -*-]. From one source, let us say, we would have
cosω1 t[image: -*-], and from the other source, cosω2 t[image: -*-], where the
two ω[image: -*-]’s are not exactly the same. Of course the amplitudes may
not be the same, either, but we can solve the general problem later;
let us first take the case where the amplitudes are equal. Then the
total amplitude at P[image: -*-] is the sum of these two cosines. If we plot the
amplitudes of the waves against the time, as in Fig. 48–1,
we see that where the crests coincide we get a strong wave, and where a
trough and crest coincide we get practically zero, and then when the
crests coincide again we get a strong wave again.




Mathematically, we need only to add two cosines and rearrange the
result somehow. There exist a number of useful relations among cosines
which are not difficult to derive. Of course we know that

[image: -*-][image: -*-]
(48.1)




and that ei a[image: -*-] has a real part, cosa[image: -*-], and an imaginary part,
sina[image: -*-]. If we take the real part of ei (a+b)[image: -*-], we get cos(a+b)[image: -*-]. If we multiply out:

[image: -*-][image: -*-]


we get cosa cosb−sina sinb[image: -*-], plus some imaginary parts. But
we now need only the real part, so we have

[image: -*-][image: -*-]
(48.2)




Now if we change the sign of b[image: -*-], since the cosine does not change
sign while the sine does, the same equation, for negative b[image: -*-], is

[image: -*-][image: -*-]
(48.3)




If we add these two equations together, we lose the sines and we learn
that the product of two cosines is half the cosine of the sum, plus
half the cosine of the difference:

[image: -*-][image: -*-]
(48.4)




Now we can also reverse the formula and find a formula for cosα+cosβ[image: -*-] if we simply let α=a+b[image: -*-] and β=a−b[image: -*-]. That is, [image: a = \tfrac{1}{2}(\alpha + \beta)][image: a = \tfrac{1}{2}(\alpha + \beta)] and [image: b = \tfrac{1}{2}(\alpha - \beta)][image: b = \tfrac{1}{2}(\alpha - \beta)], so that

[image: -*-][image: -*-]
(48.5)







Now we can analyze our problem. The sum of cosω1 t[image: -*-]
and cosω2 t[image: -*-] is



[image: -*-][image: -*-]
(48.6)





Now let us suppose that the two frequencies are nearly the same, so
that [image: \tfrac{1}{2}(\omega_1 + \omega_2)][image: \tfrac{1}{2}(\omega_1 + \omega_2)] is the average frequency, and
is more or less the same as either. But ω1−ω2[image: -*-] is
much smaller than ω1[image: -*-] or ω2[image: -*-] because, as we
suppose, ω1[image: -*-] and ω2[image: -*-] are nearly equal. That means that
we can represent the solution by saying that there is a high-frequency
cosine wave more or less like the ones we started with, but that its
“size” is slowly changing—its “size” is pulsating with a
frequency which appears to be [image: \tfrac{1}{2}(\omega_1 - \omega_2)][image: \tfrac{1}{2}(\omega_1 - \omega_2)]. But
is this the frequency at which the beats are heard?
Although (48.6) says that the amplitude goes
as [image: \cos\tfrac{1}{2}(\omega_1 - \omega_2)t][image: \cos\tfrac{1}{2}(\omega_1 - \omega_2)t], what it is really telling us
is that the high-frequency oscillations are contained between two
opposed cosine curves (shown dotted in Fig. 48–1). On this
basis one could say that the amplitude varies at the
frequency [image: \tfrac{1}{2}(\omega_1 - \omega_2)][image: \tfrac{1}{2}(\omega_1 - \omega_2)], but if we are talking about the
intensity of the wave we must think of it as having twice this
frequency. That is, the modulation of the amplitude, in the sense of the
strength of its intensity, is at frequency ω1−ω2[image: -*-],
although the formula tells us that we multiply by a cosine wave at half
that frequency. The technical basis for the difference is that the high
frequency-wave has a little different phase relationship in the second
half-cycle.




Ignoring this small complication, we may conclude that if we add two
waves of frequency ω1[image: -*-] and ω2[image: -*-], we will get a net
resulting wave of average frequency [image: \tfrac{1}{2}(\omega_1 + \omega_2)][image: \tfrac{1}{2}(\omega_1 + \omega_2)] which oscillates in strength with a frequency ω1−ω2[image: -*-].




If the two amplitudes are different, we can do it all over again by
multiplying the cosines by different amplitudes A1[image: -*-] and A2[image: -*-], and
do a lot of mathematics, rearranging, and so on, using equations
like (48.2)–(48.5). However, there are other,
easier ways of doing the same analysis. For example, we know that it is
much easier to work with exponentials than with sines and cosines and
that we can represent A1 cosω1 t[image: -*-] as the real part
of A1 ei ω1 t[image: -*-]. The other wave would similarly be the real part
of A2 ei ω2 t[image: -*-]. If we add the two, we get A1 ei ω1 t+A2 ei ω2 t[image: -*-]. If we then factor out the average frequency, we have



[image: -*-][image: -*-]
(48.7)





Again we have the high-frequency wave with a modulation at the lower
frequency.







48–2 Beat notes and modulation


If we are now asked for the intensity of the wave of
Eq. (48.7), we can either take the absolute square of the
left side, or of the right side. Let us take the left side. The
intensity then is

[image: -*-][image: -*-]
(48.8)




We see that the intensity swells and falls at a frequency ω1−ω2[image: -*-], varying between the limits (A1+A2)2[image: -*-] and (A1−A2)2[image: -*-]. If A1≠A2[image: -*-], the minimum intensity is not zero.



[image: -][image: -]
Fig. 48–2. The resultant of two complex vectors of equal frequency.





One more way to represent this idea is by means of a drawing, like
Fig. 48–2. We draw a vector of length A1[image: -*-], rotating at
a frequency ω1[image: -*-], to represent one of the waves in the complex
plane. We draw another vector of length A2[image: -*-], going around at a
frequency ω2[image: -*-], to represent the second wave. If the two
frequencies are exactly equal, their resultant is of fixed length as
it keeps revolving, and we get a definite, fixed intensity from the
two. But if the frequencies are slightly different, the two complex
vectors go around at different speeds. Figure 48–3 shows
what the situation looks like relative to the
vector A1 ei ω1 t[image: -*-]. We see that A2[image: -*-] is turning slowly away
from A1[image: -*-], and so the amplitude that we get by adding the two is first
strong, and then, as it opens out, when it gets to the
180°[image: -*-] relative position the resultant gets particularly weak, and so on. As
the vectors go around, the amplitude of the sum vector gets bigger and
smaller, and the intensity thus pulsates. It is a relatively simple
idea, and there are many different ways of representing the same
thing.



[image: -][image: -]
Fig. 48–3. The resultant of two complex vectors of unequal frequency, as
seen in the rotating frame of reference of one vector. Nine
successive positions of the slowly rotating vector are shown.





The effect is very easy to observe experimentally. In the case of
acoustics, we may arrange two loudspeakers driven by two separate
oscillators, one for each loudspeaker, so that they each make a
tone. We thus receive one note from one source and a different note
from the other source. If we make the frequencies exactly the same,
the resulting effect will have a definite strength at a given space
location. If we then de-tune them a little bit, we hear some
variations in the intensity. The farther they are de-tuned, the more
rapid are the variations of sound. The ear has some trouble following
variations more rapid than ten or so per second.




We may also see the effect on an oscilloscope which simply displays
the sum of the currents to the two speakers. If the frequency of
pulsing is relatively low, we simply see a sinusoidal wave train whose
amplitude pulsates, but as we make the pulsations more rapid we see
the kind of wave shown in Fig. 48–1. As we go to greater
frequency differences, the “bumps” move closer together. Also, if
the amplitudes are not equal and we make one signal stronger than the
other, then we get a wave whose amplitude does not ever become zero,
just as we expect. Everything works the way it should, both
acoustically and electrically.




The opposite phenomenon occurs too! In radio transmission using
so-called amplitude modulation (am), the sound is
broadcast by the radio station as follows: the radio transmitter has
an ac electric oscillation which is at a very high frequency,
for example 800[image: -*-] kilocycles per second, in the broadcast band. If
this carrier signal is turned on, the radio
station emits a wave which is of uniform amplitude at
800,000[image: -*-] oscillations a second. The way the “information” is
transmitted, the useless kind of information about what kind of car to
buy, is that when somebody talks into a microphone the amplitude of the
carrier signal is changed in step with the vibrations of sound entering
the microphone.



[image: -][image: -]
Fig. 48–4. A modulated carrier wave. In this schematic sketch,
ωc/ωm=5[image: -*-]. In an actual radiowave,
ωc/ωm∼100[image: -*-].





If we take as the simplest mathematical case the situation where a
soprano is singing a perfect note, with perfect sinusoidal
oscillations of her vocal cords, then we get a signal whose strength
is alternating as shown in Fig. 48–4. The audiofrequency
alternation is then recovered in the receiver; we get rid of the
carrier wave and just look at the envelope which represents the
oscillations of the vocal cords, or the sound of the singer. The
loudspeaker then makes corresponding vibrations at the same frequency
in the air, and the listener is then essentially unable to tell the
difference, so they say. Because of a number of distortions and other
subtle effects, it is, in fact, possible to tell whether we are
listening to a radio or to a real soprano; otherwise the idea is as
indicated above.







48–3 Side bands


Mathematically, the modulated wave described above would be expressed
as

[image: -*-][image: -*-]
(48.9)




where ωc[image: -*-] represents the frequency of the carrier and
ωm[image: -*-] is the frequency of the audio tone. Again we use all those
theorems about the cosines, or we can use ei θ[image: -*-]; it makes no
difference—it is easier with ei θ[image: -*-], but it is the same
thing. We then get



[image: -*-][image: -*-]
(48.10)





So, from another point of view, we can say that the output wave of the
system consists of three waves added in superposition: first, the
regular wave at the frequency ωc[image: -*-], that is, at the carrier
frequency, and then two new waves at two new frequencies. One is the
carrier frequency plus the modulation frequency, and the other is the
carrier frequency minus the modulation frequency. If, therefore, we
make some kind of plot of the intensity being generated by the
generator as a function of frequency, we would find a lot of intensity
at the frequency of the carrier, naturally, but when a singer started
to sing, we would suddenly also find intensity proportional to the
strength of the singer, b2[image: -*-], at frequency ωc+ωm[image: -*-] and
ωc−ωm[image: -*-], as shown in Fig. 48–5. These are
called side bands; when there is a modulated signal from the
transmitter, there are side bands. If there is more than one note at
the same time, say ωm[image: -*-] and ωm′[image: -*-], there are two
instruments playing; or if there is any other complicated cosine wave,
then, of course, we can see from the mathematics that we get some more
waves that correspond to the frequencies ωc±ωm′[image: -*-].



[image: -][image: -]
Fig. 48–5. The frequency spectrum of a carrier wave ωc[image: -*-] modulated
by a single cosine wave ωm[image: -*-].





Therefore, when there is a complicated modulation that can be
represented as the sum of many cosines,1 we find that the actual transmitter is transmitting
over a range of frequencies, namely the carrier frequency plus or
minus the maximum frequency that the modulation signal contains.




Although at first we might believe that a radio transmitter transmits
only at the nominal frequency of the carrier, since there are big,
superstable crystal oscillators in there, and everything is adjusted
to be at precisely 800[image: -*-] kilocycles, the moment someone
announces that they are at 800[image: -*-] kilocycles, he modulates the
800[image: -*-] kilocycles, and so they are no longer precisely at
800[image: -*-] kilocycles!  Suppose that the amplifiers are so built that they are
able to transmit over a good range of the ear’s sensitivity (the ear
can hear up to 20,000[image: -*-] cycles per second, but usually radio
transmitters and receivers do not work beyond 10,000[image: -*-], so we do not
hear the highest parts), then, when the man speaks, his voice may
contain frequencies ranging up, say, to 10,000[image: -*-] cycles, so the
transmitter is transmitting frequencies which may range from 790[image: -*-]
to 810[image: -*-] kilocycles per second. Now if there were another station at
795[image: -*-] kc/sec, there would be a lot of confusion. Also, if we made our
receiver so sensitive that it picked up only 800[image: -*-], and did not pick
up the 10[image: -*-] kilocycles on either side, we would not hear what the man
was saying, because the information would be on these other
frequencies!  Therefore it is absolutely essential to keep the
stations a certain distance apart, so that their side bands do not
overlap and, also, the receiver must not be so selective that it does
not permit reception of the side bands as well as of the main nominal
frequency. In the case of sound, this problem does not really cause
much trouble. We can hear over a ±20[image: -*-] kc/sec range, and we have
usually from 500[image: -*-] to 1500[image: -*-] kc/sec in the broadcast band, so there is
plenty of room for lots of stations.




The television problem is more difficult. As the electron beam goes
across the face of the picture tube, there are various little spots of
light and dark. That “light” and “dark” is the “signal.” Now
ordinarily the beam scans over the whole picture, 500[image: -*-] lines,
approximately, in a thirtieth of a second. Let us consider that the
resolution of the picture vertically and horizontally is more or less
the same, so that there are the same number of spots per inch along a
scan line. We want to be able to distinguish dark from light, dark
from light, dark from light, over, say, 500[image: -*-] lines. In order to be
able to do this with cosine waves, the shortest wavelength needed thus
corresponds to a wavelength, from maximum to maximum, of one
250[image: -*-]th of the screen size. So we have 250×500×30[image: -*-] pieces of
information per second. The highest frequency that we are going to
carry, therefore, is close to 4 megacycles per second. Actually, to
keep the television stations apart, we have to use a little bit more
than this, about 6 mc/sec; part of it is used to carry the sound
signal, and other information. So, television channels are
6 megacycles per second wide. It certainly would not be possible to
transmit tv on an 800[image: -*-] kc/sec carrier, since we cannot
modulate at a higher frequency than the carrier.




At any rate, the television band starts at 54[image: -*-] megacycles. The first
transmission channel, which is channel 2 (!), has a frequency range
from 54[image: -*-] to 60[image: -*-] mc/sec, which is 6 mc/sec wide. “But,” one might
say, “we have just proved that there were side bands on both sides,
and therefore it should be twice that wide.” It turns out that the
radio engineers are rather clever. If we analyze the modulation signal
using not just cosine terms, but cosine and sine terms, to allow for
phase differences, we then see that there is a definite, invariant
relationship between the side band on the high-frequency side and the
side band on the low-frequency side. What we mean is that there is no
new information on that other side band. So what is done is to
suppress one side band, and the receiver is wired inside such that the
information which is missing is reconstituted by looking at the single
side band and the carrier. Single side-band transmission is a clever
scheme for decreasing the band widths needed to transmit information.







48–4 Localized wave trains


The next subject we shall discuss is the interference of waves in both
space and time. Suppose that we have two waves travelling in space. We
know, of course, that we can represent a wave travelling in space by
ei (ω t−k x)[image: -*-]. This might be, for example, the displacement
in a sound wave. This is a solution of the wave equation provided that
ω2=k2 c2[image: -*-], where c[image: -*-] is the speed of propagation of the
wave. In this case we can write it as e−i k (x−c t)[image: -*-], which is of
the general form f (x−c t)[image: -*-]. Therefore this must be a wave which is
travelling at this velocity, ω/k[image: -*-], and that is c[image: -*-] and
everything is all right.




Now we want to add two such waves together. Suppose we have a wave
that is travelling with one frequency, and another wave travelling
with another frequency. We leave to the reader to consider the case
where the amplitudes are different; it makes no real difference. Thus
we want to add ei (ω1 t−k1 x)+ei (ω2 t−k2 x)[image: -*-].
We can add these by the same kind of mathematics we used when we added
signal waves. Of course, if c[image: -*-] is the same for both, this is easy,
since it is the same as what we did before:

[image: -*-][image: -*-]
(48.11)




except that t′=t−x/c[image: -*-] is the variable instead of t[image: -*-]. So we get
the same kind of modulations, naturally, but we see, of course, that
those modulations are moving along with the wave. In other words, if
we added two waves, but these waves were not just oscillating, but
also moving in space, then the resultant wave would move along also,
at the same speed.




Now we would like to generalize this to the case of waves in which the
relationship between the frequency and the wave number k[image: -*-] is not so
simple. Example: material having an index of refraction. We have
already studied the theory of the index of refraction in
Chapter 31, where we found that we could write k=n ω/c[image: -*-], where n[image: -*-] is the index of refraction. As an interesting
example, for x-rays we found that
the index n[image: -*-] is

[image: -*-][image: -*-]
(48.12)




We actually derived a more complicated formula in
Chapter 31, but this one is as good as any, as an example.




Incidentally, we know that even when ω[image: -*-] and k[image: -*-] are not linearly
proportional, the ratio ω/k[image: -*-] is certainly the speed of
propagation for the particular frequency and wave number. We call this
ratio the phase velocity; it is the speed at which the
phase, or the nodes of a single wave, would move along:

[image: -*-][image: -*-]
(48.13)




This phase velocity, for the case of
x-rays in glass, is greater than
the speed of light in vacuum (since n[image: -*-] in 48.12 is less
than 1), and that is a bit bothersome, because we do not think we can
send signals faster than the speed of light!





What we are going to discuss now is the interference of two waves in
which ω[image: -*-] and k[image: -*-] have a definite formula relating them. The
above formula for n[image: -*-] says that k[image: -*-] is given as a definite function
of ω[image: -*-]. To be specific, in this particular problem, the formula
for k[image: -*-] in terms of ω[image: -*-] is

[image: -*-][image: -*-]
(48.14)




where [image: a = Nq_e^2/2\epsO m][image: a = Nq_e^2/2\epsO m], a constant. At any rate, for each
frequency there is a definite wave number, and we want to add two such
waves together.




Let us do it just as we did in Eq. (48.7):



[image: -*-][image: -*-]
(48.15)





So we have a modulated wave again, a wave which travels with the mean
frequency and the mean wave number, but whose strength is varying with
a form which depends on the difference frequency and the difference
wave number.




Now let us take the case that the difference between the two waves is
relatively small. Let us suppose that we are adding two waves whose
frequencies are nearly equal; then (ω1+ω2)/2[image: -*-] is
practically the same as either one of the ω[image: -*-]’s, and similarly
for (k1+k2)/2[image: -*-]. Thus the speed of the wave, the fast
oscillations, the nodes, is still essentially ω/k[image: -*-]. But look,
the speed of propagation of the modulation is not the same! How much
do we have to change x[image: -*-] to account for a certain amount of t[image: -*-]? The
speed of this modulation wave is the ratio

[image: -*-][image: -*-]
(48.16)




The speed of modulation is sometimes called the group
velocity. If we take
the case that the difference in frequency is relatively small, and the
difference in wave number is then also relatively small, then this
expression approaches, in the limit,

[image: -*-][image: -*-]
(48.17)




In other words, for the slowest modulation, the slowest beats, there
is a definite speed at which they travel which is not the same as the
phase speed of the waves—what a mysterious thing!

The group velocity is 
the derivative of ω[image: -*-] with respect to k[image: -*-], and the phase velocity is ω/k[image: -*-].







Let us see if we can understand why. Consider two waves, again of
slightly different wavelength, as in Fig. 48–1. They are
out of phase, in phase, out of phase, and so on. Now these waves
represent, really, the waves in space travelling with slightly
different frequencies also. Now because the phase velocity, the
velocity of the nodes of these two waves, is not precisely the same,
something new happens. Suppose we ride along with one of the waves and
look at the other one; if they both went at the same speed, then the
other wave would stay right where it was relative to us, as we ride
along on this crest. We ride on that crest and right opposite us we
see a crest; if the two velocities are equal the crests stay on top of
each other. But it is not so that the two velocities are really
equal. There is only a small difference in frequency and therefore
only a small difference in velocity, but because of that difference in
velocity, as we ride along the other wave moves slowly forward, say,
or behind, relative to our wave. So as time goes on, what happens to
the node? If we move one wave train just a shade forward, the node
moves forward (or backward) a considerable distance. That is, the sum
of these two waves has an envelope, and as the waves travel along, the
envelope rides on them at a different speed. The group
velocity is the
speed at which modulated signals would be transmitted.




If we made a signal, i.e., some kind of change in the wave that one
could recognize when he listened to it, a kind of modulation, then
that modulation would travel at the group velocity, provided that the
modulations were relatively slow. (When they are fast, it is much more
difficult to analyze.)




Now we may show (at long last), that the speed of propagation of
x-rays in a block of carbon is
not greater than the speed of light, although the phase velocity
is greater than the speed of light. In order to do that, we must
find d ω/d k[image: -*-], which we get by differentiating (48.14):
d k/d ω=1/c+a/ω2 c[image: -*-]. The group velocity, therefore, is the
reciprocal of this, namely,

[image: -*-][image: -*-]
(48.18)




which is smaller than c[image: -*-]! So although the phases can travel faster
than the speed of light, the modulation signals travel slower, and
that is the resolution of the apparent paradox! Of course, if we have
the simple case that ω=k c[image: -*-], then d ω/d k[image: -*-] is also c[image: -*-]. So
when all the phases have the same velocity, naturally the group has
the same velocity.







48–5 Probability amplitudes for particles


Let us now consider one more example of the phase velocity which is
extremely interesting. It has to do with quantum mechanics. We know
that the amplitude to find a particle at a place can, in some
circumstances, vary in space and time, let us say in one dimension, in
this manner:

[image: -*-][image: -*-]
(48.19)




where ω[image: -*-] is the frequency, which is related to the classical
idea of the energy through E=ℏ ω[image: -*-], and k[image: -*-] is the wave
number, which is related to the momentum through p=ℏ k[image: -*-]. We
would say the particle had a definite momentum p[image: -*-] if the wave number
were exactly k[image: -*-], that is, a perfect wave which goes on with the same
amplitude everywhere. Equation (48.19) gives the amplitude,
and if we take the absolute square, we get the relative probability
for finding the particle as a function of position and time. This is a
constant, which means that the probability is the same to find
a particle anywhere. Now suppose, instead, that we have a situation
where we know that the particle is more likely to be at one place than
at another. We would represent such a situation by a wave which has a
maximum and dies out on either side (Fig. 48–6). (It is
not quite the same as a wave like (48.1) which has a series
of maxima, but it is possible, by adding several waves of nearly the
same ω[image: -*-] and k[image: -*-] together, to get rid of all but one maximum.)



[image: -][image: -]
Fig. 48–6. A localized wave train.





Now in those circumstances, since the square of (48.19)
represents the chance of finding a particle somewhere, we know that at
a given instant the particle is most likely to be near the center of
the “lump,” where the amplitude of the wave is maximum. If now we
wait a few moments, the waves will move, and after some time the
“lump” will be somewhere else. If we knew that the particle
originally was situated somewhere, classically, we would expect
that it would later be elsewhere as a matter of fact, because it has a
speed, after all, and a momentum. The quantum theory, then,
will go into the correct classical theory for the relationship of
momentum, energy, and velocity only if the group velocity, the
velocity of the modulation, is equal to the velocity that we would
obtain classically for a particle of the same momentum.




It is now necessary to demonstrate that this is, or is not, the
case. According to the classical theory, the energy is related to the
velocity through an equation like

[image: -*-][image: -*-]
(48.20)




Similarly, the momentum is

[image: -*-][image: -*-]
(48.21)




That is the classical theory, and as a consequence of the classical
theory, by eliminating v[image: -*-], we can show that

[image: -*-][image: -*-]


That is the four-dimensional grand result that we have talked and
talked about, that pμ pμ=m2[image: -*-]; that is the relation between
energy and momentum in the classical theory. Now that means, since
these E[image: -*-]’s and p[image: -*-]’s are going to become ω[image: -*-]’s and k[image: -*-]’s, by
substitution of E=ℏ ω[image: -*-] and p=ℏ k[image: -*-], that for quantum
mechanics it is necessary that

[image: -*-][image: -*-]
(48.22)




This, then, is the relationship between the frequency and the wave
number of a quantum-mechanical amplitude wave representing a particle
of mass m[image: -*-]. From this equation we can deduce that ω[image: -*-] is

[image: -*-][image: -*-]


The phase velocity, ω/k[image: -*-], is here again faster than the speed of
light!




Now let us look at the group velocity. The group velocity should
be d ω/d k[image: -*-], the speed at which the modulations move. We have to
differentiate a square root, which is not very difficult. The
derivative is

[image: -*-][image: -*-]


Now the square root is, after all, ω/c[image: -*-], so we could write this
as d ω/d k=c2 k/ω[image: -*-]. Further, k/ω[image: -*-] is p/E[image: -*-], so

[image: -*-][image: -*-]


But from (48.20) and (48.21), c2 p/E=v[image: -*-], the
velocity of the particle, according to classical mechanics. So we see
that whereas the fundamental quantum-mechanical relationship E=ℏ ω[image: -*-] and p=ℏ k[image: -*-], for the identification of ω[image: -*-]
and k[image: -*-] with the classical E[image: -*-] and p[image: -*-], only produces the
equation ω2−k2 c2=m2 c4/ℏ2[image: -*-], now we also understand the
relationships (48.20) and (48.21) which
connected E[image: -*-] and p[image: -*-] to the velocity. Of course the group velocity
must be the velocity of the particle if the interpretation is going to
make any sense. If we think the particle is over here at one time, and
then ten minutes later we think it is over there, as the quantum
mechanics said, the distance traversed by the “lump,” divided by the
time interval, must be, classically, the velocity of the particle.







48–6 Waves in three dimensions


We shall now bring our discussion of waves to a close with a few
general remarks about the wave equation. These remarks are intended to
give some view of the future—not that we can understand everything
exactly just now, but rather to see what things are going to look like
when we study waves a little more. First of all, the wave equation for
sound in one dimension was

[image: -*-][image: -*-]


where c[image: -*-] is the speed of whatever the wave is—in the case of sound,
it is the sound speed; in the case of light, it is the speed of
light. We showed that for a sound wave the displacements would
propagate themselves at a certain speed. But the excess pressure also
propagates at a certain speed, and so does the excess density. So we
should expect that the pressure would satisfy the same equation, as
indeed it does. We shall leave it to the reader to prove that it
does. Hint: ρe[image: -*-] is proportional to the rate of change
of χ[image: -*-] with respect to x[image: -*-]. Therefore if we differentiate the wave
equation with respect to x[image: -*-], we will immediately discover that
∂χ/∂x[image: -*-] satisfies the same equation. That is to say, ρe[image: -*-]
satisfies the same equation. But Pe[image: -*-] is proportional to ρe[image: -*-],
and therefore Pe[image: -*-] does too. So the pressure, the displacements,
everything, satisfy the same wave equation.




Usually one sees the wave equation for sound written in terms of
pressure instead of in terms of displacement, because the pressure is
a scalar and has no direction. But the displacement is a vector and
has direction, and it is thus easier to analyze the pressure.




The next matter we discuss has to do with the wave equation in three
dimensions. We know that the sound wave solution in one dimension is
ei (ω t−k x)[image: -*-], with ω=k cs[image: -*-], but we also know that in
three dimensions a wave would be represented by ei (ω t−kx x−ky y−kz z)[image: -*-], where, in this case, [image: \omega^2 = k^2c_s^2][image: \omega^2 = k^2c_s^2], which is,
of course, [image: (k_x^2 + k_y^2 + k_z^2)c_s^2][image: (k_x^2 + k_y^2 + k_z^2)c_s^2]. Now what we want to do is
to guess what the correct wave equation in three dimensions
is. Naturally, for the case of sound this can be deduced by going
through the same dynamic argument in three dimensions that we made in
one dimension. But we shall not do that; instead we just write down
what comes out: the equation for the pressure (or displacement, or
anything) is

[image: -*-][image: -*-]
(48.23)




That this is true can be verified by substituting in ei (ω t−k⋅r)[image: -*-]. Clearly, every time we differentiate with respect
to x[image: -*-], we multiply by −i kx[image: -*-]. If we differentiate twice, it is
equivalent to multiplying by [image: -k_x^2][image: -k_x^2], so the first term would
become [image: -k_x^2P_e][image: -k_x^2P_e], for that wave. Similarly, the second term
becomes [image: -k_y^2P_e][image: -k_y^2P_e], and the third term becomes [image: -k_z^2P_e][image: -k_z^2P_e]. On the right, we
get [image: -(\omega^2/c_s^2)P_e][image: -(\omega^2/c_s^2)P_e]. Then, if we take away the Pe[image: -*-]’s and
change the sign, we see that the relationship between k[image: -*-] and ω[image: -*-]
is the one that we want.




Working backwards again, we cannot resist writing down the grand
equation which corresponds to the dispersion equation (48.22)
for quantum-mechanical waves. If ϕ[image: -*-] represents the amplitude for
finding a particle at position x,y,z[image: -*-], at the time t[image: -*-], then the great
equation of quantum mechanics for free particles is this:

[image: -*-][image: -*-]
(48.24)




First of all, the relativity character of this expression is suggested
by the appearance of x[image: -*-], y[image: -*-], z[image: -*-] and t[image: -*-] in the nice combination
relativity usually involves. Second, it is a wave equation which, if
we try a plane wave, would produce as a consequence that −k2+ω2/c2=m2 c2/ℏ2[image: -*-], which is the right relationship for
quantum mechanics. There is still another great thing contained in the
wave equation: the fact that any superposition of waves is also a
solution. So this equation contains all of the quantum mechanics and
the relativity that we have been discussing so far, at least so long
as it deals with a single particle in empty space with no external
potentials or forces on it!







48–7 Normal modes


Now we turn to another example of the phenomenon of beats which is
rather curious and a little different. Imagine two equal pendulums
which have, between them, a rather weak spring connection. They are
made as nearly as possible the same length. If we pull one aside and
let go, it moves back and forth, and it pulls on the connecting spring
as it moves back and forth, and so it really is a machine for
generating a force which has the natural frequency of the other
pendulum. Therefore, as a consequence of the theory of resonance,
which we studied before, when we put a force on something at just the
right frequency, it will drive it. So, sure enough, one pendulum
moving back and forth drives the other. However, in this circumstance
there is a new thing happening, because the total energy of the system
is finite, so when one pendulum pours its energy into the other to
drive it, it finds itself gradually losing energy, until, if the
timing is just right along with the speed, it loses all its energy and
is reduced to a stationary condition! Then, of course, it is the other
pendulum ball that has all the energy and the first one which has
none, and as time goes on we see that it works also in the opposite
direction, and that the energy is passed back into the first ball;
this is a very interesting and amusing phenomenon. We said, however,
that this is related to the theory of beats, and we must now explain
how we can analyze this motion from the point of view of the theory of
beats.




We note that the motion of either of the two balls is an oscillation
which has an amplitude which changes cyclically. Therefore the motion
of one of the balls is presumably analyzable in a different way, in
that it is the sum of two oscillations, present at the same time but
having two slightly different frequencies. Therefore it ought to be
possible to find two other motions in this system, and to claim that
what we saw was a superposition of the two solutions, because this is
of course a linear system. Indeed, it is easy to find two ways that we
could start the motion, each one of which is a perfect,
single-frequency motion—absolutely periodic. The motion that we
started with before was not strictly periodic, since it did not last;
soon one ball was passing energy to the other and so changing its
amplitude; but there are ways of starting the motion so that nothing
changes and, of course, as soon as we see it we understand why. For
example, if we made both pendulums go together, then, since they are
of the same length and the spring is not then doing anything, they
will of course continue to swing like that for all time, assuming no
friction and that everything is perfect. On the other hand, there is
another possible motion which also has a definite frequency: that is,
if we move the pendulums oppositely, pulling them aside exactly equal
distances, then again they would be in absolutely periodic motion. We
can appreciate that the spring just adds a little to the restoring
force that the gravity supplies, that is all, and the system just
keeps oscillating at a slightly higher frequency than in the first
case. Why higher? Because the spring is pulling, in addition to the
gravitation, and it makes the system a little “stiffer,” so that the
frequency of this motion is just a shade higher than that of the
other.




Thus this system has two ways in which it can oscillate with
unchanging amplitude: it can either oscillate in a manner in which
both pendulums go the same way and oscillate all the time at one
frequency, or they could go in opposite directions at a slightly
higher frequency.




Now the actual motion of the thing, because the system is linear, can
be represented as a superposition of the two. (The subject of this
chapter, remember, is the effects of adding two motions with different
frequencies.) So think what would happen if we combined these two
solutions. If at t=0[image: -*-] the two motions are started with equal
amplitude and in the same phase, the sum of the two motions means that
one ball, having been impressed one way by the first motion and the
other way by the second motion, is at zero, while the other ball,
having been displaced the same way in both motions, has a large
amplitude. As time goes on, however, the two basic motions
proceed independently, so the phase of one relative to the other is
slowly shifting. That means, then, that after a sufficiently long
time, when the time is enough that one motion could have gone
“[image: 900\tfrac{1}{2}][image: 900\tfrac{1}{2}]” oscillations, while the other went
only “900[image: -*-],” the relative phase would be just reversed with respect to
what it was before. That is, the large-amplitude motion will have
fallen to zero, and in the meantime, of course, the initially
motionless ball will have attained full strength!




So we see that we could analyze this complicated motion either by the
idea that there is a resonance and that one passes energy to the
other, or else by the superposition of two constant-amplitude motions
at two different frequencies.






	
  
  A slight side remark:
In what circumstances can a curve be represented as a sum of a lot of
cosines? Answer: In all ordinary circumstances, except for
certain cases the mathematicians can dream up. Of course, the curve
must have only one value at a given point, and it must not be a crazy
curve which jumps an infinite number of times in an infinitesimal
distance, or something like that. But aside from such restrictions any
reasonable curve (one that a singer is going to be able to make by
shaking her vocal cords) can always be compounded by adding cosine
waves together.
  ↩





  
    

49 Modes



49–1 The reflection of waves


This chapter will consider some of the remarkable phenomena
which are a result of confining waves in some finite region. We will be
led first to discover a few particular facts about vibrating strings,
for example, and then the generalization of these facts will give us a
principle which is probably the most far-reaching principle of
mathematical physics.




Our first example of confining waves will be to confine a wave at one
boundary. Let us take the simple example of a one-dimensional wave on
a string. One could equally well consider sound in one dimension
against a wall, or other situations of a similar nature, but the
example of a string will be sufficient for our present
purposes. Suppose that the string is held at one end, for example by
fastening it to an “infinitely solid” wall. This can be expressed
mathematically by saying that the displacement y[image: -*-] of the string at
the position x=0[image: -*-] must be zero, because the end does not move. Now
if it were not for the wall, we know that the general solution for the
motion is the sum of two functions, F (x−c t)[image: -*-] and G (x+c t)[image: -*-], the
first representing a wave travelling one way in the string, and the
second a wave travelling the other way in the string:

[image: -*-][image: -*-]
(49.1)




is the general solution for any string. But we have next to satisfy
the condition that the string does not move at one end. If we put x=0[image: -*-] in Eq. (49.1) and examine y[image: -*-] for any value of t[image: -*-], we
get y=F (−c t)+G (+c t)[image: -*-]. Now if this is to be zero for all times, it
means that the function G (c t)[image: -*-] must be −F (−c t)[image: -*-]. In other words,
G[image: -*-] of anything must be −F[image: -*-] of minus that same thing. If this result is
put back into Eq. (49.1), we find that the solution for
the problem is

[image: -*-][image: -*-]
(49.2)




It is easy to check that we will get y=0[image: -*-] if we set x=0[image: -*-].




[image: -][image: -]
Fig. 49–1. Reflection of a wave as a superposition of two travelling
waves.





Figure 49–1 shows a wave travelling in the negative
x[image: -*-]-direction near x=0[image: -*-], and a hypothetical wave travelling in the
other direction reversed in sign and on the other side of the
origin. We say hypothetical because, of course, there is no string to
vibrate on that side of the origin. The total motion of the string is
to be regarded as the sum of these two waves in the region of
positive x[image: -*-]. As they reach the origin, they will always cancel at x=0[image: -*-], and
finally the second (reflected) wave will be the only one to exist for
positive x[image: -*-] and it will, of course, be travelling in the opposite
direction. These results are equivalent to the following statement: if
a wave reaches the clamped end of a string, it will be reflected with
a change in sign. Such a reflection can always be understood by
imagining that what is coming to the end of the string comes out
upside down from behind the wall. In short, if we assume that the
string is infinite and that whenever we have a wave going one way we
have another one going the other way with the stated symmetry, the
displacement at x=0[image: -*-] will always be zero and it would make no
difference if we clamped the string there.




The next point to be discussed is the reflection of a periodic
wave. Suppose that the wave represented by F (x−c t)[image: -*-] is a sine wave
and has been reflected; then the reflected wave −F (−x−c t)[image: -*-] is also
a sine wave of the same frequency, but travelling in the opposite
direction. This situation can be most simply described by using the
complex function notation: F (x−c t)=ei ω (t−x/c)[image: -*-]
and F (−x−c t)=ei ω (t+x/c)[image: -*-]. It can be seen that if these are
substituted in (49.2) and if x[image: -*-] is set equal to 0, then
y=0[image: -*-] for all values of t[image: -*-], so it satisfies the necessary
condition. Because of the properties of exponentials, this can be
written in a simpler form:

[image: -*-][image: -*-]
(49.3)







There is something interesting and new here, in that this solution
tells us that if we look at any fixed x[image: -*-], the string oscillates at
frequency ω[image: -*-]. No matter where this point is, the frequency is
the same!  But there are some places, in particular wherever
sin(ω x/c)=0[image: -*-], where there is no displacement at
all. Furthermore, if at any time t[image: -*-] we take a snapshot of the
vibrating string, the picture will be a sine wave. However, the
displacement of this sine wave will depend upon the time t[image: -*-]. From
inspection of Eq. (49.3) we can see that the length of
one cycle of the sine wave is equal to the wavelength of either of the
superimposed waves:

[image: -*-][image: -*-]
(49.4)




The points where there is no motion satisfy the
condition sin(ω x/c)=0[image: -*-], which means that (ω x/c)=0[image: -*-], π[image: -*-],
2 π[image: -*-], …, n π[image: -*-], … These points are called
nodes. Between any two successive nodes, every point moves
up
and down sinusoidally, but the pattern of motion stays fixed in
space. This is the fundamental characteristic of what we call a
mode. If one can find a pattern of motion which has the
property that at any point the object moves perfectly sinusoidally,
and that all points move at the same frequency (though some will move
more than others), then we have what is called a mode.







49–2 Confined waves, with natural frequencies


The next interesting problem is to consider what happens if the string
is held at both ends, say at x=0[image: -*-] and x=L[image: -*-]. We can begin with
the idea of the reflection of waves, starting with some kind of a bump
moving in one direction. As time goes on, we would expect the bump to
get near one end, and as time goes still further it will become a kind
of little wobble, because it is combining with the reversed-image bump
which is coming from the other side. Finally the original bump will
disappear and the image bump will move in the other direction to
repeat the process at the other end. This problem has an easy
solution, but an interesting question is whether we can have a
sinusoidal motion (the solution just described is periodic, but
of course it is not sinusoidally periodic). Let us try to put a
sinusoidally periodic wave on a string. If the string is tied at one
end, we know it must look like our earlier solution (49.3).
If it is tied at the other end, it has to look the same at the other
end. So the only possibility for periodic sinusoidal motion is that the
sine wave must neatly fit into the string length. If it does not fit
into the string length, then it is not a natural frequency at which the
string can continue to oscillate. In short, if the string is started
with a sine wave shape that just fits in, then it will continue to keep
that perfect shape of a sine wave and will oscillate harmonically at
some frequency.




Mathematically, we can write sink x[image: -*-] for the shape, where k[image: -*-] is equal to the
factor (ω/c)[image: -*-] in Eqs. (49.3) and (49.4), and
this function will be zero at x=0[image: -*-]. However, it must also be zero at the
other end. The significance of this is that k[image: -*-] is no longer arbitrary, as was
the case for the half-open string. With the string closed at both ends, the only
possibility is that sin(k L)=0[image: -*-], because this is the only condition that
will keep both ends fixed. Now in order for a sine to be zero, the angle must be
either 0, π[image: -*-], 2 π[image: -*-], or some other integral multiple of π[image: -*-]. The
equation

[image: -*-][image: -*-]
(49.5)




will, therefore, give any one of the possible k[image: -*-]’s, depending on what
integer is put in. For each of the k[image: -*-]’s there is a certain
frequency ω[image: -*-], which, according to (49.3), is simply

[image: -*-][image: -*-]
(49.6)







So we have found the following: that a string has a property that it
can have sinusoidal motions, but only at certain
frequencies. This is the most important characteristic of confined
waves. No matter how complicated the system is, it always turns out
that there are some patterns of motion which have a perfect sinusoidal
time dependence, but with frequencies that are a property of the
particular system and the nature of its boundaries. In the case of the
string we have many different possible frequencies, each one, by
definition, corresponding to a mode, because a mode is a pattern of
motion which repeats itself sinusoidally. Figure 49–2
shows the first three modes for a string. For the first mode the
wavelength λ[image: -*-] is 2 L[image: -*-]. This can be seen if one continues the
wave out to x=2 L[image: -*-] to obtain one complete cycle of the sine
wave. The angular frequency ω[image: -*-] is 2 π c[image: -*-] divided
by the wavelength, in general, and in this case, since λ[image: -*-]
is 2 L[image: -*-], the frequency is π c/L[image: -*-], which is in agreement
with (49.6) with n=1[image: -*-]. Let us call the first mode
frequency ω1[image: -*-]. Now the next mode shows two loops with one node in
the middle. For this mode the wavelength, then, is simply L[image: -*-]. The
corresponding value of k[image: -*-] is twice as great and the frequency is twice
as large; it is 2 ω1[image: -*-]. For the third mode it is 3 ω1[image: -*-], and
so on. So all the different frequencies of the string are multiples,
1, 2, 3, 4, and so on, of the lowest frequency ω1[image: -*-].



[image: -][image: -]
Fig. 49–2. The first three modes of a vibrating string.





Returning now to the general motion of the string, it turns out that
any possible motion can always be analyzed by asserting that more than
one mode is operating at the same time. In fact, for general motion an
infinite number of modes must be excited at the same time. To get some
idea of this, let us illustrate what happens when there are two modes
oscillating at the same time: Suppose that we have the first mode
oscillating as shown by the sequence of pictures in
Fig. 49–3, which illustrates the deflection of the string
for equally spaced time intervals extending through half a cycle of the
lowest frequency.



[image: -][image: -]
Fig. 49–3. Two modes combine to give a travelling wave.





Now, at the same time, we suppose that there is an oscillation of the
second mode also. Figure 49–3 also shows a sequence of
pictures of this mode, which at the start is 90°[image: -*-] out of phase
with the first mode. This means that at the start it has no
displacement, but the two halves of the string have oppositely
directed velocities. Now we recall a general principle relating to
linear systems: if there are any two solutions, then their sum is also
a solution. Therefore a third possible motion of the string would be a
displacement obtained by adding the two solutions shown in
Fig. 49–3. The result, also shown in the figure, begins to
suggest the idea of a bump running back and forth between the ends of
the string, although with only two modes we cannot make a very good
picture of it; more modes are needed. This result is, in fact, a special
case of a great principle for linear systems:


Any motion at all can be analyzed by assuming that it is the sum
of the motions of all the different modes, combined with appropriate
amplitudes and phases.



The importance of the principle derives from the fact that each mode
is very simple—it is nothing but a sinusoidal motion in time. It is
true that even the general motion of a string is not really very
complicated, but there are other systems, for example the whipping of
an airplane wing, in which the motion is much more
complicated. Nevertheless, even with an airplane wing, we find there
is a certain particular way of twisting which has one frequency and
other ways of twisting that have other frequencies. If these modes can
be found, then the complete motion can always be analyzed as a
superposition of harmonic oscillations (except when the whipping is of
such degree that the system can no longer be considered as linear).







49–3 Modes in two dimensions


The next example to be considered is the interesting situation of
modes in two dimensions. Up to this point we have talked only about
one-dimensional situations—a stretched string or sound waves in a
tube. Ultimately we should consider three dimensions, but an easier
step will be that to two dimensions. Consider for definiteness a
rectangular rubber drumhead which is confined so as to have no
displacement anywhere on the rectangular edge, and let the dimensions
of the rectangle be a[image: -*-] and b[image: -*-], as shown in Fig. 49–4. Now
the question is, what are the characteristics of the possible motion? We
can start with the same procedure used for the string. If we had no
confinement at all, we would expect waves travelling along with some
kind of wave motion. For example, (ei ω t) (e−i kx x+i ky y)[image: -*-]
would represent a sine wave travelling in some direction which depends
on the relative values of kx[image: -*-] and ky[image: -*-]. Now how can we make the
x[image: -*-]-axis, that is, the line y=0[image: -*-], a node? Using the ideas developed
for the one-dimensional string, we can imagine another wave represented
by the complex function (−ei ω t) (e−i kx x−i ky y)[image: -*-]. The
superposition of these waves will give zero displacement at y=0[image: -*-]
regardless of the values of x[image: -*-] and t[image: -*-]. (Although these functions are
defined for negative y[image: -*-] where there is no drumhead to vibrate, this can
be ignored, since the displacement is truly zero at y=0[image: -*-].) In this
case we can look upon the second function as the reflected wave.



[image: -][image: -]
Fig. 49–4. Vibrating rectangular plate.





However, we want a nodal line at y=b[image: -*-] as well as at y=0[image: -*-]. How do
we do that? The solution is related to something we did when studying
reflection from crystals. These waves which cancel each other at y=0[image: -*-] will do the same at y=b[image: -*-] only if 2 b sinθ[image: -*-] is an integral
multiple of λ[image: -*-], where θ[image: -*-] is the angle shown in
Fig. 49–4:

[image: -*-][image: -*-]
(49.7)







Now in the same way we can make the y[image: -*-]-axis a nodal line by adding
two more functions −(ei ω t) (e+i kx x+i ky y)[image: -*-]
and +(ei ω t) (e+i kx x−i ky y)[image: -*-], each representing a reflection
of one of the other two waves from the x=0[image: -*-] line. The condition for
a nodal line at x=a[image: -*-] is similar to the one for y=b[image: -*-]. It is that
2 a cosθ[image: -*-] must also be an integral multiple of λ[image: -*-]:

[image: -*-][image: -*-]
(49.8)




Then the final result is that the waves bouncing about in the box
produce a standing-wave pattern, that is, a definite mode.




So we must satisfy the above two conditions if we are to have a
mode. Let us first find the wavelength. This can be obtained by
eliminating the angle θ[image: -*-] from (49.7)
and (49.8) to obtain the wavelength in terms of a[image: -*-], b[image: -*-], n[image: -*-]
and m[image: -*-]. The easiest way to do that is to divide both sides of the
respective equations by 2 b[image: -*-] and 2 a[image: -*-], square them, and add the two
equations together. The result is sin2θ+cos2θ=1[image: -*-]=(n λ/2 a)2+(m λ/2 b)2[image: -*-], which can be solved for λ[image: -*-]:

[image: -*-][image: -*-]
(49.9)




In this way we have determined the wavelength in terms of two integers,
and from the wavelength we immediately get the frequency ω[image: -*-],
because, as we know, the frequency is equal to 2 π c[image: -*-] divided by the
wavelength.




This result is interesting and important enough that we should deduce
it by a purely mathematical analysis instead of by an argument about
the reflections. Let us represent the vibration by a superposition of
four waves chosen so that the four lines x=0[image: -*-], x=a[image: -*-], y=0[image: -*-],
and y=b[image: -*-] are all nodes. In addition we shall require that all waves
have the same frequency, so that the resulting motion will represent a
mode. From our earlier treatment of light reflection we know that
(ei ω t) (e−i kx x+i ky y)[image: -*-] represents a wave travelling in
the direction indicated in Fig. 49–4.
Equation (49.6), that is, k=ω/c[image: -*-], still holds,
provided

[image: -*-][image: -*-]
(49.10)




It is clear from the figure that kx=k cosθ[image: -*-] and ky=k sinθ[image: -*-].




Now our equation for the displacement, say ϕ[image: -*-], of the rectangular
drumhead takes on the grand form



[image: -*-][image: -*-]
(49.11a)





Although this looks rather a mess, the sum of these things now is not
very hard.  The exponentials can be combined to give sine functions,
so that the displacement turns out to be

[image: -*-][image: -*-]
(49.11b)






In other words, it is a sinusoidal oscillation, all right, with a
pattern that is also sinusoidal in both the x[image: -*-]- and the
y[image: -*-]-direction. Our boundary conditions are of course satisfied at x=0[image: -*-] and y=0[image: -*-]. We also want ϕ[image: -*-] to be zero when x=a[image: -*-] and when
y=b[image: -*-]. Therefore we have to put in two other conditions: kx a[image: -*-] must
be an integral multiple of π[image: -*-], and ky b[image: -*-] must be another integral
multiple of π[image: -*-]. Since we have seen that kx=k cosθ[image: -*-]
and ky=k sinθ[image: -*-], we immediately get equations (49.7)
and (49.8) and from these the final result (49.9).




Now let us take as an example a rectangle whose width is twice the height. If we
take a=2 b[image: -*-] and use Eqs. (49.4) and (49.9), we
can calculate the frequencies of all of the modes:

[image: -*-][image: -*-]
(49.12)




Table 49–1 lists a few of the simple modes and also shows their
shape in a qualitative way.





Table 49–1. 



[image: --][image: --]


The most important point to be emphasized about this particular case
is that the frequencies are not multiples of each other, nor are they
multiples of any number. The idea that the natural frequencies are
harmonically related is not generally true. It is not true for a
system of more than one dimension, nor is it true for one-dimensional
systems which are more complicated than a string with uniform density
and tension. A simple example of the latter is a hanging chain in
which the tension is higher at the top than at the bottom. If such a
chain is set in harmonic oscillation, there are various modes and
frequencies, but the frequencies are not simple multiples of any
number, nor are the mode shapes sinusoidal.




The modes of more complicated systems are still more elaborate. For
example, inside the mouth we have a cavity above the vocal cords, and
by moving the tongue and the lips, and so forth, we make an open-ended
pipe or a closed-ended pipe of different diameters and shapes; it is a
terribly complicated resonator, but it is a resonator
nevertheless. Now when one talks with the vocal cords, they are made
to produce some kind of tone. The tone is rather complicated and there
are many sounds coming out, but the cavity of the mouth further
modifies that tone because of the various resonant frequencies of the
cavity. For instance, a singer can sing various vowels, a, or o, or
oo, and so forth, at the same pitch, but they sound different because
the various harmonics are in resonance in this cavity to different
degrees. The very great importance of the resonant frequencies of a
cavity in modifying the voice sounds can be demonstrated by a simple
experiment. Since the speed of sound goes as the reciprocal of the
square root of the density, the speed of sound may be varied by using
different gases. If one uses helium instead of air, so that the
density is lower, the speed of sound is much higher, and all the
frequencies of a cavity will be raised. Consequently if one fills
one’s lungs with helium before speaking, the character of his
voice
will be drastically altered even though the vocal cords may still be
vibrating at the same frequency.








49–4 Coupled pendulums


Finally we should emphasize that not only do modes exist for
complicated continuous systems, but also for very simple mechanical
systems. A good example is the system of two coupled pendulums
discussed in the preceding chapter. In that chapter it was shown that
the motion could be analyzed as a superposition of two harmonic
motions with different frequencies. So even this system can be
analyzed in terms of harmonic motions or modes. The string has an
infinite number of modes and the two-dimensional surface also has an
infinite number of modes. In a sense it is a double infinity, if we
know how to count infinities. But a simple mechanical thing which has
only two degrees of freedom, and requires only two variables to
describe it, has only two modes.



[image: -][image: -]
Fig. 49–5. Two coupled pendulums.





Let us make a mathematical analysis of these two modes for the case
where the pendulums are of equal length. Let the displacement of one
be x[image: -*-], and the displacement of the other be y[image: -*-], as shown in
Fig. 49–5. Without a spring, the force on the first mass is
proportional to the displacement of that mass, because of gravity. There
would be, if there were no spring, a certain natural
frequency ω0[image: -*-] for this one alone. The equation of motion without
a spring would be

[image: -*-][image: -*-]
(49.13)




The other pendulum would swing in the same way if there were no
spring. In addition to the force of restoration due to gravitation,
there is an additional force pulling the first mass. That force
depends upon the excess distance of x[image: -*-] over y[image: -*-] and is proportional
to that difference, so it is some constant which depends on the
geometry, times (x−y)[image: -*-]. The same force in reverse sense acts on the
second mass. The equations of motion that have to be solved are
therefore



[image: -*-][image: -*-]
(49.14)










In order to find a motion in which both of the masses move at the same
frequency, we must determine how much each mass moves. In other words,
pendulum x[image: -*-] and pendulum y[image: -*-] will oscillate at the same frequency,
but their amplitudes must have certain values, A[image: -*-] and B[image: -*-], whose
relation is fixed. Let us try this solution:

[image: -*-][image: -*-]
(49.15)




If these are substituted in Eqs. (49.14) and similar
terms are collected, the results are

[image: -*-][image: -*-]
(49.16)




The equations as written have had the common factor ei ω t[image: -*-]
removed and have been divided by m[image: -*-].




Now we see that we have two equations for what looks like two
unknowns. But there really are not two unknowns, because the
whole size of the motion is something that we cannot determine from
these equations. The above equations can determine only the
ratio of A[image: -*-] to B[image: -*-], but they must both give the same
ratio. The necessity for both of these equations to be consistent is
a requirement that the frequency be something very special.




In this particular case this can be worked out rather easily. If the
two equations are multiplied together, the result is

[image: -*-][image: -*-]
(49.17)




The term A B[image: -*-] can be removed from both sides unless A[image: -*-] and B[image: -*-] are
zero, which means there is no motion at all. If there is motion, then
the other terms must be equal, giving a quadratic equation to
solve. The result is that there are two possible frequencies:

[image: -*-][image: -*-]
(49.18)




Furthermore, if these values of frequency are substituted back into
Eq. (49.16), we find that for the first frequency A=B[image: -*-], and for the second frequency A=−B[image: -*-]. These are the “mode
shapes,” as can be readily verified by experiment.




It is clear that in the first mode, where A=B[image: -*-], the spring is never
stretched, and both masses oscillate at the frequency ω0[image: -*-], as
though the spring were absent. In the other solution, where A=−B[image: -*-],
the spring contributes a restoring force and raises the frequency. A
more interesting case results if the pendulums have different
lengths. The analysis is very similar to that given above, and is left
as an exercise for the reader.







49–5 Linear systems


Now let us summarize the ideas discussed above, which are all aspects
of what is probably the most general and wonderful principle of
mathematical physics. If we have a linear system whose character is
independent of the time, then the motion does not have to have any
particular simplicity, and in fact may be exceedingly complex, but
there are very special motions, usually a series of special motions,
in which the whole pattern of motion varies exponentially with the
time. For the vibrating systems that we are talking about now, the
exponential is imaginary, and instead of saying “exponentially” we
might prefer to say “sinusoidally” with time. However, one can be
more general and say that the motions will vary exponentially with the
time in very special modes, with very special shapes. The most general
motion of the system can always be represented as a superposition of
motions involving each of the different exponentials.




This is worth stating again for the case of sinusoidal motion: a
linear system need not be moving in a purely sinusoidal motion, i.e.,
at a definite single frequency, but no matter how it does move, this
motion can be represented as a superposition of pure sinusoidal
motions. The frequency of each of these motions is a characteristic of
the system, and the pattern or waveform of each motion is also a
characteristic of the system. The general motion in any such system
can be characterized by giving the strength and the phase of each of
these modes, and adding them all together. Another way of saying this
is that any linear vibrating system is equivalent to a set of
independent harmonic oscillators, with the natural frequencies
corresponding to the modes.




We conclude this chapter by remarking on the connection of modes with
quantum mechanics. In quantum mechanics the vibrating object, or the
thing that varies in space, is the amplitude of a probability function
that gives the probability of finding an electron, or system of
electrons, in a given configuration. This amplitude function can vary
in space and time, and satisfies, in fact, a linear equation.  But in
quantum mechanics there is a transformation, in that what we call
frequency of the probability amplitude is equal, in the classical
idea, to energy. Therefore we can translate the principle stated above
to this case by taking the word frequency and replacing it with
energy. It becomes something like this: a quantum-mechanical
system, for example an atom, need not have a definite energy, just as
a simple mechanical system does not have to have a definite frequency;
but no matter how the system behaves, its behavior can always be
represented as a superposition of states of definite energy. The
energy of each state is a characteristic of the atom, and so is the
pattern of amplitude which determines the probability of finding
particles in different places. The general motion can be described by
giving the amplitude of each of these different energy states. This is
the origin of energy levels in quantum mechanics. Since quantum
mechanics is represented by waves, in the circumstance in which the
electron does not have enough energy to ultimately escape from the
proton, they are confined waves. Like the confined waves of a
string, there are definite frequencies for the solution of the wave
equation for quantum mechanics. The quantum-mechanical interpretation
is that these are definite energies. Therefore a
quantum-mechanical system, because it is represented by waves, can
have definite states of fixed energy; examples are the energy levels
of various atoms.








  
    

50 Harmonics



50–1 Musical tones


Pythagoras is said
to have discovered the fact that two similar strings under the same
tension and differing only in length, when sounded together give an
effect that is pleasant to the ear if the lengths of the strings
are in the ratio of two small integers. If the lengths are as one is to
two, they then correspond to the octave in music. If the lengths are as
two is to three, they correspond to the interval between C[image: -*-] and G[image: -*-],
which is called a fifth. These intervals are generally accepted as
“pleasant” sounding chords.




Pythagoras was so impressed by
this discovery that he made it the basis of a school—Pythagoreans they
were called—which held mystic beliefs in the great powers of numbers.
It was believed that something similar would be found out about the
planets—or “spheres.” We sometimes hear the expression: “the music
of the spheres.” The idea was that there would be some numerical
relationships between the orbits of the planets or between other things
in nature. People usually think that this is just a kind of superstition
held by the Greeks. But is it so different from our own scientific
interest in quantitative relationships?
Pythagoras’ discovery was
the first example, outside geometry,
of any numerical relationship in nature. It must have been very
surprising to suddenly discover that there was a fact of nature
that involved a simple numerical relationship. Simple measurements of
lengths gave a prediction about something which had no apparent
connection to geometry—the production of pleasant sounds. This
discovery led to the extension that perhaps a good tool for
understanding nature would be arithmetic and mathematical analysis. The
results of modern science justify that point of view.




Pythagoras could only have made
his discovery by making an experimental observation. Yet this important
aspect does not seem to have impressed him. If it had, physics might
have had a much earlier start. (It is always easy to look back at what
someone else has done and to decide what he should have done!)




We might remark on a third aspect of this very interesting discovery:
that the discovery had to do with two notes that sound pleasant
to the ear. We may question whether we are any better off than
Pythagoras in understanding
why only certain sounds are pleasant to our ear. The general
theory of aesthetics is probably no further advanced now than in the
time of Pythagoras. In this one
discovery of the Greeks, there are the three aspects: experiment,
mathematical relationships, and aesthetics. Physics has made great
progress on only the first two parts. This chapter will deal with our
present-day understanding of the discovery of
Pythagoras.




Among the sounds that we hear, there is one kind that we call
noise. Noise corresponds to a sort of irregular vibration of
the eardrum that is produced by the irregular vibration of some object
in the neighborhood. If we make a diagram to indicate the pressure of
the air on the eardrum (and, therefore, the displacement of the drum)
as a function of time, the graph which corresponds to a noise might
look like that shown in Fig. 50–1(a). (Such a noise
might correspond roughly to the sound of a stamped foot.) The sound of
music has a different character. Music is characterized by
the
presence of more-or-less sustained tones—or musical
“notes.” (Musical instruments may make noises as well!) The tone may
last for a relatively short time, as when a key is pressed on a piano,
or it may be sustained almost indefinitely, as when a flute player
holds a long note.



[image: -][image: -][image: -][image: -]
Fig. 50–1. Pressure as a function of time for (a) a noise, and (b) a
musical tone.





What is the special character of a musical note from the point of view
of the pressure in the air? A musical note differs from a noise in
that there is a periodicity in its graph. There is some uneven shape
to the variation of the air pressure with time, and the shape repeats
itself over and over again. An example of a pressure-time function
that would correspond to a musical note is shown in
Fig. 50–1(b).




Musicians will usually speak of a musical tone in terms of three
characteristics: the loudness, the pitch, and the “quality.” The
“loudness” is found to correspond to the magnitude of the pressure
changes. The “pitch” corresponds to the period of time for one
repetition of the basic pressure function. (“Low” notes have longer
periods than “high” notes.) The “quality” of a tone has to do with
the differences we may still be able to hear between two notes of the
same loudness and pitch. An oboe, a violin, or a soprano are still
distinguishable even when they sound notes of the same pitch. The
quality has to do with the structure of the repeating pattern.




Let us consider, for a moment, the sound produced by a vibrating
string. If we pluck the string, by pulling it to one side and
releasing it, the subsequent motion will be determined by the motions
of the waves we have produced. We know that these waves will travel in
both directions, and will be reflected at the ends. They will slosh
back and forth for a long time. No matter how complicated the wave is,
however, it will repeat itself. The period of repetition is just the
time T[image: -*-] required for the wave to travel two full lengths of the
string. For that is just the time required for any wave, once started,
to reflect off each end and return to its starting position, and be
proceeding in the original direction. The time is the same for waves
which start out in either direction. Each point on the string will,
then, return to its starting position after one period, and again one
period later, etc. The sound wave produced must also have the same
repetition. We see why a plucked string produces a musical tone.







50–2 The Fourier series


We have discussed in the preceding chapter another way of looking at
the motion of a vibrating system. We have seen that a string has
various natural modes of oscillation, and that any particular kind of
vibration that may be set up by the starting conditions can be thought
of as a combination—in suitable proportions—of several of the
natural modes, oscillating together. For a string we found that the
normal modes of oscillation had the frequencies ω0[image: -*-], 2 ω0[image: -*-],
3 ω0[image: -*-], … The most general motion of a
plucked string, therefore, is composed of the sum of a sinusoidal
oscillation at the fundamental frequency ω0[image: -*-], another at the
second harmonic frequency 2 ω0[image: -*-], another at the third
harmonic 3 ω0[image: -*-], etc. Now the fundamental mode repeats itself every
period T1=2 π/ω0[image: -*-]. The second harmonic mode repeats itself
every T2=2 π/2 ω0[image: -*-]. It also repeats itself every T1=2 T2[image: -*-], after two of its periods. Similarly, the third harmonic
mode repeats itself after a time T1[image: -*-] which is 3 of its periods. We
see again why a plucked string repeats its whole pattern with a
periodicity of T1[image: -*-]. It produces a musical tone.




We have been talking about the motion of the string. But the
sound, which is the motion of the air, is produced by the
motion of the string, so its vibrations too must be composed of the
same harmonics—though we are no longer thinking about the normal
modes of the air. Also, the relative strength of the harmonics may be
different in the air than in the string, particularly if the string is
“coupled” to the air via a sounding board. The efficiency of the
coupling to the air is different for different harmonics.




If we let f (t)[image: -*-] represent the air pressure as a function of time for
a musical tone [such as that in Fig. 50–1(b)], then we
expect that f (t)[image: -*-] can be written as the sum of a number of simple
harmonic functions of time—like cosω t[image: -*-]—for each of the
various harmonic frequencies. If the period of the vibration is T[image: -*-],
the fundamental angular frequency will be ω=2 π/T[image: -*-], and the
harmonics will be 2 ω[image: -*-], 3 ω[image: -*-], etc.




There is one slight complication. For each frequency we may expect
that the starting phases will not necessarily be the same for all
frequencies. We should, therefore, use functions like cos(ω t+ϕ)[image: -*-]. It is, however, simpler to use instead both the sine and
cosine functions for each frequency. We recall that

[image: -*-][image: -*-]
(50.1)




and since ϕ[image: -*-] is a constant, any sinusoidal oscillation at
the frequency ω[image: -*-] can be written as the sum of a term
with cosω t[image: -*-] and another term with sinω t[image: -*-].




We conclude, then, that any function f (t)[image: -*-] that is periodic
with the period T[image: -*-] can be written mathematically as

[image: -*-][image: -*-]
(50.2)




where ω=2 π/T[image: -*-] and the a[image: -*-]’s and b[image: -*-]’s are numerical
constants which tell us how much of each component oscillation is
present in the oscillation f (t)[image: -*-]. We have added the
“zero-frequency” term a0[image: -*-] so that our formula will be completely
general, although it is usually zero for a musical tone. It represents
a shift of the average value (that is, the “zero” level) of the
sound pressure. With it our formula can take care of any case. The
equality of Eq. (50.2) is represented schematically in
Fig. 50–2. (The amplitudes, an[image: -*-] and bn[image: -*-], of the harmonic
functions must be suitably chosen. They are shown schematically and
without any particular scale in the figure.) The
series (50.2) is called the Fourier series for f (t)[image: -*-].



[image: -][image: -]
Fig. 50–2. Any periodic function f (t)[image: -*-] is equal to a sum of simple
harmonic functions.





We have said that any periodic function can be made up in this
way. We should correct that and say that any sound wave, or any
function we ordinarily encounter in physics, can be made up of such a
sum. The mathematicians can invent functions which cannot be made up
of simple harmonic functions—for instance, a function that has a
“reverse twist” so that it has two values for some values of t[image: -*-]! We
need not worry about such functions here.







50–3 Quality and consonance


Now we are able to describe what it is that determines the “quality”
of a musical tone. It is the relative amounts of the various
harmonics—the values of the a[image: -*-]’s and b[image: -*-]’s. A tone with only the
first harmonic is a “pure” tone. A tone with many strong harmonics
is a “rich” tone. A violin produces a different proportion of
harmonics than does an oboe.




We can “manufacture” various musical tones if we connect several
“oscillators” to a loudspeaker. (An oscillator usually produces a
nearly pure simple harmonic function.) We should choose the
frequencies of the oscillators to be ω[image: -*-], 2 ω[image: -*-],
3 ω[image: -*-], etc. Then by adjusting the volume control on each oscillator, we can
add in any amount we wish of each harmonic—thereby producing tones
of different quality. An electric organ works in much this way. The
“keys” select the frequency of the fundamental oscillator and the
“stops” are switches that control the relative proportions of the
harmonics. By throwing these switches, the organ can be made to sound
like a flute, or an oboe, or a violin.




It is interesting that to produce such “artificial” tones we need
only one oscillator for each frequency—we do not need separate
oscillators for the sine and cosine components. The ear is not very
sensitive to the relative phases of the harmonics. It pays attention
mainly to the total of the sine and cosine parts of each
frequency. Our analysis is more accurate than is necessary to explain
the subjective aspect of music. The response of a microphone or
other physical instrument does depend on the phases, however, and our
complete analysis may be needed to treat such cases.




The “quality” of a spoken sound also determines the vowel sounds
that we recognize in speech. The shape of the mouth determines the
frequencies of the natural modes of vibration of the air in the
mouth. Some of these modes are set into vibration by the sound waves
from the vocal chords. In this way, the amplitudes of some of the
harmonics of the sound are increased with respect to others. When we
change the shape of our mouth, harmonics of different frequencies are
given preference. These effects account for the difference between an
“e–e–e” sound and an “a–a–a” sound.




We all know that a particular vowel sound—say “e–e–e”—still
“sounds like” the same vowel whether we say (or sing) it at a high
or a low pitch. From the mechanism we describe, we would expect that
particular frequencies are emphasized when we shape our mouth
for an “e–e–e,” and that they do not change as we change
the pitch of our voice. So the relation of the important harmonics to
the fundamental—that is, the “quality”—changes as we change
pitch. Apparently the mechanism by which we recognize speech is not
based on specific harmonic relationships.




What should we say now about Pythagoras’ discovery? We understand that
two similar strings with lengths in the ratio of 2 to 3 will have
fundamental frequencies in the ratio 3 to 2. But why should they
“sound pleasant” together? Perhaps we should take our clue from the
frequencies of the harmonics. The second harmonic of the lower shorter
string will have the same frequency as the third harmonic of the
longer string. (It is easy to show—or to believe—that a plucked
string produces strongly the several lowest harmonics.)




Perhaps we should make the following rules. Notes sound consonant when
they have harmonics with the same frequency. Notes sound dissonant if
their upper harmonics have frequencies near to each other but far
enough apart that there are rapid beats between the two. Why beats do
not sound pleasant, and why unison of the upper harmonics does sound
pleasant, is something that we do not know how to define or
describe. We cannot say from this knowledge of what sounds
good, what ought, for example, to smell good. In other words,
our understanding of it is not anything more general than the
statement that when they are in unison they sound good. It does not
permit us to deduce anything more than the properties of concordance
in music.




It is easy to check on the harmonic relationships we have described by
some simple experiments with a piano. Let us label the 3 successive
C’s near the middle of the keyboard by C, C′[image: -*-], and C′′[image: -*-], and the G’s
just above by G, G′[image: -*-], and G′′[image: -*-]. Then the fundamentals will have
relative frequencies as follows:

[image: -*-][image: -*-]


These harmonic relationships can be demonstrated in the following way:
Suppose we press C′[image: -*-] slowly—so that it does not sound but we
cause the damper to be lifted. If we then sound C, it will produce its
own fundamental and some second harmonic. The second harmonic
will set the strings of C′[image: -*-] into vibration. If we now release C
(keeping C′[image: -*-] pressed) the damper will stop the vibration of the C
strings, and we can hear (softly) the note C′[image: -*-] as it dies away. In a
similar way, the third harmonic of C can cause a vibration of G′[image: -*-]. Or
the sixth of C (now getting much weaker) can set up a vibration in the
fundamental of G′′[image: -*-].




A somewhat different result is obtained if we press G quietly and then
sound C′[image: -*-]. The third harmonic of C′[image: -*-] will correspond to the fourth
harmonic of G, so only the fourth harmonic of G will be
excited. We can hear (if we listen closely) the sound of G′′[image: -*-], which
is two octaves above the G we have pressed! It is easy to think up
many more combinations for this game.




We may remark in passing that the major scale can be defined just by
the condition that the three major chords (F–A–C); (C–E–G); and
(G–B–D) each represent tone sequences with the frequency
ratio (4:5:6)[image: -*-]. These ratios—plus the fact that an octave (C–C′[image: -*-],
B–B′[image: -*-], etc.)  has the ratio 1:2[image: -*-]—determine the whole scale for
the “ideal” case, or for what is called “just intonation.”
Keyboard instruments like the piano are not usually tuned in
this manner, but a little “fudging” is done so that the frequencies
are approximately correct for all possible starting tones. For
this tuning, which is called “tempered,” the octave (still 1:2[image: -*-]) is
divided into 12[image: -*-] equal intervals for which the frequency ratio
is (2)1/12[image: -*-]. A fifth no longer has the frequency ratio 3/2[image: -*-], but
27/12=1.499[image: -*-], which is apparently close enough for most ears.




We have stated a rule for consonance in terms of the coincidence of
harmonics. Is this coincidence perhaps the reason that two
notes are consonant? One worker has claimed that two pure
tones—tones carefully manufactured to be free of harmonics—do not
give the sensations of consonance or dissonance as the relative
frequencies are placed at or near the expected ratios. (Such
experiments are difficult because it is difficult to manufacture pure
tones, for reasons that we shall see later.) We cannot still be
certain whether the ear is matching harmonics or doing arithmetic when
we decide that we like a sound.







50–4 The Fourier coefficients


Let us return now to the idea that any note—that is, a
periodic sound—can be represented by a suitable combination
of harmonics. We would like to show how we can find out what amount of
each harmonic is required. It is, of course, easy to compute f (t)[image: -*-],
using Eq. (50.2), if we are given all the
coefficients a[image: -*-] and b[image: -*-]. The question now is, if we are given f (t)[image: -*-]
how can we know what the coefficients of the various harmonic terms
should be? (It is easy to make a cake from a recipe; but can we write
down the recipe if we are given a cake?)




Fourier discovered that it was
not really very difficult. The term a0[image: -*-] is certainly easy. We have
already said that it is just the average value of f (t)[image: -*-] over one period
(from t=0[image: -*-] to t=T[image: -*-]). We can easily see that this is indeed so. The
average value of a sine or cosine function over one period is zero. Over
two, or three, or any whole number of periods, it is also zero. So the
average value of all of the terms on the right-hand side of
Eq. (50.2) is zero, except for a0[image: -*-]. (Recall that we must
choose ω=2 π/T[image: -*-].)




Now the average of a sum is the sum of the averages. So the average
of f (t)[image: -*-] is just the average of a0[image: -*-]. But a0[image: -*-] is a constant, so
its average is just the same as its value. Recalling the definition of
an average, we have

[image: -*-][image: -*-]
(50.3)







The other coefficients are only a little more difficult. To find them we
can use a trick discovered by
Fourier.
Suppose we multiply both sides of Eq. (50.2)
by some harmonic function—say by cos7 ω t[image: -*-]. We have then



[image: -*-][image: -*-]
(50.4)





Now let us average both sides. The average of a0 cos7 ω t[image: -*-] over the time T[image: -*-] is proportional to the average of a cosine over
7 whole periods. But that is just zero. The average of almost
all of the rest of the terms is also zero. Let us look at the
a1[image: -*-] term. We know, in general, that

[image: -*-][image: -*-]
(50.5)




The a1[image: -*-] term becomes

[image: -*-][image: -*-]
(50.6)




We thus have two cosine terms, one with 8 full periods in T[image: -*-] and
the other with 6. They both average to zero. The average of
the a1[image: -*-] term is therefore zero.




For the a2[image: -*-] term, we would find a2 cos9 ω t[image: -*-]
and a2 cos5 ω t[image: -*-], each of which also averages to zero. For the
a9[image: -*-] term, we would find cos16 ω t[image: -*-] and cos(−2 ω t)[image: -*-]. But
cos(−2 ω t)[image: -*-] is the same as cos2 ω t[image: -*-], so both of these
have zero averages. It is clear that all of the a[image: -*-] terms will
have a zero average except one. And that one is the
a7[image: -*-] term. For this one we have

[image: -*-][image: -*-]
(50.7)




The cosine of zero is one, and its average, of course, is one. So we
have the result that the average of all of the a[image: -*-] terms of
Eq. (50.4) equals [image: \tfrac{1}{2}a_7][image: \tfrac{1}{2}a_7].




The b[image: -*-] terms are even easier. When we multiply by any cosine term
like cosn ω t[image: -*-], we can show by the same method that all
of the b[image: -*-] terms have the average value zero.




We see that Fourier’s
“trick” has acted like a sieve. When we multiply by cos7 ω t[image: -*-]
and average, all terms drop out except a7[image: -*-], and we find that

[image: -*-][image: -*-]
(50.8)




or

[image: -*-][image: -*-]
(50.9)







We shall leave it for the reader to show that the coefficient b7[image: -*-]
can be obtained by multiplying Eq. (50.2) by sin7 ω t[image: -*-] and averaging both sides. The result is

[image: -*-][image: -*-]
(50.10)







Now what is true for 7 we expect is true for any integer. So we can
summarize our proof and result in the following more elegant
mathematical form. If m[image: -*-] and n[image: -*-] are integers other than zero, and if
ω=2 π/T[image: -*-], then




[image: -*-][image: -*-]
(50.11)




[image: -*-][image: -*-]
(50.12)




[image: -*-][image: -*-]
(50.13)

(50.14)

(50.15)

(50.16)












In earlier chapters it was convenient to use the exponential notation
for representing simple harmonic motion. Instead of cosω t[image: -*-] we
used Reei ω t[image: -*-], the real part of the exponential
function. We have used cosine and sine functions in this chapter
because it made the derivations perhaps a little clearer. Our final
result of Eq. (50.13) can, however, be written in the
compact form

[image: -*-][image: -*-]
(50.17)




where [image: \hat{a}_n][image: \hat{a}_n] is the complex number an−i bn[image: -*-] (with b0=0[image: -*-]). If we wish to use the same notation throughout, we can write also

[image: -*-][image: -*-]
(50.18)







We now know how to “analyze” a periodic wave into its harmonic
components. The procedure is called Fourier
analysis, and the separate terms are called
Fourier components. We have not
shown, however, that once we find all of the Fourier
components and add them together, we do
indeed get back our f (t)[image: -*-]. The mathematicians have shown, for a wide
class of functions, in fact for all that are of interest to
physicists, that if we can do the integrals we will get back
f (t)[image: -*-]. There is one minor exception. If the function f (t)[image: -*-] is
discontinuous, i.e., if it jumps suddenly from one value to another,
the Fourier sum will give a value at the
breakpoint halfway between the upper and lower values at the
discontinuity. So if we have the strange function f (t)=0[image: -*-], 0≤t<t0[image: -*-], and f (t)=1[image: -*-] for t0≤t≤T[image: -*-], the Fourier
sum will give the right value everywhere
except at t0[image: -*-], where it will have the value [image: \tfrac{1}{2}][image: \tfrac{1}{2}]
instead of 1. It is rather unphysical anyway to insist that a
function should be zero up to t0[image: -*-], but 1 right at
t0[image: -*-]. So perhaps we should make the “rule” for physicists that any
discontinuous function (which can only be a simplification of a
real physical function) should be defined with halfway values
at the discontinuities.  Then any such function—with any finite
number of such jumps—as well as all other physically interesting
functions, are given correctly by the Fourier sum.



[image: -][image: -]
Fig. 50–3. Square-wave function.





As an exercise, we suggest that the reader determine the Fourier
series for the function shown in
Fig. 50–3. Since the function cannot be written in an
explicit algebraic form, you will not be able to do the integrals from
zero to T[image: -*-] in the usual way. The integrals are easy, however, if we
separate them into two parts: the integral from zero to T/2[image: -*-] (over
which f (t)=1[image: -*-]) and the integral from T/2[image: -*-] to T[image: -*-] (over which f (t)=−1[image: -*-]). The result should be

[image: -*-][image: -*-]
(50.19)




where ω=2 π/T[image: -*-]. We thus find that our square wave (with the
particular phase chosen) has only odd harmonics, and their amplitudes
are in inverse proportion to their frequencies.




Let us check that Eq. (50.19) does indeed give us back
f (t)[image: -*-] for some value of t[image: -*-]. Let us choose t=T/4[image: -*-], or ω t=π/2[image: -*-]. We have

[image: -*-][image: -*-]
(50.20)

(50.21)




The series1 has the value π/4[image: -*-], and we find that f (t)=1[image: -*-].







50–5 The energy theorem


The energy in a wave is proportional to the square of its
amplitude. For a wave of complex shape, the energy in one period will
be proportional to [image: \int_0^Tf^2(t)\,dt][image: \int_0^Tf^2(t)\,dt]. We can also relate this
energy to the Fourier coefficients. We
write



[image: -*-][image: -*-]
(50.22)





When we expand the square of the bracketed term we will get all possible cross
terms, such as a5 cos5 ω t⋅a7 cos7 ω t[image: -*-] and a5 cos5 ω t⋅b7 sin7 ω t[image: -*-]. 
We have shown above,
however, [Eqs. (50.11) and (50.12)] that the
integrals of all such terms over one period is zero.  We have left only the
square terms like [image: a_5^2\cos^2 5\omega t][image: a_5^2\cos^2 5\omega t]. The integral of any cosine squared or
sine squared over one period is equal to T/2[image: -*-], so we get



[image: -*-][image: -*-]
(50.23)





This equation is called the “energy theorem,” and says that the total energy
in a wave is just the sum of the energies in all of the Fourier components. For
example, applying this theorem to the series (50.19), since [f (t)]2=1[image: -*-] we get

[image: -*-][image: -*-]


so we learn that the sum of the squares of the reciprocals of the odd integers
is π2/8[image: -*-]. In a similar way, by first obtaining the Fourier series for the
function f (t)=(t−T/2)2[image: -*-] and using the energy theorem, we can prove that 1+1/24+1/34+⋯[image: -*-] is π4/90[image: -*-], a result we needed in
Chapter 45.







50–6 Nonlinear responses

[image: -][image: -][image: -][image: -]
Fig. 50–4. Linear and nonlinear responses.





Finally, in the theory of harmonics there is an important phenomenon
which should be remarked upon because of its practical
importance—that of nonlinear effects. In all the systems that we
have been considering so far, we have supposed that everything was
linear, that the responses to forces, say the displacements or the
accelerations, were always proportional to the forces. Or that the
currents in the circuits were proportional to the voltages, and so
on. We now wish to consider cases where there is not a strict
proportionality. We think, at the moment, of some device in which the
response, which we will call xout[image: -*-] at the time t[image: -*-], is
determined by the input xin[image: -*-] at the time t[image: -*-]. For example,
xin[image: -*-] might be the force and xout[image: -*-] might be the
displacement. Or xin[image: -*-] might be the current
and xout[image: -*-] the voltage. If the device is linear, we would have

[image: -*-][image: -*-]
(50.24)




where K[image: -*-] is a constant independent of t[image: -*-] and
of xin[image: -*-]. Suppose, however, that the device is nearly, but not
exactly, linear, so that we can write

[image: -*-][image: -*-]
(50.25)




where ϵ[image: -*-] is small in comparison with unity. Such linear and
nonlinear responses are shown in the graphs of Fig. 50–4.



[image: -][image: -]
Fig. 50–5. The response of a nonlinear device to the input cosω t[image: -*-]. A linear response is shown for comparison.





Nonlinear responses have several important practical consequences. We
shall discuss some of them now. First we consider what happens if we
apply a pure tone at the input. We let xin=cosω t[image: -*-]. If we plot xout[image: -*-] as a function of time we get the solid
curve shown in Fig. 50–5. The dashed curve gives, for
comparison, the response of a linear system. We see that the output is
no longer a cosine function. It is more peaked at the top and flatter
at the bottom. We say that the output is distorted. We know,
however, that such a wave is no longer a pure tone, that it will have
harmonics. We can find what the harmonics are. Using xin=cosω t[image: -*-] with Eq. (50.25), we have

[image: -*-][image: -*-]
(50.26)




From the equality [image: \cos^2\theta = \tfrac{1}{2}(1 + \cos2\theta)][image: \cos^2\theta = \tfrac{1}{2}(1 + \cos2\theta)], we
have

[image: -*-][image: -*-]
(50.27)




The output has not only a component at the fundamental frequency, that
was present at the input, but also has some of its second
harmonic. There has also appeared at the output a constant
term K (ϵ/2)[image: -*-], which corresponds to the shift of the average value,
shown in Fig. 50–5. The process of producing a shift of
the average value is called rectification.




A nonlinear response will rectify and will produce harmonics of the
frequencies at its input. Although the nonlinearity we assumed
produced only second harmonics, nonlinearities of higher order—those
which have terms like [image: x_{\text{in}}^3][image: x_{\text{in}}^3] and [image: x_{\text{in}}^4][image: x_{\text{in}}^4], for
example—will produce harmonics higher than the second.




Another effect which results from a nonlinear response is
modulation. If our input function contains two (or more) pure
tones, the output will have not only their harmonics, but still other
frequency components. Let xin=A cosω1 t+B cosω2 t[image: -*-], where now ω1[image: -*-] and ω2[image: -*-] are not
intended to be in a harmonic relation. In addition to the linear term
(which is K[image: -*-] times the input) we shall have a component in the output
given by



[image: -*-][image: -*-]
(50.28)

(50.29)





The first two terms in the parentheses of Eq. (50.29) are
just those which gave the constant terms and second harmonic terms we
found above. The last term is new.





We can look at this new “cross term” A B cosω1 t cosω2 t[image: -*-]
in two ways. First, if the two frequencies are widely different (for
example, if ω1[image: -*-] is much greater than ω2[image: -*-]) we can
consider that the cross term represents a cosine oscillation of
varying amplitude. That is, we can think of the factors in this way:

[image: -*-][image: -*-]
(50.30)




with

[image: -*-][image: -*-]
(50.31)




We say that the amplitude of cosω1 t[image: -*-] is modulated with the
frequency ω2[image: -*-].




Alternatively, we can write the cross term in another way:



[image: -*-][image: -*-]
(50.32)




We would now say that two new components have been produced,
one at the sum frequency (ω1+ω2)[image: -*-], another at
the difference frequency (ω1−ω2)[image: -*-].




We have two different, but equivalent, ways of looking at the same
result. In the special case that ω1≫ω2[image: -*-], we can
relate these two different views by remarking that since (ω1+ω2)[image: -*-] and (ω1−ω2)[image: -*-] are near to each other we would
expect to observe beats between them. But these beats have just the
effect of modulating the amplitude of the average
frequency ω1[image: -*-] by one-half the difference
frequency 2 ω2[image: -*-]. We see, then, why the two descriptions are equivalent.




In summary, we have found that a nonlinear response produces several
effects: rectification, generation of harmonics, and modulation, or
the generation of components with sum and difference frequencies.




We should notice that all these effects (Eq. 50.29) are
proportional not only to the nonlinearity coefficient ϵ[image: -*-], but
also to the product of two amplitudes—either A2[image: -*-], B2[image: -*-],
or A B[image: -*-]. We expect these effects to be much more important for
strong signals than for weak ones.




The effects we have been describing have many practical
applications. First, with regard to sound, it is believed that the ear
is nonlinear. This is believed to account for the fact that with loud
sounds we have the sensation that we hear harmonics and also
sum and difference frequencies even if the sound waves contain only
pure tones.




The components which are used in sound-reproducing
equipment—amplifiers, loudspeakers, etc.—always have some
nonlinearity. They produce distortions in the sound—they generate
harmonics, etc.—which were not present in the original sound. These
new components are heard by the ear and are apparently
objectionable. It is for this reason that “Hi-Fi” equipment is
designed to be as linear as possible. (Why the nonlinearities of the
ear are not “objectionable” in the same way, or how we
even know that the nonlinearity is in the loudspeaker rather
than in the ear is not clear!)




Nonlinearities are quite necessary, and are, in fact,
intentionally made large in certain parts of radio transmitting and
receiving equipment. In an am transmitter the “voice”
signal (with frequencies of some kilocycles per second) is combined
with the “carrier” signal (with a frequency of some megacycles per
second) in a nonlinear circuit called a modulator, to produce
the modulated oscillation that is transmitted. In the receiver, the
components of the received signal are fed to a nonlinear circuit which
combines the sum and difference frequencies of the modulated carrier
to generate again the voice signal.




When we discussed the transmission of light, we assumed that the induced
oscillations of charges were proportional to the electric field of the
light—that the response was linear. That is indeed a very good
approximation. It is only within the last few years that light sources
have been devised (lasers) which produce an intensity of
light strong enough so that nonlinear effects can be observed. It is now
possible to generate harmonics of light frequencies. When a strong red
light passes through a piece of glass, a little bit of blue
light—second harmonic—comes out!





	
  
  The series can be evaluated in the following
way. First we remark that [image: \int_0^x[dx/(1 + x^2)] = \tan^{-1} x][image: \int_0^x[dx/(1 + x^2)] = \tan^{-1} x]. Second, we expand the integrand in a series 1/(1+x2)=1−x2+x4−x6±⋯[image: -*-] We integrate the series term by term (from zero
to x[image: -*-]) to obtain tan−1x=x−x3/3+x5/5−x7/7±⋯[image: -*-]
Setting x=1[image: -*-], we have the stated result, since tan−11=π/4[image: -*-].
  ↩





  
    

51 Waves



51–1 Bow waves


Although we have finished our quantitative analyses of waves, this
added chapter on the subject is intended to give some appreciation,
qualitatively, for various phenomena that are associated with waves,
which are too complicated to analyze in detail here. Since we have
been dealing with waves for several chapters, more properly the
subject might be called “some of the more complex phenomena
associated with waves.”



[image: -][image: -]
Fig. 51–1. The shock wave front lies on a cone with apex at the source
and half-angle θ=sin−1cw/v[image: -*-].





The first topic to be discussed concerns the effects that are produced
by a source of waves which is moving faster than the wave velocity, or
the phase velocity. Let us first consider waves that have a definite
velocity, like sound and light. If we have a source of sound which is
moving faster than the speed of sound, then something like this
happens: Suppose at a given moment a sound wave is generated from the
source at point x1[image: -*-] in Fig. 51–1; then, in the next
moment, as the source moves to x2[image: -*-], the wave from x1[image: -*-] expands by a
radius r1[image: -*-] smaller than the distance that the source moves; and, of
course, another wave starts from x2[image: -*-]. When the sound source has
moved still farther, to x3[image: -*-], and a wave is starting there, the wave
from x2[image: -*-] has now expanded to r2[image: -*-], and the one from x1[image: -*-] has
expanded to r3[image: -*-]. Of course the thing is done continuously, not in
steps, and therefore, we have a series of wave circles with a common
tangent line which goes through the center of the source. We see that
instead of a source generating spherical waves, as it would if it were
standing still, it generates a wavefront which forms a
cone in three dimensions, or a pair of lines in two dimensions. The
angle of the cone is very easy to figure out. In a given amount of time
the source moves a distance, say x3−x1[image: -*-], proportional to v[image: -*-], the
velocity of the source. In the meantime the wavefront has moved
out a
distance r3[image: -*-], proportional to cw[image: -*-], the speed of the wave. Therefore
it is clear that the half-angle of opening has a sine equal to the ratio
of the speed of the waves, divided by the speed of the source, and this
sine has a solution only if cw[image: -*-] is less than v[image: -*-], or the speed of the
object is faster than the speed of the wave:

[image: -*-][image: -*-]
(51.1)







Incidentally, although we implied that it is necessary to have a
source of sound, it turns out, very interestingly, that once
the object is moving faster than the speed of sound, it will
make sound. That is, it is not necessary that it have a certain
tone vibrational character. Any object moving through a medium faster
than the speed at which the medium carries waves will generate waves
on each side, automatically, just from the motion itself. This is
simple in the case of sound, but it also occurs in the case of
light. At first one might think nothing can move faster than the speed
of light. However, light in glass has a phase velocity less than the
speed of light in a vacuum, and it is possible to shoot a charged
particle of very high energy through a block of glass such that the
particle velocity is close to the speed of light in a vacuum, while
the speed of light in the glass may be only [image: \tfrac{2}{3}][image: \tfrac{2}{3}] the speed
of light in the vacuum. A particle moving faster than the speed of
light in the medium will produce a conical wave of light with its apex
at the source, like the wave wake from a boat (which is from the same
effect, as a matter of fact). By measuring the cone angle, we can
determine the speed of the particle. This is used technically to
determine the speeds of particles as one of the methods of determining
their energy in high-energy research. The direction of the light is
all that needs to be measured.




This light is sometimes called
Cherenkov radiation,
because it was first observed by
Cherenkov. How intense this
light should be was analyzed theoretically by
Frank
and Tamm. The
1958 Nobel Prize for physics was awarded jointly to all three for this
work.




[image: -]
Fig. 51–2. A shock wave induced in a gas by a projectile moving faster
than sound.





The corresponding circumstances in the case of sound are illustrated
in Fig. 51–2, which is a photograph of an object moving
through a gas at a speed greater than the speed of sound. The changes
in pressure produce a change in refractive index, and with a suitable
optical system the edges of the waves can be made visible. We see that
the object moving faster than the speed of sound does, indeed, produce
a conical wave. But closer inspection reveals that the surface is
actually curved. It is straight asymptotically, but it is curved near
the apex, and we have now to discuss how that can be, which brings us
to the second topic of this chapter.







51–2 Shock waves


Wave speed often depends on the amplitude, and in the case of sound
the speed depends upon the amplitude in the following way. An object
moving through the air has to move the air out of the way, so the
disturbance produced in this case is some kind of a pressure step,
with the pressure higher behind the wavefront than in the undisturbed
region not yet reached by the wave (running along at the normal speed,
say). But the air that is left behind, after the wavefront passes, has
been compressed adiabatically, and therefore the temperature is
increased. Now the speed of sound increases with the temperature, so
the speed in the region behind the jump is faster than in the air in
front. That means that any other disturbance that is made behind this
step, say by a continuous pushing of the body, or any other
disturbance, will ride faster than the front, the speed increasing
with higher pressure. Figure 51–3 illustrates the
situation, with some little bumps of pressure added to the pressure
contour to aid visualization. We see that the higher pressure regions
at the rear overtake the front as time goes on, until ultimately the
compressional wave develops a sharp front. If the strength is very
high, “ultimately” means right away; if it as rather weak, it takes
a long time; it may be, in fact, that the sound is spreading and dying
out before it has time to do this.



[image: -][image: -]
Fig. 51–3. Wavefront “snapshots” at successive instants in time.





The sounds we make in talking are extremely weak relative to the
atmospheric pressure—only 1 part in a million or so. But for
pressure changes of the order of 1 atmosphere, the wave velocity
increases by about twenty percent, and the wavefront sharpens
up at a
correspondingly high rate. In nature nothing happens infinitely
rapidly, presumably, and what we call a “sharp” front has, actually,
a very slight thickness; it is not infinitely steep. The distances
over which it is varying are of the order of one mean free path, in
which the theory of the wave equation begins to fail because we did
not consider the structure of the gas.





Now, referring again to Fig. 51–2, we see that the
curvature can be understood if we appreciate that the pressures near
the apex are higher than they are farther back, and so the
angle θ[image: -*-] is greater. That is, the curve is the result of the fact that
the speed depends upon the strength of the wave. Therefore the wave
from an atomic bomb explosion travels much faster than the speed of
sound for a while, until it gets so far out that it is weakened to
such an extent from spreading that the pressure bump is small compared
with atmospheric pressure. The speed of the bump then approaches the
speed of sound in the gas into which it is going. (Incidentally, it
always turns out that the speed of the shock is higher than the speed
of sound in the gas ahead, but is lower than the speed of sound in the
gas behind. That is, impulses from the back will arrive at the front,
but the front rides into the medium in which it is going faster than
the normal speed of signals. So one cannot tell, acoustically, that
the shock is coming until it is too late. The light from the bomb
arrives first, but one cannot tell that the shock is coming until it
arrives, because there is no sound signal coming ahead of it.)



[image: -]
Figure 51–4 





This is a very interesting phenomenon, this piling up of waves, and
the main point on which it depends is that after a wave is present,
the speed of the resulting wave should be higher. Another example of
the same phenomenon is the following. Consider water flowing in a long
channel with finite width and finite depth. If a piston, or a wall
across the channel, is moved along the channel fast enough, water
piles up, like snow before a snow plow. Now suppose the situation is
as shown in Fig. 51–4, with a sudden step in water
height somewhere in the channel. It can be demonstrated that long
waves in a channel travel faster in deeper water than they do in
shallow water. Therefore any new bumps or irregularities in energy
supplied by the piston run off forward and pile up at the
front. Again, ultimately what we have is just water with a sharp
front, theoretically. However, as Fig. 51–4 shows, there
are complications. Pictured is a wave coming up a channel; the piston
is at the far right end of the channel. At first it might have
appeared like a well-behaved wave, as one might expect, but farther
along the channel, it has become sharper and sharper until the events
pictured occurred. There is a terrible churning at the surface, as the
pieces of water fall down, but it is essentially a very sharp rise
with no disturbance of the water ahead.




Actually water is much more complicated than sound. However, just to
illustrate a point, we will try to analyze the speed of such a
so-called bore, in a channel. The point here is not that
this is of any basic importance for our purposes—it is not a great
generalization—it is only to illustrate that the laws of mechanics
that we already know are capable of explaining the phenomenon.




Imagine, for a moment, that the water does look something like
Fig. 51–5(a), that water at the higher height h2[image: -*-] is
moving with a velocity v[image: -*-], and that the front is moving with
velocity u[image: -*-] into undisturbed water which is at height h1[image: -*-]. We would like to
determine the speed at which the front moves. In a time Δ t[image: -*-] a
vertical plane initially at x1[image: -*-] moves a distance v Δ t[image: -*-]
to x2[image: -*-], while the front of the wave has moved u Δ t[image: -*-].



[image: -][image: -]
Fig. 51–5. Two cross sections of a bore in a channel, with (b) at an
interval Δ t[image: -*-] later than (a).





Now we apply the equations of conservation of matter and
momentum. First, the former: Per unit channel width, we see that the
amount h2 v Δ t[image: -*-] of matter that has moved past x1[image: -*-] (shown
shaded) is compensated by the other shaded region, which amounts
to (h2−h1) u Δ t[image: -*-]. So, dividing by Δ t[image: -*-], v h2=u (h2−h1)[image: -*-]. That does not yet give us enough, because although we have
h2[image: -*-] and h1[image: -*-], we do not know either u[image: -*-] or v[image: -*-]; we are trying to
get both of them.




Now the next step is to use conservation of momentum. We have not
discussed the problems of water pressure, or anything in
hydrodynamics, but it is clear anyway that the pressure of water at a
given depth is just enough to hold up the column of water above
it. Therefore the pressure of water is equal to ρ[image: -*-], the density of
water, times g[image: -*-], times the depth below the surface. Since the
pressure increases linearly with depth, the average pressure over the
plane at x1[image: -*-], say, is [image: \tfrac{1}{2}\rho gh_2][image: \tfrac{1}{2}\rho gh_2], which is also the
average force per unit width and per unit height pushing the plane
toward x2[image: -*-]. So we multiply by another h2[image: -*-] to get the total force
which is acting on the water pushing from the left. On the other hand,
there is pressure in the water on the right also, exerting an opposite
force on the region in question, which is, by the same kind of
analysis, [image: \tfrac{1}{2}\rho gh_1^2][image: \tfrac{1}{2}\rho gh_1^2]. Now we must balance the forces
against the rate of change of the momentum. Thus we have to figure out
how much more momentum there is in situation (b) in
Fig. 51–5 than there was in (a). We see that the additional
mass that has acquired the speed v[image: -*-] is just ρ h2 u Δ t−ρ h2 v Δ t[image: -*-] (per unit width), and multiplying this by v[image: -*-] gives the
additional momentum to be equated to the impulse F Δ t[image: -*-]:

[image: -*-][image: -*-]


If we eliminate v[image: -*-] from this equation by substituting v h2=u (h2−h1)[image: -*-], already found, and simplify, we get finally that u2=g h2 (h1+h2)/2 h1[image: -*-].




If the height difference is very small, so that h1[image: -*-] and h2[image: -*-] are
nearly equal, this says that the velocity=√g h[image: -*-]. As we will
see later, that is only true provided the wavelength of the wave is
longer than the depth of the channel.




We could also do the analogous thing for sound waves—including the
conservation of internal energy, not the conservation of entropy,
because the shock is irreversible. In fact, if one checks the
conservation of energy in the bore problem, one finds that energy is
not conserved. If the height difference is small, it is almost
perfectly conserved, but as soon as the height difference becomes very
appreciable, there is a net loss of energy. This is manifested as the
falling water and the churning shown in Fig. 51–4.




In shock waves there is a corresponding apparent loss of energy, from
the point of view of adiabatic reactions. The energy in the sound
wave, behind the shock, goes into heating of the gas after shock
passes, corresponding to churning of the water in the bore. In working
it out, three equations for the sound case turn out to be necessary
for solution, and the temperature behind the shock is not the same as
the temperature in front, as we have seen.




If we try to make a bore that is upside down (h2<h1[image: -*-]), then we
find that the energy loss per second is negative. Since energy is not
available from anywhere, that bore cannot then maintain itself; it is
unstable. If we were to start a wave of that sort, it would flatten
out, because the speed dependence on height that resulted in
sharpening in the case we discussed would now have the opposite
effect.







51–3 Waves in solids


The next kind of waves to be discussed are the more complicated waves
in solids. We have already discussed sound waves in gas and in liquid,
and there is a direct analog to a sound wave in a solid. If a sudden
push is applied to a solid, it is compressed. It resists the
compression, and a wave analogous to sound is started. However there
is another kind of wave that is possible in a solid, and which is not
possible in a fluid. If a solid is distorted by pushing it sideways
(called shearing), then it tries to pull itself back. That is
by definition what distinguishes a solid from a liquid: if we distort
a liquid (internally), hold it a minute so that it calms down, and
then let go, it will stay that way, but if we take a solid and push
it, like shearing a piece of “Jello,” and let it go, it flies back
and starts a shear wave, travelling in the same way the compressions travel. In all
cases, the shear wave speed is less than the speed of longitudinal
waves. The shear waves are somewhat more analogous, so far as their
polarizations are concerned, to light waves. Sound has no polarization,
it is just a pressure wave. Light has a characteristic orientation
perpendicular to its direction of travel.




In a solid, the waves are of both kinds. First, there is a compression
wave, analogous to sound, that runs at one speed. If the solid is not
crystalline, then a shear wave polarized in any direction will propagate at a characteristic
speed. (Of course all solids are crystalline, but if we use a block made
up of microcrystals of all orientations, the crystal anisotropies
average out.)





Another interesting question concerning sound waves is the following:
What happens if the wavelength in a solid gets shorter, and shorter,
and shorter? How short can it get? It is interesting that it cannot
get any shorter than the space between the atoms, because if there is
supposed to be a wave in which one point goes up and the next down,
etc., the shortest possible wavelength is clearly the atom spacing. In
terms of the modes of oscillation, we say that there are longitudinal
modes, and transverse modes, long wave modes, short wave modes. As we
consider wavelengths comparable to the spacing between the atoms, then
the speeds are no longer constant; there is a dispersion effect where
the velocity is not independent of the wave number. But, ultimately,
the highest mode of transverse waves would be that in which every atom
is doing the opposite of neighboring atoms.




Now from the point of view of atoms, the situation is like the two
pendulums that we were talking about, for which there are two modes,
one in which they both go together, and the other in which they go
apart. It is possible to analyze the solid waves another way, in terms
of a system of coupled harmonic oscillators, like an enormous number
of pendulums, with the highest mode such that they oscillate
oppositely, and lower modes with different relationships of the
timing.




The shortest wavelengths are so short that they are not usually
available technically. However they are of great interest because, in
the theory of thermodynamics of a solid, the heat properties of a
solid, for example specific heats, can be analyzed in terms of the
properties of the short sound waves. Going to the extreme of sound
waves of ever shorter wavelength, one necessarily comes to the
individual motions of the atoms; the two things are the same
ultimately.




A very interesting example of sound waves in a solid, both
longitudinal and transverse, are the waves that are in the solid
earth. Who makes the noises we do not know, but inside the earth, from
time to time, there are earthquakes—some rock slides past some other
rock. That is like a little noise. So waves like sound waves start out
from such a source very much longer in wavelength than one usually
considers in sound waves, but still they are sound waves, and they
travel around in the earth. The earth is not homogeneous, however, and
the properties, of pressure, density, compressibility, and so on,
change with depth, and therefore the speed varies with depth. Then the
waves do not travel in straight lines—there is a kind of index of
refraction and they go in curves. The longitudinal waves and the
transverse waves have different speeds, so there are different
solutions for the different speeds. Therefore if we place a
seismograph at some location and watch the way the
thing jiggles after there has been an earthquake somewhere else, then we
do not just get an irregular jiggling. We might get a jiggling, and a
quieting down, and then another jiggling—what happens depends upon the
location. If it were close enough, we would first receive longitudinal
waves from the disturbance, and then, a few moments later, transverse
waves, because they travel more slowly. By measuring the time difference
between the two, we can tell how far away the earthquake is, if we know
enough about the speeds and composition of the interior regions
involved.




[image: -][image: -]
Fig. 51–6. Schematic of the earth, showing paths of longitudinal and
transverse sound waves.





An example of the behavior pattern of waves in the earth is shown in
Fig. 51–6. The two kinds of waves are represented by
different symbols. If there were an earthquake at the place marked
“source,” the transverse waves and longitudinal waves would arrive
at different times at the station by the most direct routes, and there
would also be reflections at discontinuities, resulting in other paths
and times. It turns out that there is a core in the earth which does
not carry transverse waves. If the station is opposite the source,
transverse waves still arrive, but the timing is not right. What
happens is that the transverse wave comes to the core, and whenever
the transverse waves come to a surface which is oblique, between two
materials, two new waves are generated, one transverse and one
longitudinal. But inside the core of the earth, a transverse wave is
not propagated (or at least, there is no evidence for it, only for a
longitudinal wave); it comes out again in both forms and comes to the
station.




It is from the behavior of these earthquake waves that it has been
determined that transverse waves cannot be propagated within the inner
circle. This means that the center of the earth is liquid in the sense
that it cannot propagate transverse waves. The only way we know what
is inside the earth is by studying earthquakes. So, by using a large
number of observations of many earthquakes at different stations, the
details have been worked out—the speed, the curves, etc. are all
known. We know what the speeds of various kinds of waves are at every
depth. Knowing that, therefore, it is possible to figure out what the
normal modes of the earth are, because we know the speed of
propagation of sound waves—in other words, the elastic properties of
both kinds of waves at every depth. Suppose the earth were distorted
into an ellipsoid and let go. It is just a matter of superposing waves
travelling around in the ellipsoid to determine the period and shapes
in a free mode. We have figured out that if there is a disturbance,
there are a lot of modes, from the lowest, which is ellipsoidal, to
higher modes with more structure.



[image: -][image: -]
Fig. 51–7. Power versus frequency as detected at seismographs in Ñaña, Peru, and
Isabella, California. The coherence is a measure of the coupling between the
stations. [From Benioff, Press and Smith, J. Geoph.
Research 66, 605 (1961)].





The Chilean earthquake of May 1960 made a loud enough “noise” that
the signals went around the earth many times, and new seismographs of
great delicacy were made just in time to determine the frequencies of
the fundamental modes of the earth and to compare them with the values
that were calculated from the theory of sound with the known
velocities, as measured from the independent earthquakes. The result
of this experiment is illustrated in Fig. 51–7, which is
a plot of the strength of the signal versus the frequency of its
oscillation (a Fourier analysis). Note that at certain
particular frequencies there is much more being received than at other
frequencies; there are very definite maxima. These are the natural
frequencies of the earth, because these are the main frequencies at
which the earth can oscillate. In other words, if the entire motion of
the earth is made up of many different modes, we would expect to
obtain, for each station, irregular bumpings which indicate a
superposition of many frequencies. If we analyze this in terms of
frequencies, we should be able to find the characteristic frequencies
of the earth. The vertical dark lines in the figure are the calculated
frequencies, and we find a remarkable agreement, an agreement due to
the fact that the theory of sound is right for the inside of the
earth.



[image: -][image: -]
Fig. 51–8. High-resolution analysis of one of the seismograph records,
showing spectral doublet.





A very curious point is revealed in Fig. 51–8, which
shows a very careful measurement, with better resolution of the lowest
mode, the ellipsoidal mode of the earth. Note that it is not a single
maximum, but a double one, 54.7[image: -*-] minutes and
53.1[image: -*-] minutes—slightly different. The reason for the two different
frequencies was not known at the time that it was measured, although
it may have been found in the meantime. There are at least two
possible explanations: One would be that there may be asymmetry in the
earth’s distribution, which would result in two similar modes. Another
possibility, which is even more interesting, is this: Imagine the
waves going around the earth in two directions from the source. The
speeds will not be equal because of effects of the rotation of the
earth in the equations of motion, which have not been taken into
account in making the analysis. Motion in a rotating system is
modified by Coriolis
forces, and
these may cause the observed splitting.





Regarding the method by which these quakes have been analyzed, what is
obtained on the seismograph is not a curve of amplitude as a function
of frequency, but displacement as a function of time, always a very
irregular tracing. To find the amount of all the different sine waves
for all different frequencies, we know that the trick is to multiply
the data by a sine wave of a given frequency and integrate, i.e.,
average it, and in the average all other frequencies disappear. The
figures were thus plots of the integrals found when the data were
multiplied by sine waves of different cycles per minute, and
integrated.







51–4 Surface waves


Now, the next waves of interest, that are easily seen by everyone and
which are usually used as an example of waves in elementary courses,
are water waves. As we shall soon see, they are the worst possible
example, because they are in no respects like sound and light; they
have all the complications that waves can have. Let us start with long
water waves in deep water. If the ocean is considered infinitely deep
and a disturbance is made on the surface, waves are generated. All
kinds of irregular motions occur, but the sinusoidal type motion, with
a very small disturbance, might look like the common smooth ocean
waves coming in toward the shore. Now with such a wave, the water, of
course, on the average, is standing still, but the wave moves. What is
the motion, is it transverse or longitudinal? It must be neither; it
is not transverse, nor is it longitudinal. Although the water at a
given place is alternately trough or hill, it cannot simply be moving
up and down, by the conservation of water. That is, if it goes down,
where is the water going to go? The water is essentially
incompressible. The speed of compression of waves—that is, sound in
the water—is much, much higher, and we are not considering that
now. Since water is incompressible on this scale, as a hill comes down
the water must move away from the region. What actually happens is
that particles of water near the surface move approximately in
circles. When smooth swells are coming, a person floating in a tire
can look at a nearby object and see it going in a circle. So it is a
mixture of longitudinal and transverse, to add to the confusion. At
greater depths in the water the motions are smaller circles until,
reasonably far down, there is nothing left of the motion
(Fig. 51–9).



[image: -][image: -]
Fig. 51–9. Deep-water waves are formed from particles moving in
circles. Note the systematic phase shifts from circle to circle. How
would a floating object move?





To find the velocity of such waves is an interesting problem: it must
be some combination of the density of the water, the acceleration of
gravity, which is the restoring force that makes the waves, and
possibly of the wavelength and of the depth. If we take the case where
the depth goes to infinity, it will no longer depend on the
depth. Whatever formula we are going to get for the velocity of the
phases of the waves must combine the various factors to make the
proper dimensions, and if we try this in various ways, we find only
one way to combine the density, g[image: -*-], and λ[image: -*-] in order to make a
velocity, namely, √g λ[image: -*-], which does not include the
density at all. Actually, this formula for the phase velocity is not
exactly right, but a complete analysis of the dynamics, which we will
not go into, shows that the factors are as we have them, except
for √2 π[image: -*-]:

[image: -*-][image: -*-]


It is interesting that the long waves go faster than the short
waves. Thus if a boat makes waves far out, because there is some
sports-car driver in a motorboat travelling by, then after a while the
waves come to shore with slow sloshings at first and then more and
more rapid sloshings, because the first waves that come are long. The
waves get shorter and shorter as the time goes on, because the
velocities go as the square root of the wavelength.




One may object, “That is not right, we must look at the group
velocity in order to figure it out!” Of course that is true. The
formula for the phase velocity does not tell us what is going to
arrive first; what tells us is the group velocity. So we have to work
out the group velocity, and it is left as a problem to show it to be
one-half of the phase velocity, assuming that the velocity goes as the
square root of the wavelength, which is all that is needed. The group
velocity also goes as the square root of the wavelength. How can the
group velocity go half as fast as the phase? If one looks at the bunch
of waves that are made by a boat travelling along, following a
particular crest, he finds that it moves forward in the group and
gradually gets weaker and dies out in the front, and mystically and
mysteriously a weak one in the back works its way forward and gets
stronger. In short, the waves are moving through the group while the
group is only moving at half the speed that the waves are moving.



[image: -]
Fig. 51–10. The wake of a boat.





Because the group velocities and phase velocities are not equal, then
the waves that are produced by an object moving through are no longer
simply a cone, but it is much more interesting. We can see that in
Fig. 51–10, which shows the waves produced by an object
moving through the water. Note that it is quite different than what we
would have for sound, in which the velocity is independent of
wavelength, where we would have wavefronts only along the cone,
travelling outward. Instead of that, we have waves in the back with
fronts moving parallel to the motion of the boat, and then we have
little waves on the sides at other angles. This entire pattern of
waves can, with ingenuity, be analyzed by knowing only this: that the
phase velocity is proportional to the square root of the
wavelength. The trick is that the pattern of waves is stationary
relative to the (constant-velocity) boat; any other pattern would get
lost from the boat.




The water waves that we have been considering so far were long waves
in which the force of restoration is due to gravitation. But when
waves get very short in the water, the main restoring force is capillary
attraction, i.e., the energy of the surface, the surface tension. For
surface tension waves, it turns out that the phase velocity is

[image: -*-][image: -*-]


where T[image: -*-] is the surface tension and ρ[image: -*-] the density. It is the
exact opposite: the phase velocity is higher, the shorter the
wavelength, when the wavelength gets very small. When we have both
gravity and capillary action, as we always do,
we get the combination of these two together:

[image: -*-][image: -*-]


where k=2 π/λ[image: -*-] is the wave number. So the velocity of the
waves of water is really quite complicated. The phase velocity as a
function of the wavelength is shown in Fig. 51–11; for
very short waves it is fast, for very long waves it is fast, and there
is a minimum speed at which the waves can go. The group velocity can
be calculated from the formula: it goes to [image: \tfrac{3}{2}][image: \tfrac{3}{2}] the phase
velocity for ripples and [image: \tfrac{1}{2}][image: \tfrac{1}{2}] the phase velocity for gravity
waves. To the left of the minimum the group velocity is higher than
the phase velocity; to the right, the group velocity is less than the
phase velocity. There are a number of interesting phenomena associated
with these facts. In the first place, since the group velocity is
increasing so rapidly as the wavelength goes down, if we make a
disturbance there will be a slowest end of the disturbance going at
the minimum speed with the corresponding wavelength, and then in
front, going at higher speed, will be a short wave and a very long
wave. It is very hard to see the long ones, but it is easy to see the
short ones in a water tank.



[image: -][image: -]
Fig. 51–11. Phase velocity vs. wavelength for water.





So we see that the ripples often used to illustrate simple waves are
quite interesting and complicated; they do not have a sharp wavefront
at all, as is the case for simple waves like sound and light. The main
wave has little ripples which run out ahead. A sharp disturbance in
the water does not produce a sharp wave because of the
dispersion. First come the very fine waves. Incidentally, if an object
moves through the water at a certain speed, a rather complicated
pattern results, because all the different waves are going at
different speeds. One can demonstrate this with a tray of water and
see that the fastest ones are the fine capillary waves. There are
slowest waves, of a certain kind, which go behind. By inclining the
bottom, one sees that where the depth is lower, the speed is lower. If
a wave comes in at an angle to the line of maximum slope, it bends and
tends to follow that line. In this way one can show various things,
and we conclude that waves are more complicated in water than in air.




The speed of long waves in water with circulational motions is slower
when the depth is less, faster in deep water. Thus as water comes
toward a beach where the depth lessens, the waves go slower. But where
the water is deeper, the waves are faster, so we get the effects of
shock waves. This time, since the wave is not so simple, the shocks
are much more contorted, and the wave over-curves itself, in the
familiar way shown in Fig. 51–12. This is what happens
when waves come into the shore, and the real complexities in nature
are well revealed in such a circumstance. No one has yet been able to
figure out what shape the wave should take as it breaks. It is easy
enough when the waves are small, but when one gets large and breaks,
then it is much more complicated.



[image: -]
Fig. 51–12. A water wave.





An interesting feature about capillary waves can be seen in the
disturbances made by an object moving through the water. From the
point of view of the object itself, the water is flowing past, and the
waves which ultimately sit around it are always the waves which have
just the right speed to stay still with the object in the
water. Similarly, around an object in a stream, with the stream
flowing by, the pattern of waves is stationary, and at just the right
wavelengths to go at the same speed as the water going by. But if the
group velocity is less than the phase velocity, then the disturbances
propagate out backwards in the stream, because the group velocity is
not quite enough to keep up with the stream. If the group velocity is
faster than the velocity of the phase, the pattern of waves will
appear in front of the object. If one looks closely at objects in a
stream, one can see that there are little ripples in front and long
“slurps” in the back.




Another interesting feature of this sort can be observed in pouring
liquids. If milk is poured fast enough out of a bottle, for instance,
a large number of lines can be seen crossing both ways in the outgoing
stream. They are waves starting from the disturbance at the edges and
running out, much like the waves about an object in a stream. There
are effects from both sides which produce the crossed pattern.




We have investigated some of the interesting properties of waves and
the various complications of dependence of phase velocity on
wavelength, the speed of the waves on depth, and so forth, that
produce the really complex, and therefore interesting, phenomena of
nature.







  
    

52 Symmetry in Physical Laws



52–1 Symmetry operations


The subject of this chapter is what we may call
symmetry in physical laws. We have already discussed certain
features of symmetry in physical laws in connection with vector analysis
(Chapter 11), the theory of relativity
(Chapter 16), and rotation (Chapter 20).




Why should we be concerned with symmetry? In the first place, symmetry
is fascinating to the human mind, and everyone likes objects or patterns
that are in some way symmetrical. It is an interesting fact that nature
often exhibits certain kinds of symmetry in the objects we find in the
world around us. Perhaps the most symmetrical object imaginable is a
sphere, and nature is full of spheres—stars, planets, water droplets
in clouds. The crystals found in rocks exhibit many different kinds of
symmetry, the study of which tells us some important things about the
structure of solids. Even the animal and vegetable worlds show some
degree of symmetry, although the symmetry of a flower or of a bee is not
as perfect or as fundamental as is that of a crystal.




But our main concern here is not with the fact that the objects
of nature are often symmetrical. Rather, we wish to examine some of the
even more remarkable symmetries of the universe—the symmetries that
exist in the basic laws themselves which govern the operation of
the physical world.




First, what is symmetry? How can a physical law be
“symmetrical”? The problem of defining symmetry is an interesting one
and we have already noted that Weyl gave a good definition, the substance of which is that a
thing is symmetrical if there is something we can do to it so that after
we have done it, it looks the same as it did before. For example, a
symmetrical vase is of such a kind that if we reflect or turn it, it
will look the same as it did before. The question we wish to consider
here is what we can do to physical phenomena, or to a physical situation
in an experiment, and yet leave the result the same. A list of the known
operations under which various physical phenomena remain invariant is
shown in Table 52–1.





Table 52–1. Symmetry Operations




	Translation in space



	Translation in time



	Rotation through a fixed angle



	Uniform velocity in a straight line (Lorentz transformation)



	Reversal of time



	Reflection of space



	Interchange of identical atoms or identical particles



	Quantum-mechanical phase



	Matter-antimatter (charge conjugation)










52–2 Symmetry in space and time


The first thing we might try to do, for example, is to translate
the phenomenon in space. If we do an experiment in a certain region, and
then build another apparatus at another place in space (or move the
original one over) then, whatever went on in one apparatus, in a certain
order in time, will occur in the same way if we have arranged the same
condition, with all due attention to the restrictions that we mentioned
before: that all of those features of the environment which make it not
behave the same way have also been moved over—we talked about how to
define how much we should include in those circumstances, and we shall
not go into those details again.




In the same way, we also believe today that displacement in time
will have no effect on physical laws. (That is, as far as we know
today—all of these things are as far as we know today!) That means
that if we build a certain apparatus and start it at a certain time, say
on Thursday at 10:00 a.m., and then build the same apparatus and start
it, say, three days later in the same condition, the two apparatuses
will go through the same motions in exactly the same way as a function
of time no matter what the starting time, provided again, of course,
that the relevant features of the environment are also modified
appropriately in time. That symmetry means, of course, that if
one bought General Motors stock three months ago, the same thing would
happen to it if he bought it now!




We have to watch out for geographical differences too, for there are, of
course, variations in the characteristics of the earth’s surface. So,
for example, if we measure the magnetic field in a certain region and
move the apparatus to some other region, it may not work in precisely
the same way because the magnetic field is different, but we say that is
because the magnetic field is associated with the earth. We can imagine
that if we move the whole earth and the equipment, it would make no
difference in the operation of the apparatus.




Another thing that we discussed in considerable detail was rotation in
space: if we turn an apparatus at an angle it works just as well,
provided we turn everything else that is relevant along with it. In
fact, we discussed the problem of symmetry under rotation in space in
some detail in Chapter 11, and we invented a mathematical
system called vector analysis to handle it as neatly as possible.




On a more advanced level we had another symmetry—the symmetry under
uniform velocity in a straight line. That is to say—a rather
remarkable effect—that if we have a piece of apparatus working a
certain way and then take the same apparatus and put it in a car, and
move the whole car, plus all the relevant surroundings, at a uniform
velocity in a straight line, then so far as the phenomena inside the car
are concerned there is no difference: all the laws of physics appear the
same. We even know how to express this more technically, and that is
that the mathematical equations of the physical laws must be unchanged
under a Lorentz
transformation. As a matter of
fact, it was a study of the relativity problem that concentrated
physicists’ attention most sharply on symmetry in physical laws.




Now the above-mentioned symmetries have all been of a geometrical
nature, time and space being more or less the same, but there are other
symmetries of a different kind. For example, there is a symmetry which
describes the fact that we can replace one atom by another of the same
kind; to put it differently, there are atoms of the same kind. It
is possible to find groups of atoms such that if we change a pair
around, it makes no difference—the atoms are identical. Whatever one
atom of oxygen of a certain type will do, another atom of oxygen of that
type will do. One may say, “That is ridiculous, that is the
definition of equal types!” That may be merely the definition,
but then we still do not know whether there are any “atoms of
the same type”; the fact is that there are many, many atoms of
the same type. Thus it does mean something to say that it makes no
difference if we replace one atom by another of the same type. The
so-called elementary particles of which the atoms are made are also
identical particles in the above sense—all electrons are the same; all
protons are the same; all positive pions are the same; and so on.




After such a long list of things that can be done without changing the
phenomena, one might think we could do practically anything; so let us
give some examples to the contrary, just to see the difference. Suppose
that we ask: “Are the physical laws symmetrical under a change of
scale?” Suppose we build a certain piece of apparatus, and then build
another apparatus five times bigger in every part, will it work exactly
the same way? The answer is, in this case, no! The wavelength of
light emitted, for example, by the atoms inside one box of sodium atoms
and the wavelength of light emitted by a gas of sodium atoms five times
in volume is not five times longer, but is in fact exactly the same as
the other. So the ratio of the wavelength to the size of the emitter
will change.




Another example: we see in the newspaper, every once in a while pictures
of a great cathedral made with little matchsticks—a tremendous work of
art by some retired fellow who keeps gluing matchsticks together. It is
much more elaborate and wonderful than any real cathedral. If we imagine
that this wooden cathedral were actually built on the scale of a real
cathedral, we see where the trouble is; it would not last—the whole
thing would collapse because of the fact that scaled-up matchsticks are
just not strong enough. “Yes,” one might say, “but we also know that
when there is an influence from the outside, it also must be changed in
proportion!” We are talking about the ability of the object to
withstand gravitation. So what we should do is first to take the model
cathedral of real matchsticks and the real earth, and then we know it is
stable. Then we should take the larger cathedral and take a bigger
earth. But then it is even worse, because the gravitation is increased
still more!




Today, of course, we understand the fact that phenomena depend on the
scale on the grounds that matter is atomic in nature, and certainly if
we built an apparatus that was so small there were only five atoms in
it, it would clearly be something we could not scale up and down
arbitrarily. The scale of an individual atom is not at all
arbitrary—it is quite definite.




The fact that the laws of physics are not unchanged under a change of
scale was discovered by Galileo.
He realized that the strengths of materials were not in exactly the
right proportion to their sizes, and he illustrated this property that
we were just discussing, about the cathedral of matchsticks, by drawing
two bones, the bone of one dog, in the right proportion for holding up
his weight, and the imaginary bone of a “super dog” that would be,
say, ten or a hundred times bigger—that bone was a big, solid thing
with quite different proportions. We do not know whether he ever carried
the argument quite to the conclusion that the laws of nature must have a
definite scale, but he was so impressed with this discovery that he
considered it to be as important as the discovery of the laws of motion,
because he published them both in the same volume, called “On Two New
Sciences.”




Another example in which the laws are not symmetrical, that we know
quite well, is this: a system in rotation at a uniform angular velocity
does not give the same apparent laws as one that is not rotating. If we
make an experiment and then put everything in a space ship and have the
space ship spinning in empty space, all alone at a constant angular
velocity, the apparatus will not work the same way because, as we know,
things inside the equipment will be thrown to the outside, and so on, by
the centrifugal
or Coriolis forces,
etc. In fact, we can tell that the earth is rotating by using a
so-called Foucault pendulum, without looking outside.





Next we mention a very interesting symmetry which is obviously false,
i.e., reversibility in time. The physical laws apparently cannot
be reversible in time, because, as we know, all obvious phenomena are
irreversible on a large scale: “The moving finger writes, and having
writ, moves on.” So far as we can tell, this irreversibility is due to
the very large number of particles involved, and if we could see the
individual molecules, we would not be able to discern whether the
machinery was working forward or backwards. To make it more precise: we
build a small apparatus in which we know what all the atoms are doing,
in which we can watch them jiggling. Now we build another apparatus like
it, but which starts its motion in the final condition of the other one,
with all the velocities precisely reversed. It will then go
through the same motions, but exactly in reverse. Putting it another
way: if we take a motion picture, with sufficient detail, of all the
inner works of a piece of material and shine it on a screen and run it
backwards, no physicist will be able to say, “That is against the laws
of physics, that is doing something wrong!” If we do not see all the
details, of course, the situation will be perfectly clear. If we see the
egg splattering on the sidewalk and the shell cracking open, and so on,
then we will surely say, “That is irreversible, because if we run the
moving picture backwards the egg will all collect together and the shell
will go back together, and that is obviously ridiculous!” But if we
look at the individual atoms themselves, the laws look completely
reversible. This is, of course, a much harder discovery to have made,
but apparently it is true that the fundamental physical laws, on a
microscopic and fundamental level, are completely reversible in time!







52–3 Symmetry and conservation laws


The symmetries of the physical laws are very interesting at this level,
but they turn out, in the end, to be even more interesting and exciting
when we come to quantum mechanics. For a reason which we cannot make
clear at the level of the present discussion—a fact that most
physicists still find somewhat staggering, a most profound and beautiful
thing, is that, in quantum mechanics, for each of the rules of
symmetry there is a corresponding conservation law; there is a definite
connection between the laws of conservation and the symmetries of
physical laws. We can only state this at present, without any attempt at
explanation.




The fact, for example, that the laws are symmetrical for translation in
space when we add the principles of quantum mechanics, turns out to mean
that momentum is conserved.




That the laws are symmetrical under translation in time means, in
quantum mechanics, that energy is conserved.




Invariance under rotation through a fixed angle in space corresponds to
the conservation of angular momentum. These connections are very
interesting and beautiful things, among the most beautiful and profound
things in physics.




Incidentally, there are a number of symmetries which appear in quantum
mechanics which have no classical analog, which have no method of
description in classical physics. One of these is as follows: If ψ[image: -*-]
is the amplitude for some process or other, we know that the absolute
square of ψ[image: -*-] is the probability that the process will occur. Now if
someone else were to make his calculations, not with this ψ[image: -*-], but
with a ψ′[image: -*-] which differs merely by a change in phase (let Δ[image: -*-]
be some constant, and multiply ei Δ[image: -*-] times the old ψ[image: -*-]), the
absolute square of ψ′[image: -*-], which is the probability of the event, is
then equal to the absolute square of ψ[image: -*-]:

[image: -*-][image: -*-]
(52.1)




Therefore the physical laws are unchanged if the phase of the wave
function is shifted by an arbitrary constant. That is another symmetry.
Physical laws must be of such a nature that a shift in the
quantum-mechanical phase makes no difference. As we have just mentioned,
in quantum mechanics there is a conservation law for every symmetry. The
conservation law which is connected with the quantum-mechanical phase
seems to be the conservation of electrical charge. This is
altogether a very interesting business!







52–4 Mirror reflections


Now the next question, which is going to concern us for most of the rest
of this chapter, is the question of symmetry under reflection in
space. The problem is this: Are the physical laws symmetrical under
reflection? We may put it this way: Suppose we build a piece of
equipment, let us say a clock, with lots of wheels and hands and
numbers; it ticks, it works, and it has things wound up inside. We look
at the clock in the mirror. How it looks in the mirror is not the
question. But let us actually build another clock which is
exactly the same as the first clock looks in the mirror—every time
there is a screw with a right-hand thread in one, we use a screw with a
left-hand thread in the corresponding place of the other; where one is
marked “2” on the face, we mark a “[image: -][image: -]” on the face
of the other; each coiled spring is twisted one way in one clock and the
other way in the mirror-image clock; when we are all finished, we have
two clocks, both physical, which bear to each other the relation of an
object and its mirror image, although they are both actual, material
objects, we emphasize. Now the question is: If the two clocks are
started in the same condition, the springs wound to corresponding
tightnesses, will the two clocks tick and go around, forever after, as
exact mirror images? (This is a physical question, not a philosophical
question.) Our intuition about the laws of physics would suggest that
they would.




We would suspect that, at least in the case of these clocks, reflection
in space is one of the symmetries of physical laws, that if we change
everything from “right” to “left” and leave it otherwise the same,
we cannot tell the difference. Let us, then, suppose for a moment that
this is true. If it is true, then it would be impossible to distinguish
“right” and “left” by any physical phenomenon, just as it is, for
example, impossible to define a particular absolute velocity by a
physical phenomenon. So it should be impossible, by any physical
phenomenon, to define absolutely what we mean by “right” as opposed to
“left,” because the physical laws should be symmetrical.




Of course, the world does not have to be symmetrical. For
example, using what we may call “geography,” surely “right” can be
defined. For instance, we stand in New Orleans and look at Chicago, and
Florida is to our right (when our feet are on the ground!). So we can
define “right” and “left” by geography. Of course, the actual
situation in any system does not have to have the symmetry that we are
talking about; it is a question of whether the laws are
symmetrical—in other words, whether it is against the physical
laws to have a sphere like the earth with “left-handed dirt” on it
and a person like ourselves standing looking at a city like Chicago from
a place like New Orleans, but with everything the other way around, so
Florida is on the other side. It clearly seems not impossible, not
against the physical laws, to have everything changed left for right.




Another point is that our definition of “right” should not depend on
history. An easy way to distinguish right from left is to go to a
machine shop and pick up a screw at random. The odds are it has a
right-hand thread—not necessarily, but it is much more likely to have
a right-hand thread than a left-hand one. This is a question of history
or convention, or the way things happen to be, and is again not a
question of fundamental laws. As we can well appreciate, everyone could
have started out making left-handed screws!




So we must try to find some phenomenon in which “right hand” is
involved fundamentally. The next possibility we discuss is the fact that
polarized light rotates its plane of polarization as it goes through,
say, sugar water. As we saw in Chapter 33, it rotates, let
us say, to the right in a certain sugar solution. That is a way of
defining “right-hand,” because we may dissolve some sugar in the water
and then the polarization goes to the right. But sugar has come from
living things, and if we try to make the sugar artificially, then we
discover that it does not rotate the plane of polarization!  But
if we then take that same sugar which is made artificially and which
does not rotate the plane of polarization, and put bacteria in it (they
eat some of the sugar) and then filter out the bacteria, we find that we
still have sugar left (almost half as much as we had before), and this
time it does rotate the plane of polarization, but the other way!
It seems very confusing, but is easily explained.



[image: -]
Fig. 52–1. (a) L-alanine (left), and (b) D-alanine (right).





Take another example: One of the substances which is common to all
living creatures and that is fundamental to life is protein. Proteins
consist of chains of amino acids. Figure 52–1 shows a model
of an amino acid that comes out of a protein. This amino acid is called
alanine, and the molecular arrangement would look like that in
Fig. 52–1(a) if it came out of a protein of a real living
thing. On the other hand, if we try to make alanine from carbon dioxide,
ethane, and ammonia (and we can make it, it is not a complicated
molecule), we discover that we are making equal amounts of this molecule
and the one shown in Fig. 52–1(b)! The first molecule, the
one that comes from the living thing, is called L-alanine. The
other one, which is the same chemically, in that it has the same kinds
of atoms and the same connections of the atoms, is a “right-hand”
molecule, compared with the “left-hand” L-alanine, and it is called
D-alanine. The interesting thing is that when we make alanine at
home in a laboratory from simple gases, we get an equal mixture of both
kinds. However, the only thing that life uses is L-alanine. (This is not
exactly true. Here and there in living creatures there is a special use
for D-alanine, but it is very rare. All proteins use L-alanine
exclusively.) Now if we make both kinds, and we feed the mixture to some
animal which likes to “eat,” or use up, alanine, it cannot use
D-alanine, so it only uses the L-alanine; that is what happened to our
sugar—after the bacteria eat the sugar that works well for them, only
the “wrong” kind is left! (Left-handed sugar tastes sweet, but not the
same as right-handed sugar.)




So it looks as though the phenomena of life permit a distinction between
“right” and “left,” or chemistry permits a distinction, because the
two molecules are chemically different. But no, it does not! So far as
physical measurements can be made, such as of energy, the rates of
chemical reactions, and so on, the two kinds work exactly the same way
if we make everything else in a mirror image too. One molecule will
rotate light to the right, and the other will rotate it to the left in
precisely the same amount, through the same amount of fluid. Thus, so
far as physics is concerned, these two amino acids are equally
satisfactory. So far as we understand things today, the fundamentals of
the Schrödinger equation have it that the two molecules should behave in
exactly corresponding ways, so that one is to the right as the other is
to the left. Nevertheless, in life it is all one way!




It is presumed that the reason for this is the following. Let us
suppose, for example, that life is somehow at one moment in a certain
condition in which all the proteins in some creatures have left-handed
amino acids, and all the enzymes are lopsided—every substance in the
living creature is lopsided—it is not symmetrical. So when the
digestive enzymes try to change the chemicals in the food from one kind
to another, one kind of chemical “fits” into the enzyme, but the other
kind does not (like Cinderella and the slipper, except that it is a
“left foot” that we are testing). So far as we know, in principle, we
could build a frog, for example, in which every molecule is reversed,
everything is like the “left-hand” mirror image of a real frog; we
have a left-hand frog. This left-hand frog would go on all right for a
while, but he would find nothing to eat, because if he swallows a fly,
his enzymes are not built to digest it. The fly has the wrong “kind”
of amino acids (unless we give him a left-hand fly). So as far as we
know, the chemical and life processes would continue in the same manner
if everything were reversed.




If life is entirely a physical and chemical phenomenon, then we can
understand that the proteins are all made in the same corkscrew only
from the idea that at the very beginning some living molecules, by
accident, got started and a few won. Somewhere, once, one organic
molecule was lopsided in a certain way, and from this particular thing
the “right” happened to evolve in our particular geography; a
particular historical accident was one-sided, and ever since then the
lopsidedness has propagated itself. Once having arrived at the state
that it is in now, of course, it will always continue—all the enzymes
digest the right things, manufacture the right things: when the carbon
dioxide and the water vapor, and so on, go in the plant leaves, the
enzymes that make the sugars make them lopsided because the enzymes are
lopsided. If any new kind of virus or living thing were to originate at
a later time, it would survive only if it could “eat” the kind of
living matter already present. Thus it, too, must be of the same kind.




There is no conservation of the number of right-handed molecules. Once
started, we could keep increasing the number of right-handed molecules.
So the presumption is, then, that the phenomena in the case of life do
not show a lack of symmetry in physical laws, but do show, on the
contrary, the universal nature and the commonness of ultimate origin of
all creatures on earth, in the sense described above.







52–5 Polar and axial vectors


Now we go further. We observe that in physics there are a lot of other
places where we have “right” and “left” hand rules. As a matter of
fact, when we learned about vector analysis we learned about the
right-hand rules we have to use in order to get the angular momentum,
torque, magnetic field, and so on, to come out right. The force on a
charge moving in a magnetic field, for example, is F=q v×B[image: -*-]. In a given situation, in which we know
F[image: -*-], v[image: -*-], and B[image: -*-], isn’t that equation enough to define
right-handedness?  As a matter of fact, if we go back and look at where
the vectors came from, we know that the “right-hand rule” was merely a
convention; it was a trick. The original quantities, like the angular
momenta and the angular velocities, and things of this kind, were not
really vectors at all! They are all somehow associated with a certain
plane, and it is just because there are three dimensions in space that
we can associate the quantity with a direction perpendicular to that
plane. Of the two possible directions, we chose the “right-hand”
direction.




So if the laws of physics are symmetrical, we should find that if some
demon were to sneak into all the physics laboratories and replace the
word “right” for “left” in every book in which “right-hand rules”
are given, and instead we were to use all “left-hand rules,”
uniformly, then it should make no difference whatever in the physical
laws.





Let us give an illustration. There are two kinds of vectors. There are
“honest” vectors, for example a step r[image: -*-] in space. If in our
apparatus there is a piece here and something else there, then in a
mirror apparatus there will be the image piece and the image something
else, and if we draw a vector from the “piece” to the “something
else,” one vector is the mirror image of the other
(Fig. 52–2). The vector arrow changes its head, just as the
whole space turns inside out; such a vector we call a polar
vector.



[image: -][image: -]
Fig. 52–2. A step in space and its mirror image.





But the other kind of vector, which has to do with rotations, is of a
different nature. For example, suppose that in three dimensions
something is rotating as shown in Fig. 52–3. Then if we look
at it in a mirror, it will be rotating as indicated, namely, as the
mirror image of the original rotation. Now we have agreed to represent
the mirror rotation by the same rule, it is a “vector” which, on
reflection, does not change about as the polar vector does, but
is reversed relative to the polar vectors and to the geometry of the
space; such a vector is called an axial vector.



[image: -][image: -]
Fig. 52–3. A rotating wheel and its mirror image. Note that the angular
velocity “vector” is not reversed in direction.





Now if the law of reflection symmetry is right in physics, then it must
be true that the equations must be so designed that if we change the
sign of each axial vector and each cross-product of
vectors, which would be what corresponds to reflection, nothing will
happen. For instance, when we write a formula which says that the
angular momentum is L=r×p[image: -*-], that equation is all
right, because if we change to a left-hand coordinate system, we change
the sign of L[image: -*-], but p[image: -*-] and r[image: -*-] do not change; the
cross-product sign is changed, since we must change from a right-hand
rule to a left-hand rule. As another example, we know that the force on
a charge moving in a magnetic field is F=q v×B[image: -*-], but
if we change from a right- to a left-handed system, since F[image: -*-]
and v[image: -*-] are known to be polar vectors the sign change required by
the cross-product must be cancelled by a sign change in B[image: -*-], which
means that B[image: -*-] must be an axial vector. In other
words, if we make such a reflection, B[image: -*-] must go to −B[image: -*-]. So if
we change our coordinates from right to left, we must also change the
poles of magnets from north to south.
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Fig. 52–4. A magnet and its mirror image.





Let us see how that works in an example. Suppose that we have two
magnets, as in Fig. 52–4. One is a magnet with the coils
going around a certain way, and with current in a given direction. The
other magnet looks like the reflection of the first magnet in a
mirror—the coil will wind the other way, everything that happens
inside the coil is exactly reversed, and the current goes as shown. Now,
from the laws for the production of magnetic fields, which we do not
know yet officially, but which we most likely learned in high school, it
turns out that the magnetic field is as shown in the figure. In one case
the pole is a south magnetic pole, while in the other magnet the current
is going the other way and the magnetic field is reversed—it is a
north magnetic pole. So we see that when we go from right to left we
must indeed change from north to south!




Never mind changing north to south; these too are mere conventions. Let
us talk about phenomena. Suppose, now, that we have an electron
moving through one field, going into the page. Then, if we use the
formula for the force, v×B[image: -*-] (remember the charge is
minus), we find that the electron will deviate in the indicated
direction according to the physical law. So the phenomenon is that we
have a coil with a current going in a specified sense and an electron
curves in a certain way—that is the physics—never mind how we label
everything.




Now let us do the same experiment with a mirror: we send an electron
through in a corresponding direction and now the force is reversed, if
we calculate it from the same rule, and that is very good because the
corresponding motions are then mirror images!







52–6 Which hand is right?


So the fact of the matter is that in studying any phenomenon there are
always two right-hand rules, or an even number of them, and the net
result is that the phenomena always look symmetrical. In short,
therefore, we cannot tell right from left if we also are not able to
tell north from south. However, it may seem that we can tell the
north pole of a magnet. The north pole of a compass needle, for example,
is one that points to the north. But of course that is again a local
property that has to do with geography of the earth; that is just like
talking about in which direction is Chicago, so it does not count. If we
have seen compass needles, we may have noticed that the north-seeking
pole is a sort of bluish color. But that is just due to the man who
painted the magnet. These are all local, conventional criteria.




However, if a magnet were to have the property that if we looked at it
closely enough we would see small hairs growing on its north pole but
not on its south pole, if that were the general rule, or if there were
any unique way to distinguish the north from the south pole of a
magnet, then we could tell which of the two cases we actually had, and
that would be the end of the law of reflection symmetry.




To illustrate the whole problem still more clearly, imagine that we were
talking to a Martian, or someone very far away, by telephone. We are not
allowed to send him any actual samples to inspect; for instance, if we
could send light, we could send him right-hand circularly polarized
light and say, “That is right-hand light—just watch the way it is
going.” But we cannot give him anything, we can only talk to
him. He is far away, or in some strange location, and he cannot see
anything we can see. For instance, we cannot say, “Look at Ursa major;
now see how those stars are arranged. What we mean by ‘right’ is
…” We are only allowed to telephone him.




Now we want to tell him all about us. Of course, first we start defining
numbers, and say, “Tick, tick, two, tick, tick, tick,
three, …,” so that gradually he can understand a couple of
words, and so on. After a while we may become very familiar with this
fellow, and he says, “What do you guys look like?” We start to
describe ourselves, and say, “Well, we are six feet tall.” He says,
“Wait a minute, what is six feet?” Is it possible to tell him what six
feet is? Certainly!  We say, “You know about the diameter of hydrogen
atoms—we are 17,000,000,000[image: -*-] hydrogen atoms high!” That is
possible because physical laws are not invariant under change of scale,
and therefore we can define an absolute length. And so we define
the size of the body, and tell him what the general shape is—it has
prongs with five bumps sticking out on the ends, and so on, and he
follows us along, and we finish describing how we look on the outside,
presumably without encountering any particular difficulties. He is even
making a model of us as we go along. He says, “My, you are certainly
very handsome fellows; now what is on the inside?” So we start to
describe the various organs on the inside, and we come to the heart, and
we carefully describe the shape of it, and say, “Now put the heart on
the left side.” He says, “Duhhh—the left side?” Now our problem is
to describe to him which side the heart goes on without his ever seeing
anything that we see, and without our ever sending any sample to him of
what we mean by “right”—no standard right-handed object. Can we do
it?







52–7 Parity is not conserved!


It turns out that the laws of gravitation, the laws of electricity and
magnetism, nuclear forces, all satisfy the principle of reflection
symmetry, so these laws, or anything derived from them, cannot be used.
But associated with the many particles that are found in nature there is
a phenomenon called beta decay, or weak decay. One of the
examples of weak decay, in connection with a particle discovered in
about 1954, posed a strange puzzle. There was a certain charged particle
which disintegrated into three π[image: -*-]-mesons, as shown schematically in
Fig. 52–5. This particle was called, for a while, a
τ[image: -*-]-meson. Now in Fig. 52–5 we also see another particle
which disintegrates into two mesons; one must be neutral, from
the conservation of charge. This particle was called a θ[image: -*-]-meson.
So on the one hand we have a particle called a τ[image: -*-], which
disintegrates into three π[image: -*-]-mesons, and a θ[image: -*-], which
disintegrates into two π[image: -*-]-mesons. Now it was soon discovered that
the τ[image: -*-] and the θ[image: -*-] are almost equal in mass; in fact, within
the experimental error, they are equal. Next, the length of time it took
for them to disintegrate into three π[image: -*-]’s and two π[image: -*-]’s was found to
be almost exactly the same; they live the same length of time. Next,
whenever they were made, they were made in the same proportions, say,
14[image: -*-] percent τ[image: -*-]’s to 86[image: -*-] percent θ[image: -*-]’s.
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Fig. 52–5. A schematic diagram of the disintegration of a τ+[image: -*-] and
a θ+[image: -*-] particle.





Anyone in his right mind realizes immediately that they must be the same
particle, that we merely produce an object which has two different ways
of disintegrating—not two different particles. This object that can
disintegrate in two different ways has, therefore, the same lifetime and
the same production ratio (because this is simply the ratio of the odds
with which it disintegrates into these two kinds).




However, it was possible to prove (and we cannot here explain at all
how), from the principle of reflection symmetry in quantum
mechanics, that it was impossible to have these both come from
the same particle—the same particle could not disintegrate in
both of these ways. The conservation law corresponding to the principle
of reflection symmetry is something which has no classical analog, and
so this kind of quantum-mechanical conservation was called the
conservation of parity. So, it was a result of the conservation
of parity or, more precisely, from the symmetry of the
quantum-mechanical equations of the weak decays under reflection, that
the same particle could not go into both, so it must be some kind of
coincidence of masses, lifetimes, and so on. But the more it was
studied, the more remarkable the coincidence, and the suspicion
gradually grew that possibly the deep law of the reflection symmetry of
nature may be false.




As a result of this apparent failure, the physicists Lee and Yang
suggested that other experiments be done in related decays to try to
test whether the law was correct in other cases. The first such
experiment was carried out by Miss Wu from Columbia, and was done as
follows. Using a very strong magnet at a very low temperature, it turns
out that a certain isotope of cobalt, which
disintegrates by emitting an electron, is magnetic, and if the
temperature is low enough that the thermal oscillations do not jiggle
the atomic magnets about too much, they line up in the magnetic field.
So the cobalt atoms will all line up in this strong field. They then
disintegrate, emitting an electron, and it was discovered that when the
atoms were lined up in a field whose B[image: -*-] vector points upward, most
of the electrons were emitted in a downward direction.





If one is not really “hep” to the world, such a remark does not sound
like anything of significance, but if one appreciates the problems and
interesting things in the world, then he sees that it is a most dramatic
discovery: When we put cobalt atoms in an extremely strong magnetic
field, more disintegration electrons go down than up. Therefore if we
were to put it in a corresponding experiment in a “mirror,” in which
the cobalt atoms would be lined up in the opposite direction, they would
spit their electrons up, not down; the action is
unsymmetrical. The magnet has grown hairs!  The south pole
of a magnet is of such a kind that the electrons in a
β[image: -*-]-disintegration tend to go away from it; that distinguishes, in a
physical way, the north pole from the south pole.




After this, a lot of other experiments were done: the disintegration of
the π[image: -*-] into μ[image: -*-] and ν[image: -*-]; μ[image: -*-] into an electron and two
neutrinos; nowadays, the Λ[image: -*-] into proton and π[image: -*-]; disintegration
of Σ[image: -*-]’s; and many other disintegrations. In fact, in almost all
cases where it could be expected, all have been found not to obey
reflection symmetry!  Fundamentally, the law of reflection symmetry, at
this level in physics, is incorrect.




In short, we can tell a Martian where to put the heart: we say,
“Listen, build yourself a magnet, and put the coils in, and put the
current on, and then take some cobalt and lower the temperature. Arrange
the experiment so the electrons go from the foot to the head, then the
direction in which the current goes through the coils is the direction
that goes in on what we call the right and comes out on the left.”  So
it is possible to define right and left, now, by doing an experiment of
this kind.





There are a lot of other features that were predicted. For example, it
turns out that the spin, the angular momentum, of the cobalt nucleus
before disintegration is 5 units of ℏ[image: -*-], and after disintegration
it is 4 units. The electron carries spin angular momentum, and there
is also a neutrino involved. It is easy to see from this that the
electron must carry its spin angular momentum aligned along its
direction of motion, the neutrino likewise. So it looks as though the
electron is spinning to the left, and that was also checked. In fact, it
was checked right here at Caltech by Boehm and Wapstra,
that the electrons spin mostly to the left. (There were some other
experiments that gave the opposite answer, but they were wrong!)




The next problem, of course, was to find the law of the failure of
parity conservation. What is the rule that tells us how strong the
failure is going to be? The rule is this: it occurs only in these very
slow reactions, called weak decays, and when it occurs, the rule is that
the particles which carry spin, like the electron, neutrino, and so on,
come out with a spin tending to the left. That is a lopsided rule; it
connects a polar vector velocity and an axial vector
angular momentum, and says that the angular momentum is more likely to
be opposite to the velocity than along it.





Now that is the rule, but today we do not really understand the whys and
wherefores of it. Why is this the right rule, what is the
fundamental reason for it, and how is it connected to anything else? At
the moment we have been so shocked by the fact that this thing is
unsymmetrical that we have not been able to recover enough to understand
what it means with regard to all the other rules. However, the subject
is interesting, modern, and still unsolved, so it seems appropriate that
we discuss some of the questions associated with it.







52–8 Antimatter


The first thing to do when one of the symmetries is lost is to
immediately go back over the list of known or assumed symmetries and ask
whether any of the others are lost. Now we did not mention one operation
on our list, which must necessarily be questioned, and that is the
relation between matter and antimatter. Dirac predicted that in addition to electrons there
must be another particle, called the positron (discovered at Caltech by
Anderson), that is necessarily
related to the electron. All the properties of these two particles obey
certain rules of correspondence: the energies are equal; the masses are
equal; the charges are reversed; but, more important than anything, the
two of them, when they come together, can annihilate each other and
liberate their entire mass in the form of energy, say γ[image: -*-]-rays. The
positron is called an antiparticle to the electron, and these are
the characteristics of a particle and its antiparticle. It was clear
from Dirac’s argument that all the rest of the particles in the world
should also have corresponding antiparticles. For instance, for the
proton there should be an antiproton, which is now symbolized by
a [image: \overline{p}][image: \overline{p}]. The [image: \overline{p}][image: \overline{p}] would have a negative electrical
charge and the same mass as a proton, and so on. The most important
feature, however, is that a proton and an antiproton coming together can
annihilate each other. The reason we emphasize this is that people do
not understand it when we say there is a neutron and also an
antineutron, because they say, “A neutron is neutral, so how can
it have the opposite charge?” The rule of the “anti” is not just that
it has the opposite charge, it has a certain set of properties, the
whole lot of which are opposite. The antineutron is distinguished from
the neutron in this way: if we bring two neutrons together, they just
stay as two neutrons, but if we bring a neutron and an antineutron
together, they annihilate each other with a great explosion of energy
being liberated, with various π[image: -*-]-mesons, γ[image: -*-]-rays, and whatnot.




Now if we have antineutrons, antiprotons, and antielectrons, we can make
antiatoms, in principle. They have not been made yet, but it is possible
in principle. For instance, a hydrogen atom has a proton in the center
with an electron going around outside. Now imagine that somewhere we can
make an antiproton with a positron going around, would it go around?
Well, first of all, the antiproton is electrically negative and the
antielectron is electrically positive, so they attract each other in a
corresponding manner—the masses are all the same; everything is the
same. It is one of the principles of the symmetry of physics, the
equations seem to show, that if a clock, say, were made of matter on one
hand, and then we made the same clock of antimatter, it would run in
this way. (Of course, if we put the clocks together, they would
annihilate each other, but that is different.)




An immediate question then arises. We can build, out of matter, two
clocks, one which is “left-hand” and one which is “right-hand.” For
example, we could build a clock which is not built in a simple way, but
has cobalt and magnets and electron detectors which detect the presence
of β[image: -*-]-decay electrons and count them. Each time one is counted, the
second hand moves over. Then the mirror clock, receiving fewer
electrons, will not run at the same rate. So evidently we can make two
clocks such that the left-hand clock does not agree with the right-hand
one. Let us make, out of matter, a clock which we call the standard or
right-hand clock. Now let us make, also out of matter, a clock which we
call the left-hand clock. We have just discovered that, in general,
these two will not run the same way; prior to that famous
physical discovery, it was thought that they would. Now it was also
supposed that matter and antimatter were equivalent. That is, if we made
an antimatter clock, right-hand, the same shape, then it would run the
same as the right-hand matter clock, and if we made the same clock to
the left it would run the same. In other words, in the beginning it was
believed that all four of these clocks were the same; now of
course we know that the right-hand and left-hand matter are not the
same. Presumably, therefore, the right-handed antimatter and the
left-handed antimatter are not the same.




So the obvious question is, which goes with which, if either? In other
words, does the right-handed matter behave the same way as the
right-handed antimatter? Or does the right-handed matter behave the same
as the left-handed antimatter? β[image: -*-]-decay experiments, using positron
decay instead of electron decay, indicate that this is the
interconnection: matter to the “right” works the same way as
antimatter to the “left.”




Therefore, at long last, it is really true that right and left symmetry
is still maintained! If we made a left-hand clock, but made it out of
the other kind of matter, antimatter instead of matter, it would run in
the same way. So what has happened is that instead of having two
independent rules in our list of symmetries, two of these rules go
together to make a new rule, which says that matter to the right is
symmetrical with antimatter to the left.




So if our Martian is made of antimatter and we give him instructions to
make this “right” handed model like us, it will, of course, come out
the other way around. What would happen when, after much conversation
back and forth, we each have taught the other to make space ships and we
meet halfway in empty space? We have instructed each other on our
traditions, and so forth, and the two of us come rushing out to shake
hands. Well, if he puts out his left hand, watch out!







52–9 Broken symmetries


The next question is, what can we make out of laws which are
nearly symmetrical? The marvelous thing about it all is that for
such a wide range of important, strong phenomena—nuclear forces,
electrical phenomena, and even weak ones like gravitation—over a
tremendous range of physics, all the laws for these seem to be
symmetrical. On the other hand, this little extra piece says, “No, the
laws are not symmetrical!” How is it that nature can be almost
symmetrical, but not perfectly symmetrical? What shall we make of this?
First, do we have any other examples? The answer is, we do, in fact,
have a few other examples. For instance, the nuclear part of the force
between proton and proton, between neutron and neutron, and between
neutron and proton, is all exactly the same—there is a symmetry for
nuclear forces, a new one, that we can interchange neutron and
proton—but it evidently is not a general symmetry, for the electrical
repulsion between two protons at a distance does not exist for neutrons.
So it is not generally true that we can always replace a proton
with a neutron, but only to a good approximation. Why good?
Because the nuclear forces are much stronger than the electrical forces.
So this is an “almost” symmetry also. So we do have examples in other
things.




We have, in our minds, a tendency to accept symmetry as some kind of
perfection. In fact it is like the old idea of the Greeks that circles
were perfect, and it was rather horrible to believe that the planetary
orbits were not circles, but only nearly circles. The difference between
being a circle and being nearly a circle is not a small difference, it
is a fundamental change so far as the mind is concerned. There is a sign
of perfection and symmetry in a circle that is not there the moment the
circle is slightly off—that is the end of it—it is no longer
symmetrical. Then the question is why it is only nearly a
circle—that is a much more difficult question. The actual motion of
the planets, in general, should be ellipses, but during the ages,
because of tidal forces, and so on, they have been made almost
symmetrical. Now the question is whether we have a similar problem here.
The problem from the point of view of the circles is if they were
perfect circles there would be nothing to explain, that is clearly
simple. But since they are only nearly circles, there is a lot to
explain, and the result turned out to be a big dynamical problem, and
now our problem is to explain why they are nearly symmetrical by looking
at tidal forces and so on.





So our problem is to explain where symmetry comes from. Why is nature so
nearly symmetrical? No one has any idea why. The only thing we might
suggest is something like this: There is a gate in Japan, a gate in
Neiko, which is sometimes called by the Japanese the most beautiful gate
in all Japan; it was built in a time when there was great influence from
Chinese art. This gate is very elaborate, with lots of gables and
beautiful carving and lots of columns and dragon heads and princes
carved into the pillars, and so on. But when one looks closely he sees
that in the elaborate and complex design along one of the pillars, one
of the small design elements is carved upside down; otherwise the thing
is completely symmetrical. If one asks why this is, the story is that it
was carved upside down so that the gods will not be jealous of the
perfection of man. So they purposely put an error in there, so that the
gods would not be jealous and get angry with human beings.




We might like to turn the idea around and think that the true
explanation of the near symmetry of nature is this: that God made the
laws only nearly symmetrical so that we should not be jealous of His
perfection!







  















































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































