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        Introduction to the Electronic Editions
        

         
        
      
        
This e-book edition of The Feynman Lectures on Physics New Millennium Edition derives from the free-to-read online version at www.feynmanlectures.caltech.edu, which in turn derives from the LATEX manuscript used to print the books. Certain adaptations have been made to accommodate the displays of typical e-readers, including narrowing wide equations and tables, and splitting figures into parts for reflowability.



        
The typographical limitations of today’s popular e-book formats are especially evident in science and mathematics texts in which mathematical expressions, formulas and equations clash with the text or degrade when scaled. We consider this unacceptable for The Feynman Lectures on Physics, and so we have created a new kind of e-book especially for this edition – one which seamlessly integrates text, mathematics, figures and tables. 



        
Whenever technically feasible, mathematics are presented using HTML and stylesheet formatting; otherwise, vectorized images are used. Great effort has been put into making the mathematical typography rendered by these two different methods indistinguishable. Vectorized images are used for tables and line-drawn figures so that they also scale without degradation, uniformly with the text and mathematics. 



        
The lasting popularity of The Feynman Lectures on Physics, now more than fifty years in print, stands out as a testament to both the continued relevance of its subject matter and the enthusiastic spirit in which it is presented. It is our sincere hope that the electronic editions of Feynman’s lectures will make them even more accessible, so they may be more widely and better appreciated, and serve as an inspiration and guide to bright eager minds throughout the world, far into the future.




Michael A. Gottlieb, Editor

Rudolf Pfeiffer, Editor

Lars I. Næsheim, Ebook Producer


June 19, 2015
       




        
        
	
        

        

  
    
      
        
        
        About the Authors
        

         
        
        
        Richard Feynman
        

      
        
		
        Born in 1918 in New York City, Richard P. Feynman received his Ph.D from Princeton in 1942.
        Despite his youth, he played an important part in the Manhattan Project at Los Alamos during World
        War II. Subsequently, he taught at Cornell and at the California Institute of Technology. In 1965
        he received the Nobel Prize in Physics, along with Sin-Itiro Tomonaga and Julian Schwinger,
        for his work in quantum electrodynamics.
		

        

        
        
        
		
        Dr. Feynman won his Nobel Prize for successfully resolving problems with the theory of quantum
        electrodynamics. He also created a mathematical theory that accounts for the phenomenon of
        superfluidity in liquid helium. Thereafter, with Murray Gell-Mann, he did fundamental work in the
        area of weak interactions such as beta decay. In later years Feynman played a key role in the
        development of quark theory by putting forward his parton model of high energy proton collision
        processes.
        

        

        
        
		
        Beyond these achievements, Dr. Feynman introduced basic new computational techniques and notations
        into physics—above all, the ubiquitous Feynman diagrams that, perhaps more than any other formalism
        in recent scientific history, have changed the way in which basic physical processes are conceptualized
        and calculated.
        

        

        
        
		
        Feynman was a remarkably effective educator. Of all his numerous awards, he was especially proud of
        the Oersted Medal for Teaching, which he won in 1972. The Feynman Lectures on Physics,
        originally published in 1963, were described by a reviewer in Scientific American as “tough, but
        nourishing and full of flavor. After 25 years it is the guide for teachers and for the best
        of beginning students.” In order to increase the understanding of physics among the lay public,
        Dr. Feynman wrote The Character of Physical Law and QED: The Strange Theory of Light and
        Matter. He also authored a number of advanced publications that have become classic references
        and textbooks for researchers and students.
        

		

		
        
		
        Richard Feynman was a constructive public man. His work on the Challenger commission is well known,
        especially his famous demonstration of the susceptibility of the O-rings to cold, an elegant experiment
        which required nothing more than a glass of ice water and a C-clamp. Less well known were
        Dr. Feynman's efforts on the California State Curriculum Committee in the 1960s, where he protested
        the mediocrity of textbooks.
        

		

		
        
		
        A recital of Richard Feynman's myriad scientific and educational accomplishments cannot adequately
        capture the essence of the man. As any reader of even his most technical publications knows, Feynman's
        lively and multi-sided personality shines through all his work. Besides being a physicist, he was at
        various times a repairer of radios, a picker of locks, an artist, a dancer, a bongo player, and even a
        decipherer of Mayan hieroglyphics. Perpetually curious about his world, he was an exemplary empiricist.
        

		

		
        
		
        Richard Feynman died on February 15, 1988, in Los Angeles.
        

		

        

        
        
        
        Robert Leighton
        

        
        
		
        Born in Detroit in 1919, Robert B. Leighton did ground-breaking work in solid state physics, cosmic ray physics, the beginnings of modern particle physics, solar physics, planetary photography, infrared astronomy, and millimeter- and submillimeter-wave astronomy over the course of his life. He was widely known for his innovative design of scientific instruments, and was deeply admired as a teacher, having authored a highly influential text, Principles of Modern Physics, before joining the team developing The Feynman Lectures on Physics.
        

		


        
		
        In the early 1950s Leighton played a key role in showing the mu-meson decays into two neutrinos and an electron, and  made the first measurement of the energy spectrum of the decay electron.  He was the first to observe strange particle decays after their initial discovery, and elucidated many of the properties of the new strange particles.
        

		


        
		
        In the mid-1950s Leighton devised Doppler-shift and Zeeman-effect solar cameras. With the Zeeman camera, Leighton and his students mapped the sun's magnetic field with excellent resolution, leading to striking discoveries of a five-minute oscillation in local solar surface velocities and of a “super-granulation pattern,” thus opening a new field: solar seismology. Leighton also designed and built equipment to make clearer images of the planets, and opened another new field: adaptive optics. His were considered the best images of the planets until the era of space exploration with probes began in the 1960s.
        

		


        
		
        In the early 1960s, Leighton developed a novel, inexpensive infrared telescope, producing the first survey of the sky at 2.2 microns, which revealed an unexpectedly large number of objects in our galaxy too cool to be seen with the human eye.  During the mid-1960s he was Team Leader at JPL for  Imaging Science Investigations on the Mariner 4, 6, and 7 missions to Mars. Leighton played a key role in the development of JPL's first deep-space digital television system, and contributed to early efforts at image processing and enhancement techniques.
        

		


        
		
        In the 1970s, Leighton's interest shifted to the development of large, inexpensive dish antennae that could be used to pursue millimeter-wave interferometry and submillimeter-wave astronomy. Once again, his remarkable experimental abilities opened a new field of science, which continues to be vigorously pursued at the Owens Valley Radio Observatory and the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile.
        

		


        
		
        Robert Leighton died on March 9, 1997, in Pasadena, California.
        

		

        

        

        
        
        Matthew Sands
        

        
        
		
        Born in 1919 in Oxford, Massachusetts, Matthew Sands received his BA from Clark University in 1940 and his MA from Rice University in 1941. During World War II he served on the Manhattan Project at Los Alamos, working on electronics and instrumentation. After the war Sands helped found the Los Alamos Federation of Atomic Scientists, which lobbied against the further use of nuclear weapons. During that period he earned his Ph.D at MIT researching cosmic rays under Bruno Rossi.
        

		


        
		
        In 1950 Sands was recruited by Caltech to build and operate its 1.5 GeV electron synchrotron. He was the first to show, theoretically and experimentally, the importance of quantum effects in electron accelerators.
        

		


        
		
        From 1960 to 1966, Sands served on the Commission on College Physics, spearheading reforms in the Caltech undergraduate physics program that created The Feynman Lectures on Physics. During that time he also served as a consultant on nuclear weapons and disarmament to the President’s Science Advisory Committee, the Arms Control and Disarmament Agency, and the Department of Defense.
        

		


        
		
        In 1963 Sands became Deputy Director for construction and operation of the Stanford Linear Accelerator (SLAC), where he also worked on the Stanford Positron Electron Asymmetric Rings (SPEAR) 3 GeV collider.
        

		


        
		
        From 1969 to 1985 Sands was a physics professor at University of California, Santa Cruz, serving as its Vice Chancellor for Science from 1969 to 1972. He received a Distinguished Service Award from the American Association of Physics Teachers in 1972. As Professor Emeritus, he continued to be active in particle accelerator research until 1994. In 1998 the American Physical Society awarded Sands the Robert R. Wilson Prize “for his many contributions to accelerator physics and the development of electron-positron and proton colliders.”
        

		


        
		
        In his retirement Sands mentored local elementary and high school science teachers in Santa Cruz, helping them set up computer and laboratory activities for their students. He also supervised the editing of Feynman’s Tips on Physics, to which he contributed a memoir describing the creation of The Feynman Lectures on Physics.
        

		


        
		
        Matthew Sands died on September 13, 2014, in Santa Cruz, California.
        

		

        

        
        

   

  
    
        
        
        
        Preface to the New Millennium Edition
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		Nearly fifty years have passed since Richard Feynman taught the introductory
        physics course at Caltech that gave rise to these three volumes, The Feynman
        Lectures on Physics. In those fifty years our understanding of the physical
        world has changed greatly, but The Feynman Lectures on Physics has
        endured. Feynman’s lectures are as powerful today as when first published, thanks
        to Feynman’s unique physics insights and pedagogy. They have been studied
        worldwide by novices and mature physicists alike; they have been translated into
        at least a dozen languages with more than 1.5 millions copies printed in the
        English language alone. Perhaps no other set of physics books has had such wide
        impact, for so long.

        
        
        
		
        This New Millennium Edition ushers in a new era for The Feynman
        Lectures on Physics (FLP): the twenty-first century era of electronic
        publishing. FLP has been converted to eFLP, with the text and
        equations expressed in the LaTeX electronic typesetting language, and all figures
        redone using modern drawing software.

        
        
        
		
        The consequences for the print version of this edition are not
        startling; it looks almost the same as the original red books that physics
        students have known and loved for decades. The main differences are an expanded
        and improved index, the correction of 885 errata found by readers over the five
        years since the first printing of the previous edition, and the ease of
        correcting errata that future readers may find. To this I shall return
        below.

        
        
        
		
        The eBook Version of this edition, and the Enhanced Electronic
        Version are electronic innovations. By contrast with most eBook versions of
        20th century technical books, whose equations, figures and sometimes even text
        become pixellated when one tries to enlarge them, the LaTeX manuscript of the
        New Millennium Edition makes it possible to create eBooks of the highest
        quality, in which all features on the page (except photographs) can be enlarged
        without bound and retain their precise shapes and sharpness. And the Enhanced
        Electronic Version, with its audio and blackboard photos from Feynman’s
        original lectures, and its links to other resources, is an innovation that would
        have given Feynman great pleasure.
        
		

		

		
		
        Memories of Feynman’s Lectures

        
        
		
        These three volumes are a self-contained pedagogical treatise. They are also a
        historical record of Feynman’s 1961–64 undergraduate physics lectures, a course
        required of all Caltech freshmen and sophomores regardless of their majors.

        
        
        
		
        Readers may wonder, as I have, how Feynman’s lectures impacted the students who
        attended them. Feynman, in his Preface to these volumes, offered a somewhat
        negative view.  “I don’t think I did very well by the students,” he wrote.
        Matthew Sands, in his memoir in Feynman’s Tips on Physics expressed a far
        more positive view. Out of curiosity, in spring 2005 I emailed or talked to a
        quasi-random set of 17 students (out of about 150) from Feynman’s 1961–63
        class—some who had great difficulty with the class, and some who mastered it
        with ease; majors in biology, chemistry, engineering, geology, mathematics and
        astronomy, as well as in physics.

        
        
        
		
        The intervening years might have glazed their memories with a euphoric tint, but
        about 80 percent recall Feynman’s lectures as highlights of their college years.
        “It was like going to church.” The lectures were “a transformational
        experience,” “the experience of a lifetime, probably the most important thing I
        got from Caltech.” “I was a biology major but Feynman’s lectures stand out as a
        high point in my undergraduate experience … though I
        must admit I couldn’t do the homework at the time and I hardly turned any of it
        in.” “I was among the least promising of students in this course, and I never
        missed a lecture. … I remember and can still feel
        Feynman’s joy of discovery. … His lectures had an
        … emotional impact that was probably lost in the
        printed Lectures.”

        
        
        
		
        By contrast, several of the students have negative memories due largely to two
        issues: (i) “You couldn’t learn to work the homework problems by attending the
        lectures. Feynman was too slick—he knew tricks and what approximations could be
        made, and had intuition based on experience and genius that a beginning student
        does not possess.” Feynman and colleagues, aware of this flaw in the course,
        addressed it in part with materials that have been incorporated into Feynman’s
        Tips on Physics: three problem-solving lectures by Feynman, and a set of
        exercises and answers assembled by Robert B. Leighton and Rochus Vogt. (ii) “The
        insecurity of not knowing what was likely to be discussed in the next lecture,
        the lack of a text book or reference with any connection to the lecture material,
        and consequent inability for us to read ahead, were very frustrating. 
        …  I found the lectures exciting and understandable in the
        hall, but they were Sanskrit outside [when I tried to reconstruct the details].”
        This problem, of course, was solved by these three volumes, the printed version
        of The Feynman Lectures on Physics. They became the textbook from which
        Caltech students studied for many years thereafter, and they live on today as one
        of Feynman’s greatest legacies.

		

		

		
		
        A History of Errata

        
        
		
        The Feynman Lectures on Physics was produced very quickly by Feynman and
        his co-authors, Robert B. Leighton and Matthew Sands, working from and expanding
        on tape recordings and blackboard photos of Feynman’s course lectures1 (both of
        which are incorporated into the Enhanced Electronic Version of this New
        Millennium Edition). Given the high speed at which Feynman, Leighton and
        Sands worked, it was inevitable that many errors crept into the first edition.
        Feynman accumulated long lists of claimed errata over the subsequent
        years—errata found by students and faculty at Caltech and by readers around the
        world. In the 1960s and early ’70s, Feynman made time in his intense life to
        check most but not all of the claimed errata for Volumes I and II, and insert
        corrections into subsequent printings. But Feynman’s sense of duty never rose
        high enough above the excitement of discovering new things to make him deal with
        the errata in Volume III.2 After his untimely death in 1988,
        lists of errata for all three volumes were deposited in the Caltech Archives, and
        there they lay forgotten.

        
        
        
		
        In 2002 Ralph Leighton (son of the late Robert Leighton and compatriot of
        Feynman) informed me of the old errata and a new long list compiled by Ralph’s
        friend Michael Gottlieb. Leighton proposed that Caltech produce a new edition of
        The Feynman Lectures with all errata corrected, and publish it alongside a
        new volume of auxiliary material, Feynman’s Tips on Physics, which he and
        Gottlieb were preparing.

        
        
        
		
        Feynman was my hero and a close personal friend. When I saw the lists of errata
        and the content of the proposed new volume, I quickly agreed to oversee this
        project on behalf of Caltech (Feynman’s long-time academic home, to which he,
        Leighton and Sands had entrusted all rights and responsibilities for The
        Feynman Lectures). After a year and a half of meticulous work by Gottlieb,
        and careful scrutiny by Dr. Michael Hartl (an outstanding Caltech postdoc who
        vetted all errata plus the new volume), the 2005 Definitive Edition of The
        Feynman Lectures on Physics was born, with about 200 errata corrected and
        accompanied by Feynman’s Tips on Physics by Feynman, Gottlieb and
        Leighton.

        
        
        
		
        I thought that edition was going to be “Definitive”. What I did not
        anticipate was the enthusiastic response of readers around the world to an appeal
        from Gottlieb to identify further errata, and submit them via a website that
        Gottlieb created and continues to maintain, The Feynman Lectures Website,
        www.feynmanlectures.info.  In
        the five years since then, 965 new errata have been submitted and survived the
        meticulous scrutiny of Gottlieb, Hartl, and Nate Bode (an outstanding Caltech
        physics graduate student, who succeeded Hartl as Caltech’s vetter of errata). Of
        these, 965 vetted errata, 80 were corrected in the fourth printing of the
        Definitive Edition (August 2006) and the remaining 885 are corrected in
        the first printing of this New Millennium Edition (332 in volume I, 263 in
        volume II, and 200 in volume III). For details of the errata, see www.feynmanlectures.info.

        
        
        
		
        Clearly, making The Feynman Lectures on Physics error-free has become a
        world-wide community enterprise. On behalf of Caltech I thank the 50 readers who
        have contributed since 2005 and the many more who may contribute over the coming
        years. The names of all contributors are posted at www.feynmanlectures.info/flp_errata.html.

        
        
        
		
        Almost all the errata have been of three types: (i) typographical errors in
        prose; (ii) typographical and mathematical errors in equations, tables and
        figures—sign errors, incorrect numbers (e.g., a 5 that should be a 4), and
        missing subscripts, summation signs, parentheses and terms in equations; (iii)
        incorrect cross references to chapters, tables and figures. These kinds of
        errors, though not terribly serious to a mature physicist, can be frustrating and
        confusing to Feynman’s primary audience: students.

        
        
        
		
        It is remarkable that among the 1165 errata corrected under my auspices, only
        several do I regard as true errors in physics. An example is Volume II, page 5-9,
        which now says “…no static distribution of charges
        inside a closed grounded conductor can produce any [electric] fields
        outside” (the word grounded was omitted in previous editions). This error was
        pointed out to Feynman by a number of readers, including Beulah Elizabeth Cox, a
        student at The College of William and Mary, who had relied on Feynman’s erroneous
        passage in an exam. To Ms. Cox, Feynman wrote in 1975,3  “Your instructor was right
        not to give you any points, for your answer was wrong, as he demonstrated using
        Gauss’s law. You should, in science, believe logic and arguments, carefully
        drawn, and not authorities. You also read the book correctly and understood it. I
        made a mistake, so the book is wrong. I probably was thinking of a grounded
        conducting sphere, or else of the fact that moving the charges around in
        different places inside does not affect things on the outside. I am not sure how
        I did it, but I goofed. And you goofed, too, for believing me.”

		

		

		
		
        How this New Millennium Edition Came to Be

        
        
		
        Between November 2005 and July 2006, 340 errata were submitted to The Feynman
        Lectures Website www.feynmanlectures.info. Remarkably, the
        bulk of these came from one person: Dr. Rudolf Pfeiffer, then a physics
        postdoctoral fellow at the University of Vienna, Austria. The publisher, Addison
        Wesley, fixed 80 errata, but balked at fixing more because of cost: the books
        were being printed by a photo-offset process, working from photographic images of
        the pages from the 1960s. Correcting an error involved re-typesetting the entire
        page, and to ensure no new errors crept in, the page was re-typeset twice by two
        different people, then compared and proofread by several other people—a very
        costly process indeed, when hundreds of errata are involved.

        
        
        
		
        Gottlieb, Pfeiffer and Ralph Leighton were very unhappy about this, so they
        formulated a plan aimed at facilitating the repair of all errata, and also aimed
        at producing eBook and enhanced electronic versions of The Feynman Lectures on
        Physics. They proposed their plan to me, as Caltech’s representative, in
        2007. I was enthusiastic but cautious. After seeing further details, including a
        one-chapter demonstration of the Enhanced Electronic Version, I
        recommended that Caltech cooperate with Gottlieb, Pfeiffer and Leighton in the
        execution of their plan. The plan was approved by three successive chairs of
        Caltech’s Division of Physics, Mathematics and Astronomy—Tom Tombrello, Andrew
        Lange, and Tom Soifer—and the complex legal and contractual details were worked
        out by Caltech’s Intellectual Property Counsel, Adam Cochran. With the
        publication of this New Millennium Edition, the plan has been executed
        successfully, despite its complexity. Specifically:

        
        
        
		
        Pfeiffer and Gottlieb have converted into LaTeX all three volumes of FLP
        (and also more than 1000 exercises from the Feynman course for incorporation into
        Feynman’s Tips on Physics). The FLP figures were redrawn in modern
        electronic form in India, under guidance of the FLP German translator,
        Henning Heinze, for use in the German edition. Gottlieb and Pfeiffer traded
        non-exclusive use of their LaTeX equations in the German edition (published by
        Oldenbourg) for non-exclusive use of Heinze’s figures in this New
        Millennium English edition. Pfeiffer and Gottlieb have meticulously checked
        all the LaTeX text and equations and all the redrawn figures, and made
        corrections as needed. Nate Bode and I, on behalf of Caltech, have done spot
        checks of text, equations, and figures; and remarkably, we have found no errors.
        Pfeiffer and Gottlieb are unbelievably meticulous and accurate. Gottlieb and
        Pfeiffer arranged for John Sullivan at the Huntington Library to digitize the
        photos of Feynman’s 1962–64 blackboards, and for George Blood Audio to digitize
        the lecture tapes—with financial support and encouragement from Caltech
        Professor Carver Mead, logistical support from Caltech Archivist Shelley Erwin,
        and legal support from Cochran.

        
        
        
		
        The legal issues were serious: In the 1960s, Caltech licensed to Addison Wesley
        rights to publish the print edition, and in the 1990s, rights to distribute the
        audio of Feynman’s lectures and a variant of an electronic edition. In the 2000s,
        through a sequence of acquisitions of those licenses, the print rights were
        transferred to the Pearson publishing group, while rights to the audio and the
        electronic version were transferred to the Perseus publishing group. Cochran,
        with the aid of Ike Williams, an attorney who specializes in publishing,
        succeeded in uniting all of these rights with Perseus (Basic Books), making
        possible this New Millennium Edition.
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		These are the lectures in physics that I gave last year and the year before to
        the freshman and sophomore classes at Caltech. The lectures are, of course, not
        verbatim—they have been edited, sometimes extensively and sometimes less so.
        The lectures form only part of the complete course. The whole group of 180
        students gathered in a big lecture room twice a week to hear these lectures and
        then they broke up into small groups of 15 to 20 students in recitation sections
        under the guidance of a teaching assistant. In addition, there was a laboratory
        session once a week.
		

		

		
		
		The special problem we tried to get at with these lectures was to maintain the
        interest of the very enthusiastic and rather smart students coming out of the
        high schools and into Caltech. They have heard a lot about how interesting and
        exciting physics is—the theory of relativity, quantum mechanics, and other
        modern ideas. By the end of two years of our previous course, many would be very
        discouraged because there were really very few grand, new, modern ideas presented
        to them. They were made to study inclined planes, electrostatics, and so forth,
        and after two years it was quite stultifying. The problem was whether or not we
        could make a course which would save the more advanced and excited student by
        maintaining his enthusiasm.
		

		

		
		
		The lectures here are not in any way meant to be a survey course, but are very
        serious. I thought to address them to the most intelligent in the class and to
        make sure, if possible, that even the most intelligent student was unable to
        completely encompass everything that was in the lectures—by putting in
        suggestions of applications of the ideas and concepts in various directions
        outside the main line of attack. For this reason, though, I tried very hard to
        make all the statements as accurate as possible, to point out in every case where
        the equations and ideas fitted into the body of physics, and how—when they
        learned more—things would be modified. I also felt that for such students it is
        important to indicate what it is that they should—if they are sufficiently
        clever—be able to understand by deduction from what has been said before, and
        what is being put in as something new. When new ideas came in, I would try either
        to deduce them if they were deducible, or to explain that it was a
        new idea which hadn’t any basis in terms of things they had already learned and
        which was not supposed to be provable—but was just added in.
		

		

		
		
		At the start of these lectures, I assumed that the students knew something
        when they came out of high school—such things as geometrical optics, simple
        chemistry ideas, and so on. I also didn’t see that there was any reason to make
        the lectures in a definite order, in the sense that I would not be allowed to
        mention something until I was ready to discuss it in detail. There was a great
        deal of mention of things to come, without complete discussions. These more
        complete discussions would come later when the preparation became more advanced.
        Examples are the discussions of inductance, and of energy levels, which are at
        first brought in in a very qualitative way and are later developed more
        completely.
		

		

		
		
		At the same time that I was aiming at the more active student, I also wanted
        to take care of the fellow for whom the extra fireworks and side applications are
        merely disquieting and who cannot be expected to learn most of the material in
        the lecture at all. For such students I wanted there to be at least a central
        core or backbone of material which he could get. Even if he didn’t
        understand everything in a lecture, I hoped he wouldn’t get nervous. I didn’t
        expect him to understand everything, but only the central and most direct
        features. It takes, of course, a certain intelligence on his part to see which
        are the central theorems and central ideas, and which are the more advanced side
        issues and applications which he may understand only in later years.
		

		

		
		
		In giving these lectures there was one serious difficulty: in the way the
        course was given, there wasn’t any feedback from the students to the lecturer to
        indicate how well the lectures were going over. This is indeed a very serious
        difficulty, and I don’t know how good the lectures really are. The whole thing
        was essentially an experiment. And if I did it again I wouldn’t do it the same
        way—I hope I don’t have to do it again! I think, though, that things
        worked out—so far as the physics is concerned—quite satisfactorily in the
        first year.
		

		

		
		
		In the second year I was not so satisfied. In the first part of the course,
        dealing with electricity and magnetism, I couldn’t think of any really unique or
        different way of doing it—of any way that would be particularly more exciting
        than the usual way of presenting it. So I don’t think I did very much in the
        lectures on electricity and magnetism. At the end of the second year I had
        originally intended to go on, after the electricity and magnetism, by giving some
        more lectures on the properties of materials, but mainly to take up things like
        fundamental modes, solutions of the diffusion equation, vibrating systems,
        orthogonal functions, … developing the first
        stages of what are usually called “the mathematical methods of physics.”
        In retrospect, I think that if I were doing it again I would go back to that
        original idea. But since it was not planned that I would be giving these lectures
        again, it was suggested that it might be a good idea to try to give an
        introduction to the quantum mechanics—what you will find in Volume III.
		

		

		
		
		It is perfectly clear that students who will major in physics can wait until
        their third year for quantum mechanics. On the other hand, the argument was made
        that many of the students in our course study physics as a background for their
        primary interest in other fields. And the usual way of dealing with quantum
        mechanics makes that subject almost unavailable for the great majority of
        students because they have to take so long to learn it. Yet, in its real
        applications—especially in its more complex applications, such as in electrical
        engineering and chemistry—the full machinery of the differential equation
        approach is not actually used. So I tried to describe the principles of quantum
        mechanics in a way which wouldn’t require that one first know the mathematics of
        partial differential equations. Even for a physicist I think that is an
        interesting thing to try to do—to present quantum mechanics in this reverse
        fashion—for several reasons which may be apparent in the lectures themselves.
        However, I think that the experiment in the quantum mechanics part was not
        completely successful—in large part because I really did not have enough time
        at the end (I should, for instance, have had three or four more lectures in order
        to deal more completely with such matters as energy bands and the spatial
        dependence of amplitudes). Also, I had never presented the subject this way
        before, so the lack of feedback was particularly serious. I now believe the
        quantum mechanics should be given at a later time. Maybe I’ll have a chance to do
        it again someday. Then I’ll do it right.
		

		

		
		
		The reason there are no lectures on how to solve problems is because there
        were recitation sections. Although I did put in three lectures in the first year
        on how to solve problems, they are not included here. Also there was a lecture on
        inertial guidance which certainly belongs after the lecture on rotating systems,
        but which was, unfortunately, omitted. The fifth and sixth lectures are actually
        due to Matthew Sands, as I was out of town. The question, of course, is how well
        this experiment has succeeded. My own point of view—which, however, does not
        seem to be shared by most of the people who worked with the students—is
        pessimistic. I don’t think I did very well by the students. When I look at the
        way the majority of the students handled the problems on the examinations, I
        think that the system is a failure. Of course, my friends point out to me that
        there were one or two dozen students who—very surprisingly—understood almost
        everything in all of the lectures, and who were quite active in working with the
        material and worrying about the many points in an excited and interested way.
        These people have now, I believe, a first-rate background in physics—and they
        are, after all, the ones I was trying to get at. But then, "The power of
        instruction is seldom of much efficacy except in those happy dispositions where
        it is almost superfluous.” (Gibbon)
		

		

		
		
		Still, I didn’t want to leave any student completely behind, as perhaps I did.
        I think one way we could help the students more would be by putting more hard
        work into developing a set of problems which would elucidate some of the ideas in
        the lectures. Problems give a good opportunity to fill out the material of the
        lectures and make more realistic, more complete, and more settled in the mind the
        ideas that have been exposed.
		

		

		
		
		I think, however, that there isn’t any solution to this problem of education
        other than to realize that the best teaching can be done only when there is a
        direct individual relationship between a student and a good teacher—a situation
        in which the student discusses the ideas, thinks about the things, and talks
        about the things. It’s impossible to learn very much by simply sitting in a
        lecture, or even by simply doing problems that are assigned. But in our modern
        times we have so many students to teach that we have to try to find some
        substitute for the ideal. Perhaps my lectures can make some contribution. Perhaps
        in some small place where there are individual teachers and students, they may
        get some inspiration or some ideas from the lectures. Perhaps they will have fun
        thinking them through—or going on to develop some of the ideas further.
		

        
        Richard P.
        Feynman

        June, 1963
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For some forty years Richard P. Feynman focussed his curiosity on the mysterious workings of the physical world, and bent his intellect to searching out the order in its chaos. Now, he has given two years of his ability and his energy to his Lectures on Physics for beginning students. For them he has distilled the essence of his knowledge, and has created in terms they can hope to grasp a picture of the physicist’s universe. To his lectures he has brought the brilliance and clarity of his thought, the originality and vitality of his approach, and the contagious enthusiasm of his delivery. It was a joy to behold.

        
        
        
		
The first year’s lectures formed the basis for the first volume of this set of books. We have tried in this the second volume to make some kind of a record of a part of the second year’s lectures—which were given to the sophomore class during the 1962–1963 academic year. The rest of the second year’s lectures will make up Volume III.

        
        
        
		
Of the second year of lectures, the first two-thirds were devoted to a fairly complete treatment of the physics of electricity and magnetism. Its presentation was intended to serve a dual purpose. We hoped, first, to give the students a complete view of one of the great chapters of physics—from the early gropings of Franklin, through the great synthesis of Maxwell, on to the Lorentz electron theory of material properties, and ending with the still unsolved dilemmas of the electromagnetic self-energy. And we hoped, second, by introducing at the outset the calculus of vector fields, to give a solid introduction to the mathematics of field theories. To emphasize the general utility of the mathematical methods, related subjects from other parts of physics were sometimes analyzed together with their electric counterparts. We continually tried to drive home the generality of the mathematics. (“The same equations have the same solutions.”) And we emphasized this point by the kinds of exercises and examinations we gave with the course.

        
        
        
		
Following the electromagnetism there are two chapters each on elasticity and fluid flow. In the first chapter of each pair, the elementary and practical aspects are treated. The second chapter on each subject attempts to give an overview of the whole complex range of phenomena which the subject can lead to. These four chapters can well be omitted without serious loss, since they are not at all a necessary preparation for Volume III.

        
        
        
		
The last quarter, approximately, of the second year was dedicated to an introduction to quantum mechanics. This material has been put into the third volume.

        
        
        
		
In this record of the Feynman Lectures we wished to do more than provide a transcription of what was said. We hoped to make the written version as clear an exposition as possible of the ideas on which the original lectures were based. For some of the lectures this could be done by making only minor adjustments of the wording in the original transcript. For others of the lectures a major reworking and rearrangement of the material was required. Sometimes we felt we should add some new material to improve the clarity or balance of the presentation. Throughout the process we benefitted from the continual help and advice of Professor Feynman.

        
        
        
		
The translation of over 1,000,000 spoken words into a coherent text on a tight schedule is a formidable task, particularly when it is accompanied by the other onerous burdens which come with the introduction of a new course—preparing for recitation sections, and meeting students, designing exercises and examinations, and grading them, and so on. Many hands—and heads—were involved. In some instances we have, I believe, been able to render a faithful image—or a tenderly retouched portrait—of the original Feynman. In other instances we have fallen far short of this ideal. Our successes are owed to all those who helped. The failures, we regret.

        
        
        
		
As explained in detail in the Foreword to Volume I, these lectures were but one aspect of a program initiated and supervised by the Physics Course Revision Committee (R. B. Leighton, Chairman, H. V. Neher, and M. Sands) at the California Institute of Technology, and supported financially by the Ford Foundation. In addition, the following people helped with one aspect or another of the preparation of textual material for this second volume: T. K. Caughey, M. L. Clayton, J. B. Curcio, J. B. Hartle, T. W. H. Harvey, M. H. Israel, W. J. Karzas, R. W. Kavanagh, R. B. Leighton, J. Mathews, M. S. Plesset, F. L. Warren, W. Whaling, C. H. Wilts, and B. Zimmerman. Others contributed indirectly through their work on the course: J. Blue, G. F. Chapline, M. J. Clauser, R. Dolen, H. H. Hill, and A. M. Title. Professor Gerry Neugebauer contributed in all aspects of our task with a diligence and devotion far beyond the dictates of duty. The story of physics you find here would, however, not have been, except for the extraordinary ability and industry of Richard P. Feynman.

        
        Matthew Sands

        March, 1964

        (Photograph by Francis Bello © Estate of Francis Bello/Scence Photo Library)
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1 Electromagnetism


	
			
		Review:
		
			
		Chapter 12, Vol. I, Characteristics of Force
		
	





1–1 Electrical forces


Consider a force like gravitation which varies predominantly
inversely as the square of the distance, but which is about a
billion-billion-billion-billion times stronger. And with another
difference. There are two kinds of “matter,” which we can call
positive and negative. Like kinds repel and unlike kinds
attract—unlike gravity where there is only attraction. What would
happen?




A bunch of positives would repel with an enormous force and spread out
in all directions. A bunch of negatives would do the same. But an
evenly mixed bunch of positives and negatives would do something
completely different. The opposite pieces would be pulled together by
the enormous attractions. The net result would be that the terrific
forces would balance themselves out almost perfectly, by forming
tight, fine mixtures of the positive and the negative, and between two
separate bunches of such mixtures there would be practically no
attraction or repulsion at all.




There is such a force: the electrical force. And all matter is a mixture
of positive protons and negative electrons which are attracting and
repelling with this great force. So perfect is the balance, however,
that when you stand near someone else you don’t feel any force at all.
If there were even a little bit of unbalance you would know it. If you
were standing at arm’s length from someone and each of you had one
percent more electrons than protons, the repelling force would be
incredible. How great? Enough to lift the Empire State Building? No! To
lift Mount Everest? No! The repulsion would be enough to lift a
“weight” equal to that of the entire earth!




With such enormous forces so perfectly balanced in this intimate
mixture, it is not hard to understand that matter, trying to keep its
positive and negative charges in the finest balance, can have a great
stiffness and strength. The Empire State Building, for example, swings
less than one inch in the wind because the electrical forces hold every
electron and proton more or less in its proper place. On the other
hand, if we look at matter on a scale small enough that we see only a
few atoms, any small piece will not, usually, have an equal number of
positive and negative charges, and so there will be strong residual
electrical forces. Even when there are equal numbers of both charges
in two neighboring small pieces, there may still be large net
electrical forces because the forces between individual charges vary
inversely as the square of the distance. A net force can arise if a
negative charge of one piece is closer to the positive than to the
negative charges of the other piece. The attractive forces can then be
larger than the repulsive ones and there can be a net attraction
between two small pieces with no excess charges. The force that holds
the atoms together, and the chemical forces that hold molecules
together, are really electrical forces acting in regions where the
balance of charge is not perfect, or where the distances are very
small.




You know, of course, that atoms are made with positive protons in the
nucleus and with electrons outside. You may ask: “If this electrical
force is so terrific, why don’t the protons and electrons just get on
top of each other? If they want to be in an intimate mixture, why
isn’t it still more intimate?” The answer has to do with the quantum
effects. If we try to confine our electrons in a region that is very
close to the protons, then according to the uncertainty
principle they
must have some mean square momentum which is larger the more we try to
confine them. It is this motion, required by the laws of quantum
mechanics, that keeps the electrical attraction from bringing the
charges any closer together.




There is another question: “What holds the nucleus together”? In a
nucleus there are several protons, all of which are positive. Why don’t
they push themselves apart? It turns out that in nuclei there are, in
addition to electrical forces, nonelectrical forces, called nuclear
forces, which are greater than the electrical forces and which are able
to hold the protons together in spite of the electrical repulsion. The
nuclear forces, however, have a short range—their force falls off much
more rapidly than 1/r2[image: -*-]. And this has an important consequence. If a
nucleus has too many protons in it, it gets too big, and it will not
stay together. An example is uranium, with 92 protons. The nuclear
forces act mainly between each proton (or neutron) and its nearest
neighbor, while the electrical forces act over larger distances, giving
a repulsion between each proton and all of the others in the nucleus.
The more protons in a nucleus, the stronger is the electrical repulsion,
until, as in the case of uranium, the balance is so delicate that the
nucleus is almost ready to fly apart from the repulsive electrical
force. If such a nucleus is just “tapped” lightly (as can be done by
sending in a slow neutron), it breaks into two pieces, each with
positive charge, and these pieces fly apart by electrical repulsion. The
energy which is liberated is the energy of the atomic bomb. This energy
is usually called “nuclear” energy, but it is really “electrical”
energy released when electrical forces have overcome the attractive
nuclear forces.




Lower case Greek letters

and commonly used capitals




	α[image: -*-]
	
	alpha
	ι[image: -*-]
	
	iota
	ρ[image: -*-]
	
	rho



	β[image: -*-]
	
	beta
	κ[image: -*-]
	
	kappa
	σ[image: -*-]
	Σ[image: -*-]
	sigma



	γ[image: -*-]
	Γ[image: -*-]
	gamma
	λ[image: -*-]
	Λ[image: -*-]
	lambda
	τ[image: -*-]
	
	tau



	δ[image: -*-]
	Δ[image: -*-]
	delta
	μ[image: -*-]
	
	mu
	υ[image: -*-]
	Υ[image: -*-]
	upsilon



	ϵ[image: -*-]
	
	epsilon
	ν[image: -*-]
	
	nu
	ϕ[image: -*-]
	Φ[image: -*-]
	phi



	ζ[image: -*-]
	
	zeta
	ξ[image: -*-]
	Ξ[image: -*-]
	xi (ksi)
	χ[image: -*-]
	
	chi (khi)



	η[image: -*-]
	
	eta
	o[image: -*-]
	
	omicron
	ψ[image: -*-]
	Ψ[image: -*-]
	psi



	θ[image: -*-]
	Θ[image: -*-]
	theta
	π[image: -*-]
	Π[image: -*-]
	pi
	ω[image: -*-]
	Ω[image: -*-]
	omega







We may ask, finally, what holds a negatively charged electron together
(since it has no nuclear forces). If an electron is all made of one
kind of substance, each part should repel the other parts. Why, then,
doesn’t it fly apart? But does the electron have “parts”? Perhaps we
should say that the electron is just a point and that electrical
forces only act between different point charges, so that the electron does not act
upon itself. Perhaps. All we can say is that the question of what holds
the electron together has produced many difficulties in the attempts to
form a complete theory of electromagnetism. The question has never been
answered. We will entertain ourselves by discussing this subject some
more in later chapters.





As we have seen, we should expect that it is a combination of electrical
forces and quantum-mechanical effects that will determine the detailed
structure of materials in bulk, and, therefore, their properties. Some
materials are hard, some are soft. Some are electrical
“conductors”—because their electrons are free to
move about; others are “insulators”—because their
electrons are held tightly to individual atoms. We shall consider later
how some of these properties come about, but that is a very complicated
subject, so we will begin by looking at the electrical forces only in
simple situations. We begin by treating only the laws of
electricity—including magnetism, which is really a part of the same
subject.





We have said that the electrical force, like a gravitational force,
decreases inversely as the square of the distance between charges. This
relationship is called Coulomb’s law. But it is not precisely true when charges are moving—the
electrical forces depend also on the motions of the charges in a
complicated way. One part of the force between moving charges we call
the magnetic force. It is really one aspect of an electrical effect. That is why we
call the subject “electromagnetism.”





There is an important general principle that makes it possible to
treat electromagnetic forces in a relatively simple way. We find, from
experiment, that the force that acts on a particular charge—no
matter how many other charges there are or how they are
moving—depends only on the position of that particular charge, on
the velocity of the charge, and on the amount of charge. We can write
the force F[image: -*-] on a charge q[image: -*-] moving with a velocity v[image: -*-] as

[image: -*-][image: -*-]
(1.1)




We call E[image: -*-] the electric field and B[image: -*-] the magnetic
field at the
location of the charge. The important thing is that the electrical
forces from all the other charges in the universe can be summarized by
giving just these two vectors. Their values will depend on where
the charge is, and may change with time. Furthermore, if we
replace that charge with another charge, the force on the new charge
will be just in proportion to the amount of charge so long as all the
rest of the charges in the world do not change their positions or
motions. (In real situations, of course, each charge produces forces on
all other charges in the neighborhood and may cause these other charges
to move, and so in some cases the fields can change if we replace
our particular charge by another.)




We know from Vol. I how to find the motion of a particle if we know
the force on it. Equation (1.1) can be combined with the
equation of motion to give

[image: -*-][image: -*-]
(1.2)




So if E[image: -*-] and B[image: -*-] are given, we can find the motions. Now we
need to know how the E[image: -*-]’s and B[image: -*-]’s are produced.




One of the most important simplifying principles about the way the
fields are produced is this: Suppose a number of charges moving in
some manner would produce a field E1[image: -*-], and another set of
charges would produce E2[image: -*-]. If both sets of charges are in place
at the same time (keeping the same locations and motions they had when
considered separately), then the field produced is just the sum

[image: -*-][image: -*-]
(1.3)




This fact is called the principle of
superposition of fields. It
holds also for magnetic fields.





This principle means that if we know the law for the electric and
magnetic fields produced by a single charge moving in an
arbitrary way, then all the laws of
electrodynamics are complete. If we want to know
the force on charge A[image: -*-] we need only calculate the E[image: -*-] and B[image: -*-]
produced by each of the charges B[image: -*-], C[image: -*-], D[image: -*-], etc., and then add the
E[image: -*-]’s and B[image: -*-]’s from all the charges to find the fields, and
from them the forces acting on charge A[image: -*-]. If it had only turned out
that the field produced by a single charge was simple, this would be the
neatest way to describe the laws of electrodynamics. We have already
given a description of this law (Chapter 28, Vol. I) and
it is, unfortunately, rather complicated.





It turns out that the form in which the laws of electrodynamics are
simplest are not what you might expect. It is not simplest to
give a formula for the force that one charge produces on another. It
is true that when charges are standing still the Coulomb force
law is
simple, but when charges are moving about the relations are
complicated by delays in time and by the effects of acceleration,
among others. As a result, we do not wish to present electrodynamics
only through the force laws between charges; we find it more
convenient to consider another point of view—a point of view in
which the laws of electrodynamics appear to be the most easily
manageable.







1–2 Electric and magnetic fields


First, we must extend, somewhat, our ideas of the electric and
magnetic vectors, E[image: -*-] and B[image: -*-]. We have defined them in terms
of the forces that are felt by a charge. We wish now to speak of
electric and magnetic fields at a point even when there is no
charge present. We are saying, in effect, that since there are forces
“acting on” the charge, there is still “something” there when the
charge is removed. If a charge located at the point (x,y,z)[image: -*-] at the
time t[image: -*-] feels the force F[image: -*-] given by Eq. (1.1) we
associate the vectors E[image: -*-] and B[image: -*-] with the point in
space (x,y,z)[image: -*-]. We may think of E (x,y,z,t)[image: -*-] and B (x,y,z,t)[image: -*-]
as giving the forces that would be experienced at the time t[image: -*-]
by a charge located at (x,y,z)[image: -*-], with the condition that
placing the charge there did not disturb the positions or
motions of all the other charges responsible for the fields.




Following this idea, we associate with every point (x,y,z)[image: -*-] in
space two vectors E[image: -*-] and B[image: -*-], which may be changing with
time. The electric and magnetic fields are, then, viewed as
vector functions of x[image: -*-], y[image: -*-], z[image: -*-], and t[image: -*-]. Since a vector is
specified by its components, each of the fields E (x,y,z,t)[image: -*-]
and B (x,y,z,t)[image: -*-] represents three mathematical functions of
x[image: -*-], y[image: -*-], z[image: -*-], and t[image: -*-].




It is precisely because E[image: -*-] (or B[image: -*-]) can be specified at every
point in space that it is called a “field.” A “field” is any
physical quantity which takes on different values at different points
in space. Temperature, for example, is a field—in this case a scalar
field, which we write as T (x,y,z)[image: -*-]. The temperature could also vary
in time, and we would say the temperature field is time-dependent, and
write T (x,y,z,t)[image: -*-]. Another example is the “velocity field” of a
flowing liquid. We write v (x,y,z,t)[image: -*-] for the velocity of the
liquid at each point in space at the time t[image: -*-]. It is a vector field.




Returning to the electromagnetic fields—although they are produced
by charges according to complicated formulas, they have the following
important characteristic: the relationships between the values of the
fields at one point and the values at a nearby point are
very simple. With only a few such relationships in the form of
differential equations we can describe the fields completely. It is in
terms of such equations that the laws of electrodynamics are most
simply written.




There have been various inventions to help the mind visualize the
behavior of fields. The most correct is also the most abstract: we
simply consider the fields as mathematical functions of position and
time. We can also attempt to get a mental picture of the field by
drawing vectors at many points in space, each of which gives the field
strength and direction at that point. Such a representation is shown
in Fig. 1–1. We can go further, however, and draw lines
which are everywhere tangent to the vectors—which, so to speak,
follow the arrows and keep track of the direction of the field. When
we do this we lose track of the lengths of the vectors, but we
can keep track of the strength of the field by drawing the lines far
apart when the field is weak and close together when it is strong. We
adopt the convention that the number of lines per unit area at
right angles to the lines is proportional to the field
strength. This is, of course, only an
approximation, and it will require, in general, that new lines sometimes
start up in order to keep the number up to the strength of the field.
The field of Fig. 1–1 is represented by field lines in
Fig. 1–2.



[image: -][image: -]
Fig. 1–1. A vector field may be represented by drawing a set of arrows
whose magnitudes and directions indicate the values of the vector
field at the points from which the arrows are drawn.




[image: -][image: -]
Fig. 1–2. A vector field can be represented by drawing lines which are
tangent to the direction of the field vector at each point, and by
drawing the density of lines proportional to the magnitude of the
field vector.








1–3 Characteristics of vector fields


There are two mathematically important properties of a vector field
which we will use in our description of the laws of electricity from
the field point of view. Suppose we imagine a closed surface of some
kind and ask whether we are losing “something” from the inside; that
is, does the field have a quality of “outflow”?  For instance, for a
velocity field we might ask whether the velocity is always outward on
the surface or, more generally, whether more fluid flows out (per unit
time) than comes in. We call the net amount of fluid going out through
the surface per unit time the “flux of velocity” through the
surface. The flow through an element of a surface is just equal to the
component of the velocity perpendicular to the surface times the area
of the surface. For an arbitrary closed surface, the net outward
flow—or flux—is the average outward normal component of
the velocity, times the area of the surface:



[image: -*-][image: -*-]
(1.4)









[image: -][image: -]
Fig. 1–3. The flux of a vector field through a surface is defined as
the average value of the normal component of the vector times the area
of the surface.





In the case of an electric field, we can mathematically define
something analogous to an outflow, and we again call it the flux, but
of course it is not the flow of any substance, because the electric
field is not the velocity of anything. It turns out, however, that the
mathematical quantity which is the average normal component of the
field still has a useful significance. We speak, then, of the
electric flux—also defined by Eq. (1.4). Finally, it is also
useful to speak of the flux not only through a completely closed
surface, but through any bounded surface. As before, the flux through
such a surface is defined as the average normal component of a vector
times the area of the surface. These ideas are illustrated in
Fig. 1–3.



[image: -][image: -][image: -][image: -][image: -][image: -]
Fig. 1–4. (a) The velocity field in a liquid. Imagine a tube of uniform
cross section that follows an arbitrary closed curve as in (b). If the
liquid were suddenly frozen everywhere except inside the tube, the
liquid in the tube would circulate as shown in (c).





There is a second property of a vector field that has to do with a
line, rather than a surface. Suppose again that we think of a velocity
field that describes the flow of a liquid. We might ask this
interesting question: Is the liquid circulating? By that we mean: Is
there a net rotational motion around some loop? Suppose that we
instantaneously freeze the liquid everywhere except inside of a tube
which is of uniform bore, and which goes in a loop that closes back on
itself as in Fig. 1–4. Outside of the tube the liquid
stops moving, but inside the tube it may keep on moving because of the
momentum in the trapped liquid—that is, if there is more momentum
heading one way around the tube than the other. We define a quantity
called the circulation as the resulting speed of the
liquid in
the tube times its circumference. We can again extend our ideas and
define the “circulation” for any vector field (even when there isn’t
anything moving). For any vector field the circulation around
any imagined closed curve is defined as the average tangential
component of the vector (in a consistent sense) multiplied by the
circumference of the loop (Fig. 1–5):



[image: -*-][image: -*-]
(1.5)





You will see that this definition does indeed give a number which is
proportional to the circulation velocity in the quickly frozen tube
described above.



[image: -][image: -]
Fig. 1–5. The circulation of a vector field is the average tangential
component of the vector (in a consistent sense) times the
circumference of the loop.





With just these two ideas—flux and circulation—we can describe all
the laws of electricity and magnetism at once. You may not understand
the significance of the laws right away, but they will give you some
idea of the way the physics of electromagnetism will be ultimately
described.







1–4 The laws of electromagnetism


The first law of electromagnetism describes the flux of the electric
field:



[image: -*-][image: -*-]
(1.6)





where ϵ0[image: -*-] is a convenient constant. (The constant ϵ0[image: -*-] is
usually read as “epsilon-zero” or “epsilon-naught”.) If there are
no charges inside the surface, even though there are charges nearby
outside the surface, the average normal component of E[image: -*-] is
zero, so there is no net flux through the surface. To show the power
of this type of statement, we can show that Eq. (1.6) is
the same as Coulomb’s law,
provided only that we also add the idea
that the field from a single charge is spherically symmetric. For a
point charge, we draw a sphere around the charge. Then the average
normal component is just the value of the magnitude of E[image: -*-] at any
point, since the field must be directed radially and have the same
strength for all points on the sphere. Our rule now says that the
field at the surface of the sphere, times the area of the
sphere—that is, the outgoing flux—is proportional to the charge
inside. If we were to make the radius of the sphere bigger, the area
would increase as the square of the radius. The average normal
component of the electric field times that area must still be equal to
the same charge inside, and so the field must decrease as the square
of the distance—we get an “inverse square” field.




If we have an arbitrary stationary curve in space and measure the
circulation of the electric field around the curve, we will find that
it is not, in general, zero (although it is for the Coulomb
field). Rather, for electricity there is a second law that states: for
any surface S[image: -*-] (not closed) whose edge is the curve C[image: -*-],



[image: -*-][image: -*-]
(1.7)










We can complete the laws of the electromagnetic field by writing two
corresponding equations for the magnetic field B[image: -*-]:



[image: -*-][image: -*-]
(1.8)





For a surface S[image: -*-] bounded by the curve C[image: -*-],



[image: -*-][image: -*-]
(1.9)










The constant c2[image: -*-] that appears in Eq. (1.9) is the
square of the velocity of light. It appears because magnetism is in
reality a relativistic effect of electricity. The constant ϵ0[image: -*-] has
been stuck in to make the units of electric current come out in a
convenient way.




Equations (1.6) through (1.9), together with
Eq. (1.1), are all the laws of
electrodynamics1. As you remember,
the laws of Newton were very simple to write down, but they had a lot
of complicated consequences and it took us a long time to learn about
them all. These laws are not nearly as simple to write down, which
means that the consequences are going to be more elaborate and it will
take us quite a lot of time to figure them all out.



[image: -][image: -]
Fig. 1–6. A bar magnet gives a field B[image: -*-] at a wire. When there is a
current along the wire, the wire moves because of the force F=qv×B[image: -*-].





We can illustrate some of the laws of electrodynamics by a series of
small experiments which show qualitatively the interrelationships of
electric and magnetic fields. You have experienced the first term of
Eq. (1.1) when combing your hair, so we won’t show that
one. The second part of Eq. (1.1) can be demonstrated by
passing a current through a wire which hangs above a bar magnet, as
shown in Fig. 1–6. The wire will move when a current is
turned on because of the force F=q v×B[image: -*-]. When a
current exists, the charges inside the wire are moving, so they have a
velocity v[image: -*-], and the magnetic field from the magnet exerts a
force on them, which results in pushing the wire sideways.




When the wire is pushed to the left, we would expect that the magnet
must feel a push to the right. (Otherwise we could put the whole thing
on a wagon and have a propulsion system that didn’t conserve
momentum!) Although the force is too small to make movement of the bar
magnet visible, a more sensitively supported magnet, like a compass
needle, will show the movement.




How does the wire push on the magnet? The current in the wire produces
a magnetic field of its own that exerts forces on the
magnet. According to the last term in Eq. (1.9), a
current must have a circulation of B[image: -*-]—in this case, the
lines of B[image: -*-] are loops around the wire, as shown in
Fig. 1–7. This B[image: -*-]-field is responsible for the force
on the magnet.



[image: -][image: -]
Fig. 1–7. The magnetic field of the wire exerts a force on the magnet.





Equation (1.9) tells us that for a fixed current through
the wire the circulation of B[image: -*-] is the same for any curve
that surrounds the wire. For curves—say circles—that are farther
away from the wire, the circumference is larger, so the tangential
component of B[image: -*-] must decrease. You can see that we would, in
fact, expect B[image: -*-] to decrease linearly with the distance from a
long straight wire.




Now, we have said that a current through a wire produces a magnetic
field, and that when there is a magnetic field present there is a
force on a wire carrying a current. Then we should also expect that if
we make a magnetic field with a current in one wire, it should exert a
force on another wire which also carries a current. This can be shown
by using two hanging wires as shown in Fig. 1–8. When
the currents are in the same direction, the two wires attract, but
when the currents are opposite, they repel.



[image: -][image: -]
Fig. 1–8. Two wires, carrying current, exert forces on each other.





In short, electrical currents, as well as magnets, make magnetic
fields. But wait, what is a magnet, anyway? If magnetic fields are
produced by moving charges, is it not possible that the magnetic field
from a piece of iron is really the result of currents? It appears to
be so. We can replace the bar magnet of our experiment with a coil of
wire, as shown in Fig. 1–9. When a current is passed
through the coil—as well as through the straight wire above it—we
observe a motion of the wire exactly as before, when we had a magnet
instead of a coil. In other words, the current in the coil imitates a
magnet. It appears, then, that a piece of iron acts as though it
contains a perpetual circulating current. We can, in fact, understand
magnets in terms of permanent currents in the atoms of the iron. The
force on the magnet in Fig. 1–7 is due to the second
term in Eq. (1.1).



[image: -][image: -]
Fig. 1–9. The bar magnet of Fig. 1–6 can be replaced by a coil
carrying an electrical current. A similar force acts on the wire.





Where do the currents come from? One possibility would be from the
motion of the electrons in atomic orbits.
Actually, that is not the case for iron, although it is for
some materials. In addition to moving around in an atom, an electron
also spins about on its own axis—something like the spin of the
earth—and it is the current from this spin that gives the magnetic
field in iron. (We say “something like the spin of the earth”
because the question is so deep in quantum mechanics that the
classical ideas do not really describe things too well.) In most
substances, some electrons spin one way and some spin the other, so
the magnetism cancels out, but in iron—for a mysterious reason which
we will discuss later—many of the electrons are spinning with their
axes lined up, and that is the source of the magnetism.





Since the fields of magnets are from currents, we do not have to add any extra
term to Eqs. (1.8) or (1.9) to take care of
magnets. We just take all currents, including the circulating currents of
the spinning electrons, and then the law is right. You should also notice that
Eq. (1.8) says that there are no magnetic “charges” analogous to
the electrical charges appearing on the right side of Eq. (1.6).
None has been found.



[image: -][image: -]
Fig. 1–10. The circulation of B[image: -*-] around the curve C[image: -*-] is given
either by the current passing through the surface S1[image: -*-], or by the
rate of change of the flux of E[image: -*-] through the surface S2[image: -*-].





The first term on the right-hand side of Eq. (1.9) was
discovered theoretically by
Maxwell and is of great importance.
It
says that changing electric fields produce magnetic effects. In
fact, without this term the equation would not make sense, because
without it there could be no currents in circuits that are not
complete loops. But such currents do exist, as we can see in the
following example. Imagine a capacitor made of two flat plates. It is
being charged by a current that flows toward one plate and away from
the other, as shown in Fig. 1–10. We draw a curve C[image: -*-]
around one of the wires and fill it in with a surface which crosses
the wire, as shown by the surface S1[image: -*-] in the figure. According to
Eq. (1.9), the circulation of B[image: -*-] around C[image: -*-]
(times c2[image: -*-]) is given by the current in the wire (divided by ϵ0[image: -*-]). But
what if we fill in the curve with a different surface S2[image: -*-],
which is shaped like a bowl and passes between the plates of the
capacitor, staying always away from the wire? There is certainly no
current through this surface. But, surely, just changing the location
of an imaginary surface is not going to change a real magnetic field!
The circulation of B[image: -*-] must be what it was before. The first term
on the right-hand side of Eq. (1.9) does, indeed,
combine with the second term to give the same result for the two
surfaces S1[image: -*-] and S2[image: -*-]. For S2[image: -*-] the circulation of B[image: -*-] is
given in terms of the rate of change of the flux of E[image: -*-] between
the plates of the capacitor. And it works out that the changing E[image: -*-]
is related to the current in just the way required for
Eq. (1.9) to be correct.
Maxwell saw that it was needed, and
he was the first to write the complete equation.




With the setup shown in Fig. 1–6 we can demonstrate
another of the laws of electromagnetism. We disconnect the ends of the
hanging wire from the battery and connect them to a
galvanometer which
tells us when there is a current through the wire. When we push
the wire sideways through the magnetic field of the magnet, we observe
a current. Such an effect is again just another consequence of
Eq. (1.1)—the electrons in the wire feel the
force F=q v×B[image: -*-]. The electrons have a sidewise velocity
because they move with the wire. This v[image: -*-] with a vertical B[image: -*-]
from the magnet results in a force on the electrons directed
along the wire, which starts the electrons moving toward the
galvanometer.




Suppose, however, that we leave the wire alone and move the magnet. We
guess from relativity that it should make no difference, and indeed,
we observe a similar current in the galvanometer. How does the
magnetic field produce forces on charges at rest? According to
Eq. (1.1) there must be an electric field. A moving magnet
must make an electric field. How that happens is said quantitatively by
Eq. (1.7). This equation describes many phenomena of great
practical interest, such as those that occur in electric generators and
transformers.




The most remarkable consequence of our equations is that the
combination of Eq. (1.7) and Eq. (1.9)
contains the explanation of the radiation of electromagnetic effects
over large distances. The reason is roughly something like this:
suppose that somewhere we have a magnetic field which is increasing
because, say, a current is turned on suddenly in a wire. Then by
Eq. (1.7) there must be a circulation of an electric field.
As the electric field builds up to produce its circulation, then
according to Eq. (1.9) a magnetic circulation will be
generated. But the building up of this magnetic field will
produce a new circulation of the electric field, and so on. In this way
fields work their way through space without the need of charges or
currents except at their source. That is the way we see each
other! It is all in the equations of the electromagnetic fields.







1–5 What are the fields?


We now make a few remarks on our way of looking at this subject. You
may be saying: “All this business of fluxes and circulations is
pretty abstract. There are electric fields at every point in space;
then there are these ‘laws.’ But what is actually happening?
Why can’t you explain it, for instance, by whatever it is that
goes between the charges.” Well, it depends on your prejudices. Many
physicists used to say that direct action with nothing in between was
inconceivable. (How could they find an idea inconceivable when it had
already been conceived?) They would say: “Look, the only forces we
know are the direct action of one piece of matter on another. It is
impossible that there can be a force with nothing to transmit it.”
But what really happens when we study the “direct action” of one
piece of matter right against another? We discover that it is not one
piece right against the other; they are slightly separated, and there
are electrical forces acting on a tiny scale. Thus we find that we are
going to explain so-called direct-contact action in terms of the
picture for electrical forces. It is certainly not sensible to try to
insist that an electrical force has to look like the old, familiar,
muscular push or pull, when it will turn out that the muscular pushes
and pulls are going to be interpreted as electrical forces! The only
sensible question is what is the most convenient way to look at
electrical effects. Some people prefer to represent them as the
interaction at a distance of charges, and to use a complicated
law. Others love the field lines. They draw field lines all the time,
and feel that writing E[image: -*-]’s and B[image: -*-]’s is too abstract. The
field lines, however, are only a crude way of describing a field, and
it is very difficult to give the correct, quantitative laws directly
in terms of field lines. Also, the ideas of the field lines do not
contain the deepest principle of electrodynamics, which is the
superposition principle. Even though we know how the field lines look
for one set of charges and what the field lines look like for another
set of charges, we don’t get any idea about what the field line
patterns will look like when both sets are present together. From the
mathematical standpoint, on the other hand, superposition is easy—we
simply add the two vectors. The field lines have some advantage in
giving a vivid picture, but they also have some disadvantages. The
direct interaction way of thinking has great advantages when thinking
of electrical charges at rest, but has great disadvantages when
dealing with charges in rapid motion.




The best way is to use the abstract field idea. That it is abstract is
unfortunate, but necessary. The attempts to try to represent the
electric field as the motion of some kind of gear wheels, or in terms
of lines, or of stresses in some kind of material have used up more
effort of physicists than it would have taken simply to get the right
answers about electrodynamics. It is interesting that the correct
equations for the behavior of light were worked out by
MacCullagh in 1839.
But people said to him: “Yes, but there is no real material
whose mechanical properties could possibly satisfy those equations,
and since light is an oscillation that must vibrate in
something, we cannot believe this abstract equation business.”
If people had been more open-minded, they might have believed in the
right equations for the behavior of light a lot earlier than they did.




In the case of the magnetic field we can make the following point:
Suppose that you finally succeeded in making up a picture of the
magnetic field in terms of some kind of lines or of gear wheels
running through space. Then you try to explain what happens to two
charges moving in space, both at the same speed and parallel to each
other. Because they are moving, they will behave like two currents and
will have a magnetic field associated with them (like the currents in
the wires of Fig. 1–8). An observer who was riding
along with the two charges, however, would see both charges as
stationary, and would say that there is no magnetic field. The
“gear wheels” or “lines” disappear when you ride along with the
object! All we have done is to invent a new problem. How can
the gear wheels disappear?! The people who draw field lines are in a
similar difficulty. Not only is it not possible to say whether the
field lines move or do not move with charges—they may disappear
completely in certain coordinate frames.




What we are saying, then, is that magnetism is really a relativistic
effect. In the case of the two charges we just considered, travelling
parallel to each other, we would expect to have to make relativistic
corrections to their motion, with terms of order v2/c2[image: -*-]. These
corrections must correspond to the magnetic force. But what about the
force between the two wires in our experiment (Fig. 1–8).
There the magnetic force is the whole force. It didn’t look like
a “relativistic correction.” Also, if we estimate the velocities of
the electrons in the wire (you can do this yourself), we find that their
average speed along the wire is about 0.01[image: -*-] centimeter per second.
So v2/c2[image: -*-] is about 10−25[image: -*-]. Surely a negligible “correction.” But
no! Although the magnetic force is, in this case, 10−25[image: -*-] of the
“normal” electrical force between the moving electrons, remember that
the “normal” electrical forces have disappeared because of the almost
perfect balancing out—because the wires have the same number of
protons as electrons. The balance is much more precise than one part
in 1025[image: -*-], and the small relativistic term which we call the magnetic
force is the only term left. It becomes the dominant term.




It is the near-perfect cancellation of electrical effects which
allowed relativity effects (that is, magnetism) to be studied and the
correct equations—to order v2/c2[image: -*-]—to be discovered, even though
physicists didn’t know that’s what was happening. And that is
why, when relativity was discovered, the electromagnetic laws didn’t
need to be changed. They—unlike mechanics—were already correct to
a precision of v2/c2[image: -*-].







1–6 Electromagnetism in science and technology


Let us end this chapter by pointing out that among the many phenomena
studied by the Greeks there were two very strange ones: that if you
rubbed a piece of amber you could lift up little pieces
of papyrus, and that there was a strange rock from the island of
Magnesia which attracted iron. It is amazing to think that these were
the only phenomena known to the Greeks in which the effects of
electricity or magnetism were apparent. The reason that these were the
only phenomena that appeared is due primarily to the fantastic
precision of the balancing of charges that we mentioned earlier. Study
by scientists who came after the Greeks uncovered one new phenomenon
after another that were really some aspect of these amber
and/or lodestone effects. Now we realize that the phenomena of
chemical interaction and, ultimately, of life itself are to be
understood in terms of electromagnetism.





At the same time that an understanding of the subject of
electromagnetism was being developed, technical possibilities that
defied the imagination of the people that came before were appearing:
it became possible to signal by telegraph over long distances, and to
talk to another person miles away without any connections between, and
to run huge power systems—a great water wheel, connected by
filaments over hundreds of miles to another engine that turns in
response to the master wheel—many thousands of branching
filaments—ten thousand engines in ten thousand places running the
machines of industries and homes—all turning because of the
knowledge of the laws of electromagnetism.




Today we are applying even more subtle effects. The electrical forces,
enormous as they are, can also be very tiny, and we can control them
and use them in very many ways. So delicate are our instruments that
we can tell what a man is doing by the way he affects the electrons in
a thin metal rod hundreds of miles away. All we need to do is to use
the rod as an antenna for a television receiver!




From a long view of the history of mankind—seen from, say, ten
thousand years from now—there can be little doubt that the most
significant event of the 19th century will be judged as
Maxwell’s
discovery of the laws of electrodynamics. The American Civil War will
pale into provincial insignificance in comparison with this important
scientific event of the same decade.





	
  
  We need only to add a remark about some
conventions for the sign of the circulation.
  ↩
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2–1 Understanding physics


The physicist needs a facility in looking at problems from several
points of view. The exact analysis of real physical problems is
usually quite complicated, and any particular physical situation may
be too complicated to analyze directly by solving the differential
equation. But one can still get a very good idea of the behavior of a
system if one has some feel for the character of the solution in
different circumstances. Ideas such as the field lines, capacitance,
resistance, and inductance are, for such purposes, very useful. So we
will spend much of our time analyzing them. In this way we will get a
feel as to what should happen in different electromagnetic
situations. On the other hand, none of the heuristic models, such as
field lines, is really adequate and accurate for all situations. There
is only one precise way of presenting the laws, and that is by means
of differential equations. They have the advantage of being
fundamental and, so far as we know, precise. If you have learned the
differential equations you can always go back to them. There is
nothing to unlearn.





It will take you some time to understand what should happen in
different circumstances. You will have to solve the equations. Each
time you solve the equations, you will learn something about the
character of the solutions. To keep these solutions in mind, it will
be useful also to study their meaning in terms of field lines and of
other concepts. This is the way you will really “understand” the
equations. That is the difference between mathematics and
physics. Mathematicians, or people who have very mathematical minds,
are often led astray when “studying” physics because they lose sight
of the physics. They say: “Look, these differential equations—the
Maxwell equations—are all there is to electrodynamics; it is admitted by the
physicists that there is nothing which is not contained in the
equations. The equations are complicated, but after all they are only
mathematical equations and if I understand them mathematically inside
out, I will understand the physics inside out.” Only it doesn’t work
that way. Mathematicians who study physics with that point of view—and
there have been many of them—usually make little contribution to
physics and, in fact, little to mathematics. They fail because the
actual physical situations in the real world are so complicated that it
is necessary to have a much broader understanding of the equations.





What it means really to understand an equation—that is, in more than
a strictly mathematical sense—was described by
Dirac. He said: “I
understand what an equation means if I have a way of figuring out the
characteristics of its solution without actually solving it.” So if
we have a way of knowing what should happen in given circumstances
without actually solving the equations, then we “understand” the
equations, as applied to these circumstances. A physical understanding
is a completely unmathematical, imprecise, and inexact thing, but
absolutely necessary for a physicist.





Ordinarily, a course like this is given by developing gradually the
physical ideas—by starting with simple situations and going on to
more and more complicated situations. This requires that you
continuously forget things you previously learned—things that are
true in certain situations, but which are not true in general. For
example, the “law” that the electrical force depends on the square
of the distance is not always true. We prefer the opposite
approach. We prefer to take first the complete laws, and then
to step back and apply them to simple situations, developing the
physical ideas as we go along. And that is what we are going to do.





Our approach is completely opposite to the historical approach in
which one develops the subject in terms of the experiments by which
the information was obtained. But the subject of physics has been
developed over the past 200 years by some very ingenious people, and
as we have only a limited time to acquire our knowledge, we cannot
possibly cover everything they did. Unfortunately one of the things
that we shall have a tendency to lose in these lectures is the
historical, experimental development. It is hoped that in the
laboratory some of this lack can be corrected. You can also fill in
what we must leave out by reading the Encyclopedia Britannica, which
has excellent historical articles on electricity and on other parts of
physics. You will also find historical information in many textbooks
on electricity and magnetism.





 


2–2 Scalar and vector fields—T[image: -*-] and h[image: -*-]


We begin now with the abstract, mathematical view of the theory of
electricity and magnetism. The ultimate idea is to explain the meaning
of the laws given in Chapter 1. But to do this we must
first explain a new and peculiar notation that we want to use. So let
us forget electromagnetism for the moment and discuss the mathematics
of vector fields. It is of very great importance, not only for
electromagnetism, but for all kinds of physical circumstances. Just as
ordinary differential and integral calculus is so important to all
branches of physics, so also is the differential calculus of
vectors. We turn to that subject.





Listed below are a few facts from the algebra of vectors. It is
assumed that you already know them.


[image: -*-][image: -*-]
(2.1)

(2.2)
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(2.3)

(2.4)

(2.5)

(2.6)











Also we will want to use the two following equalities from the calculus:

[image: -*-][image: -*-]
(2.7)

(2.8)




The first equation (2.7) is, of course, true only in the
limit that Δ x[image: -*-], Δ y[image: -*-], and Δ z[image: -*-] go toward zero.




[image: -][image: -]



The simplest possible physical field is a scalar field. By a field,
you remember, we mean a quantity which depends upon position in
space. By a scalar field we merely mean a field which is
characterized at each point by a single number—a scalar. Of course
the number may change in time, but we need not worry about that for
the moment. We will talk about what the field looks like at a given
instant. As an example of a scalar field, consider a solid block of
material which has been heated at some places and cooled at others, so
that the temperature of the body varies from point to point in a
complicated way. Then the temperature will be a function of x[image: -*-], y[image: -*-],
and z[image: -*-], the position in space measured in a rectangular coordinate
system. Temperature is a scalar field.




[image: -][image: -]
Fig. 2–1. 
Temperature T[image: -*-] is an example of a scalar field. With each
point (x,y,z)[image: -*-] in space there is associated a number T (x,y,z)[image: -*-]. All
points on the surface marked T=20°[image: -*-] (shown as a curve at z=0[image: -*-])
are at the same temperature. The arrows are samples of the heat flow
vector h[image: -*-].





One way of thinking about scalar fields is to imagine “contours” which
are imaginary surfaces drawn through all points for which the field has
the same value, just as contour lines on a map connect points with the
same height. For a temperature field the contours are called
“isothermal surfaces” or
isotherms. Figure 2–1 illustrates a
temperature field and shows the dependence of T[image: -*-] on x[image: -*-] and y[image: -*-] when
z=0[image: -*-]. Several isotherms are drawn.




[image: -][image: -]
Fig. 2–2. 
The velocity of the atoms in a rotating object is an example
of a vector field.





There are also vector fields. The idea is very simple. A vector is
given for each point in space. The vector varies from point to
point. As an example, consider a rotating body. The velocity of the
material of the body at any point is a vector which is a function of
position (Fig. 2–2). As a second example, consider the
flow of heat in a block of material. If the temperature in the block
is high at one place and low at another, there will be a flow of heat
from the hotter places to the colder. The heat will be flowing in
different directions in different parts of the block. The heat flow is
a directional quantity which we call h[image: -*-]. Its magnitude is a
measure of how much heat is flowing. Examples of the heat flow vector
are also shown in Fig. 2–1.




[image: -][image: -]
Fig. 2–3. 
Heat flow is a vector field. The vector h[image: -*-] points along
the direction of the flow. Its magnitude is the energy transported per
unit time across a surface element oriented perpendicular to the flow,
divided by the area of the surface element.





Let’s make a more precise definition of h[image: -*-]: The magnitude of the
vector heat flow at a point is the amount of thermal energy that
passes, per unit time and per unit area, through an infinitesimal
surface element at right angles to the direction of flow. The vector
points in the direction of flow (see Fig. 2–3). In
symbols: If Δ J[image: -*-] is the thermal energy that passes per unit time
through the surface element Δ a[image: -*-], then

[image: -*-][image: -*-]
(2.9)




where ef[image: -*-] is a unit vector in the direction of flow.




[image: -][image: -]
Fig. 2–4. 
The heat flow through Δ a2[image: -*-] is the same as
through Δ a1[image: -*-].





The vector h[image: -*-] can be defined in another way—in terms of its
components. We ask how much heat flows through a small surface at
any angle with respect to the flow. In Fig. 2–4
we show a small surface Δ a2[image: -*-] inclined with respect to Δ a1[image: -*-], which is perpendicular to the flow. The unit vector n[image: -*-]
is normal to the surface Δ a2[image: -*-]. The angle θ[image: -*-] between
n[image: -*-] and h[image: -*-] is the same as the angle between the surfaces
(since h[image: -*-] is normal to Δ a1[image: -*-]). Now what is the heat flow per
unit area through Δ a2[image: -*-]? The flow through Δ a2[image: -*-] is the
same as through Δ a1[image: -*-]; only the areas are different. In
fact, Δ a1=Δ a2 cosθ[image: -*-]. The heat flow through Δ a2[image: -*-] is

[image: -*-][image: -*-]
(2.10)




We interpret this equation: the heat flow (per unit time and per unit
area) through any surface element whose unit normal is n[image: -*-],
is given by h⋅n[image: -*-]. Equally, we could say: the component of
the heat flow perpendicular to the surface element Δ a2[image: -*-]
is h⋅n[image: -*-]. We can, if we wish, consider that these statements
define h[image: -*-]. We will be applying the same ideas to other
vector fields.





 


2–3 Derivatives of fields—the gradient


When fields vary in time, we can describe the variation by giving
their derivatives with respect to t[image: -*-]. We want to describe the
variations with position in a similar way, because we are interested
in the relationship between, say, the temperature in one place and the
temperature at a nearby place. How shall we take the derivative of the
temperature with respect to position? Do we differentiate the
temperature with respect to x[image: -*-]? Or with respect to y[image: -*-], or z[image: -*-]?





Useful physical laws do not depend upon the orientation of the
coordinate system. They should, therefore, be written in a form in
which either both sides are scalars or both sides are vectors. What is
the derivative of a scalar field, say ∂T/∂x[image: -*-]? Is it a scalar,
or a vector, or what? It is neither a scalar nor a vector, as you can
easily appreciate, because if we took a different x[image: -*-]-axis, ∂T/∂x[image: -*-]
would certainly be different. But notice: We have three
possible derivatives: ∂T/∂x[image: -*-], ∂T/∂y[image: -*-], and ∂T/∂z[image: -*-].
Since there are three kinds of derivatives and we know
that it takes three numbers to form a vector, perhaps these three
derivatives are the components of a vector:

[image: -*-][image: -*-]
(2.11)









Of course it is not generally true that any three numbers form
a vector. It is true only if, when we rotate the coordinate system,
the components of the vector transform among themselves in the correct
way. So it is necessary to analyze how these derivatives are changed
by a rotation of the coordinate system. We shall show
that (2.11) is indeed a vector. The derivatives do transform
in the correct way when the coordinate system is rotated.





We can see this in several ways. One way is to ask a question whose
answer is independent of the coordinate system, and try to express the
answer in an “invariant” form. For instance, if S=A⋅B[image: -*-],
and if A[image: -*-] and B[image: -*-] are vectors, we know—because we proved it
in Chapter 11 of Vol. I—that S[image: -*-] is a scalar. We
know that S[image: -*-] is a scalar without investigating whether it
changes with changes in coordinate systems. It can’t, because
it’s a dot product of two vectors. Similarly, if we
have three numbers B1[image: -*-], B2[image: -*-], and B3[image: -*-] and we find out that for
every vector A[image: -*-]

[image: -*-][image: -*-]
(2.12)




where S[image: -*-] is the same for any coordinate system, then it must
be that the three numbers B1[image: -*-], B2[image: -*-], B3[image: -*-] are the components
Bx[image: -*-], By[image: -*-], Bz[image: -*-] of some vector B[image: -*-].





Now let’s think of the temperature field. Suppose we take two points
P1[image: -*-] and P2[image: -*-], separated by the small interval Δ R[image: -*-]. The
temperature at P1[image: -*-] is T1[image: -*-] and at P2[image: -*-] is T2[image: -*-], and the
difference Δ T=T2−T1[image: -*-]. The temperatures at these real,
physical points certainly do not depend on what axis we choose for
measuring the coordinates. In particular, Δ T[image: -*-] is a number
independent of the coordinate system. It is a scalar.




[image: -][image: -]
Fig. 2–5. 
The vector Δ R[image: -*-], whose components are Δ x[image: -*-], Δ y[image: -*-], and Δ z[image: -*-].





If we choose some convenient set of axes, we could write
T1=T (x,y,z)[image: -*-] and T2=T (x+Δ x,y+Δ y,z+Δ z)[image: -*-], where
Δ x[image: -*-], Δ y[image: -*-], and Δ z[image: -*-] are the components of the
vector Δ R[image: -*-] (Fig. 2–5). Remembering
Eq. (2.7), we can write

[image: -*-][image: -*-]
(2.13)




The left side of Eq. (2.13) is a scalar. The right side
is the sum of three products with Δ x[image: -*-], Δ y[image: -*-], and Δ z[image: -*-], which are the components of a vector. It follows that the three
numbers

[image: -*-][image: -*-]


are also the x[image: -*-]-, y[image: -*-]-, and z[image: -*-]-components of a vector. We write this
new vector with the symbol ∇T[image: -*-]. The symbol ∇[image: -*-]
(called “del”) is an upside-down Δ[image: -*-], and is supposed to remind
us of differentiation. People read ∇T[image: -*-] in various ways:
“del-T[image: -*-],” or “gradient of T[image: -*-],” or “gradT[image: -*-];”1

[image: -*-][image: -*-]
(2.14)









Using this notation, we can rewrite Eq. (2.13) in the
more compact form

[image: -*-][image: -*-]
(2.15)




In words, this equation says that the difference in temperature
between two nearby points is the dot product of the gradient of T[image: -*-]
and the vector displacement between the points. The form of
Eq. (2.15) also illustrates clearly our proof above
that ∇T[image: -*-] is indeed a vector.





Perhaps you are still not convinced? Let’s prove it in a different
way. (Although if you look carefully, you may be able to see that it’s
really the same proof in a longer-winded form!) We shall show that the
components of ∇T[image: -*-] transform in just the same way that
components of R[image: -*-] do. If they do, ∇T[image: -*-] is a vector
according to our original definition of a vector in
Chapter 11 of Vol. I. We take a new coordinate system
x′[image: -*-], y′[image: -*-], z′[image: -*-], and in this new system we calculate
∂T/∂x′[image: -*-], ∂T/∂y′[image: -*-], and ∂T/∂z′[image: -*-]. To make things a
little simpler, we let z=z′[image: -*-], so that we can forget about the
z[image: -*-]-coordinate. (You can check out the more general case for yourself.)




[image: -][image: -][image: -][image: -]Fig. 2–6. 
(a) Transformation to a rotated coordinate system. (b) Special
case of an interval Δ R[image: -*-] parallel to the x[image: -*-]-axis.





We take an x′ y′[image: -*-]-system rotated an angle θ[image: -*-] with respect to the
x y[image: -*-]-system, as in Fig. 2–6(a). For a point (x,y)[image: -*-] the
coordinates in the prime system are

[image: -*-][image: -*-]
(2.16)

(2.17)




Or, solving for x[image: -*-] and y[image: -*-],

[image: -*-][image: -*-]
(2.18)

(2.19)




If any pair of numbers transforms with these equations in the same way
that x[image: -*-] and y[image: -*-] do, they are the components of a vector.





Now let’s look at the difference in temperature between the two nearby
points P1[image: -*-] and P2[image: -*-], chosen as in Fig. 2–6(b). If we
calculate with the x[image: -*-]- and y[image: -*-]-coordinates, we would write

[image: -*-][image: -*-]
(2.20)




—since Δ y[image: -*-] is zero.





What would a computation in the prime system give? We would have
written

[image: -*-][image: -*-]
(2.21)




Looking at Fig. 2–6(b), we see that

[image: -*-][image: -*-]
(2.22)




and

[image: -*-][image: -*-]
(2.23)




since Δ y′[image: -*-] is negative when Δ x[image: -*-] is
positive. Substituting these in Eq. (2.21), we find that

[image: -*-][image: -*-]
(2.24)

(2.25)




Comparing Eq. (2.25) with (2.20), we see that

[image: -*-][image: -*-]
(2.26)




This equation says that ∂T/∂x[image: -*-] is obtained from ∂T/∂x′[image: -*-]
and ∂T/∂y′[image: -*-], just as x[image: -*-] is obtained from x′[image: -*-] and y′[image: -*-] in
Eq. (2.18). So ∂T/∂x[image: -*-] is the x[image: -*-]-component of a
vector. The same kind of arguments would show that ∂T/∂y[image: -*-]
and ∂T/∂z[image: -*-] are y[image: -*-]- and z[image: -*-]-components. So ∇T[image: -*-] is
definitely a vector. It is a vector field derived from the scalar field T[image: -*-].





 


2–4 The operator ∇[image: -*-]


Now we can do something that is extremely amusing and ingenious—and
characteristic of the things that make mathematics beautiful. The
argument that gradT[image: -*-], or ∇T[image: -*-], is a vector did not depend
upon what scalar field we were differentiating. All the
arguments would go the same if T[image: -*-] were replaced by any scalar
field. Since the transformation equations are the same no matter what
we differentiate, we could just as well omit the T[image: -*-] and replace
Eq. (2.26) by the operator equation

[image: -*-][image: -*-]
(2.27)




We leave the operators, as Jeans
said, “hungry for something to differentiate.”





Since the differential operators themselves transform as the components
of a vector should, we can call them components of a vector
operator. We can
write

[image: -*-][image: -*-]
(2.28)




which means, of course,

[image: -*-][image: -*-]
(2.29)




We have abstracted the gradient away from the T[image: -*-]—that is the
wonderful idea.





You must always remember, of course, that ∇[image: -*-] is an
operator. Alone, it means nothing. If ∇[image: -*-] by itself means
nothing, what does it mean if we multiply it by a scalar—say T[image: -*-]—to
get the product T ∇[image: -*-]? (One can always multiply a
vector by a scalar.) It still does not mean anything. Its
x[image: -*-]-component is

[image: -*-][image: -*-]
(2.30)




which is not a number, but is still some kind of operator. However,
according to the algebra of vectors we would still call T ∇[image: -*-] a
vector.





Now let’s multiply ∇[image: -*-] by a scalar on the other side, so that
we have the product (∇T)[image: -*-]. In ordinary algebra

[image: -*-][image: -*-]
(2.31)




but we have to remember that operator algebra is a little different
from ordinary vector algebra.
With operators we must always keep the
sequence right, so that the operations make proper sense. You will
have no difficulty if you just remember that the operator ∇[image: -*-]
obeys the same convention as the derivative notation. What is to be
differentiated must be placed on the right of the ∇[image: -*-]. The
order is important.





Keeping in mind this problem of order, we understand that T ∇[image: -*-]
is an operator, but the product ∇T[image: -*-] is no longer a hungry
operator; the operator is completely satisfied. It is indeed a
physical vector having a meaning. It represents the spatial rate of
change of T[image: -*-]. The x[image: -*-]-component of ∇T[image: -*-] is how fast T[image: -*-]
changes in the x[image: -*-]-direction. What is the direction of the
vector ∇T[image: -*-]? We know that the rate of change of T[image: -*-] in any direction
is the component of ∇T[image: -*-] in that direction (see
Eq. (2.15)). It follows that the direction of ∇T[image: -*-] is
that in which it has the largest possible component—in other words,
the direction in which T[image: -*-] changes the fastest. The gradient of T[image: -*-] has
the direction of the steepest uphill slope (in T[image: -*-]).





 


2–5 Operations with ∇[image: -*-]


Can we do any other algebra with the vector operator ∇[image: -*-]? Let
us try combining it with a vector. We can combine two vectors by
making a dot product. We could make the products

[image: -*-][image: -*-]


The first one doesn’t mean anything yet, because it is still an
operator. What it might ultimately mean would depend on what it is
made to operate on. The second product is some scalar
field. (A⋅B[image: -*-] is always a scalar.)





Let’s try the dot product of ∇[image: -*-] with a vector field we know,
say h[image: -*-]. We write out the components:

[image: -*-][image: -*-]
(2.32)




or

[image: -*-][image: -*-]
(2.33)




The sum is invariant under a coordinate transformation. If we were to
choose a different system (indicated by primes), we would
have2

[image: -*-][image: -*-]
(2.34)




which is the same number as would be gotten from
Eq. (2.33), even though it looks different. That is,

[image: -*-][image: -*-]
(2.35)




for every point in space. So ∇⋅h[image: -*-] is a scalar field, which
must represent some physical quantity. You should realize that the
combination of derivatives in ∇⋅h[image: -*-] is rather
special. There are all sorts of other combinations like ∂hy/∂x[image: -*-],
which are neither scalars nor components of vectors.





The scalar quantity ∇⋅(a vector)[image: -*-] is extremely useful in
physics. It has been given the name the
divergence. For example,

[image: -*-][image: -*-]
(2.36)




As we did for ∇T[image: -*-], we can ascribe a physical significance
to ∇⋅h[image: -*-]. We shall, however, postpone that until later.





First, we wish to see what else we can cook up with the vector
operator ∇[image: -*-]. What about a cross product? We must expect that

[image: -*-][image: -*-]
(2.37)




It is a vector whose components we can write by the usual rule for
cross products (see Eq. (2.2)):

[image: -*-][image: -*-]
(2.38)




Similarly,

[image: -*-][image: -*-]
(2.39)




and

[image: -*-][image: -*-]
(2.40)









The combination ∇×h[image: -*-] is called “the curl of h[image: -*-].” The reason for the
name and the physical meaning of the combination will be discussed
later.





Summarizing, we have three kinds of combinations with ∇[image: -*-]:

[image: -*-][image: -*-]


Using these combinations, we can write about the spatial variations of
fields in a convenient way—in a way that is general, in that it
doesn’t depend on any particular set of axes.





As an example of the use of our vector differential operator ∇[image: -*-],
we write a set of vector equations which contain the same
laws of electromagnetism that we gave in words in
Chapter 1. They are called Maxwell’s
equations.

[image: -*-][image: -*-]
(2.41)




where ρ[image: -*-] (rho), the “electric charge density,” is the amount of 
charge per unit volume, and j[image: -*-], the
“electric current density,” is the
rate at which charge flows through a unit area per second. These four
equations contain the complete classical theory of the electromagnetic
field. You see what an elegantly simple form we can get with our new
notation!





 


2–6 The differential equation of heat flow


Let us give another example of a law of physics written in vector
notation. The law is not a precise one, but for many metals and a
number of other substances that conduct heat it is quite accurate. You
know that if you take a slab of material and heat one face to
temperature T2[image: -*-] and cool the other to a different temperature T1[image: -*-]
the heat will flow through the material from T2[image: -*-] to T1[image: -*-]
[Fig. 2–7(a)]. The heat flow is proportional to the
area A[image: -*-] of the faces, and to the temperature difference. It is also
inversely proportional to d[image: -*-], the distance between the plates. (For a
given temperature difference, the thinner the slab the greater the heat
flow.) Letting J[image: -*-] be the thermal energy that passes per unit time
through the slab, we write

[image: -*-][image: -*-]
(2.42)




The constant of proportionality κ[image: -*-] (kappa) is called the
thermal conductivity.




[image: -][image: -][image: -][image: -]Fig. 2–7. 
(a) Heat flow through a slab. (b) An infinitesimal slab
  parallel to an isothermal surface in a large block.





What will happen in a more complicated case? Say in an odd-shaped
block of material in which the temperature varies in peculiar ways?
Suppose we look at a tiny piece of the block and imagine a slab like
that of Fig. 2–7(a) on a miniature scale. We orient the
faces parallel to the isothermal surfaces, as in
Fig. 2–7(b), so that Eq. (2.42) is correct
for the small slab.





If the area of the small slab is Δ A[image: -*-], the heat flow per unit
time is

[image: -*-][image: -*-]
(2.43)




where Δ s[image: -*-] is the thickness of the slab. Now Δ J/Δ A[image: -*-]
we have defined earlier as the magnitude of h[image: -*-], whose direction
is the heat flow. The heat flow will be from T1+Δ T[image: -*-]
toward T1[image: -*-] and so it will be perpendicular to the isotherms, as drawn in
Fig. 2–7(b). Also, Δ T/Δ s[image: -*-] is just the rate
of change of T[image: -*-] with position. And since the position change is
perpendicular to the isotherms, our Δ T/Δ s[image: -*-] is the maximum
rate of change. It is, therefore, just the magnitude of ∇T[image: -*-].
Now since the direction of ∇T[image: -*-] is opposite to
that of h[image: -*-], we can write (2.43) as a vector equation:

[image: -*-][image: -*-]
(2.44)




(The minus sign is necessary because heat flows “downhill” in
temperature.) Equation (2.44) is the differential equation
of heat conduction in bulk materials. You see that it is a proper
vector equation. Each side is a vector if κ[image: -*-] is just a
number. It is the generalization to arbitrary cases of the special
relation (2.42) for rectangular slabs. Later we should
learn to write all sorts of elementary physics relations
like (2.42) in the more sophisticated vector notation. This
notation is useful not only because it makes the equations look
simpler. It also shows most clearly the physical content of the
equations without reference to any arbitrarily chosen coordinate system.





 


2–7 Second derivatives of vector fields


So far we have had only first derivatives. Why not second derivatives?
We could have several combinations:

[image: -*-][image: -*-]
(2.45)




You can check that these are all the possible combinations.





Let’s look first at the second one, (b). It has the same form as

[image: -*-][image: -*-]


since A×A[image: -*-] is always zero. So we should have

[image: -*-][image: -*-]
(2.46)




We can see how this equation comes about if we go through once with
the components:

[image: -*-][image: -*-]
(2.47)




which is zero (by Eq. (2.8)). It goes the same for the
other components. So ∇×(∇T)=0[image: -*-], for any
temperature distribution—in fact, for any scalar function.





Now let us take another example. Let us see whether we can find
another zero. The dot product of a vector with a cross product which
contains that vector is zero:

[image: -*-][image: -*-]
(2.48)




because A×B[image: -*-] is perpendicular to A[image: -*-], and so has no
components in the direction A[image: -*-]. The same combination appears
in (d) of (2.45), so we have

[image: -*-][image: -*-]
(2.49)




Again, it is easy to show that it is zero by carrying through the
operations with components.





Now we are going to state two mathematical theorems that we will not
prove. They are very interesting and useful theorems for physicists to
know.





In a physical problem we frequently find that the curl of some
quantity—say of the vector field A[image: -*-]—is zero. Now we have seen
(Eq. (2.46)) that the curl of a gradient is zero, which is
easy to remember because of the way the vectors work. It could
certainly be, then, that A[image: -*-] is the gradient of some quantity,
because then its curl would necessarily be zero. The interesting
theorem is that if the curlA[image: -*-] is zero, then A[image: -*-] is
always the gradient of something—there is some scalar
field ψ[image: -*-] (psi) such that A[image: -*-] is equal to gradψ[image: -*-]. In other
words, we have the

[image: -*-][image: -*-]
(2.50)









There is a similar theorem if the divergence of A[image: -*-] is zero. We
have seen in Eq. (2.49) that the divergence of a curl of
something is always zero. If you come across a vector field D[image: -*-]
for which divD[image: -*-] is zero, then you can conclude that D[image: -*-] is
the curl of some vector field C[image: -*-].

[image: -*-][image: -*-]
(2.51)









In looking at the possible combinations of two ∇[image: -*-] operators,
we have found that two of them always give zero. Now we look at the
ones that are not zero. Take the combination
∇⋅(∇T)[image: -*-], which was first on our list. It is not, in
general, zero. We write out the components:

[image: -*-][image: -*-]


Then

[image: -*-][image: -*-]
(2.52)




which would, in general, come out to be some number. It is a scalar
field.





You see that we do not need to keep the parentheses, but can write,
without any chance of confusion,

[image: -*-][image: -*-]
(2.53)




We look at ∇2[image: -*-] as a new operator. It is a scalar operator.
Because it appears often in physics, it has been given a special
name—the Laplacian.

[image: -*-][image: -*-]
(2.54)









Since the Laplacian is a scalar operator, we may operate with it on a
vector—by which we mean the same operation on each component in
rectangular coordinates:

[image: -*-][image: -*-]







Let’s look at one more possibility: ∇×(∇×h)[image: -*-],
which was (e) in the list (2.45). Now the curl of the curl
can be written differently if we use the vector
equality (2.6):

[image: -*-][image: -*-]
(2.55)




In order to use this formula, we should replace A[image: -*-] and B[image: -*-] by
the operator ∇[image: -*-] and put C=h[image: -*-]. If we do that, we get

[image: -*-][image: -*-]


Wait a minute! Something is wrong. The first two terms are vectors all
right (the operators are satisfied), but the last term doesn’t come
out to anything. It’s still an operator. The trouble is that we
haven’t been careful enough about keeping the order of our terms
straight. If you look again at Eq. (2.55), however, you
see that we could equally well have written it as

[image: -*-][image: -*-]
(2.56)




The order of terms looks better. Now let’s make our substitution
in (2.56). We get

[image: -*-][image: -*-]
(2.57)




This form looks all right. It is, in fact, correct, as you can verify
by computing the components. The last term is the Laplacian, so we can
equally well write

[image: -*-][image: -*-]
(2.58)









We have had something to say about all of the combinations in our list
of double ∇[image: -*-]'s, except for (c),
∇(∇⋅h)[image: -*-]. It is a possible vector field, but there
is nothing special to say about it. It’s just some vector field which
may occasionally come up.





It will be convenient to have a table of our conclusions:

[image: -*-][image: -*-]
(2.59)




You may notice that we haven’t tried to invent a new vector
operator (∇×∇)[image: -*-]. Do you see why?





 


2–8 Pitfalls


We have been applying our knowledge of ordinary
vector algebra to the
algebra of the operator ∇[image: -*-]. We have to be careful, though,
because it is possible to go astray. There are two pitfalls which we
will mention, although they will not come up in this course. What
would you say about the following expression, that involves the two
scalar functions ψ[image: -*-] and ϕ[image: -*-] (phi):

[image: -*-][image: -*-]


You might want to say: it must be zero because it’s just like

[image: -*-][image: -*-]


which is zero because the cross product of two equal
vectors A×A[image: -*-] is always zero. But in our example the two
operators ∇[image: -*-] are not equal! The first one operates on one
function, ψ[image: -*-]; the other operates on a different function, ϕ[image: -*-].
So although we represent them by the same symbol ∇[image: -*-],
they must be considered as different operators. Clearly, the direction
of ∇ψ[image: -*-] depends on the function ψ[image: -*-], so it is not
likely to be parallel to ∇ϕ[image: -*-]:

[image: -*-][image: -*-]


Fortunately, we won’t have to use such expressions. (What we have said
doesn’t change the fact that ∇×∇ψ=0[image: -*-] for
any scalar field, because here both ∇[image: -*-]’s operate on the same
function.)





Pitfall number two (which, again, we need not get into in our course)
is the following: The rules that we have outlined here are simple and
nice when we use rectangular coordinates. For example, if we
have ∇2h[image: -*-] and we want the x[image: -*-]-component, it is

[image: -*-][image: -*-]
(2.60)




The same expression would not work if we were to ask for the
radial component of ∇2h[image: -*-]. The radial component
of ∇2h[image: -*-] is not equal to ∇2hr[image: -*-]. The reason is that when
we are dealing with the algebra of
vectors,
the directions of the
vectors are all quite definite. But when we are dealing with vector
fields, their directions are different at different places. If we try
to describe a vector field in, say, polar coordinates, what we call
the “radial” direction varies from point to point. So we can get
into a lot of trouble when we start to differentiate the
components. For example, even for a constant vector field, the
radial component changes from point to point.





It is usually safest and simplest just to stick to rectangular
coordinates and avoid trouble, but there is one exception worth
mentioning: Since the Laplacian ∇2[image: -*-], is a scalar, we can write
it in any coordinate system we want to (for example, in polar
coordinates). But since it is a differential operator, we should use
it only on vectors whose components are in a fixed direction—that
means rectangular coordinates. So we shall express all of our vector
fields in terms of their x[image: -*-]-, y[image: -*-]-, and z[image: -*-]-components when we write
our vector differential equations out in components.





 

		
		
		In our
		notation, the expression (a,b,c)[image: -*-] represents a vector with components
		a[image: -*-], b[image: -*-], and c[image: -*-]. If you like to use the unit vectors i[image: -*-], j[image: -*-],
		and k[image: -*-], you may write
		[image: -*-][image: -*-]


        ↩
  

  	
	    
		We think of h[image: -*-] as a physical quantity that
		depends on position in space, and not strictly as a mathematical
		function of three variables. When h[image: -*-] is “differentiated” with
		respect to x[image: -*-], y[image: -*-], and z[image: -*-], or with respect to x′[image: -*-], y′[image: -*-], and z′[image: -*-],
		the mathematical expression for h[image: -*-] must first be expressed as a
		function of the appropriate variables.
	  ↩
  





  
    

3 Vector Integral Calculus



3–1 Vector integrals; the line integral of ∇ψ[image: -*-]


We found in Chapter 2 that there were various ways of
taking derivatives of fields. Some gave vector fields; some gave
scalar fields. Although we developed many different formulas,
everything in Chapter 2 could be summarized in one rule:
the operators ∂/∂x[image: -*-], ∂/∂y[image: -*-], and ∂/∂z[image: -*-] are the
three components of a vector operator ∇[image: -*-]. We would now like
to get some understanding of the significance of the derivatives of
fields. We will then have a better feeling for what a vector field
equation means.





We have already discussed the meaning of the gradient
operation
(∇[image: -*-] on a scalar). Now we turn to the meanings of the
divergence
and curl operations.
The interpretation of these quantities is best done in terms of certain
vector integrals and equations relating such integrals. These equations
cannot, unfortunately, be obtained from vector
algebra by
some easy substitution, so you will just have to learn them as something
new. Of these integral formulas, one is practically trivial, but the
other two are not. We will derive them and explain their implications.
The equations we shall study are really mathematical theorems. They will
be useful not only for interpreting the meaning and the content of the
divergence and the curl, but also in working out general physical
theories. These mathematical theorems are, for the theory of fields,
what the theorem of the conservation of energy is to the mechanics of
particles. General theorems like these are important for a deeper
understanding of physics. You will find, though, that they are not very
useful for solving problems—except in the simplest cases. It is
delightful, however, that in the beginning of our subject there will be
many simple problems which can be solved with the three integral
formulas we are going to treat. We will see, however, as the problems
get harder, that we can no longer use these simple methods.




[image: -][image: -]
Fig. 3–1. The terms used in Eq. (3.1). The vector ∇ψ[image: -*-] is
evaluated at the line elements d s[image: -*-].





We take up first an integral formula involving the gradient. The
relation contains a very simple idea: Since the gradient represents the
rate of change of a field quantity, if we integrate that rate of change,
we should get the total change. Suppose we have the scalar
field ψ (x,y,z)[image: -*-]. At any two points (1)[image: -*-] and (2)[image: -*-], the
function ψ[image: -*-] will have the values ψ (1)[image: -*-] and ψ (2)[image: -*-],
respectively. [We use a convenient notation, in which (2)[image: -*-] represents
the point (x2,y2,z2)[image: -*-] and ψ (2)[image: -*-] means the same thing
as ψ (x2,y2,z2)[image: -*-].]  If Γ[image: -*-] (gamma) is any curve joining (1)[image: -*-]
and (2)[image: -*-], as in Fig. 3–1, the following relation is true:



  Theorem 1.

[image: -*-][image: -*-]
(3.1)




The integral is a line integral, from (1)[image: -*-] to (2)[image: -*-] along the
curve Γ[image: -*-], of the dot product of ∇ψ[image: -*-]—a
vector—with d s[image: -*-]—another vector which is an infinitesimal line
element of the curve Γ[image: -*-] (directed away from (1)[image: -*-] and
toward (2)[image: -*-]).



[image: -][image: -]
Fig. 3–2. The line integral is the limit of a sum.





First, we should review what we mean by a line integral. Consider a
scalar function f (x,y,z)[image: -*-], and the curve Γ[image: -*-] joining two points
(1)[image: -*-] and (2)[image: -*-]. We mark off the curve at a number of points and join
these points by straight-line segments, as shown in
Fig. 3–2. Each segment has the length Δ si[image: -*-], where i[image: -*-]
is an index that runs 1, 2, 3, … By the line integral

[image: -*-][image: -*-]


we mean the limit of the sum

[image: -*-][image: -*-]


where fi[image: -*-] is the value of the function at the i[image: -*-]th segment. The
limiting value is what the sum approaches as we add more and more
segments (in a sensible way, so that the largest Δ si→0[image: -*-]).




The integral in our theorem, Eq. (3.1), means the same
thing, although it looks a little different. Instead of f[image: -*-], we have
another scalar—the component of ∇ψ[image: -*-] in the direction
of Δ s[image: -*-]. If we write (∇ψ)t[image: -*-] for this tangential
component, it is clear that

[image: -*-][image: -*-]
(3.2)




The integral in Eq. (3.1) means the sum of such terms.




Now let’s see why Eq. (3.1) is true. In
Chapter 2, we showed that the component of ∇ψ[image: -*-]
along a small displacement Δ R[image: -*-] was the rate
of change of ψ[image: -*-] in the direction of Δ R[image: -*-]. Consider the line
segment Δ s[image: -*-] from (1)[image: -*-] to point a[image: -*-] in Fig. 3–2.
According to our definition,

[image: -*-][image: -*-]
(3.3)




Also, we have

[image: -*-][image: -*-]
(3.4)




where, of course, (∇ψ)1[image: -*-] means the gradient evaluated at the segment Δ s1[image: -*-], and (∇ψ)2[image: -*-], the gradient evaluated at Δ s2[image: -*-]. If we add Eqs. (3.3) and (3.4), we get

[image: -*-][image: -*-]
(3.5)




You can see that if we keep adding such terms, we get the result

[image: -*-][image: -*-]
(3.6)




The left-hand side doesn’t depend on how we choose our intervals—if
(1)[image: -*-] and (2)[image: -*-] are kept always the same—so we can take the limit of
the right-hand side. We have therefore proved Eq. (3.1).




You can see from our proof that just as the equality doesn’t depend on
how the points a[image: -*-] b[image: -*-], c[image: -*-], …, are chosen, similarly it doesn’t
depend on what we choose for the curve Γ[image: -*-] to join (1)[image: -*-] and (2)[image: -*-].
Our theorem is correct for any curve from (1)[image: -*-] to (2)[image: -*-].




One remark on notation: You will see that there is no confusion if we
write, for convenience,

[image: -*-][image: -*-]
(3.7)




With this notation, our theorem is



  Theorem 1.

[image: -*-][image: -*-]
(3.8)












3–2 The flux of a vector field


Before we consider our next integral theorem—a theorem about the
divergence—we would like to study a certain idea which has
an easily understood physical significance in the case of heat
flow. We have defined the vector h[image: -*-], which represents the heat
that flows through a unit area in a unit time. Suppose that inside a
block of material we have some closed surface S[image: -*-] which encloses the
volume V[image: -*-] (Fig. 3–3). We would like to find out how
much heat is flowing out of this volume. We can, of course,
find it by calculating the total heat flow out of the
surface S[image: -*-].



[image: -][image: -]
Fig. 3–3. The closed surface S[image: -*-] defines the volume V[image: -*-]. The unit
vector n[image: -*-] is the outward normal to the surface element d a[image: -*-],
and h[image: -*-] is the heat-flow vector at the surface element.





We write d a[image: -*-] for the area of an element of the surface. The symbol
stands for a two-dimensional differential. If, for instance, the area
happened to be in the x y[image: -*-]-plane we would have

[image: -*-][image: -*-]


Later we shall have integrals over volume and for these it is
convenient to consider a differential volume that is a little cube. So
when we write d V[image: -*-] we mean

[image: -*-][image: -*-]







Some people like to write d2 a[image: -*-] instead of d a[image: -*-] to remind themselves
that it is kind of a second-order quantity. They would also write d3 V[image: -*-]
instead of d V[image: -*-]. We will use the simpler notation, and assume that you
can remember that an area has two dimensions and a volume has three.




The heat flow out through the surface element d a[image: -*-] is the area times
the component of h[image: -*-] perpendicular to d a[image: -*-]. We have already
defined n[image: -*-] as a unit vector pointing outward at right angles to
the surface (Fig. 3–3). The component of h[image: -*-] that
we want is

[image: -*-][image: -*-]
(3.9)




The heat flow out through d a[image: -*-] is then

[image: -*-][image: -*-]
(3.10)




To get the total heat flow through any surface we sum the
contributions from all the elements of the surface. In other words, we
integrate (3.10) over the whole surface:



[image: -*-][image: -*-]
(3.11)










We are also going to call this surface integral “the flux of h[image: -*-]
through the surface.” Originally the word flux meant flow, so that
the surface integral just means the flow of h[image: -*-] through the
surface. We may think: h[image: -*-] is the “current density” of heat flow
and the surface integral of it is the total heat current directed out
of the surface; that is, the thermal energy per unit time (joules per
second).




We would like to generalize this idea to the case where the vector
does not represent the flow of anything; for instance, it might be the
electric field. We can certainly still integrate the normal component
of the electric field over an area if we wish. Although it is not the
flow of anything, we still call it the “flux.” We say



[image: -*-][image: -*-]
(3.12)





We generalize the word “flux” to mean the “surface integral of the
normal component” of a vector. We will also use the same definition
even when the surface considered is not a closed one, as it is here.




Returning to the special case of heat flow, let us take a situation in
which heat is conserved. For example, imagine some material in
which after an initial heating no further heat energy is generated or
absorbed. Then, if there is a net heat flow out of a closed surface,
the heat content of the volume inside must decrease. So, in
circumstances in which heat would be conserved, we say that

[image: -*-][image: -*-]
(3.13)




where Q[image: -*-] is the heat inside the surface. The heat flux out of S[image: -*-] is
equal to minus the rate of change with respect to time of the total
heat Q[image: -*-] inside of S[image: -*-]. This interpretation is possible because we are
speaking of heat flow and also because we supposed that the heat was
conserved. We could not, of course, speak of the total heat inside the
volume if heat were being generated there.



[image: -][image: -]
Fig. 3–4. A volume V[image: -*-] contained inside the surface S[image: -*-] is divided into
two pieces by a “cut” at the surface Sa b[image: -*-]. We now have the
volume V1[image: -*-] enclosed in the surface S1=Sa+Sa b[image: -*-] and the
volume V2[image: -*-] enclosed in the surface S2=Sb+Sa b[image: -*-].





Now we shall point out an interesting fact about the flux of any
vector. You may think of the heat flow vector if you wish, but what we
say will be true for any vector field C[image: -*-]. Imagine that we have a
closed surface S[image: -*-] that encloses the volume V[image: -*-]. We now separate the
volume into two parts by some kind of a “cut,” as in
Fig. 3–4. Now we have two closed surfaces and volumes. The
volume V1[image: -*-] is enclosed in the surface S1[image: -*-], which is made up of part
of the original surface Sa[image: -*-] and of the surface of the cut, Sa b[image: -*-].
The volume V2[image: -*-] is enclosed by S2[image: -*-], which is made up of the rest of
the original surface Sb[image: -*-] and closed off by the cut Sa b[image: -*-]. Now
consider the following question: Suppose we calculate the flux out
through surface S1[image: -*-] and add to it the flux through surface S2[image: -*-]. Does
the sum equal the flux through the whole surface that we started with?
The answer is yes. The flux through the part of the surfaces Sa b[image: -*-]
common to both S1[image: -*-] and S2[image: -*-] just exactly cancels out. For the flux of
the vector C[image: -*-] out of V1[image: -*-] we can write



[image: -*-][image: -*-]
(3.14)





and for the flux out of V2[image: -*-],



[image: -*-][image: -*-]
(3.15)





Note that in the second integral we have written n1[image: -*-] for the
outward normal for Sa b[image: -*-] when it belongs to S1[image: -*-], and n2[image: -*-]
when it belongs to S2[image: -*-], as shown in Fig. 3–4. Clearly,
n1=−n2[image: -*-], so that

[image: -*-][image: -*-]
(3.16)




If we now add Eqs. (3.14) and (3.15), we see that the sum of the fluxes through S1[image: -*-] and S2[image: -*-] is just the sum of two integrals which, taken together, give the flux through the original surface S=Sa+Sb[image: -*-].




We see that the flux through the complete outer surface S[image: -*-] can be
considered as the sum of the fluxes from the two pieces into which the
volume was broken. We can similarly subdivide again—say by
cutting V1[image: -*-] into two pieces. You see that the same arguments apply. So
for any way of dividing the original volume, it must be generally
true that the flux through the outer surface, which is the original
integral, is equal to a sum of the fluxes out of all the little interior
pieces.







3–3 The flux from a cube; Gauss’ theorem

[image: -][image: -]
Fig. 3–5. Computation of the flux of C[image: -*-] out of a small cube.





We now take the special case of a small cube1
and find an interesting formula for the flux out of it. Consider a
cube whose edges are lined up with the axes as in Fig. 3–5.
Let us suppose that the coordinates of the corner nearest the origin are
x[image: -*-], y[image: -*-], z[image: -*-]. Let Δ x[image: -*-] be the length of the cube in the x[image: -*-]-direction,
Δ y[image: -*-] be the length in the y[image: -*-]-direction, and Δ z[image: -*-] be the
length in the z[image: -*-]-direction. We wish to find the flux of a vector
field C[image: -*-] through the surface of the cube. We shall do this by
making a sum of the fluxes through each of the six faces. First,
consider the face marked 1 in the figure. The flux outward on
this face is the negative of the x[image: -*-]-component of C[image: -*-], integrated
over the area of the face. This flux is

[image: -*-][image: -*-]


Since we are considering a small cube, we can approximate this
integral by the value of Cx[image: -*-] at the center of the face—which we
call the point (1)[image: -*-]—multiplied by the area of the face, Δ y Δ z[image: -*-]:

[image: -*-][image: -*-]


Similarly, for the flux out of face 2, we write

[image: -*-][image: -*-]


Now Cx (1)[image: -*-] and Cx (2)[image: -*-] are, in general, slightly different.
If Δ x[image: -*-] is small enough, we can write

[image: -*-][image: -*-]


There are, of course, more terms, but they will involve (Δ x)2[image: -*-]
and higher powers, and so will be negligible if we consider only the
limit of small Δ x[image: -*-]. So the flux through face 2 is

[image: -*-][image: -*-]


Summing the fluxes for faces 1 and 2, we get

[image: -*-][image: -*-]


The derivative should really be evaluated at the center of face 1;
that is, at [x,y+(Δ y/2),z+(Δ z/2)][image: -*-]. But in the limit of
an infinitesimal cube, we make a negligible error if we evaluate it at
the corner (x,y,z)[image: -*-].




Applying the same reasoning to each of the other pairs of faces, we
have

[image: -*-][image: -*-]


and

[image: -*-][image: -*-]







The total flux through all the faces is the sum of these terms. We
find that

[image: -*-][image: -*-]


and the sum of the derivatives is just ∇⋅C[image: -*-]. Also, Δ x Δ y Δ z=Δ V[image: -*-], the volume of the cube. So we can say
that for an infinitesimal cube

[image: -*-][image: -*-]
(3.17)




We have shown that the outward flux from the surface of an
infinitesimal cube is equal to the divergence of the vector multiplied
by the volume of the cube. We now see the “meaning” of the
divergence of a vector. The divergence of a vector at the point P[image: -*-] is
the flux—the outgoing “flow” of C[image: -*-]—per unit volume,
in the neighborhood of P[image: -*-].




We have connected the divergence of C[image: -*-] to the flux of C[image: -*-] out
of each infinitesimal volume. For any finite volume we can use the
fact we proved above—that the total flux from a volume is the sum of
the fluxes out of each part. We can, that is, integrate the divergence
over the entire volume. This gives us the theorem that the integral of
the normal component of any vector over any closed surface can also be
written as the integral of the divergence of the vector over the
volume enclosed by the surface. This theorem is named after
Gauss.



  Gauss’ Theorem

[image: -*-][image: -*-]
(3.18)




where S[image: -*-] is any closed surface and V[image: -*-] is the volume inside it.







3–4 Heat conduction; the diffusion equation


Let’s consider an example of the use of this theorem, just to get
familiar with it. Suppose we take again the case of heat flow in, say,
a metal. Suppose we have a simple situation in which all the heat has
been previously put in and the body is just cooling off. There are no
sources of heat, so that heat is conserved. Then how much heat is
there inside some chosen volume at any time? It must be
decreasing by just the amount that flows out of the surface of
the volume. If our volume is a little cube, we would write, following
Eq. (3.17),

[image: -*-][image: -*-]
(3.19)




But this must equal the rate of loss of the heat inside the cube. If q[image: -*-]
is the heat per unit volume, the heat in the cube is q Δ V[image: -*-], and
the rate of loss is

[image: -*-][image: -*-]
(3.20)




Comparing (3.19) and (3.20), we see that

[image: -*-][image: -*-]
(3.21)









Take careful note of the form of this equation; the form appears often
in physics. It expresses a conservation law—here the conservation of
heat. We have expressed the same physical fact in another way in
Eq. (3.13). Here we have the differential form of a
conservation equation, while Eq. (3.13) is the
integral form.




We have obtained Eq. (3.21) by applying
Eq. (3.13) to an infinitesimal cube. We can also go the
other way. For a big volume V[image: -*-] bounded by S[image: -*-], Gauss’ law says that

[image: -*-][image: -*-]
(3.22)




Using (3.21), the integral on the right-hand side is found
to be just −d Q/d t[image: -*-], and again we have Eq. (3.13).




Now let’s consider a different case. Imagine that we have a block of
material and that inside it there is a very tiny hole in which some
chemical reaction is taking place and generating heat. Or we could
imagine that there are some wires running into a tiny resistor that is
being heated by an electric current. We shall suppose that the heat is
generated practically at a point, and let W[image: -*-] represent the energy
liberated per second at that point. We shall suppose that in the rest
of the volume heat is conserved, and that the heat generation has been
going on for a long time—so that now the temperature is no longer
changing anywhere. The problem is: What does the heat vector h[image: -*-]
look like at various places in the metal? How much heat flow is there
at each point?



[image: -][image: -]
Fig. 3–6. In the region near a point source of heat, the heat flow is
radially outward.





We know that if we integrate the normal component of h[image: -*-] over a
closed surface that encloses the source, we will always get W[image: -*-]. All
the heat that is being generated at the point source must flow out
through the surface, since we have supposed that the flow is
steady. We have the difficult problem of finding a vector field which,
when integrated over any surface, always gives W[image: -*-]. We can, however,
find the field rather easily by taking a somewhat special surface. We
take a sphere of radius R[image: -*-], centered at the source, and assume that
the heat flow is radial (Fig. 3–6). Our intuition tells
us that h[image: -*-] should be radial if the block of material is large and
we don’t get too close to the edges, and it should also have the same
magnitude at all points on the sphere. You see that we are adding a
certain amount of guesswork—usually called “physical
intuition”—to our mathematics in order to find the answer.




When h[image: -*-] is radial and spherically symmetric, the integral of the
normal component of h[image: -*-] over the area is very simple, because the
normal component is just the magnitude of h[image: -*-] and is constant. The
area over which we integrate is 4 π R2[image: -*-]. We have then that

[image: -*-][image: -*-]
(3.23)




(where h[image: -*-] is the magnitude of h[image: -*-]). This integral should equal W[image: -*-],
the rate at which heat is produced at the source. We get

[image: -*-][image: -*-]


or

[image: -*-][image: -*-]
(3.24)




where, as usual, er[image: -*-] represents a unit vector in the radial
direction. Our result says that h[image: -*-] is proportional to W[image: -*-] and
varies inversely as the square of the distance from the source.




The result we have just obtained applies to the heat flow in the
vicinity of a point source of heat. Let’s now try to find the
equations that hold in the most general kind of heat flow, keeping
only the condition that heat is conserved. We will be dealing only
with what happens at places outside of any sources or absorbers of
heat.




The differential equation for the conduction of heat was derived in
Chapter 2. According to Eq. (2.44),

[image: -*-][image: -*-]
(3.25)




(Remember that this relationship is an approximate one, but fairly
good for some materials like metals.) It is applicable, of course,
only in regions of the material where there is no generation or
absorption of heat. We derived above another relation,
Eq. (3.21), that holds when heat is conserved. If we combine
that equation with (3.25), we get

[image: -*-][image: -*-]


or

[image: -*-][image: -*-]
(3.26)




if κ[image: -*-] is a constant. You remember that q[image: -*-] is the amount of heat
in a unit volume and ∇⋅∇=∇2[image: -*-] is the Laplacian
operator

[image: -*-][image: -*-]







If we now make one more assumption we can obtain a very interesting
equation. We assume that the temperature of the material is
proportional to the heat content per unit volume—that is, that the
material has a definite specific heat. When this assumption is valid
(as it often is), we can write
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or

[image: -*-][image: -*-]
(3.27)




The rate of change of heat is proportional to the rate of change of temperature. The constant of proportionality cv[image: -*-] is, here, the specific heat per unit volume of the material. Using Eq. (3.27) with (3.26), we get 
[image: -*-][image: -*-]
(3.28)




We find that the time rate of change of T[image: -*-]—at every
point—is proportional to the Laplacian of T[image: -*-], which is the second
derivative of its spatial dependence. We have a differential
equation—in x[image: -*-], y[image: -*-], z[image: -*-], and t[image: -*-]—for the temperature T[image: -*-].




The differential equation (3.28) is called the heat
diffusion equation. It is often written as

[image: -*-][image: -*-]
(3.29)




where D[image: -*-] is called the diffusion constant, and is here equal
to κ/cv[image: -*-].




The diffusion equation appears in many physical problems—in the
diffusion of gases, in the diffusion of neutrons, and in others. We
have already discussed the physics of some of these phenomena in
Chapter 43 of Vol. I. Now you have the complete
equation that describes diffusion in the most general possible
situation. At some later time we will take up ways of solving the
diffusion equation to find how the temperature varies in particular
cases. We turn back now to consider other theorems about vector
fields.







3–5 The circulation of a vector field


We wish now to look at the curl in somewhat the same way we looked at
the divergence. We obtained Gauss’ theorem by considering the integral
over a surface, although it was not obvious at the beginning that we
were going to be dealing with the divergence. How did we know that we
were supposed to integrate over a surface in order to get the
divergence? It was not at all clear that this would be the result. And
so with an apparent equal lack of justification, we shall calculate
something else about a vector and show that it is related to the
curl. This time we calculate what is called the circulation of a
vector field. If C[image: -*-] is any vector field, we take its component
along a curved line and take the integral of this component all the
way around a complete loop. The integral is called the
circulation of the vector field around the loop. We have
already considered a line integral of ∇ψ[image: -*-] earlier in this
chapter. Now we do the same kind of thing for any vector field C[image: -*-].



[image: -][image: -]
Fig. 3–7. The circulation of C[image: -*-] around the curve Γ[image: -*-] is the
line integral of Ct[image: -*-], the tangential component of C[image: -*-].





Let Γ[image: -*-] be any closed loop in space—imaginary, of course. An
example is given in Fig. 3–7. The line integral of the
tangential component of C[image: -*-] around the loop is written as

[image: -*-][image: -*-]
(3.30)




You should note that the integral is taken all the way around, not
from one point to another as we did before. The little circle on the
integral sign is to remind us that the integral is to be taken all the
way around. This integral is called the circulation of the vector
field around the curve Γ[image: -*-]. The name came originally from
considering the circulation of a liquid. But the name—like
flux—has been extended to apply to any field even when there is no
material “circulating.”




Playing the same kind of game we did with the flux, we can show that
the circulation around a loop is the sum of the circulations around
two partial loops. Suppose we break up our curve of
Fig. 3–7 into two loops, by joining two points (1)[image: -*-]
and (2)[image: -*-] on the original curve by some line that cuts across as shown
in Fig. 3–8. There are now two loops, Γ1[image: -*-]
and Γ2[image: -*-]. Γ1[image: -*-] is made up of Γa[image: -*-], which is that part
of the original curve to the left of (1)[image: -*-] and (2)[image: -*-],
plus Γa b[image: -*-], the “short cut.”  Γ2[image: -*-] is made up of the
rest of the original curve plus the short cut.



[image: -][image: -]
Fig. 3–8. The circulation around the whole loop is the sum of the
circulations around the two loops: Γ1=Γa+Γa b[image: -*-]
and Γ2=Γb+Γa b[image: -*-].





The circulation around Γ1[image: -*-] is the sum of an integral
along Γa[image: -*-] and along Γa b[image: -*-]. Similarly, the circulation
around Γ2[image: -*-] is the sum of two parts, one along Γb[image: -*-] and the
other along Γa b[image: -*-]. The integral along Γa b[image: -*-] will have,
for the curve Γ2[image: -*-], the opposite sign from what it has
for Γ1[image: -*-], because the direction of travel is opposite—we must
take both our line integrals with the same “sense” of rotation.




Following the same kind of argument we used before, you can see that
the sum of the two circulations will give just the line integral
around the original curve Γ[image: -*-]. The parts due to Γa b[image: -*-]
cancel. The circulation around the one part plus the circulation
around the second part equals the circulation about the outer line. We
can continue the process of cutting the original loop into any number
of smaller loops. When we add the circulations of the smaller loops,
there is always a cancellation of the parts on their adjacent
portions, so that the sum is equivalent to the circulation around the
original single loop.



[image: -][image: -]
Fig. 3–9. Some surface bounded by the loop Γ[image: -*-] is chosen. The
surface is divided into a number of small areas, each approximately
a square. The circulation around Γ[image: -*-] is the sum of the
circulations around the little loops.





Now let us suppose that the original loop is the boundary of some
surface. There are, of course, an infinite number of surfaces which
all have the original loops as the boundary. Our results will not,
however, depend on which surface we choose. First, we break our
original loop into a number of small loops that all lie on the surface
we have chosen, as in Fig. 3–9. No matter what the
shape of the surface, if we choose our small loops small enough, we
can assume that each of the small loops will enclose an area which is
essentially flat. Also, we can choose our small loops so that each is
very nearly a square. Now we can calculate the circulation around the
big loop Γ[image: -*-] by finding the circulations around all of the little
squares and then taking their sum.







3–6 The circulation around a square; Stokes’ theorem


How shall we find the circulation for each little square? One question
is, how is the square oriented in space? We could easily make the
calculation if it had a special orientation. For example, if it were
in one of the coordinate planes. Since we have not assumed anything as
yet about the orientation of the coordinate axes, we can just as well
choose the axes so that the one little square we are concentrating on
at the moment lies in the x y[image: -*-]-plane, as in Fig. 3–10. If
our result is expressed in vector notation, we can say that it will be
the same no matter what the particular orientation of the plane.



[image: -][image: -]
Fig. 3–10. Computing the circulation of C[image: -*-] around a small square.





We want now to find the circulation of the field C[image: -*-] around our
little square. It will be easy to do the line integral if we make the
square small enough that the vector C[image: -*-] doesn’t change much along
any one side of the square. (The assumption is better the smaller the
square, so we are really talking about infinitesimal squares.)
Starting at the point (x,y)[image: -*-]—the lower left corner of the
figure—we go around in the direction indicated by the arrows. Along
the first side—marked (1)[image: -*-]—the tangential component is Cx (1)[image: -*-]
and the distance is Δ x[image: -*-]. The first part of the integral
is Cx (1) Δ x[image: -*-]. Along the second leg, we get Cy (2) Δ y[image: -*-].
Along the third, we get −Cx (3) Δ x[image: -*-], and along the
fourth, −Cy (4) Δ y[image: -*-]. The minus signs are required because we
want the tangential component in the direction of travel. The whole line
integral is then
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(3.31)










Now let’s look at the first and third pieces. Together they are

[image: -*-][image: -*-]
(3.32)




You might think that to our approximation the difference is zero. That
is true to the first approximation. We can be more accurate, however,
and take into account the rate of change of Cx[image: -*-]. If we do, we may
write
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(3.33)




If we included the next approximation, it would involve terms
in (Δ y)2[image: -*-], but since we will ultimately think of the limit as
Δ y→0[image: -*-], such terms can be neglected. Putting (3.33)
together with (3.32), we find that

[image: -*-][image: -*-]
(3.34)




The derivative can, to our approximation, be evaluated at (x,y)[image: -*-].




Similarly, for the other two terms in the circulation, we may write

[image: -*-][image: -*-]
(3.35)




The circulation around our square is then

[image: -*-][image: -*-]
(3.36)




which is interesting, because the two terms in the parentheses are
just the z[image: -*-]-component of the curl. Also, we note that Δ x Δ y[image: -*-] is the area of our square. So we can write our
circulation (3.36) as

[image: -*-][image: -*-]


But the z[image: -*-]-component really means the component normal to the
surface element. We can, therefore, write the circulation around a
differential square in an invariant vector form:

[image: -*-][image: -*-]
(3.37)









Our result is: the circulation of any vector C[image: -*-] around an
infinitesimal square is the component of the curl of C[image: -*-] normal to
the surface, times the area of the square.



[image: -][image: -]
Fig. 3–11. The circulation of C[image: -*-] around Γ[image: -*-] is the surface
integral of the normal component of ∇×C[image: -*-].





The circulation around any loop Γ[image: -*-] can now be easily related to
the curl of the vector field. We fill in the loop with any convenient
surface S[image: -*-], as in Fig. 3–11, and add the circulations
around a set of infinitesimal squares in this surface. The sum can be
written as an integral. Our result is a very useful theorem called
Stokes’ theorem (after Mr. Stokes).



  Stokes’ Theorem

[image: -*-][image: -*-]
(3.38)




where S[image: -*-] is any surface bounded by Γ[image: -*-].




We must now speak about a convention of signs. In Fig. 3–10
the z[image: -*-]-axis would point toward you in a “usual”—that is,
“right-handed”—system of axes. When we took our line integral with a
“positive” sense of rotation, we found that the circulation was equal
to the z[image: -*-]-component of ∇×C[image: -*-]. If we had gone around the
other way, we would have gotten the opposite sign. Now how shall we
know, in general, what direction to choose for the positive direction of
the “normal” component of ∇×C[image: -*-]? The “positive” normal
must always be related to the sense of rotation, as in
Fig. 3–10. It is indicated for the general case in
Fig. 3–11.




One way of remembering the relationship is by the “right-hand rule.”
If you make the fingers of your right hand go around the
curve Γ[image: -*-], with the fingertips pointed in the direction of the
positive sense of d s[image: -*-], then your thumb points in the direction of
the positive normal to the surface S[image: -*-].







3–7 Curl-free and divergence-free fields

[image: -][image: -]
Fig. 3–12. If ∇×C[image: -*-] is zero, the circulation around the
closed curve Γ[image: -*-] is zero. The line integral from (1)[image: -*-] to (2)[image: -*-]
along a[image: -*-] must be the same as the line integral along b[image: -*-].





We would like, now, to consider some consequences of our new
theorems. Take first the case of a vector whose curl is
everywhere zero. Then Stokes’ theorem says that the circulation
around any loop is zero. Now if we choose two points (1)[image: -*-] and (2)[image: -*-]
on a closed curve (Fig. 3–12), it follows that the line
integral of the tangential component from (1)[image: -*-] to (2)[image: -*-] is
independent of which of the two possible paths is taken. We can
conclude that the integral from (1)[image: -*-] to (2)[image: -*-] can depend only on the
location of these points—that is to say, it is some function of
position only. The same logic was used in Chapter 14 of
Vol. I, where we proved that if the integral around a closed loop of
some quantity is always zero, then that integral can be represented as
the difference of a function of the position of the two ends. This
fact allowed us to invent the idea of a potential. We proved,
furthermore, that the vector field was the gradient of this potential
function (see Eq. (14.13) of Vol. I).




It follows that any vector field whose curl is zero is equal to the
gradient of some scalar function. That is, if
∇×C=0[image: -*-], everywhere, there is some ψ[image: -*-] (psi) for
which C=∇ψ[image: -*-]—a useful idea. We can, if we wish,
describe this special kind of vector field by means of a scalar field.




Let’s show something else. Suppose we have any scalar
field ϕ[image: -*-] (phi). If we take its gradient, ∇ϕ[image: -*-], the
integral of this vector around any closed loop must be zero. Its line
integral from point (1)[image: -*-] to point (2)[image: -*-] is [ϕ (2)−ϕ (1)][image: -*-]. If
(1)[image: -*-] and (2)[image: -*-] are the same points, our Theorem 1,
Eq. (3.8), tells us that the line integral is zero:

[image: -*-][image: -*-]


Using Stokes’ theorem, we can conclude that

[image: -*-][image: -*-]


over any surface. But if the integral is zero over any
surface, the integrand must be zero. So

[image: -*-][image: -*-]


We proved the same result in Section 2–7 by vector
algebra.




[image: -][image: -]
Fig. 3–13. Going to the limit of a closed surface, we find that the
surface integral of (∇×C)n[image: -*-] must vanish.





Let’s look now at a special case in which we fill in a small
loop Γ[image: -*-] with a large surface S[image: -*-], as indicated in
Fig. 3–13. We would like, in fact, to see what happens when
the loop shrinks down to a point, so that the surface boundary
disappears—the surface becomes closed. Now if the vector C[image: -*-] is
everywhere finite, the line integral around Γ[image: -*-] must go to zero as
we shrink the loop—the integral is roughly proportional to the
circumference of Γ[image: -*-], which goes to zero. According to Stokes’
theorem, the surface integral of (∇×C)n[image: -*-] must also vanish.
Somehow, as we close the surface we add in contributions that cancel out
what was there before. So we have a new theorem:

[image: -*-][image: -*-]
(3.39)









Now this is interesting, because we already have a theorem about the
surface integral of a vector field. Such a surface integral is equal
to the volume integral of the divergence of the vector, according to
Gauss’ theorem (Eq. 3.18). Gauss’ theorem, applied
to ∇×C[image: -*-], says

[image: -*-][image: -*-]
(3.40)




So we conclude that the second integral must also be zero:

[image: -*-][image: -*-]
(3.41)




and this is true for any vector field C[image: -*-] whatever. Since
Eq. (3.41) is true for any volume, it must be true
that at every point in space the integrand is zero. We have

[image: -*-][image: -*-]


But this is the same result we got from vector
algebra in
Section 2–7. Now we begin to see how everything fits
together.








3–8 Summary


Let us summarize what we have found about the vector calculus. These
are really the salient points of Chapters 2
and 3:


	The operators ∂/∂x[image: -*-], ∂/∂y[image: -*-], and ∂/∂z[image: -*-] can
be considered as the three components of a vector operator ∇[image: -*-],
and the formulas which result from vector
algebra by
treating this operator as a vector are correct:
[image: -*-][image: -*-]




	The difference of the values of a scalar field at two points is
equal to the line integral of the tangential component of the gradient
of that scalar along any curve at all between the first and second
points:
[image: -*-][image: -*-]
(3.42)






	The surface integral of the normal component of an arbitrary
vector over a closed surface is equal to the integral of the
divergence of the vector over the volume interior to the surface:
[image: -*-][image: -*-]
(3.43)






	The line integral of the tangential component of an arbitrary
vector around a closed loop is equal to the surface integral of the
normal component of the curl of that vector over any surface which is
bounded by the loop:
[image: -*-][image: -*-]
(3.44)












	
  
  The following
development applies equally well to any rectangular parallelepiped.
  ↩





  
    

4 Electrostatics


	
			
		Review:
		
			
		Chapters 13, and 14 Vol. I, Work and Potential Energy
		
	





4–1 Statics


We begin now our detailed study of the theory of
electromagnetism. All of electromagnetism is contained in the Maxwell
equations.



  Maxwell’s equations:

[image: -*-][image: -*-]
(4.1)

(4.2)

(4.3)

(4.4)









The situations that are described by these equations can be very
complicated.  We will consider first relatively simple situations, and
learn how to handle them before we take up more complicated ones. The
easiest circumstance to treat is one in which nothing depends on the
time—called the static case. All charges are permanently
fixed in space, or if they do move, they move as a steady flow in a
circuit (so ρ[image: -*-] and j[image: -*-] are constant in time). In these
circumstances, all of the terms in the Maxwell equations which are time derivatives
of the field are zero. In this case, the Maxwell
equations
become:



  Electrostatics:

[image: -*-][image: -*-]
(4.5)

(4.6)




  Magnetostatics:

[image: -*-][image: -*-]
(4.7)

(4.8)









You will notice an interesting thing about this set of four equations.
It can be separated into two pairs. The electric field E[image: -*-] appears
only in the first two, and the magnetic field B[image: -*-] appears only in
the second two. The two fields are not interconnected. This means that
electricity and magnetism are distinct phenomena so long as
charges and currents are static. The interdependence of E[image: -*-]
and B[image: -*-] does not appear until there are changes in charges or
currents, as when a condensor is charged, or a magnet moved. Only when
there are sufficiently rapid changes, so that the time derivatives in
Maxwell’s equations become
significant, will E[image: -*-] and B[image: -*-] depend on each other.





Now if you look at the equations of statics you will see that the study
of the two subjects we call electrostatics and magnetostatics is ideal
from the point of view of learning about the mathematical properties of
vector fields. Electrostatics is a neat example of a vector field with
zero curl and a given divergence.
Magnetostatics is a neat example of a field with zero
divergence and a given curl. The more
conventional—and you may be thinking, more satisfactory—way of
presenting the theory of electromagnetism is to start first with
electrostatics and thus to learn about the divergence. Magnetostatics
and the curl are taken up later. Finally, electricity and magnetism are
put together. We have chosen to start with the complete theory of vector
calculus. Now we shall apply it to the special case of electrostatics,
the field of E[image: -*-] given by the first pair of equations.





We will begin with the simplest situations—ones in which the
positions of all charges are specified. If we had only to study
electrostatics at this level (as we shall do in the next two
chapters), life would be very simple—in fact, almost
trivial. Everything can be obtained from
Coulomb’s law and some
integration, as you will see. In many real electrostatic problems,
however, we do not know, initially, where the charges are. We
know only that they have distributed themselves in ways that depend on
the properties of matter. The positions that the charges take up
depend on the E[image: -*-] field, which in turn depends on the positions of
the charges. Then things can get quite complicated. If, for instance,
a charged body is brought near a conductor or insulator, the electrons
and protons in the conductor or insulator will move around. The charge
density ρ[image: -*-] in Eq. (4.5) may have one part that we
know about, from the charge that we brought up; but there will be
other parts from charges that have moved around in the conductor. And
all of the charges must be taken into account. One can get into some
rather subtle and interesting problems. So although this chapter is to
be on electrostatics, it will not cover the more beautiful and subtle
parts of the subject. It will treat only the situation where we can
assume that the positions of all the charges are known. Naturally, you
should be able to do that case before you try to handle the other
ones.





 


4–2 Coulomb’s law; superposition


It would be logical to use Eqs. (4.5) and (4.6)
as our starting points. It will be easier, however, if we start somewhere else
and come back to these equations. The results will be equivalent. We will start
with a law that we have talked about before, called Coulomb’s law, which says
that between two charges at rest there is a force directly proportional to the
product of the charges and inversely proportional to the square of the distance
between. The force is along the straight line from one charge to the other.



  Coulomb’s law:

[image: -*-][image: -*-]
(4.9)




F1[image: -*-] is the force on charge q1[image: -*-], e12[image: -*-] is the
unit vector in the direction to q1[image: -*-] from q2[image: -*-],
and r12[image: -*-] is the distance between q1[image: -*-] and q2[image: -*-]. The
force F2[image: -*-] on q2[image: -*-] is equal and opposite to F1[image: -*-].





The constant of proportionality, for historical reasons, is written
as 1/4 π ϵ0[image: -*-]. In the system of units which we use—the mks
system—it is defined as exactly 10−7[image: -*-] times the speed of light
squared. Now since the speed of light is approximately
3×108[image: -*-] meters per second, the constant is
approximately 9×109[image: -*-], and the unit turns out to be
newton⋅[image: -*-]meter2 per coulomb2 or volt⋅[image: -*-]meter per coulomb.

[image: -*-][image: -*-]
(4.10)









When there are more than two charges present—the only really
interesting times—we must supplement Coulomb’s law with one other
fact of nature: the force on any charge is the vector sum of the
Coulomb forces from each of the other charges. This fact is called
“the principle of superposition.” That’s all
there is to electrostatics. If we combine the Coulomb law and the
principle of superposition, there is nothing else. Equations
(4.5) and (4.6)—the electrostatic
equations—say no more and no less.





When applying Coulomb’s law, it is convenient to introduce the idea of
an electric field. We say that the field E (1)[image: -*-] is the force
per unit charge on q1[image: -*-] (due to all other charges). Dividing
Eq. (4.9) by q1[image: -*-], we have, for one other charge
besides q1[image: -*-],

[image: -*-][image: -*-]
(4.11)




Also, we consider that E (1)[image: -*-] describes something about the
point (1)[image: -*-] even if q1[image: -*-] were not there—assuming that all other
charges keep their same positions. We say: E (1)[image: -*-] is the electric
field at the point (1)[image: -*-].





The electric field E[image: -*-] is a vector, so by Eq. (4.11)
we really mean three equations—one for each component. Writing out
explicitly the x[image: -*-]-component, Eq. (4.11) means



[image: -*-][image: -*-]
(4.12)





and similarly for the other components.





If there are many charges present, the field E[image: -*-] at any point (1)[image: -*-]
is a sum of the contributions from each of the other charges. Each term
of the sum will look like (4.11) or (4.12).
Letting qj[image: -*-] be the magnitude of the j[image: -*-]th charge, and r1 j[image: -*-] the
displacement from qj[image: -*-] to the point (1)[image: -*-], we write

[image: -*-][image: -*-]
(4.13)




Which means, of course,



[image: -*-][image: -*-]
(4.14)





and so on.





Often it is convenient to ignore the fact that charges come in
packages like electrons and protons, and think of them as being spread
out in a continuous smear—or in a “distribution,” as it is
called. This is O.K. so long as we are not interested in what is
happening on too small a scale. We describe a charge distribution by
the “charge density,” ρ (x,y,z)[image: -*-]. If the amount of charge in a
small volume Δ V2[image: -*-] located at the point (2)[image: -*-] is Δ q2[image: -*-],
then ρ[image: -*-] is defined by

[image: -*-][image: -*-]
(4.15)








[image: -][image: -]
Fig. 4–1. 
The electric field E[image: -*-] at point (1)[image: -*-], from a charge
distribution, is obtained from an integral over the distribution.
Point (1)[image: -*-] could also be inside the distribution.





To use Coulomb’s law with such a description, we replace the sums of Eqs.
(4.13) or (4.14) by integrals over all volumes
containing charges. Then we have

[image: -*-][image: -*-]
(4.16)




Some people prefer to write

[image: -*-][image: -*-]


where r12[image: -*-] is the vector displacement to (1)[image: -*-]
from (2)[image: -*-], as shown in Fig. 4-1. The integral
for E[image: -*-] is then written as

[image: -*-][image: -*-]
(4.17)




When we want to calculate something with these integrals, we usually have to
write them out in explicit detail. For the x[image: -*-]-component of either Eq.
(4.16) or (4.17), we would have



[image: -*-][image: -*-]
(4.18)










We are not going to use this formula much. We write it here only to
emphasize the fact that we have completely solved all the
electrostatic problems in which we know the locations of all of the
charges. Given the charges, what are the fields? Answer: Do
this integral. So there is nothing to the subject; it is just a case
of doing complicated integrals over three dimensions—strictly a job
for a computing machine!





With our integrals we can find the fields produced by a sheet of
charge, from a line of charge, from a spherical shell of charge, or
from any specified distribution. It is important to realize, as we go
on to draw field lines, to talk about potentials, or to calculate
divergences, that we already have the answer here. It is merely a
matter of it being sometimes easier to do an integral by some clever
guesswork than by actually carrying it out. The guesswork requires
learning all kinds of strange things. In practice, it might be easier
to forget trying to be clever and always to do the integral directly
instead of being so smart. We are, however, going to try to be smart
about it. We shall go on to discuss some other features of the
electric field.





 


4–3 Electric potential


First we take up the idea of electric potential, which is related to
the work done in carrying a charge from one point to another. There is
some distribution of charge, which produces an electric field. We ask
about how much work it would take to carry a small charge from one
place to another. The work done against the electrical forces
in carrying a charge along some path is the negative of the
component of the electrical force in the direction of the motion,
integrated along the path. If we carry a charge from point a[image: -*-] to
point b[image: -*-],

[image: -*-][image: -*-]


where F[image: -*-] is the electrical force on the charge at each
point, and d s[image: -*-] is the differential vector displacement along the
path. (See Fig. 4-2.)




[image: -][image: -]
Fig. 4–2. 
The work done in carrying a charge from a[image: -*-] to b[image: -*-] is the
  negative of the integral of F⋅ds[image: -*-] along the path
  taken.





It is more interesting for our purposes to consider the work that
would be done in carrying one unit of charge. Then the force on
the charge is numerically the same as the electric field. Calling the
work done against electrical forces in this case W (unit)[image: -*-], we
write

[image: -*-][image: -*-]
(4.19)




Now, in general, what we get with this kind of an integral depends on
the path we take. But if the integral of (4.19) depended
on the path from a[image: -*-] to b[image: -*-], we could get work out of the field by
carrying the charge to b[image: -*-] along one path and then back to a[image: -*-] on the
other. We would go to b[image: -*-] along the path for which W[image: -*-] is smaller and
back along the other, getting out more work than we put
in.





There is nothing impossible, in principle, about getting energy out of
a field.  We shall, in fact, encounter fields where it is possible. It
could be that as you move a charge you produce forces on the other
part of the “machinery.” If the “machinery” moved against the
force it would lose energy, thereby keeping the total energy in the
world constant. For electrostatics, however, there is no such
“machinery.” We know what the forces back on the sources of the
field are. They are the Coulomb forces on the charges responsible for
the field. If the other charges are fixed in position—as we assume
in electrostatics only—these back forces can do no work on
them. There is no way to get energy from them—provided, of course,
that the principle of energy conservation works for electrostatic
situations.  We believe that it will work, but let’s just show that it
must follow from Coulomb’s law of force.




[image: -][image: -]
Fig. 4–3. 
In carrying a test charge from a[image: -*-] to b[image: -*-] the same work is
  done along either path.





We consider first what happens in the field due to a single charge q[image: -*-].
Let point a[image: -*-] be at the distance ra[image: -*-] from q[image: -*-], and point b[image: -*-] at rb[image: -*-].
Now we carry a different charge, which we will call the “test” charge,
and whose magnitude we choose to be one unit, from a[image: -*-] to b[image: -*-]. Let’s
start with the easiest possible path to calculate. We carry our test
charge first along the arc of a circle, then along a radius, as shown in
part (a) of Fig. 4-3. Now on that particular path it is
child’s play to find the work done (otherwise we wouldn’t have picked
it). First, there is no work done at all on the path from a[image: -*-] to a′[image: -*-].
The field is radial (from Coulomb’s law),
so it is at right angles to the direction of motion. Next, on
the path from a′[image: -*-] to b[image: -*-], the field is in the direction of motion and
varies as 1/r2[image: -*-]. Thus the work done on the test charge in carrying it
from a[image: -*-] to b[image: -*-] would be



[image: -*-][image: -*-]
(4.20)










Now let’s take another easy path. For instance, the one shown in
part (b) of Fig. 4-3. It goes for awhile along an arc of a
circle, then radially for awhile, then along an arc again, then
radially, and so on. Every time we go along the circular parts, we do
no work. Every time we go along the radial parts, we must just
integrate 1/r2[image: -*-]. Along the first radial stretch, we integrate from
ra[image: -*-] to ra′[image: -*-], then along the next radial stretch from ra′[image: -*-]
to ra′′[image: -*-], and so on. The sum of all these integrals is the same as a
single integral directly from ra[image: -*-] to rb[image: -*-]. We get the same answer
for this path that we did for the first path we tried. It is clear
that we would get the same answer for any path which is made up
of an arbitrary number of the same kinds of pieces.





What about smooth paths? Would we get the same answer? We discussed
this point previously in Chapter 13 of Vol. I. Applying
the same arguments used there, we can conclude that work done in
carrying a unit charge from a[image: -*-] to b[image: -*-] is independent of the path.

[image: -*-][image: -*-]







Since the work done depends only on the endpoints, it can be
represented as the difference between two numbers. We can see this in
the following way. Let’s choose a reference point P0[image: -*-] and agree to
evaluate our integral by using a path that always goes by way
  of point P0[image: -*-]. Let ϕ (a)[image: -*-] stand for the work done against the
field in going from P0[image: -*-] to point a[image: -*-], and let ϕ (b)[image: -*-] be
the work done in going from P0[image: -*-] to point b[image: -*-]
(Fig. 4-4). The work in going to P0[image: -*-] from a[image: -*-] (on
the way to b[image: -*-]) is the negative of ϕ (a)[image: -*-], so we have that

[image: -*-][image: -*-]
(4.21)








[image: -][image: -]
Fig. 4–4. 
The work done in going along any path from a[image: -*-] to b[image: -*-] is the
  negative of the work from some point P0[image: -*-] to a[image: -*-] plus the work from
  P0[image: -*-] to b[image: -*-].





Since only the difference in the function ϕ[image: -*-] at two points is ever
involved, we do not really have to specify the location of P0[image: -*-]. Once
we have chosen some reference point, however, a number ϕ[image: -*-] is
determined for any point in space; ϕ[image: -*-] is then a
scalar field. It is a function of x[image: -*-], y[image: -*-], z[image: -*-]. We call this scalar
function the electrostatic potential at any point.



  Electrostatic potential:

[image: -*-][image: -*-]
(4.22)









For convenience, we will often take the reference point at infinity.
Then, for a single charge at the origin, the potential ϕ[image: -*-] is given
for any point (x,y,z)[image: -*-]—using Eq. (4.20):

[image: -*-][image: -*-]
(4.23)









The electric field from several charges can be written as the sum of
the electric field from the first, from the second, from the third,
etc. When we integrate the sum to find the potential we get a sum of
integrals. Each of the integrals is the negative of the potential from
one of the charges. We conclude that the potential ϕ[image: -*-] from a lot
of charges is the sum of the potentials from all the individual
charges. There is a superposition principle also for potentials. Using
the same kind of arguments by which we found the electric field from a
group of charges and for a distribution of charges, we can get the
complete formulas for the potential ϕ[image: -*-] at a point we call (1)[image: -*-]:

[image: -*-][image: -*-]
(4.24)

(4.25)









Remember that the potential ϕ[image: -*-] has a physical significance: it is
the potential energy which a unit charge would have if brought to the
specified point in space from some reference point.





 


4–4 E=−∇ϕ[image: -*-]


Who cares about ϕ[image: -*-]? Forces on charges are given by E[image: -*-], the
electric field. The point is that E[image: -*-] can be obtained easily
from ϕ[image: -*-]—it is as easy, in fact, as taking a derivative. Consider two
points, one at x[image: -*-] and one at (x+Δ x)[image: -*-], but both at the same y[image: -*-]
and z[image: -*-], and ask how much work is done in carrying a unit charge from
one point to the other. The path is along the horizontal line from x[image: -*-]
to x+Δ x[image: -*-]. The work done is the difference in the potential at
the two points:

[image: -*-][image: -*-]


But the work done against the field for the same path is

[image: -*-][image: -*-]


We see that

[image: -*-][image: -*-]
(4.26)




Similarly, Ey=−∂ϕ/∂y[image: -*-], Ez=−∂ϕ/∂z[image: -*-], or,
summarizing with the notation of vector analysis,

[image: -*-][image: -*-]
(4.27)




This equation is the differential form of Eq. (4.22). Any
problem with specified charges can be solved by computing the potential
from (4.24) or (4.25) and
using (4.27) to get the field. Equation (4.27)
also agrees with what we found from vector calculus: that for any scalar
field ϕ[image: -*-]

[image: -*-][image: -*-]
(4.28)









According to Eq. (4.25) the scalar potential ϕ[image: -*-] is
given by a three-dimensional integral similar to the one we had
for E[image: -*-]. Is there any advantage to computing ϕ[image: -*-] rather
than E[image: -*-]?  Yes. There is only one integral for ϕ[image: -*-], while there are
three integrals for E[image: -*-]—because it is a vector.
Furthermore, 1/r[image: -*-] is usually a little easier to integrate than x/r3[image: -*-]. It
turns
out in many practical cases that it is easier to calculate ϕ[image: -*-] and
then take the gradient to find the electric field, than it is to
evaluate the three integrals for E[image: -*-]. It is merely a practical
matter.





There is also a deeper physical significance to the potential ϕ[image: -*-].
We have shown that E[image: -*-] of
Coulomb’s law is obtained from
E=−gradϕ[image: -*-], when ϕ[image: -*-] is given by (4.22). But
if E[image: -*-] is equal to the gradient of a scalar field, then we know from
the vector calculus that the curl of E[image: -*-] must vanish:

[image: -*-][image: -*-]
(4.29)




But that is just our second fundamental equation of electrostatics,
Eq. (4.6). We have shown that
Coulomb’s law gives
an E[image: -*-] field that satisfies that condition. So far, everything is all
right.





We had really proved that ∇×E[image: -*-] was zero before we defined
the potential. We had shown that the work done around a closed path is
zero. That is, that

[image: -*-][image: -*-]


for any path. We saw in Chapter 3 that for any
such field ∇×E[image: -*-] must be zero everywhere. The electric
field in electrostatics is an example of a curl-free field.





You can practice your vector calculus by proving that
∇×E[image: -*-] is zero in a different way—by computing the
components of ∇×E[image: -*-] for the field of a point charge, as
given by Eq. (4.11). If you get zero, the superposition
principle says you would get zero for the field of any charge
distribution.





We should point out an important fact. For any radial force the
work done is independent of the path, and there exists a potential. If
you think about it, the entire argument we made above to show that the
work integral was independent of the path depended only on the fact
that the force from a single charge was radial and spherically
symmetric. It did not depend on the fact that the dependence on
distance was as 1/r2[image: -*-]—there could have been any
r[image: -*-] dependence. The existence of a potential, and the fact that the curl
of E[image: -*-] is zero, comes really only from the symmetry and
direction of the electrostatic forces. Because of this,
Eq. (4.28)—or (4.29)—can contain only part
of the laws of electricity.





 


4–5 The flux of E[image: -*-]


We will now derive a field equation that depends specifically and
directly on the fact that the force law is inverse square. That the
field varies inversely as the square of the distance seems, for some
people, to be “only natural,” because “that’s the way things spread
out.” Take a light source with light streaming out: the amount of
light that passes through a surface cut out by a cone with its apex at
the source is the same no matter at what radius the surface is
placed. It must be so if there is to be conservation of light
energy. The amount of light per unit area—the intensity—must vary
inversely as the area cut by the cone, i.,e., inversely as the square
of the distance from the source. Certainly the electric field should
vary inversely as the square of the distance for the same reason! But
there is no such thing as the “same reason” here. Nobody can say
that the electric field measures the flow of something like light
which must be conserved. If we had a “model” of the electric
field in which the electric field vector represented the direction and
speed—say the current—of some kind of little “bullets” which
were flying out, and if our model required that these bullets
were conserved, that none could ever disappear once it was shot out of
a charge, then we might say that we can “see” that the inverse
square law is necessary. On the other hand, there would necessarily be
some mathematical way to express this physical idea. If the electric
field were like conserved bullets going out, then it would vary
inversely as the square of the distance and we would be able to
describe that behavior by an equation—which is purely
mathematical. Now there is no harm in thinking this way, so long as we
do not say that the electric field is made out of bullets, but
realize that we are using a model to help us find the right
mathematics.





Suppose, indeed, that we imagine for a moment that the electric field
did represent the flow of something that was conserved—everywhere,
that is, except at charges. (It has to start somewhere!) We imagine
that whatever it is flows out of a charge into the space around.
If E[image: -*-] were the vector of such a flow (as h[image: -*-] is for heat flow),
it would have a 1/r2[image: -*-] dependence near a point source. Now we wish to
use this model to find out how to state the inverse square law in a
deeper or more abstract way, rather than simply saying “inverse
square.” (You may wonder why we should want to avoid the direct
statement of such a simple law, and want instead to imply the same
thing sneakily in a different way. Patience! It will turn out to be
useful.)




[image: -][image: -]
Fig. 4–5. 
The flux of E[image: -*-] out of the surface S[image: -*-] is zero.





We ask: What is the “flow” of E[image: -*-] out of an arbitrary closed
surface in the neighborhood of a point charge? First let’s take an
easy surface—the one shown in Fig. 4-5. If
the E[image: -*-] field is like a flow, the net flow out of this box should be
zero.  That is what we get if by the “flow” from this surface we
mean the surface integral of the normal component of E[image: -*-]—that
is, the flux of E[image: -*-]. On the radial faces, the normal component is
zero. On the spherical faces, the normal component En[image: -*-] is just the
magnitude of E[image: -*-]—minus for the smaller face and plus for the
larger face. The magnitude of E[image: -*-] decreases as 1/r2[image: -*-], but the
surface area is proportional to r2[image: -*-], so the product is independent
of r[image: -*-]. The flux of E[image: -*-] into face a[image: -*-] is just cancelled by the
flux out of face b[image: -*-]. The total flow out of S[image: -*-] is zero, which is to
say that for this surface

[image: -*-][image: -*-]
(4.30)
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Fig. 4–6. 
The flux of E[image: -*-] out of the surface S[image: -*-] is zero.





Next we show that the two end surfaces may be tilted with respect to
the radial line without changing the integral (4.30).
Although it is true in general, for our purposes it is only necessary to
show that this is true when the end surfaces are small, so that they
subtend a small angle from the source—in fact, an infinitesimal angle.
In Fig. 4-6 we show a surface S[image: -*-] whose “sides” are
radial, but whose “ends” are tilted. The end surfaces are not small in
the figure, but you are to imagine the situation for very small end
surfaces. Then the field E[image: -*-] will be sufficiently uniform over the
surface that we can use just its value at the center. When we tilt the
surface by an angle θ[image: -*-], the area is increased by the
factor 1/cosθ[image: -*-]. But En[image: -*-], the component of E[image: -*-] normal to the
surface, is decreased by the factor cosθ[image: -*-]. The
product En Δ a[image: -*-] is unchanged. The flux out of the whole surface S[image: -*-] is
still zero.




[image: -][image: -]
Fig. 4–7. 
Any volume can be thought of as completely made up of
  infinitesimal truncated cones. The flux of E[image: -*-] from one end of
  each conical segment is equal and opposite to the flux from the
  other end. The total flux from the surface S[image: -*-] is therefore zero.





Now it is easy to see that the flux out of a volume enclosed by
any surface S[image: -*-] must be zero. Any volume can be thought of as
made up of pieces, like that in Fig. 4-6. The surface
will be subdivided completely into pairs of end surfaces, and since
the fluxes in and out of these end surfaces cancel by pairs, the total
flux out of the surface will be zero. The idea is illustrated in
Fig. 4-7. We have the completely general result that
the total flux of E[image: -*-] out of any surface S[image: -*-] in the field
of a point charge is zero.




[image: -][image: -]
Fig. 4–8. 
If a charge is inside a surface, the flux out is not zero.




[image: -][image: -]
Fig. 4–9. 
The flux through S[image: -*-] is the same as the flux through S′[image: -*-].





But notice! Our proof works only if the surface S[image: -*-] does not
  surround the charge. What would happen if the point charge were
inside the surface? We could still divide our surface into
pairs of areas that are matched by radial lines through the charge, as
shown in Fig. 4-8. The fluxes through the two surfaces
are still equal—by the same arguments as before—only now they have
the same sign. The flux out of a surface that surrounds
a charge is not zero. Then what is it?  We can find out by a
little trick. Suppose we “remove” the charge from the “inside” by
surrounding the charge by a little surface S′[image: -*-] totally inside the
original surface S[image: -*-], as shown in Fig. 4-9. Now the
volume enclosed between the two surfaces S[image: -*-] and S′[image: -*-] has no
charge in it. The total flux out of this volume (including that
through S′[image: -*-]) is zero, by the arguments we have given above. The
arguments tell us, in fact, that the flux into the volume
through S′[image: -*-] is the same as the flux outward through S[image: -*-].




[image: -][image: -]
Fig. 4–10. 
The flux through a spherical surface containing a point
  charge q[image: -*-] is q/ϵ0[image: -*-].





We can choose any shape we wish for S′[image: -*-], so let’s make it a sphere
centered on the charge, as in Fig. 4-10. Then we can
easily calculate the flux through it. If the radius of the little
sphere is r[image: -*-], the value of E[image: -*-] everywhere on its surface is

[image: -*-][image: -*-]


and is directed always normal to the surface. We find the total flux
through S′[image: -*-] if we multiply this normal component of E[image: -*-] by the
surface area:



[image: -*-][image: -*-]
(4.31)





a number independent of the radius of the sphere! We know then that
the flux outward through S[image: -*-] is also q/ϵ0[image: -*-]—a value independent
of the shape of S[image: -*-] so long as the charge q[image: -*-] is inside.





We can write our conclusions as follows:

[image: -*-][image: -*-]
(4.32)









Let’s return to our “bullet” analogy and see if it makes sense. Our
theorem says that the net flow of bullets through a surface is zero if
the surface does not enclose the gun that shoots the bullets. If the
gun is enclosed in a surface, whatever size and shape it is, the
number of bullets passing through is the same—it is given by the
rate at which bullets are generated at the gun. It all seems quite
reasonable for conserved bullets. But does the model tell us anything
more than we get simply by writing Eq. (4.32)? No one
has succeeded in making these “bullets” do anything else but produce
this one law. After that, they produce nothing but errors. That is why
today we prefer to represent the electromagnetic field purely
abstractly.





 


4–6 Gauss’ law; the divergence of E[image: -*-]


Our nice result, Eq. (4.32), was proved for a single
point charge. Now suppose that there are two charges, a charge q1[image: -*-]
at one point and a charge q2[image: -*-] at another. The problem looks more
difficult. The electric field whose normal component we integrate for
the flux is the field due to both charges. That is, if E1[image: -*-]
represents the electric field that would have been produced by q1[image: -*-]
alone, and E2[image: -*-] represents the electric field produced by q2[image: -*-]
alone, the total electric field is E=E1+E2[image: -*-]. The flux
through any closed surface S[image: -*-] is

[image: -*-][image: -*-]
(4.33)




The flux with both charges present is the flux due to a single charge
plus the flux due to the other charge. If both charges are outside S[image: -*-],
the flux through S[image: -*-] is zero. If q1[image: -*-] is inside S[image: -*-] but q2[image: -*-] is
outside, then the first integral gives q1/ϵ0[image: -*-] and the second
integral gives zero. If the surface encloses both charges, each will
give its contribution and we have that the flux is
(q1+q2)/ϵ0[image: -*-]. The general rule is clearly that the total flux out
of a closed surface is equal to the total charge inside,
divided by ϵ0[image: -*-].





Our result is an important general law of the electrostatic field,
called Gauss’ law.



  Gauss’ law:

[image: -*-][image: -*-]
(4.34)




or

[image: -*-][image: -*-]
(4.35)




where

[image: -*-][image: -*-]
(4.36)




If we describe the location of charges in terms of a charge
density ρ[image: -*-], we can consider that each infinitesimal volume d V[image: -*-] contains a
“point” charge ρ d V[image: -*-]. The sum over all charges is then the
integral

[image: -*-][image: -*-]
(4.37)









From our derivation you see that Gauss’ law follows from the fact that
the exponent in Coulomb’s law
is exactly two. A 1/r3[image: -*-] field, or any 1/rn[image: -*-] field with
n≠2[image: -*-], would not give Gauss’ law. So Gauss’ law
is just an expression, in a different form, of the Coulomb
law of
forces between two charges. In fact, working back from Gauss’ law, you
can derive Coulomb’s law. The
two are quite equivalent so long as we
keep in mind the rule that the forces between charges are radial.





We would now like to write Gauss’ law in terms of derivatives. To do
this, we apply Gauss’ law to an infinitesimal cubical surface. We
showed in Chapter 3 that the flux of E[image: -*-] out of such
a cube is ∇⋅E[image: -*-] times the volume d V[image: -*-] of the cube. The
charge inside of d V[image: -*-], by the definition of ρ[image: -*-], is equal 
to ρ d V[image: -*-], so Gauss’ law gives
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or

[image: -*-][image: -*-]
(4.38)




The differential form of Gauss’ law is the first of our fundamental field
equations of electrostatics, Eq. (4.5). We have now shown that the
two equations of electrostatics, Eqs. (4.5)
and (4.6), are equivalent to Coulomb’s
law of force. We will now consider one example of
the use of Gauss’ law. (We will come later to many more examples.)





 


4–7 Field of a sphere of charge


One of the difficult problems we had when we studied the theory of
gravitational attractions was to prove that the force produced by a
solid sphere of matter was the same at the surface of the sphere as it
would be if all the matter were concentrated at the center. For many
years Newton
didn’t make public his theory of gravitation, because he
couldn’t be sure this theorem was true. We proved the theorem in
Chapter 13 of Vol. I by doing the integral for the
potential and then finding the gravitational force by using the
gradient. Now we can prove the theorem in a most simple fashion. Only
this time we will prove the corresponding theorem for a uniform sphere
of electrical charge. (Since the laws of electrostatics are the same
as those of gravitation, the same proof could be done for the
gravitational field.)
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Fig. 4–11. 
Using Gauss’ law to find the field of a uniform sphere of
  charge.





We ask: What is the electric field E[image: -*-] at a point P[image: -*-] anywhere
outside the surface of a sphere filled with a uniform distribution of
charge?  Since there is no “special” direction, we can assume
that E[image: -*-] is everywhere directed away from the center of the sphere. We
consider an imaginary surface that is spherical and concentric with
the sphere of charge, and that passes through the point P[image: -*-]
(Fig. 4-11). For this surface, the flux outward is

[image: -*-][image: -*-]


Gauss’ law tells us that this flux is equal to the total charge Q[image: -*-] of
the sphere (over ϵ0[image: -*-]):

[image: -*-][image: -*-]


or

[image: -*-][image: -*-]
(4.39)




which is the same formula we would have for a point charge Q[image: -*-]. We
have proved Newton’s problem more easily
than by doing the
integral. It is, of course, a false kind of easiness—it has taken
you some time to be able to understand Gauss’ law, so you may think
that no time has really been saved. But after you have used the
theorem more and more, it begins to pay. It is a question of
efficiency.





 


4–8 Field lines; equipotential surfaces


We would like now to give a geometrical description of the
electrostatic field. The two laws of electrostatics, one that the flux
is proportional to the charge inside and the other that the electric
field is the gradient of a potential, can also be represented
geometrically. We illustrate this with two examples.




[image: -][image: -]
Fig. 4–12. 
Field lines and equipotential surfaces for a positive point
  charge.





First, we take the field of a point charge. We draw lines in the
direction of the field—lines which are always tangent to the field,
as in Fig. 4-12. These are called field
  lines. The lines show everywhere the direction of the electric
vector. But we also wish to represent the magnitude of the vector. We
can make the rule that the strength of the electric field will be
represented by the “density” of the lines. By the density of the
lines we mean the number of lines per unit area through a surface
perpendicular to the lines. With these two rules we can have a picture
of the electric field. For a point charge, the density of the lines
must decrease as 1/r2[image: -*-]. But the area of a spherical surface
perpendicular to the lines at any radius r[image: -*-] increases
as r2[image: -*-], so if we always keep the same number of lines for
all distances from the charge, the density will remain
in proportion to the magnitude of the field. We can guarantee that
there are the same number of lines at every distance if we insist that
the lines be continuous—that once a line is started from the
charge, it never stops. In terms of the field lines, Gauss’
law
says
that lines should start only at plus charges and stop at minus
charges. The number which leave a charge q[image: -*-] must be equal
to q/ϵ0[image: -*-].





Now, we can find a similar geometrical picture for the
potential ϕ[image: -*-]. The easiest way to represent the potential is to draw surfaces
on which ϕ[image: -*-] is a constant. We call them equipotential
surfaces—surfaces of equal potential. Now what is the geometrical
relationship of the equipotential surfaces to the field lines? The
electric field is the gradient of the potential. The gradient is in
the direction of the most rapid change of the potential, and is
therefore perpendicular to an equipotential surface. If E[image: -*-] were
not perpendicular to the surface, it would have a component
in the surface. The potential would be changing in the surface,
but then it wouldn’t be an equipotential. The equipotential surfaces
must then be everywhere at right angles to the electric field lines.





For a point charge all by itself, the equipotential surfaces are
spheres centered at the charge. We have shown in Fig. 4-12
the intersection of these spheres with a plane through the charge.





As a second example, we consider the field near two equal charges, a
positive one and a negative one. To get the field is easy. The field
is the superposition of the fields from each of the two charges. So,
we can take two pictures like Fig. 4-12 and superimpose
them—impossible! Then we would have field lines crossing each other,
and that’s not possible, because E[image: -*-] can’t have two
directions at the same point. The disadvantage of the field-line
picture is now evident. By geometrical arguments it is impossible to
analyze in a very simple way where the new lines go. From the two
independent pictures, we can’t get the combined picture. The principle
of superposition, a simple and deep principle about electric fields,
does not have, in the field-line picture, an easy representation.
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Fig. 4–13. 
Field lines and equipotentials for two equal and opposite point charges.





The field-line picture has its uses, however, so we might still like
to draw the picture for a pair of equal (and opposite) charges. If we
calculate the fields from Eq. (4.13) and the potentials
from (4.24), we can draw the field lines and
equipotentials. Figure 4-13 shows the result. But we
first had to solve the problem mathematically!






A Note about Units
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5 Application of Gauss’ Law



5–1 Electrostatics is Gauss’ law plus …


There are two laws of electrostatics: that the flux of the electric
field from a volume is proportional to the charge inside—Gauss’ law,
and that the circulation of the electric field is zero—E[image: -*-] is a
gradient. From these two laws, all the predictions of electrostatics
follow. But to say these things mathematically is one thing; to use
them easily, and with a certain amount of ingenuity, is another. In
this chapter we will work through a number of calculations which can
be made with Gauss’ law directly. We will prove theorems and describe
some effects, particularly in conductors, that can be understood very
easily from Gauss’ law. Gauss’ law by itself cannot give the solution
of any problem because the other law must be obeyed too. So when we
use Gauss’ law for the solution of particular problems, we will have
to add something to it. We will have to presuppose, for instance, some
idea of how the field looks—based, for example, on arguments of
symmetry. Or we may have to introduce specifically the idea that the
field is the gradient of a potential.







5–2 Equilibrium in an electrostatic field


Consider first the following question: When can a point charge be in
stable mechanical equilibrium in the electric field of other charges?
As an example, imagine three negative charges at the corners of an
equilateral triangle in a horizontal plane. Would a positive charge
placed at the center of the triangle remain there? (It will be simpler
if we ignore gravity for the moment, although including it would not
change the results.) The force on the positive charge is zero, but is
the equilibrium stable? Would the charge return to the equilibrium
position if displaced slightly? The answer is no.




There are no points of stable equilibrium in any
electrostatic field—except right on top of another charge. Using
Gauss’ law, it is easy to see why. First, for a charge to be in
equilibrium at any particular point P0[image: -*-], the field must be zero.
Second, if the equilibrium is to be a stable one, we require that if
we move the charge away from P0[image: -*-] in any direction, there
should be a restoring force directed opposite to the displacement. The
electric field at all nearby points must be pointing
inward—toward the point P0[image: -*-]. But that is in violation of Gauss’
law if there is no charge at P0[image: -*-], as we can easily see.



[image: -][image: -]
Fig. 5–1. If P0[image: -*-] were a position of stable equilibrium for a positive
charge, the electric field everywhere in the neighborhood would
point toward P0[image: -*-].





Consider a tiny imaginary surface that encloses P0[image: -*-], as in
Fig. 5–1. If the electric field everywhere in the vicinity
is pointed toward P0[image: -*-], the surface integral of the normal component is
certainly not zero. For the case shown in the figure, the flux through
the surface must be a negative number. But Gauss’ law says that the flux
of electric field through any surface is proportional to the total
charge inside. If there is no charge at P0[image: -*-], the field we have
imagined violates Gauss’ law. It is impossible to balance a positive
charge in empty space—at a point where there is not some negative
charge. A positive charge can be in equilibrium if it is in the
middle of a distributed negative charge. Of course, the negative charge
distribution would have to be held in place by other than electrical
forces!




Our result has been obtained for a point charge. Does the same
conclusion hold for a complicated arrangement of charges held together
in fixed relative positions—with rods, for example? We consider the
question for two equal charges fixed on a rod. Is it possible that
this combination can be in equilibrium in some electrostatic field?
The answer is again no. The total force on the rod cannot be
restoring for displacements in every direction.




Call F[image: -*-] the total force on the rod in any position—F[image: -*-] is
then a vector field.  Following the argument used above, we conclude
that at a position of stable equilibrium, the divergence of F[image: -*-]
must be a negative number. But the total force on the rod is the first
charge times the field at its position, plus the second charge times
the field at its position:

[image: -*-][image: -*-]
(5.1)




The divergence of F[image: -*-] is given by

[image: -*-][image: -*-]


If each of the two charges q1[image: -*-] and q2[image: -*-] is in free space, both
∇⋅E1[image: -*-] and ∇⋅E2[image: -*-] are zero,
and ∇⋅F[image: -*-] is zero—not negative, as would be required for
equilibrium. You can see that an extension of the argument shows that
no rigid combination of any number of charges can have a position of
stable equilibrium in an electrostatic field in free space.



[image: -][image: -]
Fig. 5–2. A charge can be in equilibrium if there are mechanical
constraints.





Now we have not shown that equilibrium is forbidden if there are
pivots or other mechanical constraints. As an example, consider a
hollow tube in which a charge can move back and forth freely, but not
sideways. Now it is very easy to devise an electric field that points
inward at both ends of the tube if it is allowed that the field may
point laterally outward near the center of the tube. We simply place
positive charges at each end of the tube, as in Fig. 5–2.
There can now be an equilibrium point even though the divergence
of E[image: -*-] is zero. The charge, of course, would not be in stable
equilibrium for sideways motion were it not for “nonelectrical” forces
from the tube walls.







5–3 Equilibrium with conductors


There is no stable spot in the field of a system of fixed
charges. What about a system of charged conductors? Can a system of
charged conductors produce a field that will have a stable equilibrium
point for a point charge? (We mean at a point other than on a
conductor, of course.) You know that conductors have the property that
charges can move freely around in them. Perhaps when the point charge
is displaced slightly, the other charges on the conductors will move
in a way that will give a restoring force to the point charge?  The
answer is still no—although the proof we have just given doesn’t
show it. The proof for this case is more difficult, and we will only
indicate how it goes.




First, we note that when charges redistribute themselves on the
conductors, they can only do so if their motion decreases their total
potential energy. (Some energy is lost to heat as they move in the
conductor.) Now we have already shown that if the charges producing a
field are stationary, there is, near any zero point P0[image: -*-] in
the field, some direction for which moving a point charge away
from P0[image: -*-] will decrease the energy of the system (since the force
is away from P0[image: -*-]). Any readjustment of the charges on the
conductors can only lower the potential energy still more, so (by the
principle of virtual work) their motion will only increase the
force in that particular direction away from P0[image: -*-], and not reverse
it.




Our conclusions do not mean that it is not possible to balance a
charge by electrical forces. It is possible if one is willing to
control the locations or the sizes of the supporting charges with
suitable devices. You know that a rod standing on its point in a
gravitational field is unstable, but this does not prove that it
cannot be balanced on the end of a finger. Similarly, a charge can be
held in one spot by electric fields if they are variable. But
not with a passive—that is, a static—system.







5–4 Stability of atoms


If charges cannot be held stably in position, it is surely not proper
to imagine matter to be made up of static point charges
(electrons and protons) governed only by the laws of
electrostatics. Such a static configuration is impossible; it would
collapse!



[image: -][image: -]
Fig. 5–3. The Thomson model of an atom.





It was once suggested that the positive charge of an atom could be
distributed uniformly in a sphere, and the negative charges, the
electrons, could be at rest inside the positive charge, as shown in
Fig. 5–3. This was the first atomic model, proposed by
Thomson. But
Rutherford concluded from the
experiment of Geiger and
Marsden that the positive
charges were very much concentrated, in what he called the nucleus.
Thomson’s static model had to be abandoned.
Rutherford and
Bohr then suggested that the
equilibrium might be dynamic, with the electrons revolving in orbits, as
shown in Fig. 5–4. The electrons would be kept from falling
in toward the nucleus by their orbital motion. We already know at least
one difficulty with this picture. With such motion, the electrons would
be accelerating (because of the circular motion) and would, therefore,
be radiating energy. They would lose the kinetic energy required to stay
in orbit, and would spiral in toward the nucleus. Again unstable!



[image: -][image: -]
Fig. 5–4. The Rutherford-Bohr model of an atom.





The stability of the atoms is now explained in terms of quantum
mechanics. The electrostatic forces pull the electron as close to the
nucleus as possible, but the electron is compelled to stay spread out in
space over a distance given by the uncertainty
principle. If it
were confined in too small a space, it would have a great uncertainty in
momentum. But that means that it would have a high expected
energy—which it would use to escape from the electrical attraction.
The net result is an electrical equilibrium not too different from the
idea of Thomson—only it is the negative charge that is spread
out (because the mass of the electron is so much smaller than the mass
of the proton).







5–5 The field of a line charge


Gauss’ law can be used to solve a number of electrostatic field
problems involving a special symmetry—usually spherical,
cylindrical, or planar symmetry.  In the remainder of this chapter we
will apply Gauss’ law to a few such problems.  The ease with which
these problems can be solved may give the misleading impression that
the method is very powerful, and that one should be able to go on to
many other problems. It is unfortunately not so. One soon exhausts the
list of problems that can be solved easily with Gauss’ law. In later
chapters we will develop more powerful methods for investigating
electrostatic fields.




As our first example, we consider a system with cylindrical
symmetry. Suppose that we have a very long, uniformly charged rod. By
this we mean that electric charges are distributed uniformly along an
indefinitely long straight line, with the charge λ[image: -*-] per unit
length. We wish to know the electric field. The problem can, of
course, be solved by integrating the contribution to the field from
every part of the line. We are going to do it without integrating, by
using Gauss’ law and some guesswork. First, we surmise that the
electric field will be directed radially outward from the line. Any
axial component from charges on one side would be accompanied by an
equal axial component from charges on the other side. The result could
only be a radial field. It also seems reasonable that the field should
have the same magnitude at all points equidistant from the line. This
is obvious. (It may not be easy to prove, but it is true if space is
symmetric—as we believe it is.)



[image: -][image: -]
Fig. 5–5. A cylindrical gaussian surface coaxial with a line charge.





We can use Gauss’ law in the following way. We consider an
imaginary surface in the shape of a cylinder coaxial with the
line, as shown in Fig. 5–5. According to Gauss’ law,
the total flux of E[image: -*-] from this surface is equal to the charge
inside divided by ϵ0[image: -*-]. Since the field is assumed to be normal to
the surface, the normal component is the magnitude of the field. Let’s
call it E[image: -*-]. Also, let the radius of the cylinder be r[image: -*-], and its
length be taken as one unit, for convenience. The flux through the
cylindrical surface is equal to E[image: -*-] times the area of the surface,
which is 2 π r[image: -*-]. The flux through the two end faces is zero because
the electric field is tangential to them. The total charge inside our
surface is just λ[image: -*-], because the length of the line inside is
one unit. Gauss’ law then gives

[image: -*-][image: -*-]
(5.2)




The electric field of a line charge depends inversely on the
first power of the distance from the line.







5–6 A sheet of charge; two sheets

[image: -][image: -]
Fig. 5–6. The electric field near a uniformly charged sheet can be
found by applying Gauss’ law to an imaginary box.





As another example, we will calculate the field from a uniform plane
sheet of charge. Suppose that the sheet is infinite in extent and that
the charge per unit area is σ[image: -*-]. We are going to take another
guess. Considerations of symmetry lead us to believe that the field
direction is everywhere normal to the plane, and if we have no
field from any other charges in the world, the fields must be the
same (in magnitude) on each side. This time we choose for our Gaussian
surface a rectangular box that cuts through the sheet, as shown in
Fig. 5–6. The two faces parallel to the sheet will have
equal areas, say A[image: -*-]. The field is normal to these two faces, and
parallel to the other four. The total flux is E[image: -*-] times the area of
the first face, plus E[image: -*-] times the area of the opposite face—with no
contribution from the other four faces. The total charge enclosed in
the box is σ A[image: -*-]. Equating the flux to the charge inside, we have

[image: -*-][image: -*-]


from which

[image: -*-][image: -*-]
(5.3)




a simple but important result.




You may remember that the same result was obtained in an earlier
chapter by an integration over the entire surface. Gauss’ law gives us
the answer, in this instance, much more quickly (although it is not as
generally applicable as the earlier method).




We emphasize that this result applies only to the field due to
the charges on the sheet. If there are other charges in the
neighborhood, the total field near the sheet would be the sum
of (5.3) and the field of the other charges. Gauss’ law
would then tell us only that

[image: -*-][image: -*-]
(5.4)




where E1[image: -*-] and E2[image: -*-] are the fields directed outward on each side of
the sheet.



[image: -][image: -]
Fig. 5–7. The field between two charged sheets is σ/ϵ0[image: -*-].





The problem of two parallel sheets with equal and opposite charge
densities, +σ[image: -*-] and −σ[image: -*-], is equally simple if we assume
again that the outside world is quite symmetric. Either by superposing
two solutions for a single sheet or by constructing a gaussian box
that includes both sheets, it is easily seen that the field is zero
outside of the two sheets (Fig. 5–7a). By
considering a box that includes only one surface or the other, as in
(b) or (c) of the figure, it can be seen that the field between the
sheets must be twice what it is for a single sheet. The result is

[image: -*-][image: -*-]
(5.5)

(5.6)












5–7 A sphere of charge; a spherical shell


We have already (in Chapter 4) used Gauss’ law to find
the field outside a uniformly charged spherical region. The same
method can also give us the field at points inside the
sphere. For example, the computation can be used to obtain a good
approximation to the field inside an atomic nucleus. In spite of the
fact that the protons in a nucleus repel each other, they are, because
of the strong nuclear forces, spread nearly uniformly throughout the
body of the nucleus.



[image: -][image: -]
Fig. 5–8. Gauss’ law can be used to find the field inside a uniformly
charged sphere.





Suppose that we have a sphere of radius R[image: -*-] filled uniformly with
charge. Let ρ[image: -*-] be the charge per unit volume. Again using
arguments of symmetry, we assume the field to be radial and equal in
magnitude at all points at the same distance from the center. To find
the field at the distance r[image: -*-] from the center, we take a spherical
gaussian surface of radius r[image: -*-] (r<R[image: -*-]), as shown in
Fig. 5–8. The flux out of this surface is

[image: -*-][image: -*-]


The charge inside our gaussian surface is the volume inside
times ρ[image: -*-], or

[image: -*-][image: -*-]


Using Gauss’ law, it follows that the magnitude of the field is given
by

[image: -*-][image: -*-]
(5.7)




You can see that this formula gives the proper result for r=R[image: -*-]. The
electric field is proportional to the radius and is directed
radially outward.




The arguments we have just given for a uniformly charged sphere can be
applied also to a thin spherical shell of charge. Assuming that the
field is everywhere radial and is spherically symmetric, one gets
immediately from Gauss’ law that the field outside the shell is like
that of a point charge, while the field everywhere inside the shell is
zero. (A gaussian surface inside the shell will contain no charge.)







5–8 Is the field of a point charge exactly 1/r2[image: -*-]?


If we look in a little more detail at how the field inside
the shell gets to be zero, we can see more clearly why it is that Gauss’ law is
true only because the Coulomb force depends exactly on the square of
the distance. Consider any point P[image: -*-] inside a uniform spherical shell
of charge. Imagine a small cone whose apex is at P[image: -*-] and which extends
to the surface of the sphere, where it cuts out a small surface
area Δ a1[image: -*-], as in Fig. 5–9. An exactly symmetric cone
diverging from the opposite side of P[image: -*-] would cut out the surface
area Δ a2[image: -*-]. If the distances from P[image: -*-] to these two elements of area
are r1[image: -*-] and r2[image: -*-], the areas are in the ratio

[image: -*-][image: -*-]


(You can show this by geometry for any point P[image: -*-] inside the sphere.)



[image: -][image: -]
Fig. 5–9. The field is zero at any point P[image: -*-] inside a spherical shell
of charge.





If the surface of the sphere is uniformly charged, the charge Δ q[image: -*-] on each of the elements of area is proportional to the area, so

[image: -*-][image: -*-]


Coulomb’s law then says that
the magnitudes of the fields produced at P[image: -*-] by these two surface
elements are in the ratio

[image: -*-][image: -*-]


The fields cancel exactly. Since all parts of the surface can be
paired off in the same way, the total field at P[image: -*-] is zero. But you
can see that it would not be so if the exponent of r[image: -*-] in
Coulomb’s law were not exactly two.





The validity of Gauss’ law depends upon the inverse square law of
Coulomb.  If the force law were not exactly the inverse square, it
would not be true that the field inside a uniformly charged sphere
would be exactly zero. For instance, if the force varied more rapidly,
like, say, the inverse cube of r[image: -*-], that portion of the surface which
is nearer to an interior point would produce a field which is larger
than that which is farther away, resulting in a radial inward field
for a positive surface charge. These conclusions suggest an elegant
way of finding out whether the inverse square law is precisely
correct. We need only determine whether or not the field inside of a
uniformly charged spherical shell is precisely zero.




It is lucky that such a method exists. It is usually difficult to
measure a physical quantity to high precision—a one percent result may
not be too difficult, but how would one go about measuring, say,
Coulomb’s law to an accuracy of one
part in a billion? It is almost certainly not possible with the best
available techniques to measure the force between two charged
objects with such an accuracy. But by determining only that the electric
fields inside a charged sphere are smaller than some value we can
make a highly accurate measurement of the correctness of Gauss’ law, and
hence of the inverse square dependence of Coulomb’s
law. What one does, in effect, is
compare the force law to an ideal inverse square. Such
comparisons of things that are equal, or nearly so, are usually the
bases of the most precise physical measurements.



[image: -][image: -]
Fig. 5–10. The electric field is zero inside a closed conducting shell.





How shall we observe the field inside a charged sphere? One way is to
try to charge an object by touching it to the inside of a spherical
conductor. You know that if we touch a small metal ball to a charged
object and then touch it to an electrometer the meter will become
charged and the pointer will move from zero (Fig. 5–10a).
The ball picks up charge because there are electric fields outside the
charged sphere that cause charges to run onto (or off) the little ball.
If you do the same experiment by touching the little ball to the
inside of the charged sphere, you find that no charge is carried
to the electrometer. With such an experiment you can easily show that
the field inside is, at most, a few percent of the field outside, and
that Gauss’ law is at least approximately correct.




It appears that Benjamin
Franklin
was the first to notice that the field inside a
conducting shell is zero. The result seemed strange to him. When he
reported his observation to
Priestley,
the latter suggested that it
might be connected with an inverse square law, since it was known that
a spherical shell of matter produced no gravitational field
inside. But Coulomb
didn’t measure the inverse square dependence until
18 years later, and Gauss’ law came even later still.




Gauss’ law has been checked carefully by putting an electrometer
inside a large sphere and observing whether any deflections occur when
the sphere is charged to a high voltage. A null result is always
obtained. Knowing the geometry of the apparatus and the sensitivity of
the meter, it is possible to compute the minimum field that would be
observed. From this number it is possible to place an upper limit on
the deviation of the exponent from two. If we write that the
electrostatic force depends on r−2+ϵ[image: -*-], we can place an
upper bound on ϵ[image: -*-]. By this method
Maxwell determined
that ϵ[image: -*-] was less than 1/10,000[image: -*-]. The experiment was repeated and
improved upon in 1936 by
Plimpton and
Lawton. They found that
Coulomb’s exponent differs from two by less than one part in a
billion.




Now that brings up an interesting question: How accurate do we know
this Coulomb law to be in various circumstances? The experiments we
just described measure the dependence of the field on distance for
distances of some tens of centimeters. But what about the distances
inside an atom—in the hydrogen atom, for instance, where we believe
the electron is attracted to the nucleus by the same inverse square
law? It is true that quantum mechanics must be used for the mechanical
part of the behavior of the electron, but the force is the usual
electrostatic one. In the formulation of the problem, the potential
energy of an electron must be known as a function of distance from the
nucleus, and Coulomb’s law gives a potential which varies inversely
with the first power of the distance.  How accurately is the exponent
known for such small distances? As a result of very careful
measurements in 1947 by Lamb
and Retherford on the relative
positions of the energy levels of hydrogen, we know that the exponent
is correct again to one part in a billion on the atomic scale—that
is, at distances of the order of one angstrom (10−8[image: -*-] centimeter).




The accuracy of the Lamb-Retherford measurement was possible again because of a physical “accident.”
Two of the states of a hydrogen atom are expected to have almost
identical energies only if the potential varies exactly
as 1/r[image: -*-]. A measurement was made of the very slight difference in
energies by finding the frequency ω[image: -*-] of the photons that are
emitted or absorbed in the transition from one state to the other,
using for the energy difference Δ E=ℏ ω[image: -*-]. Computations
showed that Δ E[image: -*-] would have been noticeably different from what
was observed if the exponent in the force law 1/r2[image: -*-] differed
from 2 by as much as one part in a billion.




Is the same exponent correct at still shorter distances? From
measurements in nuclear physics it is found that there are
electrostatic forces at typical nuclear distances—at about
10−13[image: -*-] centimeter—and that they still vary approximately as the
inverse square. We shall look at some of the evidence in a later
chapter. Coulomb’s law is, we know, still valid, at least to some
extent, at distances of the order of 10−13[image: -*-] centimeter.




How about 10−14[image: -*-] centimeter? This range can be investigated by
bombarding protons with very energetic electrons and observing how
they are scattered. Results to date seem to indicate that the law
fails at these distances. The electrical force seems to be about 10[image: -*-]
times too weak at distances less than 10−14[image: -*-] centimeter.  Now
there are two possible explanations. One is that the Coulomb law does
not work at such small distances; the other is that our objects, the
electrons and protons, are not point charges. Perhaps either the
electron or proton, or both, is some kind of a smear. Most physicists
prefer to think that the charge of the proton is smeared. We know that
protons interact strongly with mesons. This implies that a proton
will, from time to time, exist as a neutron with a π+[image: -*-] meson
around it. Such a configuration would act—on the average—like a
little sphere of positive charge. We know that the field from a sphere
of charge does not vary as 1/r2[image: -*-] all the way into the center. It is
quite likely that the proton charge is smeared, but the theory of
pions is still quite incomplete, so it may also be that Coulomb’s law
fails at very small distances. The question is still open.




One more point: The inverse square law is valid at distances like one
meter and also at 10−10[image: -*-] m; but is the coefficient 1/4 π ϵ0[image: -*-]
the same?  The answer is yes; at least to an accuracy of 15[image: -*-] parts in
a million.





We go back now to an important matter that we slighted when we spoke
of the experimental verification of Gauss’ law. You may have wondered
how the experiment of Maxwell
or of Plimpton and
Lawton could give
such an accuracy unless the spherical conductor they used was a
perfect sphere. An accuracy of one part in a billion is really
something to achieve, and you might well ask whether they could make a
sphere which was that precise. There are certain to be slight
irregularities in any real sphere and if there are irregularities,
will they not produce fields inside? We wish to show now that it is
not necessary to have a perfect sphere.  It is possible, in fact, to
show that there is no field inside a closed conducting shell of
any shape. In other words, the experiments depended on 1/r2[image: -*-],
but had nothing to do with the surface being a sphere (except that
with a sphere it is easier to calculate what the fields would
be if Coulomb had been wrong), so we take up that subject now. To show
this, it is necessary to know some of the properties of electrical
conductors.







5–9 The fields of a conductor


An electrical conductor is a solid that contains many “free”
electrons. The electrons can move around freely in the
material, but cannot leave the surface.  In a metal there are so many
free electrons that any electric field will set large numbers of them
into motion. Either the current of electrons so set up must be
continually kept moving by external sources of energy, or the motion
of the electrons will cease as they discharge the sources producing
the initial field. In “electrostatic” situations, we do not consider
continuous sources of current (they will be considered later when we
study magnetostatics), so the electrons move only until they have
arranged themselves to produce zero electric field everywhere inside
the conductor. (This usually happens in a small fraction of a second.)
If there were any field left, this field would urge still more
electrons to move; the only electrostatic solution is that the field
is everywhere zero inside.




Now consider the interior of a charged conducting object. (By
“interior” we mean in the metal itself.) Since the metal is a
conductor, the interior field must be zero, and so the gradient of the
potential ϕ[image: -*-] is zero. That means that ϕ[image: -*-] does not vary from
point to point. Every conductor is an equipotential region, and
its surface is an equipotential surface. Since in a conducting
material the electric field is everywhere zero, the divergence
of E[image: -*-] is zero, and by Gauss’ law the charge density in the
interior of the conductor must be zero.




If there can be no charges in a conductor, how can it ever be charged?
What do we mean when we say a conductor is “charged”? Where are the
charges?  The answer is that they reside at the surface of the
conductor, where there are strong forces to keep them from
leaving—they are not completely “free.” When we study solid-state
physics, we shall find that the excess charge of any conductor is on
the average within one or two atomic layers of the surface. For our
present purposes, it is accurate enough to say that if any charge is
put on, or in, a conductor it all accumulates on the surface;
there is no charge in the interior of a conductor.




We note also that the electric field just outside the surface
of a conductor must be normal to the surface. There can be no
tangential component. If there were a tangential component, the
electrons would move along the surface; there are no forces
preventing that. Saying it another way: we know that the electric
field lines must always go at right angles to an equipotential
surface.



[image: -][image: -]
Fig. 5–11. The electric field just outside the surface of a conductor is
proportional to the local surface density of charge.





We can also, using Gauss’ law, relate the field strength just outside
a conductor to the local density of the charge at the surface. For a
gaussian surface, we take a small cylindrical box half inside and half
outside the surface, like the one shown in Fig. 5–11. There
is a contribution to the total flux of E[image: -*-] only from the side of the
box outside the conductor. The field just outside the surface of a
conductor is then



  Outside a conductor:

[image: -*-][image: -*-]
(5.8)




where σ[image: -*-] is the local surface charge density.




Why does a sheet of charge on a conductor produce a different field
than just a sheet of charge? In other words, why
is (5.8) twice as large as (5.3)? The reason, of
course, is that we have not said for the conductor that there are
no “other” charges around. There must, in fact, be some to make
E=0[image: -*-] in the conductor. The charges in the immediate
neighborhood of a point P[image: -*-] on the surface do, in fact, give a field
Elocal=σlocal/2 ϵ0[image: -*-] both inside and
outside the surface. But all the rest of the charges on the conductor
“conspire” to produce an additional field at the point P[image: -*-] equal in
magnitude to Elocal[image: -*-]. The total field inside goes to zero
and the field outside to 2 Elocal=σ/ϵ0[image: -*-].







5–10 The field in a cavity of a conductor


We return now to the problem of the hollow container—a conductor
with a cavity. There is no field in the metal, but what about
in the cavity? We shall show that if the cavity is empty
then there are no fields in it, no matter what the shape of the
conductor or the cavity—say for the one in Fig. 5–12.
Consider a gaussian surface, like S[image: -*-] in Fig. 5–12, that
encloses the cavity but stays everywhere in the conducting material.
Everywhere on S[image: -*-] the field is zero, so there is no flux through S[image: -*-] and
the total charge inside S[image: -*-] is zero. For a spherical shell, one
could then argue from symmetry that there could be no charge
inside. But, in general, we can only say that there are equal amounts of
positive and negative charge on the inner surface of the conductor.
There could be a positive surface charge on one part and a
negative one somewhere else, as indicated in Fig. 5–12.
Such a thing cannot be ruled out by Gauss’ law.



[image: -][image: -]
Fig. 5–12. What is the field in an empty cavity of a conductor, for any
shape?





What really happens, of course, is that any equal and opposite charges
on the inner surface would slide around to meet each other, cancelling
out completely.  We can show that they must cancel completely by using
the law that the circulation of E[image: -*-] is always zero
(electrostatics). Suppose there were charges on some parts of the
inner surface. We know that there would have to be an equal number of
opposite charges somewhere else. Now any lines of E[image: -*-] would have
to start on the positive charges and end on the negative charges
(since we are considering only the case that there are no free charges
in the cavity). Now imagine a loop Γ[image: -*-] that crosses the cavity
along a line of force from some positive charge to some negative
charge, and returns to its starting point via the conductor (as in
Fig. 5–12). The integral along such a line of force
from the positive to the negative charges would not be zero. The
integral through the metal is zero, since E=0[image: -*-]. So we
would have

[image: -*-][image: -*-]


But the line integral of E[image: -*-] around any closed loop in an
electrostatic field is always zero. So there can be no fields inside
the empty cavity, nor any charges on the inside surface.




You should notice carefully one important qualification we have
made. We have always said “inside an empty” cavity. If some
charges are placed at some fixed locations in the cavity—as
on an insulator or on a small conductor insulated from the main
one—then there can be fields in the cavity. But then that is
not an “empty” cavity.




We have shown that if a cavity is completely enclosed by a conductor,
no static distribution of charges outside can ever produce any
fields inside. This explains the principle of “shielding” electrical
equipment by placing it in a metal can. The same arguments can be used
to show that no static distribution of charges inside a closed
grounded conductor can produce any fields outside.
Shielding works both ways! In
electrostatics—but not in varying fields—the fields on the two sides
of a closed grounded conducting shell are completely independent.





Now you see why it was possible to check Coulomb’s law to such a great
precision. The shape of the hollow shell used doesn’t matter. It
doesn’t need to be spherical; it could be square! If Gauss’ law is
exact, the field inside is always zero. Now you also understand why it
is safe to sit inside the high-voltage terminal of a million-volt
Van de Graaff generator,
without worrying about getting a shock—because of Gauss’ law.
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6–1 Equations of the electrostatic potential


This chapter will describe the behavior of the electric field in a
number of different circumstances. It will provide some experience
with the way the electric field behaves, and will describe some of the
mathematical methods which are used to find this field.




We begin by pointing out that the whole mathematical problem is the
solution of two equations, the Maxwell equations for electrostatics:

[image: -*-][image: -*-]
(6.1)

(6.2)




In fact, the two can be combined into a single equation. From the
second equation, we know at once that we can describe the field as the
gradient of a scalar (see Section 3–7):

[image: -*-][image: -*-]
(6.3)









We may, if we wish, completely describe any particular electric field in terms
of its potential ϕ[image: -*-]. We obtain the differential equation that ϕ[image: -*-] must
obey by substituting Eq. (6.3) into (6.1), to get

[image: -*-][image: -*-]
(6.4)




The divergence of the gradient of ϕ[image: -*-] is the same as ∇2[image: -*-]
operating on ϕ[image: -*-]:

[image: -*-][image: -*-]
(6.5)




so we write Eq. (6.4) as

[image: -*-][image: -*-]
(6.6)




The operator ∇2[image: -*-] is called the Laplacian, and
Eq. (6.6) is called the Poisson
equation. The entire subject of
electrostatics, from a mathematical point of view, is merely a study of
the solutions of the single equation (6.6). Once ϕ[image: -*-] is
obtained by solving Eq. (6.6) we can find E[image: -*-]
immediately from Eq. (6.3).





We take up first the special class of problems in which ρ[image: -*-] is
given as a function of x[image: -*-], y[image: -*-], z[image: -*-]. In that case the problem is
almost trivial, for we already know the solution of
Eq. (6.6) for the general case. We have shown that if ρ[image: -*-]
is known at every point, the potential at point (1)[image: -*-] is

[image: -*-][image: -*-]
(6.7)




where ρ (2)[image: -*-] is the charge density, d V2[image: -*-] is the volume element at
point (2)[image: -*-], and r12[image: -*-] is the distance between points (1)[image: -*-]
and (2)[image: -*-]. The solution of the differential
equation (6.6) is reduced to an integration over
space. The solution (6.7) should be especially noted,
because there are many situations in physics that lead to equations like

[image: -*-][image: -*-]


and Eq. (6.7) is a prototype of the solution for any of
these problems.




The solution of electrostatic field problems is thus completely
straightforward when the positions of all the charges are known. Let’s
see how it works in a few examples.







6–2 The electric dipole

[image: -][image: -]
Fig. 6–1. A dipole: two charges +q[image: -*-] and −q[image: -*-] the distance d[image: -*-] apart.





First, take two point charges, +q[image: -*-] and −q[image: -*-], separated by the
distance d[image: -*-]. Let the z[image: -*-]-axis go through the charges, and pick the
origin halfway between, as shown in Fig. 6–1. Then,
using (4.24), the potential from the two charges is given
by



[image: -*-][image: -*-]
(6.8)





We are not going to write out the formula for the electric field, but
we can always calculate it once we have the potential. So we have
solved the problem of two charges.




There is an important special case in which the two charges are very
close together—which is to say that we are interested in the fields
only at distances from the charges large in comparison with their
separation. We call such a close pair of charges a
dipole. Dipoles are very common.




A “dipole” antenna can often be approximated by two charges
separated by a small distance—if we don’t ask about the field too
close to the antenna. (We are usually interested in antennas with
moving charges; then the equations of statics do not really
apply, but for some purposes they are an adequate approximation.)




More important perhaps, are atomic dipoles. If there is an electric
field in any material, the electrons and protons feel opposite forces
and are displaced relative to each other. In a conductor, you
remember, some of the electrons move to the surfaces, so that the
field inside becomes zero. In an insulator the electrons cannot move
very far; they are pulled back by the attraction of the nucleus. They
do, however, shift a little bit. So although an atom, or molecule,
remains neutral in an external electric field, there is a very tiny
separation of its positive and negative charges and it becomes a
microscopic dipole. If we are interested in the fields of these atomic
dipoles in the neighborhood of ordinary-sized objects, we are normally
dealing with distances large compared with the separations of the
pairs of charges.



[image: -][image: -]
Fig. 6–2. The water molecule H2O. The hydrogen atoms have slightly
less than their share of the electron cloud; the oxygen, slightly
more.





In some molecules the charges are somewhat separated even in the
absence of external fields, because of the form of the molecule. In a
water molecule, for example, there is a net negative charge on the
oxygen atom and a net positive charge on each of the two hydrogen
atoms, which are not placed symmetrically but as in
Fig. 6–2. Although the charge of the whole molecule is
zero, there is a charge distribution with a little more negative charge
on one side and a little more positive charge on the other. This
arrangement is certainly not as simple as two point charges, but when
seen from far away the system acts like a dipole.  As we shall see a
little later, the field at large distances is not sensitive to the fine
details.




Let’s look, then, at the field of two opposite charges with a small
separation d[image: -*-]. If d[image: -*-] becomes zero, the two charges are on top of
each other, the two potentials cancel, and there is no field. But if
they are not exactly on top of each other, we can get a good
approximation to the potential by expanding the terms
of (6.8) in a power series in the small quantity d[image: -*-] (using
the binomial expansion). Keeping terms only to first order in d[image: -*-], we
can write

[image: -*-][image: -*-]


It is convenient to write

[image: -*-][image: -*-]


Then



[image: -*-][image: -*-]



and



[image: -*-][image: -*-]



Using the binomial expansion again for [1−(z d/r2)]−1/2[image: -*-]—and
throwing away terms with the square or higher powers of d[image: -*-]—we get

[image: -*-][image: -*-]


Similarly,

[image: -*-][image: -*-]


The difference of these two terms gives for the potential

[image: -*-][image: -*-]
(6.9)




The potential, and hence the field, which is its derivative, is
proportional to q d[image: -*-], the product of the charge and the separation. This
product is defined as the dipole moment of the two charges, for which we
will use the symbol p[image: -*-] (do not confuse with momentum!):

[image: -*-][image: -*-]
(6.10)









Equation (6.9) can also be written as

[image: -*-][image: -*-]
(6.11)




since z/r=cosθ[image: -*-], where θ[image: -*-] is the angle between the axis
of the dipole and the radius vector to the point (x,y,z)[image: -*-]—see
Fig. 6–1. The potential of a dipole decreases
as 1/r2[image: -*-] for a given direction from the axis (whereas for a point
charge it goes as 1/r[image: -*-]). The electric field E[image: -*-] of the dipole will
then decrease as 1/r3[image: -*-].



[image: -][image: -]

Fig. 6–3. Vector notation for a dipole.





We can put our formula into a vector form if we define p[image: -*-] as a
vector whose magnitude is p[image: -*-] and whose direction is along the axis of
the dipole, pointing from −q[image: -*-] toward +q[image: -*-]. Then

[image: -*-][image: -*-]
(6.12)




where er[image: -*-] is the unit radial vector (Fig. 6–3). We
can also represent the point (x,y,z)[image: -*-] by r[image: -*-]. Then



  Dipole potential:

[image: -*-][image: -*-]
(6.13)




This formula is valid for a dipole with any orientation and position
if r[image: -*-] represents the vector from the dipole to the point of
interest.




If we want the electric field of the dipole we can get it by taking
the gradient of ϕ[image: -*-]. For example, the z[image: -*-]-component of the field is
−∂ϕ/∂z[image: -*-]. For a dipole oriented along the z[image: -*-]-axis we can
use (6.9):

[image: -*-][image: -*-]


or

[image: -*-][image: -*-]
(6.14)




The x[image: -*-]- and y[image: -*-]-components are

[image: -*-][image: -*-]


These two can be combined to give one component directed
perpendicular to the z[image: -*-]-axis, which we will call the
transverse component E⟂[image: -*-]:

[image: -*-][image: -*-]


or

[image: -*-][image: -*-]
(6.15)




The transverse component E⟂[image: -*-] is in the x y[image: -*-]-plane and points
directly away from the axis of the dipole. The total field, of
course, is

[image: -*-][image: -*-]







The dipole field varies inversely as the cube of the distance from the
dipole.  On the axis, at θ=0[image: -*-], it is twice as strong as at
θ=90°[image: -*-]. At both of these special angles the electric field
has only a z[image: -*-]-component, but of opposite sign at the two places
(Fig. 6–4).



[image: -][image: -]
Fig. 6–4. The electric field of a dipole.








6–3 Remarks on vector equations


This is a good place to make a general remark about vector
analysis. The fundamental proofs can be expressed by elegant equations
in a general form, but in making various calculations and analyses it
is always a good idea to choose the axes in some convenient
way. Notice that when we were finding the potential of a dipole we
chose the z[image: -*-]-axis along the direction of the dipole, rather than at
some arbitrary angle. This made the work much easier. But then we
wrote the equations in vector form so that they would no longer depend
on any particular coordinate system. After that, we are allowed to
choose any coordinate system we wish, knowing that the relation is, in
general, true. It clearly doesn’t make any sense to bother with an
arbitrary coordinate system at some complicated angle when you can
choose a neat system for the particular problem—provided that the
result can finally be expressed as a vector equation. So by all means
take advantage of the fact that vector equations are independent of
any coordinate system.




On the other hand, if you are trying to calculate the divergence of a
vector, instead of just looking at ∇⋅E[image: -*-] and wondering what
it is, don’t forget that it can always be spread out as

[image: -*-][image: -*-]


If you can then work out the x[image: -*-]-, y[image: -*-]-, and z[image: -*-]-components of the
electric field and differentiate them, you will have the
divergence. There often seems to be a feeling that there is something
inelegant—some kind of defeat involved—in writing out the
components; that somehow there ought always to be a way to do
everything with the vector operators. There is often no advantage to
it. The first time we encounter a particular kind of problem, it
usually helps to write out the components to be sure we understand
what is going on. There is nothing inelegant about putting numbers
into equations, and nothing inelegant about substituting the
derivatives for the fancy symbols. In fact, there is often a certain
cleverness in doing just that. Of course when you publish a paper in a
professional journal it will look better—and be more easily
understood—if you can write everything in vector form. Besides, it
saves print.







6–4 The dipole potential as a gradient


We would like to point out a rather amusing thing about the dipole
formula, Eq. (6.13). The potential can also be written
as

[image: -*-][image: -*-]
(6.16)




If you calculate the gradient of 1/r[image: -*-], you get

[image: -*-][image: -*-]


and Eq. (6.16) is the same as Eq. (6.13).




How did we think of that? We just remembered that er/r2[image: -*-]
appeared in the formula for the field of a point charge, and
that the field was the gradient of a potential which has
a 1/r[image: -*-] dependence.



[image: -][image: -]
Fig. 6–5. The potential at P[image: -*-] from a point charge at Δ z[image: -*-] above
the origin is the same as the potential at P′[image: -*-] (Δ z[image: -*-] below
P[image: -*-]) from the same charge at the origin.





There is a physical reason for being able to write the dipole
potential in the form of Eq. (6.16). Suppose we have a
point charge q[image: -*-] at the origin. The potential at the point P[image: -*-]
at (x,y,z)[image: -*-] is

[image: -*-][image: -*-]


(Let’s leave off the 1/4 π ϵ0[image: -*-] while we make these arguments; we
can stick it in at the end.) Now if we move the charge +q[image: -*-] up a
distance Δ z[image: -*-], the potential at P[image: -*-] will change a little, by,
say, Δ ϕ+[image: -*-]. How much is Δ ϕ+[image: -*-]? Well, it is just the
amount that the potential would change if we were to
leave the charge at the origin and move P[image: -*-] downward by
the same distance Δ z[image: -*-] (Fig. 6–5). That is,

[image: -*-][image: -*-]


where by Δ z[image: -*-] we mean the same as d/2[image: -*-]. So, using ϕ0=q/r[image: -*-],
we have that the potential from the positive charge is

[image: -*-][image: -*-]
(6.17)









Applying the same reasoning for the potential from the negative
charge, we can write

[image: -*-][image: -*-]
(6.18)




The total potential is the sum of (6.17)
and (6.18):

[image: -*-][image: -*-]
(6.19)









For other orientations of the dipole, we could represent the
displacement of the positive charge by the vector Δ r+[image: -*-]. We
should then write the equation above Eq. (6.17) as

[image: -*-][image: -*-]


where Δ r+[image: -*-] is then to be replaced by d/2[image: -*-]. Completing the
derivation as before, Eq. (6.19) would then become

[image: -*-][image: -*-]


This is the same as Eq. (6.16), if we replace q d=p[image: -*-],
and put back the 1/4 π ϵ0[image: -*-]. Looking at it another
way, we see that the dipole potential, Eq. (6.13), can
be interpreted as

[image: -*-][image: -*-]
(6.20)




where Φ0=1/4 π ϵ0 r[image: -*-] is the potential of a unit point
charge.




Although we can always find the potential of a known charge
distribution by an integration, it is sometimes possible to save time
by getting the answer with a clever trick. For example, one can often
make use of the superposition principle. If we are given a charge
distribution that can be made up of the sum of two distributions for
which the potentials are already known, it is easy to find the desired
potential by just adding the two known ones. One example of this is
our derivation of (6.20), another is the following.




Suppose we have a spherical surface with a distribution of surface
charge that varies as the cosine of the polar angle. The integration
for this distribution is fairly messy. But, surprisingly, such a
distribution can be analyzed by superposition. For imagine a sphere
with a uniform volume density of positive charge, and another
sphere with an equal uniform volume density of negative charge,
originally superposed to make a neutral—that is,
uncharged—sphere. If the positive sphere is then displaced slightly
with respect to the negative sphere, the body of the uncharged sphere
would remain neutral, but a little positive charge will appear on one
side, and some negative charge will appear on the opposite side, as
illustrated in Fig. 6–6. If the relative displacement
of the two spheres is small, the net charge is equivalent to a surface
charge (on a spherical surface), and the surface charge density will
be proportional to the cosine of the polar angle.



[image: -][image: -]
Fig. 6–6. Two uniformly charged spheres, superposed with a slight
displacement, are equivalent to a nonuniform distribution of surface
charge.





Now if we want the potential from this distribution, we do not need to
do an integral. We know that the potential from each of the spheres of
charge is—for points outside the sphere—the same as from a point
charge. The two displaced spheres are like two point charges; the
potential is just that of a dipole.




In this way you can show that a charge distribution on a sphere of
radius a[image: -*-] with a surface charge density

[image: -*-][image: -*-]


produces a field outside the sphere which is just that of a dipole
whose moment is

[image: -*-][image: -*-]


It can also be shown that inside the sphere the field is constant,
with the value

[image: -*-][image: -*-]


If θ[image: -*-] is the angle from the positive z[image: -*-]-axis, the electric
field inside the sphere is in the negative z[image: -*-]-direction. The
example we have just considered is not as artificial as it may appear;
we will encounter it again in the theory of dielectrics.







6–5 The dipole approximation for an arbitrary distribution


The dipole field appears in another circumstance both interesting and
important. Suppose that we have an object that has a complicated
distribution of charge—like the water molecule
(Fig. 6–2)—and we are interested only in the fields far
away. We will show that it is possible to find a relatively simple
expression for the fields which is appropriate for distances large
compared with the size of the object.



[image: -][image: -]
Fig. 6–7. Computation of the potential at a point P[image: -*-] at a large
distance from a set of charges.





We can think of our object as an assembly of point charges qi[image: -*-] in a
certain limited region, as shown in Fig. 6–7. (We can,
later, replace qi[image: -*-] by ρ d V[image: -*-] if we wish.) Let each charge qi[image: -*-]
be located at the displacement di[image: -*-] from an origin chosen
somewhere in the middle of the group of charges. What is the potential
at the point P[image: -*-], located at R[image: -*-], where R[image: -*-] is much larger
than the maximum di[image: -*-]? The potential from the whole collection is
given by

[image: -*-][image: -*-]
(6.21)




where ri[image: -*-] is the distance from P[image: -*-] to the charge qi[image: -*-] (the length
of the vector R−di[image: -*-]). Now if the distance from the charges
to P[image: -*-], the point of observation, is enormous, each of the ri[image: -*-]’s can
be approximated by R[image: -*-]. Each term becomes qi/R[image: -*-], and we can
take 1/R[image: -*-] out as a factor in front of the summation. This gives us the
simple result

[image: -*-][image: -*-]
(6.22)




where Q[image: -*-] is just the total charge of the whole object. Thus we find
that for points far enough from any lump of charge, the lump looks
like a point charge. The result is not too surprising.




But what if there are equal numbers of positive and negative charges?
Then the total charge Q[image: -*-] of the object is zero. This is not an
unusual case; in fact, as we know, objects are usually neutral. The
water molecule is neutral, but the charges are not all at one point,
so if we are close enough we should be able to see some effects of the
separate charges. We need a better approximation than (6.22)
for the potential from an arbitrary distribution of charge in a neutral
object. Equation (6.21) is still precise, but we can no
longer just set ri=R[image: -*-]. We need a more accurate expression for ri[image: -*-].
If the point P[image: -*-] is at a large distance, ri[image: -*-] will differ from R[image: -*-] to
an excellent approximation by the projection of d[image: -*-] on R[image: -*-], as
can be seen from Fig. 6–7. (You should imagine that P[image: -*-]
is really farther away than is shown in the figure.) In other words,
if eR[image: -*-] is the unit vector in the direction of R[image: -*-], then our next
approximation to ri[image: -*-] is

[image: -*-][image: -*-]
(6.23)




What we really want is 1/ri[image: -*-], which, since di≪R[image: -*-], can be
written to our approximation as

[image: -*-][image: -*-]
(6.24)




Substituting this in (6.21), we get that the potential is

[image: -*-][image: -*-]
(6.25)




The three dots indicate the terms of higher order in di/R[image: -*-] that we
have neglected.  These, as well as the ones we have already obtained,
are successive terms in a Taylor expansion of 1/ri[image: -*-]
about 1/R[image: -*-] in powers of di/R[image: -*-].




The first term in (6.25) is what we got before; it drops
out if the object is neutral. The second term depends on 1/R2[image: -*-], just
as for a dipole. In fact, if we define

[image: -*-][image: -*-]
(6.26)




as a property of the charge distribution, the second term of the
potential (6.25) is

[image: -*-][image: -*-]
(6.27)




precisely a dipole potential. The quantity p[image: -*-] is called
the dipole moment of the distribution. It is a generalization of our
earlier definition, and reduces to it for the special case of two
point charges.




Our result is that, far enough away from any mess of charges
that is as a whole neutral, the potential is a dipole potential. It
decreases as 1/R2[image: -*-] and varies as cosθ[image: -*-]—and its strength
depends on the dipole moment of the distribution of charge. It is for
these reasons that dipole fields are important, since the simple case
of a pair of point charges is quite rare.




The water molecule, for example, has a rather strong dipole
moment. The electric fields that result from this moment are
responsible for some of the important properties of water. For many
molecules, for example CO2, the dipole moment vanishes because of
the symmetry of the molecule. For them we should expand still more
accurately, obtaining another term in the potential which decreases
as 1/R3[image: -*-], and which is called a quadrupole potential. We will discuss such
cases later.








6–6 The fields of charged conductors


We have now finished with the examples we wish to cover of situations
in which the charge distribution is known from the start. It has been
a problem without serious complications, involving at most some
integrations. We turn now to an entirely new kind of problem, the
determination of the fields near charged conductors.




Suppose that we have a situation in which a total charge Q[image: -*-] is placed
on an arbitrary conductor. Now we will not be able to say exactly
where the charges are. They will spread out in some way on the
surface. How can we know how the charges have distributed themselves
on the surface? They must distribute themselves so that the potential
of the surface is constant. If the surface were not an equipotential,
there would be an electric field inside the conductor, and the charges
would keep moving until it became zero. The general problem of this
kind can be solved in the following way. We guess at a distribution of
charge and calculate the potential. If the potential turns out to be
constant everywhere on the surface, the problem is finished. If the
surface is not an equipotential, we have guessed the wrong
distribution of charges, and should guess again—hopefully with an
improved guess! This can go on forever, unless we are judicious about
the successive guesses.




The question of how to guess at the distribution is mathematically
difficult.  Nature, of course, has time to do it; the charges push and
pull until they all balance themselves. When we try to solve the
problem, however, it takes us so long to make each trial that that
method is very tedious. With an arbitrary group of conductors and
charges the problem can be very complicated, and in general it cannot
be solved without rather elaborate numerical methods. Such numerical
computations, these days, are set up on a computing machine that will
do the work for us, once we have told it how to proceed.




On the other hand, there are a lot of little practical cases where it
would be nice to be able to find the answer by some more direct
method—without having to write a program for a
computer. Fortunately, there are a number of cases where the answer
can be obtained by squeezing it out of Nature by some trick or
other. The first trick we will describe involves making use of
solutions we have already obtained for situations in which charges
have specified locations.







6–7 The method of images


We have solved, for example, the field of two point charges.
Figure 6–8 shows some of the field lines and equipotential
surfaces we obtained by the computations in Chapter 4. Now
consider the equipotential surface marked A[image: -*-]. Suppose we were to shape
a thin sheet of metal so that it just fits this surface. If we place it
right at the surface and adjust its potential to the proper value, no
one would ever know it was there, because nothing would be changed.



[image: -][image: -]
Fig. 6–8. The field lines and equipotentials for two point charges.





But notice! We have really solved a new problem. We have a
situation in which the surface of a curved conductor with a given
potential is placed near a point charge. If the metal sheet we placed
at the equipotential surface eventually closes on itself (or, in
practice, if it goes far enough) we have the kind of situation
considered in Section 5–10, in which our space is
divided into two regions, one inside and one outside a closed
conducting shell. We found there that the fields in the two regions
are quite independent of each other. So we would have the same fields
outside our curved conductor no matter what is inside. We can even
fill up the whole inside with conducting material. We have found,
therefore, the fields for the arrangement of Fig. 6–9. In
the space outside the conductor the field is just like that of two point
charges, as in Fig. 6–8. Inside the conductor, it is zero.
Also—as it must be—the electric field just outside the conductor is
normal to the surface.



[image: -][image: -]
Fig. 6–9. The field outside a conductor shaped like the equipotential A[image: -*-] of
Fig. 6–8.





Thus we can compute the fields in Fig. 6–9 by computing
the field due to q[image: -*-] and to an imaginary point charge −q[image: -*-] at a
suitable point. The point charge we “imagine” existing behind the
conducting surface is called an image charge.




In books you can find long lists of solutions for hyperbolic-shaped
conductors and other complicated looking things, and you wonder how
anyone ever solved these terrible shapes. They were solved backwards!
Someone solved a simple problem with given charges. He then saw that
some equipotential surface showed up in a new shape, and he wrote a
paper in which he pointed out that the field outside that particular
shape can be described in a certain way.







6–8 A point charge near a conducting plane


As the simplest application of the use of this method, let’s make use
of the plane equipotential surface B[image: -*-] of Fig. 6–8. With
it, we can solve the problem of a charge in front of a conducting sheet.
We just cross out the left-hand half of the picture. The field lines for
our solution are shown in Fig. 6–10. Notice that the plane,
since it was halfway between the two charges, has zero potential. We
have solved the problem of a positive charge next to a grounded
conducting sheet.



[image: -][image: -]
Fig. 6–10. The field of a charge near a plane conducting surface, found
by the method of images.





We have now solved for the total field, but what about the real
charges that are responsible for it? There are, in addition to our
positive point charge, some induced negative charges on the conducting
sheet that have been attracted by the positive charge (from large
distances away). Now suppose that for some technical reason—or out
of curiosity—you would like to know how the negative charges are
distributed on the surface. You can find the surface charge density by
using the result we worked out in Section 5–9 with
Gauss’ law. The normal component of the electric field just outside a
conductor is equal to the density of surface charge σ[image: -*-] divided
by ϵ0[image: -*-]. We can obtain the density of charge at any point on the
surface by working backwards from the normal component of the electric
field at the surface. We know that, because we know the field
everywhere.




Consider a point on the surface at the distance ρ[image: -*-] from the point
directly beneath the positive charge (Fig. 6–10). The
electric field at this point is normal to the surface and is directed
into it. The component normal to the surface of the field from the
positive point charge is

[image: -*-][image: -*-]
(6.28)




To this we must add the electric field produced by the negative image
charge. That just doubles the normal component (and cancels all
others), so the charge density σ[image: -*-] at any point on the surface is

[image: -*-][image: -*-]
(6.29)









An interesting check on our work is to integrate σ[image: -*-] over the
whole surface. We find that the total induced charge is −q[image: -*-], as it
should be.




One further question: Is there a force on the point charge? Yes,
because there is an attraction from the induced negative surface
charge on the plate. Now that we know what the surface charges are
(from Eq. 6.29), we could compute the force on our
positive point charge by an integral. But we also know that the force
acting on the positive charge is exactly the same as it would
be with the negative image charge instead of the plate, because the
fields in the neighborhood are the same in both cases. The point
charge feels a force toward the plate whose magnitude is

[image: -*-][image: -*-]
(6.30)




We have found the force much more easily than by integrating over all
the negative charges.







6–9 A point charge near a conducting sphere


What other surfaces besides a plane have a simple solution? The next
most simple shape is a sphere. Let’s find the fields around a grounded
metal sphere which has a point charge q[image: -*-] near it, as shown in
Fig. 6–11. Now we must look for a simple physical situation
which gives a sphere for an equipotential surface. If we look around at
problems people have already solved, we find that someone has noticed
that the field of two unequal point charges has an equipotential
that is a sphere.  Aha! If we choose the location of an image
charge—and pick the right amount of charge—maybe we can make the
equipotential surface fit our sphere. Indeed, it can be done with the
following prescription.



[image: -][image: -]
Fig. 6–11. The point charge q[image: -*-] induces charges on a grounded conducting
sphere whose fields are those of an image charge q′[image: -*-] placed at the
point shown.





Assume that you want the equipotential surface to be a sphere of
radius a[image: -*-] with its center at the distance b[image: -*-] from the charge q[image: -*-].
Put an image charge of strength q′=−q (a/b)[image: -*-] on the line from the
charge to the center of the sphere, and at a distance a2/b[image: -*-] from the
center. The sphere will be at zero potential.




The mathematical reason stems from the fact that a sphere is the locus
of all points for which the distances from two points are in a
constant ratio. Referring to Fig. 6–11, the potential
at P[image: -*-] from q[image: -*-] and q′[image: -*-] is proportional to

[image: -*-][image: -*-]


The potential will thus be zero at all points for which

[image: -*-][image: -*-]


If we place q′[image: -*-] at the distance a2/b[image: -*-] from the center, the ratio
r2/r1[image: -*-] has the constant value a/b[image: -*-]. Then if

[image: -*-][image: -*-]
(6.31)




the sphere is an equipotential. Its potential is, in fact, zero.




What happens if we are interested in a sphere that is not at zero
potential?  That would be so only if its total charge happens
accidentally to be q′[image: -*-]. Of course if it is grounded, the charges
induced on it would have to be just that. But what if it is insulated,
and we have put no charge on it? Or if we know that the total
charge Q[image: -*-] has been put on it? Or just that it has a given potential
not equal to zero? All these questions are easily answered. We
can always add a point charge q′′[image: -*-] at the center of the sphere. The
sphere still remains an equipotential by superposition; only the
magnitude of the potential will be changed.




If we have, for example, a conducting sphere which is initially
uncharged and insulated from everything else, and we bring near to it
the positive point charge q[image: -*-], the total charge of the sphere will
remain zero. The solution is found by using an image charge q′[image: -*-] as
before, but, in addition, adding a charge q′′[image: -*-] at the center of the
sphere, choosing

[image: -*-][image: -*-]
(6.32)




The fields everywhere outside the sphere are given by the
superposition of the fields of q[image: -*-], q′[image: -*-], and q′′[image: -*-]. The problem is
solved.




We can see now that there will be a force of attraction between the
sphere and the point charge q[image: -*-]. It is not zero even though there is
no charge on the neutral sphere. Where does the attraction come from?
When you bring a positive charge up to a conducting sphere, the
positive charge attracts negative charges to the side closer to itself
and leaves positive charges on the surface of the far side. The
attraction by the negative charges exceeds the repulsion from the
positive charges; there is a net attraction. We can find out how large
the attraction is by computing the force on q[image: -*-] in the field produced
by q′[image: -*-] and q′′[image: -*-]. The total force is the sum of the attractive force
between q[image: -*-] and a charge q′=−(a/b) q[image: -*-], at the distance b−(a2/b)[image: -*-],
and the repulsive force between q[image: -*-] and a charge q′′=+(a/b) q[image: -*-] at the
distance b[image: -*-].




Those who were entertained in childhood by the baking powder box which
has on its label a picture of a baking powder box which has on its
label a picture of a baking powder box which has … may be
interested in the following problem.  Two equal spheres, one with a
total charge of +Q[image: -*-] and the other with a total charge of −Q[image: -*-], are
placed at some distance from each other. What is the force between
them? The problem can be solved with an infinite number of images. One
first approximates each sphere by a charge at its center. These
charges will have image charges in the other sphere. The image charges
will have images, etc., etc., etc.  The solution is like the picture
on the box of baking powder—and it converges pretty fast.







6–10 Condensers; parallel plates

[image: -][image: -]
Fig. 6–12. A parallel-plate condenser.





We take up now another kind of a problem involving
conductors. Consider two large metal plates which are parallel to each
other and separated by a distance small compared with their
width. Let’s suppose that equal and opposite charges have been put on
the plates. The charges on each plate will be attracted by the charges
on the other plate, and the charges will spread out uniformly on the
inner surfaces of the plates. The plates will have surface charge
densities +σ[image: -*-] and −σ[image: -*-], respectively, as in
Fig. 6–12. From Chapter 5 we know that the
field between the plates is σ/ϵ0[image: -*-], and that the field outside
the plates is zero. The plates will have different potentials ϕ1[image: -*-]
and ϕ2[image: -*-]. For convenience we will call the difference V[image: -*-]; it is
often called the “voltage”:

[image: -*-][image: -*-]


(You will find that sometimes people use V[image: -*-] for the potential, but we
have chosen to use ϕ[image: -*-].)




The potential difference V[image: -*-] is the work per unit charge required to
carry a small charge from one plate to the other, so that

[image: -*-][image: -*-]
(6.33)




where ±Q[image: -*-] is the total charge on each plate, A[image: -*-] is the area of
the plates, and d[image: -*-] is the separation.




We find that the voltage is proportional to the charge. Such a
proportionality between V[image: -*-] and Q[image: -*-] is found for any two conductors in
space if there is a plus charge on one and an equal minus charge on
the other. The potential difference between them—that is, the
voltage—will be proportional to the charge. (We are assuming that
there are no other charges around.)




Why this proportionality? Just the superposition principle. Suppose we
know the solution for one set of charges, and then we superimpose two
such solutions. The charges are doubled, the fields are doubled, and
the work done in carrying a unit charge from one point to the other is
also doubled. Therefore the potential difference between any two
points is proportional to the charges. In particular, the potential
difference between the two conductors is proportional to the charges
on them. Someone originally wrote the equation of proportionality the
other way. That is, they wrote

[image: -*-][image: -*-]


where C[image: -*-] is a constant. This coefficient of proportionality is called
the capacity, and such a system of two
conductors is called a condenser.1 For our parallel-plate
condenser

[image: -*-][image: -*-]
(6.34)








[image: -][image: -]
Fig. 6–13. The electric field near the edge of two parallel plates.





This formula is not exact, because the field is not really uniform
everywhere between the plates, as we assumed. The field does not just
suddenly quit at the edges, but really is more as shown in
Fig. 6–13. The total charge is not σ A[image: -*-], as we have
assumed—there is a little correction for the effects at the edges. To
find out what the correction is, we will have to calculate the field
more exactly and find out just what does happen at the edges. That is a
complicated mathematical problem which can, however, be solved by
techniques which we will not describe now. The result of such
calculations is that the charge density rises somewhat near the edges of
the plates. This means that the capacity of the plates is a little
higher than we computed.




We have talked about the capacity for two conductors only. Sometimes
people talk about the capacity of a single object. They say, for
instance, that the capacity of a sphere of radius a[image: -*-] is 4 π ϵ0 a[image: -*-]. What they imagine is that the other terminal is another sphere of
infinite radius—that when there is a charge +Q[image: -*-] on the sphere, the
opposite charge, −Q[image: -*-], is on an infinite sphere. One can also speak of
capacities when there are three or more conductors, a discussion we
shall, however, defer.




Suppose that we wish to have a condenser with a very large
capacity. We could get a large capacity by taking a very big area and
a very small separation. We could put waxed paper between sheets of
aluminum foil and roll it up. (If we seal it in plastic, we have a
typical radio-type condenser.) What good is it?  It is good for
storing charge. If we try to store charge on a ball, for example, its
potential rises rapidly as we charge it up. It may even get so high
that the charge begins to escape into the air by way of sparks. But if
we put the same charge on a condenser whose capacity is very large,
the voltage developed across the condenser will be small.




In many applications in electronic circuits, it is useful to have
something which can absorb or deliver large quantities of charge
without changing its potential much. A condenser (or “capacitor”)
does just that. There are also many applications in electronic
instruments and in computers where a condenser is used to get a
specified change in voltage in response to a particular change in
charge. We have seen a similar application in Chapter 23,
Vol. I, where we described the properties of resonant circuits.







From the definition of C[image: -*-], we see that its unit is one coulomb/volt.
This unit is also called a farad. Looking at
Eq. (6.34), we see that one can express the units of ϵ0[image: -*-]
as farad/meter, which is the unit most commonly used. Typical sizes of
condensers run from one micro-microfarad (1 picofarad) to millifarads.
Small condensers of a few picofarads are used in high-frequency tuned
circuits, and capacities up to hundreds or thousands of microfarads are
found in power-supply filters. A pair of plates one square centimeter in
area with a one millimeter separation have a capacity of roughly one
micro-microfarad.







6–11 High-voltage breakdown

[image: -][image: -]
Fig. 6–14. The electric field near a sharp point on a conductor is very
high.





We would like now to discuss qualitatively some of the characteristics
of the fields around conductors. If we charge a conductor that is not
a sphere, but one that has on it a point or a very sharp end, as, for
example, the object sketched in Fig. 6–14, the field
around the point is much higher than the field in the other
regions. The reason is, qualitatively, that charges try to spread out
as much as possible on the surface of a conductor, and the tip of a
sharp point is as far away as it is possible to be from most of the
surface. Some of the charges on the plate get pushed all the way to
the tip. A relatively small amount of charge on the tip can
still provide a large surface density; a high charge density
means a high field just outside.



[image: -][image: -]
Fig. 6–15. The field of a pointed object can be approximated by that of
two spheres at the same potential.





One way to see that the field is highest at those places on a
conductor where the radius of curvature is smallest is to consider the
combination of a big sphere and a little sphere connected by a wire,
as shown in Fig. 6–15. It is a somewhat idealized
version of the conductor of Fig. 6–14. The wire will
have little influence on the fields outside; it is there to keep the
spheres at the same potential. Now, which ball has the biggest field
at its surface? If the ball on the left has the radius a[image: -*-] and carries
a charge Q[image: -*-], its potential is about

[image: -*-][image: -*-]


(Of course the presence of one ball changes the charge distribution on
the other, so that the charges are not really spherically symmetric on
either. But if we are interested only in an estimate of the fields, we
can use the potential of a spherical charge.) If the smaller ball,
whose radius is b[image: -*-], carries the charge q[image: -*-], its potential is about

[image: -*-][image: -*-]


But ϕ1=ϕ2[image: -*-], so

[image: -*-][image: -*-]


On the other hand, the field at the surface (see Eq. 5.8) is
proportional to the surface charge density, which is like the total
charge over the radius squared. We get that

[image: -*-][image: -*-]
(6.35)




Therefore the field is higher at the surface of the small sphere. The
fields are in the inverse proportion of the radii.




This result is technically very important, because air will break down
if the electric field is too great. What happens is that a loose
charge (electron, or ion) somewhere in the air is accelerated by the
field, and if the field is very great, the charge can pick up enough
speed before it hits another atom to be able to knock an electron off
that atom. As a result, more and more ions are produced. Their motion
constitutes a discharge, or spark. If you want to charge an object to
a high potential and not have it discharge itself by sparks in the
air, you must be sure that the surface is smooth, so that there is no
place where the field is abnormally large.







6–12 The field-emission microscope


There is an interesting application of the extremely high electric
field which surrounds any sharp protuberance on a charged
conductor. The field-emission microscope depends for its
operation on the high fields produced at a sharp metal
point.2 It is built in the
following way. A very fine needle, with a tip whose diameter is about
1000[image: -*-] angstroms, is placed at the center of an evacuated glass
sphere (Fig. 6–16). The inner surface of the sphere is
coated with a thin conducting layer of fluorescent material, and a
very high potential difference is applied between the fluorescent
coating and the needle.



[image: -][image: -]
Fig. 6–16. Field-emission microscope.





Let’s first consider what happens when the needle is negative with
respect to the fluorescent coating. The field lines are highly
concentrated at the sharp point.  The electric field can be as high as
40[image: -*-] million volts per centimeter. In such intense fields, electrons
are pulled out of the surface of the needle and accelerated across the
potential difference between the needle and the fluorescent
layer. When they arrive there they cause light to be emitted, just as
in a television picture tube.




The electrons which arrive at a given point on the fluorescent surface
are, to an excellent approximation, those which leave the other end of
the radial field line, because the electrons will travel along the field
line passing from the point to the surface. Thus we see on the surface
some kind of an image of the tip of the needle.  More precisely, we see
a picture of the emissivity of the surface of
the needle—that is the ease with which electrons can leave the surface
of the metal tip. If the resolution were high enough, one could hope to
resolve the positions of the individual atoms on the tip of the needle.
With electrons, this resolution is not possible for the following
reasons. First, there is quantum-mechanical diffraction of the electron
waves which blurs the image. Second, due to the internal motions of the
electrons in the metal they have a small sideways initial velocity when
they leave the needle, and this random transverse component of the
velocity causes some smearing of the image. The combination of these two
effects limits the resolution to 25[image: -*-] Å or so.




If, however, we reverse the polarity and introduce a small amount of
helium gas into the bulb, much higher resolutions are possible. When a
helium atom collides with the tip of the needle, the intense field
there strips an electron off the helium atom, leaving it positively
charged. The helium ion is then accelerated outward along a field line
to the fluorescent screen. Since the helium ion is so much heavier
than an electron, the quantum-mechanical wavelengths are much smaller.
If the temperature is not too high, the effect of the thermal
velocities is also smaller than in the electron case. With less
smearing of the image a much sharper picture of the point is
obtained. It has been possible to obtain magnifications up to
2,000,000[image: -*-] times with the positive ion field-emission
microscope—a magnification ten times better than is obtained with
the best electron microscope.



[image: -]
Fig. 6–17. Image produced by a field-emission microscope. [Courtesy of
Erwin W. Müller, Research Prof. of Physics, Pennsylvania State
University.]





Figure 6–17 is an example of the results which were
obtained with a field-ion microscope, using a tungsten needle. The
center of a tungsten atom ionizes a helium atom at a slightly
different rate than the spaces between the tungsten atoms. The pattern
of spots on the fluorescent screen shows the arrangement of the
individual atoms on the tungsten tip. The reason the spots
appear in rings can be understood by visualizing a large box of balls
packed in a rectangular array, representing the atoms in the metal. If
you cut an approximately spherical section out of this box, you will
see the ring pattern characteristic of the atomic structure.  The
field-ion microscope provided human beings with the means of seeing
atoms for the first time. This is a remarkable achievement,
considering the simplicity of the instrument.






	
  
  Some people think
the words “capacitance” and “capacitor” should be used, instead of
“capacity” and “condensor.”  We have decided to use the older
terminology, because it is still more commonly heard in the physics
laboratory—even if not in textbooks!
  ↩


	
  
  See E. W. Müller: “The field-ion microscope,”
Advances in Electronics and Electron Physics, 13,
83–179 (1960). Academic Press, New York.
  ↩






  
    

7 The Electric Field in Various Circumstances (Continued)



7–1 Methods for finding the electrostatic field


This chapter is a continuation of our consideration of the
characteristics of electric fields in various particular
situations. We shall first describe some of the more elaborate methods
for solving problems with conductors. It is not expected that these
more advanced methods can be mastered at this time. Yet it may be of
interest to have some idea about the kinds of problems that can be
solved, using techniques that may be learned in more advanced
courses. Then we take up two examples in which the charge distribution
is neither fixed nor is carried by a conductor, but instead is
determined by some other law of physics.





As we found in Chapter 6, the problem of the
electrostatic field is fundamentally simple when the distribution of
charges is specified; it requires only the evaluation of an
integral. When there are conductors present, however, complications
arise because the charge distribution on the conductors is not
initially known; the charge must distribute itself on the surface of
the conductor in such a way that the conductor is an
equipotential. The solution of such problems is neither direct nor
simple.




We have looked at an indirect method of solving such problems, in
which we find the equipotentials for some specified charge
distribution and replace one of them by a conducting surface. In this
way we can build up a catalog of special solutions for conductors in
the shapes of spheres, planes, etc. The use of images, described in
Chapter 6, is an example of an indirect method. We shall
describe another in this chapter.




If the problem to be solved does not belong to the class of problems
for which we can construct solutions by the indirect method, we are
forced to solve the problem by a more direct method. The mathematical
problem of the direct method is the solution of Laplace’s
equation,

[image: -*-][image: -*-]
(7.1)




subject to the condition that ϕ[image: -*-] is a suitable constant on certain
boundaries—the surfaces of the conductors. Problems which involve
the solution of a differential field equation subject to certain
boundary conditions are called boundary-value
problems. They have been the object of
considerable mathematical study. In the case of conductors having
complicated shapes, there are no general analytical methods. Even such
a simple problem as that of a charged cylindrical metal can closed at
both ends—a beer can—presents formidable mathematical
difficulties. It can be solved only approximately, using numerical
methods. The only general methods of solution are numerical.




There are a few problems for which Eq. (7.1) can be
solved directly. For example, the problem of a charged conductor
having the shape of an ellipsoid of revolution can be solved exactly
in terms of known special functions. The solution for a thin disc can
be obtained by letting the ellipsoid become infinitely oblate.  In a
similar manner, the solution for a needle can be obtained by letting
the ellipsoid become infinitely prolate. However, it must be stressed
that the only direct methods of general applicability are the
numerical techniques.




Boundary-value problems can also be solved by measurements of a
physical analog. Laplace’s equation arises in many different physical
situations: in steady-state heat flow, in irrotational fluid flow, in
current flow in an extended medium, and in the deflection of an elastic
membrane. It is frequently possible to set up a physical model which is
analogous to an electrical problem which we wish to solve.  By the
measurement of a suitable analogous quantity on the model, the solution
to the problem of interest can be determined. An example of the analog
technique is the use of the electrolytic tank for the solution of
two-dimensional problems in electrostatics. This works because the
differential equation for the potential in a uniform conducting medium
is the same as it is for a vacuum.




There are many physical situations in which the variations of the
physical fields in one direction are zero, or can be neglected in
comparison with the variations in the other two directions. Such
problems are called two-dimensional; the field depends on two
coordinates only. For example, if we place a long charged wire along
the z[image: -*-]-axis, then for points not too far from the wire the electric
field depends on x[image: -*-] and y[image: -*-], but not on z[image: -*-]; the problem is
two-dimensional. Since in a two-dimensional problem
∂ϕ/∂z=0[image: -*-], the equation for ϕ[image: -*-] in free space is

[image: -*-][image: -*-]
(7.2)




Because the two-dimensional equation is comparatively simple, there is
a wide range of conditions under which it can be solved
analytically. There is, in fact, a very powerful indirect mathematical
technique which depends on a theorem from the mathematics of functions
of a complex variable, and which we will now describe.








7–2 Two-dimensional fields; functions of the complex variable


The complex variable z[image: -*-] is defined as

[image: -*-][image: -*-]


(Do not confuse z[image: -*-] with the z[image: -*-]-coordinate, which we
ignore in the following discussion because we assume there is no
z[image: -*-]-dependence of the fields.) Every point in x[image: -*-] and y[image: -*-] then
corresponds to a complex number z[image: -*-]. We can use z[image: -*-]
as a single (complex) variable, and with it write the
usual kinds of mathematical functions F (z)[image: -*-]. For example,

[image: -*-][image: -*-]


or

[image: -*-][image: -*-]


or

[image: -*-][image: -*-]


and so forth.




Given any particular F (z)[image: -*-] we can substitute z=x+i y[image: -*-],
and we have a function of x[image: -*-] and y[image: -*-]—with real
and imaginary parts. For example,

[image: -*-][image: -*-]
(7.3)









Any function F (z)[image: -*-] can be written as a sum of a pure real
part and a pure imaginary part, each part a function of x[image: -*-] and y[image: -*-]:

[image: -*-][image: -*-]
(7.4)




where U (x,y)[image: -*-] and V (x,y)[image: -*-] are real functions. Thus from any complex
function F (z)[image: -*-] two new functions U (x,y)[image: -*-] and V (x,y)[image: -*-] can
be derived. For example, F (z)=z2[image: -*-] gives us the
two functions

[image: -*-][image: -*-]
(7.5)




and

[image: -*-][image: -*-]
(7.6)









Now we come to a miraculous mathematical theorem which is so
delightful that we shall leave a proof of it for one of your courses
in mathematics. (We should not reveal all the mysteries of
mathematics, or that subject matter would become too dull.) It is
this. For any “ordinary function” (mathematicians will define it
better) the functions U[image: -*-] and V[image: -*-] automatically satisfy the
relations

[image: -*-][image: -*-]
(7.7)

(7.8)




It follows immediately that each of the functions U[image: -*-] and V[image: -*-] satisfy
Laplace’s equation:

[image: -*-][image: -*-]
(7.9)

(7.10)




These equations are clearly true for the functions of (7.5)
and (7.6).




Thus, starting with any ordinary function, we can arrive at two
functions U (x,y)[image: -*-] and V (x,y)[image: -*-], which are both solutions of Laplace’s
equation in two dimensions. Each function represents a possible
electrostatic potential. We can pick any function F (z)[image: -*-]
and it should represent some electric field
problem—in fact, two problems, because U[image: -*-] and V[image: -*-]
each represent solutions. We can write down as many solutions
as we wish—by just making up functions—then we just have to find
the problem that goes with each solution. It may sound
backwards, but it’s a possible approach.




As an example, let’s see what physics the function F (z)=z2[image: -*-]
gives us. From it we get the two
potential functions of (7.5) and (7.6). To see
what problem the function U[image: -*-] belongs to, we solve for the
equipotential surfaces by setting U=A[image: -*-], a constant:

[image: -*-][image: -*-]


This is the equation of a rectangular hyperbola. For various values of A[image: -*-],
we get the hyperbolas shown in Fig. 7–1. When A=0[image: -*-], we get
the special case of diagonal straight lines through the
origin.



[image: -][image: -]
Fig. 7–1. Two sets of orthogonal curves which can represent
equipotentials in a two-dimensional electrostatic field.





Such a set of equipotentials corresponds to the field at an inside
right-angle corner of a conductor. If we have two electrodes shaped like those in
Fig. 7–2, which are held at different potentials, the field
near the corner marked C[image: -*-] will look just like the field above the
origin in Fig. 7–1. The solid lines are the equipotentials,
and the broken lines at right angles correspond to lines of E[image: -*-].
Whereas at points or protuberances the electric field tends to be high,
it tends to be low in dents or hollows.



[image: -][image: -]
Fig. 7–2. The field near the point C[image: -*-] is the same as that in
Fig. 7–1.





The solution we have found also corresponds to that for a
hyperbola-shaped electrode near a right-angle corner, or for two
hyperbolas at suitable potentials. You will notice that the field of
Fig. 7–1 has an interesting property. The x[image: -*-]-component
of the electric field, Ex[image: -*-], is given by

[image: -*-][image: -*-]


The electric field is proportional to the distance from the axis. This
fact is used to make devices (called quadrupole lenses) that are useful for focusing
particle beams (see Section 29–7). The desired field is
usually obtained by using four hyperbola shaped electrodes, as shown in
Fig. 7–3. For the electric field lines in
Fig. 7–3, we have simply copied from Fig. 7–1
the set of broken-line curves that represent V=constant[image: -*-]. We
have a bonus! The curves for V=constant[image: -*-] are orthogonal to the
ones for U=constant[image: -*-] because of the equations (7.7)
and (7.8). Whenever we choose a function F (z)[image: -*-], we get
from U[image: -*-] and V[image: -*-] both the equipotentials and field lines. And you will
remember that we have solved either of two problems, depending on which
set of curves we call the equipotentials.




[image: -][image: -]
Fig. 7–3. The field in a quadrupole lens.





As a second example, consider the function

[image: -*-][image: -*-]
(7.11)




If we write

[image: -*-][image: -*-]


where

[image: -*-][image: -*-]


and

[image: -*-][image: -*-]


then

[image: -*-][image: -*-]


from which



[image: -*-][image: -*-]
(7.12)









[image: -][image: -]
Fig. 7–4. Curves of constant U (x,y)[image: -*-] and V (x,y)[image: -*-] from Eq. (7.12).





The curves for U (x,y)=A[image: -*-] and V (x,y)=B[image: -*-], using U[image: -*-] and V[image: -*-] from
Eq. (7.12), are plotted in Fig. 7–4. Again,
there are many possible situations that could be described by these
fields. One of the most interesting is the field near the edge of a thin
plate. If the line B=0[image: -*-]—to the right of the y[image: -*-]-axis—represents a
thin charged plate, the field lines near it are given by the curves for
various values of A[image: -*-]. The physical situation is shown in
Fig. 7–5.



[image: -][image: -]
Fig. 7–5. The electric field near the edge of a thin grounded plate.





Further examples are

[image: -*-][image: -*-]
(7.13)




which yields the field outside a rectangular corner

[image: -*-][image: -*-]
(7.14)




which yields the field for a line charge, and

[image: -*-][image: -*-]
(7.15)




which gives the field for the two-dimensional analog of an electric
dipole, i.e., two parallel line charges with opposite polarities, very
close together.




We will not pursue this subject further in this course, but should
emphasize that although the complex variable technique is often
powerful, it is limited to two-dimensional problems; and also, it is
an indirect method.







7–3 Plasma oscillations


We consider now some physical situations in which the field is
determined neither by fixed charges nor by charges on conducting
surfaces, but by a combination of two physical phenomena. In other
words, the field will be governed simultaneously by two sets of
equations: (1) the equations from electrostatics relating electric
fields to charge distribution, and (2) an equation from another part
of physics that determines the positions or motions of the charges in
the presence of the field.




The first example that we will discuss is a dynamic one in which the
motion of the charges is governed by Newton’s
laws. A simple example of such a situation
occurs in a plasma, which is an ionized gas consisting of
ions and free electrons distributed over a region in space. The
ionosphere—an upper layer of the atmosphere—is an
example of such a plasma. The ultraviolet rays from the sun knock
electrons off the molecules of the air, creating free electrons and
ions. In such a plasma the positive ions are very much heavier than the
electrons, so we may neglect the ionic motion, in comparison to that of
the electrons.





Let n0[image: -*-] be the density of electrons in the undisturbed, equilibrium
state. Assuming the molecules are singly ionized, this must also be the
density of positive ions, since the plasma is electrically neutral (when
undisturbed). Now we suppose that the electrons are somehow moved from
equilibrium and ask what happens. If the density of the electrons in one
region is increased, they will repel each other and tend to return to
their equilibrium positions. As the electrons move toward their original
positions they pick up kinetic energy, and instead of coming to rest in
their equilibrium configuration, they overshoot the mark. They will
oscillate back and forth. The situation is similar to what occurs in
sound waves, in which the restoring force is the gas pressure. In a
plasma, the restoring force is the electrical force on the electrons.



[image: -][image: -]
Fig. 7–6. Motion in a plasma wave. The electrons at the plane a[image: -*-] move
to a′[image: -*-], and those at b[image: -*-] move to b′[image: -*-].





To simplify the discussion, we will worry only about a situation in
which the motions are all in one dimension, say x[image: -*-]. Let us suppose
that the electrons originally at x[image: -*-] are, at the instant t[image: -*-],
displaced from their equilibrium positions by a small amount s (x,t)[image: -*-].
Since the electrons have been displaced, their density will,
in general, be changed. The change in density is easily
calculated. Referring to Fig. 7–6, the electrons
initially contained between the two planes a[image: -*-] and b[image: -*-] have moved and
are now contained between the planes a′[image: -*-] and b′[image: -*-]. The number of
electrons that were between a[image: -*-] and b[image: -*-] is proportional to n0 Δ x[image: -*-]; the same number are now contained in the space whose width
is Δ x+Δ s[image: -*-]. The density has changed to

[image: -*-][image: -*-]
(7.16)




If the change in density is small, we can write [using the binomial
expansion for (1+ϵ)−1[image: -*-]]

[image: -*-][image: -*-]
(7.17)




We assume that the positive ions do not move appreciably (because of
the much larger inertia), so their density remains n0[image: -*-]. Each
electron carries the charge −qe[image: -*-], so the average charge density at
any point is given by

[image: -*-][image: -*-]


or

[image: -*-][image: -*-]
(7.18)




(where we have written the differential form for Δ s/Δ x[image: -*-]).




The charge density is related to the electric field by Maxwell’s
equations, in particular,

[image: -*-][image: -*-]
(7.19)




If the problem is indeed one-dimensional (and if there are no other
fields but the one due to the displacements of the electrons), the
electric field E[image: -*-] has a single component Ex[image: -*-].
Equation (7.19), together with (7.18), gives

[image: -*-][image: -*-]
(7.20)




Integrating Eq. (7.20) gives

[image: -*-][image: -*-]
(7.21)




Since Ex=0[image: -*-] when s=0[image: -*-], the integration constant K[image: -*-] is zero.




The force on an electron in the displaced position is

[image: -*-][image: -*-]
(7.22)




a restoring force proportional to the displacement s[image: -*-] of the
electron. This leads to a harmonic oscillation of the electrons. The
equation of motion of a displaced electron is

[image: -*-][image: -*-]
(7.23)




We find that s[image: -*-] will vary harmonically. Its time variation will be as
cosωp t[image: -*-], or—using the exponential notation of Vol. I—as

[image: -*-][image: -*-]
(7.24)




The frequency of oscillation ωp[image: -*-] is determined
from (7.23):

[image: -*-][image: -*-]
(7.25)




and is called the plasma frequency. It is a characteristic number
of the plasma.




When dealing with electron charges many people prefer to express their
answers in terms of a quantity e2[image: -*-] defined by

[image: -*-][image: -*-]
(7.26)




Using this convention, Eq. (7.25) becomes

[image: -*-][image: -*-]
(7.27)




which is the form you will find in most books.




Thus we have found that a disturbance of a plasma will set up free
oscillations of the electrons about their equilibrium positions at the
natural frequency ωp[image: -*-], which is proportional to the square root
of the density of the electrons. The plasma electrons behave like a
resonant system, such as those we described in Chapter 23
of Vol. I.




This natural resonance of a plasma has some interesting effects. For
example, if one tries to propagate a radiowave through the
ionosphere, one finds that it can penetrate only if
its frequency is higher than the plasma frequency. Otherwise the signal is
reflected back. We must use high frequencies if we wish to communicate
with a satellite in space. On the other hand, if we wish to communicate
with a radio station beyond the horizon, we must use frequencies lower
than the plasma frequency, so that the signal will be reflected back to
the earth.





Another interesting example of plasma oscillations occurs in metals. In a metal
we have a contained plasma of positive ions, and free electrons. The
density n0[image: -*-] is very high, so ωp[image: -*-] is also. But it should still be
possible to observe the electron oscillations. Now, according to quantum
mechanics, a harmonic oscillator with a natural frequency ωp[image: -*-] has energy
levels which are separated by the energy increment ℏ ωp[image: -*-]. If, then,
one shoots electrons through, say, an aluminum foil, and makes very careful
measurements of the electron energies on the other side, one might expect to
find that the electrons sometimes lose the energy ℏ ωp[image: -*-] to the plasma
oscillations. This does indeed happen. It was first observed experimentally in
1936 that electrons with energies of a few hundred to a few thousand electron
volts lost energy in jumps when scattering from or going through a thin metal
foil. The effect was not understood until 1953 when Bohm and Pines1 showed that the
observations could be explained in terms of quantum excitations of the plasma
oscillations in the metal.







7–4 Colloidal particles in an electrolyte


We turn to another phenomenon in which the locations of charges are
governed by a potential that arises in part from the same charges. The
resulting effects influence in an important way the behavior of
colloids. A colloid consists of a suspension in water of small charged
particles which, though microscopic, from an atomic point of view are
still very large. If the colloidal particles were not charged, they
would tend to coagulate into large lumps; but because of their charge,
they repel each other and remain in suspension.




Now if there is also some salt dissolved in the water, it will be
dissociated into positive and negative ions. (Such a solution of ions
is called an electrolyte.) The negative ions are attracted to the
colloid particles (assuming their charge is positive) and the positive
ions are repelled. We will determine how the ions which surround such
a colloidal particle are distributed in space.




To keep the ideas simple, we will again solve only a one-dimensional
case.  If we think of a colloidal particle as a sphere having a very
large radius—on an atomic scale!—we can then treat a small part of
its surface as a plane. (Whenever one is trying to understand a new
phenomenon it is a good idea to take a somewhat oversimplified model;
then, having understood the problem with that model, one is better
able to proceed to tackle the more exact calculation.)




We suppose that the distribution of ions generates a charge density ρ (x)[image: -*-],
and an electrical potential ϕ[image: -*-], related by the
electrostatic law ∇2ϕ=−ρ/ϵ0[image: -*-] or, for fields that vary
in only one dimension, by

[image: -*-][image: -*-]
(7.28)









Now supposing there were such a potential ϕ (x)[image: -*-], how would the
ions distribute themselves in it? This we can determine by the
principles of statistical mechanics. Our problem then is to
determine ϕ[image: -*-] so that the resulting charge density from statistical mechanics
also satisfies (7.28).





According to statistical mechanics (see Chapter 40,
Vol. I), particles in thermal equilibrium in a force field are
distributed in such a way that the density n[image: -*-] of particles at the
position x[image: -*-] is given by

[image: -*-][image: -*-]
(7.29)




where U (x)[image: -*-] is the potential energy, k[image: -*-] is Boltzmann’s
constant, and T[image: -*-] is the absolute
temperature.





We assume that the ions carry one electronic charge, positive or
negative. At the distance x[image: -*-] from the surface of a colloidal
particle, a positive ion will have potential energy qe ϕ (x)[image: -*-], so
that

[image: -*-][image: -*-]


The density of positive ions, n+[image: -*-], is then

[image: -*-][image: -*-]


Similarly, the density of negative ions is

[image: -*-][image: -*-]


The total charge density is

[image: -*-][image: -*-]


or

[image: -*-][image: -*-]
(7.30)




Combining this with Eq. (7.28), we find that the
potential ϕ[image: -*-] must satisfy

[image: -*-][image: -*-]
(7.31)




This equation is readily solved in general [multiply both sides by
2 (d ϕ/d x)[image: -*-], and integrate with respect to x[image: -*-]], but to keep the
problem as simple as possible, we will consider here only the limiting
case in which the potentials are small or the temperature T[image: -*-] is
high. The case where ϕ[image: -*-] is small corresponds to a dilute
solution. For these cases the exponent is small, and we can
approximate

[image: -*-][image: -*-]
(7.32)




Equation (7.31) then gives

[image: -*-][image: -*-]
(7.33)




Notice that this time the sign on the right is positive. The solutions
for ϕ[image: -*-] are not oscillatory, but exponential.




The general solution of Eq. (7.33) is

[image: -*-][image: -*-]
(7.34)




with

[image: -*-][image: -*-]
(7.35)




The constants A[image: -*-] and B[image: -*-] must be determined from the conditions of
the problem. In our case, B[image: -*-] must be zero; otherwise the potential
would go to infinity for large x[image: -*-]. So we have that

[image: -*-][image: -*-]
(7.36)




in which A[image: -*-] is the potential at x=0[image: -*-], the surface of the colloidal
particle.



[image: -][image: -]
Fig. 7–7. The variation of the potential near the surface of a colloidal
particle. D[image: -*-] is the Debye length.





The potential decreases by a factor 1/e[image: -*-] each time the distance
increases by D[image: -*-], as shown in the graph of Fig. 7–7. The
number D[image: -*-] is called the Debye length, and is a measure of the
thickness of the ion sheath that surrounds a large charged particle in
an electrolyte. Equation (7.35) says that the sheath gets
thinner with increasing concentration of the ions (n0[image: -*-]) or with
decreasing temperature.




The constant A[image: -*-] in Eq. (7.36) is easily obtained if we
know the surface charge density σ[image: -*-] on the colloid particle. We
know that

[image: -*-][image: -*-]
(7.37)




But E[image: -*-] is also the gradient of ϕ[image: -*-]:

[image: -*-][image: -*-]
(7.38)




from which we get

[image: -*-][image: -*-]
(7.39)




Using this result in (7.36), we find (by taking x=0[image: -*-])
that the potential of the colloidal particle is

[image: -*-][image: -*-]
(7.40)




You will notice that this potential is the same as the potential
difference across a condenser with a plate spacing D[image: -*-] and a surface
charge density σ[image: -*-].




We have said that the colloidal particles are kept apart by their
electrical repulsion. But now we see that the field a little way from
the surface of a particle is reduced by the ion sheath that collects
around it. If the sheaths get thin enough, the particles have a good
chance of knocking against each other. They will then stick, and the
colloid will coagulate and precipitate out of the liquid. From our
analysis, we understand why adding enough salt to a colloid should
cause it to precipitate out. The process is called “salting out a
colloid.”




Another interesting example is the effect that a salt solution has on
protein molecules. A protein molecule is a long, complicated, and
flexible chain of amino acids. The molecule has various charges on it,
and it sometimes happens that there is a net charge, say negative,
which is distributed along the chain. Because of mutual repulsion of
the negative charges, the protein chain is kept stretched out.  Also,
if there are other similar chain molecules present in the solution,
they will be kept apart by the same repulsive effects. We can,
therefore, have a suspension of chain molecules in a liquid. But if we
add salt to the liquid we change the properties of the suspension. As
salt is added to the solution, decreasing the Debye distance, the
chain molecules can approach one another, and can also coil up. If
enough salt is added to the solution, the chain molecules will
precipitate out of the solution. There are many chemical effects of
this kind that can be understood in terms of electrical forces.







7–5 The electrostatic field of a grid


As our last example, we would like to describe another interesting
property of electric fields. It is one which is made use of in the
design of electrical instruments, in the construction of vacuum tubes,
and for other purposes. This is the character of the electric field
near a grid of charged wires. To make the problem as simple as
possible, let us consider an array of parallel wires lying in a plane,
the wires being infinitely long and with a uniform spacing between
them.




If we look at the field a large distance above the plane of the wires,
we see a constant electric field, just as though the charge were
uniformly spread over a plane. As we approach the grid of wires, the
field begins to deviate from the uniform field we found at large
distances from the grid. We would like to estimate how close to the
grid we have to be in order to see appreciable variations in the
potential. Figure 7–8 shows a rough sketch of the
equipotentials at various distances from the grid. The closer we get
to the grid, the larger the variations.  As we travel parallel to the
grid, we observe that the field fluctuates in a periodic manner.



[image: -][image: -]
Fig. 7–8. Equipotential surfaces above a uniform grid of charged wires.





Now we have seen (Chapter 50, Vol. I) that any periodic
quantity can be expressed as a sum of sine waves (Fourier’s
theorem). Let’s see
if we can find a suitable harmonic function that satisfies our field
equations.




If the wires lie in the x y[image: -*-]-plane and run parallel to the y[image: -*-]-axis,
then we might try terms like

[image: -*-][image: -*-]
(7.41)




where a[image: -*-] is the spacing of the wires and n[image: -*-] is the harmonic
number. (We have assumed long wires, so there should be no variation
with y[image: -*-].) A complete solution would be made up of a sum of such terms
for n=1[image: -*-], 2, 3, …[image: -*-].




If this is to be a valid potential, it must satisfy Laplace’s equation
in the region above the wires (where there are no charges). That is,

[image: -*-][image: -*-]


Trying this equation on the ϕ[image: -*-] in (7.41), we find that

[image: -*-][image: -*-]
(7.42)




or that Fn (z)[image: -*-] must satisfy

[image: -*-][image: -*-]
(7.43)




So we must have

[image: -*-][image: -*-]
(7.44)




where

[image: -*-][image: -*-]
(7.45)




We have found that if there is a Fourier component of the field of
harmonic n[image: -*-], that component will decrease exponentially with a
characteristic distance z0=a/2 π n[image: -*-]. For the first harmonic
(n=1[image: -*-]), the amplitude falls by the factor e−2 π[image: -*-] (a large
decrease) each time we increase z[image: -*-] by one grid spacing a[image: -*-]. The other
harmonics fall off even more rapidly as we move away from the grid. We
see that if we are only a few times the distance a[image: -*-] away from the
grid, the field is very nearly uniform, i.e., the oscillating terms
are small. There would, of course, always remain the “zero harmonic”
field

[image: -*-][image: -*-]


to give the uniform field at large z[image: -*-]. For a complete solution, we
would combine this term with a sum of terms like (7.41)
with Fn[image: -*-] from (7.44). The coefficients An[image: -*-] would be
adjusted so that the total sum would, when differentiated, give an
electric field that would fit the charge density λ[image: -*-] of the grid
wires.




The method we have just developed can be used to explain why
electrostatic shielding by means of a screen is often just as good as
with a solid metal sheet. Except within a distance from the screen a
few times the spacing of the screen wires, the fields inside a closed
screen are zero. We see why copper screen—lighter and cheaper than
copper sheet—is often used to shield sensitive electrical equipment
from external disturbing fields.





	
  
  For some recent
work and a bibliography see C. J. Powell and J. B. Swann,
Phys. Rev. 115, 869  (1959).
  ↩
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8–1 The electrostatic energy of charges. A uniform sphere


In the study of mechanics, one of the most interesting and useful
discoveries was the law of the conservation of energy. The expressions
for the kinetic and potential energies of a mechanical system helped
us to discover connections between the states of a system at two
different times without having to look into the details of what was
occurring in between. We wish now to consider the energy of
electrostatic systems. In electricity also the principle of the
conservation of energy will be useful for discovering a number of
interesting things.




The law of the energy of interaction in electrostatics is very simple;
we have, in fact, already discussed it. Suppose we have two charges
q1[image: -*-] and q2[image: -*-] separated by the distance r12[image: -*-]. There is some
energy in the system, because a certain amount of work was required to
bring the charges together. We have already calculated the work done
in bringing two charges together from a large distance. It is

[image: -*-][image: -*-]
(8.1)




We also know, from the principle of superposition, that if we have
many charges present, the total force on any charge is the sum of the
forces from the others. It follows, therefore, that the total energy
of a system of a number of charges is the sum of terms due to the
mutual interaction of each pair of charges. If qi[image: -*-] and qj[image: -*-] are any
two of the charges and ri j[image: -*-] is the distance between them
(Fig. 8–1), the energy of that particular pair is

[image: -*-][image: -*-]
(8.2)




The total electrostatic energy U[image: -*-] is the sum of the energies of all
possible pairs of charges:

[image: -*-][image: -*-]
(8.3)




If we have a distribution of charge specified by a charge
density ρ[image: -*-], the sum of Eq. (8.3) is, of course, to be
replaced by an integral.



[image: -][image: -]
Fig. 8–1. The electrostatic energy of a system of particles is the sum
of the electrostatic energy of each pair.





We shall concern ourselves with two aspects of this energy. One is the
application of the concept of energy to electrostatic problems;
the other is the evaluation of the energy in different
ways. Sometimes it is easier to compute the work done for some special
case than to evaluate the sum in Eq. (8.3), or the
corresponding integral. As an example, let us calculate the energy
required to assemble a sphere of charge with a uniform charge
density. The energy is just the work done in gathering the charges
together from infinity.



[image: -][image: -]
Fig. 8–2. The energy of a uniform sphere of charge can be computed by
imagining that it is assembled from successive spherical shells.





Imagine that we assemble the sphere by building up a succession of
thin spherical layers of infinitesimal thickness. At each stage of the
process, we gather a small amount of charge and put it in a thin layer
from r[image: -*-] to r+d r[image: -*-]. We continue the process until we arrive at the
final radius a[image: -*-] (Fig. 8–2). If Qr[image: -*-] is the charge of
the sphere when it has been built up to the radius r[image: -*-], the work done
in bringing a charge d Q[image: -*-] to it is

[image: -*-][image: -*-]
(8.4)




If the density of charge in the sphere is ρ[image: -*-], the charge Qr[image: -*-] is

[image: -*-][image: -*-]


and the charge d Q[image: -*-] is

[image: -*-][image: -*-]


Equation (8.4) becomes

[image: -*-][image: -*-]
(8.5)




The total energy required to assemble the sphere is the integral of d U[image: -*-]
from r=0[image: -*-] to r=a[image: -*-], or

[image: -*-][image: -*-]
(8.6)




Or if we wish to express the result in terms of the total charge Q[image: -*-]
of the sphere,

[image: -*-][image: -*-]
(8.7)




The energy is proportional to the square of the total charge and
inversely proportional to the radius.
We can also interpret Eq. (8.7) as saying that the average
of (1/ri j)[image: -*-] for all pairs of points in the sphere is 6/5 a[image: -*-].







8–2 The energy of a condenser. Forces on charged conductors


We consider now the energy required to charge a condenser. If the
charge Q[image: -*-] has been taken from one of the conductors of a condenser
and placed on the other, the potential difference between them is

[image: -*-][image: -*-]
(8.8)




where C[image: -*-] is the capacity of the
condenser.
How much work is done in charging the condenser?
Proceeding as for the sphere, we imagine that the condenser has been
charged by transferring charge from one plate to the other in small
increments d Q[image: -*-]. The work required to transfer the charge d Q[image: -*-] is

[image: -*-][image: -*-]


Taking V[image: -*-] from Eq. (8.8), we write

[image: -*-][image: -*-]


Or integrating from zero charge to the final charge Q[image: -*-], we have

[image: -*-][image: -*-]
(8.9)




This energy can also be written as

[image: -*-][image: -*-]
(8.10)




Recalling that the capacity of a conducting sphere (relative to
infinity) is

[image: -*-][image: -*-]


we can immediately get from Eq. (8.9) the energy of a
charged sphere,

[image: -*-][image: -*-]
(8.11)




This, of course, is also the energy of a thin spherical shell
of total charge Q[image: -*-] and is just 5/6[image: -*-] of the energy of a
uniformly charged sphere, Eq. (8.7).




We now consider applications of the idea of electrostatic
energy. Consider the following questions: What is the force between
the plates of a condenser? Or what is the torque about some axis of a
charged conductor in the presence of another with opposite charge?
Such questions are easily answered by using our result
Eq. (8.9) for electrostatic energy of a condenser, together
with the principle of virtual work (Chapters
4, 13, and 14 of Vol. I).




Let’s use this method for determining the force between the plates of a
parallel-plate condenser. If we imagine that the spacing of the plates is
increased by the small amount Δ z[image: -*-], then the mechanical work done
from the outside in moving the plates would be

[image: -*-][image: -*-]
(8.12)




where F[image: -*-] is the force between the plates. This work must be equal to
the change in the electrostatic energy of the condenser.




By Eq. (8.9), the energy of the condenser was originally

[image: -*-][image: -*-]


The change in energy (if we do not let the charge change) is

[image: -*-][image: -*-]
(8.13)




Equating (8.12) and (8.13), we have

[image: -*-][image: -*-]
(8.14)




This can also be written as

[image: -*-][image: -*-]
(8.15)




The force, of course, results from the attraction of the charges on
the plates, but we see that we do not have to worry in detail about
how they are distributed; everything we need is taken care of in the
capacity C[image: -*-].




It is easy to see how the idea is extended to conductors of any shape,
and for other components of the force. In Eq. (8.14), we
replace F[image: -*-] by the component we are looking for, and we
replace Δ z[image: -*-] by a small displacement in the corresponding direction. Or
if we have an electrode with a pivot and we want to know the
torque τ[image: -*-], we write the virtual work as

[image: -*-][image: -*-]


where Δ θ[image: -*-] is a small angular displacement. Of course,
Δ (1/C)[image: -*-] must be the change in 1/C[image: -*-] which corresponds
to Δ θ[image: -*-]. We could, in this way, find the torque on the movable
plates in a variable condenser of the type shown in
Fig. 8–3.



[image: -][image: -]
Fig. 8–3. What is the torque on a variable capacitor?





Returning to the special case of a parallel-plate condenser, we can
use the formula we derived in Chapter 6 for the
capacity:

[image: -*-][image: -*-]
(8.16)




where A[image: -*-] is the area of each plate. If we increase the separation
by Δ z[image: -*-],

[image: -*-][image: -*-]


From Eq. (8.14) we get that the force between the plates
is

[image: -*-][image: -*-]
(8.17)









Let’s look at Eq. (8.17) a little more closely and see
if we can tell how the force arises. If for the charge on one plate we
write

[image: -*-][image: -*-]


Eq. (8.17) can be rewritten as

[image: -*-][image: -*-]


Or, since the electric field between the plates is

[image: -*-][image: -*-]


then

[image: -*-][image: -*-]
(8.18)









One would immediately guess that the force acting on one plate is the
charge Q[image: -*-] on the plate times the field acting on the charge. But we
have a surprising factor of one-half. The reason is that E0[image: -*-] is not
the field at the charges. If we imagine that the charge at the
surface of the plate occupies a thin layer, as indicated in
Fig. 8–4, the field will vary from zero at the inner
boundary of the layer to E0[image: -*-] in the space outside of the plate. The
average field acting on the surface charges is E0/2[image: -*-]. That is why the
factor one-half is in Eq. (8.18).



[image: -][image: -]
Fig. 8–4. The field at the surface of a conductor varies from zero
to E0=σ/ϵ0[image: -*-], as one passes through the layer of surface
charge.





You should notice that in computing the virtual work we have assumed
that the charge on the condenser was constant—that it was not
electrically connected to other objects, and so the total charge could
not change.




Suppose we had imagined that the condenser was held at a constant
potential difference as we made the virtual displacement. Then we
should have taken

[image: -*-][image: -*-]


and in place of Eq. (8.15) we would have had

[image: -*-][image: -*-]


which gives a force equal in magnitude to the one in
Eq. (8.15) (because V=Q/C[image: -*-]), but with the opposite sign!
Surely the force between the condenser plates doesn’t reverse in sign as
we disconnect it from its charging source. Also, we know that two plates
with opposite electrical charges must attract. The principle of virtual
work has been incorrectly applied in the second case—we have not taken
into account the virtual work done on the charging source. That is, to
keep the potential constant at V[image: -*-] as the capacity changes, a charge
V Δ C[image: -*-] must be supplied by a source of charge. But this charge is
supplied at a potential V[image: -*-], so the work done by the electrical system
which keeps the potential constant is V2 Δ C[image: -*-]. The mechanical
work F Δ z[image: -*-] plus this electrical work V2 Δ C[image: -*-]
together make up the change in the total energy [image: \tfrac{1}{2}V^2\,\Delta C][image: \tfrac{1}{2}V^2\,\Delta C] of the condenser. Therefore F Δ z[image: -*-] is
[image: -\tfrac{1}{2}V^2\,\Delta C][image: -\tfrac{1}{2}V^2\,\Delta C], as before.







8–3 The electrostatic energy of an ionic crystal


We now consider an application of the concept of electrostatic energy
in atomic physics. We cannot easily measure the forces between atoms,
but we are often interested in the energy differences between one
atomic arrangement and another, as, for example, the energy of a
chemical change. Since atomic forces are basically electrical,
chemical energies are in large part just electrostatic energies.




Let’s consider, for example, the electrostatic energy of an ionic
lattice. An ionic crystal like NaCl consists of positive and negative
ions which can be thought of as rigid spheres. They attract
electrically until they begin to touch; then there is a repulsive
force which goes up very rapidly if we try to push them closer
together.




For our first approximation, therefore, we imagine a set of rigid
spheres that represent the atoms in a salt crystal. The structure of
the lattice has been determined by x-ray diffraction. It is a cubic
lattice—like a three-dimensional checkerboard. Figure 8–5
shows a cross-sectional view. The spacing of the ions is 2.81[image: -*-] Å
(=2.81×10−8[image: -*-] cm).




[image: -][image: -]
Fig. 8–5. Cross section of a salt crystal on an atomic scale. The checkerboard
arrangement of Na and Cl ions is the same in the two cross sections
perpendicular to the one shown. (See Vol. I, Fig. 1–7.)





If our picture of this system is correct, we should be able to check
it by asking the following question: How much energy will it take to
pull all these ions apart—that is, to separate the crystal
completely into ions? This energy should be equal to the heat of
vaporization of NaCl plus the energy required to dissociate the
molecules into ions. This total energy to separate NaCl to ions is
determined experimentally to be 7.92[image: -*-] electron volts per
molecule. Using the conversion

[image: -*-][image: -*-]


and Avogadro’s number for the number of molecules in a mole,

[image: -*-][image: -*-]


the energy of dissociation can also be given as

[image: -*-][image: -*-]


Physical chemists prefer for an energy unit the
kilocalorie, which is 4190[image: -*-] joules; so that
1 eV per molecule is 23[image: -*-] kilocalories per mole. A chemist would then
say that the dissociation energy of NaCl is

[image: -*-][image: -*-]







Can we obtain this chemical energy theoretically by computing how much
work it would take to pull apart the crystal? According to our theory,
this work is the sum of the potential energies of all the pairs of
ions. The easiest way to figure out this sum is to pick out a
particular ion and compute its potential energy with each of the other
ions. That will give us twice the energy per ion, because the
energy belongs to the pairs of charges. If we want the energy
to be associated with one particular ion, we should take half the sum.
But we really want the energy per molecule, which contains two
ions, so that the sum we compute will give directly the energy per
molecule.




The energy of an ion with one of its nearest neighbors is e2/a[image: -*-],
where [image: e^2=q_e^2/4\pi\epsO][image: e^2=q_e^2/4\pi\epsO] and a[image: -*-] is the center-to-center spacing
between ions. (We are considering monovalent ions.) This energy is
5.12[image: -*-] eV, which we already see is going to give us a result of the
correct order of magnitude. But it is still a long way from the
infinite sum of terms we need.




Let’s begin by summing all the terms from the ions along a straight
line.  Considering that the ion marked Na in Fig. 8–5
is our special ion, we shall consider first those ions on a horizontal
line with it. There are two nearest Cl ions with negative charges,
each at the distance a[image: -*-]. Then there are two positive ions at the
distance 2 a[image: -*-], etc. Calling the energy of this sum U1[image: -*-], we write

[image: -*-][image: -*-]
(8.19)




The series converges slowly, so it is difficult to evaluate
numerically, but it is known to be equal to ln2[image: -*-]. So

[image: -*-][image: -*-]
(8.20)









Now consider the next adjacent line of ions above. The nearest is
negative and at the distance a[image: -*-]. Then there are two positives at the
distance √2 a[image: -*-]. The next pair are at the
distance √5 a[image: -*-], the next at √10 a[image: -*-], and so on. So for the whole
line we get the series

[image: -*-][image: -*-]
(8.21)




There are four such lines: above, below, in front, and in
back. Then there are the four lines which are the nearest lines on
diagonals, and on and on.




If you work patiently through for all the lines, and then take the
sum, you find that the grand total is

[image: -*-][image: -*-]


which is just somewhat more than what we obtained in (8.20)
for the first line. Using e2/a=5.12[image: -*-] eV, we get

[image: -*-][image: -*-]


Our answer is about 10 %[image: -*-] above the experimentally observed
energy. It shows that our idea that the whole lattice is held together
by electrical Coulomb forces is fundamentally correct. This is the
first time that we have obtained a specific property of a macroscopic
substance from a knowledge of atomic physics. We will do much more
later. The subject that tries to understand the behavior of bulk
matter in terms of the laws of atomic behavior is called
solid-state physics.





Now what about the error in our calculation? Why is it not exactly
right? It is because of the repulsion between the ions at close
distances. They are not perfectly rigid spheres, so when they are
close together they are partly squashed. They are not very soft, so
they squash only a little bit. Some energy, however, is used in
deforming them, and when the ions are pulled apart this energy is
released.  The actual energy needed to pull the ions apart is a little
less than the energy that we calculated; the repulsion helps in
overcoming the electrostatic attraction.




Is there any way we can make an allowance for this contribution? We
could if we knew the law of the repulsive force. We are not ready to
analyze the details of this repulsive mechanism, but we can get some
idea of its characteristics from some large-scale measurements. From a
measurement of the compressibility of the whole crystal, it is
possible to obtain a quantitative idea of the law of repulsion between
the ions and therefore of its contribution to the energy. In this way
it has been found that this contribution must be 1/9.4[image: -*-] of the
contribution from the electrostatic attraction and, of course, of
opposite sign. If we subtract this contribution from the pure
electrostatic energy, we obtain 7.99[image: -*-] eV for the dissociation energy
per molecule. It is much closer to the observed result of 7.92[image: -*-] eV,
but still not in perfect agreement. There is one more thing we haven’t
taken into account: we have made no allowance for the kinetic energy
of the crystal vibrations. If a correction is made for this effect,
very good agreement with the experimental number is obtained. The
ideas are then correct; the major contribution to the energy of a
crystal like NaCl is electrostatic.







8–4 Electrostatic energy in nuclei


We will now take up another example of electrostatic energy in atomic
physics, the electrical energy of atomic nuclei. Before we do this we
will have to discuss some properties of the main forces (called nuclear
forces) that hold the
protons and neutrons together in a nucleus. In the early days of the
discovery of nuclei—and of the neutrons and protons that make them
up—it was hoped that the law of the strong, nonelectrical part of the
force between, say, a proton and another proton would have some simple
law, like the inverse square law of electricity. For once one had
determined this law of force, and the corresponding ones between a
proton and a neutron, and a neutron and a neutron, it would be possible
to describe theoretically the complete behavior of these particles in
nuclei. Therefore a big program was started for the study of the
scattering of protons, in the hope of finding the law of force between
them; but after thirty years of effort, nothing simple has emerged. A
considerable knowledge of the force between proton and proton has been
accumulated, but we find that the force is as complicated as it can
possibly be.




What we mean by “as complicated as it can be” is that the force
depends on as many things as it possibly can.




First, the force is not a simple function of the distance between the
two protons.  At large distances there is an attraction, but at closer
distances there is a repulsion. The distance dependence is a
complicated function, still imperfectly known.




Second, the force depends on the orientation of the protons’
spin. The protons have a spin, and any two
interacting protons may be spinning with their angular momenta in the
same direction or in opposite directions. And the force is different
when the spins are parallel from what it is when they are antiparallel,
as in (a) and (b) of Fig. 8–6. The difference is quite
large; it is not a small effect.
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Fig. 8–6. The force between two protons depends on every possible
parameter.





Third, the force is considerably different when the separation of the
two protons is in the direction parallel to their spins, as in
(c) and (d) of Fig. 8–6, than it is when the separation
is in a direction perpendicular to the spins, as in (a)
and (b).




Fourth, the force depends, as it does in magnetism, on the velocity of
the protons, only much more strongly than in magnetism. And this
velocity-dependent force is not a relativistic effect; it is strong
even at speeds much less than the speed of light. Furthermore, this
part of the force depends on other things besides the magnitude of the
velocity. For instance, when a proton is moving near another proton,
the force is different when the orbital motion has the same direction
of rotation as the spin, as in (e) of Fig. 8–6, than
when it has the opposite direction of rotation, as in (f). This is
called the “spin orbit” part of the force.





The force between a proton and a neutron and between a neutron and a
neutron are also equally complicated. To this day we do not know the
machinery behind these forces—that is to say, any simple way of
understanding them.




There is, however, one important way in which the nucleon forces are
simpler than they could be. That is that the nuclear
force between two
neutrons is the same as the force between a proton and a neutron, which
is the same as the force between two protons! If, in any nuclear
situation, we replace a proton by a neutron (or vice versa), the
nuclear interactions are not changed.
The “fundamental reason” for this equality is not known, but it is an
example of an important principle that can be extended also to the
interaction laws of other strongly interacting particles—such as the
π[image: -*-]-mesons and the “strange” particles.





This fact is nicely illustrated by the locations of the energy levels
in similar nuclei. Consider a nucleus like B11[image: -*-] (boron-eleven),
which is composed of five protons and six neutrons. In the nucleus the
eleven particles interact with one another in a most complicated
dance. Now, there is one configuration of all the possible
interactions which has the lowest possible energy; this is the normal
state of the nucleus, and is called the ground state. If the nucleus is disturbed (for example, by being struck by a
high-energy proton or other particle) it can be put into any number of
other configurations, called excited states, each of which will have a
characteristic energy that is higher than that of the ground state. In
nuclear physics research, such as is carried on with Van de
Graaff generator (for example, in
Caltech’s Kellogg and Sloan Laboratories), the energies and other
properties of these excited states are determined by experiment. The
energies of the fifteen lowest known excited states of B11[image: -*-] are
shown in a one-dimensional graph on the left half of
Fig. 8–7. The lowest horizontal line represents the ground
state.  The first excited state has an energy 2.14[image: -*-] MeV higher than the
ground state, the next an energy 4.46[image: -*-] MeV higher than the ground
state, and so on. The study of nuclear physics attempts to find an
explanation for this rather complicated pattern of energies; there is as
yet, however, no complete general theory of such nuclear energy levels.
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Fig. 8–7. The energy levels of B11[image: -*-] and C11[image: -*-] (energies in
MeV). The ground state of C11[image: -*-] is 1.982[image: -*-] MeV higher than that
of B11[image: -*-].





If we replace one of the neutrons in B11[image: -*-] with a proton, we have
the nucleus of an isotope of carbon, C11[image: -*-]. The energies of the
lowest sixteen excited states of C11[image: -*-] have also been measured;
they are shown in the right half of Fig. 8–7. (The
broken lines indicate levels for which the experimental information is
questionable.)




Looking at Fig. 8–7, we see a striking similarity
between the pattern of the energy levels in the two nuclei. The first
excited states are about 2 MeV above the ground states. There is a
large gap of about 2.3[image: -*-] MeV to the second excited state, then a small
jump of only 0.5[image: -*-] MeV to the third level. Again, between the fourth
and fifth levels, a big jump; but between the fifth and sixth a tiny
separation of the order of 0.1[image: -*-] MeV. And so on. After about the tenth
level, the correspondence seems to become lost, but can still be seen
if the levels are labeled with their other defining
characteristics—for instance, their angular momentum and what they
do to lose their extra energy.




The striking similarity of the pattern of the energy levels of
B11[image: -*-] and C11[image: -*-] is surely not just a coincidence. It must reveal
some physical law. It shows, in fact, that even in the complicated
situation in a nucleus, replacing a neutron by a proton makes very
little change. This can mean only that the neutron-neutron and
proton-proton forces must be nearly identical. Only then would we
expect the nuclear configurations with five protons and six neutrons
to be the same as with six protons and five neutrons.




Notice that the properties of these two nuclei tell us nothing about
the neutron-proton force; there are the same number of neutron-proton
combinations in both nuclei. But if we compare two other nuclei, such
as C14[image: -*-], which has six protons and eight neutrons, with N14[image: -*-],
which has seven of each, we find a similar correspondence of energy
levels. So we can conclude that the p-p, n-n, and p-n forces are
identical in all their complexities. There is an unexpected principle
in the laws of nuclear forces. Even though the force between each pair
of nuclear particles is very complicated, the force between the three
possible different pairs is the same.




But there are some small differences. The levels do not correspond
exactly; also, the ground state of C11[image: -*-] has an absolute energy
(its mass) which is higher than the ground state of B11[image: -*-] by
1.982[image: -*-] MeV. All the other levels are also higher in absolute energy
by this same amount. So the forces are not exactly equal. But we know
very well that the complete forces are not exactly equal; there
is an electrical force between two protons because each has a
positive charge, while between two neutrons there is no such
electrical force. Can we perhaps explain the differences between
B11[image: -*-] and C11[image: -*-] by the fact that the electrical interaction of
the protons is different in the two cases?  Perhaps even the remaining
minor differences in the levels are caused by electrical effects?
Since the nuclear forces are so much stronger than the electrical
force, electrical effects would have only a small perturbing effect on
the energies of the levels.




In order to check this idea, or rather to find out what the
consequences of this idea are, we first consider the difference in the
ground-state energies of the two nuclei. To take a very simple model,
we suppose that the nuclei are spheres of radius r[image: -*-] (to be
determined), containing Z[image: -*-] protons. If we consider that a nucleus is
like a sphere with uniform charge density, we would expect the
electrostatic energy (from Eq. 8.7) to be
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(8.22)




where qe[image: -*-] is the elementary charge of the proton. Since Z[image: -*-] is five
for B11[image: -*-] and six for C11[image: -*-], their electrostatic energies would
be different.




With such a small number of protons, however, Eq. (8.22)
is not quite correct. If we compute the electrical energy between all
pairs of protons, considered as points which we assume to be nearly
uniformly distributed throughout the sphere, we find that in
Eq. (8.22) the quantity Z2[image: -*-] should be replaced
by Z (Z−1)[image: -*-], so the energy is
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(8.23)




If we knew the nuclear radius r[image: -*-], we could use (8.23) to
find the electrostatic energy difference between B11[image: -*-] and
C11[image: -*-]. But let’s do the opposite; let’s instead use the observed
energy difference to compute the radius, assuming that the energy
difference is all electrostatic in origin.




That is, however, not quite right. The energy difference of 1.982[image: -*-] MeV
between the ground states of B11[image: -*-] and C11[image: -*-] includes the
rest energies—that is, the energy m c2[image: -*-]—of all the particles. In
going from B11[image: -*-] to C11[image: -*-], we replace a neutron by a proton and
an electron, which have less mass. So part of the energy difference is
the difference in the rest energies of a neutron and that of a proton
plus an electron, which is 0.784[image: -*-] MeV. The difference, to be
accounted for by electrostatic energy, is thus more than 1.982[image: -*-] MeV;
it is
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Using this energy in Eq. (8.23), for the radius of
either B11[image: -*-] or C11[image: -*-] we find

[image: -*-][image: -*-]
(8.24)









Does this number have any meaning? To see whether it does, we should
compare it with some other determination of the radius of these
nuclei. For example, we can make another measurement of the radius of
a nucleus by seeing how it scatters fast particles. From such
measurements it has been found, in fact, that the density of
matter in all nuclei is nearly the same, i.e., their volumes are
proportional to the number of particles they contain. If we let A[image: -*-] be
the number of protons and neutrons in a nucleus (a number very nearly
proportional to its mass), it is found that its radius is given by
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(8.25)




where
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(8.26)









From these measurements we find that the radius of a B11[image: -*-] (or a
C11[image: -*-]) nucleus is expected to be
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Comparing this result with (8.24), we see that our
assumptions that the energy difference between B11[image: -*-] and C11[image: -*-]
is electrostatic is fairly good; the discrepancy is only about 15 %[image: -*-]
(not bad for our first nuclear computation!).




The reason for the discrepancy is probably the following. According to
the current understanding of nuclei, an even number of nuclear
particles—in the case of B11[image: -*-], five neutrons together with five
protons—makes a kind of core; when one more particle is added
to this core, it revolves around on the outside to make a new
spherical nucleus, rather than being absorbed. If this is so, we
should have taken a different electrostatic energy for the additional
proton. We should have taken the excess energy of C11[image: -*-] over
B11[image: -*-] to be just

[image: -*-][image: -*-]


which is the energy needed to add one more proton to the outside of
the core. This number is just 5/6[image: -*-] of what Eq. (8.23)
predicts, so the new prediction for the radius is 5/6[image: -*-]
of (8.24), which is in much closer agreement with what is
directly measured.




We can draw two conclusions from this agreement. One is that the
electrical laws appear to be working at dimensions as small as
10−13[image: -*-] cm. The other is that we have verified the remarkable
coincidence that the nonelectrical part of the forces between proton
and proton, neutron and neutron, and proton and neutron are all equal.







8–5 Energy in the electrostatic field


We now consider other methods of calculating electrostatic
energy. They can all be derived from the basic relation
Eq. (8.3), the sum, over all pairs of charges, of the mutual
energies of each charge-pair. First we wish to write an expression for
the energy of a charge distribution. As usual, we consider that each
volume element d V[image: -*-] contains the element of charge ρ d V[image: -*-]. Then
Eq. (8.3) should be written

[image: -*-][image: -*-]
(8.27)




Notice the factor [image: \tfrac{1}{2}][image: \tfrac{1}{2}], which is introduced because in the
double integral over d V1[image: -*-] and d V2[image: -*-] we have counted all pairs of
charge elements twice. (There is no convenient way of writing an
integral that keeps track of the pairs so that each pair is counted
only once.)  Next we notice that the integral over d V2[image: -*-]
in (8.27) is just the potential at (1)[image: -*-]. That is,

[image: -*-][image: -*-]


so that (8.27) can be written as

[image: -*-][image: -*-]


Or, since the point (2)[image: -*-] no longer appears, we can simply write

[image: -*-][image: -*-]
(8.28)









This equation can be interpreted as follows. The potential energy of
the charge ρ d V[image: -*-] is the product of this charge and the potential
at the same point. The total energy is therefore the integral
over ϕ ρ d V[image: -*-]. But there is again the factor [image: \tfrac{1}{2}][image: \tfrac{1}{2}]. It is
still required because we are counting energies twice. The mutual
energies of two charges is the charge of one times the potential at it
due to the other. Or, it can be taken as the second charge
times the potential at it from the first. Thus for two point charges
we would write
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or
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Notice that we could also write

[image: -*-][image: -*-]
(8.29)




The integral in (8.28) corresponds to the sum of both
terms in the brackets of (8.29). That is why we need the
factor [image: \tfrac{1}{2}][image: \tfrac{1}{2}].




An interesting question is: Where is the electrostatic energy located?
One might also ask: Who cares? What is the meaning of such a question?
If there is a pair of interacting charges, the combination has a
certain energy. Do we need to say that the energy is located at one of
the charges or the other, or at both, or in between? These questions
may not make sense because we really know only that the total energy
is conserved. The idea that the energy is located somewhere is
not necessary.




Yet suppose that it did make sense to say, in general, that
energy is located at a certain place, as it does for heat energy. We
might then extend our principle of the conservation of energy
with the idea that if the energy in a given volume changes, we should
be able to account for the change by the flow of energy into or out of
that volume. You realize that our early statement of the principle of
the conservation of energy is still perfectly all right if some energy
disappears at one place and appears somewhere else far away without
anything passing (that is, without any special phenomena occurring) in
the space between. We are, therefore, now discussing an extension of
the idea of the conservation of energy. We might call it a principle
of the local conservation of energy. Such a principle would say
that the energy in any given volume changes only by the amount that
flows into or out of the volume. It is indeed possible that energy is
conserved locally in such a way. If it is, we would have a much more
detailed law than the simple statement of the conservation of total
energy. It does turn out that in nature energy is conserved
locally. We can find formulas for where the energy is located and how
it travels from place to place.




There is also a physical reason why it is imperative that we be
able to say where energy is located. According to the theory of
gravitation, all mass is a source of gravitational attraction. We also
know, by E=m c2[image: -*-], that mass and energy are equivalent. All energy is,
therefore, a source of gravitational force. If we could not locate the
energy, we could not locate all the mass. We would not be able to say
where the sources of the gravitational field are located. The theory
of gravitation would be incomplete.




If we restrict ourselves to electrostatics there is really no way to
tell where the energy is located. The complete Maxwell
equations
of electrodynamics give us much more information (although even then the
answer is, strictly speaking, not unique.) We will therefore discuss
this question in detail again in a later chapter.  We will give you now
only the result for the particular case of electrostatics.  The energy
is located in space, where the electric field is. This seems reasonable
because we know that when charges are accelerated they radiate electric
fields.  We would like to say that when light or radiowaves travel from
one point to another, they carry their energy with them. But there are
no charges in the waves. So we would like to locate the energy where the
electromagnetic field is and not at the charges from which it came. We
thus describe the energy, not in terms of the charges, but in terms of
the fields they produce. We can, in fact, show that
Eq. (8.28) is numerically equal to
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(8.30)




We can then interpret this formula as saying that when an electric
field is present, there is located in space an energy whose
density (energy per unit volume) is

[image: -*-][image: -*-]
(8.31)




This idea is illustrated in Fig. 8–8.
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Fig. 8–8. Each volume element d V=d x d y d z[image: -*-] in an electric field
contains the energy (ϵ0/2) E2 d V[image: -*-].





To show that Eq. (8.30) is consistent with our laws of
electrostatics, we begin by introducing into Eq. (8.28)
the relation between ρ[image: -*-] and ϕ[image: -*-] that we obtained in
Chapter 6:

[image: -*-][image: -*-]


We get

[image: -*-][image: -*-]
(8.32)




Writing out the components of the integrand, we see that
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(8.33)





Our energy integral is then
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We can use Gauss’ theorem to change the second integral into a surface
integral:

[image: -*-][image: -*-]
(8.34)









We evaluate the surface integral in the case that the surface goes to
infinity (so the volume integrals become integrals over all space),
supposing that all the charges are located within some finite
distance. The simple way to proceed is to take a spherical surface of
enormous radius R[image: -*-] whose center is at the origin of coordinates. We
know that when we are very far away from all charges, ϕ[image: -*-] varies
as 1/R[image: -*-] and ∇ϕ[image: -*-] as 1/R2[image: -*-]. (Both will decrease even faster
with R[image: -*-] if there the net charge in the distribution is zero.) Since
the surface area of the large sphere increases as R2[image: -*-], we see that
the surface integral falls off as (1/R) (1/R2) R2=(1/R)[image: -*-] as the
radius of the sphere increases. So if we include all space in our
integration (R→∞[image: -*-]), the surface integral goes to zero and we
have that
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(8.35)




We see that it is possible for us to represent the energy of any
charge distribution as being the integral over an energy density
located in the field.







8–6 The energy of a point charge


Our new relation, Eq. (8.35), says that even a single
point charge q[image: -*-] will have some electrostatic energy. In this case,
the electric field is given by
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So the energy density at the distance r[image: -*-] from the charge is
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We can take for an element of volume a spherical shell of thickness d r[image: -*-]
and area 4 π r2[image: -*-]. The total energy is

[image: -*-][image: -*-]
(8.36)









Now the limit at r=∞[image: -*-] gives no difficulty. But for a point
charge we are supposed to integrate down to r=0[image: -*-], which gives an
infinite integral. Equation (8.35) says that there is an
infinite amount of energy in the field of a point charge, although we
began with the idea that there was energy only between point
charges.  In our original energy formula for a collection of point
charges (Eq. 8.3), we did not include any interaction
energy of a charge with itself. What has happened is that when we went
over to a continuous distribution of charge in Eq. (8.27),
we counted the energy of interaction of every infinitesimal
charge with all other infinitesimal charges. The same account is
included in Eq. (8.35), so when we apply it to a
finite point charge, we are including the energy it would take to
assemble that charge from infinitesimal parts. You will notice, in fact,
that we would also get the result in Eq. (8.36) if we used
our expression (8.11) for the energy of a charged sphere and
let the radius tend toward zero.




We must conclude that the idea of locating the energy in the field is
inconsistent with the assumption of the existence of point
charges. One way out of the difficulty would be to say that elementary
charges, such as an electron, are not points but are really small
distributions of charge. Alternatively, we could say that there is
something wrong in our theory of electricity at very small distances,
or with the idea of the local conservation of energy. There are
difficulties with either point of view. These difficulties have never
been overcome; they exist to this day. Sometime later, when we have
discussed some additional ideas, such as the momentum in an
electromagnetic field, we will give a more complete account of these
fundamental difficulties in our understanding of nature.
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9–1 The electric potential gradient of the atmosphere


On an ordinary day over flat desert country, or over the sea, as one
goes upward from the surface of the ground the electric potential
increases by about 100[image: -*-] volts per meter. Thus there is a vertical
electric field E[image: -*-] of 100[image: -*-] volts/m in the air. The sign of the
field corresponds to a negative charge on the earth’s surface. This
means that outdoors the potential at the height of your nose is
200[image: -*-] volts higher than the potential at your feet! You might ask: “Why
don’t we just stick a pair of electrodes out in the air one meter
apart and use the 100[image: -*-] volts to power our electric lights?” Or you
might wonder: “If there is really a potential difference of
200[image: -*-] volts between my nose and my feet, why is it I don’t get a shock
when I go out into the street?”




We will answer the second question first. Your body is a relatively
good conductor. If you are in contact with the ground, you and the
ground will tend to make one equipotential surface. Ordinarily, the
equipotentials are parallel to the surface, as shown in
Fig. 9–1(a), but when you are there, the equipotentials are
distorted, and the field looks somewhat as shown in
Fig. 9–1(b). So you still have very nearly zero potential
difference between your head and your feet. There are charges
that come from the earth to your head, changing the field. Some of them
may be discharged by ions collected from the air, but the current of
these is very small because air is a poor conductor.
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Fig. 9–1. (a) The potential distribution above the earth. (b) The
potential distribution near a man in an open flat place.





How can we measure such a field if the field is changed by putting
something there? There are several ways. One way is to place an
insulated conductor at some distance above the ground and leave it
there until it is at the same potential as the air. If we leave it
long enough, the very small conductivity in the air will let the
charges leak off (or onto) the conductor until it comes to the
potential at its level.  Then we can bring it back to the ground, and
measure the shift of its potential as we do so. A faster way is to let
the conductor be a bucket of water with a small leak. As the water
drops out, it carries away any excess charges and the bucket will
approach the same potential as the air. (The charges, as you know,
reside on the surface, and as the drops come off “pieces of surface”
break off.) We can measure the potential of the bucket with an
electrometer.



[image: -][image: -]
Fig. 9–2. (a) A grounded metal plate will have the same surface charge
as the earth. (b) If the plate is covered with a grounded conductor
it will have no surface charge.





There is another way to directly measure the potential
gradient. Since there is an electric field, there is a surface
charge on the earth (σ=ϵ0 E[image: -*-]). If we place a flat metal plate
at the earth’s surface and ground it, negative charges appear on it
(Fig. 9–2a). If this plate is now covered by another
grounded conducting cover B[image: -*-], the charges will appear on the cover,
and there will be no charges on the original plate A[image: -*-]. If we measure
the charge that flows from plate A[image: -*-] to the ground (by, say, a
galvanometer in the grounding wire) as we cover it, we can find the
surface charge density that was there, and therefore also find the
electric field.




Having suggested how we can measure the electric field in the
atmosphere, we now continue our description of it. Measurements show,
first of all, that the field continues to exist, but gets weaker, as
one goes up to high altitudes. By about 50[image: -*-] kilometers, the field is
very small, so most of the potential change (the integral of E[image: -*-]) is
at lower altitudes. The total potential difference from the surface of
the earth to the top of the atmosphere is about 400,000[image: -*-] volts.







9–2 Electric currents in the atmosphere


Another thing that can be measured, in addition to the potential
gradient, is the current in the atmosphere. The current density is
small—about 10[image: -*-] micromicroamperes crosses each square meter
parallel to the earth. The air is evidently not a perfect insulator,
and because of this conductivity, a small current—caused by the
electric field we have just been describing—passes from the sky down
to the earth.




Why does the atmosphere have conductivity? Here and there among the
air molecules there is an ion—a molecule of oxygen, say, which has
acquired an extra electron, or perhaps lost one. These ions do not
stay as single molecules; because of their electric field they usually
accumulate a few other molecules around them. Each ion then becomes a
little lump which, along with other lumps, drifts in the
field—moving slowly upward or downward—making the observed
current. Where do the ions come from? It was first guessed that
the ions were produced by the radioactivity of the earth. (It was
known that the radiation from radioactive materials would make air
conducting by ionizing the air molecules.) Particles like β[image: -*-]-rays
coming out of the atomic nuclei are moving so fast that they tear
electrons from the atoms, leaving ions behind. This would imply, of
course, that if we were to go to higher altitudes, we should find less
ionization, because the radioactivity is all in the dirt on the
ground—in the traces of radium, uranium, potassium, etc.
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Fig. 9–3. Measuring the conductivity of air due to the motion of ions.





To test this theory, some physicists carried an experiment up in
balloons to measure the ionization of the air
(Hess, in 1912) and discovered
that the opposite was true—the ionization per unit volume
increased with altitude!  (The apparatus was like that of
Fig. 9–3. The two plates were charged periodically to the
potential V[image: -*-]. Due to the conductivity of the air, the plates slowly
discharged; the rate of discharge was measured with the electrometer.)
This was a most mysterious result—the most dramatic finding in the
entire history of atmospheric electricity. It was so dramatic, in fact,
that it required a branching off of an entirely new subject—cosmic
rays. Atmospheric
electricity itself remained less dramatic.  Ionization was evidently
being produced by something from outside the earth; the investigation of
this source led to the discovery of the cosmic rays. We will not discuss
the subject of cosmic rays now, except to say that they maintain the
supply of ions. Although the ions are being swept away all the time, new
ones are being created by the cosmic-ray particles coming from the
outside.





To be precise, we must say that besides the ions made of molecules,
there are also other kinds of ions. Tiny pieces of dirt, like
extremely fine bits of dust, float in the air and become charged. They
are sometimes called “nuclei.” For example, when a wave breaks in
the sea, little bits of spray are thrown into the air. When one of
these drops evaporates, it leaves an infinitesimal crystal of NaCl
floating in the air. These tiny crystals can then pick up charges and
become ions; they are called “large ions.”




The small ions—those formed by cosmic rays—are the most
mobile. Because they are so small, they move rapidly through the
air—with a speed of about 1 cm/sec in a field of
100[image: -*-] volts/meter, or 1 volt/cm. The much bigger and heavier ions move
much more slowly. It turns out that if there are many “nuclei,” they
will pick up the charges from the small ions. Then, since the “large
ions” move so slowly in a field, the total conductivity is
reduced. The conductivity of air, therefore, is quite variable, since
it is very sensitive to the amount of “dirt” there is in it.  There
is much more of such dirt over land—where the winds can blow up dust
or where man throws all kinds of pollution into the air—than there
is over water.  It is not surprising that from day to day, from moment
to moment, from place to place, the conductivity near the earth’s
surface varies enormously. The voltage gradient observed at any
particular place on the earth’s surface also varies greatly because
roughly the same current flows down from high altitudes in different
places, and the varying conductivity near the earth results in a
varying voltage gradient.




The conductivity of the air due to the drifting of ions also increases
rapidly with altitude—for two reasons. First of all, the ionization
from cosmic rays increases with altitude. Secondly, as the density of
air goes down, the mean free path of the ions increases, so that they
can travel farther in the electric field before they have a
collision—resulting in a rapid increase of conductivity as one goes
up.




Although the electric current-density in the air is only a few
micromicroamperes per square meter, there are very many square meters
on the earth’s surface. The total electric current reaching the
earth’s surface at any time is very nearly constant at
1800[image: -*-] amperes. This current, of course, is “positive”—it carries plus
charges to the earth. So we have a voltage supply of 400,000[image: -*-] volts
with a current of 1800[image: -*-] amperes—a power of 700[image: -*-] megawatts!




With such a large current coming down, the negative charge on the
earth should soon be discharged. In fact, it should take only about
half an hour to discharge the entire earth. But the atmospheric
electric field has already lasted more than a half-hour since its
discovery. How is it maintained? What maintains the voltage? And
between what and the earth? There are many questions.



[image: -][image: -]
Fig. 9–4. Typical electrical conditions in a clear atmosphere.





The earth is negative, and the potential in the air is positive. If
you go high enough, the conductivity is so great that horizontally
there is no more chance for voltage variations. The air, for the scale
of times that we are talking about, becomes effectively a
conductor. This occurs at a height in the neighborhood of
50[image: -*-] kilometers. This is not as high as what is called the
“ionosphere,” in which there are very large numbers
of ions produced by photoelectricity from the sun. Nevertheless, for our
discussions of atmospheric electricity, the air becomes sufficiently
conductive at about 50[image: -*-] kilometers that we can imagine that there is
practically a perfect conducting surface at this height, from which the
currents come down.  Our picture of the situation is shown in
Fig. 9–4. The problem is: How is the positive charge
maintained there? How is it pumped back? Because if it comes down to the
earth, it has to be pumped back somehow. That was one of the greatest
puzzles of atmospheric electricity for quite a while.



[image: -][image: -]
Fig. 9–5. The average daily variation of the atmospheric potential
gradient on a clear day over the oceans; referred to Greenwich
time.





Each piece of information we can get should give a clue or, at least,
tell you something about it. Here is an interesting phenomenon: If we
measure the current (which is more stable than the potential gradient)
over the sea, for instance, or in careful conditions, and average very
carefully so that we get rid of the irregularities, we discover that
there is still a daily variation. The average of many measurements
over the oceans has a variation with time roughly as shown in
Fig. 9–5. The current varies by about ±15[image: -*-] percent, and
it is largest at 7:00 p.m. in London. The strange part of the
thing is that no matter where you measure the current—in the
Atlantic Ocean, the Pacific Ocean, or the Arctic Ocean—it is at its
peak value when the clocks in London say 7:00 p.m.! All
over the world the current is at its maximum at 7:00 p.m.
London time and it is at a minimum at 4:00 a.m. London time. In
other words, it depends upon the absolute time on the earth, not
upon the local time at the place of observation. In one respect this is
not mysterious; it checks with our idea that there is a very high
conductivity laterally at the top, because that makes it impossible for
the voltage difference from the ground to the top to vary locally. Any
potential variations should be worldwide, as indeed they are. What we
now know, therefore, is that the voltage at the “top” surface is
dropping and rising by 15[image: -*-] percent with the absolute time on the earth.







9–3 Origin of the atmospheric currents


We must next talk about the source of the large negative currents
which must be flowing from the “top” to the surface of the earth to
keep charging it up negatively. Where are the batteries that do this?
The “battery” is shown in Fig. 9–6. It is the
thunderstorm and its lightning. It turns out that the bolts of
lightning do not “discharge” the potential we have been talking
about (as you might at first guess). Lightning storms carry
negative charges to the earth. When a lightning bolt strikes,
nine times out of ten it brings down negative charges to the earth in
large amounts. It is the thunderstorms throughout the world that are
charging the earth with an average of 1800[image: -*-] amperes, which is then
being discharged through regions of fair weather.



[image: -]
Fig. 9–6. The mechanism that generates atmospheric electric field. [Photo by William L. Widmayer.]





There are about 40,000[image: -*-] thunderstorms per day all over the earth,
and we can think of them as batteries pumping the electricity to the
upper layer and maintaining the voltage difference. Then take into
account the geography of the earth—there are thunderstorms in the
afternoon in Brazil, tropical thunderstorms in Africa, and so
forth. People have made estimates of how much lightning is striking
world-wide at any time, and perhaps needless to say, their estimates
more or less agree with the voltage difference measurements: the total
amount of thunderstorm activity is highest on the whole earth at about
7:00 p.m. in London. However, the thunderstorm estimates are
very difficult to make and were made only after it was known
that the variation should have occurred. These things are very
difficult because we don’t have enough observations on the seas and
over all parts of the world to know the number of thunderstorms
accurately. But those people who think they “do it right” obtain the
result that there are about 100[image: -*-] lightning flashes per second
world-wide with a peak in the activity at 7:00 p.m.
Greenwich Mean Time.




In order to understand how these batteries work, we will look at a
thunderstorm in detail. What is going on inside a thunderstorm? We
will describe this insofar as it is known. As we get into this
marvelous phenomenon of real nature—instead of the idealized spheres
of perfect conductors inside of other spheres that we can solve so
neatly—we discover that we don’t know very much. Yet it is really
quite exciting. Anyone who has been in a thunderstorm has enjoyed it,
or has been frightened, or at least has had some emotion. And in those
places in nature where we get an emotion, we find that there is
generally a corresponding complexity and mystery about it. It is not
going to be possible to describe exactly how a thunderstorm works,
because we do not yet know very much. But we will try to describe a
little bit about what happens.







9–4 Thunderstorms

[image: -][image: -]
Fig. 9–7. A thunderstorm cell in the early stages of development. [From
U.S. Department of Commerce Weather Bureau Report, June 1949.]





In the first place, an ordinary thunderstorm is made up of a number of
“cells” fairly close together, but almost independent of each
other. So it is best to analyze one cell at a time. By a “cell” we
mean a region with a limit area in the horizontal direction in which
all of the basic processes occur. Usually there are several cells side
by side, and in each one about the same thing is happening, although
perhaps with a different timing. Figure 9–7 indicates in
an idealized fashion what such a cell looks like in the early stage of
the thunderstorm. It turns out that in a certain place in the air,
under certain conditions which we shall describe, there is a general
rising of the air, with higher and higher velocities near the top. As
the warm, moist air at the bottom rises, it cools and the water vapor in
it condenses. In the figure the little stars indicate snow and the
dots indicate rain, but because the updraft currents are great enough
and the drops are small enough, the snow and rain do not come down at
this stage. This is the beginning stage, and not the real thunderstorm
yet—in the sense that we don’t have anything happening at the ground.
At the same time that the warm air rises, there is an entrainment of air
from the sides—an important point which was neglected for many years.
Thus it is not just the air from below which is rising, but also a
certain amount of other air from the sides.




Why does the air rise like this? As you know, when you go up in
altitude the air is colder. The ground is heated by the sun,
and the re-radiation of heat to the sky comes from water vapor high in
the atmosphere; so at high altitudes the air is cold—very
cold—whereas lower down it is warm. You may say, “Then it’s very
simple. Warm air is lighter than cold; therefore the combination is
mechanically unstable and the warm air rises.” Of course, if the
temperature is different at different heights, the air is
unstable thermodynamically. Left to itself infinitely long, the
air would all come to the same temperature. But it is not left to
itself; the sun is always shining (during the day). So the problem is
indeed not one of thermodynamic equilibrium, but of mechanical
equilibrium. Suppose we plot—as in Fig. 9–8—the
temperature of the air against height above the ground. In ordinary
circumstances we would get a decrease along a curve like the one
labeled (a); as the height goes up, the temperature goes down. How can
the atmosphere be stable?  Why doesn’t the hot air below simply rise
up into the cold air? The answer is this: if the air were to go up,
its pressure would go down, and if we consider a particular parcel of
air going up, it would be expanding adiabatically.  (There would be no
heat coming in or out because in the large dimensions considered here,
there isn’t time for much heat flow.) Thus the parcel of air would
cool as it rises. Such an adiabatic process would give a
temperature-height relationship like curve (b) in Fig. 9–8.
Any air which rose from below would be colder than the
environment it goes into. Thus there is no reason for the hot air below
to rise; if it were to rise, it would cool to a lower temperature than
the air already there, would be heavier than the air there, and would
just want to come down again.  On a good, bright day with very little
humidity there is a certain rate at which the temperature in the
atmosphere falls, and this rate is, in general, lower than the “maximum
stable gradient,” which is represented by curve (b). The air is in
stable mechanical equilibrium.



[image: -][image: -]
Fig. 9–8. Atmospheric temperature. (a) Static atmosphere; (b) adiabatic
cooling of dry air; (c) adiabatic cooling of wet air; (d) wet air
with some mixing of ambient air.





On the other hand, if we think of a parcel of air that contains a lot
of water vapor being carried up into the air, its adiabatic cooling
curve will be different. As it expands and cools, the water vapor in
it will condense, and the condensing water will liberate heat. Moist
air, therefore, does not cool nearly as much as dry air does. So if
air that is wetter than the average starts to rise, its temperature
will follow a curve like (c) in Fig. 9–8. It will cool
off somewhat, but will still be warmer than the surrounding air at the
same level. If we have a region of warm moist air and something starts
it rising, it will always find itself lighter and warmer than the air
around it and will continue to rise until it gets to enormous
heights. This is the machinery that makes the air in the thunderstorm
cell rise.




For many years the thunderstorm cell was explained simply in this
manner.  But then measurements showed that the temperature of the
cloud at different heights was not nearly as high as indicated by
curve (c). The reason is that as the moist air “bubble” goes up, it
entrains air from the environment and is cooled off by it. The
temperature-versus-height curve looks more like curve (d), which is
much closer to the original curve (a) than to curve (c).
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Fig. 9–9. A mature thunderstorm cell. [From U.S. Department of Commerce
Weather Bureau Report, June 1949.]





After the convection just described gets under way, the cross section
of a thunderstorm cell looks like Fig. 9–9. We have
what is called a “mature” thunderstorm. There is a very rapid
updraft which, in this stage, goes up to about 10,000[image: -*-] to
15,000[image: -*-] meters—sometimes even much higher. The thunderheads, with
their condensation, climb way up out of the general cloud bank,
carried by an updraft that is usually about 60[image: -*-] miles an hour. As the
water vapor is carried up and condenses, it forms tiny drops which are
rapidly cooled to temperatures below zero degrees. They should freeze,
but do not freeze immediately—they are “supercooled.” Water and
other liquids will usually cool well below their freezing points
before crystallizing if there are no “nuclei” present to start the
crystallization process. Only if there is some small piece of material
present, like a tiny crystal of NaCl, will the water drop freeze into
a little piece of ice. Then the equilibrium is such that the water
drops evaporate and the ice crystals grow. Thus at a certain point
there is a rapid disappearance of the water and a rapid buildup of
ice. Also, there may be direct collisions between the water drops and
the ice—collisions in which the supercooled water becomes attached
to the ice crystals, which causes it to suddenly crystallize. So at a
certain point in the cloud expansion there is a rapid accumulation of
large ice particles.





When the ice particles are heavy enough, they begin to fall through
the rising air—they get too heavy to be supported any longer in the
updraft. As they come down, they draw a little air with them and start
a downdraft. And surprisingly enough, it is easy to see that once the
downdraft is started, it will maintain itself. The air now drives
itself down!




Notice that the curve (d) in Fig. 9–8 for the actual
distribution of temperature in the cloud is not as steep as curve (c),
which applies to wet air. So if we have wet air falling, its
temperature will drop with the slope of curve (c) and will go
below the temperature of the environment if it gets down far
enough, as indicated by curve (e) in the figure. The moment it does
that, it is denser than the environment and continues to fall
rapidly. You say, “That is perpetual motion. First, you argue that
the air should rise, and when you have it up there, you argue equally
well that the air should fall.” But it isn’t perpetual motion. When
the situation is unstable and the warm air should rise, then clearly
something has to replace the warm air.  It is equally true that cold
air coming down would energetically replace the warm air, but you
realize that what is coming down is not the original air. The
early arguments, that had a particular cloud without entrainment going
up and then coming down, had some kind of a puzzle. They needed the
rain to maintain the downdraft—an argument which is hard to
believe. As soon as you realize that there is a lot of original air
mixed in with the rising air, the thermodynamic argument shows that
there can be a descent of the cold air which was originally at some
great height. This explains the picture of the active thunderstorm
sketched in Fig. 9–9.




As the air comes down, rain begins to come out of the bottom of the
thunderstorm. In addition, the relatively cold air spreads out when it
arrives at the earth’s surface. So just before the rain comes there is
a certain little cold wind that gives us a forewarning of the coming
storm. In the storm itself there are rapid and irregular gusts of air,
there is an enormous turbulence in the cloud, and so on. But basically
we have an updraft, then a downdraft—in general, a very complicated
process.
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Fig. 9–10. The late phase of a thunderstorm cell. [From U.S. Department of
Commerce Weather Bureau Report, June 1949.]





The moment at which precipitation starts is the same moment that the
large downdraft begins and is the same moment, in fact, when the
electrical phenomena arise. Before we describe lightning, however, we
can finish the story by looking at what happens to the thunderstorm
cell after about one-half an hour to an hour. The cell looks as shown
in Fig. 9–10. The updraft stops because there is no
longer enough warm air to maintain it. The downward precipitation
continues for a while, the last little bits of water come out, and
things get quieter and quieter—although there are small ice crystals
left way up in the air. Because the winds at very great altitude are
in different directions, the top of the cloud usually spreads into an
anvil shape. The cell comes to the end of its life.







9–5 The mechanism of charge separation


We want now to discuss the most important aspect for our
purposes—the development of the electrical charges. Experiments of
various kinds—including flying airplanes through thunderstorms (the
pilots who do this are brave men!)—tell us that the charge
distribution in a thunderstorm cell is something like that shown in
Fig. 9–11. The top of the thunderstorm has a positive
charge, and the bottom a negative one—except for a small local
region of positive charge in the bottom of the cloud, which has caused
everybody a lot of worry. No one seems to know why it is there, how
important it is—whether it is a secondary effect of the positive
rain coming down, or whether it is an essential part of the machinery.
Things would be much simpler if it weren’t there. Anyway, the
predominantly negative charge at the bottom and the positive charge at
the top have the correct sign for the battery needed to drive the
earth negative. The positive charges are 6 or 7 kilometers up in
the air, where the temperature is about −20°[image: -*-]C, whereas the
negative charges are 3 or 4 kilometers high, where the temperature
is between zero and −10°[image: -*-]C.
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Fig. 9–11. The distribution of electrical charges in a mature thunderstorm cell.
[From U.S. Department of Commerce Weather Bureau Report, June 1949.]





The charge at the bottom of the cloud is large enough to produce
potential differences of 20[image: -*-], or 30[image: -*-], or even 100[image: -*-] million volts
between the cloud and the earth—much bigger than the 0.4[image: -*-] million
volts from the “sky” to the ground in a clear atmosphere. These
large voltages break down the air and create giant arc
discharges. When the breakdown occurs the negative charges at the
bottom of the thunderstorm are carried down to the earth in the
lightning strokes.




Now we will describe in some detail the character of the
lightning. First of all, there are large voltage differences around,
so that the air breaks down. There are lightning strokes between one
piece of a cloud and another piece of a cloud, or between one cloud
and another cloud, or between a cloud and the earth. In each of the
independent discharge flashes—the kind of lightning strokes you see
there are approximately 20[image: -*-] or 30[image: -*-] coulombs of charge brought
down. One question is: How long does it take for the cloud to
regenerate the 20[image: -*-] or 30[image: -*-] coulombs which are taken away by the
lightning bolt? This can be seen by measuring, far from a cloud, the
electric field produced by the cloud’s dipole moment. In such
measurements you see a sudden decrease in the field when the lightning
strikes, and then an exponential return to the previous value with a
time constant which is slightly different for different cases but
which is in the neighborhood of 5 seconds. It takes a thunderstorm
only 5 seconds after each lightning stroke to build its charge up
again. That doesn’t necessarily mean that another stroke is going to
occur in exactly 5 seconds every time, because, of course, the
geometry is changed, and so on.  The strokes occur more or less
irregularly, but the important point is that it takes about
5 seconds to recreate the original condition. Thus there are
approximately 4 amperes of current in the generating machine of the
thunderstorm. This means that any model made to explain how this storm
generates its electricity must be one with plenty of juice—it must
be a big, rapidly operating device.
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Fig. 9–12. A jet of water with an electric field near the nozzle.





Before we go further we shall consider something which is almost
certainly completely irrelevant, but nevertheless interesting, because
it does show the effect of an electric field on water drops. We say
that it may be irrelevant because it relates to an experiment one can
do in the laboratory with a stream of water to show the rather strong
effects of the electric field on drops of water. In a thunderstorm
there is no stream of water; there is a cloud of condensing ice and
drops of water. So the question of the mechanisms at work in a
thunderstorm is probably not at all related to what you can see in the
simple experiment we will describe. If you take a small nozzle
connected to a water faucet and direct it upward at a steep angle, as
in Fig. 9–12, the water will come out in a fine stream
that eventually breaks up into a spray of fine drops. If you now put
an electric field across the stream at the nozzle (by bringing up a
charged rod, for example), the form of the stream will change. With a
weak electric field you will find that the stream breaks up into a
smaller number of large-sized drops. But if you apply a stronger
field, the stream breaks up into many, many fine drops—smaller than
before.1  With a weak electric field there is a
tendency to inhibit the breakup of the stream into drops. With a
stronger field, however, there is an increase in the tendency to
separate into drops.




The explanation of these effects is probably the following. If we have
the stream of water coming out of the nozzle and we put a small
electric field across it one side of the water gets slightly positive
and the other side gets slightly negative.  Then, when the stream
breaks, the drops on one side may be positive, and those on the other
side may be negative. They will attract each other and will have a
tendency to stick together more than they would have before—the
stream doesn’t break up as much. On the other hand, if the field is
stronger, the charge in each one of the drops gets much larger, and
there is a tendency for the charge itself to help break up the
drops through their own repulsion. Each drop will break into many
smaller ones, each carrying a charge, so that they are all repelled,
and spread out so rapidly. So as we increase the field, the stream
becomes more finely separated. The only point we wish to make is that
in certain circumstances electric fields can have considerable
influence on the drops. The exact machinery by which something happens
in a thunderstorm is not at all known, and is not at all necessarily
related to what we have just described. We have included it just so
that you will appreciate the complexities that could come into
play. In fact, nobody has a theory applicable to clouds based on that
idea.




We would like to describe two theories which have been invented to
account for the separation of the charges in a thunderstorm. All the
theories involve the idea that there should be some charge on the
precipitation particles and a different charge in the air. Then by the
movement of the precipitation particles—the water or the
ice—through the air there is a separation of electric charge. The
only question is: How does the charging of the drops begin? One of the
older theories is called the “breaking-drop”
theory. Somebody discovered that if you
have a drop of water that breaks into two pieces in a windstream,
there is positive charge on the water and negative charge in the
air. This breaking-drop theory has several
disadvantages, among which the most serious is that the sign is
wrong. Second, in the large number of temperate-zone thunderstorms
which do exhibit lightning, the precipitation effects at high
altitudes are in ice, not in water.





From what we have just said, we note that if we could imagine some way
for the charge to be different at the top and bottom of a drop and if
we could also see some reason why drops in a high-speed airstream
would break up into unequal pieces—a large one in the front and a
smaller one in the back because of the motion through the air or
something—we would have a theory. (Different from any known theory!)
Then the small drops would not fall through the air as fast as the big
ones, because of the air resistance, and we would get a charge
separation. You see, it is possible to concoct all kinds of
possibilities.
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Fig. 9–13. C. T. R. Wilson’s theory of charge separation in a
thundercloud.





One of the more ingenious theories, which is more satisfactory in many respects
than the breaking-drop theory, is due to
C. T. R. Wilson. We will
describe it, as Wilson did, with
reference to water drops, although the same phenomenon would also work with ice.
Suppose we have a water drop that is falling in the electric field of about
100[image: -*-] volts per meter toward the negatively charged earth. The drop will have an
induced dipole moment—with the bottom of the drop positive and the top of the
drop negative, as drawn in Fig. 9–13. Now there are in the air the
“nuclei” that we mentioned earlier—the large slow-moving ions. (The fast
ions do not have an important effect here.) Suppose that as a drop comes down,
it approaches a large ion. If the ion is positive, it is repelled by the
positive bottom of the drop and is pushed away. So it does not become attached
to the drop.  If the ion were to approach from the top, however, it might attach
to the negative, top side. But since the drop is falling through the air, there
is an air drift relative to it, going upwards, which carries the ions away if
their motion through the air is slow enough. Thus the positive ions cannot
attach at the top either. This would apply, you see, only to the large,
slow-moving ions. The positive ions of this type will not attach themselves
either to the front or the back of a falling drop. On the other hand, as the
large, slow, negative ions are approached by a drop, they will be
attracted and will be caught. The drop will acquire negative charge—the sign
of the charge having been determined by the original potential difference on the
entire earth—and we get the right sign. Negative charge will be brought down
to the bottom part of the cloud by the drops, and the positively charged ions
which are left behind will be blown to the top of the cloud by the various
updraft currents. The theory looks pretty good, and it at least gives the right
sign. Also it doesn’t depend on having liquid drops. We will see, when we learn
about polarization in a dielectric, that pieces of ice will do the same thing.
They also will develop positive and negative charges on their extremities when
they are in an electric field.




There are, however, some problems even with this theory. First of all,
the total charge involved in a thunderstorm is very high. After a
short time, the supply of large ions would get used up. So
Wilson and others have
had to propose that there are additional sources of the large
ions. Once the charge separation starts, very large electric fields
are developed, and in these large fields there may be places where the
air will become ionized. If there is a highly charged point, or any
small object like a drop, it may concentrate the field enough to make
a “brush discharge.” When there is a strong
enough electric field—let us say it is positive—electrons will
fall into the field and will pick up a lot of speed between
collisions. Their speed will be such that in hitting another atom they
will tear electrons off at that atom, leaving positive charges
behind. These new electrons also pick up speed and collide with more
electrons. So a kind of chain reaction or avalanche occurs, and there
is a rapid accumulation of ions. The positive charges are left near
their original positions, so the net effect is to distribute the
positive charge on the point into a region around the point. Then, of
course, there is no longer a strong field, and the process stops. This
is the character of a brush discharge. It is
possible that the fields may become strong enough in the cloud to
produce a little bit of brush discharge; there
may also be other mechanisms, once the thing is started, to produce a
large amount of ionization. But nobody knows exactly how it works. So
the fundamental origin of lightning is really not thoroughly
understood. We know it comes from the thunderstorms. (And we know, of
course, that thunder comes from the lightning—from the thermal
energy released by the bolt.)




At least we can understand, in part, the origin of atmospheric
electricity. Due to the air currents, ions, and water drops on ice
particles in a thunderstorm, positive and negative charges are
separated. The positive charges are carried upward to the top of the
cloud (see Fig. 9–11), and the negative charges are
dumped into the ground in lightning strokes. The positive charges
leave the top of the cloud, enter the high-altitude layers of more
highly conducting air, and spread throughout the earth. In regions of
clear weather, the positive charges in this layer are slowly conducted
to the earth by the ions in the air—ions formed by cosmic rays, by
the sea, and by man’s activities. The atmosphere is a busy electrical
machine!







9–6 Lightning

[image: -]
Fig. 9–14. Photograph of a lightning flash taken with a “Boys” camera. [From
Schonland, Malan, and Collens, Proc. Roy. Soc.
London, Vol. 152 (1935).]





The first evidence of what happens in a lightning stroke was obtained
in photographs taken with a camera held by hand and moved back and
forth with the shutter open—while pointed toward a place where
lightning was expected.  The first photographs obtained this way
showed clearly that lightning strokes are usually multiple discharges
along the same path. Later, the “Boys”
camera, which has two lenses
mounted 180°[image: -*-] apart on a rapidly rotating disc, was developed.  The
image made by each lens moves across the film—the picture is spread
out in time. If, for instance, the stroke repeats, there will be two
images side by side.  By comparing the images of the two lenses, it is
possible to work out the details of the time sequence of the
flashes. Figure 9–14 shows a photograph taken with a
“Boys” camera.
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Fig. 9–15. The formation of the “step leader.”





We will now describe the lightning. Again, we don’t understand exactly
how it works. We will give a qualitative description of what it
looks like, but we won’t go into any details of why it
does what it appears to do. We will describe only the ordinary case of
the cloud with a negative bottom over flat country. Its potential is
much more negative than the earth underneath, so negative electrons
will be accelerated toward the earth. What happens is the
following. It all starts with a thing called a “step
leader,” which is not as bright as the stroke of
lightning. On the photographs one can see a little bright spot at the
beginning that starts from the cloud and moves downward very
rapidly—at a sixth of the speed of light! It goes only about
50[image: -*-] meters and stops. It pauses for about 50[image: -*-] microseconds, and then
takes another step. It pauses again and then goes another step, and so
on. It moves in a series of steps toward the ground, along a path like
that shown in Fig. 9–15. In the leader there are negative
charges from the cloud; the whole column is full of negative charge.
Also, the air is becoming ionized by the rapidly moving charges that
produce the leader, so the air becomes a conductor along the path traced
out. The moment the leader touches the ground, we have a conducting
“wire” that runs all the way up to the cloud and is full of negative
charge. Now, at last, the negative charge of the cloud can simply escape
and run out. The electrons at the bottom of the leader are the first
ones to realize this; they dump out, leaving positive charge behind that
attracts more negative charge from higher up in the leader, which in its
turn pours out, etc. So finally all the negative charge in a part of the
cloud runs out along the column in a rapid and energetic way.  So the
lightning stroke you see runs upwards from the ground, as
indicated in Fig. 9–16. In fact, this main stroke—by far
the brightest part—is called the return stroke. It is what
produces the very bright light, and the heat, which by causing a rapid
expansion of the air makes the thunder clap.



[image: -][image: -]
Fig. 9–16. The return lightning stroke runs back up the path made by the
leader.





The current in a lightning stroke is about 10,000[image: -*-] amperes at its
peak, and it carries down about 20[image: -*-] coulombs.





But we are still not finished. After a time of, perhaps, a few
hundredths of a second, when the return stroke has disappeared,
another leader comes down.  But this time there are no pauses. It is
called a “dart leader” this time, and it goes all the way
down—from top to bottom in one swoop. It goes full steam on exactly
the old track, because there is enough debris there to make it the
easiest route. The new leader is again full of negative charge. The
moment it touches the ground—zing!—there is a return stroke going
straight up along the path. So you see the lightning strike again, and
again, and again. Sometimes it strikes only once or twice, sometimes
five or ten times—once as many as 42[image: -*-] times on the same track was
seen—but always in rapid succession.




Sometimes things get even more complicated. For instance, after one of
its pauses the leader may develop a branch by sending out two
steps—both toward the ground but in somewhat different directions,
as shown in Fig. 9–15. What happens then depends on
whether one branch reaches the ground definitely before the other. If
that does happen, the bright return stroke (of negative charge dumping
into the ground) works its way up along the branch that touches
the ground, and when it reaches and passes the branching point on its
way up to the cloud, a bright stroke appears to go down the
other branch. Why?  Because negative charge is dumping out and that is
what lights up the bolt. This charge begins to move at the top of the
secondary branch, emptying successive, longer pieces of the branch, so
the bright lightning bolt appears to work its way down that branch, at
the same time as it works up toward the cloud. If, however, one of
these extra leader branches happens to have reached the ground almost
simultaneously with the original leader, it can sometimes happen that
the dart leader of the second stroke will take the second
branch. Then you will see the first main flash in one place and the
second flash in another place. It is a variant of the original idea.




Also, our description is oversimplified for the region very near the
ground.  When the step leader gets to within a hundred meters or so
from the ground, there is evidence that a discharge rises from the
ground to meet it. Presumably, the field gets big enough for a
brush-type discharge to occur. If, for instance, there is a sharp
object, like a building with a point at the top, then as the leader
comes down nearby the fields are so large that a discharge starts from
the sharp point and reaches up to the leader. The lightning tends to
strike such a point.




It has apparently been known for a long time that high objects are
struck by lightning. There is a quotation of Artabanus, the advisor to
Xerxes, giving his master advice on a contemplated attack on the
Greeks—during Xerxes’ campaign to bring the entire known world under
the control of the Persians. Artabanus said, “See how God with his
lightning always smites the bigger animals and will not suffer them to
wax insolent, while these of a lesser bulk chafe him not. How likewise
his bolts fall ever on the highest houses and tallest trees.”  And
then he explains the reason: “So, plainly, doth he love to bring down
everything that exalts itself.”




Do you think—now that you know a true account of lightning striking
tall trees—that you have a greater wisdom in advising kings on
military matters than did Artabanus 2400 years ago? Do not exalt
yourself. You could only do it less poetically.





	
  
  A handy way to observe the sizes of the drops is to
let the stream fall on a large thin metal plate. The larger drops
make a louder noise.
  ↩





  
    

10 Dielectrics



10–1 The dielectric constant


Here we begin to discuss another of the peculiar properties
of matter under the influence of the electric field. In an earlier
chapter we considered the behavior of conductors, in which the
charges move freely in response to an electric field to such points that
there is no field left inside a conductor. Now we will discuss
insulators, materials which do not conduct
electricity. One might at first believe that there should be no effect
whatsoever. However, using a simple electroscope and a parallel-plate
capacitor, Faraday discovered
that this was not so. His experiments showed that the capacitance of
such a capacitor is increased when an insulator is put between
the plates. If the insulator completely fills the space between the
plates, the capacitance is increased by a factor κ[image: -*-] which depends
only on the nature of the insulating material. Insulating materials are
also called dielectrics; the factor κ[image: -*-] is then a property
of the dielectric, and is called the dielectric constant. The
dielectric constant of a vacuum is, of course, unity.




Our problem now is to explain why there is any electrical effect if
the insulators are indeed insulators and do not conduct
electricity. We begin with the experimental fact that the capacitance
is increased and try to reason out what might be going on. Consider a
parallel-plate capacitor with some charges on the surfaces of the
conductors, let us say negative charge on the top plate and positive
charge on the bottom plate. Suppose that the spacing between the
plates is d[image: -*-] and the area of each plate is A[image: -*-]. As we have proved
earlier, the capacitance is

[image: -*-][image: -*-]
(10.1)




and the charge and voltage on the capacitor are related by

[image: -*-][image: -*-]
(10.2)




Now the experimental fact is that if we put a piece of insulating
material like lucite or glass between the plates, we find that the
capacitance is larger. That means, of course, that the voltage is
lower for the same charge. But the voltage difference is the integral
of the electric field across the capacitor; so we must conclude that
inside the capacitor, the electric field is reduced even though the
charges on the plates remain unchanged.




[image: -][image: -]
Fig. 10–1. A parallel-plate capacitor with a dielectric. The lines
of E[image: -*-] are shown.





Now how can that be? We have a law due to Gauss that tells us that the
flux of the electric field is directly related to the enclosed
charge. Consider the gaussian surface S[image: -*-] shown by broken lines in
Fig. 10–1. Since the electric field is reduced with the
dielectric present, we conclude that the net charge inside the surface
must be lower than it would be without the material. There is only one
possible conclusion, and that is that there must be positive charges
on the surface of the dielectric.  Since the field is reduced but is
not zero, we would expect this positive charge to be smaller than the
negative charge on the conductor. So the phenomena can be explained if
we could understand in some way that when a dielectric material is
placed in an electric field there is positive charge induced on one
surface and negative charge induced on the other.



[image: -][image: -]
Fig. 10–2. If we put a conducting plate in the gap of a parallel-plate
condenser, the induced charges reduce the field in the conductor to
zero.





We would expect that to happen for a conductor. For example, suppose
that we had a capacitor with a plate spacing d[image: -*-], and we put between
the plates a neutral conductor whose thickness is b[image: -*-], as in
Fig. 10–2. The electric field induces a positive charge on
the upper surface and a negative charge on the lower surface, so there
is no field inside the conductor. The field in the rest of the space is
the same as it was without the conductor, because it is the surface
density of charge divided by ϵ0[image: -*-]; but the distance over which we
have to integrate to get the voltage (the potential difference) is
reduced. The voltage is

[image: -*-][image: -*-]


The resulting equation for the capacitance is like
Eq. (10.1), with (d−b)[image: -*-] substituted for d[image: -*-]:

[image: -*-][image: -*-]
(10.3)




The capacitance is increased by a factor which depends upon (b/d)[image: -*-],
the proportion of the volume which is occupied by the conductor.



[image: -][image: -]
Fig. 10–3. A model of a dielectric: small conducting spheres embedded in
an idealized insulator.





This gives us an obvious model for what happens with
dielectrics—that inside the material there are many little sheets of
conducting material. The trouble with such a model is that it has a
specific axis, the normal to the sheets, whereas most dielectrics have
no such axis. However, this difficulty can be eliminated if we assume
that all insulating materials contain small conducting spheres
separated from each other by insulation, as shown in
Fig. 10–3. The phenomenon of the dielectric constant is
explained by the effect of the charges which would be induced on each
sphere. This is one of the earliest physical models of dielectrics used
to explain the phenomenon that Faraday
observed. More specifically, it
was assumed that each of the atoms of a material was a perfect
conductor, but insulated from the others. The dielectric
constant κ[image: -*-] would depend on the proportion of space which was occupied by
the conducting spheres. This is not, however, the model that is used
today.







10–2 The polarization vector P[image: -*-]


If we follow the above analysis further, we discover that the idea of
regions of perfect conductivity and insulation is not essential. Each
of the small spheres acts like a dipole, the moment of which is
induced by the external field. The only thing that is essential to the
understanding of dielectrics is that there are many little dipoles
induced in the material. Whether the dipoles are induced because there
are tiny conducting spheres or for any other reason is irrelevant.




Why should a field induce a dipole moment in an atom if the atom is
not a conducting sphere? This subject will be discussed in much
greater detail in the next chapter, which will be about the inner
workings of dielectric materials.  However, we give here one example
to illustrate a possible mechanism. An atom has a positive charge on
the nucleus, which is surrounded by negative electrons.  In an
electric field, the nucleus will be attracted in one direction and the
electrons in the other. The orbits or wave patterns of the electrons
(or whatever picture is used in quantum mechanics) will be distorted
to some extent, as shown in Fig. 10–4; the center of
gravity of the negative charge will be displaced and will no longer
coincide with the positive charge of the nucleus. We have already
discussed such distributions of charge. If we look from a distance,
such a neutral configuration is equivalent, to a first approximation,
to a little dipole.



[image: -][image: -][image: -][image: -]
Fig. 10–4. An atom in an electric field has its distribution of
electrons displaced with respect to the nucleus.





It seems reasonable that if the field is not too enormous, the amount
of induced dipole moment will be proportional to the field. That is, a
small field will displace the charges a little bit and a larger field
will displace them further—and in proportion to the field—unless
the displacement gets too large. For the remainder of this chapter, it
will be supposed that the dipole moment is exactly proportional to the
field.




We will now assume that in each atom there are charges q[image: -*-] separated
by a distance δ[image: -*-], so that q δ[image: -*-] is the dipole moment
per atom. (We use δ[image: -*-] because we are already using d[image: -*-] for the
plate separation.) If there are N[image: -*-] atoms per unit volume, there will
be a dipole moment per unit volume equal to N q δ[image: -*-]. This
dipole moment per unit volume will be represented by a vector,
P[image: -*-]. Needless to say, it is in the direction of the individual
dipole moments, i.e., in the direction of the charge
separation δ[image: -*-]:

[image: -*-][image: -*-]
(10.4)









In general, P[image: -*-] will vary from place to place in the
dielectric. However, at any point in the material, P[image: -*-] is
proportional to the electric field E[image: -*-]. The constant of
proportionality, which depends on the ease with which the electron are
displaced, will depend on the kinds of atoms in the material.




What actually determines how this constant of proportionality behaves,
how accurately it is constant for very large fields, and what is going
on inside different materials, we will discuss at a later time. For
the present, we will simply suppose that there exists a mechanism by
which a dipole moment is induced which is proportional to the electric
field.







10–3 Polarization charges


Now let us see what this model gives for the theory of a condenser
with a dielectric. First consider a sheet of material in which there
is a certain dipole moment per unit volume. Will there be on the
average any charge density produced by this?  Not if P[image: -*-] is
uniform. If the positive and negative charges being displaced relative
to each other have the same average density, the fact that they are
displaced does not produce any net charge inside the volume. On the
other hand, if P[image: -*-] were larger at one place and smaller at
another, that would mean that more charge would be moved into some
region than away from it; we would then expect to get a volume density
of charge. For the parallel-plate condenser, we suppose that P[image: -*-]
is uniform, so we need to look only at what happens at the
surfaces. At one surface the negative charges, the electrons, have
effectively moved out a distance δ[image: -*-]; at the other surface they
have moved in, leaving some positive charge effectively out a
distance δ[image: -*-]. As shown in Fig. 10–5, we will have a surface
density of charge, which will be called the surface polarization
charge.



[image: -][image: -]
Fig. 10–5. A dielectric slab in a uniform field. The positive charges
displaced the distance δ[image: -*-] with respect to the negatives.





This charge can be calculated as follows. If A[image: -*-] is the area of the
plate, the number of electrons that appear at the surface is the
product of A[image: -*-] and N[image: -*-], the number per unit volume, and the
displacement δ[image: -*-], which we assume here is perpendicular to the
surface. The total charge is obtained by multiplying by the electronic
charge qe[image: -*-]. To get the surface density of the polarization charge
induced on the surface, we divide by A[image: -*-]. The magnitude of the surface
charge density is

[image: -*-][image: -*-]


But this is just equal to the magnitude P[image: -*-] of the polarization
vector P[image: -*-], Eq. (10.4):

[image: -*-][image: -*-]
(10.5)




The surface density of charge is equal to the polarization inside the
material. The surface charge is, of course, positive on one surface
and negative on the other.




Now let us assume that our slab is the dielectric of a parallel-plate
capacitor. The plates of the capacitor also have a surface
charge, which we will call σfree[image: -*-], because they can
move “freely” anywhere on the conductor. This is, of course, the
charge that we put on when we charged the capacitor. It should be
emphasized that σpol[image: -*-] exists only because
of σfree[image: -*-]. If σfree[image: -*-] is removed by
discharging the capacitor, then σpol[image: -*-] will disappear,
not by going out on the discharging wire, but by moving back into the
material—by the relaxation of the polarization inside the material.




We can now apply Gauss’ law to the gaussian surface S[image: -*-] in
Fig. 10–1. The electric field E[image: -*-] in the dielectric is
equal to the total surface charge density divided by ϵ0[image: -*-]. It
is clear that σpol[image: -*-] and σfree[image: -*-] have
opposite signs, so

[image: -*-][image: -*-]
(10.6)









Note that the field E0[image: -*-] between the metal plate and the surface of
the dielectric is higher than the field E[image: -*-]; it corresponds
to σfree[image: -*-] alone. But here we are concerned with the field
inside the dielectric which, if the dielectric nearly fills the gap,
is the field over nearly the whole volume. Using Eq. (10.5),
we can write

[image: -*-][image: -*-]
(10.7)




This equation doesn’t tell us what the electric field is unless we
know what P[image: -*-] is. Here, however, we are assuming that P[image: -*-] depends
on E[image: -*-]—in fact, that it is proportional to E[image: -*-]. This proportionality is
usually written as

[image: -*-][image: -*-]
(10.8)




The constant χ[image: -*-] (Greek “khi”) is called the electric
susceptibility of the dielectric.




Then Eq. (10.7) becomes

[image: -*-][image: -*-]
(10.9)




which gives us the factor 1/(1+χ)[image: -*-] by which the field is reduced.




The voltage between the plates is the integral of the electric
field. Since the field is uniform, the integral is just the product
of E[image: -*-] and the plate separation d[image: -*-]. We have that

[image: -*-][image: -*-]







The total charge on the capacitor is σfree A[image: -*-], so that
the capacitance defined by (10.2) becomes

[image: -*-][image: -*-]
(10.10)









We have explained the observed facts. When a parallel-plate capacitor
is filled with a dielectric, the capacitance is increased by the
factor

[image: -*-][image: -*-]
(10.11)




which is a property of the material. Our explanation, of course, is
not complete until we have explained—as we will do later—how the
atomic polarization comes about.




Let’s now consider something a little bit more complicated—the
situation in which the polarization P[image: -*-] is not everywhere the
same. As mentioned earlier, if the polarization is not constant, we
would expect in general to find a charge density in the volume,
because more charge might come into one side of a small volume element
than leaves it on the other. How can we find out how much charge is
gained or lost from a small volume?




First let’s compute how much charge moves across any imaginary surface
when the material is polarized. The amount of charge that goes across
a surface is just P[image: -*-] times the surface area if the polarization is
normal to the surface. Of course, if the polarization is
tangential to the surface, no charge moves across it.




Following the same arguments we have already used, it is easy to see
that the charge moved across any surface element is proportional to
the component of P[image: -*-] perpendicular to the
surface. Compare Fig. 10–6 with Fig. 10–5. We
see that Eq. (10.5) should, in the general case, be written

[image: -*-][image: -*-]
(10.12)








[image: -][image: -]
Fig. 10–6. The charge moved across an element of an imaginary surface in
a dielectric is proportional to the component of P[image: -*-] normal to
the surface.





If we are thinking of an imagined surface element inside the
dielectric, Eq. (10.12) gives the charge moved across
the surface but doesn’t result in a net surface charge, because there
are equal and opposite contributions from the dielectric on the two
sides of the surface.



[image: -][image: -]
Fig. 10–7. A nonuniform polarization P[image: -*-] can result in a net charge
in the body of a dielectric.





The displacements of the charges can, however, result in a
volume charge density. The total charge displaced out of
any volume V[image: -*-] by the polarization is the integral of the outward
normal component of P[image: -*-] over the surface S[image: -*-] that bounds the
volume (see Fig. 10–7). An equal excess charge of the
opposite sign is left behind.  Denoting the net charge inside V[image: -*-]
by Δ Qpol[image: -*-] we write

[image: -*-][image: -*-]
(10.13)




We can attribute Δ Qpol[image: -*-] to a volume distribution of
charge with the density ρpol[image: -*-], and so

[image: -*-][image: -*-]
(10.14)




Combining the two equations yields

[image: -*-][image: -*-]
(10.15)




We have a kind of Gauss’ theorem that relates the charge density from
polarized materials to the polarization vector P[image: -*-]. We can see
that it agrees with the result we got for the surface polarization
charge or the dielectric in a parallel-plate capacitor. Using
Eq. (10.15) with the gaussian surface of
Fig. 10–1, the surface integral gives P Δ A[image: -*-], and
the charge inside is σpol Δ A[image: -*-], so we get again
that σpol=P[image: -*-].




Just as we did for Gauss’ law of electrostatics, we can convert
Eq. (10.15) to a differential form—using Gauss’
mathematical theorem:

[image: -*-][image: -*-]


We get

[image: -*-][image: -*-]
(10.16)




If there is a nonuniform polarization, its divergence gives the net
density of charge appearing in the material. We emphasize that this is
a perfectly real charge density; we call it “polarization
charge” only to remind ourselves how it got there.







10–4 The electrostatic equations with dielectrics


Now let’s combine the above result with our theory of
electrostatics. The fundamental equation is

[image: -*-][image: -*-]
(10.17)




The ρ[image: -*-] here is the density of all electric charges. Since
it is not easy to keep track of the polarization charges, it is
convenient to separate ρ[image: -*-] into two parts. Again we
call ρpol[image: -*-] the charges due to nonuniform polarizations, and
call ρfree[image: -*-] all the rest.  Usually ρfree[image: -*-]
is the charge we put on conductors, or at known places in space.
Equation (10.17) then becomes

[image: -*-][image: -*-]


or

[image: -*-][image: -*-]
(10.18)




Of course, the equation for the curl of E[image: -*-] is unchanged:

[image: -*-][image: -*-]
(10.19)









Taking P[image: -*-] from Eq. (10.8), we get the simpler
equation

[image: -*-][image: -*-]
(10.20)




These are the equations of electrostatics when there are
dielectrics. They don’t, of course, say anything new, but they are in
a form which is more convenient for computation in cases
where ρfree[image: -*-] is known and the polarization P[image: -*-] is
proportional to E[image: -*-].




Notice that we have not taken the dielectric “constant,” κ[image: -*-],
out of the divergence. That is because it may not be the same
everywhere. If it has everywhere the same value, it can be factored
out and the equations are just those of electrostatics with the charge
density ρfree[image: -*-] divided by κ[image: -*-]. In the form we have
given, the equations apply to the general case where different
dielectrics may be in different places in the field. Then the
equations may be quite difficult to solve.





There is a matter of some historical importance which should be
mentioned here. In the early days of electricity, the atomic mechanism
of polarization was not known and the existence of ρpol[image: -*-]
was not appreciated. The charge ρfree[image: -*-] was considered to
be the entire charge density. In order to write Maxwell’s
equations in a simple form, a new
vector D[image: -*-] was defined to be equal to a linear combination of
E[image: -*-] and P[image: -*-]:

[image: -*-][image: -*-]
(10.21)




As a result, Eqs. (10.18) and (10.19) were
written in an apparently very simple form:

[image: -*-][image: -*-]
(10.22)




Can one solve these? Only if a third equation is given for the
relationship between D[image: -*-] and E[image: -*-]. When Eq. (10.8)
holds, this relationship is

[image: -*-][image: -*-]
(10.23)




This equation was usually written

[image: -*-][image: -*-]
(10.24)




where ϵ[image: -*-] is still another constant for describing the
dielectric property of materials. It is called the “permittivity.”
(Now you see why we have ϵ0[image: -*-] in our equations, it is the
“permittivity of empty space.”) Evidently,

[image: -*-][image: -*-]
(10.25)









Today we look upon these matters from another point of view, namely,
that we have simpler equations in a vacuum, and if we exhibit in every
case all the charges, whatever their origin, the equations are always
correct. If we separate some of the charges away for convenience, or
because we do not want to discuss what is going on in detail, then we
can, if we wish, write our equations in any other form that may be
convenient.




One more point should be emphasized. An equation like D=ϵ E[image: -*-]
is an attempt to describe a property of
matter. But matter is extremely complicated, and such an equation is
in fact not correct. For instance, if E[image: -*-] gets too large,
then D[image: -*-] is no longer proportional to E[image: -*-]. For some substances, the
proportionality breaks down even with relatively small fields. Also,
the “constant” of proportionality may depend on how fast E[image: -*-]
changes with time. Therefore this kind of equation is a kind of
approximation, like Hooke’s law.
It cannot be a deep and fundamental
equation.  On the other hand, our fundamental equations for E[image: -*-],
(10.17) and (10.19), represent our deepest and
most complete understanding of electrostatics.








10–5 Fields and forces with dielectrics


We will now prove some rather general theorems for electrostatics in
situations where dielectrics are present. We have seen that the
capacitance of a parallel-plate capacitor is increased by a definite
factor if it is filled with a dielectric. We can show that this is
true for a capacitor of any shape, provided the entire region
in the neighborhood of the two conductors is filled with a uniform
linear dielectric.  Without the dielectric, the equations to be solved
are

[image: -*-][image: -*-]


With the dielectric present, the first of these equations is modified;
we have instead the equations

[image: -*-][image: -*-]
(10.26)




Now since we are taking κ[image: -*-] to be everywhere the same, the last
two equations can be written as

[image: -*-][image: -*-]
(10.27)









We therefore have the same equations for κ E[image: -*-] as
for E0[image: -*-], so they have the solution κ E=E0[image: -*-]. In other
words, the field is everywhere smaller, by the factor 1/κ[image: -*-], than
in the case without the dielectric. Since the voltage difference is a
line integral of the field, the voltage is reduced by this same
factor. Since the charge on the electrodes of the capacitor has been
taken the same in both cases, Eq. (10.2) tells us that
the capacitance, in the case of an everywhere uniform dielectric, is
increased by the factor κ[image: -*-].




Let us now ask what the force would be between two charged
conductors in a dielectric. We consider a liquid dielectric that is
homogeneous everywhere. We have seen earlier that one way to obtain
the force is to differentiate the energy with respect to the
appropriate distance. If the conductors have equal and opposite
charges, the energy U=Q2/2 C[image: -*-], where C[image: -*-] is their capacitance. Using
the principle of virtual work, any component is given by a
differentiation; for example,

[image: -*-][image: -*-]
(10.28)




Since the dielectric increases the capacity by a factor κ[image: -*-], all
forces will be reduced by this same factor.




One point should be emphasized. What we have said is true only if the
dielectric is a liquid. Any motion of conductors that are embedded in
a solid dielectric changes the mechanical stress conditions of the
dielectric and alters its electrical properties, as well as causing
some mechanical energy change in the dielectric. Moving the conductors
in a liquid does not change the liquid. The liquid moves to a new
place but its electrical characteristics are not changed.




Many older books on electricity start with the “fundamental” law
that the force between two charges is

[image: -*-][image: -*-]
(10.29)




a point of view which is thoroughly unsatisfactory. For one thing, it
is not true in general; it is true only for a world filled with a
liquid. Secondly, it depends on the fact that κ[image: -*-] is a constant,
which is only approximately true for most real materials. It is much
better to start with Coulomb’s law for charges in a vacuum,
which is always right (for stationary charges).




What does happen in a solid? This is a very difficult problem which
has not been solved, because it is, in a sense, indeterminate. If you
put charges inside a dielectric solid, there are many kinds of
pressures and strains. You cannot deal with virtual work without
including also the mechanical energy required to compress the solid,
and it is a difficult matter, generally speaking, to make a unique
distinction between the electrical forces and the mechanical forces
due to the solid material itself. Fortunately, no one ever really
needs to know the answer to the question proposed. He may sometimes
want to know how much strain there is going to be in a solid, and that
can be worked out. But it is much more complicated than the simple
result we got for liquids.




A surprisingly complicated problem in the theory of dielectrics is the
following: Why does a charged object pick up little pieces of
dielectric? If you comb your hair on a dry day, the comb readily picks
up small scraps of paper. If you thought casually about it, you
probably assumed the comb had one charge on it and the paper had the
opposite charge on it. But the paper is initially electrically
neutral.  It hasn’t any net charge, but it is attracted anyway. It is
true that sometimes the paper will come up to the comb and then fly
away, repelled immediately after it touches the comb. The reason is,
of course, that when the paper touches the comb, it picks up some
negative charges and then the like charges repel. But that doesn’t
answer the original question. Why did the paper come toward the comb
in the first place?




The answer has to do with the polarization of a dielectric when it is
placed in an electric field. There are polarization charges of both
signs, which are attracted and repelled by the comb. There is a net
attraction, however, because the field nearer the comb is stronger
than the field farther away—the comb is not an infinite sheet. Its
charge is localized. A neutral piece of paper will not be attracted to
either plate inside the parallel plates of a capacitor. The variation
of the field is an essential part of the attraction mechanism.



[image: -][image: -]
Fig. 10–8. A dielectric object in a nonuniform field feels a force
toward regions of higher field strength.





As illustrated in Fig. 10–8, a dielectric is always
drawn from a region of weak field toward a region of stronger
field. In fact, one can prove that for small objects the force is
proportional to the gradient of the square of the electric
field. Why does it depend on the square of the field? Because the
induced polarization charges are proportional to the fields, and for
given charges the forces are proportional to the field. However, as we
have just indicated, there will be a net force only if the
square of the field is changing from point to point. So the force is
proportional to the gradient of the square of the field. The constant
of proportionality involves, among other things, the dielectric
constant of the object, and it also depends upon the size and shape of
the object.



[image: -][image: -]
Fig. 10–9. The force on a dielectric sheet in a parallel-plate capacitor
can be computed by applying the principle of energy conservation.





There is a related problem in which the force on a dielectric can be
worked out quite accurately. If we have a parallel-plate capacitor
with a dielectric slab only partially inserted, as shown in
Fig. 10–9, there will be a force driving the sheet in.  A
detailed examination of the force is quite complicated; it is related to
nonuniformities in the field near the edges of the dielectric and the
plates. However, if we do not look at the details, but merely use the
principle of conservation of energy, we can easily calculate the force.
We can find the force from the formula we derived earlier.
Equation (10.28) is equivalent to

[image: -*-][image: -*-]
(10.30)




We need only find out how the capacitance varies with the position of
the dielectric slab.




Let’s suppose that the total length of the plates is L[image: -*-], that the
width of the plates is W[image: -*-], that the plate separation and dielectric
thickness are d[image: -*-], and that the distance to which the dielectric has
been inserted is x[image: -*-]. The capacitance is the ratio of the total free
charge on the plates to the voltage between the plates. We have seen
above that for a given voltage V[image: -*-] the surface charge density of free
charge is κ ϵ0 V/d[image: -*-].  So the total charge on the plates is

[image: -*-][image: -*-]


from which we get the capacitance:

[image: -*-][image: -*-]
(10.31)




Using (10.30), we have

[image: -*-][image: -*-]
(10.32)




Now this equation is not particularly useful for anything unless you
happen to need to know the force in such circumstances. We only wished
to show that the theory of energy can often be used to avoid enormous
complications in determining the forces on dielectric materials—as
there would be in the present case.




Our discussion of the theory of dielectrics has dealt only with
electrical phenomena, accepting the fact that the material has a
polarization which is proportional to the electric field. Why there is
such a proportionality is perhaps of greater interest to physics. Once
we understand the origin of the dielectric constants from an atomic
point of view, we can use electrical measurements of the dielectric
constants in varying circumstances to obtain detailed information
about atomic or molecular structure. This aspect will be treated in
part in the next chapter.
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11–1 Molecular dipoles


In this chapter we are going to discuss why it is that materials are
dielectric. We said in the last chapter that we could understand the
properties of electrical systems with dielectrics once we appreciated
that when an electric field is applied to a dielectric it induces a
dipole moment in the atoms. Specifically, if the electric field E[image: -*-]
induces an average dipole moment per unit volume P[image: -*-], then κ[image: -*-],
the dielectric constant, is given by

[image: -*-][image: -*-]
(11.1)









We have already discussed how this equation is applied; now we have to
discuss the mechanism by which polarization arises when there is an
electric field inside a material. We begin with the simplest possible
example—the polarization of gases. But even gases already have
complications: there are two types. The molecules of some gases, like
oxygen, which has a symmetric pair of atoms in each molecule, have no
inherent dipole moment. But the molecules of others, like water vapor
(which has a nonsymmetric arrangement of hydrogen and oxygen atoms)
carry a permanent electric dipole moment. As we pointed out in
Chapter 6, there is in the water vapor molecule an average
plus charge on the hydrogen atoms and a negative charge on the oxygen.
Since the center of gravity of the negative charge and the center of
gravity of the positive charge do not coincide, the total charge
distribution of the molecule has a dipole moment. Such a molecule is
called a polar molecule. In oxygen, because of the
symmetry of the molecule, the centers of gravity of the positive and
negative charges are the same, so it is a nonpolar
molecule. It
does, however, become a dipole when placed in an electric field. The
forms of the two types of molecules are sketched in
Fig. 11–1.




[image: -][image: -][image: -][image: -]
Fig. 11–1. (a) An oxygen molecule with zero dipole moment. (b) The water
molecule has a permanent dipole moment p0[image: -*-].








11–2 Electronic polarization


We will first discuss the polarization of non polar molecules. We can
start with the simplest case of a monatomic gas (for instance,
helium). When an atom of such a gas is in an electric field, the
electrons are pulled one way by the field while the nucleus is pulled
the other way, as shown in Fig. 10–4. Although the
atoms are very stiff with respect to the electrical forces we can
apply experimentally, there is a slight net displacement of the
centers of charge, and a dipole moment is induced.  For small fields,
the amount of displacement, and so also the dipole moment, is
proportional to the electric field. The displacement of the electron
distribution which produces this kind of induced dipole moment is
called electronic polarization.




We have already discussed the influence of an electric field on an
atom in Chapter 31 of Vol. I, when we were dealing
with the theory of the index of refraction. If you think about it for
a moment, you will see that what we must do now is exactly the same as
we did then. But now we need worry only about fields that do not vary
with time, while the index of refraction depended on time-varying
fields.




In Chapter 31 of Vol. I we supposed that when an atom
is placed in an oscillating electric field the center of charge of the
electrons obeys the equation

[image: -*-][image: -*-]
(11.2)




The first term is the electron mass times its acceleration and the
second is a restoring force, while the right-hand side is the force
from the outside electric field. If the electric field varies with the
frequency ω[image: -*-], Eq. (11.2) has the solution

[image: -*-][image: -*-]
(11.3)




which has a resonance at ω=ω0[image: -*-]. When we previously found
this solution, we interpreted it as saying that ω0[image: -*-] was the
frequency at which light (in the optical region or in the ultraviolet,
depending on the atom) was absorbed. For our purposes, however, we are
interested only in the case of constant fields, i.e., for ω=0[image: -*-],
so we can disregard the acceleration term in (11.2), and
we find that the displacement is

[image: -*-][image: -*-]
(11.4)









From this we see that the dipole moment p[image: -*-] of a single atom is

[image: -*-][image: -*-]
(11.5)




In this theory the dipole moment p[image: -*-] is indeed proportional to the
electric field.




People usually write

[image: -*-][image: -*-]
(11.6)




(Again the ϵ0[image: -*-] is put in for historical reasons.) The
constant α[image: -*-] is called the polarizability of the atom, and has the
dimensions L3[image: -*-]. It is a measure of how easy it is to induce a moment
in an atom with an electric field. Comparing (11.5)
and (11.6), our simple theory says that

[image: -*-][image: -*-]
(11.7)









If there are N[image: -*-] atoms in a unit volume, the polarization P[image: -*-]—the
dipole moment per unit volume—is given by

[image: -*-][image: -*-]
(11.8)









Putting (11.1) and (11.8) together, we get

[image: -*-][image: -*-]
(11.9)




or, using (11.7),

[image: -*-][image: -*-]
(11.10)









From Eq. (11.10) we would predict that the dielectric
constant κ[image: -*-] of different gases should depend on the density of
the gas and on the frequency ω0[image: -*-] of its optical absorption.




Our formula is, of course, only a very rough approximation, because in
Eq. (11.2) we have taken a model which ignores the
complications of quantum mechanics. For example, we have assumed that
an atom has only one resonant frequency, when it really has many. To
calculate properly the polarizability α[image: -*-] of atoms we must use
the complete quantum-mechanical theory, but the classical ideas above
give us a reasonable estimate.




Let’s see if we can get the right order of magnitude for the
dielectric constant of some substance. Suppose we try hydrogen. We
have once estimated (Chapter 38, Vol. I) that the
energy needed to ionize the hydrogen atom should be approximately

[image: -*-][image: -*-]
(11.11)




For an estimate of the natural frequency ω0[image: -*-], we can set this
energy equal to ℏ ω0[image: -*-]—the energy of an atomic oscillator
whose natural frequency is ω0[image: -*-]. We get

[image: -*-][image: -*-]


If we now use this value of ω0[image: -*-] in Eq. (11.7), we
find for the electronic polarizability

[image: -*-][image: -*-]
(11.12)




The quantity (ℏ2/m e2)[image: -*-] is the radius of the ground-state orbit
of a Bohr atom (see Chapter 38, Vol. I) and equals
0.528[image: -*-] angstroms. In a gas at standard pressure and temperature
(1 atmosphere, 0°[image: -*-]C) there are 2.69×1019[image: -*-] atoms/cm3, so
Eq. (11.9) gives us



[image: -*-][image: -*-]
(11.13)










The dielectric constant for hydrogen gas is measured to be

[image: -*-][image: -*-]


We see that our theory is about right. We should not expect any
better, because the measurements were, of course, made with normal
hydrogen gas, which has diatomic molecules, not single atoms. We
should not be surprised if the polarization of the atoms in a molecule
is not quite the same as that of the separate atoms.  The molecular
effect, however, is not really that large. An exact quantum-mechanical
calculation of α[image: -*-] for hydrogen atoms gives a result about
12 %[image: -*-] higher than (11.12) (the 16 π[image: -*-] is changed to 18 π[image: -*-]),
and therefore predicts a dielectric constant somewhat closer to the
observed one. In any case, it is clear that our model of a dielectric
is fairly good.




Another check on our theory is to try Eq. (11.7) on
atoms which have a higher frequency of excitation. For instance, it
takes about 24.6[image: -*-] electron volts to pull the electron off helium, compared
with the 13.6[image: -*-] electron volts required to ionize hydrogen.  We would,
therefore, expect that the absorption frequency ω0[image: -*-] for helium
would be about twice as big as for hydrogen and that α[image: -*-] would be
one-quarter as large. So, from (11.13) we expect that

[image: -*-][image: -*-]


Experimentally,

[image: -*-][image: -*-]


so you see that our rough estimates are coming out on the right
track. So we have understood the dielectric constant of nonpolar gas,
but only qualitatively, because we have not yet used a correct atomic
theory of the motions of the atomic electrons.







11–3 Polar molecules; orientation polarization

[image: -][image: -][image: -][image: -]
Fig. 11–2. (a) In a gas of polar molecules, the individual moments are
oriented at random; the average moment in a small volume is
zero. (b) When there is an electric field, there is some average
alignment of the molecules.





Next we will consider a molecule which carries a permanent dipole
moment p0[image: -*-]—such as a water molecule. With no electric field, the
individual dipoles point in random directions, so the net moment per
unit volume is zero. But when an electric field is applied, two things
happen: First, there is an extra dipole moment induced because of the
forces on the electrons; this part gives just the same kind of
electronic polarizability we found for a nonpolar molecule. For very
accurate work, this effect should, of course, be included, but we will
neglect it for the moment. (It can always be added in at the end.)
Second, the electric field tends to line up the individual dipoles to
produce a net moment per unit volume. If all the dipoles in a gas were
to line up, there would be a very large polarization, but that does
not happen. At ordinary temperatures and electric fields the
collisions of the molecules in their thermal motion keep them from
lining up very much. But there is some net alignment, and so some
polarization (see Fig. 11–2). The polarization that
does occur can be computed by the methods of statistical mechanics we
described in Chapter 40 of Vol. I.



[image: -][image: -]
Fig. 11–3. The energy of a dipole p0[image: -*-] in the field E[image: -*-]
is −p0⋅E[image: -*-].





To use this method we need to know the energy of a dipole in an
electric field. Consider a dipole of moment p0[image: -*-] in an electric
field, as shown in Fig. 11–3. The energy of the
positive charge is q ϕ (1)[image: -*-], and the energy of the negative charge
is −q ϕ (2)[image: -*-]. Thus the energy of the dipole is

[image: -*-][image: -*-]


or

[image: -*-][image: -*-]
(11.14)




where θ[image: -*-] is the angle between p0[image: -*-] and E[image: -*-]. As we would
expect, the energy is lower when the dipoles are lined up with the
field.




We now find out how much lining up occurs by using the methods of statistical
mechanics. We found in Chapter 40 of Vol. I that in a state of
thermal equilibrium, the relative number of molecules with the potential
energy U[image: -*-] is proportional to

[image: -*-][image: -*-]
(11.15)




where U (x,y,z)[image: -*-] is the potential energy as a function of position. The same
arguments would say that using Eq. (11.14) for the potential energy
as a function of angle, the number of molecules at θ[image: -*-] per
unit solid angle is proportional to e−U/k T[image: -*-].




Letting n (θ)[image: -*-] be the number of molecules per unit solid angle
at θ[image: -*-], we have

[image: -*-][image: -*-]
(11.16)




For normal temperatures and fields, the exponent is small, so we can
approximate by expanding the exponential:

[image: -*-][image: -*-]
(11.17)









We can find n0[image: -*-] if we integrate (11.17) over all angles;
the result should be just N[image: -*-], the total number of molecules per unit
volume. The average value of cosθ[image: -*-] over all angles is zero, so
the integral is just n0[image: -*-] times the total solid angle 4 π[image: -*-]. We get

[image: -*-][image: -*-]
(11.18)









We see from (11.17) that there will be more molecules
oriented along the field (cosθ=1[image: -*-]) than against the field
(cosθ=−1[image: -*-]). So in any small volume containing many molecules
there will be a net dipole moment per unit volume—that is, a
polarization P[image: -*-]. To calculate P[image: -*-], we want the vector sum of all the
molecular moments in a unit volume. Since we know that the result is
going to be in the direction of E[image: -*-], we will just sum the
components in that direction (the components at right angles
to E[image: -*-] will sum to zero):

[image: -*-][image: -*-]







We can evaluate the sum by integrating over the angular
distribution. The solid angle at θ[image: -*-]
is 2 π sinθ d θ[image: -*-], so

[image: -*-][image: -*-]
(11.19)




Substituting for n (θ)[image: -*-] from (11.17), we have

[image: -*-][image: -*-]


which is easily integrated to give

[image: -*-][image: -*-]
(11.20)




The polarization is proportional to the field E[image: -*-], so there will be
normal dielectric behavior. Also, as we expect, the polarization
depends inversely on the temperature, because at higher temperatures
there is more disalignment by collisions. This 1/T[image: -*-] dependence is
called Curie’s law. The permanent
moment p0[image: -*-] appears squared for the following reason: In a given
electric field, the aligning force depends upon p0[image: -*-], and the mean
moment that is produced by the lining up is again proportional to p0[image: -*-].
The average induced moment is proportional to [image: p_0^2][image: p_0^2].





We should now try to see how well Eq. (11.20) agrees with
experiment. Let’s look at the case of steam. Since we don’t know
what p0[image: -*-] is, we cannot compute P[image: -*-] directly, but Eq. (11.20)
does predict that κ−1[image: -*-] should vary inversely as the temperature,
and this we should check.




From (11.20) we get

[image: -*-][image: -*-]
(11.21)




so κ−1[image: -*-] should vary in direct proportion to the density N[image: -*-], and
inversely as the absolute temperature. The dielectric constant has
been measured at several different pressures and temperatures, chosen
such that the number of molecules in a unit volume remained
fixed.1 [Notice that if the measurements
had all been taken at constant pressure, the number of molecules per
unit volume would decrease linearly with increasing temperature
and κ−1[image: -*-] would vary as T−2[image: -*-] instead of as T−1[image: -*-].] In
Fig. 11–4 we plot the experimental observations
for κ−1[image: -*-] as a function of 1/T[image: -*-]. The dependence predicted
by (11.21) is followed quite well.



[image: -][image: -]
Fig. 11–4. Experimental measurements of the dielectric constant of water
vapor at various temperatures.





There is another characteristic of the dielectric constant of polar
molecules—its variation with the frequency of the applied field. Due
to the moment of inertia of the molecules, it takes a certain amount
of time for the heavy molecules to turn toward the direction of the
field. So if we apply frequencies in the high microwave region or
above, the polar contribution to the dielectric constant begins to
fall away because the molecules cannot follow. In contrast to this,
the electronic polarizability still remains the same up to optical
frequencies, because of the smaller inertia in the electrons.







11–4 Electric fields in cavities of a dielectric


We now turn to an interesting but complicated question—the problem
of the dielectric constant in dense materials. Suppose that we take
liquid helium or liquid argon or some other nonpolar material. We
still expect electronic polarization. But in a dense material, P[image: -*-]
can be large, so the field on an individual atom will be influenced by
the polarization of the atoms in its close neighborhood. The question
is, what electric field acts on the individual atom?




Imagine that the liquid is put between the plates of a condenser. If
the plates are charged they will produce an electric field in the
liquid. But there are also charges in the individual atoms, and the
total field E[image: -*-] is the sum of both of these effects. This true
electric field varies very, very rapidly from point to point in the
liquid. It is very high inside the atoms—particularly right next to
the nucleus—and relatively small between the atoms. The potential
difference between the plates is the line integral of this total
field. If we ignore all the fine-grained variations, we can think of
an average electric field E[image: -*-], which is just V/d[image: -*-]. (This is
the field we were using in the last chapter.) We should think of this
field as the average over a space containing many atoms.




Now you might think that an “average” atom in an “average”
location would feel this average field. But it is not that simple, as
we can show by considering what happens if we imagine different-shaped
holes in a dielectric. For instance, suppose that we cut a slot in a
polarized dielectric, with the slot oriented parallel to the field, as
shown in part (a) of Fig. 11–5. Since we know
that ∇×E=0[image: -*-], the line integral of E[image: -*-] around the
curve, Γ[image: -*-], which goes as shown in (b) of the figure, should be
zero. The field inside the slot must give a contribution which just
cancels the part from the field outside. Therefore the field E0[image: -*-]
actually found in the center of a long thin slot is equal to E[image: -*-], the
average electric field found in the dielectric.



[image: -][image: -]
Fig. 11–5. The field in a slot cut in a dielectric depends on the shape
and orientation of the slot.





Now consider another slot whose large sides are perpendicular to E[image: -*-],
as shown in part (c) of Fig. 11–5. In this case, the
field E0[image: -*-] in the slot is not the same as E[image: -*-] because polarization
charges appear on the surfaces. If we apply Gauss’ law to a
surface S[image: -*-] drawn as in (d) of the figure, we find that the field E0[image: -*-]
in the slot is given by

[image: -*-][image: -*-]
(11.22)




where E[image: -*-] is again the electric field in the dielectric. (The gaussian
surface contains the surface polarization
charge σpol=P[image: -*-].) We mentioned in Chapter 10
that ϵ0 E+P[image: -*-] is often called D[image: -*-], so ϵ0 E0=D0[image: -*-] is equal to D[image: -*-] in
the dielectric.




Earlier in the history of physics, when it was supposed to be very
important to define every quantity by direct experiment, people were
delighted to discover that they could define what they meant by E[image: -*-]
and D[image: -*-] in a dielectric without having to crawl around between the
atoms. The average field E[image: -*-] is numerically equal to the
field E0[image: -*-] that would be measured in a slot cut parallel to the
field. And the field D[image: -*-] could be measured by finding E0[image: -*-] in a
slot cut normal to the field. But nobody ever measures them that way
anyway, so it was just one of those philosophical things.



[image: -][image: -]
Fig. 11–6. The field at any point A[image: -*-] in a dielectric can be considered
as the sum of the field in a spherical hole plus the field due to a
spherical plug.





For most liquids which are not too complicated in structure, we could
expect that an atom finds itself, on the average, surrounded by the
other atoms in what would be a good approximation to a spherical
hole. And so we should ask: “What would be the field in a spherical
hole?” We can find out by noticing that if we imagine carving out a
spherical hole in a uniformly polarized material, we are just removing
a sphere of polarized material. (We must imagine that the polarization
is “frozen in” before we cut out the hole.) By superposition,
however, the fields inside the dielectric, before the sphere was
removed, is the sum of the fields from all charges outside the
spherical volume plus the fields from the charges within the polarized
sphere. That is, if we call E[image: -*-] the field in the uniform dielectric,
we can write

[image: -*-][image: -*-]
(11.23)




where Ehole[image: -*-] is the field in the hole and Eplug[image: -*-]
is the field inside a sphere which is uniformly polarized (see
Fig. 11–6). The fields due to a uniformly polarized sphere
are shown in Fig. 11–7. The electric field inside the
sphere is uniform, and its value is

[image: -*-][image: -*-]
(11.24)




Using (11.23), we get

[image: -*-][image: -*-]
(11.25)




The field in a spherical cavity is greater than the average field by
the amount P/3 ϵ0[image: -*-]. (The spherical hole gives a field 1/3[image: -*-] of the
way between a slot parallel to the field and a slot perpendicular to
the field.)



[image: -][image: -]
Fig. 11–7. The electric field of a uniformly polarized sphere.








11–5 The dielectric constant of liquids; the Clausius-Mossotti equation


In a liquid we expect that the field which will polarize an individual
atom is more like Ehole[image: -*-] than just E[image: -*-]. If we use
the Ehole[image: -*-] of (11.25) for the polarizing field in
Eq. (11.6), then Eq. (11.8) becomes

[image: -*-][image: -*-]
(11.26)




or

[image: -*-][image: -*-]
(11.27)




Remembering that κ−1[image: -*-] is just P/ϵ0 E[image: -*-], we have

[image: -*-][image: -*-]
(11.28)




which gives us the dielectric constant of a liquid in terms
of α[image: -*-], the atomic polarizability. This is called the
Clausius-Mossotti equation.




Whenever N α[image: -*-] is very small, as it is for a gas (because the
density N[image: -*-] is small), then the term N α/3[image: -*-] can be neglected
compared with 1, and we get our old result, Eq. (11.9),
that

[image: -*-][image: -*-]
(11.29)









Let’s compare Eq. (11.28) with some experimental
results. It is first necessary to look at gases for which, using the
measurement of κ[image: -*-], we can find α[image: -*-] from
Eq. (11.29). For instance, for carbon disulfide at zero
degrees centigrade the dielectric constant is 1.0029[image: -*-], so N α[image: -*-]
is 0.0029[image: -*-]. Now the density of the gas is easily worked out and the
density of the liquid can be found in handbooks. At 20°[image: -*-]C, the
density of liquid CS2 is 381[image: -*-] times higher than the density of the
gas at 0°[image: -*-]C. This means that N[image: -*-] is 381[image: -*-] times higher in the
liquid than it is in the gas so, that—if we make the approximation
that the basic atomic polarizability of the carbon disulfide doesn’t
change when it is condensed into a liquid—N α[image: -*-] in the liquid is
equal to 381[image: -*-] times 0.0029[image: -*-], or 1.11[image: -*-]. Notice that the N α/3[image: -*-]
term amounts to almost 0.4[image: -*-], so it is quite significant. With these
numbers we predict a dielectric constant of 2.76[image: -*-], which agrees
reasonably well with the observed value of 2.64[image: -*-].




In Table 11–1 we give some experimental data on various
materials (taken from the Handbook of Chemistry and Physics),
together with the dielectric constants calculated from
Eq. (11.28) in the way just described. The agreement between
observation and theory is even better for argon and oxygen than for
CS2—and not so good for carbon tetrachloride. On the whole, the
results show that Eq. (11.28) works very well.





Table 11–1. Computation of the dielectric constants of liquids from the dielectric constant of the gas.
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Our derivation of Eq. (11.28) is valid only for
electronic polarization in liquids.  It is not right for a
polar molecule like H2O. If we go through the same calculations for
water, we get 13.2[image: -*-] for N α[image: -*-], which means that the dielectric
constant for the liquid is negative, while the observed value
of κ[image: -*-] is 80[image: -*-]. The problem has to do with the correct treatment
of the permanent dipoles, and Onsager has pointed out the right way to
go. We do not have the time to treat the case now, but if you are
interested it is discussed in Kittel’s book, Introduction to
Solid State Physics.







11–6 Solid dielectrics


Now we turn to the solids. The first interesting fact about solids is
that there can be a permanent polarization built in—which exists
even without applying an electric field. An example occurs with a
material like wax, which contains long molecules having a permanent
dipole moment. If you melt some wax and put a strong electric field on
it when it is a liquid, so that the dipole moments get partly lined
up, they will stay that way when the liquid freezes. The solid
material will have a permanent polarization which remains when the
field is removed. Such a solid is called an electret.




An electret has permanent polarization charges on its surface.
It is
the electrical analog of a magnet. It is not as useful, though,
because free charges from the air are attracted to its surfaces,
eventually cancelling the polarization charges. The electret is
“discharged” and there are no visible external fields.





A permanent internal polarization P[image: -*-] is also found occurring
naturally in some crystalline substances. In such crystals, each unit
cell of the lattice has an identical permanent dipole moment, as drawn
in Fig. 11–8. All the dipoles point in the same
direction, even with no applied electric field. Many complicated
crystals have, in fact, such a polarization; we do not normally notice
it because the external fields are discharged, just as for the
electrets.



[image: -][image: -]
Fig. 11–8. A complex crystal lattice can have a permanent intrinsic
polarization P[image: -*-].





If these internal dipole moments of a crystal are changed, however,
external fields appear because there is not time for stray charges to
gather and cancel the polarization charges. If the dielectric is in a
condenser, free charges will be induced on the electrodes. For
example, the moments can change when a dielectric is heated, because
of thermal expansion. The effect is called
pyroelectricity. Similarly, if we change
the stresses in a crystal—for instance, if we bend it—again the
moment may change a little bit, and a small electrical effect, called
piezoelectricity, can be detected.




For crystals that do not have a permanent moment, one can work out a
theory of the dielectric constant that involves the electronic
polarizability of the atoms.  It goes much the same as for
liquids. Some crystals also have rotatable dipoles inside, and the
rotation of these dipoles will also contribute to κ[image: -*-]. In ionic
crystals such as NaCl there is also ionic
polarizability. The crystal consists of a
checkerboard of positive and negative ions, and in an electric field the
positive ions are pulled one way and the negatives the other; there is a
net relative motion of the plus and minus charges, and so a volume
polarization. We could estimate the magnitude of the ionic
polarizability from our knowledge of the stiffness
of salt crystals, but
we will not go into that subject here.








11–7 Ferroelectricity; BaTiO3


We want to describe now one special class of crystals which have, just
by accident almost, a built-in permanent moment. The situation is so
marginal that if we increase the temperature a little bit they lose
the permanent moment completely. On the other hand, if they are nearly
cubic crystals, so that their moments can be turned in different
directions, we can detect a large change in the moment when an applied
electric field is changed. All the moments flip over and we get a
large effect. Substances which have this kind of permanent moment are
called ferroelectric, after the corresponding ferromagnetic
effects which were first discovered in iron.




We would like to explain how ferroelectricity works by describing a
particular example of a ferroelectric material. There are several ways
in which the ferroelectric property can originate; but we will take up
only one mysterious case—that of barium titanate, BaTiO3. This
material has a crystal lattice whose basic cell is sketched in
Fig. 11–9. It turns out that above a certain temperature,
specifically 118°[image: -*-]C, barium titanate is an ordinary dielectric
with an enormous dielectric constant. Below this temperature, however,
it suddenly takes on a permanent moment.



[image: -][image: -]
Fig. 11–9. The unit cell of BaTiO3. The atoms really fill up most of
the space; for clarity, only the positions of their centers are
shown.





In working out the polarization of solid material, we must first find
what are the local fields in each unit cell. We must include the
fields from the polarization itself, just as we did for the case of a
liquid. But a crystal is not a homogeneous liquid, so we cannot use
for the local field what we would get in a spherical hole. If you work
it out for a crystal, you find that the factor 1/3[image: -*-] in
Eq. (11.24) becomes slightly different, but not far
from 1/3[image: -*-]. (For a simple cubic crystal, it is just 1/3[image: -*-].) We will,
therefore, assume for our preliminary discussion that the factor
is 1/3[image: -*-] for BaTiO3.




Now when we wrote Eq. (11.28) you may have wondered what
would happen if N α[image: -*-] became greater than 3. It appears as
though κ[image: -*-] would become negative. But that surely cannot be
right. Let’s see what should happen if we were gradually to
increase α[image: -*-] in a particular crystal. As α[image: -*-] gets larger, the
polarization gets bigger, making a bigger local field. But a bigger
local field will polarize each atom more, raising the local fields
still more. If the “give” of the atoms is enough, the process keeps
going; there is a kind of feedback that causes the polarization to
increase without limit—assuming that the polarization of each atom
increases in proportion to the field. The “runaway” condition occurs
when N α=3[image: -*-]. The polarization does not become infinite, of
course, because the proportionality between the induced moment and the
electric field breaks down at high fields, so that our formulas are no
longer correct. What happens is that the lattice gets “locked in”
with a high, self-generated, internal polarization.




In the case of BaTiO3, there is, in addition to an electronic
polarization, also a rather large ionic polarization, presumed to be
due to titanium ions which can move a little within the cubic
lattice. The lattice resists large motions, so after the titanium has
gone a little way, it jams up and stops. But the crystal cell is then
left with a permanent dipole moment.




In most crystals, this is really the situation for all temperatures
that can be reached. The very interesting thing about barium titanate
is that there is such a delicate condition that if N α[image: -*-] is
decreased just a little bit it comes unstuck. Since N[image: -*-] decreases with
increasing temperature—because of thermal expansion—we can
vary N α[image: -*-] by varying the temperature. Below the critical temperature
it is just barely stuck, so it is easy—by applying an external
field—to shift the polarization and have it lock in a different
direction.




Let’s see if we can analyze what happens in more detail. We call Tc[image: -*-]
the critical temperature at which N α[image: -*-] is exactly 3. As the
temperature increases, N[image: -*-] goes down a little bit because of the
expansion of the lattice. Since the expansion is small, we can say
that near the critical temperature

[image: -*-][image: -*-]
(11.30)




where β[image: -*-] is a small constant, of the same order of magnitude as
the thermal expansion coefficient, or about 10−5[image: -*-] to 10−6[image: -*-] per
degree C. Now if we substitute this relation into
Eq. (11.28), we get that

[image: -*-][image: -*-]


Since we have assumed that β (T−Tc)[image: -*-] is small compared with one,
we can approximate this formula by

[image: -*-][image: -*-]
(11.31)









This relation is right, of course, only for T>Tc[image: -*-]. We see that just
above the critical temperature κ[image: -*-] is enormous. Because N α[image: -*-]
is so close to 3, there is a tremendous magnification effect, and
the dielectric constant can easily be as high as 50,000[image: -*-]
to 100,000[image: -*-]. It is also very sensitive to temperature. For increases
in temperature, the dielectric constant goes down inversely as the
temperature, but, unlike the case of a dipolar gas, for
which κ−1[image: -*-] goes inversely as the absolute temperature, for
ferroelectrics it varies inversely as the difference between the
absolute temperature and the critical temperature (this law is called
the Curie-Weiss law).





When we lower the temperature to the critical temperature, what happens?
If we imagine a lattice of unit cells like that in
Fig. 11–9, we see that it is possible to pick out chains of
ions along vertical lines. One of them consists of alternating oxygen
and titanium ions. There are other lines made up of either barium or
oxygen ions, but the spacing along these lines is greater. We make a
simple model to imitate this situation by imagining, as shown in
Fig. 11–10(a), a series of chains of ions. Along what we
call the main chain, the separation of the ions is a[image: -*-], which is
half the lattice constant; the lateral distance between identical
chains is 2 a[image: -*-]. There are less-dense chains in between which we will
ignore for the moment. To make the analysis a little easier, we will
also suppose that all the ions on the main chain are identical. (It is
not a serious simplification because all the important effects will
still appear. This is one of the tricks of theoretical physics. One does
a different problem because it is easier to figure out the first
time—then when one understands how the thing works, it is time to put
in all the complications.)



[image: -][image: -]
Fig. 11–10. Models of a ferroelectric: (a) corresponds to an
antiferroelectric, and (b) to a normal ferroelectric.





Now let’s try to find out what would happen with our model. We suppose
that the dipole moment of each atom is p[image: -*-] and we wish to calculate
the field at one of the atoms of the chain. We must find the sum of
the fields from all the other atoms.  We will first calculate the
field from the dipoles in only one vertical chain; we will talk about
the other chains later. The field at the distance r[image: -*-] from a dipole in
a direction along its axis is given by

[image: -*-][image: -*-]
(11.32)




At any given atom, the dipoles at equal distances above and below it
give fields in the same direction, so for the whole chain we get



[image: -*-][image: -*-]
(11.33)





It is not too hard to show that if our model were like a completely
cubic crystal—that is, if the next identical lines were only the
distance a[image: -*-] away—the number 0.383[image: -*-] would be changed to 1/3[image: -*-]. In
other words, if the next lines were at the distance a[image: -*-] they would
contribute only −0.050[image: -*-] unit to our sum. However, the next main chain
we are considering is at the distance 2 a[image: -*-] and, as you remember from
Chapter 7, the field from a periodic structure dies off
exponentially with distance. Therefore these lines contribute much
less than −0.050[image: -*-] and we can just ignore all the other chains.




It is necessary now to find out what polarizability α[image: -*-] is needed
to make the runaway process work. Suppose that the induced moment p[image: -*-]
of each atom of the chain is proportional to the field on it, as in
Eq. (11.6). We get the polarizing field on the atom
from Echain[image: -*-] using Eq. (11.32). So we have the two
equations

[image: -*-][image: -*-]


and

[image: -*-][image: -*-]


There are two solutions: Echain[image: -*-] and p[image: -*-] both zero, or

[image: -*-][image: -*-]


with Echain[image: -*-] and p[image: -*-] both finite. Thus if α[image: -*-] is as
large as a3/0.383[image: -*-], a permanent polarization sustained by its own
field will set in. This critical equality must be reached for barium
titanate at just the temperature Tc[image: -*-]. (Notice that if α[image: -*-] were
larger than the critical value for small fields, it would decrease at
larger fields and at equilibrium the same equality we have found would
hold.)




For BaTiO3, the spacing a[image: -*-] is 2×10−8[image: -*-] cm, so we must
expect that α=21.8×10−24[image: -*-] cm3. We can compare this
with the known polarizabilities of the individual atoms. For oxygen,
α=30.2×10−24[image: -*-] cm3; we’re on the right track! But for
titanium, α=2.4×10−24[image: -*-] cm3; rather small. To use our
model we should probably take the average. (We could work out the
chain again for alternating atoms, but the result would be about the
same.) So α (average)=16.3×10−24[image: -*-] cm3, which is
not high enough to give a permanent polarization.




But wait a moment! We have so far only added up the electronic
polarizabilities. There is also some ionic polarization due to the
motion of the titanium ion. All we need is an ionic polarizability
of 9.2×10−24[image: -*-] cm3. (A more precise computation using
alternating atoms shows that actually 11.9×10−24[image: -*-] cm3 is
needed.) To understand the properties of BaTiO3, we have to assume
that such an ionic polarizability exists.





Why the titanium ion in barium titanate should have that much ionic
polarizability is not known. Furthermore, why, at a lower temperature,
it polarizes along the cube diagonal and the face diagonal equally
well is not clear. If we figure out the actual size of the spheres in
Fig. 11–9, and ask whether the titanium is a little bit
loose in the box formed by its neighboring oxygen atoms—which is
what you would hope, so that it could be easily shifted—you find
quite the contrary. It fits very tightly. The barium atoms are
slightly loose, but if you let them be the ones that move, it doesn’t
work out. So you see that the subject is really not one-hundred
percent clear; there are still mysteries we would like to understand.




Returning to our simple model of Fig. 11–10(a), we see
that the field from one chain would tend to polarize the neighboring
chain in the opposite direction, which means that although each
chain would be locked, there would be no net permanent moment per unit
volume!  (Although there would be no external electric effects, there
are still certain thermodynamic effects one could observe.) Such
systems exist, and are called antiferroelectric. So what we have
explained is really an antiferroelectric. Barium titanate, however, is
really like the arrangement in Fig. 11–10(b). The
oxygen-titanium chains are all polarized in the same direction because
there are intermediate chains of atoms in between. Although the atoms
in these chains are not very polarizable, or very dense, they will be
somewhat polarized, in the direction antiparallel to the
oxygen-titanium chains. The small fields produced at the next
oxygen-titanium chain will get it started parallel to the first. So
BaTiO3 is really ferroelectric, and it is because of the atoms in
between.  You may be wondering: “But what about the direct effect
between the two O-Ti chains?” Remember, though, the direct effect
dies off exponentially with the separation; the effect of the chain of
strong dipoles at 2 a[image: -*-] can be less than the effect of a chain
of weak ones at the distance a[image: -*-].




This completes our rather detailed report on our present understanding
of the dielectric constants of gases, of liquids, and of solids.





	
  
  Sänger, Steiger, and Gächter, Helvetica
Physica Acta 5, 200 (1932).
  ↩





  
    

12 Electrostatic Analogs



12–1 The same equations have the same solutions


The total amount of information which has been acquired about the
physical world since the beginning of scientific progress is enormous,
and it seems almost impossible that any one person could know a
reasonable fraction of it. But it is actually quite possible for a
physicist to retain a broad knowledge of the physical world rather
than to become a specialist in some narrow area. The reasons for this
are threefold: First, there are great principles which apply to all
the different kinds of phenomena—such as the principles of the
conservation of energy and of angular momentum. A thorough
understanding of such principles gives an understanding of a great
deal all at once. Second, there is the fact that many complicated
phenomena, such as the behavior of solids under compression, really
basically depend on electrical and quantum-mechanical forces, so that
if one understands the fundamental laws of electricity and quantum
mechanics, there is at least some possibility of understanding many of
the phenomena that occur in complex situations. Finally, there is a
most remarkable coincidence: The equations for many different
physical situations have exactly the same appearance. Of course, the
symbols may be different—one letter is substituted for another—but
the mathematical form of the equations is the same. This means that
having studied one subject, we immediately have a great deal of direct
and precise knowledge about the solutions of the equations of another.




We are now finished with the subject of electrostatics, and will soon
go on to study magnetism and electrodynamics. But before doing so, we
would like to show that while learning electrostatics we have
simultaneously learned about a large number of other subjects. We will
find that the equations of electrostatics appear in several other
places in physics. By a direct translation of the solutions (of course
the same mathematical equations must have the same solutions) it is
possible to solve problems in other fields with the same ease—or
with the same difficulty—as in electrostatics.




The equations of electrostatics, we know, are

[image: -*-][image: -*-]
(12.1)

(12.2)




(We take the equations of electrostatics with dielectrics so as to
have the most general situation.) The same physics can be expressed in
another mathematical form:

[image: -*-][image: -*-]
(12.3)

(12.4)




Now the point is that there are many physics problems whose
mathematical equations have the same form. There is a potential
(ϕ[image: -*-]) whose gradient multiplied by a scalar function (κ[image: -*-]) has
a divergence equal to another scalar function
(−ρfree/ϵ0[image: -*-]).




Whatever we know about electrostatics can immediately be carried over
into that other subject, and vice versa. (It works both ways,
of course—if the other subject has some particular characteristics
that are known, then we can apply that knowledge to the corresponding
electrostatic problem.) We want to consider a series of examples from
different subjects that produce equations of this form.







12–2 The flow of heat; a point source near an infinite plane boundary


We have discussed one example earlier (Section 3–4)—the
flow of heat. Imagine a block of material, which need not be homogeneous
but may consist of different materials at different places, in which the
temperature varies from point to point. As a consequence of these
temperature variations there is a flow of heat, which can be represented
by the vector h[image: -*-]. It represents the amount of heat energy which
flows per unit time through a unit area perpendicular to the flow. The
divergence of h[image: -*-] represents the rate per unit volume at which heat
is leaving a region:

[image: -*-][image: -*-]


(We could, of course, write the equation in integral form—just as we
did in electrostatics with Gauss’ law—which would say that the flux
through a surface is equal to the rate of change of heat energy inside
the material. We will not bother to translate the equations back and
forth between the differential and the integral forms, because it goes
exactly the same as in electrostatics.)




The rate at which heat is generated or absorbed at various places
depends, of course, on the problem. Suppose, for example, that there
is a source of heat inside the material (perhaps a radioactive source,
or a resistor heated by an electrical current). Let us call s[image: -*-] the
heat energy produced per unit volume per second by this source. There
may also be losses (or gains) of thermal energy to other internal
energies in the volume. If u[image: -*-] is the internal energy per unit volume,
−d u/d t[image: -*-] will also be a “source” of heat energy. We have, then,

[image: -*-][image: -*-]
(12.5)









We are not going to discuss just now the complete equation in which
things change with time, because we are making an analogy to
electrostatics, where nothing depends on the time. We will consider
only steady heat-flow problems, in which constant sources have
produced an equilibrium state. In these cases,

[image: -*-][image: -*-]
(12.6)









It is, of course, necessary to have another equation, which describes
how the heat flows at various places. In many materials the heat
current is approximately proportional to the rate of change of the
temperature with position: the larger the temperature difference, the
more the heat current. As we have seen, the vector heat current
is proportional to the temperature gradient. The constant of
proportionality K[image: -*-], a property of the material, is called the
thermal conductivity.

[image: -*-][image: -*-]
(12.7)




If the properties of the material vary from place to place,
then K=K (x,y,z)[image: -*-], a function of position. [Equation (12.7) is
not as fundamental as (12.5), which expresses the
conservation of heat energy, since the former depends upon a special
property of the substance.] If now we substitute Eq. (12.7)
into Eq. (12.6) we have

[image: -*-][image: -*-]
(12.8)




which has exactly the same form as (12.4). Steady
heat-flow problems and electrostatic problems are the same. The heat
flow vector h[image: -*-] corresponds to E[image: -*-], and the temperature T[image: -*-]
corresponds to ϕ[image: -*-]. We have already noticed that a point heat
source produces a temperature field which varies as 1/r[image: -*-] and a heat
flow which varies as 1/r2[image: -*-]. This is nothing more than a translation
of the statements from electrostatics that a point charge generates a
potential which varies as 1/r[image: -*-] and an electric field which varies
as 1/r2[image: -*-]. We can, in general, solve static heat problems as easily as
we can solve electrostatic problems.




Consider a simple example. Suppose that we have a cylinder of
radius a[image: -*-] at the temperature T1[image: -*-], maintained by the generation of heat in
the cylinder. (It could be, for example, a wire carrying a current, or
a pipe with steam condensing inside.) The cylinder is covered with a
concentric sheath of insulating material which has a
conductivity K[image: -*-]. Say the outside radius of the insulation is b[image: -*-] and the
outside
is kept at temperature T2[image: -*-] (Fig. 12–1a). We want to
find out at what rate heat will be lost by the wire, or steampipe, or
whatever it is in the center. Let the total amount of heat lost from a
length L[image: -*-] of the pipe be called G[image: -*-]—which is what we are trying to
find.



[image: -][image: -]
Fig. 12–1. (a) Heat flow in a cylindrical geometry. (b) The
corresponding electrical problem.





How can we solve this problem? We have the differential equations, but
since these are the same as those of electrostatics, we have really
already solved the mathematical problem. The analogous problem is that
of a conductor of radius a[image: -*-] at the potential ϕ1[image: -*-], separated from
another conductor of radius b[image: -*-] at the potential ϕ2[image: -*-], with a
concentric layer of dielectric material in between, as drawn in
Fig. 12–1(b). Now since the heat flow h[image: -*-] corresponds
to the electric field E[image: -*-], the quantity G[image: -*-] that we want to find
corresponds to the flux of the electric field from a unit length (in
other words, to the electric charge per unit length over ϵ0[image: -*-]). We
have solved the electrostatic problem by using Gauss’ law. We follow the
same procedure for our heat-flow problem.




From the symmetry of the situation, we know that h[image: -*-] depends only on
the distance from the center. So we enclose the pipe in a gaussian
cylinder of length L[image: -*-] and radius r[image: -*-]. From Gauss’ law, we know that
the heat flow h[image: -*-] multiplied by the area 2 π r L[image: -*-] of the surface must
be equal to the total amount of heat generated inside, which is what
we are calling G[image: -*-]:

[image: -*-][image: -*-]
(12.9)




The heat flow is proportional to the temperature gradient:

[image: -*-][image: -*-]


or, in this case, the radial component of h[image: -*-] is

[image: -*-][image: -*-]


This, together with (12.9), gives

[image: -*-][image: -*-]
(12.10)




Integrating from r=a[image: -*-] to r=b[image: -*-], we get

[image: -*-][image: -*-]
(12.11)




Solving for G[image: -*-], we find

[image: -*-][image: -*-]
(12.12)




This result corresponds exactly to the result for the charge on a
cylindrical condenser:

[image: -*-][image: -*-]


The problems are the same, and they have the same solutions. From our
knowledge of electrostatics, we also know how much heat is lost by an
insulated pipe.




Let’s consider another example of heat flow. Suppose we wish to know
the heat flow in the neighborhood of a point source of heat located a
little way beneath the surface of the earth, or near the surface of a
large metal block. The localized heat source might be an atomic bomb
that was set off underground, leaving an intense source of heat, or it
might correspond to a small radioactive source inside a block of
iron—there are numerous possibilities.





We will treat the idealized problem of a point heat source of
strength G[image: -*-] at the distance a[image: -*-] beneath the surface of an infinite
block of uniform material whose thermal conductivity is K[image: -*-]. And we will
neglect the thermal conductivity of the air outside the
material. We want to determine the distribution of the temperature on
the surface of the block. How hot is it right above the source and at
various places on the surface of the block?





How shall we solve it? It is like an electrostatic problem with two
materials with different dielectric coefficients κ[image: -*-] on opposite
sides of a plane boundary. Aha! Perhaps it is the analog of a point
charge near the boundary between a dielectric and a conductor, or
something similar. Let’s see what the situation is near the
surface. The physical condition is that the normal component
of h[image: -*-] on the surface is zero, since we have assumed there is
no heat flow out of the block. We should ask: In what electrostatic
problem do we have the condition that the normal component of the
electric field E[image: -*-] (which is the analog of h[image: -*-]) is zero
at a surface? There is none!




That is one of the things that we have to watch out for. For physical
reasons, there may be certain restrictions in the kinds of
mathematical conditions which arise in any one subject. So if we have
analyzed the differential equation only for certain limited cases, we
may have missed some kinds of solutions that can occur in other
physical situations. For example, there is no material with a dielectric
constant of zero, whereas a vacuum does have zero thermal
conductivity. So there is no electrostatic analogy for a perfect heat
insulator. We can, however, still use the same methods. We can
try to imagine what would happen if the dielectric constant
were zero. (Of course, the dielectric constant is never zero in
any real situation. But we might have a case in which there is a
material with a very high dielectric constant, so that we could
neglect the dielectric constant of the air outside.)




How shall we find an electric field that has no component
perpendicular to the surface? That is, one which is always
tangent at the surface? You will notice that our problem is
opposite to the one of a point charge near a plane conductor. There we
wanted the field to be perpendicular to the surface, because
the conductor was all at the same potential. In the electrical
problem, we invented a solution by imagining a point charge behind the
conducting plate. We can use the same idea again. We try to pick an
“image source” that will automatically make the normal component of
the field zero at the surface. The solution is shown in
Fig. 12–2. An image source of the same sign and the
same strength placed at the distance a[image: -*-] above the surface will cause
the field to be always horizontal at the surface. The normal components
of the two sources cancel out.



[image: -][image: -]
Fig. 12–2. The heat flow and isothermals near a point heat source at the
distance a[image: -*-] below the surface of a good thermal conductor.





Thus our heat flow problem is solved. The temperature everywhere is
the same, by direct analogy, as the potential due to two equal point
charges! The temperature T[image: -*-] at the distance r[image: -*-] from a single point
source G[image: -*-] in an infinite medium is

[image: -*-][image: -*-]
(12.13)




(This, of course, is just the analog of ϕ=q/4 π ϵ0 R[image: -*-].) The
temperature for a point source, together with its image source, is

[image: -*-][image: -*-]
(12.14)




This formula gives us the temperature everywhere in the block. Several
isothermal surfaces are shown in Fig. 12–2. Also shown
are lines of h[image: -*-], which can be obtained
from h=−K ∇T[image: -*-].




We originally asked for the temperature distribution on the
surface. For a point on the surface at the distance ρ[image: -*-] from the
axis, r1=[image: -*-]r2=[image: -*-]√ρ2+a2[image: -*-], so

[image: -*-][image: -*-]
(12.15)




This function is also shown in the figure. The temperature is,
naturally, higher right above the source than it is farther away. This
is the kind of problem that geophysicists often need to solve. We now
see that it is the same kind of thing we have already been solving for
electricity.







12–3 The stretched membrane


Now let us consider a completely different physical situation which,
nevertheless, gives the same equations again. Consider a thin rubber
sheet—a membrane—which has been stretched over a large horizontal
frame (like a drumhead). Suppose now that the membrane is pushed up in
one place and down in another; as shown in Fig. 12–3. Can
we describe the shape of the surface? We will show how the problem can
be solved when the deflections of the membrane are not too large.



[image: -][image: -]
Fig. 12–3. A thin rubber sheet stretched over a cylindrical frame (like
a drumhead). If the sheet is pushed up at A[image: -*-] and down at B[image: -*-], what
is the shape of the surface?





There are forces in the sheet because it is stretched. If we were to
make a small cut anywhere, the two sides of the cut would pull apart
(see Fig. 12–4). So there is a surface
tension in the
sheet, analogous to the one-dimensional tension in a stretched string.
We define the magnitude of the surface tension τ[image: -*-] as the force
per unit length which will just hold together the two sides of a
cut such as one of those shown in Fig. 12–4.



[image: -][image: -]
Fig. 12–4. The surface tension τ[image: -*-] of a stretched rubber sheet is the
force per unit length across a line.





Suppose now that we look at a vertical cross section of the
membrane. It will appear as a curve, like the one in
Fig. 12–5. Let u[image: -*-] be the vertical displacement of the
membrane from its normal position, and x[image: -*-] and y[image: -*-] the coordinates in
the horizontal plane. (The cross section shown is parallel to the
x[image: -*-]-axis.)



[image: -][image: -]
Fig. 12–5. Cross section of the deflected sheet.





Consider a little piece of the surface of length Δ x[image: -*-] and
width Δ y[image: -*-]. There will be forces on the piece from the surface tension
along each edge. The force along edge 1 of the figure will
be τ1 Δ y[image: -*-], directed tangent to the surface—that is, at the
angle θ1[image: -*-] from the horizontal. Along edge 2, the force will
be τ2 Δ y[image: -*-] at the angle θ2[image: -*-]. (There will be similar
forces on the other two edges of the piece, but we will forget them
for the moment.) The net upward force on the piece from edges
1 and 2 is

[image: -*-][image: -*-]


We will limit our considerations to small distortions of the membrane,
i.e., to small slopes: we can then replace sinθ[image: -*-]
by tanθ[image: -*-], which can be written as ∂u/∂x[image: -*-]. The force is then

[image: -*-][image: -*-]


The quantity in brackets can be equally well written (for small
Δ x[image: -*-]) as

[image: -*-][image: -*-]


then

[image: -*-][image: -*-]







There will be another contribution to Δ F[image: -*-] from the forces on
the other two edges; the total is evidently

[image: -*-][image: -*-]
(12.16)









The distortions of the diaphragm are caused by external forces. Let’s
let f[image: -*-] represent the upward force per unit area on the
sheet (a kind of “pressure”) from the external forces. When
the membrane is in equilibrium (the static case), this force
must be balanced by the internal force we have just computed,
Eq. (12.16). That is

[image: -*-][image: -*-]


Equation (12.16) can then be written

[image: -*-][image: -*-]
(12.17)




where by ∇[image: -*-] we now mean, of course, the two-dimensional
gradient operator (∂/∂x,∂/∂y)[image: -*-]. We have the differential
equation that relates u (x,y)[image: -*-] to the applied forces f (x,y)[image: -*-] and the
surface tension τ (x,y)[image: -*-], which may, in general, vary from place to
place in the sheet. (The distortions of a three-dimensional elastic
body are also governed by similar equations, but we will stick to
two-dimensions.) We will worry only about the case in which the
tension τ[image: -*-] is constant throughout the sheet. We can then write for
Eq. (12.17),

[image: -*-][image: -*-]
(12.18)









We have another equation that is the same as for
electrostatics!—only this time, limited to two-dimensions. The
displacement u[image: -*-] corresponds to ϕ[image: -*-], and f/τ[image: -*-] corresponds
to ρ/ϵ0[image: -*-]. So all the work we have done for infinite plane charged
sheets, or long parallel wires, or charged cylinders is directly
applicable to the stretched membrane.




Suppose we push the membrane at some points up to a definite
height—that is, we fix the value of u[image: -*-] at some places. That
is the analog of having a definite potential at the
corresponding places in an electrical situation. So, for instance, we
may make a positive “potential” by pushing up on the membrane with
an object having the cross-sectional shape of the corresponding
cylindrical conductor. For example, if we push the sheet up with a
round rod, the surface will take on the shape shown in
Fig. 12–6. The height u[image: -*-] is the same as the electrostatic
potential ϕ[image: -*-] of a charged cylindrical rod. It falls off
as ln(1/r)[image: -*-]. (The slope, which corresponds to the electric
field E[image: -*-], drops off as 1/r[image: -*-].)



[image: -][image: -]
Fig. 12–6. Cross section of a stretched rubber sheet pushed up by a
round rod. The function u (x,y)[image: -*-] is the same as the electric
potential ϕ (x,y)[image: -*-] near a very long charged rod.





The stretched rubber sheet has often been used as a way of solving
complicated electrical problems experimentally. The analogy is
used backwards! Various rods and bars are pushed against the sheet to
heights that correspond to the potentials of a set of
electrodes. Measurements of the height then give the electrical
potential for the electrical situation. The analogy has been carried
even further. If little balls are placed on the membrane, their motion
corresponds approximately to the motion of electrons in the
corresponding electric field. One can actually watch the
“electrons” move on their trajectories. This method was used to
design the complicated geometry of many photomultiplier tubes (such as
the ones used for scintillation counters, and the one used for
controlling the headlight beams on Cadillacs). The method is still
used, but the accuracy is limited. For the most accurate work, it is
better to determine the fields by numerical methods, using the large
electronic computing machines.







12–4 The diffusion of neutrons; a uniform spherical source in a homogeneous medium


We take another example that gives the same kind of equation, this
time having to do with diffusion. In Chapter 43 of
Vol. I we considered the diffusion of ions in a single gas, and of
one gas through another. This time, let’s take a different
example—the diffusion of neutrons in a material like graphite. We
choose to speak of graphite (a pure form of carbon) because carbon
doesn’t absorb slow neutrons. In it the neutrons are free to wander
around. They travel in a straight line for several centimeters, on the
average, before being scattered by a nucleus and deflected into a new
direction. So if we have a large block—many meters on a side—the
neutrons initially at one place will diffuse to other places. We want
to find a description of their average behavior—that is, their
average flow.




Let N (x,y,z) Δ V[image: -*-] be the number of neutrons in the element of
volume Δ V[image: -*-] at the point (x,y,z)[image: -*-]. Because of their motion,
some neutrons will be leaving Δ V[image: -*-], and others will be coming
in. If there are more neutrons in one region than in a nearby region,
more neutrons will go from the first region to the second than come
back; there will be a net flow. Following the arguments of
Chapter 43 in Vol. I, we describe the flow by a flow
vector J[image: -*-]. Its x[image: -*-]-component Jx[image: -*-] is the net number of
neutrons that pass in unit time a unit area perpendicular to the
x[image: -*-]-direction. We found that

[image: -*-][image: -*-]
(12.19)




where the diffusion constant D[image: -*-] is given in terms of the mean
velocity v[image: -*-], and the mean-free-path l[image: -*-] between scatterings is given
by

[image: -*-][image: -*-]


The vector equation for J[image: -*-] is

[image: -*-][image: -*-]
(12.20)









The rate at which neutrons flow across any surface element d a[image: -*-]
is J⋅n d a[image: -*-] (where, as usual, n[image: -*-] is the unit
normal). The net flow out of a volume element is then
(following the usual gaussian argument) ∇⋅J d V[image: -*-]. This
flow would result in a decrease with time of the number in Δ V[image: -*-]
unless neutrons are being created in Δ V[image: -*-] (by some nuclear
process). If there are sources in the volume that generate S[image: -*-]
neutrons per unit time in a unit volume, then the net flow out
of Δ V[image: -*-] will be equal to (S−∂N/∂t) Δ V[image: -*-]. We have then
that

[image: -*-][image: -*-]
(12.21)




Combining (12.21) with (12.20), we get the
neutron diffusion equation

[image: -*-][image: -*-]
(12.22)









In the static case—where ∂N/∂t=0[image: -*-]—we have
Eq. (12.4) all over again!  We can use our knowledge of
electrostatics to solve problems about the diffusion of neutrons. So
let’s solve a problem. (You may wonder: Why do a problem if we
have already done all the problems in electrostatics? We can do it
faster this time because we have done the electrostatic
problems!)



[image: -][image: -][image: -][image: -]
Fig. 12–7. (a) Neutrons are produced uniformly throughout a sphere of
radius a[image: -*-] in a large graphite block and diffuse outward. The neutron
density N[image: -*-] is found as a function of r[image: -*-], the distance from the center
of the source. (b) The analogous electrostatic situation: a uniform
sphere of charge, where N[image: -*-] corresponds to ϕ[image: -*-] and J[image: -*-]
corresponds to E[image: -*-].





Suppose we have a block of material in which neutrons are being
generated—say by uranium fission—uniformly throughout a spherical
region of radius a[image: -*-] (Fig. 12–7). We would like to
know: What is the density of neutrons everywhere? How uniform is the
density of neutrons in the region where they are being generated? What
is the ratio of the neutron density at the center to the neutron
density at the surface of the source region? Finding the answers is
easy. The source density S0[image: -*-] replaces the charge density ρ[image: -*-], so
our problem is the same as the problem of a sphere of uniform charge
density. Finding N[image: -*-] is just like finding the potential ϕ[image: -*-]. We
have already worked out the fields inside and outside of a uniformly
charged sphere; we can integrate them to get the potential. Outside,
the potential is Q/4 π ϵ0 r[image: -*-], with the total charge Q[image: -*-] given
by 4 π a3 ρ/3[image: -*-]. So

[image: -*-][image: -*-]
(12.23)




For points inside, the field is due only to the charge Q (r)[image: -*-] inside
the sphere of radius r[image: -*-], Q (r)=4 π r3 ρ/3[image: -*-], so

[image: -*-][image: -*-]
(12.24)




The field increases linearly with r[image: -*-]. Integrating E[image: -*-] to get ϕ[image: -*-],
we have

[image: -*-][image: -*-]


At the radius a[image: -*-], ϕinside[image: -*-] must be the same
as ϕoutside[image: -*-], so the constant must be ρ a2/2 ϵ0[image: -*-]. (We are assuming that ϕ[image: -*-] is zero at large distances
from the source, which will correspond to N[image: -*-] being zero for the
neutrons.) Therefore,

[image: -*-][image: -*-]
(12.25)









We know immediately the neutron density in our other problem. The
answer is

[image: -*-][image: -*-]
(12.26)




and

[image: -*-][image: -*-]
(12.27)




N[image: -*-] is shown as a function of r[image: -*-] in Fig. 12–7.




Now what is the ratio of density at the center to that at the edge? At
the center (r=0[image: -*-]), it is proportional to 3 a2/2[image: -*-]. At the edge
(r=a[image: -*-]) it is proportional to 2 a2/2[image: -*-], so the ratio of densities
is 3/2[image: -*-]. A uniform source doesn’t produce a uniform density of
neutrons. You see, our knowledge of electrostatics gives us a good
start on the physics of nuclear reactors.




There are many physical circumstances in which diffusion plays a big
part. The motion of ions through a liquid, or of electrons through a
semiconductor, obeys the same equation. We find again and again the
same equations.








12–5 Irrotational fluid flow; the flow past a sphere


Let’s now consider an example which is not really a very good one,
because the equations we will use will not really represent the
subject with complete generality but only in an artificial idealized
situation. We take up the problem of water flow. In the case of
the stretched sheet, our equations were an approximation which was
correct only for small deflections. For our consideration of
water flow, we will not make that kind of an approximation; we must
make restrictions that do not apply at all to real water. We treat
only the case of the steady flow of an incompressible,
nonviscous, circulation-free liquid. Then we represent the flow by
giving the velocity v (r)[image: -*-] as a function of
position r[image: -*-]. If the motion is steady (the only case for which there is an
electrostatic analog) v[image: -*-] is independent of time. If ρ[image: -*-] is the
density of the fluid, then ρ v[image: -*-] is the amount of mass which
passes per unit time through a unit area. By the conservation of
matter, the divergence of ρ v[image: -*-] will be, in general, the time
rate of change of the mass of the material per unit volume. We will
assume that there are no processes for the continuous creation or
destruction of matter. The conservation of matter then requires
that ∇⋅ρ v=0[image: -*-]. (It should, in general, be equal
to −∂ρ/∂t[image: -*-], but since our fluid is incompressible, ρ[image: -*-]
cannot change.) Since ρ[image: -*-] is everywhere the same, we can factor it
out, and our equation is simply

[image: -*-][image: -*-]







Good! We have electrostatics again (with no charges); it’s just like
∇⋅E=0[image: -*-]. Not so! Electrostatics is not simply
∇⋅E=0[image: -*-]. It is a pair of equations. One equation
does not tell us enough; we need still an additional equation. To
match electrostatics, we should have also that the curl of
v[image: -*-] is zero. But that is not generally true for real liquids. Most
liquids will ordinarily develop some circulation. So we are restricted
to the situation in which there is no circulation of the fluid. Such
flow is often called irrotational. Anyway, if we make all our
assumptions, we can imagine a case of fluid flow that is
analogous to electrostatics. So we take

[image: -*-][image: -*-]
(12.28)




and

[image: -*-][image: -*-]
(12.29)









We want to emphasize that the number of circumstances in which liquid flow
follows these equations is far from the great majority, but there are a few.
They must be cases in which we can neglect surface tension, compressibility, and
viscosity, and in which we can assume that the flow is irrotational. These
assumptions are valid so rarely for real water that the mathematician John
von Neumann said that people who analyze
Eqs. (12.28) and (12.29) are studying “dry
water”! (We take up the problem of fluid flow in more detail in Chapters
40 and 41.)




Because ∇×v=0[image: -*-], the velocity of “dry water” can be
written as the gradient of some potential:

[image: -*-][image: -*-]
(12.30)




What is the physical meaning of ψ[image: -*-]? There isn’t any very useful
meaning. The velocity can be written as the gradient of a potential
simply because the flow is irrotational. And by analogy with
electrostatics, ψ[image: -*-] is called the velocity potential, but it
is not related to a potential energy in the way that ϕ[image: -*-] is. Since
the divergence of v[image: -*-] is zero, we have

[image: -*-][image: -*-]
(12.31)




The velocity potential ψ[image: -*-] obeys the same differential equation as
the electrostatic potential in free space (ρ=0[image: -*-]).




Let’s pick a problem in irrotational flow and see whether we can solve
it by the methods we have learned. Consider the problem of a spherical
ball falling through a liquid. If it is going too slowly, the viscous
forces, which we are disregarding, will be important. If it is going
too fast, little whirlpools (turbulence) will appear in its wake and
there will be some circulation of the water. But if the ball is going
neither too fast nor too slow, it is more or less true that the water
flow will fit our assumptions, and we can describe the motion of the
water by our simple equations.




It is convenient to describe what happens in a frame of reference
fixed in the sphere. In this frame we are asking the question:
How does water flow past a sphere at rest when the flow at large
distances is uniform? That is, when, far from the sphere, the flow is
everywhere the same. The flow near the sphere will be as shown by the
streamlines drawn in Fig. 12–8. These lines, always
parallel to v[image: -*-], correspond to lines of electric field. We want to
get a quantitative description for the velocity field, i.e., an
expression for the velocity at any point P[image: -*-].



[image: -][image: -]
Fig. 12–8. The velocity field of irrotational fluid flow past a sphere.





We can find the velocity from the gradient of ψ[image: -*-], so we first work
out the potential. We want a potential that satisfies
Eq. (12.31) everywhere, and which also satisfies two
restrictions: (1) there is no flow in the spherical region inside the
surface of the ball, and (2) the flow is constant at large distances. To
satisfy (1), the component of v[image: -*-] normal to the surface of the
sphere must be zero. That means that ∂ψ/∂r[image: -*-] is zero at r=a[image: -*-].
To satisfy (2), we must have ∂ψ/∂z=v0[image: -*-] at all points
where r≫a[image: -*-]. Strictly speaking, there is no electrostatic case which
corresponds exactly to our problem. It really corresponds to putting a
sphere of dielectric constant zero in a uniform electric field.
If we had worked out the solution to the problem of a sphere of a
dielectric constant κ[image: -*-] in a uniform field, then by
putting κ=0[image: -*-] we would immediately have the solution to this problem.




We have not actually worked out this particular electrostatic problem
in detail, but let’s do it now. (We could work directly on the fluid
problem with v[image: -*-] and ψ[image: -*-], but we will use E[image: -*-] and ϕ[image: -*-]
because we are so used to them.)




The problem is: Find a solution of ∇2ϕ=0[image: -*-] such
that E=−∇ϕ[image: -*-] is a constant, say E0[image: -*-], for large r[image: -*-],
and such that the radial component of E[image: -*-] is equal to zero
at r=a[image: -*-]. That is,

[image: -*-][image: -*-]
(12.32)









Our problem involves a new kind of boundary condition, not one for
which ϕ[image: -*-] is a constant on a surface, but for
which ∂ϕ/∂r[image: -*-] is a constant. That is a little different. It is not
easy to get the answer immediately. First of all, without the sphere,
ϕ[image: -*-] would be −E0 z[image: -*-]. Then E[image: -*-] would be in the z[image: -*-]-direction
and have the constant magnitude E0[image: -*-], everywhere. Now we have
analyzed the case of a dielectric sphere which has a uniform
polarization inside it, and we found that the field inside such a
polarized sphere is a uniform field, and that outside it is the same
as the field of a point dipole located at the center. So let’s guess
that the solution we want is a superposition of a uniform field plus
the field of a dipole. The potential of a dipole
(Chapter 6) is p z/4 π ϵ0 r3[image: -*-]. Thus we assume that

[image: -*-][image: -*-]
(12.33)




Since the dipole field falls off as 1/r3[image: -*-], at large distances we
have just the field E0[image: -*-]. Our guess will automatically satisfy
condition (2) above. But what do we take for the dipole strength p[image: -*-]?
To find out, we may use the other condition on ϕ[image: -*-],
Eq. (12.32). We must differentiate ϕ[image: -*-] with respect
to r[image: -*-], but of course we must do so at a constant angle θ[image: -*-], so it is
more convenient if we first express ϕ[image: -*-] in terms of r[image: -*-] and θ[image: -*-],
rather than of z[image: -*-] and r[image: -*-]. Since z=r cosθ[image: -*-], we get

[image: -*-][image: -*-]
(12.34)




The radial component of E[image: -*-] is

[image: -*-][image: -*-]
(12.35)




This must be zero at r=a[image: -*-] for all θ[image: -*-]. This will be true if

[image: -*-][image: -*-]
(12.36)









Note carefully that if both terms in Eq. (12.35) had not
had the same θ[image: -*-]-dependence, it would not have been possible to
choose p[image: -*-] so that (12.35) turned out to be zero at r=a[image: -*-]
for all angles. The fact that it works out means that we have guessed
wisely in writing Eq. (12.33). Of course, when we made
the guess we were looking ahead; we knew that we would need another
term that (a) satisfied ∇2ϕ=0[image: -*-] (any real field would do
that), (b) dependent on cosθ[image: -*-], and (c) fell to zero at
large r[image: -*-]. The dipole field is the only one that does all three.




Using (12.36), our potential is

[image: -*-][image: -*-]
(12.37)









The solution of the fluid flow problem can be written simply as

[image: -*-][image: -*-]
(12.38)




It is straightforward to find v[image: -*-] from this potential. We will not
pursue the matter further.







12–6 Illumination; the uniform lighting of a plane

[image: -][image: -]
Fig. 12–9. The illumination In[image: -*-] of a surface is the radiant energy per
unit time arriving at a unit area of the surface.





In this section we turn to a completely different physical
problem—we want to illustrate the great variety of
possibilities. This time we will do something that leads to the same
kind of integral that we found in electrostatics. (If we have a
mathematical problem which gives us a certain integral, then we know
something about the properties of that integral if it is the same
integral that we had to do for another problem.) We take our example
from illumination engineering. Suppose there is a light source at the
distance a[image: -*-] above a plane surface. What is the illumination of the
surface? That is, what is the radiant energy per unit time arriving at
a unit area of the surface? (See Fig. 12–9.) We suppose
that the source is spherically symmetric, so that light is radiated
equally in all directions. Then the amount of radiant energy which
passes through a unit area at right angles to a light flow
varies inversely as the square of the distance. It is evident that the
intensity of the light in the direction normal to the flow is given by
the same kind of formula as for the electric field from a point
source. If the light rays meet the surface at an angle θ[image: -*-] to the
normal, then In[image: -*-], the energy arriving per unit area of the
surface, is only cosθ[image: -*-] as great, because the same energy goes
onto an area larger by 1/cosθ[image: -*-]. If we call the strength of our
light source S[image: -*-], then In[image: -*-], the illumination of a surface, is

[image: -*-][image: -*-]
(12.39)




where er[image: -*-] is the unit vector from the source and n[image: -*-] is the
unit normal to the surface. The illumination In[image: -*-] corresponds to the
normal component of the electric field from a point charge of
strength 4 π ϵ0 S[image: -*-]. Knowing that, we see that for any distribution of light
sources, we can find the answer by solving the corresponding
electrostatic problem. We calculate the vertical component of electric
field on the plane due to a distribution of charge in the same way as
for that of the light sources.1




Consider the following example. We wish for some special experimental
situation to arrange that the top surface of a table will have a very
uniform illumination. We have available long tubular fluorescent
lights which radiate uniformly along their lengths. We can illuminate
the table by placing the fluorescent tubes in a regular array on the
ceiling, which is at the height z[image: -*-] above the table. What is the
widest spacing b[image: -*-] from tube to tube that we should use if we want the
surface illumination to be uniform to, say, within one part in a
thousand?  Answer: (1) Find the electric field from a grid of
wires with the spacing b[image: -*-], each charged uniformly; (2) compute the
vertical component of the electric field; (3) find out what b[image: -*-] must
be so that the ripples of the field are not more than one part in a
thousand.




In Chapter 7 we saw that the electric field of a grid of
charged wires could be represented as a sum of terms, each one of
which gave a sinusoidal variation of the field with a period of b/n[image: -*-],
where n[image: -*-] is an integer. The amplitude of any one of these terms is
given by Eq. (7.44):

[image: -*-][image: -*-]


We need consider only n=1[image: -*-], so long as we only want the field at
points not too close to the grid. For a complete solution, we would
still need to determine the coefficients An[image: -*-], which we have not yet
done (although it is a straightforward calculation). Since we need
only A1[image: -*-], we can estimate that its magnitude is roughly the same as
that of the average field. The exponential factor would then give us
directly the relative amplitude of the variations. If we want
this factor to be 10−3[image: -*-], we find that b[image: -*-] must be 0.91 z[image: -*-]. If we
make the spacing of the fluorescent tubes 3/4[image: -*-] of the distance to the
ceiling, the exponential factor is then 1/4000[image: -*-], and we have a safety
factor of 4, so we are fairly sure that we will have the
illumination constant to one part in a thousand. (An exact calculation
shows that A1[image: -*-] is really twice the average field, so
that b≈0.83 z[image: -*-].) It is somewhat surprising that for such a uniform
illumination the allowed separation of the tubes comes out so large.







12–7 The “underlying unity” of nature


In this chapter, we wished to show that in learning electrostatics you
have learned at the same time how to handle many subjects in physics,
and that by keeping this in mind, it is possible to learn almost all
of physics in a limited number of years.





However, a question surely suggests itself at the end of such a
discussion: Why are the equations from different phenomena so
similar? We might say: “It is the underlying unity of nature.” But
what does that mean? What could such a statement mean? It could
mean simply that the equations are similar for different phenomena;
but then, of course, we have given no explanation. The “underlying
unity” might mean that everything is made out of the same stuff, and
therefore obeys the same equations. That sounds like a good
explanation, but let us think. The electrostatic potential, the
diffusion of neutrons, heat flow—are we really dealing with the same
stuff? Can we really imagine that the electrostatic potential is
physically identical to the temperature, or to the density of
particles? Certainly ϕ[image: -*-] is not exactly the same as the
thermal energy of particles. The displacement of a membrane is
certainly not like a temperature. Why, then, is there “an
underlying unity”?




A closer look at the physics of the various subjects shows, in fact,
that the equations are not really identical. The equation we found for
neutron diffusion is only an approximation that is good when the
distance over which we are looking is large compared with the mean
free path. If we look more closely, we would see the individual
neutrons running around. Certainly the motion of an individual neutron
is a completely different thing from the smooth variation we get from
solving the differential equation. The differential equation is an
approximation, because we assume that the neutrons are smoothly
distributed in space.




Is it possible that this is the clue? That the thing which is
common to all the phenomena is the space, the framework into
which the physics is put? As long as things are reasonably smooth in
space, then the important things that will be involved will be the
rates of change of quantities with position in space. That is why we
always get an equation with a gradient. The derivatives must
appear in the form of a gradient or a divergence; because the laws of
physics are independent of direction, they must be expressible
in vector form. The equations of electrostatics are the simplest
vector equations that one can get which involve only the spatial
derivatives of quantities. Any other simple problem—or
simplification of a complicated problem—must look like
electrostatics. What is common to all our problems is that they
involve space and that we have imitated what is actually
a complicated phenomenon by a simple differential equation.




That leads us to another interesting question. Is the same statement
perhaps also true for the electrostatic equations? Are they
also correct only as a smoothed-out imitation of a really much more
complicated microscopic world? Could it be that the real world
consists of little X-ons which can be seen only at very tiny
distances? And that in our measurements we are always observing on
such a large scale that we can’t see these little X-ons, and that is
why we get the differential equations?




Our currently most complete theory of electrodynamics does indeed have
its difficulties at very short distances. So it is possible, in
principle, that these equations are smoothed-out versions of
something. They appear to be correct at distances down to
about 10−14[image: -*-] cm, but then they begin to look wrong. It is possible that
there is some as yet undiscovered underlying “machinery,” and that
the details of an underlying complexity are hidden in the
smooth-looking equations—as is so in the “smooth” diffusion of
neutrons. But no one has yet formulated a successful theory that works
that way.




Strangely enough, it turns out (for reasons that we do not at all
understand) that the combination of relativity and quantum mechanics
as we know them seems to forbid the invention of an equation
that is fundamentally different from Eq. (12.4), and
which does not at the same time lead to some kind of
contradiction. Not simply a disagreement with experiment, but an
internal contradiction. As, for example, the prediction that
the sum of the probabilities of all possible occurrences is not equal
to unity, or that energies may sometimes come out as complex numbers,
or some other such idiocy. No one has yet made up a theory of
electricity for which ∇2ϕ=−ρ/ϵ0[image: -*-] is understood as a
smoothed-out approximation to a mechanism underneath, and which does
not lead ultimately to some kind of an absurdity. But, it must be
added, it is also true that the assumption
that ∇2ϕ=−ρ/ϵ0[image: -*-] is valid for all distances, no matter how
small, leads to absurdities of its own (the electrical energy of an
electron is infinite)—absurdities from which no one yet knows an
escape.





	
  
  Since we are talking about
incoherent sources whose intensities always add
linearly, the analogous electric charges will always have the same
sign. Also, our analogy applies only to the light energy arriving at
the top of an opaque surface, so we must include in our integral only
the sources which shine on the surface (and, naturally, not sources
located below the surface!).
  ↩
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13–1 The magnetic field


The force on an electric charge depends not only on where it
is, but also on how fast it is moving. Every point in space is
characterized by two vector quantities which determine the force on any
charge. First, there is the electric force, which gives a force component
independent of the motion of the charge. We describe it by the electric
field, E[image: -*-]. Second, there is an additional force component, called
the magnetic force, which depends on the velocity of the charge. This magnetic
force has a strange directional character: At any particular point in
space, both the direction of the force and its magnitude
depend on the direction of motion of the particle: at every instant the
force is always at right angles to the velocity vector; also, at any
particular point, the force is always at right angles to a fixed
direction in space (see Fig. 13–1); and finally, the
magnitude of the force is proportional to the component of the
velocity at right angles to this unique direction. It is possible to
describe all of this behavior by defining the magnetic field
vector B[image: -*-], which specifies both the unique direction in space and
the constant of proportionality with the velocity, and to write the
magnetic force as q v×B[image: -*-]. The total electromagnetic force
on a charge can, then, be written as

[image: -*-][image: -*-]
(13.1)




This is called the Lorentz force.



[image: -][image: -]
Fig. 13–1. The velocity-dependent component of the force on a moving
charge is at right angles to v[image: -*-] and to the direction
of B[image: -*-]. It is also proportional to the component of v[image: -*-] at
right angles to B[image: -*-], that is, to v sinθ[image: -*-].





The magnetic force is easily demonstrated by bringing a bar magnet
close to a cathode-ray tube. The deflection of the electron beam shows
that the presence of the magnet results in forces on the electrons
transverse to their direction of motion, as we described in
Chapter 12 of Vol. I.




The unit of magnetic field B[image: -*-] is evidently one
newton⋅[image: -*-]second per coulomb-meter. The same unit is also one
volt⋅[image: -*-]second per meter2. It is also called one weber per
square meter.







13–2 Electric current; the conservation of charge


We consider first how we can understand the magnetic forces on wires
carrying electric currents. In order to do this, we define what is meant
by the current density. Electric currents are electrons or other charges
in motion with a net drift or flow. We can represent the charge flow by
a vector which gives the amount of charge passing per unit area and per
unit time through a surface element at right angles to the flow (just as
we did for the case of heat flow). We call this the current
density and
represent it by the vector j[image: -*-]. It is directed along the motion of
the charges. If we take a small area Δ S[image: -*-] at a given place in the
material, the amount of charge flowing across that area in a unit time
is

[image: -*-][image: -*-]
(13.2)




where n[image: -*-] is the unit vector normal to Δ S[image: -*-].



[image: -][image: -]
Fig. 13–2. If a charge distribution of density ρ[image: -*-] moves with the
velocity v[image: -*-], the charge per unit time through Δ S[image: -*-]
is ρ v⋅n Δ S[image: -*-].





The current density is related to the average flow velocity of the
charges. Suppose that we have a distribution of charges whose average
motion is a drift with the velocity v[image: -*-]. As this distribution
passes over a surface element Δ S[image: -*-], the charge Δ q[image: -*-]
passing through the surface element in a time Δ t[image: -*-] is equal to
the charge contained in a parallelepiped whose base is Δ S[image: -*-] and
whose height is v Δ t[image: -*-], as shown in Fig. 13–2. The
volume of the parallelepiped is the projection of Δ S[image: -*-] at right
angles to v[image: -*-] times v Δ t[image: -*-], which when multiplied by the
charge density ρ[image: -*-] will give Δ q[image: -*-]. Thus

[image: -*-][image: -*-]


The charge per unit time is then ρ v⋅n Δ S[image: -*-], from
which we get

[image: -*-][image: -*-]
(13.3)









If the charge distribution consists of individual charges, say
electrons, each with the charge q[image: -*-] and moving with the mean
velocity v[image: -*-], then the current density is

[image: -*-][image: -*-]
(13.4)




where N[image: -*-] is the number of charges per unit volume.



[image: -][image: -]
Fig. 13–3. The current I[image: -*-] through the surface S[image: -*-]
is ∫j⋅n dS[image: -*-].





The total charge passing per unit time through any surface S[image: -*-] is
called the electric current, I[image: -*-]. It is equal to the integral
of the normal component of the flow through all of the elements of the
surface:

[image: -*-][image: -*-]
(13.5)




(see Fig. 13–3).



[image: -][image: -]
Fig. 13–4. The integral of j⋅n[image: -*-] over a closed surface is
negative the rate of change of the total charge Q[image: -*-] inside.





The current I[image: -*-] out of a closed surface S[image: -*-] represents the rate at
which charge leaves the volume V[image: -*-] enclosed by S[image: -*-]. One of the basic
laws of physics is that electric charge is indestructible; it
is never lost or created. Electric charges can move from place to
place but never appear from nowhere. We say that charge is
conserved. If there is a net current out of a closed surface, the
amount of charge inside must decrease by the corresponding amount
(Fig. 13–4). We can, therefore, write the law of the
conservation of charge as

[image: -*-][image: -*-]
(13.6)




The charge inside can be written as a volume integral of the charge
density:

[image: -*-][image: -*-]
(13.7)









If we apply (13.6) to a small volume Δ V[image: -*-], we know
that the left-hand integral is ∇⋅j Δ V[image: -*-]. The charge
inside is ρ Δ V[image: -*-], so the conservation of charge can also be
written as

[image: -*-][image: -*-]
(13.8)




(Gauss’ mathematics once again!).







13–3 The magnetic force on a current

[image: -][image: -]
Fig. 13–5. The magnetic force on a current-carrying wire is the sum of
the forces on the individual moving charges.





Now we are ready to find the force on a current-carrying wire in a
magnetic field. The current consists of charged particles moving with
the velocity v[image: -*-] along the wire. Each charge feels a transverse
force

[image: -*-][image: -*-]


(Fig. 13–5a). If there are N[image: -*-] such charges per unit
volume, the number in a small volume Δ V[image: -*-] of the wire
is N Δ V[image: -*-]. The total magnetic force Δ F[image: -*-] on the
volume Δ V[image: -*-] is the sum of the forces on the individual charges, that
is,

[image: -*-][image: -*-]


But N q v[image: -*-] is just j[image: -*-], so

[image: -*-][image: -*-]
(13.9)




(Fig. 13–5b). The force per unit volume is j×B[image: -*-].




If the current is uniform across a wire whose cross-sectional area
is A[image: -*-], we may take as the volume element a cylinder with the base
area A[image: -*-] and the length Δ L[image: -*-]. Then

[image: -*-][image: -*-]
(13.10)




Now we can call j A[image: -*-] the vector current I[image: -*-] in the wire. (Its
magnitude is the electric current in the wire, and its direction is
along the wire.) Then

[image: -*-][image: -*-]
(13.11)




The force per unit length on a wire is I×B[image: -*-].




This equation gives the important result that the magnetic force on a
wire, due to the movement of charges in it, depends only on the total
current, and not on the amount of charge carried by each particle—or
even its sign! The magnetic force on a wire near a magnet is easily
shown by observing its deflection when a current is turned on, as was
described in Chapter 1 (see Fig. 1–6).







13–4 The magnetic field of steady currents; Ampère’s law


We have seen that there is a force on a wire in the presence of a
magnetic field, produced, say, by a magnet. From the principle that
action equals reaction we might expect that there should be a force on
the source of the magnetic field, i.e., on the magnet, when there is a
current through the wire.1 There are indeed such forces, as is seen by the deflection of a
compass needle near a current-carrying wire. Now we know that magnets
feel forces from other magnets, so that means that when there is a
current in a wire, the wire itself generates a magnetic field. Moving
charges, then, produce a magnetic field. We would like now to try
to discover the laws that determine how such magnetic fields are
created. The question is: Given a current, what magnetic field does it
make? The answer to this question was determined experimentally by three
critical experiments and a brilliant theoretical argument given by
Ampère. We will pass
over this interesting historical development and simply say that a large
number of experiments have demonstrated the validity of
Maxwell’s equations. We take
them as our starting point. If we drop the terms involving time
derivatives in these equations we get the equations of
magnetostatics:

[image: -*-][image: -*-]
(13.12)




and

[image: -*-][image: -*-]
(13.13)




These equations are valid only if all electric charge densities are
constant and all currents are steady, so that the electric and
magnetic fields are not changing with time—all of the fields are
“static.”




We may remark that it is rather dangerous to think that there is such
a thing as a static magnetic situation, because there must be currents
in order to get a magnetic field at all—and currents can come only
from moving charges. “Magnetostatics” is, therefore, an
approximation. It refers to a special kind of dynamic situation with
large numbers of charges in motion, which we can approximate by
a steady flow of charge. Only then can we speak of a current
density j[image: -*-] which does not change with time. The subject should
more accurately be called the study of steady currents. Assuming that
all fields are steady, we drop all terms in ∂E/∂t[image: -*-]
and ∂B/∂t[image: -*-] from the complete Maxwell
equations,
Eqs. (2.41), and obtain the two equations
(13.12) and (13.13) above. Also notice that
since the divergence of the curl of any vector is necessarily zero,
Eq. (13.13) requires that ∇⋅j=0[image: -*-]. This is true,
by Eq. (13.8), only if ∂ρ/∂t[image: -*-] is zero. But that
must be so if E[image: -*-] is not changing with time, so our assumptions are
consistent.





The requirement that ∇⋅j=0[image: -*-] means that we may only have
charges which flow in paths that close back on themselves. They may,
for instance, flow in wires that form complete loops—called
circuits. The circuits may, of course, contain generators or batteries
that keep the charges flowing. But they may not include condensers
which are charging or discharging. (We will, of course, extend the
theory later to include dynamic fields, but we want first to take the
simpler case of steady currents.)




Now let us look at Eqs. (13.12) and (13.13) to
see what they mean. The first one says that the divergence of B[image: -*-] is zero.
Comparing it to the analogous equation in electrostatics, which says
that ∇⋅E=−ρ/ϵ0[image: -*-], we can conclude that there is no magnetic
analog of an electric charge. There are no magnetic charges from which
lines of B[image: -*-] can emerge. If we think in terms of “lines” of the vector
field B[image: -*-], they can never start and they never stop. Then where do they come
from?  Magnetic fields “appear” in the presence of currents; they have
a curl proportional to the current density. Wherever there are currents,
there are lines of magnetic field making loops around the currents. Since lines
of B[image: -*-] do not begin or end, they will often close back on themselves, making
closed loops. But there can also be complicated situations in which the lines
are not simple closed loops. But whatever they do, they never diverge from
points. No magnetic charges have ever been discovered, so ∇⋅B=0[image: -*-].
This much is true not only for magnetostatics, it is always true—even
for dynamic fields.



[image: -][image: -]
Fig. 13–6. The line integral of the tangential component of B[image: -*-] is
equal to the surface integral of the normal component
of ∇×B[image: -*-].





The connection between the B[image: -*-] field and currents is contained in
Eq. (13.13). Here we have a new kind of situation which
is quite different from electrostatics, where we
had ∇×E=0[image: -*-]. That equation meant that the line integral
of E[image: -*-] around any closed path is zero:

[image: -*-][image: -*-]


We got that result from Stokes’ theorem, which says that the integral
around any closed path of any vector field is equal to the
surface integral of the normal component of the curl of the vector
(taken over any surface which has the closed loop as its
periphery). Applying the same theorem to the magnetic field vector and
using the symbols shown in Fig. 13–6, we get

[image: -*-][image: -*-]
(13.14)




Taking the curl of B[image: -*-] from Eq. (13.13), we have

[image: -*-][image: -*-]
(13.15)




The integral over S[image: -*-], according to (13.5), is the total
current I[image: -*-] through the surface S[image: -*-]. Since for steady currents the
current through S[image: -*-] is independent of the shape of S[image: -*-], so long as it
is bounded by the curve Γ[image: -*-], one usually speaks of “the current
through the loop Γ[image: -*-].” We have, then, a general law: the
circulation of B[image: -*-] around any closed curve is equal to the
current I[image: -*-] through the loop, divided by ϵ0 c2[image: -*-]:

[image: -*-][image: -*-]
(13.16)




This law—called Ampère’s law—plays the same role in
magnetostatics that Gauss’ law played in electrostatics. Ampère’s law
alone does not determine B[image: -*-] from currents; we must, in general,
also use ∇⋅B=0[image: -*-]. But, as we will see in the next section, it
can be used to find the field in special circumstances which have
certain simple symmetries.







13–5 The magnetic field of a straight wire and of a solenoid; atomic currents

[image: -][image: -]
Fig. 13–7. The magnetic field outside of a long wire carrying the
current I[image: -*-].





We can illustrate the use of Ampère’s law by finding the magnetic field
near a wire. We ask: What is the field outside a long straight wire with
a cylindrical cross section? We will assume something which may not be
at all evident, but which is nevertheless true: that the field lines
of B[image: -*-] go around the wire in closed circles. If we make this
assumption, then Ampère’s law, Eq. (13.16), tells us how
strong the field is. From the symmetry of the problem, B[image: -*-] has the
same magnitude at all points on a circle concentric with the wire (see
Fig. 13–7). We can then do the line integral of B⋅d s[image: -*-] quite easily; it is just the magnitude of B[image: -*-] times the
circumference. If r[image: -*-] is the radius of the circle, then

[image: -*-][image: -*-]


The total current through the loop is merely the current I[image: -*-] in the
wire, so

[image: -*-][image: -*-]


or

[image: -*-][image: -*-]
(13.17)




The strength of the magnetic field drops off inversely as r[image: -*-], the
distance from the axis of the wire. We can, if we wish, write
Eq. (13.17) in vector form. Remembering that B[image: -*-] is at
right angles both to I[image: -*-] and to r[image: -*-], we have

[image: -*-][image: -*-]
(13.18)




We have separated out the factor 1/4 π ϵ0 c2[image: -*-], because it appears
often. It is worth remembering that it is exactly 10−7[image: -*-] (in the
mks system), since an equation like (13.17) is used to
define the unit of current, the ampere. At one meter from a
current of one ampere the magnetic field is 2×10−7[image: -*-] webers
per square meter.




Since a current produces a magnetic field, it will exert a force on a
nearby wire which is also carrying a current. In Chapter 1
we described a simple demonstration of the forces between two
current-carrying wires. If the wires are parallel, each is at right
angles to the B[image: -*-] field of the other; the wires should then be
pushed either toward or away from each other. When currents are in the
same direction, the wires attract; when the currents are moving in
opposite directions, the wires repel.




Let’s take another example that can be analyzed by Ampère’s law if we
add some knowledge about the field. Suppose we have a long coil of wire
wound in a tight spiral, as shown by the cross sections in
Fig. 13–8. Such a coil is called a
solenoid. We observe experimentally that when a
solenoid is very long compared with its diameter, the field outside is
very small compared with the field inside. Using just that fact,
together with Ampère’s law, we can find the size of the field inside.



[image: -][image: -]
Fig. 13–8. The magnetic field of a long solenoid.





Since the field stays inside (and has zero divergence), its lines
must go along parallel to the axis, as shown in Fig. 13–8.
That being the case, we can use Ampère’s law with the rectangular
“curve” Γ[image: -*-] shown in the figure. This loop goes the distance L[image: -*-]
inside the solenoid, where the field is, say, B0[image: -*-], then goes at
right angles to the field, and returns along the outside, where the
field is negligible. The line integral of B[image: -*-] for this curve is
just B0 L[image: -*-], and it must be 1/ϵ0 c2[image: -*-] times the total current
through Γ[image: -*-], which is N I[image: -*-] if there are N[image: -*-] turns of the solenoid
in the length L[image: -*-]. We have

[image: -*-][image: -*-]


Or, letting n[image: -*-] be the number of turns per unit length of the
solenoid (that is, n=N/L[image: -*-]), we get

[image: -*-][image: -*-]
(13.19)









What happens to the lines of B[image: -*-] when they get to the end of the
solenoid? Presumably, they spread out in some way and return to enter
the solenoid at the other end, as sketched in Fig. 13–9.
Such a field is just what is observed outside of a bar magnet. But what
is a magnet anyway? Our equations say that B[image: -*-] comes from the
presence of currents. Yet we know that ordinary bars of iron (no
batteries or generators) also produce magnetic fields. You might expect
that there should be some other terms on the right-hand side of
(13.12) or (13.13) to represent “the density of
magnetic iron” or some such quantity. But there is no such term. Our
theory says that the magnetic effects of iron come from some internal
currents which are already taken care of by the j[image: -*-] term.



[image: -][image: -]
Fig. 13–9. The magnetic field outside of a solenoid.





Matter is very complex when looked at from a fundamental point of
view—as we saw when we tried to understand dielectrics. In order not
to interrupt our present discussion, we will wait until later to deal
in detail with the interior mechanisms of magnetic materials like
iron: You will have to accept, for the moment, that all magnetism is
produced from currents, and that in a permanent magnet there are
permanent internal currents. In the case of iron, these currents come
from electrons spinning around their own axes. Every electron has such
a spin, which corresponds to a tiny circulating current. Of course,
one electron doesn’t produce much magnetic field, but in an ordinary
piece of matter there are billions and billions of electrons. Normally
these spin and point every which way, so that there is no net
effect. The miracle is that in a very few substances, like iron, a
large fraction of the electrons spin with their axes in the same
direction—for iron, two electrons of each atom take part in this
cooperative motion. In a bar magnet there are large numbers of
electrons all spinning in the same direction and, as we will see,
their total effect is equivalent to a current circulating on the
surface of the bar. (This is quite analogous to what we found for
dielectrics—that a uniformly polarized dielectric is equivalent to a
distribution of charges on its surface.) It is, therefore, no accident
that a bar magnet is equivalent to a solenoid.







13–6 The relativity of magnetic and electric fields


When we said that the magnetic force on a charge was proportional to
its velocity, you may have wondered: “What velocity? With respect to
which reference frame?” It is, in fact, clear from the definition
of B[image: -*-] given at the beginning of this chapter that what this vector
is will depend on what we choose as a reference frame for our
specification of the velocity of charges. But we have said nothing
about which is the proper frame for specifying the magnetic field.




It turns out that any inertial frame will do. We will also see
that magnetism and electricity are not independent things—that they
should always be taken together as one complete electromagnetic
field. Although in the static case Maxwell’s
equations separate into two distinct
pairs, one pair for electricity and one pair for magnetism, with no
apparent connection between the two fields, nevertheless, in nature
itself there is a very intimate relationship between them that arises
from the principle of relativity. Historically, the principle of
relativity was discovered after Maxwell’s
equations. It was, in fact, the study
of electricity and magnetism which led ultimately to
Einstein’s discovery of his
principle of relativity. But let’s see what our knowledge of relativity
would tell us about magnetic forces if we assume that the relativity
principle is applicable—as it is—to electromagnetism.





Suppose we think about what happens when a negative charge moves with
velocity v0[image: -*-] parallel to a current-carrying wire, as in
Fig. 13–10. We will try to understand what goes on in two
reference frames: one fixed with respect to the wire, as in part (a) of
the figure, and one fixed with respect to the particle, as in part (b).
We will call the first frame S[image: -*-] and the second S′[image: -*-].



[image: -][image: -]
Fig. 13–10. The interaction of a current-carrying wire and a particle
with the charge q[image: -*-] as seen in two frames. In frame S[image: -*-] (part a),
the wire is at rest; in frame S′[image: -*-] (part b), the charge is at rest.





In the S[image: -*-]-frame, there is clearly a magnetic force on the
particle. The force is directed toward the wire, so if the charge were
moving freely we would see it curve in toward the wire. But in the
S′[image: -*-]-frame there can be no magnetic force on the particle, because its
velocity is zero. Does it, therefore, stay where it is? Would we see
different things happening in the two systems? The principle of
relativity would say that in S′[image: -*-] we should also see the particle move
closer to the wire. We must try to understand why that would happen.




We return to our atomic description of a wire carrying a current. In a
normal conductor, like copper, the electric currents come from the
motion of some of the negative electrons—called the conduction
electrons—while the positive nuclear charges and the remainder of
the electrons stay fixed in the body of the material. We let the
charge density of the conduction electrons be ρ−[image: -*-] and their
velocity in S[image: -*-] be v[image: -*-]. The density of the charges at rest in S[image: -*-]
is ρ+[image: -*-], which must be equal to the negative of ρ−[image: -*-], since we are
considering an uncharged wire. There is thus no electric field outside
the wire, and the force on the moving particle is just

[image: -*-][image: -*-]







Using the result we found in Eq. (13.18) for the
magnetic field at the distance r[image: -*-] from the axis of a wire, we conclude
that the force on the particle is directed toward the wire and has the
magnitude

[image: -*-][image: -*-]


Using Eqs. (13.3) and (13.5), the current I[image: -*-] can
be written as ρ− v A[image: -*-], where A[image: -*-] is the area of a cross section of the wire.
Then

[image: -*-][image: -*-]
(13.20)









We could continue to treat the general case of arbitrary velocities
for v[image: -*-] and v0[image: -*-], but it will be just as good to look at the special
case in which the velocity v0[image: -*-] of the particle is the same as the
velocity v[image: -*-] of the conduction electrons. So we write v0=v[image: -*-], and
Eq. (13.20) becomes

[image: -*-][image: -*-]
(13.21)









Now we turn our attention to what happens in S′[image: -*-], in which the
particle is at rest and the wire is running past (toward the left in
the figure) with the speed v[image: -*-]. The positive charges moving with the
wire will make some magnetic field B′[image: -*-] at the particle. But the
particle is now at rest, so there is no magnetic force
on it!  If there is any force on the particle, it must come from an
electric field. It must be that the moving wire has produced an
electric field. But it can do that only if it appears
charged—it must be that a neutral wire with a current appears
to be charged when set in motion.




We must look into this. We must try to compute the charge density in
the wire in S′[image: -*-] from what we know about it in S[image: -*-]. One might, at
first, think they are the same; but we know that lengths are changed
between S[image: -*-] and S′[image: -*-] (see Chapter 15, Vol. I), so
volumes will change also. Since the charge densities depend on
the volume occupied by charges, the densities will change, too.




Before we can decide about the charge densities in S′[image: -*-], we
must know what happens to the electric charge of a bunch of
electrons when the charges are moving. We know that the apparent mass
of a particle changes by 1/√1−v2/c2[image: -*-]. Does its charge do
something similar? No! Charges are always the same,
moving or not. Otherwise we would not always observe that the total
charge is conserved.




Suppose that we take a block of material, say a conductor, which is
initially uncharged. Now we heat it up. Because the electrons have a
different mass than the protons, the velocities of the electrons and
of the protons will change by different amounts. If the charge of a
particle depended on the speed of the particle carrying it, in the
heated block the charge of the electrons and protons would no longer
balance. A block would become charged when heated. As we have seen
earlier, a very small fractional change in the charge of all the
electrons in a block would give rise to enormous electric fields. No
such effect has ever been observed.




Also, we can point out that the mean speed of the electrons in matter
depends on its chemical composition. If the charge on an electron
changed with speed, the net charge in a piece of material would be
changed in a chemical reaction. Again, a straightforward calculation
shows that even a very small dependence of charge on speed would give
enormous fields from the simplest chemical reactions. No such effect
is observed, and we conclude that the electric charge of a single
particle is independent of its state of motion.




So the charge q[image: -*-] on a particle is an invariant scalar quantity,
independent of the frame of reference. That means that in any frame
the charge density of a distribution of electrons is just proportional
to the number of electrons per unit volume. We need only worry about
the fact that the volume can change because of the relativistic
contraction of distances.




We now apply these ideas to our moving wire. If we take a length L0[image: -*-]
of the wire, in which there is a charge density ρ0[image: -*-] of
stationary charges, it will contain the total
charge Q=ρ0 L0 A0[image: -*-]. If the same charges are observed in a different
frame to be moving with velocity v[image: -*-], they will all be found in a
piece of the material with the shorter length

[image: -*-][image: -*-]
(13.22)




but with the same area A0[image: -*-] (since dimensions transverse to the
motion are unchanged). See Fig. 13–11.



[image: -][image: -]
Fig. 13–11. If a distribution of charged particles at rest has the charge
density ρ0[image: -*-], the same charges will have the
density ρ=ρ0/√1−v2/c2[image: -*-] when seen from a frame with the
relative velocity v[image: -*-].





If we call ρ[image: -*-] the density of charges in the frame in which they
are moving, the total charge Q[image: -*-] will be ρ L A0[image: -*-]. This must also
be equal to ρ0 L0 A0[image: -*-], because charge is the same in any system,
so that ρ L=ρ0 L0[image: -*-] or, from (13.22),

[image: -*-][image: -*-]
(13.23)




The charge density of a moving distribution of charges
varies in the same way as the relativistic mass of a particle.




We now use this general result for the positive charge
density ρ+[image: -*-] of our wire. These charges are at rest in frame S[image: -*-]. In S′[image: -*-],
however, where the wire moves with the speed v[image: -*-], the positive charge
density becomes

[image: -*-][image: -*-]
(13.24)









The negative charges are at rest in S′[image: -*-]. So they have their
“rest density” ρ0[image: -*-] in this frame. In Eq. (13.23)
[image: \rho_0=\rho_-'][image: \rho_0=\rho_-'], because they have the density ρ−[image: -*-] when the
wire is at rest, i.e., in frame S[image: -*-], where the speed of the
negative charges is v[image: -*-]. For the conduction electrons, we then have
that

[image: -*-][image: -*-]
(13.25)




or

[image: -*-][image: -*-]
(13.26)









Now we can see why there are electric fields in S′[image: -*-]—because in this
frame the wire has the net charge density ρ′[image: -*-] given by

[image: -*-][image: -*-]


Using (13.24) and (13.26), we have

[image: -*-][image: -*-]


Since the stationary wire is neutral, ρ−=−ρ+[image: -*-], and we have

[image: -*-][image: -*-]
(13.27)




Our moving wire is positively charged and will produce an electric
field E′[image: -*-] at the external stationary particle. We have already solved
the electrostatic problem of a uniformly charged cylinder. The
electric field at the distance r[image: -*-] from the axis of the cylinder is

[image: -*-][image: -*-]
(13.28)




The force on the negatively charged particle is toward the wire. We
have, at least, a force in the same direction from the two points of
view; the electric force in S′[image: -*-] has the same direction as the
magnetic force in S[image: -*-].




The magnitude of the force in S′[image: -*-] is

[image: -*-][image: -*-]
(13.29)




Comparing this result for F′[image: -*-] with our result for F[image: -*-] in
Eq. (13.21), we see that the magnitudes of the forces are
almost identical from the two points of view. In fact,

[image: -*-][image: -*-]
(13.30)




so for the small velocities we have been considering, the two forces
are equal. We can say that for low velocities, at least, we understand
that magnetism and electricity are just “two ways of looking at the
same thing.”




But things are even better than that. If we take into account the fact
that forces also transform when we go from one system to the
other, we find that the two ways of looking at what happens do indeed
give the same physical result for any velocity.




One way of seeing this is to ask a question like: What transverse
momentum will the particle have after the force has acted for a little
while? We know from Chapter 16 of Vol. I that the transverse
momentum of a particle should be the same in both the S[image: -*-]- and
S′[image: -*-]-frames. Calling the transverse coordinate y[image: -*-], we want to
compare Δ py[image: -*-] and [image: \Delta p_y'][image: \Delta p_y']. Using the relativistically correct
equation of motion, F=d p/d t[image: -*-], we expect that after the
time Δ t[image: -*-] our particle will have a transverse momentum Δ py[image: -*-]
in the S[image: -*-]-system given by

[image: -*-][image: -*-]
(13.31)




In the S′[image: -*-]-system, the transverse momentum will be

[image: -*-][image: -*-]
(13.32)




We must, of course, compare Δ py[image: -*-] and [image: \Delta p_y'][image: \Delta p_y'] for
corresponding time intervals Δ t[image: -*-] and Δ t′[image: -*-]. We have seen in
Chapter 15 of Vol. I that the time intervals referred to a
moving particle appear to be longer than those in the rest
system of the particle. Since our particle is initially at rest in S′[image: -*-],
we expect, for small Δ t[image: -*-], that

[image: -*-][image: -*-]
(13.33)




and everything comes out O.K. From (13.31)
and (13.32),

[image: -*-][image: -*-]


which is just =1[image: -*-] if we combine (13.30)
and (13.33).




We have found that we get the same physical result whether we analyze
the motion of a particle moving along a wire in a coordinate system at
rest with respect to the wire, or in a system at rest with respect to
the particle. In the first instance, the force was purely
“magnetic,” in the second, it was purely “electric.” The two
points of view are illustrated in Fig. 13–12 (although there is
still a magnetic field B′[image: -*-] in the second frame, it produces no forces
on the stationary particle).




[image: -][image: -]
Fig. 13–12. In frame S[image: -*-] the charge density is zero and the current density
is j[image: -*-]. There is only a magnetic field. In S′[image: -*-], there is a charge
density ρ′[image: -*-] and a different current density j′[image: -*-]. The magnetic
field B′[image: -*-] is different and there is an electric field E′[image: -*-].





If we had chosen still another coordinate system, we would have found
a different mixture of E[image: -*-] and B[image: -*-] fields. Electric and
magnetic forces are part of one physical phenomenon—the
electromagnetic interactions of particles. The separation of this
interaction into electric and magnetic parts depends very much on the
reference frame chosen for the description. But a complete
electromagnetic description is invariant; electricity and magnetism
taken together are consistent with Einstein’s relativity.




Since electric and magnetic fields appear in different mixtures if we
change our frame of reference, we must be careful about how we look at
the fields E[image: -*-] and B[image: -*-]. For instance, if we think of “lines”
of E[image: -*-] or B[image: -*-], we must not attach too much reality to
them. The lines may disappear if we try to observe them from a
different coordinate system. For example, in system S′[image: -*-] there are
electric field lines, which we do not find “moving past us
with velocity v[image: -*-] in system S[image: -*-].” In system S[image: -*-] there are no electric
field lines at all! Therefore it makes no sense to say something like:
When I move a magnet, it takes its field with it, so the lines
of B[image: -*-] are also moved. There is no way to make sense, in general, out
of the idea of “the speed of a moving field line.” The fields are
our way of describing what goes on at a point in space. In particular,
E[image: -*-] and B[image: -*-] tell us about the forces that will act on a moving
particle. The question “What is the force on a charge from a
moving magnetic field?” doesn’t mean anything precise. The
force is given by the values of E[image: -*-] and B[image: -*-] at the charge, and
the formula (13.1) is not to be altered if the
source of E[image: -*-] or B[image: -*-] is moving (it is the values of
E[image: -*-] and B[image: -*-] that will be altered by the motion). Our
mathematical description deals only with the fields as a function of
x[image: -*-], y[image: -*-], z[image: -*-], and t[image: -*-] with respect to some inertial frame.




We will later be speaking of “a wave of electric and magnetic
fields travelling through space,” as, for instance, a light wave. But
that is like speaking of a wave travelling on a string. We
don’t then mean that some part of the string is moving in the
direction of the wave, we mean that the displacement of the
string appears first at one place and later at another. Similarly, in
an electromagnetic wave, the wave travels; but the magnitude of
the fields change. So in the future when we—or someone
else—speaks of a “moving” field, you should think of it as just a
handy, short way of describing a changing field in some circumstances.







13–7 The transformation of currents and charges


You may have worried about the simplification we made above when we
took the same velocity v[image: -*-] for the particle and for the conduction
electrons in the wire. We could go back and carry through the analysis
again for two different velocities, but it is easier to simply notice
that charge and current density are the components of a four-vector
(see Chapter 17, Vol. I).




We have seen that if ρ0[image: -*-] is the density of the charges in their
rest frame, then in a frame in which they have the velocity v[image: -*-],
the density is

[image: -*-][image: -*-]


In that frame their current density is

[image: -*-][image: -*-]
(13.34)









Now we know that the energy U[image: -*-] and momentum p[image: -*-] of a particle
moving with velocity v[image: -*-] are given by

[image: -*-][image: -*-]


where m0[image: -*-] is its rest mass. We also know that U[image: -*-] and p[image: -*-] form a
relativistic four-vector. Since ρ[image: -*-] and j[image: -*-] depend on the
velocity v[image: -*-] exactly as do U[image: -*-] and p[image: -*-], we can conclude that
ρ[image: -*-] and j[image: -*-] are also the components of a relativistic
four-vector. This property is the key to a general analysis of the
field of a wire moving with any velocity, which we would need if we
want to do the problem again with the velocity v0[image: -*-] of the
particle different from the velocity of the conduction electrons.




If we wish to transform ρ[image: -*-] and j[image: -*-] to a coordinate system
moving with a velocity u[image: -*-] in the x[image: -*-]-direction, we know that they
transform just like t[image: -*-] and (x,y,z)[image: -*-], so that we have (see
Chapter 15, Vol. I)

[image: -*-][image: -*-]
(13.35)









With these equations we can relate charges and currents in one frame
to those in another. Taking the charges and currents in either frame,
we can solve the electromagnetic problem in that frame by using our
Maxwell equations. The result we obtain for the motions of particles will
be the same no matter which frame we choose. We will return at a later
time to the relativistic transformations of the electromagnetic fields.







13–8 Superposition; the right-hand rule


We will conclude this chapter by making two further points regarding
the subject of magnetostatics. First, our basic equations for the
magnetic field,

[image: -*-][image: -*-]


are linear in B[image: -*-] and j[image: -*-]. That means that the principle of
superposition also applies to magnetic fields. The field produced by
two different steady currents is the sum of the individual fields from
each current acting alone. Our second remark concerns the right-hand
rules which we have encountered (such as the right-hand rule for the
magnetic field produced by a current). We have also observed that the
magnetization of an iron magnet is to be understood from the spin of
the electrons in the material. The direction of the magnetic field of
a spinning electron is related to its spin axis by the same right-hand
rule. Because B[image: -*-] is determined by a “handed” rule—involving
either a cross product or a curl—it is called an axial
vector. (Vectors whose direction in space does not depend on a
reference to a right or left hand are called polar
vectors. Displacement, velocity, force, and E[image: -*-], for example, are
polar vectors.)




Physically observable quantities in electromagnetism are
not, however, right- (or left-) handed. Electromagnetic
interactions are symmetrical under reflection (see
Chapter 52, Vol. I). Whenever magnetic forces between two
sets of currents are computed, the result is invariant with respect to a
change in the hand convention. Our equations lead, independently of the
right-hand convention, to the end result that parallel currents attract,
or that currents in opposite directions repel. (Try working out the
force using “left-hand rules.”)  An attraction or repulsion is a polar
vector. This happens because in describing any complete interaction, we
use the right-hand rule twice—once to find B[image: -*-] from currents,
again to find the force this B[image: -*-] produces on a second current. Using
the right-hand rule twice is the same as using the left-hand rule twice.
If we were to change our conventions to a left-hand system all our
B[image: -*-] fields would be reversed, but all forces—or, what is perhaps
more relevant, the observed accelerations of objects—would be
unchanged.




Although physicists have recently found to their surprise that
all the laws of nature are not always invariant for mirror
reflections, the laws of electromagnetism do have such a basic
symmetry.





	
  
  We will see later, however, that such
assumptions are not generally correct for electromagnetic
forces!
  ↩





  
    

14 The Magnetic Field in Various Situations



14–1 The vector potential


In this chapter we continue our discussion of magnetic fields
associated with steady currents—the subject of magnetostatics. The
magnetic field is related to electric currents by our basic equations

[image: -*-][image: -*-]
(14.1)

(14.2)




We want now to solve these equations mathematically in a
general way, that is, without requiring any special symmetry or
intuitive guessing. In electrostatics, we found that there was a
straightforward procedure for finding the field when the positions of
all electric charges are known: One simply works out the scalar
potential ϕ[image: -*-] by taking an integral over the charges—as in
Eq. (4.25). Then if one wants the electric field, it is
obtained from the derivatives of ϕ[image: -*-]. We will now show that there is
a corresponding procedure for finding the magnetic field B[image: -*-] if we
know the current density j[image: -*-] of all moving charges.




In electrostatics we saw that (because the curl of E[image: -*-] was always
zero) it was possible to represent E[image: -*-] as the gradient of a scalar
field ϕ[image: -*-]. Now the curl of B[image: -*-] is not always zero, so it
is not possible, in general, to represent it as a gradient. However,
the divergence of B[image: -*-] is always zero, and this means that
we can always represent B[image: -*-] as the curl of another vector
field. For, as we saw in Section 2–8, the divergence of
a curl is always zero. Thus we can always relate B[image: -*-] to a field we
will call A[image: -*-] by

[image: -*-][image: -*-]
(14.3)




Or, by writing out the components,

[image: -*-][image: -*-]
(14.4)




Writing B=∇×A[image: -*-] guarantees that Eq. (14.1)
is satisfied, since, necessarily,

[image: -*-][image: -*-]


The field A[image: -*-] is called the vector potential.




You will remember that the scalar potential ϕ[image: -*-] was not completely
specified by its definition. If we have found ϕ[image: -*-] for some problem,
we can always find another potential ϕ′[image: -*-] that is equally good by
adding a constant:

[image: -*-][image: -*-]


The new potential ϕ′[image: -*-] gives the same electric fields, since the
gradient ∇C[image: -*-] is zero; ϕ′[image: -*-] and ϕ[image: -*-] represent the same
physics.




Similarly, we can have different vector potentials A[image: -*-] which give
the same magnetic fields. Again, because B[image: -*-] is obtained
from A[image: -*-] by differentiation, adding a constant to A[image: -*-] doesn’t
change anything physical. But there is even more latitude
for A[image: -*-]. We can add to A[image: -*-] any field which is the gradient of some
scalar field, without changing the physics. We can show this as
follows. Suppose we have an A[image: -*-] that gives correctly the magnetic
field B[image: -*-] for some real situation, and ask in what circumstances
some other new vector potential A′[image: -*-] will give the same
field B[image: -*-] if substituted into (14.3). Then A[image: -*-]
and A′[image: -*-] must have the same curl:

[image: -*-][image: -*-]


Therefore

[image: -*-][image: -*-]


But if the curl of a vector is zero it must be the gradient of some
scalar field, say ψ[image: -*-], so A′−A=∇ψ[image: -*-]. That means
that if A[image: -*-] is a satisfactory vector potential for a problem then,
for any ψ[image: -*-], at all,

[image: -*-][image: -*-]
(14.5)




will be an equally satisfactory vector potential, leading to the same
field B[image: -*-].




It is usually convenient to take some of the “latitude” out
of A[image: -*-] by arbitrarily placing some other condition on it (in much the
same way that we found it convenient—often—to choose to make the
potential ϕ[image: -*-] zero at large distances). We can, for instance,
restrict A[image: -*-] by choosing arbitrarily what the divergence
of A[image: -*-] must be. We can always do that without affecting B[image: -*-]. This
is because although A′[image: -*-] and A[image: -*-] have the same curl, and give
the same B[image: -*-], they do not need to have the same divergence. In
fact, ∇⋅A′=∇⋅A+∇2ψ[image: -*-], and by a suitable
choice of ψ[image: -*-] we can make ∇⋅A′[image: -*-] anything we wish.




What should we choose for ∇⋅A[image: -*-]? The choice should be made
to get the greatest mathematical convenience and will depend on the
problem we are doing. For magnetostatics, we will make the
simple choice

[image: -*-][image: -*-]
(14.6)




(Later, when we take up electrodynamics, we will change our choice.)
Our complete definition1
of A[image: -*-] is then, for the moment, ∇×A=B[image: -*-]
and ∇⋅A=0[image: -*-].




To get some experience with the vector potential, let’s look first at
what it is for a uniform magnetic field B0[image: -*-]. Taking our z[image: -*-]-axis
in the direction of B0[image: -*-], we must have

[image: -*-][image: -*-]
(14.7)




By inspection, we see that one possible solution of these
equations is

[image: -*-][image: -*-]


Or we could equally well take

[image: -*-][image: -*-]


Still another solution is a linear combination of the two:

[image: -*-][image: -*-]
(14.8)




It is clear that for any particular field B[image: -*-], the vector
potential A[image: -*-] is not unique; there are many possibilities.




The third solution, Eq. (14.8), has some interesting
properties. Since the x[image: -*-]-component is proportional to −y[image: -*-] and the
y[image: -*-]-component is proportional to +x[image: -*-], A[image: -*-] must be at right angles
to the vector from the z[image: -*-]-axis, which we will call r′[image: -*-] (the
“prime” is to remind us that it is not the vector
displacement from the origin). Also, the magnitude of A[image: -*-] is
proportional to √x2+y2[image: -*-] and, hence, to r′[image: -*-]. So A[image: -*-] can
be simply written (for our uniform field) as

[image: -*-][image: -*-]
(14.9)




The vector potential A[image: -*-] has the magnitude B0 r′/2[image: -*-] and rotates
about the z[image: -*-]-axis as shown in Fig. 14–1. If, for
example, the B[image: -*-] field is the axial field inside a solenoid, then
the vector potential circulates in the same sense as do the currents
of the solenoid.



[image: -][image: -]
Fig. 14–1. A uniform magnetic field B[image: -*-] in the z[image: -*-]-direction
corresponds to a vector potential A[image: -*-] that rotates about the
z[image: -*-]-axis, with the magnitude A=B r′/2[image: -*-] (r′[image: -*-] is the displacement
from the z[image: -*-]-axis).





The vector potential for a uniform field can be obtained in another
way. The circulation of A[image: -*-] on any closed loop Γ[image: -*-] can be
related to the surface integral of ∇×A[image: -*-] by Stokes’
theorem, Eq. (3.38):

[image: -*-][image: -*-]
(14.10)




But the integral on the right is equal to the flux of B[image: -*-] through
the loop, so

[image: -*-][image: -*-]
(14.11)




So the circulation of A[image: -*-] around any loop is equal to the
flux of B[image: -*-] through the loop. If we take a circular loop, of
radius r′[image: -*-] in a plane perpendicular to a uniform field B[image: -*-], the
flux is just

[image: -*-][image: -*-]


If we choose our origin on an axis of symmetry, so that we can
take A[image: -*-] as circumferential and a function only of r′[image: -*-], the
circulation will be

[image: -*-][image: -*-]


We get, as before,

[image: -*-][image: -*-]







In the example we have just given, we have calculated the vector
potential from the magnetic field, which is opposite to what one
normally does. In complicated problems it is usually easier to solve
for the vector potential, and then determine the magnetic field from
it. We will now show how this can be done.







14–2 The vector potential of known currents


Since B[image: -*-] is determined by currents, so also is A[image: -*-]. We want
now to find A[image: -*-] in terms of the currents. We start with our basic
equation (14.2):

[image: -*-][image: -*-]


which means, of course, that

[image: -*-][image: -*-]
(14.12)




This equation is for magnetostatics what the equation

[image: -*-][image: -*-]
(14.13)




was for electrostatics.




Our equation (14.12) for the vector potential looks even
more like that for ϕ[image: -*-] if we rewrite ∇×(∇×A)[image: -*-]
using the vector identity Eq. (2.58):

[image: -*-][image: -*-]
(14.14)




Since we have chosen to make ∇⋅A=0[image: -*-] (and now you see why),
Eq. (14.12) becomes

[image: -*-][image: -*-]
(14.15)




This vector equation means, of course, three equations:



[image: -*-][image: -*-]
(14.16)





And each of these equations is mathematically identical to

[image: -*-][image: -*-]
(14.17)




All we have learned about solving for potentials when ρ[image: -*-] is known
can be used for solving for each component of A[image: -*-] when j[image: -*-] is
known!




We have seen in Chapter 4 that a general solution for the
electrostatic equation (14.17) is

[image: -*-][image: -*-]


So we know immediately that a general solution for Ax[image: -*-] is

[image: -*-][image: -*-]
(14.18)




and similarly for Ay[image: -*-] and Az[image: -*-]. (Figure 14–2 will
remind you of our conventions for r12[image: -*-] and d V2[image: -*-].) We can combine
the three solutions in the vector form

[image: -*-][image: -*-]
(14.19)




(You can verify if you wish, by direct differentiation of components,
that this integral for A[image: -*-] satisfies ∇⋅A=0[image: -*-] so long
as ∇⋅j=0[image: -*-], which, as we saw, must happen for steady
currents.)



[image: -][image: -]
Fig. 14–2. The vector potential A[image: -*-] at point 1 is given by an
integral over the current elements j dV[image: -*-] at all points 2.





We have, then, a general method for finding the magnetic field of
steady currents. The principle is: the x[image: -*-]-component of vector
potential arising from a current density j[image: -*-] is the same as the
electric potential ϕ[image: -*-] that would be produced by a charge
density ρ[image: -*-] equal to jx/c2[image: -*-]—and similarly for the y[image: -*-]- and
z[image: -*-]-components. (This principle works only with components in fixed
directions. The “radial” component of A[image: -*-] does not come in the
same way from the “radial” component of j[image: -*-], for example.) So
from the vector current density j[image: -*-], we can find A[image: -*-] using
Eq. (14.19)—that is, we find each component of A[image: -*-]
by solving three imaginary electrostatic problems for the charge
distributions ρ1=jx/c2[image: -*-], ρ2=jy/c2[image: -*-],
and ρ3=jz/c2[image: -*-]. Then we get B[image: -*-] by taking various derivatives
of A[image: -*-] to obtain ∇×A[image: -*-]. It’s a little more complicated
than electrostatics, but the same idea. We will now illustrate the
theory by solving for the vector potential in a few special cases.







14–3 A straight wire


For our first example, we will again find the field of a straight
wire—which we solved in the last chapter by using
Eq. (14.2) and some arguments of symmetry. We take a long
straight wire of radius a[image: -*-], carrying the steady current I[image: -*-]. Unlike the
charge on a conductor in the electrostatic case, a steady current in a
wire is uniformly distributed throughout the cross section of the wire.
If we choose our coordinates as shown in Fig. 14–3, the
current density vector j[image: -*-] has only a z[image: -*-]-component. Its magnitude
is

[image: -*-][image: -*-]
(14.20)




inside the wire, and zero outside.



[image: -][image: -]
Fig. 14–3. A long cylindrical wire along the z[image: -*-]-axis with a uniform
current density j[image: -*-].





Since jx[image: -*-] and jy[image: -*-] are both zero, we have immediately

[image: -*-][image: -*-]


To get Az[image: -*-] we can use our solution for the electrostatic
potential ϕ[image: -*-] of a wire with a uniform charge density ρ=jz/c2[image: -*-]. For
points outside an infinite charged cylinder, the electrostatic
potential is

[image: -*-][image: -*-]


where r′=√x2+y2[image: -*-] and λ[image: -*-] is the charge per unit length,
π a2 ρ[image: -*-]. So Az[image: -*-] must be

[image: -*-][image: -*-]


for points outside a long wire carrying a uniform current. Since π a2 jz=I[image: -*-], we can also write

[image: -*-][image: -*-]
(14.21)









Now we can find B[image: -*-] from (14.4). There are only two of
the six derivatives that are not zero. We get

[image: -*-][image: -*-]
(14.22)

(14.23)

 




We get the same result as before: B[image: -*-] circles around the wire, and
has the magnitude

[image: -*-][image: -*-]
(14.24)












14–4 A long solenoid


Next, we consider again the infinitely long solenoid with a
circumferential current on the surface of n I[image: -*-] per unit length. (We
imagine there are n[image: -*-] turns of wire per unit length, carrying the
current I[image: -*-], and we neglect the slight pitch of the winding.)




Just as we have defined a “surface charge density” σ[image: -*-], we
define here a “surface current density” J[image: -*-] equal to the current
per unit length on the surface of the solenoid (which is, of course,
just the average j[image: -*-] times the thickness of the thin winding). The
magnitude of J[image: -*-] is, here, n I[image: -*-]. This surface current (see
Fig. 14–4) has the components:

[image: -*-][image: -*-]


Now we must find A[image: -*-] for such a current distribution.



[image: -][image: -]
Fig. 14–4. A long solenoid with a surface current density J[image: -*-].





First, we wish to find Ax[image: -*-] for points outside the solenoid. The
result is the same as the electrostatic potential outside a cylinder
with a surface charge density

[image: -*-][image: -*-]


with σ0=−J/c2[image: -*-]. We have not solved such a charge distribution,
but we have done something similar. This charge distribution is
equivalent to two solid cylinders of charge, one positive and
one negative, with a slight relative displacement of their axes in the
y[image: -*-]-direction. The potential of such a pair of cylinders is
proportional to the derivative with respect to y[image: -*-] of the potential of
a single uniformly charged cylinder. We could work out the constant of
proportionality, but let’s not worry about it for the moment.




The potential of a cylinder of charge is proportional to lnr′[image: -*-]; the
potential of the pair is then

[image: -*-][image: -*-]


So we know that

[image: -*-][image: -*-]
(14.25)




where K[image: -*-] is some constant. Following the same argument, we would find

[image: -*-][image: -*-]
(14.26)




Although we said before that there was no magnetic field
outside a solenoid, we find now that there is an A[image: -*-]-field
which circulates around the z[image: -*-]-axis, as in Fig. 14–4. The
question is: Is its curl zero?




Clearly, Bx[image: -*-] and By[image: -*-] are zero, and

[image: -*-][image: -*-]


So the magnetic field outside a very long solenoid is indeed zero,
even though the vector potential is not.




We can check our result against something else we know: The
circulation of the vector potential around the solenoid should be
equal to the flux of B[image: -*-] inside the coil (Eq. 14.11).
The circulation is A⋅2 π r′[image: -*-] or, since A=K/r′[image: -*-], the circulation
is 2 π K[image: -*-]. Notice that it is independent of r′[image: -*-]. That is just as it
should be if there is no B[image: -*-] outside, because the flux is just the
magnitude of B[image: -*-] inside the solenoid times π a2[image: -*-]. It is
the same for all circles of radius r′>a[image: -*-]. We have found in the last
chapter that the field inside is n I/ϵ0 c2[image: -*-], so we can determine the
constant K[image: -*-]:

[image: -*-][image: -*-]


or

[image: -*-][image: -*-]


So the vector potential outside has the magnitude

[image: -*-][image: -*-]
(14.27)




and is always perpendicular to the vector r′[image: -*-].




We have been thinking of a solenoidal coil of wire, but we would
produce the same fields if we rotated a long cylinder with an
electrostatic charge on the surface. If we have a thin cylindrical
shell of radius a[image: -*-] with a surface charge σ[image: -*-], rotating the
cylinder makes a surface current J=σ v[image: -*-], where v=a ω[image: -*-] is
the velocity of the surface charge. There will then be a magnetic
field B=σ a ω/ϵ0 c2[image: -*-] inside the cylinder.



[image: -][image: -]
Fig. 14–5. A rotating charged cylinder produces a magnetic field
inside. A short radial wire rotating with the cylinder has charges
induced on its ends.





Now we can raise an interesting question. Suppose we put a short piece
of wire W[image: -*-] perpendicular to the axis of the cylinder, extending from
the axis out to the surface, and fastened to the cylinder so that it
rotates with it, as in Fig. 14–5. This wire is moving
in a magnetic field, so the v×B[image: -*-] forces will cause the
ends of the wire to be charged (they will charge up until the
E[image: -*-]-field from the charges just balances the v×B[image: -*-] force).
If the cylinder has a positive charge, the end of the wire at
the axis will have a negative charge. By measuring the charge on the
end of the wire, we could measure the speed of rotation of the
system. We would have an “angular-velocity meter”!




But are you wondering: “What if I put myself in the frame of
reference of the rotating cylinder? Then there is just a charged
cylinder at rest, and I know that the electrostatic equations say
there will be no electric fields inside, so there will be no
force pushing charges to the center. So something must be wrong.” But
there is nothing wrong. There is no “relativity of rotation.” A
rotating system is not an inertial frame, and the laws of
physics are different. We must be sure to use equations of
electromagnetism only with respect to inertial coordinate systems.




It would be nice if we could measure the absolute rotation of the
earth with such a charged cylinder, but unfortunately the effect is
much too small to observe even with the most delicate instruments now
available.








14–5 The field of a small loop; the magnetic dipole


Let’s use the vector-potential method to find the magnetic field of a
small loop of current. As usual, by “small” we mean simply that we
are interested in the fields only at distances large compared with the
size of the loop. It will turn out that any small loop is a “magnetic
dipole.” That is, it produces a magnetic field like the
electric field from an electric dipole.



[image: -][image: -]
Fig. 14–6. A rectangular loop of wire with the current I[image: -*-]. What is the magnetic
field at P[image: -*-]? (R≫a[image: -*-] and R≫b[image: -*-].)





We take first a rectangular loop, and choose our coordinates as shown in
Fig. 14–6. There are no currents in the z[image: -*-]-direction,
so Az[image: -*-] is zero. There are currents in the x[image: -*-]-direction on the two sides
of length a[image: -*-]. In each leg, the current density (and current) is
uniform. So the solution for Ax[image: -*-] is just like the electrostatic
potential from two charged rods (see Fig. 14–7). Since the
rods have opposite charges, their electric potential at large distances
would be just the dipole potential (Section 6–5). At the
point P[image: -*-] in Fig. 14–6, the potential would be

[image: -*-][image: -*-]
(14.28)




where p[image: -*-] is the dipole moment of the charge distribution. The
dipole moment, in this case, is the total charge on one rod times the
separation between them:

[image: -*-][image: -*-]
(14.29)




The dipole moment points in the negative y[image: -*-]-direction, so the cosine
of the angle between R[image: -*-] and p[image: -*-] is −y/R[image: -*-] (where y[image: -*-] is the
coordinate of P[image: -*-]). So we have

[image: -*-][image: -*-]






[image: -][image: -]
Fig. 14–7. The distribution of jx[image: -*-] in the current loop of
Fig. 14–6.





We get Ax[image: -*-] simply by replacing λ[image: -*-] by I/c2[image: -*-]:

[image: -*-][image: -*-]
(14.30)




By the same reasoning,

[image: -*-][image: -*-]
(14.31)




Again, Ay[image: -*-] is proportional to x[image: -*-] and Ax[image: -*-] is proportional to −y[image: -*-],
so the vector potential (at large distances) goes in circles around
the z[image: -*-]-axis, circulating in the same sense as I[image: -*-] in the loop, as
shown in Fig. 14–8.



[image: -][image: -]
Fig. 14–8. The vector potential of a small current loop at the origin
(in the x y[image: -*-]-plane); a magnetic dipole field.





The strength of A[image: -*-] is proportional to I a b[image: -*-], which is the current
times the area of the loop. This product is called the magnetic
dipole moment (or, often, just “magnetic moment”) of the
loop. We represent it by μ[image: -*-]:

[image: -*-][image: -*-]
(14.32)




The vector potential of a small plane loop of any shape (circle,
triangle, etc.) is also given by Eqs. (14.30)
and (14.31) provided we replace I a b[image: -*-] by

[image: -*-][image: -*-]
(14.33)




We leave the proof of this to you.




We can put our equation in vector form if we define the direction of
the vector μ[image: -*-] to be the normal to the plane of the loop, with a
positive sense given by the right-hand rule (Fig. 14–8).
Then we can write

[image: -*-][image: -*-]
(14.34)









We have still to find B[image: -*-]. Using (14.33)
and (14.34), together with (14.4), we get

[image: -*-][image: -*-]
(14.35)




(where by ⋯[image: -*-] we mean μ/4 π ϵ0 c2[image: -*-]),

[image: -*-][image: -*-]
(14.36)









The components of the B[image: -*-]-field behave exactly like those of the
E[image: -*-]-field for a dipole oriented along the z[image: -*-]-axis. (See Eqs.
(6.14) and (6.15); also Fig. 6–4.) That’s
why we call the loop a magnetic dipole. The word “dipole” is slightly
misleading when applied to a magnetic field because there are no magnetic
“poles” that correspond to electric charges. The magnetic “dipole field” is
not produced by two “charges,” but by an elementary current loop.





It is curious, though, that starting with completely different laws,
∇⋅E=ρ/ϵ0[image: -*-] and ∇×B=j/ϵ0 c2[image: -*-], we
can end up with the same kind of a field. Why should that be? It is
because the dipole fields appear only when we are far away from all
charges or currents. So through most of the relevant space the
equations for E[image: -*-] and B[image: -*-] are identical: both have zero
divergence and zero curl. So they give the same solutions. However,
the sources whose configuration we summarize by the dipole
moments are physically quite different—in one case, it’s a
circulating current; in the other, a pair of charges, one above and
one below the plane of the loop for the corresponding field.







14–6 The vector potential of a circuit

[image: -][image: -]
Fig. 14–9. For a fine wire j dV[image: -*-] is the same as I d s[image: -*-].





We are often interested in the magnetic fields produced by circuits of
wire in which the diameter of the wire is very small compared with the
dimensions of the whole system. In such cases, we can simplify the
equations for the magnetic field. For a thin wire we can write our
volume element as

[image: -*-][image: -*-]


where S[image: -*-] is the cross-sectional area of the wire and d s[image: -*-] is the
element of distance along the wire. In fact, since the vector d s[image: -*-]
is in the same direction as j[image: -*-], as shown in Fig. 14–9
(and we can assume that j[image: -*-] is constant across any given cross
section), we can write a vector equation:

[image: -*-][image: -*-]
(14.37)




But j S[image: -*-] is just what we call the current I[image: -*-] in a wire, so our
integral for the vector potential (14.19) becomes

[image: -*-][image: -*-]
(14.38)




(see Fig. 14–10). (We assume that I[image: -*-] is the same
throughout the circuit. If there are several branches with different
currents, we should, of course, use the appropriate I[image: -*-] for each
branch.)



[image: -][image: -]
Fig. 14–10. The magnetic field of a wire can be obtained from an integral
around the circuit.





Again, we can find the fields from (14.38) either by
integrating directly or by solving the corresponding electrostatic
problems.







14–7 The law of Biot and Savart


In studying electrostatics we found that the electric field of a known
charge distribution could be obtained directly with an integral,
Eq. (4.16):

[image: -*-][image: -*-]


As we have seen, it is usually more work to evaluate this
integral—there are really three integrals, one for each
component—than to do the integral for the potential and take its
gradient.




There is a similar integral which relates the magnetic field to the
currents. We already have an integral for A[image: -*-],
Eq. (14.19); we can get an integral for B[image: -*-] by taking
the curl of both sides:



[image: -*-][image: -*-]
(14.39)





Now we must be careful: The curl operator means taking the derivatives
of A (1)[image: -*-], that is, it operates only on the
coordinates (x1,y1,z1)[image: -*-]. We can move the ∇×[image: -*-] operator inside the
integral sign if we remember that it operates only on variables with
the subscript 1, which of course, appear only in

[image: -*-][image: -*-]
(14.40)




We have, for the x[image: -*-]-component of B[image: -*-],

[image: -*-][image: -*-]
(14.41)




The quantity in brackets is just the negative of the x[image: -*-]-component of

[image: -*-][image: -*-]


Corresponding results will be found for the other components, so we have

[image: -*-][image: -*-]
(14.42)




The integral gives B[image: -*-] directly in terms of the known
currents. The geometry involved is the same as that shown in
Fig. 14–2.




If the currents exist only in circuits of small wires we can, as in
the last section, immediately do the integral across the wire,
replacing j d V[image: -*-] by I d s[image: -*-], where d s[image: -*-] is an element of
length of the wire. Then, using the symbols in Fig. 14–10,

[image: -*-][image: -*-]
(14.43)




(The minus sign appears because we have reversed the order of the
cross product.) This equation for B[image: -*-] is called the
Biot-Savart law, after its
discoverers. It gives a formula for obtaining directly the magnetic
field produced by wires carrying currents.




You may wonder: “What is the advantage of the vector potential if we
can find B[image: -*-] directly with a vector integral? After all, A[image: -*-]
also involves three integrals!” Because of the cross product, the
integrals for B[image: -*-] are usually more complicated, as is evident from
Eq. (14.41). Also, since the integrals for A[image: -*-] are
like those of electrostatics, we may already know them. Finally, we
will see that in more advanced theoretical matters (in relativity, in
advanced formulations of the laws of mechanics, like the principle of
least action to be discussed later, and in quantum mechanics) the
vector potential plays an important role.





	
  
  Our definition still does not
uniquely determine A[image: -*-]. For a unique specification we would
also have to say something about how the field A[image: -*-] behaves on some
boundary, or at large distances. It is sometimes convenient, for
example, to choose a field which goes to zero at large distances.
  ↩





  
    

15 The Vector Potential



15–1 The forces on a current loop; energy of a dipole


In the last chapter we studied the magnetic field produced by a small
rectangular current loop. We found that it is a dipole field, with the
dipole moment given by

[image: -*-][image: -*-]
(15.1)




where I[image: -*-] is the current and A[image: -*-] is the area of the loop. The
direction of the moment is normal to the plane of the loop, so we can
also write

[image: -*-][image: -*-]


where n[image: -*-] is the unit normal to the area A[image: -*-].




A current loop—or magnetic dipole—not only produces magnetic
fields, but will also experience forces when placed in the magnetic
field of other currents. We will look first at the forces on a
rectangular loop in a uniform magnetic field. Let the z[image: -*-]-axis be
along the direction of the field, and the plane of the loop be placed
through the y[image: -*-]-axis, making the angle θ[image: -*-] with the x y[image: -*-]-plane as
in Fig. 15–1. Then the magnetic moment of the loop—which is normal
to its plane—will make the angle θ[image: -*-] with the magnetic field.



[image: -][image: -]
Fig. 15–1. A rectangular loop carrying the current I[image: -*-] sits in a uniform
field B[image: -*-] (in the z[image: -*-]-direction). The torque on the loop
is τ=μ×B[image: -*-], where the magnetic moment μ=I a b[image: -*-].





Since the currents are opposite on opposite sides of the loop, the
forces are also opposite, so there is no net force on the loop (when
the field is uniform). Because of forces on the two sides marked 1
and 2 in the figure, however, there is a torque which tends to
rotate the loop about the y[image: -*-]-axis. The magnitude of these forces
F1[image: -*-] and F2[image: -*-] is

[image: -*-][image: -*-]


Their moment arm is

[image: -*-][image: -*-]


so the torque is

[image: -*-][image: -*-]


or, since I a b[image: -*-] is the magnetic moment of the loop,

[image: -*-][image: -*-]


The torque can be written in vector notation:

[image: -*-][image: -*-]
(15.2)




Although we have only shown that the torque is given by Eq. (15.2)
in one rather special case, the result is right for a small loop of any shape,
as we will see. The same kind of relationship holds for the torque of an electric dipole
in an electric field:

[image: -*-][image: -*-]







We now ask about the mechanical energy of our current loop. Since there is a torque,
the energy evidently depends on the orientation. The principle of virtual work says that
the torque is the rate of change of energy with angle, so we can write

[image: -*-][image: -*-]


Setting τ=μ B sinθ[image: -*-], and integrating, we can write for the energy

[image: -*-][image: -*-]
(15.3)




(The sign is negative because the torque tries to line up the moment with the field;
the energy is lowest when μ[image: -*-] and B[image: -*-] are parallel.)




For reasons which we will discuss later, this energy is not the total energy of
a current loop. (We have, for one thing, not taken into account the energy required to
maintain the current in the loop.) We will, therefore, call this energy Umech[image: -*-],
to remind us that it is only part of the energy. Also, since we are leaving out some of
energy anyway, we can set the constant of integration equal to zero in Eq. (15.3).
So we rewrite the equation:

[image: -*-][image: -*-]
(15.4)




Again, this corresponds to the result for an electric dipole:

[image: -*-][image: -*-]
(15.5)









Now the electrostatic energy U[image: -*-] in Eq. (15.5) is the
true energy, but Umech[image: -*-] in (15.4) is not the
real energy. It can, however, be used in computing forces, by
the principle of virtual work, supposing that the current in the
loop—or at least μ[image: -*-]—is kept constant.




We can show for our rectangular loop that Umech[image: -*-] also
corresponds to the mechanical work done in bringing the loop into the
field. The total force on the loop is zero only in a uniform field; in
a nonuniform field there are net forces on a current loop. In
putting the loop into a region with a field, we must have gone through
places where the field was not uniform, and so work was done. To make
the calculation simple, we shall imagine that the loop is brought into
the field with its moment pointing along the field. (It can be rotated
to its final position after it is in place.)




Imagine that we want to move the loop in the x[image: -*-]-direction—toward a
region of stronger field—and that the loop is oriented as shown in
Fig. 15–2. We start somewhere where the field is zero and integrate
the force times the distance as we bring the loop into the field.



[image: -][image: -]
Fig. 15–2. A loop is carried along the x[image: -*-]-direction through the
field B[image: -*-], at right angles to x[image: -*-].





First, let’s compute the work done on each side separately and then
take the sum (rather than adding the forces before integrating). The
forces on sides 3 and 4 are at right angles to the direction of
motion, so no work is done on them. The force on side 2 is I b B (x)[image: -*-]
in the x[image: -*-]-direction, and to get the work done against the magnetic
forces we must integrate this from some x[image: -*-] where the field is zero,
say at x=−∞[image: -*-], to x2[image: -*-], its present position:

[image: -*-][image: -*-]
(15.6)




Similarly, the work done against the forces on side 1 is

[image: -*-][image: -*-]
(15.7)




To find each integral, we need to know how B (x)[image: -*-] depends on x[image: -*-]. But
notice that side 1 follows along right behind side 2, so that its
integral includes most of the work done on side 2. In fact, the sum
of (15.6) and (15.7) is just

[image: -*-][image: -*-]
(15.8)




But if we are in a region where B[image: -*-] is nearly the same on both sides
1 and 2, we can write the integral as

[image: -*-][image: -*-]


where B[image: -*-] is the field at the center of the loop. The total mechanical
energy we have put in is

[image: -*-][image: -*-]
(15.9)




The result agrees with the energy we took for Eq. (15.4).




We would, of course, have gotten the same result if we had added the
forces on the loop before integrating to find the work. If we
let B1[image: -*-] be the field at side 1 and B2[image: -*-] be the field at side 2,
then the total force in the x[image: -*-]-direction is

[image: -*-][image: -*-]


If the loop is “small,” that is, if B2[image: -*-] and B1[image: -*-] are not too
different, we can write

[image: -*-][image: -*-]


So the force is

[image: -*-][image: -*-]
(15.10)




The total work done on the loop by external forces is

[image: -*-][image: -*-]


which is again just −μ B[image: -*-]. Only now we see why it is that the
force on a small current loop is proportional to the derivative
of the magnetic field, as we would expect from

[image: -*-][image: -*-]
(15.11)









Our result, then, is that even though Umech=−μ⋅B[image: -*-]
may not include all the energy of
a system—it is a fake kind of energy—it can still be used with the
principle of virtual work to find the forces on steady current loops.







15–2 Mechanical and electrical energies


We want now to show why the energy Umech[image: -*-] discussed in the
previous section is not the correct energy associated with steady
currents—that it does not keep track of the total energy in the
world. We have, indeed, emphasized that it can be used like the
energy, for computing forces from the principle of virtual work,
provided that the current in the loop (and all other
currents) do not change. Let’s see why all this works.




Imagine that the loop in Fig. 15–2 is moving in the
+x[image: -*-]-direction and take the z[image: -*-]-axis in the direction of B[image: -*-]. The
conduction electrons in side 2 will experience a force along the wire,
in the y[image: -*-]-direction. But because of their flow—as an electric
current—there is a component of their motion in the same direction as
the force. Each electron is, therefore, having work done on it at the
rate Fy vy[image: -*-], where vy[image: -*-], is the component of the electron velocity
along the wire. We will call this work done on the electrons
electrical work. Now it turns out that if the loop is moving in a
uniform field, the total electrical work is zero, since positive
work is done on some parts of the loop and an equal amount of negative
work is done on other parts. But this is not true if the circuit is
moving in a nonuniform field—then there will be a net amount of
work done on the electrons. In general, this work would tend to change
the flow of the electrons, but if the current is being held constant,
energy must be absorbed or delivered by the battery or other source that
is keeping the current steady. This energy was not included when we
computed Umech[image: -*-] in Eq. (15.9), because our
computations included only the mechanical forces on the body of the
wire.




You may be thinking: But the force on the electrons depends on how
fast the wire is moved; perhaps if the wire is moved slowly
enough this electrical energy can be neglected. It is true that the
rate at which the electrical energy is delivered is
proportional to the speed of the wire, but the total energy
delivered is proportional also to the time that this rate goes
on. So the total electrical energy is proportional to the velocity
times the time, which is just the distance moved. For a given
distance moved in a field the same amount of electrical work is done.




Let’s consider a segment of wire of unit length carrying the
current I[image: -*-] and moving in a direction perpendicular to itself and to a
magnetic field B[image: -*-] with the speed vwire[image: -*-]. Because of
the current the electrons will have a drift velocity vdrift[image: -*-]
along the wire. The component of the magnetic force
on each electron in the direction of the drift is qe vwire B[image: -*-].
So the rate at which electrical work is being
done is F vdrift=(qe vwire B) vdrift[image: -*-]. If
there are N[image: -*-] conduction electrons in the unit length of the wire, the
total rate at which electrical work is being done is

[image: -*-][image: -*-]


But N qe vdrift=I[image: -*-], the current in the wire, so

[image: -*-][image: -*-]







Now since the current is held constant, the forces on the conduction
electrons do not cause them to accelerate; the electrical energy is
not going into the electrons but into the source that is keeping the
current constant.




But notice that the force on the wire is I B[image: -*-], so
I B vwire[image: -*-] is also the rate of mechanical work done on
the wire, d Umech/d t=I B vwire[image: -*-]. We conclude that
the mechanical work done on the wire is just equal to the electrical
work done on the current source, so the energy of the loop is a
constant!




This is not a coincidence, but a consequence of the law we already
know. The total force on each charge in the wire is

[image: -*-][image: -*-]


The rate at which work is done is

[image: -*-][image: -*-]
(15.12)




If there are no electric fields we have only the second term, which is
always zero. We shall see later that changing magnetic fields
produce electric fields, so our reasoning applies only to moving wires
in steady magnetic fields.




How is it then that the principle of virtual work gives the right
answer? Because we still have not taken into account the
total energy of the world. We have not included the energy of
the currents that are producing the magnetic field we start out
with.




Suppose we imagine a complete system such as that drawn in
Fig. 15–3(a), in which we are moving our loop with the
current I1[image: -*-] into the magnetic field B1[image: -*-] produced by the
current I2[image: -*-] in a coil. Now the current I1[image: -*-] in the loop will also be
producing some magnetic field B2[image: -*-] at the coil. If the loop is
moving, the field B2[image: -*-] will be changing. As we shall see in the
next chapter, a changing magnetic field generates an E[image: -*-]-field; and
this E[image: -*-]-field will do work on the charges in the coil. This energy
must also be included in our balance sheet of the total energy.




[image: -][image: -][image: -][image: -]
Fig. 15–3. Finding the energy of a small loop in
a magnetic field.





We could wait until the next chapter to find out about this new energy
term, but we can also see what it will be if we use the principle of
relativity in the following way. When we are moving the loop toward
the stationary coil we know that its electrical energy is just equal
and opposite to the mechanical work done. So

[image: -*-][image: -*-]







Suppose now we look at what is happening from a different point of
view, in which the loop is at rest, and the coil is moved toward
it. The coil is then moving into the field produced by the loop. The
same arguments would give that

[image: -*-][image: -*-]


The mechanical energy is the same in the two cases because it comes
from the force between the two circuits.




The sum of the two equations gives

[image: -*-][image: -*-]


The total energy of the whole system is, of course, the sum of the two
electrical energies plus the mechanical energy taken only
once. So we have



[image: -*-][image: -*-]
(15.13)










The total energy of the world is really the negative
of Umech[image: -*-]. If we want the true energy of a magnetic dipole,
for example, we should write

[image: -*-][image: -*-]


It is only if we make the condition that all currents are constant
that we can use only a part of the energy, Umech[image: -*-] (which is
always the negative of the true energy), to find the mechanical
forces. In a more general problem, we must be careful to include all
energies.




We have seen an analogous situation in electrostatics. We showed that
the energy of a capacitor is equal to Q2/2 C[image: -*-]. When we use the
principle of virtual work to find the force between the plates of the
capacitor, the change in energy is equal to Q2/2[image: -*-] times the change
in 1/C[image: -*-]. That is,

[image: -*-][image: -*-]
(15.14)









Now suppose that we were to calculate the work done in moving two
conductors subject to the different condition that the voltage between
them is held constant. Then we can get the right answers for force
from the principle of virtual work if we do something
artificial. Since Q=C V[image: -*-], the real energy is [image: \tfrac{1}{2}CV^2][image: \tfrac{1}{2}CV^2]. But
if we define an artificial energy equal to [image: -\tfrac{1}{2}CV^2][image: -\tfrac{1}{2}CV^2], then
the principle of virtual work can be used to get forces by setting the
change in the artificial energy equal to the mechanical work, provided
that we insist that the voltage V[image: -*-] be held constant. Then

[image: -*-][image: -*-]
(15.15)




which is the same as Eq. (15.14). We get the correct
result even though we are neglecting the work done by the electrical
system to keep the voltage constant. Again, this electrical energy is
just twice as big as the mechanical energy and of the opposite sign.




Thus if we calculate artificially, disregarding the fact that the
source of the potential has to do work to maintain the voltages
constant, we get the right answer. It is exactly analogous to the
situation in magnetostatics.







15–3 The energy of steady currents


We can now use our knowledge that Utotal=−Umech[image: -*-]
to find the true energy of steady currents in magnetic fields. We can
begin with the true energy of a small current loop.
Calling Utotal[image: -*-] just U[image: -*-], we write

[image: -*-][image: -*-]
(15.16)




Although we calculated this energy for a plane rectangular loop, the
same result holds for a small plane loop of any shape.




We can find the energy of a circuit of any shape by imagining that it
is made up of small current loops. Say we have a wire in the shape of
the loop Γ[image: -*-] of Fig. 15–4. We fill in this curve with the
surface S[image: -*-], and on the surface mark out a large number of small
loops, each of which can be considered plane. If we let the
current I[image: -*-] circulate around each of the little loops, the net result
will be the same as a current around Γ[image: -*-], since the currents will
cancel on all lines internal to Γ[image: -*-]. Physically, the system of
little currents is indistinguishable from the original circuit. The
energy must also be the same, and so is just the sum of the energies
of the little loops.



[image: -][image: -]
Figure 15-4. The energy of a large loop in a magnetic field can be
considered as the sum of energies of smaller loops.





If the area of each little loop is Δ a[image: -*-], its energy is I Δ a Bn[image: -*-], where Bn[image: -*-] is the component normal to Δ a[image: -*-]. The total
energy is

[image: -*-][image: -*-]


Going to the limit of infinitesimal loops, the sum becomes an
integral, and

[image: -*-][image: -*-]
(15.17)




where n[image: -*-] is the unit normal to d a[image: -*-].




If we set B=∇×A[image: -*-], we can connect the surface integral
to a line integral, using Stokes’ theorem,

[image: -*-][image: -*-]
(15.18)




where d s[image: -*-] is the line element along Γ[image: -*-]. So we have the
energy for a circuit of any shape:

[image: -*-][image: -*-]
(15.19)




In this expression A[image: -*-] refers, of course, to the vector potential
due to those currents (other than the I[image: -*-] in the wire) which produce
the field B[image: -*-] at the wire.




Now any distribution of steady currents can be imagined to be made up
of filaments that run parallel to the lines of current flow. For each
pair of such circuits, the energy is given by (15.19),
where the integral is taken around one circuit, using the vector
potential A[image: -*-] from the other circuit. For the total energy we want
the sum of all such pairs. If, instead of keeping track of the pairs,
we take the complete sum over all the filaments, we would be counting
the energy twice (we saw a similar effect in electrostatics), so the
total energy can be written

[image: -*-][image: -*-]
(15.20)




This formula corresponds to the result we found for the electrostatic
energy:

[image: -*-][image: -*-]
(15.21)




So we may if we wish think of A[image: -*-] as a kind of potential for
currents in magnetostatics. Unfortunately, this idea is not too
useful, because it is true only for static fields. In fact, neither of
the equations (15.20) and (15.21) gives the
correct energy when the fields change with time.







15–4 B[image: -*-] versus A[image: -*-]


In this section we would like to discuss the following questions: Is
the vector potential merely a device which is useful in making
calculations—as the scalar potential is useful in
electrostatics—or is the vector potential a “real” field? Isn’t
the magnetic field the “real” field, because it is responsible for
the force on a moving particle? First we should say that the phrase
“a real field” is not very meaningful. For one thing, you probably
don’t feel that the magnetic field is very “real” anyway, because
even the whole idea of a field is a rather abstract thing. You cannot
put out your hand and feel the magnetic field. Furthermore, the value
of the magnetic field is not very definite; by choosing a suitable
moving coordinate system, for instance, you can make a magnetic field
at a given point disappear.




What we mean here by a “real” field is this: a real field is a
mathematical function we use for avoiding the idea of action at a
distance. If we have a charged particle at the position P[image: -*-], it is
affected by other charges located at some distance from P[image: -*-]. One way
to describe the interaction is to say that the other charges make some
“condition”—whatever it may be—in the environment at P[image: -*-]. If we
know that condition, which we describe by giving the electric and
magnetic fields, then we can determine completely the behavior of the
particle—with no further reference to how those conditions came
about.




In other words, if those other charges were altered in some way, but
the conditions at P[image: -*-] that are described by the electric and magnetic
field at P[image: -*-] remain the same, then the motion of the charge will also
be the same. A “real” field is then a set of numbers we specify in
such a way that what happens at a point depends only on the
numbers at that point. We do not need to know any more about
what’s going on at other places. It is in this sense that we will
discuss whether the vector potential is a “real” field.




You may be wondering about the fact that the vector potential is not
unique—that it can be changed by adding the gradient of any scalar
with no change at all in the forces on particles. That has not,
however, anything to do with the question of reality in the sense that
we are talking about. For instance, the magnetic field is in a sense
altered by a relativity change (as are also E[image: -*-] and A[image: -*-]). But
we are not worried about what happens if the field can be
changed in this way. That doesn’t really make any difference; that has
nothing to do with the question of whether the vector potential is a
proper “real” field for describing magnetic effects, or whether it
is just a useful mathematical tool.




We should also make some remarks on the usefulness of the vector
potential A[image: -*-]. We have seen that it can be used in a formal
procedure for calculating the magnetic fields of known currents, just
as ϕ[image: -*-] can be used to find electric fields. In electrostatics we
saw that ϕ[image: -*-] was given by the scalar integral
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(15.22)




From this ϕ[image: -*-], we get the three components of E[image: -*-] by three
differential operations. This procedure is usually easier to handle
than evaluating the three integrals in the vector formula

[image: -*-][image: -*-]
(15.23)




First, there are three integrals; and second, each integral is in
general somewhat more difficult.




The advantages are much less clear for magnetostatics. The integral
for A[image: -*-] is already a vector integral:

[image: -*-][image: -*-]
(15.24)




which is, of course, three integrals. Also, when we take the curl
of A[image: -*-] to get B[image: -*-], we have six derivatives to do and combine by
pairs. It is not immediately obvious whether in most problems this
procedure is really any easier than computing B[image: -*-] directly from

[image: -*-][image: -*-]
(15.25)









Using the vector potential is often more difficult for simple problems
for the following reason. Suppose we are interested only in the
magnetic field B[image: -*-] at one point, and that the problem has some
nice symmetry—say we want the field at a point on the axis of a ring
of current. Because of the symmetry, we can easily get B[image: -*-] by
doing the integral of Eq. (15.25). If, however, we were
to find A[image: -*-] first, we would have to compute B[image: -*-] from
derivatives of A[image: -*-], so we must know what A[image: -*-] is at all
points in the neighborhood of the point of interest. And most
of these points are off the axis of symmetry, so the integral
for A[image: -*-] gets complicated. In the ring problem, for example, we would
need to use elliptic integrals. In such problems, A[image: -*-] is clearly
not very useful. It is true that in many complex problems it is easier
to work with A[image: -*-], but it would be hard to argue that this ease of
technique would justify making you learn about one more vector field.




We have introduced A[image: -*-] because it does have an important
physical significance. Not only is it related to the energies of
currents, as we saw in the last section, but it is also a “real”
physical field in the sense that we described above. In classical
mechanics it is clear that we can write the force on a particle as

[image: -*-][image: -*-]
(15.26)




so that, given the forces, everything about the motion is
determined. In any region where B=0[image: -*-] even if A[image: -*-] is
not zero, such as outside a solenoid, there is no discernible effect
of A[image: -*-]. Therefore for a long time it was believed that A[image: -*-] was
not a “real” field. It turns out, however, that there are phenomena
involving quantum mechanics which show that the field A[image: -*-] is in
fact a “real” field in the sense we have defined it. In the next
section we will show you how that works.







15–5 The vector potential and quantum mechanics


There are many changes in what concepts are important when we go from
classical to quantum mechanics. We have already discussed some of them
in Vol. I. In particular, the force concept gradually fades away,
while the concepts of energy and momentum become of paramount
importance. You remember that instead of particle motions, one deals
with probability amplitudes which vary in space and time. In these
amplitudes there are wavelengths related to momenta, and frequencies
related to energies. The momenta and energies, which determine the
phases of wave functions, are therefore the important quantities in
quantum mechanics. Instead of forces, we deal with the way
interactions change the wavelength of the waves. The idea of a force
becomes quite secondary—if it is there at all. When people talk
about nuclear forces, for example, what they usually analyze and work
with are the energies of interaction of two nucleons, and not the
force between them. Nobody ever differentiates the energy to find out
what the force looks like. In this section we want to describe how the
vector and scalar potentials enter into quantum mechanics. It is, in
fact, just because momentum and energy play a central role in quantum
mechanics that A[image: -*-] and ϕ[image: -*-] provide the most direct way of
introducing electromagnetic effects into quantum descriptions.



[image: -][image: -]
Figure 15-5. An interference experiment with electrons (see also
Chapter 37 of Vol. I).





We must review a little how quantum mechanics works. We will consider
again the imaginary experiment described in Chapter 37
of Vol. I, in which electrons are diffracted by two slits. The
arrangement is shown again in Fig. 15–5. Electrons, all of nearly
the same energy, leave the source and travel toward a wall with two
narrow slits. Beyond the wall is a “backstop” with a movable
detector. The detector measures the rate, which we call I[image: -*-], at which
electrons arrive at a small region of the backstop at the distance x[image: -*-]
from the axis of symmetry. The rate is proportional to the probability
that an individual electron that leaves the source will reach that
region of the backstop. This probability has the complicated-looking
distribution shown in the figure, which we understand as due to the
interference of two amplitudes, one from each slit. The interference
of the two amplitudes depends on their phase difference. That is, if
the amplitudes are C1 ei Φ1[image: -*-] and C2 ei Φ2[image: -*-], the phase
difference δ=Φ1−Φ2[image: -*-] determines their interference
pattern [see Eq. (29.12) in Vol. I]. If the distance
between the screen and the slits is L[image: -*-], and if the difference in the
path lengths for electrons going through the two slits is a[image: -*-], as
shown in the figure, then the phase difference of the two waves is
given by
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(15.27)




As usual, we let [image: \lambdabar=\lambda/2\pi][image: \lambdabar=\lambda/2\pi], where λ[image: -*-] is the
wavelength of the space variation of the probability amplitude. For
simplicity, we will consider only values of x[image: -*-] much less than L[image: -*-];
then we can set

[image: -*-][image: -*-]


and

[image: -*-][image: -*-]
(15.28)




When x[image: -*-] is zero, δ[image: -*-] is zero; the waves are in phase, and the
probability has a maximum. When δ[image: -*-] is π[image: -*-], the waves are out
of phase, they interfere destructively, and the probability is a
minimum. So we get the wavy function for the electron intensity.




Now we would like to state the law that for quantum mechanics replaces
the force law F=q v×B[image: -*-]. It will be the law that
determines the behavior of quantum-mechanical particles in an
electromagnetic field. Since what happens is determined by amplitudes,
the law must tell us how the magnetic influences affect the
amplitudes; we are no longer dealing with the acceleration of a
particle. The law is the following: the phase of the amplitude to
arrive via any trajectory is changed by the presence of a magnetic
field by an amount equal to the integral of the vector potential along
the whole trajectory times the charge of the particle over
Planck’s constant. That is,
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(15.29)




If there were no magnetic field there would be a certain phase of
arrival. If there is a magnetic field anywhere, the phase of the
arriving wave is increased by the integral in Eq. (15.29).





Although we will not need to use it for our present discussion, we
mention that the effect of an electrostatic field is to produce a
phase change given by the negative of the time integral
of the scalar potential ϕ[image: -*-]:

[image: -*-][image: -*-]


These two expressions are correct not only for static fields, but
together give the correct result for any electromagnetic field,
static or dynamic. This is the law that
replaces F=q (E+v×B)[image: -*-]. We want now, however, to consider
only a static magnetic field.




Suppose that there is a magnetic field present in the two-slit
experiment. We want to ask for the phase of arrival at the screen of
the two waves whose paths pass through the two slits. Their
interference determines where the maxima in the probability will
be. We may call Φ1[image: -*-] the phase of the wave along
trajectory (1)[image: -*-]. If Φ1(B=0)[image: -*-] is the phase without the magnetic field, then
when the field is turned on the phase will be
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(15.30)




Similarly, the phase for trajectory (2)[image: -*-] is

[image: -*-][image: -*-]
(15.31)




The interference of the waves at the detector depends on the phase
difference



[image: -*-][image: -*-]
(15.32)





The no-field difference we will call δ(B=0)[image: -*-]; it is just the
phase difference we have calculated above in Eq. (15.28).
Also, we notice that the two integrals can be written as one
integral that goes forward along (1)[image: -*-] and back along (2)[image: -*-]; we call
this the closed path (1 â � � 2)[image: -*-]. So we have
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(15.33)




This equation tells us how the electron motion is changed by the
magnetic field; with it we can find the new positions of the intensity
maxima and minima at the backstop.




Before we do that, however, we want to raise the following interesting
and important point. You remember that the vector potential function
has some arbitrariness. Two different vector potential functions
A[image: -*-] and A′[image: -*-] whose difference is the gradient of some scalar
function ∇ψ[image: -*-], both represent the same magnetic field,
since the curl of a gradient is zero. They give, therefore, the same
classical force q v×B[image: -*-]. If in quantum mechanics the
effects depend on the vector potential, which of the many
possible A[image: -*-]-functions is correct?




The answer is that the same arbitrariness in A[image: -*-] continues to
exist for quantum mechanics. If in Eq. (15.33) we
change A[image: -*-] to A′=A+∇ψ[image: -*-], the integral on A[image: -*-]
becomes

[image: -*-][image: -*-]


The integral of ∇ψ[image: -*-] is around the closed
path (1 â � � 2)[image: -*-], but the integral of the tangential component of a
gradient on a closed path is always zero, by Stokes’
theorem. Therefore both A[image: -*-] and A′[image: -*-] give the same phase
differences and the same quantum-mechanical interference effects. In
both classical and quantum theory it is only the curl of A[image: -*-] that
matters; any choice of the function of A[image: -*-] which has the correct
curl gives the correct physics.




The same conclusion is evident if we use the results of
Section 14–1. There we found that the line integral
of A[image: -*-] around a closed path is the flux of B[image: -*-] through the path,
which here is the flux between paths (1)[image: -*-] and (2)[image: -*-].
Equation (15.33) can, if we wish, be written as
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(15.34)





where by the flux of B[image: -*-] we mean, as usual, the surface integral
of the normal component of B[image: -*-]. The result depends only
on B[image: -*-], and therefore only on the curl of A[image: -*-].




Now because we can write the result in terms of B[image: -*-] as well as in
terms of A[image: -*-], you might be inclined to think that the B[image: -*-]
holds its own as a “real” field and that the A[image: -*-] can still be
thought of as an artificial construction. But the definition of
“real” field that we originally proposed was based on the idea that
a “real” field would not act on a particle from a distance. We can,
however, give an example in which B[image: -*-] is zero—or at least
arbitrarily small—at any place where there is some chance to find
the particles, so that it is not possible to think of it acting
directly on them.



[image: -][image: -]
Figure 15-6. The magnetic field and vector potential of a long solenoid.





You remember that for a long solenoid carrying an electric current there
is a B[image: -*-]-field inside but none outside, while there is lots
of A[image: -*-] circulating around outside, as shown in Fig. 15–6.
If we arrange a situation in which electrons are to be found only
outside of the solenoid—only where there is A[image: -*-]—there
will still be an influence on the motion, according to
Eq. (15.33). Classically, that is impossible. Classically,
the force depends only on B[image: -*-]; in order to know that the solenoid is
carrying current, the particle must go through it. But
quantum-mechanically you can find out that there is a magnetic field
inside the solenoid by going around it—without ever going close
to it!




Suppose that we put a very long solenoid of small diameter just behind
the wall and between the two slits, as shown in Fig. 15–7. The
diameter of the solenoid is to be much smaller than the distance d[image: -*-]
between the two slits. In these circumstances, the diffraction of the
electrons at the slit gives no appreciable probability that the
electrons will get near the solenoid. What will be the effect on our
interference experiment?



[image: -][image: -]
Figure 15-7. A magnetic field can influence the motion of electrons even
though it exists only in regions where there is an arbitrarily small
probability of finding the electrons.





We compare the situation with and without a current through the
solenoid.  If we have no current, we have no B[image: -*-] or A[image: -*-] and we
get the original pattern of electron intensity at the backstop. If we
turn the current on in the solenoid and build up a magnetic
field B[image: -*-] inside, then there is an A[image: -*-] outside. There is a shift in
the phase difference proportional to the circulation of A[image: -*-]
outside the solenoid, which will mean that the pattern of maxima and
minima is shifted to a new position. In fact, since the flux
of B[image: -*-] inside is a constant for any pair of paths, so also is the
circulation of A[image: -*-]. For every arrival point there is the same
phase change; this corresponds to shifting the entire pattern in x[image: -*-]
by a constant amount, say x0[image: -*-], that we can easily calculate. The
maximum intensity will occur where the phase difference between the
two waves is zero. Using Eq. (15.33) or
Eq. (15.34) for δ[image: -*-] and Eq. (15.28)
for x[image: -*-], we have
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(15.35)




or
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(15.36)





The pattern with the solenoid in place should appear1 as shown in Fig. 15–7. At least, that is the
prediction of quantum mechanics.




Precisely this experiment has recently been done. It is a very, very
difficult experiment. Because the wavelength of the electrons is so
small, the apparatus must be on a tiny scale to observe the
interference. The slits must be very close together, and that means
that one needs an exceedingly small solenoid. It turns out that in
certain circumstances, iron crystals will grow in the form of very
long, microscopically thin filaments called whiskers. When these iron
whiskers are magnetized they are like a tiny solenoid, and there is no
field outside except near the ends. The electron interference
experiment was done with such a whisker between two slits, and the
predicted displacement in the pattern of electrons was observed.




In our sense then, the A[image: -*-]-field is “real.” You may say: “But
there was a magnetic field.” There was, but remember our
original idea—that a field is “real” if it is what must be
specified at the position of the particle in order to get the
motion. The B[image: -*-]-field in the whisker acts at a distance. If we
want to describe its influence not as action-at-a-distance, we must
use the vector potential.




This subject has an interesting history. The theory we have described
was known from the beginning of quantum mechanics in 1926. The fact that
the vector potential appears in the wave equation of quantum mechanics
(called the Schrödinger equation) was obvious from the day it was written. That it cannot be
replaced by the magnetic field in any easy way was observed by one man
after the other who tried to do so. This is also clear from our example
of electrons moving in a region where there is no field and being
affected nevertheless. But because in classical mechanics A[image: -*-] did
not appear to have any direct importance and, furthermore, because it
could be changed by adding a gradient, people repeatedly said that the
vector potential had no direct physical significance—that only the
magnetic and electric fields are “right” even in quantum mechanics. It
seems strange in retrospect that no one thought of discussing this
experiment until 1956, when Bohm and
Aharonov first suggested it and made
the whole question crystal clear. The implication was there all the
time, but no one paid attention to it. Thus many people were rather
shocked when the matter was brought up. That’s why someone thought it
would be worth while to do the experiment to see that it really was
right, even though quantum mechanics, which had been believed for so
many years, gave an unequivocal answer. It is interesting that something
like this can be around for thirty years but, because of certain
prejudices of what is and is not significant, continues to be ignored.
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Figure 15-8. The shift of the interference pattern due to a strip of
magnetic field.





Now we wish to continue in our analysis a little further. We will show
the connection between the quantum-mechanical formula and the
classical formula—to show why it turns out that if we look at things
on a large enough scale it will look as though the particles are acted
on by a force equal to qv×[image: -*-] the curl of A[image: -*-]. To get
classical mechanics from quantum mechanics, we need to consider cases
in which all the wavelengths are very small compared with distances
over which external conditions, like fields, vary appreciably. We
shall not prove the result in great generality, but only in a very
simple example, to show how it works. Again we consider the same slit
experiment. But instead of putting all the magnetic field in a very
tiny region between the slits, we imagine a magnetic field that
extends over a larger region behind the slits, as shown in
Fig. 15–8. We will take the idealized case where we have a
magnetic field which is uniform in a narrow strip of width w[image: -*-],
considered small as compared with L[image: -*-]. (That can easily be arranged; the
backstop can be put as far out as we want.) In order to calculate the
shift in phase, we must take the two integrals of A[image: -*-] along the two
trajectories (1)[image: -*-] and (2)[image: -*-]. They differ, as we have seen, merely by
the flux of B[image: -*-] between the paths. To our approximation, the flux
is B w d[image: -*-]. The phase difference for the two paths is then
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(15.37)




We note that, to our approximation, the phase shift is independent of
the angle. So again the effect will be to shift the whole pattern
upward by an amount Δ x[image: -*-]. Using Eq. (15.35),
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Using (15.37) for δ−δ(B=0)[image: -*-],

[image: -*-][image: -*-]
(15.38)




Such a shift is equivalent to deflecting all the trajectories by the
small angle α[image: -*-] (see Fig. 15–8), where
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(15.39)








[image: -][image: -]
Figure 15-9. Deflection of a particle due to passage through a strip of
magnetic field.





Now classically we would also expect a thin strip of magnetic field to
deflect all trajectories through some small angle, say α′[image: -*-], as
shown in Fig. 15–9(a). As the electrons go through the magnetic
field, they feel a transverse force q v×B[image: -*-] which lasts
for a time w/v[image: -*-]. The change in their transverse momentum is just
equal to this impulse, so
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(15.40)




The angular deflection [Fig. 15–9(b)] is equal to the ratio of this
transverse momentum to the total momentum p[image: -*-]. We get that
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(15.41)









We can compare this result with Eq. (15.39), which gives
the same quantity computed quantum-mechanically. But the connection
between classical mechanics and
quantum mechanics is this: A particle of momentum p[image: -*-] corresponds to a
quantum amplitude varying with the
wavelength [image: \lambdabar=\hbar/p][image: \lambdabar=\hbar/p]. With this equality, α[image: -*-] and α′[image: -*-] are
identical; the classical and quantum calculations give the same
result.




From the analysis we see how it is that the vector potential which
appears in quantum mechanics in an explicit form produces a classical
force which depends only on its derivatives. In quantum mechanics what
matters is the interference between nearby paths; it always turns out
that the effects depend only on how much the field A[image: -*-]
changes from point to point, and therefore only on the
derivatives of A[image: -*-] and not on the value itself. Nevertheless, the
vector potential A[image: -*-] (together with the scalar potential ϕ[image: -*-]
that goes with it) appears to give the most direct description of the
physics. This becomes more and more apparent the more deeply we go
into the quantum theory. In the general theory of quantum
electrodynamics, one takes the vector and scalar potentials as the
fundamental quantities in a set of equations that replace the Maxwell
equations:
E[image: -*-] and B[image: -*-] are slowly disappearing from the modern expression
of physical laws; they are being replaced by A[image: -*-] and ϕ[image: -*-].








15–6 What is true for statics is false for dynamics


We are now at the end of our exploration of the subject of static
fields. Already in this chapter we have come perilously close to
having to worry about what happens when fields change with time. We
were barely able to avoid it in our treatment of magnetic energy by
taking refuge in a relativistic argument. Even so, our treatment of
the energy problem was somewhat artificial and perhaps even
mysterious, because we ignored the fact that moving coils must, in
fact, produce changing fields. It is now time to take up the treatment
of time-varying fields—the subject of electrodynamics. We will do so
in the next chapter. First, however, we would like to emphasize a few
points.




Although we began this course with a presentation of the complete and
correct equations of electromagnetism, we immediately began to study
some incomplete pieces—because that was easier. There is a great
advantage in starting with the simpler theory of static fields, and
proceeding only later to the more complicated theory which includes
dynamic fields. There is less new material to learn all at once, and
there is time for you to develop your intellectual muscles in
preparation for the bigger task.




But there is the danger in this process that before we get to see the
complete story, the incomplete truths learned on the way may become
ingrained and taken as the whole truth—that what is true and what is
only sometimes true will become confused. So we give in
Table 15–1 a summary of the important formulas we have
covered, separating those which are true in general from those which are
true for statics, but false for dynamics. This summary also shows, in
part, where we are going, since as we treat dynamics we will be
developing in detail what we must just state here without proof.





Table 15–1. 
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It may be useful to make a few remarks about the table. First, you
should notice that the equations we started with are the true
equations—we have not misled you there. The electromagnetic force
(often called the Lorentz force) F=q (E+v×B)[image: -*-] is true. It is only
Coulomb’s law that is false, to be used only for statics. The four
Maxwell equations for E[image: -*-] and B[image: -*-] are also true. The equations we took
for statics are false, of course, because we left off all terms with
time derivatives.





Gauss’ law, ∇⋅E=ρ/ϵ0[image: -*-], remains, but the curl
of E[image: -*-] is not zero in general. So E[image: -*-] cannot always be
equated to the gradient of a scalar—the electrostatic potential. We
will see that a scalar potential still remains, but it is a
time-varying quantity that must be used together with vector
potentials for a complete description of the electric field. The
equations governing this new scalar potential are, necessarily, also
new.




We must also give up the idea that E[image: -*-] is zero in conductors. When
the fields are changing, the charges in conductors do not, in general,
have time to rearrange themselves to make the field zero. They are set
in motion, but never reach equilibrium. The only general statement is:
electric fields in conductors produce currents. So in varying fields a
conductor is not an equipotential. It also follows that the
idea of a capacitance is no longer precise.




Since there are no magnetic charges, the divergence of B[image: -*-] is
always zero. So B[image: -*-] can always be equated
to ∇×A[image: -*-]. (Everything doesn’t change!) But the generation
of B[image: -*-] is not only from currents; ∇×B[image: -*-] is proportional
to the current density plus a new term ∂E/∂t[image: -*-]. This
means that A[image: -*-] is related to currents by a new equation. It is
also related to ϕ[image: -*-]. If we make use of our freedom to
choose ∇⋅A[image: -*-] for our own convenience, the equations for
A[image: -*-] or ϕ[image: -*-] can be arranged to take on a simple and elegant form. We
therefore make the condition that c2 ∇⋅A=−∂ϕ/∂t[image: -*-],
and the differential equations for A[image: -*-] or ϕ[image: -*-] appear as shown
in the table.




The potentials A[image: -*-] and ϕ[image: -*-] can still be found by integrals over
the currents and charges, but not the same integrals as for
statics. Most wonderfully, though, the true integrals are like the
static ones, with only a small and physically appealing
modification. When we do the integrals to find the potentials at some
point, say point (1)[image: -*-] in Fig. 15–10, we must use the values of
j[image: -*-] and ρ[image: -*-] at the point (2)[image: -*-] at an earlier
time t′=t−r12/c[image: -*-]. As you would expect, the influences propagate from
point (2)[image: -*-] to point (1)[image: -*-] at the speed c[image: -*-]. With this small change,
one can solve for the fields of varying currents and charges, because
once we have A[image: -*-] and ϕ[image: -*-], we get B[image: -*-] from
∇×A[image: -*-], as before, and E[image: -*-] from
−∇ϕ−∂A/∂t[image: -*-].



[image: -][image: -]
Figure 15-10. The potentials at point (1)[image: -*-] and at the time t[image: -*-] are given by
summing the contributions from each element of the source at the roving
point (2)[image: -*-], using the currents and charges which were present at the
earlier time t−r12/c[image: -*-].





Finally, you will notice that some results—for example, that the
energy density in an electric field is ϵ0 E2/2[image: -*-]—are true for
electrodynamics as well as for statics. You should not be misled into
thinking that this is at all “natural.” The validity of any formula
derived in the static case must be demonstrated over again for the
dynamic case. A contrary example is the expression for the
electrostatic energy in terms of a volume integral of ρ ϕ[image: -*-]. This
result is true only for statics.




We will consider all these matters in more detail in due time, but it
will perhaps be useful to keep in mind this summary, so you will know
what you can forget, and what you should remember as always true.





	
  
  If the
field B[image: -*-] comes out of the plane of the figure, the flux as we have
defined it is positive and since q[image: -*-] for electrons is negative, x0[image: -*-] is
positive.
  ↩





  
    

16 Induced Currents



16–1 Motors and generators


The discovery in 1820 that there was a close connection between
electricity and magnetism was very exciting—until then, the two
subjects had been considered as quite independent. The first discovery
was that currents in wires make magnetic fields; then, in the same
year, it was found that wires carrying current in a magnetic field
have forces on them.




One of the excitements whenever there is a mechanical force is the
possibility of using it in an engine to do work. Almost immediately
after their discovery, people started to design electric motors using
the forces on current-carrying wires. The principle of the
electromagnetic motor is shown in bare outline in
Fig. 16–1. A permanent magnet—usually with some pieces of
soft iron—is used to produce a magnetic field in two slots. Across
each slot there is a north and south pole, as shown. A rectangular coil
of copper is placed with one side in each slot. When a current passes
through the coil, it flows in opposite directions in the two slots, so
the forces are also opposite, producing a torque on the coil about the
axis shown. If the coil is mounted on a shaft so that it can turn, it
can be coupled to pulleys or gears and can do work.



[image: -][image: -]
Fig. 16–1. Schematic outline of a simple electromagnetic motor.





The same idea can be used for making a sensitive instrument for
electrical measurements. Thus the moment the force law was discovered
the precision of electrical measurements was greatly increased. First,
the torque of such a motor can be made much greater for a given
current by making the current go around many turns instead of just
one. Then the coil can be mounted so that it turns with very little
torque—either by supporting its shaft on very delicate jewel
bearings or by hanging the coil on a very fine wire or a quartz
fiber. Then an exceedingly small current will make the coil turn, and
for small angles the amount of rotation will be proportional to the
current. The rotation can be measured by gluing a pointer to the coil
or, for the most delicate instruments, by attaching a small mirror to
the coil and looking at the shift of the image of a scale. Such
instruments are called galvanometers.
Voltmeters and ammeters work on the same
principle.





The same ideas can be applied on a large scale to make large motors
for providing mechanical power. The coil can be made to go around and
around by arranging that the connections to the coil are reversed each
half-turn by contacts mounted on the shaft. Then the torque is always
in the same direction. Small dc motors are made just this way. Larger
motors, dc or ac, are often made by replacing the permanent magnet by
an electromagnet, energized from the electrical power source.




With the realization that electric currents make magnetic fields,
people immediately suggested that, somehow or other, magnets might
also make electric fields. Various experiments were tried. For
example, two wires were placed parallel to each other and a current
was passed through one of them in the hope of finding a current in the
other. The thought was that the magnetic field might in some way drag
the electrons along in the second wire, giving some such law as
“likes prefer to move alike.” With the largest available current and
the most sensitive galvanometer to detect any current, the result was
negative. Large magnets next to wires also produced no observed
effects. Finally, Faraday
discovered in 1840 the essential feature
that had been missed—that electric effects exist only when there is
something changing. If one of a pair of wires has a
changing current, a current is induced in the other, or if a
magnet is moved near an electric circuit, there is a
current. We say that currents are induced. This was the
induction effect discovered by Faraday.
It transformed the rather dull
subject of static fields into a very exciting dynamic subject with an
enormous range of wonderful phenomena. This chapter is devoted to a
qualitative description of some of them. As we will see, one can
quickly get into fairly complicated situations that are hard to
analyze quantitatively in all their details. But never mind, our main
purpose in this chapter is first to acquaint you with the phenomena
involved. We will take up the detailed analysis later.




We can easily understand one feature of magnetic induction from what
we already know, although it was not known in
Faraday’s time. It comes
from the v×B[image: -*-] force on a moving charge that is
proportional to its velocity in a magnetic field. Suppose that we have
a wire which passes near a magnet, as shown in Fig. 16–2,
and that we connect the ends of the wire to a galvanometer. If we move
the wire across the end of the magnet the galvanometer pointer moves.




The magnet produces some vertical magnetic field, and when we push the
wire across the field, the electrons in the wire feel a
sideways force—at right angles to the field and to the
motion. The force pushes the electrons along the wire.  But why does
this move the galvanometer, which is so far from the force? Because
when the electrons which feel the magnetic force try to move, they
push—by electric repulsion—the electrons a little farther down the
wire; they, in turn, repel the electrons a little farther on, and so
on for a long distance. An amazing thing.




It was so amazing to Gauss and
Weber—who first built a
galvanometer—that they tried to see how far the forces in the wire would go.
They strung a wire all the way across their city. Mr. Gauss, at one end, connected the wires to a battery
(batteries were known before generators) and Mr. Weber watched the galvanometer move. They had a way of
signaling long distances—it was the beginning of the telegraph! Of course,
this has nothing directly to do with induction—it has to do with the way wires
carry currents, whether the currents are pushed by induction or not.



[image: -][image: -]
Fig. 16–2. Moving a wire through a magnetic field produces a current, as
shown by the galvanometer.





Now suppose in the setup of Fig. 16–2 we leave the wire
alone and move the magnet. We still see an effect on the
galvanometer. As Faraday
discovered, moving the magnet under the
wire—one way—has the same effect as moving the wire over the
magnet—the other way. But when the magnet is moved, we no longer
have any v×B[image: -*-] force on the electrons in the wire. This
is the new effect that Faraday
found. Today, we might hope to
understand it from a relativity argument.




We already understand that the magnetic field of a magnet comes from
its internal currents. So we expect to observe the same effect if
instead of a magnet in Fig. 16–2 we use a coil of wire
in which there is a current. If we move the wire past the coil there
will be a current through the galvanometer, or also if we move the
coil past the wire. But there is now a more exciting thing: If we
change the magnetic field of the coil not by moving it, but by
changing its current, there is again an effect in the
galvanometer. For example, if we have a loop of wire near a coil, as
shown in Fig. 16–3, and if we keep both of them
stationary but switch off the current, there is a pulse of current
through the galvanometer. When we switch the coil on again, the
galvanometer kicks in the other direction.



[image: -][image: -]
Fig. 16–3. A coil with current produces a current in a second coil if
the first coil is moved or if its current is changed.





Whenever the galvanometer in a situation such as the one shown in
Fig. 16–2, or in Fig. 16–3, has a current,
there is a net push on the electrons in the wire in one direction along
the wire. There may be pushes in different directions at different
places, but there is more push in one direction than another. What
counts is the push integrated around the complete circuit. We call this
net integrated push the electromotive force (abbreviated emf)
in the circuit. More precisely, the emf is defined as the tangential
force per unit charge in the wire integrated over length, once around
the complete circuit. Faraday’s
complete discovery was that emf’s can be generated in a wire in three
different ways: by moving the wire, by moving a magnet near the wire, or
by changing a current in a nearby wire.




Let’s consider the simple machine of Fig. 16–1 again,
only now, instead of putting a current through the wire to make it
turn, let’s turn the loop by an external force, for example by hand or
by a waterwheel. When the coil rotates, its wires are moving in the
magnetic field and we will find an emf in the circuit of the coil.
The motor becomes a generator.




The coil of the generator has an induced emf from its motion. The
amount of the emf is given by a simple rule discovered by
Faraday. (We
will just state the rule now and wait until later to examine it in
detail.) The rule is that when the magnetic flux that passes through
the loop (this flux is the normal component of B[image: -*-] integrated over
the area of the loop) is changing with time, the emf is equal to the
rate of change of the flux. We will refer to this as “the flux
rule.” You see that when the coil of Fig. 16–1 is
rotated, the flux through it changes. At the start some flux goes
through one way; then when the coil has rotated 180°[image: -*-] the same
flux goes through the other way. If we continuously rotate the coil
the flux is first positive, then negative, then positive, and so
on. The rate of change of the flux must alternate also. So there is an
alternating emf in the coil. If we connect the two ends of the coil to
outside wires through some sliding contacts—called
slip-rings—(just so the wires won’t get twisted) we have an
alternating-current generator.




Or we can also arrange, by means of some sliding contacts, that after
every one-half rotation, the connection between the coil ends and the
outside wires is reversed, so that when the emf reverses, so do the
connections. Then the pulses of emf will always push currents in the
same direction through the external circuit. We have what is called a
direct-current generator.




The machine of Fig. 16–1 is either a motor or a
generator. The reciprocity between motors and generators is nicely
shown by using two identical dc “motors” of the permanent magnet
kind, with their coils connected by two copper wires. When the shaft
of one is turned mechanically, it becomes a generator and drives the
other as a motor. If the shaft of the second is turned, it becomes the
generator and drives the first as a motor. So here is an interesting
example of a new kind of equivalence of nature: motor and generator
are equivalent. The quantitative equivalence is, in fact, not
completely accidental. It is related to the law of conservation of
energy.




Another example of a device that can operate either to generate emf’s or
to respond to emf’s is the receiver of a standard telephone—that is,
an “earphone.” The original telephone of
Bell
consisted of two such “earphones” connected by two
long wires. The basic principle is shown in Fig. 16–4. A
permanent magnet produces a magnetic field in two “yokes” of soft iron
and in a thin diaphragm that is moved by sound pressure. When the
diaphragm moves, it changes the amount of magnetic field in the yokes.
Therefore a coil of wire wound around one of the yokes will have the
flux through it changed when a sound wave hits the diaphragm. So there
is an emf in the coil. If the ends of the coil are connected to a
circuit, a current which is an electrical representation of the sound is
set up.



[image: -][image: -]
Fig. 16–4. A telephone transmitter or receiver.





If the ends of the coil of Fig. 16–4 are connected by
two wires to another identical gadget, varying currents will flow in
the second coil. These currents will produce a varying magnetic field
and will make a varying attraction on the iron diaphragm. The
diaphragm will wiggle and make sound waves approximately similar to
the ones that moved the original diaphragm. With a few bits of iron
and copper the human voice is transmitted over wires!





(The modern home telephone uses a receiver like the one described but
uses an improved invention to get a more powerful transmitter. It is
the “carbon-button microphone,” that uses sound pressure to vary the
electric current from a battery.)







16–2 Transformers and inductances


One of the most interesting features of
Faraday’s discoveries is not
that an emf exists in a moving coil—which we can understand in terms
of the magnetic force q v×B[image: -*-]—but that a changing
current in one coil makes an emf in a second coil. And quite
surprisingly the amount of emf induced in the second coil is given by
the same “flux rule”: that the emf is equal to the rate of change of
the magnetic flux through the coil. Suppose that we take two coils,
each wound around separate bundles of iron sheets (these help to make
stronger magnetic fields), as shown in Fig. 16–5. Now
we connect one of the coils—coil (a)—to an alternating-current
generator. The continually changing current produces a continuously
varying magnetic field. This varying field generates an alternating
emf in the second coil—coil (b). This emf can, for example, produce
enough power to light an electric bulb.



[image: -][image: -]
Fig. 16–5. Two coils, wrapped around bundles of iron sheets, allow a
generator to light a bulb with no direct connection.





The emf alternates in coil (b) at a frequency which is, of course, the
same as the frequency of the original generator. But the current in
coil (b) can be larger or smaller than the current in coil (a). The
current in coil (b) depends on the emf induced in it and on the
resistance and inductance of the rest of its circuit. The emf can be
less than that of the generator if, say, there is little flux
change. Or the emf in coil (b) can be made much larger than that in
the generator by winding coil (b) with many turns, since in a given
magnetic field the flux through the coil is then greater. (Or if you
prefer to look at it another way, the emf is the same in each turn,
and since the total emf is the sum of the emf’s of the separate turns,
many turns in series produce a large emf.)




Such a combination of two coils—usually with an arrangement of iron
sheets to guide the magnetic fields—is called a
transformer. It can “transform” one emf (also called a
“voltage”) to another.




There are also induction effects in a single coil. For instance, in
the setup in Fig. 16–5 there is a changing flux not
only through coil (b), which lights the bulb, but also through
coil (a). The varying current in coil (a) produces a varying magnetic field
inside itself and the flux of this field is continually changing, so
there is a self-induced emf in coil (a). There is an emf acting
on any current when it is building up a magnetic field—or, in
general, when its field is changing in any way. The effect is called
self-inductance.




When we gave “the flux rule” that the emf is equal to the rate of
change of the flux linkage, we didn’t specify the direction of the emf.
There is a simple rule, called Lenz’s rule, for figuring out which way the emf goes: the emf tries to
oppose any flux change. That is, the direction of an induced emf is
always such that if a current were to flow in the direction of the emf,
it would produce a flux of B[image: -*-] that opposes the change in B[image: -*-]
that produces the emf. Lenz’s rule can
be used to find the direction of the emf in the generator of
Fig. 16–1, or in the transformer winding of
Fig. 16–3.




In particular, if there is a changing current in a single coil (or in
any wire) there is a “back” emf in the circuit. This emf acts on the
charges flowing in coil (a) of Fig. 16–5 to oppose the
change in magnetic field, and so in the direction to oppose the change
in current. It tries to keep the current constant; it is opposite to
the current when the current is increasing, and it is in the direction
of the current when it is decreasing. A current in a self-inductance
has “inertia,” because the inductive effects try to keep the flow
constant, just as mechanical inertia tries to keep the velocity of an
object constant.



[image: -][image: -]
Fig. 16–6. Circuit connections for an electromagnet. The lamp allows the
passage of current when the switch is opened, preventing the
appearance of excessive emf’s.





Any large electromagnet will have a large self-inductance. Suppose
that a battery is connected to the coil of a large electromagnet, as
in Fig. 16–6, and that a strong magnetic field has been
built up. (The current reaches a steady value determined by the
battery voltage and the resistance of the wire in the coil.) But now
suppose that we try to disconnect the battery by opening the
switch. If we really opened the circuit, the current would go to zero
rapidly, and in doing so it would generate an enormous emf. In most
cases this emf would be large enough to develop an arc across the
opening contacts of the switch. The high voltage that appears might
also damage the insulation of the coil—or you, if you are the person
who opens the switch! For these reasons, electromagnets are usually
connected in a circuit like the one shown in Fig. 16–6.
When the switch is opened, the current does not change rapidly but
remains steady, flowing instead through the lamp, being driven by the
emf from the self-inductance of the coil.







16–3 Forces on induced currents

[image: -][image: -]
Fig. 16–7. A conducting ring is strongly repelled by an electromagnet
with a varying current.





You have probably seen the dramatic demonstration of Lenz’s
rule made with the gadget shown in
Fig. 16–7. It is an electromagnet, just like coil (a) of
Fig. 16–5. An aluminum ring is placed on the end of the
magnet. When the coil is connected to an alternating-current generator
by closing the switch, the ring flies into the air. The force comes, of
course, from the induced currents in the ring.  The fact that the ring
flies away shows that the currents in it oppose the change of the field
through it. When the magnet is making a north pole at its top, the
induced current in the ring is making a downward-pointing north pole.
The ring and the coil are repelled just like two magnets with like poles
opposite. If a thin radial cut is made in the ring the force disappears,
showing that it does indeed come from the currents in the ring.





If, instead of the ring, we place a disc of aluminum or copper across
the end of the electromagnet of Fig. 16–7, it is also
repelled; induced currents circulate in the material of the disc, and
again produce a repulsion.




An interesting effect, similar in origin, occurs with a sheet of a
perfect conductor. In a “perfect conductor” there is no resistance
whatever to the current. So if currents are generated in it, they can
keep going forever. In fact, the slightest emf would generate
an arbitrarily large current—which really means that there can be no
emf’s at all. Any attempt to make a magnetic flux go through such a
sheet generates currents that create opposite B[image: -*-] fields—all
with infinitesimal emf’s, so with no flux entering.



[image: -][image: -]
Fig. 16–8. An electromagnet near a perfectly conducting plate.





If we have a sheet of a perfect conductor and put an electromagnet
next to it, when we turn on the current in the magnet, currents called
eddy currents appear in
the sheet, so that no magnetic flux enters. The field lines would look
as shown in Fig. 16–8. The same thing happens, of course,
if we bring a bar magnet near a perfect conductor. Since the eddy
currents are creating opposing fields, the magnets are repelled from the
conductor. This makes it possible to suspend a bar magnet in air above a
sheet of perfect conductor shaped like a dish, as shown in
Fig. 16–9. The magnet is suspended by the repulsion of the
induced eddy currents in the perfect conductor. There are no perfect
conductors at ordinary temperatures, but some materials become perfect
conductors at low enough temperatures. For instance, below 3.8°[image: -*-]K
tin conducts perfectly. It is called a superconductor.



[image: -][image: -]
Fig. 16–9. A bar magnet is suspended above a superconducting bowl, by
the repulsion of eddy currents.





If the conductor in Fig. 16–8 is not quite perfect
there will be some resistance to flow of the eddy currents. The
currents will tend to die out and the magnet will slowly settle
down. The eddy currents in an imperfect conductor need an emf to keep
them going, and to have an emf the flux must keep changing. The flux
of the magnetic field gradually penetrates the conductor.




In a normal conductor, there are not only repulsive forces from eddy
currents, but there can also be sidewise forces. For instance, if we
move a magnet sideways along a conducting surface the eddy currents
produce a force of drag, because the induced currents are opposing the
changing of the location of flux. Such forces are proportional to the
velocity and are like a kind of viscous force.



[image: -][image: -]
Fig. 16–10. The braking of the pendulum shows the forces due to eddy
currents.





These effects show up nicely in the apparatus shown in
Fig. 16–10. A square sheet of copper is suspended on the
end of a rod to make a pendulum. The copper swings back and forth
between the poles of an electromagnet. When the magnet is turned on, the
pendulum motion is suddenly arrested. As the metal plate enters the gap
of the magnet, there is a current induced in the plate which acts to
oppose the change in flux through the plate. If the sheet were a perfect
conductor, the currents would be so great that they would push the plate
out again—it would bounce back. With a copper plate there is some
resistance in the plate, so the currents at first bring the plate almost
to a dead stop as it starts to enter the field. Then, as the currents
die down, the plate slowly settles to rest in the magnetic field.



[image: -][image: -]
Fig. 16–11. The eddy currents in the copper pendulum.





The nature of the eddy currents in the copper pendulum is shown in
Fig. 16–11. The strength and geometry of the currents
are quite sensitive to the shape of the plate. If, for instance, the
copper plate is replaced by one which has several narrow slots cut in
it, as shown in Fig. 16–12, the eddy-current effects
are drastically reduced. The pendulum swings through the magnetic
field with only a small retarding force. The reason is that the
currents in each section of the copper have less flux to drive them,
so the effects of the resistance of each loop are greater.  The
currents are smaller and the drag is less. The viscous character of
the force is seen even more clearly if a sheet of copper is placed
between the poles of the magnet of Fig. 16–10 and then
released. It doesn’t fall; it just sinks slowly downward. The eddy
currents exert a strong resistance to the motion—just like the
viscous drag in honey.




[image: -][image: -]
Fig. 16–12. Eddy-current effects are drastically reduced by cutting slots
in the plate.





If, instead of dragging a conductor past a magnet, we try to rotate it
in a magnetic field, there will be a resistive torque from the same
effects. Alternatively, if we rotate a magnet—end over end—near a
conducting plate or ring, the ring is dragged around; currents in the
ring will create a torque that tends to rotate the ring with the
magnet.



[image: -][image: -]
Fig. 16–13. Making a rotating magnetic field.





A field just like that of a rotating magnet can be made with an
arrangement of coils such as is shown in Fig. 16–13. We
take a torus of iron (that is, a ring of iron like a doughnut) and
wind six coils on it. If we put a current, as shown in part (a),
through windings (1) and (4), there will be a magnetic field in the
direction shown in the figure. If we now switch the current to
windings (2) and (5), the magnetic field will be in a new direction,
as shown in part (b) of the figure. Continuing the process, we get the
sequence of fields shown in the rest of the figure. If the process is
done smoothly, we have a “rotating” magnetic field. We can easily
get the required sequence of currents by connecting the coils to a
three-phase power line, which provides just such a sequence of
currents. “Three-phase power” is made in a generator using the
principle of Fig. 16–1, except that there are three
loops fastened together on the same shaft in a symmetrical way—that
is, with an angle of 120°[image: -*-] from one loop to the next. When the
coils are rotated as a unit, the emf is a maximum in one, then in the
next, and so on in a regular sequence. There are many practical
advantages of three-phase power. One of them is the possibility of
making a rotating magnetic field. The torque produced on a conductor by
such a rotating field is easily shown by standing a metal ring on an
insulating table just above the torus, as shown in
Fig. 16–14. The rotating field causes the ring to spin
about a vertical axis. The basic elements seen here are quite the same
as those at play in a large commercial three-phase induction motor.
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Fig. 16–14. The  rotating  field  of Fig. 16–13 can be used to provide
torque on a conducting ring.





Another form of induction motor is shown in Fig. 16–15. The
arrangement shown is not suitable for a practical high-efficiency motor
but will illustrate the principle. The electromagnet M[image: -*-], consisting of
a bundle of laminated iron sheets wound with a solenoidal coil, is
powered with alternating current from a generator.  The magnet produces
a varying flux of B[image: -*-] through the aluminum disc. If we have just
these two components, as shown in part (a) of the figure, we do not yet
have a motor. There are eddy currents in the disc, but they are
symmetric and there is no torque. (There will be some heating of the
disc due to the induced currents.) If we now cover only one-half of the
magnet pole with an aluminum plate, as shown in part (b) of the figure,
the disc begins to rotate, and we have a motor. The operation depends on
two eddy-current effects. First, the eddy currents in the
aluminum plate oppose the change of flux through it, so the magnetic
field above the plate always lags the field above that half of the pole
which is not covered. This so-called “shaded-pole” effect produces a
field which in the “shaded” region varies much like that in the
“unshaded” region except that it is delayed a constant amount in time.
The whole effect is as if there were a magnet only half as wide which is
continually being moved from the unshaded region toward the shaded one.
Then the varying fields interact with the eddy currents in the disc to
produce the torque on it.



[image: -][image: -][image: -][image: -]
Fig. 16–15. A simple example of a shaded-pole induction motor.








16–4 Electrical technology


When Faraday
first made public his remarkable discovery that a
changing magnetic flux produces an emf, he was asked (as anyone is
asked when he discovers a new fact of nature), “What is the use of
it?” All he had found was the oddity that a tiny current was produced
when he moved a wire near a magnet. Of what possible “use” could
that be? His answer was: “What is the use of a newborn baby?”




Yet think of the tremendous practical applications his discovery has
led to. What we have been describing are not just toys but examples
chosen in most cases to represent the principle of some practical
machine. For instance, the rotating ring in the turning field is an
induction motor. There are, of course, some differences between it and
a practical induction motor. The ring has a very small torque; it can
be stopped with your hand. For a good motor, things have to be put
together more intimately: there shouldn’t be so much “wasted”
magnetic field out in the air. First, the field is concentrated by
using iron. We have not discussed how iron does that, but iron can
make the magnetic field tens of thousands of times stronger than
copper coils alone could do. Second, the gaps between the pieces of
iron are made small; to do that, some iron is even built into the
rotating ring. Everything is arranged so as to get the greatest forces
and the greatest efficiency—that is, conversion of electrical power
to mechanical power—until the “ring” can no longer be held still
by your hand.




This problem of closing the gaps and making the thing work in the most
practical way is engineering. It requires serious study of
design problems, although there are no new basic principles from which
the forces are obtained. But there is a long way to go from the basic
principles to a practical and economic design.  Yet it is just such
careful engineering design that has made possible such a tremendous
thing as Boulder Dam and all that goes with it.




What is Boulder Dam? A huge river is stopped by a concrete wall. But
what a wall it is! Shaped with a perfect curve that is very carefully
worked out so that the least possible amount of concrete will hold
back a whole river. It thickens at the bottom in that wonderful shape
that the artists like but that the engineers can appreciate because
they know that such thickening is related to the increase of pressure
with the depth of the water. But we are getting away from electricity.




Then the water of the river is diverted into a huge pipe. That’s a
nice engineering accomplishment in itself. The pipe feeds the water
into a “waterwheel”—a huge turbine—and makes wheels
turn. (Another engineering feat.) But why turn wheels? They are
coupled to an exquisitely intricate mess of copper and iron, all
twisted and interwoven. With two parts—one that turns and one that
doesn’t.  All a complex intermixture of a few materials, mostly iron
and copper but also some paper and shellac for insulation. A revolving
monster thing. A generator.  Somewhere out of the mess of copper and
iron come a few special pieces of copper.  The dam, the turbine, the
iron, the copper, all put there to make something special happen to a
few bars of copper—an emf. Then the copper bars go a little way and
circle for several times around another piece of iron in a
transformer; then their job is done.




But around that same piece of iron curls another cable of copper which
has no direct connection whatsoever to the bars from the generator;
they have just been influenced because they passed near it—to get
their emf. The transformer converts the power from the relatively low
voltages required for the efficient design of the generator to the
very high voltages that are best for efficient transmission of
electrical energy over long cables.




And everything must be enormously efficient—there can be no waste,
no loss.  Why? The power for a metropolis is going through. If a small
fraction were lost—one or two percent—think of the energy left
behind! If one percent of the power were left in the transformer, that
energy would need to be taken out somehow. If it appeared as heat, it
would quickly melt the whole thing. There is, of course, some small
inefficiency, but all that is required are a few pumps which circulate
some oil through a radiator to keep the transformer from heating up.




Out of the Boulder Dam come a few dozen rods of copper—long, long,
long rods of copper perhaps the thickness of your wrist that go for
hundreds of miles in all directions. Small rods of copper carrying the
power of a giant river. Then the rods are split to make more rods
… then to more transformers … sometimes to great
generators which recreate the current in another form … sometimes to engines turning for big industrial purposes … to
more transformers … then more splitting and spreading … until finally the river is spread throughout the whole city—turning
motors, making heat, making light, working gadgetry. The miracle of
hot lights from cold water over 600[image: -*-] miles away—all done with
specially arranged pieces of copper and iron. Large motors for rolling
steel, or tiny motors for a dentist’s drill. Thousands of little
wheels, turning in response to the turning of the big wheel at Boulder
Dam. Stop the big wheel, and all the wheels stop; the lights go
out. They really are connected.




Yet there is more. The same phenomena that take the tremendous power
of the river and spread it through the countryside, until a few drops
of the river are running the dentist’s drill, come again into the
building of extremely fine instruments … for the detection of
incredibly small amounts of current … for the transmission of
voices, music, and pictures … for computers … for
automatic machines of fantastic precision.




All this is possible because of carefully designed arrangements of
copper and iron—efficiently created magnetic fields … blocks
of rotating iron six feet in diameter whirling with clearances of
1/16[image: -*-] of an inch … careful proportions of copper for the
optimum efficiency … strange shapes all serving a purpose, like
the curve of the dam.




If some future archaeologist uncovers Boulder Dam, we may guess that
he would admire the beauty of its curves. But also the explorers from
some great future civilizations will look at the generators and
transformers and say: “Notice that every iron piece has a beautifully
efficient shape. Think of the thought that has gone into every piece
of copper!”




This is the power of engineering and the careful design of our
electrical technology. There has been created in the generator
something which exists nowhere else in nature. It is true that there
are forces of induction in other places. Certainly in some places
around the sun and stars there are effects of electromagnetic
induction. Perhaps also (though it’s not certain) the magnetic field
of the earth is maintained by an analog of an electric generator that
operates on circulating currents in the interior of the earth. But
nowhere have there been pieces put together with moving parts to
generate electrical power as is done in the generator—with great
efficiency and regularity.




You may think that designing electric generators is no longer an
interesting subject, that it is a dead subject because they are all
designed. Almost perfect generators or motors can be taken from a
shelf. Even if this were true, we can admire the wonderful
accomplishment of a problem solved to near perfection. But there
remain as many unfinished problems. Even generators and transformers
are returning as problems. It is likely that the whole field of low
temperatures and superconductors will soon be applied to the problem
of electric power distribution.  With a radically new factor in the
problem, new optimum designs will have to be created. Power networks
of the future may have little resemblance to those of today.




You can see that there is an endless number of applications and
problems that one could take up while studying the laws of
induction. The study of the design of electrical machinery is a life
work in itself. We cannot go very far in that direction, but we should
be aware of the fact that when we have discovered the law of
induction, we have suddenly connected our theory to an enormous
practical development. We must, however, leave that subject to the
engineers and applied scientists who are interested in working out the
details of particular applications. Physics only supplies the
base—the basic principles that apply, no matter what. (We have not
yet completed the base, because we have yet to consider in detail the
properties of iron and of copper. Physics has something to say about
these as we will see a little later!)




Modern electrical technology began with
Faraday’s discoveries. The
useless baby developed into a prodigy and changed the face of the
earth in ways its proud father could never have imagined.







  
    

17 The Laws of Induction



17–1 The physics of induction


In the last chapter we described many phenomena which show that the
effects of induction are quite complicated and interesting. Now we
want to discuss the fundamental principles which govern these
effects. We have already defined the emf in a conducting circuit as
the total accumulated force on the charges throughout the length of
the loop. More specifically, it is the tangential component of the
force per unit charge, integrated along the wire once around the
circuit. This quantity is equal, therefore, to the total work done on
a single charge that travels once around the circuit.




We have also given the “flux rule,” which says that
the emf is equal to the rate at which the magnetic flux through such a
conducting circuit is changing. Let’s see if we can understand why that
might be. First, we’ll consider a case in which the flux changes because
a circuit is moved in a steady field.



[image: -][image: -]
Fig. 17–1. An emf is induced in a loop if the flux is changed by varying
the area of the circuit.





In Fig. 17–1 we show a simple loop of wire whose
dimensions can be changed. The loop has two parts, a fixed U-shaped
part (a) and a movable crossbar (b) that can slide along the two legs
of the U. There is always a complete circuit, but its area is
variable. Suppose we now place the loop in a uniform magnetic field
with the plane of the U perpendicular to the field. According to the
rule, when the crossbar is moved there should be in the loop an emf
that is proportional to the rate of change of the flux through the
loop. This emf will cause a current in the loop. We will assume that
there is enough resistance in the wire that the currents are
small. Then we can neglect any magnetic field from this current.




The flux through the loop is w L B[image: -*-], so the “flux rule” would give
for the emf—which we write as E[image: -*-]—

[image: -*-][image: -*-]


where v[image: -*-] is the speed of translation of the crossbar.




Now we should be able to understand this result from the magnetic
v×B[image: -*-] forces on the charges in the moving crossbar. These
charges will feel a force, tangential to the wire, equal to v B[image: -*-] per
unit charge. It is constant along the length w[image: -*-] of the crossbar and
zero elsewhere, so the integral is

[image: -*-][image: -*-]


which is the same result we got from the rate of change of the flux.




The argument just given can be extended to any case where there is a
fixed magnetic field and the wires are moved. One can prove, in
general, that for any circuit whose parts move in a fixed magnetic
field the emf is the time derivative of the flux, regardless of the
shape of the circuit.




On the other hand, what happens if the loop is stationary and the
magnetic field is changed? We cannot deduce the answer to this
question from the same argument. It was
Faraday’s discovery—from
experiment—that the “flux rule” is still correct no matter why the
flux changes. The force on electric charges is given in complete
generality by F=q (E+v×B)[image: -*-]; there are no new
special “forces due to changing magnetic fields.” Any forces on
charges at rest in a stationary wire come from the
E[image: -*-] term. Faraday’s
observations led to the discovery that electric and
magnetic fields are related by a new law: in a region where the
magnetic field is changing with time, electric fields are
generated. It is this electric field which drives the electrons around
the wire—and so is responsible for the emf in a stationary circuit
when there is a changing magnetic flux.




The general law for the electric field associated with a changing
magnetic field is

[image: -*-][image: -*-]
(17.1)




We will call this Faraday’s law. It was discovered
by Faraday but was first
written in differential form by Maxwell, as one of his equations. Let’s see how this equation gives
the “flux rule” for circuits.





Using Stokes’ theorem, this law can be written in integral form as



[image: -*-][image: -*-]
(17.2)





where, as usual, Γ[image: -*-] is any closed curve and S[image: -*-] is any surface
bounded by it. Here, remember, Γ[image: -*-] is a mathematical curve
fixed in space, and S[image: -*-] is a fixed surface. Then the time derivative
can be taken outside the integral and we have

[image: -*-][image: -*-]
(17.3)




Applying this relation to a curve Γ[image: -*-] that follows a fixed
circuit of conductor, we get the “flux rule” once again. The
integral on the left is the emf, and that on the right is the negative
rate of change of the flux linked by the circuit. So
Eq. (17.1) applied to a fixed circuit is equivalent to the
“flux rule.”




So the “flux rule”—that the emf in a circuit is equal to the rate
of change of the magnetic flux through the circuit—applies whether
the flux changes because the field changes or because the circuit
moves (or both). The two possibilities—“circuit moves” or “field
changes”—are not distinguished in the statement of the rule. Yet in
our explanation of the rule we have used two completely distinct laws
for the two cases—v×B[image: -*-] for “circuit moves” and
∇×E=−∂B/∂t[image: -*-] for “field changes.”




We know of no other place in physics where such a simple and accurate
general principle requires for its real understanding an analysis in
terms of two different phenomena. Usually such a beautiful
generalization is found to stem from a single deep underlying
principle. Nevertheless, in this case there does not appear to be any
such profound implication. We have to understand the “rule” as the
combined effects of two quite separate phenomena.





We must look at the “flux rule” in the following way. In general,
the force per unit charge is F/q=E+v×B[image: -*-]. In
moving wires there is the force from the second term. Also, there is
an E[image: -*-]-field if there is somewhere a changing magnetic field. They
are independent effects, but the emf around the loop of wire is always
equal to the rate of change of magnetic flux through it.







17–2 Exceptions to the “flux rule”


We will now give some examples, due in part to
Faraday, which show the
importance of keeping clearly in mind the distinction between the two
effects responsible for induced emf’s. Our examples involve situations
to which the “flux rule” cannot be applied—either because there is
no wire at all or because the path taken by induced currents
moves about within an extended volume of a conductor.




We begin by making an important point: The part of the emf that comes
from the E[image: -*-]-field does not depend on the existence of a physical
wire (as does the v×B[image: -*-] part). The E[image: -*-]-field can
exist in free space, and its line integral around any imaginary line
fixed in space is the rate of change of the flux of B[image: -*-] through
that line. (Note that this is quite unlike the E[image: -*-]-field produced
by static charges, for in that case the line integral of E[image: -*-]
around a closed loop is always zero.)



[image: -][image: -]
Fig. 17–2. When the disc rotates there is an emf from
v×B[image: -*-], but with no change in the linked flux.





Now we will describe a situation in which the flux through a circuit
does not change, but there is nevertheless an emf.
Figure 17–2 shows a conducting disc which can be rotated on
a fixed axis in the presence of a magnetic field. One contact is made to
the shaft and another rubs on the outer periphery of the disc. A circuit
is completed through a galvanometer. As the disc rotates, the
“circuit,” in the sense of the place in space where the currents are,
is always the same. But the part of the “circuit” in the disc is in
material which is moving. Although the flux through the “circuit” is
constant, there is still an emf, as can be observed by the deflection of
the galvanometer. Clearly, here is a case where the
v×B[image: -*-] force in the moving disc gives rise to an emf which cannot be
equated to
a change of flux.



[image: -][image: -]
Fig. 17–3. When the plates are rocked in a uniform magnetic field, there
can be a large change in the flux linkage without the generation of
an emf.





Now we consider, as an opposite example, a somewhat unusual situation
in which the flux through a “circuit” (again in the sense of the
place where the current is) changes but where there is no
emf. Imagine two metal plates with slightly curved edges, as shown in
Fig. 17–3, placed in a uniform magnetic field
perpendicular to their surfaces. Each plate is connected to one of the
terminals of a galvanometer, as shown. The plates make contact at one
point P[image: -*-], so there is a complete circuit. If the plates are now
rocked through a small angle, the point of contact will move to P′[image: -*-].
If we imagine the “circuit” to be completed through the plates
on the dotted line shown in the figure, the magnetic flux through this
circuit changes by a large amount as the plates are rocked back and
forth. Yet the rocking can be done with small motions, so that
v×B[image: -*-] is very small and there is practically no emf. The
“flux rule” does not work in this case. It must be applied to
circuits in which the material of the circuit remains the
same. When the material of the circuit is changing, we must return to
the basic laws. The correct physics is always given by the two
basic laws

[image: -*-][image: -*-]










17–3 Particle acceleration by an induced electric field; the betatron


We have said that the electromotive force generated by a changing
magnetic field can exist even without conductors; that is, there can
be magnetic induction without wires. We may still imagine an
electromotive force around an arbitrary mathematical curve in
space. It is defined as the tangential component of E[image: -*-] integrated
around the curve. Faraday’s law says that this line
integral is equal to minus the rate of change of the magnetic flux through the
closed curve, Eq. (17.3).




[image: -][image: -][image: -][image: -]
Fig. 17–4. An electron accelerating in an axially symmetric,
increasing magnetic field.





As an example of the effect of such an induced electric field, we want
now to consider the motion of an electron in a changing magnetic
field. We imagine a magnetic field which, everywhere on a plane,
points in a vertical direction, as shown in Fig. 17–4. The
magnetic field is produced by an electromagnet, but we will not worry
about the details. For our example we will imagine that the magnetic
field is symmetric about some axis, i.e., that the strength of the
magnetic field will depend only on the distance from the axis. The
magnetic field is also varying with time. We now imagine an electron
that is moving in this field on a path that is a circle of constant
radius with its center at the axis of the field. (We will see later how
this motion can be arranged.) Because of the changing magnetic field,
there will be an electric field E[image: -*-] tangential to the electron’s
orbit which will drive it around the circle. Because of the symmetry,
this electric field will have the same value everywhere on the circle.
If the electron’s orbit has the radius r[image: -*-], the line integral of E[image: -*-]
around the orbit is equal to minus the rate of change of the magnetic flux
through the circle. The line integral of E[image: -*-] is just its magnitude
times the circumference of the circle, 2 π r[image: -*-]. The magnetic flux must,
in general, be obtained from an integral. For the moment, we let
Bav[image: -*-] represent the average magnetic field in the interior of
the circle; then the flux is this average magnetic field times the area
of the circle. We will have
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Since we are assuming r[image: -*-] is constant, E[image: -*-] is proportional to the time
derivative of the average field:

[image: -*-][image: -*-]
(17.4)




The electron will feel the electric force q E[image: -*-] and will be
accelerated by it. Remembering that the relativistically correct
equation of motion is that the rate of change of the momentum is
proportional to the force, we have

[image: -*-][image: -*-]
(17.5)









For the circular orbit we have assumed, the electric force on the electron is
always in the direction of its motion, so its total momentum will be increasing
at the rate given by Eq. (17.5). Combining Eqs.
(17.5) and (17.4), we may relate the rate of change of
momentum to the change of the average magnetic field:

[image: -*-][image: -*-]
(17.6)




Integrating with respect to t[image: -*-], we find for the electron’s momentum

[image: -*-][image: -*-]
(17.7)




where p0[image: -*-] is the momentum with which the electrons start out, and
Δ Bav[image: -*-], is the subsequent change in Bav[image: -*-].
The operation of a
betatron—a machine for accelerating electrons
to high energies—is based on this idea.




To see how the betatron operates in detail, we must
now examine how the electron can be constrained to move on a
circle. We have discussed in Chapter 11 of Vol. I the
principle involved. If we arrange that there is a magnetic field B[image: -*-]
at the orbit of the electron, there will be a transverse
force q v×B[image: -*-] which, for a suitably chosen B[image: -*-], can cause
the electron to keep moving on its assumed orbit. In the
betatron this transverse force causes the electron to
move in a circular orbit of constant radius. We can find out what the
magnetic field at the orbit must be by using again the relativistic
equation of motion, but this time, for the transverse component of the
force. In the betatron (see Fig. 17–4),
B[image: -*-] is at right angles to v[image: -*-], so the transverse force is q v B[image: -*-].
Thus the force is equal to the rate of change of the transverse
component pt[image: -*-] of the momentum:
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(17.8)




When a particle is moving in a circle, the rate of change of
its transverse momentum is equal to the magnitude of the total
momentum times ω[image: -*-], the angular velocity of rotation (following
the arguments of Chapter 11, Vol. I):

[image: -*-][image: -*-]
(17.9)




where, since the motion is circular,

[image: -*-][image: -*-]
(17.10)




Setting the magnetic force equal to the transverse acceleration, we have

[image: -*-][image: -*-]
(17.11)




where Borbit[image: -*-] is the field at the radius r[image: -*-].





As the betatron operates, the momentum of the electron
grows in proportion to Bav[image: -*-], according to
Eq. (17.7), and if the electron is to continue to move in
its proper circle, Eq. (17.11) must continue to hold as the
momentum of the electron increases. The value of Borbit[image: -*-] must
increase in proportion to the momentum p[image: -*-]. Comparing
Eq. (17.11) with Eq. (17.7), which determines
p[image: -*-], we see that the following relation must hold between
Bav[image: -*-], the average magnetic field inside the orbit at
the radius r[image: -*-], and the magnetic field Borbit[image: -*-] at the orbit:

[image: -*-][image: -*-]
(17.12)




The correct operation of a betatron requires that the
average magnetic field inside the orbit increases at twice the rate of
the magnetic field at the orbit itself. In these circumstances, as the
energy of the particle is increased by the induced electric field the
magnetic field at the orbit increases at just the rate required to
keep the particle moving in a circle.





The betatron is used to accelerate electrons to
energies of tens of millions of volts, or even to hundreds of millions
of volts. However, it becomes impractical for the acceleration of
electrons to energies much higher than a few hundred million volts for
several reasons. One of them is the practical difficulty of attaining
the required high average value for the magnetic field inside the
orbit. Another is that Eq. (17.6) is no longer correct
at very high energies because it does not include the loss of energy
from the particle due to its radiation of electromagnetic energy (the
so-called synchrotron radiation\index{Synchrotron radiation} discussed
in Chapter 36, Vol. I). For these reasons, the
acceleration of electrons to the highest energies—to many billions
of electron volts—is accomplished by means of a different kind of
machine, called a synchrotron.







17–4 A paradox



We would now like to describe for you an apparent paradox. A paradox
is a situation which gives one answer when analyzed one way, and a
different answer when analyzed another way, so that we are left in
somewhat of a quandary as to actually what should happen. Of course,
in physics there are never any real paradoxes because there is only
one correct answer; at least we believe that nature will act in only
one way (and that is the right way, naturally). So in physics a
paradox is only a confusion in our own understanding. Here is our
paradox.



[image: -][image: -]
Fig. 17–5. Will the disc rotate if the current I[image: -*-] is stopped?




Imagine that we construct a device like that shown in
Fig. 17–5. There is a thin, circular plastic disc supported
on a concentric shaft with excellent bearings, so that it is quite free
to rotate. On the disc is a coil of wire in the form of a short solenoid
concentric with the axis of rotation. This solenoid carries a steady
current I[image: -*-] provided by a small battery, also mounted on the disc. Near
the edge of the disc and spaced uniformly around its circumference are a
number of small metal spheres insulated from each other and from the
solenoid by the plastic material of the disc. Each of these small
conducting spheres is charged with the same electrostatic charge Q[image: -*-].
Everything is quite stationary, and the disc is at rest. Suppose now
that by some accident—or by prearrangement—the current in the
solenoid is interrupted, without, however, any intervention from the
outside. So long as the current continued, there was a magnetic flux
through the solenoid more or less parallel to the axis of the disc. When
the current is interrupted, this flux must go to zero. There will,
therefore, be an electric field induced which will circulate around in
circles centered at the axis. The charged spheres on the perimeter of
the disc will all experience an electric field tangential to the
perimeter of the disc. This electric force is in the same sense for all
the charges and so will result in a net torque on the disc. From these
arguments we would expect that as the current in the solenoid
disappears, the disc would begin to rotate. If we knew the moment of
inertia of the disc, the current in the solenoid, and the charges on the
small spheres, we could compute the resulting angular velocity.




But we could also make a different argument. Using the principle of
the conservation of angular momentum, we could say that the angular
momentum of the disc with all its equipment is initially zero, and so
the angular momentum of the assembly should remain zero. There should
be no rotation when the current is stopped. Which argument is correct?
Will the disc rotate or will it not? We will leave this question for
you to think about.




We should warn you that the correct answer does not depend on any
nonessential feature, such as the asymmetric position of a battery,
for example. In fact, you can imagine an ideal situation such as the
following: The solenoid is made of superconducting wire through which
there is a current. After the disc has been carefully placed at rest,
the temperature of the solenoid is allowed to rise slowly When the
temperature of the wire reaches the transition temperature between
superconductivity and normal conductivity, the current in the solenoid
will be brought to zero by the resistance of the wire. The flux will,
as before, fall to zero, and there will be an electric field around
the axis. We should also warn you that the solution is not easy, nor
is it a trick. When you figure it out, you will have discovered an
important principle of electromagnetism.







17–5 Alternating-current generator


In the remainder of this chapter we apply the principles of
Section 17–1 to analyze a number of the phenomena
discussed in Chapter 16. We first look in more detail at
the alternating-current generator. Such a generator consists basically
of a coil of wire rotating in a uniform magnetic field. The same result
can also be achieved by a fixed coil in a magnetic field whose direction
rotates in the manner described in the last chapter. We will consider
only the former case. Suppose we have a circular coil of wire which can
be turned on an axis along one of its diameters. Let this coil be
located in a uniform magnetic field perpendicular to the axis of
rotation, as in Fig. 17–6. We also imagine that the two
ends of the coil are brought to external connections through some kind
of sliding contacts.



[image: -][image: -]
Fig. 17–6. A coil of wire rotating in a uniform magnetic field—the
basic idea of the ac generator.




Due to the rotation of the coil, the magnetic flux through it will be
changing. The circuit of the coil will therefore have an emf in
it. Let S[image: -*-] be the area of the coil and θ[image: -*-] the angle between the
magnetic field and the normal to the plane of the coil.1 The flux through the coil is
then

[image: -*-][image: -*-]
(17.13)




If the coil is rotating at the uniform angular velocity ω[image: -*-],
θ[image: -*-] varies with time as θ=ω t[image: -*-].




Each turn of the coil will have an emf equal to the rate of change of
this flux. If the coil has N[image: -*-] turns of wire the total emf will be
N[image: -*-] times larger, so
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(17.14)










If we bring the wires from the generator to a point some distance from
the rotating coil, where the magnetic field is zero, or at least is
not varying with time, the curl of E[image: -*-] in this region will be zero
and we can define an electric potential. In fact, if there is no
current being drawn from the generator, the potential difference V[image: -*-]
between the two wires will be equal to the emf in the rotating
coil. That is,

[image: -*-][image: -*-]


The potential difference between the wires varies as sinω t[image: -*-]. Such a varying potential difference is called an alternating
voltage.





Since there is an electric field between the wires, they must be
electrically charged. It is clear that the emf of the generator has
pushed some excess charges out to the wire until the electric field
from them is strong enough to exactly counterbalance the induction
force. Seen from outside the generator, the two wires appear as though
they had been electrostatically charged to the potential difference V[image: -*-],
and as though the charge was being changed with time to give an
alternating potential difference. There is also another difference
from an electrostatic situation. If we connect the generator to an
external circuit that permits passage of a current, we find that the
emf does not permit the wires to be discharged but continues to
provide charge to the wires as current is drawn from them, attempting
to keep the wires always at the same potential difference. If, in
fact, the generator is connected in a circuit whose total resistance
is R[image: -*-], the current through the circuit will be proportional to the
emf of the generator and inversely proportional to R[image: -*-]. Since the emf
has a sinusoidal time variation, so also does the current. There is an
alternating current

[image: -*-][image: -*-]


The schematic diagram of such a circuit is shown in
Fig. 17–7.



[image: -][image: -]
Fig. 17–7. A circuit with an ac generator and a resistance.




We can also see that the emf determines how much energy is supplied by
the generator. Each charge in the wire is receiving energy at the
rate F⋅v[image: -*-], where F[image: -*-] is the force on the charge and
v[image: -*-] is its velocity. Now let the number of moving charges per unit
length of the wire be n[image: -*-]; then the power being delivered into any
element d s[image: -*-] of the wire is

[image: -*-][image: -*-]


For a wire, v[image: -*-] is always along d s[image: -*-], so we can rewrite the
power as

[image: -*-][image: -*-]


The total power being delivered to the complete circuit is the
integral of this expression around the complete loop:

[image: -*-][image: -*-]
(17.15)




Now remember that q n v[image: -*-] is the current I[image: -*-], and that the emf is
defined as the integral of F/q[image: -*-] around the circuit. We get the result
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(17.16)









When there is a current in the coil of the generator, there will also
be mechanical forces on it. In fact, we know that the torque on the
coil is proportional to its magnetic moment, to the magnetic field
strength B[image: -*-], and to the sine of the angle between. The magnetic
moment is the current in the coil times its area. Therefore the torque
is

[image: -*-][image: -*-]
(17.17)




The rate at which mechanical work must be done to keep the coil
rotating is the angular velocity ω[image: -*-] times the torque:

[image: -*-][image: -*-]
(17.18)




Comparing this equation with Eq. (17.14), we see that
the rate of mechanical work required to rotate the coil against the
magnetic forces is just equal to E I[image: -*-], the rate at which
electrical energy is delivered by the emf of the generator. All of the
mechanical energy used up in the generator appears as electrical
energy in the circuit.




As another example of the currents and forces due to an induced emf,
let’s analyze what happens in the setup described in
Section 17–1, and shown in Fig. 17–1. There
are two parallel wires and a sliding crossbar located in a uniform
magnetic field perpendicular to the plane of the parallel wires. Now
let’s assume that the “bottom” of the U (the left side in the figure)
is made of wires of high resistance, while the two side wires are made
of a good conductor like copper—then we don’t need to worry about the
change of the circuit resistance as the crossbar is moved. As before,
the emf in the circuit is

[image: -*-][image: -*-]
(17.19)




The current in the circuit is proportional to this emf and inversely
proportional to the resistance of the circuit:

[image: -*-][image: -*-]
(17.20)









Because of this current there will be a magnetic force on the crossbar
that is proportional to its length, to the current in it, and to the
magnetic field, such that

[image: -*-][image: -*-]
(17.21)




Taking I[image: -*-] from Eq. (17.20), we have for the force

[image: -*-][image: -*-]
(17.22)




We see that the force is proportional to the velocity of the
crossbar. The direction of the force, as you can easily see, is
opposite to its velocity. Such a “velocity-proportional” force,
which is like the force of viscosity, is found whenever induced
currents are produced by moving conductors in a magnetic field. The
examples of eddy currents we gave in the last chapter also produced
forces on the conductors proportional to the velocity of the
conductor, even though such situations, in general, give a complicated
distribution of currents which is difficult to analyze.




It is often convenient in the design of mechanical systems to have
damping forces which are proportional to the velocity. Eddy-current
forces provide one of the most convenient ways of getting such a
velocity-dependent force. An example of the application of such a
force is found in the conventional domestic wattmeter. In the
wattmeter there is a thin aluminum disc that rotates between the poles
of a permanent magnet. This disc is driven by a small electric motor
whose torque is proportional to the power being consumed in the
electrical circuit of the house. Because of the eddy-current forces in
the disc, there is a resistive force proportional to the velocity. In
equilibrium, the velocity is therefore proportional to the rate of
consumption of electrical energy. By means of a counter attached to
the rotating disc, a record is kept of the number of revolutions it
makes. This count is an indication of the total energy consumption,
i.e., the number of watthours used.




We may also point out that Eq. (17.22) shows that the
force from induced currents—that is, any eddy-current force—is
inversely proportional to the resistance. The force will be larger,
the better the conductivity of the material. The reason, of course, is
that an emf produces more current if the resistance is low, and the
stronger currents represent greater mechanical forces.




We can also see from our formulas how mechanical energy is converted
into electrical energy. As before, the electrical energy supplied to
the resistance of the circuit is the product E I[image: -*-]. The rate at
which work is done in moving the conducting crossbar is the force on
the bar times its velocity. Using Eq. (17.21) for the
force, the rate of doing work is

[image: -*-][image: -*-]


We see that this is indeed equal to the product E I[image: -*-] we would get from
Eqs. (17.19) and (17.20). Again the mechanical
work appears as electrical energy.







17–6 Mutual inductance


We now want to consider a situation in which there are fixed coils of
wire but changing magnetic fields. When we described the production of
magnetic fields by currents, we considered only the case of steady
currents. But so long as the currents are changed slowly, the magnetic
field will at each instant be nearly the same as the magnetic field of
a steady current. We will assume in the discussion of this section
that the currents are always varying sufficiently slowly that this is
true.



[image: -][image: -]
Fig. 17–8. A current in coil 1 produces a magnetic field through coil 2.





In Fig. 17–8 is shown an arrangement of two coils which
demonstrates the basic effects responsible for the operation of a
transformer. Coil 1 consists of a conducting wire wound in the form
of a long solenoid. Around this coil—and insulated from it—is
wound coil 2, consisting of a few turns of wire. If now a current is
passed through coil 1, we know that a magnetic field will appear
inside it. This magnetic field also passes through coil 2. As the
current in coil 1 is varied, the magnetic flux will also vary, and
there will be an induced emf in coil 2. We will now calculate this
induced emf.




We have seen in Section 13–5 that the magnetic field
inside a long solenoid is uniform and has the magnitude

[image: -*-][image: -*-]
(17.23)




where N1[image: -*-] is the number of turns in coil 1, I1[image: -*-] is the current
through it, and l[image: -*-] is its length. Let’s say that the cross-sectional
area of coil 1 is S[image: -*-]; then the flux of B[image: -*-] is its magnitude
times S[image: -*-]. If coil 2 has N2[image: -*-] turns, this flux links the coil
N2[image: -*-] times. Therefore the emf in coil 2 is given by

[image: -*-][image: -*-]
(17.24)




The only quantity in Eq. (17.23) which varies with time
is I1[image: -*-]. The emf is therefore given by

[image: -*-][image: -*-]
(17.25)









We see that the emf in coil 2 is proportional to the rate of change
of the current in coil 1. The constant of proportionality, which is
basically a geometric factor of the two coils, is called the
mutual inductance, and is usually designated
M21[image: -*-]. Equation (17.25) is then written

[image: -*-][image: -*-]
(17.26)









Suppose now that we were to pass a current through coil 2 and ask
about the emf in coil 1. We would compute the magnetic field, which
is everywhere proportional to the current I2[image: -*-]. The flux linkage
through coil 1 would depend on the geometry, but would be
proportional to the current I2[image: -*-]. The emf in coil 1 would,
therefore, again be proportional to d I2/d t[image: -*-]: We can write

[image: -*-][image: -*-]
(17.27)




The computation of M12[image: -*-] would be more difficult than the
computation we have just done for M21[image: -*-]. We will not carry
through that computation now, because we will show later in this
chapter that M12[image: -*-] is necessarily equal
to M21[image: -*-].




Since for any coil its field is proportional to its current,
the same kind of result would be obtained for any two coils of
wire. The equations (17.26) and (17.27) would
have the same form; only the constants M21[image: -*-]
and M12[image: -*-] would be different. Their values would depend on the
shapes of the coils and their relative positions.



[image: -][image: -]
Fig. 17–9. Any two coils have a mutual inductance M[image: -*-]
proportional to the integral of d s1⋅ds2/r12[image: -*-].




Suppose that we wish to find the mutual inductance between any two
arbitrary coils—for example, those shown in Fig. 17–9. We
know that the general expression for the emf in coil 1 can be written
as

[image: -*-][image: -*-]


where B[image: -*-] is the magnetic field and the integral is to be taken
over a surface bounded by circuit 1. We have seen in
Section 14–1 that such a surface integral of B[image: -*-] can
be related to a line integral of the vector potential. In particular,

[image: -*-][image: -*-]


where A[image: -*-] represents the vector potential and d s1[image: -*-] is an
element of circuit 1. The line integral is to be taken around
circuit 1. The emf in coil 1 can therefore be written as

[image: -*-][image: -*-]
(17.28)









Now let’s assume that the vector potential at circuit 1 comes from
currents in circuit 2. Then it can be written as a line integral
around circuit 2:

[image: -*-][image: -*-]
(17.29)




where I2[image: -*-] is the current in circuit 2, and r12[image: -*-] is the distance from the
element of the circuit d s2[image: -*-] to the point on circuit 1 at which we are
evaluating the vector potential. (See Fig. 17–9.) Combining
Eqs. (17.28) and (17.29), we can express the emf
in circuit 1 as a double line integral:

[image: -*-][image: -*-]


In this equation the integrals are all taken with respect to
stationary circuits. The only variable quantity is the current I2[image: -*-],
which does not depend on the variables of integration. We may
therefore take it out of the integrals. The emf can then be written as

[image: -*-][image: -*-]


where the coefficient M12[image: -*-] is

[image: -*-][image: -*-]
(17.30)




We see from this integral that M12[image: -*-] depends only on the
circuit geometry. It depends on a kind of average separation of the
two circuits, with the average weighted most for parallel segments of
the two coils. Our equation can be used for calculating the mutual
inductance of any two circuits of arbitrary shape. Also, it shows that
the integral for M12[image: -*-] is identical to the integral
for M21[image: -*-]. We have therefore shown that the two coefficients are
identical. For a system with only two coils, the coefficients
M12[image: -*-] and M21[image: -*-] are often represented by the
symbol M[image: -*-] without subscripts, called simply the mutual
inductance:

[image: -*-][image: -*-]










17–7 Self-inductance


In discussing the induced electromotive forces in the two coils of Figs.
17–8 or 17–9, we have considered only the case in
which there was a current in one coil or the other. If there are currents in the
two coils simultaneously, the magnetic flux linking either coil will be the sum
of the two fluxes which would exist separately, because the law of superposition
applies for magnetic fields. The emf in either coil will therefore be
proportional not only to the change of the current in the other coil, but also
to the change in the current of the coil itself. Thus the total emf in coil 2
should be written2

[image: -*-][image: -*-]
(17.31)




Similarly, the emf in coil 1 will depend not only on the changing
current in coil 2, but also on the changing current in itself:

[image: -*-][image: -*-]
(17.32)




The coefficients M22[image: -*-] and M11[image: -*-] are always negative
numbers. It is usual to write

[image: -*-][image: -*-]
(17.33)




where L1[image: -*-] and L2[image: -*-] are called the self-inductances
of the two coils.




The self-induced emf will, of course, exist even if we have only one
coil. Any coil by itself will have a self-inductance L[image: -*-]. The emf
will be proportional to the rate of change of the current in it. For a
single coil, it is usual to adopt the convention that the emf and the
current are considered positive if they are in the same
direction. With this convention, we may write for the emf of a single
coil

[image: -*-][image: -*-]
(17.34)




The negative sign indicates that the emf opposes the change in
current—it is often called a “back emf.”




Since any coil has a self-inductance which opposes the change in
current, the current in the coil has a kind of inertia. In fact, if we
wish to change the current in a coil we must overcome this inertia by
connecting the coil to some external voltage source such as a battery
or a generator, as shown in the schematic diagram of
Fig. 17–10(a). In such a circuit, the current I[image: -*-] depends
on the voltage V[image: -*-] according to the relation

[image: -*-][image: -*-]
(17.35)








[image: -][image: -][image: -][image: -]
Fig. 17–10. (a) A circuit with a voltage source and an inductance. (b) An analogous mechanical system.




This equation has the same form as Newton’s law of motion for a
particle in one dimension. We can therefore study it by the principle
that “the same equations have the same solutions.” Thus, if we make
the externally applied voltage V[image: -*-] correspond to an externally
applied force F[image: -*-], and the current I[image: -*-] in a coil correspond to the
velocity v[image: -*-] of a particle, the inductance L[image: -*-] of the coil
corresponds to the mass m[image: -*-] of the particle.3 See
Fig. 17–10(b). We can make the following table of
corresponding quantities.




	Particle
	Coil




	F[image: -*-] (force)
	V[image: -*-] (potential difference)



	v[image: -*-] (velocity)
	I[image: -*-] (current)



	x[image: -*-] (displacement)
	q[image: -*-] (charge)



	[image: \displaystyle F=m\,\ddt{v}{t}][image: \displaystyle F=m\,\ddt{v}{t}]
	[image: \displaystyle \voltage=\selfInd\,\ddt{I}{t}][image: \displaystyle \voltage=\selfInd\,\ddt{I}{t}]



	m v[image: -*-] (momentum)
	L I[image: -*-]



	[image: \tfrac{1}{2}mv^2][image: \tfrac{1}{2}mv^2] (kinetic energy)
	[image: \tfrac{1}{2}\selfInd I^2][image: \tfrac{1}{2}\selfInd I^2] (magnetic
energy)












17–8 Inductance and magnetic energy


Continuing with the analogy of the preceding section, we would expect
that corresponding to the mechanical momentum p=m v[image: -*-], whose rate of
change is the applied force, there should be an analogous quantity
equal to L I[image: -*-], whose rate of change is V[image: -*-]. We have no right,
of course, to say that L I[image: -*-] is the real momentum of the circuit;
in fact, it isn’t. The whole circuit may be standing still and have no
momentum. It is only that L I[image: -*-] is analogous to the momentum m v[image: -*-]
in the sense of satisfying corresponding equations. In the same way,
to the kinetic energy [image: \tfrac{1}{2}mv^2][image: \tfrac{1}{2}mv^2], there corresponds an
analogous quantity [image: \tfrac{1}{2}\selfInd I^2][image: \tfrac{1}{2}\selfInd I^2]. But there we have a
surprise. This [image: \tfrac{1}{2}\selfInd I^2][image: \tfrac{1}{2}\selfInd I^2] is really the energy in the
electrical case also. This is because the rate of doing work on the
inductance is V I[image: -*-], and in the mechanical system it is F v[image: -*-], the
corresponding quantity. Therefore, in the case of the energy, the
quantities not only correspond mathematically, but also have the same
physical meaning as well.




We may see this in more detail as follows. As we found in
Eq. (17.16), the rate of electrical work by induced forces
is the product of the electromotive force and the current:

[image: -*-][image: -*-]


Replacing E[image: -*-] by its expression in terms of the current from
Eq. (17.34), we have

[image: -*-][image: -*-]
(17.36)




Integrating this equation, we find that the energy required from an
external source to overcome the emf in the self-inductance while
building up the current4 (which must equal the energy stored,
U[image: -*-]) is

[image: -*-][image: -*-]
(17.37)




Therefore the energy stored in an inductance is [image: \tfrac{1}{2}\selfInd I^2][image: \tfrac{1}{2}\selfInd I^2].




Applying the same arguments to a pair of coils such as those in Figs.
17–8 or 17–9, we can show that the total electrical
energy of the system is given by

[image: -*-][image: -*-]
(17.38)




For, starting with I=0[image: -*-] in both coils, we could first turn on the
current I1[image: -*-] in coil 1, with I2=0[image: -*-]. The work done is
just [image: \tfrac{1}{2}\selfInd_1I_1^2][image: \tfrac{1}{2}\selfInd_1I_1^2]. But now, on turning up I2[image: -*-], we not
only do the work [image: \tfrac{1}{2}\selfInd_2I_2^2][image: \tfrac{1}{2}\selfInd_2I_2^2] against the emf in
circuit 2, but also an additional amount M I1 I2[image: -*-], which
is the integral of the emf [M (d I2/d t)[image: -*-]] in circuit 1
times the now constant current I1[image: -*-] in that circuit.




Suppose we now wish to find the force between any two coils carrying
the currents I1[image: -*-] and I2[image: -*-]. We might at first expect that we could
use the principle of virtual work, by taking the change in the energy
of Eq. (17.38). We must remember, of course, that as we
change the relative positions of the coils the only quantity which
varies is the mutual inductance M[image: -*-]. We might then write the
equation of virtual work as

[image: -*-][image: -*-]


But this equation is wrong because, as we have seen earlier, it
includes only the change in the energy of the two coils and not the
change in the energy of the sources which are maintaining the currents
I1[image: -*-] and I2[image: -*-] at their constant values. We can now understand that
these sources must supply energy against the induced emf’s in the
coils as they are moved. If we wish to apply the principle of virtual
work correctly, we must also include these energies. As we have seen,
however, we may take a short cut and use the principle of virtual work
by remembering that the total energy is the negative of what we have
called Umech[image: -*-], the “mechanical energy.” We can therefore
write for the force

[image: -*-][image: -*-]
(17.39)




The force between two coils is then given by

[image: -*-][image: -*-]







Equation (17.38) for the energy of a system of two coils
can be used to show that an interesting inequality exists between
mutual inductance M[image: -*-] and the self-inductances L1[image: -*-]
and L2[image: -*-] of the two coils. It is clear that the energy of two coils
must be positive. If we begin with zero currents in the coils and
increase these currents to some values, we have been adding energy to
the system. If not, the currents would spontaneously increase with
release of energy to the rest of the world—an unlikely thing to
happen! Now our energy equation, Eq. (17.38), can
equally well be written in the following form:



[image: -*-][image: -*-]
(17.40)





That is just an algebraic transformation. This quantity must always be
positive for any values of I1[image: -*-] and I2[image: -*-]. In particular, it must be
positive if I2[image: -*-] should happen to have the special value

[image: -*-][image: -*-]
(17.41)




But with this current for I2[image: -*-], the first term in
Eq. (17.40) is zero. If the energy is to be positive, the
last term in (17.40) must be greater than zero. We have the
requirement that

[image: -*-][image: -*-]


We have thus proved the general result that the magnitude of the
mutual inductance M[image: -*-] of any two coils is necessarily less than or
equal to the geometric mean of the two self-inductances. (M[image: -*-]
itself may be positive or negative, depending on the sign conventions
for the currents I1[image: -*-] and I2[image: -*-].)

[image: -*-][image: -*-]
(17.42)









The relation between M[image: -*-] and the self-inductances is usually
written as

[image: -*-][image: -*-]
(17.43)




The constant k[image: -*-] is called the coefficient of
coupling.
If most of the flux from one coil links the other coil, the coefficient
of coupling is near one; we say the coils are “tightly coupled.” If
the coils are far apart or otherwise arranged so that there is very
little mutual flux linkage, the coefficient of coupling is near zero and
the mutual inductance is very small.




For calculating the mutual inductance of two coils, we have given in
Eq. (17.30) a formula which is a double line integral
around the two circuits. We might think that the same formula could be
used to get the self-inductance of a single coil by carrying out both
line integrals around the same coil. This, however, will not work, because
the denominator r12[image: -*-] of the integrand will go to zero when the two
line elements d s1[image: -*-] and d s2[image: -*-] are at the same point on the
coil.  The self-inductance obtained from this formula is
infinite. The reason is that this formula is an approximation that is
valid only when the cross sections of the wires of the two circuits
are small compared with the distance from one circuit to the
other. Clearly, this approximation doesn’t hold for a single coil. It
is, in fact, true that the inductance of a single coil tends
logarithmically to infinity as the diameter of its wire is made
smaller and smaller.




We must, then, look for a different way of calculating the
self-inductance of a single coil. It is necessary to take into account
the distribution of the currents within the wires because the size of
the wire is an important parameter. We should therefore ask not what
is the inductance of a “circuit,” but what is the inductance of a
distribution of conductors. Perhaps the easiest way to find
this inductance is to make use of the magnetic energy. We found
earlier, in Section 15–3, an expression for the magnetic
energy of a distribution of stationary currents:

[image: -*-][image: -*-]
(17.44)




If we know the distribution of current density j[image: -*-], we can compute
the vector potential A[image: -*-] and then evaluate the integral of
Eq. (17.44) to get the energy. This energy is equal to the
magnetic energy of the self-inductance, [image: \tfrac{1}{2}\selfInd I^2][image: \tfrac{1}{2}\selfInd I^2].
Equating the two gives us a formula for the inductance:

[image: -*-][image: -*-]
(17.45)




We expect, of course, that the inductance is a number depending only
on the geometry of the circuit and not on the current I[image: -*-] in the
circuit. The formula of Eq. (17.45) will indeed give
such a result, because the integral in this equation is proportional
to the square of the current—the current appears once
through j[image: -*-] and again through the vector potential A[image: -*-]. The integral
divided by I2[image: -*-] will depend on the geometry of the circuit but not on
the current I[image: -*-].




Equation (17.44) for the energy of a current distribution
can be put in a quite different form which is sometimes more
convenient for calculation. Also, as we will see later, it is a form
that is important because it is more generally valid. In the energy
equation, Eq. (17.44), both A[image: -*-] and j[image: -*-] can be
related to B[image: -*-], so we can hope to express the energy in terms of
the magnetic field—just as we were able to relate the electrostatic
energy to the electric field. We begin by replacing j[image: -*-] by ϵ0 c2 ∇×B[image: -*-]. We cannot replace A[image: -*-] so easily, since
B=∇×A[image: -*-] cannot be reversed to give A[image: -*-] in terms
of B[image: -*-]. Anyway, we can write

[image: -*-][image: -*-]
(17.46)









The interesting thing is that—with some restrictions—this integral
can be written as

[image: -*-][image: -*-]
(17.47)




To see this, we write out in detail a typical term. Suppose that we
take the term (∇×B)z Az[image: -*-] which occurs in the integral of
Eq. (17.46). Writing out the components, we get

[image: -*-][image: -*-]


(There are, of course, two more integrals of the same kind.) We now
integrate the first term with respect to x[image: -*-]—integrating by
parts. That is, we can say

[image: -*-][image: -*-]


Now suppose that our system—meaning the sources and fields—is
finite, so that as we go to large distances all fields go to
zero. Then if the integrals are carried out over all space, evaluating
the term By Az[image: -*-] at the limits will give zero. We have left only the
term with By (∂Az/∂x)[image: -*-], which is evidently one part
of By (∇×A)y[image: -*-] and, therefore,
of B⋅(∇×A)[image: -*-]. If you work out the other five terms,
you will see that Eq. (17.47) is indeed equivalent to
Eq. (17.46).




But now we can replace (∇×A)[image: -*-] by B[image: -*-], to get

[image: -*-][image: -*-]
(17.48)




We have expressed the energy of a magnetostatic situation in terms of
the magnetic field only. The expression corresponds closely to the
formula we found for the electrostatic energy:

[image: -*-][image: -*-]
(17.49)









One reason for emphasizing these two energy formulas is that sometimes
they are more convenient to use. More important, it turns out that for
dynamic fields (when E[image: -*-] and B[image: -*-] are changing with time) the
two expressions (17.48) and (17.49) remain
true, whereas the other formulas we have given for electric or
magnetic energies are no longer correct—they hold only for static
fields.




If we know the magnetic field B[image: -*-] of a single coil, we can find
the self-inductance by equating the energy
expression (17.48) to [image: \tfrac{1}{2}\selfInd I^2][image: \tfrac{1}{2}\selfInd I^2]. Let’s see
how this works by finding the self-inductance of a long solenoid. We
have seen earlier that the magnetic field inside a solenoid is uniform
and B[image: -*-] outside is zero. The magnitude of the field inside is
B=n I/ϵ0 c2[image: -*-], where n[image: -*-] is the number of turns per unit length in
the winding and I[image: -*-] is the current. If the radius of the coil is r[image: -*-] and
its length is L[image: -*-] (we take L[image: -*-] very long, so that we can neglect end
effects, i.e., L≫r[image: -*-]), the volume inside is π r2 L[image: -*-]. The magnetic
energy is therefore

[image: -*-][image: -*-]


which is equal to [image: \tfrac{1}{2}\selfInd I^2][image: \tfrac{1}{2}\selfInd I^2]. Or,

[image: -*-][image: -*-]
(17.50)











	
  
  Now
that we are using the letter A[image: -*-] for the vector potential, we prefer
to let S[image: -*-] stand for a surface area.
  ↩


	
  
  The sign of M12[image: -*-] and M21[image: -*-]
in Eqs. (17.31) and (17.32) depends on the
arbitrary choices for the sense of a positive current in the two coils.
  ↩


	
  
  This is,
incidentally, not the only way a correspondence can be set
up between mechanical and electrical quantities.
  ↩


	
  
  We are neglecting any energy loss to
heat from the current in the resistance of the coil. Such losses
require additional energy from the source but do not change the energy
which goes into the inductance.
  ↩






  
    

18 The Maxwell Equations



18–1 Maxwell’s equations


In this chapter we come back to the complete set of the four
Maxwell equations that we took as our starting point in
Chapter 1. Until now, we have been studying Maxwell’s
equations in bits and pieces; it is time to add one final piece, and to
put them all together. We will then have the complete and correct story
for electromagnetic fields that may be changing with time in any way.
Anything said in this chapter that contradicts something said earlier is
true and what was said earlier is false—because what was said earlier
applied to such special situations as, for instance, steady currents or
fixed charges. Although we have been very careful to point out the
restrictions whenever we wrote an equation, it is easy to forget all of
the qualifications and to learn too well the wrong equations. Now we are
ready to give the whole truth, with no qualifications (or almost none).




The complete Maxwell equations are written in Table 18–1,
in words as well as in mathematical symbols. The fact that the words
are equivalent to the equations should by this time be familiar—you
should be able to translate back and forth from one form to the other.






Table 18–1. Classical Physics 



[image: --][image: --]


The first equation—that the divergence of E[image: -*-] is the charge
density over ϵ0[image: -*-]—is true in general. In dynamic as well as in
static fields, Gauss’ law is always valid. The flux of E[image: -*-] through
any closed surface is proportional to the charge inside. The third
equation is the corresponding general law for magnetic fields. Since
there are no magnetic charges, the flux of B[image: -*-] through any closed
surface is always zero. The second equation, that the curl of E[image: -*-]
is −∂B/∂t[image: -*-], is Faraday’s law and was discussed in
the last two chapters. It also is generally true. The last equation has
something new. We have seen before only the part of it which holds for
steady currents. In that case we said that the curl of B[image: -*-] is
j/ϵ0 c2[image: -*-], but the correct general equation has a new part that
was discovered by Maxwell.





Until Maxwell’s work,
the known laws of electricity and magnetism were
those we have studied in Chapters 3
through 17. In particular, the equation for the magnetic
field of steady currents was known only as

[image: -*-][image: -*-]
(18.1)




Maxwell began by
considering these known laws and expressing them as
differential equations, as we have done here. (Although the
∇[image: -*-] notation was not yet invented, it is mainly due to
Maxwell
that the importance of the combinations of derivatives, which we today
call the curl and the divergence, first became apparent.) He then
noticed that there was something strange about Eq. (18.1).
If one takes the divergence of this equation, the left-hand side will be
zero, because the divergence of a curl is always zero. So this equation
requires that the divergence of j[image: -*-] also be zero. But if the
divergence of j[image: -*-] is zero, then the total flux of current out of any
closed surface is also zero.




The flux of current from a closed surface is the decrease of the
charge inside the surface. This certainly cannot in general be zero
because we know that the charges can be moved from one place to
another. The equation

[image: -*-][image: -*-]
(18.2)




has, in fact, been almost our definition of j[image: -*-]. This equation
expresses the very fundamental law that electric charge is
conserved—any flow of charge must come from some supply.
Maxwell
appreciated this difficulty and proposed that it could be avoided by
adding the term ∂E/∂t[image: -*-] to the right-hand side of
Eq. (18.1); he then got the fourth equation in
Table 18–1:

[image: -*-][image: -*-]







It was not yet customary in
Maxwell’s time to think in terms of
abstract fields. Maxwell
discussed his ideas in terms of a model in
which the vacuum was like an elastic solid. He also tried to explain
the meaning of his new equation in terms of the mechanical
model. There was much reluctance to accept his theory, first because
of the model, and second because there was at first no experimental
justification. Today, we understand better that what counts are the
equations themselves and not the model used to get them. We may only
question whether the equations are true or false. This is answered by
doing experiments, and untold numbers of experiments have confirmed
Maxwell’s equations. If we take away the scaffolding he used to build
it, we find that Maxwell’s
beautiful edifice stands on its own. He
brought together all of the laws of electricity and magnetism and made
one complete and beautiful theory.




Let us show that the extra term is just what is required to straighten
out the difficulty Maxwell
discovered. Taking the divergence of his
equation (IV in Table 18–1), we must have that the
divergence of the right-hand side is zero:

[image: -*-][image: -*-]
(18.3)




In the second term, the order of the derivatives with respect to
coordinates and time can be reversed, so the equation can be rewritten
as

[image: -*-][image: -*-]
(18.4)




But the first of Maxwell’s equations says that the divergence of E[image: -*-]
is ρ/ϵ0[image: -*-]. Inserting this equality in
Eq. (18.4), we get back Eq. (18.2), which we
know is true. Conversely, if we accept Maxwell’s equations—and we do
because no one has ever found an experiment that disagrees with
them—we must conclude that charge is always conserved.




The laws of physics have no answer to the question: “What happens if
a charge is suddenly created at this point—what electromagnetic
effects are produced?” No answer can be given because our equations
say it doesn’t happen. If it were to happen, we would need new
laws, but we cannot say what they would be. We have not had the chance
to observe how a world without charge conservation behaves. According
to our equations, if you suddenly place a charge at some point, you
had to carry it there from somewhere else. In that case, we can say
what would happen.




When we added a new term to the equation for the curl of E[image: -*-], we
found that a whole new class of phenomena was described. We shall see
that Maxwell’s
little addition to the equation for ∇×B[image: -*-]
also has far-reaching consequences. We can touch on only a few of them
in this chapter.







18–2 How the new term works


As our first example we consider what happens with a spherically
symmetric radial distribution of current. Suppose we imagine a little
sphere with radioactive material on it. This radioactive material is
squirting out some charged particles. (Or we could imagine a large
block of jello with a small hole in the center into which some charge
had been injected with a hypodermic needle and from which the charge
is slowly leaking out.) In either case we would have a current that is
everywhere radially outward. We will assume that it has the same
magnitude in all directions.




Let the total charge inside any radius r[image: -*-] be Q (r)[image: -*-]. If the radial
current density at the same radius is j (r)[image: -*-], then
Eq. (18.2) requires that Q[image: -*-] decreases at the rate

[image: -*-][image: -*-]
(18.5)









We now ask about the magnetic field produced by the currents in this
situation. Suppose we draw some loop Γ[image: -*-] on a sphere of radius r[image: -*-],
as shown in Fig. 18–1. There is some current
through this loop, so we might expect to find a magnetic field
circulating in the direction shown.



[image: -][image: -]
Fig. 18–1. What is the magnetic field of a spherically symmetric
current?





But we are already in difficulty. How can the B[image: -*-] have any
particular direction on the sphere? A different choice of Γ[image: -*-]
would allow us to conclude that its direction is exactly opposite to
that shown. So how can there be any circulation of B[image: -*-]
around the currents?




We are saved by Maxwell’s equation. The circulation of B[image: -*-] depends
not only on the total current through Γ[image: -*-] but also on the
rate of change with time of the electric flux through it. It
must be that these two parts just cancel. Let’s see if that works out.





The electric field at the radius r[image: -*-] must be Q (r)/4 π ϵ0 r2[image: -*-]—so
long as the charge is symmetrically distributed, as we assume. It is
radial, and its rate of change is then

[image: -*-][image: -*-]
(18.6)




Comparing this with Eq. (18.5), we see

[image: -*-][image: -*-]
(18.7)




In Eq. IV the two source terms cancel and the curl of B[image: -*-] is
always zero. There is no magnetic field in our example.




As our second example, we consider the magnetic field of a wire used to
charge a parallel-plate condenser (see Fig. 18–2). If the
charge Q[image: -*-] on the plates is changing with time (but not too fast), the
current in the wires is equal to d Q/d t[image: -*-]. We would expect that this
current will produce a magnetic field that encircles the wire. Surely,
the current close to the plate must produce the normal magnetic
field—it cannot depend on where the current is going.



[image: -][image: -][image: -][image: -]
Fig. 18–2. The magnetic field near a charging capacitor.





Suppose we take a loop Γ1[image: -*-] which is a circle with radius r[image: -*-],
as shown in part (a) of the figure. The line integral of the magnetic
field should be equal to the current I[image: -*-] divided by ϵ0 c2[image: -*-]. We
have

[image: -*-][image: -*-]
(18.8)




This is what we would get for a steady current, but it is also correct
with Maxwell’s
addition, because if we consider the plane surface S[image: -*-]
inside the circle, there are no electric fields on it (assuming the
wire to be a very good conductor). The surface integral
of ∂E/∂t[image: -*-] is zero.




Suppose, however, that we now slowly move the curve Γ[image: -*-] downward.
We get always the same result until we draw even with the plates of the
condenser. Then the current I[image: -*-] goes to zero. Does the magnetic field
disappear? That would be quite strange. Let’s see what Maxwell’s
equation says for the curve Γ2[image: -*-], which is a circle of radius r[image: -*-]
whose plane passes between the condenser plates
[Fig. 18–2(b)]. The line integral of B[image: -*-]
around Γ2[image: -*-] is 2 π r B[image: -*-]. This must equal the time derivative of the flux
of E[image: -*-] through the plane circular surface S2[image: -*-]. This flux
of E[image: -*-], we know from Gauss’ law, must be equal to 1/ϵ0[image: -*-] times the
charge Q[image: -*-] on one of the condenser plates. We have

[image: -*-][image: -*-]
(18.9)









That is very convenient. It is the same result we found in
Eq. (18.8). Integrating over the changing electric field
gives the same magnetic field as does integrating over the current in
the wire. Of course, that is just what Maxwell’s equation says. It is
easy to see that this must always be so by applying our same arguments
to the two surfaces S1[image: -*-] and [image: S_1'][image: S_1'] that are bounded by the same
circle Γ1[image: -*-] in Fig. 18–2(b). Through S1[image: -*-] there is the
current I[image: -*-], but no electric flux. Through [image: S_1'][image: S_1'] there is no current,
but an electric flux changing at the rate I/ϵ0[image: -*-]. The same B[image: -*-] is
obtained if we use Eq. IV with either surface.




From our discussion so far of
Maxwell’s new term, you may have the
impression that it doesn’t add much—that it just fixes up the
equations to agree with what we already expect. It is true that if we
just consider Eq. IV by itself, nothing particularly new
comes out. The words “by itself” are, however,
all-important. Maxwell’s
small change in Eq. IV, when combined
with the other equations, does indeed produce much that is new and
important. Before we take up these matters, however, we want to speak
more about Table 18–1.







18–3 All of classical physics


In Table 18–1 we have all that was known of fundamental
classical physics, that is, the physics that was known by
1905. Here it all is, in one table. With these equations we can
understand the complete realm of classical physics.




First we have the Maxwell equations—written in both the expanded
form and the short mathematical form. Then there is the conservation
of charge, which is even written in parentheses, because the moment we
have the complete Maxwell equations, we can deduce from them the
conservation of charge. So the table is even a little redundant. Next,
we have written the force law, because having all the electric and
magnetic fields doesn’t tell us anything until we know what they do to
charges. Knowing E[image: -*-] and B[image: -*-], however, we can find the force
on an object with the charge q[image: -*-] moving with velocity v[image: -*-].
Finally, having the force doesn’t tell us anything until we
know what happens when a force pushes on something; we need the law of
motion, which is that the force is equal to the rate of change of the
momentum. (Remember?  We had that in Volume I.) We even include
relativity effects by writing the momentum as p=m0 v/√1−v2/c2[image: -*-].




If we really want to be complete, we should add one more
law—Newton’s law of gravitation—so we put that at the end.




Therefore in one small table we have all the fundamental laws of
classical physics—even with room to write them out in words and with
some redundancy. This is a great moment. We have climbed a great
peak. We are on the top of K2—we are nearly ready for Mount
Everest, which is quantum mechanics. We have climbed the peak of a
“Great Divide,” and now we can go down the other side.




We have mainly been trying to learn how to understand the
equations. Now that we have the whole thing put together, we are going
to study what the equations mean—what new things they say that we
haven’t already seen. We’ve been working hard to get up to this
point. It has been a great effort, but now we are going to have nice
coasting downhill as we see all the consequences of our
accomplishment.







18–4 A travelling field


Now for the new consequences. They come from putting together all of
Maxwell’s equations. First, let’s see what would happen in a
circumstance which we pick to be particularly simple. By assuming that
all the quantities vary only in one coordinate, we will have a
one-dimensional problem. The situation is shown in
Fig. 18–3. We have a sheet of charge located on the
y z[image: -*-]-plane. The sheet is first at rest, then instantaneously given a
velocity u[image: -*-] in the y[image: -*-]-direction, and kept moving with this constant
velocity. You might worry about having such an “infinite”
acceleration, but it doesn’t really matter; just imagine that the
velocity is brought to u[image: -*-] very quickly. So we have suddenly a surface
current J[image: -*-] (J[image: -*-] is the current per unit width in the z[image: -*-]-direction). To
keep the problem simple, we suppose that there is also a stationary
sheet of charge of opposite sign superposed on the y z[image: -*-]-plane, so that
there are no electrostatic effects. Also, although in the figure we show
only what is happening in a finite region, we imagine that the sheet
extends to infinity in ±y[image: -*-] and ±z[image: -*-]. In other words, we have a
situation where there is no current, and then suddenly there is a
uniform sheet of current. What will happen?



[image: -][image: -]
Fig. 18–3. An infinite sheet of charge is suddenly set into motion
parallel to itself. There are magnetic and electric fields that
propagate out from the sheet at a constant speed.





Well, when there is a sheet of current in the plus y[image: -*-]-direction,
there is, as we know, a magnetic field generated which will be in the
minus z[image: -*-]-direction for x>0[image: -*-] and in the opposite direction for
x<0[image: -*-]. We could find the magnitude of B[image: -*-] by using the fact that
the line integral of the magnetic field will be equal to the current
over ϵ0 c2[image: -*-]. We would get that B=J/2 ϵ0 c2[image: -*-] (since the
current I[image: -*-] in a strip of width w[image: -*-] is J w[image: -*-] and the line integral
of B[image: -*-] is 2 B w[image: -*-]).




This gives us the field next to the sheet—for small x[image: -*-]—but since
we are imagining an infinite sheet, we would expect the same argument
to give the magnetic field farther out for larger values of x[image: -*-].
However, that would mean that the moment we turn on the current,
the magnetic field is suddenly changed from zero to a finite value
everywhere. But wait!  If the magnetic field is suddenly changed, it
will produce tremendous electrical effects. (If it changes in
any way, there are electrical effects.) So because we moved the
sheet of charge, we make a changing magnetic field, and therefore
electric fields must be generated. If there are electric fields
generated, they had to start from zero and change to something
else. There will be some ∂E/∂t[image: -*-] that will make a
contribution, together with the current J[image: -*-], to the production of the
magnetic field. So through the various equations there is a big
intermixing, and we have to try to solve for all the fields at once.




By looking at the Maxwell equations alone, it is not easy to see
directly how to get the solution. So we will first show you what the
answer is and then verify that it does indeed satisfy the
equations. The answer is the following: The field B[image: -*-] that we
computed is, in fact, generated right next to the current sheet (for
small x[image: -*-]). It must be so, because if we make a tiny loop around the
sheet, there is no room for any electric flux to go through it. But
the field B[image: -*-] out farther—for larger x[image: -*-]—is, at first,
zero. It stays zero for awhile, and then suddenly turns on. In short,
we turn on the current and the magnetic field immediately next to it
turns on to a constant value B[image: -*-]; then the turning on of B[image: -*-]
spreads out from the source region. After a certain time, there is a
uniform magnetic field everywhere out to some value x[image: -*-], and then zero
beyond. Because of the symmetry, it spreads in both the plus and minus
x[image: -*-]-directions.



[image: -][image: -]
Fig. 18–4. (a) The magnitude of B[image: -*-] (or E[image: -*-]) as a function of x[image: -*-]
at time t[image: -*-] after the charge sheet is set in motion. (b) The fields for
a charge sheet set in motion, toward negative y[image: -*-] at t=T[image: -*-]. (c) The sum
of (a) and (b).





The E[image: -*-]-field does the same thing. Before t=0[image: -*-] (when we turn on
the current), the field is zero everywhere. Then after the time t[image: -*-],
both E[image: -*-] and B[image: -*-] are uniform out to the distance x=v t[image: -*-], and
zero beyond. The fields make their way forward like a tidal wave, with
a front moving at a uniform velocity which turns out to be c[image: -*-], but
for a while we will just call it v[image: -*-]. A graph of the magnitude of
E[image: -*-] or B[image: -*-] versus x[image: -*-], as they appear at the time t[image: -*-], is
shown in Fig. 18–4(a). Looking again at
Fig. 18–3, at the time t[image: -*-], the region between x=±v t[image: -*-]
is “filled” with the fields, but they have not yet reached beyond. We
emphasize again that we are assuming that the current sheet and,
therefore the fields E[image: -*-] and B[image: -*-], extend infinitely far in both
the y[image: -*-]- and z[image: -*-]-directions. (We cannot draw an infinite sheet, so we
have shown only what happens in a finite area.)



[image: -][image: -]
Fig. 18–5. Top view of Fig. 18–3.





We want now to analyze quantitatively what is happening. To do that,
we want to look at two cross-sectional views, a top view looking down
along the y[image: -*-]-axis, as shown in Fig. 18–5, and a side
view looking back along the z[image: -*-]-axis, as shown in
Fig. 18–6. Suppose we start with the side view. We see the
charged sheet moving up; the magnetic field points into the page
for +x[image: -*-], and out of the page for −x[image: -*-], and the electric field is downward
everywhere—out to x=±v t[image: -*-].



[image: -][image: -]
Fig. 18–6. Side view of Fig. 18–3.





Let’s see if these fields are consistent with Maxwell’s
equations. Let’s first draw one of those loops that we use to
calculate a line integral, say the rectangle Γ2[image: -*-] shown in
Fig. 18–6. You notice that one side of the rectangle is
in the region where there are fields, but one side is in the region
the fields have still not reached. There is some magnetic flux through
this loop. If it is changing, there should be an emf around it. If the
wavefront is moving, we will have a changing magnetic flux, because
the area in which B[image: -*-] exists is progressively increasing at the
velocity v[image: -*-]. The flux inside Γ2[image: -*-] is B[image: -*-] times the part of the
area inside Γ2[image: -*-] which has a magnetic field. The rate of change
of the flux, since the magnitude of B[image: -*-] is constant, is the
magnitude times the rate of change of the area. The rate of change of
the area is easy. If the width of the rectangle Γ2[image: -*-] is L[image: -*-], the
area in which B[image: -*-] exists changes by L v Δ t[image: -*-] in the
time Δ t[image: -*-]. (See Fig. 18–6.) The rate of change of flux
is then B L v[image: -*-]. According to Faraday’s law, this should equal minus the
line integral of E[image: -*-] around Γ2[image: -*-], which is just E L[image: -*-]. We
have the equation
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(18.10)




So if the ratio of E[image: -*-] to B[image: -*-] is v[image: -*-], the fields we have assumed will
satisfy Faraday’s equation.




But that is not the only equation; we have the other equation relating
E[image: -*-] and B[image: -*-]:

[image: -*-][image: -*-]
(18.11)




To apply this equation, we look at the top view in
Fig. 18–5. We have seen that this equation will give us the
value of B[image: -*-] next to the current sheet. Also, for any loop drawn outside
the sheet but behind the wavefront, there is no curl of B[image: -*-] nor
any j[image: -*-] or changing E[image: -*-], so the equation is correct there. Now let’s
look at what happens for the curve Γ1[image: -*-] that intersects the
wavefront, as shown in Fig. 18–5. Here there are no
currents, so Eq. (18.11) can be written—in integral
form—as
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(18.12)




The line integral of B[image: -*-] is just B[image: -*-] times L[image: -*-]. The rate of change
of the flux of E[image: -*-] is due only to the advancing wavefront. The
area inside Γ1[image: -*-], where E[image: -*-] is not zero, is increasing at
the rate v L[image: -*-]. The right-hand side of Eq. (18.12) is
then v L E[image: -*-]. That equation becomes
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(18.13)









We have a solution in which we have a constant B[image: -*-] and a constant E[image: -*-]
behind the front, both at right angles to the direction in which the front is
moving and at right angles to each other. Maxwell’s equations specify the ratio
of E[image: -*-] to B[image: -*-]. From Eqs. (18.10) and (18.13),

[image: -*-][image: -*-]


But one moment! We have found two different conditions on the
ratio E/B[image: -*-]. Can such a field as we describe really exist? There is,
of course, only one velocity v[image: -*-] for which both of these equations can
hold, namely v=c[image: -*-]. The wavefront must travel with the
velocity c[image: -*-]. We have an example in which the electrical influence from a
current propagates at a certain finite velocity c[image: -*-].




Now let’s ask what happens if we suddenly stop the motion of the
charged sheet after it has been on for a short time T[image: -*-]. We can see
what will happen by the principle of superposition. We had a current
that was zero and then was suddenly turned on. We know the solution
for that case. Now we are going to add another set of fields. We take
another charged sheet and suddenly start it moving, in the opposite
direction with the same speed, only at the time T[image: -*-] after we started
the first current. The total current of the two added together is
first zero, then on for a time T[image: -*-], then off again—because the two
currents cancel. We have a square “pulse” of current.





The new negative current produces the same fields as the positive one,
only with all the signs reversed and, of course, delayed in time
by T[image: -*-]. A wavefront again travels out at the velocity c[image: -*-]. At the
time t[image: -*-] it has reached the distance x=±c (t−T)[image: -*-], as shown in
Fig. 18–4(b). So we have two “blocks” of field marching
out at the speed c[image: -*-], as in parts (a) and (b) of Fig. 18–4.
The combined fields are as shown in part (c) of the figure. The fields
are zero for x>c t[image: -*-], they are constant (with the values we found above)
between x=c (t−T)[image: -*-] and x=c t[image: -*-], and again zero for x<c (t−T)[image: -*-].




In short, we have a little piece of field—a block of
thickness c T[image: -*-]—which has left the current sheet and is travelling through
space all by itself. The fields have “taken off”; they are
propagating freely through space, no longer connected in any way with
the source. The caterpillar has turned into a butterfly!




How can this bundle of electric and magnetic fields maintain itself? The
answer is: by the combined effects of the Faraday law,
∇×E=−∂B/∂t[image: -*-], and the new term of
Maxwell,
c2 ∇×B=∂E/∂t[image: -*-]. They cannot help maintaining
themselves. Suppose the magnetic field were to disappear. There would be
a changing magnetic field which would produce an electric field. If this
electric field tries to go away, the changing electric field would
create a magnetic field back again. So by a perpetual interplay—by the
swishing back and forth from one field to the other—they must go on
forever. It is impossible for them to disappear.1 They maintain
themselves in a kind of a dance—one making the other, the second
making the first—propagating onward through space.







18–5 The speed of light


We have a wave which leaves the material source and goes outward at
the velocity c[image: -*-], which is the speed of light. But let’s go back a
moment. From a historical point of view, it wasn’t known that the
coefficient c[image: -*-] in Maxwell’s equations was also the speed of light
propagation. There was just a constant in the equations. We have
called it c[image: -*-] from the beginning, because we knew what it would turn
out to be. We didn’t think it would be sensible to make you learn the
formulas with a different constant and then go back to substitute c[image: -*-]
wherever it belonged. From the point of view of electricity and
magnetism, however, we just start out with two constants, ϵ0[image: -*-]
and c2[image: -*-], that appear in the equations of electrostatics and
magnetostatics:
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(18.14)




and

[image: -*-][image: -*-]
(18.15)




If we take any arbitrary definition of a unit of charge, we can
determine experimentally the constant ϵ0[image: -*-] required in
Eq. (18.14)—say by measuring the force between two unit
charges at rest, using Coulomb’s law. We must also determine
experimentally the constant ϵ0 c2[image: -*-] that appears in
Eq. (18.15), which we can do, say, by measuring the force
between two unit currents. (A unit current means one unit of charge per
second.) The ratio of these two experimental constants is c2[image: -*-]—just
another “electromagnetic constant.”




Notice now that this constant c2[image: -*-] is the same no matter what we
choose for our unit of charge. If we put twice as much
“charge”—say twice as many proton charges—in our “unit” of
charge, ϵ0[image: -*-] would need to be one-fourth as large. When we pass two
of these “unit” currents through two wires, there will be twice as
much “charge” per second in each wire, so the force between two
wires is four times larger. The constant ϵ0 c2[image: -*-] must be reduced
by one-fourth. But the ratio ϵ0 c2/ϵ0[image: -*-] is unchanged.




So just by experiments with charges and currents we find a
number c2[image: -*-] which turns out to be the square of the velocity of propagation
of electromagnetic influences. From static measurements—by measuring
the forces between two unit charges and between two unit currents—we
find that c=3.00×108[image: -*-] meters/sec. When
Maxwell first made this
calculation with his equations, he said that bundles of electric and
magnetic fields should be propagated at this speed. He also remarked
on the mysterious coincidence that this was the same as the speed of
light. “We can scarcely avoid the inference,” said
Maxwell, “that
light consists in the transverse undulations of the same medium which
is the cause of electric and magnetic phenomena.”




Maxwell had made one of the
great unifications of physics. Before his
time, there was light, and there was electricity and magnetism. The
latter two had been unified by the experimental work of
Faraday, Oersted, and Ampère. Then, all of a
sudden, light was no longer “something else,” but was only electricity
and magnetism in this new form—little pieces of electric and magnetic
fields which propagate through space on their own.




We have called your attention to some characteristics of this special
solution, which turn out to be true, however, for any
electromagnetic wave: that the magnetic field is perpendicular to the
direction of motion of the wavefront; that the electric field is
likewise perpendicular to the direction of motion of the wavefront;
and that the two vectors E[image: -*-] and B[image: -*-] are perpendicular to each
other. Furthermore, the magnitude of the electric field E[image: -*-] is equal
to c[image: -*-] times the magnitude of the magnetic field B[image: -*-]. These three
facts—that the two fields are transverse to the direction of
propagation, that B[image: -*-] is perpendicular to E[image: -*-], and that
E=c B[image: -*-]—are generally true for any electromagnetic wave. Our special
case is a good one—it shows all the main features of electromagnetic
waves.







18–6 Solving Maxwell’s equations; the potentials and the wave equation


Now we would like to do something mathematical; we want to write
Maxwell’s equations in a simpler form. You may consider that we are
complicating them, but if you will be patient a little bit, they will
suddenly come out simpler. Although by this time you are thoroughly
used to each of the Maxwell equations, there are many pieces that must
all be put together. That’s what we want to do.




We begin with ∇⋅B=0[image: -*-]—the simplest of the equations. We
know that it implies that B[image: -*-] is the curl of something. So, if we
write

[image: -*-][image: -*-]
(18.16)




we have already solved one of Maxwell’s equations. (Incidentally, you
appreciate that it remains true that another vector A′[image: -*-] would be
just as good if A′=A+∇ψ[image: -*-]—where ψ[image: -*-] is any
scalar field—because the curl of ∇ψ[image: -*-] is zero,
and B[image: -*-] is still the same. We have talked about that before.)




We take next the Faraday law, ∇×E=−∂B/∂t[image: -*-],
because it doesn’t involve any currents or charges. If we write
B[image: -*-] as ∇×A[image: -*-] and differentiate with respect to t[image: -*-], we
can write Faraday’s law in the form

[image: -*-][image: -*-]


Since we can differentiate either with respect to time or to space
first, we can also write this equation as

[image: -*-][image: -*-]
(18.17)




We see that E+∂A/∂t[image: -*-] is a vector whose curl is equal to
zero. Therefore that vector is the gradient of something. When we
worked on electrostatics, we had ∇×E=0[image: -*-], and then
we decided that E[image: -*-] itself was the gradient of something. We took
it to be the gradient of −ϕ[image: -*-] (the minus for technical
convenience). We do the same thing for E+∂A/∂t[image: -*-]; we set

[image: -*-][image: -*-]
(18.18)




We use the same symbol ϕ[image: -*-] so that, in the electrostatic case where
nothing changes with time and the ∂A/∂t[image: -*-] term disappears,
E[image: -*-] will be our old −∇ϕ[image: -*-]. So Faraday’s equation can
be put in the form

[image: -*-][image: -*-]
(18.19)









We have solved two of Maxwell’s equations already, and we have found
that to describe the electromagnetic fields E[image: -*-] and B[image: -*-], we
need four potential functions: a scalar potential ϕ[image: -*-] and a vector
potential A[image: -*-], which is, of course, three functions.




Now that A[image: -*-] determines part of E[image: -*-], as well as B[image: -*-], what
happens when we change A[image: -*-] to A′=A+∇ψ[image: -*-]? In
general, E[image: -*-] would change if we didn’t take some special
precaution. We can, however, still allow A[image: -*-] to be changed in this
way without affecting the fields E[image: -*-] and B[image: -*-]—that is,
without changing the physics—if we always change A[image: -*-] and ϕ[image: -*-]
together by the rules

[image: -*-][image: -*-]
(18.20)




Then neither B[image: -*-] nor E[image: -*-], obtained from Eq. (18.19),
is changed.




Previously, we chose to make ∇⋅A=0[image: -*-], to make the equations
of statics somewhat simpler. We are not going to do that now; we are
going to make a different choice. But we’ll wait a bit before saying
what the choice is, because later it will be clear why the
choice is made.




Now we return to the two remaining Maxwell equations which will give us
relations between the potentials and the sources ρ[image: -*-] and j[image: -*-]. Once we can
determine A[image: -*-] and ϕ[image: -*-] from the currents and charges, we can always get
E[image: -*-] and B[image: -*-] from Eqs. (18.16)
and (18.19), so we will have another form of Maxwell’s equations.




We begin by substituting Eq. (18.19) into
∇⋅E=ρ/ϵ0[image: -*-]; we get

[image: -*-][image: -*-]


which we can write also as

[image: -*-][image: -*-]
(18.21)




This is one equation relating ϕ[image: -*-] and A[image: -*-] to the sources.




Our final equation will be the most complicated. We start by rewriting
the fourth Maxwell equation as

[image: -*-][image: -*-]


and then substitute for B[image: -*-] and E[image: -*-] in terms of the potentials, using
Eqs. (18.16) and (18.19):

[image: -*-][image: -*-]


The first term can be rewritten using the algebraic identity:
∇×(∇×A)=[image: -*-]∇(∇⋅A)−∇2A[image: -*-];
we get



[image: -*-][image: -*-]
(18.22)





It’s not very simple!




Fortunately, we can now make use of our freedom to choose arbitrarily
the divergence of A[image: -*-]. What we are going to do is to use our
choice to fix things so that the equations for A[image: -*-] and for ϕ[image: -*-]
are separated but have the same form. We can do this by
taking2

[image: -*-][image: -*-]
(18.23)




When we do that, the two middle terms in A[image: -*-] and ϕ[image: -*-] in
Eq. (18.22) cancel, and that equation becomes much simpler:

[image: -*-][image: -*-]
(18.24)




And our equation for ϕ[image: -*-]—Eq. (18.21)—takes on the
same form:

[image: -*-][image: -*-]
(18.25)









What a beautiful set of equations! They are beautiful, first, because
they are nicely separated—with the charge density, goes ϕ[image: -*-]; with
the current, goes A[image: -*-]. Furthermore, although the left side looks a
little funny—a Laplacian together with a ∂2/∂t2[image: -*-]—when we
unfold it we see

[image: -*-][image: -*-]
(18.26)




It has a nice symmetry in x[image: -*-], y[image: -*-], z[image: -*-], t[image: -*-]—the −1/c2[image: -*-] is
necessary because, of course, time and space are different;
they have different units.




Maxwell’s equations have led us to a new kind of equation for the
potentials ϕ[image: -*-] and A[image: -*-] but to the same mathematical form for
all four functions ϕ[image: -*-], Ax[image: -*-], Ay[image: -*-], and Az[image: -*-]. Once we learn how
to solve these equations, we can get B[image: -*-] and E[image: -*-] from
∇×A[image: -*-] and −∇ϕ−∂A/∂t[image: -*-]. We have
another form of the electromagnetic laws exactly equivalent to
Maxwell’s equations, and in many situations they are much simpler to
handle.




We have, in fact, already solved an equation much like
Eq. (18.26). When we studied sound in
Chapter 47 of Vol. I, we had an equation of the form

[image: -*-][image: -*-]


and we saw that it described the propagation of waves in the
x[image: -*-]-direction at the speed c[image: -*-]. Equation (18.26) is the
corresponding wave equation for three dimensions. So in regions where
there are no longer any charges and currents, the solution of these
equations is not that ϕ[image: -*-] and A[image: -*-] are zero. (Although
that is indeed one possible solution.)  There are solutions in which
there is some set of ϕ[image: -*-] and A[image: -*-] which are changing in time but
always moving out at the speed c[image: -*-]. The fields travel onward through
free space, as in our example at the beginning of the chapter.




With Maxwell’s
new term in Eq. IV, we have been able to write the
field equations in terms of A[image: -*-] and ϕ[image: -*-] in a form that is
simple and that makes immediately apparent that there are
electromagnetic waves. For many practical purposes, it will still be
convenient to use the original equations in terms of E[image: -*-]
and B[image: -*-]. But they are on the other side of the mountain we have
already climbed. Now we are ready to cross over to the other side of
the peak. Things will look different—we are ready for some new and
beautiful views.






	
  
  Well, not
quite. They can be “absorbed” if they get to a region where there are
charges. By which we mean that other fields can be produced somewhere
which superpose on these fields and “cancel” them by destructive
interference (see Chapter 31, Vol. I).
  ↩


	
  
  Choosing the ∇⋅A[image: -*-] is called “choosing a
gauge.” Changing A[image: -*-] by adding ∇ψ[image: -*-], is called a
“gauge transformation.” Equation (18.23) is called “the
Lorenz gauge.”
  ↩






  
    

19 The Principle of Least Action

[image: -]



19–1 A special lecture—almost verbatim1


“When I was in high school, my physics teacher—whose name
was Mr. Bader—called me down one day after physics class and said,
‘You look bored; I want to tell you something interesting.’ Then he told
me something which I found absolutely fascinating, and have, since then,
always found fascinating. Every time the subject comes up, I work on it.
In fact, when I began to prepare this lecture I found myself making more
analyses on the thing. Instead of worrying about the lecture, I got
involved in a new problem. The subject is this—the principle of least
action.




[image: -]
Fig. 19–1. 





“Mr. Bader told me the following: Suppose you have a particle (in a
gravitational field, for instance) which starts somewhere and moves to
some other point by free motion—you throw it, and it goes up and comes
down (Fig. 19–1). It goes from the original place to the
final place in a certain amount of time. Now, you try a different
motion. Suppose that to get from here to there, it went as shown in
Fig. 19–2 but got there in just the same amount of time.
Then he said this: If you calculate the kinetic energy at every moment
on the path, take away the potential energy, and integrate it over the
time during the whole path, you’ll find that the number you’ll get is
bigger than that for the actual motion.




[image: -]
Fig. 19–2. 





“In other words, the laws of Newton could be stated not in the form F=m a[image: -*-]
but in the form: the average kinetic energy less the average potential
energy is as little as possible for the path of an object going from one
point to another.





“Let me illustrate a little bit better what it means. If you take the
case of the gravitational field, then if the particle has the
path x (t)[image: -*-] (let’s just take one dimension for a moment; we take a
trajectory that goes up and down and not sideways), where x[image: -*-] is the
height above the ground, the kinetic energy
is [image: \tfrac{1}{2}m\,(dx/dt)^2][image: \tfrac{1}{2}m\,(dx/dt)^2], and the potential energy at any time
is m g x[image: -*-]. Now I take the kinetic energy minus the potential energy at
every moment along the path and integrate that with respect to time from
the initial time to the final time. Let’s suppose that at the original
time t1[image: -*-] we started at some height and at the end of the time t2[image: -*-] we
are definitely ending at some other place (Fig. 19–3).




[image: -]
Fig. 19–3. 





“Then the integral is

[image: -*-][image: -*-]


The actual motion is some kind of a curve—it’s a parabola if we plot
against the time—and gives a certain value for the integral. But we
could imagine some other motion that went very high and came up
and down in some peculiar way (Fig. 19–4). We can
calculate the kinetic energy minus the potential energy and integrate
for such a path … or for any other path we want. The miracle is
that the true path is the one for which that integral is least.




[image: -]
Fig. 19–4. 





“Let’s try it out. First, suppose we take the case of a free particle
for which there is no potential energy at all. Then the rule says that
in going from one point to another in a given amount of time, the
kinetic energy integral is least, so it must go at a uniform
speed. (We know that’s the right answer—to go at a uniform speed.)
Why is that? Because if the particle were to go any other way, the
velocities would be sometimes higher and sometimes lower than the
average. The average velocity is the same for every case because it
has to get from ‘here’ to ‘there’ in a given amount of time.





“As an example, say your job is to start from home and get to school
in a given length of time with the car. You can do it several ways:
You can accelerate like mad at the beginning and slow down with the
brakes near the end, or you can go at a uniform speed, or you can go
backwards for a while and then go forward, and so on. The thing is
that the average speed has got to be, of course, the total distance
that you have gone over the time. But if you do anything but go at a
uniform speed, then sometimes you are going too fast and sometimes you
are going too slow. Now the mean square of something that
deviates around an average, as you know, is always greater than the
square of the mean; so the kinetic energy integral would always be
higher if you wobbled your velocity than if you went at a uniform
velocity. So we see that the integral is a minimum if the velocity is
a constant (when there are no forces). The correct path is shown in 
Fig. 19–5.




[image: -]
Fig. 19–5. 





“Now, an object thrown up in a gravitational field does rise faster
first and then slow down. That is because there is also the potential
energy, and we must have the least difference of kinetic and
potential energy on the average. Because the potential energy rises as
we go up in space, we will get a lower difference if we can get
as soon as possible up to where there is a high potential energy. Then
we can take that potential away from the kinetic energy and get a
lower average. So it is better to take a path which goes up and gets a
lot of negative stuff from the potential energy (Fig. 19–6).




[image: -]
Fig. 19–6. 





“On the other hand, you can’t go up too fast, or too far, because you
will then have too much kinetic energy involved—you have to go very
fast to get way up and come down again in the fixed amount of time
available. So you don’t want to go too far up, but you want to go up
some. So it turns out that the solution is some kind of balance
between trying to get more potential energy with the least amount of
extra kinetic energy—trying to get the difference, kinetic minus the
potential, as small as possible.





“That is all my teacher told me, because he was a very good teacher
and knew when to stop talking. But I don’t know when to stop
talking. So instead of leaving it as an interesting remark, I am going
to horrify and disgust you with the complexities of life by proving
that it is so. The kind of mathematical problem we will have is very
difficult and a new kind. We have a certain quantity which is called
the action, S[image: -*-]. It is the kinetic energy, minus the potential
energy, integrated over time.

[image: -*-][image: -*-]


Remember that the PE and KE are both functions of time. For each
different possible path you get a different number for this
action. Our mathematical problem is to find out for what curve that
number is the least.





“You say—Oh, that’s just the ordinary calculus of maxima and
minima. You calculate the action and just differentiate to find the
minimum.





“But watch out. Ordinarily we just have a function of some variable,
and we have to find the value of that variable where the
function is least or most. For instance, we have a rod which has been
heated in the middle and the heat is spread around. For each point on
the rod we have a temperature, and we must find the point at which
that temperature is largest. But now for each path in space we
have a number—quite a different thing—and we have to find the
path in space for which the number is the minimum. That is a
completely different branch of mathematics. It is not the ordinary
calculus. In fact, it is called the calculus of
variations.





“There are many problems in this kind of mathematics. For example,
the circle is usually defined as the locus of all points at a constant
distance from a fixed point, but another way of defining a circle is
this: a circle is that curve of given length which encloses the
biggest area. Any other curve encloses less area for a given perimeter
than the circle does. So if we give the problem: find that curve which
encloses the greatest area for a given perimeter, we would have a
problem of the calculus of variations—a different kind of calculus than you’re used to.





“So we make the calculation for the path of an object. Here is the
way we are going to do it. The idea is that we imagine that there is a
true path and that any other curve we draw is a false path, so that if
we calculate the action for the false path we will get a value that is
bigger than if we calculate the action for the true path
(Fig. 19–7).




[image: -]
Fig. 19–7. 





“Problem: Find the true path. Where is it? One way, of course, is to
calculate the action for millions and millions of paths and look at
which one is lowest. When you find the lowest one, that’s the true
path.





“That’s a possible way. But we can do it better than that. When we
have a quantity which has a minimum—for instance, in an ordinary
function like the temperature—one of the properties of the minimum
is that if we go away from the minimum in the first order, the
deviation of the function from its minimum value is only second
order. At any place else on the curve, if we move a small distance the
value of the function changes also in the first order. But at a
minimum, a tiny motion away makes, in the first approximation, no
difference (Fig. 19–8).




[image: -]
Fig. 19–8. 





“That is what we are going to use to calculate the true path. If we
have the true path, a curve which differs only a little bit from it
will, in the first approximation, make no difference in the
action. Any difference will be in the second approximation, if we
really have a minimum.





“That is easy to prove. If there is a change in the first order when
I deviate the curve a certain way, there is a change in the action
that is proportional to the deviation. The change presumably
makes the action greater; otherwise we haven’t got a minimum. But then
if the change is proportional to the deviation, reversing the
sign of the deviation will make the action less. We would get the
action to increase one way and to decrease the other way. The only way
that it could really be a minimum is that in the first
approximation it doesn’t make any change, that the changes are
proportional to the square of the deviations from the true path.





“So we work it this way: We call [image: \underline{x(t)}][image: \underline{x(t)}] (with an
underline) the true path—the one we are trying to find. We take some
trial path x (t)[image: -*-] that differs from the true path by a small amount
which we will call η (t)[image: -*-] (eta of t[image: -*-]; Fig. 19–9).




[image: -]
Fig. 19–9. 





“Now the idea is that if we calculate the action S[image: -*-] for the
path x (t)[image: -*-], then the difference between that S[image: -*-] and the action that we
calculated for the path [image: \underline{x(t)}][image: \underline{x(t)}]—to simplify the writing we
can call it [image: \underline{S}][image: \underline{S}]—the difference of [image: \underline{S}][image: \underline{S}] and S[image: -*-]
must be zero in the first-order approximation of small η[image: -*-]. It can
differ in the second order, but in the first order the difference must
be zero.





“And that must be true for any η[image: -*-] at all. Well, not quite. The
method doesn’t mean anything unless you consider paths which all begin
and end at the same two points—each path begins at a certain point
at t1[image: -*-] and ends at a certain other point at t2[image: -*-], and those points
and times are kept fixed. So the deviations in our η[image: -*-] have to be
zero at each end, η (t1)=0[image: -*-] and η (t2)=0[image: -*-]. With that
condition, we have specified our mathematical problem.





“If you didn’t know any calculus, you might do the same kind of thing
to find the minimum of an ordinary function f (x)[image: -*-]. You could discuss
what happens if you take f (x)[image: -*-] and add a small amount h[image: -*-] to x[image: -*-] and
argue that the correction to f (x)[image: -*-] in the first order in h[image: -*-] must be
zero at the minimum. You would substitute x+h[image: -*-] for x[image: -*-] and expand out
to the first order in h[image: -*-] … just as we are going to do
with η[image: -*-].





“The idea is then that we substitute [image: x(t)=\underline{x(t)}+\eta(t)][image: x(t)=\underline{x(t)}+\eta(t)]
in the formula for the action:

[image: -*-][image: -*-]


where I call the potential energy V (x)[image: -*-]. The derivative d x/d t[image: -*-] is,
of course, the derivative of [image: \underline{x(t)}][image: \underline{x(t)}] plus the derivative
of η (t)[image: -*-], so for the action I get this expression:

[image: -*-][image: -*-]







“Now I must write this out in more detail. For the squared term I get

[image: -*-][image: -*-]


But wait. I’m not worrying about higher than the first order, so I
will take all the terms which involve η2[image: -*-] and higher powers and
put them in a little box called ‘second and higher order.’ From this
term I get only second order, but there will be more from something
else. So the kinetic energy part is

[image: -*-][image: -*-]







“Now we need the potential V[image: -*-] at [image: \underline{x}+\eta][image: \underline{x}+\eta]. I consider
η[image: -*-] small, so I can write V (x)[image: -*-] as a Taylor series. It is
approximately [image: V(\underline{x})][image: V(\underline{x})]; in the next approximation (from the
ordinary nature of derivatives) the correction is η[image: -*-] times the
rate of change of V[image: -*-] with respect to x[image: -*-], and so on:

[image: -*-][image: -*-]


I have written V′[image: -*-] for the derivative of V[image: -*-] with respect to x[image: -*-] in
order to save writing. The term in η2[image: -*-] and the ones beyond fall
into the ‘second and higher order’ category and we don’t have to worry
about them. Putting it all together, 

[image: -*-][image: -*-]


Now if we look carefully at the thing, we see that the first two terms
which I have arranged here correspond to the action [image: \underline{S}][image: \underline{S}]
that I would have calculated with the true path [image: \underline{x}][image: \underline{x}]. The
thing I want to concentrate on is the change in S[image: -*-]—the difference
between the S[image: -*-] and the [image: \underline{S}][image: \underline{S}] that we would get for the
right path. This difference we will write as δ S[image: -*-], called the
variation in S[image: -*-]. Leaving out the ‘second and higher order’ terms, I
have for δ S[image: -*-]

[image: -*-][image: -*-]







“Now the problem is this: Here is a certain integral. I don’t know
what the [image: \underline{x}][image: \underline{x}] is yet, but I do know that no matter
what η[image: -*-] is, this integral must be zero. Well, you think, the only
way that that can happen is that what multiplies η[image: -*-] must be zero.
But what about the first term with d η/d t[image: -*-]? Well, after all,
if η[image: -*-] can be anything at all, its derivative is anything also, so you
conclude that the coefficient of d η/d t[image: -*-] must also be zero. That
isn’t quite right. It isn’t quite right because there is a connection
between η[image: -*-] and its derivative; they are not absolutely
independent, because η (t)[image: -*-] must be zero at both t1[image: -*-] and t2[image: -*-].





“The method of solving all problems in the calculus of variations
always uses the same general principle. You make the shift in the
thing you want to vary (as we did by adding η[image: -*-]); you look at the
first-order terms; then you always arrange things in such a
form that you get an integral of the form ‘some kind of stuff times
the shift (η)[image: -*-],’ but with no other derivatives (no d η/d t[image: -*-]). It
must be rearranged so it is always ‘something’ times η[image: -*-]. You will
see the great value of that in a minute. (There are formulas that tell
you how to do this in some cases without actually calculating, but
they are not general enough to be worth bothering about; the best way
is to calculate it out this way.)





“How can I rearrange the term in d η/d t[image: -*-] to make it have an η[image: -*-]?
I can do that by integrating by parts. It turns out that the whole trick
of the calculus of variations consists of writing down the variation
of S[image: -*-] and then integrating by parts so that the derivatives of η[image: -*-]
disappear. It is always the same in every problem in which derivatives
appear.





“You remember the general principle for integrating by parts. If you
have any function f[image: -*-] times d η/d t[image: -*-] integrated with respect to t[image: -*-],
you write down the derivative of η f[image: -*-]:

[image: -*-][image: -*-]


The integral you want is over the last term, so 

[image: -*-][image: -*-]







“In our formula for δ S[image: -*-], the function f[image: -*-] is m[image: -*-]
times [image: d\underline{x}/dt][image: d\underline{x}/dt]; therefore, I have the following formula
for δ S[image: -*-].



[image: -*-][image: -*-]



The first term must be evaluated at the two limits t1[image: -*-] and t2[image: -*-]. Then
I must have the integral from the rest of the integration by parts. The
last term is brought down without change.





“Now comes something which always happens—the integrated part
disappears. (In fact, if the integrated part does not disappear, you
restate the principle, adding conditions to make sure it does!) We
have already said that η[image: -*-] must be zero at both ends of the path,
because the principle is that the action is a minimum provided that
the varied curve begins and ends at the chosen points. The condition
is that η (t1)=0[image: -*-], and η (t2)=0[image: -*-]. So the integrated term is
zero. We collect the other terms together and obtain this:

[image: -*-][image: -*-]


The variation in S[image: -*-] is now the way we wanted it—there is the stuff
in brackets, say F[image: -*-], all multiplied by η (t)[image: -*-] and integrated from
t1[image: -*-] to t2[image: -*-].





“We have that an integral of something or other times η (t)[image: -*-] is
always zero:

[image: -*-][image: -*-]


I have some function of t[image: -*-]; I multiply it by η (t)[image: -*-]; and I
integrate it from one end to the other. And no matter what the η[image: -*-]
is, I get zero. That means that the function F (t)[image: -*-] is zero. That’s
obvious, but anyway I’ll show you one kind of proof.




[image: -]
Fig. 19–10. 





“Suppose that for η (t)[image: -*-] I took something which was zero for all t[image: -*-]
except right near one particular value. It stays zero until it gets to
this t[image: -*-], then it blips up for a moment and blips right back down
(Fig. 19–10). When we do the integral of this η[image: -*-] times
any function F[image: -*-], the only place that you get anything other than zero
was where η (t)[image: -*-] was blipping, and then you get the value of F[image: -*-] at
that place times the integral over the blip. The integral over the blip
alone isn’t zero, but when multiplied by F[image: -*-] it has to be; so the
function F[image: -*-] has to be zero where the blip was. But the blip was
anywhere I wanted to put it, so F[image: -*-] must be zero everywhere.





“We see that if our integral is zero for any η[image: -*-], then the
coefficient of η[image: -*-] must be zero. The action integral will be a
minimum for the path that satisfies this complicated differential
equation:

[image: -*-][image: -*-]


It’s not really so complicated; you have seen it before. It is
just F=m a[image: -*-]. The first term is the mass times acceleration, and the
second is the derivative of the potential energy, which is the force.





“So, for a conservative system at least, we have demonstrated that
the principle of least action gives the right answer; it says that the
path that has the minimum action is the one satisfying Newton’s law.





“One remark: I did not prove it was a minimum—maybe it’s a
maximum. In fact, it doesn’t really have to be a minimum. It is quite
analogous to what we found for the ‘principle of least time’ which we
discussed in optics. There also, we said at first it was ‘least’
time. It turned out, however, that there were situations in which it
wasn’t the least time. The fundamental principle was that for
any first-order variation away from the optical path, the
change in time was zero; it is the same story. What we really
mean by ‘least’ is that the first-order change in the value of S[image: -*-],
when you change the path, is zero. It is not necessarily a ‘minimum.’





“Next, I remark on some generalizations. In the first place, the thing
can be done in three dimensions. Instead of just x[image: -*-], I would have
x[image: -*-], y[image: -*-], and z[image: -*-] as functions of t[image: -*-]; the action is more complicated.
For three-dimensional motion, you have to use the complete kinetic
energy—(m/2)[image: -*-] times the whole velocity squared. That is,

[image: -*-][image: -*-]


Also, the potential energy is a function of x[image: -*-], y[image: -*-], and z[image: -*-]. And
what about the path? The path is some general curve in space, which is
not so easily drawn, but the idea is the same. And what about
the η[image: -*-]?  Well, η[image: -*-] can have three components. You could shift the
paths in x[image: -*-], or in y[image: -*-], or in z[image: -*-]—or you could shift in all three
directions simultaneously. So η[image: -*-] would be a vector. This doesn’t
really complicate things too much, though. Since only the
first-order variation has to be zero, we can do the calculation
by three successive shifts. We can shift η[image: -*-] only in the
x[image: -*-]-direction and say that coefficient must be zero. We get one
equation. Then we shift it in the y[image: -*-]-direction and get another. And
in the z[image: -*-]-direction and get another. Or, of course, in any order that
you want. Anyway, you get three equations. And, of course, Newton’s
law is really three equations in the three dimensions—one for each
component. I think that you can practically see that it is bound to
work, but we will leave you to show for yourself that it will work for
three dimensions. Incidentally, you could use any coordinate system
you want, polar or otherwise, and get Newton’s laws appropriate to
that system right off by seeing what happens if you have the
shift η[image: -*-] in radius, or in angle, etc.





“Similarly, the method can be generalized to any number of particles.
If you have, say, two particles with a force between them, so that there
is a mutual potential energy, then you just add the kinetic energy of
both particles and take the potential energy of the mutual interaction.
And what do you vary? You vary the paths of both particles. Then,
for two particles moving in three dimensions, there are six equations.
You can vary the position of particle 1 in the x[image: -*-]-direction, in the
y[image: -*-]-direction, and in the z[image: -*-]-direction, and similarly for particle 2;
so there are six equations. And that’s as it should be. There are the
three equations that determine the acceleration of particle 1 in terms
of the force on it and three for the acceleration of particle 2, from
the force on it. You follow the same game through, and you get Newton’s
law in three dimensions for any number of particles.





“I have been saying that we get Newton’s law. That is not quite true,
because Newton’s law includes nonconservative forces like friction.
Newton said that m a[image: -*-] is equal to
any F[image: -*-]. But the principle of least action only works for
conservative systems—where all forces can be gotten from a
potential function. You know, however, that on a microscopic level—on
the deepest level of physics—there are no nonconservative forces.
Nonconservative forces, like friction, appear only because we neglect
microscopic complications—there are just too many particles to
analyze. But the fundamental laws can be put in the form
of a principle of least action.





“Let me generalize still further. Suppose we ask what happens if the
particle moves relativistically. We did not get the right relativistic
equation of motion; F=m a[image: -*-] is only right nonrelativistically. The
question is: Is there a corresponding principle of least action for
the relativistic case? There is. The formula in the case of relativity
is the following:



[image: -*-][image: -*-]



The first part of the action integral is the rest mass m0[image: -*-]
times c2[image: -*-] times the integral of a function of velocity,
√1−v2/c2[image: -*-]. Then instead of just the potential energy, we have
an integral over the scalar potential ϕ[image: -*-] and over v[image: -*-] times
the vector potential A[image: -*-]. Of course, we are then including only
electromagnetic forces. All electric and magnetic fields are given in
terms of ϕ[image: -*-] and A[image: -*-]. This action function gives the complete
theory of relativistic motion of a single particle in an
electromagnetic field.





“Of course, wherever I have written v[image: -*-], you understand that
before you try to figure anything out, you must substitute d x/d t[image: -*-]
for vx[image: -*-] and so on for the other components. Also, you put the point
along the path at time t[image: -*-], x (t)[image: -*-], y (t)[image: -*-], z (t)[image: -*-] where I wrote
simply x[image: -*-], y[image: -*-], z[image: -*-]. Properly, it is only after you have made those
replacements for the v[image: -*-]’s that you have the formula for the
action for a relativistic particle. I will leave to the more ingenious
of you the problem to demonstrate that this action formula does, in
fact, give the correct equations of motion for relativity. May I
suggest you do it first without the A[image: -*-], that is, for no magnetic
field?  Then you should get the components of the equation of motion,
d p/d t=−q ∇ϕ[image: -*-], where, you remember,
p=m0 v/√1−v2/c2[image: -*-].





“It is much more difficult to include also the case with a vector
potential. The variations get much more complicated. But in the end,
the force term does come out equal to q (E+v×B)[image: -*-], as
it should. But I will leave that for you to play with.





“I would like to emphasize that in the general case, for instance in
the relativistic formula, the action integrand no longer has the form of
the kinetic energy minus the potential energy. That’s only true in the
nonrelativistic approximation. For example, the
term m0 c2 √1−v2/c2[image: -*-] is not what we have called the kinetic
energy. The question of what the action should be for any particular
case must be determined by some kind of trial and error. It is just the
same problem as determining what are the laws of motion in the first
place. You just have to fiddle around with the equations that you know
and see if you can get them into the form of the principle of least
action.





“One other point on terminology. The function that is integrated over
time to get the action S[image: -*-] is called the Lagrangian,
L[image: -*-],
which is a function only of the velocities and positions of particles.
So the principle of least action is also written

[image: -*-][image: -*-]


where by xi[image: -*-] and vi[image: -*-] are meant all the components of the positions
and velocities. So if you hear someone talking about the ‘Lagrangian,’
you know they are talking about the function that is used to
find S[image: -*-]. For relativistic motion in an electromagnetic field

[image: -*-][image: -*-]







“Also, I should say that S[image: -*-] is not really called the ‘action’ by the
most precise and pedantic people. It is called ‘Hamilton´s first
principal function.’ Now I hate to give a lecture on
‘the-principle-of-least-Hamilton’s-first-principal-function.’ So I call
it ‘the action.’ Also, more and more people are calling it the action.
You see, historically something else which is not quite as useful was
called the action, but I think it’s more sensible to change to a newer
definition. So now you too will call the new function the action, and
pretty soon everybody will call it by that simple name.





“Now I want to say some things on this subject which are similar to the
discussions I gave about the principle of least time. There is quite a
difference in the characteristic of a law which says a certain integral
from one place to another is a minimum—which tells something about the
whole path—and of a law which says that as you go along, there is a
force that makes it accelerate. The second way tells how you inch your
way along the path, and the other is a grand statement about the whole
path. In the case of light, we talked about the connection of these two.
Now, I would like to explain why it is true that there are differential
laws when there is a least action principle of this kind. The reason is
the following: Consider the actual path in space and time. As before,
let’s take only one dimension, so we can plot the graph of x[image: -*-] as a
function of t[image: -*-]. Along the true path, S[image: -*-] is a minimum. Let’s suppose
that we have the true path and that it goes through some point a[image: -*-] in
space and time, and also through another nearby point b[image: -*-]
(Fig. 19–11). Now if the entire integral from t1[image: -*-] to t2[image: -*-]
is a minimum, it is also necessary that the integral along the little
section from a[image: -*-] to b[image: -*-] is also a minimum. It can’t be that the part
from a[image: -*-] to b[image: -*-] is a little bit more. Otherwise you could just fiddle
with just that piece of the path and make the whole integral a little
lower.




[image: -]
Fig. 19–11. 





“So every subsection of the path must also be a minimum. And this is
true no matter how short the subsection. Therefore, the principle that
the whole path gives a minimum can be stated also by saying that an
infinitesimal section of path also has a curve such that it has a
minimum action. Now if we take a short enough section of
path—between two points a[image: -*-] and b[image: -*-] very close together—how the
potential varies from one place to another far away is not the
important thing, because you are staying almost in the same place over
the whole little piece of the path. The only thing that you have to
discuss is the first-order change in the potential. The answer can
only depend on the derivative of the potential and not on the
potential everywhere. So the statement about the gross property of the
whole path becomes a statement of what happens for a short section of
the path—a differential statement. And this differential statement
only involves the derivatives of the potential, that is, the force at
a point. That’s the qualitative explanation of the relation between
the gross law and the differential law.





“In the case of light we also discussed the question: How does the
particle find the right path? From the differential point of view, it
is easy to understand. Every moment it gets an acceleration and knows
only what to do at that instant. But all your instincts on cause and
effect go haywire when you say that the particle decides to take the
path that is going to give the minimum action. Does it ‘smell’ the
neighboring paths to find out whether or not they have more action? In
the case of light, when we put blocks in the way so that the photons
could not test all the paths, we found that they couldn’t figure out
which way to go, and we had the phenomenon of diffraction.





“Is the same thing true in mechanics? Is it true that the particle
doesn’t just ‘take the right path’ but that it looks at all the other
possible trajectories? And if by having things in the way, we don’t
let it look, that we will get an analog of diffraction? The miracle of
it all is, of course, that it does just that. That’s what the laws of
quantum mechanics say. So our principle of least action is
incompletely stated. It isn’t that a particle takes the path of least
action but that it smells all the paths in the neighborhood and
chooses the one that has the least action by a method analogous to the
one by which light chose the shortest time. You remember that the way
light chose the shortest time was this: If it went on a path that took
a different amount of time, it would arrive at a different phase. And
the total amplitude at some point is the sum of contributions of
amplitude for all the different ways the light can arrive. All the
paths that give wildly different phases don’t add up to anything. But
if you can find a whole sequence of paths which have phases almost all
the same, then the little contributions will add up and you get a
reasonable total amplitude to arrive. The important path becomes the
one for which there are many nearby paths which give the same phase.





“It is just exactly the same thing for quantum mechanics. The
complete quantum mechanics (for the nonrelativistic case and
neglecting electron spin) works as follows: The probability that a
particle starting at point 1 at the time t1[image: -*-] will arrive at
point 2 at the time t2[image: -*-] is the square of a probability amplitude. The
total amplitude can be written as the sum of the amplitudes for each
possible path—for each way of arrival. For every x (t)[image: -*-] that we
could have—for every possible imaginary trajectory—we have to
calculate an amplitude. Then we add them all together. What do we take
for the amplitude for each path? Our action integral tells us what the
amplitude for a single path ought to be. The amplitude is proportional
to some constant times ei S/ℏ[image: -*-], where S[image: -*-] is the action for
that path. That is, if we represent the phase of the amplitude by a
complex number, the phase angle is S/ℏ[image: -*-]. The action S[image: -*-] has
dimensions of energy times time, and 
Planck’s constant ℏ[image: -*-] has the
same dimensions. It is the constant that determines when quantum
mechanics is important.





“Here is how it works: Suppose that for all paths, S[image: -*-] is very large
compared to ℏ[image: -*-]. One path contributes a certain amplitude. For a
nearby path, the phase is quite different, because with an enormous S[image: -*-]
even a small change in S[image: -*-] means a completely different phase—because
ℏ[image: -*-] is so tiny. So nearby paths will normally cancel their effects
out in taking the sum—except for one region, and that is when a path
and a nearby path all give the same phase in the first approximation
(more precisely, the same action within ℏ[image: -*-]). Only those paths will
be the important ones. So in the limiting case in which Planck’s
constant ℏ[image: -*-] goes to zero, the
correct quantum-mechanical laws can be summarized by simply saying:
‘Forget about all these probability amplitudes. The particle does go on
a special path, namely, that one for which S[image: -*-] does not vary in the
first approximation.’ That’s the relation between the principle of least
action and quantum mechanics. The fact that quantum mechanics can be
formulated in this way was discovered in 1942 by a student of that same
teacher, Bader, I spoke of at the beginning of this lecture. [Quantum
mechanics was originally formulated by giving a differential equation
for the amplitude (Schrödinger) and also by some other matrix mathematics
(Heisenberg).]





“Now I want to talk about other minimum principles in physics. There
are many very interesting ones. I will not try to list them all now
but will only describe one more. Later on, when we come to a physical
phenomenon which has a nice minimum principle, I will tell about it
then. I want now to show that we can describe electrostatics, not by
giving a differential equation for the field, but by saying that a
certain integral is a maximum or a minimum. First, let’s take the case
where the charge density is known everywhere, and the problem is to
find the potential ϕ[image: -*-] everywhere in space. You know that the
answer should be

[image: -*-][image: -*-]


But another way of stating the same thing is this: Calculate the
integral U*[image: -*-], where

[image: -*-][image: -*-]


which is a volume integral to be taken over all space. This thing is a
minimum for the correct potential distribution ϕ (x,y,z)[image: -*-].





“We can show that the two statements about electrostatics are
equivalent. Let’s suppose that we pick any function ϕ[image: -*-]. We want to
show that when we take for ϕ[image: -*-] the correct
potential [image: \underline{\phi}][image: \underline{\phi}], plus a small deviation f[image: -*-], then in the first
order, the change in U*[image: -*-] is zero. So we write

[image: -*-][image: -*-]


The [image: \underline{\phi}][image: \underline{\phi}] is what we are looking for, but we are making a
variation of it to find what it has to be so that the variation
of U*[image: -*-] is zero to first order. For the first part of U*[image: -*-],
we need

[image: -*-][image: -*-]


The only first-order term that will vary is

[image: -*-][image: -*-]


In the second term of the quantity U*[image: -*-], the integrand is

[image: -*-][image: -*-]


whose variable part is ρ f[image: -*-]. So, keeping only the variable parts,
we need the integral

[image: -*-][image: -*-]







“Now, following the old general rule, we have to get the darn thing
all clear of derivatives of f[image: -*-]. Let’s look at what the derivatives
are. The dot product is

[image: -*-][image: -*-]


which we have to integrate with respect to x[image: -*-], to y[image: -*-], and to z[image: -*-]. Now
here is the trick: to get rid of ∂f/∂x[image: -*-] we integrate by parts
with respect to x[image: -*-]. That will carry the derivative over onto
the [image: \underline{\phi}][image: \underline{\phi}]. It’s the same general idea we used to get rid of
derivatives with respect to t[image: -*-]. We use the equality

[image: -*-][image: -*-]


The integrated term is zero, since we have to make f[image: -*-] zero at infinity.
(That corresponds to making η[image: -*-] zero at t1[image: -*-] and t2[image: -*-]. So our
principle should be more accurately stated: U*[image: -*-] is less for the
true ϕ[image: -*-] than for any other ϕ (x,y,z)[image: -*-] having the same values at
infinity.) Then we do the same thing for y[image: -*-] and z[image: -*-]. So our
integral Δ U*[image: -*-] is

[image: -*-][image: -*-]


In order for this variation to be zero for any f[image: -*-], no matter what,
the coefficient of f[image: -*-] must be zero and, therefore,

[image: -*-][image: -*-]


We get back our old equation. So our ‘minimum’ proposition is correct.





“We can generalize our proposition if we do our algebra in a little
different way. Let’s go back and do our integration by parts without
taking components. We start by looking at the following equality:

[image: -*-][image: -*-]


If I differentiate out the left-hand side, I can show that it is just
equal to the right-hand side. Now we can use this equation to integrate
by parts. In our integral Δ U*[image: -*-], we replace
[image: \FLPgrad{\underline{\phi}}\cdot\FLPgrad{f}][image: \FLPgrad{\underline{\phi}}\cdot\FLPgrad{f}]
by [image: \FLPdiv{(f\,\FLPgrad{\underline{\phi}})}-f\,\nabla^2\underline{\phi}][image: \FLPdiv{(f\,\FLPgrad{\underline{\phi}})}-f\,\nabla^2\underline{\phi}],
which gets integrated over volume. The divergence term integrated over
volume can be replaced by a surface integral:

[image: -*-][image: -*-]


Since we are integrating over all space, the surface over which we are
integrating is at infinity. There, f[image: -*-] is zero and we get the same
answer as before.





“Only now we see how to solve a problem when we don’t know
where all the charges are. Suppose that we have conductors with
charges spread out on them in some way. We can still use our minimum
principle if the potentials of all the conductors are fixed. We carry
out the integral for U*[image: -*-] only in the space outside of all
conductors. Then, since we can’t vary [image: \underline{\phi}][image: \underline{\phi}] on the
conductor, f[image: -*-] is zero on all those surfaces, and the surface integral

[image: -*-][image: -*-]


is still zero. The remaining volume integral

[image: -*-][image: -*-]


is only to be carried out in the spaces between conductors. Of course,
we get Poisson’s equation again,

[image: -*-][image: -*-]


So we have shown that our original integral U*[image: -*-] is also a minimum if
we evaluate it over the space outside of conductors all at fixed
potentials (that is, such that any trial ϕ (x,y,z)[image: -*-] must equal the
given potential of the conductors when (x,y,z)[image: -*-] is a point on the
surface of a conductor).





“There is an interesting case when the only charges are on
conductors. Then

[image: -*-][image: -*-]


Our minimum principle says that in the case where there are conductors
set at certain given potentials, the potential between them adjusts
itself so that integral U*[image: -*-] is least. What is this integral? The
term ∇ϕ[image: -*-] is the electric field, so the integral is the
electrostatic energy. The true field is the one, of all those coming
from the gradient of a potential, with the minimum total energy.




[image: -]
Fig. 19–12. 





“I would like to use this result to calculate something particular to
show you that these things are really quite practical. Suppose I take
two conductors in the form of a cylindrical condenser
(Fig. 19–12). The inside conductor has the potential V[image: -*-],
and the outside is at the potential zero. Let the radius of the inside
conductor be a[image: -*-] and that of the outside, b[image: -*-]. Now we can suppose
any distribution of potential between the two. If we use the
correct [image: \underline{\phi}][image: \underline{\phi}], and
calculate [image: \epsO/2\int(\FLPgrad{\underline{\phi}})^2\,dV][image: \epsO/2\int(\FLPgrad{\underline{\phi}})^2\,dV], it should be
the energy of the system, [image: \tfrac{1}{2}CV^2][image: \tfrac{1}{2}CV^2]. So we can also
calculate C[image: -*-] by our principle. But if we use a wrong distribution of
potential and try to calculate the capacity C[image: -*-] by this method, we will
get a capacity that is too big, since V[image: -*-] is specified. Any assumed
potential ϕ[image: -*-] that is not the exactly correct one will give a
fake C[image: -*-] that is larger than the correct value. But if my false ϕ[image: -*-]
is any rough approximation, the C[image: -*-] will be a good approximation,
because the error in C[image: -*-] is second order in the error in ϕ[image: -*-].





“Suppose I don’t know the capacity of a cylindrical condenser. I can
use this principle to find it. I just guess at the potential
function ϕ[image: -*-] until I get the lowest C[image: -*-]. Suppose, for instance, I pick a
potential that corresponds to a constant field. (You know, of course,
that the field isn’t really constant here; it varies as 1/r[image: -*-].) A
field which is constant means a potential which goes linearly with
distance. To fit the conditions at the two conductors, it must be

[image: -*-][image: -*-]


This function is V[image: -*-] at r=a[image: -*-], zero at r=b[image: -*-], and in between has a
constant slope equal to −V/(b−a)[image: -*-]. So what one does to find the
integral U*[image: -*-] is multiply the square of this gradient by ϵ0/2[image: -*-]
and integrate over all volume. Let’s do this calculation for a
cylinder of unit length. A volume element at the radius r[image: -*-] is 2 π r d r[image: -*-]. Doing the integral, I find that my first try at the capacity
gives

[image: -*-][image: -*-]


The integral is easy; it is just

[image: -*-][image: -*-]


So I have a formula for the capacity which is not the true one but is
an approximate job:

[image: -*-][image: -*-]


It is, naturally, different from the correct
answer C=2 π ϵ0/ln(b/a)[image: -*-], but it’s not too bad. Let’s compare it
with the right answer for several values of b/a[image: -*-]. I have computed out
the answers in Table 19–1. Even when b/a[image: -*-] is as big
as 2—which gives a pretty big variation in the field compared with a
linearly varying field—I get a pretty fair approximation. The answer
is, of course, a little too high, as expected. The thing gets much worse
if you have a tiny wire inside a big cylinder. Then the field has
enormous variations and if you represent it by a constant, you’re not
doing very well. With b/a=100[image: -*-], we’re off by nearly a factor of two.
Things are much better for small b/a[image: -*-]. To take the opposite extreme,
when the conductors are not very far apart—say b/a=1.1[image: -*-]—then the
constant field is a pretty good approximation, and we get the correct
value for C[image: -*-] to within a tenth of a percent.






Table 19–1. 
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“Now I would like to tell you how to improve such a calculation. (Of
course, you know the right answer for the cylinder, but the
method is the same for some other odd shapes, where you may not know
the right answer.) The next step is to try a better approximation to
the unknown true ϕ[image: -*-]. For example, we might try a constant plus an
exponential ϕ[image: -*-], etc. But how do you know when you have a better
approximation unless you know the true ϕ[image: -*-]? Answer: You
calculate C[image: -*-]; the lowest C[image: -*-] is the value nearest the truth. Let us try this
idea out. Suppose that the potential is not linear but say quadratic
in r[image: -*-]—that the electric field is not constant but linear. The most
general quadratic form that fits ϕ=0[image: -*-] at r=b[image: -*-] and ϕ=V[image: -*-]
at r=a[image: -*-] is

[image: -*-][image: -*-]


where α[image: -*-] is any constant number. This formula is a little more
complicated. It involves a quadratic term in the potential as well as
a linear term. It is very easy to get the field out of it. The field
is just

[image: -*-][image: -*-]


Now we have to square this and integrate over volume. But wait a moment.
What should I take for α[image: -*-]? I can take a parabola for the ϕ[image: -*-];
but what parabola? Here’s what I do: Calculate the capacity with
an arbitrary α[image: -*-]. What I get is

[image: -*-][image: -*-]


It looks a little complicated, but it comes out of integrating the
square of the field. Now I can pick my α[image: -*-]. I know that the truth
lies lower than anything that I am going to calculate, so whatever I put
in for α[image: -*-] is going to give me an answer too big. But if I keep
playing with α[image: -*-] and get the lowest possible value I can, that
lowest value is nearer to the truth than any other value. So what I do
next is to pick the α[image: -*-] that gives the minimum value for C[image: -*-].
Working it out by ordinary calculus, I get that the minimum C[image: -*-] occurs
for α=−2 b/(b+a)[image: -*-]. Substituting that value into the formula, I
obtain for the minimum capacity

[image: -*-][image: -*-]







“I’ve worked out what this formula gives for C[image: -*-] for various values
of b/a[image: -*-]. I call these numbers C (quadratic)[image: -*-].
Table 19–2 compares C (quadratic)[image: -*-] with the
true C[image: -*-].






Table 19–2. 





[image: --][image: --]


“For example, when the ratio of the radii is 2 to 1, I
have 1.444[image: -*-], which is a very good approximation to the true answer,
1.4423[image: -*-]. Even for larger b/a[image: -*-], it stays pretty good—it is much,
much better than the first approximation. It is even fairly
good—only off by 10[image: -*-] percent—when b/a[image: -*-] is 10[image: -*-] to 1. But when
it gets to be 100[image: -*-] to 1—well, things begin to go wild. I get that
C[image: -*-] is 0.346[image: -*-] instead of 0.217[image: -*-]. On the other hand, for a ratio of
radii of 1.5[image: -*-], the answer is excellent; and for a b/a[image: -*-] of 1.1[image: -*-], the
answer comes out 10.492065[image: -*-] instead of 10.492059[image: -*-]. Where the answer
should be good, it is very, very good.





“I have given these examples, first, to show the theoretical value of
the principles of minimum action and minimum principles in general
and, second, to show their practical utility—not just to calculate a
capacity when we already know the answer. For any other shape, you can
guess an approximate field with some unknown parameters like α[image: -*-]
and adjust them to get a minimum. You will get excellent numerical
results for otherwise intractable problems.”





 


19–2 A note added after the lecture


“I should like to add something that I didn’t have time for in the
lecture. (I always seem to prepare more than I have time to tell about.)
As I mentioned earlier, I got interested in a problem while working on
this lecture. I want to tell you what that problem is. Among the minimum
principles that I could mention, I noticed that most of them sprang in
one way or another from the least action principle of mechanics and
electrodynamics. But there is also a class that does not. As an example,
if currents are made to go through a piece of material obeying
Ohm’s law, the currents distribute
themselves inside the piece so that the rate at which heat is generated
is as little as possible. Also we can say (if things are kept
isothermal) that the rate at which energy is generated is a minimum.
Now, this principle also holds, according to classical theory, in
determining even the distribution of velocities of the electrons inside
a metal which is carrying a current. The distribution of velocities is
not exactly the equilibrium distribution [Chapter 40,
Vol. I, Eq. (40.6)] because they are drifting sideways. The
new distribution can be found from the principle that it is the
distribution for a given current for which the entropy developed per
second by collisions is as small as possible. The true description of
the electrons’ behavior ought to be by quantum mechanics, however. The
question is: Does the same principle of minimum entropy generation also
hold when the situation is described quantum-mechanically? I haven’t
found out yet.





“The question is interesting academically, of course. Such principles
are fascinating, and it is always worth while to try to see how general
they are. But also from a more practical point of view, I want to
know. I, with some colleagues, have published a paper in which we
calculated by quantum mechanics approximately the electrical resistance
felt by an electron moving through an ionic crystal like NaCl.
[Feynman, Hellwarth, Iddings,
and Platzman, “Mobility of Slow Electrons in a Polar Crystal,”
Phys. Rev. 127, 1004 (1962).] But if a minimum
principle existed, we could use it to make the results much more
accurate, just as the minimum principle for the capacity of a condenser
permitted us to get such accuracy for that capacity even though we had
only a rough knowledge of the electric field.”





 

	
  
  Later chapters do not depend on the material of this special 
  lecture—which is intended to be for “entertainment.”
  ↩






  
    

20 Solutions of Maxwell’s Equations in Free Space


	
			
		Review:
		
			
		Chapter 47, Vol. I, The Wave Equation
		
	

	
			
		Chapter 28, Vol. I, Electromagnetic Radiation
		
	





20–1 Waves in free space; plane waves


In Chapter 18 we had reached the point where we had the
Maxwell equations in complete form. All there is to know about the
classical theory of the electric and magnetic fields can be found in the
four equations:



[image: -*-][image: -*-]
(20.1)





When we put all these equations together, a remarkable new phenomenon
occurs: fields generated by moving charges can leave the sources and
travel alone through space. We considered a special example in which
an infinite current sheet is suddenly turned on. After the current has
been on for the time t[image: -*-], there are uniform electric and magnetic
fields extending out the distance c t[image: -*-] from the source. Suppose that
the current sheet lies in the y z[image: -*-]-plane with a surface current
density J[image: -*-] going toward positive y[image: -*-]. The electric field will have
only a y[image: -*-]-component, and the magnetic field, only a
z[image: -*-]-component. The field components are given by

[image: -*-][image: -*-]
(20.2)




for positive values of x[image: -*-] less than c t[image: -*-]. For larger x[image: -*-] the fields
are zero. There are, of course, similar fields extending the same
distance from the current sheet in the negative x[image: -*-]-direction. In
Fig. 20–1 we show a graph of the magnitude of the
fields as a function of x[image: -*-] at the instant t[image: -*-]. As time goes on, the
“wavefront” at c t[image: -*-] moves outward in x[image: -*-] at the constant
velocity c[image: -*-].



[image: -][image: -]
Fig. 20–1. The electric and magnetic field as a function of x[image: -*-] at the
time t[image: -*-] after the current sheet is turned on.





Now consider the following sequence of events. We turn on a current of
unit strength for a while, then suddenly increase the current strength
to three units, and hold it constant at this value. What do the fields
look like then? We can see what the fields will look like in the
following way. First, we imagine a current of unit strength that is
turned on at t=0[image: -*-] and left constant forever. The fields for
positive x[image: -*-] are then given by the graph in part (a) of Fig. 20–2.
Next, we ask what would happen if we turn on a steady current of two
units at the time t1[image: -*-].



[image: -][image: -]
Fig. 20–2. The electric field of a current sheet. (a) One unit of current
turned on at t=0[image: -*-]; (b) Two units of current turned on at t=t1[image: -*-];
(c) Superposition of (a) and (b).





The fields in this case will be twice as high as before, but will
extend out in x[image: -*-] only the distance c (t−t1)[image: -*-], as shown in part (b)
of the figure. When we add these two solutions, using the principle of
superposition, we find that the sum of the two sources is a current of
one unit for the time from zero to t1[image: -*-] and a current of three units
for times greater than t1[image: -*-]. At the time t[image: -*-] the fields will vary
with x[image: -*-] as shown in part (c) of Fig. 20–2.




Now let’s take a more complicated problem. Consider a current which is
turned on to one unit for a while, then turned up to three units, and
later turned off to zero. What are the fields for such a current? We
can find the solution in the same way—by adding the solutions of
three separate problems. First, we find the fields for a step current
of unit strength. (We have solved that problem already.)  Next, we
find the fields produced by a step current of two units. Finally, we
solve for the fields of a step current of minus three
units. When we add the three solutions, we will have a current which
is one unit strong from t=0[image: -*-] to some later time, say t1[image: -*-], then
three units strong until a still later time t2[image: -*-], and then turned
off—that is, to zero. A graph of the current as a function of time
is shown in Fig. 20–3(a). When we add the three
solutions for the electric field, we find that its variation with x[image: -*-],
at a given instant t[image: -*-], is as shown in Fig. 20–3(b). The
field is an exact representation of the current. The field distribution
in space is a nice graph of the current variation with time—only drawn
backwards. As time goes on the whole picture moves outward at the
speed c[image: -*-], so there is a little blob of field, travelling toward positive x[image: -*-],
which contains a completely detailed memory of the history of all the
current variations. If we were to stand miles away, we could tell from
the variation of the electric or magnetic field exactly how the current
had varied at the source.



[image: -][image: -]
Fig. 20–3. If the current source strength varies as shown in (a), then
at the time t[image: -*-] shown by the arrow the electric field as a function
of x[image: -*-] is as shown in (b).





You will also notice that long after all activity at the source has
completely stopped and all charges and currents are zero, the block of
field continues to travel through space. We have a distribution of
electric and magnetic fields that exist independently of any charges
or currents. That is the new effect that comes from the complete set
of Maxwell’s equations. If we want, we can give a complete
mathematical representation of the analysis we have just done by
writing that the electric field at a given place and a given time is
proportional to the current at the source, only not at the same
time, but at the earlier time t−x/c[image: -*-]. We can write

[image: -*-][image: -*-]
(20.3)









We have, believe it or not, already derived this same equation from
another point of view in Vol. I, when we were dealing with the
theory of the index of refraction. Then, we had to figure out what
fields were produced by a thin layer of oscillating dipoles in a sheet
of dielectric material with the dipoles set in motion by the electric
field of an incoming electromagnetic wave. Our problem was to
calculate the combined fields of the original wave and the waves
radiated by the oscillating dipoles. How could we have calculated the
fields generated by moving charges when we didn’t have Maxwell’s
equations? At that time we took as our starting point (without any
derivation) a formula for the radiation fields produced at large
distances from an accelerating point charge. If you will look in
Chapter 31 of Vol. I, you will see that
Eq. (31.9) there is just the same as the
Eq. (20.3) that we have just written down. Although our
earlier derivation was correct only at large distances from the source,
we see now that the same result continues to be correct even right up to
the source.




We want now to look in a general way at the behavior of electric and
magnetic fields in empty space far away from the sources, i.e., from
the currents and charges. Very near the sources—near enough so that
during the delay in transmission, the source has not had time to
change much—the fields are very much the same as we have found in
what we called the electrostatic or magnetostatic cases. If we go out
to distances large enough so that the delays become important,
however, the nature of the fields can be radically different from the
solutions we have found. In a sense, the fields begin to take on a
character of their own when they have gone a long way from all the
sources. So we can begin by discussing the behavior of the fields in a
region where there are no currents or charges.




Suppose we ask: What kind of fields can there be in regions where
ρ[image: -*-] and j[image: -*-] are both zero? In Chapter 18 we saw
that the physics of Maxwell’s equations could also be expressed in
terms of differential equations for the scalar and vector potentials:

[image: -*-][image: -*-]
(20.4)

(20.5)




If ρ[image: -*-] and j[image: -*-] are zero, these equations take on the simpler
form

[image: -*-][image: -*-]
(20.6)

(20.7)




Thus in free space the scalar potential ϕ[image: -*-] and each component of
the vector potential A[image: -*-] all satisfy the same mathematical
equation. Suppose we let ψ[image: -*-] (psi) stand for any one of the four
quantities ϕ[image: -*-], Ax[image: -*-], Ay[image: -*-], Az[image: -*-]; then we want to investigate
the general solutions of the following equation:

[image: -*-][image: -*-]
(20.8)




This equation is called the three-dimensional wave
equation—three-dimensional, because the function ψ[image: -*-] may depend
in general on x[image: -*-], y[image: -*-], and z[image: -*-], and we need to worry about variations
in all three coordinates. This is made clear if we write out
explicitly the three terms of the Laplacian operator:

[image: -*-][image: -*-]
(20.9)









In free space, the electric fields E[image: -*-] and B[image: -*-] also satisfy
the wave equation. For example, since B=∇×A[image: -*-], we can
get a differential equation for B[image: -*-] by taking the curl of
Eq. (20.7). Since the Laplacian is a scalar operator, the
order of the Laplacian and curl operations can be interchanged:

[image: -*-][image: -*-]


Similarly, the order of the operations curl and ∂/∂t[image: -*-] can be
interchanged:

[image: -*-][image: -*-]


Using these results, we get the following differential equation
for B[image: -*-]:

[image: -*-][image: -*-]
(20.10)




So each component of the magnetic field B[image: -*-] satisfies the
three-dimensional wave equation. Similarly, using the fact that
E=−∇ϕ−∂A/∂t[image: -*-], it follows that the electric
field E[image: -*-] in free space also satisfies the three-dimensional wave
equation:

[image: -*-][image: -*-]
(20.11)









All of our electromagnetic fields satisfy the same wave equation,
Eq. (20.8). We might well ask: What is the most general
solution to this equation? However, rather than tackling that
difficult question right away, we will look first at what can be said
in general about those solutions in which nothing varies in y[image: -*-]
and z[image: -*-]. (Always do an easy case first so that you can see what is going
to happen, and then you can go to the more complicated cases.) Let’s
suppose that the magnitudes of the fields depend only upon x[image: -*-]—that
there are no variations of the fields with y[image: -*-] and z[image: -*-]. We are,
of course, considering plane waves again. We should expect to get
results something like those in the previous section. In fact, we will
find precisely the same answers. You may ask: “Why do it all over
again?” It is important to do it again, first, because we did not
show that the waves we found were the most general solutions for plane
waves, and second, because we found the fields only from a very
particular kind of current source. We would like to ask now: What is
the most general kind of one-dimensional wave there can be in free
space? We cannot find that by seeing what happens for this or that
particular source, but must work with greater generality. Also we are
going to work this time with differential equations instead of with
integral forms. Although we will get the same results, it is a way of
practicing back and forth to show that it doesn’t make any difference
which way you go. You should know how to do things every which way,
because when you get a hard problem, you will often find that only one
of the various ways is tractable.




We could consider directly the solution of the wave equation for some
electromagnetic quantity. Instead, we want to start right from the
beginning with Maxwell’s equations in free space so that you can see
their close relationship to the electromagnetic waves. So we start
with the equations in (20.1), setting the charges and
currents equal to zero. They become
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(20.12)









We write the first equation out in components:

[image: -*-][image: -*-]
(20.13)




We are assuming that there are no variations with y[image: -*-] and z[image: -*-], so the
last two terms are zero. This equation then tells us that

[image: -*-][image: -*-]
(20.14)




Its solution is that Ex[image: -*-], the component of the electric field in the
x[image: -*-]-direction, is a constant in space. If you look at IV
in (20.12), supposing no B[image: -*-]-variation in y[image: -*-] and z[image: -*-]
either, you can see that Ex[image: -*-] is also constant in time. Such a field
could be the steady dc field from some charged condenser plates
a long distance away. We are not interested now in such an uninteresting
static field; we are at the moment interested only in dynamically
varying fields. For dynamic fields, Ex=0[image: -*-].




We have then the important result that for the propagation of plane
waves in any direction, the electric field must be at right
angles to the direction of propagation. It can, of course, still vary
in a complicated way with the coordinate x[image: -*-].




The transverse E[image: -*-]-field can always be resolved into two
components, say the y[image: -*-]-component and the z[image: -*-]-component. So let’s
first work out a case in which the electric field has only one
transverse component. We’ll take first an electric field that is
always in the y[image: -*-]-direction, with zero z[image: -*-]-component. Evidently, if we
solve this problem we can also solve for the case where the electric
field is always in the z[image: -*-]-direction. The general solution can always
be expressed as the superposition of two such fields.





How easy our equations now get. The only component of the electric
field that is not zero is Ey[image: -*-], and all derivatives—except those
with respect to x[image: -*-]—are zero. The rest of Maxwell’s equations then
become quite simple.




Let’s look next at the second of Maxwell’s equations [II of
Eq. (20.12)]. Writing out the components of the curl
E[image: -*-], we have

[image: -*-][image: -*-]


The x[image: -*-]-component of ∇×E[image: -*-] is zero because the derivatives
with respect to y[image: -*-] and z[image: -*-] are zero. The y[image: -*-]-component is also zero;
the first term is zero because the derivative with respect to z[image: -*-] is
zero, and the second term is zero because Ez[image: -*-] is zero. The only
components of the curl of E[image: -*-] that is not zero is the
z[image: -*-]-component, which is equal to ∂Ey/∂x[image: -*-]. Setting the three
components of ∇×E[image: -*-] equal to the corresponding components
of −∂B/∂t[image: -*-], we can conclude the following:

[image: -*-][image: -*-]
(20.15)

(20.16)




Since the x[image: -*-]-component of the magnetic field and the y[image: -*-]-component of
the magnetic field both have zero time derivatives, these two
components are just constant fields and correspond to the
magnetostatic solutions we found earlier. Somebody may have left some
permanent magnets near where the waves are propagating. We will ignore
these constant fields and set Bx[image: -*-] and By[image: -*-] equal to zero.





Incidentally, we would already have concluded that the x[image: -*-]-component
of B[image: -*-] should be zero for a different reason. Since the divergence
of B[image: -*-] is zero (from the third Maxwell equation), applying the
same arguments we used above for the electric field, we would conclude
that the longitudinal component of the magnetic field can have no
variation with x[image: -*-]. Since we are ignoring such uniform fields in our
wave solutions, we would have set Bx[image: -*-] equal to zero. In plane
electromagnetic waves the B[image: -*-]-field, as well as the E[image: -*-]-field,
must be directed at right angles to the direction of propagation.




Equation (20.16) gives us the additional proposition that
if the electric field has only a y[image: -*-]-component, the magnetic field
will have only a z[image: -*-]-component. So E[image: -*-] and B[image: -*-] are at
right angles to each other. This is exactly what happened in the
special wave we have already considered.




We are now ready to use the last of Maxwell’s equations for free space
[IV of Eq. (20.12)]. Writing out the components, we have

[image: -*-][image: -*-]
(20.17)




Of the six derivatives of the components of B[image: -*-], only the
term ∂Bz/∂x[image: -*-] is not equal to zero. So the three equations give us
simply
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(20.18)









The result of all our work is that only one component each of the electric and
magnetic fields is not zero, and that these components must satisfy Eqs.
(20.16) and (20.18). The two equations can be combined
into one if we differentiate the first with respect to x[image: -*-] and the second with
respect to t[image: -*-]; the left-hand sides of the two equations will then be the same
(except for the factor c2[image: -*-]). So we find that Ey[image: -*-] satisfies the equation

[image: -*-][image: -*-]
(20.19)




We have seen the same differential equation before, when we studied
the propagation of sound. It is the wave equation for one-dimensional
waves.




You should note that in the process of our derivation we have found
something more than is contained in Eq. (20.11).
Maxwell’s equations have given us the further information that
electromagnetic waves have field components only at right angles to the
direction of the wave propagation.




Let’s review what we know about the solutions of the one-dimensional
wave equation. If any quantity ψ[image: -*-] satisfies the one-dimensional
wave equation
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(20.20)




then one possible solution is a function ψ (x,t)[image: -*-] of the form

[image: -*-][image: -*-]
(20.21)




that is, some function of the single variable (x−c t)[image: -*-]. The
function f (x−c t)[image: -*-] represents a “rigid” pattern in x[image: -*-] which travels
toward positive x[image: -*-] at the speed c[image: -*-] (see Fig. 20–4). For
example, if the function f[image: -*-] has a maximum when its argument is zero,
then for t=0[image: -*-] the maximum of ψ[image: -*-], will occur at x=0[image: -*-]. At some later
time, say t=10[image: -*-], ψ[image: -*-] will have its maximum at x=10 c[image: -*-]. As time goes
on, the maximum moves toward positive x[image: -*-] at the speed c[image: -*-].



[image: -][image: -]
Fig. 20–4. The function f (x−c t)[image: -*-] represents a constant “shape” that
travels toward positive x[image: -*-] with the speed c[image: -*-].





Sometimes it is more convenient to say that a solution of the
one-dimensional wave equation is a function of (t−x/c)[image: -*-]. However,
this is saying the same thing, because any function of (t−x/c)[image: -*-] is
also a function of (x−c t)[image: -*-]:

[image: -*-][image: -*-]







Let’s show that f (x−c t)[image: -*-] is indeed a solution of the wave
equation. Since it is a function of only one variable—the
variable (x−c t)[image: -*-]—we will let f′[image: -*-] represent the derivative of f[image: -*-] with
respect to its variable and f′′[image: -*-] represent the second derivative
of f[image: -*-]. Differentiating Eq. (20.21) with respect to x[image: -*-], we
have

[image: -*-][image: -*-]


since the derivative of (x−c t)[image: -*-] with respect to x[image: -*-] is 1. The
second derivative of ψ[image: -*-], with respect to x[image: -*-] is clearly

[image: -*-][image: -*-]
(20.22)




Taking derivatives of ψ[image: -*-] with respect to t[image: -*-], we find

[image: -*-][image: -*-]
(20.23)




We see that ψ[image: -*-] does indeed satisfy the one-dimensional wave
equation.




You may be wondering: “If I have the wave equation, how do I know
that I should take f (x−c t)[image: -*-] as a solution? I don’t like this backward
method. Isn’t there some forward way to find the solution?”
Well, one good forward way is to know the solution. It is possible to
“cook up” an apparently forward mathematical argument, especially
because we know what the solution is supposed to be, but with an
equation as simple as this we don’t have to play games. Soon you will
get so that when you see Eq. (20.20), you nearly
simultaneously see ψ=f (x−x t)[image: -*-] as a solution. (Just as now when you
see the integral of x2 d x[image: -*-], you know right away that the answer
is x3/3[image: -*-].)




Actually you should also see a little more. Not only is any function
of (x−c t)[image: -*-] a solution, but any function of (x+c t)[image: -*-] is also a
solution. Since the wave equation contains only c2[image: -*-], changing the
sign of c[image: -*-] makes no difference. In fact, the most general
solution of the one-dimensional wave equation is the sum of two
arbitrary functions, one of (x−c t)[image: -*-] and the other of (x+c t)[image: -*-]:

[image: -*-][image: -*-]
(20.24)




The first term represents a wave travelling toward positive x[image: -*-], and
the second term an arbitrary wave travelling toward negative x[image: -*-]. The
general solution is the superposition of two such waves both existing
at the same time.







We will leave the following amusing question for you to think
about. Take a function ψ[image: -*-] of the following form:

[image: -*-][image: -*-]


This equation isn’t in the form of a function of (x−c t)[image: -*-] or
of (x+c t)[image: -*-]. Yet you can easily show that this function is a solution of
the wave equation by direct substitution into Eq. (20.20).
How can we then say that the general solution is of the form of
Eq. (20.24)?







Applying our conclusions about the solution of the wave equation to
the y[image: -*-]-component of the electric field, Ey[image: -*-], we conclude that Ey[image: -*-]
can vary with x[image: -*-] in any arbitrary fashion. However, the fields which
do exist can always be considered as the sum of two patterns. One wave
is sailing through space in one direction with speed c[image: -*-], with an
associated magnetic field perpendicular to the electric field; another
wave is travelling in the opposite direction with the same speed. Such
waves correspond to the electromagnetic waves that we know
about—light, radiowaves, infrared radiation, ultraviolet radiation,
x-rays, and so on. We have already discussed the radiation of light in
great detail in Vol. I. Since everything we learned there applies to
any electromagnetic wave, we don’t need to consider in great detail
here the behavior of these waves.




We should perhaps make a few further remarks on the question of the
polarization of the electromagnetic waves. In our solution we chose to
consider the special case in which the electric field has only a
y[image: -*-]-component. There is clearly another solution for waves travelling
in the plus or minus x[image: -*-]-direction, with an electric field which has
only a z[image: -*-]-component. Since Maxwell’s equations are linear, the
general solution for one-dimensional waves propagating in the
x[image: -*-]-direction is the sum of waves of Ey[image: -*-] and waves of Ez[image: -*-]. This
general solution is summarized in the following equations:

[image: -*-][image: -*-]
(20.25)




Such electromagnetic waves have an E[image: -*-]-vector whose direction is
not constant but which gyrates around in some arbitrary way in the
y z[image: -*-]-plane. At every point the magnetic field is always perpendicular
to the electric field and to the direction of propagation.




If there are only waves travelling in one direction, say the positive
x[image: -*-]-direction, there is a simple rule which tells the relative
orientation of the electric and magnetic fields. The rule is that the
cross product E×B[image: -*-]—which is, of course, a vector at
right angles to both E[image: -*-] and B[image: -*-]—points in the direction in
which the wave is travelling. If E[image: -*-] is rotated into B[image: -*-] by a
right-hand screw, the screw points in the direction of the wave
velocity. (We shall see later that the vector E×B[image: -*-] has a
special physical significance: it is a vector which describes the flow
of energy in an electromagnetic field.)







20–2 Three-dimensional waves


We want now to turn to the subject of three-dimensional waves. We have
already seen that the vector E[image: -*-] satisfies the wave equation. It
is also easy to arrive at the same conclusion by arguing directly from
Maxwell’s equations. Suppose we start with the equation

[image: -*-][image: -*-]


and take the curl of both sides:

[image: -*-][image: -*-]
(20.26)




You will remember that the curl of the curl of any vector can be
written as the sum of two terms, one involving the divergence and the
other the Laplacian,

[image: -*-][image: -*-]


In free space, however, the divergence of E[image: -*-] is zero, so only the
Laplacian term remains. Also, from the fourth of Maxwell’s equations
in free space [Eq. (20.12)] the time derivative
of c2 ∇×B[image: -*-] is the second derivative of E[image: -*-] with
respect to t[image: -*-]:

[image: -*-][image: -*-]


Equation (20.26) then becomes

[image: -*-][image: -*-]


which is the three-dimensional wave equation. Written out in all its
glory, this equation is, of course,

[image: -*-][image: -*-]
(20.27)









How shall we find the general wave solution? The answer is that all
the solutions of the three-dimensional wave equation can be
represented as a superposition of the one-dimensional solutions we
have already found. We obtained the equation for waves which move in
the x[image: -*-]-direction by supposing that the field did not depend on y[image: -*-]
and z[image: -*-]. Obviously, there are other solutions in which the fields do
not depend on x[image: -*-] and z[image: -*-], representing waves going in the
y[image: -*-]-direction. Then there are solutions which do not depend on x[image: -*-]
and y[image: -*-], representing waves travelling in the z[image: -*-]-direction. Or in
general, since we have written our equations in vector form, the
three-dimensional wave equation can have solutions which are plane
waves moving in any direction at all. Again, since the equations are
linear, we may have simultaneously as many plane waves as we wish,
travelling in as many different directions. Thus the most general
solution of the three-dimensional wave equation is a superposition of
all sorts of plane waves moving in all sorts of directions.




Try to imagine what the electric and magnetic fields look like at
present in the space in this lecture room. First of all, there is a
steady magnetic field; it comes from the currents in the interior of
the earth—that is, the earth’s steady magnetic field. Then there are
some irregular, nearly static electric fields produced perhaps by
electric charges generated by friction as various people move about in
their chairs and rub their coat sleeves against the chair arms. Then
there are other magnetic fields produced by oscillating currents in
the electrical wiring—fields which vary at a frequency of
60[image: -*-] cycles per second, in synchronism with the generator at Boulder
Dam. But more interesting are the electric and magnetic fields varying
at much higher frequencies. For instance, as light travels from window
to floor and wall to wall, there are little wiggles of the electric
and magnetic fields moving along at 186,000[image: -*-] miles per second. Then
there are also infrared waves travelling from the warm foreheads to
the cold blackboard. And we have forgotten the ultraviolet light, the
x-rays, and the radiowaves travelling through the room.




Flying across the room are electromagnetic waves which carry music of
a jazz band. There are waves modulated by a series of impulses
representing pictures of events going on in other parts of the world,
or of imaginary aspirins dissolving in imaginary stomachs. To
demonstrate the reality of these waves it is only necessary to turn on
electronic equipment that converts these waves into pictures and
sounds.




If we go into further detail to analyze even the smallest wiggles,
there are tiny electromagnetic waves that have come into the room from
enormous distances. There are now tiny oscillations of the electric
field, whose crests are separated by a distance of one foot, that have
come from millions of miles away, transmitted to the earth from the
Mariner II space craft which has just passed Venus. Its signals carry
summaries of information it has picked up about the planets
(information obtained from electromagnetic waves that travelled from
the planet to the space craft).




There are very tiny wiggles of the electric and magnetic fields that
are waves which originated billions of light years away—from
galaxies in the remotest corners of the universe. That this is true
has been found by “filling the room with wires”—by building
antennas as large as this room. Such radiowaves have been detected
from places in space beyond the range of the greatest optical
telescopes. Even they, the optical telescopes, are simply gatherers of
electromagnetic waves. What we call the stars are only inferences,
inferences drawn from the only physical reality we have yet gotten
from them—from a careful study of the unendingly complex undulations
of the electric and magnetic fields reaching us on earth.




There is, of course, more: the fields produced by lightning miles
away, the fields of the charged cosmic ray particles as they zip
through the room, and more, and more. What a complicated thing is the
electric field in the space around you! Yet it always satisfies the
three-dimensional wave equation.







20–3 Scientific imagination


I have asked you to imagine these electric and magnetic fields. What
do you do? Do you know how? How do I imagine the electric and
magnetic field? What do I actually see? What are the demands of
scientific imagination? Is it any different from trying to imagine
that the room is full of invisible angels? No, it is not like imagining
invisible angels. It requires a much higher degree of imagination to
understand the electromagnetic field than to understand invisible
angels. Why?  Because to make invisible angels understandable, all I
have to do is to alter their properties a little bit—I make
them slightly visible, and then I can see the shapes of their wings,
and bodies, and halos. Once I succeed in imagining a visible angel,
the abstraction required—which is to take almost invisible angels
and imagine them completely invisible—is relatively easy. So you
say, “Professor, please give me an approximate description of the
electromagnetic waves, even though it may be slightly inaccurate, so
that I too can see them as well as I can see almost invisible
angels. Then I will modify the picture to the necessary abstraction.”




I’m sorry I can’t do that for you. I don’t know how. I have no picture
of this electromagnetic field that is in any sense accurate. I have
known about the electromagnetic field a long time—I was in the same
position 25 years ago that you are now, and I have had 25 years more
of experience thinking about these wiggling waves. When I start
describing the magnetic field moving through space, I speak of the
E[image: -*-]- and B[image: -*-]-fields and wave my arms and you may imagine that
I can see them. I’ll tell you what I see. I see some kind of vague
shadowy, wiggling lines—here and there is an E[image: -*-] and B[image: -*-] written on
them somehow, and perhaps some of the lines have arrows on them—an
arrow here or there which disappears when I look too closely at
it. When I talk about the fields swishing through space, I have a
terrible confusion between the symbols I use to describe the objects
and the objects themselves. I cannot really make a picture that is
even nearly like the true waves. So if you have some difficulty in
making such a picture, you should not be worried that your difficulty
is unusual.




Our science makes terrific demands on the imagination. The degree of
imagination that is required is much more extreme than that required
for some of the ancient ideas. The modern ideas are much harder to
imagine. We use a lot of tools, though. We use mathematical equations
and rules, and make a lot of pictures. What I realize now is that when
I talk about the electromagnetic field in space, I see some kind of a
superposition of all of the diagrams which I’ve ever seen drawn about
them. I don’t see little bundles of field lines running about because
it worries me that if I ran at a different speed the bundles would
disappear, I don’t even always see the electric and magnetic fields
because sometimes I think I should have made a picture with the vector
potential and the scalar potential, for those were perhaps the more
physically significant things that were wiggling.




Perhaps the only hope, you say, is to take a mathematical view. Now
what is a mathematical view? From a mathematical view, there is an
electric field vector and a magnetic field vector at every point in
space; that is, there are six numbers associated with every point. Can
you imagine six numbers associated with each point in space? That’s
too hard. Can you imagine even one number associated with every
point?  I cannot! I can imagine such a thing as the temperature at
every point in space. That seems to be understandable. There is a
hotness and coldness that varies from place to place. But I honestly
do not understand the idea of a number at every point.




So perhaps we should put the question: Can we represent the electric
field by something more like a temperature, say like the displacement of
a piece of jello? Suppose that we were to begin by imagining that the
world was filled with thin jello and that the fields represented some
distortion—say a stretching or twisting—of the jello. Then we could
visualize the field. After we “see” what it is like we could abstract
the jello away. For many years that’s what people tried to do.
Maxwell, Ampère, Faraday, and others tried to understand electromagnetism this way. (Sometimes they
called the abstract jello “ether.”) But it turned out that the attempt
to imagine the electromagnetic field in that way was really standing in
the way of progress. We are unfortunately limited to abstractions, to
using instruments to detect the field, to using mathematical symbols to
describe the field, etc. But nevertheless, in some sense the fields are
real, because after we are all finished fiddling around with
mathematical equations—with or without making pictures and drawings or
trying to visualize the thing—we can still make the instruments detect
the signals from Mariner II and find out about galaxies a billion miles
away, and so on.




The whole question of imagination in science is often misunderstood by
people in other disciplines. They try to test our imagination in the
following way. They say, “Here is a picture of some people in a
situation. What do you imagine will happen next?” When we say, “I
can’t imagine,” they may think we have a weak imagination. They
overlook the fact that whatever we are allowed to imagine in
science must be consistent with everything else we know: that the
electric fields and the waves we talk about are not just some happy
thoughts which we are free to make as we wish, but ideas which must be
consistent with all the laws of physics we know. We can’t allow
ourselves to seriously imagine things which are obviously in
contradiction to the known laws of nature. And so our kind of
imagination is quite a difficult game. One has to have the imagination
to think of something that has never been seen before, never been heard
of before. At the same time the thoughts are restricted in a strait
jacket, so to speak, limited by the conditions that come from our
knowledge of the way nature really is. The problem of creating something
which is new, but which is consistent with everything which has been
seen before, is one of extreme difficulty.





While I’m on this subject I want to talk about whether it will ever be possible
to imagine beauty that we can’t see. It is an interesting
question. When we look at a rainbow, it looks beautiful to us. Everybody says,
“Ooh, a rainbow.” (You see how scientific I am. I am afraid to say something
is beautiful unless I have an experimental way of defining it.) But how would we
describe a rainbow if we were blind? We are blind when we measure the
infrared reflection coefficient of sodium chloride, or when we talk about the
frequency of the waves that are coming from some galaxy that we can’t see—we
make a diagram, we make a plot. For instance, for the rainbow, such a plot would
be the intensity of radiation vs. wavelength measured with a
spectrophotometer for each direction in the sky. Generally, such measurements
would give a curve that was rather flat. Then some day, someone would discover
that for certain conditions of the weather, and at certain angles in the sky,
the spectrum of intensity as a function of wavelength would behave strangely; it
would have a bump. As the angle of the instrument was varied only a little bit,
the maximum of the bump would move from one wavelength to another. Then one day
the physical review of the blind men might publish a technical article with the
title “The Intensity of Radiation as a Function of Angle under Certain
Conditions of the Weather.” In this article there might appear a graph such as
the one in Fig. 20–5. The author would perhaps remark that at the
larger angles there was more radiation at long wavelengths, whereas for the
smaller angles the maximum in the radiation came at shorter wavelengths. (From
our point of view, we would say that the light at 40°[image: -*-] is predominantly
green and the light at 42°[image: -*-] is predominantly red.)




[image: -][image: -]
Fig. 20–5. The intensity of electromagnetic waves as a function of
wavelength for three angles (measured from the direction opposite
the sun), observed only with certain meteorological conditions.





Now do we find the graph of Fig. 20–5 beautiful? It
contains much more detail than we apprehend when we look at a rainbow,
because our eyes cannot see the exact details in the shape of a
spectrum. The eye, however, finds the rainbow beautiful. Do we have
enough imagination to see in the spectral curves the same beauty we
see when we look directly at the rainbow? I don’t know.




But suppose I have a graph of the reflection coefficient of a sodium
chloride crystal as a function of wavelength in the infrared, and also
as a function of angle. I would have a representation of how it would
look to my eyes if they could see in the infrared—perhaps some
glowing, shiny “green,” mixed with reflections from the surface in a
“metallic red.” That would be a beautiful thing, but I don’t know
whether I can ever look at a graph of the reflection coefficient of
NaCl measured with some instrument and say that it has the same
beauty.





On the other hand, even if we cannot see beauty in particular measured
results, we can already claim to see a certain beauty in the
equations which describe general physical laws. For example, in the
wave equation (20.9), there’s something nice about the
regularity of the appearance of the x[image: -*-], the y[image: -*-], the z[image: -*-], and
the t[image: -*-]. And this nice symmetry in appearance of the x[image: -*-], y[image: -*-], z[image: -*-],
and t[image: -*-] suggests to the mind still a greater beauty which has to do with
the four dimensions, the possibility that space has four-dimensional
symmetry, the possibility of analyzing that and the developments of
the special theory of relativity. So there is plenty of intellectual
beauty associated with the equations.







20–4 Spherical waves


We have seen that there are solutions of the wave equation which
correspond to plane waves, and that any electromagnetic wave can be
described as a superposition of many plane waves. In certain special
cases, however, it is more convenient to describe the wave field in a
different mathematical form. We would like to discuss now the theory
of spherical waves—waves which correspond to spherical surfaces that
are spreading out from some center. When you drop a stone into a lake,
the ripples spread out in circular waves on the surface—they are
two-dimensional waves. A spherical wave is a similar thing except that
it spreads out in three dimensions.




Before we start describing spherical waves, we need a little
mathematics. Suppose we have a function that depends only on the
radial distance r[image: -*-] from a certain origin—in other words, a function
that is spherically symmetric. Let’s call the function ψ (r)[image: -*-],
where by r[image: -*-] we mean

[image: -*-][image: -*-]


the radial distance from the origin. In order to find out what
functions ψ (r)[image: -*-] satisfy the wave equation, we will need an
expression for the Laplacian of ψ[image: -*-]. So we want to find the sum of
the second derivatives of ψ[image: -*-] with respect to x[image: -*-], y[image: -*-], and z[image: -*-]. We
will use the notation that ψ′ (r)[image: -*-] represents the derivative
of ψ[image: -*-] with respect to r[image: -*-] and ψ′′ (r)[image: -*-] represents the second
derivative of ψ[image: -*-] with respect to r[image: -*-].




First, we find the derivatives with respect to x[image: -*-]. The first
derivative is

[image: -*-][image: -*-]


The second derivative of ψ[image: -*-] with respect to x[image: -*-] is

[image: -*-][image: -*-]


We can evaluate the partial derivatives of r[image: -*-] with respect to x[image: -*-]
from

[image: -*-][image: -*-]


So the second derivative of ψ[image: -*-] with respect to x[image: -*-] is

[image: -*-][image: -*-]
(20.28)




Likewise,

[image: -*-][image: -*-]
(20.29)

(20.30)









The Laplacian is the sum of these three derivatives. Remembering that
x2+y2+z2=r2[image: -*-], we get

[image: -*-][image: -*-]
(20.31)




It is often more convenient to write this equation in the following
form:

[image: -*-][image: -*-]
(20.32)




If you carry out the differentiation indicated in
Eq. (20.32), you will see that the right-hand side is the
same as in Eq. (20.31).




If we wish to consider spherically symmetric fields which can
propagate as spherical waves, our field quantity must be a function of
both r[image: -*-] and t[image: -*-]. Suppose we ask, then, what functions ψ (r,t)[image: -*-] are
solutions of the three-dimensional wave equation

[image: -*-][image: -*-]
(20.33)




Since ψ (r,t)[image: -*-] depends only on the spatial coordinates through r[image: -*-],
we can use the equation for the Laplacian we found above,
Eq. (20.32). To be precise, however, since ψ[image: -*-] is also a
function of t[image: -*-], we should write the derivatives with respect to r[image: -*-] as
partial derivatives. Then the wave equation becomes

[image: -*-][image: -*-]







We must now solve this equation, which appears to be much more
complicated than the plane wave case. But notice that if we multiply
this equation by r[image: -*-], we get

[image: -*-][image: -*-]
(20.34)




This equation tells us that the function r ψ[image: -*-] satisfies the
one-dimensional wave equation in the variable r[image: -*-]. Using the general
principle which we have emphasized so often, that the same equations
always have the same solutions, we know that if r ψ[image: -*-] is a function
only of (r−c t)[image: -*-] then it will be a solution of Eq. (20.34).
So we know that spherical waves must have the form

[image: -*-][image: -*-]


Or, as we have seen before, we can equally well say that r ψ[image: -*-] can
have the form

[image: -*-][image: -*-]


Dividing by r[image: -*-], we find that the field quantity ψ[image: -*-] (whatever it
may be) has the following form:

[image: -*-][image: -*-]
(20.35)




Such a function represents a general spherical wave travelling outward
from the origin at the speed c[image: -*-]. If we forget about the r[image: -*-] in the
denominator for a moment, the amplitude of the wave as a function of
the distance from the origin at a given time has a certain shape that
travels outward at the speed c[image: -*-]. The factor r[image: -*-] in the denominator,
however, says that the amplitude of the wave decreases in proportion
to 1/r[image: -*-] as the wave propagates. In other words, unlike a plane wave
in which the amplitude remains constant as the wave runs along, in a
spherical wave the amplitude steadily decreases, as shown in
Fig. 20–6. This effect is easy to understand from a simple
physical argument.



[image: -][image: -][image: -][image: -]
Fig. 20–6. A spherical wave ψ=f (t−r/c)/r[image: -*-]. (a) ψ[image: -*-] as a function
of r[image: -*-] for t=t1[image: -*-] and the same wave for the later time t2[image: -*-].
(b) ψ[image: -*-] as a function of t[image: -*-] for r=r1[image: -*-] and the same wave seen
at r2[image: -*-].





We know that the energy density in a wave depends on the square of the
wave amplitude. As the wave spreads, its energy is spread over larger
and larger areas proportional to the radial distance squared. If the
total energy is conserved, the energy density must fall as 1/r2[image: -*-],
and the amplitude of the wave must decrease as 1/r[image: -*-]. So
Eq. (20.35) is the “reasonable” form for a spherical wave.




We have disregarded the second possible solution to the
one-dimensional wave equation:

[image: -*-][image: -*-]


or

[image: -*-][image: -*-]


This also represents a spherical wave, but one which travels
inward from large r[image: -*-] toward the origin.




We are now going to make a special assumption. We say, without any
demonstration whatever, that the waves generated by a source are only
the waves which go outward. Since we know that waves are caused
by the motion of charges, we want to think that the waves proceed
outward from the charges. It would be rather strange to imagine that
before charges were set in motion, a spherical wave started out from
infinity and arrived at the charges just at the time they began to
move. That is a possible solution, but experience shows that when
charges are accelerated the waves travel outward from the
charges. Although Maxwell’s equations would allow either possibility,
we will put in an additional fact—based on experience—that
only the outgoing wave solution makes “physical sense.”




We should remark, however, that there is an interesting consequence to
this additional assumption: we are removing the symmetry with respect
to time that exists in Maxwell’s equations. The original equations for
E[image: -*-] and B[image: -*-], and also the wave equations we derived from them,
have the property that if we change the sign of t[image: -*-], the equation is
unchanged. These equations say that for every solution corresponding
to a wave going in one direction there is an equally valid solution
for a wave travelling in the opposite direction. Our statement that we
will consider only the outgoing spherical waves is an important
additional assumption. (A formulation of electrodynamics in which this
additional assumption is avoided has been carefully
studied. Surprisingly, in many circumstances it does not lead
to physically absurd conclusions, but it would take us too far astray
to discuss these ideas just now. We will talk about them a little more
in Chapter 28.)




We must mention another important point. In our solution for an
outgoing wave, Eq. (20.35), the function ψ[image: -*-] is
infinite at the origin. That is somewhat peculiar. We would like to
have a wave solution which is smooth everywhere. Our solution must
represent physically a situation in which there is some source at the
origin. In other words, we have inadvertently made a mistake. We have
not solved the free wave equation (20.33)
everywhere; we have solved Eq. (20.33) with zero
on the right everywhere, except at the origin. Our mistake crept in
because some of the steps in our derivation are not “legal”
when r=0[image: -*-].




Let’s show that it is easy to make the same kind of mistake in an
electrostatic problem. Suppose we want a solution of the equation for
an electrostatic potential in free space, ∇2ϕ=0[image: -*-]. The
Laplacian is equal to zero, because we are assuming that there are no
charges anywhere. But what about a spherically symmetric solution to
this equation—that is, some function ϕ[image: -*-] that depends only
on r[image: -*-]. Using the formula of Eq. (20.32) for the Laplacian,
we have

[image: -*-][image: -*-]


Multiplying this equation by r[image: -*-], we have an equation which is readily
integrated:

[image: -*-][image: -*-]


If we integrate once with respect to r[image: -*-], we find that the first
derivative of r ϕ[image: -*-] is a constant, which we may call a[image: -*-]:

[image: -*-][image: -*-]


Integrating again, we find that r ϕ[image: -*-] is of the form

[image: -*-][image: -*-]


where b[image: -*-] is another constant of integration. So we have found that
the following ϕ[image: -*-] is a solution for the electrostatic potential in
free space:

[image: -*-][image: -*-]







Something is evidently wrong. In the region where there are no
electric charges, we know the solution for the electrostatic
potential: the potential is everywhere a constant. That corresponds to
the first term in our solution. But we also have the second term,
which says that there is a contribution to the potential that varies
as one over the distance from the origin. We know, however, that such
a potential corresponds to a point charge at the origin. So, although
we thought we were solving for the potential in free space, our
solution also gives the field for a point source at the origin. Do you
see the similarity between what happened now and what happened when we
solved for a spherically symmetric solution to the wave equation? If
there were really no charges or currents at the origin, there would
not be spherical outgoing waves. The spherical waves must, of course,
be produced by sources at the origin. In the next chapter we will
investigate the connection between the outgoing electromagnetic waves
and the currents and voltages which produce them.
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21–1 Light and electromagnetic waves


We saw in the last chapter that among their solutions, Maxwell’s
equations have waves of electricity and magnetism. These waves correspond to the
phenomena of radio, light, x-rays, and so on, depending on the wavelength. We
have already studied light in great detail in Vol. I. In this chapter we want
to tie together the two subjects—we want to show that Maxwell’s equations can
indeed form the base for our earlier treatment of the phenomena of light.





When we studied light, we began by writing down equations for the electric and
magnetic fields produced by a charge which moves in any arbitrary way. Those
equations were

[image: -*-][image: -*-]
(21.1)




and

[image: -*-][image: -*-]


[See Eqs. (28.3) and (28.4), Vol. I. As
explained below, the signs here are the negatives of the old ones.]





If a charge moves in an arbitrary way, the electric field we would find
now at some point depends only on the position and motion of the
charge not now, but at an earlier time—at an instant which is
earlier by the time it would take light, going at the speed c[image: -*-], to
travel the distance r′[image: -*-] from the charge to the field point. In other
words, if we want the electric field at point (1)[image: -*-] at the time t[image: -*-], we
must calculate the location (2′)[image: -*-] of the charge and its motion at the
time (t−r′/c)[image: -*-], where r′[image: -*-] is the distance to the point (1)[image: -*-] from the
position of the charge (2′)[image: -*-] at the time (t−r′/c)[image: -*-]. The prime is to
remind you that r′[image: -*-] is the so-called “retarded distance” from the
point (2′)[image: -*-] to the point (1)[image: -*-], and not the actual distance between
point (2)[image: -*-], the position of the charge at the time t[image: -*-], and the field
point (1)[image: -*-] (see Fig. 21-1). Note that we are using a
different convention now for the direction of the unit
vector er[image: -*-]. In Chapters 28 and 34 of Vol. I
it was convenient to take r[image: -*-] (and hence er[image: -*-]) pointing
toward the source. Now we are following the definition we took
for Coulomb’s law, in which r[image: -*-] is directed from the charge,
at (2)[image: -*-], toward the field point at (1)[image: -*-]. The only difference,
of course, is that our new r[image: -*-] (and er[image: -*-]) are the negatives of
the old ones.




[image: -][image: -]
Fig. 21–1. 
The fields at (1)[image: -*-] at the time t[image: -*-] depend on the
position (2′)[image: -*-] occupied by the charge q[image: -*-] at the time (t−r′/c)[image: -*-].





We have also seen that if the velocity v[image: -*-] of a charge is always much
less than c[image: -*-], and if we consider only points at large distances from
the charge, so that only the last term of Eq. (21.1) is
important, the fields can also be written as



[image: -*-][image: -*-]
21.1′




and

[image: -*-][image: -*-]








Let’s look at what the complete equation, Eq. (21.1),
says in a little more detail. The vector er′[image: -*-] is the unit
vector to point (1)[image: -*-] from the retarded position (2′)[image: -*-]. The first
term, then, is what we would expect for the Coulomb field of the
charge at its retarded position—we may call this “the retarded
Coulomb field.”  The electric field depends inversely on the square
of the distance and is directed away from the retarded position of the
charge (that is, in the direction of er′[image: -*-]).





But that is only the first term. The other terms tell us that the laws
of electricity do not say that all the fields are the same as
the static ones, but just retarded (which is what people sometimes
like to say). To the “retarded Coulomb field” we must add the other
two terms. The second term says that there is a “correction” to the
retarded Coulomb field which is the rate of change of the
retarded Coulomb field multiplied by r′/c[image: -*-], the retardation delay. In
a way of speaking, this term tends to compensate for the
retardation in the first term. The first two terms correspond
to computing the “retarded Coulomb field” and then extrapolating it
toward the future by the amount r′/c[image: -*-], that is, right up to the
time t[image: -*-]!  The extrapolation is linear, as if we were to assume that
the “retarded Coulomb field” would continue to change at the rate
computed for the charge at the point (2′)[image: -*-]. If the field is changing
slowly, the effect of the retardation is almost completely removed by
the correction term, and the two terms together give us an electric
field that is the “instantaneous Coulomb field”—that is, the
Coulomb field of the charge at the point (2)[image: -*-]—to a very good
approximation.





Finally, there is a third term in Eq. (21.1) which is
the second derivative of the unit vector er′[image: -*-]. For our study
of the phenomena of light, we made use of the fact that far away from
the charge the first two terms went inversely as the square of the
distance and, for large distances, became very weak in comparison to
the last term, which decreases as 1/r[image: -*-]. So we concentrated entirely
on the last term, and we showed that it is (again, for large
distances) proportional to the component of the acceleration of the
charge at right angles to the line of sight. (Also, for most of our
work in Vol. I, we took the case in which the charges were moving
nonrelativistically. We considered the relativistic effects in only
one chapter, Chapter 34.)





Now we should try to connect the two things together. We have the
Maxwell equations, and we have Eq. (21.1) for the field
of a point charge. We should certainly ask whether they are
equivalent. If we can deduce Eq. (21.1) from Maxwell’s
equations, we will really understand the connection between light and
electromagnetism. To make this connection is the main purpose of this
chapter.





It turns out that we won’t quite make it—that the mathematical
details get too complicated for us to carry through in all their gory
details. But we will come close enough so that you should easily see
how the connection could be made. The missing pieces will only be in
the mathematical details. Some of you may find the mathematics in this
chapter rather complicated, and you may not wish to follow the
argument very closely. We think it is important, however, to make the
connection between what you have learned earlier and what you are
learning now, or at least to indicate how such a connection can be
made. You will notice, if you look over the earlier chapters, that
whenever we have taken a statement as a starting point for a
discussion, we have carefully explained whether it is a new
“assumption” that is a “basic law,” or whether it can ultimately
be deduced from some other laws. We owe it to you in the spirit of
these lectures to make the connection between light and Maxwell’s
equations. If it gets difficult in places, well, that’s life—there
is no other way.





 


21–2 Spherical waves from a point source


In Chapter 18 we found that Maxwell’s equations could be
solved by letting
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(21.2)




and

[image: -*-][image: -*-]
(21.3)




where ϕ[image: -*-] and A[image: -*-] must then be solutions of the equations

[image: -*-][image: -*-]
(21.4)




and

[image: -*-][image: -*-]
(21.5)




and must also satisfy the condition that

[image: -*-][image: -*-]
(21.6)









Now we will find the solution of Eqs. (21.4)
and (21.5). To do that we have to find the solution ψ[image: -*-], of the
equation

[image: -*-][image: -*-]
(21.7)




where s[image: -*-], which we call the source, is known. Of course, s[image: -*-]
corresponds to ρ/ϵ0[image: -*-] and ψ[image: -*-] to ϕ[image: -*-] for
Eq. (21.4), or s[image: -*-] is jx/ϵ0 c2[image: -*-] if ψ[image: -*-] is Ax[image: -*-],
etc., but we want to solve Eq. (21.7) as a mathematical
problem no matter what ψ[image: -*-] and s[image: -*-] are physically.





In places where ρ[image: -*-] and j[image: -*-] are zero—in what we have called
“free” space—the potentials ϕ[image: -*-] and A[image: -*-], and the fields
E[image: -*-] and B[image: -*-], all satisfy the three-dimensional wave equation
without sources, whose mathematical form is

[image: -*-][image: -*-]
(21.8)




In Chapter 20 we saw that solutions of this equation can
represent waves of various kinds: plane waves in the x[image: -*-]-direction,
ψ=f (t−x/c)[image: -*-]; plane waves in the y[image: -*-]- or z[image: -*-]-direction, or in any
other direction; or spherical waves of the form

[image: -*-][image: -*-]
(21.9)




(The solutions can be written in still other ways, for example
cylindrical waves that spread out from an axis.)





We also remarked that, physically, Eq. (21.9) does not
represent a wave in free space—that there must be charges at the
origin to get the outgoing wave started. In other words,
Eq. (21.9) is a solution of Eq. (21.8)
everywhere except right near r=0[image: -*-], where it must be a solution of the
complete equation (21.7), including some sources. Let’s see
how that works. What kind of a source s[image: -*-] in Eq. (21.7)
would give rise to a wave like Eq. (21.9)?





Suppose we have the spherical wave of Eq. (21.9) and
look at what is happening for very small r[image: -*-]. Then the
retardation −r/c[image: -*-] in f (t−r/c)[image: -*-] can be neglected—provided f[image: -*-] is a smooth
function—and ψ[image: -*-] becomes

[image: -*-][image: -*-]
(21.10)




So ψ[image: -*-] is just like a Coulomb field for a charge at the origin that
varies with time. That is, if we had a little lump of charge, limited
to a very small region near the origin, with a density ρ[image: -*-], we know
that

[image: -*-][image: -*-]


where Q=∫ρ d V[image: -*-]. Now we know that such a ϕ[image: -*-] satisfies the
equation

[image: -*-][image: -*-]







Following the same mathematics, we would say that the ψ[image: -*-] of
Eq. (21.10) satisfies

[image: -*-][image: -*-]
(21.11)




where s[image: -*-] is related to f[image: -*-] by

[image: -*-][image: -*-]


with

[image: -*-][image: -*-]


The only difference is that in the general case, s[image: -*-], and
therefore S[image: -*-], can be a function of time.





Now the important thing is that if ψ[image: -*-], satisfies
Eq. (21.11) for small r[image: -*-], it also satisfies
Eq. (21.7). As we go very close to the origin, the
1/r[image: -*-] dependence of ψ[image: -*-] causes the space derivatives to become very large.
But the time derivatives keep their same values. [They are just the time
derivatives of f (t)[image: -*-].] So as r[image: -*-] goes to zero, the
term ∂2ψ/∂t2[image: -*-] in Eq. (21.7) can be neglected
in comparison with ∇2ψ[image: -*-], and Eq. (21.7) becomes
equivalent to Eq. (21.11).





To summarize, then, if the source function s (t)[image: -*-] of
Eq. (21.7) is localized at the origin and has the total
strength

[image: -*-][image: -*-]
(21.12)




the solution of Eq. (21.7) is

[image: -*-][image: -*-]
(21.13)




The only effect of the term ∂2ψ/∂t2[image: -*-] in
Eq. (21.7) is to introduce the retardation (t−r/c)[image: -*-] in the
Coulomb-like potential.





 


21–3 The general solution of Maxwell’s equations


We have found the solution of Eq. (21.7) for a “point”
source. The next question is: What is the solution for a spread-out
source? That’s easy; we can think of any source s (x,y,z,t)[image: -*-] as made
up of the sum of many “point” sources, one for each volume
element d V[image: -*-], and each with the source strength s (x,y,z,t) d V[image: -*-]. Since
Eq. (21.7) is linear, the resultant field is the
superposition of the fields from all of such source elements.





Using the results of the preceding section [Eq. (21.13)]
we know that the field d ψ[image: -*-] at the point (x1,y1,z1)[image: -*-]—or (1)[image: -*-]
for short—at the time t[image: -*-], from a source element s d V[image: -*-] at the
point (x2,y2,z2)[image: -*-]—or (2)[image: -*-] for short—is given by

[image: -*-][image: -*-]


where r12[image: -*-] is the distance from (2)[image: -*-] to (1)[image: -*-]. Adding the
contributions from all the pieces of the source means, of course,
doing an integral over all regions where s≠0[image: -*-]; so we have

[image: -*-][image: -*-]
(21.14)




That is, the field at (1)[image: -*-] at the time t[image: -*-] is the sum of all the
spherical waves which leave the source elements at (2)[image: -*-] at the
times (t−r12/c)[image: -*-]. This is the solution of our wave equation for any set
of sources.





We see now how to obtain a general solution for Maxwell’s equations. If
for ψ[image: -*-] we mean the scalar potential ϕ[image: -*-], the source function s[image: -*-]
becomes ρ/ϵ0[image: -*-]. Or we can let ψ[image: -*-] represent any one of the three
components of the vector potential A[image: -*-], replacing s[image: -*-] by the corresponding
component of j/ϵ0 c2[image: -*-]. Thus, if we know the charge
density ρ (x,y,z,t)[image: -*-] and the current density j (x,y,z,t)[image: -*-] everywhere, we
can immediately write down the solutions of Eqs. (21.4)
and (21.5). They are

[image: -*-][image: -*-]
(21.15)




and

[image: -*-][image: -*-]
(21.16)




The fields E[image: -*-] and B[image: -*-] can then be found by differentiating the
potentials, using Eqs. (21.2) and (21.3).
[Incidentally, it is possible to verify that the ϕ[image: -*-] and A[image: -*-] obtained
from Eqs. (21.15) and (21.16) do satisfy the
equality (21.6).]





We have solved Maxwell’s equations. Given the currents and charges in
any circumstance, we can find the potentials directly from these
integrals and then differentiate and get the fields. So we have
finished with the Maxwell theory. Also this permits us to close the
ring back to our theory of light, because to connect with our earlier
work on light, we need only calculate the electric field from a moving
charge. All that remains is to take a moving charge, calculate the
potentials from these integrals, and then differentiate to
find E[image: -*-] from −∇ϕ−∂A/∂t[image: -*-]. We should get
Eq. (21.1). It turns out to be lots of work, but that’s the
principle.





So here is the center of the universe of electromagnetism—the
complete theory of electricity and magnetism, and of light; a complete
description of the fields produced by any moving charges; and more. It
is all here. Here is the structure built by
Maxwell, complete in all
its power and beauty. It is probably one of the greatest
accomplishments of physics. To remind you of its importance, we will
put it all together in a nice frame.






[image: -*-][image: -*-]










 


21–4 The fields of an oscillating dipole


We have still not lived up to our promise to derive Eq. (21.1) for
the electric field of a point charge in motion. Even with the results we already
have, it is a relatively complicated thing to derive. We have not found
Eq. (21.1) anywhere in the published literature except in Vol. I of
these lectures.1 So you can see that it is not easy to derive. (The
fields of a moving charge have been written in many other forms that are
equivalent, of course.) We will have to limit ourselves here just to showing
that, in a few examples, Eqs. (21.15) and (21.16)
give the same results as Eq. (21.1). First, we will show that
Eq. (21.1) gives the correct fields with only the restriction that
the motion of the charged particle is nonrelativistic. (Just this special case
will take care of 90[image: -*-] percent, or more, of what we said about light.)





We consider a situation in which we have a blob of charge that is
moving about in some way, in a small region, and we will find the
fields far away. To put it another way, we are finding the field at
any distance from a point charge that is shaking up and down in very
small motion. Since light is usually emitted from neutral objects such
as atoms, we will consider that our wiggling charge q[image: -*-] is located
near an equal and opposite charge at rest. If the separation between
the centers of the charges is d[image: -*-], the charges will have a dipole
moment p=q d[image: -*-], which we take to be a function of time. Now we
should expect that if we look at the fields close to the charges, we
won’t have to worry about the delay; the electric field will be
exactly the same as the one we have calculated earlier for an
electrostatic dipole—using, of course, the instantaneous dipole
moment p (t)[image: -*-]. But if we go very far out, we ought to find a term
in the field that goes as 1/r[image: -*-] and depends on the acceleration of the
charge perpendicular to the line of sight. Let’s see if we get such a
result.




[image: -][image: -]
Fig. 21–2. 
The potential at (1)[image: -*-] are given by integrals over the charge
  density ρ[image: -*-].





We begin by calculating the vector potential A[image: -*-], using
Eq. (21.16). Suppose that our moving charge is in a small
blob whose charge density is given by ρ (x,y,z)[image: -*-], and the whole thing
is moving at any instant with the velocity v[image: -*-]. Then the current
density j (x,y,z)[image: -*-] will be equal to v ρ (x,y,z)[image: -*-]. It will be
convenient to take our coordinate system so that the z[image: -*-]-axis is in the
direction of v[image: -*-]; then the geometry of our problem is as shown in
Fig. 21-2. We want the integral

[image: -*-][image: -*-]
(21.17)









Now if the size of the charge-blob is really very small compared
with r12[image: -*-], we can set the r12[image: -*-] term in the denominator equal
to r[image: -*-], the distance to the center of the blob, and take r[image: -*-] outside the
integral. Next, we are also going to set r12=r[image: -*-] in the numerator,
although that is not really quite right. It is not right because we
should take j[image: -*-] at, say, the top of the blob at a slightly
different time than we used for j[image: -*-] at the bottom of the
blob. When we set r12=r[image: -*-] in j (t−r12/c)[image: -*-], we are taking the
current density for the whole blob at the same time (t−r/c)[image: -*-]. That is
an approximation that will be good only if the velocity v[image: -*-] of the
charge is much less than c[image: -*-]. So we are making a nonrelativistic
calculation. Replacing j[image: -*-] by ρ v[image: -*-], the
integral (21.17) becomes

[image: -*-][image: -*-]


Since all the charge has the same velocity, this integral is just
v/r[image: -*-] times the total charge q[image: -*-]. But q v[image: -*-] is
just ∂p/∂t[image: -*-], the rate of change of the dipole moment—which is,
of course, to be evaluated at the retarded time (t−r/c)[image: -*-]. We will
write it as [image: \dot{\FLPp}(t-r/c)][image: \dot{\FLPp}(t-r/c)]. So we get for the vector potential

[image: -*-][image: -*-]
(21.18)









Our result says that the current in a varying dipole produces a vector
potential in the form of spherical waves whose source strength
is [image: \dot{\FLPp}/\epsO c^2][image: \dot{\FLPp}/\epsO c^2].





We can now get the magnetic field from B=∇×A[image: -*-].
Since [image: \dot{\FLPp}][image: \dot{\FLPp}] is totally in the z[image: -*-]-direction, A[image: -*-] has only a
z[image: -*-]-component; there are only two nonzero derivatives in the curl. So
Bx=∂Az/∂y[image: -*-] and By=−∂Az/∂x[image: -*-]. Let’s first look at Bx[image: -*-]:

[image: -*-][image: -*-]
(21.19)




To carry out the differentiation, we must remember that
r=√x2+y2+z2[image: -*-], so



[image: -*-][image: -*-]
(21.20)





Remembering that ∂r/∂y=y/r[image: -*-], the first term gives

[image: -*-][image: -*-]
(21.21)




which drops off as 1/r2[image: -*-] like the potential of a static dipole
(because y/r[image: -*-] is constant for a given direction).





The second term in Eq. (21.20) gives us the new
effects. Carrying out the differentiation, we get

[image: -*-][image: -*-]
(21.22)




where [image: \ddot{p}][image: \ddot{p}] means, of course, the second derivative of p[image: -*-] with
respect to t[image: -*-]. This term, which comes from differentiating the
numerator, is responsible for radiation. First, it describes a field
which decreases with distance only as 1/r[image: -*-]. Second, it depends on the
acceleration of the charge. You can begin to see how we are
going to get a result like Eq. (21.1´), which describes
the radiation of light.





Let’s examine in a little more detail how this radiation term comes
about—it is such an interesting and important result. We start with
the expression (21.18), which has a 1/r[image: -*-] dependence and
is therefore like a Coulomb potential, except for the delay term in
the numerator. Why is it then that when we differentiate with respect
to space coordinates to get the fields, we don’t just get a 1/r2[image: -*-]
field—with, of course, the corresponding time delays?





We can see why in the following way: Suppose that we let our dipole
oscillate up and down in a sinusoidal motion. Then we would have

[image: -*-][image: -*-]


and

[image: -*-][image: -*-]


If we plot a graph of Az[image: -*-] as a function of r[image: -*-] at a given instant,
we get the curve shown in Fig. 21-3. The peak amplitude
decreases as 1/r[image: -*-], but there is, in addition, an oscillation in
space, bounded by the 1/r[image: -*-] envelope. When we take the spatial
derivatives, they will be proportional to the slope of the
curve. From the figure we see that there are slopes much steeper than
the slope of the 1/r[image: -*-] curve itself. It is, in fact, evident that for
a given frequency the peak slopes are proportional to the amplitude of
the wave, which varies as 1/r[image: -*-]. So that explains the drop-off rate of
the radiation term.




[image: -][image: -]
Fig. 21–3. 
The z[image: -*-]-component of A[image: -*-] as a function of r[image: -*-] at the
  instant t[image: -*-] for the spherical wave from an oscillating dipole.





It all comes about because the variations with time at the
source are translated into variations in space as the waves are
propagated outward, and the magnetic fields depend on the
spatial derivatives of the potential.





Let’s go back and finish our calculation of the magnetic field. We have
for Bx[image: -*-] the two terms (21.21) and (21.22), so

[image: -*-][image: -*-]


With the same kind of mathematics, we get

[image: -*-][image: -*-]


Or we can put it all together in a nice vector formula:

[image: -*-][image: -*-]
(21.23)









Now let’s look at this formula. First of all, if we go very far out
in r[image: -*-], only the [image: \ddot{\FLPp}][image: \ddot{\FLPp}] term counts. The direction of B[image: -*-] is
given by [image: \ddot{\FLPp}\times\FLPr][image: \ddot{\FLPp}\times\FLPr], which is at right angles to the
radius r[image: -*-] and also at right angles to the acceleration, as in
Fig. 21-4. Everything is coming out right; that is also
the result we get from Eq. (21.1´).




[image: -][image: -]
Fig. 21–4. 
The radiation fields B[image: -*-] and E[image: -*-] of an oscillating
  dipole.





Now let’s look at what we are not used to—at what happens closer in.
In Section 14-7 we worked out the law of Biot and
Savart for the
magnetic field of an element of current. We found that a current
element j d V[image: -*-] contributes to the magnetic field the amount

[image: -*-][image: -*-]
(21.24)




You see that this formula looks very much like the first term of
Eq. (21.23), if we remember that [image: \dot{\FLPp}][image: \dot{\FLPp}] is the
current. But there is one difference. In Eq. (21.23), the
current is to be evaluated at the time (t−r/c)[image: -*-], which doesn’t appear
in Eq. (21.24). Actually, however, Eq. (21.24)
is still very good for small r[image: -*-], because the second term of
Eq. (21.23) tends to cancel out the effect of the
retardation in the first term. The two together give a result
very near to Eq. (21.24) when r[image: -*-] is small.





We can see that this way: When r[image: -*-] is small, (t−r/c)[image: -*-] is not very
different from t[image: -*-], so we can expand the bracket in
Eq. (21.23) in a Taylor series. For the first term,

[image: -*-][image: -*-]


and to the same order in r/c[image: -*-],

[image: -*-][image: -*-]


When we take the sum, the two terms in [image: \ddot{\FLPp}][image: \ddot{\FLPp}] cancel, and we
are left with the unretarded current [image: \dot{\FLPp}][image: \dot{\FLPp}]: that is,
[image: \dot{\FLPp}(t)][image: \dot{\FLPp}(t)]—plus terms of order (r/c)2[image: -*-] or higher [e.g.,
[image: \tfrac{1}{2}(r/c)^2\dddot{\FLPp}\,][image: \tfrac{1}{2}(r/c)^2\dddot{\FLPp}\,]] which will be very small for r[image: -*-]
small enough that [image: \dot{\FLPp}][image: \dot{\FLPp}] does not alter markedly in the time r/c[image: -*-].





So Eq. (21.23) gives fields very much like the
instantaneous theory—much closer than the instantaneous theory with
a delay; the first-order effects of the delay are taken out by the
second term. The static formulas are very accurate, much more accurate
than you might think. Of course, the compensation only works for
points close in. For points far out the correction becomes very bad,
because the time delays produce a very large effect, and we get the
important 1/r[image: -*-] term of the radiation.





We still have the problem of computing the electric field and
demonstrating that it is the same as Eq. (21.1´). For
large distances we can see that the answer is going to come out all
right. We know that far from the sources, where we have a propagating
wave, E[image: -*-] is perpendicular to B[image: -*-] (and also to r[image: -*-]), as in
Fig. 21-4, and that c B=E[image: -*-]. So E[image: -*-] is proportional
to the acceleration [image: \ddot{\FLPp}][image: \ddot{\FLPp}], as expected from
Eq. (21.1´).





To get the electric field completely for all distances, we need to
solve for the electrostatic potential. When we computed the current
integral for A[image: -*-] to get Eq. (21.18), we made an
approximation by disregarding the slight variation of r[image: -*-] in the delay
terms. This will not work for the electrostatic potential, because we
would then get 1/r[image: -*-] times the integral of the charge density, which
is a constant. This approximation is too rough. We need to go to one
higher order. Instead of getting involved in that higher-order
computation directly, we can do something else—we can determine the
scalar potential from Eq. (21.6), using the vector
potential we have already found. The divergence of A[image: -*-], in our
case, is just ∂Az/∂z[image: -*-]—since Ax[image: -*-] and Ay[image: -*-] are identically
zero. Differentiating in the same way that we did above to
find B[image: -*-],

[image: -*-][image: -*-]


Or, in vector notation,

[image: -*-][image: -*-]


Using Eq. (21.6), we have an equation for ϕ[image: -*-]:

[image: -*-][image: -*-]







Integrating with respect to t[image: -*-] just removes one dot from each of
the p[image: -*-]'s, so

[image: -*-][image: -*-]
(21.25)




(The constant of integration would correspond to some superposed
static field which could, of course, exist. For the oscillating dipole
we have taken, there is no static field.)





We are now able to find the electric field E[image: -*-] from

[image: -*-][image: -*-]


Since the steps are tedious but straightforward [providing you
remember that p (t−r/c)[image: -*-] and its time derivatives depend on
x[image: -*-], y[image: -*-], and z[image: -*-] through the retardation r/c[image: -*-]], we will just give the
result:



[image: -*-][image: -*-]
(21.26)





with

[image: -*-][image: -*-]
(21.27)









Although it looks rather complicated, the result is easily
interpreted. The vector p*[image: -*-] is the dipole moment retarded
and then “corrected” for the retardation, so the two terms with
p*[image: -*-] give just the static dipole field when r[image: -*-] is
small. [See Chapter 6, Eq. (6.14).]  When
r[image: -*-] is large, the term in [image: \ddot{\FLPp}][image: \ddot{\FLPp}] dominates, and the electric
field is proportional to the acceleration of the charges, at right
angles to r[image: -*-], and, in fact, directed along the projection
of [image: \ddot{\FLPp}][image: \ddot{\FLPp}] in a plane perpendicular to r[image: -*-].





This result agrees with what we would have gotten using
Eq. (21.1). Of course, Eq. (21.1) is more
general; it works with any motion, while Eq. (21.26) is
valid only for small motions for which we can take the retardation r/c[image: -*-]
as constant over the source. At any rate, we have now provided the
underpinnings for our entire previous discussion of light (excepting
some matters discussed in Chapter 34 of Vol. I), for it
all hinged on the last term of Eq. (21.26). We will discuss
next how the fields can be obtained for more rapidly moving charges
(leading to the relativistic effects of Chapter 34 of
Vol. I).





 


21–5 The potentials of a moving charge; the general solution of Liénard and
Wiechert


In the last section we made a simplification in calculating our
integral for A[image: -*-] by considering only low velocities. But in doing
so we missed an important point and also one where it is easy to go
wrong. We will therefore take up now a calculation of the potentials
for a point charge moving in any way whatever—even with a
relativistic velocity. Once we have this result, we will have the
complete electromagnetism of electric charges. Even
Eq. (21.1) can then be derived by taking derivatives. The
story will be complete. So bear with us.





Let’s try to calculate the scalar potential ϕ (1)[image: -*-] at the
point (x1,y1,z1)[image: -*-] produced by a point charge, such as an
electron, moving in any manner whatsoever. By a “point” charge we
mean a very small ball of charge, shrunk down as small as you like,
with a charge density ρ (x,y,z)[image: -*-]. We can find ϕ[image: -*-] from
Eq. (21.15):

[image: -*-][image: -*-]
(21.28)




The answer would seem to be—and almost everyone would, at first,
think—that the integral of ρ[image: -*-] over such a “point” charge is
just the total charge q[image: -*-], so that

[image: -*-][image: -*-]


By [image: \FLPr_{12}'][image: \FLPr_{12}'] we mean the radius vector from the charge at point (2)[image: -*-] to
point (1)[image: -*-] at the retarded time (t−r12/c)[image: -*-]. It is wrong.





The correct answer is

[image: -*-][image: -*-]
(21.29)




where vr′[image: -*-], is the component of the velocity of the charge
parallel to [image: \FLPr_{12}'][image: \FLPr_{12}']—namely, toward point (1)[image: -*-]. We will now
show you why. To make the argument easier to follow, we will make the
calculation first for a “point” charge which is in the form of a
little cube of charge moving toward the point (1)[image: -*-] with the
speed v[image: -*-], as shown in Fig. 21-5(a). Let the length of a side
of the cube be a[image: -*-], which we take to be much, much less than r12[image: -*-],
the distance from the center of the charge to the point (1)[image: -*-].




[image: -][image: -]
Fig. 21–5. 
(a) A “point” charge—considered as a small cubical
distribution of charge—moving with the speed v[image: -*-] toward point (1)[image: -*-].
(b) The volume element Δ Vi[image: -*-] used for calculating the
potentials.





Now to evaluate the integral of Eq. (21.28), we will
return to basic principles; we will write it as the sum

[image: -*-][image: -*-]
(21.30)




where ri[image: -*-] is the distance from point (1)[image: -*-] to the i[image: -*-]th volume
element Δ Vi[image: -*-] and ρi[image: -*-] is the charge density at Δ Vi[image: -*-] at the time ti=t−ri/c[image: -*-]. Since ri≫a[image: -*-], always, it will be
convenient to take our Δ Vi[image: -*-] in the form of thin, rectangular
slices perpendicular to r12[image: -*-], as shown in
Fig. 21-5(b).





Suppose we start by taking the volume elements Δ Vi[image: -*-] with some
thickness w[image: -*-] much less than a[image: -*-]. The individual elements will appear
as shown in Fig. 21-6(a), where we have put in more
than enough to cover the charge. But we have not shown the
charge, and for a good reason. Where should we draw it? For each
volume element Δ Vi[image: -*-] we are to take ρ[image: -*-] at the
time ti=(t−ri/c)[image: -*-], but since the charge is moving, it is in a
different place for each volume element Δ Vi[image: -*-]!




[image: -][image: -]
Fig. 21–6. 
Integrating ρ (t−r′/c) d V[image: -*-] for a moving charge.





Let’s say that we begin with the volume element labeled “1” in
Fig. 21-6(a), chosen so that at the
time t1=(t−r1/c)[image: -*-] the “back” edge of the charge occupies Δ V1[image: -*-],
as shown in Fig. 21-6(b). Then when we
evaluate ρ2 Δ V2[image: -*-], we must use the position of the charge at the
slightly later time t2=(t−r2/c)[image: -*-], when the charge will be in
the position shown in Fig. 21-6(c). And so on, for
Δ V3[image: -*-], Δ V4[image: -*-], etc. Now we can evaluate the sum.





Since the thickness of each Δ Vi[image: -*-] is w[image: -*-], its volume
is w a2[image: -*-]. Then each volume element that overlaps the charge distribution
contains the amount of charge w a2 ρ[image: -*-], where ρ[image: -*-] is the density
of charge within the cube—which we take to be uniform. When the
distance from the charge to point (1)[image: -*-] is large, we will make a
negligible error by setting all the ri[image: -*-]’s in the denominators equal
to some average value, say the retarded position r′[image: -*-] of the center of
the charge. Then the sum (21.30) is

[image: -*-][image: -*-]


where Δ VN[image: -*-] is the last Δ Vi[image: -*-] that overlaps the charge
distributions, as shown in Fig. 21-6(e). The sum is,
clearly,

[image: -*-][image: -*-]


Now ρ a3[image: -*-] is just the total charge q[image: -*-] and N w[image: -*-] is the length b[image: -*-] shown
in part (e) of the figure. So we have

[image: -*-][image: -*-]
(21.31)









What is b[image: -*-]? It is the length of the cube of charge increased
by the distance moved by the charge between t1=(t−r1/c)[image: -*-]
and tN=(t−rN/c)[image: -*-]—which is the distance the charge moves in the time

[image: -*-][image: -*-]


Since the speed of the charge is v[image: -*-], the distance moved is v Δ t=v b/c[image: -*-]. But the length b[image: -*-] is this distance added to a[image: -*-]:

[image: -*-][image: -*-]


Solving for b[image: -*-], we get

[image: -*-][image: -*-]


Of course by v[image: -*-] we mean the velocity at the retarded
time t′=(t−r′/c)[image: -*-], which we can indicate by
writing [1−v/c]ret[image: -*-], and Eq. (21.31) for the
potential becomes

[image: -*-][image: -*-]


This result agrees with our assertion, Eq. (21.29). There is
a correction term which comes about because the charge is moving as our
integral “sweeps over the charge.”  When the charge is moving toward
the point (1)[image: -*-], its contribution to the integral is increased by the
ratio b/a[image: -*-]. Therefore the correct integral is q/r′[image: -*-] multiplied
by b/a[image: -*-], which is 1/[1−v/c]ret[image: -*-].





If the velocity of the charge is not directed toward the observation
point (1)[image: -*-], you can see that what matters is the component of
its velocity toward point (1)[image: -*-].  Calling this velocity 
component vr[image: -*-], the correction factor is 1/[1−vr/c]ret[image: -*-]. Also, the
analysis we have made goes exactly the same way for a charge
distribution of any shape—it doesn’t have to be a
cube. Finally, since the “size” of the charge q[image: -*-] doesn’t enter into
the final result, the same result holds when we let the charge shrink
to any size—even to a point. The general result is that the scalar
potential for a point charge moving with any velocity is

[image: -*-][image: -*-]
(21.32)




This equation is often written in the equivalent form

[image: -*-][image: -*-]
(21.33)




where r[image: -*-] is the vector from the charge to the point (1)[image: -*-], where
ϕ[image: -*-] is being evaluated, and all the quantities in the bracket are
to have their values at the retarded time t′=t−r′/c[image: -*-].





The same thing happens when we compute A[image: -*-] for a point charge,
from Eq. (21.16). The current density is ρ v[image: -*-] and
the integral over ρ[image: -*-] is the same as we found for ϕ[image: -*-]. The
vector potential is

[image: -*-][image: -*-]
(21.34)









The potentials for a point charge were first deduced in this form by
Liénard and
Wiechert and are called
the Liénard-Wiechert potentials.





To close the ring back to Eq. (21.1) it is only
necessary to compute E[image: -*-] and B[image: -*-] from these potentials (using
B=∇×A[image: -*-]
and E=−∇ϕ−∂A/∂t[image: -*-]). It is now only
arithmetic. The arithmetic, however, is fairly involved, so we will
not write out the details. Perhaps you will take our word for it that
Eq. (21.1) is equivalent to the Liénard-Wiechert
potentials we have derived.2





 


21–6 The potentials for a charge moving with constant velocity; the Lorentz formula


We want next to use the Liénard-Wiechert potentials for a special
case—to find the fields of a charge moving with uniform velocity in
a straight line. We will do it again later, using the principle of
relativity. We already know what the potentials are when we are
standing in the rest frame of a charge. When the charge is moving, we
can figure everything out by a relativistic transformation from one
system to the other. But relativity had its origin in the theory of
electricity and magnetism. The formulas of the Lorentz transformation
(Chapter 15, Vol. I) were discoveries made by
Lorentz
when he was studying the equations of electricity and magnetism. So
that you can appreciate where things have come from, we would like to
show that the Maxwell equations do lead to the Lorentz
transformation. We begin by calculating the potentials of a charge
moving with uniform velocity, directly from the electrodynamics of
Maxwell’s equations. We have shown that Maxwell’s equations lead to
the potentials for a moving charge that we got in the last section. So
when we use these potentials, we are using Maxwell’s theory.




[image: -][image: -]
Fig. 21–7. 
Finding the potential at P[image: -*-] of a charge moving with uniform
  velocity along the x[image: -*-]-axis.





Suppose we have a charge moving along the x[image: -*-]-axis with the
speed v[image: -*-]. We want the potentials at the point P (x,y,z)[image: -*-], as shown in
Fig. 21-7. If t=0[image: -*-] is the moment when the charge is at
the origin, at the time t[image: -*-] the charge is at x=v t[image: -*-], y=z=0[image: -*-]. What we
need to know, however, is its position at the retarded time

[image: -*-][image: -*-]
(21.35)




where r′[image: -*-] is the distance to the point P[image: -*-] from the charge at
the retarded time. At the earlier time t′[image: -*-], the charge was
at x=v t′[image: -*-], so

[image: -*-][image: -*-]
(21.36)




To find r′[image: -*-] or t′[image: -*-] we have to combine this equation with
Eq. (21.35). First, we eliminate r′[image: -*-] by solving
Eq. (21.35) for r′[image: -*-] and substituting in
Eq. (21.36). Then, squaring both sides, we get

[image: -*-][image: -*-]


which is a quadratic equation in t′[image: -*-]. Expanding the squared binomials
and collecting like terms in t′[image: -*-], we get

[image: -*-][image: -*-]


Solving for t′[image: -*-],



[image: -*-][image: -*-]
(21.37)





To get r′[image: -*-] we have to substitute this expression for t′[image: -*-] into

[image: -*-][image: -*-]







Now we are ready to find ϕ[image: -*-] from Eq. (21.33), which,
since v[image: -*-] is constant, becomes

[image: -*-][image: -*-]
(21.38)




The component of v[image: -*-] in the direction of r′[image: -*-] is
v×(x−v t′)/r′[image: -*-], so v⋅r′[image: -*-] is just v×(x−v t′)[image: -*-],
and the whole denominator is

[image: -*-][image: -*-]


Substituting for (1−v2/c2) t′[image: -*-] from Eq. (21.37), we
get for ϕ[image: -*-]



[image: -*-][image: -*-]








This equation is more understandable if we rewrite it as



[image: -*-][image: -*-]
(21.39)





The vector potential A[image: -*-] is the same expression with an additional
factor of v/c2[image: -*-]:

[image: -*-][image: -*-]







In Eq. (21.39) you can clearly see the beginning of the
Lorentz transformation. If the charge were at the origin in its own
rest frame, its potential would be

[image: -*-][image: -*-]


We are seeing it in a moving coordinate system, and it appears that
the coordinates should be transformed by

[image: -*-][image: -*-]


That is just the Lorentz transformation, and what we have done is
essentially the way Lorentz
discovered it.





But what about that extra factor 1/√1−v2/c2[image: -*-] that appears at the front
of Eq. (21.39)? Also, how does the vector potential A[image: -*-] appear,
when it is everywhere zero in the rest frame of the particle?  We will soon show
that A[image: -*-] and ϕ[image: -*-] together constitute a four-vector, like the
momentum p[image: -*-] and the total energy U[image: -*-] of a particle. The
extra 1/√1−v2/c2[image: -*-] in Eq. (21.39) is the same factor that
always comes in when one transforms the components of a four-vector—just as
the charge density ρ[image: -*-] transforms to ρ/√1−v2/c2[image: -*-]. In fact, it is
almost apparent from Eqs. (21.4) and (21.5) that
A[image: -*-] and ϕ[image: -*-] are components of a four-vector, because we have already
shown in Chapter 13 that j[image: -*-] and ρ[image: -*-] are the components of a
four-vector.





Later we will take up in more detail the relativity of
electrodynamics; here we only wished to show how naturally the Maxwell
equations lead to the Lorentz transformation. You will not, then, be
surprised to find that the laws of electricity and magnetism are
already correct for Einstein’s relativity. We will not have to “fix
them up,” as we had to do for Newton’s laws of mechanics.





 

	
	
	The formula was first published by Oliver Heaviside in 1902. It was independently discovered
	by R. P. Feynman, in about 1950, and given in some lectures as a good way of thinking 
	about synchrotron radiation.
	↩


	
  	
	If you have a lot of paper and
	time you can try to work it through yourself. We would, then, make two
	suggestions: First, don’t forget that the derivatives of r′[image: -*-] are
	complicated, since it is a function of t′[image: -*-]. Second, don’t try to
	derive (21.1), but carry out all of the derivatives
	in it, and then compare what you get with the E[image: -*-] obtained from
	the potentials (21.33) and (21.34).
	↩
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22–1 Impedances


Most of our work in this course has been aimed at reaching
the complete equations of Maxwell. In the last two chapters
we have been discussing the consequences of these equations. We have
found that the equations contain all the static phenomena we had worked
out earlier, as well as the phenomena of electromagnetic waves and light
that we had gone over in some detail in Volume I. The Maxwell
equations
give both phenomena, depending upon whether one computes the fields
close to the currents and charges, or very far from them. There is not
much interesting to say about the intermediate region; no special
phenomena appear there.




There still remain, however, several subjects in electromagnetism that
we want to take up. We want to discuss the question of relativity and
the Maxwell equations—what happens when one
looks at the Maxwell equations with respect to moving
coordinate systems. There is also the question of the conservation of
energy in electromagnetic systems. Then there is the broad subject of
the electromagnetic properties of materials; so far, except for the
study of the properties of dielectrics, we have considered only the
electromagnetic fields in free space. And although we covered the
subject of light in some detail in Volume I, there are still a few
things we would like to do again from the point of view of the field
equations.





In particular, we want to take up again the subject of the index of
refraction, particularly for dense materials. Finally, there are the
phenomena associated with waves confined in a limited region of space.
We touched on this kind of problem briefly when we were studying sound
waves. Maxwell’s equations
lead also to solutions which represent confined waves of the electric
and magnetic fields. We will take up this subject, which has important
technical applications, in some of the following chapters. In order to
lead up to that subject, we will begin by considering the properties of
electrical circuits at low frequencies. We will then be able to make a
comparison between those situations in which the almost static
approximations of Maxwell’s equations are applicable and those situations in which high-frequency
effects are dominant.





So we descend from the great and esoteric heights of the last few
chapters and turn to the relatively low-level subject of electrical
circuits. We will see, however, that even such a mundane subject, when
looked at in sufficient detail, can contain great complications.




We have already discussed some of the properties of electrical circuits
in Chapters 23 and 25 of Vol. I. Now we will
cover some of the same material again, but in greater detail. Again we
are going to deal only with linear systems and with voltages and
currents which all vary sinusoidally; we can then represent all voltages
and currents by complex numbers, using the exponential notation
described in Chapter 23 of Vol. I. Thus a time-varying
voltage V (t)[image: -*-] will be written

[image: -*-][image: -*-]
(22.1)




where [image: \hat{V}][image: \hat{V}] represents a complex number that is independent
of t[image: -*-]. It is, of course, understood that the actual time-varying
voltage V (t)[image: -*-] is given by the real part of the complex function on the
right-hand side of the equation.




Similarly, all of our other time-varying quantities will be taken to
vary sinusoidally at the same frequency ω[image: -*-]. So we write

[image: -*-][image: -*-]
(22.2)




and so on.




Most of the time we will write our equations in terms of V[image: -*-], I[image: -*-],
E[image: -*-], … (instead of in terms of [image: \hat{V}][image: \hat{V}], [image: \hat{I}][image: \hat{I}],
[image: \hat{\emf}][image: \hat{\emf}], …), remembering, though, that the time variations
are as given in (22.2).




In our earlier discussion of circuits we assumed that such things as
inductances, capacitances, and resistances were familiar to you. We
want now to look in a little a more detail at what is meant by these
idealized circuit elements. We begin with the inductance.



[image: -][image: -]
Fig. 22–1. An inductance.





An inductance is made by winding many turns of wire in the form of a
coil and bringing the two ends out to terminals at some distance from
the coil, as shown in Fig. 22–1. We want to assume that
the magnetic field produced by currents in the coil does not spread
out strongly all over space and interact with other parts of the
circuit. This is usually arranged by winding the coil in a
doughnut-shaped form, or by confining the magnetic field by winding
the coil on a suitable iron core, or by placing the coil in some
suitable metal box, as indicated schematically in
Fig. 22–1. In any case, we assume that there is a
negligible magnetic field in the external region near the terminals a[image: -*-]
and b[image: -*-]. We are also going to assume that we can neglect any electrical
resistance in the wire of the coil. Finally, we will assume that we can
neglect the amount of electrical charge that appears on the surface of a
wire in building up the electric fields.




With all these approximations we have what we call an “ideal”
inductance. (We will come back later and discuss what happens in a
real inductance.) For an ideal inductance we say that the voltage
across the terminals is equal to L (d I/d t)[image: -*-]. Let’s see why that is
so. When there is a current through the inductance, a magnetic field
proportional to the current is built up inside the coil. If the
current changes with time, the magnetic field also changes. In
general, the curl of E[image: -*-] is equal to −∂B/∂t[image: -*-]; or, put
differently, the line integral of E[image: -*-] all the way around any
closed path is equal to the negative of the rate of change of the flux
of B[image: -*-] through the loop. Now suppose we consider the following
path: Begin at terminal a[image: -*-] and go along the coil (staying always
inside the wire) to terminal b[image: -*-]; then return from terminal b[image: -*-] to
terminal a[image: -*-] through the air in the space outside the inductance. The
line integral of E[image: -*-] around this closed path can be written as the
sum of two parts:

[image: -*-][image: -*-]
(22.3)




As we have seen before, there can be no electric fields inside a
perfect conductor. (The smallest fields would produce infinite
currents.) Therefore the integral from a[image: -*-] to b[image: -*-] via the coil is
zero. The whole contribution to the line integral of E[image: -*-] comes
from the path outside the inductance from terminal b[image: -*-] to
terminal a[image: -*-]. Since we have assumed that there are no magnetic fields in the
space outside of the “box,” this part of the integral is independent
of the path chosen and we can define the potentials of the two
terminals. The difference of these two potentials is what we call the
voltage difference, or simply the voltage V[image: -*-], so we have

[image: -*-][image: -*-]







The complete line integral is what we have before called the
electromotive force E[image: -*-] and is, of course, equal to the rate of
change of the magnetic flux in the coil. We have seen earlier that
this emf is equal to the negative rate of change of the current, so we
have

[image: -*-][image: -*-]


where L[image: -*-] is the inductance of the coil. Since d I/d t=i ω I[image: -*-], we
have

[image: -*-][image: -*-]
(22.4)









The way we have described the ideal inductance illustrates the general
approach to other ideal circuit elements—usually called “lumped”
elements. The properties of the element are described completely in
terms of currents and voltages that appear at the terminals. By making
suitable approximations, it is possible to ignore the great
complexities of the fields that appear inside the object. A separation
is made between what happens inside and what happens outside.




For all the circuit elements we will find a relation like the one in
Eq. (22.4), in which the voltage is proportional to the
current with a proportionality constant that is, in general, a complex
number. This complex coefficient of proportionality is called the
impedance and is usually written as z[image: -*-] (not to be confused
with the z[image: -*-]-coordinate). It is, in general, a function of the
frequency ω[image: -*-]. So for any lumped element we write

[image: -*-][image: -*-]
(22.5)




For an inductance, we have

[image: -*-][image: -*-]
(22.6)









Now let’s look at a capacitor from the same point of
view.1 A capacitor consists of a pair of conducting plates
from which two wires are brought out to suitable terminals. The plates
may be of any shape whatsoever, and are often separated by some
dielectric material. We illustrate such a situation schematically in
Fig. 22–2. Again we make several simplifying assumptions.
We assume that the plates and the wires are perfect conductors. We also
assume that the insulation between the plates is perfect, so that no
charges can flow across the insulation from one plate to the other.
Next, we assume that the two conductors are close to each other but far
from all others, so that all field lines which leave one plate end up on
the other. Then there are always equal and opposite charges on the two
plates and the charges on the plates are much larger than the charges on
the surfaces of the lead-in wires. Finally, we assume that there are no
magnetic fields close to the capacitor.



[image: -][image: -]
Fig. 22–2. A capacitor (or condenser).





Suppose now we consider the line integral of E[image: -*-] around a closed
loop which starts at terminal a[image: -*-], goes along inside the wire to the
top plate of the capacitor, jumps across the space between the plates,
passes from the lower plate to terminal b[image: -*-] through the wire, and
returns to terminal a[image: -*-] in the space outside the capacitor. Since
there is no magnetic field, the line integral of E[image: -*-] around this
closed path is zero. The integral can be broken down into three parts:

[image: -*-][image: -*-]
(22.7)




The integral along the wires is zero, because there are no electric
fields inside perfect conductors. The integral from b[image: -*-] to a[image: -*-] outside
the capacitor is equal to the negative of the potential difference
between the terminals. Since we imagined that the two plates are in
some way isolated from the rest of the world, the total charge on the
two plates must be zero; if there is a charge Q[image: -*-] on the upper plate,
there is an equal, opposite charge −Q[image: -*-] on the lower plate. We have
seen earlier that if two conductors have equal and opposite charges,
plus and minus Q[image: -*-], the potential difference between the plates is
equal to Q/C[image: -*-], where C[image: -*-] is called the capacity of the two
conductors. From Eq. (22.7) the potential difference
between the terminals a[image: -*-] and b[image: -*-] is equal to the potential difference
between the plates. We have, therefore, that

[image: -*-][image: -*-]


The electric current I[image: -*-] entering the capacitor through terminal a[image: -*-]
(and leaving through terminal b[image: -*-]) is equal to d Q/d t[image: -*-], the rate of
change of the electric charge on the plates. Writing d V/d t[image: -*-]
as i ω V[image: -*-], we can put the voltage current relationship for a
capacitor in the following way:

[image: -*-][image: -*-]


or

[image: -*-][image: -*-]
(22.8)




The impedance z[image: -*-] of a capacitor, is then

[image: -*-][image: -*-]
(22.9)








[image: -][image: -]
Fig. 22–3. A resistor





The third element we want to consider is a resistor.
However, since we have not yet discussed the electrical properties of
real materials, we are not yet ready to talk about what happens inside a
real conductor. We will just have to accept as fact that electric fields
can exist inside real materials, that these electric fields give rise to
a flow of electric charge—that is, to a current—and that this
current is proportional to the integral of the electric field from one
end of the conductor to the other. We then imagine an ideal resistor
constructed as in the diagram of Fig. 22–3. Two wires which
we take to be perfect conductors go from the terminals a[image: -*-] and b[image: -*-] to
the two ends of a bar of resistive material. Following our usual line of
argument, the potential difference between the terminals a[image: -*-] and b[image: -*-] is
equal to the line integral of the external electric field, which is also
equal to the line integral of the electric field through the bar of
resistive material. It then follows that the current I[image: -*-] through the
resistor is proportional to the terminal voltage V[image: -*-]:

[image: -*-][image: -*-]


where R[image: -*-] is called the resistance. We will see later that the
relation between the current and the voltage for real conducting
materials is only approximately linear. We will also see that this
approximate proportionality is expected to be independent of the
frequency of variation of the current and voltage only if the
frequency is not too high. For alternating currents then, the voltage
across a resistor is in phase with the current, which means that the
impedance is a real number:

[image: -*-][image: -*-]
(22.10)








[image: -][image: -]
Fig. 22–4. The ideal lumped circuit elements (passive).





Our results for the three lumped circuit elements—the inductor, the
capacitor, and the resistor—are summarized in Fig. 22–4.
In this figure, as well as in the preceding ones, we have indicated the
voltage by an arrow that is directed from one terminal to another. If
the voltage is “positive”—that is, if the terminal a[image: -*-] is at a
higher potential than the terminal b[image: -*-]—the arrow indicates the
direction of a positive “voltage drop.”




Although we are talking about alternating currents, we can of course
include the special case of circuits with steady currents by taking
the limit as the frequency ω[image: -*-] goes to zero. For zero
frequency—that is, for dc—the impedance of an inductance
goes to zero; it becomes a short circuit. For dc, the
impedance of a condenser goes to infinity; it becomes an open
circuit. Since the impedance of a resistor is independent of
frequency, it is the only element left when we analyze a circuit for
dc.




In the circuit elements we have described so far, the current and
voltage are proportional to each other. If one is zero, so also is the
other. We usually think in terms like these: An applied voltage is
“responsible” for the current, or a current “gives rise to” a
voltage across the terminals; so in a sense the elements “respond”
to the “applied” external conditions. For this reason these elements
are called passive elements. They can thus be
contrasted with the active elements, such as the generators we will
consider in the next section, which are the sources of the
oscillating currents or voltages in a circuit.







22–2 Generators


Now we want to talk about an active circuit element—one that is a
source of the currents and voltages in a circuit—namely, a
generator.



[image: -][image: -]
Fig. 22–5. A generator consisting of a fixed coil and a rotating
magnetic field.





Suppose that we have a coil like an inductance except that it has very
few turns, so that we may neglect the magnetic field of its own
current. This coil, however, sits in a changing magnetic field such as
might be produced by a rotating magnet, as sketched in
Fig. 22–5. (We have seen earlier that such a rotating
magnetic field can also be produced by a suitable set of coils with
alternating currents.) Again we must make several simplifying
assumptions. The assumptions we will make are all the ones that we
described for the case of the inductance. In particular, we assume that
the varying magnetic field is restricted to a definite region in the
vicinity of the coil and does not appear outside the generator in the
space between the terminals.




Following closely the analysis we made for the inductance, we consider
the line integral of E[image: -*-] around a complete loop that starts at
terminal a[image: -*-], goes through the coil to terminal b[image: -*-] and returns to its
starting point in the space between the two terminals. Again we
conclude that the potential difference between the terminals is equal
to the total line integral of E[image: -*-] around the loop:

[image: -*-][image: -*-]


This line integral is equal to the emf in the circuit, so the
potential difference V[image: -*-] across the terminals of the generator is also
equal to the rate of change of the magnetic flux linking the coil:

[image: -*-][image: -*-]
(22.11)




For an ideal generator we assume that the magnetic flux linking the
coil is determined by external conditions—such as the angular
velocity of a rotating magnetic field—and is not influenced in any
way by the currents through the generator. Thus a generator—at least
the ideal generator we are considering—is not an
impedance. The potential difference across its terminals is determined
by the arbitrarily assigned electromotive force E (t)[image: -*-]. Such an ideal
generator is represented by the symbol shown in Fig. 22–6.
The little arrow represents the direction of the emf when it is
positive. A positive emf in the generator of Fig. 22–6 will
produce a voltage V=E[image: -*-], with the terminal a[image: -*-] at a higher potential
than the terminal b[image: -*-].



[image: -][image: -]
Fig. 22–6. Symbol for an ideal generator.





There is another way to make a generator which is quite different on
the inside but which is indistinguishable from the one we have just
described insofar as what happens beyond its terminals. Suppose we
have a coil of wire which is rotated in a fixed magnetic field,
as indicated in Fig. 22–7. We show a bar magnet to
indicate the presence of a magnetic field; it could, of course, be
replaced by any other source of a steady magnetic field, such as an
additional coil carrying a steady current. As shown in the figure,
connections from the rotating coil are made to the outside world by
means of sliding contacts or “slip rings.” Again, we are interested
in the potential difference that appears across the two terminals a[image: -*-]
and b[image: -*-], which is of course the integral of the electric field from
terminal a[image: -*-] to terminal b[image: -*-] along a path outside the generator.



[image: -][image: -]
Fig. 22–7. A generator consisting of a coil rotating in a fixed magnetic
field.





Now in the system of Fig. 22–7 there are no changing
magnetic fields, so we might at first wonder how any voltage could
appear at the generator terminals. In fact, there are no electric
fields anywhere inside the generator. We are, as usual, assuming for
our ideal elements that the wires inside are made of a perfectly
conducting material, and as we have said many times, the electric
field inside a perfect conductor is equal to zero. But that is not
true. It is not true when a conductor is moving in a magnetic
field. The true statement is that the total force on any charge
inside a perfect conductor must be zero. Otherwise there would be an
infinite flow of the free charges. So what is always true is that the
sum of the electric field E[image: -*-] and the cross product of the
velocity of the conductor and the magnetic field B[image: -*-]—which is
the total force on a unit charge—must have the value zero inside the
conductor:



[image: -*-][image: -*-]
(22.12)





where v[image: -*-] represents the velocity of the conductor. Our earlier
statement that there is no electric field inside a perfect conductor
is all right if the velocity v[image: -*-] of the conductor is zero;
otherwise the correct statement is given by Eq. (22.12).




Returning to our generator of Fig. 22–7, we now see
that the line integral of the electric field E[image: -*-] from terminal a[image: -*-]
to terminal b[image: -*-] through the conducting path of the generator must be
equal to the line integral of v×B[image: -*-] on the same path,

[image: -*-][image: -*-]
(22.13)




It is still true, however, that the line integral of E[image: -*-] around a
complete loop, including the return from b[image: -*-] to a[image: -*-] outside the
generator, must be zero, because there are no changing magnetic
fields. So the first integral in Eq. (22.13) is also
equal to V[image: -*-], the voltage between the two terminals. It turns out that
the right-hand integral of Eq. (22.13) is just the rate
of change of the flux linkage through the coil and is therefore—by
the flux rule—equal to the emf in the coil. So we have again that
the potential difference across the terminals is equal to the
electromotive force in the circuit, in agreement with
Eq. (22.11). So whether we have a generator in which a
magnetic field changes near a fixed coil, or one in which a coil moves
in a fixed magnetic field, the external properties of the generators are
the same. There is a voltage difference V[image: -*-] across the terminals, which
is independent of the current in the circuit but depends only on the
arbitrarily assigned conditions inside the generator.



[image: -][image: -]
Fig. 22–8. A chemical cell.





So long as we are trying to understand the operation of generators from
the point of view of Maxwell’s
equations, we might also ask about
the ordinary chemical cell, like a flashlight battery. It
is also a generator, i.e., a voltage source, although it will of course
only appear in dc circuits. The simplest kind of cell to
understand is shown in Fig. 22–8. We imagine two metal
plates immersed in some chemical solution. We suppose that the solution
contains positive and negative ions. We suppose also that one kind of
ion, say the negative, is much heavier than the one of opposite
polarity, so that its motion through the solution by the process of
diffusion is much slower. We suppose next that by some means or other it
is arranged that the concentration of the solution is made to vary from
one part of the liquid to the other, so that the number of ions of both
polarities near, say, the lower plate is much larger than the
concentration of ions near the upper plate. Because of their rapid
mobility the positive ions will drift more readily into the region of
lower concentration, so that there will be a slight excess of positive
charge arriving at the upper plate. The upper plate will become
positively charged and the lower plate will have a net negative charge.




As more and more charges diffuse to the upper plate, the potential of
this plate will rise until the resulting electric field between the
plates produces forces on the ions which just compensate for their
excess mobility, so the two plates of the cell quickly reach a
potential difference which is characteristic of the internal
construction.




Arguing just as we did for the ideal capacitor, we see that the
potential difference between the terminals a[image: -*-] and b[image: -*-] is just equal
to the line integral of the electric field between the two plates when
there is no longer any net diffusion of the ions. There is, of course,
an essential difference between a capacitor and such a chemical
cell. If we short-circuit the terminals of a condenser for a moment,
the capacitor is discharged and there is no longer any potential
difference across the terminals. In the case of the chemical cell a
current can be drawn from the terminals continuously without any
change in the emf—until, of course, the chemicals inside the cell
have been used up. In a real cell it is found that the potential
difference across the terminals decreases as the current drawn from
the cell increases. In keeping with the abstractions we have been
making, however, we may imagine an ideal cell in which the voltage
across the terminals is independent of the current. A real cell can
then be looked at as an ideal cell in series with a resistor.







22–3 Networks of ideal elements; Kirchhoff’s rules


As we have seen in the last section, the description of an ideal circuit
element in terms of what happens outside the element is quite simple.
The current and the voltage are linearly related. But what is actually
happening inside the element is quite complicated, and it is quite
difficult to give a precise description in terms of Maxwell’s
equations. Imagine trying to give a
precise description of the electric and magnetic fields of the inside of
a radio which contains hundreds of resistors, capacitors, and inductors.
It would be an impossible task to analyze such a thing by using
Maxwell’s equations. But by
making the many approximations we have described in
Section 22–2 and summarizing the essential features of the
real circuit elements in terms of idealizations, it becomes possible to
analyze an electrical circuit in a relatively straightforward way. We
will now show how that is done.



[image: -][image: -]
Fig. 22–9. The sum of the voltage drops around any closed path is zero.





Suppose we have a circuit consisting of a generator and several
impedances connected together, as shown in Fig. 22–9.
According to our approximations there is no magnetic field in the region
outside the individual circuit elements. Therefore the line integral
of E[image: -*-] around any curve which does not pass through any of the elements
is zero. Consider then the curve Γ[image: -*-] shown by the broken line which
goes all the way around the circuit in Fig. 22–9. The line
integral of E[image: -*-] around this curve is made up of several pieces. Each
piece is the line integral from one terminal of a circuit element to the
other. This line integral we have called the voltage drop across the
circuit element. The complete line integral is then just the sum of the
voltage drops across all of the elements in the circuit:

[image: -*-][image: -*-]


Since the line integral is zero, we have that the sum of the potential
differences around a complete loop of a circuit is equal to zero:

[image: -*-][image: -*-]
(22.14)




This result follows from one of Maxwell’s
equations—that in a region where
there are no magnetic fields the line integral of E[image: -*-] around any
complete loop is zero.




[image: -][image: -]
Fig. 22–10. The sum of the currents into any node is zero.





Suppose we consider now a circuit like that shown in
Fig. 22–10. The horizontal line joining the terminals
a[image: -*-], b[image: -*-], c[image: -*-], and d[image: -*-] is intended to show that these terminals are all
connected, or that they are joined by wires of negligible resistance. In
any case, the drawing means that terminals a[image: -*-], b[image: -*-], c[image: -*-], and d[image: -*-] are
all at the same potential and, similarly, that the terminals e[image: -*-], f[image: -*-],
g[image: -*-], and h[image: -*-] are also at one common potential. Then the voltage drop V[image: -*-]
across each of the four elements is the same.




Now one of our idealizations has been that negligible electrical
charges accumulate on the terminals of the impedances. We now assume
further that any electrical charges on the wires joining terminals can
also be neglected. Then the conservation of charge requires that any
charge which leaves one circuit element immediately enters some other
circuit element. Or, what is the same thing, we require that the
algebraic sum of the currents which enter any given junction must be
zero. By a junction, of course, we mean any set of terminals such as
a[image: -*-], b[image: -*-], c[image: -*-], and d[image: -*-] which are connected. Such a set of connected
terminals is usually called a “node.” The conservation of charge
then requires that for the circuit of Fig. 22–10,

[image: -*-][image: -*-]
(22.15)




The sum of the currents entering the node which consists of the four
terminals e[image: -*-], f[image: -*-], g[image: -*-], and h[image: -*-] must also be zero:

[image: -*-][image: -*-]
(22.16)




This is, of course, the same as Eq. (22.15). The two
equations are not independent. The general rule is that the sum
of the currents into any node must be zero:

[image: -*-][image: -*-]
(22.17)









Our earlier conclusion that the sum of the voltage drops around a
closed loop is zero must apply to any loop in a complicated
circuit. Also, our result that the sum of the currents into a node is
zero must be true for any node. These two equations are known as
Kirchhoff’s rules. With these two rules it is possible to solve
for the currents and voltages in any network whatever.



[image: -][image: -]
Fig. 22–11. Analyzing a circuit with Kirchhoff’s rules.





Suppose we consider the more complicated circuit of
Fig. 22–11. How shall we find the currents and voltages in
this circuit? We can find them in the following straightforward way. We
consider separately each of the four subsidiary closed loops, which
appear in the circuit. (For instance, one loop goes from terminal a[image: -*-] to
terminal b[image: -*-] to terminal e[image: -*-] to terminal d[image: -*-] and back to terminal a[image: -*-].)
For each of the loops we write the equation for the first of Kirchhoff’s
rules—that the sum of the voltages around each loop is equal to zero.
We must remember to count the voltage drop as positive if we are going
in the direction of the current and negative if we are going
across an element in the direction opposite to the current; and
we must remember that the voltage drop across a generator is the
negative of the emf in that direction. Thus if we consider the
small loop that starts and ends at terminal a[image: -*-] we have the equation

[image: -*-][image: -*-]


Applying the same rule to the remaining loops, we would get three more
equations of the same kind.




Next, we must write the current equation for each of the nodes in the
circuit. For example, summing the currents into the node at terminal b[image: -*-]
gives the equation

[image: -*-][image: -*-]


Similarly, for the node labeled e[image: -*-] we would have the current equation

[image: -*-][image: -*-]


For the circuit shown there are five such current equations. It turns
out, however, that any one of these equations can be derived from the
other four; there are, therefore, only four independent current
equations. We thus have a total of eight independent, linear
equations: the four voltage equations and the four current
equations. With these eight equations we can solve for the eight
unknown currents. Once the currents are known the circuit is
solved. The voltage drop across any element is given by the current
through that element times its impedance (or, in the case of the
voltage sources, it is already known).




We have seen that when we write the current equations, we get one
equation which is not independent of the others. Generally it is also
possible to write down too many voltage equations. For example, in the
circuit of Fig. 22–11, although we have considered only
the four small loops, there are a large number of other loops for
which we could write the voltage equation. There is, for example, the
loop along the path a b c f e d a[image: -*-]. There is another loop which follows the
path a b c f e h g d a[image: -*-]. You can see that there are many loops. In analyzing
complicated circuits it is very easy to get too many equations. There
are rules which tell us how to proceed so that only the minimum number
of equations is written down, but usually with a little thought it is
possible to see how to get the right number of equations in the
simplest form. Besides, writing an extra equation or two doesn’t do
any harm. They will not lead to any wrong answers, only perhaps a
little unnecessary algebra.



[image: -][image: -]
Fig. 22–12. A circuit which can be analyzed in terms of series and
parallel combinations.





In Chapter 25 of Vol. I we showed that if the two
impedances z1[image: -*-] and z2[image: -*-] are in series, they are equivalent
to a single impedance zs[image: -*-] given by

[image: -*-][image: -*-]
(22.18)




We also showed that if the two impedances are connected in
parallel, they are equivalent to the single impedance zp[image: -*-]
given by

[image: -*-][image: -*-]
(22.19)




If you look back you will see that in deriving these results we were
in effect making use of Kirchhoff’s rules. It is often possible to
analyze a complicated circuit by repeated application of the formulas
for series and parallel impedances. For instance, the circuit of
Fig. 22–12 can be analyzed that way. First, the
impedances z4[image: -*-] and z5[image: -*-] can be replaced by their parallel
equivalent, and so also can z6[image: -*-] and z7[image: -*-]. Then the impedance z2[image: -*-]
can be combined with the parallel equivalent of z6[image: -*-] and z7[image: -*-] by the
series rule. Proceeding in this way, the whole circuit can be reduced
to a generator in series with a single impedance Z[image: -*-]. The current
through the generator is then just E/Z[image: -*-]. Then by working backward
one can solve for the currents in each of the impedances.



[image: -][image: -]
Fig. 22–13. A circuit that cannot be analyzed in terms of series and
parallel combinations.





There are, however, quite simple circuits which cannot be analyzed by
this method, as for example the circuit of Fig. 22–13. To
analyze this circuit we must write down the current and voltage
equations from Kirchhoff’s rules. Let’s do it. There is just one current
equation:

[image: -*-][image: -*-]


so we know immediately that

[image: -*-][image: -*-]


We can save ourselves some algebra if we immediately make use of this
result in writing the voltage equations. For this circuit there are
two independent voltage equations; they are

[image: -*-][image: -*-]


and

[image: -*-][image: -*-]


There are two equations and two unknown currents. Solving these
equations for I1[image: -*-] and I2[image: -*-], we get

[image: -*-][image: -*-]
(22.20)




and

[image: -*-][image: -*-]
(22.21)




The third current is obtained from the sum of these two.



[image: -][image: -]
Fig. 22–14. A bridge circuit.





Another example of a circuit that cannot be analyzed by using the rules
for series and parallel impedance is shown in Fig. 22–14.
Such a circuit is called a “bridge.” It appears in many instruments
used for measuring impedances. With such a circuit one is usually
interested in the question: How must the various impedances be related
if the current through the impedance z3[image: -*-] is to be zero? We leave it
for you to find the conditions for which this is so.







22–4 Equivalent circuits

[image: -][image: -]
Fig. 22–15. Any two-terminal network of passive elements is equivalent to
an effective impedance.





Suppose we connect a generator E[image: -*-] to a circuit containing some
complicated interconnection of impedances, as indicated schematically
in Fig. 22–15(a). All of the equations we get from
Kirchhoff’s rules
are linear, so when we solve them for the current I[image: -*-]
through the generator, we will get that I[image: -*-] is proportional
to E[image: -*-]. We can write

[image: -*-][image: -*-]


where now zeff[image: -*-] is some complex number, an algebraic
function of all the elements in the circuit. (If the circuit contains
no generators other than the one shown, there is no additional term
independent of E[image: -*-].) But this equation is just what we would write
for the circuit of Fig. 22–15(b). So long as we are
interested only in what happens to the left of the two
terminals a[image: -*-] and b[image: -*-], the two circuits of Fig. 22–15
are equivalent. We can, therefore, make the general statement
that any two-terminal network of passive elements can be
replaced by a single impedance zeff[image: -*-] without changing the
currents and voltages in the rest of the circuit. This statement is of
course, just a remark about what comes out of Kirchhoff’s
rules—and
ultimately from the linearity of Maxwell’s
equations.




[image: -][image: -]
Fig. 22–16. Any two-terminal network can be replaced by a generator in
series with an impedance.





The idea can be generalized to a circuit that contains generators as
well as impedances. Suppose we look at such a circuit “from the point
of view” of one of the impedances, which we will call zn[image: -*-], as in
Fig. 22–16(a). If we were to solve the equation for the
whole circuit, we would find that the voltage Vn[image: -*-] between the two
terminals a[image: -*-] and b[image: -*-] is a linear function of I[image: -*-], which we can write

[image: -*-][image: -*-]
(22.22)




where A[image: -*-] and B[image: -*-] depend on the generators and impedances in the
circuit to the left of the terminals. For instance, for the circuit of
Fig. 22–13, we find V1=I1 z1[image: -*-]. This can be written
(by rearranging Eq. (22.20)] as

[image: -*-][image: -*-]
(22.23)




The complete solution is then obtained by combining this equation with
the one for the impedance z1[image: -*-], namely, V1=I1 z1[image: -*-], or in the
general case, by combining Eq. (22.22) with

[image: -*-][image: -*-]







If now we consider that zn[image: -*-] is attached to a simple series circuit
of a generator and a current, as in Fig. 22–15(b), the
equation corresponding to Eq. (22.22) is

[image: -*-][image: -*-]


which is identical to Eq. (22.22) provided we set
Eeff=A[image: -*-] and zeff=B[image: -*-]. So if we are interested
only in what happens to the right of the terminals a[image: -*-] and b[image: -*-],
the arbitrary circuit of Fig. 22–16 can always be
replaced by an equivalent combination of a generator in series with an
impedance.








22–5 Energy


We have seen that to build up the current I[image: -*-] in an inductance, the
energy [image: U=\tfrac{1}{2}LI^2][image: U=\tfrac{1}{2}LI^2] must be provided by the external circuit.
When the current falls back to zero, this energy is delivered back to
the external circuit. There is no energy-loss mechanism in an ideal
inductance. When there is an alternating current through an
inductance, energy flows back and forth between it and the rest of the
circuit, but the average rate at which energy is delivered to
the circuit is zero. We say that an inductance is a
nondissipative element; no electrical energy is
dissipated—that is, “lost”—in it.




Similarly, the energy of a condenser, [image: U=\tfrac{1}{2}CV^2][image: U=\tfrac{1}{2}CV^2], is
returned to the external circuit when a condenser is discharged. When
a condenser is in an ac circuit energy flows in and out of
it, but the net energy flow in each cycle is zero. An ideal condenser
is also a nondissipative element.




We know that an emf is a source of energy. When a current I[image: -*-] flows in
the direction of the emf, energy is delivered to the external circuit
at the rate d U/d t=E I[image: -*-]. If current is driven against the
emf—by other generators in the circuit—the emf will absorb energy
at the rate E I[image: -*-]; since I[image: -*-] is negative, d U/d t[image: -*-] will also be
negative.




If a generator is connected to a resistor R[image: -*-], the current through the
resistor is I=E/R[image: -*-]. The energy being supplied by the generator at
the rate E I[image: -*-] is being absorbed by the resistor. This energy goes
into heat in the resistor and is lost from the electrical energy of
the circuit. We say that electrical energy is dissipated in a
resistor. The rate at which energy is dissipated in a resistor
is d U/d t=R I2[image: -*-].




In an ac circuit the average rate of energy lost to a
resistor is the average of R I2[image: -*-] over one cycle. Since
[image: I=\hat{I}e^{i\omega t}][image: I=\hat{I}e^{i\omega t}]—by which we really mean that I[image: -*-] varies
as cosω t[image: -*-]—the average of I2[image: -*-] over one cycle
is [image: \abs{\hat{I}}^2/2][image: \abs{\hat{I}}^2/2], since the peak current is [image: \abs{\hat{I}}][image: \abs{\hat{I}}] and the
average of cos2ω t[image: -*-] is 1/2[image: -*-].




What about the energy loss when a generator is connected to an
arbitrary impedance z[image: -*-]? (By “loss” we mean, of course, conversion
of electrical energy into thermal energy.) Any impedance z[image: -*-] can be
written as the sum of its real and imaginary parts. That is,

[image: -*-][image: -*-]
(22.24)




where R[image: -*-] and X[image: -*-] are real numbers. From the point of view of equivalent
circuits we can say that any impedance is equivalent to a resistance in
series with a pure imaginary impedance—called a
reactance—as shown in Fig. 22–17.



[image: -][image: -]
Fig. 22–17. Any impedance is equivalent to a series combination of a pure
resistance and a pure reactance.





We have seen earlier that any circuit that contains only
L[image: -*-]’s and C[image: -*-]’s has an impedance that is a pure imaginary number. Since
there is no energy loss into any of the L[image: -*-]’s and C[image: -*-]’s on the average,
a pure reactance containing only L[image: -*-]’s and C[image: -*-]’s will
have no energy loss. We can see that this must be true in general for a
reactance.





If a generator with the emf E[image: -*-] is connected to the impedance z[image: -*-]
of Fig. 22–17, the emf must be related to the
current I[image: -*-] from the generator by

[image: -*-][image: -*-]
(22.25)




To find the average rate at which energy is delivered, we want the
average of the product E I[image: -*-]. Now we must be careful. When dealing
with such products, we must deal with the real quantities E (t)[image: -*-]
and I (t)[image: -*-]. (The real parts of the complex functions will represent
the actual physical quantities only when we have linear
equations; now we are concerned with products, which are
certainly not linear.)




Suppose we choose our origin of t[image: -*-] so that the amplitude [image: \hat{I}][image: \hat{I}] is
a real number, let’s say I0[image: -*-]; then the actual time variation I[image: -*-] is
given by

[image: -*-][image: -*-]


The emf of Eq. (22.25) is the real part of

[image: -*-][image: -*-]


or

[image: -*-][image: -*-]
(22.26)









The two terms in Eq. (22.26) represent the voltage drops
across R[image: -*-] and X[image: -*-] in Fig. 22–17. We see that the
voltage drop across the resistance is in phase with the
current, while the voltage drop across the purely reactive part is
out of phase with the current.




The average rate of energy loss, [image: \av{P}][image: \av{P}], from the generator
is the integral of the product E I[image: -*-] over one cycle divided by the
period T[image: -*-]; in other words,



[image: -*-][image: -*-]








The first integral is [image: \tfrac{1}{2}I_0^2R][image: \tfrac{1}{2}I_0^2R], and the second integral is
zero. So the average energy loss in an impedance z=R+i X[image: -*-] depends only
on the real part of z[image: -*-], and is [image: I_0^2R/2][image: I_0^2R/2], which is in agreement with
our earlier result for the energy loss in a resistor. There is no
energy loss in the reactive part.







22–6 A ladder network

[image: -][image: -]
Fig. 22–18. The effective impedance of a ladder.





We would like now to consider an interesting circuit which can be
analyzed in terms of series and parallel combinations. Suppose we
start with the circuit of Fig. 22–18(a). We can see
right away that the impedance from terminal a[image: -*-] to terminal b[image: -*-] is
simply z1+z2[image: -*-]. Now let’s take a little harder circuit, the one
shown in Fig. 22–18(b). We could analyze this circuit
using Kirchhoff’s rules,
but it is also easy to handle with series and
parallel combinations. We can replace the two impedances on the
right-hand end by a single impedance z3=z1+z2[image: -*-], as in part (c) of
the figure. Then the two impedances z2[image: -*-] and z3[image: -*-] can be replaced by
their equivalent parallel impedance z4[image: -*-], as shown in part (d) of the
figure. Finally, z1[image: -*-] and z4[image: -*-] are equivalent to a single
impedance z5[image: -*-], as shown in part (e).



[image: -][image: -]
Fig. 22–19. The effective impedance of an infinite ladder.





Now we may ask an amusing question: What would happen if in the network of
Fig. 22–18(b) we kept on adding more sections forever—as
we indicate by the dashed lines in Fig. 22–19(a)?  Can we solve
such an infinite network? Well, that’s not so hard. First, we notice that such
an infinite network is unchanged if we add one more section at the “front”
end. Surely, if we add one more section to an infinite network it is still the
same infinite network. Suppose we call the impedance between the two terminals
a[image: -*-] and b[image: -*-] of the infinite network z0[image: -*-]; then the impedance of all the stuff
to the right of the two terminals c[image: -*-] and d[image: -*-] is also z0[image: -*-]. Therefore, so far
as the front end is concerned, we can represent the network as shown in
Fig. 22–19(b). Forming the parallel combination of z2[image: -*-] with z0[image: -*-]
and adding the result in series with z1[image: -*-], we can immediately write down the
impedance of this circuit:

[image: -*-][image: -*-]


But this impedance is also equal to z0[image: -*-], so we have the equation

[image: -*-][image: -*-]


We can solve for z0[image: -*-] to get

[image: -*-][image: -*-]
(22.27)




So we have found the solution for the impedance of an infinite ladder
of repeated series and parallel impedances. The impedance z0[image: -*-] is
called the characteristic impedance of such an infinite
network.



[image: -][image: -]
Fig. 22–20. An L[image: -*-]-C[image: -*-] ladder drawn in two equivalent ways.





Let’s now consider a specific example in which the series element is
an inductance L[image: -*-] and the shunt element is a capacitance C[image: -*-], as shown
in Fig. 22–20(a). In this case we find the impedance of
the infinite network by setting z1=i ω L[image: -*-] and z2=1/i ω C[image: -*-]. Notice that the first term, z1/2[image: -*-], in Eq. (22.27)
is just one-half the impedance of the first element. It would
therefore seem more natural, or at least somewhat simpler, if we were
to draw our infinite network as shown in Fig. 22–20(b).
Looking at the infinite network from the terminal a′[image: -*-] we would see the
characteristic impedance

[image: -*-][image: -*-]
(22.28)









Now there are two interesting cases, depending on the
frequency ω[image: -*-]. If ω2[image: -*-] is less than 4/L C[image: -*-], the second term in the
radical will be smaller than the first, and the impedance z0[image: -*-] will
be a real number. On the other hand, if ω2[image: -*-] is greater
than 4/L C[image: -*-] the impedance z0[image: -*-] will be a pure imaginary number which we
can write as

[image: -*-][image: -*-]







We have said earlier that a circuit which contains only imaginary
impedances, such as inductances and capacitances, will have an
impedance which is purely imaginary. How can it be then that for the
circuit we are now studying—which has only L[image: -*-]’s and C[image: -*-]’s—the
impedance is a pure resistance for frequencies below √4/L C[image: -*-]?
For higher frequencies the impedance is purely imaginary, in agreement
with our earlier statement. For lower frequencies the impedance is a
pure resistance and will therefore absorb energy. But how can the
circuit continuously absorb energy, as a resistance does, if it is
made only of inductances and capacitances? Answer: Because
there is an infinite number of inductances and capacitances, so that
when a source is connected to the circuit, it supplies energy to the
first inductance and capacitance, then to the second, to the third,
and so on. In a circuit of this kind, energy is continually absorbed
from the generator at a constant rate and flows constantly out into
the network, supplying energy which is stored in the inductances and
capacitances down the line.




This idea suggests an interesting point about what is happening in the
circuit. We would expect that if we connect a source to the front end,
the effects of this source will be propagated through the network
toward the infinite end. The propagation of the waves down the line is
much like the radiation from an antenna which absorbs energy from its
driving source; that is, we expect such a propagation to occur when
the impedance is real, which occurs if ω[image: -*-] is less
than √4/L C[image: -*-]. But when the impedance is purely imaginary, which
happens for ω[image: -*-] greater than √4/L C[image: -*-], we would not expect
to see any such propagation.







22–7 Filters


We saw in the last section that the infinite ladder network of
Fig. 22–20 absorbs energy continuously if it is driven at a
frequency below a certain critical frequency √4/L C[image: -*-], which we
will call the cutoff frequency ω0[image: -*-]. We
suggested that this
effect could be understood in terms of a continuous transport of energy
down the line. On the other hand, at high frequencies, for w>ω0[image: -*-],
there is no continuous absorption of energy; we should then expect that
perhaps the currents don’t “penetrate” very far down the line. Let’s
see whether these ideas are right.




Suppose we have the front end of the ladder connected to some
ac generator and we ask what the voltage looks like at, say,
the 754[image: -*-]th section of the ladder. Since the network is infinite,
whatever happens to the voltage from one section to the next is always
the same; so let’s just look at what happens when we go from some
section, say the n[image: -*-]th to the next. We will define the currents In[image: -*-]
and voltages Vn[image: -*-] as shown in Fig. 22–21(a).



[image: -][image: -]
Fig. 22–21. Finding the propagation factor of a ladder.





We can get the voltage Vn+1[image: -*-] from Vn[image: -*-] by remembering that we can
always replace the rest of the ladder after the n[image: -*-]th section by its
characteristic impedance z0[image: -*-]; then we need only analyze the circuit
of Fig. 22–21(b). First, we notice that any Vn[image: -*-],
since it is across z0[image: -*-], must equal In z0[image: -*-]. Also, the difference
between Vn[image: -*-] and Vn+1[image: -*-] is just In z1[image: -*-]:

[image: -*-][image: -*-]


So we get the ratio

[image: -*-][image: -*-]


We can call this ratio the propagation factor for one section of the 
ladder; we’ll call it α[image: -*-]. It is, of course, the same for all sections:

[image: -*-][image: -*-]
(22.29)




The voltage after the n[image: -*-]th section is then

[image: -*-][image: -*-]
(22.30)




You can now find the voltage after 754[image: -*-] sections; it is just α[image: -*-]
to the 754[image: -*-]th power times E[image: -*-].





Suppose we see what α[image: -*-] is like for the L[image: -*-]-C[image: -*-] ladder of
Fig. 22–20(a). Using z0[image: -*-] from Eq. (22.27),
and z1=i ω L[image: -*-], we get

[image: -*-][image: -*-]
(22.31)




If the driving frequency is below the cutoff
frequency ω0=√4/L C[image: -*-], the radical is a real number, and the
magnitudes of the complex numbers in the numerator and denominator are
equal. Therefore, the magnitude of α[image: -*-] is one; we can write

[image: -*-][image: -*-]


which means that the magnitude of the voltage is the same at every
section; only its phase changes. The phase change δ[image: -*-] is, in
fact, a negative number and represents the “delay” of the voltage as
it passes along the network.





For frequencies above the cutoff frequency ω0[image: -*-] it is better to
factor out an i[image: -*-] from the numerator and denominator of
Eq. (22.31) and rewrite it as

[image: -*-][image: -*-]
(22.32)




The propagation factor α[image: -*-] is now a real number, and a
number less than one. That means that the voltage at any
section is always less than the voltage at the preceding section by
the factor α[image: -*-]. For any frequency above ω0[image: -*-], the voltage
dies away rapidly as we go along the network. A plot of the absolute
value of α[image: -*-] as a function of frequency looks like the graph in
Fig. 22–22.




[image: -][image: -]
Fig. 22–22. The propagation factor of a section of an L[image: -*-]-C[image: -*-] ladder.





We see that the behavior of α[image: -*-], both above and below ω0[image: -*-],
agrees with our interpretation that the network propagates energy
for ω<ω0[image: -*-] and blocks it for ω>ω0[image: -*-]. We say that the
network “passes” low frequencies and “rejects” or “filters out”
the high frequencies. Any network designed to have its characteristics
vary in a prescribed way with frequency is called a “filter.” We
have been analyzing a “low-pass filter.”




You may be wondering why all this discussion of an infinite network
which obviously cannot actually occur. The point is that the same
characteristics are found in a finite network if we finish it off at
the end with an impedance equal to the characteristic impedance z0[image: -*-].
Now in practice it is not possible to exactly reproduce
the characteristic impedance with a few simple elements—like
R[image: -*-]’s, L[image: -*-]’s, and C[image: -*-]’s. But it is often possible to do so with a fair
approximation for a certain range of frequencies. In this way one can
make a finite filter network whose properties are very nearly the same
as those for the infinite case. For instance, the L[image: -*-]-C[image: -*-] ladder
behaves much as we have described it if it is terminated in the pure
resistance R=√L/C[image: -*-].



[image: -][image: -][image: -][image: -]
Fig. 22-23 (a) A high-pass filter; (b) its propagation factor as a
function of 1/ω[image: -*-].





If in our L[image: -*-]-C[image: -*-] ladder we interchange the positions of the L[image: -*-]’s
and C[image: -*-]’s, to make the ladder shown in Fig. 22–23(a), we
can have a filter that propagates high frequencies and rejects
low frequencies. It is easy to see what happens with this
network by using the results we already have. You will notice that
whenever we change an L[image: -*-] to a C[image: -*-] and vice versa, we also
change every i ω[image: -*-] to 1/i ω[image: -*-]. So whatever happened
at ω[image: -*-] before will now happen at 1/ω[image: -*-]. In particular, we can
see how α[image: -*-] will vary with frequency by using
Fig. 22–22 and changing the label on the axis
to 1/ω[image: -*-], as we have done in Fig. 22–23(b).




The low-pass and high-pass filters we have described have various
technical applications. An L[image: -*-]-C[image: -*-] low-pass filter is often used as a
“smoothing” filter in a dc power supply. If we want to
manufacture dc power from an ac source, we begin with
a rectifier which permits current to flow only in one
direction. From the rectifier we get a series of pulses
that look like the function V (t)[image: -*-] shown in Fig. 22–24,
which is lousy dc, because it wobbles up and down. Suppose we
would like a nice pure dc, such as a battery provides. We can
come close to that by putting a low-pass filter between the
rectifier and the load.




[image: -][image: -]
Fig. 22-24. The output voltage of a full-wave rectifier.





We know from Chapter 50 of Vol. I that the time
function in Fig. 22–24 can be represented as a
superposition of a constant voltage plus a sine wave, plus a
higher-frequency sine wave, plus a still higher-frequency sine wave,
etc.—by a Fourier series. If our filter is linear (if, as we have
been assuming, the L[image: -*-]’s and C[image: -*-]’s don’t vary with the currents or
voltages) then what comes out of the filter is the superposition of
the outputs for each component at the input. If we arrange that the
cutoff frequency ω0[image: -*-] of our filter is well below the lowest
frequency in the function V (t)[image: -*-], the dc (for
which ω=0[image: -*-]) goes through fine, but the amplitude of the first harmonic
will be cut down a lot. And amplitudes of the higher harmonics will be
cut down even more. So we can get the output as smooth as we wish,
depending only on how many filter sections we are willing to buy.




A high-pass filter is used if one wants to reject certain low
frequencies. For instance, in a phonograph amplifier a high-pass
filter may be used to let the music through, while keeping out the
low-pitched rumbling from the motor of the turntable.




It is also possible to make “band-pass” filters that reject
frequencies below some frequency ω1[image: -*-] and above another
frequency ω2[image: -*-] (greater than ω1[image: -*-]), but pass the
frequencies between ω1[image: -*-] and ω2[image: -*-]. This can be done simply
by putting together a high-pass and a low-pass filter, but it is more
usually done by making a ladder in which the impedances z1[image: -*-]
and z2[image: -*-] are more complicated—being each a combination of L[image: -*-]’s
and C[image: -*-]’s. Such a band-pass filter might have a propagation constant like
that shown in Fig. 22–25(a). It might be used, for
example, in separating signals that occupy only an interval of
frequencies, such as each of the many voice channels in a
high-frequency telephone cable, or the modulated carrier of a radio
transmission.



[image: -][image: -]
Fig. 22-25. (a) A band-pass filter. (b) A simple resonant filter.





We have seen in Chapter 25 of Vol. I that such
filtering can also be done using the selectivity of an ordinary
resonance curve, which we have drawn for comparison in
Fig. 22–25(b). But the resonant filter is not as good for
some purposes as the band-pass filter. You will remember
(Chapter 48, Vol. I) that when a carrier of
frequency ωc[image: -*-] is modulated with a “signal” frequency ωs[image: -*-], the
total signal contains not only the carrier frequency but also the two
side-band frequencies ωc+ωs[image: -*-] and ωc−ωs[image: -*-]. With
a resonant filter, these side-bands are always attenuated somewhat, and
the attenuation is more, the higher the signal frequency, as you can see
from the figure. So there is a poor “frequency response.” The higher
musical tones don’t get through. But if the filtering is done with a
band-pass filter designed so that the width ω2−ω1[image: -*-] is at
least twice the highest signal frequency, the frequency response will be
“flat” for the signals wanted.




We want to make one more point about the ladder filter: the L[image: -*-]-C[image: -*-]
ladder of Fig. 22–20 is also an approximate
representation of a transmission line. If we have a long conductor
that runs parallel to another conductor—such as a wire in a coaxial
cable, or a wire suspended above the earth—there will be some
capacitance between the two conductors and also some inductance due to
the magnetic field between them. If we imagine the line as broken up
into small lengths Δ ℓ[image: -*-], each length will look like one
section of the L[image: -*-]-C[image: -*-] ladder with a series inductance Δ L[image: -*-] and
a shunt capacitance Δ C[image: -*-]. We can then use our results for the
ladder filter. If we take the limit as Δ ℓ[image: -*-] goes to zero, we
have a good description of the transmission line. Notice that
as Δ ℓ[image: -*-] is made smaller and smaller, both Δ L[image: -*-] and Δ C[image: -*-] decrease, but in the same proportion, so that the ratio Δ L/Δ C[image: -*-] remains constant. So if we take the limit of
Eq. (22.28) as Δ L[image: -*-] and Δ C[image: -*-] go to zero, we find
that the characteristic impedance z0[image: -*-] is a pure resistance whose
magnitude is √Δ L/Δ C[image: -*-]. We can also write the
ratio Δ L/Δ C[image: -*-] as L0/C0[image: -*-], where L0[image: -*-] and C0[image: -*-] are the
inductance and capacitance of a unit length of the line; then we have

[image: -*-][image: -*-]
(22.33)









You will also notice that as Δ L[image: -*-] and Δ C[image: -*-] go to zero, the
cutoff frequency ω0=√4/L C[image: -*-] goes to infinity. There is no
cutoff frequency for an ideal transmission line.







22–8 Other circuit elements

[image: -][image: -]
Fig. 22-26. Equivalent circuit of a mutual inductance.





We have so far defined only the ideal circuit impedances—the
inductance, the capacitance, and the resistance—as well as the ideal
voltage generator. We want now to show that other elements, such as
mutual inductances or transistors or vacuum tubes, can be described by
using only the same basic elements. Suppose that we have two coils and
that on purpose, or otherwise, some flux from one of the coils links
the other, as shown in Fig. 22–26(a). Then the two coils
will have a mutual inductance M[image: -*-] such that when the
current varies in one of the coils, there will be a voltage generated in
the other. Can we take into account such an effect in our equivalent
circuits? We can in the following way. We have seen that the induced
emf’s in each of two interacting coils can be written as the sum of two
parts:

[image: -*-][image: -*-]
(22.34)




The first term comes from the self-inductance of the coil, and the
second term comes from its mutual inductance with the other coil. The
sign of the second term can be plus or minus, depending on the way the
flux from one coil links the other. Making the same approximations we
used in describing an ideal inductance, we would say that the potential
difference across the terminals of each coil is equal to the
electromotive force in the coil. Then the two equations
of (22.34) are the same as the ones we would get from the
circuit of Fig. 22–26(b), provided the electromotive force
in each of the two circuits shown depends on the current in the opposite
circuit according to the relations

[image: -*-][image: -*-]
(22.35)




So what we can do is represent the effect of the self-inductance in a
normal way but replace the effect of the mutual inductance by an auxiliary ideal
voltage generator. We must in addition, of course, have the equation
that relates this emf to the current in some other part of the circuit;
but so long as this equation is linear, we have just added more linear
equations to our circuit equations, and all of our earlier conclusions
about equivalent circuits and so forth are still correct.




In addition to mutual inductances there may also be mutual
capacitances.
So far, when we have talked about condensers we have always imagined
that there were only two electrodes, but in many situations, for example
in a vacuum tube, there may be many electrodes close to each other. If
we put an electric charge on any one of the electrodes, its electric
field will induce charges on each of the other electrodes and affect its
potential. As an example, consider the arrangement of four plates shown
in Fig. 22–27(a). Suppose these four plates are connected
to external circuits by means of the wires A[image: -*-], B[image: -*-], C[image: -*-], and D[image: -*-]. So
long as we are only worried about electrostatic effects, the equivalent
circuit of such an arrangement of electrodes is as shown in part (b) of
the figure. The electrostatic interaction of any electrode with each of
the others is equivalent to a capacity between the two electrodes.




[image: -][image: -]
Fig. 22-27. Equivalent circuit of mutual capacitance.





Finally, let’s consider how we should represent such complicated
devices as transistors and radio tubes in an ac circuit. We
should point out at the start that such devices are often operated in
such a way that the relationship between the currents and voltages is
not at all linear. In such cases, those statements we have made which
depend on the linearity of equations are, of course, no longer
correct. On the other hand, in many applications the operating
characteristics are sufficiently linear that we may consider the
transistors and tubes to be linear devices. By this we mean that the
alternating currents in, say, the plate of a vacuum tube are linearly
proportional to the voltages that appear on the other electrodes, say
the grid voltage and the plate voltage. When we have such linear
relationships, we can incorporate the device into our equivalent
circuit representation.



[image: -][image: -]
Fig. 22-28. A low-frequency equivalent circuit of a vacuum triode.





As in the case of the mutual inductance, our representation will have to
include auxiliary voltage generators which describe the influence of the
voltages or currents in one part of the device on the currents or
voltages in another part. For example, the plate circuit of a triode can
usually be represented by a resistance in series with an ideal voltage
generator whose source strength is proportional to the grid voltage. We
get the equivalent circuit shown in
Fig. 22–28.2 Similarly, the collector
circuit of a transistor is conveniently represented as a resistor in
series with an ideal voltage generator whose source strength is
proportional to the current from the emitter to the base of the
transistor. The equivalent circuit is then like that in
Fig. 22–29. So long as the equations which describe the
operation are linear, we can use such representations for tubes or
transistors. Then, when they are incorporated in a complicated network,
our general conclusions about the equivalent representation of any
arbitrary connection of elements is still valid.



[image: -][image: -]
Fig. 22-29. A low-frequency equivalent circuit of a transistor.





There is one remarkable thing about transistor and radio tube circuits
which is different from circuits containing only impedances: the real
part of the effective impedance zeff[image: -*-] can become
negative. We have seen that the real part of z[image: -*-] represents the loss
of energy. But it is the important characteristic of transistors and
tubes that they supply energy to the circuit. (Of course they
don’t just “make” energy; they take energy from the dc
circuits of the power supplies and convert it into ac
energy.) So it is possible to have a circuit with a negative
resistance. Such a circuit has the property that if you connect it to
an impedance with a positive real part, i.e., a positive resistance,
and arrange matters so that the sum of the two real parts is exactly
zero, then there is no dissipation in the combined circuit. If there
is no loss of energy, any alternating voltage once started will remain
forever. This is the basic idea behind the operation of an oscillator
or signal generator which can be used as a source of alternating
voltage at any desired frequency.






	
  
  There are people who say we should call the
objects by the names “inductor” and “capacitor” and call
their properties “inductance” and “capacitance” (by analogy
with “resistor” and “resistance”). We would rather use the words you
will hear in the laboratory. Most people still say “inductance” for
both the physical coil and its inductance L[image: -*-]. The word “capacitor”
seems to have caught on—although you will still hear “condenser”
fairly often—and most people still prefer the sound of “capacity” to
“capacitance.”
  ↩


	
  
  The equivalent circuit shown is
correct only for low frequencies. For high frequencies the equivalent
circuit gets much more complicated and will include various so-called
“parasitic” capacitances and inductances.
  ↩
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23–1 Real circuit elements


When looked at from any one pair of terminals, any arbitrary circuit
made up of ideal impedances and generators is, at any given frequency,
equivalent to a generator E[image: -*-] in series with an impedance z[image: -*-].
That comes about because if we put a voltage V[image: -*-] across the
terminals and solve all the equations to find the current I[image: -*-], we must
get a linear relation between the current and the voltage. Since all
the equations are linear, the result for I[image: -*-] must also depend only
linearly on V[image: -*-]. The most general linear form can be expressed as

[image: -*-][image: -*-]
(23.1)




In general, both z[image: -*-] and E[image: -*-] may depend in some complicated way on
the frequency ω[image: -*-]. Equation (23.1), however, is the
relation we would get if behind the two terminals there was just the
generator E (ω)[image: -*-] in series with the impedance z (ω)[image: -*-].




There is also the opposite kind of question: If we have any
electromagnetic device at all with two terminals and we measure
the relation between I[image: -*-] and V[image: -*-] to determine E[image: -*-] and z[image: -*-] as
functions of frequency, can we find a combination of our ideal elements
that is equivalent to the internal impedance z[image: -*-]? The answer is that for
any reasonable—that is, physically meaningful—function z (ω)[image: -*-],
it is possible to approximate the situation to as high an
accuracy as you wish with a circuit containing a finite set of ideal
elements. We don’t want to consider the general problem now, but only
look at what might be expected from physical arguments for a few cases.



[image: -][image: -]
Fig. 23–1. Equivalent circuit of a real resistor.





If we think of a real resistor, we know that the current through it
will produce a magnetic field. So any real resistor should also have
some inductance. Also, when a resistor has a potential difference
across it, there must be charges on the ends of the resistor to
produce the necessary electric fields. As the voltage changes, the
charges will change in proportion, so the resistor will also have some
capacitance. We expect that a real resistor might have the
equivalent circuit shown in Fig. 23–1. In a
well-designed resistor, the so-called “parasitic” elements L[image: -*-]
and C[image: -*-] are small, so that at the frequencies for which it is intended,
ω L[image: -*-] is much less than R[image: -*-], and 1/ω C[image: -*-] is much greater
than R[image: -*-]. It may therefore be possible to neglect them. As the
frequency is raised, however, they will eventually become important,
and a resistor begins to look like a resonant circuit.



[image: -][image: -]
Fig. 23–2. The equivalent circuit of a real inductance at low
frequencies.





A real inductance is also not equal to the idealized inductance, whose
impedance is i ω L[image: -*-]. A real coil of wire will have some
resistance, so at low frequencies the coil is really equivalent to an
inductance in series with some resistance, as shown in
Fig. 23–2(a). But, you are thinking, the resistance and
inductance are together in a real coil—the resistance is spread
all along the wire, so it is mixed in with the inductance. We should
probably use a circuit more like the one in Fig. 23–2(b),
which has several little R[image: -*-]’s and L[image: -*-]’s in series. But the total
impedance of such a circuit is just ∑R+∑i ω L[image: -*-], which is
equivalent to the simpler diagram of part (a).



[image: -][image: -][image: -][image: -]
Fig. 23–3. The equivalence circuit of a real inductance at higher
frequencies.





As we go up in frequency with a real coil, the approximation of an
inductance plus a resistance is no longer very good. The charges that
must build up on the wires to make the voltages will become important.
It is as if there were little condensers across the turns of the coil,
as sketched in Fig. 23–3(a). We might try to approximate
the real coil by the circuit in Fig. 23–3(b). At low
frequencies, this circuit can be imitated fairly well by the simpler one
in part (c) of the figure (which is again the same resonant circuit we
found for the high-frequency model of a resistor). For higher
frequencies, however, the more complicated circuit of
Fig. 23–3(b) is better. In fact, the more accurately you
wish to represent the actual impedance of a real, physical inductance,
the more ideal elements you will have to use in the artificial model of
it.




Let’s look a little more closely at what goes on in a real coil. The
impedance of an inductance goes as ω L[image: -*-], so it becomes zero at
low frequencies—it is a “short circuit”: all we see is the
resistance of the wire. As we go up in frequency, ω L[image: -*-] soon
becomes much larger than R[image: -*-], and the coil looks pretty much like an
ideal inductance. As we go still higher, however, the capacities
become important. Their impedance is proportional to 1/ω C[image: -*-],
which is large for small ω[image: -*-]. For small enough frequencies a
condenser is an “open circuit,” and when it is in parallel with
something else, it draws no current. But at high frequencies, the
current prefers to flow into the capacitance between the turns, rather
than through the inductance. So the current in the coil jumps from one
turn to the other and doesn’t bother to go around and around where it
has to buck the emf. So although we may have intended that the
current should go around the loop, it will take the easier path—the
path of least impedance.




If the subject had been one of popular interest, this effect would
have been called “the high-frequency barrier,” or some such
name. The same kind of thing happens in all subjects. In aerodynamics,
if you try to make things go faster than the speed of sound when they
were designed for lower speeds, they don’t work. It doesn’t mean that
there is a great “barrier” there; it just means that the object
should be redesigned. So this coil which we designed as an
“inductance” is not going to work as a good inductance, but as some
other kind of thing at very high frequencies. For high frequencies, we
have to find a new design.







23–2 A capacitor at high frequencies


Now we want to discuss in detail the behavior of a capacitor—a
geometrically ideal capacitor—as the frequency gets larger and
larger, so we can see the transition of its properties. (We prefer to
use a capacitor instead of an inductance, because the geometry of a
pair of plates is much less complicated than the geometry of a coil.)
We consider the capacitor shown in Fig. 23–4(a), which
consists of two parallel circular plates connected to an external
generator by a pair of wires. If we charge the capacitor with
dc, there will be a positive charge on one plate and a
negative charge on the other; and there will be a uniform electric
field between the plates.



[image: -][image: -]
Fig. 23–4. The electric and magnetic fields between the plates of a
capacitor.





Now suppose that instead of dc, we put an ac of low
frequency on the plates. (We will find out later what is “low” and
what is “high”.) Say we connect the capacitor to a lower-frequency
generator. As the voltage alternates, the positive charge on the top
plate is taken off and negative charge is put on. While that is
happening, the electric field disappears and then builds up in the
opposite direction. As the charge sloshes back and forth slowly, the
electric field follows. At each instant the electric field is uniform,
as shown in Fig. 23–4(b), except for some edge effects
which we are going to disregard. We can write the magnitude
of the electric field as

[image: -*-][image: -*-]
(23.2)




where E0[image: -*-] is a constant.




Now will that continue to be right as the frequency goes up? No, because
as the electric field is going up and down, there is a flux of electric
field through any loop like Γ1[image: -*-] in Fig. 23–4(a).
And, as you know, a changing electric field acts to produce a magnetic
field. One of Maxwell’s equations says that when there is a varying electric field, as there is
here, there has got to be a line integral of the magnetic field. The
integral of the magnetic field around a closed ring, multiplied
by c2[image: -*-], is equal to the time rate-of-change of the electric flux
through the area inside the ring (if there are no currents):

[image: -*-][image: -*-]
(23.3)




So how much magnetic field is there? That’s not very hard. Suppose
that we take the loop Γ1[image: -*-], which is a circle of radius r[image: -*-]. We
can see from symmetry that the magnetic field goes around as shown in
the figure. Then the line integral of B[image: -*-] is 2 π r B[image: -*-]. And, since
the electric field is uniform, the flux of the electric field is
simply E[image: -*-] multiplied by π r2[image: -*-], the area of the circle:

[image: -*-][image: -*-]
(23.4)




The derivative of E[image: -*-] with respect to time is, for our alternating
field, simply i ω E0 ei ω t[image: -*-]. So we find that our
capacitor has the magnetic field

[image: -*-][image: -*-]
(23.5)




In other words, the magnetic field also oscillates and has a strength
proportional to r[image: -*-].




What is the effect of that? When there is a magnetic field that is
varying, there will be induced electric fields and the capacitor will
begin to act a little bit like an inductance. As the frequency goes
up, the magnetic field gets stronger; it is proportional to the rate
of change of E[image: -*-], and so to ω[image: -*-]. The impedance of the capacitor
will no longer be simply 1/i ω C[image: -*-].





Let’s continue to raise the frequency and to analyze what happens more
carefully. We have a magnetic field that goes sloshing back and
forth. But then the electric field cannot be uniform, as we have
assumed! When there is a varying magnetic field, there must be a line
integral of the electric field—because of Faraday’s law. So if there
is an appreciable magnetic field, as begins to happen at high
frequencies, the electric field cannot be the same at all distances
from the center. The electric field must change with r[image: -*-] so that the
line integral of the electric field can equal the changing flux of the
magnetic field.




Let’s see if we can figure out the correct electric field. We can do
that by computing a “correction” to the uniform field we originally
assumed for low frequencies. Let’s call the uniform field E1[image: -*-], which
will still be E0 ei ω t[image: -*-], and write the correct field as

[image: -*-][image: -*-]


where E2[image: -*-] is the correction due to the changing magnetic field. For
any ω[image: -*-] we will write the field at the center of the condenser
as E0 ei ω t[image: -*-] (thereby defining E0[image: -*-]), so that we have no
correction at the center; E2=0[image: -*-] at r=0[image: -*-].




To find E2[image: -*-] we can use the integral form of Faraday’s law:

[image: -*-][image: -*-]


The integrals are simple if we take them for the curve Γ2[image: -*-],
shown in Fig. 23–4(b), which goes up along the axis,
out radially the distance r[image: -*-] along the top plate, down vertically to
the bottom plate, and back to the axis. The line integral of E1[image: -*-]
around this curve is, of course, zero; so only E2[image: -*-] contributes, and
its integral is just −E2 (r)⋅h[image: -*-], where h[image: -*-] is the spacing
between the plates. (We call E[image: -*-] positive if it points upward.) This
is equal to minus the rate of change of the flux of B[image: -*-], which we have
to get by an integral over the shaded area S[image: -*-] inside Γ2[image: -*-] in
Fig. 23–4(b). The flux through a vertical strip of
width d r[image: -*-] is B (r) h d r[image: -*-], so the total flux is

[image: -*-][image: -*-]


Setting −∂/∂t[image: -*-] of the flux equal to the line integral of E2[image: -*-],
we have

[image: -*-][image: -*-]
(23.6)




Notice that the h[image: -*-] cancels out; the fields don’t depend on the
separation of the plates.




Using Eq. (23.5) for B (r)[image: -*-], we have

[image: -*-][image: -*-]


The time derivative just brings down another factor i ω[image: -*-]; we get

[image: -*-][image: -*-]
(23.7)




As we expect, the induced field tends to reduce the electric
field farther out. The corrected field E=E1+E2[image: -*-] is then

[image: -*-][image: -*-]
(23.8)









The electric field in the capacitor is no longer uniform; it has the
parabolic shape shown by the broken line in Fig. 23–5. You
see that our simple capacitor is getting slightly complicated.



[image: -][image: -]
Fig. 23–5. The electric field between the capacitor plates at high
frequency. (Edge effects are neglected.)





We could now use our results to calculate the impedance of the
capacitor at high frequencies. Knowing the electric field, we could
compute the charges on the plates and find out how the current through
the capacitor depends on the frequency ω[image: -*-], but we are not
interested in that problem for the moment. We are more interested in
seeing what happens as we continue to go up with the frequency—to
see what happens at even higher frequencies. Aren’t we already
finished?  No, because we have corrected the electric field, which
means that the magnetic field we have calculated is no longer
right. The magnetic field of Eq. (23.5) is approximately
right, but it is only a first approximation. So let’s call
it B1[image: -*-]. We should then rewrite Eq. (23.5) as

[image: -*-][image: -*-]
(23.9)




You will remember that this field was produced by the variation
of E1[image: -*-]. Now the correct magnetic field will be that produced by the
total electric field E1+E2[image: -*-]. If we write the magnetic field
as B=B1+B2[image: -*-], the second term is just the additional field produced
by E2[image: -*-]. To find B2[image: -*-] we can go through the same arguments we have used
to find B1[image: -*-]; the line integral of B2[image: -*-] around the curve Γ1[image: -*-]
is equal to the rate of change of the flux of E2[image: -*-]
through Γ1[image: -*-]. We will just have Eq. (23.4) again with B[image: -*-]
replaced by B2[image: -*-] and E[image: -*-] replaced by E2[image: -*-]:

[image: -*-][image: -*-]


Since E2[image: -*-] varies with radius, to obtain its flux we must integrate
over the circular surface inside Γ1[image: -*-]. Using 2 π r d r[image: -*-] as the
element of area, this integral is

[image: -*-][image: -*-]


So we get for B2 (r)[image: -*-]

[image: -*-][image: -*-]
(23.10)




Using E2 (r)[image: -*-] from Eq. (23.7), we need the integral
of r3 d r[image: -*-], which is, of course, r4/4[image: -*-]. Our correction to the
magnetic field becomes

[image: -*-][image: -*-]
(23.11)









But we are still not finished! If the magnetic field B[image: -*-] is not the
same as we first thought, then we have incorrectly computed E2[image: -*-]. We
must make a further correction to E[image: -*-], which comes from the extra
magnetic field B2[image: -*-]. Let’s call this additional correction to the
electric field E3[image: -*-]. It is related to the magnetic field B2[image: -*-] in the
same way that E2[image: -*-] was related to B1[image: -*-]. We can use
Eq. (23.6) all over again just by changing the subscripts:

[image: -*-][image: -*-]
(23.12)




Using our result, Eq. (23.11), for B2[image: -*-], the new
correction to the electric field is

[image: -*-][image: -*-]
(23.13)




Writing our doubly corrected electric field as E=E1+E2+E3[image: -*-], we get

[image: -*-][image: -*-]
(23.14)




The variation of the electric field with radius is no longer the
simple parabola we drew in Fig. 23–5, but at large
radii lies slightly above the curve (E1+E2)[image: -*-].




We are not quite through yet. The new electric field produces a new
correction to the magnetic field, and the newly corrected magnetic
field will produce a further correction to the electric field, and on
and on. However, we already have all the formulas that we need.
For B3[image: -*-] we can use Eq. (23.10), changing the subscripts of
B[image: -*-] and E[image: -*-] from 2 to 3.




The next correction to the electric field is

[image: -*-][image: -*-]


So to this order we have that the complete electric field is given by



[image: -*-][image: -*-]
(23.15)





where we have written the numerical coefficients in such a way that it
is obvious how the series is to be continued.




Our final result is that the electric field between the plates of the
capacitor, for any frequency, is given by E0 ei ω t[image: -*-] times the
infinite series which contains only the variable ω r/c[image: -*-]. If we
wish, we can define a special function, which we will call J0 (x)[image: -*-], as
the infinite series that appears in the brackets of
Eq. (23.15):



[image: -*-][image: -*-]
(23.16)





Then we can write our solution as E0 ei ω t[image: -*-] times this
function, with x=ω r/c[image: -*-]:

[image: -*-][image: -*-]
(23.17)









The reason we have called our special function J0[image: -*-] is that, naturally,
this is not the first time anyone has ever worked out a problem with
oscillations in a cylinder. The function has come up before and is
usually called J0[image: -*-]. It always comes up whenever you solve a problem
about waves with cylindrical symmetry. The function J0[image: -*-] is to
cylindrical waves what the cosine function is to waves on a straight
line. So it is an important function, invented a long time ago. Then a
man named Bessel got his name
attached to it. The subscript zero means that
Bessel invented a whole lot of different
functions and this is just the first of them.




The other functions of Bessel—J1[image: -*-], J2[image: -*-],
and so on—have to do with cylindrical waves which have a variation
of their strength with the angle around the axis of the cylinder.





The completely corrected electric field between the plates of our
circular capacitor, given by Eq. (23.17), is plotted as
the solid line in Fig. 23–5. For frequencies that are
not too high, our second approximation was already quite good. The
third approximation was even better—so good, in fact, that if we had
plotted it, you would not have been able to see the difference between
it and the solid curve. You will see in the next section, however,
that the complete series is needed to get an accurate description for
large radii, or for high frequencies.







23–3 A resonant cavity


We want to look now at what our solution gives for the electric field
between the plates of the capacitor as we continue to go to higher and
higher frequencies. For large ω[image: -*-], the parameter x=ω r/c[image: -*-]
also gets large, and the first few terms in the series for J0[image: -*-]
of x[image: -*-] will increase rapidly. That means that the parabola we have drawn
in Fig. 23–5 curves downward more steeply at higher
frequencies. In fact, it looks as though the field would fall all the
way to zero at some high frequency, perhaps when c/ω[image: -*-] is
approximately one-half of a[image: -*-]. Let’s see whether J0[image: -*-] does indeed go
through zero and become negative. We begin by trying x=2[image: -*-]:

[image: -*-][image: -*-]


The function is still not zero, so let’s try a higher value of x[image: -*-],
say, x=2.5[image: -*-]. Putting in numbers, we write

[image: -*-][image: -*-]


The function J0[image: -*-] has already gone through zero by the time we get
to x=2.5[image: -*-]. Comparing the results for x=2[image: -*-] and x=2.5[image: -*-], it looks as
though J0[image: -*-] goes through zero at one-fifth of the way from 2.5[image: -*-]
to 2. We would guess that the zero occurs for x[image: -*-] approximately equal
to 2.4[image: -*-]. Let’s see what that value of x[image: -*-] gives:

[image: -*-][image: -*-]


We get zero to the accuracy of our two decimal places. If we make the
calculation more accurate (or since J0[image: -*-] is a well-known function, if
we look it up in a book), we find that it goes through zero
at x=2.405[image: -*-]. We have worked it out by hand to show you that you too
could have discovered these things rather than having to borrow them
from a book.





As long as we are looking up J0[image: -*-] in a book, it is interesting to
notice how it goes for larger values of x[image: -*-]; it looks like the graph
in Fig. 23–6. As x[image: -*-] increases, J0 (x)[image: -*-] oscillates
between positive and negative values with a decreasing amplitude of
oscillation.



[image: -][image: -]
Fig. 23–6. The Bessel function J0 (x)[image: -*-].





We have gotten the following interesting result: If we go high enough
in frequency, the electric field at the center of our condenser will
be one way and the electric field near the edge will point in the
opposite direction. For example, suppose that we take an ω[image: -*-] high
enough so that x=ω r/c[image: -*-] at the outer edge of the capacitor is
equal to 4; then the edge of the capacitor corresponds to the
abscissa x=4[image: -*-] in Fig. 23–6. This means that our
capacitor is being operated at the frequency ω=4 c/a[image: -*-]. At the
edge of the plates, the electric field will have a rather high
magnitude opposite the direction we would expect. That is the terrible
thing that can happen to a capacitor at high frequencies. If we go to
very high frequencies, the direction of the electric field oscillates
back and forth many times as we go out from the center of the
capacitor. Also there are the magnetic fields associated with these
electric fields. It is not surprising that our capacitor doesn’t look
like the ideal capacitance for high frequencies. We may even start to
wonder whether it looks more like a capacitor or an inductance. We
should emphasize that there are even more complicated effects that we
have neglected which happen at the edges of the capacitor. For
instance, there will be a radiation of waves out past the edges, so
the fields are even more complicated than the ones we have computed,
but we will not worry about those effects now.




We could try to figure out an equivalent circuit for the capacitor, but
perhaps it is better if we just admit that the capacitor we have
designed for low-frequency fields is just no longer satisfactory when
the frequency is too high. If we want to treat the operation of such an
object at high frequencies, we should abandon the approximations to
Maxwell’s equations that we
have made for treating circuits and return to the complete set of
equations which describe completely the fields in space. Instead of
dealing with idealized circuit elements, we have to deal with the real
conductors as they are, taking into account all the fields in the spaces
in between. For instance, if we want a resonant circuit at high
frequencies we will not try to design one using a coil and a
parallel-plate capacitor.





We have already mentioned that the parallel-plate capacitor we have been
analyzing has some of the aspects of both a capacitor and an inductance.
With the electric field there are charges on the surfaces of the plates,
and with the magnetic fields there are back emf’s. Is it possible that
we already have a resonant circuit? We do indeed. Suppose we pick a
frequency for which the electric field pattern falls to zero at some
radius inside the edge of the disc; that is, we choose ω a/c[image: -*-]
greater than 2.405[image: -*-]. Everywhere on a circle coaxial with the plates the
electric field will be zero. Now suppose we take a thin metal sheet and
cut a strip just wide enough to fit between the plates of the capacitor.
Then we bend it into a cylinder that will go around at the radius where
the electric field is zero. Since there are no electric fields there,
when we put this conducting cylinder in place, no currents will flow in
it; and there will be no changes in the electric and magnetic fields. We
have been able to put a direct short circuit across the capacitor
without changing anything. And look what we have; we have a complete
cylindrical can with electrical and magnetic fields inside and no
connection at all to the outside world. The fields inside won’t change
even if we throw away the edges of the plates outside our can, and also
the capacitor leads. All we have left is a closed can with electric and
magnetic fields inside, as shown in Fig. 23–7(a). The
electric fields are oscillating back and forth at the
frequency ω[image: -*-]—which, don’t forget, determined the diameter of the can. The
amplitude of the oscillating E[image: -*-] field varies with the distance from the
axis of the can, as shown in the graph of Fig. 23–7(b).
This curve is just the first arch of the Bessel function of zero
order. There is also a magnetic field which goes in circles around the
axis and oscillates in time 90°[image: -*-] out of phase with the electric
field.




We can also write out a series for the magnetic field and plot it, as
shown in the graph of Fig. 23–7(c).



[image: -][image: -][image: -][image: -]
Fig. 23–7. The electric and magnetic fields in an enclosed cylindrical
can.





How is it that we can have an electric and magnetic field inside a can
with no external connections? It is because the electric and magnetic
fields maintain themselves, the changing E[image: -*-] makes a B[image: -*-] and
the changing B[image: -*-] makes an E[image: -*-]—all according to the equations
of Maxwell.
The magnetic field has an inductive aspect, and the
electric field a capacitive aspect; together they make something like
a resonant circuit. Notice that the conditions we have described would
only happen if the radius of the can is exactly 2.405 c/ω[image: -*-]. For
a can of a given radius, the oscillating electric and magnetic fields
will maintain themselves—in the way we have described—only at that
particular frequency. So a cylindrical can of radius r[image: -*-] is
resonant at the frequency

[image: -*-][image: -*-]
(23.18)









We have said that the fields continue to oscillate in the same way after
the can is completely closed. That is not exactly right. It would be
possible if the walls of the can were perfect conductors. For a real
can, however, the oscillating currents which exist on the inside walls
of the can lose energy because of the resistance of the material. The
oscillations of the fields will gradually die away. We can see from
Fig. 23–7 that there must be strong currents associated
with electric and magnetic fields inside the cavity. Because the
vertical electrical field stops suddenly at the top and bottom plates of
the can, it has a large divergence there; so there must be positive and
negative electric charges on the inner surfaces of the can, as shown in
Fig. 23–7(a). When the electric field reverses, the charges
must reverse also, so there must be an alternating current between the
top and bottom plates of the can. These charges will flow in the sides
of the can, as shown in the figure. We can also see that there must be
currents in the sides of the can by considering what happens to the
magnetic field. The graph of Fig. 23–7(c) tells us that the
magnetic field suddenly drops to zero at the edge of the can. Such a
sudden change in the magnetic field can happen only if there is a
current in the wall. This current is what gives the alternating electric
charges on the top and bottom plates of the can.




You may be wondering about our discovery of currents in the vertical
sides of the can. What about our earlier statement that nothing would
be changed when we introduced these vertical sides in a region where
the electric field was zero? Remember, however, that when we first put
in the sides of the can, the top and bottom plates extended out beyond
them, so that there were also magnetic fields on the outside of our
can. It was only when we threw away the parts of the capacitor plates
beyond the edges of the can that net currents had to appear on the
insides of the vertical walls.



[image: -][image: -]
Fig. 23–8. Coupling into and out of a resonant cavity.





Although the electric and magnetic fields in the completely enclosed
can will gradually die away because of the energy losses, we can stop
this from happening if we make a little hole in the can and put in a
little bit of electrical energy to make up the losses. We take a small
wire, poke it through the hole in the side of the can, and fasten it
to the inside wall so that it makes a small loop, as shown in
Fig. 23–8. If we now connect this wire to a source of
high-frequency alternating current, this current will couple energy into
the electric and magnetic fields of the cavity and keep the oscillations
going. This will happen, of course, only if the frequency of the driving
source is at the resonant frequency of the can. If the source is at the
wrong frequency, the electric and magnetic fields will not resonate, and
the fields in the can will be very weak.



[image: -][image: -]
Fig. 23–9. A setup for observing the cavity resonance.





The resonant behavior can easily be seen by making another small hole
in the can and hooking in another coupling loop, as we have also drawn
in Fig. 23–8. The changing magnetic field through this loop will
generate an induced electromotive force in the loop. If this loop is
now connected to some external measuring circuit, the currents will be
proportional to the strength of the fields in the cavity. Suppose we
now connect the input loop of our cavity to an RF signal generator, as
shown in Fig. 23–9. The signal generator contains a source of
alternating current whose frequency can be varied by varying the knob
on the front of the generator. Then we connect the output loop of the
cavity to a “detector,” which is an instrument that measures the
current from the output loop. It gives a meter reading proportional to
this current. If we now measure the output current as a function of
the frequency of the signal generator, we find a curve like that shown
in Fig. 23–10. The output current is small for all frequencies
except those very near the frequency ω0[image: -*-], which is the resonant
frequency of the cavity. The resonance curve is very much like those
we described in Chapter 23 of Vol. I. The width of the
resonance is however, much narrower than we usually find for resonant
circuits made of inductances and capacitors; that is, the Q[image: -*-] of the
cavity is very high. It is not unusual to find Q[image: -*-]’s as high
as 100,000[image: -*-] or more if the inside walls of the cavity are made of some
material with a very good conductivity, such as silver.



[image: -][image: -]
Fig. 23–10. The frequency response curve of a resonant cavity.








23–4 Cavity modes


Suppose we now try to check our theory by making measurements with an
actual can. We take a can which is a cylinder with a diameter of
3.0[image: -*-] inches and a height of about 2.5[image: -*-] inches. The can is fitted with
an input and output loop, as shown in Fig. 23–8. If we
calculate the resonant frequency expected for this can according to
Eq. (23.18), we get that
f0=[image: -*-]ω0/2 π=[image: -*-]3010[image: -*-] megacycles. When we set the frequency of our
signal generator near 3000[image: -*-] megacycles and vary it slightly until we
find the resonance, we observe that the maximum output current occurs
for a frequency of 3050[image: -*-] megacycles, which is quite close to the
predicted resonant frequency, but not exactly the same. There are
several possible reasons for the discrepancy. Perhaps the resonant
frequency is changed a little bit because of the holes we have cut to
put in the coupling loops. A little thought, however, shows that the
holes should lower the resonant frequency a little bit, so that cannot
be the reason. Perhaps there is some slight error in the frequency
calibration of the signal generator, or perhaps our measurement of the
diameter of the cavity is not accurate enough. Anyway, the agreement is
fairly close.



[image: -][image: -]
Fig. 23–11. Observed resonant frequencies of a cylindrical cavity.





Much more important is something that happens if we vary the frequency
of our signal generator somewhat further from 3000[image: -*-] megacycles. When we
do that we get the results shown in Fig. 23–11. We find
that, in addition to the resonance we expected near 3000[image: -*-] megacycles,
there is also a resonance near 3300[image: -*-] megacycles and one near
3820[image: -*-] megacycles. What do these extra resonances mean? We might get a
clue from Fig. 23–6. Although we have been assuming that
the first zero of the Bessel function occurs at
the edge of the can, it could also be that the second zero of the Bessel
function corresponds to the edge of the can, so
that there is one complete oscillation of the electric field as we move
from the center of the can out to the edge, as shown in
Fig. 23–12. This is another possible mode for the
oscillating fields. We should certainly expect the can to resonate in
such a mode. But notice, the second zero of the Bessel
function occurs at x=5.52[image: -*-], which is over twice
as large as the value at the first zero. The resonant frequency of this
mode should therefore be higher than 6000[image: -*-] megacycles. We would, no
doubt, find it there, but it doesn’t explain the resonance we observe
at 3300[image: -*-].



[image: -][image: -][image: -][image: -]
Fig. 23–12. A higher-frequency mode.





The trouble is that in our analysis of the behavior of a resonant
cavity we have considered only one possible geometric arrangement of
the electric and magnetic fields. We have assumed that the electric
fields are vertical and that the magnetic fields lie in horizontal
circles. But other fields are possible. The only requirements are that
the fields should satisfy Maxwell’s
equations inside the can and that the
electric field should meet the wall at right angles. We have considered
the case in which the top and the bottom of the can are flat, but things
would not be completely different if the top and bottom were curved. In
fact, how is the can supposed to know which is its top and bottom, and
which are its sides? It is, in fact, possible to show that there is a
mode of oscillation of the fields inside the can in which the electric
fields go more or less across the diameter of the can, as shown in
Fig. 23–13.




[image: -][image: -]
Fig. 23–13. A transverse mode of the cylindrical cavity.





It is not too hard to understand why the natural frequency of this
mode should be not very different from the natural frequency of the
first mode we have considered. Suppose that instead of our cylindrical
cavity we had taken a cavity which was a cube 3 inches on a side. It
is clear that this cavity would have three different modes, but all
with the same frequency. A mode with the electric field going more or
less up and down would certainly have the same frequency as the mode
in which the electric field was directed right and left. If we now
distort the cube into a cylinder, we will change these frequencies
somewhat. We would still expect them not to be changed too much,
provided we keep the dimensions of the cavity more or less the same. So
the frequency of the mode of Fig. 23–13 should not be too
different from the mode of Fig. 23–8. We could make a
detailed calculation of the natural frequency of the mode shown in
Fig. 23–13, but we will not do that now. When the
calculations are carried through, it is found that, for the dimensions
we have assumed, the resonant frequency comes out very close to the
observed resonance at 3300[image: -*-] megacycles.



[image: -][image: -]
Fig. 23–14. Another mode of a cylindrical cavity.





By similar calculations it is possible to show that there should be
still another mode at the other resonant frequency we found near
3800[image: -*-] megacycles. For this mode, the electric and magnetic fields are
as shown in Fig. 23–14. The electric field does not bother to go all
the way across the cavity. It goes from the sides to the ends, as
shown.




As you will probably now believe, if we go higher and higher in
frequency we should expect to find more and more resonances. There are
many different modes, each of which will have a different resonant
frequency corresponding to some particular complicated arrangement of
the electric and magnetic fields. Each of these field arrangements is
called a resonant mode. The resonance
frequency of each mode can be calculated by solving Maxwell’s
equations for the electric and
magnetic fields in the cavity.
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Fig. 23–15. A short metal wire inserted into a cavity will disturb the
resonance much more when it is parallel to E[image: -*-] than when it is at
right angles.





When we have a resonance at some particular frequency, how can we know
which mode is being excited? One way is to poke a little wire into the
cavity through a small hole. If the electric field is along the wire, as
in Fig. 23–15(a), there will be relatively large currents
in the wire, sapping energy from the fields, and the resonance will be
suppressed. If the electric field is as shown in
Fig. 23–15(b), the wire will have a much smaller effect. We
could find which way the field points in this mode by bending the end of
the wire, as shown in Fig. 23–15(c). Then, as we rotate the
wire, there will be a big effect when the end of the wire is parallel
to E[image: -*-] and a small effect when it is rotated so as to be at 90°[image: -*-]
to E[image: -*-].







23–5 Cavities and resonant circuits


Although the resonant cavity we have been describing seems to be quite
different from the ordinary resonant circuit consisting of an inductance
and a capacitor, the two resonant systems are, of course, closely
related. They are both members of the same family; they are just two
extreme cases of electromagnetic resonators—and there are many
intermediate cases between these two extremes. Suppose we start by
considering the resonant circuit of a capacitor in parallel with an
inductance, as shown in Fig. 23–16(a). This circuit will
resonate at the frequency ω0=1/√L C[image: -*-]. If we want to raise
the resonant frequency of this circuit, we can do so by lowering the
inductance L[image: -*-]. One way is to decrease the number of turns in the coil.
We can, however, go only so far in this direction. Eventually we will
get down to the last turn, and we will have just a piece of wire joining
the top and bottom plates of the condenser. We could raise the resonant
frequency still further by making the capacitance smaller; however, we
can also continue to decrease the inductance by putting several
inductances in parallel. Two one-turn inductances in parallel will have
only half the inductance of each turn. So when our inductance has been
reduced to a single turn, we can continue to raise the resonant
frequency by adding other single loops from the top plate to the bottom
plate of the condenser. For instance, Fig. 23–16(b) shows
the condenser plates connected by six such “single-turn inductances.”
If we continue to add many such pieces of wire, we can make the
transition to the completely enclosed resonant system shown in part (c)
of the figure, which is a drawing of the cross section of a
cylindrically symmetrical object. Our inductance is now a cylindrical
hollow can attached to the edges of the condenser plates. The electric
and magnetic fields will be as shown in the figure. Such an object is,
of course, a resonant cavity. It is called a “loaded” cavity. But we
can still think of it as an L[image: -*-]-C[image: -*-] circuit in which the capacity
section is the region where we find most of the electric field and the
inductance section is that region where we find most of the magnetic
field.



[image: -][image: -][image: -][image: -][image: -][image: -]
Fig. 23–16. Resonators of progressively higher resonant frequencies.





If we want to make the frequency of the resonator in
Fig. 23–16(c) still higher, we can do so by continuing to
decrease the inductance L[image: -*-]. To do that, we must decrease the geometric
dimensions of the inductance section, for example by decreasing the
dimension h[image: -*-] in the drawing. As h[image: -*-] is decreased, the resonant
frequency will be increased. Eventually, of course, we will get to the
situation in which the height h[image: -*-] is just equal to the separation
between the condenser plates. We then have just a cylindrical can; our
resonant circuit has become the cavity resonator of
Fig. 23–7.




You will notice that in the original L[image: -*-]-C[image: -*-] resonant circuit of
Fig. 23–16 the electric and magnetic fields are quite
separate. As we have gradually modified the resonant system to make
higher and higher frequencies, the magnetic field has been brought
closer and closer to the electric field until in the cavity resonator
the two are quite intermixed.




Although the cavity resonators we have talked about in this chapter
have been cylindrical cans, there is nothing magic about the
cylindrical shape. A can of any shape will have resonant frequencies
corresponding to various possible modes of oscillations of the
electric and magnetic fields. For example, the “cavity” shown in
Fig. 23–17 will have its own particular set of resonant
frequencies—although they would be rather difficult to calculate.



[image: -][image: -]
Fig. 23–17. Another resonant cavity.








  
    

24 Waveguides



24–1 The transmission line


In the last chapter we studied what happened to the lumped
elements of circuits when they were operated at very high frequencies,
and we were led to see that a resonant circuit could be replaced by a
cavity with the fields resonating inside. Another interesting technical
problem is the connection of one object to another, so that
electromagnetic energy can be transmitted between them. In low-frequency
circuits the connection is made with wires, but this method doesn’t work
very well at high frequencies because the circuits would radiate energy
into all the space around them, and it is hard to control where the
energy will go. The fields spread out around the wires; the currents and
voltages are not “guided” very well by the wires. In this chapter we
want to look into the ways that objects can be interconnected at high
frequencies. At least, that’s one way of presenting our subject.




Another way is to say that we have been discussing the behavior of
waves in free space. Now it is time to see what happens when
oscillating fields are confined in one or more dimensions. We will
discover the interesting new phenomenon when the fields are confined
in only two dimensions and allowed to go free in the third dimension,
they propagate in waves. These are “guided waves”—the subject of
this chapter.




We begin by working out the general theory of the transmission
line. The ordinary power transmission line that runs from tower to
tower over the countryside radiates away some of its power, but the
power frequencies (50[image: -*-]–60[image: -*-] cycles/sec) are so low that this loss is
not serious. The radiation could be stopped by surrounding the line
with a metal pipe, but this method would not be practical for power
lines because the voltages and currents used would require a very
large, expensive, and heavy pipe. So simple “open lines” are used.




For somewhat higher frequencies—say a few kilocycles—radiation can
already be serious. However, it can be reduced by using
“twisted-pair” transmission lines, as is done for short-run
telephone connections. At higher frequencies, however, the radiation
soon becomes intolerable, either because of power losses or because
the energy appears in other circuits where it isn’t wanted. For
frequencies from a few kilocycles to some hundreds of megacycles,
electromagnetic signals and power are usually transmitted via coaxial
lines consisting of a wire inside a cylindrical
“outer conductor” or “shield.” Although the following treatment will
apply to a transmission line of two parallel conductors of any shape, we
will carry it out referring to a coaxial line.




[image: -][image: -]
Fig. 24–1. A coaxial transmission line.





We take the simplest coaxial line that has a central conductor, which
we suppose is a thin hollow cylinder, and an outer conductor which is
another thin cylinder on the same axis as the inner conductor, as in
Fig. 24–1. We begin by figuring out approximately how the
line behaves at relatively low frequencies. We have already described
some of the low-frequency behavior when we said earlier that two such
conductors had a certain amount of inductance per unit length or a
certain capacity per unit length. We can, in fact, describe the
low-frequency behavior of any transmission line by giving its inductance
per unit length, L0[image: -*-] and its capacity per unit length, C0[image: -*-]. Then we
can analyze the line as the limiting case of the L[image: -*-]-C[image: -*-] filter as
discussed in Section 22–6. We can make a filter which
imitates the line by taking small series elements L0 Δ x[image: -*-] and
small shunt capacities C0 Δ x[image: -*-], where Δ x[image: -*-] is an element
of length of the line. Using our results for the infinite filter, we see
that there would be a propagation of electric signals along the line.
Rather than following that approach, however, we would now rather look
at the line from the point of view of a differential equation.



[image: -][image: -]
Fig. 24–2. The currents and voltages of a transmission line.





Suppose that we see what happens at two neighboring points along the
transmission line, say at the distances x[image: -*-] and x+Δ x[image: -*-] from the
beginning of the line. Let’s call the voltage difference between the two
conductors V (x)[image: -*-], and the current along the “hot” conductor I (x)[image: -*-]
(see Fig. 24–2). If the current in the line is varying, the
inductance will give us a voltage drop across the small section of line
from x[image: -*-] to x+Δ x[image: -*-] in the amount

[image: -*-][image: -*-]


Or, taking the limit as Δ x→0[image: -*-], we get

[image: -*-][image: -*-]
(24.1)




The changing current gives a gradient of the voltage.




Referring again to the figure, if the voltage at x[image: -*-] is changing,
there must be some charge supplied to the capacity in that region. If
we take the small piece of line between x[image: -*-] and x+Δ x[image: -*-], the
charge on it is q=C0 Δ x V[image: -*-]. The time rate-of-change of this
charge is C0 Δ x d V/d t[image: -*-], but the charge changes only if the
current I (x)[image: -*-] into the element is different from the
current I (x+Δ x)[image: -*-] out. Calling the difference Δ I[image: -*-], we have

[image: -*-][image: -*-]


Taking the limit as Δ x→0[image: -*-], we get

[image: -*-][image: -*-]
(24.2)




So the conservation of charge implies that the gradient of the current
is proportional to the time rate-of-change of the voltage.




Equations (24.1) and (24.2) are then the basic
equations of a transmission line. If we wish, we could modify them to
include the effects of resistance in the conductors or of leakage of
charge through the insulation between the conductors, but for our
present discussion we will just stay with the simple example.




The two transmission line equations can be combined by differentiating
one with respect to t[image: -*-] and the other with respect to x[image: -*-] and eliminating
either V[image: -*-] or I[image: -*-]. Then we have either

[image: -*-][image: -*-]
(24.3)




or

[image: -*-][image: -*-]
(24.4)









Once more we recognize the wave equation in x[image: -*-]. For a uniform
transmission line, the voltage (and current) propagates along the line
as a wave. The voltage along the line must be of the form
V (x,t)=f (x−v t)[image: -*-] or V (x,t)=g (x+v t)[image: -*-], or a sum of both. Now what is
the velocity v[image: -*-]? We know that the coefficient of the
∂2/∂t2[image: -*-] term is just 1/v2[image: -*-], so

[image: -*-][image: -*-]
(24.5)









We will leave it for you to show that the voltage for each wave
in a line is proportional to the current of that wave and that the
constant of proportionality is just the characteristic
impedance z0[image: -*-]. Calling V+[image: -*-] and I+[image: -*-] the voltage and current for a wave
going in the plus x[image: -*-]-direction, you should get

[image: -*-][image: -*-]
(24.6)




Similarly, for the wave going toward minus x[image: -*-] the relation is

[image: -*-][image: -*-]







The characteristic impedance—as we found out from our filter
equations—is given by

[image: -*-][image: -*-]
(24.7)




and is, therefore, a pure resistance.




To find the propagation speed v[image: -*-] and the characteristic
impedance z0[image: -*-] of a transmission line, we have to know the inductance and
capacity per unit length. We can calculate them easily for a coaxial
cable, so we will see how that goes. For the inductance we follow the
ideas of Section 17–8, and set [image: \tfrac{1}{2}LI^2][image: \tfrac{1}{2}LI^2] equal
to the magnetic energy which we get by integrating ϵ0 c2 B2/2[image: -*-]
over the volume. Suppose that the central conductor carries the
current I[image: -*-]; then we know that B=I/2 π ϵ0 c2 r[image: -*-], where r[image: -*-] is the
distance from the axis. Taking as a volume element a cylindrical shell
of thickness d r[image: -*-] and of length l[image: -*-], we have for the magnetic energy

[image: -*-][image: -*-]


where a[image: -*-] and b[image: -*-] are the radii of the inner and outer conductors,
respectively. Carrying out the integral, we get

[image: -*-][image: -*-]
(24.8)




Setting the energy equal to [image: \tfrac{1}{2}LI^2][image: \tfrac{1}{2}LI^2], we find

[image: -*-][image: -*-]
(24.9)




It is, as it should be, proportional to the length l[image: -*-] of the line, so
the inductance per unit length L0[image: -*-] is

[image: -*-][image: -*-]
(24.10)









We have worked out the charge on a cylindrical condenser (see
Section 12–2). Now, dividing the charge by the potential
difference, we get

[image: -*-][image: -*-]


The capacity per unit length C0[image: -*-] is C/l[image: -*-]. Combining this result
with Eq. (24.10), we see that the product L0 C0[image: -*-] is
just equal to 1/c2[image: -*-], so v=1/√L0 C0[image: -*-] is equal to c[image: -*-]. The
wave travels down the line with the speed of light. We point out that
this result depends on our assumptions: (a) that there are no
dielectrics or magnetic materials in the space between the conductors,
and (b) that the currents are all on the surfaces of the conductors
(as they would be for perfect conductors). We will see later that for
good conductors at high frequencies, all currents distribute
themselves on the surfaces as they would for a perfect conductor, so
this assumption is then valid.




Now it is interesting that so long as assumptions (a) and (b) are
correct, the product L0 C0[image: -*-] is equal to 1/c2[image: -*-] for any
parallel pair of conductors—even, say, for a hexagonal inner
conductor anywhere inside an elliptical outer conductor. So long as
the cross section is constant and the space between has no material,
waves are propagated at the velocity of light.




No such general statement can be made about the characteristic
impedance. For the coaxial line, it is

[image: -*-][image: -*-]
(24.11)




The factor 1/ϵ0 c[image: -*-] has the dimensions of a resistance and is equal
to 120 π[image: -*-] ohms. The geometric factor ln(b/a)[image: -*-] depends only
logarithmically on the dimensions, so for the coaxial line—and most
lines—the characteristic impedance has typical values of from
50[image: -*-] ohms or so to a few hundred ohms.








24–2 The rectangular waveguide


The next thing we want to talk about seems, at first sight, to be a
striking phenomenon: if the central conductor is removed from the
coaxial line, it can still carry electromagnetic power. In other
words, at high enough frequencies a hollow tube will work just as well
as one with wires. It is related to the mysterious way in which a
resonant circuit of a condenser and inductance gets replaced by
nothing but a can at high frequencies.




Although it may seem to be a remarkable thing when one has been
thinking in terms of a transmission line as a distributed inductance
and capacity, we all know that electromagnetic waves can travel along
inside a hollow metal pipe. If the pipe is straight, we can see
through it! So certainly electromagnetic waves go through a pipe. But
we also know that it is not possible to transmit low-frequency waves
(power or telephone) through the inside of a single metal pipe. So it
must be that electromagnetic waves will go through if their wavelength
is short enough. Therefore we want to discuss the limiting case of the
longest wavelength (or the lowest frequency) that can get through a
pipe of a given size. Since the pipe is then being used to carry
waves, it is called a waveguide.




We will begin with a rectangular pipe, because it is the simplest case
to analyze. We will first give a mathematical treatment and come back
later to look at the problem in a much more elementary way. The more
elementary approach, however, can be applied easily only to a
rectangular guide. The basic phenomena are the same for a general
guide of arbitrary shape, so the mathematical argument is fundamentally
more sound.




Our problem, then, is to find what kind of waves can exist inside a
rectangular pipe. Let’s first choose some convenient coordinates; we
take the z[image: -*-]-axis along the length of the pipe, and the x[image: -*-]- and
y[image: -*-]-axes parallel to the two sides, as shown in Fig. 24–3.



[image: -][image: -]
Fig. 24–3. Coordinates chosen for the rectangular waveguide.





We know that when light waves go down the pipe, they have a transverse
electric field; so suppose we look first for solutions in which
E[image: -*-] is perpendicular to z[image: -*-], say with only a y[image: -*-]-component,
Ey[image: -*-]. This electric field will have some variation across the guide;
in fact, it must go to zero at the sides parallel to the y[image: -*-]-axis,
because the currents and charges in a conductor always adjust
themselves so that there is no tangential component of the electric
field at the surface of a conductor. So Ey[image: -*-] will vary with x[image: -*-] in
some arch, as shown in Fig. 24–4. Perhaps it is the Bessel function
we found for a cavity?  No, because the Bessel function has to do with
cylindrical geometries. For a rectangular geometry, waves are usually
simple harmonic functions, so we should try something like sinkx x[image: -*-].



[image: -][image: -]
Fig. 24–4. The electric field in the waveguide at some value of z[image: -*-].





Since we want waves that propagate down the guide, we expect the field
to alternate between positive and negative values as we go along in z[image: -*-],
as in Fig. 24–5, and these oscillations will travel along the
guide with some velocity v[image: -*-]. If we have oscillations at some definite
frequency ω[image: -*-], we would guess that the wave might vary with z[image: -*-]
like cos(ω t−kz z)[image: -*-], or to use the more convenient
mathematical form, like ei (ω t−kz z)[image: -*-]. This z[image: -*-]-dependence
represents a wave travelling with the speed v=ω/kz[image: -*-] (see
Chapter 29, Vol. I).



[image: -][image: -]
Fig. 24–5. The z[image: -*-]-dependence of the field in the waveguide.





So we might guess that the wave in the guide would have the following
mathematical form:

[image: -*-][image: -*-]
(24.12)









Let’s see whether this guess satisfies the correct field
equations. First, the electric field should have no tangential
components at the conductors. Our field satisfies this requirement; it
is perpendicular to the top and bottom faces and is zero at the two
side faces. Well, it is if we choose kx[image: -*-] so that one-half a cycle
of sinkx x[image: -*-] just fits in the width of the guide—that is, if

[image: -*-][image: -*-]
(24.13)




There are other possibilities, like kx a=2 π[image: -*-], 3 π[image: -*-], …[image: -*-], or, in
general,

[image: -*-][image: -*-]
(24.14)




where n[image: -*-] is any integer. These represent various complicated
arrangements of the field, but for now let’s take only the simplest
one, where kx=π/a[image: -*-], where a[image: -*-] is the width of the inside of the
guide.




Next, the divergence of E[image: -*-] must be zero in the free space inside
the guide, since there are no charges there. Our E[image: -*-] has only a
y[image: -*-]-component, and it doesn’t change with y[image: -*-], so we do have that
∇⋅E=0[image: -*-].




Finally, our electric field must agree with the rest of Maxwell’s
equations in the free space inside
the guide. That is the same thing as saying that it must satisfy the
wave equation

[image: -*-][image: -*-]
(24.15)




We have to see whether our guess, Eq. (24.12), will
work. The second derivative of Ey[image: -*-] with respect to x[image: -*-] is
just [image: -k_x^2E_y][image: -k_x^2E_y]. The second derivative with respect to y[image: -*-] is zero, since
nothing depends on y[image: -*-]. The second derivative with respect to z[image: -*-]
is [image: -k_z^2E_y][image: -k_z^2E_y], and the second derivative with respect to t[image: -*-]
is −ω2 Ey[image: -*-]. Equation (24.15) then says that

[image: -*-][image: -*-]


Unless Ey[image: -*-] is zero everywhere (which is not very interesting), this
equation is correct if

[image: -*-][image: -*-]
(24.16)




We have already fixed kx[image: -*-], so this equation tells us that there can
be waves of the type we have assumed if kz[image: -*-] is related to the
frequency ω[image: -*-] so that Eq. (24.16) is satisfied—in
other words, if

[image: -*-][image: -*-]
(24.17)




The waves we have described are propagated in the z[image: -*-]-direction with
this value of kz[image: -*-].




The wave number kz[image: -*-] we get from Eq. (24.17) tells us,
for a given frequency ω[image: -*-], the speed with which the nodes of the
wave propagate down the guide. The phase velocity is

[image: -*-][image: -*-]
(24.18)









You will remember that the wavelength λ[image: -*-] of a travelling wave
is given by λ=2 π v/ω[image: -*-], so kz[image: -*-] is also equal
to 2 π/λg[image: -*-], where λg[image: -*-] is the wavelength of the
oscillations along the z[image: -*-]-direction—the “guide wavelength.” The
wavelength in the guide is different, of course, from the free-space
wavelength of electromagnetic waves of the same frequency. If we call
the free-space wavelength λ0[image: -*-], which is equal to 2 π c/ω[image: -*-], we can write Eq. (24.17) as

[image: -*-][image: -*-]
(24.19)









Besides the electric fields there are magnetic fields that will travel
with the wave, but we will not bother to work out an expression for
them right now. Since c2 ∇×B=∂E/∂t[image: -*-], the lines
of B[image: -*-] will circulate around the regions in which ∂E/∂t[image: -*-]
is largest, that is, halfway between the maximum and
minimum of E[image: -*-]. The loops of B[image: -*-] will lie parallel to the
x z[image: -*-]-plane and between the crests and troughs of E[image: -*-], as shown in
Fig. 24–6.



[image: -][image: -]
Fig. 24–6. The magnetic field in the waveguide.








24–3 The cutoff frequency


In solving Eq. (24.16) for kz[image: -*-], there should really be
two roots—one plus and one minus. We should write

[image: -*-][image: -*-]
(24.20)




The two signs simply mean that there can be waves which propagate with
a negative phase velocity (toward −z[image: -*-]), as well as waves which
propagate in the positive direction in the guide. Naturally, it should
be possible for waves to go in either direction. Since both types of
waves can be present at the same time, there will be the possibility of
standing-wave solutions.




Our equation for kz[image: -*-] also tells us that higher frequencies give
larger values of kz[image: -*-], and therefore smaller wavelengths, until in
the limit of large ω[image: -*-], k[image: -*-] becomes equal to ω/c[image: -*-], which is
the value we would expect for waves in free space. The light we
“see” through a pipe still travels at the speed c[image: -*-]. But now notice
that if we go toward low frequencies, something strange happens. At
first the wavelength gets longer and longer, but if ω[image: -*-] gets too
small the quantity inside the square root of Eq. (24.20)
suddenly becomes negative. This will happen as soon as ω[image: -*-] gets
to be less than π c/a[image: -*-]—or when λ0[image: -*-] becomes greater
than 2 a[image: -*-]. In other words, when the frequency gets smaller than a certain
critical frequency ωc=π c/a[image: -*-], the wave number kz[image: -*-] (and
also λg[image: -*-]) becomes imaginary and we haven’t got a solution any
more. Or do we?  Who said that kz[image: -*-] has to be real? What if it does
come out imaginary?  Our field equations are still satisfied. Perhaps
an imaginary kz[image: -*-] also represents a wave.




Suppose ω[image: -*-] is less than ωc[image: -*-]; then we can write

[image: -*-][image: -*-]
(24.21)




where k′[image: -*-] is a positive real number:

[image: -*-][image: -*-]
(24.22)




If we now go back to our expression, Eq. (24.12), for
Ey[image: -*-], we have

[image: -*-][image: -*-]
(24.23)




which we can write as

[image: -*-][image: -*-]
(24.24)









This expression gives an E[image: -*-]-field that oscillates with time
as ei ω t[image: -*-] but which varies with z[image: -*-] as e±k′ z[image: -*-]. It
decreases or increases with z[image: -*-] smoothly as a real exponential. In our
derivation we didn’t worry about the sources that started the waves,
but there must, of course, be a source someplace in the guide. The
sign that goes with k′[image: -*-] must be the one that makes the field decrease
with increasing distance from the source of the waves.




So for frequencies below ωc=π c/a[image: -*-], waves do
not propagate down the guide; the oscillating fields penetrate into
the guide only a distance of the order of 1/k′[image: -*-]. For this reason, the
frequency ωc[image: -*-] is called the “cutoff frequency” of the guide. Looking at
Eq. (24.22), we see that for frequencies just a little
below ωc[image: -*-], the number k′[image: -*-] is small and the fields can
penetrate a long distance into the guide. But if ω[image: -*-] is much less
than ωc[image: -*-], the exponential coefficient k′[image: -*-] is equal to π/a[image: -*-]
and the field dies off extremely rapidly, as shown in
Fig. 24–7. The field decreases by 1/e[image: -*-] in the
distance a/π[image: -*-], or in only about one-third of the guide width. The fields
penetrate very little distance from the source.



[image: -][image: -]
Fig. 24–7. The variation of Ey[image: -*-] with z[image: -*-] for ω≪ωc[image: -*-].





We want to emphasize an interesting feature of our analysis of the
guided waves—the appearance of the imaginary wave
number kz[image: -*-]. Normally, if we solve an equation in physics and get an
imaginary number, it doesn’t mean anything physical. For waves,
however, an imaginary wave number does mean something. The wave
equation is still satisfied; it only means that the solution gives
exponentially decreasing fields instead of propagating waves. So in
any wave problem where k[image: -*-] becomes imaginary for some frequency, it
means that the form of the wave changes—the sine wave changes into
an exponential.







24–4 The speed of the guided waves


The wave velocity we have used above is the phase velocity, which is the speed
of a node of the wave; it is a function of frequency. If we combine Eqs.
(24.17) and (24.18), we can write

[image: -*-][image: -*-]
(24.25)




For frequencies above cutoff—where travelling waves
exist—ωc/ω[image: -*-] is less than one, and vphase[image: -*-] is
real and greater than the speed of light. We have already seen
in Chapter 48 of Vol. I that phase velocities
greater than light are possible, because it is just the nodes of the
wave which are moving and not energy or information. In order to know
how fast signals will travel, we have to calculate the speed of
pulses or modulations made by the interference of a wave of one
frequency with one or more waves of slightly different frequencies
(see Chapter 48, Vol. I). We have called the speed of
the envelope of such a group of waves the group velocity; it is not
ω/k[image: -*-] but d ω/d k[image: -*-]:

[image: -*-][image: -*-]
(24.26)




Taking the derivative of Eq. (24.17) with respect
to ω[image: -*-] and inverting to get d ω/d k[image: -*-], we find that

[image: -*-][image: -*-]
(24.27)




which is less than the speed of light.




The geometric mean of vphase[image: -*-] and vgroup[image: -*-] is
just c[image: -*-], the speed of light:

[image: -*-][image: -*-]
(24.28)




This is curious, because we have seen a similar relation in quantum
mechanics. For a particle with any velocity—even relativistic—the
momentum p[image: -*-] and energy U[image: -*-] are related by

[image: -*-][image: -*-]
(24.29)




But in quantum mechanics the energy is ℏ ω[image: -*-], and the momentum
is [image: \hbar/\lambdabar][image: \hbar/\lambdabar], which is equal to ℏ k[image: -*-]; so
Eq. (24.29) can be written

[image: -*-][image: -*-]
(24.30)




or

[image: -*-][image: -*-]
(24.31)




which looks very much like Eq. (24.17) … Interesting!




The group velocity of the waves is also the speed at which energy is
transported along the guide. If we want to find the energy flow down
the guide, we can get it from the energy density times the group
velocity. If the root mean square electric field is E0[image: -*-], then the
average density of electric energy is [image: \epsO E_0^2/2][image: \epsO E_0^2/2]. There is also
some energy associated with the magnetic field. We will not prove it
here, but in any cavity or guide the magnetic and electric energies
are equal, so the total electromagnetic energy density is [image: \epsO E_0^2][image: \epsO E_0^2]. The power d U/d t[image: -*-] transmitted by the guide is then

[image: -*-][image: -*-]
(24.32)




(We will see later another, more general way of getting the energy
flow.)







24–5 Observing guided waves


Energy can be coupled into a waveguide by some kind of an “antenna.”
For example, a little vertical wire or “stub” will do. The presence of
the guided waves can be observed by picking up some of the
electromagnetic energy with a little receiving “antenna,” which again
can be a little stub of wire or a small loop. In Fig. 24–8,
we show a guide with some cutaways to show a driving stub and a pickup
“probe”. The driving stub can be connected to a signal generator via a
coaxial cable, and the pickup probe can be connected by a similar cable
to a detector. It is usually convenient to insert the pickup probe via a
long thin slot in the guide, as shown in Fig. 24–8. Then
the probe can be moved back and forth along the guide to sample the
fields at various positions.



[image: -][image: -]
Fig. 24–8. A waveguide with a driving stub and a pickup probe.





If the signal generator is set at some frequency ω[image: -*-] greater than
the cutoff frequency ωc[image: -*-], there will be waves propagated down
the guide from the driving stub. These will be the only waves present
if the guide is infinitely long, which can effectively be arranged by
terminating the guide with a carefully designed absorber in such a way
that there are no reflections from the far end. Then, since the
detector measures the time average of the fields near the probe, it
will pick up a signal which is independent of the position along the
guide; its output will be proportional to the power being transmitted.





If now the far end of the guide is finished off in some way that
produces a reflected wave—as an extreme example, if we closed it off
with a metal plate—there will be a reflected wave in addition to the
original forward wave. These two waves will interfere and produce a
standing wave in the guide similar to the standing waves on a string
which we discussed in Chapter 49 of Vol. I. Then, as
the pickup probe is moved along the line, the detector reading will
rise and fall periodically, showing a maximum in the fields at each
loop of the standing wave and a minimum at each node. The distance
between two successive nodes (or loops) is just λg/2[image: -*-]. This
gives a convenient way of measuring the guide wavelength. If the
frequency is now moved closer to ωc[image: -*-], the distances between
nodes increase, showing that the guide wavelength increases as
predicted by Eq. (24.19).




Suppose now the signal generator is set at a frequency just a little
below ωc[image: -*-]. Then the detector output will decrease gradually as
the pickup probe is moved down the guide. If the frequency is set
somewhat lower, the field strength will fall rapidly, following the
curve of Fig. 24–7, and showing that waves are not
propagated.







24–6 Waveguide plumbing


An important practical use of waveguides is for the transmission of
high-frequency power, as, for example, in coupling the high-frequency
oscillator or output amplifier of a radar set to an antenna. In fact,
the antenna itself usually consists of a parabolic reflector fed at
its focus by a waveguide flared out at the end to make a “horn” that
radiates the waves coming along the guide. Although high frequencies
can be transmitted along a coaxial cable, a waveguide is better for
transmitting large amounts of power. First, the maximum power that can
be transmitted along a line is limited by the breakdown of the
insulation (solid or gas) between the conductors. For a given amount
of power, the field strengths in a guide are usually less than they
are in a coaxial cable, so higher powers can be transmitted before
breakdown occurs. Second, the power losses in the coaxial cable are
usually greater than in a waveguide. In a coaxial cable there must be
insulating material to support the central conductor, and there is an
energy loss in this material—particularly at high frequencies. Also,
the current densities on the central conductor are quite high, and
since the losses go as the square of the current density, the
lower currents that appear on the walls of the guide result in lower
energy losses. To keep these losses to a minimum, the inner surfaces
of the guide are often plated with a material of high conductivity,
such as silver.



[image: -]
Fig. 24–9. Sections of waveguide connected with flanges.





The problem of connecting a “circuit” with waveguides is quite
different from the corresponding circuit problem at low frequencies,
and is usually called microwave “plumbing.” Many special devices
have been developed for the purpose. For instance, two sections of
waveguide are usually connected together by means of flanges, as can
be seen in Fig. 24–9. Such connections can, however,
cause serious energy losses, because the surface currents must flow
across the joint, which may have a relatively high resistance. One way
to avoid such losses is to make the flanges as shown in the cross
section drawn in Fig. 24–10. A small space is left
between the adjacent sections of the guide, and a groove is cut in the
face of one of the flanges to make a small cavity of the type shown in
Fig. 23–16(c). The dimensions are chosen so that this
cavity is resonant at the frequency being used. This resonant cavity
presents a high “impedance” to the currents, so relatively little
current flows across the metallic joints (at a[image: -*-] in
Fig. 24–10). The high guide currents simply charge and
discharge the “capacity” of the gap (at b[image: -*-] in the figure), where
there is little dissipation of energy.



[image: -][image: -]
Fig. 24–10. A low-loss connection between two sections of waveguide.





Suppose you want to stop a waveguide in a way that won’t result in
reflected waves. Then you must put something at the end that imitates
an infinite length of guide. You need a “termination” which acts for
the guide like the characteristic impedance does for a transmission
line—something that absorbs the arriving waves without making
reflections. Then the guide will act as though it went on forever.
Such terminations are made by putting inside the guide some wedges of
resistance material carefully designed to absorb the wave energy while
generating almost no reflected waves.



[image: -]
Fig. 24–11. A waveguide “T.” (The flanges have plastic end caps to keep
the inside clean while the “T” is not being used.





If you want to connect three things together—for instance,
one source to two different antennas—then you can use a “T” like
the one shown in Fig. 24–11. Power fed in at the center
section of the “T” will be split and go out the two side arms (and
there may also be some reflected waves). You can see qualitatively from
the sketches in Fig. 24–12 that the fields would spread out when
they
get to the end of the input section and make electric fields that will
start waves going out the two arms. Depending on whether electric fields
in the guide are parallel or perpendicular to the “top” of the “T,”
the fields at the junction would be roughly as shown in (a) or (b) of
Fig. 24–12.



[image: -][image: -]
Fig. 24–12. The electric fields in a waveguide “T” for two possible field
orientations.





Finally, we would like to describe a device called an “unidirectional
coupler,” which is very useful for telling what is going on after you
have connected a complicated arrangement of waveguides. Suppose you
want to know which way the waves are going in a particular section of
guide—you might be wondering, for instance, whether or not there is
a strong reflected wave. The unidirectional coupler takes out a small
fraction of the power of a guide if there is a wave going one way, but
none if the wave is going the other way. By connecting the output of
the coupler to a detector, you can measure the “one-way” power in
the guide.



[image: -][image: -]
Fig. 24–13. A unidirectional coupler.





Figure 24–13 is a drawing of a unidirectional coupler; a
piece of waveguide A B[image: -*-] has another piece of waveguide C D[image: -*-] soldered to
it along one face. The guide C D[image: -*-] is curved away so that there is room
for the connecting flanges. Before the guides are soldered together, two
(or more) holes have been drilled in each guide (matching each other) so
that some of the fields in the main guide A B[image: -*-] can be coupled into the
secondary guide C D[image: -*-]. Each of the holes acts like a little antenna that
produces a wave in the secondary guide. If there were only one hole,
waves would be sent in both directions and would be the same no matter
which way the wave was going in the primary guide. But when there are
two holes with a separation space equal to one-quarter of the
guide wavelength, they will make two sources 90°[image: -*-] out of phase. Do
you remember that we considered in Chapter 29 of Vol. I
the interference of the waves from two antennas spaced λ/4[image: -*-] apart
and excited 90°[image: -*-] out of phase in time?  We found that the waves
subtract in one direction and add in the opposite direction. The same
thing will happen here. The wave produced in the guide C D[image: -*-] will be
going in the same direction as the wave in A B[image: -*-].




If the wave in the primary guide is travelling from A[image: -*-] toward B[image: -*-],
there will be a wave at the output D[image: -*-] of the secondary guide. If the
wave in the primary guide goes from B[image: -*-] toward A[image: -*-], there will be a
wave going toward the end C[image: -*-] of the secondary guide. This end is
equipped with a termination, so that this wave is absorbed and there
is no wave at the output of the coupler.







24–7 Waveguide modes

[image: -][image: -]
Fig. 24–14. Another possible variation of Ey[image: -*-] with x[image: -*-]





The wave we have chosen to analyze is a special solution of the field
equations. There are many more. Each solution is called a waveguide
“mode.” For example, our x[image: -*-]-dependence of the field was just
one-half a cycle of a sine wave. There is an equally good solution
with a full cycle; then the variation of Ey[image: -*-] with x[image: -*-] is as shown in
Fig. 24–14. The kx[image: -*-] for such a mode is twice as large, so the
cutoff frequency is much higher. Also, in the wave we studied E[image: -*-]
has only a y[image: -*-]-component, but there are other modes with more
complicated electric fields. If the electric field has components only
in x[image: -*-] and y[image: -*-]—so that the total electric field is always at right
angles to the z[image: -*-]-direction—the mode is called a “transverse
electric” (or TE) mode. The magnetic field of such modes will always
have a z[image: -*-]-component. It turns out that if E[image: -*-] has a component in
the z[image: -*-]-direction (along the direction of propagation), then the
magnetic field will always have only transverse components. So such
fields are called transverse magnetic (TM) modes. For a rectangular
guide, all the other modes have a higher cutoff frequency than the
simple TE mode we have described. It is, therefore, possible—and
usual—to use a guide with a frequency just above the cutoff for this
lowest mode but below the cutoff frequency for all the others, so that
just the one mode is propagated. Otherwise, the behavior gets
complicated and difficult to control.







24–8 Another way of looking at the guided waves


We want now to show you another way of understanding why a waveguide
attenuates the fields rapidly for frequencies below the cutoff
frequency ωc[image: -*-]. Then you will have a more “physical” idea of
why the behavior changes so drastically between low and high
frequencies. We can do this for the rectangular guide by analyzing the
fields in terms of reflections—or images—in the walls of the
guide. The approach only works for rectangular guides, however; that’s
why we started with the more mathematical analysis which works, in
principle, for guides of any shape.




For the mode we have described, the vertical dimension (in y[image: -*-]) had no
effect, so we can ignore the top and bottom of the guide and imagine
that the guide is extended indefinitely in the vertical direction. We
imagine then that the guide just consists of two vertical plates with
the separation a[image: -*-].




Let’s say that the source of the fields is a vertical wire placed in
the middle of the guide, with the wire carrying a current that
oscillates at the frequency ω[image: -*-]. In the absence of the guide
walls such a wire would radiate cylindrical waves.




Now we consider that the guide walls are perfect conductors. Then,
just as in electrostatics, the conditions at the surface will be
correct if we add to the field of the wire the field of one or more
suitable image wires. The image idea works just as well for
electrodynamics as it does for electrostatics, provided, of course,
that we also include the retardations. We know that is true because we
have often seen a mirror producing an image of a light source. And a
mirror is just a “perfect” conductor for electromagnetic waves with
optical frequencies.



[image: -][image: -]
Fig. 24–15. The line source S0[image: -*-] between the conducting plane walls W1[image: -*-]
and W2[image: -*-]. The walls can be replaced by the infinite sequence of image
sources.





Now let’s take a horizontal cross section, as shown in Fig. 24–15,
where W1[image: -*-] and W2[image: -*-] are the two guide walls and S0[image: -*-] is the source
wire. We call the direction of the current in the wire positive. Now
if there were only one wall, say W1[image: -*-], we could remove it if we
placed an image source (with opposite polarity) at the position
marked S1[image: -*-]. But with both walls in place there will also be an image
of S0[image: -*-] in the wall W2[image: -*-], which we show as the image S2[image: -*-]. This
source, too, will have an image in W1[image: -*-], which we call S3[image: -*-]. Now
both S1[image: -*-] and S3[image: -*-] will have images in W2[image: -*-] at the positions marked
S4[image: -*-] and S6[image: -*-], and so on. For our two plane conductors with the
source halfway between, the fields are the same as those produced by
an infinite line of sources, all separated by the distance a[image: -*-]. (It
is, in fact just what you would see if you looked at a wire
placed halfway between two parallel mirrors.)  For the fields to be
zero at the walls, the polarity of the currents in the images must
alternate from one image to the next. In other words, they oscillate
180°[image: -*-] out of phase. The waveguide field is, then, just the
superposition of the fields of such an infinite set of line sources.




We know that if we are close to the sources, the field is very much
like the static fields. We considered in Section 7–5
the static field of a grid of line sources and found that it is like
the field of a charged plate except for terms that decrease
exponentially with the distance from the grid. Here the average source
strength is zero, because the sign alternates from one source to the
next. Any fields which exist should fall off exponentially with
distance. Close to the source, we see the field mainly of the nearest
source; at large distances, many sources contribute and their average
effect is zero. So now we see why the waveguide below cutoff frequency
gives an exponentially decreasing field. At low frequencies, in
particular, the static approximation is good, and it predicts a rapid
attenuation of the fields with distance.




Now we are faced with the opposite question: Why are waves propagated
at all? That is the mysterious part! The reason is that at high
frequencies the retardation of the fields can introduce additional
changes in phase which can cause the fields of the out-of-phase
sources to add instead of cancelling. In fact, in
Chapter 29 of Vol. I we have already studied, just for
this problem, the fields generated by an array of antennas or by an
optical grating. There we found that when several radio antennas are
suitably arranged, they can give an interference pattern that has a
strong signal in some direction but no signal in another.



[image: -][image: -]
Fig. 24–16. One set of coherent waves from an array of line sources.





Suppose we go back to Fig. 24–15 and look at the fields
which arrive at a large distance from the array of image sources. The
fields will be strong only in certain directions which depend on the
frequency—only in those directions for which the fields from all the
sources add in phase. At a reasonable distance from the sources the
field propagates in these special directions as plane waves. We have
sketched such a wave in Fig. 24–16, where the solid lines
represent the wave crests and the dashed lines represent the troughs.
The wave direction will be the one for which the difference in the
retardation for two neighboring sources to the crest of a wave
corresponds to one-half a period of oscillation. In other words, the
difference between r2[image: -*-] and r0[image: -*-] in the figure is one-half of the
free-space wavelength:

[image: -*-][image: -*-]


The angle θ[image: -*-] is then given by

[image: -*-][image: -*-]
(24.33)









There is, of course, another set of waves travelling downward at the
symmetric angle with respect to the array of sources. The complete
waveguide field (not too close to the source) is the superposition of
these two sets of waves, as shown in Fig. 24–17. The actual fields
are really like this, of course, only between the two walls of the
waveguide.



[image: -][image: -]
Fig. 24–17. The waveguide field can be viewed as the superposition of two
trains of plane waves.





At points like A[image: -*-] and C[image: -*-], the crests of the two wave patterns
coincide, and the field will have a maximum; at points like B[image: -*-], both
waves have their peak negative value, and the field has its minimum
(largest negative) value. As time goes on the field in the guide
appears to be travelling along the guide with a
wavelength λg[image: -*-], which is the distance from A[image: -*-] to C[image: -*-].
That distance is related to θ[image: -*-] by

[image: -*-][image: -*-]
(24.34)




Using Eq. (24.33) for θ[image: -*-], we get that

[image: -*-][image: -*-]
(24.35)




which is just what we found in Eq. (24.19).




Now we see why there is only wave propagation above the cutoff
frequency ω0[image: -*-]. If the free-space wavelength is longer
than 2 a[image: -*-], there is no angle where the waves shown in Fig. 24–16
can
appear. The necessary constructive interference appears suddenly when
λ0[image: -*-] drops below 2 a[image: -*-], or when ω[image: -*-] goes above ω0=π c/a[image: -*-].




If the frequency is high enough, there can be two or more possible
directions in which the waves will appear. For our case, this will
happen if [image: \lambda_0<\tfrac{2}{3}a][image: \lambda_0<\tfrac{2}{3}a]. In general, however, it could
also happen when λ0<a[image: -*-]. These additional waves correspond to
the higher guide modes we have mentioned.




It has also been made evident by our analysis why the phase velocity
of the guided waves is greater than c[image: -*-] and why this velocity depends
on ω[image: -*-]. As ω[image: -*-] is changed, the angle of the free waves of
Fig. 24–16 changes, and therefore so does the velocity along the
guide.





Although we have described the guided wave as the superposition of the
fields of an infinite array of line sources, you can see that we
would arrive at the same result if we imagined two sets of free-space
waves being continually reflected back and forth between two perfect
mirrors—remembering that a reflection means a reversal of
phase. These sets of reflecting waves would all cancel each other
unless they were going at just the angle θ[image: -*-] given in
Eq. (24.33). There are many ways of looking at the same
thing.
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25–1 Four-vectors


We now discuss the application of the special theory of relativity to
electrodynamics. Since we have already studied the special theory of
relativity in Chapters 15 through 17 of
Vol. I, we will just review quickly the basic ideas.





It is found experimentally that the laws of physics are unchanged if
we move with uniform velocity. You can’t tell if you are inside a
spaceship moving with uniform velocity in a straight line, unless you
look outside the spaceship, or at least make an observation having to
do with the world outside. Any true law of physics we write down must
be arranged so that this fact of nature is built in.





The relationship between the space and time of two systems of
coordinates, one, S′[image: -*-], in uniform motion in the x[image: -*-]-direction with
speed v[image: -*-] relative to the other, S[image: -*-], is given by the Lorentz transformation:

[image: -*-][image: -*-]
(25.1)




The laws of physics must be such that after a Lorentz transformation,
the new form of the laws looks just like the old form. This is just
like the principle that the laws of physics don’t depend on the
orientation of our coordinate system. In Chapter 11
of Vol. I, we saw that the way to describe mathematically the
invariance of physics with respect to rotations was to write our
equations in terms of vectors.





For example, if we have two vectors

[image: -*-][image: -*-]


we found that the combination

[image: -*-][image: -*-]


was not changed if we transformed to a rotated coordinate system. So
we know that if we have a scalar product like A⋅B[image: -*-] on
both sides of an equation, the equation will have exactly the same
form in all rotated coordinate systems. We also discovered an operator
(see Chapter 2),

[image: -*-][image: -*-]


which, when applied to a scalar function, gave three quantities which
transform just like a vector. With this operator we defined the
gradient, and in combination with other vectors, the divergence and
the Laplacian. Finally we discovered that by taking sums of certain
products of pairs of the components of two vectors we could get three
new quantities which behaved like a new vector. We called it the
cross product of two vectors. Using the cross product with our
operator ∇[image: -*-] we then defined the curl of a vector.





Since we will be referring back to what we have done in vector
analysis, we have put in Table 25–1 a summary of all the
important vector operations in three dimensions that we have used in
the past. The point is that it must be possible to write the equations
of physics so that both sides transform the same way under
rotations. If one side is a vector, the other side must also be a
vector, and both sides will change together in exactly the same way if
we rotate our coordinate system. Similarly, if one side is a scalar,
the other side must also be a scalar, so that neither side changes
when we rotate coordinates, and so on.






Table 25–1. The important quantities and operations of vector analysis in three dimensions






[image: --][image: --]


Now in the case of special relativity, time and space are inextricably
mixed, and we must do the analogous things for four dimensions. We
want our equations to remain the same not only for rotations, but also
for any inertial frame. That means that our equations should be
invariant under the Lorentz transformation of
equations (25.1). The purpose of this chapter is to show you
how that can be done. Before we get started, however, we want to do
something that makes our work a lot easier (and saves some confusion).
And that is to choose our units of length and time so that the speed of
light c[image: -*-] is equal to 1. You can think of it as taking our unit of
time to be the time that it takes light to go one meter (which is
about 3×10−9[image: -*-] sec). We can even call this time unit “one
meter.”  Using this unit, all of our equations will show more clearly
the space-time symmetry. Also, all the c[image: -*-]’s will disappear from our
relativistic equations. (If this bothers you, you can always put
the c[image: -*-]’s back into any equation by replacing every t[image: -*-] by c t[image: -*-], or, in
general, by sticking in a c[image: -*-] wherever it is needed to make the
dimensions of the equations come out right.) With this groundwork we are
ready to begin. Our program is to do in the four dimensions of
space-time all of the things we did with vectors for three dimensions.
It is really quite a simple game; we just work by analogy. The only real
complications is the notation (we’ve already used up the vector symbol
for three dimensions) and one slight twist of signs.





First, by analogy with vectors in three dimensions, we define a
four-vector as a set of the four quantities at[image: -*-], ax[image: -*-],
ay[image: -*-], and az[image: -*-], which transform like t[image: -*-], x[image: -*-], y[image: -*-], and z[image: -*-] when we
change to a moving coordinate system. There are several different
notations people use for a four-vector; we will write aμ[image: -*-], by
which we mean the group of four numbers (at,ax,ay,az)[image: -*-]—in other
words, the subscript μ[image: -*-] can take on the four “values” t[image: -*-], x[image: -*-],
y[image: -*-], z[image: -*-]. It will also be convenient, at times, to indicate the three
space components by a three-vector, like this: aμ=(at,a)[image: -*-].





We have already encountered one four-vector, which consists of the
energy and momentum of a particle (Chapter 17, Vol. I): In
our new notation we write

[image: -*-][image: -*-]
(25.2)




which means that the four-vector pμ[image: -*-] is made up of the energy E[image: -*-]
and the three components of the three-vector p[image: -*-] of a particle.





It looks as though the game is really very simple—for each
three-vector in physics all we have to do is find what the remaining
component should be, and we have a four-vector. To see that this is
not the case, consider the velocity vector with components

[image: -*-][image: -*-]


The question is: What is the time component? Instinct should give the
right answer. Since four-vectors are like t[image: -*-], x[image: -*-], y[image: -*-], z[image: -*-], we would
guess that the time component is

[image: -*-][image: -*-]


This is wrong. The reason is that the t[image: -*-] in each denominator
is not an invariant when we make a Lorentz transformation. The
numerators have the right behavior to make a four-vector, but the d t[image: -*-]
in the denominator spoils things; it is unsymmetric and is not the
same in two different systems.





It turns out that the four “velocity” components which we have
written down will become the components of a four-vector if we just
divide by √1−v2[image: -*-]. We can see that that is true because if we
start with the momentum four-vector

[image: -*-][image: -*-]
(25.3)




and divide it by the rest mass m0[image: -*-], which is an invariant scalar in
four dimensions, we have

[image: -*-][image: -*-]
(25.4)




which must still be a four-vector. (Dividing by an invariant scalar
doesn’t change the transformation properties.) So we can
define the “velocity four-vector” uμ[image: -*-] by

[image: -*-][image: -*-]
(25.5)




The four-velocity is a useful quantity; we can, for instance, write

[image: -*-][image: -*-]
(25.6)




This is the typical sort of form an equation which is relativistically
correct must have; each side is a four-vector. (The right-hand side is
an invariant times a four-vector, which is still a four-vector.)





 


25–2 The scalar product


It is an accident of life, if you wish, that under coordinate
rotations the distance of a point from the origin does not
change. This means mathematically that r2=x2+y2+z2[image: -*-] is an
invariant. In other words, after a rotation r′2=r2[image: -*-], or

[image: -*-][image: -*-]


Now the question is: Is there a similar quantity which is invariant
under the Lorentz transformation? There is. From Eq. (25.1)
you can see that

[image: -*-][image: -*-]


That is pretty nice, except that it depends on a particular choice of
the x[image: -*-]-direction. We can fix that up by subtracting y2[image: -*-]
and z2[image: -*-]. Then any Lorentz transformation plus a rotation will
leave the quantity unchanged. So the quantity which is analogous
to r2[image: -*-] for three dimensions, in four dimensions is

[image: -*-][image: -*-]


It is an invariant under what is called the “complete Lorentz
group”—which means for transformation of both translations at
constant velocity and rotations.





Now since this invariance is an algebraic matter depending only on the
transformation rules of Eq. (25.1)—plus rotations—it
is true for any four-vector (by definition they all transform the
same). So for a four-vector aμ[image: -*-] we have that

[image: -*-][image: -*-]


We will call this quantity the square of “the length” of the
four-vector aμ[image: -*-]. (Sometimes people change the sign of all the
terms and call the length [image: a_x^2+a_y^2+a_z^2-a_t^2][image: a_x^2+a_y^2+a_z^2-a_t^2], so you’ll have to
watch out.)





Now if we have two vectors aμ[image: -*-] and bμ[image: -*-] their
corresponding components transform in the same way, so the combination

[image: -*-][image: -*-]


is also an invariant (scalar) quantity. (We have in fact already proved
this in Chapter 17 of Vol. I.) Clearly this expression is
quite analogous to the dot product for vectors. We will, in fact, call
it the dot product or
scalar product of two four-vectors. It would seem logical to
write it as aμ⋅bμ[image: -*-], so it would look like a dot product.
But, unhappily, it’s not done that way; it is usually written without
the dot. So we will follow the convention and write the dot product
simply as aμ bμ[image: -*-]. So, by definition,

[image: -*-][image: -*-]
(25.7)




Whenever you see two identical subscripts together (we will
occasionally have to use ν[image: -*-] or some other letter instead of μ[image: -*-])
it means that you are to take the four products and sum,
remembering the minus sign for the products of the space
components. With this convention the invariance of the scalar product
under a Lorentz transformation can be written as

[image: -*-][image: -*-]







Since the last three terms in (25.7) are just the scalar
dot product in three dimensions, it is often more convenient to write

[image: -*-][image: -*-]


It is also obvious that the four-dimensional length we described above
can be written as aμ aμ[image: -*-]:

[image: -*-][image: -*-]
(25.8)




It will also be convenient to sometimes write this quantity
as [image: a_\mu^2][image: a_\mu^2]:

[image: -*-][image: -*-]







We will now give you an illustration of the usefulness of four-vector
dot products. Antiprotons ([image: \overline{\text{P}}][image: \overline{\text{P}}]) are produced in
large accelerators by the reaction

[image: -*-][image: -*-]


That is, an energetic proton collides with a proton at rest (for
example, in a hydrogen target placed in the beam), and if the incident
proton has enough energy, a proton-antiproton pair may be produced, in
addition to the two original protons.1 The question is: How much energy must be given to the
incident proton to make this reaction energetically possible?




[image: -][image: -]
Fig. 25–1. 
	The reaction [image: \text{P}+\text{P}\to3\text{P}+\overline{\text{P}}][image: \text{P}+\text{P}\to3\text{P}+\overline{\text{P}}] viewed in the
	laboratory and CM systems. The incident proton is supposed to have
	just barely enough energy to make the reaction go. Protons are
	denoted by solid circles; antiprotons by open circles.





The easiest way to get the answer is to consider what the reaction looks
like in the center-of-mass (CM) system (see Fig. 25–1).
We’ll call the incident proton a[image: -*-] and its four-momentum [image: p_\mu^a][image: p_\mu^a].
Similarly, we’ll call the target proton b[image: -*-] and its
four-momentum [image: p_\mu^b][image: p_\mu^b]. If the incident proton has just barely
enough energy to make the reaction go, the final state—the situation
after the collision—will consist of a glob containing three protons
and an antiproton at rest in the CM system. If the incident energy were
slightly higher, the final state particles would have some kinetic
energy and be moving apart; if the incident energy were slightly lower,
there would not be enough energy to make the four particles.





If we call [image: p_\mu^c][image: p_\mu^c] the total four-momentum of the whole glob in the
final state, conservation of energy and momentum tells us that

[image: -*-][image: -*-]


and

[image: -*-][image: -*-]


Combining these two equations, we can write that

[image: -*-][image: -*-]
(25.9)









Now the important thing is that this is an equation among
four-vectors, and is, therefore, true in any inertial frame. We can
use this fact to simplify our calculations. We start by taking the
“length” of each side of Eq. (25.9); they are, of
course, also equal. We get

[image: -*-][image: -*-]
(25.10)




Since [image: p_\mu^cp_\mu^c][image: p_\mu^cp_\mu^c] is invariant, we can evaluate it in any
coordinate system. In the CM system, the time component of [image: p_\mu^c][image: p_\mu^c]
is the rest energy of four protons, namely 4 M[image: -*-], and the space
part p[image: -*-] is zero; so [image: p_\mu^c=(4M,\FLPzeroi)][image: p_\mu^c=(4M,\FLPzeroi)]. We have used the fact
that the rest mass of an antiproton equals the rest mass of a proton,
and we have called this common mass M[image: -*-].





Thus, Eq. (25.10) becomes

[image: -*-][image: -*-]
(25.11)




Now [image: p_\mu^ap_\mu^a][image: p_\mu^ap_\mu^a] and [image: p_\mu^bp_\mu^b][image: p_\mu^bp_\mu^b] are very easy, since the
“length” of the momentum four-vector of any particle is just the
mass of the particle squared:

[image: -*-][image: -*-]


This can be shown by direct calculation or, more cleverly, by noting
that for a particle at rest pμ=(M,0)[image: -*-], so pμ pμ=M2[image: -*-]. But since it is an invariant, it is equal to M2[image: -*-] in
any frame. Using these results in Eq. (25.11), we
have

[image: -*-][image: -*-]


or

[image: -*-][image: -*-]
(25.12)









Now we can also evaluate [image: p_\mu^ap_\mu^b={p_\mu^a}'{p_\mu^b}'][image: p_\mu^ap_\mu^b={p_\mu^a}'{p_\mu^b}'] in the
laboratory system. The four-vector [image: {p_\mu^a}'][image: {p_\mu^a}'] can be
written (Ea′,pa′)[image: -*-], while [image: {p_\mu^b}'=(M,\FLPzeroi)][image: {p_\mu^b}'=(M,\FLPzeroi)], since it
describes a proton at rest. Thus, [image: {p_\mu^a}'{p_\mu^b}'][image: {p_\mu^a}'{p_\mu^b}'] must also be
equal to M Ea′[image: -*-]; and since we know the scalar product is an
invariant this must be numerically the same as what we found
in (25.12). So we have that

[image: -*-][image: -*-]


which is the result we were after. The total energy of the
initial proton must be at least 7 M[image: -*-] (about 6.6[image: -*-] GeV since
M=938[image: -*-] MeV) or, subtracting the rest mass M[image: -*-], the kinetic energy must
be at least 6 M[image: -*-] (about 5.6[image: -*-] GeV). The Bevatron accelerator at
Berkeley was designed to give about 6.2[image: -*-] GeV of kinetic energy to the
protons it accelerates, in order to be able to make antiprotons.





Since scalar products are invariant, they are always interesting to
evaluate. What about the “length” of the four-velocity uμ uμ[image: -*-]?

[image: -*-][image: -*-]


Thus, uμ[image: -*-] is the unit four-vector.





 


25–3 The four-dimensional gradient


The next thing that we have to discuss is the four-dimensional analog
of the gradient. We recall (Chapter 14, Vol. I) that
the three differential operators ∂/∂x[image: -*-], ∂/∂y[image: -*-], ∂/∂z[image: -*-]
transform like a three-vector and are called the
gradient. The same scheme ought to work in four dimensions; that is,
we might guess that the four-dimensional gradient should
be (∂/∂t,∂/∂x,∂/∂y,∂/∂z)[image: -*-]. This is wrong.





To see the error, consider a scalar function ϕ[image: -*-] which depends only
on x[image: -*-] and t[image: -*-]. The change in ϕ[image: -*-], if we make a small
change Δ t[image: -*-] in t[image: -*-] while holding x[image: -*-] constant, is

[image: -*-][image: -*-]
(25.13)




On the other hand, according to a moving observer,

[image: -*-][image: -*-]


We can express Δ x′[image: -*-] and Δ t′[image: -*-] in terms of Δ t[image: -*-] by
using Eq. (25.1). Remembering that we are holding x[image: -*-]
constant, so that Δ x=0[image: -*-], we write

[image: -*-][image: -*-]


Thus,

[image: -*-][image: -*-]


Comparing this result with Eq. (25.13), we learn that

[image: -*-][image: -*-]
(25.14)




A similar calculation gives

[image: -*-][image: -*-]
(25.15)









Now we can see that the gradient is rather strange. The formulas for
x[image: -*-] and t[image: -*-] in terms of x′[image: -*-] and t′[image: -*-] [obtained by solving
Eq. (25.1)] are:

[image: -*-][image: -*-]


This is the way a four-vector must transform. But Eqs. (25.14) and (25.15) have a couple of signs wrong!





The answer is that instead of the incorrect
(∂/∂t,∇)[image: -*-], we must define the
four-dimensional gradient operator, which we will
call ∇μ[image: -*-], by



[image: -*-][image: -*-]
(25.16)





With this definition, the sign difficulties encountered above go away,
and ∇μ[image: -*-] behaves as a four-vector should. (It’s rather awkward
to have those minus signs, but that’s the way the world is.) Of
course, what it means to say that ∇μ[image: -*-] “behaves like a
four-vector” is simply that the four-gradient of a scalar is a
four-vector. If ϕ[image: -*-] is a true scalar invariant field (Lorentz
invariant) then ∇μϕ[image: -*-] is a four-vector field.





All right, now that we have vectors, gradients, and dot products, the
next thing is to look for an invariant which is analogous to the
divergence of three-dimensional vector analysis. Clearly, the analog
is to form the expression ∇μbμ[image: -*-], where bμ[image: -*-] is a
four-vector field whose components are functions of space and time.
We define the divergence
of the four-vector bμ=(bt,b)[image: -*-] as the dot product of
∇μ[image: -*-] and bμ[image: -*-]:



[image: -*-][image: -*-]
(25.17)





where ∇⋅b[image: -*-] is the ordinary three-divergence of the
three-vector b[image: -*-]. Note that one has to be careful with the signs.
Some of the minus signs come from the definition of the scalar product,
Eq. (25.7); the others are required because the space
components of ∇μ[image: -*-] are −∂/∂x[image: -*-], etc., as in
Eq. (25.16). The divergence as defined
by (25.17) is an invariant and gives the same answer in all
coordinate systems which differ by a Lorentz transformation.





Let’s look at a physical example in which the four-divergence shows
up. We can use it to solve the problem of the fields around a moving
wire. We have already seen (Section 13-7) that the
electric charge density ρ[image: -*-] and the current density j[image: -*-] form a
four-vector jμ=(ρ,j)[image: -*-]. If an uncharged wire carries the
current jx[image: -*-], then in a frame moving past it with velocity v[image: -*-]
(along x[image: -*-]), the wire will have the charge and current density [obtained from
the Lorentz transformation Eqs. (25.1)] as follows:

[image: -*-][image: -*-]







These are just what we found in Chapter 13. We can then use
these sources in Maxwell’s equations in the moving system to find the fields.





The charge conservation law, Section 13-2, also takes on
a simple form in the four-vector notation. Consider the four
divergence of jμ[image: -*-]:

[image: -*-][image: -*-]
(25.18)




The law of the conservation of charge says that the outflow of current
per unit volume must equal the negative rate of increase of charge
density. In other words, that

[image: -*-][image: -*-]


Putting this into Eq. (25.18), the law of conservation
of charge takes on the simple form

[image: -*-][image: -*-]
(25.19)




Since ∇μjμ[image: -*-] is an invariant scalar, if it is zero in one
frame it is zero in all frames. We have the result that if charge is
conserved in one coordinate system, it is conserved in all coordinate
systems moving with uniform velocity.





As our last example we want to consider the scalar product of the
gradient operator ∇μ[image: -*-] with itself. In three dimensions, such
a product gives the Laplacian

[image: -*-][image: -*-]


What do we get in four dimensions? That’s easy. Following our rules
for dot products and gradients, we get



[image: -*-][image: -*-]



This operator, which is the analog of the three-dimensional Laplacian,
is called the D’Alembertian and has a special
notation:

[image: -*-][image: -*-]
(25.20)




From its definition it is an invariant scalar operator; if it operates
on a four-vector field, it produces a new four-vector field. (Some
people define the D’Alembertian with the opposite sign to
Eq. (25.20), so you will have to be careful when reading the
literature.)





We have now found four-dimensional equivalents of most of the
three-dimensional quantities we had listed in
Table 25–1. (We do not yet have the equivalents of the
cross product and the curl operation; we won’t get to them until the
next chapter.) It may help you remember how they go if we put all the
important definitions and results together in one place, so we have made
such a summary in Table 25–2.






Table 25–2. The important quantities of vector analysis in three and four dimensions.






[image: --][image: --]


 


25–4 Electrodynamics in four-dimensional notation


We have already encountered the D’Alembertian operator, without giving
it that name, in Section 18-6; the differential
equations we found there for the potentials can be written in the new
notations as:

[image: -*-][image: -*-]
(25.21)




The four quantities on the right-hand side of the two equations
in (25.21) are ρ[image: -*-], jx[image: -*-], jy[image: -*-], jz[image: -*-] divided
by ϵ0[image: -*-], which is a universal constant which will be the same in all
coordinate systems if the same unit of charge is used in all frames. So
the four quantities ρ/ϵ0[image: -*-], jx/ϵ0[image: -*-], jy/ϵ0[image: -*-], jz/ϵ0[image: -*-]
also transform as a four-vector. We can write them as jμ/ϵ0[image: -*-]. The
D’Alembertian doesn’t change when the coordinate system is changed, so
the quantities ϕ[image: -*-], Ax[image: -*-], Ay[image: -*-], Az[image: -*-] must also transform
like a four-vector—which means that they are the components of
a four-vector. In short,

[image: -*-][image: -*-]


is a four-vector. What we call the scalar and vector potentials are
really different aspects of the same physical thing. They belong
together. And if they are kept together the relativistic invariance of
the world is obvious. We call Aμ[image: -*-] the
four-potential.





In the four-vector notation Eqs. (25.21) become simply

[image: -*-][image: -*-]
(25.22)




The physics of this equation is just the same as Maxwell’s
equations. But there is some pleasure
in being able to rewrite them in an elegant form. The pretty form is
also meaningful; it shows directly the invariance of electrodynamics
under the Lorentz transformation.





Remember that Eqs. (25.21) could be deduced from
Maxwell’s equations only if we
imposed the gauge condition

[image: -*-][image: -*-]
(25.23)




which just says ∇μAμ=0[image: -*-]; the gauge condition says that the
divergence of the four-vector Aμ[image: -*-] is zero. This condition is called
the Lorenz condition. It is very
convenient because it is an invariant condition and therefore
Maxwell’s equations stay in
the form of Eq. (25.22) for all frames.





 


25–5 The four-potential of a moving charge


Although it is implicit in what we have already said, let us write
down the transformation laws which give ϕ[image: -*-] and A[image: -*-] in a moving
system in terms of ϕ[image: -*-] and A[image: -*-] in a stationary system. Since
Aμ=(ϕ,A)[image: -*-] is a four-vector, the equations must look just
like Eqs. (25.1), except that t[image: -*-] is replaced
by ϕ[image: -*-], and x[image: -*-] is replaced by A[image: -*-]. Thus,

[image: -*-][image: -*-]
(25.24)




This assumes that the primed coordinate system is moving with
speed v[image: -*-] in the positive x[image: -*-]-direction, as measured in the unprimed
coordinate system.




[image: -][image: -]
Fig. 25–2. 
The frame S′[image: -*-] moves with velocity v[image: -*-] (in the
  x[image: -*-]-direction) with respect to S[image: -*-]. A charge at rest at the origin
  of S′[image: -*-] is at x=v t[image: -*-] in S[image: -*-]. The potentials at P[image: -*-] can be computed
  in either frame.





We will consider one example of the usefulness of the idea of the
four-potential. What are the vector and scalar potentials of a
charge q[image: -*-] moving with speed v[image: -*-] along the x[image: -*-]-axis? The problem is easy in a
coordinate system moving with the charge, since in this system the
charge is standing still. Let’s say that the charge is at the origin
of the S′[image: -*-]-frame, as shown in Fig. 25–2. The scalar
potential in the moving system is then given by

[image: -*-][image: -*-]
(25.25)




r′[image: -*-] being the distance from q[image: -*-] to the field point, as measured in
the moving system. The vector potential A′[image: -*-] is, of course, zero.





Now it is straightforward to find ϕ[image: -*-] and A[image: -*-], the potentials
as measured in the stationary coordinates. The inverse relations to
Eqs. (25.24) are

[image: -*-][image: -*-]
(25.26)




Using the ϕ′[image: -*-] given by Eq. (25.25), and
A′=0[image: -*-], we get

[image: -*-][image: -*-]


This gives us the scalar potential ϕ[image: -*-] we would see in S[image: -*-], but,
unfortunately, expressed in terms of the S′[image: -*-] coordinates. We can get
things in terms of t[image: -*-], x[image: -*-], y[image: -*-], z[image: -*-] by substituting for t′[image: -*-], x′[image: -*-],
y′[image: -*-], and z′[image: -*-], using (25.1). We get



[image: -*-][image: -*-]
(25.27)





Following the same procedure for the components of A[image: -*-], you can
show that

[image: -*-][image: -*-]
(25.28)




These are the same formulas we derived by a different method in
Chapter 21.





 


25–6 The invariance of the equations of electrodynamics


We have found that the potentials ϕ[image: -*-] and A[image: -*-] taken together
form a four-vector which we call Aμ[image: -*-], and that the wave
equations—the full equations which determine the Aμ[image: -*-] in terms of
the jμ[image: -*-]—can be written as in Eq. (25.22). This
equation, together with the conservation of charge,
Eq. (25.19), gives us the fundamental law of the
electromagnetic field:

[image: -*-][image: -*-]
(25.29)




There, in one tiny space on the page, are all of the Maxwell
equations—beautiful and simple. Did we learn anything from writing
the equations this way, besides that they are beautiful and simple? In
the first place, is it anything different from what we had before when
we wrote everything out in all the various components? Can we from this
equation deduce something that could not be deduced from the wave
equations for the potentials in terms of the charges and currents? The
answer is definitely no. The only thing we have been doing is changing
the names of things—using a new notation. We have written a square
symbol to represent the derivatives, but it still means nothing more nor
less than the second derivative with respect to t[image: -*-], minus the second
derivative with respect to x[image: -*-], minus the second derivative with respect
to y[image: -*-], minus the second derivative with respect to z[image: -*-]. And the μ[image: -*-]
means that we have four equations, one each for μ=t[image: -*-], x[image: -*-], y[image: -*-],
or z[image: -*-]. What then is the significance of the fact that the equations can
be written in this simple form? From the point of view of deducing
anything directly, it doesn’t mean anything. Perhaps, though, the
simplicity of the equations means that nature also has a certain
simplicity.





Let us show you something interesting that we have recently
discovered: All of the laws of physics can be contained in one
equation. That equation is

[image: -*-][image: -*-]
(25.30)




What a simple equation! Of course, it is necessary to know what the
symbol means. U[image: -*-] is a physical quantity which we will call the
“unworldliness” of the situation. And we have a
formula for it. Here is how you calculate the
unworldliness. You take all of the known physical
laws and write them in a special form. For example, suppose you take the
law of mechanics, F=m a[image: -*-], and rewrite it
as F−m a=0[image: -*-]. Then you can call (F−m a)[image: -*-]—which
should, of course, be zero—the “mismatch” of mechanics. Next, you
take the square of this mismatch and call it U1[image: -*-],
which can be called the “unworldliness of
mechanical effects.” In other words, you take

[image: -*-][image: -*-]
(25.31)




Now you write another physical law, say, ∇⋅E=ρ/ϵ0[image: -*-]
and define

[image: -*-][image: -*-]


which you might call “the gaussian unworldliness of electricity.”
You continue to write U3[image: -*-], U4[image: -*-], and so on—one
for every physical law there is.





Finally you call the total unworldliness U[image: -*-] of the
world the sum of the various unworldlinesses Ui[image: -*-] from all
the subphenomena that are involved; that is,
U=∑Ui[image: -*-]. Then the great “law of nature” is

[image: -*-][image: -*-]
(25.32)




This “law” means, of course, that the sum of the squares of all the
individual mismatches is zero, and the only way the sum of a lot of
squares can be zero is for each one of the terms to be zero.





So the “beautifully simple” law in Eq. (25.32) is
equivalent to the whole series of equations that you originally wrote
down. It is therefore absolutely obvious that a simple notation that
just hides the complexity in the definitions of symbols is not real
simplicity. It is just a trick. The beauty that appears in
Eq. (25.32)—just from the fact that several equations
are hidden within it—is no more than a trick. When you unwrap the
whole thing, you get back where you were before.





However, there is more to the simplicity of the laws of
electromagnetism written in the form of Eq. (25.29). It
means more, just as a theory of vector analysis means more. The fact
that the electromagnetic equations can be written in a very particular
notation which was designed for the four-dimensional geometry
of the Lorentz transformations—in other words, as a vector equation
in the four-space—means that it is invariant under the Lorentz
transformations. It is because the Maxwell equations are invariant under those
transformations that they can be written in a beautiful form.





It is no accident that the equations of electrodynamics can be written
in the beautifully elegant form of Eq. (25.29). The theory
of relativity was developed because it was found experimentally
that the phenomena predicted by Maxwell’s
equations were the same in all
inertial systems. And it was precisely by studying the transformation
properties of Maxwell’s equations that Lorentz
discovered his transformation as the one which left the equations
invariant.





There is, however, another reason for writing our equations this way. It
has been discovered—after Einstein guessed that it might be so—that all of the laws
of physics are invariant under the Lorentz transformation. That is the
principle of relativity. Therefore, if we invent a notation which shows
immediately when a law is written down whether it is invariant or not,
we can be sure that in trying to make new theories we will write only
equations which are consistent with the principle of relativity.





The fact that the Maxwell equations are simple in this
particular notation is not a miracle, because the notation was invented
with them in mind. But the interesting physical thing is that
every law of physics—the propagation of meson waves or the
behavior of neutrinos in beta decay, and so forth—must have this same
invariance under the same transformation. Then when you are moving at a
uniform velocity in a spaceship, all of the laws of nature transform
together in such a way that no new phenomenon will show up. It is
because the principle of relativity is a fact of nature that in the
notation of four-dimensional vectors the equations of the world will
look simple.





 

	
	
	You may well ask: Why not consider the reactions
	[image: -*-][image: -*-]


	or even
	[image: -*-][image: -*-]


	which clearly require less energy? The answer is that a principle
	called conservation of baryons tells us the quantity “number
	of protons minus number of antiprotons” cannot change. This quantity
	is 2 on the left side of our reaction. Therefore, if we want an
	antiproton on the right side, we must have also three protons
	(or other baryons).
	↩
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26–1 The four-potential of a moving charge

[image: -][image: -]
Fig. 26–1. 
Finding the fields at (x,y,z)[image: -*-] due to a charge q[image: -*-] moving
  along the x[image: -*-]-axis with the constant speed v[image: -*-]. The field “now” at
  the point (x,y,z)[image: -*-] can be expressed in terms of the “present”
  position P[image: -*-], as well as in terms of P′[image: -*-], the “retarded” position
  (at t′=t−r′/c[image: -*-]).





We saw in the last chapter that the
potential Aμ=(ϕ,A)[image: -*-] is a four-vector. The time component is
the scalar potential ϕ[image: -*-], and the three space components are the
vector potential A[image: -*-]. We also worked out the potentials of a
particle moving with uniform speed on a straight line by using the
Lorentz transformation. (We had already found them by another method in
Chapter 21.) For a point charge whose position at the
time t[image: -*-] is (v t,0,0)[image: -*-], the potentials at the point (x,y,z)[image: -*-] are

[image: -*-][image: -*-]
(26.1)









Equations (26.1) give the potentials at x[image: -*-], y[image: -*-], and z[image: -*-] at
the time t[image: -*-], for a charge whose “present” position (by which we mean
the position at the time t[image: -*-]) is at x=v t[image: -*-]. Notice that the
equations are in terms of (x−v t)[image: -*-], y[image: -*-], and z[image: -*-] which are the
coordinates measured from the current position P[image: -*-] of the moving
charge (see Fig. 26–1). The actual influence we know really
travels at the speed c[image: -*-], so it is the behavior of the charge back at
the retarded position P′[image: -*-] that really counts.1 The point P′[image: -*-] is at x=v t′[image: -*-] (where t′=t−r′/c[image: -*-] is
the retarded time). But we said that the charge was moving with uniform
velocity in a straight line, so naturally the behavior at P′[image: -*-] and the
current position are directly related. In fact, if we make the added
assumption that the potentials depend only upon the position and the
velocity at the retarded moment, we have in equations (26.1)
a complete formula for the potentials for a charge moving
any way. It works this way. Suppose that you have a charge moving
in some arbitrary fashion, say with the trajectory in
Fig. 26–2, and you are trying to find the potentials at the
point (x,y,z)[image: -*-]. First, you find the retarded position P′[image: -*-] and the
velocity v′[image: -*-] at that point. Then you imagine that the charge would keep
on moving with this velocity during the delay time (t′−t)[image: -*-], so that it
would then appear at an imaginary position Pproj[image: -*-], which we
can call the “projected position,” and would arrive there with the
velocity v′[image: -*-]. (Of course, it doesn’t do that; its real position at t[image: -*-]
is at P[image: -*-].) Then the potentials at (x,y,z)[image: -*-] are just what
equations (26.1) would give for the imaginary charge at the
projected position Pproj[image: -*-]. What we are saying is that since
the potentials depend only on what the charge is doing at the
retarded time, the potentials will be the same whether the charge
continued moving at a constant velocity or whether it changed its
velocity after t′[image: -*-]—that is, after the potentials that were going to
appear at (x,y,z)[image: -*-] at the time t[image: -*-] were already determined.




[image: -][image: -]
Fig. 26–2. 
A charge moves on an arbitrary trajectory. The potentials
at (x,y,z)[image: -*-] at the time t[image: -*-] are determined by the position P′[image: -*-] and
velocity v′[image: -*-] at the retarded time t′−r′/c[image: -*-]. They are conveniently
expressed in terms of the coordinates from the “projected”
position Pproj[image: -*-]. (The actual position at t[image: -*-] is P[image: -*-].)





You know, of course, that the moment that we have the formula for the
potentials from a charge moving in any manner whatsoever, we have the
complete electrodynamics; we can get the potentials of any charge
distribution by superposition. Therefore we can summarize all the
phenomena of electrodynamics either by writing Maxwell’s
equations or by the following series
of remarks. (Remember them in case you are ever on a desert island. From
them, all can be reconstructed. You will, of course, know the Lorentz
transformation; you will never forget that on a desert island or
anywhere else.)





First, Aμ[image: -*-] is a four-vector. Second, the Coulomb
potential for a stationary charge is q/4 π ϵ0 r[image: -*-]. Third,
the potentials produced by a charge moving in any way depend only upon
the velocity and position at the retarded time. With those three facts
we have everything. From the fact that Aμ[image: -*-] is a four-vector, we
transform the Coulomb potential, which we know, and get the potentials
for a constant velocity. Then, by the last statement that potentials
depend only upon the past velocity at the retarded time, we can use
the projected position game to find them. It is not a particularly
useful way of doing things, but it is interesting to show that the
laws of physics can be put in so many different ways.





It is sometimes said, by people who are careless, that all of
electrodynamics can be deduced solely from the Lorentz transformation
and Coulomb’s law. Of course, that is completely false. First, we have
to suppose that there is a scalar potential and a vector potential
that together make a four-vector. That tells us how the potentials
transform. Then why is it that the effects at the retarded time are
the only things that count? Better yet, why is it that the potentials
depend only on the position and the velocity and not, for instance, on
the acceleration? The fields E[image: -*-] and B[image: -*-] do
depend on the acceleration. If you try to make the same kind of an
argument with respect to them, you would say that they depend only
upon the position and velocity at the retarded time. But then the
fields from an accelerating charge would be the same as the fields
from a charge at the projected position—which is false. The
fields depend not only on the position and the velocity along
the path but also on the acceleration. So there are several additional
tacit assumptions in this great statement that everything can be
deduced from the Lorentz transformation. (Whenever you see a sweeping
statement that a tremendous amount can come from a very small number
of assumptions, you always find that it is false. There are usually a
large number of implied assumptions that are far from obvious if you
think about them sufficiently carefully.)





 


26–2 The fields of a point charge with a constant velocity


Now that we have the potentials from a point charge moving at constant
velocity, we ought to find the fields—for practical reasons. There
are many cases where we have uniformly moving particles—for
instance, cosmic rays going through a cloud chamber, or even
slow-moving electrons in a wire. So let’s at least see what the fields
actually do look like for any speed—even for speeds nearly that of
light—assuming only that there is no acceleration. It is an
interesting question.





We get the fields from the potentials by the usual rules:

[image: -*-][image: -*-]


First, for Ez[image: -*-]

[image: -*-][image: -*-]


But Az[image: -*-] is zero; so differentiating ϕ[image: -*-] in
equations (26.1), we get

[image: -*-][image: -*-]
(26.2)




Similarly, for Ey[image: -*-],

[image: -*-][image: -*-]
(26.3)




The x[image: -*-]-component is a little more work. The derivative of ϕ[image: -*-] is
more complicated and Ax[image: -*-] is not zero. First,

[image: -*-][image: -*-]
(26.4)




Then, differentiating Ax[image: -*-] with respect to t[image: -*-], we find

[image: -*-][image: -*-]
(26.5)




And finally, taking the sum,

[image: -*-][image: -*-]
(26.6)









We’ll look at the physics of E[image: -*-] in a minute; let’s first
find B[image: -*-]. For the z[image: -*-]-component,

[image: -*-][image: -*-]


Since Ay[image: -*-] is zero, we have just one derivative to get. Notice,
however, that Ax[image: -*-] is just v ϕ[image: -*-], and ∂/∂y[image: -*-] of v ϕ[image: -*-] is
just −v Ey[image: -*-]. So

[image: -*-][image: -*-]
(26.7)




Similarly,

[image: -*-][image: -*-]


and

[image: -*-][image: -*-]
(26.8)




Finally, Bx[image: -*-] is zero, since Ay[image: -*-] and Az[image: -*-] are both zero. We can
write the magnetic field simply as

[image: -*-][image: -*-]
(26.9)









Now let’s see what the fields look like. We will try to draw a picture
of the field at various positions around the present position of the
charge. It is true that the influence of the charge comes, in a
certain sense, from the retarded position; but because the motion is
exactly specified, the retarded position is uniquely given in terms of
the present position. For uniform velocities, it’s nicer to relate the
fields to the current position, because the field components
at (x,y,z)[image: -*-] depend only on (x−v t)[image: -*-], y[image: -*-], and z[image: -*-]—which are the
components of the displacement r[image: -*-] from the present position
to (x,y,z)[image: -*-] (see Fig. 26–3).




[image: -][image: -]
Fig. 26–3. 
For a charge moving with constant speed, the electric field
  points radially from the “present” position of the charge.





Consider first a point with z=0[image: -*-]. Then E[image: -*-] has only x[image: -*-]- and
y[image: -*-]-components. From Eqs. (26.3) and (26.6), the
ratio of these components is just equal to the ratio of the x[image: -*-]- and
y[image: -*-]-components of the displacement. That means that E[image: -*-] is in the same
direction as r[image: -*-], as shown in Fig. 26–3. Since Ez[image: -*-] is also
proportional to z[image: -*-], it is clear that this result holds in three dimensions. In
short, the electric field is radial from the charge, and the field lines radiate
directly out of the charge, just as they do for a stationary charge. Of course,
the field isn’t exactly the same as for the stationary charge, because of all
the extra factors of (1−v2)[image: -*-]. But we can show something rather interesting.
The difference is just what you would get if you were to draw the Coulomb field
with a peculiar set of coordinates in which the scale of x[image: -*-] was squashed up by
the factor √1−v2[image: -*-]. If you do that, the field lines will be spread out
ahead and behind the charge and will be squeezed together around the sides, as
shown in Fig. 26–4.




[image: -][image: -]
Fig. 26–4. 
The electric field of a charge moving with constant speed
  v=0.9 c[image: -*-], part (b), compared with the field of a charge at rest,
  part (a).





If we relate the strength of E[image: -*-] to the density of the field lines
in the conventional way, we see a stronger field at the sides and a
weaker field ahead and behind, which is just what the equations
say. First, if we look at the strength of the field at right angles to
the line of motion, that is, for (x−v t)=0[image: -*-], the distance from the
charge is √y2+z2[image: -*-]. Here the total field strength
is [image: \sqrt{E_y^2+E_z^2}][image: \sqrt{E_y^2+E_z^2}], which is

[image: -*-][image: -*-]
(26.10)




The field is proportional to the inverse square of the distance—just
like the Coulomb field except increased by the constant, extra
factor 1/√1−v2[image: -*-], which is always greater than one. So at the
sides of a moving charge, the electric field is stronger than
you get from the Coulomb law. In fact, the field in the sidewise
direction is bigger than the Coulomb potential by the ratio of the
energy of the particle to its rest mass.





Ahead of the charge (and behind), y[image: -*-] and z[image: -*-] are zero and

[image: -*-][image: -*-]
(26.11)




The field again varies as the inverse square of the distance from the
charge but is now reduced by the factor (1−v2)[image: -*-], in agreement
with the picture of the field lines. If v/c[image: -*-] is small, v2/c2[image: -*-] is
still smaller, and the effect of the (1−v2)[image: -*-] terms is very small; we
get back to Coulomb’s law. But if a particle is moving very close to
the speed of light, the field in the forward direction is enormously
reduced, and the field in the sidewise direction is enormously
increased.





Our results for the electric field of a charge can be put this way:
Suppose you were to draw on a piece of paper the field lines for a
charge at rest, and then set the picture to travelling with the
speed v[image: -*-]. Then, of course, the whole picture would be compressed by the
Lorentz contraction; that is, the carbon granules on the paper would
appear in different places. The miracle of it is that the picture you
would see as the page flies by would still represent the field lines
of the point charge. The contraction moves them closer together at the
sides and spreads them out ahead and behind, just in the right way to
give the correct line densities. We have emphasized before that field
lines are not real but are only one way of representing the
field. However, here they almost seem to be real. In this particular
case, if you make the mistake of thinking that the field lines are
somehow really there in space, and transform them, you get the correct
field. That doesn’t, however, make the field lines any more real. All
you need do to remind yourself that they aren’t real is to think about
the electric fields produced by a charge together with a magnet; when
the magnet moves, new electric fields are produced, and destroy the
beautiful picture. So the neat idea of the contracting picture doesn’t
work in general. It is, however, a handy way to remember what the
fields from a fast-moving charge are like.




[image: -][image: -]
Fig. 26–5. 
The magnetic field near a moving charge is v×E[image: -*-]. [Compare
with Fig. 26-4.]





The magnetic field is v×E[image: -*-] [from Eq. (26.9)].
If you take the velocity crossed into a radial E[image: -*-]-field, you get
a B[image: -*-] which circles around the line of motion, as shown in
Fig. 26–5. If we put back the c[image: -*-]’s, you will see that it’s
the same result we had for low-velocity charges. A good way to see where
the c[image: -*-]’s must go is to refer back to the force law,

[image: -*-][image: -*-]


You see that a velocity times the magnetic field has the same dimensions
as an electric field. So the right-hand side of Eq. (26.9)
must have a factor 1/c2[image: -*-]:

[image: -*-][image: -*-]
(26.12)




For a slow-moving charge (v≪c[image: -*-]), we can take for E[image: -*-] the
Coulomb field; then

[image: -*-][image: -*-]
(26.13)




This formula corresponds exactly to equations for the magnetic field
of a current that we found in Section 14-7.





We would like to point out, in passing, something interesting for you
to think about. (We will come back to discuss it again later.) Imagine
two protons with velocities at right angles, so that one will cross
over the path of the other, but in front of it, so they don’t
collide. At some instant, their relative positions will be as in
Fig. 26–6(a). We look at the force on q1[image: -*-] due to q2[image: -*-] and vice
versa. On q2[image: -*-] there is only the electric force from q1[image: -*-], since
q1[image: -*-] makes no magnetic field along its line of motion. On q1[image: -*-],
however, there is again the electric force but, in addition, a
magnetic force, since it is moving in a B[image: -*-]-field made
by q2[image: -*-]. The forces are as drawn in Fig. 26–6(b). The electric
forces
on q1[image: -*-] and q2[image: -*-] are equal and opposite. However, there is a
sidewise (magnetic) force on q1[image: -*-] and no sidewise force on q2[image: -*-].
Does action not equal reaction?  We leave it for you to worry
about.




[image: -][image: -]
Fig. 26–6. 
The forces between two moving charges are not always equal and
opposite. It appears that “action” is not equal to “reaction.”





 


26–3 Relativistic transformation of the fields


In the last section we calculated the electric and magnetic fields
from the transformed potentials. The fields are important, of course,
in spite of the arguments given earlier that there is physical meaning
and reality to the potentials. The fields, too, are real. It would be
convenient for many purposes to have a way to compute the fields in a
moving system if you already know the fields in some “rest”
system. We have the transformation laws for ϕ[image: -*-] and A[image: -*-],
because Aμ[image: -*-] is a four-vector. Now we would like to know the
transformation laws of E[image: -*-] and B[image: -*-]. Given E[image: -*-] and B[image: -*-]
in one frame, how do they look in another frame moving past? It is a
convenient transformation to have. We could always work back through
the potentials, but it is useful sometimes to be able to transform the
fields directly. We will now see how that goes.





How can we find the transformation laws of the fields? We know the
transformation laws of the ϕ[image: -*-] and A[image: -*-], and we know how the
fields are given in terms of ϕ[image: -*-] and A[image: -*-]—it should be easy to
find the transformation for the B[image: -*-] and E[image: -*-]. (You might think
that with every vector there should be something to make it a
four-vector, so with E[image: -*-] there’s got to be something else we can
use for the fourth component. And also for B[image: -*-]. But it’s not
so. It’s quite different from what you would expect.)  To begin with,
let’s take just a magnetic field B[image: -*-], which is, of course
∇×A[image: -*-]. Now we know that the vector potential with its
x[image: -*-]-, y[image: -*-]-, and z[image: -*-]-components is only a piece of something; there is
also a t[image: -*-]-component. Also we know that for derivatives
like ∇[image: -*-], besides the x[image: -*-], y[image: -*-], z[image: -*-] parts, there is also a
derivative with respect to t[image: -*-]. So let’s try to figure out what
happens if we replace a “y[image: -*-]” by a “t[image: -*-]”, or a “z[image: -*-]” by
a “t[image: -*-],” or something like that.





First, notice the form of the terms in ∇×A[image: -*-] when we write
out the components:



[image: -*-][image: -*-]
(26.14)





The x[image: -*-]-component is equal to a couple of terms that involve only y[image: -*-]-
and z[image: -*-]-components. Suppose we call this combination of derivatives
and components a “z y[image: -*-]-thing,” and give it a shorthand name,
Fz y[image: -*-]. We simply mean that

[image: -*-][image: -*-]
(26.15)




Similarly, By[image: -*-] is equal to the same kind of “thing,” but this time
it is an “x z[image: -*-]-thing.” And Bz[image: -*-] is, of course, the corresponding
“y x[image: -*-]-thing.”  We have

[image: -*-][image: -*-]
(26.16)









Now what happens if we simply try to concoct also some “t[image: -*-]”-type
things like Fx t[image: -*-] and Ft z[image: -*-] (since nature should be nice and
symmetric in x[image: -*-], y[image: -*-], z[image: -*-], and t[image: -*-])? For instance, what is Ft z[image: -*-]?
It is, of course,

[image: -*-][image: -*-]


But remember that At=ϕ[image: -*-], so it is also

[image: -*-][image: -*-]


You’ve seen that before. It is the z[image: -*-]-component of E[image: -*-]. Well,
almost—there is a sign wrong. But we forgot that in the
four-dimensional gradient the t[image: -*-]-derivative comes with the opposite
sign from x[image: -*-], y[image: -*-], and z[image: -*-]. So we should really have taken the more
consistent extension of Ft z[image: -*-], as

[image: -*-][image: -*-]
(26.17)




Then it is exactly equal to −Ez[image: -*-]. Trying also Ft x[image: -*-] and Ft y[image: -*-],
we find that the three possibilities give

[image: -*-][image: -*-]
(26.18)









What happens if both subscripts are t[image: -*-]? Or, for that matter, if both
are x[image: -*-]? We get things like

[image: -*-][image: -*-]


and

[image: -*-][image: -*-]


which give nothing but zero.





We have then six of these F[image: -*-]-things. There are six more which you get
by reversing the subscripts, but they give nothing really new, since

[image: -*-][image: -*-]


and so on. So, out of sixteen possible combinations of the four
subscripts taken in pairs, we get only six different physical objects;
and they are the components of B[image: -*-] and E[image: -*-].





To represent the general term of F[image: -*-], we will use the general
subscripts μ[image: -*-] and ν[image: -*-], where each can stand for 0, 1, 2,
or 3—meaning in our usual four-vector notation t[image: -*-], x[image: -*-], y[image: -*-],
and z[image: -*-]. Also, everything will be consistent with our four-vector notation
if we define Fμ ν[image: -*-] by

[image: -*-][image: -*-]
(26.19)




remembering that
∇μ=(∂/∂t,−∂/∂x,−∂/∂y,−∂/∂z)[image: -*-] and that
Aμ=(ϕ,Ax,Ay,Az)[image: -*-].





What we have found is that there are six quantities that belong
together in nature—that are different aspects of the same thing. The
electric and magnetic fields which we have considered as separate
vectors in our slow-moving world (where we don’t worry about the speed
of light) are not vectors in four-space. They are parts of a new
“thing.” Our physical “field” is really the six-component
object Fμ ν[image: -*-]. That is the way we must look at it for relativity. We
summarize our results on Fμ ν[image: -*-] in Table 26–1.






Table 26–1. The components of Fμ ν[image: -*-]






[image: --][image: --]


You see that what we have done here is to generalize the cross
product. We began with the curl operation, and the fact that the
transformation properties of the curl are the same as the
transformation properties of two vectors—the ordinary
three-dimensional vector A[image: -*-] and the gradient operator which we
know also behaves like a vector. Let’s look for a moment at an
ordinary cross product in three dimensions, for example, the angular
momentum of a particle. When an object is moving in a plane, the
quantity (x vy−y vx)[image: -*-] is important. For motion in three dimensions,
there are three such important quantities, which we call the angular
momentum:



[image: -*-][image: -*-]



Then (although you may have forgotten by now) we discovered in
Chapter 20 of Vol. I the miracle that these three
quantities could be identified with the components of a vector. In order
to do so, we had to make an artificial rule with a right-hand
convention. It was just luck. It was luck because Li j[image: -*-] (with i[image: -*-]
and j[image: -*-] equal to x[image: -*-], y[image: -*-], or z[image: -*-]) was an antisymmetric object:

[image: -*-][image: -*-]


Of the nine possible quantities, there are only three independent
numbers. And it just happens that when you change coordinate systems
these three objects transform in exactly the same way as the
components of a vector.





The same thing lets us represent an element of surface as a vector. A
surface element has two parts—say d x[image: -*-] and d y[image: -*-]—which we can
represent by the vector d a[image: -*-] normal to the surface. But we can’t
do that in four dimensions. What is the “normal” to d x d y[image: -*-]? Is it
along z[image: -*-] or along t[image: -*-]?





In short, for three dimensions it happens by luck that after you’ve
taken a combination of two vectors like Li j[image: -*-], you can represent it
again by another vector because there are just three terms that happen
to transform like the components of a vector. But in four dimensions
that is evidently impossible, because there are six independent terms,
and you can’t represent six things by four things.





Even in three dimensions it is possible to have combinations of
vectors that can’t be represented by vectors. Suppose we take any two
vectors a=(ax,ay,az)[image: -*-] and b=(bx,by,bz)[image: -*-], and make the
various possible combinations of components, like ax bx[image: -*-], ax by[image: -*-],
etc. There would be nine possible quantities:

[image: -*-][image: -*-]


We might call these quantities Ti j[image: -*-].





If we now go to a rotated coordinate system (say rotated about the
z[image: -*-]-axis), the components of a[image: -*-] and b[image: -*-] are changed. In the
new system, ax[image: -*-], for example, gets replaced by

[image: -*-][image: -*-]


and by[image: -*-] gets replaced by

[image: -*-][image: -*-]


And similarly for other components. The nine components of the product
quantity Ti j[image: -*-] we have invented are all changed too, of course. For
instance, Tx y=ax by[image: -*-] gets changed to



[image: -*-][image: -*-]



or



[image: -*-][image: -*-]



Each component of [image: T_{ij}'][image: T_{ij}'] is a linear combination of the components
of Ti j[image: -*-].





So we discover that it is not only possible to have a “vector
product” like a×b[image: -*-] which has three components that
transform like a vector, but we can—artificially—also make another
kind of “product” of two vectors Ti j[image: -*-] with nine
components that transform under a rotation by a complicated set of
rules that we could figure out. Such an object which has two indices
to describe it, instead of one, is called a tensor. It is a
tensor of the “second rank,” because you can play this game with
three vectors too and get a tensor of the third rank—or with four,
to get a tensor of the fourth rank, and so on. A tensor of the first
rank is a vector.





The point of all this is that our electromagnetic
quantity Fμ ν[image: -*-] is also a tensor of the second rank, because it has two
indices in it. It is, however, a tensor in four dimensions. It
transforms in a special way which we will work out in a moment—it is
just the way a product of vectors transforms. For Fμ ν[image: -*-] it
happens that if you change the indices around, Fμ ν[image: -*-] changes
sign. That’s a special case—it is an antisymmetric tensor. So
we say: the electric and magnetic fields are both part of an
antisymmetric tensor of the second rank in four dimensions.





You’ve come a long way. Remember way back when we defined what a
velocity meant? Now we are talking about “an antisymmetric tensor of
the second rank in four dimensions.”





Now we have to find the law of the transformation of Fμ ν[image: -*-]. It
isn’t at all difficult to do; it’s just laborious—the brains
involved are nil, but the work is not. What we want is the Lorentz
transformation of ∇μAν−∇νAμ[image: -*-].
Since ∇μ[image: -*-] is just a special case of a vector, we will work with the
general antisymmetric vector combination, which we can call Gμ ν[image: -*-]:

[image: -*-][image: -*-]
(26.20)




(For our purposes, aμ[image: -*-] will eventually be replaced by ∇μ[image: -*-]
and bμ[image: -*-] will be replaced by the potential Aμ[image: -*-].) The components
of aμ[image: -*-] and bμ[image: -*-] transform by the Lorentz formulas, which are

[image: -*-][image: -*-]
(26.21)









Now let’s transform the components of Gμ ν[image: -*-]. We start with Gt x[image: -*-]:

[image: -*-][image: -*-]


But that is just Gt x[image: -*-]; so we have the simple result

[image: -*-][image: -*-]







We will do one more.



[image: -*-][image: -*-]



So we get that

[image: -*-][image: -*-]


And, of course, in the same way,

[image: -*-][image: -*-]


It is clear how the rest will go. Let’s make a table of all six terms;
only now we may as well write them for Fμ ν[image: -*-]:

[image: -*-][image: -*-]
(26.22)




Of course, we still have [image: F_{\mu\nu}'=-F_{\nu\mu}'][image: F_{\mu\nu}'=-F_{\nu\mu}']
and [image: F_{\mu\mu}'=0][image: F_{\mu\mu}'=0].





So we have the transformation of the electric and magnetic fields. All
we have to do is look at Table 26–1 to find out what our
grand notation in terms of Fμ ν[image: -*-] means in terms of E[image: -*-]
and B[image: -*-]. It’s just a matter of substitution. So that we can see how it
looks in the ordinary symbols, we’ll rewrite our transformation of the
field components in Table 26–2.






Table 26–2. The Lorentz transformation of the electric and magnetic fields (Note: c=1[image: -*-])






[image: --][image: --]


The equations in Table 26–2 tell us how E[image: -*-]
and B[image: -*-] change if we go from one inertial frame to another. If we
know E[image: -*-] and B[image: -*-] in one system, we can find what they are in
another that moves by with the speed v[image: -*-].





We can write these equations in a form that is easier to remember if
we notice that since v[image: -*-] is in the x[image: -*-]-direction, all the terms
with v[image: -*-] are components of the cross products v×E[image: -*-]
and v×B[image: -*-]. So we can rewrite the transformations as shown in
Table 26–3.






Table 26–3. An alternative form for the field transformations (Note:
  c=1[image: -*-])






[image: --][image: --]


It is now easier to remember which components go where. In
fact, the transformation can be written even more simply if we define
the field components along x[image: -*-] as the “parallel” components
E∥[image: -*-] and B∥[image: -*-] (because they are parallel to the
relative velocity of S[image: -*-] and S′[image: -*-]), and the total transverse
components—the vector sums of the y[image: -*-]- and z[image: -*-]-components—as the
“perpendicular” components E⟂[image: -*-] and B⟂[image: -*-]. Then we get the
equations in Table 26–4. (We have also put back
the c[image: -*-]’s, so it will be more convenient when we want to refer back
later.)






Table 26–4. Still another form for the Lorentz transformation of E[image: -*-]
and B[image: -*-]






[image: --][image: --]


The field transformations give us another way of solving some problems
we have done before—for instance, for finding the fields of a moving
point charge.  We have worked out the fields before by differentiating
the potentials. But we could now do it by transforming the Coulomb
field. If we have a point charge at rest in the S[image: -*-]-frame, then there is
only the simple radial E[image: -*-]-field. In the S′[image: -*-]-frame we will see a
point charge moving with the velocity u[image: -*-], if the S′[image: -*-]-frame moves by
the S[image: -*-]-frame with the speed v=−u[image: -*-]. We will let you show that the
transformations of Tables 26–3 and 26–4 give
the same electric and magnetic fields we got in
Section 26-2.




[image: -][image: -]
Fig. 26–7. 
The coordinate frame S′[image: -*-] moving through a static electric
field.





The transformation of Table 26–2 gives us an interesting
and simple answer for what we see if we move past any system of
fixed charges. For example, suppose we want to know the fields in
our frame S′[image: -*-] if we are moving along between the plates of a
condenser, as shown in Fig. 26–7. (It is, of course, the same thing
if we say that a charged condenser is moving past us.) What do
we see?  The transformation is easy in this case because the
B[image: -*-]-field in the original system is zero. Suppose, first, that our
motion is perpendicular to E[image: -*-]; then we will see
an E′=E/√1−v2/c2[image: -*-] which is still completely
transverse. We will see, in addition, a magnetic
field B′=−v×E′/c2[image: -*-]. (The √1−v2/c2[image: -*-] doesn’t
appear in our formula for B′[image: -*-] because we wrote it in terms
of E′[image: -*-] rather than E[image: -*-]; but it's the same thing.) So when we 
move along perpendicular to a static electric field, we see an added transverse B[image: -*-]. If our motion is not
perpendicular to E[image: -*-], we break E[image: -*-] into E∥[image: -*-]
and E⟂[image: -*-]. The parallel part is unchanged,
[image: E_\parallel'=E_\parallel][image: E_\parallel'=E_\parallel], and the perpendicular component does as
just described.





Let’s take the opposite case, and imagine we are moving through a pure
static magnetic field. This time we would see an
electric field E′[image: -*-] equal to v×B′[image: -*-], and the
magnetic field changed by the factor 1/√1−v2/c2[image: -*-] (assuming it
is transverse). So long as v[image: -*-] is much less than c[image: -*-], we can neglect
the change in the magnetic field, and the main effect is that an
electric field appears. As one example of this effect, consider this
once famous problem of determining the speed of an airplane. It’s no
longer famous, since radar can now be used to determine the air speed
from ground reflections, but for many years it was very hard to find
the speed of an airplane in bad weather. You could not see the ground
and you didn’t know which way was up, and so on. Yet it was important
to know how fast you were moving relative to the earth. How can this
be done without seeing the earth? Many who knew the transformation
formulas thought of the idea of using the fact that the airplane moves
in the magnetic field of the earth. Suppose that an airplane is flying
where there is a magnetic field more or less known. Let’s just take
the simple case where the magnetic field is vertical. If we were
flying through it with a horizontal velocity v[image: -*-], then, according to
our formula, we should see an electric field which
is v×B[image: -*-], i.e., perpendicular to the line of motion. If we
hang an insulated wire across the airplane, this electric field will
induce charges on the ends of the wire. That is nothing new. From the
point of view of someone on the ground, we are moving a wire through a
field, and the v×B[image: -*-] force causes charges to move to the
ends of the wire. The transformation equations just say the same thing
in a different way. (The fact that we can say the thing more than one
way doesn’t mean that one way is better than another. We are getting
so many different methods and tools that we can usually get the same
result in 65[image: -*-] different ways!)





So to measure v[image: -*-], all we have to do is measure the voltage between
the ends of the wire. We can’t do it with a voltmeter because the same
fields will act on the wires in the voltmeter, but there are ways of
measuring such fields. We talked about some of them when we discussed
atmospheric electricity in Chapter 9. So it should be
possible to measure the speed of the airplane.





This important problem was, however, never solved this way. The reason
is that the electric field that is developed is of the order of
millivolts per meter. It is possible to measure such fields, but the
trouble is that these fields are, unfortunately, not any different
from any other electric fields. The field that is produced by motion
through the magnetic field can’t be distinguished from some electric
field that was already in the air from another cause, say from
electrostatic charges in the air, or on the clouds. We described in
Chapter 9 that there are, typically, electric fields
above the surface of the earth with strengths of about 100[image: -*-] volts per
meter. But they are quite irregular. So as the airplane flies through
the air, it sees fluctuations of atmospheric electric fields which are
enormous in comparison to the tiny fields produced by the
v×B[image: -*-] term, and it turns out for practical reasons to be
impossible to measure speeds of an airplane by its motion through the
earth’s magnetic field.





 


26–4 The equations of motion in relativistic notation2


It doesn’t do much good to find electric and magnetic fields from
Maxwell’s equations unless we
know what the fields do when we have them. You may remember that the
fields are required to find the forces on charges, and that those forces
determine the motion of the charge. So, of course, part of the theory of
electrodynamics is the relation between the motion of charges and the
forces.





For a single charge in the fields E[image: -*-] and B[image: -*-], the force is

[image: -*-][image: -*-]
(26.23)




This force is equal to the mass times the acceleration for low
velocities, but the correct law for any velocity is that the force is
equal to d p/d t[image: -*-]. Writing p=m0 v/√1−v2/c2[image: -*-], we
find that the relativistically correct equation of motion is

[image: -*-][image: -*-]
(26.24)









We would like now to discuss this equation from the point of view of
relativity. Since we have put our Maxwell equations in relativistic form, it
would be interesting to see what the equations of motion would look like
in relativistic form. Let’s see whether we can rewrite the equation in a
four-vector notation.





We know that the momentum is part of a four-vector pμ[image: -*-] whose time
component is the energy m0 c2/√1−v2/c2[image: -*-]. So we might think to
replace the left-hand side of Eq. (26.24)
by d pμ/d t[image: -*-]. Then we need only find a fourth component to go
with F[image: -*-]. This fourth component must equal the rate-of-change of the
energy, or the rate of doing work, which is F⋅v[image: -*-]. We
would then like to write the right-hand side of Eq. (26.24)
as a four-vector like (F⋅v,Fx,Fy,Fz)[image: -*-]. But this does not
make a four-vector.





The time derivative of a four-vector is no longer a
four-vector, because the d/d t[image: -*-] requires the choice of some special
frame for measuring t[image: -*-]. We got into that trouble before when we tried
to make v[image: -*-] into a four-vector. Our first guess was that the time
component would be c d t/d t=c[image: -*-]. But the quantities

[image: -*-][image: -*-]
(26.25)




are not the components of a four-vector. We found that they
could be made into one by multiplying each component
by 1/√1−v2/c2[image: -*-]. The “four-velocity” uμ[image: -*-] is the four-vector

[image: -*-][image: -*-]
(26.26)




So it appears that the trick is to multiply d/d t[image: -*-]
by 1/√1−v2/c2[image: -*-], if we want the derivatives to make a
four-vector.





Our second guess then is that

[image: -*-][image: -*-]
(26.27)




should be a four-vector. But what is v[image: -*-]? It is the velocity of
the particle—not of a coordinate frame! Then the quantity fμ[image: -*-]
defined by

[image: -*-][image: -*-]
(26.28)




is the extension into four dimensions of a force—we can call it the
“four-force.” It is indeed a four-vector, and its space components
are not the components of F[image: -*-] but of F/√1−v2/c2[image: -*-].





The question is—why is fμ[image: -*-] a four-vector? It would be nice to
get a little understanding of that 1/√1−v2/c2[image: -*-] factor. Since
it has come up twice now, it is time to see why the d/d t[image: -*-] can always
be fixed by the same factor. The answer is in the following: When we
take the time derivative of some function x[image: -*-], we compute the
increment Δ x[image: -*-] in a small interval Δ t[image: -*-] in the
variable t[image: -*-]. But in another frame, the interval Δ t[image: -*-] might correspond to
a change in both t′[image: -*-] and x′[image: -*-], so if we vary only t′[image: -*-], the change
in x[image: -*-] will be different. We have to find a variable for our
differentiation that is a measure of an “interval” in
space-time, which will then be the same in all
coordinate systems. When we take Δ x[image: -*-] for that interval, it will
be the same for all coordinate frames. When a particle “moves” in
four-space, there are the changes Δ t[image: -*-], Δ x[image: -*-], Δ y[image: -*-], Δ z[image: -*-]. Can we make an invariant interval out of them? Well,
they are the components of the four-vector xμ=(c t,x,y,z)[image: -*-] so if we
define a quantity Δ s[image: -*-] by



[image: -*-][image: -*-]
(26.29)





—which is a four-dimensional dot product—we then have a good
four-scalar to use as a measure of a four-dimensional interval. From
Δ s[image: -*-]—or its limit d s[image: -*-]—we can define a parameter s=∫d s[image: -*-]. And a derivative with respect to s[image: -*-], d/d s[image: -*-], is a nice
four-dimensional operation, because it is invariant with respect to a
Lorentz transformation.





It is easy to relate d s[image: -*-] to d t[image: -*-] for a moving particle. For a moving
point particle,

[image: -*-][image: -*-]
(26.30)




and



[image: -*-][image: -*-]
(26.31)










So the operator 

[image: -*-][image: -*-]


is an invariant operator. If we operate on any four-vector with
it, we get another four-vector. For instance, if we operate
on (c t,x,y,z)[image: -*-], we get the four-velocity uμ[image: -*-]:

[image: -*-][image: -*-]


We see now why the factor √1−v2/c2[image: -*-] fixes things up.





The invariant variable s[image: -*-] is a useful physical quantity. It is called
the “proper time” along the path of a particle, because d s[image: -*-] is
always an interval of time in a frame that is moving with the particle
at any particular instant. (Then, Δ x=[image: -*-]Δ y=[image: -*-]Δ z=[image: -*-]0, and
Δ s=Δ t[image: -*-].) If you can imagine some “clock” whose rate
doesn’t depend on the acceleration, such a clock carried along with
the particle would show the time s[image: -*-].





We can now go back and write Newton’s law (as corrected by
Einstein)
in the neat form

[image: -*-][image: -*-]
(26.32)




where fμ[image: -*-] is given in Eq. (26.28). Also, the
momentum pμ[image: -*-] can be written as

[image: -*-][image: -*-]
(26.33)




where the coordinates xμ=(c t,x,y,z)[image: -*-] now describe the trajectory
of the particle. Finally, the four-dimensional notation gives us this
very simple form of the equations of motion:

[image: -*-][image: -*-]
(26.34)




which is reminiscent of F=m a[image: -*-]. It is important to notice that
Eq. (26.34) is not the same as F=m a[image: -*-], because the
four-vector formula Eq. (26.34) has in it the relativistic
mechanics which are different from Newton’s law for high velocities. It
is unlike the case of Maxwell’s
equations, where we were able to
rewrite the equations in the relativistic form without any change
in the meaning at all—but with just a change of notation.





Now let’s return to Eq. (26.24) and see how we can write
the right-hand side in four-vector notation. The three
components—when divided by √1−v2/c2[image: -*-]—are the components
of fμ[image: -*-], so



[image: -*-][image: -*-]
(26.35)





Now we must put all quantities in their relativistic notation. First,
c/√1−v2/c2[image: -*-] and vy/√1−v2/c2[image: -*-] and
vz/√1−v2/c2[image: -*-] are the t[image: -*-]-, y[image: -*-]-, and z[image: -*-]-components of the
four-velocity uμ[image: -*-]. And the components of E[image: -*-] and B[image: -*-] are
components of the second-rank tensor of the
fields Fμ ν[image: -*-]. Looking back in Table 26–1 for the
components of Fμ ν[image: -*-] that correspond to Ex[image: -*-], Bz[image: -*-], and By[image: -*-],
we get3

[image: -*-][image: -*-]


which begins to look interesting. Every term has the subscript x[image: -*-],
which is reasonable, since we’re finding an x[image: -*-]-component. Then all
the others appear in pairs: t t[image: -*-], y y[image: -*-], z z[image: -*-]—except that the
x x[image: -*-]-term is missing. So we just stick it in, and write

[image: -*-][image: -*-]
(26.36)




We haven’t changed anything because Fμ ν[image: -*-] is antisymmetric, and
Fx x[image: -*-] is zero. The reason for wanting to put in the x x[image: -*-]-term is so
that we can write Eq. (26.36) in the short-hand form

[image: -*-][image: -*-]
(26.37)




This equation is the same as Eq. (26.36) if we make the
rule that whenever any subscript occurs twice (as ν[image: -*-]
does here), you automatically sum over terms in the same way as for
the scalar product, using the same convention for the signs.





You can easily believe that (26.37) works equally well for
μ=y[image: -*-] or μ=z[image: -*-], but what about μ=t[image: -*-]? Let’s see, for fun, what
it says:

[image: -*-][image: -*-]


Now we have to translate back to E[image: -*-]’s and B[image: -*-]’s. We get



[image: -*-][image: -*-]
(26.38)





or

[image: -*-][image: -*-]


But from Eq. (26.28), ft[image: -*-] is supposed to be

[image: -*-][image: -*-]


This is the same thing as Eq. (26.38), since
(v×B)⋅v[image: -*-] is zero. So everything comes out all
right.





Summarizing, our equation of motion can be written in the elegant form

[image: -*-][image: -*-]
(26.39)




Although it is nice to see that the equations can be written that way,
this form is not particularly useful. It’s usually more convenient to
solve for particle motions by using the original
equations (26.24), and that’s what we will usually do.





 

	
	
	The primes used here to indicate the retarded positions and 
	times should not be confused with the primes referring to a Lorentz-transformed frame 
	in the preceding chapter.
	↩


	
	
	In this section we will put back all of the c[image: -*-]’s.
	↩


		
	
	When we put the c[image: -*-]’s back in Table 26–1,
	all components of Fμ ν[image: -*-], corresponding to components of E[image: -*-]
	are multiplied by 1/c[image: -*-].
	↩






  
    

27 Field Energy and Field Momentum



27–1 Local conservation


It is clear that the energy of matter is not conserved. When an
object
radiates light it loses energy. However, the energy lost is possibly
describable in some other form, say in the light. Therefore the theory
of the conservation of energy is incomplete without a consideration of
the energy which is associated with the light or, in general, with the
electromagnetic field. We take up now the law of conservation of
energy and, also, of momentum for the fields. Certainly, we cannot
treat one without the other, because in the relativity theory they are
different aspects of the same four-vector.




Very early in Volume I, we discussed the conservation of energy; we
said then merely that the total energy in the world is constant. Now
we want to extend the idea of the energy conservation law in an
important way—in a way that says something in detail about
how energy is conserved. The new law will say that if energy
goes away from a region, it is because it flows away through
the boundaries of that region. It is a somewhat stronger law than the
conservation of energy without such a restriction.




To see what the statement means, let’s look at how the law of the
conservation of charge works. We described the conservation of charge
by saying that there is a current density j[image: -*-] and a charge
density ρ[image: -*-], and that when the charge decreases at some place there must be
a flow of charge away from that place. We call that the conservation
of charge. The mathematical form of the conservation law is

[image: -*-][image: -*-]
(27.1)




This law has the consequence that the total charge in the world is
always constant—there is never any net gain or loss of
charge. However, the total charge in the world could be constant in
another way. Suppose that there is some charge Q1[image: -*-] near some
point (1)[image: -*-] while there is no charge near some point (2)[image: -*-] some distance
away (Fig. 27–1). Now suppose that, as time goes on,
the charge Q1[image: -*-] were to gradually fade away and that
simultaneously with the decrease of Q1[image: -*-] some charge Q2[image: -*-]
would appear near point (2)[image: -*-], and in such a way that at every instant
the sum of Q1[image: -*-] and Q2[image: -*-] was a constant. In other words, at any
intermediate state the amount of charge lost by Q1[image: -*-] would be added
to Q2[image: -*-]. Then the total amount of charge in the world would be
conserved. That’s a “world-wide” conservation, but not what we will
call a “local” conservation, because in order for the charge to get
from (1)[image: -*-] to (2)[image: -*-], it didn’t have to appear anywhere in the space
between point (1)[image: -*-] and point (2)[image: -*-]. Locally, the charge was just
“lost.”



[image: -][image: -]
Fig. 27–1. Two ways to conserve charge: (a) Q1+Q2[image: -*-] is constant;
(b) d Q1/d t=[image: -*-]−∫j⋅n da=[image: -*-]−d Q2/d t[image: -*-].





There is a difficulty with such a “world-wide” conservation law in
the theory of relativity. The concept of “simultaneous moments” at
distant points is one which is not equivalent in different
systems. Two events that are simultaneous in one system are not
simultaneous for another system moving past. For “world-wide”
conservation of the kind described, it is necessary that the charge
lost from Q1[image: -*-] should appear simultaneously
in Q2[image: -*-]. Otherwise there would be some moments when the charge was not
conserved. There seems to be no way to make the law of charge
conservation relativistically invariant without making it a “local”
conservation law. As a matter of fact, the requirement of the Lorentz
relativistic invariance seems to restrict the possible laws of nature
in surprising ways. In modern quantum field theory, for example,
people have often wanted to alter the theory by allowing what we call
a “nonlocal” interaction—where something here has a direct
effect on something there—but we get in trouble with the
relativity principle.




“Local” conservation involves another idea. It says that a charge
can get from one place to another only if there is something happening
in the space between. To describe the law we need not only the density
of charge, ρ[image: -*-], but also another kind of quantity, namely j[image: -*-],
a vector giving the rate of flow of charge across a surface. Then the
flow is related to the rate of change of the density by
Eq. (27.1). This is the more extreme kind of a conservation
law. It says that charge is conserved in a special way—conserved
“locally.”




It turns out that energy conservation is also a local
process. There is not only an energy density in a given region of
space but also a vector to represent the rate of flow of the energy
through a surface. For example, when a light source radiates, we can
find the light energy moving out from the source. If we imagine some
mathematical surface surrounding the light source, the energy lost
from inside the surface is equal to the energy that flows out through
the surface.







27–2 Energy conservation and electromagnetism


We want now to write quantitatively the conservation of energy for
electromagnetism. To do that, we have to describe how much energy there
is in any volume element of space, and also the rate of energy flow.
Suppose we think first only of the electromagnetic field energy. We will
let u[image: -*-] represent the energy density in the field (that is, the amount
of energy per unit volume in space) and let the vector S[image: -*-] represent
the energy flux of
the field (that is, the flow of energy per unit time across a unit area
perpendicular to the flow). Then, in perfect analogy with the
conservation of charge, Eq. (27.1), we can write the
“local” law of energy conservation in the field as

[image: -*-][image: -*-]
(27.2)









Of course, this law is not true in general; it is not true that the
field energy is conserved. Suppose you are in a dark room and then
turn on the light switch. All of a sudden the room is full of light,
so there is energy in the field, although there wasn’t any energy
there before. Equation (27.2) is not the complete
conservation law, because the field energy alone is not
conserved, only the total energy in the world—there is also the
energy of matter. The field energy will change if there is some work
being done by matter on the field or by the field on matter.




However, if there is matter inside the volume of interest, we know how
much energy it has: Each particle has the
energy m0 c2/√1−v2/c2[image: -*-]. The total energy of the matter is just the
sum of all the particle energies, and the flow of this energy through
a surface is just the sum of the energy carried by each particle that
crosses the surface. We want now to talk only about the energy of the
electromagnetic field. So we must write an equation which says that
the total field energy in a given volume decreases
either because field energy flows out of the volume or
because the field loses energy to matter (or gains energy, which is
just a negative loss). The field energy inside a volume V[image: -*-] is

[image: -*-][image: -*-]


and its rate of decrease is minus the time derivative of this
integral. The flow of field energy out of the volume V[image: -*-] is the
integral of the normal component of S[image: -*-] over the surface Σ[image: -*-]
that encloses V[image: -*-],

[image: -*-][image: -*-]


So



[image: -*-][image: -*-]
(27.3)










We have seen before that the field does work on each unit volume of
matter at the rate E⋅j[image: -*-]. [The force on a particle
is F=q (E+v×B)[image: -*-], and the rate of doing work
is F⋅v=q E⋅v[image: -*-]. If there are N[image: -*-] particles per
unit volume, the rate of doing work per unit volume
is N q E⋅v[image: -*-], but N q v=j[image: -*-].] So the
quantity E⋅j[image: -*-] must be equal to the loss of energy per unit time
and per unit volume by the field. Equation (27.3)
then becomes

[image: -*-][image: -*-]
(27.4)









This is our conservation law for energy in the field. We can convert
it into a differential equation like Eq. (27.2) if we
can change the second term to a volume integral. That is easy to do
with Gauss’ theorem. The surface integral of the normal component
of S[image: -*-] is the integral of its divergence over the volume inside. So
Eq. (27.3) is equivalent to

[image: -*-][image: -*-]


where we have put the time derivative of the first term inside the
integral. Since this equation is true for any volume, we can take away
the integrals and we have the energy equation for the electromagnetic
fields:

[image: -*-][image: -*-]
(27.5)









Now this equation doesn’t do us a bit of good unless we know what u[image: -*-]
and S[image: -*-] are. Perhaps we should just tell you what they are in
terms of E[image: -*-] and B[image: -*-], because all we really want is the
result. However, we would rather show you the kind of argument that
was used by Poynting
in 1884 to obtain formulas for S[image: -*-] and u[image: -*-],
so you can see where they come from. (You won’t, however, need to
learn this derivation for our later work.)







27–3 Energy density and energy flow in the electromagnetic field


The idea is to suppose that there is a field energy density u[image: -*-] and a
flux S[image: -*-] that depend only upon the fields E[image: -*-]
and B[image: -*-]. (For example, we know that in electrostatics, at least, the
energy density can be written [image: \tfrac{1}{2}\epsO\FLPE\cdot\FLPE][image: \tfrac{1}{2}\epsO\FLPE\cdot\FLPE].) Of
course, the u[image: -*-] and S[image: -*-] might depend on the potentials or
something else, but let’s see what we can work out. We can try to
rewrite the quantity E⋅j[image: -*-] in such a way that it becomes
the sum of two terms: one that is the time derivative of one quantity
and another that is the divergence of a second quantity. The first
quantity would then be u[image: -*-] and the second would be S[image: -*-] (with
suitable signs). Both quantities must be written in terms of the
fields only; that is, we want to write our equality as

[image: -*-][image: -*-]
(27.6)









The left-hand side must first be expressed in terms of the fields only.
How can we do that? By using Maxwell’s
equations, of course. From Maxwell’s
equation
for the curl of B[image: -*-],

[image: -*-][image: -*-]


Substituting this in (27.6) we will have only E[image: -*-]’s
and B[image: -*-]’s:

[image: -*-][image: -*-]
(27.7)




We are already partly finished. The last term is a time
derivative—it is[image: (\ddpl{}{t})(\tfrac{1}{2}\epsO\FLPE\cdot\FLPE)][image: (\ddpl{}{t})(\tfrac{1}{2}\epsO\FLPE\cdot\FLPE)]. So
[image: \tfrac{1}{2}\epsO\FLPE\cdot\FLPE][image: \tfrac{1}{2}\epsO\FLPE\cdot\FLPE] is at least one part of u[image: -*-]. It’s
the same thing we found in electrostatics. Now, all we have to do is
to make the other term into the divergence of something.




Notice that the first term on the right-hand side of (27.7)
is the same as

[image: -*-][image: -*-]
(27.8)




And, as you know from vector
algebra,
(a×b)⋅c[image: -*-]
is the same as a⋅(b×c)[image: -*-]; so our term is also the
same as

[image: -*-][image: -*-]
(27.9)




and we have the divergence of “something,” just as we wanted. Only
that’s wrong! We warned you before that ∇[image: -*-] is “like” a
vector, but not “exactly” the same. The reason it is not is because
there is an additional convention from calculus: when a
derivative operator is in front of a product, it works on everything
to the right. In Eq. (27.7), the ∇[image: -*-] operates
only on B[image: -*-], not on E[image: -*-]. But in the form (27.9),
the normal convention would say that ∇[image: -*-] operates on both
B[image: -*-] and E[image: -*-]. So it’s not the same thing. In fact, if we
work out the components of ∇⋅(B×E)[image: -*-] we can see
that it is equal to E⋅(∇×B)[image: -*-] plus some
other terms. It’s like what happens when we take a derivative of a
product in algebra. For instance,

[image: -*-][image: -*-]







Rather than working out all the components
of ∇⋅(B×E)[image: -*-], we would like to show you a trick that
is very useful for this kind of problem. It is a trick that allows you
to use all the rules of vector
algebra
on expressions with the ∇[image: -*-] operator,
without getting into trouble. The trick is to
throw out—for a while at least—the rule of the calculus notation
about what the derivative operator works on. You see, ordinarily, the
order of terms is used for two separate purposes. One is for
calculus: f (d/d x) g[image: -*-] is not the same as g (d/d x) f[image: -*-]; and the other is
for vectors: a×b[image: -*-] is different
from b×a[image: -*-]. We can, if we want, choose to abandon momentarily
the calculus rule. Instead of saying that a derivative operates on
everything to the right, we make a new rule that doesn’t depend
on the order in which terms are written down. Then we can juggle terms
around without worrying.




Here is our new convention: we show, by a subscript, what a
differential operator works on; the order has no
meaning. Suppose we let the operator D[image: -*-] stand for ∂/∂x[image: -*-]. Then
Df[image: -*-] means that only the derivative of the variable quantity f[image: -*-] is
taken. Then

[image: -*-][image: -*-]


But if we have Df f g[image: -*-], it means

[image: -*-][image: -*-]


But notice now that according to our new rule, f Df g[image: -*-] means the same
thing. We can write the same thing any which way:

[image: -*-][image: -*-]


You see, the Df[image: -*-] can even come after everything. (It’s
surprising that such a handy notation is never taught in books on
mathematics or physics.)




You may wonder: What if I want to write the derivative of f g[image: -*-]?
I want the derivative of both terms. That’s easy, you
just say so; you write Df (f g)+Dg (f g)[image: -*-]. That is just
g (∂f/∂x)+f (∂g/∂x)[image: -*-], which is what you mean in the old
notation by ∂(f g)/∂x[image: -*-].




You will see that it is now going to be very easy to work out a new
expression for ∇⋅(B×E)[image: -*-]. We start by changing to
the new notation; we write

[image: -*-][image: -*-]
(27.10)




The moment we do that we don’t have to keep the order straight any more.
We always know that ∇E[image: -*-] operates on E[image: -*-] only,
and ∇B[image: -*-] operates on B[image: -*-] only. In these circumstances, we can
use ∇[image: -*-] as though it were an ordinary vector. (Of course, when
we are finished, we will want to return to the “standard” notation
that everybody usually uses.) So now we can do the various things like
interchanging dots and crosses and making other kinds of rearrangements
of the terms. For instance, the middle term of Eq. (27.10)
can be rewritten as E⋅∇B×B[image: -*-]. (You remember that
a⋅b×c=b⋅c×a[image: -*-].) And the last
term is the same as B⋅E×∇E[image: -*-]. It looks
freakish, but it is all right. Now if we try to go back to the ordinary
convention, we have to arrange that the ∇[image: -*-] operates only on its
“own” variable. The first one is already that way, so we can just
leave off the subscript. The second one needs some rearranging to put
the ∇[image: -*-] in front of the E[image: -*-], which we can do by reversing
the cross product and changing sign:

[image: -*-][image: -*-]


Now it is in a conventional order, so we can return to the usual
notation. Equation (27.10) is equivalent to

[image: -*-][image: -*-]
(27.11)




(A quicker way would have been to use components in this special case,
but it was worth taking the time to show you the mathematical
trick. You probably won’t see it anywhere else, and it is very good
for unlocking vector
algebra
from the rules about the order of terms
with derivatives.)





We now return to our energy conservation discussion and use our new
result, Eq. (27.11), to transform the ∇×B[image: -*-] term
of Eq. (27.7). That energy equation becomes



[image: -*-][image: -*-]
(27.12)





Now you see, we’re almost finished. We have one term which is a nice
derivative with respect to t[image: -*-] to use for u[image: -*-] and another that is a
beautiful divergence to represent S[image: -*-]. Unfortunately, there is the
center term left over, which is neither a divergence nor a derivative
with respect to t[image: -*-]. So we almost made it, but not quite. After some
thought, we look back at the differential equations of
Maxwell and
discover that ∇×E[image: -*-] is, fortunately, equal
to −∂B/∂t[image: -*-], which means that we can turn the extra term into
something that is a pure time derivative:

[image: -*-][image: -*-]


Now we have exactly what we want. Our energy equation reads



[image: -*-][image: -*-]
(27.13)





which is exactly like Eq. (27.6), if we make the
definitions

[image: -*-][image: -*-]
(27.14)




and

[image: -*-][image: -*-]
(27.15)




(Reversing the cross product makes the signs come out right.)




Our program was successful. We have an expression for the energy
density that is the sum of an “electric” energy density and a
“magnetic” energy density, whose forms are just like the ones we
found in statics when we worked out the energy in terms of the
fields. Also, we have found a formula for the energy flow vector of
the electromagnetic field. This new vector, S=ϵ0 c2 E×B[image: -*-], is called “Poynting’s vector,” after its discoverer. It tells us the
rate at which the field energy moves around in space. The energy which
flows through a small area d a[image: -*-] per second is S⋅n d a[image: -*-],
where n[image: -*-] is the unit vector perpendicular to d a[image: -*-]. (Now that we
have our formulas for u[image: -*-] and S[image: -*-], you can forget the derivations if
you want.)








27–4 The ambiguity of the field energy


Before we take up some applications of the Poynting formulas [Eqs.
(27.14) and (27.15)], we would like to say that we have
not really “proved” them. All we did was to find a possible “u[image: -*-]” and
a possible “S[image: -*-].” How do we know that by juggling the terms around
some more we couldn’t find another formula for “u[image: -*-]” and another formula
for “S[image: -*-]”? The new S[image: -*-] and the new u[image: -*-] would be different, but they
would still satisfy Eq. (27.6). It’s possible. It can be done, but
the forms that have been found always involve various derivatives of the
field (and always with second-order terms like a second derivative or the square
of a first derivative). There are, in fact, an infinite number of different
possibilities for u[image: -*-] and S[image: -*-], and so far no one has thought of an
experimental way to tell which one is right! People have guessed that the
simplest one is probably the correct one, but we must say that we do not know
for certain what is the actual location in space of the electromagnetic field
energy. So we too will take the easy way out and say that the field energy is
given by Eq. (27.14). Then the flow vector S[image: -*-] must be given by
Eq. (27.15).




It is interesting that there seems to be no unique way to resolve the
indefiniteness in the location of the field energy. It is sometimes
claimed that this problem can be resolved by using the theory of
gravitation in the following argument. In the theory of gravity, all
energy is the source of gravitational attraction. Therefore the energy
density of electricity must be located properly if we are to know in
which direction the gravity force acts. As yet, however, no one has
done such a delicate experiment that the precise location of the
gravitational influence of electromagnetic fields could be
determined. That electromagnetic fields alone can be the source of
gravitational force is an idea it is hard to do without. It has, in
fact, been observed that light is deflected as it passes near the
sun—we could say that the sun pulls the light down toward it. Do you
not want to allow that the light pulls equally on the sun? Anyway,
everyone always accepts the simple expressions we have found for the
location of electromagnetic energy and its flow. And although
sometimes the results obtained from using them seem strange, nobody
has ever found anything wrong with them—that is, no disagreement
with experiment. So we will follow the rest of the world—besides, we
believe that it is probably perfectly right.





We should make one further remark about the energy formula. In the
first place, the energy per unit volume in the field is very simple:
It is the electrostatic energy plus the magnetic energy, if we
write the electrostatic energy in terms of E2[image: -*-] and the magnetic
energy as B2[image: -*-]. We found two such expressions as possible
expressions for the energy when we were doing static problems. We also
found a number of other formulas for the energy in the electrostatic
field, such as ρ ϕ[image: -*-], which is equal to the integral
of E⋅E[image: -*-] in the electrostatic case. However, in an
electrodynamic field the equality failed, and there was no obvious
choice as to which was the right one. Now we know which is the right
one. Similarly, we have found the formula for the magnetic energy that
is correct in general. The right formula for the energy density of
dynamic fields is Eq. (27.14).







27–5 Examples of energy flow

[image: -][image: -]
Fig. 27–2. The vectors E[image: -*-], B[image: -*-], and S[image: -*-] for a light wave.





Our formula for the energy flow vector S[image: -*-] is something quite
new. We want now to see how it works in some special cases and also to
see whether it checks out with anything that we knew before. The first
example we will take is light. In a light wave we have an E[image: -*-]
vector and a B[image: -*-] vector at right angles to each other and to the
direction of the wave propagation. (See Fig. 27–2.) In
an electromagnetic wave, the magnitude of B[image: -*-] is equal to
1/c[image: -*-] times the magnitude of E[image: -*-], and since they are at right angles,

[image: -*-][image: -*-]


Therefore, for light, the flow of energy per unit area per second is

[image: -*-][image: -*-]
(27.16)




For a light wave in which E=E0 cosω (t−x/c)[image: -*-], the average rate
of energy flow per unit area, [image: \av{S}][image: \av{S}]—which is called the
“intensity” of the light—is the mean value of the square of the
electric field times ϵ0 c[image: -*-]:

[image: -*-][image: -*-]
(27.17)









Believe it or not, we have already derived this result in
Section 31–5 of Vol. I, when we were studying light. We
can believe that it is right because it also checks against something
else. When we have a light beam, there is an energy density in space
given by Eq. (27.14). Using c B=E[image: -*-] for a light wave, we get
that

[image: -*-][image: -*-]


But E[image: -*-] varies in space, so the average energy density is

[image: -*-][image: -*-]
(27.18)




Now the wave travels at the speed c[image: -*-], so we should think that the
energy that goes through a square meter in a second is c[image: -*-] times the
amount of energy in one cubic meter. So we would say that

[image: -*-][image: -*-]


And it’s right; it is the same as Eq. (27.17).



[image: -][image: -]
Fig. 27–3. Near a charging capacitor, the Poynting vector S[image: -*-] points
inward toward the axis.





Now we take another example. Here is a rather curious one. We look at
the energy flow in a capacitor that we are charging slowly. (We don’t
want frequencies so high that the capacitor is beginning to look like
a resonant cavity, but we don’t want dc either.) Suppose we
use a circular parallel plate capacitor of our usual kind, as shown in
Fig. 27–3. There is a nearly uniform electric field
inside which is changing with time. At any instant the total
electromagnetic energy inside is u[image: -*-] times the volume. If the plates
have a radius a[image: -*-] and a separation h[image: -*-], the total energy between the
plates is

[image: -*-][image: -*-]
(27.19)




This energy changes when E[image: -*-] changes. When the capacitor is being
charged, the volume between the plates is receiving energy at the rate

[image: -*-][image: -*-]
(27.20)




So there must be a flow of energy into that volume from somewhere. Of
course you know that it must come in on the charging wires—not at
all!  It can’t enter the space between the plates from that direction,
because E[image: -*-] is perpendicular to the plates; E×B[image: -*-]
must be parallel to the plates.




You remember, of course, that there is a magnetic field that circles
around the axis when the capacitor is charging. We discussed that in
Chapter 23. Using the last of Maxwell’s
equations, we found that the magnetic
field at the edge of the capacitor is given by

[image: -*-][image: -*-]


or

[image: -*-][image: -*-]


Its direction is shown in Fig. 27–3. So there is an
energy flow proportional to E×B[image: -*-] that comes in all
around the edges, as shown in the figure. The energy isn’t actually
coming down the wires, but from the space surrounding the capacitor.





Let’s check whether or not the total amount of flow through the whole
surface between the edges of the plates checks with the rate of change
of the energy inside—it had better; we went through all that work
proving Eq. (27.15) to make sure, but let’s see. The
area of the surface is 2 π a h[image: -*-], and S=ϵ0 c2 E×B[image: -*-] is in magnitude

[image: -*-][image: -*-]


so the total flux of energy is

[image: -*-][image: -*-]


It does check with Eq. (27.20). But it tells us a
peculiar thing: that when we are charging a capacitor, the energy is
not coming down the wires; it is coming in through the edges of the
gap. That’s what this theory says!




How can that be? That’s not an easy question, but here is one
way of thinking about it. Suppose that we had some charges above and
below the capacitor and far away. When the charges are far away, there
is a weak but enormously spread-out field that surrounds the
capacitor. (See Fig. 27–4.) Then, as the charges come
together, the field gets stronger nearer to the capacitor. So the
field energy which is way out moves toward the capacitor and
eventually ends up between the plates.



[image: -][image: -]
Fig. 27–4. The fields outside a capacitor when it is being charged by
bringing two charges from a large distance.





As another example, we ask what happens in a piece of resistance wire
when it is carrying a current. Since the wire has resistance, there is
an electric field along it, driving the current. Because there is a
potential drop along the wire, there is also an electric field just
outside the wire, parallel to the surface. (See Fig. 27–5.)
There is, in addition, a magnetic field which goes around the wire
because of the current. The E[image: -*-] and B[image: -*-] are at right angles;
therefore there is a Poynting vector directed radially inward, as shown
in the figure. There is a flow of energy into the wire all around. It
is, of course, equal to the energy being lost in the wire in the form of
heat. So our “crazy” theory says that the electrons are getting their
energy to generate heat because of the energy flowing into the wire from
the field outside. Intuition would seem to tell us that the electrons
get their energy from being pushed along the wire, so the energy should
be flowing down (or up) along the wire. But the theory says that the
electrons are really being pushed by an electric field, which has come
from some charges very far away, and that the electrons get their energy
for generating heat from these fields. The energy somehow flows from the
distant charges into a wide area of space and then inward to the wire.



[image: -][image: -]
Fig. 27–5. The Poynting vector S[image: -*-] near a wire carrying a current.





Finally, in order to really convince you that this theory is obviously
nuts, we will take one more example—an example in which an electric
charge and a magnet are at rest near each other—both sitting
quite still. Suppose we take the example of a point charge sitting near
the center of a bar magnet, as shown in Fig. 27–6.
Everything is at rest, so the energy is not changing with time. Also,
E[image: -*-] and B[image: -*-] are quite static. But the Poynting vector says that
there is a flow of energy, because there is an E×B[image: -*-] that
is not zero. If you look at the energy flow, you find that it just
circulates around and around. There isn’t any change in the energy
anywhere—everything which flows into one volume flows out again. It is
like incompressible water flowing around. So there is a circulation of
energy in this so-called static condition. How absurd it gets!



[image: -][image: -]
Fig. 27–6. A charge and a magnet produce a Poynting vector that
circulates in closed loops.





Perhaps it isn’t so terribly puzzling, though, when you remember that
what we called a “static” magnet is really a circulating permanent
current. In a permanent magnet the electrons are spinning permanently
inside. So maybe a circulation of the energy outside isn’t so queer
after all.




You no doubt begin to get the impression that the Poynting theory at
least partially violates your intuition as to where energy is located
in an electromagnetic field. You might believe that you must revamp
all your intuitions, and, therefore have a lot of things to study
here. But it seems really not necessary. You don’t need to feel that
you will be in great trouble if you forget once in a while that the
energy in a wire is flowing into the wire from the outside, rather
than along the wire. It seems to be only rarely of value, when using
the idea of energy conservation, to notice in detail what path the
energy is taking. The circulation of energy around a magnet and a
charge seems, in most circumstances, to be quite unimportant. It is
not a vital detail, but it is clear that our ordinary intuitions are
quite wrong.







27–6 Field momentum


Next we would like to talk about the momentum in the
electromagnetic field. Just as the field has energy, it will have a
certain momentum per unit volume. Let us call that momentum
density g[image: -*-]. Of course, momentum has various possible directions, so
that g[image: -*-] must be a vector. Let’s talk about one component at a time;
first, we take the x[image: -*-]-component. Since each component of momentum is
conserved we should be able to write down a law that looks something
like this:

[image: -*-][image: -*-]


The left side is easy. The rate-of-change of the momentum of matter is
just the force on it. For a particle, it
is F=q (E+v×B)[image: -*-]; for a distribution of charges, the
force per unit volume is (ρ E+j×B)[image: -*-]. The
“momentum outflow” term, however, is strange. It cannot be the
divergence of a vector because it is not a scalar; it is, rather, an
x[image: -*-]-component of some vector. Anyway, it should probably look
something like

[image: -*-][image: -*-]


because the x[image: -*-]-momentum could be flowing in any one of the three
directions. In any case, whatever a[image: -*-], b[image: -*-], and c[image: -*-] are, the
combination is supposed to equal the outflow of the x[image: -*-]-momentum.




Now the game would be to write ρ E+j×B[image: -*-] in terms
only of E[image: -*-] and B[image: -*-]—eliminating ρ[image: -*-] and j[image: -*-] by using
Maxwell’s equations—and then
to juggle terms and make substitutions to get it into a form that looks
like

[image: -*-][image: -*-]


Then, by identifying terms, we would have expressions for gx[image: -*-], a[image: -*-],
b[image: -*-], and c[image: -*-]. It’s a lot of work, and we are not going to do
it. Instead, we are only going to find an expression for g[image: -*-], the
momentum density—and by a different route.




There is an important theorem in mechanics which is this: whenever
there is a flow of energy in any circumstance at all (field energy or
any other kind of energy), the energy flowing through a unit area per
unit time, when multiplied by 1/c2[image: -*-], is equal to the momentum per
unit volume in the space. In the special case of electrodynamics, this
theorem gives the result that g[image: -*-] is 1/c2[image: -*-] times the Poynting
vector:

[image: -*-][image: -*-]
(27.21)




So the Poynting vector gives not only energy flow but, if you divide
by c2[image: -*-], also the momentum density. The same result would come out of
the other analysis we suggested, but it is more interesting to notice
this more general result. We will now give a number of interesting
examples and arguments to convince you that the general theorem is
true.




First example: Suppose that we have a lot of particles in a
box—let’s say N[image: -*-] per cubic meter—and that they are moving along
with some velocity v[image: -*-]. Now let’s consider an imaginary plane
surface perpendicular to v[image: -*-]. The energy flow through a unit area
of this surface per second is equal to N v[image: -*-], the number which flow
through the surface per second, times the energy carried by each
one. The energy in each particle is m0 c2/√1−v2/c2[image: -*-]. So the
energy flow per second is

[image: -*-][image: -*-]


But the momentum of each particle is m0 v/√1−v2/c2[image: -*-], so the
density of momentum is

[image: -*-][image: -*-]


which is just 1/c2[image: -*-] times the energy flow—as the theorem says. So
the theorem is true for a bunch of particles.




It is also true for light. When we studied light in Volume I, we saw
that when the energy is absorbed from a light beam, a certain amount
of momentum is delivered to the absorber. We have, in fact, shown in
Chapter 34 of Vol. I that the momentum is 1/c[image: -*-] times
the energy absorbed [Eq. (34.24) of Vol. I]. If we
let U0[image: -*-] be the energy arriving at a unit area per second, then the
momentum arriving at a unit area per second is U0/c[image: -*-]. But the
momentum is travelling at the speed c[image: -*-], so its density in
front of the absorber must be U0/c2[image: -*-]. So again the theorem is
right.



[image: -][image: -]
Fig. 27–7. The energy U[image: -*-] in motion at the speed c[image: -*-] carries the
momentum U/c[image: -*-].





Finally we will give an argument due to
Einstein which demonstrates the
same thing once more. Suppose that we have a railroad car on wheels
(assumed frictionless) with a certain big mass M[image: -*-]. At one end there is
a device which will shoot out some particles or light (or anything, it
doesn’t make any difference what it is), which are then stopped at the
opposite end of the car. There was some energy originally at one
end—say the energy U[image: -*-] indicated in Fig. 27–7(a)—and
then later it is at the opposite end, as shown in
Fig. 27–7(c). The energy U[image: -*-] has been displaced the
distance L[image: -*-], the length of the car. Now the energy U[image: -*-] has the
mass U/c2[image: -*-], so if the car stayed still, the center of gravity of the car
would be moved.  Einstein
didn’t like the idea that the center of
gravity of an object could be moved by fooling around only on the
inside, so he assumed that it is impossible to move the center of
gravity by doing anything inside. But if that is the case, when we moved
the energy U[image: -*-] from one end to the other, the whole car must have
recoiled some distance x[image: -*-], as shown in part (c) of the figure. You can
see, in fact, that the total mass of the car, times x[image: -*-], must equal the
mass of the energy moved, U/c2[image: -*-] times L[image: -*-] (assuming that U/c2[image: -*-] is
much less than M[image: -*-]):

[image: -*-][image: -*-]
(27.22)









Let’s now look at the special case of the energy being carried by a
light flash. (The argument would work as well for particles, but we
will follow Einstein, who was
interested in the problem of light.)
What causes the car to be moved? Einstein
argued as follows: When the
light is emitted there must be a recoil, some unknown recoil with
momentum p[image: -*-]. It is this recoil which makes the car roll backward. The
recoil velocity v[image: -*-] of the car will be this momentum divided by the
mass of the car:

[image: -*-][image: -*-]


The car moves with this velocity until the light energy U[image: -*-] gets to
the opposite end. Then, when it hits, it gives back its momentum and
stops the car. If x[image: -*-] is small, then the time the car moves is nearly
equal to L/c[image: -*-]; so we have that

[image: -*-][image: -*-]


Putting this x[image: -*-] in Eq. (27.22), we get that

[image: -*-][image: -*-]


Again we have the relation of energy and momentum for light. Dividing
by c[image: -*-] to get the momentum density g=p/c[image: -*-], we get once more that

[image: -*-][image: -*-]
(27.23)









You may well wonder: What is so important about the center-of-gravity
theorem? Maybe it is wrong. Perhaps, but then we would also
lose the conservation of angular momentum. Suppose that our boxcar is
moving along a track at some speed v[image: -*-] and that we shoot some light
energy from the top to the bottom of the car—say, from
A[image: -*-] to B[image: -*-] in Fig. 27–8. Now we look at the angular
momentum of the system about the point P[image: -*-]. Before the energy U[image: -*-]
leaves A[image: -*-], it has the mass m=U/c2[image: -*-] and the velocity v[image: -*-], so it has
the angular momentum m v rA[image: -*-]. When it arrives at B[image: -*-], it has the same
mass and, if the linear momentum of the whole boxcar is not to
change, it must still have the velocity v[image: -*-]. It’s angular momentum
about P[image: -*-] is then m v rB[image: -*-]. The angular momentum will be changed
unless the right recoil momentum was given to the car when the
light was emitted—that is, unless the light carries the
momentum U/c[image: -*-]. It turns out that the angular momentum conservation and the
theorem of center-of-gravity are closely related in the relativity
theory. So the conservation of angular momentum would also be
destroyed if our theorem were not true. At any rate, it does turn out
to be a true general law, and in the case of electrodynamics we can
use it to get the momentum in the field.



[image: -][image: -]
Fig. 27–8. The energy U[image: -*-] must carry the momentum U/c[image: -*-] if the angular
momentum about P[image: -*-] is to be conserved.





We will mention two further examples of momentum in the
electromagnetic field. We pointed out in Section 26–2
the failure of the law of action and reaction when two charged
particles were moving on orthogonal trajectories. The forces on the
two particles don’t balance out, so the action and reaction are not
equal; therefore the net momentum of the matter must be changing. It
is not conserved. But the momentum in the field is also changing in
such a situation. If you work out the amount of momentum given by the
Poynting vector, it is not constant. However, the change of the
particle momenta is just made up by the field momentum, so the total
momentum of particles plus field is conserved.




Finally, another example is the situation with the magnet and the
charge, shown in Fig. 27–6. We were unhappy to find
that energy was flowing around in circles, but now, since we know that
energy flow and momentum are proportional, we know also that there is
momentum circulating in the space. But a circulating momentum
means that there is angular momentum. So there is
angular momentum in the field. Do you remember the paradox we
described in Section 17–4 about a solenoid and some
charges mounted on a disc? It seemed that when the current turned off,
the whole disc should start to turn. The puzzle was: Where did the
angular momentum come from? The answer is that if you have a magnetic
field and some charges, there will be some angular momentum in the
field. It must have been put there when the field was built up. When
the field is turned off, the angular momentum is given back. So the
disc in the paradox would start rotating. This mystic
circulating flow of energy, which at first seemed so ridiculous, is
absolutely necessary. There is really a momentum flow. It is needed to
maintain the conservation of angular momentum in the whole world.







  
    

28 Electromagnetic Mass



28–1 The field energy of a point charge


In bringing together relativity and Maxwell’s
equations, we have finished our main
work on the theory of electromagnetism. There are, of course, some
details we have skipped over and one large area that we will be
concerned with in the future—the interaction of electromagnetic fields
with matter. But we want to stop for a moment to show you that this
tremendous edifice, which is such a beautiful success in explaining so
many phenomena, ultimately falls on its face. When you follow any of our
physics too far, you find that it always gets into some kind of trouble.
Now we want to discuss a serious trouble—the failure of the classical
electromagnetic theory. You can appreciate that there is a failure of
all classical physics because of the quantum-mechanical effects.
Classical mechanics is a mathematically consistent theory; it just
doesn’t agree with experience. It is interesting, though, that the
classical theory of electromagnetism is an unsatisfactory theory all by
itself. There are difficulties associated with the ideas of
Maxwell’s theory which are not solved by and not directly associated
with quantum mechanics. You may say, “Perhaps there’s no use worrying
about these difficulties. Since the quantum mechanics is going to change
the laws of electrodynamics, we should wait to see what difficulties
there are after the modification.” However, when electromagnetism is
joined to quantum mechanics, the difficulties remain. So it will not be
a waste of our time now to look at what these difficulties are. Also,
they are of great historical importance. Furthermore, you may get some
feeling of accomplishment from being able to go far enough with the
theory to see everything—including all of its troubles.




The difficulty we speak of is associated with the concepts of
electromagnetic momentum and energy, when applied to the electron or
any charged particle. The concepts of simple charged particles and the
electromagnetic field are in some way inconsistent. To describe the
difficulty, we begin by doing some exercises with our energy and
momentum concepts.




First, we compute the energy of a charged particle. Suppose we take a
simple model of an electron in which all of its charge q[image: -*-] is
uniformly distributed on the surface of a sphere of radius a[image: -*-], which
we may take to be zero for the special case of a point charge. Now
let’s calculate the energy in the electromagnetic field. If the charge
is standing still, there is no magnetic field, and the energy per unit
volume is proportional to the square of the electric field. The
magnitude of the electric field is q/4 π ϵ0 r2[image: -*-], and the energy
density is

[image: -*-][image: -*-]


To get the total energy, we must integrate this density over all
space. Using the volume element 4 π r2 d r[image: -*-], the total energy,
which we will call Uelec[image: -*-], is

[image: -*-][image: -*-]


This is readily integrated. The lower limit is a[image: -*-], and the upper limit
is ∞[image: -*-], so

[image: -*-][image: -*-]
(28.1)




If we use the electronic charge qe[image: -*-] for q[image: -*-] and the symbol e2[image: -*-]
for [image: q_e^2/4\pi\epsO][image: q_e^2/4\pi\epsO], then

[image: -*-][image: -*-]
(28.2)




It is all fine until we set a[image: -*-] equal to zero for a point
charge—there’s the great difficulty. Because the energy of the field
varies inversely as the fourth power of the distance from the center,
its volume integral is infinite. There is an infinite amount of energy
in the field surrounding a point charge.




What’s wrong with an infinite energy? If the energy can’t get out, but
must stay there forever, is there any real difficulty with an infinite
energy? Of course, a quantity that comes out infinite may be annoying,
but what really matters is only whether there are any
observable physical effects. To answer that question, we must
turn to something else besides the energy. Suppose we ask how the
energy changes when we move the charge. Then, if the
changes are infinite, we will be in trouble.







28–2 The field momentum of a moving charge

[image: -][image: -]
Fig. 28–1. The fields E[image: -*-] and B[image: -*-] and the momentum density g[image: -*-]
for a positive electron. For a negative electron, E[image: -*-] and B[image: -*-]
are reversed but g[image: -*-] is not.





Suppose an electron is moving at a uniform velocity through space,
assuming for a moment that the velocity is low compared with the speed
of light. Associated with this moving electron there is a
momentum—even if the electron had no mass before it was
charged—because of the momentum in the electromagnetic field. We can
show that the field momentum is in the direction of the
velocity v[image: -*-] of the charge and is, for small velocities, proportional
to v[image: -*-]. For a point P[image: -*-] at the distance r[image: -*-] from the center of the charge
and at the angle θ[image: -*-] with respect to the line of motion (see
Fig. 28–1) the electric field is radial and, as we have
seen, the magnetic field is v×E/c2[image: -*-]. The momentum
density, Eq. (27.21), is

[image: -*-][image: -*-]


It is directed obliquely toward the line of motion, as shown in the
figure, and has the magnitude

[image: -*-][image: -*-]






[image: -][image: -]
Fig. 28–2. The volume element 2 π r2 sinθ d θ d r[image: -*-] used for
calculating the field momentum.





The fields are symmetric about the line of motion, so when we
integrate over space, the transverse components will sum to zero,
giving a resultant momentum parallel to v[image: -*-]. The component
of g[image: -*-] in this direction is g sinθ[image: -*-], which we must integrate
over all space. We take as our volume element a ring with its plane
perpendicular to v[image: -*-], as shown in Fig. 28–2. Its
volume is 2 π r2 sinθ d θ d r[image: -*-]. The total momentum is
then

[image: -*-][image: -*-]


Since E[image: -*-] is independent of θ[image: -*-] (for v≪c[image: -*-]), we can
immediately integrate over θ[image: -*-]; the integral is



[image: -*-][image: -*-]



The limits of θ[image: -*-] are 0 and π[image: -*-], so the θ[image: -*-]-integral
gives merely a factor of 4/3[image: -*-], and

[image: -*-][image: -*-]


The integral (for v≪c[image: -*-]) is the one we have just evaluated to find
the energy; it is [image: q^2/16\pi^2\epsO^2a][image: q^2/16\pi^2\epsO^2a], and

[image: -*-][image: -*-]


or

[image: -*-][image: -*-]
(28.3)




The momentum in the field—the electromagnetic momentum—is
proportional to v[image: -*-]. It is just what we should have for a particle
with the mass equal to the coefficient of v[image: -*-]. We can, therefore,
call this coefficient the electromagnetic mass,
melec[image: -*-], and write it as

[image: -*-][image: -*-]
(28.4)












28–3 Electromagnetic mass


Where does the mass come from? In our laws of mechanics we have
supposed that every object “carries” a thing we call the
mass—which also means that it “carries” a momentum proportional to
its velocity. Now we discover that it is understandable that a charged
particle carries a momentum proportional to its velocity. It might, in
fact, be that the mass is just the effect of electrodynamics. The
origin of mass has until now been unexplained. We have at last in the
theory of electrodynamics a grand opportunity to understand something
that we never understood before. It comes out of the blue—or rather,
from Maxwell and
Poynting—that
any charged particle will have a
momentum proportional to its velocity just from electromagnetic
influences.





Let’s be conservative and say, for a moment, that there are two kinds
of mass—that the total momentum of an object could be the sum of a
mechanical momentum and the electromagnetic momentum. The mechanical
momentum is the “mechanical” mass, mmech[image: -*-], times
v[image: -*-]. In experiments where we measure the mass of a particle by
seeing how much momentum it has, or how it swings around in an orbit,
we are measuring the total mass. We say generally that the momentum is
the total mass (mmech+melec)[image: -*-] times the
velocity. So the observed mass can consist of two pieces (or possibly
more if we include other fields): a mechanical piece plus an
electromagnetic piece. We know that there is definitely an
electromagnetic piece, and we have a formula for it. And there is the
thrilling possibility that the mechanical piece is not there at
all—that the mass is all electromagnetic.




Let’s see what size the electron must have if there is to be no
mechanical mass. We can find out by setting the electromagnetic mass
of Eq. (28.4) equal to the observed mass me[image: -*-] of an
electron. We find

[image: -*-][image: -*-]
(28.5)




The quantity

[image: -*-][image: -*-]
(28.6)




is called the “classical electron radius”; it has the numerical value 2.82×10−13[image: -*-] cm,
about one one-hundred-thousandth of the diameter of an atom.





Why is r0[image: -*-] called the electron radius, rather than our a[image: -*-]? Because
we could equally well do the same calculation with other assumed
distributions of charges—the charge might be spread uniformly
through the volume of a sphere or it might be smeared out like a fuzzy
ball. For any particular assumption the factor 2/3[image: -*-] would change to
some other fraction. For instance, for a charge uniformly distributed
throughout the volume of a sphere, the 2/3[image: -*-] gets replaced
by 4/5[image: -*-]. Rather than to argue over which distribution is correct, it was
decided to define r0[image: -*-] as the “nominal” radius. Then different
theories could supply their pet coefficients.




Let’s pursue our electromagnetic theory of mass. Our calculation was
for v≪c[image: -*-]; what happens if we go to high velocities? Early attempts led
to a certain amount of confusion, but
Lorentz realized that the
charged
sphere would contract into a ellipsoid at high velocities and that the
fields would change in accordance with the formulas (26.6)
and (26.7) we derived for the relativistic case in
Chapter 26. If you carry through the integrals for p[image: -*-]
in that case, you find that for an arbitrary velocity v[image: -*-], the
momentum is altered by the factor 1/√1−v2/c2[image: -*-]:

[image: -*-][image: -*-]
(28.7)




In other words, the electromagnetic mass rises with velocity inversely
as√1−v2/c2[image: -*-]—a discovery that was made before the
theory of relativity.




Early experiments were proposed to measure the changes with velocity
in the observed mass of a particle in order to determine how much of
the mass was mechanical and how much was electrical. It was believed
at the time that the electrical part would vary with velocity,
whereas the mechanical part would not. But while the
experiments were being done, the theorists were also at work. Soon the
theory of relativity was developed, which proposed that no matter what
the origin of the mass, it all should vary
as m0/√1−v2/c2[image: -*-]. Equation (28.7) was the beginning
of the theory that mass depended on velocity.




Let’s now go back to our calculation of the energy in the field, which
led to Eq. (28.2). According to the theory of relativity,
the energy U[image: -*-] will have the mass U/c2[image: -*-]; Eq. (28.2) then
says that the field of the electron should have the mass

[image: -*-][image: -*-]
(28.8)




which is not the same as the electromagnetic mass, melec[image: -*-], of
Eq. (28.4). In fact, if we just combine Eqs.
(28.2) and (28.4), we would write

[image: -*-][image: -*-]


This formula was discovered before relativity, and when
Einstein and others began to realize
that it must always be that U=m c2[image: -*-], there was great confusion.







28–4 The force of an electron on itself


The discrepancy between the two formulas for the electromagnetic mass
is especially annoying, because we have carefully proved that the
theory of electrodynamics is consistent with the principle of
relativity. Yet the theory of relativity implies without question that
the momentum must be the same as the energy times v/c2[image: -*-]. So we are
in some kind of trouble; we must have made a mistake. We did not make
an algebraic mistake in our calculations, but we have left something
out.




In deriving our equations for energy and momentum, we assumed the
conservation laws. We assumed that all forces were taken into
account and that any work done and any momentum carried by other
“nonelectrical” machinery was included. Now if we have a sphere of
charge, the electrical forces are all repulsive and an electron would
tend to fly apart. Because the system has unbalanced forces, we can get
all kinds of errors in the laws relating energy and momentum. To get a
consistent picture, we must imagine that something holds the
electron together. The charges must be held to the sphere by some
kind of rubber bands—something that keeps the charges from flying off.
It was first pointed out by
Poincaré
that the rubber bands—or whatever it is that holds the
electron together—must be included in the energy and momentum
calculations. For this reason the extra nonelectrical forces are also
known by the more elegant name “the Poincaré stresses.” If the extra forces are included in the
calculations, the
masses obtained in two ways are changed (in a way that depends on the
detailed assumptions). And the results are consistent with relativity;
i.e., the mass that comes out from the momentum calculation is the same
as the one that comes from the energy calculation. However, both of them
contain two contributions: an electromagnetic mass and
contribution from the Poincaré stresses. Only when the two are added
together do we get a consistent theory.





It is therefore impossible to get all the mass to be electromagnetic
in the way we hoped. It is not a legal theory if we have nothing but
electrodynamics. Something else has to be added. Whatever you call
them—“rubber bands,” or “Poincaré stresses,” or something else—there have
to be other forces in nature to make a consistent theory of this kind.




Clearly, as soon as we have to put forces on the inside of the
electron, the beauty of the whole idea begins to disappear. Things get
very complicated. You would want to ask: How strong are the stresses?
How does the electron shake? Does it oscillate? What are all its
internal properties? And so on. It might be possible that an electron
does have some complicated internal properties. If we made a theory of
the electron along these lines, it would predict odd properties, like
modes of oscillation, which haven’t apparently been observed. We say
“apparently” because we observe a lot of things in nature that still
do not make sense. We may someday find out that one of the things we
don’t understand today (for example, the muon) can, in fact, be
explained as an oscillation of the Poincaré stresses. It doesn’t seem likely, but no
one can say for sure. There are so many things about fundamental
particles that we still don’t understand. Anyway, the complex structure
implied by this theory is undesirable, and the attempt to explain all
mass in terms of electromagnetism—at least in the way we have
described—has led to a blind alley.





We would like to think a little more about why we say we have a mass
when the momentum in the field is proportional to the velocity. Easy!
The mass is the coefficient between momentum and velocity. But we can
look at the mass in another way: a particle has mass if you have to
exert a force in order to accelerate it. So it may help our
understanding if we look a little more closely at where the forces
come from. How do we know that there has to be a force? Because we
have proved the law of the conservation of momentum for the fields. If
we have a charged particle and push on it for awhile, there will be
some momentum in the electromagnetic field. Momentum must have been
poured into the field somehow. Therefore there must have been a force
pushing on the electron in order to get it going—a force in addition
to that required by its mechanical inertia, a force due to its
electromagnetic interaction. And there must be a corresponding force
back on the “pusher.” But where does that force come from?



[image: -][image: -][image: -][image: -][image: -][image: -]
Fig. 28–3. The self-force on an accelerating electron is not zero because
of the retardation. (By d F[image: -*-] we mean the force on a surface
element d a[image: -*-]; by d2 F[image: -*-] we mean the force on the surface
element d aα[image: -*-] from the charge on the surface element d aβ[image: -*-].





The picture is something like this. We can think of the electron as a
charged sphere. When it is at rest, each piece of charge repels
electrically each other piece, but the forces all balance in pairs, so
that there is no net force. [See Fig. 28–3(a).]
However, when the electron is being accelerated, the forces will no
longer be in balance because of the fact that the electromagnetic
influences take time to go from one piece to another. For instance,
the force on the piece α[image: -*-] in Fig. 28–3(b) from a
piece β[image: -*-] on the opposite side depends on the position of β[image: -*-]
at an earlier time, as shown. Both the magnitude and direction of the
force depend on the motion of the charge. If the charge is
accelerating, the forces on various parts of the electron might be as
shown in Fig. 28–3(c). When all these forces are added
up, they don’t cancel out. They would cancel for a uniform velocity,
even though it looks at first glance as though the retardation would
give an unbalanced force even for a uniform velocity. But it turns out
that there is no net force unless the electron is being
accelerated. With acceleration, if we look at the forces between the
various parts of the electron, action and reaction are not exactly
equal, and the electron exerts a force on itself that tries to
hold back the acceleration. It holds itself back by its own
bootstraps.




It is possible, but difficult, to calculate this self-reaction force;
however, we don’t want to go into such an elaborate calculation
here. We will tell you what the result is for the special case of
relatively uncomplicated motion in one dimension, say x[image: -*-]. Then, the
self-force can be written in a series. The first term in the series
depends on the acceleration [image: \ddot{x}][image: \ddot{x}], the next term is proportional
to [image: \dddot{x}][image: \dddot{x}], and so on.1
The result is

[image: -*-][image: -*-]
(28.9)




where α[image: -*-] and γ[image: -*-] are numerical coefficients of the order
of 1. The coefficient α[image: -*-] of the [image: \ddot{x}][image: \ddot{x}] term depends on what
charge distribution is assumed; if the charge is distributed uniformly
on a sphere, then α=2/3[image: -*-]. So there is a term, proportional to the
acceleration, which varies inversely as the radius a[image: -*-] of the electron
and agrees exactly with the value we got in Eq. (28.4)
for melec[image: -*-]. If the charge distribution is chosen to be different,
so that α[image: -*-] is changed, the fraction 2/3[image: -*-] in
Eq. (28.4) would be changed in the same way. The term
in [image: \dddot{x}][image: \dddot{x}] is independent of the assumed radius a[image: -*-], and also of
the assumed distribution of the charge; its coefficient is
always 2/3[image: -*-]. The next term is proportional to the radius a[image: -*-], and its
coefficient γ[image: -*-] depends on the charge distribution. You will notice
that if we let the electron radius a[image: -*-] go to zero, the last term (and
all higher terms) will go to zero; the second term remains constant, but
the first term—the electromagnetic mass—goes to infinity. And we can
see that the infinity arises because of the force of one part of the
electron on another—because we have allowed what is perhaps a silly
thing, the possibility of the “point” electron acting on itself.







28–5 Attempts to modify the Maxwell theory


We would like now to discuss how it might be possible to modify
Maxwell’s theory of electrodynamics so that the idea of an electron as
a simple point charge could be maintained. Many attempts have been
made, and some of the theories were even able to arrange things so
that all the electron mass was electromagnetic. But all of these
theories have died. It is still interesting to discuss some of the
possibilities that have been suggested—to see the struggles of the
human mind.




We started out our theory of electricity by talking about the
interaction of one charge with another. Then we made up a theory of
these interacting charges and ended up with a field theory. We believe
it so much that we allow it to tell us about the force of one part of
an electron on another. Perhaps the entire difficulty is that
electrons do not act on themselves; perhaps we are making too great an
extrapolation from the interaction of separate electrons to the idea
that an electron interacts with itself. Therefore some theories have
been proposed in which the possibility that an electron acts on itself
is ruled out. Then there is no longer the infinity due to the
self-action. Also, there is no longer any electromagnetic mass
associated with the particle; all the mass is back to being
mechanical, but there are new difficulties in the theory.




We must say immediately that such theories require a modification of
the idea of the electromagnetic field. You remember we said at the
start that the force on a particle at any point was determined by just
two quantities—E[image: -*-] and B[image: -*-]. If we abandon the “self-force”
this can no longer be true, because if there is an electron in a
certain place, the force isn’t given by the total E[image: -*-] and B[image: -*-],
but by only those parts due to other charges. So we have to
keep track always of how much of E[image: -*-] and B[image: -*-] is due to the
charge on which you are calculating the force and how much is due to
the other charges. This makes the theory much more elaborate, but it
gets rid of the difficulty of the infinity.




So we can, if we want to, say that there is no such thing as the
electron acting upon itself, and throw away the whole set of forces in
Eq. (28.9). However, we have then thrown away the baby with
the bath!  Because the second term in Eq. (28.9), the term
in [image: \dddot{x}][image: \dddot{x}], is needed. That force does something very definite. If
you throw it away, you’re in trouble again. When we accelerate a charge,
it radiates electromagnetic waves, so it loses energy. Therefore, to
accelerate a charge, we must require more force than is required to
accelerate a neutral object of the same mass; otherwise energy wouldn’t
be conserved. The rate at which we do work on an accelerating charge
must be equal to the rate of loss of energy by radiation. We have talked
about this effect before—it is called the radiation resistance. We
still have to answer the question: Where does the extra force, against
which we must do this work, come from? When a big antenna is radiating,
the forces come from the influence of one part of the antenna current on
another. For a single accelerating electron radiating into otherwise
empty space, there would seem to be only one place the force could come
from—the action of one part of the electron on another part.




We found back in Chapter 32 of Vol. I that an
oscillating charge radiates energy at the rate

[image: -*-][image: -*-]
(28.10)




Let’s see what we get for the rate of doing work on an electron
against the bootstrap force of Eq. (28.9). The rate of
work is the force times the velocity, or [image: F\dot{x}][image: F\dot{x}]:

[image: -*-][image: -*-]
(28.11)




The first term is proportional to [image: d\dot{x}^2/dt][image: d\dot{x}^2/dt], and therefore just
corresponds to the rate of change of the kinetic
energy [image: \tfrac{1}{2}mv^2][image: \tfrac{1}{2}mv^2] associated with the electromagnetic mass. The second
term should correspond to the radiated power in Eq. (28.10).
But it is different. The discrepancy comes from the fact that the term
in Eq. (28.11) is generally true, whereas
Eq. (28.10) is right only for an oscillating charge.
We can show that the two are equivalent if the motion of the charge is
periodic. To do that, we rewrite the second term of
Eq. (28.11) as

[image: -*-][image: -*-]


which is just an algebraic transformation. If the motion of the electron
is periodic, the quantity [image: \dot{x}\ddot{x}][image: \dot{x}\ddot{x}] returns periodically to the
same value, so that if we take the average of its time
derivative, we get zero. The second term, however, is always positive
(it’s a square), so its average is also positive. This term gives the
net work done and is just equal to Eq. (28.10).




The term in [image: \dddot{x}][image: \dddot{x}] of the bootstrap force is required in order to
have energy conservation in radiating systems, and we can’t throw it
away. It was, in fact, one of the triumphs of
Lorentz to show that
there is such a force and that it comes from the action of the
electron on itself. We must believe in the idea of the action of the
electron on itself, and we need the term in [image: \dddot{x}][image: \dddot{x}]. The
problem is how we can get that term without getting the first term in
Eq. (28.9), which gives all the trouble. We don’t know
how. You see that the classical electron theory has pushed itself into
a tight corner.




There have been several other attempts to modify the laws in order to
straighten the thing out. One way, proposed by
Born
and Infeld, is to
change the Maxwell equations in a complicated way so that they are no
longer linear. Then the electromagnetic energy and momentum can be
made to come out finite. But the laws they suggest predict phenomena
which have never been observed. Their theory also suffers from another
difficulty we will come to later, which is common to all the attempts
to avoid the troubles we have described.




The following peculiar possibility was suggested by
Dirac. He said:
Let’s admit that an electron acts on itself through the second
term in Eq. (28.9) but not through the first. He then
had an ingenious idea for getting rid of one but not the other. Look,
he said, we made a special assumption when we took only the
retarded wave solutions of Maxwell’s equations; if we were to
take the advanced waves instead, we would get something
different. The formula for the self-force would be

[image: -*-][image: -*-]
(28.12)




This equation is just like Eq. (28.9) except for the sign of the
second term—and some higher terms—of the series. [Changing from retarded to
advanced waves is just changing the sign of the delay which, it is not
hard to see, is equivalent to changing the sign of t[image: -*-] everywhere. The only
effect on Eq. (28.9) is to change the sign of all the odd time
derivatives.] So, Dirac said, let’s make
the new rule that an electron acts on itself by one-half the difference
of the retarded and advanced fields which it produces. The difference of
Eqs. (28.9) and (28.12), divided by two, is then

[image: -*-][image: -*-]


In all the higher terms, the radius a[image: -*-] appears to some positive power
in the numerator. Therefore, when we go to the limit of a point
charge, we get only the one term—just what is needed. In this way,
Dirac got the radiation
resistance force and none of the inertial
forces. There is no electromagnetic mass, and the classical theory is
saved—but at the expense of an arbitrary assumption about the
self-force.




The arbitrariness of the extra assumption of
Dirac was removed, to some
extent at least, by Wheeler and
Feynman, who proposed a still
stranger theory. They suggest that point charges interact only
with other charges, but that the interaction is half through the
advanced and half through the retarded waves. It turns out, most
surprisingly, that in most situations you won’t see any effects of the
advanced waves, but they do have the effect of producing just the
radiation reaction force. The radiation resistance is not due to
the electron acting on itself, but from the following peculiar effect.
When an electron is accelerated at the time t[image: -*-], it shakes all the other
charges in the world at a later time t′=t+r/c[image: -*-] (where r[image: -*-] is the
distance to the other charge), because of the retarded waves. But
then these other charges react back on the original electron through
their advanced waves, which will arrive at the time t′′[image: -*-], equal
to t′[image: -*-] minus r/c[image: -*-], which is, of course, just t[image: -*-]. (They also
react back with their retarded waves too, but that just corresponds to
the normal “reflected” waves.) The combination of the advanced and
retarded waves means that at the instant it is accelerated an
oscillating charge feels a force from all the charges that are “going
to” absorb its radiated waves. You see what tight knots people have
gotten into in trying to get a theory of the electron!




We’ll describe now still another kind of theory, to show the kind of
things that people think of when they are stuck. This is another
modification of the laws of electrodynamics, proposed by
Bopp. You
realize that once you decide to change the equations of
electromagnetism you can start anywhere you want. You can change the
force law for an electron, or you can change the Maxwell equations (as
we saw in the examples we have described), or you can make a change
somewhere else. One possibility is to change the formulas that give
the potentials in terms of the charges and currents. One of our
formulas has been that the potentials at some point are given by the
current density (or charge) at each other point at an earlier
time. Using our four-vector notation for the potentials, we write

[image: -*-][image: -*-]
(28.13)




Bopp’s beautifully simple idea is that:
Maybe the trouble is in the
1/r[image: -*-] factor in the integral. Suppose we were to start out by assuming
only that the potential at one point depends on the charge density at
any other point as some function of the distance between the
points, say as f (r12)[image: -*-]. The total potential at point (1)[image: -*-] will
then be given by the integral of jμ[image: -*-] times this function over all
space:

[image: -*-][image: -*-]


That’s all. No differential equation, nothing else. Well, one more
thing. We also ask that the result should be relativistically
invariant. So by “distance” we should take the invariant
“distance” between two points in space-time. This distance squared
(within a sign which doesn’t matter) is



[image: -*-][image: -*-]
(28.14)





So, for a relativistically invariant theory, we should take some
function of the magnitude of s12[image: -*-], or what is the same thing, some
function of [image: s_{12}^2][image: s_{12}^2]. So Bopp’s theory is that

[image: -*-][image: -*-]
(28.15)




(The integral must, of course, be over the four-dimensional
volume d t2 d x2 d y2 d z2[image: -*-].)




All that remains is to choose a suitable function for F[image: -*-]. We assume
only one thing about F[image: -*-]—that it is very small except when its
argument is near zero—so that a graph of F[image: -*-] would be a curve like
the one in Fig. 28–4. It is a narrow spike with a finite
area centered at s2=0[image: -*-], and with a width which we can say is
roughly a2[image: -*-]. We can say, crudely, that when we calculate the potential at
point (1)[image: -*-], only those points (2)[image: -*-] produce any appreciable effect if
[image: s_{12}^2=c^2(t_1-t_2)^2-r_{12}^2][image: s_{12}^2=c^2(t_1-t_2)^2-r_{12}^2] is within ±a2[image: -*-] of zero. We can
indicate this by saying that F[image: -*-] is important only for

[image: -*-][image: -*-]
(28.16)




You can make it more mathematical if you want to, but that’s the idea.



[image: -][image: -]
Fig. 28–4. The function F (s2)[image: -*-] used in the nonlocal theory of Bopp.





Now suppose that a[image: -*-] is very small in comparison with the size of
ordinary objects like motors, generators, and the like so that for
normal problems r12≫a[image: -*-]. Then Eq. (28.16) says
that charges contribute to the integral of Eq. (28.15)
only when t1−t2[image: -*-] is in the small range

[image: -*-][image: -*-]


Since [image: a^2/r_{12}^2\ll1][image: a^2/r_{12}^2\ll1], the square root can be approximated by [image: 1\pm a^2/2r_{12}^2][image: 1\pm a^2/2r_{12}^2], so

[image: -*-][image: -*-]







What is the significance? This result says that the only
times t2[image: -*-] that are important in the integral
of Aμ[image: -*-] are those which differ from the time t1[image: -*-], at which we want
the potential, by the delay r12/c[image: -*-]—with a negligible correction so
long as r12≫a[image: -*-]. In other words, this theory of
Bopp approaches the Maxwell
theory—so long as we are far away from any particular charge—in the
sense that it gives the retarded wave effects.




We can, in fact, see approximately what the integral of
Eq. (28.15) is going to give. If we integrate first
over t2[image: -*-] from −∞[image: -*-] to +∞[image: -*-]—keeping r12[image: -*-] fixed—then
[image: s_{12}^2][image: s_{12}^2] is also going to go from −∞[image: -*-] to +∞[image: -*-]. The integral
will all come from t2[image: -*-]’s in a small interval of width Δ t2=2×a2/2 r12 c[image: -*-], centered at t1−r12/c[image: -*-]. Say that the
function F (s2)[image: -*-] has the value K[image: -*-] at s2=0[image: -*-]; then the integral
over t2[image: -*-] gives approximately K jμ Δ t2[image: -*-], or

[image: -*-][image: -*-]


We should, of course, take the value of jμ[image: -*-] at t2=t1−r12/c[image: -*-],
so that Eq. (28.15) becomes

[image: -*-][image: -*-]


If we pick K=1/4 π ϵ0 c a2[image: -*-], we are right back to the retarded
potential solution of Maxwell’s equations—including automatically
the 1/r[image: -*-] dependence! And it all came out of the simple proposition
that the potential at one point in space-time depends on the current
density at all other points in space-time, but with a weighting factor
that is some narrow function of the four-dimensional distance between
the two points. This theory again predicts a finite electromagnetic
mass for the electron, and the energy and mass have the right relation
for the relativity theory. They must, because the theory is
relativistically invariant from the start, and everything seems to be
all right.




There is, however, one fundamental objection to this theory and to all
the other theories we have described. All particles we know obey the
laws of quantum mechanics, so a quantum-mechanical modification of
electrodynamics has to be made. Light behaves like photons. It isn’t
100[image: -*-] percent like the Maxwell theory. So the electrodynamic theory has
to be changed. We have already mentioned that it might be a waste of
time to work so hard to straighten out the classical theory, because it
could turn out that in quantum electrodynamics the difficulties will disappear or
may be resolved in some other fashion. But the difficulties do not
disappear in quantum electrodynamics. That is one of the reasons that people have spent so
much effort trying to straighten out the classical difficulties, hoping
that if they could straighten out the classical difficulty and
then make the quantum modifications, everything would be
straightened out. The Maxwell theory still has the difficulties after
the quantum mechanics modifications are made.





The quantum effects do make some changes—the formula for the mass is
modified, and
Planck’s constant ℏ[image: -*-]
appears—but the answer still
comes out infinite unless you cut off an integration somehow—just as
we had to stop the classical integrals at r=a[image: -*-]. And the answers
depend on how you stop the integrals. We cannot, unfortunately,
demonstrate for you here that the difficulties are really basically
the same, because we have developed so little of the theory of quantum
mechanics and even less of quantum electrodynamics. So you must just
take our word that the quantized theory of Maxwell’s electrodynamics
gives an infinite mass for a point electron.





It turns out, however, that nobody has ever succeeded in making, a
self-consistent quantum theory out of any of the modified
theories. Born
and Infeld’s
ideas have never been satisfactorily made
into a quantum theory. The theories with the advanced and retarded waves
of Dirac,
or of Wheeler and
Feynman, have never been made
into a satisfactory quantum theory.
The theory of Bopp has never been
made into a satisfactory quantum theory. So today, there is no known
solution to this problem. We do not know how to make a consistent
theory—including the quantum mechanics—which does not produce an
infinity for the self-energy of an electron, or any point charge. And at
the same time, there is no satisfactory theory that describes a
non-point charge. It’s an unsolved problem.




In case you are deciding to rush off to make a theory in which the
action of an electron on itself is completely removed, so that
electromagnetic mass is no longer meaningful, and then to make a
quantum theory of it, you should be warned that you are certain to be
in trouble. There is definite experimental evidence of the existence
of electromagnetic inertia—there is evidence that some of the mass
of charged particles is electromagnetic in origin.




It used to be said in the older books that since Nature will obviously
not present us with two particles—one neutral and the other charged,
but otherwise the same—we will never be able to tell how much of the
mass is electromagnetic and how much is mechanical. But it turns out
that Nature has been kind enough to present us with just such
objects, so that by comparing the observed mass of the charged one
with the observed mass of the neutral one, we can tell whether there
is any electromagnetic mass. For example, there are the neutrons and
protons. They interact with tremendous forces—the nuclear
forces—whose origin is unknown. However, as we have already
described, the nuclear forces have one remarkable property. So far as
they are concerned, the neutron and proton are exactly the same. The
nuclear forces
between neutron and neutron, neutron and proton, and proton and proton
are all identical as far as we can tell. Only the little electromagnetic
forces are different; electrically the proton and neutron are as
different as night and day. This is just what we wanted. There are two
particles, identical from the point of view of the strong interactions,
but different electrically. And they have a small difference in mass.
The mass difference between the proton and the neutron—expressed as
the difference in the rest-energy m c2[image: -*-] in units of MeV—is about
1.3[image: -*-] MeV, which is about 2.6[image: -*-] times the electron mass. The classical
theory would then predict a radius of about [image: \tfrac{1}{3}][image: \tfrac{1}{3}]
to [image: \tfrac{1}{2}][image: \tfrac{1}{2}] the classical electron radius, or about 10−13[image: -*-] cm.
Of course, one should really use the quantum theory, but by some strange
accident, all the constants—2 π[image: -*-]’s and ℏ[image: -*-]’s, etc.—come out so
that the quantum theory gives roughly the same radius as the classical
theory. The only trouble is that the sign is wrong! The neutron
is heavier than the proton.




Nature has also given us several other pairs—or triplets—of
particles which appear to be exactly the same except for their
electrical charge. They interact with protons and neutrons, through
the so-called “strong” interactions of the nuclear forces. In such
interactions, the particles of a given kind—say the
π[image: -*-]-mesons—behave in every way like one object except for
their electrical charge. In Table 28–1 we give a list of
such particles, together with their measured masses. The charged
π[image: -*-]-mesons—positive or negative—have a mass of 139.6[image: -*-] MeV, but
the neutral π[image: -*-]-meson is 4.6[image: -*-] MeV lighter. We believe that this
mass difference is electromagnetic; it would correspond to a particle
radius of 3 to 4×10−14[image: -*-] cm. You will see from the table
that the mass differences of the other particles are usually of the
same general size.





Table 28–1. Particle Masses 



[image: --][image: --]


Now the size of these particles can be determined by other methods,
for instance by the diameters they appear to have in high-energy
collisions. So the electromagnetic mass seems to be in general
agreement with electromagnetic theory, if we stop our integrals of the
field energy at the same radius obtained by these other
methods. That’s why we believe that the differences do represent
electromagnetic mass.




You are no doubt worried about the different signs of the mass
differences in the table. It is easy to see why the charged ones
should be heavier than the neutral ones. But what about those pairs
like the proton and the neutron, where the measured mass comes out
the other way? Well, it turns out that these particles are
complicated, and the computation of the electromagnetic mass must be
more elaborate for them. For instance, although the neutron has no
net charge, it does have a charge distribution inside
it—it is only the net charge that is zero. In fact, we
believe that the neutron looks—at least sometimes—like a proton
with a negative π[image: -*-]-meson in a “cloud” around it, as shown in
Fig. 28–5. Although the neutron is “neutral,” because
its total charge is zero, there are still electromagnetic energies (for
example, it has a magnetic moment), so it’s not easy to tell the sign of
the electromagnetic mass difference without a detailed theory of the
internal structure.




[image: -][image: -]
Fig. 28–5. A neutron may exist, at times, as a proton surrounded by a
negative π[image: -*-]-meson.





We only wish to emphasize here the following points: (1) the
electromagnetic theory predicts the existence of an electromagnetic
mass, but it also falls on its face in doing so, because it does not
produce a consistent theory—and the same is true with the quantum
modifications; (2) there is experimental evidence for the existence of
electromagnetic mass; and (3) all these masses are roughly the same as
the mass of an electron. So we come back again to the original idea of
Lorentz—maybe
all the mass of an electron is purely electromagnetic,
maybe the whole 0.511[image: -*-] MeV is due to electrodynamics. Is it or isn’t
it? We haven’t got a theory, so we cannot say.




We must mention one more piece of information, which is the most
annoying. There is another particle in the world called a
muon—or μ[image: -*-]-meson—which, so far as we can tell, differs
in no way whatsoever from an electron except for its mass. It acts in
every way like an electron: it interacts with neutrinos and with the
electromagnetic field, and it has no nuclear forces. It does nothing
different from what an electron does—at least, nothing which cannot
be understood as merely a consequence of its higher mass
(206.77[image: -*-] times the electron mass). Therefore, whenever someone finally gets the
explanation of the mass of an electron, he will then have the puzzle
of where a muon gets its mass. Why? Because whatever the electron
does, the muon does the same—so the mass ought to come out the
same. There are those who believe faithfully in the idea that the muon
and the electron are the same particle and that, in the final theory
of the mass, the formula for the mass will be a quadratic equation
with two roots—one for each particle. There are also those who
propose it will be a transcendental equation with an infinite number
of roots, and who are engaged in guessing what the masses of the other
particles in the series must be, and why these particles haven’t been
discovered yet.







28–6 The nuclear force field


We would like to make some further remarks about the part of the mass
of nuclear particles that is not electromagnetic. Where does this
other large fraction come from? There are other forces besides
electrodynamics—like nuclear forces—that have their own field
theories, although no one knows whether the current theories are
right. These theories also predict a field energy which gives the
nuclear particles a mass term analogous to electromagnetic mass; we
could call it the “π[image: -*-]-mesic-field-mass.” It is presumably very
large, because the forces are great, and it is the possible origin of
the mass of the heavy particles. But the meson field theories are
still in a most rudimentary state. Even with the well-developed theory
of electromagnetism, we found it impossible to get beyond first base
in explaining the electron mass. With the theory of the mesons, we
strike out.




We may take a moment to outline the theory of the mesons, because of
its interesting connection with electrodynamics. In electrodynamics,
the field can be described in terms of a four-potential that satisfies
the equation

[image: -*-][image: -*-]


Now we have seen that pieces of the field can be radiated away so that
they exist separated from the sources. These are the photons of light,
and they are described by a differential equation without sources:

[image: -*-][image: -*-]


People have argued that the field of nuclear forces ought also to have
its own “photons”—they would presumably be the π[image: -*-]-mesons—and
that they should be described by an analogous differential
equation. (Because of the weakness of the human brain, we can’t think
of something really new; so we argue by analogy with what we know.) So
the meson equation might be

[image: -*-][image: -*-]


where ϕ[image: -*-] could be a different four-vector or perhaps a scalar. It
turns out that the pion has no polarization, so ϕ[image: -*-] should be a
scalar. With the simple equation □2 ϕ=0[image: -*-], the meson field would
vary with distance from a source as 1/r2[image: -*-], just as the electric field
does. But we know that nuclear forces have much shorter distances of
action, so the simple equation won’t work. There is one way we can
change things without disrupting the relativistic invariance: we can add
or subtract from the D’Alembertian a constant, times ϕ[image: -*-]. So
Yukawa suggested that the free
quanta of the nuclear force field might obey the equation

[image: -*-][image: -*-]
(28.17)




where μ2[image: -*-] is a constant—that is, an invariant scalar.
(Since □2[image: -*-] is a scalar differential operator in four dimensions, its
invariance is unchanged if we add another scalar to it.)




Let’s see what Eq. (28.17) gives for the nuclear force
when things are not changing with time. We want a spherically
symmetric solution of

[image: -*-][image: -*-]


around some point source at, say, the origin. If ϕ[image: -*-] depends only
on r[image: -*-], we know that

[image: -*-][image: -*-]


So we have the equation

[image: -*-][image: -*-]


or

[image: -*-][image: -*-]


Thinking of (r ϕ)[image: -*-] as our dependent variable, this is an equation
we have seen many times. Its solution is

[image: -*-][image: -*-]


Clearly, ϕ[image: -*-] cannot become infinite for large r[image: -*-], so the +[image: -*-] sign
in the exponent is ruled out. The solution is

[image: -*-][image: -*-]
(28.18)




This function is called the Yukawa potential. For an
attractive force, K[image: -*-] is a negative number whose magnitude must be
adjusted to fit the experimentally observed strength of the forces.




The Yukawa potential of the nuclear forces dies off more rapidly
than 1/r[image: -*-] by the exponential factor. The potential—and therefore the
force—falls to zero much more rapidly than 1/r[image: -*-] for distances
beyond 1/μ[image: -*-], as shown in Fig. 28–6. The “range” of
nuclear forces is much less than the “range” of electrostatic forces.
It is found experimentally that the nuclear forces do not extend beyond
about 10−13[image: -*-] cm, so μ≈1015[image: -*-] m−1[image: -*-].



[image: -][image: -]
Fig. 28–6. The Yukawa potential e−μ r/r[image: -*-], compared with the Coulomb
potential 1/r[image: -*-].





Finally, let’s look at the free-wave solution of
Eq. (28.17). If we substitute

[image: -*-][image: -*-]


into Eq. (28.17), we get that

[image: -*-][image: -*-]


Relating frequency to energy and wave number to momentum, as we did at
the end of Chapter 34 of Vol. I, we get that

[image: -*-][image: -*-]


which says that the Yukawa “photon” has a mass equal to
μ ℏ/c[image: -*-]. If we use for μ[image: -*-] the estimate 1015[image: -*-] m−1[image: -*-], which
gives the observed range of the nuclear forces, the mass comes out to
3×10−25[image: -*-] g, or 170[image: -*-] MeV, which is roughly the observed mass
of the π[image: -*-]-meson. So, by an analogy with electrodynamics, we would say
that the π[image: -*-]-meson is the “photon” of the nuclear force field. But
now we have pushed the ideas of electrodynamics into regions where they
may not really be valid—we have gone beyond electrodynamics to the
problem of the nuclear forces.





	
  
  We are using the notation:
[image: \dot{x}=dx/dt][image: \dot{x}=dx/dt], [image: \ddot{x}=d^2x/dt^2][image: \ddot{x}=d^2x/dt^2], [image: \dddot{x}=d^3x/dt^3][image: \dddot{x}=d^3x/dt^3], etc.
  ↩





  
    

29 The Motion of Charges in Electric and Magnetic Fields
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29–1 Motion in a uniform electric or magnetic field


We want now to describe—mainly in a qualitative way—the motions of
charges in various circumstances. Most of the interesting phenomena in
which charges are moving in fields occur in very complicated
situations, with many, many charges all interacting with each
other. For instance, when an electromagnetic wave goes through a block
of material or a plasma, billions and billions of charges are
interacting with the wave and with each other. We will come to such
problems later, but now we just want to discuss the much simpler
problem of the motions of a single charge in a given field. We
can then disregard all other charges—except, of course, those
charges and currents which exist somewhere to produce the fields we
will assume.




We should probably ask first about the motion of a particle in a
uniform electric field. At low velocities, the motion is not
particularly interesting—it is just a uniform acceleration in the
direction of the field. However, if the particle picks up enough
energy to become relativistic, then the motion gets more
complicated. But we will leave the solution for that case for you to
play with.




Next, we consider the motion in a uniform magnetic field with zero
electric field. We have already solved this problem—one solution is
that the particle goes in a circle. The magnetic
force q v×B[image: -*-] is always at right angles to the motion,
so d p/d t[image: -*-] is perpendicular to p[image: -*-] and has the magnitude v p/R[image: -*-],
where R[image: -*-] is the radius of the circle:

[image: -*-][image: -*-]


The radius of the circular orbit is then

[image: -*-][image: -*-]
(29.1)









That is only one possibility. If the particle has a component of its
motion along the field direction, that motion is constant, since there
can be no component of the magnetic force in the direction of the field.
The general motion of a particle in a uniform magnetic field is a
constant velocity parallel to B[image: -*-] and a circular motion at right
angles to B[image: -*-]—the trajectory is a cylindrical helix
(Fig. 29–1). The radius of the helix is given by
Eq. (29.1) if we replace p[image: -*-] by p⟂[image: -*-], the component of
momentum at right angles to the field.



[image: -][image: -]
Fig. 29–1. Motion of a particle in a uniform magnetic field.








29–2 Momentum analysis


A uniform magnetic field is often used in making a “momentum
analyzer,” or “momentum spectrometer,”
for high-energy charged particles. Suppose that charged particles are
shot into a uniform magnetic field at the point A[image: -*-] in
Fig. 29–2(a), the magnetic field being perpendicular to the
plane of the drawing. Each particle will go into an orbit which is a
circle whose radius is proportional to its momentum. If all the
particles enter perpendicular to the edge of the field, they will leave
the field at a distance x[image: -*-] (from A[image: -*-]) which is proportional to their
momentum p[image: -*-]. A counter placed at some point such as C[image: -*-] will detect
only those particles whose momentum is in an interval Δ p[image: -*-] near
the momentum p=q B x/2[image: -*-].



[image: -][image: -][image: -][image: -]
Fig. 29–2. A uniform-field momentum spectrometer with 180°[image: -*-]
focusing: (a) different momenta; (b) different angles. (The magnetic
field is directed perpendicular to the plane of the figure.)





It is, of course, not necessary that the particles go through
180°[image: -*-] before they are counted, but the so-called
“180°[image: -*-] spectrometer” has a special property. It is not necessary
that all the particles enter at right angles to the field edge.
Figure 29–2(b) shows the trajectories of three particles,
all with the same momentum but entering the field at different
angles. You see that they take different trajectories, but all leave the
field very close to the point C[image: -*-]. We say that there is a “focus.”
Such a focusing property has the advantage that larger angles can be
accepted at A[image: -*-]—although some limit is usually imposed, as shown in
the figure. A larger angular acceptance usually means that more
particles are counted in a given time, decreasing the time required for
a given measurement.




By varying the magnetic field, or moving the counter along in x[image: -*-], or by
using many counters to cover a range of x[image: -*-], the “spectrum” of
momenta in the incoming beam can be measured.
[By the “momentum spectrum” f (p)[image: -*-], we mean that the number of
particles with momenta between p[image: -*-] and (p+d p)[image: -*-] is f (p) d p[image: -*-].] Such
measurements have been made, for example, to determine the distribution
of energies in the β[image: -*-]-decay of various nuclei.





There are many other forms of momentum spectrometers, but we will
describe just one more, which has an especially large solid
angle of acceptance. It is based on the helical orbits in a uniform
field, like the one shown in Fig. 29–1. Let’s think of a cylindrical
coordinate system—ρ,θ,z[image: -*-]—set up with the z[image: -*-]-axis along
the direction of the field. If a particle is emitted from the origin
at some angle α[image: -*-] with respect to the z[image: -*-]-axis, it will move
along a spiral whose equation is

[image: -*-][image: -*-]


where a[image: -*-], b[image: -*-], and k[image: -*-] are parameters you can easily work out in
terms of p[image: -*-], α[image: -*-], and the magnetic field B[image: -*-]. If we plot the
distance ρ[image: -*-] from the axis as a function of z[image: -*-] for a given
momentum, but for several starting angles, we will get curves like the
solid ones drawn in Fig. 29–3. (Remember that this is just a kind of
projection of a helical trajectory.) When the angle between the axis
and the starting direction is larger, the peak value of ρ[image: -*-] is
large but the longitudinal velocity is less, so the trajectories for
different angles tend to come to a kind of “focus” near the
point A[image: -*-] in the figure. If we put a narrow aperture of A[image: -*-], particles with
a range of initial angles can still get through and pass on to the
axis, where they can be counted by the long detector D[image: -*-].



[image: -][image: -]
Fig. 29–3. An axial-field spectrometer.





Particles which leave the source at the origin with a higher momentum
but at the same angles, follow the paths shown by the broken lines and
do not get through the aperture at A[image: -*-]. So the apparatus selects a
small interval of momenta. The advantage over the first spectrometer
described is that the aperture A[image: -*-]—and the aperture A′[image: -*-]—can be an
annulus, so that particles which leave the source in a rather large
solid angle are accepted. A large fraction of the particles from the
source are used—an important advantage for weak sources or for very
precise measurements.




One pays a price for this advantage, however, because a large volume
of uniform magnetic field is required, and this is usually only
practical for low-energy particles. One way of making a uniform field,
you remember, is to wind a coil on a sphere, with a surface current
density proportional to the sine of the angle. You can also show that
the same thing is true for an ellipsoid of rotation. So such
spectrometers are often made by winding an elliptical coil on a wooden
(or aluminum) frame. All that is required is that the current in each
interval of axial distance Δ x[image: -*-] be the same, as shown in
Fig. 29–4.



[image: -][image: -]
Fig. 29–4. An ellipsoidal coil with equal currents in each axial
interval Δ x[image: -*-] produces a uniform magnetic field inside.








29–3 An electrostatic lens


Particle focusing has many applications. For instance, the electrons
that leave the cathode in a TV picture tube are brought to a focus at
the screen—to make a fine spot. In this case, one wants to take
electrons all of the same energy but with different initial angles and
bring them together in a small spot. The problem is like focusing
light with a lens, and devices which do the corresponding job for
particles are also called lenses.



[image: -][image: -]
Fig. 29–5. An electronic lens. The field lines shown are “lines of
force,” that is, of q E[image: -*-].





One example of an electron lens is sketched in Fig. 29–5. It is an
“electrostatic” lens whose operation depends on the electric field
between two adjacent electrodes. Its operation can be understood by
considering what happens to a parallel beam that enters from the
left. When the electrons arrive at the region a[image: -*-], they feel a force
with a sidewise component and get a certain impulse that bends them
toward the axis. You might think that they would get an equal and
opposite impulse in the region b[image: -*-], but that is not so. By the time
the electrons reach b[image: -*-] they have gained energy and so spend
less time in the region b[image: -*-]. The forces are the same, but the time is
shorter, so the impulse is less. In going through the regions a[image: -*-]
and b[image: -*-], there is a net axial impulse, and the electrons are bent toward a
common point. In leaving the high-voltage region, the particles get
another kick toward the axis. The force is outward in region c[image: -*-] and
inward in region d[image: -*-], but the particles stay longer in the latter
region, so there is again a net impulse. For distances not too far
from the axis, the total impulse through the lens is proportional to
the distance from the axis (Can you see why?), and this is just the
condition necessary for lens-type focusing.




You can use the same arguments to show that there is focusing if the
potential of the middle electrode is either positive or negative with
respect to the other two. Electrostatic lenses of this type are
commonly used in cathode-ray tubes and in some electron microscopes.







29–4 A magnetic lens

[image: -][image: -]
Fig. 29–6. A magnetic lens.




[image: -][image: -]
Fig. 29–7. Electron motion in the magnetic lens.





Another kind of lens—often found in electron microscopes—is the
magnetic lens sketched schematically in Fig. 29–6. A cylindrically
symmetric electromagnet has very sharp circular pole tips which
produce a strong, nonuniform field in a small region. Electrons which
travel vertically through this region are focused. You can understand
the mechanism by looking at the magnified view of the pole-tip region
drawn in Fig. 29–7. Consider two electrons a[image: -*-] and b[image: -*-] that leave
the source S[image: -*-] at some angle with respect to the axis. As electron a[image: -*-]
reaches the beginning of the field, it is deflected away from
you by the horizontal component of the field. But then it will have a
lateral velocity, so that when it passes through the strong vertical
field, it will get an impulse toward the axis. Its lateral motion is
taken out by the magnetic force as it leaves the field, so the net
effect is an impulse toward the axis, plus a “rotation” about the
axis. All the forces on particle b[image: -*-] are opposite, so it also is
deflected toward the axis. In the figure, the divergent electrons are
brought into parallel paths. The action is like a lens with an object
at the focal point. Another similar lens upstream can be used to focus
the electrons back to a single point, making an image of the source S[image: -*-].







29–5 The electron microscope

[image: -][image: -]
Fig. 29–8. The resolution of a microscope is limited by the angle subtended
from the source.





You know that electron microscopes can “see” objects too small to be
seen by optical microscopes. We discussed in Chapter 30
of Vol. I the basic limitations of any optical system due to
diffraction of the lens opening. If a lens opening subtends the
angle 2 θ[image: -*-] from a source (see Fig. 29–8), two neighboring spots at
the source cannot be seen as separate if they are closer than about

[image: -*-][image: -*-]


where λ[image: -*-] is the wavelength of the light. With the best optical
microscope, θ[image: -*-] approaches the theoretical limit of 90°[image: -*-],
so δ[image: -*-] is about equal to λ[image: -*-], or approximately
5000[image: -*-] angstroms.




The same limitation would also apply to an electron microscope, but
there the wavelength is—for 50[image: -*-]-kilovolt electrons—about
0.05[image: -*-] angstrom. If one could use a lens opening of near 30°[image: -*-], it would
be possible to see objects only [image: \tfrac{1}{5}][image: \tfrac{1}{5}] of an angstrom
apart. Since the atoms in molecules are typically 1 or 2 angstroms
apart, we could get photographs of molecules. Biology would be easy;
we would have a photograph of the DNA structure. What a tremendous
thing that would be! Most of present-day research in molecular biology
is an attempt to figure out the shapes of complex organic
molecules. If we could only see them!




Unfortunately, the best resolving power that has been achieved in an
electron microscope is more like 20[image: -*-] angstroms. The reason is that no
one has yet designed a lens with a large opening. All lenses have
“spherical aberration,”
which means that rays at large angles from the axis have a different
point of focus than the rays nearer the axis, as shown in
Fig. 29–9. By special techniques, optical microscope lenses
can be made with a negligible spherical aberration, but no one has yet
been able to make an electron lens which avoids spherical aberration.




[image: -][image: -]
Fig. 29–9. Spherical aberration of a lens.





In fact, one can show that any electrostatic or magnetic lens of the
types we have described must have an irreducible amount of spherical
aberration. This aberration—together with diffraction—limits the
resolving power of electron microscopes to their present value.




The limitation we have mentioned does not apply to electric and
magnetic fields which are not axially symmetric or which are not
constant in time. Perhaps some day someone will think of a new kind of
electron lens that will overcome the inherent aberration of the simple
electron lens. Then we will be able to photograph atoms
directly. Perhaps one day chemical compounds will be analyzed by
looking at the positions of the atoms rather than by looking at the
color of some precipitate!







29–6 Accelerator guide fields


Magnetic fields are also used to produce special particle trajectories
in high energy particle accelerators. Machines like the
cyclotron and synchrotron bring
particles to high energies by passing the particles repeatedly through
a strong electric field. The particles are held in their cyclic orbits
by a magnetic field.





We have seen that a particle in a uniform magnetic field will go in a
circular orbit. This, however, is true only for a perfectly uniform
field. Imagine a field B[image: -*-] which is nearly uniform over a large area
but which is slightly stronger in one region than in another. If we
put a particle of momentum p[image: -*-] in this field, it will go in a nearly
circular orbit with the radius R=p/q B[image: -*-]. The radius of curvature will,
however, be slightly smaller in the region where the field is
stronger. The orbit is not a closed circle but will “walk” through
the field, as shown in Fig. 29–10. We can, if we wish, consider that
the slight “error” in the field produces an extra angular kick which
sends the particle off on a new track. If the particles are to make
millions of revolutions in an accelerator, some kind of “radial
focusing” is needed which will tend to keep the trajectories close to
some design orbit.



[image: -][image: -]
Fig. 29–10. Particle motion in a slightly nonuniform field.





Another difficulty with a uniform field is that the particles do not
remain in a plane. If they start out with the slightest angle—or are
given a slight angle by any small error in the field—they will go in
a helical path that will eventually take them into the magnet pole or
the ceiling or floor of the vacuum tank. Some arrangement must be made
to inhibit such vertical drifts; the field must provide “vertical
focusing” as well as radial focusing.



[image: -][image: -]
Fig. 29–11. Radial motion of a particle in a magnetic field with a large
positive slope.





One would, at first, guess that radial focusing could be provided by
making a magnetic field which increases with increasing distance from
the center of the design path. Then if a particle goes out to a large
radius, it will be in a stronger field which will bend it back toward
the correct radius. If it goes to too small a radius, the bending will
be less, and it will be returned toward the design radius. If a
particle is once started at some angle with respect to the ideal
circle, it will oscillate about the ideal circular orbit, as shown in
Fig. 29–11. The radial focusing would keep the particles near the
circular path.



[image: -][image: -]
Fig. 29–12. Radial motion of a particle in a magnetic field with a small
negative slope.





Actually there is still some radial focusing even with the
opposite field slope. This can happen if the radius of
curvature of the trajectory does not increase more rapidly than the
increase in the distance of the particle from the center of the
field. The particle orbits will be as drawn in Fig. 29–12. If the
gradient of the field is too large, however, the orbits will not
return to the design radius but will spiral inward or outward, as
shown in Fig. 29–13.



[image: -][image: -]
Fig. 29–13. Radial motion of a particle in a magnetic field with a large
negative slope.





We usually describe the slope of the field in terms of the “relative
gradient” or field index, n[image: -*-]:

[image: -*-][image: -*-]
(29.2)




A guide field gives radial focusing if this relative gradient is
greater than −1[image: -*-].



[image: -][image: -]
Fig. 29–14. A vertical guide field as seen in a cross section perpendicular
to the orbits.





A radial field gradient will also produce vertical forces on
the particles. Suppose we have a field that is stronger nearer to the
center of the orbit and weaker at the outside. A vertical cross
section of the magnet at right angles to the orbit might be as shown
in Fig. 29–14. (For protons the orbits would be coming out of the
page.) If the field is to be stronger to the left and weaker to the
right, the lines of the magnetic field must be curved as shown. We can
see that this must be so by using the law that the circulation
of B[image: -*-] is zero in free space. If we take coordinates as shown in the
figure, then

[image: -*-][image: -*-]


or

[image: -*-][image: -*-]
(29.3)




Since we assume that ∂Bz/∂x[image: -*-] is negative, there must be an
equal negative ∂Bx/∂z[image: -*-]. If the “nominal” plane of the orbit
is a plane of symmetry where Bx=0[image: -*-], then the radial component Bx[image: -*-]
will be negative above the plane and positive below. The lines must be
curved as shown.




Such a field will have vertical focusing properties. Imagine a proton
that is travelling more or less parallel to the central orbit but
above it. The horizontal component of B[image: -*-] will exert a downward
force on it. If the proton is below the central orbit, the force is
reversed. So there is an effective “restoring force” toward the
central orbit. From our arguments there will be vertical focusing,
provided that the vertical field decreases with increasing
radius; but if the field gradient is positive, there will be
“vertical defocusing.” So for vertical focusing, the field index n[image: -*-]
must be less than zero. We found above that for radial focusing n[image: -*-]
had to be greater than −1[image: -*-]. The two conditions together give the
condition that

[image: -*-][image: -*-]


if the particles are to be kept in stable orbits. In
cyclotrons, values very near zero are used; in
betatrons and synchrotrons, the
value n=−0.6[image: -*-] is typically used.








29–7 Alternating-gradient focusing


Such small values of n[image: -*-] give rather “weak” focusing. It is clear
that much more effective radial focusing would be given by a large
positive gradient (n≫1[image: -*-]), but then the vertical forces would be
strongly defocusing. Similarly, large negative slopes (n≪−1[image: -*-]) would
give stronger vertical forces but would cause radial defocusing. It
was realized about 10[image: -*-] years ago, however, that a force that
alternates between strong focusing and strong defocusing can still
have a net focusing force.



[image: -][image: -]
Fig. 29–15. A horizontal focusing quadrupole lens.





To explain how alternating-gradient focusing works, we will first
describe the operation of a quadrupole lens, which is based on the same
principle. Imagine that a uniform negative magnetic field is added to
the field of Fig. 29–14, with the strength adjusted to make
zero field at the orbit. The resulting field—for small displacements
from the neutral point—would be like the field shown in
Fig. 29–15. Such a four-pole magnet is called a
“quadrupole lens.” A positive particle that enters (from the reader) to the
right or left of the center is pushed back toward the center. If the
particle enters above or below, it is pushed away from the
center. This is a horizontal focusing lens. If the horizontal gradient
is reversed—as can be done by reversing all the polarities—the signs
of all the forces are reversed and we have a vertical focusing lens, as
in Fig. 29–16. For such lenses, the field strength—and
therefore the focusing forces—increase linearly with the distance of
the lens from the axis.



[image: -][image: -]
Fig. 29–16. A vertical focusing quadrupole lens.





Now imagine that two such lenses are placed in series. If a particle
enters with some horizontal displacement from the axis, as shown in
Fig. 29–17(a), it will be deflected toward the axis in the first
lens. When it arrives at the second lens it is closer to the axis, so
the force outward is less and the outward deflection is less. There is a
net bending toward the axis; the average effect is horizontally
focusing. On the other hand, if we look at a particle which enters off
the axis in the vertical direction, the path will be as shown in
Fig. 29–17(b). The particle is first deflected away
from the axis, but then it arrives at the second lens with a larger
displacement, feels a stronger force, and so is bent toward the axis.
Again the net effect is focusing. Thus a pair of quadrupole
lenses acts
independently for horizontal and vertical motion—very much like an
optical lens. Quadrupole lenses are used to form and control beams
of particles in much the same way that optical lenses are used for light
beams.




[image: -][image: -]
Fig. 29–17. Horizontal and vertical focusing with a pair of quadrupole lenses.





We should point out that an alternating-gradient system does not
always produce focusing. If the gradients are too large (in
relation to the particle momentum or to the spacing between the
lenses), the net effect can be a defocusing one. You can see how that
could happen if you imagine that the spacing between the two lenses of
Fig. 29–17 were increased, say, by a factor of three or four.




Let’s return now to the synchrotron guide
magnet. We can consider that it consists of an alternating sequence of
“positive” and “negative” lenses with a superimposed uniform
field. The uniform field serves to bend the particles, on the average,
in a horizontal circle (with no effect on the vertical motion), and
the alternating lenses act on any particles that might tend to go
astray—pushing them always toward the central orbit (on the
average).





There is a nice mechanical analog which demonstrates that a force which
alternates between a “focusing” force and a “defocusing” force can
have a net “focusing” effect. Imagine a mechanical “pendulum” which
consists of a solid rod with a weight on the end, suspended from
a pivot which is arranged to be moved rapidly up and down by a motor
driven crank. Such a pendulum has two equilibrium positions.
Besides the normal, downward-hanging position, the pendulum is also in
equilibrium “hanging upward”—with its “bob” above the
pivot! Such a pendulum is drawn in Fig. 29–18.



[image: -][image: -]
Fig. 29–18. A pendulum with an oscillating pivot can have a stable position
with the bob above the pivot.





By the following argument you can see that the vertical pivot motion
is equivalent to an alternating focusing force. When the pivot is
accelerated downward, the “bob” tends to move inward, as indicated
in Fig. 29–19. When the pivot is accelerated upward, the effect is
reversed. The force restoring the “bob” toward the axis alternates,
but the average effect is a force toward the axis. So the pendulum
will swing back and forth about a neutral position which is just
opposite the normal one.



[image: -][image: -]
Fig. 29–19. A downward acceleration of the pivot causes the pendulum to
move toward the vertical.





There is, of course, a much easier way of keeping a pendulum upside
down, and that is by balancing it on your finger! But try to
balance two independent sticks on the same finger! Or
one stick with your eyes closed! Balancing involves making a
correction for what is going wrong. And this is not possible, in
general, if there are several things going wrong at once. In a
synchrotron there are billions of particles going
around together, each one of which may start out with a different
“error.” The kind of focusing we have been describing works on them
all.








29–8 Motion in crossed electric and magnetic fields


So far we have talked about particles in electric fields only or in
magnetic fields only. There are some interesting effects when there
are both kinds of fields at the same time. Suppose we have a uniform
magnetic field B[image: -*-] and an electric field E[image: -*-] at right
angles. Particles that start out perpendicular to B[image: -*-] will move in
a curve like the one in Fig. 29–20. (The figure is a plane
curve, not a helix!) We can understand this motion
qualitatively. When the particle (assumed positive) moves in the
direction of E[image: -*-], it picks up speed, and so it is bent less by the
magnetic field. When it is going against the E[image: -*-]-field, it loses
speed and is continually bent more by the magnetic field. The net
effect is that it has an average “drift” in the direction
of E×B[image: -*-].



[image: -][image: -]
Fig. 29–20. Path of a particle in crossed electric and magnetic fields.





We can, in fact, show that the motion is a uniform circular motion
superimposed on a uniform sidewise motion at the speed vd=E/B[image: -*-]—the
trajectory in Fig. 29–20 is a cycloid. Imagine an observer
who is moving to the right at a constant speed. In his frame our
magnetic field gets transformed to a new magnetic field plus an
electric field in the downward direction. If he has just the
right speed, his total electric field will be zero, and he will see the
electron going in a circle. So the motion we see is a circular
motion, plus a translation at the drift speed vd=E/B[image: -*-]. The motion of
electrons in crossed electric and magnetic fields is the basis of the
magnetron tubes, i.e., oscillators used for generating microwave
energy.




There are many other interesting examples of particle motions in
electric and magnetic fields—such as the orbits of the electrons and
protons trapped in the Van Allen belts—but we do not, unfortunately,
have the time to deal with them here.







  
    

30 The Internal Geometry of Crystals
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30–1 The internal geometry of crystals


We have finished the study of the basic laws of electricity and
magnetism, and we are now going to study the electromagnetic
properties of matter. We begin by describing solids—that is,
crystals. When the atoms of matter are not moving around very much,
they get stuck together and arrange themselves in a configuration with
as low an energy as possible. If the atoms in a certain place have
found a pattern which seems to be of low energy, then the atoms
somewhere else will probably make the same arrangement. For these
reasons, we have in a solid material a repetitive pattern of atoms.





In other words, the conditions in a crystal are this way: The
environment of a particular atom in a crystal has a certain
arrangement, and if you look at the same kind of an atom at another
place farther along, you will find one whose surroundings are exactly
the same. If you pick an atom farther along by the same distance, you
will find the conditions exactly the same once more. The pattern is
repeated over and over again—and, of course, in three dimensions.




[image: -][image: -][image: -][image: -]Fig. 30–1. 
A repeating pattern in two dimensions.





Imagine the problem of designing a wallpaper—or a cloth, or some
geometric design for a plane area—in which you are supposed to have a
design element which repeats and repeats and repeats, so that you can
make the area as large as you want. This is the two-dimensional analog
of a problem which a crystal solves in three dimensions. For example,
Fig. 30–1(a) shows a common kind of wallpaper design. There
is a single element repeated in a pattern that can go on forever. The
geometric characteristics of this wallpaper design, considering only its
repetition properties and not worrying about the geometry of the flower
itself or its artistic merit, are contained in
Fig. 30–1(b). If you start at any point, you can find the
corresponding point by moving the distance a[image: -*-] along the direction of
arrow 1. You can also get to a corresponding point if you move
the distance b[image: -*-] in the direction of the other arrow. There are, of
course, many other directions. You can go, for example, from
point α[image: -*-] to point β[image: -*-] and reach a corresponding position, but
such a step can be considered as a combination of a step along
direction 1, followed by a step along direction 2. One of the basic
properties
of the pattern can be described by the two shortest steps to nearby
equal positions. By “equal” positions we mean that if you were to
stand in any one of them and look around you, you would see exactly the
same thing as if you were to stand in another one. That’s the
fundamental property of a crystal. The only difference is that a crystal
is a three-dimensional arrangement instead of a two-dimensional
arrangement; and naturally, instead of flowers, each element of the
lattice is some kind of an arrangement of atoms—perhaps six hydrogen
atoms and two carbon atoms—in some kind of pattern. The pattern of
atoms in a crystal can be found out experimentally by x-ray
diffraction. We
have mentioned this method briefly before, and won’t say any more now
except that the precise arrangement of the atoms in space has been
worked out for most simple crystals and also for some fairly complex
ones.





The internal pattern of a crystal shows up in several ways. First, the
binding strength of the atoms in certain directions is usually
stronger than in other directions. This means that there are certain
planes through the crystal where it is more easily broken than
others. They are called the cleavage planes. If you crack a crystal with a knife blade it will often split
apart along such a plane. Second, the internal structure often appears
at the surface because of the way the crystal was formed. Imagine a
crystal being deposited out of a solution. There are the atoms floating
around in the solution and finally settling down when they find a
position of lowest energy. (It’s as if the wallpaper got made by flowers
drifting around until one drifted accidentally into place and got stuck,
and then the next, and the next so that the pattern gradually grows.)
You can appreciate that there will be certain directions in which it
will grow at a different speed than in other directions, thereby growing
into some kind of geometrical shape. Because of such effects, the
outside surfaces of many crystals show some of the character of the
internal arrangement of the atoms.





For example, Fig. 30–2(a) shows the shape of a typical
quartz crystal whose internal pattern is hexagonal. If you look
closely at such a crystal, you will notice that the outside does not
make a very good hexagon because the sides are not all of equal
length—they are, in fact, often very unequal. But in one respect it
is a very good hexagon: the angles between the faces are
exactly 120°[image: -*-]. Clearly, the size of any particular face is an
accident of the growth, but the angles are a representation of
the internal geometry. So every crystal of quartz has a different
shape, even though the angles between corresponding faces are always
the same.




[image: -][image: -][image: -]
Fig. 30–2. 
Natural crystals: (a) quartz, (b) sodium chloride, (c) mica.





The internal geometry of a crystal of sodium chloride is also evident
from its external shape. Figure 30–2(b) shows the shape
of a typical grain of salt. Again the crystal is not a perfect cube,
but the faces are exactly at right angles to one another.





A more complicated crystal is mica, which has the shape shown in
Fig. 30–2(c). It is a highly anisotropic crystal, as is
easily seen from the fact that it is very tough if you try to pull it
apart in one direction (horizontally in the figure), but very easy to
split by pulling apart in the other direction (vertically). It has
commonly been used to obtain very tough, thin sheets. Mica and quartz
are two examples of natural minerals containing silica. A third
example of a mineral with silica is asbestos, which has the
interesting property that it is easily pulled apart in two directions
but not in the third. It appears to be made of very strong,
linear fibers.





 


30–2 Chemical bonds in crystals


The mechanical properties of crystals clearly depend on the kind of
chemical bindings between the atoms. The strikingly different strength
of mica along different directions depends on the kinds of interatomic
binding in the different directions. You have already learned in
chemistry, no doubt, about the different kinds of chemical
bonds. First, there are ionic bonds, as we have
already discussed for sodium chloride. Roughly speaking, the sodium
atoms have lost an electron and become positive ions; the chlorine atoms
have gained an electron and become negative ions. The positive and
negative ions are arranged in a three-dimensional checkerboard and are
held together by electrical forces.





The covalent bond—in which electrons are shared
between two atoms—is more common and is usually very strong. In a
diamond, for example, the carbon atoms have covalent bonds in all four
directions to the nearest neighbors, so the crystal is very hard indeed.
There is also covalent bonding between silicon and oxygen in a quartz
crystal, but there the bond is really only partially covalent. Because
there is not complete sharing of the electrons, the atoms are partly
charged, and the crystal is somewhat ionic. Nature is not as simple as
we try to make it; there are really all possible gradations between
covalent and ionic bonding.





A sugar crystal has still another kind of binding. In it there are large
molecules in which the atoms are held strongly together by covalent
bonds, so that the molecule is a tough structure. But since the strong
bonds are completely satisfied, there are only relatively weak
attractions between the separate, individual molecules. In such
molecular crystals the molecules keep their
individual identity, so to speak, and the internal arrangement might be
as shown in Fig. 30–3. Since the molecules are not held
strongly to each other, the crystals are easy to break. They are quite
different from something like diamond, which is really one giant
molecule that cannot be broken anywhere without disrupting strong
covalent bonds. Paraffin is another example of a molecular crystal.
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Fig. 30–3. 
The lattice of a molecular crystal.





An extreme example of a molecular crystal occurs in a substance like
solid argon. There is very little attraction between the atoms—each
atom is a completely saturated monatomic molecule. But at very low
temperatures, the thermal motion is very small, so the slight
interatomic forces can cause the atoms to settle down into a regular
array like a pile of closely packed spheres.





The metals form a completely different class of substances. The
bonding is of an entirely different kind. In a metal the bonding is
not between adjacent atoms but is a property of the whole crystal. The
valence electrons are not attached to one atom or to a pair of atoms
but are shared throughout the crystal. Each atom contributes an
electron to a universal pool of electrons, and the atomic positive
ions reside in the sea of negative electrons. The electron sea holds
the ions together like some kind of glue.





In the metals, since there are no special bonds in any particular
direction, there is no strong directionality in the binding. They are
still crystalline, however, because the total energy is lowest when
the atomic ions are arranged in some definite array—although the
energy of the preferred arrangement is not usually much lower than
other possible ones. To a first approximation, the atoms of many
metals are like small spheres packed in as tightly as possible.





 


30–3 The growth of crystals


Try to imagine the natural formation of crystals in the earth. In the
earth’s surface there is a big mixture of all kinds of atoms. They are
being continually churned about by volcanic action, by wind, and by
water—continually being moved about and mixed. Yet, by some trick,
silicon atoms gradually begin to find each other, and to find oxygen
atoms, to make silica. One atom at a time is added to the others to
build up a crystal—the mixture gets unmixed. And somewhere nearby,
sodium and chlorine atoms are finding each other and building up a
crystal of salt.





How does it happen that once a crystal is started, it permits only a
particular kind of atom to join on? It happens because the whole
system is working toward the lowest possible energy. A growing crystal
will accept a new atom if it is going to make the energy as low as
possible. But how does it know that a silicon—or an
oxygen—atom at some particular spot is going to result in the lowest
possible energy?  It does it by trial and error. In the liquid, all of
the atoms are in perpetual motion. Each atom bounces against its
neighbors about 1013[image: -*-] times every second. If it hits against the
right spot of growing crystal, it has a somewhat smaller chance of
jumping off again if the energy is low. By continually testing over
periods of millions of years at a rate of 1013[image: -*-] tests per second,
the atoms gradually build up at the places where they find their
lowest energy. Eventually they grow into big crystals.





 


30–4 Crystal lattices


The arrangement of the atoms in a crystal—the crystal
lattice—can take on many geometric forms. We would like to
describe first the simplest lattices, which are characteristic of most
of the metals and of the solid form of the inert gases. They are the
cubic lattices which can occur in two forms: the body-centered cubic,
shown in Fig. 30–4(a), and the face-centered cubic
shown in Fig. 30–4(b). The drawings show, of course,
only one cube of the lattice; you are to imagine that the pattern is
repeated indefinitely in three dimensions. Also, to make the drawing
clearer, only the “centers” of the atoms are shown. In an actual
crystal, the atoms are more like spheres in contact with each
other. The dark and light spheres in the drawings may, in general,
stand for different kinds of atoms or may be the same kind. For
instance, iron has a body-centered cubic lattice at low temperatures,
but a face-centered cubic lattice at higher temperatures. The physical
properties are quite different in the two crystalline forms.




[image: -][image: -][image: -][image: -]Fig. 30–4. 
The unit cell of cubic crystals: (a) body-centered,
(b) face-centered.





How do such forms come about? Imagine that you have the problem of
packing spherical atoms together as tightly as possible. One way would
be to start by making a layer in a “hexagonal close-packed array,”
as shown in Fig. 30–5(a). Then you could build up a
second layer like the first, but displaced horizontally, as shown in
Fig. 30–5(b). Next, you can put on the third layer. But
notice!  There are two distinct ways of placing the
third layer. If you start the third layer by placing an atom
at A[image: -*-] in Fig. 30–5(b), each atom in the third layer is
directly above an atom of the bottom layer. On the other hand, if you
start the third layer by putting an atom at the position B[image: -*-], the
atoms of the third layer will be centered at points exactly in the
middle of a triangle formed by three atoms of the bottom layer. Any
other starting place is equivalent to A[image: -*-] or B[image: -*-], so there are only
two ways of placing the third layer.




[image: -][image: -][image: -][image: -]Fig. 30–5. 
Building up a hexagonal close-packed lattice.





If the third layer has an atom at point B[image: -*-], the crystal lattice is a
face-centered cubic—but seen at an angle. It seems funny that
starting with hexagons you can end up with cubes. But notice that a
cube looked at from a corner has a hexagonal outline. For instance,
Fig. 30–6 could represent a plane hexagon or a cube
seen in perspective!




[image: -][image: -]
Fig. 30–6. 
Is this a hexagon or a cube seen from one corner?





If a third layer is added to Fig. 30–5(b) by starting
with an atom at A[image: -*-], there is no cubical structure, and the lattice
has instead only a hexagonal symmetry. It is clear that both
possibilities we have described are equally close-packed.





Some metals—for example, copper and silver—choose the first
alternative, the face-centered cubic. Others—for example, beryllium
and magnesium—choose the other alternatives; they form hexagonal
crystals. Clearly, which crystal lattice appears cannot depend only on
the packing of little spheres, but must also be determined in part by
other factors. In particular, it depends on the slight remaining
angular dependence of the interatomic forces (or, in the case of the
metals, on the energy of the electron pool). You will, no doubt, learn
all about such things in your chemistry courses.





 


30–5 Symmetries in two dimensions


We would now like to discuss some of the properties of crystals from
the point of view of their internal symmetries. The main feature of a
crystal is that if you start at one atom and move to a corresponding
atom one lattice unit away, you are again in the same kind of an
environment. That’s the fundamental proposition. But if you were an
atom, there would be another kind of change that could take you again
to the same environment—that is, another possible “symmetry.”
Figure 30–7(a) shows another possible “wallpaper-type” design
(though one you have probably never seen). Suppose we compare the
environments for points A[image: -*-] and B[image: -*-]. You might, at first, think that
they are the same—but not quite. Points C[image: -*-] and D[image: -*-] are equivalent
to A[image: -*-], but the environment of B[image: -*-] is like that of A[image: -*-] only if the
surroundings are reversed, as in a mirror reflection.
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Fig. 30–7. 
A pattern of high symmetry.





There are other kinds of “equivalent” points in the pattern. For
instance, the points E[image: -*-] and F[image: -*-] have the “same” environments except
that one is rotated 90°[image: -*-] with respect to the other. The pattern
is quite special. A rotation of 90°[image: -*-]—or any multiple of
it—about a vertex such as A[image: -*-] gives the same pattern all over
again. A crystal with such a structure would have square corners on
the outside, but inside it is more complicated than a simple cube.





Now that we have described some special examples, let’s try to figure
out all the possible symmetries a crystal can have. First, we consider
what happens in a plane. A plane lattice can
be defined by the two so-called primitive vectors that go from
one point of the lattice to the two nearest equivalent points.
The two vectors 1 and 2 are the primitive vectors of the
lattice of Fig. 30–1. The two vectors a[image: -*-] and b[image: -*-]
of Fig. 30–7(a) are the primitive vectors of the pattern
there. We could, of course, equally well replace a[image: -*-] by −a[image: -*-], or
b[image: -*-] by −b[image: -*-]. Since a[image: -*-] and b[image: -*-] are equal in magnitude
and at right angles, a rotation of 90°[image: -*-] turns a[image: -*-]
into b[image: -*-], and b[image: -*-] into −a[image: -*-], giving the same lattice once
again.





We see that there are lattices which have a “four-sided”
symmetry. And we have described earlier a close-packed array based on
a hexagon which could have a six-sided symmetry. A rotation of the
array of circles in Fig. 30–5(a) by an angle
of 60°[image: -*-] about the center of any circle brings the pattern back to
itself.





What other kinds of rotational symmetry are there? Can we have, for
example, a fivefold or an eightfold rotational symmetry? It is easy to
see that they are impossible. The only symmetry with more sides
than four is a six-sided symmetry. First, let’s show that more than
sixfold symmetry is impossible. Suppose we try to imagine a lattice with
two equal primitive vectors with an enclosed angle less than 60°[image: -*-],
as in Fig. 30–8(a). We are to suppose that points B[image: -*-]
and C[image: -*-] are equivalent to A[image: -*-], and that a[image: -*-] and b[image: -*-] are the two
shortest vectors from A[image: -*-] to its equivalent neighbors. But that
is clearly wrong, because the distance between B[image: -*-] and C[image: -*-] is shorter
than from either one to A[image: -*-]. There must be a neighbor at D[image: -*-] equivalent
to A[image: -*-] which is closer than B[image: -*-] or C[image: -*-]. We should have chosen b′[image: -*-]
as one of our primitive vectors. So the angle between the two primitive
vectors must be 60°[image: -*-] or larger. Octagonal symmetry is not
possible.




[image: -][image: -]
Fig. 30–8. 
(a) Rotational symmetries greater than sixfold are not
possible. (b) Fivefold rotational symmetry is not possible.





What about fivefold symmetry? If we assume that the primitive vectors
a[image: -*-] and b[image: -*-] have equal lengths and make an angle
of 2 π/5=72°[image: -*-], as in Fig. 30–8(b), then there should also be
an
equivalent lattice point at D[image: -*-], at 72°[image: -*-] from C[image: -*-]. But the
vector b′[image: -*-] from E[image: -*-] to D[image: -*-] is then less than b[image: -*-], so b[image: -*-]
is not a primitive vector. There can be no fivefold symmetry. The only
possibilities that do not get us into this kind of difficulty are
θ=60°[image: -*-], 90°[image: -*-], or 120°[image: -*-]. Zero or 180°[image: -*-] are
also clearly possible. One way of stating our result is that the
pattern can be left unchanged by a rotation of one full turn (no
change at all), one-half of a turn, one-third, one-fourth, or
one-sixth of a turn. And those are all the possible rotational
symmetries in a plane—a total of five. If θ=2 π/n[image: -*-], we speak
of an “n[image: -*-]-fold” symmetry. We say that a pattern with n[image: -*-] equal
to 4 or to 6 has a “higher symmetry” than one with n[image: -*-] equal to 1
or to 2.





Returning to Fig. 30–7(a), we see that the pattern has a fourfold
rotational symmetry. We have drawn in Fig. 30–7(b) another design
which has the same symmetry properties as part (a). The little
comma-like figures are asymmetric objects which serve to define the
symmetry of the design inside of each square. Notice that the commas
are reversed in alternate squares, so that the unit cell is larger
than one of the small squares. If there were no commas, the pattern
would still have fourfold symmetry, but the unit cell would be
smaller. The patterns of Fig. 30–7 also have other symmetry
properties. For instance, a reflection about any of the broken
lines R[image: -*-]–R[image: -*-] reproduces the same pattern.





The patterns of Fig. 30–7 have still another kind of symmetry. If
the pattern is reflected about the line Y[image: -*-]–Y[image: -*-] and shifted
one square to the right (or left), we get back the original
pattern. The line Y[image: -*-]–Y[image: -*-] is called a “glide” line.





These are all the possible symmetries in two dimensions. There is one
more spatial symmetry operation which is equivalent in two
dimensions to a 180°[image: -*-] rotation, but which is a quite distinct
operation in three dimensions. It is inversion. By an inversion
we mean that any point at the vector displacement R[image: -*-] from some
origin [for instance, the point A[image: -*-] in Fig. 30–9(b)] is moved to
the point at −R[image: -*-].




[image: -][image: -][image: -][image: -][image: -][image: -][image: -][image: -]Fig. 30–9. 
Symmetry under inversion. Pattern (b) is unchanged if
R→−R[image: -*-], but pattern (a) is changed. In three dimensions
pattern (d) is symmetric under an inversion but (c) is not.





An inversion of pattern (a) of Fig. 30–9 produces a new pattern,
but an inversion of pattern (b) reproduces the same pattern. For a
two-dimensional pattern (as you can see from the figure), an inversion
of the pattern (b) through the point A[image: -*-] is equivalent to a rotation
of 180°[image: -*-] about the same point. Suppose, however, we make the
pattern in Fig. 30–9(b) three dimensional by imagining that the
little 6’s and 9’s each have an “arrow” pointing out of
the page. After an inversion in three dimensions all the arrows will
be reversed, so the pattern is not reproduced. If we indicate
the heads and tails of the arrows by dots and crosses, respectively,
we can make a three-dimensional pattern, as in Fig. 30–9(c),
which is not symmetric under an inversion, or we can make a
pattern like the one shown in(d), which does have such a
symmetry. Notice that it is not possible to imitate a
three-dimensional inversion by any combination of rotations.





If we characterize the “symmetry” of a pattern—or lattice—by the
kinds of symmetry operations we have been describing, it turns out that
for two dimensions 17[image: -*-] distinct patterns are possible. We have drawn
one pattern of the lowest possible symmetry in Fig. 30–1,
and one of high symmetry in Fig. 30–7. We will leave you
with the game of trying to figure out all of the 17[image: -*-] possible patterns.





It is peculiar how few of the 17[image: -*-] possible patterns are used in
making wallpaper and fabrics. One always sees the same three or four
basic patterns. Is this because of a lack of imagination of designers,
or because many of the possible patterns are not pleasing to the eye?





 


30–6 Symmetries in three dimensions


So far we have talked only about patterns in two dimensions. What we are
really interested in, however, are patterns of atoms in three
dimensions. First, it is clear that a three-dimensional crystal will
have three primitive vectors. If we then ask about the possible
symmetry operations in three dimensions, we find that there are
230[image: -*-] different possible symmetries! For some purposes, these
230[image: -*-] types can be grouped into seven classes, which are drawn in
Fig. 30–10. The lattice with the least symmetry is called
the triclinic. Its unit cell is a parallelepiped. The
primitive vectors are of different lengths, and no two of the angles
between them are equal. There is no possibility of any rotational or
reflection symmetry. There are, however, still two possible
symmetries—the unit cell is, or is not, changed by an inversion
through the vertex. (By an inversion in three dimensions, we again mean
that spatial displacements R[image: -*-] are replaced by −R[image: -*-]—in other
words, that (x,y,z)[image: -*-] goes into (−x,−y,−z)[image: -*-]). So the triclinic lattice
has only two possible symmetries, unless there is some special relation
among the primitive vectors. For example, if all the vectors are equal
and are separated by equal angles, one has the trigonal
lattice
shown in the figure. This figure can have an additional symmetry; it may
be unchanged by a rotation about the long, body diagonal.




[image: -][image: -][image: -][image: -][image: -][image: -][image: -][image: -][image: -][image: -][image: -][image: -][image: -][image: -]Fig. 30–10. 
The seven classes of crystal lattices.





If one of the primitive vectors, say c[image: -*-], is at right angles to the
other two, we get a monoclinic unit cell. A new
symmetry is possible—a rotation by 180°[image: -*-] about c[image: -*-]. The
hexagonal cell is a special case in which the vectors a[image: -*-]
and b[image: -*-] are equal and the angle between them is 60°[image: -*-], so that
a rotation of 60°[image: -*-], or 120°[image: -*-], or 180°[image: -*-] about the
vector c[image: -*-] repeats the same lattice (for certain internal
symmetries).





If all three primitive vectors are at right angles, but of different
lengths, we get the orthorhombic cell. The figure is
symmetric for rotations of 180°[image: -*-] about the three axes. Higher-order
symmetries are possible with the tetragonal cell, which has all right
angles and two equal primitive vectors. Finally, there is the
cubic cell, which is the most symmetric of all.





The point of all this discussion about symmetries is that the internal
symmetries of the crystals show up—sometimes in subtle ways—in the
macroscopic physical properties of the crystal. For instance, a
crystal will, in general, have a tensor electric polarizability. If we
describe the tensor in terms of the ellipsoid of polarization, we
should expect that some of the crystal symmetries should show up also
in the ellipsoid. For example, a cubic crystal is symmetric with
respect to a rotation of 90°[image: -*-] about any one of three orthogonal
directions. Clearly, the only ellipsoid with this property is a
sphere. A cubic crystal must be an isotropic dielectric.





On the other hand, a tetragonal crystal has a fourfold rotational
symmetry. Its ellipsoid must have two of its principal axes equal, and
the third must be parallel to the axis of the crystal. Similarly,
since the orthorhombic crystal has twofold rotational symmetry about
three orthogonal axes, its axes must coincide with the axes of the
polarization ellipsoid. In a like manner, one of the axes of a
monoclinic crystal must be parallel to one of the principal
axes of the ellipsoid, though we can’t say anything about the other
axes. Since a triclinic crystal has no rotational symmetry, the
ellipsoid can have any orientation at all.





As you can see, we can make a big game of figuring out the possible
symmetries and relating them to the possible physical tensors. We have
considered only the polarization tensor, but things get more
complicated for others—for instance, for the tensor of
elasticity. There is a branch of mathematics called “group theory”
that deals with such subjects, but usually you can figure out what you
want with common sense.





 


30–7 The strength of metals


We have said that metals usually have a simple cubic crystal
structure; we want now to discuss their mechanical properties—which
depend on this structure. Metals are, generally speaking, very
“soft,” because it is easy to slide one layer of the crystal over
the next. You may think: “That’s ridiculous; metals are strong.” Not
so, a single crystal of a metal can be distorted very easily.




[image: -][image: -]
Fig. 30–11. 
Slippage of crystal planes.





Suppose we look at two layers of a crystal subjected to a shear force,
as shown in the diagram of Fig. 30–11(a). You might at first think
the whole layer would resist motion until the force was big enough to
push the whole layer “over the hump,” so that it shifted one notch
to the left. Although slipping does occur along a plane, it doesn’t
happen that way. (If it did, you would calculate that the metal is
much stronger than it really is.) What happens is more like one atom
going at a time; first the atom on the left makes its jump, then the
next, and so on, as indicated in Fig. 30–11(b). In effect it is the
vacant space between two atoms that quickly travels to the right, with
the net result that the whole second layer has moved over one atomic
spacing. The slipping goes this way because it takes much less energy
to lift one atom at a time over the hump than to lift a whole
row. Once the force is enough to start the process, it goes the rest
of the way very fast.





It turns out that in a real crystal, slipping will occur repeatedly at
one plane, then will stop there and start at some other plane. The
details of why it starts and stops are quite mysterious. It is, in
fact, quite strange that successive regions of slip are often fairly
evenly spaced. Figure 30–12 shows a photograph of a tiny thin
copper
crystal that has been stretched. You can see the various planes where
slipping has occurred.




[image: -]
Fig. 30–12. 
A photograph of a small crystal of copper after stretching. [Courtesy
of S. S. Brenner, Senior Scientist, United States Steel Research Center,
Monroeville, Pa.]





The sudden slipping of individual crystal planes is quite apparent if
you take a piece of tin wire that has large crystals in it and stretch
it while holding it next to your ear. You can hear a rush of “ticks”
as the planes snap to their new positions, one after the other.





The problem of having a “missing” atom in one row is somewhat more
difficult than it might appear from Fig. 30–11. When there
are more layers, the situation must be something like that shown in
Fig. 30–13. Such an imperfection in a crystal is called a
dislocation. It is presumed that such
dislocations are either present when the crystal was formed or are
generated at some notch or crack at the surface. Once they are produced,
they can move relatively freely through the crystal. The gross
distortions result from the motions of many of such dislocations.




[image: -][image: -]
Fig. 30–13. 
A dislocation in a crystal.





Dislocations can move freely—that is, they require little extra
energy—so long as the rest of the crystal has a perfect lattice. But
they may get “stuck” if they encounter some other kind of
imperfection in the crystal. If it takes a lot of energy for them to
pass the imperfection, they will be stopped. This is precisely the
mechanism that gives strength to imperfect metal crystals. Pure
iron crystals are quite soft, but a small concentration of impurity
atoms may cause enough imperfections to effectively immobilize the
dislocations. As you know, steel, which is primarily iron, is very
hard. To make steel, a small amount of carbon is dissolved in the iron
melt; if the melt is cooled rapidly, the carbon precipitates out in
little grains, making many microscopic distortions in the lattice. The
dislocations can no longer move about, and the metal is hard.





Pure copper is very soft, but can be “work-hardened.” This is done
by hammering on it or bending it back and forth. In this case, many
new dislocations of various kinds are made which interfere with one
another, cutting down their mobility. Perhaps you’ve seen the trick of
taking a bar of “dead soft” copper and gently bending it around
someone’s wrist as a bracelet. In the process, it becomes
work-hardened and cannot easily be unbent again! A work-hardened metal
like copper can be made soft again by annealing at a high
temperature. The thermal motion of the atoms “irons out” the
dislocations and makes large single crystals again. We have, so far,
described only the so-called slip dislocation. There are many other kinds,
one of which is the screw dislocation shown in
Fig. 30–14. Such dislocations often play an important part
in crystal growth.




[image: -][image: -]
Fig. 30–14. 
A screw dislocation. [From Charles Kittel, Introduction
to Solid State Physics, John Wiley and Sons, Inc., New York, 2nd ed.,
1956.]





 


30–8 Dislocations and crystal growth


One of the great puzzles for a long time was how crystals can possibly
grow. We have described how it is that each atom might, by repeated
testing, determine whether it was better to be in the crystal or not.
But that means that each atom must find a place of low energy. However,
an atom put on a new surface is only bound by one or two bonds from
below, and doesn’t have the same energy it would have if it were placed
in a corner, where it would have atoms on three sides. Suppose we
imagine a growing crystal as a stack of blocks, as shown in
Fig. 30–15. If we try a new block at, say, position A[image: -*-], it
will have only one of the six neighbors it should ultimately get. With
so many bonds lacking, its energy is not very low. It would be better
off at position B[image: -*-], where it already has one-half of its quota of
bonds. Crystals do indeed grow by attaching new atoms at places
like B[image: -*-].




[image: -][image: -]
Fig. 30–15. 
Crystal growth.





What happens, though, when that line is finished? To start a new line,
an atom must come to rest with only two sides attached, and that is
again not very likely. Even if it did, what would happen when the
layer was finished? How could a new layer get started? One answer is
that the crystal prefers to grow at a dislocation, for instance around
a screw dislocation like the one shown in Fig. 30–14. As blocks are
added to this crystal, there is always some place where there are three
available bonds. The crystal prefers, therefore, to grow with a
dislocation built in. Such a spiral pattern of growth is shown in
Fig. 30–16, which is a photograph of a single crystal of
paraffin.




[image: -]
Fig. 30–16. 
A paraffin crystal which has grown around a screw dislocation.
[From Charles Kittel, Introduction to Solid State Physics, John
Wiley and Sons, Inc., New York, 2nd ed., 1956.]





 


30–9 The Bragg-Nye crystal model


We cannot, of course, see what goes on with the individual atoms in a crystal.
Also, as you realize by now, there are many complicated phenomena that are not
easy to treat quantitatively. Sir Lawrence Bragg and J. F. Nye
have devised a scheme for making a model of a metallic crystal which
shows in a striking way many of the phenomena that are believed to occur in a
real metal. In the following pages we have reproduced their original article,
which describes their method and shows some of the results they obtained with
it. (The article is reprinted from the Proceedings of the Royal Society
of London, Vol. 190, September 1947, pp. 474–481—with the permission of the
authors and of the Royal Society.)











A dynamical model of a crystal structure

By Sir Lawrence Bragg, F.R.S. and J. F. Nye
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		The crystal structure of a metal is represented by an assemblage of bubbles, a 
		millimetre or less in diameter, floating on the surface of a soap solution. The 
		bubbles are blown from a fine pipette beneath the surface with a constant air 
		pressure, and are remarkably uniform in size. They are held together by surface 
		tension, either in single layer on the surface or in a three-dimensional mass. 
		An assemblage may contain hundreds of thousands of bubbles and persists for an 
		hour or more. The assemblages show structures which have been supposed to exist 
		in metals, and simulate effects which have been observed, such as, grain 
		boundaries, dislocations and other types of fault, slip, recrystallization, 
		annealing, and strains due to ‘foreign’ atoms. 	



1. The bubble model


Models of crystal structure have been described from time to time in
which the atoms are represented by small floating or suspended magnets, or by
circular disks floating on a water surface and held together by the forces of
capillary attraction. These models have certain disadvantages; for instance, in
the case of floating objects in contact, frictional forces impede their free
relative movement. A more serious disadvantage is that the number of components
is limited, for a large number of components is required in order to approach
the state of affairs in a real crystal. The present paper describes the
behaviour of a model in which the atoms are represented by small bubbles from
2⋅0[image: -*-] to 0⋅1[image: -*-] mm. in diameter floating on the
surface of a soap solution. These small bubbles are sufficiently persistent for
experiments lasting an hour or more, they slide past each other without
friction, and they can be produced in large numbers. Some of the illustrations
in this paper were taken from assemblages of bubbles numbering 100,000[image: -*-] or
more. The model most nearly represents the behaviour of a metal structure,
because the bubbles are of one type only and are held together by a general
capillary attraction, which represents the binding force of the free electrons
in the metal. A brief description of the model has been given in the
Journal of Scientific Instruments (Bragg 1942b).




[image: -][image: -]
Figure 1.   
Apparatus for producing rafts of bubbles.





2. Method of formation


The bubbles are blown from a fine orifice, beneath the surface of a soap
solution. We have had the best results with a solution the formula of which was
given to us by Mr Green of the Royal Institution. 15⋅2[image: -*-] c.c.
of oleic acid (pure redistilled) is well shaken in 50[image: -*-] c.c. of
distilled water. This is mixed thoroughly with 73[image: -*-] c.c. of 10%
solution of tri-ethanolamine and the mixture made up to 200[image: -*-] c.c. To this is
added 164[image: -*-] c.c. of pure glycerine. It is left to stand and the clear
liquid is drawn off from below. In some experiments this was diluted in three
times its volume of water to reduce viscosity. The orifice of the jet is about
5 mm. below the surface. A constant air pressure of 50[image: -*-]
to 200[image: -*-] cm. of water is supplied by means of two Winchester flasks.
Normally the bubbles are remarkably uniform in size. Occasionally they issue in
an irregular manner, but this can be corrected by a change of jet or of
pressure. Unwanted bubbles can easily be destroyed by playing a small flame over
the surface. Figure 1 shows the apparatus. We have found it of advantage to
blacken the bottom of the vessel, because details of structure, such as grain
boundaries and dislocations, then show up more clearly.






Figure 2, plate 8, shows a portion of a raft or two-dimensional crystal of
bubbles. Its regularity can be judged by looking at the figure in a glancing
direction. The size of the bubbles varies with the aperture, but does not appear
to vary to any marked degree with the pressure or the depth of the orifice
beneath the surface. The main effect of increasing the pressure is to increase
the rate of issue of the bubbles. As an example, a thick-walled jet of
49[image: -*-] μ[image: -*-] bore with a pressure of 100[image: -*-] cm. produced bubbles of
1⋅2[image: -*-] mm. in diameter. A thin-walled jet of 27[image: -*-] μ[image: -*-]
diameter and a pressure of 180[image: -*-] cm. produced bubbles of
0⋅6[image: -*-] mm. diameter. It is convenient to refer to bubbles of
2⋅0[image: -*-] to 1⋅0[image: -*-] mm. diameter as ‘large’ bubbles,
those from 0⋅8[image: -*-] to 0⋅6[image: -*-] mm. diameter as ‘medium’
bubbles, and those from 0⋅3[image: -*-] to 0⋅1[image: -*-] mm.
diameter as ‘small’ bubbles, since their behaviour varies with their size.




[image: -][image: -]
Figure 3.   
Apparatus for producing bubbles of small size.






With this apparatus we have not found it possible to reduce the size of the jet
and so produce bubbles of smaller diameter than 0⋅6[image: -*-] mm. As it was
desired to experiment with very small bubbles, we had recourse to placing the
soap solution in a rotating vessel and introducing a fine jet as nearly as
possible parallel to a stream line. The bubbles are swept away as they form, and
under steady conditions are reasonably uniform. They issue at a rate of one
thousand or more per second, giving a high-pitched note. The soap solution
mounts up in a steep wall around the perimeter of the vessel while it is
rotating, but carries back most of the bubbles with it when rotation ceases.
With this device, illustrated in figure 3, bubbles down to
0⋅12[image: -*-] mm. in diameter can be obtained. As an example, an
orifice 38[image: -*-] μ[image: -*-] across in a thin-walled jet, with a pressure of
190[image: -*-] cm. of water, and a speed of the fluid of 180[image: -*-] cm./sec.
past the orifice, produced bubbles of 0⋅14[image: -*-] mm. diameter. In
this case a dish of diameter 9⋅5[image: -*-] cm. and speed of
6 rev./sec. was used. Figure 4, plate 8, is an enlarged picture of
these ‘small’ bubbles and shows their degree of regularity; the pattern is not
as perfect with a rotating as with a stationary vessel, the rows being seen to
be slightly irregular when viewed in a glancing direction.






These two-dimensional crystals show structures which have been
supposed to exist in metals, and simulate effects which have been
observed, such as grain boundaries, dislocations and other types of
fault, slip, recrystallization, annealing, and strains due to
‘foreign’ atoms.





3. Grain boundaries


Figures 5a, 5b and 5c, plates 9 and 10, show typical
grain boundaries for bubbles of 1⋅87[image: -*-], 0⋅76[image: -*-]
and 0⋅30[image: -*-] mm. diameter respectively. The width of the
disturbed area at the boundary, where the bubbles have an irregular
distribution, is in general greater the smaller the bubbles. In
figure 5a, which shows portions of several adjacent grains, bubbles at
a boundary between two grains adhere definitely to one crystalline arrangement
or the other. In figure 5c there is a marked ‘Beilby layer’ between the
two grains. The small bubbles, as will be seen, have a greater rigidity than the
large ones, and this appears to give rise to more irregularity at the interface.






Separate grains show up distinctly when photographs of polycrystalline
rafts such as figures 5a to 5c, plates 9 and 10, and
figures 12a to 12e, plates 14 to 16, are viewed
obliquely. With suitable lighting, the floating raft of bubbles itself
when viewed obliquely resembles a polished and etched metal in a
remarkable way.






It often happens that some ‘impurity atoms’, or bubbles which are
markedly larger or smaller than the average, are found in a
polycrystalline raft, and when this is so a large proportion of them
are situated at the grain boundaries. It would be incorrect to say
that the irregular bubbles make their way to the boundaries; it is a
defect of the model that no diffusion of bubbles through the structure
can take place, mutual adjustments of neighbours alone being
possible. It appears that the boundaries tend to readjust themselves
by the growth of one crystal at the expense of another till they pass
through the irregular atoms.





4. Dislocations


When a single crystal or polycrystalline raft is compressed, extended,
or otherwise deformed it exhibits a behaviour very similar to that
which has been pictured for metals subjected to strain. Up to a
certain limit the model is within its elastic range. Beyond that point
it yields by slip along one of the three equally inclined directions
of closely packed rows. Slip takes place by the bubbles in one row
moving forward over those in the next row by an amount equal to the
distance between neighbours. It is very interesting to watch this
process taking place. The movement is not simultaneous along the whole
row but begins at one end with the appearance of a ‘dislocation’,
where there is locally one more bubble in the rows on one side of the
slip line as compared with those on the other. This dislocation then
runs along the slip line from one side of the crystal to the other,
the final result being a slip by one ‘inter-atomic’ distance. Such a
process has been invoked by Orowan, by Polanyi and by Taylor to
explain the small forces required to produce plastic gliding in metal
structures. The theory put forward by Taylor (1934) to explain the
mechanism of plastic deformation of crystals considers the mutual
action and equilibrium of such dislocations. The bubbles afford a very
striking picture of what has been supposed to take place in the
metal. Sometimes the dislocations run along quite slowly, taking a
matter of seconds to cross a crystal; stationary dislocations also are
to be seen in crystals which are not homogeneously strained. They
appear as short black lines, and can be seen in the series of
photographs, figures 12a to 12e, plates 14 to 16. When
a polycrystalline raft is compressed, these dark lines are seen to be
dashing about in all directions across the crystals.






Figures 6a, 6b and 6c, plates 10 and 11,
show examples of dislocations. In figure 6a, where the
diameter of the bubbles is 1⋅9[image: -*-] mm., the dislocation is
very local, extending over about six bubbles. In figure 6b
(diameter 0⋅76[image: -*-] mm.) it extends over twelve bubbles, and
in figure 6c (diameter 0⋅30[image: -*-] mm.) its influence
can be traced for a length of about fifty bubbles. The greater
rigidity of the small bubbles leads to longer dislocations. The study
of any mass of bubbles shows, however, that there is not a standard
length of dislocation for each size. The length depends upon the
nature of the strain in the crystal. A boundary between two crystals
with corresponding axes at approximately 30°[image: -*-] (the maximum angle
which can occur) may be regarded as a series of dislocations in
alternate rows, and in this case the dislocations are very short. As
the angle between the neighbouring crystals decreases, the
dislocations occur at wider intervals and at the same time become
longer, till one finally has single dislocations in a large body of
perfect structure as shown in figures 6a, 6b
and 6c.






Figure 7, plate 11, shows three parallel dislocations. If we call them
positive and negative (following Taylor) they are positive, negative,
positive, reading from left to right. The strip between the last two
has three bubbles in excess, as can be seen by looking along the rows
in a horizontal direction. Figure 8, plate 12, shows a dislocation
projecting from a grain boundary, an effect often observed.






Figure 9, plate 12, shows a place where two bubbles take the place of
one. This may be regarded as a limiting case of positive and negative
dislocations on neighbouring rows, with the compressive sides of the
dislocations facing each other. The contrary case would lead to a hole
in the structure, one bubble being missing at the point where the
dislocations met.





5. Other types of fault


Figure 10, plate 12, shows a narrow strip between two crystals of
parallel orientation, the strip being crossed by a number of fault
lines where the bubbles are not in close packing. It is in such places
as these that recrystallization may be expected. The boundaries
approach and the strip is absorbed into a wider area of perfect
crystal.






Figures 11a to 11g, plates 13 and 14 are examples of
arrangements which frequently appear in places where there is a local
deficiency of bubbles. While a dislocation is seen as a dark stripe in
a general view, these structures show up in the shape of the letter
V or as triangles. A typical V structure is seen in
figure 11a. When the model is being distorted, a V
structure is formed by two dislocations meeting at an inclination
of 60°[image: -*-]; it is destroyed by the dislocations continuing along their
paths. Figure 11b shows a small triangle, which also embodies
a dislocation, for it will be noticed that the rows below the fault
have one more bubble than these below. If a mild amount of ‘thermal
movement’ is imposed by gentle agitation of one side of the crystal,
such faulty places disappear and a perfect structure is formed.






Here and there in the crystals there is a blank space where a bubble
is missing, showing as a black dot in a general view. Examples occur
in figure 11g. Such a gap cannot be closed by a local
readjustment, since filling the hole causes another to appear. Such
holes both appear and disappear when the crystal is
‘cold-worked’. These structures in the model suggest that similar
local faults may exist in an actual metal. They may play a part in
processes such as diffusion or the order-disorder change by reducing
energy barriers in their neighbourhood, and act as nuclei for
crystallization in an allotropic change.





6. Recrystallization and annealing


Figures 12a to 12e, plates 14 to 16, show the same raft of
bubbles at successive times. A raft covering the surface of the solution was
given a vigorous stirring with a glass rake, and then left to adjust itself.
Figure 12a shows its aspect about 1 sec. after stirring has
ceased. The raft is broken into a number of small ‘crystallites’; these are in a
high state of non-homogeneous strain as is shown by the numerous dislocations
and other faults. The following photograph (figure 12b) shows the same
raft 32[image: -*-] sec. later. The small grains have coalesced to form larger
grains, and much of the strain has disappeared in the process. Recrystallization
takes place right through the series, the last three photographs of which show
the appearance of the raft 2, 14[image: -*-] and 25[image: -*-] min. after the initial
stirring. It is not possible to follow the rearrangement for much longer times,
because the bubbles shrink after long standing, apparently due to the diffusion
of air through their walls, and they also become thin and tend to burst. No
agitation was given to the model during this process. An ever slower process of
rearrangement goes on, the movement of the bubbles in one part of the raft
setting up strains which activate a rearrangement in a neighbouring part, and
that in its turn still another.






A number of interesting points are to be seen in this series. Note the
three small grains at the points indicated by the co-ordinates A A[image: -*-],
B B[image: -*-], C C[image: -*-]. A[image: -*-] persists, though changed in form, throughout the whole
series. B[image: -*-] is still present after 14[image: -*-] min., but has disappeared in
25[image: -*-] min., leaving behind it four dislocations marking internal strain
in the grain. Grain C[image: -*-] shrinks and finally disappears in
figure 12d, leaving a hole and a V which has
disappeared in figure 12e. At the same time the ill-defined
boundary in figure 12d at D D[image: -*-] has become a definite one in
figure 12e. Note also the straightening out of the grain
boundary in the neighbourhood of E E[image: -*-] in figures 12b
to 12e. Dislocations of various lengths can be seen, marking
all stages between a slight warping of the structure and a definite
boundary. Holes where bubbles are missing show up as black dots. Some of
these holes are formed or filled up by movements of dislocations, but
others represent places where a bubble has burst. Many examples of
V’s and some of triangles can be seen. Other interesting points
will be apparent from a study of this series of photographs.






Figures 13a, 13b and 13c, plate 17, show a portion of
a raft 1 sec., 4 sec. and 4 min. after the stirring
process, and is interesting as showing two successive stages in the relaxation
towards a more perfect arrangement. The changes show up well when one looks in a
glancing direction across the page. The arrangement is very broken in
figure 13a. In figure 13b the bubbles have grouped themselves
in rows, but the curvature of these rows indicates a high degree of internal
strain. In figure 13c this strain has been relieved by the formation of
a new boundary at A[image: -*-]–A[image: -*-], the rows on either side now being straight. It would
appear that the energy of this strained crystal is greater than that of the
intercrystalline boundary. We are indebted to Messrs Kodak for the photographs
of figure 13, which were taken when the cinematograph film referred to below was
produced.





7. Effect of impurity atom


Figure 14, plate 18, shows the widespread effect of a bubble which is
of the wrong size. If this figure is compared with the perfect rafts
shown in figures 2 and 4, plate 8, it will be seen that three bubbles,
one larger and two smaller than normal, disturb the regularity of the
rows over the whole of the figure. As has been mentioned above,
bubbles of the wrong size are generally found in the grain boundaries,
where holes of irregular size occur which can accommodate them.





8. Mechanical properties of the two-dimensional model


The mechanical properties of a two-dimensional perfect raft have been
described in the paper referred to above (Bragg 1942b). The
raft lies between two parallel springs dipping horizontally in the
surface of the soap solution. The pitch of the springs is adjusted to
fit the spacing of the rows of bubbles, which then adhere firmly to
them. One spring can be translated parallel to itself by a micrometer
screw, and the other is supported by two thin vertical glass
fibres. The shearing stress can be measured by noting the deflexion of
the glass fibres. When subjected to a shearing strain, the raft obeys
Hooke’s law of elasticity up to the
point where the elastic limit is
reached. It then slips along some intermediate row by an amount equal
to the width of one bubble. The elastic shear and slip can be repeated
several times. The elastic limit is approximately reached when one
side of the raft has been sheared by an amount equal to a bubble width
past the other side. This feature supports the basic assumption made
by one of us in the calculation of the elastic limit of a metal (Bragg
1942a), in which it is supposed that each crystallite in a
cold-worked metal only yields when the strain in it has reached such a
value that energy is released by the slip.






A calculation has been made by M. M. Nicolson of the forces between the
bubbles, and will be published shortly. It shows two interesting points. The
curve for the variation of potential energy with distance between centres is
very similar to those which have been plotted for atoms. It has a minimum for a
distance between centres slightly less than a free bubble diameter, and rises
sharply for smaller distances. Further, the rise is extremely sharp for bubbles
of 0⋅1[image: -*-] mm. diameter but much less so for bubbles
of 1 mm. diameter, thus confirming the impression given by the model
that the small bubbles behave as if they were much more rigid than the large
ones.





9. Three-dimensional assemblages


If the bubbles are allowed to accumulate in multiple layers on the
surface, they form a mass of three-dimensional ‘crystals’ with one of
the arrangements of closest packing. Figure 15, plate 18, shows an
oblique view of such a mass; its resemblance to a polished and etched
metal surface is noticeable. In figure 16, plate 20, a similar mass is
seen viewed normally. Parts of the structure are definitely in cubic
closest packing, the outer surface being the (111)[image: -*-] face or (100)[image: -*-]
face. Figure 17a, plate 19, shows a (111)[image: -*-] face. The
outlines of the three bubbles on which each upper bubble rests can be
clearly seen, and the next layer of these bubbles is faintly visible
in a position not beneath the uppermost layer, showing that the
packing of the (111)[image: -*-] planes has the well-known cubic
succession. Figure 17b, plate 19, shows a (100)[image: -*-] face with
each bubble resting on four others. The cubic axes are of course
inclined at 45°[image: -*-] to the close-packed rows of the surface
layer. Figure 17c, plate 19, shows a twin in the cubic
structure across the face (111)[image: -*-]. The uppermost faces are (111)[image: -*-] and
(100)[image: -*-], and they make a small angle with each other, though this is
not apparent in the figure; it shows up in an oblique view.
Figure 17d, plate 19, appears to show both the cubic and
hexagonal succession of closely packed planes, but it is difficult to
verify whether the left-hand side follows the true hexagonal
close-packed structure because it is not certain that the assemblage had
a depth of more than two layers at this point. Many instances of twins,
and of intercrystalline boundaries, can be seen in figure 16, plate 20.






Figure 18, plate 21, shows several dislocations in a three-dimensional
structure subjected to a bending strain.





10. Demonstration of the model


With the co-operation of Messrs Kodak, a 16[image: -*-] mm. cinematograph film has
been made of the movements of the dislocations and grain boundaries when single
crystal and polycrystalline rafts are sheared, compressed, or extended.
Moreover, if the soap solution is placed in a glass vessel with a flat bottom,
the model lends itself to projection on a large scale by transmitted light.
Since a certain depth is required for producing the bubbles, and the solution is
rather opaque, it is desirable to make the projection through a glass block
resting on the bottom of the vessel and just submerged beneath the surface.






In conclusion, we wish to express our thanks to Mr C. E. Harrold, of
King’s College, Cambridge, who made for us some of the pipettes which were used
to produce the bubbles.
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[image: -]
Figure 2.   
Perfect crystalline raft of bubbles. Diameter 1⋅41[image: -*-] mm.




[image: -]
Figure 4.   
Perfect crystalline raft of bubbles. Diameter 0⋅30[image: -*-] mm.
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Figure 5a.   
Diameter 1⋅87[image: -*-] mm.
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Figure 5b.   
Diameter 0⋅76[image: -*-] mm.




[image: -]
Figure 5c.   
A grain boundary. Diameter 0⋅30[image: -*-] mm.



[image: -]
Figure 6a.   
A dislocation. Diameter 1⋅9[image: -*-] mm.




[image: -]
Figure 6b.   
Diameter 0⋅76[image: -*-] mm.




[image: -]
Figure 6c.   
Diameter 0⋅30[image: -*-] mm.




[image: -]
Figure 7.   
Parallel dislocations. Diameter 0⋅76[image: -*-] mm.




[image: -]
Figure 8.   
Dislocation projecting from a grain boundary. Diameter 0⋅30[image: -*-] mm.




[image: -]
Figure 9.   
Dislocations in adjacent rows. Diameter 1⋅9[image: -*-] mm.




[image: -]
Figure 10.   
Series of fault lines between two areas of parallel orientation. Diameter 0⋅30[image: -*-] mm.






[image: -]
			Diameter 0⋅68[image: -*-] mm.
a.  



[image: -]
			Diameter 0⋅68[image: -*-] mm.
b.  






[image: -]
			Diameter 0⋅6[image: -*-] mm.
c.  



[image: -]
			Diameter 0⋅30[image: -*-] mm.
d.  






[image: -]
			Diameter 0⋅6[image: -*-] mm.
e.  



[image: -]
			Diameter 0⋅6[image: -*-] mm.
f.  






[image: -]
			Diameter 0⋅68[image: -*-] mm.
g.  





		Figure 11.   Types of fault.




[image: -]
			a.  Immediately after stirring.  



[image: -]
			b.   After 33[image: -*-] sec.  



[image: -] c.   After 2 min.  



[image: -]
			d.   After 14[image: -*-] min.  



[image: -]
			e.   After 25[image: -*-] min.  



 Figure 12.  Recrystallization. Diameter 0⋅60[image: -*-] mm.  




[image: -]
			a.   After 1 sec.  



[image: -]
			b.   After 4 sec.  



[image: -]
			c.   After 4 min.  



Figure 13. Two stages of recrystallization. Diameter 1⋅64[image: -*-] mm.
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Figure 14.   
Effect of atoms of impurity. Diameter of uniform bubbles about 1⋅3[image: -*-] mm.
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Figure 15.   
Oblique view of three-dimensional raft.






[image: -]
			a.   (111)[image: -*-] face.
		


[image: -]
			b.   (100)[image: -*-] face.
		


			Face-centered cubic structure.




[image: -]
			c.   Twin across (111)[image: -*-], cubic structure.
				


[image: -]
			d.   Possible example of hexagonal close-packing.
		




		Diameter 0⋅70[image: -*-] mm.
Figure 17 



[image: -]
Figure 16.   
A three-dimensional raft viewed normally. Diameter 0⋅70[image: -*-] mm.
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Figure 18.   
Dislocations in three-dimensional structure. Diameter 0⋅70[image: -*-] mm.
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31–1 The tensor of polarizability


Physicists always have a habit of taking the simplest example of any
phenomenon and calling it “physics,” leaving the more complicated
examples to become the concern of other fields—say of applied
mathematics, electrical engineering, chemistry, or
crystallography. Even solid-state physics is almost only half physics
because it worries too much about special substances. So in these
lectures we will be leaving out many interesting things. For instance,
one of the important properties of crystals—or of most
substances—is that their electric polarizability is different in
different directions. If you apply a field in any direction, the
atomic charges shift a little and produce a dipole moment, but the
magnitude of the moment depends very much on the direction of the
field. That is, of course, quite a complication. But in physics we
usually start out by talking about the special case in which the
polarizability is the same in all directions, to make life easier. We
leave the other cases to some other field. Therefore, for our later
work, we will not need at all what we are going to talk about in this
chapter.




The mathematics of tensors is particularly useful for describing
properties of substances which vary in direction—although that’s
only one example of their use. Since most of you are not going to
become physicists, but are going to go into the real world,
where things depend severely upon direction, sooner or later you will
need to use tensors. In order not to leave anything out, we are going
to describe tensors, although not in great detail. We want the feeling
that our treatment of physics is complete. For example, our
electrodynamics is complete—as complete as any electricity and
magnetism course, even a graduate course. Our mechanics is not
complete, because we studied mechanics when you didn’t have a high
level of mathematical sophistication, and we were not able to discuss
subjects like the principle of least action, or Lagrangians, or
Hamiltonians, and so on, which are more elegant ways of
describing mechanics. Except for general relativity, however, we do
have the complete laws of mechanics. Our electricity and
magnetism is complete, and a lot of other things are quite
complete. The quantum mechanics, naturally, will not be—we have to
leave something for the future. But you should at least know what a
tensor is.




We emphasized in Chapter 30 that the properties of
crystalline substances are different in different directions—we say
they are anisotropic. The variation of the induced dipole
moment with the direction of the applied electric field is only one
example, the one we will use for our example of a tensor. Let’s say
that for a given direction of the electric field the induced dipole
moment per unit volume P[image: -*-] is proportional to the strength of the
applied field E[image: -*-]. (This is a good approximation for many
substances if E[image: -*-] is not too large.) We will call the
proportionality constant α[image: -*-].1 We want now to consider substances in
which α[image: -*-] depends on the direction of the applied field, as, for
example, in crystals like calcite, which make double images when you
look through them.




Suppose, in a particular crystal, we find that an electric
field E1[image: -*-] in the x[image: -*-]-direction produces the polarization P1[image: -*-]
in the x[image: -*-]-direction. Then we find that an electric field E2[image: -*-] in
the y[image: -*-]-direction, with the same strength, as E1[image: -*-] produces
a different polarization P2[image: -*-] in the y[image: -*-]-direction. What would
happen if we put an electric field at 45°[image: -*-]? Well, that’s a
superposition of two fields along x[image: -*-] and y[image: -*-], so the
polarization P[image: -*-] will be the vector sum of P1[image: -*-] and P2[image: -*-],
as shown in Fig. 31–1(a). The polarization is no longer in
the same direction as the electric field. You can see how that might
come about. There may be charges which can move easily up and down, but
which are rather stiff for sidewise motions. When a force is applied
at 45°[image: -*-], the charges move farther up than they do toward the side.
The displacements are not in the direction of the external force,
because there are asymmetric internal elastic forces.



[image: -][image: -][image: -][image: -]
Fig. 31–1. The vector addition of polarizations in an anisotropic
crystal.





There is, of course, nothing special about 45°[image: -*-]. It is
generally true that the induced polarization of a crystal is
not in the direction of the electric field. In our example
above, we happened to make a “lucky” choice of our x[image: -*-]-
and y[image: -*-]-axes, for which P[image: -*-] was along E[image: -*-] for both the x[image: -*-]-
and y[image: -*-]-directions. If the crystal were rotated with respect to the
coordinate axes, the electric field E2[image: -*-] in the y[image: -*-]-direction
would have produced a polarization P[image: -*-] with both an x[image: -*-]- and
a y[image: -*-]-component. Similarly, the polarization due to an electric field in
the x[image: -*-]-direction would have produced a polarization with an
x[image: -*-]-component and a y[image: -*-]-component. Then the polarizations would be as
shown in Fig. 31–1(b), instead of as in part (a). Things
get more complicated—but for any field E[image: -*-], the magnitude
of P[image: -*-] is still proportional to the magnitude of E[image: -*-].




We want now to treat the general case of an arbitrary orientation of a
crystal with respect to the coordinate axes. An electric field in the
x[image: -*-]-direction will produce a polarization P[image: -*-] with x[image: -*-]-, y[image: -*-]-,
and z[image: -*-]-components; we can write

[image: -*-][image: -*-]
(31.1)









All we are saying here is that if the electric field is in the
x[image: -*-]-direction, the polarization does not have to be in that same
direction, but rather has an x[image: -*-]-, a y[image: -*-]-, and a z[image: -*-]-component—each
proportional to Ex[image: -*-]. We are calling the constants of proportionality
αx x[image: -*-], αy x[image: -*-], and αz x[image: -*-], respectively (the
first letter to tell us which component of P[image: -*-] is involved, the
last to refer to the direction of the electric field).




Similarly, for a field in the y[image: -*-]-direction, we can write

[image: -*-][image: -*-]
(31.2)




and for a field in the z[image: -*-]-direction,

[image: -*-][image: -*-]
(31.3)




Now we have said that polarization depends linearly on the fields, so if there
is an electric field E[image: -*-] that has both an x[image: -*-]- and a y[image: -*-]-component, the
resulting x[image: -*-]-component of P[image: -*-] will be the sum of the two Px[image: -*-]’s of
Eqs. (31.1) and (31.2). If E[image: -*-] has components
along x[image: -*-], y[image: -*-], and z[image: -*-], the resulting components of P[image: -*-] will be the sum of
the three contributions in Eqs. (31.1), (31.2),
and (31.3). In other words, P[image: -*-] will be given by

[image: -*-][image: -*-]
(31.4)









The dielectric behavior of the crystal is then completely described by
the nine quantities (αx x[image: -*-], αx y[image: -*-], αx z[image: -*-],
αy x[image: -*-], …), which we can represent by the
symbol αi j[image: -*-]. (The subscripts i[image: -*-] and j[image: -*-] each stand for any one of
the three possible letters x[image: -*-], y[image: -*-], and z[image: -*-].) Any arbitrary electric
field E[image: -*-] can be resolved with the components Ex[image: -*-], Ey[image: -*-], and Ez[image: -*-];
from these we can use the αi j[image: -*-] to find Px[image: -*-], Py[image: -*-],
and Pz[image: -*-], which together give the total polarization P[image: -*-]. The set
of nine coefficients αi j[image: -*-] is called a tensor—in this
instance, the tensor of polarizability. Just as we say that the
three numbers (Ex,Ey,Ez)[image: -*-] “form the vector E[image: -*-],” we say that
the nine numbers (αx x[image: -*-], αx y[image: -*-], …) “form the
tensor αi j[image: -*-].”







31–2 Transforming the tensor components


You know that when we change to a different coordinate system x′[image: -*-], y′[image: -*-],
and z′[image: -*-], the components Ex′[image: -*-], Ey′[image: -*-], and Ez′[image: -*-] of the
vector will be quite different—as will also the components
of P[image: -*-]. So all the coefficients αi j[image: -*-] will be different for a
different set of coordinates. You can, in fact, see how the α[image: -*-]’s
must be changed by changing the components of E[image: -*-] and P[image: -*-] in
the proper way, because if we describe the same physical
electric field in the new coordinate system we should get the same
polarization. For any new set of coordinates, Px′[image: -*-] is a linear
combination of Px[image: -*-], Py[image: -*-], and Pz[image: -*-]:

[image: -*-][image: -*-]


and similarly for the other components. If you substitute for
Px[image: -*-], Py[image: -*-], and Pz[image: -*-] in terms of the E[image: -*-]’s, using
Eq. (31.4), you get

[image: -*-][image: -*-]


Then you write Ex[image: -*-], Ey[image: -*-], and Ez[image: -*-] in terms of Ex′[image: -*-], Ey′[image: -*-],
and Ez′[image: -*-]; for instance,

[image: -*-][image: -*-]


where a′[image: -*-], b′[image: -*-], c′[image: -*-] are related to, but not equal to, a[image: -*-], b[image: -*-],
c[image: -*-]. So you have Px′[image: -*-], expressed in terms of the components
Ex′[image: -*-], Ey′[image: -*-], and Ez′[image: -*-]; that is, you have the new αi j[image: -*-].
It is fairly messy, but quite straightforward.




When we talk about changing the axes we are assuming that the crystal
stays put in space. If the crystal were rotated with the
axes, the α[image: -*-]’s would not change. Conversely, if the orientation
of the crystal were changed with respect to the axes, we would have a
new set of α[image: -*-]’s. But if they are known for any one
orientation of the crystal, they can be found for any other
orientation by the transformation we have just described. In other
words, the dielectric property of a crystal is described
completely by giving the components of the polarization
tensor αi j[image: -*-] with respect to any arbitrarily chosen set of axes. Just
as we can associate a vector velocity v=(vx,vy,vz)[image: -*-] with a
particle, knowing that the three components will change in a certain
definite way if we change our coordinate axes, so with a crystal we
associate its polarization tensor αi j[image: -*-], whose nine components
will transform in a certain definite way if the coordinate system is
changed.




The relation between P[image: -*-] and E[image: -*-] written in
Eq. (31.4) can be put in the more compact notation:

[image: -*-][image: -*-]
(31.5)




where it is understood that i[image: -*-] represents either x[image: -*-], y[image: -*-], or z[image: -*-] and
that the sum is taken on j=x[image: -*-], y[image: -*-], and z[image: -*-]. Many special notations
have been invented for dealing with tensors, but each of them is
convenient only for a limited class of problems. One common convention
is to omit the sum sign (∑)[image: -*-] in Eq. (31.5), leaving
it understood that whenever the same subscript occurs twice
(here j[image: -*-]), a sum is to be taken over that index. Since we will be using
tensors so little, we will not bother to adopt any such special
notations or conventions.







31–3 The energy ellipsoid


We want now to get some experience with tensors. Suppose we ask the
interesting question: What energy is required to polarize the crystal
(in addition to the energy in the electric field which we know is ϵ0 E2/2[image: -*-] per unit volume)? Consider for a moment the atomic charges that
are being displaced. The work done in displacing the charge the
distance d x[image: -*-] is q Ex d x[image: -*-], and if there are N[image: -*-] charges per unit volume, the
work done is q Ex N d x[image: -*-]. But q N d x[image: -*-] is the change d Px[image: -*-] in the
dipole moment per unit volume. So the energy required per unit
volume is

[image: -*-][image: -*-]


Combining the work for the three components of the field, the work per
unit volume is found to be

[image: -*-][image: -*-]


Since the magnitude of P[image: -*-] is proportional to E[image: -*-], the work
done per unit volume in bringing the polarization from 0
to P[image: -*-] is the integral of E⋅d P[image: -*-]. Calling this
work uP[image: -*-],2 we write

[image: -*-][image: -*-]
(31.6)









Now we can express P[image: -*-] in terms of E[image: -*-] by
Eq. (31.5), and we have that

[image: -*-][image: -*-]
(31.7)




The energy density uP[image: -*-] is a number independent of the choice of
axes, so it is a scalar. A tensor has then the property that when it
is summed over one index (with a vector), it gives a new vector; and
when it is summed over both indexes (with two
vectors), it gives a scalar.





The tensor αi j[image: -*-] should really be called a “tensor of second
rank,” because it has two indexes. A vector—with one
index—is a tensor of the first rank, and a scalar—with no
index—is a tensor of zero rank. So we say that the electric
field E[image: -*-] is a tensor of the first rank and that the energy
density uP[image: -*-] is a tensor of zero rank. It is possible to extend the ideas of
a tensor to three or more indexes, and so to make tensors of ranks
higher than two.




The subscripts of the polarization tensor range over three possible
values—they are tensors in three dimensions. The mathematicians
consider tensors in four, five, or more dimensions. We have already
used a four-dimensional tensor Fμ ν[image: -*-] in our relativistic
description of the electromagnetic field (Chapter 26).




The polarization tensor αi j[image: -*-] has the interesting property
that it is symmetric, that is, that αx y=αy x[image: -*-],
and so on for any pair of indexes. (This is a physical property
of a real crystal and not necessary for all tensors.) You can prove
for yourself that this must be true by computing the change in energy
of a crystal through the following cycle: (1) Turn on a field in the
x[image: -*-]-direction; (2) turn on a field in the y[image: -*-]-direction; (3) turn
off the x[image: -*-]-field; (4) turn off the y[image: -*-]-field. The crystal is
now back where it started, and the net work done on the polarization
must be back to zero. You can show, however, that for this to be true,
αx y[image: -*-] must be equal to αy x[image: -*-]. The same kind of
argument can, of course, be given for αx z[image: -*-], etc. So the
polarization tensor is symmetric.




This also means that the polarization tensor can be measured by just
measuring the energy required to polarize the crystal in various
directions. Suppose we apply an E[image: -*-]-field with only an x[image: -*-]- and a
y[image: -*-]-component; then according to Eq. (31.7),

[image: -*-][image: -*-]
(31.8)




With an Ex[image: -*-] alone, we can determine αx x[image: -*-]; with an Ey[image: -*-]
alone, we can determine αy y[image: -*-]; with both Ex[image: -*-] and Ey[image: -*-], we
get an extra energy due to the term
with (αx y+αy x)[image: -*-]. Since the αx y[image: -*-] and αy x[image: -*-]
are equal, this term is 2 αx y[image: -*-] and can be related to the
energy.




The energy expression, Eq. (31.8), has a nice geometric
interpretation. Suppose we ask what fields Ex[image: -*-] and Ey[image: -*-] correspond to some
given energy density—say u0[image: -*-]. That is just the mathematical problem of
solving the equation

[image: -*-][image: -*-]


This is a quadratic equation, so if we plot Ex[image: -*-] and Ey[image: -*-] the
solutions of this equation are all the points on an ellipse
(Fig. 31–2). (It must be an ellipse, rather than a parabola
or a hyperbola, because the energy for any field is always positive and
finite.) The vector E[image: -*-] with components Ex[image: -*-] and Ey[image: -*-] can be drawn
from the origin to the ellipse. So such an “energy ellipse” is a nice
way of “visualizing” the polarization tensor.



[image: -][image: -]
Fig. 31–2. Locus of the vector E=(Ex,Ey)[image: -*-] that gives a constant
energy of polarization.





If we now generalize to include all three components, the electric
vector E[image: -*-] in any direction required to give a unit energy
density gives a point which will be on the surface of an ellipsoid, as
shown in Fig. 31–3. The shape of this ellipsoid of
constant energy uniquely characterizes the tensor polarizability.



[image: -][image: -]
Fig. 31–3. The energy ellipsoid of the polarization tensor.





Now an ellipsoid has the nice property that it can always be described
simply by giving the directions of three “principal axes” and the
diameters of the ellipse along these axes. The “principal axes” are
the directions of the longest and shortest diameters and the direction
at right angles to both. They are indicated by the axes a[image: -*-], b[image: -*-],
and c[image: -*-] in Fig. 31–3. With respect to these axes, the
ellipsoid has the particularly simple equation

[image: -*-][image: -*-]







So with respect to these axes, the dielectric tensor has only three
components that are not zero: αa a[image: -*-], αb b[image: -*-],
and αc c[image: -*-]. That is to say, no matter how complicated a crystal is,
it is always possible to choose a set of axes (not necessarily the
crystal axes) for which the polarization tensor has only three
components. With such a set of axes, Eq. (31.4) becomes
simply

[image: -*-][image: -*-]
(31.9)




An electric field along any one of the principal axes produces a
polarization along the same axis, but the coefficients for the three
axes may, of course, be different.




Often, a tensor is described by listing the nine coefficients in a
table inside of a pair of brackets:

[image: -*-][image: -*-]
(31.10)




For the principal axes a[image: -*-], b[image: -*-], and c[image: -*-], only the diagonal terms are
not zero; we say then that “the tensor is diagonal.” The complete
tensor is

[image: -*-][image: -*-]
(31.11)




The important point is that any polarization tensor (in fact,
any symmetric tensor of rank two in any number of dimensions)
can be put in this form by choosing a suitable set of coordinate axes.




If the three elements of the polarization tensor in diagonal form are
all equal, that is, if

[image: -*-][image: -*-]
(31.12)




the energy ellipsoid becomes a sphere, and the polarizability is the
same in all directions. The material is isotropic. In the tensor
notation,

[image: -*-][image: -*-]
(31.13)




where δi j[image: -*-] is the unit tensor

[image: -*-][image: -*-]
(31.14)




That means, of course,

[image: -*-][image: -*-]
(31.15)




The tensor δi j[image: -*-] is often called the “Kronecker
delta.” You may amuse yourself by proving that the
tensor (31.14) has exactly the same form if you change the
coordinate system to any other rectangular one. The polarization tensor
of Eq. (31.13) gives

[image: -*-][image: -*-]


which means the same as our old result for isotropic dielectrics:

[image: -*-][image: -*-]







The shape and orientation of the polarization ellipsoid can sometimes
be related to the symmetry properties of the crystal. We have said in
Chapter 30 that there are 230[image: -*-] different possible
internal symmetries of a three-dimensional lattice and that they can,
for many purposes, be conveniently grouped into seven classes,
according to the shape of the unit cell. Now the ellipsoid of
polarizability must share the internal geometric symmetries of the
crystal. For example, a triclinic crystal has low symmetry—the
ellipsoid of polarizability will have unequal axes, and its
orientation will not, in general, be aligned with the crystal axes. On
the other hand, a monoclinic crystal has the property that its
properties are unchanged if the crystal is rotated 180°[image: -*-] about
one axis. So the polarization tensor must be the same after such a
rotation. It follows that the ellipsoid of the polarizability must
return to itself after a 180°[image: -*-] rotation. That can happen only if
one of the axes of the ellipsoid is in the same direction as the
symmetry axis of the crystal. Otherwise, the orientation and
dimensions of the ellipsoid are unrestricted.




For an orthorhombic crystal, however, the axes of the ellipsoid must
correspond to the crystal axes, because a 180°[image: -*-] rotation about
any one of the three axes repeats the same lattice. If we go to a
tetragonal crystal, the ellipse must have the same symmetry, so it
must have two equal diameters. Finally, for a cubic crystal, all three
diameters of the ellipsoid must be equal; it becomes a sphere, and the
polarizability of the crystal is the same in all directions.




There is a big game of figuring out the possible kinds of tensors for
all the possible symmetries of a crystal. It is called a
“group-theoretical” analysis. But for the simple case of the
polarizability tensor, it is relatively easy to see what the relations
must be.







31–4 Other tensors; the tensor of inertia


There are many other examples of tensors appearing in physics. For
example, in a metal, or in any conductor, one often finds that the
current density j[image: -*-] is approximately proportional to the electric
field E[image: -*-]; the proportionality constant is called the
conductivity σ[image: -*-]:

[image: -*-][image: -*-]


For crystals, however, the relation between j[image: -*-] and E[image: -*-] is
more complicated; the conductivity is not the same in all
directions. The conductivity is a tensor, and we write

[image: -*-][image: -*-]







Another example of a physical tensor is the moment of inertia. In
Chapter 18 of Volume I we saw that a solid object
rotating about a fixed axis has an angular momentum L[image: -*-] proportional
to the angular velocity ω[image: -*-], and we called the proportionality
factor I[image: -*-], the moment of inertia:

[image: -*-][image: -*-]


For an arbitrarily shaped object, the moment of inertia depends on its
orientation with respect to the axis of rotation. For instance, a
rectangular block will have different moments about each of its three
orthogonal axes. Now angular velocity ω[image: -*-] and angular
momentum L[image: -*-] are both vectors. For rotations about one of the axes of
symmetry, they are parallel. But if the moment of inertia is different
for the three principal axes, then ω[image: -*-] and L[image: -*-] are, in
general, not in the same direction (see Fig. 31–4). They are
related
in a way analogous to the relation between E[image: -*-] and P[image: -*-]. In
general, we must write

[image: -*-][image: -*-]
(31.16)




The nine coefficients Ii j[image: -*-] are called the tensor of
inertia. Following the analogy with the polarization, the kinetic
energy for any angular momentum must be some quadratic form in the
components ωx[image: -*-], ωy[image: -*-], and ωz[image: -*-]:

[image: -*-][image: -*-]
(31.17)




We can use the energy to define the ellipsoid of inertia. Also, energy
arguments can be used to show that the tensor is
symmetric—that Ii j=Ij i[image: -*-].



[image: -][image: -]
Fig. 31–4. The angular momentum L[image: -*-] of a solid object is not, in
general, parallel to its angular velocity ω[image: -*-].





The tensor of inertia for a rigid body can be worked out if the shape
of the object is known. We need only to write down the total kinetic
energy of all the particles in the body. A particle of mass m[image: -*-] and
velocity v[image: -*-] has the kinetic energy [image: \tfrac{1}{2}mv^2][image: \tfrac{1}{2}mv^2], and the
total kinetic energy is just the sum

[image: -*-][image: -*-]


over all of the particles of the body. The velocity v[image: -*-] of each
particle is related to the angular velocity ω[image: -*-] of the solid
body. Let’s assume that the body is rotating about its center of mass,
which we take to be at rest. Then if r[image: -*-] is the displacement of a
particle from the center of mass, its velocity v[image: -*-] is given
by ω×r[image: -*-]. So the total kinetic energy is

[image: -*-][image: -*-]
(31.18)




Now all we have to do is write ω×r[image: -*-] out in terms of
the components ωx[image: -*-], ωy[image: -*-], ωz[image: -*-], and x[image: -*-], y[image: -*-], z[image: -*-],
and compare the result with Eq. (31.17); we
find Ii j[image: -*-] by identifying terms. Carrying out the algebra, we write

[image: -*-][image: -*-]


Multiplying this equation by m/2[image: -*-], summing over all particles, and
comparing with Eq. (31.17), we see that Ix x[image: -*-], for
instance, is given by

[image: -*-][image: -*-]


This is the formula we have had before (Chapter 19,
Vol. I) for the moment of inertia of a body about the
x[image: -*-]-axis. Since r2=x2+y2+z2[image: -*-], we can also write this term as

[image: -*-][image: -*-]


Working out all of the other terms, the tensor of inertia can be
written as



[image: -*-][image: -*-]
(31.19)










If you wish, this may be written in “tensor notation” as

[image: -*-][image: -*-]
(31.20)




where the ri[image: -*-] are the components (x,y,z)[image: -*-] of the position vector of
a particle and the ∑[image: -*-] means to sum over all the particles. The
moment of inertia, then, is a tensor of the second rank whose terms
are a property of the body and relate L[image: -*-] to ω[image: -*-] by

[image: -*-][image: -*-]
(31.21)









For a body of any shape whatever, we can find the ellipsoid of inertia
and, therefore, the three principal axes. Referred to these axes, the
tensor will be diagonal, so for any object there are always three
orthogonal axes for which the angular velocity and angular momentum
are parallel. They are called the principal axes of inertia.







31–5 The cross product


We should point out that we have been using tensors of the second rank
since Chapter 20 of Volume I. There, we defined a
“torque in a plane,” such as τx y[image: -*-] by

[image: -*-][image: -*-]


Generalized to three dimensions, we could write

[image: -*-][image: -*-]
(31.22)




The quantity τi j[image: -*-] is a tensor of the second rank. One way to
see that this is so is by combining τi j[image: -*-] with some vector, say
the unit vector e[image: -*-], according to

[image: -*-][image: -*-]


If this quantity is a vector, then τi j[image: -*-] must transform
as a tensor—this is our definition of a tensor. Substituting
for τi j[image: -*-], we have

[image: -*-][image: -*-]


Since the dot products are scalars, the two terms on the right-hand
side are vectors, and likewise their difference. So τi j[image: -*-] is a
tensor.




But τi j[image: -*-] is a special kind of tensor; it is
antisymmetric, that is,

[image: -*-][image: -*-]


so it has only three nonzero terms—τx y[image: -*-], τy z[image: -*-],
and τz x[image: -*-]. We were able to show in Chapter 20 of
Volume I that these three terms, almost “by accident,” transform
like the three components of a vector, so that we could define

[image: -*-][image: -*-]


We say “by accident,” because it happens only in three
dimensions. In four dimensions, for instance, an antisymmetric tensor
of the second rank has up to six nonzero terms and certainly cannot
be replaced by a vector with four components.




Just as the axial vector τ=r×F[image: -*-] is a tensor, so
also is every cross product of two polar vectors—all the same
arguments apply. By luck, however, they are also representable by
vectors (really pseudo vectors), so our mathematics has been made
easier for us.





Mathematically, if a[image: -*-] and b[image: -*-] are any two vectors, the nine
quantities ai bj[image: -*-] form a tensor (although it may have no useful
physical purpose). Thus, for the position vector r[image: -*-], ri rj[image: -*-] is
a tensor, and since δi j[image: -*-] is also, we see that the right side
of Eq. (31.20) is indeed a tensor. Likewise
Eq. (31.22) is a tensor, since the two terms on the
right-hand side are tensors.







31–6 The tensor of stress


The symmetric tensors we have described so far arose as coefficients
in relating one vector to another. We would like to look now at a
tensor which has a different physical significance—the tensor of
stress. Suppose we have a solid object with various forces on
it. We say that there are various “stresses” inside, by which we
mean that there are internal forces between neighboring parts of the
material. We have talked a little about such stresses in a
two-dimensional case when we considered the surface tension in a
stretched diaphragm in Section 12–3. We will now see
that the internal forces in the material of a three-dimensional body
can be described in terms of a tensor.



[image: -][image: -]
Fig. 31–5. The material to the left of the plane σ[image: -*-] exerts across
the area Δ y Δ z[image: -*-] the force Δ F1[image: -*-] on the material
to the right of the plane.





Consider a body of some elastic material—say a block of jello. If we
make a cut through the block, the material on each side of the cut
will, in general, get displaced by the internal forces. Before the cut
was made, there must have been forces between the two parts of the
block that kept the material in place; we can define the stresses in
terms of these forces. Suppose we look at an imaginary plane
perpendicular to the x[image: -*-]-axis—like the plane σ[image: -*-] in
Fig. 31–5—and ask about the force across a small
area Δ y Δ z[image: -*-] in this plane. The material on the left of the area
exerts the force Δ F1[image: -*-] on the material to the right, as shown
in part (b) of the figure. There is, of course, the opposite reaction
force −Δ F1[image: -*-] exerted on the material to the left of the
surface. If the area is small enough, we expect that Δ F1[image: -*-] is
proportional to the area Δ y Δ z[image: -*-].




You are already familiar with one kind of stress—the pressure in a
static liquid. There the force is equal to the pressure times the area
and is at right angles to the surface element. For solids—also for
viscous liquids in motion—the force need not be normal to the
surface; there are shear forces in addition to pressures
(positive or negative). (By a “shear” force we mean the
tangential components of the force across a surface.) All three
components of the force must be taken into account. Notice also that
if we make our cut on a plane with some other orientation, the forces
will be different. A complete description of the internal stress
requires a tensor.



[image: -][image: -]
Fig. 31–6. The force Δ F1[image: -*-] across an element of area Δ y Δ z[image: -*-] perpendicular to the x[image: -*-]-axis is resolved into three
components Δ Fx 1[image: -*-], Δ Fy 1[image: -*-], and Δ Fz 1[image: -*-].





We define the stress tensor in the following way: First, we imagine a
cut perpendicular to the x[image: -*-]-axis and resolve the force Δ F1[image: -*-]
across the cut into its components Δ Fx 1[image: -*-], Δ Fy 1[image: -*-],
Δ Fz 1[image: -*-], as in Fig. 31–6. The ratio of these forces
to the area Δ y Δ z[image: -*-], we call Sx x[image: -*-], Sy x[image: -*-],
and Sz x[image: -*-]. For example,

[image: -*-][image: -*-]


The first index y[image: -*-] refers to the direction force component; the
second index x[image: -*-] is normal to the area. If you wish, you can write the
area Δ y Δ z[image: -*-] as Δ ax[image: -*-], meaning an element of area
perpendicular to x[image: -*-]. Then

[image: -*-][image: -*-]


Next, we think of an imaginary cut perpendicular to the y[image: -*-]-axis. Across
a small area Δ x Δ z[image: -*-] there will be a force Δ F2[image: -*-].
Again we resolve this force into three components, as shown in
Fig. 31–7, and define the three components of the stress,
Sx y[image: -*-], Sy y[image: -*-], Sz y[image: -*-], as the force per unit area in the three
directions. Finally, we make an imaginary cut perpendicular to z[image: -*-] and
define the three components Sx z[image: -*-], Sy z[image: -*-], and Sz z[image: -*-]. So we have
the nine numbers

[image: -*-][image: -*-]
(31.23)








[image: -][image: -]
Fig. 31–7. The force across an element of area perpendicular to y[image: -*-] is
resolved into three rectangular components.





We want to show now that these nine numbers are sufficient to describe
completely the internal state of stress, and that Si j[image: -*-] is indeed a
tensor. Suppose we want to know the force across a surface oriented at
some arbitrary angle. Can we find it from Si j[image: -*-]? Yes, in the
following way: We imagine a little solid figure which has one face N[image: -*-]
in the new surface, and the other faces parallel to the coordinate axes.
If the face N[image: -*-] happened to be parallel to the z[image: -*-]-axis, we would have
the triangular piece shown in Fig. 31–8. (This is a
somewhat special case, but will illustrate well enough the general
method.) Now the stress forces on the little solid triangle in
Fig. 31–8 are in equilibrium (at least in the limit of
infinitesimal dimensions), so the total force on it must be zero. We
know the forces on the faces parallel to the coordinate axes directly
from Si j[image: -*-]. Their vector sum must equal the force on the face N[image: -*-], so
we can express this force in terms of Si j[image: -*-].



[image: -][image: -]
Fig. 31–8. The force Fn[image: -*-] across the face N[image: -*-] (whose unit normal
is n[image: -*-]) is resolved into components.





Our assumption that the surface forces on the small triangular
volume are in equilibrium neglects any other body forces that
might be present, such as gravity or pseudo forces if our coordinate
system is not an inertial frame. Notice, however, that such body
forces will be proportional to the volume of the little
triangle and, therefore, to Δ x Δ y Δ z[image: -*-], whereas
all the surface forces are proportional to the areas such as Δ x Δ y[image: -*-], Δ y Δ z[image: -*-], etc. So if we take the scale of
the little wedge small enough, the body forces can always be neglected
in comparison with the surface forces.




Let’s now add up the forces on the little wedge. We take first the
x[image: -*-]-component, which is the sum of five parts—one from each
face. However, if Δ z[image: -*-] is small enough, the forces on the
triangular faces (perpendicular to the z[image: -*-]-axis) will be equal and
opposite, so we can forget them. The x[image: -*-]-component of the force on the
bottom rectangle is

[image: -*-][image: -*-]


The x[image: -*-]-component of the force on the vertical rectangle is

[image: -*-][image: -*-]


These two must be equal to the x[image: -*-]-component of the force
outward across the face N[image: -*-]. Let’s call n[image: -*-] the unit vector
normal to the face N[image: -*-], and the force on it Fn[image: -*-]; then we have

[image: -*-][image: -*-]


The x[image: -*-]-component Sx n[image: -*-], of the stress across this plane is equal
to Δ Fx n[image: -*-] divided by the area, which is Δ z √Δ x2+Δ y2[image: -*-], or

[image: -*-][image: -*-]


Now Δ x/√Δ x2+Δ y2[image: -*-] is the cosine of the
angle θ[image: -*-] between n[image: -*-] and the y[image: -*-]-axis, as shown in
Fig. 31–8, so it can also be written as ny[image: -*-], the
y[image: -*-]-component of n[image: -*-]. Similarly, Δ y/√Δ x2+Δ y2[image: -*-] is sinθ=nx[image: -*-]. We can write

[image: -*-][image: -*-]


If we now generalize to an arbitrary surface element, we would get
that

[image: -*-][image: -*-]


or, in general,

[image: -*-][image: -*-]
(31.24)




We can find the force across any surface element in terms of
the Si j[image: -*-], so it does describe completely the state of internal
stress of the material.




Equation (31.24) says that the tensor Si j[image: -*-] relates the
stress Sn[image: -*-] to the unit vector n[image: -*-], just as αi j[image: -*-]
relates P[image: -*-] to E[image: -*-]. Since n[image: -*-] and Sn[image: -*-] are vectors,
the components of Si j[image: -*-] must transform as a tensor with changes in
coordinate axes. So Si j[image: -*-] is indeed a tensor.




We can also show that Si j[image: -*-] is a symmetric tensor by looking
at the forces on a little cube of material. Suppose we take a little
cube, oriented with its faces parallel to our coordinate axes, and
look at it in cross section, as shown in Fig. 31–9. If we let the
edge of the cube be one unit, the x[image: -*-]- and y[image: -*-]-components of the
forces on the faces normal to the x[image: -*-]- and y[image: -*-]-axes might be as shown
in the figure. If the cube is small, the stresses do not change
appreciably from one side of the cube to the opposite side, so the
force components are equal and opposite as shown. Now there must be no
torque on the cube, or it would start spinning. The total torque about
the center is (Sy x−Sx y)[image: -*-] (times the unit edge of the cube), and
since the total is zero, Sy x[image: -*-] is equal to Sx y[image: -*-], and the stress
tensor is symmetric.



[image: -][image: -]
Fig. 31–9. The x[image: -*-]- and y[image: -*-]-forces on four faces of a small unit cube.





Since Si j[image: -*-] is a symmetric tensor, it can be described by an
ellipsoid which will have three principal axes. For surfaces normal to
these axes, the stresses are particularly simple—they correspond to
pushes or pulls perpendicular to the surfaces. There are no shear
forces along these faces. For any stress, we can always choose
our axes so that the shear components are zero. If the ellipsoid is a
sphere, there are only normal forces in any direction. This
corresponds to a hydrostatic pressure (positive or negative). So for a
hydrostatic pressure, the tensor is diagonal and all three components
are equal; they are, in fact, just equal to the pressure p[image: -*-]. We can
write

[image: -*-][image: -*-]
(31.25)









The stress tensor—and also its ellipsoid—will, in general, vary
from point to point in a block of material; to describe the whole
block we need to give the value of each component of Si j[image: -*-] as a
function of position. So the stress tensor is a field. We have
had scalar fields, like the temperature T (x,y,z)[image: -*-], which give
one number for each point in space, and vector fields
like E (x,y,z)[image: -*-], which give three numbers for each point. Now we
have a tensor field which gives nine numbers
for each point in space—or really six for the symmetric
tensor Si j[image: -*-]. A complete description of the internal forces in an
arbitrarily distorted solid requires six functions of x[image: -*-], y[image: -*-], and z[image: -*-].







31–7 Tensors of higher rank


The stress tensor Si j[image: -*-] describes the internal forces of
matter. If the material is elastic, it is convenient to describe the
internal distortion in terms of another
tensor Ti j[image: -*-]—called the strain tensor. For a simple object like a bar of
metal, you know that the change in length, Δ L[image: -*-], is approximately
proportional to the force, so we say it obeys Hooke’s
law:

[image: -*-][image: -*-]


For a solid elastic body with arbitrary distortions, the strain Ti j[image: -*-]
is related to the stress Si j[image: -*-] by a set of linear equations:

[image: -*-][image: -*-]
(31.26)




Also, you know that the potential energy of a spring (or bar) is

[image: -*-][image: -*-]


The generalization for the elastic energy density in a solid
body is

[image: -*-][image: -*-]
(31.27)




The complete description of the elastic properties of a crystal must
be given in terms of the coefficients γi j k l[image: -*-]. This introduces
us to a new beast. It is a tensor of the fourth rank. Since
each index can take on any one of three values, x[image: -*-], y[image: -*-], or z[image: -*-],
there are 34=81[image: -*-] coefficients. But there are really only
21[image: -*-] different numbers. First, since Si j[image: -*-] is symmetric, it has
only six different values, and only 36[image: -*-] different coefficients
are needed in Eq. (31.27). But also, Si j[image: -*-] can be
interchanged with Sk l[image: -*-] without changing the energy,
so γi j k l[image: -*-] must be symmetric if we interchange i j[image: -*-]
and k l[image: -*-]. This reduces the number of different coefficients to 21[image: -*-]. So to
describe the elastic properties of a crystal of the lowest possible
symmetry requires 21[image: -*-] elastic constants! This number is, of course,
reduced for crystals of higher symmetry. For example, a cubic crystal
has only three elastic constants, and an isotropic substance has only
two.




That the latter is true can be seen as follows. How can the components
of γi j k l[image: -*-] be independent of the direction of the axes, as they
must be if the material is isotropic? Answer: They can be
independent only if they are expressible in terms of the
tensor δi j[image: -*-]. There are two possible expressions,
δi j δk l[image: -*-]
and δi k δj l+δi l δj k[image: -*-], which have the
required symmetry, so γi j k l[image: -*-] must be a linear combination of
them. Therefore, for isotropic materials,

[image: -*-][image: -*-]


and the material requires two constants, a[image: -*-] and b[image: -*-], to describe its
elastic properties. We will leave it for you to show that a cubic
crystal needs only three.




As a final example, this time of a third-rank tensor, we have the
piezoelectric effect. Under stress, a crystal generates an electric
field proportional to the stress; hence, in general, the law is

[image: -*-][image: -*-]


where Ei[image: -*-] is the electric field, and the Pi j k[image: -*-] are the
piezoelectric coefficients—or the piezoelectric tensor. Can you show
that if the crystal has a center of inversion (invariant
under x,y,z→−x,−y,−z[image: -*-]) the piezoelectric coefficients are all zero?







31–8 The four-tensor of electromagnetic momentum


All the tensors we have looked at so far in this chapter relate to the
three dimensions of space; they are defined to have a certain
transformation property under spatial rotations. In
Chapter 26 we had occasion to use a tensor in the four
dimensions of relativistic space-time—the electromagnetic field
tensor Fμ ν[image: -*-]. The components of such a four-tensor transform under a
Lorentz transformation of the coordinates in a special way that we
worked out. (Although we did not do it that way, we could have
considered the Lorentz transformation as a “rotation” in a
four-dimensional “space” called Minkowski space; then the analogy with
what we are doing here would have been clearer.)





As our last example, we want to consider another tensor in the four
dimensions (t,x,y,z)[image: -*-] of relativity theory. When we wrote the stress
tensor, we defined Si j[image: -*-] as a component of a force across a unit
area. But a force is equal to the time rate of change of a momentum.
Therefore, instead of saying “Sx y[image: -*-] is the x[image: -*-]-component of the
force across a unit area perpendicular to y[image: -*-],” we could equally well
say, “Sx y[image: -*-] is the rate of flow of the x[image: -*-]-component of momentum
through a unit area perpendicular to y[image: -*-].” In other words, each term
of Si j[image: -*-] also represents the flow of the i[image: -*-]-component of momentum
through a unit area perpendicular to the j[image: -*-]-direction. These are pure
space components, but they are parts of a “larger” tensor Sμ ν[image: -*-]
in four dimensions (μ[image: -*-] and ν=t,x,y,z[image: -*-]) containing additional
components like St x[image: -*-], Sy t[image: -*-], St t[image: -*-], etc. We will now try to
find the physical meaning of these extra components.




We know that the space components represent flow of momentum. We can
get a clue on how to extend this to the time dimension by studying
another kind of “flow”—the flow of electric charge. For the
scalar quantity, charge, the rate of flow (per unit area
perpendicular to the flow) is a space vector—the current
density vector j[image: -*-]. We have seen that the time component of this
flow vector is the density of the stuff that is flowing. For instance,
j[image: -*-] can be combined with a time component, jt=ρ[image: -*-], the charge
density, to make the four-vector jμ=(ρ,j)[image: -*-]; that is,
the μ[image: -*-] in jμ[image: -*-] takes on the values t[image: -*-], x[image: -*-], y[image: -*-], z[image: -*-] to mean
“density, rate of flow in the x[image: -*-]-direction, rate of flow in y[image: -*-],
rate of flow in z[image: -*-]” of the scalar charge.




Now by analogy with our statement about the time component of the flow
of a scalar quantity, we might expect that with Sx x[image: -*-], Sx y[image: -*-],
and Sx z[image: -*-], describing the flow of the x[image: -*-]-component of momentum,
there should be a time component Sx t[image: -*-] which would be the density
of whatever is flowing; that is, Sx t[image: -*-] should be the density of
x[image: -*-]-momentum. So we can extend our tensor horizontally to include a
t[image: -*-]-component. We have

[image: -*-][image: -*-]


Similarly, for the y[image: -*-]-component of momentum we have the three
components of flow—Sy x[image: -*-], Sy y[image: -*-], Sy z[image: -*-]—to which we should
add a fourth term:

[image: -*-][image: -*-]


And, of course, to Sz x[image: -*-], Sz y[image: -*-], Sz z[image: -*-] we would add

[image: -*-][image: -*-]







In four dimensions there is also a t[image: -*-]-component of momentum, which
is, we know, energy. So the tensor Si j[image: -*-] should be extended
vertically with St x[image: -*-], St y[image: -*-], and St z[image: -*-], where

[image: -*-][image: -*-]
(31.28)




that is, St x[image: -*-] is the flow of energy per unit area and per unit
time across a surface perpendicular to the x[image: -*-]-axis, and so
on. Finally, to complete our tensor we need St t[image: -*-], which would be
the density of energy. We have extended our stress
tensor Si j[image: -*-] of three dimensions to the four-dimensional
stress-energy tensor Sμ ν[image: -*-]. The index μ[image: -*-] can take on
the four values t[image: -*-], x[image: -*-], y[image: -*-], and z[image: -*-], meaning, respectively,
“density,” “flow per unit area in the x[image: -*-]-direction,” “flow per
unit area in the y[image: -*-]-direction,” and “flow per unit area in the
z[image: -*-]-direction.”  In the same way, ν[image: -*-] takes on the four values
t[image: -*-], x[image: -*-], y[image: -*-], z[image: -*-] to tell us what flows, namely, “energy,”
“momentum in the x[image: -*-]-direction,” “momentum in the y[image: -*-]-direction,”
and “momentum in the z[image: -*-]-direction.”




As an example, we will discuss this tensor not in matter, but in a
region of free space in which there is an electromagnetic field. We know
that the flow of energy is the Poynting vector S=ϵ0 c2 E×B[image: -*-]. So the x[image: -*-]-, y[image: -*-]-, and z[image: -*-]-components of S[image: -*-]
are, from the relativistic point of view, the components
St x[image: -*-], St y[image: -*-], and St z[image: -*-] of our four-dimensional stress-energy
tensor. The symmetry of the tensor Si j[image: -*-] carries over into the time
components as well, so the four-dimensional tensor Sμ ν[image: -*-] is
symmetric:

[image: -*-][image: -*-]
(31.29)




In other words, the components Sx t[image: -*-], Sy t[image: -*-], Sz t[image: -*-], which are
the densities of x[image: -*-], y[image: -*-], and z[image: -*-] momentum, are also
equal to the x[image: -*-]-, y[image: -*-]-, and z[image: -*-]-components of the Poynting
vector S[image: -*-], the energy flow—as we have already shown in an
earlier chapter by a different kind of argument.




The remaining components of the electromagnetic stress tensor Sμ ν[image: -*-]
can also be expressed in terms of the electric and
magnetic fields E[image: -*-] and B[image: -*-]. That is to say, we must admit
stress or, to put it less mysteriously, flow of momentum in the
electromagnetic field. We discussed this in Chapter 27 in
connection with Eq. (27.21), but did not work out the
details.




Those who want to exercise their prowess in tensors in four dimensions
might like to see the formula for Sμ ν[image: -*-] in terms of the fields:

[image: -*-][image: -*-]


where sums on α[image: -*-], β[image: -*-] are on t[image: -*-], x[image: -*-], y[image: -*-], z[image: -*-] but (as
usual in relativity) we adopt a special meaning for the sum
sign ∑[image: -*-] and for the symbol δ[image: -*-]. In the sums the x[image: -*-], y[image: -*-], z[image: -*-]
terms are to be subtracted and δt t=+1[image: -*-], while
δx x=[image: -*-]δy y=[image: -*-]δz z=[image: -*-]−1[image: -*-] and δμ ν=0[image: -*-]
for μ≠ν[image: -*-] (c=1[image: -*-]). Can you verify that it gives the energy
density St t=(ϵ0/2) (E2+B2)[image: -*-] and the Poynting
vector ϵ0 E×B[image: -*-]?  Can you show that in an electrostatic field
with B=0[image: -*-] the principal axes of stress are in the
direction of the electric field, that there is a
tension (ϵ0/2) E2[image: -*-] along the direction of the field, and that there
is an
equal pressure in directions perpendicular to the field
direction?






	
  
  In Chapter 10
we followed the usual convention and wrote P=ϵ0 χ E[image: -*-] and called
χ[image: -*-] (“khi”) the “susceptibility.” Here, it will be more
convenient to use a single letter, so we write α[image: -*-]
for ϵ0 χ[image: -*-]. For isotropic dielectrics, α=(κ−1) ϵ0[image: -*-],
where κ[image: -*-] is the dielectric constant (see
Section 10–4).
  ↩


	
  
  This work done in producing the polarization by
an electric field is not to be confused with the potential
energy −p0⋅E[image: -*-] of a permanent dipole moment p0[image: -*-].
  ↩






  
    

32 Refractive Index of Dense Materials


	
			
		Review:
		
			
		See Table 32–1.
		
	





32–1 Polarization of matter


We want now to discuss the phenomenon of the refraction of
light—and also, therefore, the absorption of light—by dense
materials. In Chapter 31 of Volume I we discussed the
theory of the index of refraction, but because of our limited
mathematical abilities at that time, we had to restrict ourselves to
finding the index only for materials of low density, like gases. The
physical principles that produced the index were, however, made clear.
The electric field of the light wave polarizes the molecules of the gas,
producing oscillating dipole moments. The acceleration of the
oscillating charges radiates new waves of the field. This new field,
interfering with the old field, produces a changed field which is
equivalent to a phase shift of the original wave. Because this phase
shift is proportional to the thickness of the material, the effect is
equivalent to having a different phase velocity in the material. When we
looked at the subject before, we neglected the complications that arise
from such effects as the new wave changing the fields at the oscillating
dipoles. We assumed that the forces on the charges in the atoms came
just from the incoming wave, whereas, in fact, their oscillations
are driven not only by the incoming wave but also by the radiated waves
of all the other atoms. It would have been difficult for us at that time
to include this effect, so we studied only the rarefied gas, where such
effects are not important.




Now, however, we will find that it is very easy to treat the problem
by the use of differential equations. This method obscures the
physical origin of the index (as coming from the re-radiated waves
interfering with the original waves), but it makes the theory for
dense materials much simpler. This chapter will bring together a large
number of pieces from our earlier work. We’ve taken up practically
everything we will need, so there are relatively few really new ideas
to be introduced. Since you may need to refresh your memory about what
we are going to need, we give in Table 32–1 a list of the
equations we are going to use, together with a reference to the place
where each can be found. In most instances, we will not take the time
to give the physical arguments again, but will just use the equations.






Table 32–1. Our work in this chapter will be based 
on the following material, already covered in earlier chapters



[image: --][image: --]


We begin by recalling the machinery of the index of refraction for a
gas. We suppose that there are N[image: -*-] particles per unit volume and that
each particle behaves as a harmonic oscillator. We use a model of an
atom or molecule in which the electron is bound with a force
proportional to its displacement (as though the electron were held in
place by a spring). We emphasized that this was not a legitimate
classical model of an atom, but we will show later that the
correct quantum mechanical theory gives results equivalent to this
model (in simple cases). In our earlier treatment, we did not include
the possibility of a damping force in the atomic oscillators, but we
will do so now. Such a force corresponds to a resistance to the
motion, that is, to a force proportional to the velocity of the
electron. Then the equation of motion is

[image: -*-][image: -*-]
(32.1)




where x[image: -*-] is the displacement parallel to the direction
of E[image: -*-]. (We are assuming an isotropic oscillator whose
restoring force is the same in all directions. Also, we are taking,
for the moment, a linearly polarized wave, so that E[image: -*-] doesn’t
change direction.) If the electric field acting on the atom varies
sinusoidally with time, we write

[image: -*-][image: -*-]
(32.2)




The displacement will then oscillate with the same frequency, and we
can let

[image: -*-][image: -*-]


Substituting [image: \dot{x}=i\omega x][image: \dot{x}=i\omega x] and [image: \ddot{x}=-\omega^2x][image: \ddot{x}=-\omega^2x], we can
solve for x[image: -*-] in terms of E[image: -*-]:

[image: -*-][image: -*-]
(32.3)




Knowing the displacement, we can calculate the acceleration [image: \ddot{x}][image: \ddot{x}]
and find the radiated wave responsible for the index. This was the way
we computed the index in Chapter 31 of Volume I.




Now, however, we want to take a different approach. The induced dipole
moment p[image: -*-] of an atom is qe x[image: -*-] or, using Eq. (32.3),

[image: -*-][image: -*-]
(32.4)




Since p[image: -*-] is proportional to E[image: -*-], we write

[image: -*-][image: -*-]
(32.5)




where α[image: -*-] is called the atomic
polarizability.1
With this definition, we have

[image: -*-][image: -*-]
(32.6)









The quantum mechanical solution for the motions of electrons in atoms
gives a similar answer except with the following modifications. The
atoms have several natural frequencies, each frequency with its own
dissipation constant γ[image: -*-]. Also the effective “strength” of each
mode is different, which we can represent by multiplying the
polarizability for each frequency by a strength factor f[image: -*-], which is a
number we expect to be of the order of 1. Representing the three
parameters ω0[image: -*-], γ[image: -*-], and f[image: -*-] by ω0 k[image: -*-], γk[image: -*-],
and fk[image: -*-] for each mode of oscillation, and summing over the various
modes, we modify Eq. (32.6) to read

[image: -*-][image: -*-]
(32.7)









If N[image: -*-] is the number of atoms per unit volume in the material, the
polarization P[image: -*-] is just N p=ϵ0 N α E[image: -*-], and is proportional
to E[image: -*-]:

[image: -*-][image: -*-]
(32.8)




In other words, when there is a sinusoidal electric field acting in a
material, there is an induced dipole moment per unit volume which is
proportional to the electric field—with a proportionality
constant α[image: -*-] that, we emphasize, depends upon the frequency. At very high
frequencies, α[image: -*-] is small; there is not much response. However,
at low frequencies there can be a strong response. Also, the
proportionality constant is a complex number, which means that the
polarization does not exactly follow the electric field, but may be
shifted in phase to some extent. At any rate, there is a polarization
per unit volume whose magnitude is proportional to the strength of the
electric field.







32–2 Maxwell’s equations in a dielectric


The existence of polarization in matter means that there are
polarization charges and currents inside of the material, and these
must be put into the complete Maxwell equations in order to find the
fields. We are going to solve Maxwell’s equations this time in a
situation in which the charges and currents are not zero, as in a
vacuum, but are given implicitly by the polarization vector. Our first
step is to find explicitly the charge density ρ[image: -*-] and current
density j[image: -*-], averaged over a small volume of the same size we had
in mind when we defined P[image: -*-]. Then the ρ[image: -*-] and j[image: -*-] we need
can be obtained from the polarization.




We have seen in Chapter 10 that when the
polarization P[image: -*-] varies from place to place, there is a charge
density given by

[image: -*-][image: -*-]
(32.9)




At that time, we were dealing with static fields, but the same formula
is valid also for time-varying fields. However, when P[image: -*-] varies with
time, there are charges in motion, so there is also a polarization
current. Each of the oscillating charges contributes a current
equal to its charge qe[image: -*-], times its velocity v[image: -*-]. With N[image: -*-] such charges
per unit volume, the current density j[image: -*-] is

[image: -*-][image: -*-]


Since we know that v=d x/d t[image: -*-], then j=N qe (d x/d t)[image: -*-], which is
just d P/d t[image: -*-]. Therefore the current density from the varying
polarization is

[image: -*-][image: -*-]
(32.10)









Our problem is now direct and simple. We write Maxwell’s equations with the
charge density and current density expressed in terms of P[image: -*-], using
Eqs. (32.9) and (32.10). (We assume that there
are no other currents and charges in the material.) We then relate P[image: -*-]
to E[image: -*-] with Eq. (32.8), and we solve the equation for E[image: -*-]
and B[image: -*-]—looking for the wave solutions.




Before we do this, we would like to make an historical note.
Maxwell
originally wrote his equations in a form which was different from the
one we have been using. Because the equations were written in this
different form for many years—and are still written that way by many
people—we will explain the difference. In the early days, the
mechanism of the dielectric constant was not fully and clearly
appreciated. The nature of atoms was not understood, nor that there
was a polarization of the material. So people did not appreciate that
there was a contribution to the charge density ρ[image: -*-]
from ∇⋅P[image: -*-]. They thought only in terms of charges that were not
bound to atoms (such as the charges that flow in wires or are rubbed
off surfaces).




Today, we prefer to let ρ[image: -*-] represent the total charge
density, including the part from the bound atomic charges. If we call
that part ρpol[image: -*-], we can write

[image: -*-][image: -*-]


where ρother[image: -*-] is the charge density considered by
Maxwell
and refers not bound to individual atoms. We would then write

[image: -*-][image: -*-]


Substituting ρpol[image: -*-] from Eq. (32.9),

[image: -*-][image: -*-]


or

[image: -*-][image: -*-]
(32.11)









The current density in the Maxwell equations for ∇×B[image: -*-] also
has, in general, contributions from bound atomic currents. We can therefore write

[image: -*-][image: -*-]


and the Maxwell equation becomes

[image: -*-][image: -*-]
(32.12)




Using Eq. (32.10), we get

[image: -*-][image: -*-]
(32.13)









Now you can see that if we were to define a new vector D[image: -*-]
by

[image: -*-][image: -*-]
(32.14)




the two field equations would become

[image: -*-][image: -*-]
(32.15)




and

[image: -*-][image: -*-]
(32.16)




These are actually the forms that
Maxwell used for dielectrics. His
two remaining equations were

[image: -*-][image: -*-]


and

[image: -*-][image: -*-]


which are the same as we have been using.




Maxwell and the other
early workers also had a problem with magnetic
materials (which we will take up soon). Because they did not know
about the circulating currents responsible for atomic magnetism, they
used a current density that was missing still another part. Instead of
Eq. (32.16), they actually wrote

[image: -*-][image: -*-]
(32.17)




where H[image: -*-] differs from ϵ0 c2 B[image: -*-] because it includes the
effects of atomic currents. (Then j′[image: -*-] represents what is left of the currents.) So
Maxwell had four field
vectors—E[image: -*-], D[image: -*-], B[image: -*-], and H[image: -*-]—the D[image: -*-]
and H[image: -*-] were hidden ways of not paying attention to what was going
on inside the material. You will find the equations written this way in
many places.




To solve the equations, it is necessary to relate D[image: -*-] and H[image: -*-]
to the other fields, and people used to write

[image: -*-][image: -*-]
(32.18)




However, these relations are only approximately true for some
materials and even then only if the fields are not changing rapidly
with time. (For sinusoidally varying fields one often can write
the equations this way by making ϵ[image: -*-] and μ[image: -*-] complex
functions of the frequency, but not for an arbitrary time variation of
the fields.) So there used to be all kinds of cheating in solving the
equations. We think the right way is to keep the equations in terms of
the fundamental quantities as we now understand them—and that’s how
we have done it.







32–3 Waves in a dielectric


We want now to find out what kind of electromagnetic waves can exist in
a dielectric material in which there are no extra charges other than
those bound in atoms. So we take ρ=−∇⋅P[image: -*-]
and j=∂P/∂t[image: -*-]. Maxwell’s
equations then become



[image: -*-][image: -*-]
(32.19)










We can solve these equations as we have done before. We start by
taking the curl of Eq. (32.19c):

[image: -*-][image: -*-]


Next, we make use of the vector identity

[image: -*-][image: -*-]


and also substitute for ∇×B[image: -*-], using
Eq. (32.19b); we get

[image: -*-][image: -*-]


Using Eq. (32.19a) for ∇⋅E[image: -*-], we get



[image: -*-][image: -*-]
(32.20)





So instead of the wave equation, we now get that the D’Alembertian
of E[image: -*-] is equal to two terms involving the polarization P[image: -*-].




Since P[image: -*-] depends on E[image: -*-], however, Eq. (32.20)
can still have wave solutions. We will now limit ourselves to
isotropic dielectrics, so that P[image: -*-] is always in the same
direction as E[image: -*-]. Let’s try to find a solution for a wave going in
the z[image: -*-]-direction. Then, the electric field might vary as ei (ω t−k z)[image: -*-]. We will also suppose that the wave is polarized in the
x[image: -*-]-direction—that the electric field has only an x[image: -*-]-component. We
write

[image: -*-][image: -*-]
(32.21)









You know that any function of (z−v t)[image: -*-] represents a wave that travels
with the speed v[image: -*-]. The exponent of Eq. (32.21) can be
written as

[image: -*-][image: -*-]


so, Eq. (32.21) represents a wave with the phase
velocity

[image: -*-][image: -*-]


The index of refraction n[image: -*-] is defined (see Chapter 31,
Vol. I) by letting

[image: -*-][image: -*-]


Thus Eq. (32.21) becomes

[image: -*-][image: -*-]


So we can find n[image: -*-] by finding what value of k[image: -*-] is required if
Eq. (32.21) is to satisfy the proper field equations, and
then using

[image: -*-][image: -*-]
(32.22)




In an isotropic material, there will be only an x[image: -*-]-component of the
polarization; then P[image: -*-] has no variation with the x[image: -*-]-coordinate,
so ∇⋅P=0[image: -*-], and we get rid of the first term on the
right-hand side of Eq. (32.20). Also, since we are
assuming a linear dielectric, Px[image: -*-] will vary as ei ω t[image: -*-], and
∂2Px/∂t2=−ω2 Px[image: -*-]. The Laplacian in
Eq. (32.20) becomes simply ∂2Ex/∂z2=−k2 Ex[image: -*-], so we get

[image: -*-][image: -*-]
(32.23)









Now let us assume for the moment that since E[image: -*-] is varying
sinusoidally, we can set P[image: -*-] proportional to E[image: -*-], as in
Eq. (32.8). (We’ll come back to discuss this assumption
later.) We write

[image: -*-][image: -*-]


Then Ex[image: -*-] drops out of Eq. (32.23), and we find

[image: -*-][image: -*-]
(32.24)




We have found that a wave like Eq. (32.21), with the
wave number k[image: -*-] given by Eq. (32.24), will satisfy the
field equations. Using Eq. (32.22), the index n[image: -*-] is
given by

[image: -*-][image: -*-]
(32.25)









Let’s compare this formula with what we obtained in our theory of the
index of a gas (Chapter 31, Vol. I). There, we got
Eq. (31.19), which is

[image: -*-][image: -*-]
(32.26)




Taking α[image: -*-] from Eq. (32.6), Eq. (32.25)
would give us

[image: -*-][image: -*-]
(32.27)




First, we have the new term in i γ ω[image: -*-], because we are
including the dissipation of the oscillators. Second, the left-hand
side is n[image: -*-] instead of n2[image: -*-], and there is an extra factor
of 1/2[image: -*-]. But notice that if N[image: -*-] is small enough so that n[image: -*-] is close to
one (as it is for a gas), then Eq. (32.27) says that
n2[image: -*-] is one plus a small number: n2=1+ϵ[image: -*-]. We can then write
n=√1+ϵ≈1+ϵ/2[image: -*-], and the two expressions are
equivalent. Thus our new method gives for a gas the same result we
found earlier.




Now you might think that Eq. (32.27) should give the
index of refraction for dense materials also. It needs to be modified,
however, for several reasons. First, the derivation of this equation
assumes that the polarizing field on each atom is the
field Ex[image: -*-]. That assumption is not right, however, because in dense
materials there is also the field produced by other atoms in the
vicinity, which may be comparable to Ex[image: -*-]. We considered a similar
problem when we studied the static fields in dielectrics. (See
Chapter 11.) You will remember that we estimated the field
at a single atom by imagining that it sat in a spherical hole in the
surrounding dielectric. The field in such a hole—which we called the
local field—is increased over the average field E[image: -*-] by the
amount P/3 ϵ0[image: -*-]. (Remember, however, that this result is only strictly
true in isotropic materials—including the special case of a cubic
crystal.)




The same arguments will hold for the electric field in a wave, so long
as the wavelength of the wave is much longer than the spacing between
atoms. Limiting ourselves to such cases, we write

[image: -*-][image: -*-]
(32.28)




This local field is the one that should be used for E[image: -*-] in
Eq. (32.3); that is, Eq. (32.8) should be
rewritten:

[image: -*-][image: -*-]
(32.29)




Using Elocal[image: -*-] from Eq. (32.28), we find

[image: -*-][image: -*-]


or

[image: -*-][image: -*-]
(32.30)




In other words, for dense materials P[image: -*-] is still proportional to E[image: -*-]
(for sinusoidal fields). However, the constant of proportionality is
not ϵ0 N α[image: -*-], as we wrote below Eq. (32.23), but
should be ϵ0 N α/[1−(N α/3)][image: -*-]. So we should correct
Eq. (32.25) to read

[image: -*-][image: -*-]
(32.31)




It will be more convenient if we rewrite this equation as

[image: -*-][image: -*-]
(32.32)




which is algebraically equivalent. This is known as the
Clausius-Mossotti equation.





There is another complication in dense materials. Because neighboring
atoms are so close, there are strong interactions between them. The
internal modes of oscillation are, therefore, modified. The natural
frequencies of the atomic oscillations are spread out by the
interactions, and they are usually quite heavily damped—the
resistance coefficient becomes quite large. So the ω0[image: -*-]’s
and γ[image: -*-]’s of the solid will be quite different from those of the free
atoms. With these reservations, we can still represent α[image: -*-], at
least approximately, by Eq. (32.7). We have then that

[image: -*-][image: -*-]
(32.33)









One final complication. If the dense material is a mixture of several
components, each will contribute to the polarization. The
total α[image: -*-] will be the sum of the contributions from each component of
the mixture [except for the inaccuracy of the local field
approximation, Eq. (32.28), in ordered
crystals—effects we discussed when analyzing
ferroelectrics]. Writing Nj[image: -*-] as the number of atoms of each
component per unit volume, we should replace Eq. (32.32)
by

[image: -*-][image: -*-]
(32.34)




where each αj[image: -*-] will be given by an expression like
Eq. (32.7). Equation (32.34) completes our
theory of the index of refraction. The quantity 3 (n2−1)/(n2+2)[image: -*-] is
given by some complex function of frequency, which is the mean atomic
polarizability α (ω)[image: -*-]. The precise evaluation
of α (ω)[image: -*-] (that is, finding fk[image: -*-], γk[image: -*-] and ω0 k[image: -*-])
in dense substances is a difficult problem of quantum mechanics. It has
been done from first principles only for a few especially simple
substances.







32–4 The complex index of refraction


We want to look now at the consequences of our result,
Eq. (32.33). First, we notice that α[image: -*-] is complex, so
the index n[image: -*-] is going to be a complex number. What does that mean?
Let’s say that we write n[image: -*-] as the sum of a real and an imaginary part:

[image: -*-][image: -*-]
(32.35)




where nR[image: -*-] and nI[image: -*-] are real functions of ω[image: -*-]. We write i nI[image: -*-]
with a minus sign, so that nI[image: -*-] will be a positive quantity in all
ordinary optical materials. (In ordinary inactive materials—that are
not, like lasers, light sources themselves—γ[image: -*-] is a positive
number, and that makes the imaginary part of n[image: -*-] negative.) Our plane
wave of Eq. (32.21) is written in terms of n[image: -*-] as

[image: -*-][image: -*-]


Writing n[image: -*-] as in Eq. (32.35), we would have

[image: -*-][image: -*-]
(32.36)




The term ei ω (t−nR z/c)[image: -*-] represents a wave travelling with the
speed c/nR[image: -*-], so nR[image: -*-] represents what we normally think of as the
index of refraction. But the amplitude of this wave is

[image: -*-][image: -*-]


which decreases exponentially with z[image: -*-]. A graph of the strength of the
electric field at some instant as a function of z[image: -*-] is shown in
Fig. 32–1, for nI≈nR/2 π[image: -*-]. The imaginary part of
the index represents the attenuation of the wave due to the energy
losses in the atomic oscillators. The intensity of the wave is
proportional to the square of the amplitude, so

[image: -*-][image: -*-]


This is often written as

[image: -*-][image: -*-]


where β=2 ω nI/c[image: -*-] is called the absorption
coefficient. Thus we have in Eq. (32.33) not only the theory of
the index of refraction of materials, but the theory of their absorption
of light as well.



[image: -][image: -]
Fig. 32–1. A graph of Ex[image: -*-] for some instant t[image: -*-], if nI≈nR/2 π[image: -*-].





In what we usually consider to be transparent material, the
quantity c/ω nI[image: -*-]—which has the dimensions of a length—is quite large
in comparison with the thickness of the material.







32–5 The index of a mixture


There is another prediction of our theory of the index of refraction
that we can check against experiment. Suppose we consider a mixture of
two materials. The index of the mixture is not the average of the two
indexes, but should be given in terms of the sum of the two
polarizabilities, as in Eq. (32.34). If we ask about the
index of, say, a sugar solution, the total polarizability is the sum
of the polarizability of the water and that of the sugar. Each must,
of course, be calculated using for N[image: -*-] the number per unit volume of
the molecules of the particular kind. In other words, if a given
solution has N1[image: -*-] molecules of water, whose polarizability
is α1[image: -*-], and N2[image: -*-] molecules of sucrose (C12[image: -*-]H22[image: -*-]O11[image: -*-]),
whose polarizability is α2[image: -*-], we should have that

[image: -*-][image: -*-]
(32.37)









We can use this formula to test our theory against experiment by
measuring the index for various concentrations of sucrose in water. We
are making several assumptions here, however. Our formula assumes that
there is no chemical action when the sucrose is dissolved and that the
disturbances to the individual atomic oscillators are not too
different for various concentrations. So our result is certainly only
approximate. Anyway, let’s see how good it is.




We have picked the example of a sugar solution because there is a good
table of measurements of the index of refraction in the
Handbook of Chemistry and Physics and also because sugar is a
molecular crystal that goes into solution without ionizing or
otherwise changing its chemical state.





Table 32–2. Refractive index of sucrose solutions, and comparison with predictions of Eq. (32.37).


[image: --][image: --]


We give in the first three columns of Table 32–2 the data
from the handbook. Column A is the percent of sucrose by weight,
column B is the measured density (g/cm3), and column C is the
measured index of refraction for light whose wavelength is
589.3[image: -*-] millimicrons. For pure sugar we have taken the measured index of
sugar crystals. The crystals are not isotropic, so the measured index is
different along different directions. The handbook gives three values:

[image: -*-][image: -*-]


We have taken the average.




Now we could try to compute n[image: -*-] for each concentration, but we don’t
know what value to take for α1[image: -*-] or α2[image: -*-]. Let’s test the
theory this way: We will assume that the polarizability of
water (α1[image: -*-]) is the same at all concentrations and compute the
polarizability of sucrose by using the experiment of values for n[image: -*-]
and solving Eq. (32.37) for α2[image: -*-]. If the theory is
correct, we should get the same α2[image: -*-] for all concentrations.




First, we need to know N1[image: -*-] and N2[image: -*-]: let’s express them in terms of
Avogadro’s number, N0[image: -*-]. Let’s take one liter (1000[image: -*-] cm3) for our
unit of volume. Then Ni/N0[image: -*-] is the weight per liter divided by the
gram-molecular weight. And the weight per liter is the density
(multiplied by 1000[image: -*-] to get grams per liter) times the fractional
weight of either the sucrose or the water. In this way, we get
N2/N0[image: -*-] and N1/N0[image: -*-] as in columns D and E of the table.




In column F we have computed 3 (n2−1)/(n2+2)[image: -*-] from the experimental
values of n[image: -*-] in column C. For pure water, 3 (n2−1)/(n2+2)[image: -*-]
is 0.617[image: -*-], which is equal to just N1 α1[image: -*-]. We can then fill in
the rest of Column G, since for each row G/E may be in the same
ratio—namely, 0.617:55.5[image: -*-]. Subtracting column G from column F, we get
the contribution N2 α2[image: -*-] of the sucrose, shown in column H.
Dividing these entries by the values of N2/N0[image: -*-] in column D, we get
the value of N0 α2[image: -*-] shown in column J.




From our theory we would expect all the values of N0 α2[image: -*-] to be
the same. They are not exactly equal, but pretty close. We can
conclude that our ideas are fairly correct. Even more, we find that
the polarizability of the sugar molecule doesn’t seem to depend much
on its surroundings—its polarizability is nearly the same in a
dilute solution as it is in the crystal.







32–6 Waves in metals


The theory we have worked out in this chapter for solid materials can
also be applied to good conductors, like metals, with very little
modification. In metals some of the electrons have no binding force
holding them to any particular atom; it is these “free” electrons
which are responsible for the conductivity. There
are other electrons which are bound, and the theory above is directly
applicable to them. Their influence, however, is usually swamped by the
effects of the conduction electrons. We will consider now only the
effects of the free electrons.





If there is no restoring force on an electron—but still some
resistance to its motion—its equation of motion differs from
Eq. (32.1) only because the term in [image: \omega_0^2x][image: \omega_0^2x] is
lacking. So all we have to do is set [image: \omega_0^2=0][image: \omega_0^2=0] in the rest of our
derivations—except that there is one more difference. The reason that
we had to distinguish between the average field and the local field in a
dielectric is that in an insulator each of the dipoles is fixed in
position, so that it has a definite relationship to the position of the
others. But because the conduction electrons in a metal move around all
over the place, the field on them on the average is just the
average field E[image: -*-]. So the correction we made to
Eq. (32.8) by using Eq. (32.28) should
not be made for conduction electrons. Therefore the formula for
the index of refraction for metals should look like
Eq. (32.27), except with ω0[image: -*-] set equal to zero,
namely,

[image: -*-][image: -*-]
(32.38)




This is only the contribution from the conduction electrons, which we
will assume is the major term for metals.



[image: -][image: -]
Fig. 32–2. The motion of a free electron.





Now we even know how to find what value to use for γ[image: -*-], because it
is related to the conductivity of the metal. In Chapter 43
of Volume I we discussed how the conductivity of a metal comes from the
diffusion of the free electrons through the crystal. The electrons go on
a jagged path from one scattering to the next, and between scatterings
they move freely except for an acceleration due to any average electric
field (as shown in Fig. 32–2). We found in
Chapter 43 of Volume I that the average drift velocity is
just the acceleration times the average time τ[image: -*-] between collisions.
The acceleration is qe E/m[image: -*-], so

[image: -*-][image: -*-]
(32.39)




This formula assumed that E[image: -*-] was constant, so that vdrift[image: -*-]
was a steady velocity. Since there is no average acceleration, the drag
force is equal to the applied force. We have defined γ[image: -*-] by saying
that γ m v[image: -*-] is the drag force [see Eq. (32.1)], which
is qe E[image: -*-]; therefore we have that

[image: -*-][image: -*-]
(32.40)









Although we cannot easily measure τ[image: -*-] directly, we can determine it
by measuring the conductivity of the metal. It is found experimentally
that an electric field E[image: -*-] in a metal produces a current with the
density j[image: -*-] proportional to E[image: -*-] (for isotropic materials):

[image: -*-][image: -*-]


The proportionality constant σ[image: -*-] is called the conductivity.
This is just what we expect from Eq. (32.39) if we set

[image: -*-][image: -*-]


Then

[image: -*-][image: -*-]
(32.41)




So τ[image: -*-]—and therefore γ[image: -*-]—can be related to the observed electrical
conductivity. Using Eqs. (32.40) and (32.41), we
can rewrite our formula for the index, Eq. (32.38), in the following
form:

[image: -*-][image: -*-]
(32.42)




where

[image: -*-][image: -*-]
(32.43)




This is a convenient formula for the index of refraction of metals.







32–7 Low-frequency and high-frequency approximations; the skin depth and the plasma
frequency


Our result, Eq. (32.42), for the index of refraction for
metals predicts quite different characteristics for wave propagation
at different frequencies. Let’s first see what happens at very
low frequencies. If ω[image: -*-] is small enough, we can
approximate Eq. (32.42) by

[image: -*-][image: -*-]
(32.44)




Now, as you can check by taking the square,2

[image: -*-][image: -*-]


so for low frequencies,

[image: -*-][image: -*-]
(32.45)




The real and imaginary parts of n[image: -*-] have the same magnitude. With such
a large imaginary part to n[image: -*-], the wave is rapidly attenuated in the
metal. Referring to Eq. (32.36), the amplitude of a wave
going in the z-direction decreases as

[image: -*-][image: -*-]
(32.46)




Let’s write this as

[image: -*-][image: -*-]
(32.47)




where δ[image: -*-] is then the distance in which the wave amplitude
decreases by the factor e−1=1/2.72[image: -*-]—or roughly one-third. The
amplitude of such a wave as a function of z[image: -*-] is shown in
Fig. 32–3. Since electromagnetic waves will penetrate into
a metal only this distance, δ[image: -*-] is called the skin depth. It
is given by

[image: -*-][image: -*-]
(32.48)








[image: -][image: -]
Fig. 32–3. The amplitude of a transverse electromagnetic wave as a
function of distance into a metal.





Now what do we mean by “low” frequencies? Looking at
Eq. (32.42), we see that it can be approximated by
Eq. (32.44) only if ω τ[image: -*-] is much less than one
and if ω ϵ0/σ[image: -*-] is also much less than one—that is,
our low-frequency approximation applies when

[image: -*-][image: -*-]


and

[image: -*-][image: -*-]
(32.49)









Let’s see what frequencies these correspond to for a typical metal
like copper. We compute τ[image: -*-] by using Eq. (32.43),
and σ/ϵ0[image: -*-], by using the measured conductivity. We take the
following data from a handbook:



[image: -*-][image: -*-]



If we assume that there is one free electron per atom, then the number
of electrons per cubic meter is

[image: -*-][image: -*-]


Using

[image: -*-][image: -*-]


we get

[image: -*-][image: -*-]


So for frequencies less than about 1012[image: -*-] cycles per second, copper
will have the “low-frequency” behavior we describe (that means for
waves whose free-space wavelength is longer than
0.3[image: -*-] millimeters—very short radio waves!).




For these waves, the skin depth in copper is

[image: -*-][image: -*-]


For microwaves of 10,000[image: -*-] megacycles per second (3-cm waves)

[image: -*-][image: -*-]


The wave penetrates a very small distance.




We can see from this why in studying cavities (or waveguides) we
needed to worry only about the fields inside the cavity, and not in
the metal or outside the cavity. Also, we see why the losses in a
cavity are reduced by a thin plating of silver or gold. The losses
come from the current, which are appreciable only in a thin layer
equal to the skin depth.




Suppose we look now at the index of a metal like copper at high
frequencies. For very high frequencies ω τ[image: -*-] is much greater
than one, and Eq. (32.42) is well approximated by

[image: -*-][image: -*-]
(32.50)




For waves of high frequencies the index of a metal becomes real—and
less than one! This is also evident from Eq. (32.38) if
the dissipation term with γ[image: -*-] is neglected, as can be done for
very large ω[image: -*-]. Equation (32.38) gives

[image: -*-][image: -*-]
(32.51)




which is, of course, the same as Eq. (32.50). We have
seen before the quantity [image: Nq_e^2/m\epsO][image: Nq_e^2/m\epsO], which we called the square
of the plasma frequency (Section 7–3):

[image: -*-][image: -*-]


so we can write Eq. (32.50) or Eq. (32.51)
as

[image: -*-][image: -*-]


The plasma frequency is a kind of “critical” frequency.




For ω<ωp[image: -*-] the index of a metal has an imaginary part, and
waves are attenuated; but for ω≫ωp[image: -*-] the index is real,
and the metal becomes transparent. You know, of course, that metals
are reasonably transparent to x-rays. But some metals are even
transparent in the ultraviolet. In Table 32–3 we give for
several metals the experimental observed wavelength at which they
begin to become transparent. In the second column we give the
calculated critical wavelength λp=2 π c/ωp[image: -*-]. Considering that the experimental wavelength is not too
well defined, the fit of the theory is fairly good.





Table 32–3. Wavelengths below which the metal becomes transparent*


[image: --][image: --]


You may wonder why the plasma frequency ωp[image: -*-] should have
anything to do with the propagation of electromagnetic waves in
metals. The plasma frequency came up in Chapter 7 as the
natural frequency of density oscillations of the free
electrons. (A clump of electrons is repelled by electric forces, and
the inertia of the electrons leads to an oscillation of density.) So
longitudinal plasma waves are resonant at ωp[image: -*-]. But we
are now talking about transverse electromagnetic waves, and we
have found that transverse waves are absorbed for frequencies
below ωp[image: -*-]. (It’s an interesting and not accidental
coincidence.)




Although we have been talking about wave propagation in metals, you
appreciate by this time the universality of the phenomena of
physics—that it doesn’t make any difference whether the free electrons
are in a metal or whether they are in the plasma of the
ionosphere of the earth, or in the atmosphere of a
star. To understand radio propagation in the
ionosphere, we can use the same expressions—using,
of course, the proper values for N[image: -*-] and τ[image: -*-]. We can see now why long
radio waves are absorbed or reflected by the
ionosphere, whereas short waves go right through.
(Short waves must be used for communication with satellites.)





We have talked about the high- and low-frequency extremes for wave
propagation in metals. For the in-between frequencies the full-blown
formula of Eq. (32.42) must be used. In general, the
index will have real and imaginary parts; the wave is attenuated as it
propagates into the metal. For very thin layers, metals are somewhat
transparent even at optical frequencies. As an example, special
goggles for people who work around high-temperature furnaces are made
by evaporating a thin layer of gold on glass. The visible light is
transmitted fairly well—with a strong green tinge—but the infrared
is strongly absorbed.




Finally, it cannot have escaped the reader that many of these formulas
resemble in some ways those for the dielectric constant κ[image: -*-]
discussed in Chapter 10. The dielectric constant κ[image: -*-]
measures the response of the material to a constant field, that is,
for ω=0[image: -*-]. If you look carefully at the definition of n[image: -*-]
and κ[image: -*-] you see that κ[image: -*-] is simply the limit of n2[image: -*-]
as ω→0[image: -*-]. Indeed, placing ω=0[image: -*-] and n2=κ[image: -*-] in equations
of this chapter will reproduce the equations of the theory of the
dielectric constant of Chapter 11.






	
  
  Throughout
this chapter we follow the
notation of Chapter 31 of Volume I, and let α[image: -*-]
represent the atomic polarizability
as defined here. In the
last chapter, we used α[image: -*-] to represent the volume
polarizability—the ratio of P[image: -*-] to E[image: -*-]. In the notation of
this chapter P=N α ϵ0 E[image: -*-] (see Eq. 32.8).
  ↩


	
  
  Or writing
−i=e−i π/2[image: -*-]; √−i=[image: -*-]e−i π/4=[image: -*-]cosπ/4−i sinπ/4[image: -*-], which
gives the same result.
  ↩
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33–1 Reflection and refraction of light

[image: -][image: -]
Fig. 33–1. Reflection and refraction of light waves at a surface. (The
wave directions are normal to the wave crests.)





The subject of this chapter is the reflection and refraction
of light—or electromagnetic waves in general—at surfaces. We have
already discussed the laws of reflection and refraction in Chapters
26 and 33 of Volume I. Here’s what we
found out there:


	The angle of reflection is equal to the angle of
incidence. With the
angles defined as shown in Fig. 33-1,
[image: -*-][image: -*-]
(33.1)






	The product n sinθ[image: -*-] is the same for the incident and
transmitted beams (Snell’s law):
[image: -*-][image: -*-]
(33.2)






	The intensity of the reflected light depends on the angle of
incidence and also on the direction of polarization. For E[image: -*-]
perpendicular to the plane of incidence, the reflection
coefficient R⟂[image: -*-] is
[image: -*-][image: -*-]
(33.3)




For E[image: -*-] parallel to the plane of incidence, the reflection
coefficient R∥[image: -*-] is
[image: -*-][image: -*-]
(33.4)






	For normal incidence (any polarization, of course!),
[image: -*-][image: -*-]
(33.5)








(Earlier, we used i[image: -*-] for the incident angle and r[image: -*-] for the refracted
angle. Since we can’t use r[image: -*-] for both “refracted” and
“reflected” angles, we are now using θi=[image: -*-]incident angle,
θr=[image: -*-]reflected angle, and θt=[image: -*-]transmitted angle.)




Our earlier discussion is really about as far as anyone would normally
need to go with the subject, but we are going to do it all over again
a different way. Why? One reason is that we assumed before that the
indexes were real (no absorption in the materials). But another reason
is that you should know how to deal with what happens to waves at
surfaces from the point of view of Maxwell’s
equations. We’ll get the same answers
as before, but now from a straightforward solution of the wave problem,
rather than by some clever arguments.





We want to emphasize that the amplitude of a surface reflection is not
a property of the material, as is the index of refraction. It
is a “surface property,” one that depends precisely on how the
surface is made. A thin layer of extraneous junk on the surface
between two materials of indices n1[image: -*-] and n2[image: -*-] will usually change
the reflection. (There are all kinds of possibilities of interference
here—like the colors of oil films. Suitable thickness can even
reduce the reflected amplitude to zero for a given frequency; that’s
how coated lenses are made.) The formulas we will derive are correct
only if the change of index is sudden—within a distance very small
compared with one wavelength. For light, the wavelength is about
5000[image: -*-] Å, so by a “smooth” surface we mean one in which the
conditions change in going a distance of only a few atoms (or a few
angstroms). Our equations will work for light for highly polished
surfaces. In general, if the index changes gradually over a distance
of several wavelengths, there is very little reflection at all.







33–2 Waves in dense materials


First, we remind you about the convenient way of describing a sinusoidal
plane wave we used in Chapter 34 of Volume I. Any field
component in the wave (we use E[image: -*-] as an example) can be written
in the form

[image: -*-][image: -*-]
(33.6)




where E[image: -*-] represents the amplitude at the point r[image: -*-] (from the
origin) at the time t[image: -*-]. The vector k[image: -*-] points in the direction
the wave is travelling, and its magnitude │k│=[image: -*-]k=[image: -*-]2 π/λ[image: -*-]
is the wave number. The phase velocity of the wave
is vph=ω/k[image: -*-]; for a light wave in a material of index n[image: -*-],
vph=c/n[image: -*-], so

[image: -*-][image: -*-]
(33.7)




Suppose k[image: -*-] is in the z[image: -*-]-direction; then k⋅r[image: -*-] is
just k z[image: -*-], as we have often used it. For k[image: -*-] in any other direction, we
should replace z[image: -*-] by rk[image: -*-], the distance from the origin in the
k[image: -*-]-direction; that is, we should replace k z[image: -*-] by k rk[image: -*-], which is
just k⋅r[image: -*-]. (See Fig. 33–2.) So
Eq. (33.6) is a convenient representation of a wave in any
direction.



[image: -][image: -]
Fig. 33–2. For a wave moving in the direction k[image: -*-], the phase at any
point P[image: -*-] is (ω t−k⋅r)[image: -*-].





We must remember, of course, that

[image: -*-][image: -*-]


where kx[image: -*-], ky[image: -*-], and kz[image: -*-] are the components of k[image: -*-] along the
three axes. In fact, we pointed out once that (ω,kx,ky,kz)[image: -*-] is
a four-vector, and that its scalar product with (t,x,y,z)[image: -*-] is an
invariant. So the phase of a wave is an invariant, and
Eq. (33.6) could be written

[image: -*-][image: -*-]


But we don’t need to be that fancy now.




For a sinusoidal E[image: -*-], as in Eq. (33.6), ∂E/∂t[image: -*-] is
the same as i ω E[image: -*-], and ∂E/∂x[image: -*-] is −i kx E[image: -*-], and so on for
the other components. You can see why it is very convenient to use the
form in Eq. (33.6) when working with differential
equations—differentiations are replaced by multiplications. One
further useful point: The
operation ∇=(∂/∂x,∂/∂y,∂/∂z)[image: -*-] gets replaced by the
three multiplications (−i kx,−i ky,−i kz)[image: -*-]. But these three factors
transform as the components of the vector k[image: -*-], so the
operator ∇[image: -*-] gets replaced by multiplication with −i k[image: -*-]:

[image: -*-][image: -*-]
(33.8)




This remains true for any ∇[image: -*-] operation—whether it is the
gradient, or the divergence, or the curl. For instance, the
z[image: -*-]-component of ∇×E[image: -*-] is

[image: -*-][image: -*-]


If both Ey[image: -*-] and Ex[image: -*-] vary as e−i k⋅r[image: -*-], then we get

[image: -*-][image: -*-]


which is, you see, the z[image: -*-]-component of −i k×E[image: -*-].




So we have the very useful general fact that whenever you have to take
the gradient of a vector that varies as a wave in three dimensions
(they are an important part of physics), you can always take the
derivations quickly and almost without thinking by remembering that
the operation ∇[image: -*-] is equivalent to multiplication by −i k[image: -*-].




For instance, the Faraday equation

[image: -*-][image: -*-]


becomes for a wave

[image: -*-][image: -*-]


This tells us that

[image: -*-][image: -*-]
(33.9)




which corresponds to the result we found earlier for waves in free
space—that B[image: -*-], in a wave, is at right angles to E[image: -*-] and to
the wave direction. (In free space, ω/k=c[image: -*-].) You can remember
the sign in Eq. (33.9) from the fact that k[image: -*-] is in
the direction of Poynting’s vector S=ϵ0 c2 E×B[image: -*-].




If you use the same rule with the other Maxwell
equations,
you get again the results of the last chapter and, in particular, that

[image: -*-][image: -*-]
(33.10)




But since we know that, we won’t do it again.





If you want to entertain yourself, you can try the following terrifying
problem that was the ultimate test for graduate students back in 1890:
solve Maxwell’s equations for
plane waves in an anisotropic crystal, that is, when the
polarization P[image: -*-] is related to the electric field E[image: -*-] by a
tensor of polarizability. You should, of course, choose your axes along
the principal axes of the tensor, so that the relations are simplest
(then Px=αa Ex[image: -*-], Py=αb Ey[image: -*-], and Pz=αc Ez[image: -*-]), but
let the waves have an arbitrary direction and polarization. You should
be able to find the relations between E[image: -*-] and B[image: -*-], and
how k[image: -*-] varies with direction and wave polarization. Then you will
understand the optics of an anisotropic crystal. It would be best to
start with the simpler case of a birefringent crystal—like calcite—for which two of the polarizabilities are
equal (say, αb=αc[image: -*-]), and see if you can understand why you
see double when you look through such a crystal. If you can do that,
then try the hardest case, in which all three α[image: -*-]’s are different.
Then you will know whether you are up to the level of a graduate student
of 1890. In this chapter, however, we will consider only isotropic
substances.





We know from experience that when a plane wave arrives at the boundary
between two different materials—say, air and glass, or water and
oil—there is a wave reflected and a wave transmitted. Suppose we
assume no more than that and see what we can work out. We choose our
axes with the y z[image: -*-]-plane in the surface and the x y[image: -*-]-plane perpendicular
to the incident wave surfaces, as shown in Fig. 33–3.



[image: -][image: -]
Fig. 33–3. The propagation vectors k[image: -*-], k′[image: -*-], and k′′[image: -*-] for
the incident, reflected, and transmitted waves.





The electric vector of the incident wave can then be written as

[image: -*-][image: -*-]
(33.11)




Since k[image: -*-] is perpendicular to the z[image: -*-]-axis,

[image: -*-][image: -*-]
(33.12)




We write the reflected wave as

[image: -*-][image: -*-]
(33.13)




so that its frequency is ω′[image: -*-], its wave number is k′[image: -*-], and
its amplitude is [image: \FLPE_0'][image: \FLPE_0']. (We know, of course, that the frequency
is the same and the magnitude of k′[image: -*-] is the same as for the
incident wave, but we are not going to assume even that. We will let
it come out of the mathematical machinery.) Finally, we write for the
transmitted wave,

[image: -*-][image: -*-]
(33.14)









We know that one of Maxwell’s equations gives Eq. (33.9), so for each of the waves we have

[image: -*-][image: -*-]
(33.15)




Also, if we call the indexes of the two media n1[image: -*-] and n2[image: -*-], we have
from Eq. (33.10)

[image: -*-][image: -*-]
(33.16)




Since the reflected wave is in the same material, then

[image: -*-][image: -*-]
(33.17)




whereas for the transmitted wave,

[image: -*-][image: -*-]
(33.18)












33–3 The boundary conditions


All we have done so far is to describe the three waves; our problem now
is to work out the parameters of the reflected and transmitted waves in
terms of those of the incident wave. How can we do that? The three waves
we have described satisfy Maxwell’s
equations in the uniform material,
but Maxwell’s equations must
also be satisfied at the boundary between the two different
materials. So we must now look at what happens right at the boundary. We
will find that Maxwell’s equations demand that the three waves fit together in a certain way.




[image: -][image: -]
Fig. 33–4. A boundary condition Ey 2=Ey 1[image: -*-] is obtained
from ∮ΓE⋅ds=0[image: -*-].





As an example of what we mean, the y[image: -*-]-component of the electric
field E[image: -*-] must be the same on both sides of the boundary. This is
required by Faraday’s law,

[image: -*-][image: -*-]
(33.19)




as we can see in the following way. Consider a little rectangular
loop Γ[image: -*-] which straddles the boundary, as shown in
Fig. 33–4. Equation (33.19) says that the line
integral of E[image: -*-] around Γ[image: -*-] is equal to the rate of change of
the flux of B[image: -*-] through the loop:

[image: -*-][image: -*-]


Now imagine that the rectangle is very narrow, so that the loop
encloses an infinitesimal area. If B[image: -*-] remains finite (and there’s
no reason it should be infinite at the boundary!) the flux through the
area is zero. So the line integral of E[image: -*-] must be zero. If
Ey 1[image: -*-] and Ey 2[image: -*-] are the components of the field on the two sides
of the boundary and if the length of the rectangle is l[image: -*-], we have

[image: -*-][image: -*-]


or

[image: -*-][image: -*-]
(33.20)




as we have said. This gives us one relation among the fields of the
three waves.




The procedure of working out the consequences of Maxwell’s
equations at the boundary is called
“determining the boundary conditions.” Ordinarily, it is done by
finding as many equations like Eq. (33.20) as one can, by
making arguments about little rectangles like Γ[image: -*-] in
Fig. 33–4, or by using little gaussian surfaces that
straddle the boundary. Although that is a perfectly good way of
proceeding, it gives the impression that the problem of dealing with a
boundary is different for every different physical problem.




For example, in a problem of heat flow across a boundary, how are the
temperatures on the two sides related? Well, you could argue, for one
thing, that the heat flow to the boundary from one side would
have to equal the flow away from the other side. It is usually
possible, and generally quite useful, to work out the boundary
conditions by making such physical arguments. There may be times,
however, when in working on some problem you have only some equations,
and you may not see right away what physical arguments to use. So
although we are at the moment interested only in an electromagnetic
problem, where we can make the physical arguments, we want to
show you a method that can be used for any problem—a general
way of finding what happens at a boundary directly from the
differential equations.




We begin by writing all the Maxwell equations for a dielectric—and this
time we are very specific and write out explicitly all the components:
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(33.21)
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(33.22a)

(33.22b)

(33.22c)
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(33.23)
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(33.24a)

(33.24b)

(33.24c)














Now these equations must all hold in region 1 (to the left of the
boundary) and in region 2 (to the right of the boundary). We have
already written the solutions in regions 1 and 2. Finally, they
must also be satisfied in the boundary, which we can call
region 3. Although we usually think of the boundary as being sharply
discontinuous, in reality it is not. The physical properties change
very rapidly but not infinitely fast. In any case, we can imagine that
there is a very rapid, but continuous, transition of the index
between region 1 and 2, in a short distance we can call
region 3. Also, any field quantity like Px[image: -*-], or Ey[image: -*-], etc., will make a
similar kind of transition in region 3. In this region, the
differential equations must still be satisfied, and it is by following
the differential equations in this region that we can arrive at the
needed “boundary conditions.”




For instance, suppose that we have a boundary between vacuum (region 1)
and glass (region 2). There is nothing to polarize in the vacuum,
so P1=0[image: -*-]. Let’s say there is some polarization P2[image: -*-] in the
glass. Between the vacuum and the glass there is a smooth, but rapid,
transition. If we look at any component of P[image: -*-], say Px[image: -*-], it might
vary as drawn in Fig. 33–5(a). Suppose now we take the
first of our equations, Eq. (33.21). It involves derivatives
of the components of P[image: -*-] with respect to x[image: -*-], y[image: -*-], and z[image: -*-]. The y[image: -*-]-
and z[image: -*-]-derivatives are not interesting; nothing spectacular is
happening in those directions. But the x[image: -*-]-derivative of Px[image: -*-] will have
some very large values in region 3, because of the tremendous slope
of Px[image: -*-]. The derivative ∂Px/∂x[image: -*-] will have a sharp spike at the
boundary, as shown in Fig. 33–5(b). If we imagine squashing
the boundary to an even thinner layer, the spike would get much higher.
If the boundary is really sharp for the waves we are interested in, the
magnitude of ∂Px/∂x[image: -*-] in region 3 will be much, much greater
than any contributions we might have from the variation of P[image: -*-] in
the wave away from the boundary—so we ignore any variations other than
those due to the boundary.



[image: -][image: -]

Fig. 33–5. The fields in the transition region 3 between two different
materials in regions 1 and 2.





Now how can Eq. (33.21) be satisfied if there is a
whopping big spike on the right-hand side? Only if there is an equally
whopping big spike on the other side. Something on the left-hand side
must also be big. The only candidate is ∂Ex/∂x[image: -*-], because the
variations with y[image: -*-] and z[image: -*-] are only those small effects in the wave
we just mentioned. So −ϵ0 (∂Ex/∂x)[image: -*-] must be as drawn in
Fig. 33–5(c)—just a copy of ∂Px/∂x[image: -*-]. We have that

[image: -*-][image: -*-]


If we integrate this equation with respect to x[image: -*-] across region 3,
we conclude that

[image: -*-][image: -*-]
(33.25)




In other words, the jump in ϵ0 Ex[image: -*-] in going from region 1 to
region 2 must be equal to the jump in −Px[image: -*-].




We can rewrite Eq. (33.25) as

[image: -*-][image: -*-]
(33.26)




which says that the quantity (ϵ0 Ex+Px)[image: -*-] has equal values in
region 2 and region 1. People say: the quantity (ϵ0 Ex+Px)[image: -*-]
is continuous across the boundary. We have, in this way, one of
our boundary conditions.




Although we took as an illustration the case in which P1[image: -*-] was
zero because region 1 was a vacuum, it is clear that the same
argument applies for any two materials in the two regions, so
Eq. (33.26) is true in general.




Let’s now go through the rest of Maxwell’s
equations and see what each of them
tells us. We take next Eq. (33.22a). There are no
x[image: -*-]-derivatives, so it doesn’t tell us anything. (Remember that the
fields themselves do not get especially large at the boundary;
only the derivatives with respect to x[image: -*-] can become so huge that they
dominate the equation.) Next, we look at Eq. (33.22b). Ah!
There is an x[image: -*-]-derivative! We have ∂Ez/∂x[image: -*-] on the left-hand
side. Suppose it has a huge derivative. But wait a moment! There is
nothing on the right-hand side to match it with; therefore Ez[image: -*-]
cannot have any jump in going from region 1 to region 2. [If
it did, there would be a spike on the left of Eq. (33.22b)
but none on the right, and the equation would be false.] So we have a
new condition:

[image: -*-][image: -*-]
(33.27)




By the same argument, Eq. (33.22c) gives

[image: -*-][image: -*-]
(33.28)




This last result is just what we got in Eq. (33.20) by a
line integral argument.




We go on to Eq. (33.23). The only term that could have a
spike is ∂Bx/∂x[image: -*-]. But there’s nothing on the right to match
it, so we conclude that

[image: -*-][image: -*-]
(33.29)









On to the last of Maxwell’s equations! Equation (33.24a) gives nothing, because there are
no x[image: -*-]-derivatives. Equation (33.24b) has one,
−c2 ∂Bz/∂x[image: -*-], but again, there is nothing to match it with. We
get

[image: -*-][image: -*-]
(33.30)




The last equation is quite similar, and gives

[image: -*-][image: -*-]
(33.31)









The last three equations gives us that B2=B1[image: -*-]. We want to
emphasize, however, that we get this result only when the materials on
both sides of the boundary are nonmagnetic—or rather, when we can
neglect any magnetic effects of the materials. This can usually be
done for most materials, except ferromagnetic ones. (We will treat the
magnetic properties of materials in some later chapters.)





Table 33–1. Boundary conditions at the surface of a 
dielectric



[image: --][image: --]


Our program has netted us the six relations between the fields in
region 1 and those in region 2. We have put them all together in
Table 33–1. We can now use them to match the waves in the
two regions. We want to emphasize, however, that the idea we have just
used will work in any physical situation in which you have
differential equations and you want a solution that crosses a sharp
boundary between two regions where some property changes. For our
present purposes, we could have easily derived the same equations by
using arguments about the fluxes and circulations at the
boundary. (You might see whether you can get the same result that
way.) But now you have seen a method that will work in case you ever
get stuck and don’t see any easy argument about the physics of what is
happening at the boundary—you can just work with the equations.







33–4 The reflected and transmitted waves


Now we are ready to apply our boundary conditions to the waves we
wrote down in Section 33–2. We had:
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(33.32)

(33.33)

(33.34)
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(33.35)

(33.36)

(33.37)






We have one further bit of knowledge: E[image: -*-] is perpendicular to its
propagation vector k[image: -*-] for each wave.




The results will depend on the direction of the E[image: -*-]-vector (the
“polarization”) of the incoming wave. The analysis is much
simplified if we treat separately the case of an incident wave with
its E[image: -*-]-vector parallel to the “plane of incidence” (that
is, the x y[image: -*-]-plane) and the case of an incident wave with the
E[image: -*-]-vector perpendicular to the plane of incidence. A wave
of any other polarization is just a linear combination of two such
waves. In other words, the reflected and transmitted intensities are
different for different polarizations, and it is easiest to pick the
two simplest cases and treat them separately.




We will carry through the analysis for an incoming wave polarized
perpendicular to the plane of incidence and then just give you the
result for the other. We are cheating a little by taking the simplest
case, but the principle is the same for both. So we take that
Ei[image: -*-] has only a z[image: -*-]-component, and since all the E[image: -*-]-vectors
are in the same direction we can leave off the vector signs.



[image: -][image: -]
Fig. 33–6. Polarization of the reflected and transmitted waves when the
E[image: -*-]-field of the incident wave is perpendicular to the plane of
incidence.





So long as both materials are isotropic, the induced oscillations of
charges in the material will also be in the z[image: -*-]-direction, and the
E[image: -*-]-field of the transmitted and radiated waves will have only
z[image: -*-]-components. So for all the waves, Ex[image: -*-] and Ey[image: -*-] and Px[image: -*-]
and Py[image: -*-] are zero. The waves will have their E[image: -*-]- and B[image: -*-]-vectors
as drawn in Fig. 33–6. (We are cutting a corner here on our
original
plan of getting everything from the equations. This result would also
come out of the boundary conditions, but we can save a lot of algebra
by using the physical argument. When you have some spare time, see if
you can get the same result from the equations. It is clear that what
we have said agrees with the equations; it is just that we have not
shown that there are no other possibilities.)




Now our boundary conditions, Eqs. (33.26)
through (33.31), give relations between the components of E[image: -*-]
and B[image: -*-] in regions 1 and 2. For region 2 we have only the transmitted
wave, but in region 1 we have two waves. Which one do we use? The
fields in region 1 are, of course, the superposition of the fields of the
incident and reflected waves. (Since each satisfies Maxwell’s
equations, so does the sum.) So when we use
the boundary conditions, we must use that

[image: -*-][image: -*-]


and similarly for the B[image: -*-]’s.





For the polarization we are considering, Eqs. (33.26)
and (33.28) give us no new information; only Eq. (33.27)
is useful. It says that

[image: -*-][image: -*-]


at the boundary, that is, for x=0[image: -*-]. So we have that

[image: -*-][image: -*-]
(33.38)




which must be true for all t[image: -*-] and for all y[image: -*-]. Suppose
we look first at y=0[image: -*-]. Then we have

[image: -*-][image: -*-]


This equation says that two oscillating terms are equal to a third
oscillation. That can happen only if all the oscillations have the
same frequency. (It is impossible for three—or any number—of such
terms with different frequencies to add to zero for all times.) So

[image: -*-][image: -*-]
(33.39)




As we knew all along, the frequencies of the reflected and transmitted
waves are the same as that of the incident wave.




We should really have saved ourselves some trouble by putting that in
at the beginning, but we wanted to show you that it can also be got
out of the equations. When you are doing a real problem, it is usually
the best thing to put everything you know into the works right at the
start and save yourself a lot of trouble.




By definition, the magnitude of k[image: -*-] is given
by k2=n2 ω2/c2[image: -*-], so we have also that

[image: -*-][image: -*-]
(33.40)









Now look at Eq. (33.38) for t=0[image: -*-]. Using again the same
kind of argument we have just made, but this time based on the fact
that the equation must hold for all values of y[image: -*-], we get that

[image: -*-][image: -*-]
(33.41)




From Eq. (33.40), k′2=k2[image: -*-], so

[image: -*-][image: -*-]


Combining this with Eq. (33.41), we have that

[image: -*-][image: -*-]


or that [image: k_x'=\pm k_x][image: k_x'=\pm k_x]. The positive sign makes no sense; that would
not give a reflected wave, but another incident wave,
and we said at the start that we were solving the problem of only one
incident wave. So we have

[image: -*-][image: -*-]
(33.42)




The two equations (33.41) and (33.42) give us
that the angle of reflection is equal to the angle of incidence, as we
expected. (See Fig. 33–3.) The reflected wave is
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(33.43)









For the transmitted wave we already have that

[image: -*-][image: -*-]


and

[image: -*-][image: -*-]
(33.44)




so we can solve these to find [image: k_x''][image: k_x'']. We get

[image: -*-][image: -*-]
(33.45)









Suppose for a moment that n1[image: -*-] and n2[image: -*-] are real numbers (that the
imaginary parts of the indexes are very small). Then all the k[image: -*-]’s are
also real numbers, and from Fig. 33–3 we find that

[image: -*-][image: -*-]
(33.46)




From (33.44) we get that

[image: -*-][image: -*-]
(33.47)




which is Snell’s law of refraction—again, something we already knew.
If the indexes are not real, the wave numbers are complex, and we have
to use Eq. (33.45). [We could still define the angles
θi[image: -*-] and θt[image: -*-] by Eq. (33.46), and Snell’s law,
Eq. (33.47), would be true in general. But then the
“angles” also are complex numbers, thereby losing their simple
geometrical interpretation as angles. It is best then to describe the
behavior of the waves by their complex kx[image: -*-] or [image: k_x''][image: k_x''] values.]




So far, we haven’t found anything new. We have just had the
simple-minded delight of getting some obvious answers from a complicated
mathematical machinery. Now we are ready to find the amplitudes of the
waves which we have not yet known. Using our results for the ω[image: -*-]’s
and k[image: -*-]’s, the exponential factors in Eq. (33.38) can be
cancelled, and we get

[image: -*-][image: -*-]
(33.48)




Since both [image: E_0'][image: E_0'] and [image: E_0''][image: E_0''] are unknown, we need one more
relationship. We must use another of the boundary conditions. The
equations for Ex[image: -*-] and Ey[image: -*-] are no help, because all the E[image: -*-]’s
have only a z[image: -*-]-component. So we must use the conditions on B[image: -*-].
Let’s try Eq. (33.29):

[image: -*-][image: -*-]


From Eqs. (33.35) through (33.37),



[image: -*-][image: -*-]



Recalling that ω′′=ω′=ω[image: -*-] and [image: k_y''=k_y'=k_y][image: k_y''=k_y'=k_y], we get
that

[image: -*-][image: -*-]


But this is just Eq. (33.48) all over again! We’ve just
wasted time getting something we already knew.




We could try Eq. (33.30), Bz 2=Bz 1[image: -*-], but there are no
z[image: -*-]-components of B[image: -*-]! So there’s only one equation left:
Eq. (33.31), By 2=By 1[image: -*-]. For the three waves:



[image: -*-][image: -*-]
(33.49)





Putting for Ei[image: -*-], Er[image: -*-], and Et[image: -*-] the wave expression for x=0[image: -*-] (to
be at the boundary), the boundary condition is

[image: -*-][image: -*-]


Again all ω[image: -*-]’s and ky[image: -*-]’s are equal, so this reduces to

[image: -*-][image: -*-]
(33.50)




This gives us an equation for the E[image: -*-]’s that is different from
Eq. (33.48). With the two, we can solve for [image: E_0'][image: E_0']
and [image: E_0''][image: E_0'']. Remembering that [image: k_x'=-k_x][image: k_x'=-k_x], we get

[image: -*-][image: -*-]
(33.51)

(33.52)




These, together with Eq. (33.45) or Eq. (33.46)
for [image: k_x''][image: k_x''], give us what we wanted to know. We will discuss the
consequences of this result in the next section.



[image: -][image: -]
Fig. 33–7. Polarization of the waves when the E[image: -*-]-field of the
incident wave is parallel to the plane of incidence.





If we begin with a wave polarized with its E[image: -*-]-vector
parallel to the plane of incidence, E[image: -*-] will have both x[image: -*-]-
and y[image: -*-]-components, as shown in Fig. 33–7. The algebra is
straightforward but more complicated. (The work can be somewhat reduced
by expressing things in this case in terms of the magnetic
fields, which are all in the z[image: -*-]-direction.) One finds that
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(33.53)




and

[image: -*-][image: -*-]
(33.54)









Let’s see whether our results agree with those we got
earlier. Equation (33.3) is the result we worked out in
Chapter 33 of Volume I for the ratio of the intensity of
the reflected wave to the intensity of the incident wave. Then,
however, we were considering only real indexes. For real
indexes (and k[image: -*-]’s), we can write

[image: -*-][image: -*-]


Substituting in Eq. (33.51), we have

[image: -*-][image: -*-]
(33.55)




which does not look the same as Eq. (33.3). It will,
however, if we use Snell’s law to get rid of the n[image: -*-]’s. Setting
n2=n1 sinθi/sinθt[image: -*-], and multiplying the numerator and
denominator by sinθt[image: -*-], we get

[image: -*-][image: -*-]


The numerator and denominator are just the sines of
−(θi−θt)[image: -*-] and (θi+θt)[image: -*-]; we get

[image: -*-][image: -*-]
(33.56)




Since [image: E_0'][image: E_0'] and E0[image: -*-] are in the same material, the intensities are
proportional to the squares of the electric fields, and we get the
same result as before. Similarly, Eq. (33.53) is the
same as Eq. (33.4).




For waves which arrive at normal incidence, θi=0[image: -*-]
and θt=0[image: -*-]. Equation (33.56) gives 0/0[image: -*-], which is not
very useful. We can, however, go back to Eq. (33.55),
which gives

[image: -*-][image: -*-]
(33.57)




This result, naturally, applies for “either” polarization, since for
normal incidence there is no special “plane of incidence.”








33–5 Reflection from metals


We can now use our results to understand the interesting phenomenon of
reflection from metals. Why is it that metals are shiny? We saw in the
last chapter that metals have an index of refraction which, for some
frequencies, has a large imaginary part. Let’s see what we would get
for the reflected intensity when light shines from air (with n=1[image: -*-])
onto a material with n=−i nI[image: -*-]. Then Eq. (33.55) gives
(for normal incidence)

[image: -*-][image: -*-]


For the intensity of the reflected wave, we want the square of
the absolute values of [image: E_0'][image: E_0'] and E0[image: -*-]:

[image: -*-][image: -*-]


or

[image: -*-][image: -*-]
(33.58)




For a material with an index which is a pure imaginary number, there
is 100[image: -*-] percent reflection!




Metals do not reflect 100[image: -*-] percent, but many do reflect visible light
very well. In other words, the imaginary part of their indexes is very
large. But we have seen that a large imaginary part of the index means
a strong absorption. So there is a general rule that if any
material gets to be a very good absorber at any frequency, the
waves are strongly reflected at the surface and very little gets
inside to be absorbed. You can see this effect with strong dyes. Pure
crystals of the strongest dyes have a “metallic” shine. Probably you
have noticed that at the edge of a bottle of purple ink the dried dye
will give a golden metallic reflection, or that dried red ink will
sometimes give a greenish metallic reflection. Red ink absorbs out the
greens of transmitted light, so if the ink is very
concentrated, it will exhibit a strong surface reflection for
the frequencies of green light.



[image: -][image: -]
Fig. 33–8. A material which absorbs light strongly at the
frequency ω[image: -*-] also reflects light of that frequency.





You can easily show this effect by coating a glass plate with red ink
and letting it dry. If you direct a beam of white light at the back of
the plate, as shown in Fig. 33–8, there will be a transmitted beam
of red light and a reflected beam of green light.







33–6 Total internal reflection


If light goes from a material like glass, with a real index n[image: -*-]
greater than 1, toward, say, air, with an index n2[image: -*-] equal to 1,
Snell’s law says that

[image: -*-][image: -*-]


The angle θt[image: -*-] of the transmitted wave becomes 90°[image: -*-] when the
incident angle θi[image: -*-] is equal to the “critical angle” θc[image: -*-]
given by

[image: -*-][image: -*-]
(33.59)




What happens for θi[image: -*-] greater than the critical angle? You know
that there is total internal reflection. But how does that come about?




Let’s go back to Eq. (33.45) which gives the wave
number [image: k_x''][image: k_x''] for the transmitted wave. We would have

[image: -*-][image: -*-]


Now ky=k sinθi[image: -*-] and k=ω n/c[image: -*-], so

[image: -*-][image: -*-]


If n sinθi[image: -*-] is greater than one, [image: k_x''^2][image: k_x''^2] is negative
and [image: k_x''][image: k_x''] is a pure imaginary, say ±i kI[image: -*-]. You know by now what
that means! The “transmitted” wave (Eq. 33.34) will
have the form

[image: -*-][image: -*-]


The wave amplitude either grows or drops off exponentially with
increasing x[image: -*-]. Clearly, what we want here is the negative sign. Then
the amplitude of the wave to the right of the boundary will go as
shown in Fig. 33–9. Notice that kI[image: -*-] is ω/c[image: -*-]—which
is of the order 1/λ0[image: -*-], the reciprocal of the free-space
wavelength of the light. When light is totally reflected from the inside
of a glass-air surface, there are fields in the air, but they extend
beyond the surface only a distance of the order of the wavelength of the
light.



[image: -][image: -]
Fig. 33–9. Total internal reflection.





We can now see how to answer the following question: If a light wave
in glass arrives at the surface at a large enough angle, it is
reflected; if another piece of glass is brought up to the surface (so
that the “surface” in effect disappears) the light is
transmitted. Exactly when does this happen? Surely there must be
continuous change from total reflection to no reflection! The answer,
of course, is that if the air gap is so small that the exponential
tail of the wave in the air has an appreciable strength at the second
piece of glass, it will shake the electrons there and generate a new
wave, as shown in Fig. 33–10. Some light will be
transmitted. (Clearly, our solution is incomplete; we should solve all
the equations again for a thin layer of air between two regions of
glass.)



[image: -][image: -]
Fig. 33–10. If there is a small gap, internal reflection is not “total;”
a transmitted wave appears beyond the gap.





This transmission effect can be observed with ordinary light only if the
air gap is very small (of the order of the wavelength of light, like
10−5[image: -*-] cm), but it is easily demonstrated with three-centimeter
waves. Then the exponentially decreasing field extends several
centimeters. A microwave apparatus that shows the effect is drawn in
Fig. 33–11. Waves from a small three-centimeter
transmitter are directed at a 45°[image: -*-] prism of paraffin. The index of
refraction of paraffin for these frequencies is 1.50[image: -*-], and therefore
the critical angle is 41.5°[image: -*-]. So the wave is totally reflected
from the 45°[image: -*-] face and is picked up by detector A[image: -*-], as indicated
in Fig. 33–11(a). If a second paraffin prism is placed in
contact with the first, as shown in part (b) of the figure, the wave
passes straight through and is picked up at detector B[image: -*-]. If a gap of a
few centimeters is left between the two prisms, as in part (c), there
are both transmitted and reflected waves. The electric field outside the
45°[image: -*-] face of the prism in Fig. 33–11(a) can also be
shown by bringing detector B[image: -*-] to within a few centimeters of the
surface.
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Fig. 33–11. A demonstration of the penetration of internally reflected waves.








  
    

34 The Magnetism of Matter
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34–1 Diamagnetism and paramagnetism


In this chapter we are going to talk about the magnetic
properties of materials. The material which has the most striking
magnetic properties is, of course, iron. Similar magnetic properties are
shared also by the elements nickel, cobalt, and—at sufficiently low
temperatures (below 16°[image: -*-]C)—by gadolinium, as well as by a number
of peculiar alloys. That kind of magnetism, called
ferromagnetism, is sufficiently striking and complicated that we
will discuss it in a special chapter. However, all ordinary substances
do show some magnetic effects, although very small ones—a thousand to
a million times less than the effects in ferromagnetic materials. Here
we are going to describe ordinary magnetism, that is to say, the
magnetism of substances other than the ferromagnetic ones.





This small magnetism is of two kinds. Some materials are
attracted toward magnetic fields; others are repelled.
Unlike the electrical effect in matter, which always causes dielectrics
to be attracted, there are two signs to the magnetic effect. These two
signs can be easily shown with the help of a strong electromagnet which
has one sharply pointed pole piece and one flat pole piece, as drawn in
Fig. 34-1. The magnetic field is much stronger near the
pointed pole than near the flat pole. If a small piece of material is
fastened to a long string and suspended between the poles, there will,
in general, be a small force on it. This small force can be seen by the
slight displacement of the hanging material when the magnet is turned
on. The few ferromagnetic materials are attracted very strongly toward
the pointed pole; all other materials feel only a very weak force. Some
are weakly attracted to the pointed pole; and some are weakly repelled.




[image: -][image: -]
Fig. 34–1. 
A small cylinder of bismuth is weakly repelled by the sharp
pole; a piece of aluminum is attracted.





The effect is most easily seen with a small cylinder of bismuth, which
is repelled from the high-field region. Substances which are
repelled in this way are called diamagnetic. Bismuth is one of
the strongest diamagnetic materials, but even with it, the effect is
still quite weak. Diamagnetism is always very weak. If a small piece
of aluminum is suspended between the poles, there is also a weak
force, but toward the pointed pole. Substances like aluminum
are called paramagnetic. (In such an experiment, eddy-current
forces arise when the magnet is turned on and off, and these can give
off strong impulses. You must be careful to look for the net
displacement after the hanging object settles down.)





We want now to describe briefly the mechanisms of these two effects.
First, in many substances the atoms have no permanent magnetic
moments, or rather, all the magnets within each atom balance out so
that the net moment of the atom is zero. The electron spins and
orbital motions all exactly balance out, so that any particular atom
has no average magnetic moment. In these circumstances, when you turn on
a magnetic field little extra currents are generated inside the atom by
induction. According to Lenz’s law, these currents are in such a direction as to oppose the
increasing field. So the induced magnetic moments of the atoms are
directed opposite to the magnetic field. This is the mechanism of
diamagnetism.





Then there are some substances for which the atoms do have a permanent
magnetic moment—in which the electron spins and orbits have a net
circulating current that is not zero. So besides the diamagnetic
effect (which is always present), there is also the possibility of
lining up the individual atomic magnetic moments. In this case, the
moments try to line up with the magnetic field (in the way the
permanent dipoles of a dielectric are lined up by the electric field),
and the induced magnetism tends to enhance the magnetic field. These
are the paramagnetic substances. Paramagnetism is generally fairly
weak because the lining-up forces are relatively small compared with
the forces from the thermal motions which try to derange the order. It
also follows that paramagnetism is usually sensitive to the
temperature. (The paramagnetism arising from the spins of the
electrons responsible for conduction in a metal constitutes an
exception. We will not be discussing this phenomenon here.) For
ordinary paramagnetism, the lower the temperature, the stronger the
effect. There is more lining-up at low temperatures when the deranging
effects of the collisions are less. Diamagnetism, on the other hand,
is more or less independent of the temperature. In any substance with
built-in magnetic moments there is a diamagnetic as well as a
paramagnetic effect, but the paramagnetic effect usually dominates.





In Chapter 11 we described a ferroelectric material,
in which all the electric dipoles get lined up by their own mutual
electric fields. It is also possible to imagine the magnetic analog of
ferroelectricity, in which all the atomic moments would line up and lock
together. If you make calculations of how this should happen, you will
find that because the magnetic forces are so much smaller than the
electric forces, thermal motions should knock out this alignment even at
temperatures as low as a few tenths of a degree Kelvin. So it would be
impossible at room temperature to have any permanent lining up of the
magnets.





On the other hand, this is exactly what does happen in iron—it does
get lined up. There is an effective force between the magnetic moments
of the different atoms of iron which is much, much greater than the
direct magnetic interaction. It is an indirect effect which can
be explained only by quantum mechanics. It is about ten thousand times
stronger than the direct magnetic interaction, and is what lines up
the moments in ferromagnetic materials. We discuss this special
interaction in a later chapter.





Now that we have tried to give you a qualitative explanation of
diamagnetism and paramagnetism, we must correct ourselves and say that
it is not possible to understand the magnetic effects of
materials in any honest way from the point of view of classical
physics. Such magnetic effects are a completely
quantum-mechanical phenomenon. It is, however, possible to make some
phoney classical arguments and to get some idea of what is going
on. We might put it this way. You can make some classical arguments
and get guesses as to the behavior of the material, but these
arguments are not “legal” in any sense because it is absolutely
essential that quantum mechanics be involved in every one of these
magnetic phenomena. On the other hand, there are situations, such as
in a plasma or a region of space with many free electrons, where the
electrons do obey the laws of classical mechanics. And in those
circumstances, some of the theorems from classical magnetism are worth
while. Also, the classical arguments are of some value for historical
reasons. The first few times that people were able to guess at the
meaning and behavior of magnetic materials, they used classical
arguments. Finally, as we have already illustrated, classical
mechanics can give us some useful guesses as to what might
happen—even though the really honest way to study this subject would
be to learn quantum mechanics first and then to understand the
magnetism in terms of quantum mechanics.





On the other hand, we don’t want to wait until we learn quantum
mechanics inside out to understand a simple thing like
diamagnetism. We will have to lean on the classical mechanics as kind
of half showing what happens, realizing, however, that the arguments
are really not correct. We therefore make a series of theorems about
classical magnetism that will confuse you because they will prove
different things. Except for the last theorem, every one of them will
be wrong. Furthermore, they will all be wrong as a description of the
physical world, because quantum mechanics is left out.





 


34–2 Magnetic moments and angular momentum


The first theorem we want to prove from classical mechanics is the
following: If an electron is moving in a circular orbit (for example,
revolving around a nucleus under the influence of a central force),
there is a definite ratio between the magnetic moment and the angular
momentum. Let’s call J[image: -*-] the angular momentum and μ[image: -*-] the
magnetic moment of the electron in the orbit. The magnitude of the
angular momentum is the mass of the electron times the velocity times
the radius. (See Fig. 34-2.) It is directed perpendicular to the
plane of the orbit.

[image: -*-][image: -*-]
(34.1)




(This is, of course, a nonrelativistic formula, but it is a good
approximation for atoms, because for the electrons involved v/c[image: -*-] is
generally of the order of e2/ℏ c≈1/137[image: -*-], or about 1 percent.)




[image: -][image: -]
Fig. 34–2. 
For any circular orbit the magnetic moment μ[image: -*-] is
q/2 m[image: -*-] times the angular momentum J[image: -*-].





The magnetic moment of the same orbit is the current times the
area. (See Section 14-5.) The current is the charge per
unit time which passes any point on the orbit, namely, the charge q[image: -*-]
times the frequency of rotation. The frequency is the velocity divided
by the circumference of the orbit; so

[image: -*-][image: -*-]


The area is π r2[image: -*-], so the magnetic moment is

[image: -*-][image: -*-]
(34.2)




It is also directed perpendicular to the plane of the orbit. So
J[image: -*-] and μ[image: -*-] are in the same direction:

[image: -*-][image: -*-]
(34.3)




Their ratio depends neither on the velocity nor on the radius. For any
particle moving in a circular orbit the magnetic moment is equal to
q/2 m[image: -*-] times the angular momentum. For an electron, the charge is
negative—we can call it −qe[image: -*-]; so for an electron

[image: -*-][image: -*-]
(34.4)









That’s what we would expect classically and, miraculously enough, it
is also true quantum-mechanically. It’s one of those things. However,
if you keep going with the classical physics, you find other places
where it gives the wrong answers, and it is a great game to try to
remember which things are right and which things are wrong. We might
as well give you immediately what is true in general in quantum
mechanics. First, Eq. (34.4) is true for orbital
motion, but that’s
not the only magnetism that exists. The electron also has a spin
rotation about its own axis (something like the earth rotating on its
axis), and as a result of that spin it has both an angular momentum and
a magnetic moment. But for reasons that are purely
quantum-mechanical—there is no classical explanation—the ratio of
μ[image: -*-] to J[image: -*-] for the electron spin is twice as large as it is for
orbital motion of the spinning electron:

[image: -*-][image: -*-]
(34.5)









In any atom there are, generally speaking, several electrons and some
combination of spin and orbit rotations which builds up a total
angular momentum and a total magnetic moment. Although there is no
classical reason why it should be so, it is always true in
quantum mechanics that (for an isolated atom) the direction of the
magnetic moment is exactly opposite to the direction of the angular
momentum. The ratio of the two is not necessarily either −qe/m[image: -*-]
or −qe/2 m[image: -*-], but somewhere in between, because there is a mixture of the
contributions from the orbits and the spins. We can write

[image: -*-][image: -*-]
(34.6)




where g[image: -*-] is a factor which is characteristic of the state of the atom.
It would be 1 for a pure orbital moment, or 2 for a pure spin
moment, or some other number in between for a complicated system like an
atom. This formula does not, of course, tell us very much. It says that
the magnetic moment is parallel to the angular momentum, but can
have any magnitude. The form of Eq. (34.6) is convenient,
however, because g[image: -*-]—called the “Landé g[image: -*-]-factor”—is a
dimensionless constant whose magnitude is of the order of one. It is one
of the jobs of quantum mechanics to predict the g[image: -*-]-factor for any
particular atomic state.





You might also be interested in what happens in nuclei. In nuclei
there are protons and neutrons which may move around in some kind of
orbit and at the same time, like an electron, have an intrinsic
spin. Again the magnetic moment is parallel to the angular
momentum. Only now the order of magnitude of the ratio of the two is
what you would expect for a proton going around in a circle,
with m[image: -*-] in Eq. (34.3) equal to the proton mass. Therefore it is usual to write for nuclei

[image: -*-][image: -*-]
(34.7)




where mp[image: -*-] is the mass of the proton, and g[image: -*-]—called the
nuclear g[image: -*-]-factor—is a number near
one, to be determined for each nucleus.





Another important difference for a nucleus is that the spin
magnetic moment of the proton does not have a g[image: -*-]-factor of
2, as the electron does. For a proton, g=2⋅(2.79)[image: -*-]. Surprisingly
enough, the neutron also has a spin magnetic moment, and its
magnetic moment relative to its angular momentum is 2⋅(−1.91)[image: -*-]. The
neutron, in other words, is not exactly “neutral” in the magnetic
sense. It is like a little magnet, and it has the kind of magnetic
moment that a rotating negative charge would have.





 


34–3 The precession of atomic magnets


One of the consequences of having the magnetic moment proportional to
the angular momentum is that an atomic magnet placed in a magnetic field
will precess. First we will argue classically. Suppose that we
have the magnetic moment μ[image: -*-] suspended freely in a uniform magnetic
field. It will feel a torque τ[image: -*-], equal to μ×B[image: -*-],
which tries to bring it in line with the field direction. But the atomic
magnet is a gyroscope—it has the angular momentum J[image: -*-]. Therefore
the torque due to the magnetic field will not cause the magnet to line
up. Instead, the magnet will precess, as we saw when we analyzed
a gyroscope in Chapter 20 of Volume I. The angular
momentum—and with it the magnetic moment—precesses about an axis
parallel to the magnetic field. We can find the rate of precession by
the same method we used in Chapter 20 of the first volume.




[image: -][image: -]
Fig. 34–3. 
An object with angular momentum J[image: -*-] and a parallel magnetic
moment μ[image: -*-] placed in a magnetic field B[image: -*-] precesses with the
angular velocity ωp[image: -*-].





Suppose that in a small time Δ t[image: -*-] the angular momentum changes
from J[image: -*-] to J′[image: -*-], as drawn in Fig. 34-3, staying always at
the same angle θ[image: -*-] with respect to the direction of the magnetic
field B[image: -*-]. Let’s call ωp[image: -*-] the angular velocity of the
precession, so that in the time Δ t[image: -*-] the angle of
precession
is ωp Δ t[image: -*-]. From the geometry of the figure, we see that
the change of angular momentum in the time Δ t[image: -*-] is

[image: -*-][image: -*-]


So the rate of change of the angular momentum is

[image: -*-][image: -*-]
(34.8)




which must be equal to the torque:

[image: -*-][image: -*-]
(34.9)




The angular velocity of precession is then

[image: -*-][image: -*-]
(34.10)









Substituting μ/J[image: -*-] from Eq. (34.6), we see that for an
atomic system

[image: -*-][image: -*-]
(34.11)




the precession frequency is proportional to B[image: -*-]. It is handy to
remember that for an atom (or electron)

[image: -*-][image: -*-]
(34.12)




and that for a nucleus

[image: -*-][image: -*-]
(34.13)




(The formulas for atoms and nuclei are different only because of the
different conventions for g[image: -*-] for the two cases.)





According to the classical theory, then, the electron
orbits—and spins—in an atom should precess in a magnetic field. Is
it also true quantum-mechanically? It is essentially true, but the
meaning of the “precession” is different. In quantum mechanics one
cannot talk about the direction of the angular momentum in the
same sense as one does classically; nevertheless, there is a very
close analogy—so close that we continue to call it “precession.”
We will discuss it later when we talk about the quantum-mechanical
point of view.





 


34–4 Diamagnetism

[image: -][image: -]
Fig. 34–4. 
The induced electric forces on the electrons in an atom.





Next we want to look at diamagnetism from the classical point
of view. It can be worked out in several ways, but one of the nice
ways is the following. Suppose that we slowly turn on a magnetic field
in the vicinity of an atom. As the magnetic field changes an
electric field is generated by magnetic induction. From
Faraday’s law, the line integral of E[image: -*-] around any closed path is
the rate of change of the magnetic flux through the path. Suppose we
pick a path Γ[image: -*-] which is a circle of radius r[image: -*-] concentric with
the center of the atom, as shown in Fig. 34-4. The average
tangential electric field E[image: -*-] around this path is given by

[image: -*-][image: -*-]


and there is a circulating electric field whose strength is

[image: -*-][image: -*-]







The induced electric field acting on an electron in the atom produces
a torque equal to −qe E r[image: -*-], which must equal the rate of change of the
angular momentum d J/d t[image: -*-]:

[image: -*-][image: -*-]
(34.14)




Integrating with respect to time from zero field, we find that the
change in angular momentum due to turning on the field is

[image: -*-][image: -*-]
(34.15)




This is the extra angular momentum from the twist given to the
electrons as the field is turned on.





This added angular momentum makes an extra magnetic moment which,
because it is an orbital motion, is just −qe/2 m[image: -*-] times the
angular momentum. The induced diamagnetic moment is

[image: -*-][image: -*-]
(34.16)




The minus sign (as you can see is right by using Lenz’s law) means
that the added moment is opposite to the magnetic field.





We would like to write Eq. (34.16) a little differently.
The r2[image: -*-] which appears is the radius from an axis through the atom parallel
to B[image: -*-], so if B[image: -*-] is along the z[image: -*-]-direction, it is x2+y2[image: -*-].
If we consider spherically symmetric atoms (or average over atoms with
their natural axes in all directions) the average of x2+y2[image: -*-] is 2/3[image: -*-]
of the average of the square of the true radial distance from the center
point of the atom. It is therefore usually more convenient to
write Eq. (34.16) as

[image: -*-][image: -*-]
(34.17)









In any case, we have found an induced atomic moment proportional to
the magnetic field B[image: -*-] and opposing it. This is diamagnetism of
matter. It is this magnetic effect that is responsible for the small
force on a piece of bismuth in a nonuniform magnetic field. (You could
compute the force by working out the energy of the induced moments in
the field and seeing how the energy changes as the material is moved
into or out of the high-field region.)





We are still left with the problem: What is the mean square radius,
[image: \av{r^2}][image: \av{r^2}]? Classical mechanics cannot supply an answer. We must go
back and start over with quantum mechanics. In an atom we cannot
really say where an electron is, but only know the probability that it
will be at some place. If we interpret [image: \av{r^2}][image: \av{r^2}] to mean the average
of the square of the distance from the center for the probability
distribution, the diamagnetic moment given by quantum mechanics is
just the same as formula (34.17). This equation, of
course, is the moment for one electron. The total moment is given by
the sum over all the electrons in the atom. The surprising thing is
that the classical argument and quantum mechanics give the same
answer, although, as we shall see, the classical argument that gives
Eq. (34.17) is not really valid in classical mechanics.





The same diamagnetic effect occurs even when an atom already has a
permanent moment. Then the system will precess in the magnetic
field. As the whole atom precesses, it takes up an additional small
angular velocity, and that slow turning gives a small current which
represents a correction to the magnetic moment. This is just the
diamagnetic effect represented in another way. But we don’t really
have to worry about that when we talk about paramagnetism. If the
diamagnetic effect is first computed, as we have done here, we don’t
have to worry about the fact that there is an extra little current
from the precession. That has already been included in the diamagnetic
term.





 


34–5 Larmor’s theorem


We can already conclude something from our results so far. First of
all, in the classical theory the moment μ[image: -*-] was always
proportional to J[image: -*-], with a given constant of proportionality for
a particular atom. There wasn’t any spin of the electrons, and the
constant of proportionality was always −qe/2 m[image: -*-]; that is to say, in
Eq. (34.6) we should set g=1[image: -*-]. The ratio of μ[image: -*-]
to J[image: -*-] was independent of the internal motion of the electrons. Thus,
according to the classical theory, all systems of electrons would
precess with the same angular velocity. (This is not
true in quantum mechanics.) This result is related to a theorem in
classical mechanics that we would now like to prove. Suppose we have a
group of electrons which are all held together by attraction toward a
central point—as the electrons are attracted by a nucleus. The
electrons will also be interacting with each other, and can, in
general, have complicated motions. Suppose you have solved for the
motions with no magnetic field and then want to know what the
motions would be with a weak magnetic field. The theorem says
that the motion with a weak magnetic field is always one of the
no-field solutions with an added rotation, about the axis of the
field, with the angular velocity ωL=qe B/2 m[image: -*-]. (This is the same
as ωp[image: -*-], if g=1[image: -*-].) There are, of course, many possible
motions. The point is that for every motion without the magnetic field
there is a corresponding motion in the field, which is the original
motion plus a uniform rotation. This is called Larmor’s theorem,
and ωL[image: -*-] is called the Larmor
frequency.





We would like to show how the theorem can be proved, but we will let
you work out the details. Take, first, one electron in a central force
field. The force on it is just F (r)[image: -*-], directed toward the
center. If we now turn on a uniform magnetic field, there is an
additional force, q v×B[image: -*-]; so the total force is

[image: -*-][image: -*-]
(34.18)




Now let’s look at the same system from a coordinate system rotating with
angular velocity ω[image: -*-] about an axis through the center of force and
parallel to B[image: -*-]. This is no longer an inertial system, so we have to
put in the proper pseudo forces—the
centrifugal and
Coriolis
forces we
talked about in Chapter 19 of Volume I. We found there
that in a frame rotating with angular velocity ω[image: -*-], there is an
apparent tangential force proportional to vr[image: -*-], the radial
component of velocity:

[image: -*-][image: -*-]
(34.19)




And there is an apparent radial force which is given by

[image: -*-][image: -*-]
(34.20)




where vt[image: -*-] is the tangential component of the velocity, measured
in the rotating frame. (The radial component vr[image: -*-] for rotating
and inertial frames is the same.)





Now for small enough angular velocities (that is, if ω r≪vt[image: -*-]), we can
neglect the first term (centrifugal) in Eq. (34.20) in comparison
with the second (Coriolis). Then Eqs. (34.19)
and (34.20) can be written together as

[image: -*-][image: -*-]
(34.21)




If we now combine a rotation and a magnetic field, we must add
the force in Eq. (34.21) to that in Eq. (34.18).
The total force is

[image: -*-][image: -*-]
(34.22)




[we reverse the cross product and the sign of Eq. (34.21) to
get the last term]. Looking at our result, we see that if

[image: -*-][image: -*-]


the two terms on the right cancel, and in the moving frame the only
force is F (r)[image: -*-]. The motion of the electron is just the same as
with no magnetic field—and, of course, no rotation. We have proved
Larmor’s theorem for one electron. Since the proof assumes a
small ω[image: -*-], it also means that the theorem is true only for weak
magnetic fields. The only thing we could ask you to improve on is to
take the case of many electrons mutually interacting with each other,
but all in the same central field, and prove the same theorem. So no
matter how complex an atom is, if it has a central field the theorem
is true. But that’s the end of the classical mechanics, because it
isn’t true in fact that the motions precess in that way. The
precession frequency ωp[image: -*-] of Eq. (34.11) is only
equal to ωL[image: -*-] if g[image: -*-] happens to be equal to 1.





 


34–6 Classical physics gives neither diamagnetism nor paramagnetism


Now we would like to demonstrate that according to classical mechanics
there can be no diamagnetism and no paramagnetism at all. It sounds
crazy—first, we have proved that there are paramagnetism,
diamagnetism, precessing orbits, and so on, and now we are going to
prove that it is all wrong. Yes!—We are going to prove that
if you follow the classical mechanics far enough, there
are no such magnetic effects—they all cancel out. If you
start a classical argument in a certain place and don’t go far enough,
you can get any answer you want. But the only legitimate and correct
proof shows that there is no magnetic effect whatever.





It is a consequence of classical mechanics that if you have any kind
of system—a gas with electrons, protons, and whatever—kept in a
box so that the whole thing can’t turn, there will be no magnetic
effect. It is possible to have a magnetic effect if you have an
isolated system, like a star held together by itself, which can start
rotating when you put on the magnetic field. But if you have a piece
of material that is held in place so that it can’t start spinning,
then there will be no magnetic effects. What we mean by holding down
the spin is summarized this way: At a given temperature we suppose
that there is only one state of thermal equilibrium. The
theorem then says that if you turn on a magnetic field and wait for
the system to get into thermal equilibrium, there will be no
paramagnetism or diamagnetism—there will be no induced magnetic
moment. Proof: According to statistical mechanics, the probability
that a system will have any given state of motion is proportional
to e−U/k T[image: -*-], where U[image: -*-] is the energy of that motion. Now what is the
energy of motion? For a particle moving in a constant magnetic field,
the energy is the ordinary potential energy plus m v2/2[image: -*-], with
nothing additional for the magnetic field. [You know that the forces
from electromagnetic fields are q (E+v×B)[image: -*-], and that
the rate of work F⋅v[image: -*-] is just q E⋅v[image: -*-], which
is not affected by the magnetic field.] So the energy of a system,
whether it is in a magnetic field or not, is always given by the
kinetic energy plus the potential energy. Since the probability of any
motion depends only on the energy—that is, on the velocity and
position—it is the same whether or not there is a magnetic
field. For thermal equilibrium, therefore, the magnetic field
has no effect. If we have one system in a box, and then have another
system in a second box, this time with a magnetic field, the
probability of any particular velocity at any point in the first box
is the same as in the second. If the first box has no average
circulating current (which it will not have if it is in equilibrium
with the stationary walls), there is no average magnetic moment. Since
in the second box all the motions are the same, there is no average
magnetic moment there either. Hence, if the temperature is kept
constant and thermal equilibrium is re-established after the field is
turned on, there can be no magnetic moment induced by the
field—according to classical mechanics. We can only get a
satisfactory understanding of magnetic phenomena from quantum
mechanics.





Unfortunately, we cannot assume that you have a thorough understanding
of quantum mechanics, so this is hardly the place to discuss the
matter. On the other hand, we don’t always have to learn something
first by learning the exact rules and then by learning how they are
applied in different cases. Almost every subject that we have taken up
in this course has been treated in a different way. In the case of
electricity, we wrote the Maxwell equations on “Page One” and then
deduced all the consequences. That’s one way. But we will not now
try to begin a new “Page One,” writing the equations of quantum
mechanics and deducing everything from them. We will just have to tell
you some of the consequences of quantum mechanics, before you learn
where they come from. So here we go.





 


34–7 Angular momentum in quantum mechanics


We have already given you a relation between the magnetic moment and
the angular momentum. That’s pleasant. But what do the magnetic moment
and the angular momentum mean in quantum mechanics? In quantum
mechanics it turns out to be best to define things like magnetic
moments in terms of the other concepts such as energy, in order to
make sure that one knows what it means. Now, it is easy to define a
magnetic moment in terms of energy, because the energy of a moment in
a magnetic field is, in the classical theory,
μ⋅B[image: -*-]. Therefore, the following definition has been taken
in quantum mechanics: If we calculate the energy of a system in a
magnetic field and we find that it is proportional to the field
strength (for small field), the coefficient is called the component of
magnetic moment in the direction of the field. (We don’t have to get
so elegant for our work now; we can still think of the magnetic moment
in the ordinary, to some extent classical, sense.)





Now we would like to discuss the idea of angular momentum in quantum
mechanics—or rather, the characteristics of what, in quantum
mechanics, is called angular momentum. You see, when you go to new
kinds of laws, you can’t just assume that each word is going to mean
exactly the same thing. You may think, say, “Oh, I know what angular
momentum is. It’s that thing that is changed by a torque.” But what’s
a torque? In quantum mechanics we have to have new definitions of old
quantities. It would, therefore, be legally best to call it by some
other name such as “quantangular momentum,” or something like that,
because it is the angular momentum as defined in quantum
mechanics. But if we can find a quantity in quantum mechanics which is
identical to our old idea of angular momentum when the system becomes
large enough, there is no use in inventing an extra word. We might as
well just call it angular momentum. With that understanding, this odd
thing that we are about to describe is angular momentum. It is
the thing which in a large system we recognize as angular momentum in
classical mechanics.





First, we take a system in which angular momentum is conserved, such
as an atom all by itself in empty space. Now such a thing (like the
earth spinning on its axis) could, in the ordinary sense, be spinning
around any axis one wished to choose. And for a given spin, there
could be many different “states,” all of the same energy, each
“state” corresponding to a particular direction of the axis of the
angular momentum. So in the classical theory, with a given angular
momentum, there is an infinite number of possible states, all of the
same energy.





It turns out in quantum mechanics, however, that several strange
things happen. First, the number of states in which such a system
can exist is limited—there is only a finite number. If the
system is small, the finite number is very small, and if the system is
large, the finite number gets very, very large. Second, we
cannot describe a “state” by giving the direction of
its angular momentum, but only by giving the component of the
angular momentum along some direction—say in the
z[image: -*-]-direction. Classically, an object with a given total angular
momentum J[image: -*-] could have, for its z[image: -*-]-component, any value from +J[image: -*-]
to −J[image: -*-]. But quantum-mechanically, the z[image: -*-]-component of angular momentum
can have only certain discrete values. Any given system—a particular
atom, or a nucleus, or anything—with a given energy, has a
characteristic number j[image: -*-], and its z[image: -*-]-component of angular momentum can
only be one of the following set of values:

[image: -*-][image: -*-]
(34.23)




The largest z[image: -*-]-component is j[image: -*-] times ℏ[image: -*-]; the next smaller is
one unit of ℏ[image: -*-] less, and so on down to −j ℏ[image: -*-]. The number j[image: -*-]
is called “the spin of the system.” (Some people call it the “total
angular momentum quantum number”; but we’ll call it the “spin.”)





You may be worried that what we are saying can only be true for some
“special” z[image: -*-]-axis. But that is not so. For a system whose spin
is j[image: -*-], the component of angular momentum along any axis can have
only one of the values in (34.23).  Although it is quite
mysterious, we ask you just to accept it for the moment. We will come
back and discuss the point later. You may at least be pleased to hear
that the z[image: -*-]-component goes from some number to minus the same
number, so that we at least don’t have to decide which is the plus
direction of the z[image: -*-]-axis. (Certainly, if we said that it went
from +j[image: -*-] to minus a different amount, that would be infinitely mysterious,
because we wouldn’t have been able to define the z[image: -*-]-axis, pointing
the other way.)





Now if the z[image: -*-]-component of angular momentum must go down by integers
from +j[image: -*-] to −j[image: -*-], then j[image: -*-] must be an integer. No! Not quite;
twice j[image: -*-] must be an integer. It is only the difference between +j[image: -*-]
and −j[image: -*-] that must be an integer. So, in general, the spin j[image: -*-] is
either an integer or a half-integer, depending on whether 2 j[image: -*-] is even
or odd. Take, for instance, a nucleus like lithium, which has a spin
of three-halves, j=3/2[image: -*-]. Then the angular momentum around the
z[image: -*-]-axis, in units of ℏ[image: -*-], is one of the following:

[image: -*-][image: -*-]


There are four possible states, each of the same energy, if the
nucleus is in empty space with no external fields. If we have a system
whose spin is two, then the z[image: -*-]-component of angular momentum has only
the values, in units of ℏ[image: -*-],

[image: -*-][image: -*-]


If you count how many states there are for a given j[image: -*-], there are
(2 j+1)[image: -*-] possibilities. In other words, if you tell me the energy and
also the spin j[image: -*-], it turns out that there are exactly (2 j+1)[image: -*-] states
with that energy, each state corresponding to one of the different
possible values of the z[image: -*-]-component of the angular momentum.





We would like to add one other fact. If you pick out any atom of
known j[image: -*-] at random and measure the z[image: -*-]-component of the angular momentum,
then you may get any one of the possible values, and each of the
values is equally likely. All of the states are in fact single
states, and each is just as good as any other. Each one has the same
“weight” in the world. (We are assuming that nothing has been done
to sort out a special sample.) This fact has, incidentally, a simple
classical analog. If you ask the same question classically: What is
the likelihood of a particular z[image: -*-]-component of angular momentum if
you take a random sample of systems, all with the same total angular
momentum?—the answer is that all values from the maximum to the
minimum are equally likely. (You can easily work that out.) The
classical result corresponds to the equal probability of the
(2 j+1)[image: -*-] possibilities in quantum mechanics.





From what we have so far, we can get another interesting and somewhat
surprising conclusion. In certain classical calculations the quantity
that appears in the final result is the square of the magnitude
of the angular momentum J[image: -*-]—in other words,
J⋅J[image: -*-]. It turns out that it is often possible to
guess at the correct quantum-mechanical formula by using the
classical calculation and the following simple rule: Replace
J2=J⋅J[image: -*-] by j (j+1) ℏ2[image: -*-]. This rule is commonly used,
and usually gives the correct result, but not always. We can
give the following argument to show why you might expect this rule to
work.





The scalar product J⋅J[image: -*-] can be written as

[image: -*-][image: -*-]


Since it is a scalar, it should be the same for any orientation of the
spin. Suppose we pick samples of any given atomic system at random and
make measurements of [image: J_x^2][image: J_x^2], or [image: J_y^2][image: J_y^2], or [image: J_z^2][image: J_z^2], the
average value should be the same for each. (There is no special
distinction for any one of the directions.) Therefore, the average
of J⋅J[image: -*-] is just equal to three times the average of any
component squared, say of [image: J_z^2][image: J_z^2];

[image: -*-][image: -*-]


But since J⋅J[image: -*-] is the same for all orientations, its
average is, of course, just its constant value; we have

[image: -*-][image: -*-]
(34.24)









If we now say that we will use the same equation for quantum
mechanics, we can easily find [image: \av{J_z^2}][image: \av{J_z^2}]. We just have to take the
sum of the (2 j+1)[image: -*-] possible values of [image: J_z^2][image: J_z^2], and divide by the
total number;



[image: -*-][image: -*-]
(34.25)





For a system with a spin of 3/2[image: -*-], it goes like this:



[image: -*-][image: -*-]



We conclude that

[image: -*-][image: -*-]


We will leave it for you to show that Eq. (34.25),
together with Eq. (34.24), gives the general result

[image: -*-][image: -*-]
(34.26)




Although we would think classically that the largest possible value of
the z[image: -*-]-component of J[image: -*-] is just the magnitude
of J[image: -*-]—namely, √J⋅J[image: -*-]—quantum mechanically the
maximum of Jz[image: -*-] is always a little less than that, because j ℏ[image: -*-]
is always less than √j (j+1) ℏ[image: -*-]. The angular momentum is
never “completely along the z[image: -*-]-direction.”





 


34–8 The magnetic energy of atoms


Now we want to talk again about the magnetic moment. We have said that
in quantum mechanics the magnetic moment of a particular atomic system
can be written in terms of the angular momentum by
Eq. (34.6);

[image: -*-][image: -*-]
(34.27)




where −qe[image: -*-] and m[image: -*-] are the charge and mass of the electron.





An atomic magnet placed in an external magnetic field will have an
extra magnetic energy which depends on the component of its magnetic
moment along the field direction. We know that

[image: -*-][image: -*-]
(34.28)




Choosing our z[image: -*-]-axis along the direction of B[image: -*-],

[image: -*-][image: -*-]
(34.29)




Using Eq. (34.27), we have that

[image: -*-][image: -*-]


Quantum mechanics says that Jz[image: -*-] can have only certain values:
j ℏ[image: -*-], (j−1) ℏ[image: -*-], …, −j ℏ[image: -*-]. Therefore, the magnetic
energy of an atomic system is not arbitrary; it can have only certain
values. Its maximum value, for instance, is

[image: -*-][image: -*-]


The quantity qe ℏ/2 m[image: -*-] is usually given the name “the Bohr
magneton” and written μB[image: -*-]:

[image: -*-][image: -*-]


The possible values of the magnetic energy are

[image: -*-][image: -*-]


where Jz/ℏ[image: -*-] takes on the possible values j[image: -*-], (j−1)[image: -*-], (j−2)[image: -*-],
…, (−j+1)[image: -*-], −j[image: -*-].





In other words, the energy of an atomic system is changed when it is put
in a magnetic field by an amount that is proportional to the field, and
proportional to Jz[image: -*-]. We say that the energy of an atomic system is
“split into 2 j+1[image: -*-] levels” by a magnetic field. For instance, an atom
whose energy is U0[image: -*-] outside a magnetic field and whose j[image: -*-] is 3/2[image: -*-],
will have four possible energies when placed in a field. We can show
these energies by an energy-level diagram like that drawn in
Fig. 34-5. Any particular atom can have only one of the
four possible energies in any given field B[image: -*-]. That is what quantum
mechanics says about the behavior of an atomic system in a magnetic
field.




[image: -][image: -]
Fig. 34–5. 
The possible magnetic energies of an atomic system with a spin
of 3/2[image: -*-] in a magnetic filed B[image: -*-].





The simplest “atomic” system is a single electron. The spin of an
electron is 1/2[image: -*-], so there are two possible states: Jz=ℏ/2[image: -*-]
and Jz=−ℏ/2[image: -*-]. For an electron, at rest (no orbital motion), the spin
magnetic moment has a g[image: -*-]-value of 2, so the magnetic energy can be
either ±μB B[image: -*-]. The possible energies in a magnetic field are shown
in Fig. 34-6. Speaking loosely we say that the electron
either has its spin “up” (along the field) or “down” (opposite the
field).




[image: -][image: -]
Fig. 34–6. 
The two possible energy states of an electron in a magnetic
field B[image: -*-].





For systems with higher spins, there are more states. We can think
that the spin is “up” or “down” or cocked at some “angle” in
between, depending on the value of Jz[image: -*-].





We will use these quantum mechanical results to discuss the magnetic
properties of materials in the next chapter.
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35–1 Quantized magnetic states


In the last chapter we described how in quantum mechanics the angular
momentum of a thing does not have an arbitrary direction, but its
component along a given axis can take on only certain equally spaced,
discrete values. It is a shocking and peculiar thing. You may think
that perhaps we should not go into such things until your minds are
more advanced and ready to accept this kind of an idea. Actually, your
minds will never become more advanced—in the sense of being able to
accept such a thing easily. There isn’t any descriptive way of making
it intelligible that isn’t so subtle and advanced in its own form that
it is more complicated than the thing you were trying to explain. The
behavior of matter on a small scale—as we have remarked many
times—is different from anything that you are used to and is very
strange indeed. As we proceed with classical physics, it is a good
idea to try to get a growing acquaintance with the behavior of things
on a small scale, at first as a kind of experience without any deep
understanding. Understanding of these matters comes very slowly, if at
all. Of course, one does get better able to know what is going to
happen in a quantum-mechanical situation—if that is what
understanding means—but one never gets a comfortable feeling that
these quantum-mechanical rules are “natural.” Of course they
are, but they are not natural to our own experience at an
ordinary level. We should explain that the attitude that we are going
to take with regard to this rule about angular momentum is quite
different from many of the other things we have talked about. We are
not going to try to “explain” it, but we must at least tell
you what happens; it would be dishonest to describe the magnetic
properties of materials without mentioning the fact that the classical
description of magnetism—of angular momentum and magnetic
moments—is incorrect.





One of the most shocking and disturbing features about quantum
mechanics is that if you take the angular momentum along any
particular axis you find that it is always an integer or half-integer
times ℏ[image: -*-]. This is so no matter which axis you take. The
subtleties involved in that curious fact—that you can take any other
axis and find that the component for it is also locked to the same set
of values—we will leave to a later chapter, when you will experience
the delight of seeing how this apparent paradox is ultimately
resolved.





We will now just accept the fact that for every atomic system there is
a number j[image: -*-], called the spin of the system—which must be an
integer or a half-integer—and that the component of the angular
momentum along any particular axis will always have one of the
following values between +j ℏ[image: -*-] and −j ℏ[image: -*-]:

[image: -*-][image: -*-]
(35.1)









We have also mentioned that every simple atomic system has a magnetic
moment which has the same direction as the angular momentum. This is
true not only for atoms and nuclei but also for the fundamental
particles. Each fundamental particle has its own characteristic value
of j[image: -*-] and its magnetic moment. (For some particles, both are zero.)
What we mean by “the magnetic moment” in this statement is that the
energy of the system in a magnetic field, say in the z[image: -*-]-direction,
can be written as −μz B[image: -*-] for small magnetic fields. We must have
the condition that the field should not be too great, otherwise it
could disturb the internal motions of the system and the energy would
not be a measure of the magnetic moment that was there before the
field was turned on. But if the field is sufficiently weak, the field
changes the energy by the amount

[image: -*-][image: -*-]
(35.2)




with the understanding that in this equation we are to replace μz[image: -*-]
by

[image: -*-][image: -*-]
(35.3)




where Jz[image: -*-] has one of the values in Eq. (35.1).





Suppose we take a system with a spin j=3/2[image: -*-]. Without a magnetic field,
the system has four different possible states corresponding to the
different values of Jz[image: -*-], all of which have exactly the same energy.
But the moment we turn on the magnetic field, there is an additional
energy of interaction which separates these states into four slightly
different energy levels. The energies of these levels are given by a
certain energy proportional to B[image: -*-], multiplied by ℏ[image: -*-] times
3/2[image: -*-], 1/2[image: -*-], −1/2[image: -*-], and −3/2[image: -*-]—the values of Jz[image: -*-]. The splitting of
the energy levels for atomic systems with spins of 1/2[image: -*-], 1, and 3/2[image: -*-]
are shown in the diagrams of Fig. 35-1. (Remember that for
any arrangement of electrons the magnetic moment is always directed
opposite to the angular momentum.)




[image: -][image: -][image: -][image: -][image: -][image: -]
Fig. 35–1. 
An atomic system with spin j[image: -*-] has (2 j+1)[image: -*-] possible energy
values in a magnetic field B[image: -*-]. The energy splitting is proportional
to B[image: -*-] for small fields.





You will notice from the diagrams that the “center of gravity” of the energy
levels is the same with and without a magnetic field. Also notice that the
spacings from one level to the next are always equal for a given particle in a
given magnetic field. We are going to write the energy spacing, for a given
magnetic field B[image: -*-], as ℏ ωp[image: -*-]—which is just a definition
of ωp[image: -*-]. Using Eqs. (35.2)
and (35.3), we have

[image: -*-][image: -*-]


or

[image: -*-][image: -*-]
(35.4)




The quantity g (q/2 m)[image: -*-] is just the ratio of the magnetic moment to the
angular momentum—it is a property of the particle.
Equation (35.4) is the same formula that we got in
Chapter 34 for the angular velocity of precession in a
magnetic field, for a gyroscope whose angular momentum is J[image: -*-] and
whose magnetic moment is μ[image: -*-].





 


35–2 The Stern-Gerlach experiment

[image: -][image: -]
Fig. 35–2. 
The experiment of Stern and Gerlach.





The fact that the angular momentum is quantized is such a surprising
thing that we will talk a little bit about it historically. It was a
shock from the moment it was discovered (although it was expected
theoretically). It was first observed in an experiment done in 1922 by
Stern and
Gerlach.
If you wish, you can consider the experiment of
Stern-Gerlach as a direct justification for a belief in the quantization
of angular momentum. Stern and
Gerlach devised an experiment for
measuring the magnetic moment of individual silver atoms. They produced
a beam of silver atoms by evaporating silver in a hot oven and letting
some of them come out through a series of small holes. This beam was
directed between the pole tips of a special magnet, as shown in
Fig. 35-2. Their idea was the following. If the silver atom
has a magnetic moment μ[image: -*-], then in a magnetic field B[image: -*-] it has
an energy −μz B[image: -*-], where z[image: -*-] is the direction of the magnetic field.
In the classical theory, μz[image: -*-] would be equal to the magnetic moment
times the cosine of the angle between the moment and the magnetic field,
so the extra energy in the field would be

[image: -*-][image: -*-]
(35.5)




Of course, as the atoms come out of the oven, their magnetic moments
would point in every possible direction, so there would be all values
of θ[image: -*-]. Now if the magnetic field varies very rapidly
with z[image: -*-]—if there is a strong field gradient—then the magnetic energy
will also vary with position, and there will be a force on the
magnetic moments whose direction will depend on whether
cosine θ[image: -*-] is positive or negative. The atoms will be pulled up or down
by a force proportional to the derivative of the magnetic energy; from
the principle of virtual work,

[image: -*-][image: -*-]
(35.6)









Stern and Gerlach made their magnet with a very sharp edge on one of
the pole tips in order to produce a very rapid variation of the magnetic
field. The beam of silver atoms was directed right along this sharp
edge, so that the atoms would feel a vertical force in the inhomogeneous
field. A silver atom with its magnetic moment directed horizontally
would have no force on it and would go straight past the magnet. An atom
whose magnetic moment was exactly vertical would have a force pulling it
up toward the sharp edge of the magnet. An atom whose magnetic moment
was pointed downward would feel a downward push. Thus, as they left the
magnet, the atoms would be spread out according to their vertical
components of magnetic moment. In the classical theory all angles are
possible, so that when the silver atoms are collected by deposition on a
glass plate, one should expect a smear of silver along a vertical line.
The height of the line would be proportional to the magnitude of the
magnetic moment. The abject failure of classical ideas was completely
revealed when Stern and
Gerlach saw what actually
happened. They found on the glass plate two distinct spots. The silver
atoms had formed two beams.





That a beam of atoms whose spins would apparently be randomly oriented
gets split up into two separate beams is most miraculous. How does the
magnetic moment know that it is only allowed to take on certain
components in the direction of the magnetic field? Well, that was
really the beginning of the discovery of the quantization of angular
momentum, and instead of trying to give you a theoretical explanation,
we will just say that you are stuck with the result of this experiment
just as the physicists of that day had to accept the result when the
experiment was done. It is an experimental fact that the energy
of an atom in a magnetic field takes on a series of individual
values. For each of these values the energy is proportional to the
field strength. So in a region where the field varies, the principle
of virtual work tells us that the possible magnetic force on the atoms
will have a set of separate values; the force is different for each
state, so the beam of atoms is split into a small number of separate
beams. From a measurement of the deflection of the beams, one can find
the strength of the magnetic moment.





 


35–3 The Rabi molecular-beam method


We would now like to describe an improved apparatus for the measurement of
magnetic moments which was developed by I. I. Rabi and his collaborators. In the Stern-Gerlach
experiment the deflection of atoms is very small, and the measurement of the
magnetic moment is not very precise. Rabi’s technique permits a fantastic
precision in the measurement of the magnetic moments. The method is based on the
fact that the original energy of the atoms in a magnetic field is split up into
a finite number of energy levels. That the energy of an atom in the magnetic
field can have only certain discrete energies is really not more surprising than
the fact that atoms in general have only certain discrete energy
levels—something we mentioned often in Volume I. Why should the same thing
not hold for atoms in a magnetic field?  It does. But it is the attempt
to correlate this with the idea of an oriented magnetic
moment that brings out some of the strange
implications of quantum mechanics.





When an atom has two levels which differ in energy by the amount Δ U[image: -*-], it can make a transition from the upper level to the lower level by
emitting a light quantum of frequency ω[image: -*-], where

[image: -*-][image: -*-]
(35.7)




The same thing can happen with atoms in a magnetic field. Only then, the
energy differences are so small that the frequency does not correspond
to light, but to microwaves or to radiofrequencies. The transitions from
the lower energy level to an upper energy level of an atom can also take
place with the absorption of light or, in the case of atoms in a
magnetic field, by the absorption of microwave energy. Thus if we have
an atom in a magnetic field, we can cause transitions from one state to
another by applying an additional electromagnetic field of the proper
frequency. In other words, if we have an atom in a strong magnetic field
and we “tickle” the atom with a weak varying electromagnetic field,
there will be a certain probability of knocking it to another level if
the frequency is near to the ω[image: -*-] in Eq. (35.7). For an
atom in a magnetic field, this frequency is just what we have earlier
called ωp[image: -*-] and it is given in terms of the magnetic field by
Eq. (35.4). If the atom is tickled with the wrong frequency,
the chance of causing a transition is very small. Thus there is a sharp
resonance at ωp[image: -*-] in the probability of causing a
transition. By measuring the frequency of this resonance in a known
magnetic field B[image: -*-], we can measure the quantity g (q/2 m)[image: -*-]—and hence
the g[image: -*-]-factor—with great precision.





It is interesting that one comes to the same conclusion from a
classical point of view. According to the classical picture, when we
place a small gyroscope with a magnetic moment μ[image: -*-] and an angular
momentum J[image: -*-] in an external magnetic field, the gyroscope will precess
about an axis parallel to the magnetic field. (See Fig. 35-3.)
Suppose we ask: How can we change the angle of the classical gyroscope
with respect to the field—namely, with respect to the z[image: -*-]-axis? The
magnetic field produces a torque around a horizontal axis. Such
a torque you would think is trying to line up the magnet with
the field, but it only causes the precession. If we want to change the
angle of the gyroscope with respect to the z[image: -*-]-axis, we must exert a
torque on it about the z[image: -*-]-axis. If we apply a torque which
goes in the same direction as the precession, the angle of the
gyroscope will change to give a smaller component of J[image: -*-] in the
z[image: -*-]-direction. In Fig. 35-3, the angle between J[image: -*-] and the
z[image: -*-]-axis would increase. If we try to hinder the precession, J[image: -*-]
moves toward the vertical.




[image: -][image: -]
Fig. 35–3. 
The classical precession of an atom with the magnetic
moment μ[image: -*-] and the angular momentum J[image: -*-].





For our precessing atom in a uniform magnetic field, how can we apply
the kind of torque we want? The answer is: with a weak magnetic field
from the side. You might at first think that the direction of this
magnetic field would have to rotate with the precession of the magnetic
moment, so that it was always at right angles to the moment, as
indicated by the field B′[image: -*-] in Fig. 35-4(a). Such a field
works very well, but an alternating horizontal field is almost as
good. If we have a small horizontal field B′[image: -*-], which is always in the
x[image: -*-]-direction (plus or minus) and which oscillates with the
frequency ωp[image: -*-], then on each one-half cycle the torque on the
magnetic moment reverses, so that it has a cumulative effect which is
almost as effective as a rotating magnetic field. Classically, then, we
would expect the component of the magnetic moment along the
z[image: -*-]-direction to change if we have a very weak oscillating magnetic
field at a frequency which is exactly ωp[image: -*-]. Classically, of
course, μz[image: -*-] would change continuously, but in quantum mechanics the
z[image: -*-]-component of the magnetic moment cannot adjust continuously. It must
jump suddenly from one value to another. We have made the comparison
between the consequences of classical mechanics and quantum mechanics to
give you some clue as to what might happen classically and how it is
related to what actually happens in quantum mechanics. You will notice,
incidentally, that the expected resonant frequency is the same in both
cases.




[image: -][image: -][image: -][image: -]
Fig. 35–4. 
The angle of precession of an atomic magnet can be changed by a
horizontal magnetic field always at right angles to μ[image: -*-], as in (a),
or by an oscillating field, as in (b).





One additional remark: From what we have said about quantum mechanics,
there is no apparent reason why there couldn’t also be transitions at
the frequency 2 ωp[image: -*-]. It happens that there isn’t any analog of
this in the classical case, and also it doesn’t happen in the quantum
theory either—at least not for the particular method of inducing the
transitions that we have described. With an oscillating horizontal
magnetic field, the probability that a frequency 2 ωp[image: -*-] would
cause a jump of two steps at once is zero. It is only at the
frequency ωp[image: -*-] that transitions, either upward or downward, are likely to
occur.




[image: -][image: -]
Fig. 35–5. 
The Rabi molecular-beam apparatus.





Now we are ready to describe Rabi’s method for measuring magnetic
moments. We will consider here only the operation for atoms with a spin
of 1/2[image: -*-]. A diagram of the apparatus is shown in Fig. 35-5.
There is an oven which gives out a stream of neutral atoms which passes
down a line of three magnets. Magnet 1 is just like the one in
Fig. 35-2, and has a field with a strong field
gradient—say, with ∂Bz/∂z[image: -*-] positive. If the atoms have a
magnetic moment, they will be deflected downward if Jz=+ℏ/2[image: -*-], or
upward if Jz=−ℏ/2[image: -*-] (since for electrons μ[image: -*-] is directed
opposite to J[image: -*-]). If we consider only those atoms which can get
through the slit S1[image: -*-], there are two possible trajectories, as shown.
Atoms with Jz=+ℏ/2[image: -*-] must go along curve a[image: -*-] to get through the
slit, and those with Jz=−ℏ/2[image: -*-] must go along curve b[image: -*-]. Atoms which
start out from the oven along other paths will not get through the slit.





Magnet 2 has a uniform field. There are no forces on the atoms in
this region, so they go straight through and enter magnet 3.
Magnet 3 is just like magnet 1 but with the field inverted, so
that ∂Bz/∂z[image: -*-] has the opposite sign. The atoms with
Jz=+ℏ/2[image: -*-] (we say “with spin up”), that felt a downward push in
magnet 1, get an upward push in magnet 3; they continue on
the path a[image: -*-] and go through slit S2[image: -*-] to a detector. The atoms with
Jz=−ℏ/2[image: -*-] (“with spin down”) also have opposite forces in
magnets 1 and 3 and go along the path b[image: -*-], which also takes them
through slit S2[image: -*-] to the detector.





The detector may be made in various ways, depending on the atom being
measured. For example, for atoms of an alkali metal like sodium, the
detector can be a thin, hot tungsten wire connected to a sensitive
current meter. When sodium atoms land on the wire, they are evaporated
off as Na+[image: -*-] ions, leaving an electron behind. There is a current
from the wire proportional to the number of sodium atoms arriving per
second.





In the gap of magnet 2 there is a set of coils that produces a small
horizontal magnetic field B′[image: -*-]. The coils are driven with a
current which oscillates at a variable frequency ω[image: -*-]. So between
the poles of magnet 2 there is a strong, constant, vertical
field B0[image: -*-] and a weak, oscillating, horizontal field B′[image: -*-].





Suppose now that the frequency ω[image: -*-] of the oscillating field is set
at ωp[image: -*-]—the “precession” frequency of the atoms in the
field B[image: -*-]. The alternating field will cause some of the atoms passing by
to make transitions from one Jz[image: -*-] to the other. An atom whose spin was
initially “up” (Jz=+ℏ/2[image: -*-]) may be flipped “down”
(Jz=−ℏ/2[image: -*-]). Now this atom has the direction of its magnetic moment
reversed, so it will feel a downward force in magnet 3 and will
move along the path a′[image: -*-], shown in Fig. 35-5. It will no
longer get through the slit S2[image: -*-] to the detector. Similarly, some of
the atoms whose spins were initially down (Jz=−ℏ/2[image: -*-]) will have
their spins flipped up (Jz=+ℏ/2[image: -*-]) as they pass through magnet 2.
They will then go along the path b′[image: -*-] and will not get to the detector.





If the oscillating field B′[image: -*-] has a frequency appreciably different
from ωp[image: -*-], it will not cause any spin flips, and the atoms will
follow their undisturbed paths to the detector. So you can see that the
“precession” frequency ωp[image: -*-] of the atoms in the field B0[image: -*-]
can be found by varying the frequency ω[image: -*-] of the field B′[image: -*-]
until a decrease is observed in the current of atoms arriving at the
detector. A decrease in the current will occur when ω[image: -*-] is “in
resonance” with ωp[image: -*-]. A plot of the detector current as a
function of ω[image: -*-] might look like the one shown in
Fig. 35-6. Knowing ωp[image: -*-], we can obtain the g[image: -*-]-value
of the atom.




[image: -][image: -]
Fig. 35–6. 
The current of atoms in the beam decreases when ω=ωp[image: -*-].





Such atomic-beam or, as they are usually called, “molecular” beam
resonance experiments are a beautiful and delicate way of measuring
the magnetic properties of atomic objects. The resonance
frequency ωp[image: -*-] can be determined with great precision—in fact, with a
greater precision than we can measure the magnetic field B0[image: -*-],
which we must know to find g[image: -*-].





 


35–4 The paramagnetism of bulk materials


We would like now to describe the phenomenon of the paramagnetism of
bulk materials. Suppose we have a substance whose atoms have permanent
magnetic moments, for example a crystal like copper sulfate. In the
crystal there are copper ions whose inner electron shells have a net
angular momentum and a net magnetic moment. So the copper ion is an
object which has a permanent magnetic moment. Let’s say just a word
about which atoms have magnetic moments and which ones don’t. Any
atom, like sodium for instance, which has an odd number of
electrons, will have a magnetic moment. Sodium has one electron in its
unfilled shell. This electron gives the atom a spin and a magnetic
moment. Ordinarily, however, when compounds are formed the extra
electrons in the outside shell are coupled together with other
electrons whose spin directions are exactly opposite, so that all the
angular momenta and magnetic moments of the valence electrons usually
cancel out. That’s why, in general, molecules do not have a magnetic
moment. Of course if you have a gas of sodium atoms, there is no such
cancellation.1 
Also, if you have what is
called in chemistry a “free radical”—an object with an odd number
of valence electrons—then the bonds are not completely satisfied,
and there is a net angular momentum.





In most bulk materials there is a net magnetic moment only if there
are atoms present whose inner electron shell is not
filled. Then there can be a net angular momentum and a magnetic
moment. Such atoms are found in the “transition element” part of the
periodic table—for instance, chromium, manganese, iron, nickel,
cobalt, palladium, and platinum are elements of this kind. Also, all
of the rare earth elements have unfilled inner shells and permanent
magnetic moments. There are a couple of other strange things that also
happen to have magnetic moments, such as liquid oxygen, but we will
leave it to the chemistry department to explain the reason.





Now suppose that we have a box full of atoms or molecules with
permanent moments—say a gas, or a liquid, or a crystal. We would
like to know what happens if we apply an external magnetic field. With
no magnetic field, the atoms are kicked around by the thermal
motions, and the moments wind up pointing in all directions. But when
there is a magnetic field, it acts to line up the little magnets; then
there are more moments lying toward the field than away from it. The
material is “magnetized.”





We define the magnetization M[image: -*-] of a material as the net
magnetic moment per unit volume, by which we mean the vector sum of
all the atomic magnetic moments in a unit volume. If there are
N[image: -*-] atoms per unit volume and their average moment is [image: \av{\FLPmu}][image: \av{\FLPmu}]
then M[image: -*-] can be written as N[image: -*-] times the average atomic moment:

[image: -*-][image: -*-]
(35.8)




The definition of M[image: -*-] corresponds to the definition of the
electric polarization P[image: -*-] of Chapter 10.





The classical theory of paramagnetism is just like the theory of the
dielectric constant we showed you in Chapter 11. One
assumes that each of the atoms has a magnetic moment μ[image: -*-], which
always has the same magnitude but which can point in any direction. In
a field B[image: -*-], the magnetic energy is −μ⋅B=−μ B cosθ[image: -*-], where θ[image: -*-] is the angle between the moment and the
field. From statistical mechanics, the relative probability of having
any angle is e−energy/k T[image: -*-], so angles near zero are more
likely than angles near π[image: -*-]. Proceeding exactly as we did in
Section 11-3, we find that for small magnetic fields
M[image: -*-] is directed parallel to B[image: -*-] and has the magnitude

[image: -*-][image: -*-]
(35.9)




[See Eq. (11.20).] This approximate formula is correct
only for μ B/k T[image: -*-] much less than one.





We find that the induced magnetization—the magnetic moment per unit
volume—is proportional to the magnetic field. This is the phenomenon
of paramagnetism. You will see that the effect is stronger at lower
temperatures and weaker at higher temperatures. When we put a field on
a substance, it develops, for small fields, a magnetic moment
proportional to the field. The ratio of M[image: -*-] to B[image: -*-] (for small fields)
is called the magnetic susceptibility.





Now we want to look at paramagnetism from the point of view of quantum
mechanics. We take first the case of an atom with a spin of 1/2[image: -*-]. In
the absence of a magnetic field the atoms have a certain energy, but
in a magnetic field there are two possible energies, one for each
value of Jz[image: -*-]. For Jz=+ℏ/2[image: -*-], the energy is changed by the
magnetic field by the amount

[image: -*-][image: -*-]
(35.10)




(The energy shift Δ U[image: -*-] is positive for an atom because the
electron charge is negative.) For Jz=−ℏ/2[image: -*-], the energy is
changed by the amount

[image: -*-][image: -*-]
(35.11)




To save writing, let’s set

[image: -*-][image: -*-]
(35.12)




then

[image: -*-][image: -*-]
(35.13)




The meaning of μ0[image: -*-] is clear: −μ0[image: -*-] is the z[image: -*-]-component of the
magnetic moment in the up-spin case, and +μ0[image: -*-] is the z[image: -*-]-component
of the magnetic moment in the down-spin case.





Now statistical mechanics tells us that the probability that an atom
is in one state or another is proportional to

[image: -*-][image: -*-]


With no magnetic field the two states have the same energy; so when
there is equilibrium in a magnetic field, the probabilities are
proportional to

[image: -*-][image: -*-]
(35.14)




The number of atoms per unit volume with spin up is

[image: -*-][image: -*-]
(35.15)




and the number with spin down is

[image: -*-][image: -*-]
(35.16)




The constant a[image: -*-] is to be determined so that

[image: -*-][image: -*-]
(35.17)




the total number of atoms per unit volume. So we get that

[image: -*-][image: -*-]
(35.18)









What we are interested in is the average magnetic moment along
the z[image: -*-]-axis. The atoms with spin up will contribute a moment
of −μ0[image: -*-], and those with spin down will have a moment of +μ0[image: -*-]; so
the average moment is

[image: -*-][image: -*-]
(35.19)









The magnetic moment per unit volume M[image: -*-] is then [image: N\av{\mu}][image: N\av{\mu}]. Using Eqs.
(35.15), (35.16), and (35.17), we get that

[image: -*-][image: -*-]
(35.20)




This is the quantum-mechanical formula for M[image: -*-] for atoms with j=1/2[image: -*-].
Incidentally, this formula can also be written somewhat more concisely in terms
of the hyperbolic tangent function:

[image: -*-][image: -*-]
(35.21)








[image: -][image: -]
Fig. 35–7. 
The variation of the paramagnetic magnetization with the
magnetic field strength B[image: -*-].





A plot of M[image: -*-] as a function of B[image: -*-] is given in Fig. 35-7. When B[image: -*-]
gets very large, the hyperbolic tangent approaches 1, and M[image: -*-]
approaches the limiting value N μ0[image: -*-]. So at high fields, the
magnetization saturates. We can see why that is; at high enough
fields the moments are all lined up in the same direction. In other
words, they are all in the spin-down state, and each atom contributes
the moment μ0[image: -*-].





In most normal cases—say, for typical moments, room temperatures,
and the fields one can normally get (like 10,000[image: -*-] gauss)—the
ratio μ0 B/k T[image: -*-] is about 0.002[image: -*-]. One must go to very low
temperatures to see the saturation. For normal temperatures, we can
usually replace tanhx[image: -*-] by x[image: -*-], and write

[image: -*-][image: -*-]
(35.22)









Just as we saw in the classical theory, M[image: -*-] is proportional to B[image: -*-]. In
fact, the formula is almost exactly the same, except that there seems
to be a factor of 1/3[image: -*-] missing. But we still need to relate
the μ0[image: -*-] in our quantum formula to the μ[image: -*-] that appears in the
classical result, Eq. (35.9).





In the classical formula, what appears is μ2=μ⋅μ[image: -*-],
the square of the vector magnetic moment, or

[image: -*-][image: -*-]
(35.23)




We pointed out in the last chapter that you can very likely get the
right answer from a classical calculation by replacing
J⋅J[image: -*-] by j (j+1) ℏ2[image: -*-]. In our particular example, we
have j=1/2[image: -*-], so

[image: -*-][image: -*-]


Substituting this for J⋅J[image: -*-] in Eq. (35.23),
we get

[image: -*-][image: -*-]


or in terms of μ0[image: -*-], defined in Eq. (35.12), we get

[image: -*-][image: -*-]


Substituting this for μ2[image: -*-] in the classical formula,
Eq. (35.9), does indeed reproduce the correct quantum
formula, Eq. (35.22).





The quantum theory of paramagnetism is easily extended to atoms of any
spin j[image: -*-]. The low-field magnetization is

[image: -*-][image: -*-]
(35.24)




where

[image: -*-][image: -*-]
(35.25)




is a combination of constants with the dimensions of a magnetic moment.
Most atoms have moments of roughly this size. It is called the
Bohr magneton. The spin magnetic moment of the electron
is almost exactly one Bohr magneton.





 


35–5 Cooling by adiabatic demagnetization


There is a very interesting special application of paramagnetism. At
very low temperatures it is possible to line up the atomic magnets in
a strong field.  It is then possible to get down to extremely
low temperatures by a process called adiabatic
demagnetization. We can take a paramagnetic salt (for example, one
containing a number of rare-earth atoms like
praseodymium-ammonium-nitrate), and start by cooling it down with
liquid helium to one or two degrees absolute in a strong magnetic
field. Then the factor μ B/k T[image: -*-] is larger than 1—say more like
2 or 3. Most of the spins are lined up, and the magnetization is
nearly saturated. Let’s say, to make it easy, that the field is very
powerful and the temperature is very low, so that nearly all the atoms
are lined up. Then you isolate the salt thermally (say, by removing
the liquid helium and leaving a good vacuum) and turn off the magnetic
field. The temperature of the salt goes way down.





Now if you were to turn off the field suddenly, the jiggling
and shaking, of the atoms in the crystal lattice would gradually knock
all the spins out of alignment. Some of them would be up and some
down. But if there is no field (and disregarding the interactions
between the atomic magnets, which will make only a slight error), it
takes no energy to turn over the atomic magnets. They could randomize
their spins without any energy change and, therefore, without any
temperature change.





Suppose, however, that while the atomic magnets are being flipped over
by the thermal motion there is still some magnetic field present. Then
it requires some work to flip them over opposite to the
field—they must do work against the field. This takes energy
from the thermal motions and lowers the temperature. So if the strong
magnetic field is not removed too rapidly, the temperature of the salt
will decrease—it is cooled by the demagnetization. From the
quantum-mechanical view, when the field is strong all the atoms are in
the lowest state, because the odds against any being in the upper
state are impossibly big. But as the field is lowered, it gets more
and more likely that thermal fluctuations will knock an atom into the
upper state. When that happens, the atom absorbs the energy Δ U=μ0 B[image: -*-]. So if the field is turned off slowly, the magnetic
transitions can take energy out of the thermal vibrations of the
crystal, cooling it off. It is possible in this way to go from a
temperature of a few degrees absolute down to a temperature of a few
thousandths of a degree.





Would you like to make something even colder than that? It turns out
that Nature has provided a way. We have already mentioned that there
are also magnetic moments for the atomic nuclei. Our formulas for
paramagnetism work just as well for nuclei, except that the moments of
nuclei are roughly a thousand times smaller. [They are of the
order of magnitude of q ℏ/2 mp[image: -*-], where mp[image: -*-] is the proton
mass, so they are smaller by the ratio of the masses of the electron
and proton.]  With such magnetic moments, even at a temperature
of 2°[image: -*-]K, the factor μ B/k T[image: -*-] is only a few parts in a
thousand. But if we use the paramagnetic demagnetization process to
get down to a temperature of a few thousandths of a degree, μ B/k T[image: -*-]
becomes a number near 1—at these low temperatures we can begin to
saturate the nuclear moments. That is good luck, because we can then
use the adiabatic demagnetization of the nuclear magnetism to
reach still lower temperatures. Thus it is possible to do two stages
of magnetic cooling. First we use adiabatic demagnetization of
paramagnetic ions to reach a few thousandths of a degree. Then we use
the cold paramagnetic salt to cool some material which has a strong
nuclear magnetism. Finally, when we remove the magnetic field from
this material, its temperature will go down to within a
millionth of a degree of absolute zero—if we have done
everything very carefully.





 


35–6 Nuclear magnetic resonance


We have said that atomic paramagnetism is very small and that nuclear
magnetism is even a thousand times smaller. Yet it is relatively easy
to observe the nuclear magnetism by the phenomenon of “nuclear
magnetic resonance.” Suppose we take a substance like water, in which
all of the electron spins are exactly balanced so that their net
magnetic moment is zero. The molecules will still have a very, very
tiny magnetic moment due to the nuclear magnetic moment of the
hydrogen nuclei. Suppose we put a small sample of water in a magnetic
field B[image: -*-]. Since the protons (of the hydrogen) have a spin of 1/2[image: -*-],
they will have two possible energy states. If the water is in
thermal equilibrium, there will be slightly more protons in the lower
energy states—with their moments directed parallel to the
field. There is a small net magnetic moment per unit volume. Since the
proton moment is only about one-thousandth of an atomic moment, the
magnetization which goes as μ2[image: -*-]—using Eq. (35.22)—is
only about one-millionth as strong as typical atomic paramagnetism.
(That’s why we have to pick a material with no atomic magnetism.) If you
work it out, the difference between the number of protons with spin up
and with spin down is only one part in 108[image: -*-], so the effect is indeed
very small! It can still be observed, however, in the following way.





Suppose we surround the water sample with a small coil that produces a
small horizontal oscillating magnetic field. If this field oscillates
at the frequency ωp[image: -*-], it will induce transitions between the
two energy states—just as we described for the Rabi experiment in
Section 35-3. When a proton flips from an upper energy
state to a lower one, it will give up the energy μz B[image: -*-] which, as we
have seen, is equal to ℏ ωp[image: -*-]. If it flips from the lower
energy state to the upper one, it will absorb the
energy ℏ ωp[image: -*-] from the coil. Since there are slightly more protons
in the lower state than in the upper one, there will be a net
absorption of energy from the coil. Although the effect is very
small, the slight energy absorption can be seen with a sensitive
electronic amplifier.





Just as in the Rabi molecular-beam experiment, the energy absorption
will be seen only when the oscillating field is in resonance, that is,
when

[image: -*-][image: -*-]


It is often more convenient to search for the resonance by varying B[image: -*-]
while keeping ω[image: -*-] fixed. The energy absorption will evidently
appear when

[image: -*-][image: -*-]







A typical nuclear magnetic resonance apparatus is shown in
Fig. 35-8. A high-frequency oscillator drives a small coil
placed between the poles of a large electromagnet. Two small auxiliary
coils around the pole tips are driven with a 60[image: -*-]-cycle current so that
the magnetic field is “wobbled” about its average value by a very
small amount. As an example, say that the main current of the magnet is
set to give a field of 5000[image: -*-] gauss, and the auxiliary coils produce a
variation of ±1[image: -*-] gauss about this value. If the oscillator is set at
21.2[image: -*-] megacycles per second, it will then be at the proton resonance
each time the field sweeps through 5000[image: -*-] gauss [using
Eq. (34.13) with g=5.58[image: -*-] for the proton].




[image: -][image: -]
Fig. 35–8. 
A nuclear magnetic resonance apparatus.





The circuit of the oscillator is arranged to give an additional output
signal proportional to any change in the power being absorbed
from the oscillator. This signal is fed to the vertical deflection
amplifier of an oscilloscope. The horizontal sweep of the oscilloscope
is triggered once during each cycle of the field-wobbling
frequency. (More usually, the horizontal deflection is made to follow
in proportion to the wobbling field.)





Before the water sample is placed inside the high-frequency coil, the
power drawn from the oscillator is some value. (It doesn’t change with
the magnetic field.) When a small bottle of water is placed in the
coil, however, a signal appears on the oscilloscope, as shown in the
figure. We see a picture of the power being absorbed by the flipping
over of the protons!





In practice, it is difficult to know how to set the main magnet to
exactly 5000[image: -*-] gauss. What one does is to adjust the main magnet
current until the resonance signal appears on the oscilloscope. It
turns out that this is now the most convenient way to make an accurate
measurement of the strength of a magnetic field. Of course, at some
time someone had to measure accurately the magnetic field and
frequency to determine the g[image: -*-]-value of the proton. But now that this
has been done, a proton resonance apparatus like that of the figure
can be used as a “proton resonance magnetometer.”





We should say a word about the shape of the signal. If we were to
wobble the magnetic field very slowly, we would expect to see a normal
resonance curve.  The energy absorption would read a maximum
when ωp[image: -*-] arrived exactly at the oscillator frequency. There would be
some absorption at nearby frequencies because all the protons are not
in exactly the same field—and different fields mean slightly
different resonant frequencies.





One might wonder, incidentally, whether at the resonance frequency we
should see any signal at all. Shouldn’t we expect the high-frequency
field to equalize the populations of the two states—so that there
should be no signal except when the water is first put in? Not
exactly, because although we are trying to equalize the two
populations, the thermal motions on their part are trying to keep the
proper ratios for the temperature T[image: -*-]. If we sit at the resonance, the
power being absorbed by the nuclei is just what is being lost to the
thermal motions. There is, however, relatively little “thermal
contact” between the proton magnetic moments and the atomic
motions. The protons are relatively isolated down in the center of the
electron distributions. So in pure water, the resonance signal is, in
fact, usually too small to be seen. To increase the absorption, it is
necessary to increase the “thermal contact.” This is usually done by
adding a little iron oxide to the water. The iron atoms are like small
magnets; as they jiggle around in their thermal dance, they make tiny
jiggling magnetic fields at the protons. These varying fields
“couple” the proton magnets to the atomic vibrations and tend to
establish thermal equilibrium. It is through this “coupling” that
protons in the higher energy states can lose their energy so that they
are again capable of absorbing energy from the oscillator.





In practice the output signal of a nuclear resonance apparatus does not
look like a normal resonance curve. It is usually a more complicated
signal with oscillations—like the one drawn in the figure. Such signal
shapes appear because of the changing fields. The explanation should be
given in terms of quantum mechanics, but it can be shown that in such
experiments the classical ideas of precessing moments always give the
correct answer. Classically, we would say that when we arrive at
resonance we start driving a lot of the precessing nuclear magnets
synchronously. In so doing, we make them precess together. These
nuclear magnets, all rotating together, will set up an induced emf in
the oscillator coil at the frequency ωp[image: -*-]. But because the
magnetic field is increasing with time, the precession frequency is
increasing also, and the induced voltage is soon at a frequency a little
higher than the oscillator frequency. As the induced emf goes
alternately in phase and out of phase with the oscillator, the
“absorbed” power goes alternately positive and negative. So on the
oscilloscope we see the beat note between the proton frequency and the
oscillator frequency. Because the proton frequencies are not all
identical (different protons are in slightly different fields) and also
possibly because of the disturbance from the iron oxide in the water,
the freely precessing moments soon get out of phase, and the beat signal
disappears.





These phenomena of magnetic resonance have been put to use in many
ways as tools for finding out new things about matter—especially in
chemistry and nuclear physics. It goes without saying that the
numerical values of the magnetic moments of nuclei tell us something
about their structure. In chemistry, much has been learned from the
structure (or shape) of the resonances. Because of magnetic fields
produced by nearby nuclei, the exact position of a nuclear resonance
is shifted somewhat, depending on the environment in which any
particular nucleus finds itself. Measuring these shifts helps
determine which atoms are near which other ones and helps to elucidate
the details of the structure of molecules. Equally important is the
electron spin resonance of free radicals. Although not present to any
very large extent in equilibrium, such radicals are often intermediate
states of chemical reactions. A measurement of an electron spin
resonance is a delicate test for the presence of free radicals and is
often the key to understanding the mechanism of certain chemical
reactions.





 

	
	
	Ordinary Na vapor is mostly monatomic, although there are also some 
	molecules of Na2.
	↩
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36–1 Magnetization currents


In this chapter we will discuss some materials in which the net
effect
of the magnetic moments in the material is much greater than in the
case of paramagnetism or diamagnetism. The phenomenon is called
ferromagnetism. In paramagnetic and diamagnetic materials the
induced magnetic moments are usually so weak that we don’t have to
worry about the additional fields produced by the magnetic
moments. For ferromagnetic materials, however, the magnetic
moments induced by applied magnetic fields are quite enormous and have
a great effect on the fields themselves. In fact, the induced moments
are so strong that they are often the dominant effect in producing the
observed fields. So one of the things we will have to worry about is
the mathematical theory of large induced magnetic moments. That is, of
course, just a technical question. The real problem is, why are the
magnetic moments so strong—how does it all work? We will come to
that question in a little while.




Finding the magnetic fields of ferromagnetic materials is something like
the problem of finding the electrostatic field in the presence of
dielectrics. You will remember that we first described the internal
properties of a dielectric in terms of a vector field P[image: -*-], the
dipole moment per unit volume. Then we figured out that the effects of
this polarization are equivalent to a charge density ρpol[image: -*-]
given by the divergence of P[image: -*-]:

[image: -*-][image: -*-]
(36.1)




The total charge in any situation can be written as the sum of this
polarization charge plus all other charges, whose density we
write1 ρother[image: -*-]. Then the Maxwell
equation
which relates the divergence of E[image: -*-] to the charge density becomes

[image: -*-][image: -*-]


or

[image: -*-][image: -*-]


We can then pull out the polarization part of the charge and put it on
the other side of the equation, to get the new law

[image: -*-][image: -*-]
(36.2)




The new law says the divergence of the quantity (ϵ0 E+P)[image: -*-]
is equal to the density of the other charges.




Pulling E[image: -*-] and P[image: -*-] together as in Eq. (36.2),
of course, is useful only if we know some relation between them. We
have seen that the theory which relates the induced electric dipole
moment to the field was a relatively complicated business and can
really only be applied to certain simple situations, and even then as
an approximation. We would like to remind you of one of the
approximate ideas we used. To find the induced dipole moment of an
atom inside a dielectric, it is necessary to know the electric field
that acts on an individual atom. We made the approximation—which is
not too bad in many cases—that the field on the atom is the same as
it would be at the center of the small hole which would be left if we
took out the atom (keeping the dipole moments of all the neighboring
atoms the same). You will also remember that the electric field in a
hole in a polarized dielectric depends on the shape of the hole. We
summarize our earlier results in Fig. 36–1. For a thin, disc-shaped
hole perpendicular to the polarization, the electric field in the hole
is given by

[image: -*-][image: -*-]


which we showed by using Gauss’ law. On the other hand, in a
needle-shaped slot parallel to the polarization, we showed—by using
the fact that the curl of E[image: -*-] is zero—that the electric fields
inside and outside of the slot are the same. Finally, we found that
for a spherical hole the electric field was one-third of the way
between the field of the slot and the field of the disc:

[image: -*-][image: -*-]
(36.3)




This was the field we used in thinking about what happens to an atom
inside a polarized dielectric.



[image: -][image: -][image: -][image: -][image: -][image: -]
Fig. 36–1. The electric field in a cavity in a dielectric depends on the
shape of the cavity.





Now we have to discuss the analog of all this for the case of
magnetism. One simple, short-cut way of doing this is to say the
M[image: -*-], the magnetic moment per unit volume, is just like P[image: -*-],
the electric dipole moment per unit volume, and that, therefore, the
negative of the divergence of M[image: -*-] is equivalent to a “magnetic
charge density” ρm[image: -*-]—whatever that may mean. The trouble is, of
course, that there isn’t any such thing as a “magnetic charge” in
the physical world. As we know, the divergence of B[image: -*-] is always
zero. But that does not stop us from making an artificial
analog and writing

[image: -*-][image: -*-]
(36.4)




where it is to be understood that ρm[image: -*-] is purely
mathematical. Then we could make a complete analogy with the
electrostatic case and use all our old equations from
electrostatics. People have often done something like that. In fact,
historically, people even believed that the analogy was right. They
believed that the quantity ρm[image: -*-] represented the density of
“magnetic poles.” These days, however, we know that the
magnetization of materials comes from circulating currents within the
atoms—either from the spinning electrons or from the motion of the
electrons in the atom. It is therefore nicer from a physical point of
view to describe things realistically in terms of the atomic
currents, rather
than in terms of a density of some mythical “magnetic poles.”
Incidentally, these currents are sometimes called “Ampèrian”
currents, because
Ampère first suggested that the magnetism of matter came from
circulating atomic currents.





The actual microscopic current density in magnetized matter is, of
course, very complicated. Its value depends on where you look in the
atom—it’s large in some places and small in others; it goes one way
in one part of the atom and the opposite way in another part (just as
the microscopic electric field varies enormously inside a
dielectric). In many practical problems, however, we are interested
only in the fields outside of the matter or in the average
magnetic field inside of the matter—where we mean an average taken
over many, many atoms. It is only for such macroscopic problems
that it is convenient to describe the magnetic state of the matter in
terms of M[image: -*-], the average dipole moment per unit volume. What we
want to show now is that the atomic currents of magnetized matter can give
rise to certain large-scale currents which are related to M[image: -*-].





What we are going to do, then, is to separate the current
density j[image: -*-]—which is the real source of the magnetic fields—into
various parts: one part to describe the circulating currents of the
atomic magnets, and the other parts to describe what other currents
there may be. It is usually most convenient to separate the currents
into three parts. In Chapter 32 we made a distinction
between the currents which flow freely on conductors and the ones
which are due to the back and forth motions of the bound charges in
dielectrics. In Section 32–2 we wrote

[image: -*-][image: -*-]


where jpol[image: -*-] represented the currents from the motion of
the bound charges in dielectrics and jother[image: -*-] took care
of all other currents. Now we want to go further. We want to separate
jother[image: -*-] into one part, jmag[image: -*-], which
describes the average currents inside of magnetized materials, and an
additional term which we can call jcond[image: -*-] for whatever
is left over. The last term will generally refer to currents in
conductors, but it may also include other currents—for example the
currents from charges moving freely through empty space. So we will
write for the total current density:

[image: -*-][image: -*-]
(36.5)




Of course it is this total current which belongs in the Maxwell
equation
for the curl of B[image: -*-]:

[image: -*-][image: -*-]
(36.6)









Now we have to relate the current jmag[image: -*-] to the
magnetization vector M[image: -*-]. So that you can see where we are going,
we will tell you that the result is going to be that

[image: -*-][image: -*-]
(36.7)




If we are given the magnetization vector M[image: -*-] everywhere in a
magnetic material, the circulation current density is given by the
curl of M[image: -*-]. Let’s see if we can understand why this is so.



[image: -][image: -]
Fig. 36–2. Schematic diagram of the circulating atomic currents as seen in
a cross section of an iron rod magnetized in the z[image: -*-]-direction.





First, let’s take the case of a cylindrical rod which has a uniform
magnetization parallel to its axis. Physically, we know that such a
uniform magnetization really means a uniform density of atomic
circulating currents everywhere inside the material. Suppose we try to imagine what
the actual currents would look like in a cross section of the material.
We would expect to see currents something like those shown in
Fig. 36–2. Each atomic current goes around and around in a
little circle, with all the circulating currents going around in the
same direction. Now what is the effective current of such a thing? Well,
in most of the bar there is no effect at all, because right next to each
current there is another current going in the opposite direction. If we
imagine a small surface—but one still quite a bit larger than a single
atom—such as is indicated in Fig. 36–2 by the
line [image: \overline{AB}][image: \overline{AB}], the net current through such a surface is zero.
There is no net current anywhere inside the material. Note, however,
that at the surface of the material there are atomic
currents which are
not cancelled by neighboring currents going the other way. At the
surface there is a net current always going in the same direction around
the rod. Now you see why we said earlier that a uniformly magnetized rod
is equivalent to a long solenoid carrying an electric current.





How does this view fit with Eq. (36.7)? First, inside the
material the magnetization M[image: -*-] is constant, so all its derivatives
are zero. This agrees with our geometric picture. At the surface,
however, M[image: -*-] is not really constant—it is constant up to the edge
and then suddenly collapses to zero. So, right at the surface there are
terrific gradients which, according to (36.7), will give a
high current density. Suppose we look at what happens near the point C[image: -*-]
in Fig. 36–2. Taking the x[image: -*-]- and y[image: -*-]-directions as in the
figure, the magnetization M[image: -*-] is in the z[image: -*-]-direction. Writing out
the components of Eq. (36.7), we have

[image: -*-][image: -*-]
(36.8)




At the point C[image: -*-], the derivative ∂Mz/∂y[image: -*-] is zero, but
∂Mz/∂x[image: -*-] is large and positive. Equation (36.7)
says that there is a large current density in the minus
y[image: -*-]-direction. This agrees with our picture of a surface current going
around the bar.




Now we want to find the current density for a more complicated case in
which the magnetization varies from point to point in a material. It
is easy to see qualitatively that if the magnetization is different in
two neighboring regions, there will not be a perfect cancellation of
the circulating currents so that there will be a net current in the
volume of the material. It is this effect that we want to work out
quantitatively.




[image: -][image: -]
Fig. 36–3. The dipole moment μ[image: -*-] of a current loop is I A[image: -*-].




[image: -][image: -]
Fig. 36–4. A small magnetized block is equivalent to a circulating surface
current.





First, we need to recall the results of Section 14–5
that a circulating current I[image: -*-] has a magnetic moment μ[image: -*-] given by

[image: -*-][image: -*-]
(36.9)




where A[image: -*-] is the area of the current loop (see Fig. 36–3).
Now let’s consider a small rectangular block inside of a magnetized
material, as sketched in Fig. 36–4. We take the block so
small that we can consider that the magnetization is uniform inside it.
If this block has a magnetization Mz[image: -*-] in the z[image: -*-]-direction, the net
effect will be the same as a surface current going around on the
vertical faces, as shown. We can find the magnitude of these currents
from Eq. (36.9). The total magnetic moment of the block is
equal to the magnetization times the volume:

[image: -*-][image: -*-]


from which we get (remembering that the area of the loop is a c[image: -*-])

[image: -*-][image: -*-]


In other words, the current per unit length (vertically) on each of
the vertical surfaces is equal to Mz[image: -*-].



[image: -][image: -]
Fig. 36–5. If the magnetization of two neighboring blocks is not the same,
there is a net surface current in between.





Now suppose that we imagine two such little blocks next to each other,
as shown in Fig. 36–5. Because block 2 is slightly
displaced from block 1, it will have a slightly different vertical
component of magnetization, which we call Mz+Δ Mz[image: -*-]. Now on the
surface between the two blocks there will be two contributions to the
total current. Block 1 will produce a current I1[image: -*-] flowing in the
positive y[image: -*-]-direction, and block 2 will produce a surface
current I2[image: -*-] flowing in the negative y[image: -*-]-direction. The total surface current
in the positive y[image: -*-]-direction is the sum:

[image: -*-][image: -*-]


We can write Δ Mz[image: -*-], as the derivative of Mz[image: -*-] in the
x[image: -*-]-direction times the displacement from block 1 to block 2,
which is just a[image: -*-]:

[image: -*-][image: -*-]


The current flowing between the two blocks is then

[image: -*-][image: -*-]


To relate the current I[image: -*-] to an average volume current
density j[image: -*-], we must realize that this current I[image: -*-] is really spread over a
certain cross-sectional area. If we imagine the whole volume of the
material to be filled with such little blocks, one such side face
(perpendicular to the x[image: -*-]-axis) can be associated with each
block.2 Then we see
that the area to be associated with the current I[image: -*-] is just the
area a b[image: -*-] of one of the front faces. We get the result

[image: -*-][image: -*-]


We have at least the beginning of the curl of M[image: -*-].



[image: -][image: -]
Fig. 36–6. Two blocks, one above the other, may also contribute to jy[image: -*-].





There should be another term in jy[image: -*-] from the variation of the
x[image: -*-]-component of the magnetization with z[image: -*-]. This contribution
to j[image: -*-] will come from the surface between two little blocks stacked
one on top of the other, as shown in Fig. 36–6. Using the same
arguments we have just made, you can show that this surface will
contribute to jy[image: -*-] the amount ∂Mx/∂z[image: -*-]. These are the only
surfaces which can contribute to the y[image: -*-]-component of the current so
we have that the total current density in the y[image: -*-]-direction is

[image: -*-][image: -*-]


Working out the currents on the remaining faces of a cube—or using
the fact that our z[image: -*-]-direction is completely arbitrary—we can
conclude that the vector current density is indeed given by the
equation

[image: -*-][image: -*-]







So if we choose to describe the magnetic situation in matter in terms of the
average magnetic moment per unit volume M[image: -*-], we find that the circulating
atomic currents are equivalent to an average current density in matter given by
Eq. (36.7). If the material is also a dielectric, there may be, in
addition, a polarization current jpol=∂P/∂t[image: -*-]. And if
the material is also a conductor, we may have a conduction
current jcond[image: -*-] as well. We can write the total current as

[image: -*-][image: -*-]
(36.10)












36–2 The field H[image: -*-]


Next, we want to insert the current as written in
Eq. (36.10) into Maxwell’s
equations. We get



[image: -*-][image: -*-]



We can move the term in M[image: -*-] to the left-hand side:



[image: -*-][image: -*-]
(36.11)





As we remarked in Chapter 32, many people like to
write (E+P/ϵ0)[image: -*-] as a new vector field D/ϵ0[image: -*-]. Similarly,
it is often convenient to write (B−M/ϵ0 c2)[image: -*-] as a single
vector field. We choose to define a new vector field H[image: -*-] by

[image: -*-][image: -*-]
(36.12)




Then Eq. (36.11) becomes

[image: -*-][image: -*-]
(36.13)




It looks simple, but all the complexity is just hidden in the letters
D[image: -*-] and H[image: -*-].




Now we have to give you a warning. Most people who use the mks units
have chosen to use a different definition of H[image: -*-]. Calling
their field H′[image: -*-] (of course, they still call it H[image: -*-]
without the prime), it is defined by

[image: -*-][image: -*-]
(36.14)




(Also, they usually write ϵ0 c2[image: -*-] as a new number 1/μ0[image: -*-]; then
they have one more constant to keep track of!) With this definition,
Eq. (36.13) looks even simpler:

[image: -*-][image: -*-]
(36.15)




But the difficulties with this definition of H′[image: -*-] are, first, that
it doesn’t agree with the definition of people who don’t use the mks
units, and second, that it makes H′[image: -*-] and B[image: -*-] have different
units. We think it is more convenient for H[image: -*-] to have the same units
as B[image: -*-]—rather than the units of M[image: -*-], as H′[image: -*-] does. But if
you are going to be an engineer and work on the design of transformers,
magnets, and such, you will have to watch out. You will find many books
which use for H[image: -*-] the definition of Eq. (36.14) rather
than our definition of Eq. (36.12), and many other
books—especially handbooks about magnetic materials—that relate
B[image: -*-] and H[image: -*-] the way we have done. You’ll have to be careful to
figure out which convention they are using.




One way to tell is by the units they use. Remember that in the mks
system, B[image: -*-]—and therefore our H[image: -*-]—are measured with
the unit: one weber per square meter, equal to 10,000[image: -*-] gauss. In the
mks system, a magnetic moment (a current times an area) has the unit:
one ampere-meter2. The magnetization M[image: -*-], then, has the unit: one
ampere per meter. For H′[image: -*-] the units are the same as
for M[image: -*-]. You can see that this also agrees with Eq. (36.15),
since ∇[image: -*-] has the dimensions of one over a length. People who
are working with electromagnets also get in the habit of calling the
unit of H[image: -*-] (with the H′[image: -*-] definition) “one ampere turn
per meter”—thinking of the turns of wire on a winding. But a “turn”
is really a dimensionless number, so that doesn’t need to confuse you.
Since our H[image: -*-] is equal to H′/ϵ0 c2[image: -*-], if you are using the mks
system, H[image: -*-] (in webers/meter2) is equal to 4 π×10−7[image: -*-]
times H′[image: -*-] (in amperes per meter). It is perhaps more convenient to remember
that H[image: -*-] (in gauss)=0.0126 H′[image: -*-] (in amp/meter).




There is one more horrible thing. Many people who use our
definition of H[image: -*-] have decided to call the units of H[image: -*-]
and B[image: -*-] by different names!  Even though they have the same
dimensions, they call the unit of B[image: -*-] one gauss,
and the unit
of H[image: -*-] one oersted (after
Gauss and
Oersted, of
course). So, in many books you will find graphs with B[image: -*-] plotted in
gauss and H[image: -*-] in oersteds. They are really the same unit—10−4[image: -*-] of
the mks unit. We have summarized the confusion about magnetic units
in Table 36–1.





Table 36–1. Units of magnetic quantities



Convenient conversions



[image: --][image: --]





36–3 The magnetization curve


Now we will look at some simple situations in which the magnetic field
is constant, or in which the fields change slowly enough that we can
neglect ∂D/∂t[image: -*-] in comparison
with jcond[image: -*-]. Then the fields obey the equations

[image: -*-][image: -*-]
(36.16)

(36.17)

(36.18)








[image: -][image: -][image: -][image: -]
Fig. 36–7. (a) A torus of iron wound with a coil of insulated wire.
(b) Cross section of torus showing field lines.





Suppose we have a torus (a donut) of iron wrapped with a coil of copper
wire, as shown in Fig. 36–7(a). A current I[image: -*-] flows in the
wire. What is the magnetic field? The magnetic field will be mainly
inside the iron; there, the lines of B[image: -*-] will be circles, as drawn
in Fig. 36–7(b). Since the flux of B[image: -*-] is continuous,
its divergence is zero, and Eq. (36.16) is satisfied. Next,
we write Eq. (36.17) in another form by integrating around
the closed loop Γ[image: -*-] drawn in Fig. 36–7(b). From
Stokes’ theorem, we have that

[image: -*-][image: -*-]
(36.19)




where the integral of j[image: -*-] is to be carried out over any surface S[image: -*-]
bounded by Γ[image: -*-]. This surface is cut once by each turn of the
winding. Each turn contributes the current I[image: -*-] to the integral, and,
if there are N[image: -*-] turns in all, the integral is N I[image: -*-]. From the symmetry
of our problem, B[image: -*-] is the same all around the curve Γ[image: -*-]; if
we assume that the magnetization, and therefore, the field H[image: -*-] is also
constant along Γ[image: -*-], Eq. (36.19) becomes

[image: -*-][image: -*-]


where l[image: -*-] is the length of the curve Γ[image: -*-]. So,

[image: -*-][image: -*-]
(36.20)




It is because H[image: -*-] is directly proportional to the magnetizing
current in cases like this one that H[image: -*-] is sometimes called the
magnetizing field.




Now all we need is an equation which relates H[image: -*-] to B[image: -*-]. But
there isn’t any such equation! There is, of course,
Eq. (36.18), but it is no help because there is no direct
relation between M[image: -*-] and B[image: -*-] for a ferromagnetic material like
iron. The magnetization M[image: -*-] depends on the whole past history of the
iron, and not only on what B[image: -*-] is at the moment.




All is not lost, though. We can get solutions in certain simple cases.
If we start out with unmagnetized iron—let’s say with iron that has
been annealed at high temperatures—then in the simple geometry of the
torus, all the iron will have the same magnetic history. Then we can say
something about M[image: -*-]—and therefore about the relation between
B[image: -*-] and H[image: -*-]—from experimental measurements. The field H[image: -*-]
in the torus is, from Eq. (36.20), given as a constant times
the current I[image: -*-] in the winding. The field B[image: -*-] can be measured by
integrating over time the emf in the coil (or in an extra coil wound
over the magnetizing coil shown in the figure). This emf is equal to the
rate of change of the flux of B[image: -*-], so the integral of the emf with
time is equal to B[image: -*-] times the cross-sectional area of the torus.



[image: -][image: -]
Fig. 36–8. Typical magnetization and hysteresis curve for soft iron.





Figure 36–8 shows the relation between B[image: -*-] and H[image: -*-],
observed
with a torus of soft iron. When the current is first turned on,
B[image: -*-] increases with increasing H[image: -*-] along the curve a[image: -*-]. Note
the different scales on B[image: -*-] and H[image: -*-]; initially, it takes only
a relatively small H[image: -*-] to make a large B[image: -*-]. Why is B[image: -*-] so
much larger with the iron than it would be with air? Because there is
a large magnetization M[image: -*-] which is equivalent to a large surface
current on the iron—the field B[image: -*-] comes from the sum of
this current and the conduction current in the winding. Why M[image: -*-]
should be so large, we will discuss later.





At higher values of H[image: -*-], the magnetization curve levels off. We
say that the iron saturates. With the scales of our figure, the
curve appears to become horizontal. Actually, it continues to rise
slightly—for large fields, B[image: -*-] becomes proportional to H[image: -*-],
and with a unit slope. There is no further increase of M[image: -*-].
Incidentally, we should point out that if the torus were made
of some nonmagnetic material, M[image: -*-] would be zero and B[image: -*-] would
equal H[image: -*-] for all fields.




The first thing we notice is that curve a[image: -*-] in Fig. 36–8—which is
the so-called magnetization curve—is highly nonlinear. But
it’s worse than that. If, after reaching saturation, we decrease the
current in the coil to bring H[image: -*-] back to zero, the magnetic
field B[image: -*-] falls along curve b[image: -*-]. When H[image: -*-] reaches zero, there is
still some B[image: -*-] left. Even with no magnetizing current there is a
magnetic field in the iron—it has become permanently magnetized. If
we now turn on a negative current in the coil, the
B[image: -*-]-H[image: -*-] curve continues along b[image: -*-] until the iron is saturated in the negative
direction.  If we then bring the current back to zero again, B[image: -*-]
goes along curve c[image: -*-]. If we alternate the current between large
positive and negative values, the B[image: -*-]-H[image: -*-] curve goes back and forth
along very nearly the curves b[image: -*-] and c[image: -*-]. If we vary H[image: -*-] in some
arbitrary way, however, we can get more complicated curves which will,
in general, lie somewhere between the curves b[image: -*-] and c[image: -*-]. The loop
made by repeated oscillation of the fields is called a
hysteresis loop of the iron.





We see then that we cannot write a functional relationship
like B=f (H)[image: -*-], because the value of B[image: -*-] at any instant depends not
only on what H[image: -*-] is at that time, but on its whole past history.
Naturally, the magnetization and hysteresis curves are different for
different substances. The shape of the curves depends critically on the
chemical composition of the material, and also on the details of its
preparation and subsequent physical treatment. We will discuss some of
the physical explanations for these complications in the next chapter.







36–4 Iron-core inductances


One of the most important applications of magnetic materials is in
electrical circuits—for example, in transformers, electric motors, and
so on. One reason is that with iron we can control where the magnetic
fields go, and also get much larger fields for a given electric current.
For example, the typical “toroidal” inductance is made very much like
the object shown in Fig. 36–7. For a given inductance, it
can be much smaller in volume and use much less copper than an
equivalent “air-core” inductance. For a given inductance, we get a
much smaller resistance in the winding, so the inductance is more nearly
“ideal”—particularly for low frequencies. It is very easy to
understand, qualitatively, how such an inductance works. If I[image: -*-] is the
current in the winding, then the field H[image: -*-] which is produced in the
inside is proportional to I[image: -*-]—as given by Eq. (36.20). The
voltage V[image: -*-] across the terminals is related to the magnetic
field B[image: -*-]. Neglecting the resistance of the winding, the
voltage V[image: -*-] is proportional to ∂B/∂t[image: -*-]. The
inductance L[image: -*-], which is the ratio of V[image: -*-] to d I/d t[image: -*-] (see
Section 17–7), thus involves the relation between B[image: -*-]
and H[image: -*-] in the iron. Since the B[image: -*-] is so much bigger than the H[image: -*-],
we get a large factor in the inductance. Physically, what happens is
that a small current in the coil, which would ordinarily produce a small
magnetic field, causes the little “slave” magnets in the iron to line
up and produce a tremendously greater “magnetic” current than the
external current in the winding. It is as if we had a lot more current
going through the coil than we really have. When we reverse the current,
all the little magnets flip over—all those internal currents
reverse—and we get a much higher induced emf than we would get without
the iron. If we want to calculate the inductance, we can do so through
the energy—as described in Section 17–8. The rate
at which energy is delivered from the current source is I V[image: -*-]. The
voltage V[image: -*-] is the cross-sectional area A[image: -*-] of the core,
times N[image: -*-], times d B/d t[image: -*-]. From Eq. (36.20), I=(ϵ0 c2 l/N) H[image: -*-].
So we have

[image: -*-][image: -*-]


Integrating over time, we have

[image: -*-][image: -*-]
(36.21)




Notice that l A[image: -*-] is the volume of the torus, so we have shown that the
energy density u=U/vol[image: -*-] in a magnetic material is given by

[image: -*-][image: -*-]
(36.22)









An interesting feature is involved here. When we use alternating
currents, the iron is driven around a hysteresis loop. Since B[image: -*-] is
not a single-valued function of H[image: -*-], the integral of ∫H d B[image: -*-]
around one complete cycle is not equal to zero. It is the area
enclosed inside the hysteresis curve. Thus, the driving source
delivers a certain net energy each cycle—an energy proportional to
the area inside the hysteresis loop. And that energy is “lost.” It
is lost from the electromagnetic goings on, but turns up as heat in
the iron. It is called the hysteresis loss. To keep such energy
losses small, we would like the hysteresis loop to be as narrow as
possible. One way to decrease the area of the loop is to reduce the
maximum field that is reached during each cycle. For smaller maximum
fields, we get a hysteresis curve like the one shown in
Fig. 36–9. Also, special materials are designed to have a
very narrow loop. The so-called transformer irons—which are
iron alloys with a small amount of silicon—have been developed to have
this property.



[image: -][image: -]
Fig. 36–9. A hysteresis loop that doesn’t reach saturation.





When an inductance is run over a small hysteresis loop, the
relationship between B[image: -*-] and H[image: -*-] can be approximated by a linear
equation. People usually write

[image: -*-][image: -*-]
(36.23)




The constant μ[image: -*-] is not the magnetic moment we have used
before. It is called the permeability of the
iron. (It is also sometimes called the “relative
permeability.”) The permeability of ordinary irons is typically several
thousand. There are special alloys alike
“supermalloy” which can have permeabilities as high
as a million.





If we use the approximation that B=μ H[image: -*-] in Eq. (36.21),
we can write the energy in a toroidal inductance as
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(36.24)





So the energy density is approximately

[image: -*-][image: -*-]


We can now set the energy of Eq. (36.24) equal to the
energy L I2/2[image: -*-] of an inductance, and solve for L[image: -*-]. We get

[image: -*-][image: -*-]


Using H/I[image: -*-] from Eq. (36.20), we have

[image: -*-][image: -*-]
(36.25)




The inductance is proportional to μ[image: -*-]. If you want inductances for
such things as audio amplifiers, you will try to operate them on a
hysteresis loop where the B[image: -*-]-H[image: -*-] relationship is as linear as possible.
(You will remember that we spoke in Chapter 50, Vol. I,
about the generation of harmonics in nonlinear systems.) For such
purposes, Eq. (36.23) is a useful approximation. On the
other hand, if you want to generate harmonics, you may use an
inductance which is intentionally operated in a highly nonlinear way.
Then you will have to use the complete B[image: -*-]-H[image: -*-] curves, and analyze what
happens by graphical or numerical methods.




A “transformer” is often made by putting two coils on the same
torus—or core—of a magnetic material. (For the larger
transformers, the core is made with rectangular proportions for
convenience.) Then a varying current in the “primary” winding causes
the magnetic field in the core to change, which induces an emf in the
“secondary” winding. Since the flux through each turn of both
windings is the same, the emf’s in the two windings are in the same
ratio as the number of turns on each. A voltage applied to the primary
is transformed to a different voltage at the secondary. Since a
certain net current around the core is needed to produce the
required change in the magnetic field, the algebraic sum of the
currents in the two windings will be fixed and equal to the required
“magnetizing” current. If the current drawn from the secondary
increases, the primary current must increase in proportion—there is
a “transformation” of currents as well as voltage.







36–5 Electromagnets

[image: -][image: -]
Fig. 36–10. An electromagnet.





Now let’s discuss a practical situation which is a little more
complicated. Suppose we have an electromagnet of the rather standard
form shown in Fig. 36–10—there is a “C-shaped” yoke of iron,
with a coil of many turns of wire wrapped around the yoke. What is the
magnetic field B[image: -*-] in the gap?




If the gap thickness is small compared with all the other dimensions,
we can, as a first approximation, assume that the lines of B[image: -*-]
will go around through the loop, just as they did in the torus. They
will look more or less as shown in Fig. 36–11(a). They tend to
spread out somewhat in the gap, but if the gap is narrow, this will be
a small effect. It is a fair approximation to assume that the flux
of B[image: -*-] through any cross section of the yoke is a constant. If the
yoke has a uniform cross-sectional area A[image: -*-]—and if we neglect any edge
effects at the gaps or at the corners—we can say that B[image: -*-] is
uniform around the yoke.



[image: -][image: -][image: -][image: -]
Fig. 36–11. Cross section of an electromagnet.





Also, B[image: -*-] will have the same value in the gap. This follows from
Eq. (36.16). Imagine the closed surface S[image: -*-], shown in
Fig. 36–11(b), which has one face in the gap and the other
in the iron. The total flux of B[image: -*-] out of this surface must be zero.
Calling B1[image: -*-] the field in the gap and B2[image: -*-] the field in the iron, we
have (to our approximation) that

[image: -*-][image: -*-]


It follows that B1=B2[image: -*-].




Now let’s look at H[image: -*-]. We can again use Eq. (36.19), taking
the line integral around the curve Γ[image: -*-] in
Fig. 36–11(b). As before, the integral on the right-hand
side is N I[image: -*-], the number of turns times the current. Now, however, H[image: -*-]
will be different in the iron and in the air. Calling H2[image: -*-] the field in
the iron and l2[image: -*-] the path length around the yoke, this part of the
curve will contribute the amount H2 l2[image: -*-] to the integral. Calling H1[image: -*-]
the field in the gap and l1[image: -*-] the gap thickness, we get the
contribution H1 l1[image: -*-] from the gap. We have that

[image: -*-][image: -*-]
(36.26)









Now we know something else: that in the air gap, the magnetization is
negligible, so that B1=H1[image: -*-]. Since B1=B2[image: -*-], Eq. (36.26)
becomes

[image: -*-][image: -*-]
(36.27)




We still have two unknowns. To find B2[image: -*-] and H2[image: -*-], we need another
relationship—namely, the one which relates B[image: -*-] to H[image: -*-] in the iron.




If we can make the approximation that B2=μ H2[image: -*-], we can solve the
equation algebraically. However, let’s do the general case, in which the
magnetization curve of the iron is one like that shown in
Fig. 36–8. What we want is the simultaneous solution of
this functional relationship together with Eq. (36.27). We
can find it by plotting a graph of Eq. (36.27) on the same
graph with the magnetization curve, as is done in
Fig. 36–12. Where the two curves intersect, we have our
solution.



[image: -][image: -]
Fig. 36–12. Solving for the field in an electromagnet.





For a given current I[image: -*-], the function (36.27) is the
straight line marked I>0[image: -*-] in Fig. 36–12. The line intersects the
H[image: -*-]-axis (B2=0[image: -*-]) at H2=N I/ϵ0 c2 l2[image: -*-], and the slope
is −l2/l1[image: -*-]. Different currents just shift the line horizontally. From
Fig. 36–12, we see that for a given current there are several
different solutions, depending on how you got there. If you have just
built the magnet and turned the current up to I[image: -*-], the field B2[image: -*-]
(which is also B1[image: -*-]) will have the value given by point a[image: -*-]. If you
have run the current to some very high value and come down to I[image: -*-], the
field will be given by point b[image: -*-]. Or, if you have just had a high
negative current in the magnet and then come up to I[image: -*-], the
field is the one at point c[image: -*-]. The field in the gap will depend on
what you have done in the past.




When the current in the magnet is zero, the relation between B2[image: -*-]
and H2[image: -*-] in Eq. (36.27) is shown by the line marked I=0[image: -*-]
in the figure. There are still various possible solutions. If you have
first saturated the iron, there may be a considerable residual field
in the magnet as given by point d[image: -*-]. You can take the coil off, and
you have a permanent magnet. You can see that for a good permanent
magnet, you would want a material with a wide hysteresis
loop. Special alloys, such as Alnico V, have very wide loops.







36–6 Spontaneous magnetization


We now turn to the question of why it is that in ferromagnetic
materials a small magnetic field produces such a large
magnetization. The magnetization of ferromagnetic materials like iron
and nickel comes from the magnetic moment of the electrons in the
inner shell of the atom. Each electron has a magnetic moment μ[image: -*-]
equal to q/2 m[image: -*-] times its g[image: -*-]-factor, times its angular
momentum J[image: -*-]. For a single electron with no net orbital motion, g=2[image: -*-], and
the component of J[image: -*-] in any direction—say the
z[image: -*-]-direction—is ±ℏ/2[image: -*-],
so the component of μ[image: -*-] along the z[image: -*-]-axis is

[image: -*-][image: -*-]
(36.28)




In an iron atom, there are actually two electrons that contribute to
the ferromagnetism, so to keep the discussion simpler we will talk
about nickel, which is ferromagnetic like iron but which has only one
electron in the inner shell. (It is easy to extend the arguments to
iron.)





Now the point is that in the presence of an external field B[image: -*-],
the atomic magnets tend to line up with the field, but are knocked
about by thermal motions just as we described for paramagnetic
materials. In the last chapter we found out that the balance between a
magnetic field trying to line up the atomic magnets and the thermal
motions trying to derange them produced the result that the mean
magnetic moment per unit volume will end up as

[image: -*-][image: -*-]
(36.29)




By Ba[image: -*-] we mean the field acting at the atom, and k T[image: -*-] is the
Boltzmann energy. In the theory
of paramagnetism we used for Ba[image: -*-] just B[image: -*-] itself, neglecting the part
of the field at any given atom contributed by the atoms nearby. In the
ferromagnetic case, there is a complication. We shouldn’t use the
average field in the iron for the Ba[image: -*-] acting on an individual
atom. Instead, we must do as we did in the case of dielectrics—we have
to find the local field acting at a single atom. For an exact
calculation we should add up the fields at the atom in question
contributed by all of the other atoms in the crystal lattice. But as we
did for dielectrics, we will make the approximation that the field at an
atom is the same as we would find in a small spherical hole in the
material—assuming that the moments of the atoms in the neighborhood
are not changed by the presence of the hole.




Following the arguments we made in Chapter 11, we might
think that we could write

[image: -*-][image: -*-]


But that is not right. We can, however, make use of the results
of Chapter 11 if we make a careful comparison of the
equations of Chapter 11 with the equations for
ferromagnetism in this chapter. Let’s put together the corresponding
equations. For regions where there are no conduction currents or
charges we have:



[image: -*-][image: -*-]
(36.30)





These two sets of equations can be thought of as analogous if we make
the following purely mathematical correspondences:

[image: -*-][image: -*-]


This is the same as making the analogy

[image: -*-][image: -*-]
(36.31)




In other words, if we write the equations of ferromagnetism as

[image: -*-][image: -*-]
(36.32)




they look like the equations of electrostatics.




This purely algebraic correspondence has led to some confusion in the
past. People tended to think that H[image: -*-] was “the magnetic
field.” But, as we have seen, B[image: -*-] and E[image: -*-] are physically the
fundamental fields, and H[image: -*-] is a derived idea. So although the
equations are analogous, the physics is not
analogous. However, that doesn’t need to stop us from using the
principle that the same equations have the same solutions.





We can use our earlier results for the electric field inside of holes of
various shapes in dielectrics—summarized in
Fig. 36–1—to find the field H[image: -*-] inside of
corresponding holes. Knowing H[image: -*-], we can determine B[image: -*-]. For
instance (using the results we summarized in
Section 36–1), the field H[image: -*-] in a needle-shaped hole
parallel to M[image: -*-] is the same as the H[image: -*-] in the material,

[image: -*-][image: -*-]


But since M[image: -*-] in the hole is zero, we have

[image: -*-][image: -*-]
(36.33)









On the other hand, for a disc-shaped hole, perpendicular to M[image: -*-],
we have

[image: -*-][image: -*-]


which translates into

[image: -*-][image: -*-]


Or, in terms of B[image: -*-],

[image: -*-][image: -*-]
(36.34)




Finally, for a spherical hole, by making our analogy with
Eq. (36.3) we would have

[image: -*-][image: -*-]


or

[image: -*-][image: -*-]
(36.35)




This result is quite different from what we got for E[image: -*-].




It is, of course, possible to get these results in a more physical way,
by using the Maxwell equations directly. For example,
Eq. (36.34) follows directly from ∇⋅B=0[image: -*-]. (You
use a gaussian surface that is half in the material and half out.)
Similarly, you can get Eq. (36.33) by using a line integral
along a curve that goes up inside the hole and returns through the
material. Physically, the field in the hole is reduced because of the
surface currents—which are given by ∇×M[image: -*-]. We will leave
it for you to show that Eq. (36.35) can also be obtained by
considering the effects of the surface currents on the boundary of the
spherical cavity.





In finding the equilibrium magnetization from Eq. (36.29),
it turns out to be most convenient to deal with H[image: -*-]; so write

[image: -*-][image: -*-]
(36.36)




In the spherical hole approximation, we would have
[image: \lambda=\tfrac{1}{3}][image: \lambda=\tfrac{1}{3}], but, as you will see, we will want later to
use some other value, so we leave it as an adjustable parameter. Also,
we will take all the fields in the same direction so that we won’t
need to worry about the vector directions. If we were now to
substitute Eq. (36.36) into Eq. (36.29),
we would have one equation that relates the magnetization M[image: -*-] to the
magnetizing field H[image: -*-]:

[image: -*-][image: -*-]


It is however, an equation that cannot be solved explicitly, so we
will do it graphically.




Let’s put the problem in a generalized form by writing
Eq. (36.29) as

[image: -*-][image: -*-]
(36.37)




where Msat[image: -*-] is the saturation value of the magnetization,
namely, N μ[image: -*-], and x[image: -*-] represents μ Ba/k T[image: -*-]. The dependence
of M/Msat[image: -*-] on x[image: -*-] is shown by curve a[image: -*-] in
Fig. 36–13. We can also write x[image: -*-] as a function
of M[image: -*-]—using Eq. (36.36) for Ba[image: -*-]—as

[image: -*-][image: -*-]
(36.38)




For any given value of H[image: -*-], this is a straight-line relationship
between M/Msat[image: -*-] and x[image: -*-]. The x[image: -*-] intercept is at x=μ H/k T[image: -*-], and the slope is ϵ0 c2 k T/μ λ Msat[image: -*-]. For
any particular H[image: -*-], we would have a line like the one marked b[image: -*-] in
Fig. 36–13. The intersection of curves a[image: -*-] and b[image: -*-] gives us the
solution for M/Msat[image: -*-]. We have solved the problem.



[image: -][image: -]
Fig. 36–13. A graphical solution of Eqs. (36.37)
and (36.38).





Let’s look at how the solutions will go for various circumstances. We
start with H=0[image: -*-]. There are two possible situations, shown by the lines
b1[image: -*-] and b2[image: -*-] in Fig. 36–14. You will notice from
Eq. (36.38) that the slope of the line is proportional to
the absolute temperature T[image: -*-]. So, at high temperatures we would
have a line like b1[image: -*-]. The solution is M/Msat=0[image: -*-]. When the
magnetizing field H[image: -*-] is zero, the magnetization is also zero. But at
low temperatures, we would have a line like b2[image: -*-], and there are
two solutions for M/Msat[image: -*-]—one with
M/Msat=0[image: -*-] and one with M/Msat[image: -*-] near one. It turns
out that only the upper solution is stable—as you can see by
considering small variations about these solutions.



[image: -][image: -]
Fig. 36–14. Finding the magnetization when H=0[image: -*-].





According to these ideas, then, a magnetic material should magnetize
itself spontaneously at sufficiently low temperatures. In
short, when the thermal motions are small enough, the coupling between
the atomic magnets causes them all to line up parallel to each
other—we have a permanently magnetized material analogous to the
ferroelectrics we discussed in Chapter 11.




If we start at high temperatures and come down, there is a critical
temperature, called the Curie temperature Tc[image: -*-], where the ferromagnetic
behavior suddenly sets in. This temperature corresponds to the
line b3[image: -*-] of Fig. 36–14, which is tangent to the
curve a[image: -*-], and has, therefore, a slope of 1. The Curie temperature is
given by

[image: -*-][image: -*-]
(36.39)




We can, if we wish, write Eq. (36.38) more simply in
terms of Tc[image: -*-] as

[image: -*-][image: -*-]
(36.40)









Now we want to see what happens for small magnetizing fields H[image: -*-]. We
can see from Fig. 36–14 how things will go if we shift our straight
lines a little to the right. For the low-temperature case, the
intersection point will move out a little bit along the low-slope part
of curve a[image: -*-], and M[image: -*-] will change relatively little. For the
high-temperature case, however, the intersection point runs up the
steep part of curve a[image: -*-], and M[image: -*-] will change relatively rapidly. In
fact, we can approximate this part of curve a[image: -*-] by a straight line of
unit slope, and write:

[image: -*-][image: -*-]


Now we can solve for M/Msat[image: -*-]:

[image: -*-][image: -*-]
(36.41)




We have a law that is something like the one we had for
paramagnetism. For paramagnetism, we had

[image: -*-][image: -*-]
(36.42)




One difference now is that we have the magnetization in terms of H[image: -*-],
which includes some of the effects of the interaction of the atomic
magnets, but the main difference is that the magnetization is inversely
proportional to the difference between T[image: -*-] and Tc[image: -*-], instead of
to the absolute temperate T[image: -*-], alone. Neglecting the interactions
between neighboring atoms corresponds to taking λ=0[image: -*-], which from
Eq. (36.39) means taking Tc=0[image: -*-]. Then the results are just
what we had in Chapter 35.




We can check our theoretical picture with the experimental data for
nickel. It is observed experimentally that the ferromagnetic behavior of
nickel disappears when its temperature is raised above 631°[image: -*-]K. We
can compare this with Tc[image: -*-] calculated from Eq. (36.39).
Remembering that Msat=μ N[image: -*-], we have

[image: -*-][image: -*-]


From the density and atomic weight of nickel, we get

[image: -*-][image: -*-]


Taking μ[image: -*-] from Eq. (36.28), and setting
[image: \lambda=\tfrac{1}{3}][image: \lambda=\tfrac{1}{3}], we get

[image: -*-][image: -*-]


There is a discrepancy of a factor of about 2600[image: -*-]! Our theory of
ferromagnetism fails completely.




We can try to “patch up” the theory as Weiss did by saying that for
some unknown reason λ[image: -*-] is not one-third,
but [image: (2600)\times\tfrac{1}{3}][image: (2600)\times\tfrac{1}{3}]—or about 900[image: -*-]. It turns out that one
gets similar values for other ferromagnetic materials like iron. To
see what this means, let’s go back to Eq. (36.36). We
see that a large λ[image: -*-] means that Ba[image: -*-], the local field on the
atom, appears to be much, much larger than we would think. In fact,
writing H=B−M/ϵ0 c2[image: -*-], we have

[image: -*-][image: -*-]


According to our original idea—with [image: \lambda=\tfrac{1}{3}][image: \lambda=\tfrac{1}{3}] the local
magnetization M[image: -*-] reduces the effective field Ba[image: -*-] by the
amount [image: -\tfrac{2}{3}M/\epsO c^2][image: -\tfrac{2}{3}M/\epsO c^2]. Even if our model of a spherical
hole were not very good, we would still expect some
reduction. Instead, to explain the phenomenon of ferromagnetism, we
have to imagine that the magnetization of the field enhances
the local field by some large factor—like one thousand or
more. There doesn’t seem to be any reasonable way to manufacture such
tremendous fields at an atom—nor even fields of the proper sign!
Clearly, our “magnetic” theory of ferromagnetism is a dismal
failure. We must conclude, then, that ferromagnetism has to do with
some nonmagnetic interaction between the spinning electrons in
neighboring atoms. This interaction must generate a strong tendency
for all of the nearby spins to line up in one direction. We will see
later that it has to do with quantum mechanics and the Pauli exclusion
principle.





Finally, we look at what happens at low temperatures—for T<Tc[image: -*-]. We
have seen that there will then be a spontaneous magnetization—even
with H=0[image: -*-]—given by the intersection of the curves a[image: -*-] and b2[image: -*-] of
Fig. 36–14. If we solve for M[image: -*-] for various
temperatures—by varying the slope of the line b2[image: -*-]—we get the
theoretical curve shown in Fig. 36–15. This curve should be
the same for all ferromagnetic materials for which the atomic moment
comes from a single electron. The curves for other materials are only
slightly different.



[image: -][image: -]
Fig. 36–15. Spontaneous magnetization as a function of temperature for nickel.





In the limit, as T[image: -*-] goes to absolute zero, M[image: -*-] goes
to Msat[image: -*-]. As the temperature is increased, the magnetization
decreases, falling to zero at the Curie temperature. The points in
Fig. 36–15 are the experimental observations for nickel.
They fit the theoretical curve fairly well. Even though we don’t
understand the basic mechanism, the general features of the theory seem
to be correct.




Finally, there is one more disturbing discrepancy in our attempt to
understand ferromagnetism. We have found that above some temperature
the material should behave like a paramagnetic substance with a
magnetization M[image: -*-] proportional to H[image: -*-] (or B[image: -*-]), and that below that
temperature it should become spontaneously magnetized. But that’s not
what we found when we measured the magnetization curve for iron. It
only became permanently magnetized after we had “magnetized”
it. According to the ideas just discussed, it would magnetize itself!
What is wrong? Well, it turns out that if you look at a small
enough crystal of iron or nickel, it is indeed completely magnetized!
But in large pieces of iron, there are many small regions or
“domains” that are magnetized in different directions, so that on a
large scale the average magnetization appears to be zero. In
each small domain, however, the iron has a locked-in magnetization
with M[image: -*-] nearly equal to Msat[image: -*-]. The consequences of this
domain structure are that gross properties of large pieces of material
are quite different from the microscopic properties that we have
really been treating. We will take up in the next lecture the story of
the practical behavior of bulk magnetic materials.






	
  
  If all of the “other” charges were on conductors,
ρother[image: -*-] would be the same as our ρfree[image: -*-] of
Chapter 10.
  ↩


	
  
  Or, if you prefer, the current I[image: -*-] in each face should
be split 50[image: -*-]–50[image: -*-] with the blocks on the two sides.
  ↩
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37–1 Understanding ferromagnetism


In this chapter we will discuss the behavior and peculiarities of
ferromagnetic materials and of other strange magnetic
materials. Before proceeding to study magnetic materials, however, we
will review very quickly some of the things about the general theory
of magnets that we learned in the last chapter.




First, we imagine the atomic currents inside the material that are
responsible for the magnetism, and then describe them in terms of a
volume current density jmag=∇×M[image: -*-]. We
emphasize that this is not supposed to represent the actual
currents. When the magnetization is uniform the currents do not
really cancel out precisely; that is, the whirling currents of
one electron in one atom and the whirling currents of an electron in
another atom do not overlap in such a way that the sum is exactly
zero. Even within a single atom the distribution of magnetism is
not smooth. For instance, in an iron atom the magnetization is
distributed in a more or less spherical shell, not too close to the
nucleus and not too far away. Thus, magnetism in matter is quite a
complicated thing in its details; it is very irregular. However, we
are obliged now to ignore this detailed complexity and discuss
phenomena from a gross, average point of view. Then it is true that
the average current in the interior region, over any finite
area that is big compared with an atom, is zero when
M=0[image: -*-]. So, what we mean by magnetization per unit volume
and jmag[image: -*-] and so on, at the level we are now
considering, is an average over regions that are large compared with
the space occupied by a single atom.




In the last chapter, we also discovered that a ferromagnetic material
has the following interesting property: above a certain temperature it
is not strongly magnetic, whereas below this temperature it becomes
magnetic. This fact is easily demonstrated. A piece of nickel wire at
room temperature is attracted by a magnet. However, if we heat it
above its Curie temperature with a gas flame, it becomes nonmagnetic
and is not attracted toward the magnet—even when brought quite close
to the magnet. If we let it lie near the magnet while it cools off, at
the instant its temperature falls below the critical temperature it is
suddenly attracted again by the magnet!




The general theory of ferromagnetism that we will use supposes that the
spin of the electron is responsible for the magnetization. The electron
has spin one-half and carries one Bohr magneton of magnetic
moment μ=[image: -*-]μB=[image: -*-]qe ℏ/2 m[image: -*-]. The electron spin can be pointed either
“up” or “down.” Because the electron has a negative charge, when its
spin is “up” it has a negative moment, and when its spin is
“down” it has a positive moment. With our usual conventions,
the moment μ[image: -*-] of the electron is opposite its spin. We have found
that the energy of orientation of a magnetic dipole in a given applied
field B[image: -*-] is −μ⋅B[image: -*-], but the energy of the spinning
electrons depends on the neighboring spin alignments as well. In iron,
if the moment of a nearby atom is “up,” there is a very strong
tendency that the moment of the one next to it will also be “up.” That
is what makes iron, cobalt, and nickel so strongly magnetic—the
moments all want to be parallel. The first question we have to discuss
is why.




Soon after the development of quantum mechanics, it was noticed that
there is a very strong apparent force—not a magnetic force or
any other kind of actual force, but only an apparent force—trying to
line the spins of nearby electrons opposite to one another. These
forces are closely related to chemical valence forces. There is a
principle in quantum mechanics—called the exclusion
principle—that two electrons cannot occupy exactly the same state,
that they cannot be in exactly the same condition as to location and
spin orientation.1 For example, if they are at the same
point, the only alternative is to have their spins opposite. So, if
there is a region of space between atoms where electrons like to
congregate (as in a chemical bond) and we want to put another electron
on top of one already there, the only way to do it is to have the spin
of the second one pointed opposite to the spin of the first one. To have
the spins parallel is against the law, unless the electrons stay away
from each other. This has the effect that a pair of parallel-spin
electrons near to each other have much more energy than a pair of
opposite-spin electrons; the net effect is as though there were a force
trying to turn the spin over. Sometimes this spin-turning force is
called the exchange force, but that only makes it more
mysterious—it is not a very good term. It is just because of the
exclusion principle that electrons have a tendency to make their spins
opposite. In fact, that is the explanation of the lack of
magnetism in almost all substances! The spins of the free electrons on
the outside of the atoms have tremendous tendency to balance in opposite
directions. The problem is to explain why for materials like iron it is
just the reverse of what we should expect.




We have summarized the supposed alignment effect by adding a suitable
term in the energy equation, by saying that if the electron magnets in
the neighborhood have a mean magnetization M[image: -*-], then the moment of an
electron has a strong tendency to be in the same direction as the
average magnetization of the atoms in the neighborhood. Thus, we may
write for the two possible spin orientations,2

[image: -*-][image: -*-]
(37.1)









When it was clear that quantum mechanics could supply a tremendous
spin-orientating force—even if, apparently, of the wrong sign—it
was suggested that ferromagnetism might have its origin in this same
force, that due to the complexities of iron and the large number of
electrons involved, the sign of the interaction energy would come out
the other way around. Since the time this was thought of—in about
1927 when quantum mechanics was first being understood—many people
have been making various estimates and semicalculations, trying to get
a theoretical prediction for λ[image: -*-]. The most recent calculations
of the energy between the two electron spins in iron—assuming that
the interaction is a direct one between the two electrons in
neighboring atoms—still give the wrong sign. The present
understanding of this is again to assume that the complexity of the
situation is somehow responsible and to hope that the next man who
makes the calculation with a more complicated situation will get the
right answer!




It is believed that the up-spin of one of the electrons in the inside
shell, which is making the magnetism, tends to make the conduction
electrons which fly around the outside have the opposite spin. One
might expect this to happen because the conduction electrons come into
the same region as the “magnetic” electrons. Since they move around,
they can carry their prejudice for being upside down over to the next
atom; that is, one “magnetic” electron tries to force the conduction
electrons to be opposite, and the conduction electron then makes the
next “magnetic” electron opposite to it. The double
interaction is equivalent to an interaction which tries to line up the
two “magnetic” electrons. In other words, the tendency to make
parallel spins is the result of an intermediary that tends to some
extent to be opposite to both. This mechanism does not require that
the conduction electrons be completely “upside down.” They could
just have a slight prejudice to be down, just enough to load the
“magnetic” odds the other way. This is the mechanism that the people
who have calculated such things now believe is responsible for
ferromagnetism. But we must emphasize that to this day nobody can
calculate the magnitude of λ[image: -*-] simply by knowing that the
material is number 26[image: -*-] in the periodic table. In short, we don’t
thoroughly understand it.




Now let us continue with the theory, and then come back later to
discuss a certain error involved in the way we have set it up. If the
magnetic moment of a certain electron is “up,” energy comes both
from the external field and also from the tendency of the spins to be
parallel. Since the energy is lower when the spins are parallel, the
effect is sometimes thought of as due to an “effective internal
field.” But remember, it is not due to a true magnetic
force; it is an interaction that is more complicated. In any case, we
take Eqs. (37.1) as the formulas for the energies of the
two spin states of a “magnetic” electron. At a temperature T[image: -*-], the
relative probability of these two states is proportional
to e−energy/k T[image: -*-], which we can write as e±x[image: -*-], with
x=μ (H+λ M/ϵ0 c2)/k T[image: -*-]. Then, if we calculate the mean
value of the magnetic moment, we find (as in the last chapter) that it
is

[image: -*-][image: -*-]
(37.2)









Now we would like to calculate the internal energy of the material. We
note that the energy of an electron is exactly proportional to the
magnetic moment, so that the calculation of the mean moment and the
calculation of the mean energy are the same—except that in place
of μ[image: -*-] in Eq. (37.2) we would write −μ B[image: -*-], which
is −μ (H+λ M/ϵ0 c2)[image: -*-]. The mean energy is then

[image: -*-][image: -*-]







Now this is not quite correct. The term λ M/ϵ0 c2[image: -*-]
represents interactions of all possible pairs of atoms, and we
must remember to count each pair only once. (When we consider
the energy of one electron in the field of the rest and then the
energy of a second electron in the field of the rest, we have counted
part of the first energy once more.) Thus, we must divide the
mutual interaction term by two, and our formula for the energy
then turns out to be

[image: -*-][image: -*-]
(37.3)









In the last chapter we discovered an interesting thing—that below a
certain temperature the material finds a solution to the equations in
which the magnetic moment is not zero, even with no external
magnetizing field. When we set H=0[image: -*-] in Eq. (37.2), we
found that

[image: -*-][image: -*-]
(37.4)




where Msat=N μ[image: -*-], and Tc=μ λ Msat/k ϵ0 c2[image: -*-]. When we solve this equation (graphically or otherwise), we find
that the ratio M/Msat[image: -*-] as a function of T/Tc[image: -*-] is a curve
like that labeled “quantum theory” in Fig. 37–1. The dashed curve
marked “cobalt, nickel” shows the experimental results for crystals
of these elements. The theory and experiment are in reasonably good
agreement. The figure also shows the result of the classical theory in
which the calculation is carried out assuming that the atomic magnets
can have all possible orientations in space. You can see that this
assumption gives a prediction that is not even close to the
experimental facts.
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Fig. 37–1. The spontaneous magnetization (H=0[image: -*-]) of ferromagnetic crystals
as a function of temperature. [Permission from Encyclopaedia
Britannica.]





Even the quantum theory deviates from the observed behavior at both
high and low temperatures. The reason for the deviations is that we
have made a rather sloppy approximation in the theory: We have assumed
that the energy of an atom depends upon the mean magnetization
of its neighboring atoms. In other words, for each one that is “up”
in the neighborhood of a given atom, there will be a contribution of
energy due to that quantum mechanical alignment effect.  But how many
are there pointed “up”? On the average, that is measured by the
magnetization M[image: -*-]—but only on the average. A particular atom
somewhere might find all its neighbors “up.” Then its energy
will be larger than the average. Another one might find some up and
some down, perhaps averaging to zero, and it would have no
energy from that term, and so on. What we ought to do is to use some
more complicated kind of average, because the atoms in different
places have different environments, and the numbers up and down are
different for different ones. Instead of just taking one atom
subjected to the average influence, we should take each one in its
actual situation, compute its energy, and find the average
energy. But how do we find out how many are “up” and how many are
“down” in the neighborhood?  That is, of course, just what we are
trying to calculate—the number “up” and “down”—so we have a
very complicated interconnected problem of correlations, a problem
which has never been solved. It is an intriguing and exciting one
which has existed for years and on which some of the greatest names in
physics have written papers, but even they have not completely solved
it.




It turns out that at low temperatures, when almost all the atomic
magnets are “up” and only a few are “down,” it is easy to solve;
and at high temperatures, far above the Curie temperature Tc[image: -*-] when
they are almost all random, it is again easy. It is often easy to
calculate small departures from some simple, idealized situation, so
it is fairly well understood why there are deviations from the simple
theory at low temperature. It is also understood physically that for
statistical reasons the magnetization should deviate at high
temperatures. But the exact behavior near the Curie point has never
been thoroughly figured out. That’s an interesting problem to work out
some day if you want a problem that has never been solved.







37–2 Thermodynamic properties


In the last chapter we laid the groundwork necessary for calculating the
thermodynamic properties of ferromagnetic materials. These are,
naturally, related to the internal energy of the crystal, which includes
interactions of the various spins, given by Eq. (37.3). For
the energy of the spontaneous magnetization below the Curie point, we
can set H=0[image: -*-] in Eq. (37.3), and—noticing that tanhx=M/Msat[image: -*-]—we find a mean energy proportional to M2[image: -*-]:

[image: -*-][image: -*-]
(37.5)




If we now plot the energy due to the magnetism as a function of
temperature, we get a curve which is the negative of the square of the
curve of Fig. 37–1, as drawn in Fig. 37–2(a).
If we were to measure then the specific heat of such a material we would obtain a
curve which is the derivative of 37–2(a). It is shown in
Fig. 37–2(b). It rises slowly with increasing temperature,
but falls suddenly to zero at T=Tc[image: -*-]. The sharp drop is due to the
change in slope of the magnetic energy and is reached right at the
Curie point. So without any magnetic measurements at all we
could have discovered that something was going on inside of iron or
nickel by measuring this thermodynamic property. However, both
experiment and improved theory (with fluctuations included) suggest that
this simple curve is wrong and that the true situation is really more
complicated. The curve goes higher at the peak and falls to zero
somewhat slowly. Even if the temperature is high enough to randomize the
spins on the average, there are still local regions where there
is a certain amount of polarization, and in these regions the spins
still have a little extra energy of interaction—which only dies out
slowly as things get more and more random with further increases in
temperature. So the actual curve looks like Fig. 37–2(c).
One of the challenges of theoretical physics today is to find an exact
theoretical description of the character of the specific heat near the
Curie transition—an intriguing problem which has not yet been solved.
Naturally, this problem is very closely related to the shape of the
magnetization curve in the same region.
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Fig. 37–2. The energy per unit volume and specific heat of a ferromagnetic
crystal.





Now we want to describe some experiments, other than thermodynamic
ones, which show that there is something right about our
interpretation of magnetism. When the material is magnetized to
saturation at low enough temperatures, M[image: -*-] is very nearly equal
to Msat[image: -*-]—nearly all the spins are parallel, as well as their
magnetic moments. We can check this by an experiment. Suppose we
suspend a bar magnet by a thin fiber and then surround it by a coil so
that we can reverse the magnetic field without touching the magnet or
putting any torque on it. This is a very difficult experiment because
the magnetic forces are so enormous that any irregularities, any
lopsidedness, or any lack of perfection in the iron will produce
accidental torques. However, the experiment has been done under
careful conditions in which such accidental torques are minimized. By
means of the magnetic field from a coil that surrounds the bar, we
turn all the atomic magnets over at once. When we do this we also
change the angular momenta of all the spins from “up” to “down”
(see Fig. 37–3). If angular momentum is to be conserved when the
spins all turn over, the rest of the bar must have an opposite change
in angular momentum. The whole magnet will start to spin. And sure
enough, when we do the experiment, we find a slight turning of the
magnet. We can measure the total angular momentum given to the whole
magnet, and this is simply N[image: -*-] times ℏ[image: -*-], the change in the
angular momentum of each spin. The ratio of angular momentum to
magnetic moment measured this way comes out to within about
10[image: -*-] percent of what we calculate. Actually, our calculations assume that
the atomic magnets are due purely to the electron spin, but there is,
in addition, some orbital motion also in most materials. The orbital
motion is not completely free of the lattice and does not contribute
much more than a few percent to the magnetism. As a matter of fact,
the saturation magnetic field that one gets taking
Msat=N μ[image: -*-] and using the density of iron of 7.9[image: -*-] and the
moment μ[image: -*-] of the spinning electron is about 20,000[image: -*-] gauss. But
according to experiment, it is actually in the neighborhood
of 21,500[image: -*-] gauss. This is a typical magnitude of error—5 or
10[image: -*-] percent—due to neglecting the contributions of the orbital moments
that have not been included in making the analysis. Thus, a slight
discrepancy with the gyromagnetic measurements is quite
understandable.
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Fig. 37–3. When the magnetization of a bar of iron is reversed, the bar is
given some angular momentum.








37–3 The hysteresis curve


We have concluded from our theoretical analysis that a ferromagnetic
material should spontaneously become magnetized below a certain
temperature so that all the magnetism would be in the same
direction. But we know that this is not true for an ordinary piece of
unmagnetized iron. Why isn’t all iron magnetized? We can
explain it with the help of Fig. 37–4. Suppose the iron were all a
big single crystal of the shape shown in Fig. 37–4(a) and
spontaneously magnetized all in one direction. Then there would be a
considerable external magnetic field, which would have a lot of
energy. We can reduce that field energy if we arrange that one side of
the block is magnetized “up” and the other side magnetized “down,”
as in Fig. 37–4(b). Then, of course, the fields outside the iron
would extend over less volume, so there would be less energy there.
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Fig. 37–4. The formation of domains in a single crystal of iron. [From
Charles Kittel, Introduction to Solid State Physics, John Wiley
and Sons, Inc., New York, 2nd ed., 1956.]





Ah, but wait! In the layer between the two regions we have up-spinning
electrons adjacent to down-spinning electrons. But ferromagnetism
appears only in those materials for which the energy is reduced
if the electrons are parallel rather than opposite. So, we have
added some extra energy along the dotted line in
Fig. 37–4(b); this energy is sometimes called wall
energy. A region having
only one direction of magnetization is called a
domain. At the interface—the “wall”—between
two domains, where we have atoms on opposite sides which are spinning in
different directions, there is an energy per unit area of the wall. We
have described it as though two adjacent atoms were spinning exactly
opposite, but it turns out that nature adjusts things so that the
transition is more gradual. But we don’t need to worry about such fine
details at this point.




Now the question is: When is it better or worse to make a wall? The
answer is that it depends on the size of the domains. Suppose
that we were to scale up a block so that the whole thing was twice as
big. The volume in the space outside filled with a given magnetic field
strength would be eight times bigger, and the energy in the
magnetic field, which is proportional to the volume, would also be eight
times greater. But the surface area between two domains, which
will give the wall energy,
would be only four times as big. Therefore, if the piece of iron
is big enough, it will pay to split it into more domains. This is why
only the very tiny crystals can have but a single domain. Any large
object—one more than about a hundredth of a millimeter in size—will
have at least one domain wall; and any ordinary, “centimeter-size”
object will be split into many domains, as shown in the figure.
Splitting into domains goes on until the energy needed to put in
one extra wall is as large as the energy decrease in the magnetic field
outside the crystal.




Actually nature has discovered still another way to lower the energy: It
is not necessary to have the field go outside at all, if a little
triangular region is magnetized sideways, as in
Fig. 37–4(d).3 Then
with the arrangement of Fig. 37–4(d) we see that there is
no external field, but instead only a little more domain wall.




But that introduces a new kind of problem. It turns out that when a
single crystal of iron is magnetized, it changes its length in the
direction of magnetization, so an “ideal” cube with its magnetization,
say, “up,” is no longer a perfect cube. The “vertical” dimension
will be different from the “horizontal” dimension. This effect is
called magnetostriction. Because of such
geometric changes, the little triangular pieces of
Fig. 37–4(d) do not, so to speak, “fit” into the
available space anymore—the crystal has got too long one way and too
short the other way. Of course, it does fit, really, but only by
being squashed in; and this involves some mechanical stresses. So, this
arrangement also introduces an extra energy. It is the balance of
all these various energies which determines how the domains finally
arrange themselves in their complicated fashion in a piece of
unmagnetized iron.




Now, what happens when we put on an external magnetic field? To take a
simple case, consider a crystal whose domains are as shown in
Fig. 37–4(d). If we apply an external magnetic field in the
upward direction, in what manner does the crystal become magnetized?
First, the middle domain wall can move over sideways (to the
right) and reduce the energy. It moves over so that the region which is
“up” becomes bigger than the region which is “down.” There are more
elementary magnets lined up with the field, and this gives a lower
energy. So, for a piece of iron in weak fields—at the very beginning
of magnetization—the domain walls begin to move and eat into the
regions which are magnetized opposite to the field. As the field
continues to increase, a whole crystal shifts gradually into a single
large domain which the external field helps to keep lined up. In a
strong field the crystal “likes” to be all one way just because
its energy in the applied field is reduced—it is no longer merely the
crystal’s own external field which matters.
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Fig. 37–5. A magnetizing field H[image: -*-] at an angle with respect to the
crystal axis will gradually change the direction of the magnetization
without changing its magnitude.





What if the geometry is not so simple? What if the axes of the crystal
and its spontaneous magnetization are in one direction, but we apply
the magnetic field in some other direction—say at 45°[image: -*-]?
We might think that domains would reform themselves with their
magnetization parallel to the field, and then as before, they could
all grow into one domain. But this is not easy for the iron to do,
for the energy needed to magnetize a crystal depends on the
direction of magnetization relative to the crystal axis. It is
relatively easy to magnetize iron in a direction parallel to the
crystal axes, but it takes more energy to magnetize it in some
other direction—like 45°[image: -*-] with respect to one of the
axes. Therefore, if we apply a magnetic field in such a direction,
what happens first is that the domains which point along one of the
preferred directions which is near to the applied field grow
until the magnetization is all along one of these directions. Then
with much stronger fields, the magnetization is gradually
pulled around parallel to the field, as sketched in Fig. 37–5.
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Fig. 37–6. The components of M[image: -*-] parallel to H[image: -*-], for different
directions of H[image: -*-] (with respect to the crystal axes). [From
F. Bitter, Introduction to Ferromagnetism, McGraw-Hill
Book Co., Inc., 1937.]





In Fig. 37–6 are shown some observations of the
magnetization curves of single crystals of iron. To understand them, we
must first explain something about the notation that is used in
describing directions in a crystal. There are many ways in which a
crystal can be sliced so as to produce a face which is a plane of atoms.
Everyone who has driven past an orchard or vineyard knows this—it is
fascinating to watch. If you look one way, you see lines of trees—if
you look another way, you see different lines of trees, and so on. In a
similar way, a crystal has definite families of planes that hold many
atoms, and the planes have this important characteristic (we consider a
cubic crystal to make it easier): If we observe where the planes
intersect the three coordinate axes—we find that the
reciprocals of the three distances from the origin are in the
ratio of simple whole numbers. These three whole numbers are taken as
the definition of the planes. For example, in Fig. 37–7(a),
a plane parallel to the y z[image: -*-]-plane is shown. This is called a
[100][image: -*-] plane; the reciprocals of its intersection of the y[image: -*-]- and z[image: -*-]-axes are
both zero. The direction perpendicular to such a plane (in a cubic
crystal) is given the same set of numbers. It is easy to understand the
idea in a cubic crystal, for then the indices [100][image: -*-] mean a vector
which has a unit component in the x[image: -*-]-direction and none in the y[image: -*-]-
or z[image: -*-]-directions. The [110][image: -*-] direction is in a direction 45°[image: -*-] from
the x[image: -*-]- and y[image: -*-]-axes, as in Fig. 37–7(b); and the
[111][image: -*-] direction is in the direction of the cube diagonal, as in
Fig. 37–7(c).
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Fig. 37–7. The way crystal planes are labeled.





Returning now to Fig. 37–6, we see the magnetization curves
of a single crystal of iron for various directions. First, note that for
very tiny fields—so weak that it is hard to see them on the scale at
all—the magnetization increases extremely rapidly to quite large
values. If the field is in the [100][image: -*-] direction—namely along one of
those nice, easy directions of magnetization—the curve goes up to a
high value, curves around a little, and then is saturated. What happened
is that the domains which were already there are very easily removed.
Only a small field is required to make the domain walls move and eat up
all of the “wrong-way” domains. Single crystals of iron are enormously
permeable (magnetic sense), much more so than ordinary polycrystalline
iron. A perfect crystal magnetizes extremely easily. Why is it curved at
all? Why doesn’t it just go right up to saturation? We are not sure. You
might study that some day. We do understand why it is flat for high
fields. When the whole block is a single domain, the extra magnetic
field cannot make any more magnetization—it is already
at Msat[image: -*-], with all the electrons lines up.




Now, if we try to do the same thing in the [110][image: -*-] direction—which
is at 45°[image: -*-] to the crystal axes—what will happen? We turn on a
little bit of field and the magnetization leaps up as the domains
grow. Then as we increase the field some more, we find that it takes
quite a lot of field to get up to saturation, because now the
magnetization is turning away from an “easy” direction. If
this explanation is correct, the point at which the [110][image: -*-] curve
extrapolates back to the vertical axis should be at 1/√2[image: -*-] of
the saturation value. It turns out, in fact, to be very, very close
to 1/√2[image: -*-]. Similarly, in the [111][image: -*-] direction—which is along the
cube diagonal—we find, as we would expect, that the curve
extrapolates back to nearly 1/√3[image: -*-] of saturation.
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Fig. 37–8. Magnetization curves for single crystals of iron, nickel, and
cobalt. [From Charles Kittel, Introduction to Solid State
Physics, John Wiley and Sons, Inc., New York, 2nd ed., 1956.]





Figure 37–8 shows the corresponding situation for two other
materials, nickel and cobalt. Nickel is different from iron. In nickel,
it turns out that the [111][image: -*-] direction is the easy direction of
magnetization. Cobalt has a hexagonal crystal form, and people have
botched up the system of nomenclature for this case. They want to have
three axes on the bottom of the hexagon and one perpendicular to these,
so they have used four indices. The [0001][image: -*-] direction is the direction
of the axis of the hexagon, and [1010][image: -*-] is perpendicular to that axis.
We see that crystals of different metals behave in different ways.
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Fig. 37–9. The microscopic structure of an unmagnetized ferromagnetic
material. Each crystal grain has an easy direction of magnetization and
is broken up into domains which are spontaneously magnetized (usually)
parallel to this direction.





Now we must discuss a polycrystalline material, such as an ordinary
piece of iron. Inside such materials there are many, many little
crystals with their crystalline axes pointing every which way.
These are not the same as domains. Remember that the domains were
all part of a single crystal, but in a piece of iron there are
many different crystals with axes at different orientations, as
shown in Fig. 37–9. Within each of these crystals, there
will also generally be some domains. When we apply a small
magnetic field to a piece of polycrystalline material, what happens is
that the domain walls begin to move, and the domains which have a
favorable direction of easy magnetization grow larger. This growth is
reversible so long as the field stays very small—if we turn the field
off, the magnetization will return to zero. This part of the
magnetization curve is marked a[image: -*-] in Fig. 37–10.
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Fig. 37–10. The magnetization curve for polycrystalline iron.





For larger fields—in the region b[image: -*-] of the magnetization curve
shown—things get much more complicated. In every small crystal of
the material, there are strains and dislocations; there are
impurities, dirt, and imperfections. And at all but the smallest
fields, the domain wall, in moving, gets stuck on these. There is an
interaction energy between the domain wall and a dislocation, or a
grain boundary, or an impurity. So when the wall gets to one of them,
it gets stuck; it sticks there at a certain field. But then if the
field is raised some more, the wall suddenly snaps past. So the motion
of the domain wall is not smooth the way it is in a perfect
crystal—it gets hung up every once in a while and moves in jerks. If
we were to look at the magnetization on a microscopic scale, we would
see something like the insert of Fig. 37–10.




Now the important thing is that these jerks in the magnetization can
cause an energy loss. In the first place, when a boundary finally
slips past an impediment, it moves very quickly to the next one, since
the field is already above what would be required for the unimpeded
motion. The rapid motion means that there are rapidly changing
magnetic fields which produce eddy currents in the crystal. These
currents lose energy in heating the metal. A second effect is that
when a domain suddenly changes, part of the crystal changes its
dimensions from the magnetostriction. Each sudden shift of a domain
wall sets up a little sound wave that carries away energy. Because of
such effects, the second part of magnetization curve is
irreversible, and there is energy being lost. This is
the origin of the hysteresis effect, because to move a boundary wall
forward—snap—and then to move it backward—snap—produces a
different result. It’s like “jerky” friction, and it takes energy.




Eventually, for high enough fields, when we have moved all the domain
walls and magnetized each crystal in its best direction, there are
still some crystallites which happen to have their easy directions of
magnetization not in the direction of our external magnetic
field. Then it takes a lot of extra field to turn those magnetic
moments around. So the magnetization increases slowly, but smoothly,
for high fields—namely in the region marked c[image: -*-] in the figure. The
magnetization does not come sharply to its saturation value, because
in the last part of the curve the atomic magnets are turning in
the strong field. So we see why the magnetization curve of an ordinary
polycrystalline materials, such as the one shown in Fig. 37–10,
rises a little bit and reversibly at first, then rises
irreversibly, and then curves over slowly. Of course, there is no
sharp break-point between the three regions—they blend smoothly, one
into the other.




It is not hard to show that the magnetization process in the middle
part of the magnetization curve is jerky—that the domain walls jerk
and snap as they shift. All you need is a coil of wire—with many
thousands of turns—connected to an amplifier and a loudspeaker, as
shown in Fig. 37–11. If you put a few silicon steel sheets (of the
type used in transformers) at the center of the coil and bring a bar
magnet slowly near the stack, the sudden changes in magnetization will
produce impulses of emf in the coil, which are heard as distinct
clicks in the loudspeaker. As you move the magnet nearer to the iron
you will hear a whole rush of clicks that sound something like the
noise of sand grains falling over each other as a can of sand is tilted.
The domain walls are jumping, snapping, and jiggling as the field is
increased. This phenomenon is called the
Barkhausen effect.
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Fig. 37–11. The sudden changes in the magnetization of the steel strip are
heard as clicks in the loudspeaker.





As you move the magnet even closer to the iron sheets, the noise grows
louder and louder for a while but then there is relatively little
noise when the magnet gets very close. Why? Because nearly all the
domain walls have moved as far as they can go. Any greater field is
merely turning the magnetization in each domain, which is a
smooth process.




If you now withdraw the magnet, so as to come back on the downward
branch of the hysteresis loop, the domains all try to get back to low
energy again, and you hear another rush of backward-going jerks. You
can also note that if you bring the magnet to a given place and move
it back and forth a little bit, there is relatively little noise. It
is again like tilting a can of sand—once the grains shift into
place, small movements of the can don’t disturb them. In the iron the
small variations in the magnetic field aren’t enough to move any
boundaries over any of the “humps.”







37–4 Ferromagnetic materials


Now we would like to talk about the various kinds of magnetic
materials that there are in the technical world and to consider some
of the problems involved in designing magnetic materials for different
purposes. First, the term “the magnetic properties of iron,” which
one often hears, is a misnomer—there is no such thing. “Iron” is
not a well-defined material—the properties of iron depend critically
on the amount of impurities and also on how the iron is
formed. You can appreciate that the magnetic properties will depend on
how easily the domain walls move and that this is a gross
property, not a property of the individual atoms. So practical
ferromagnetism is not really a property of an iron atom—it is
a property of solid iron in a certain form. For example,
iron can take on two different crystalline forms. The common form has
a body-centered cubic lattice, but it can also have a face-centered
cubic lattice, which is, however, stable only at temperatures
above 1100°[image: -*-]C. Of course, at that temperature the body-centered cubic
structure is already past the Curie point. However, by alloying
chromium and nickel with the iron (one possible mixture is
18[image: -*-] percent chromium and 8 percent nickel) we can get what is called
stainless steel, which, although it is mainly iron, retains the
face-centered lattice even at low temperatures. Because its crystal
structure is different, it has completely different magnetic
properties. Most kinds of stainless steel are not magnetic to any
appreciable degree, although there are some kinds which are somewhat
magnetic—it depends on the composition of the alloy. Even when such
an alloy is magnetic, it is not ferromagnetic like ordinary
iron—even though it is mostly just iron.




We would like now to describe a few of the special materials which
have been developed for their particular magnetic properties. First,
if we want to make a permanent magnet, we would like material
with an enormously wide hysteresis loop so that, when we turn
the current off and come down to zero magnetizing field, the
magnetization will remain large. For such materials the domain
boundaries should be “frozen” in place as much as possible. One such
material is the remarkable alloy “Alnico V” (51 %[image: -*-] Fe, 8 %[image: -*-] Al,
14 %[image: -*-] Ni, 24 %[image: -*-] Co, 3 %[image: -*-] Cu). (The rather complex composition of
this alloy is indicative of the kind of detailed effort that has gone
into making good magnets. What patience it takes to mix five things
together and test them until you find the most ideal substance!) When
Alnico solidifies, there is a “second phase” which precipitates out,
making many tiny grains and very high internal strains. In this
material, the domain boundaries have a hard time moving at all. In
addition to having a precise composition, Alnico is mechanically
“worked” in a way that makes the crystals appear in the form of long
grains along the direction in which the magnetization is going to
be. Then the magnetization will have a natural tendency to be lined up
in these directions and will be held there from the anisotropic
effects. Furthermore, the material is even cooled in an external
magnetic field when it is manufactured, so that the grains will grow
with the right crystal orientation. The hysteresis loop of
Alnico V is shown in Fig. 37–12. You see that it is
about 700[image: -*-] times wider than the hysteresis curve for soft iron that we
showed in the last chapter in Fig. 36–8.
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Fig. 37–12. The hysteresis curve of Alnico V.





Let’s turn now to a different kind of material. For building
transformers and motors, we want a material which is magnetically
“soft”—one in which the magnetism is easily changed so that an
enormous amount of magnetization results from a very small applied
field. To arrange this, we need pure, well-annealed material which
will have very few dislocations and impurities so that the domain
walls can move easily. It would also be nice if we could make the
anisotropy small. Then, even if a grain of the material sits at the
wrong angle with respect to the field, it will still magnetize
easily. Now we have said that iron prefers to magnetize along the
[100][image: -*-] direction, whereas nickel prefers the [111][image: -*-] direction; so if
we mix iron and nickel in various proportions, we might hope to find
that with just the right proportions the alloy wouldn’t prefer
any direction—the [100][image: -*-] and [111][image: -*-] directions would be
equivalent. It turns out that this happens with a mixture of
70[image: -*-] percent nickel and 30[image: -*-] percent iron. In addition—possibly by luck
or maybe because of some physical relationship between the anisotropy
and the magnetostriction effects—it turns out
that the magnetostriction of iron and nickel has the opposite
sign. And in an alloy of the two metals, this property goes through zero
at about 80[image: -*-] percent nickel. So somewhere between 70[image: -*-] and 80[image: -*-] percent
nickel we get very “soft” magnetic materials—alloys that are very
easy to magnetize. They are called the
permalloys. Permalloys are
useful for high-quality transformers (at low signal levels), but they
would be no good at all for permanent magnets.
Permalloys must be very carefully made and handled. The
magnetic properties of a piece of permalloy are
drastically changed if it is stressed beyond its elastic limit—it
mustn’t be bent. Then, its permeability is reduced because of the
dislocations, slip bands, and so on, which are produced by the
mechanical deformations. The domain boundaries are no longer easy to
move. The high permeability can, however, be restored by annealing at
high temperatures.






Table 37–1. Properties of some ferromagnetic materials
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It is often convenient to have some numbers to characterize the various
magnetic materials. Two useful numbers are the intercepts of the
hysteresis loop with the B[image: -*-]- and H[image: -*-]-axes, as indicated in
Fig. 37–12. These intercepts are called the remanent
magnetic field Br[image: -*-] and the coercive force Hc[image: -*-]. In
Table 37–1 we list these numbers for a few magnetic
materials.







37–5 Extraordinary magnetic materials
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Fig. 37–13. Relative orientation of electron spins in various materials:
(a) ferromagnetic, (b) antiferromagnetic, (c) ferrite, (d) yttrium-iron
alloy. (Broken arrows show direction of total angular momentum,
including orbital motion.





We would now like to discuss some of the more exotic magnetic materials.
There are many elements in the periodic table which have incomplete
inner electron shells and hence have atomic magnetic moments. For
instance, right next to the ferromagnetic elements iron, nickel, and
cobalt you will find chromium and manganese. Why aren’t they
ferromagnetic? The answer is that the λ[image: -*-] term in
Eq. (37.1) has the opposite sign for these elements.
In the chromium lattice, for example, the spins of the chromium atoms
alternate atom by atom, as shown in Fig. 37–13(b).
So chromium is “magnetic” from its own point of view, but it is
not technically interesting because there are no external
magnetic effects. Chromium, then, is an example of a material in which
quantum mechanical effects make the spins alternate. Such a material is
called antiferromagnetic. The
alignment in antiferromagnetic materials is also temperature dependent.
Below a critical temperature, all the spins are lined up in the
alternating array, but when the material is heated above a certain
temperature—which is again called the Curie temperature—the
spins suddenly become random. There is, internally, a sudden transition.
This transition can be seen in the specific heat curve. Also it shows up
in some special “magnetic” effects. For instance, the existence of the
alternating spins can be verified by scattering neutrons from a crystal
of chromium. Because a neutron itself has a spin (and a magnetic
moment), it has a different amplitude to be scattered, depending on
whether its spin is parallel or opposite to the spin of the scatterer.
Thus, we get a different interference pattern when the spins in a
crystal are alternating than we do when they have a random distribution.



[image: -][image: -]
Fig. 37–14. Crystal structure of the mineral spinel (MgAl2O4); the
Mg+2[image: -*-] ions occupy tetrahedral sites, each surrounded by four oxygen
ions; the Al+3[image: -*-] ions occupy octahedral sites, each surrounded by six
oxygen ions. [From Charles Kittel, Introduction to Solid State
Physics, John Wiley and Sons, Inc., New York, 2nd ed., 1956.]





There is another kind of substance in which quantum mechanical effects
make the electron spins alternate, but which is nevertheless
ferromagnetic—that is, the crystal has a permanent net
magnetization. The idea behind such materials is shown in
Fig. 37–14. The figure shows the crystal structure of
spinel, a magnesium-aluminum oxide,
which—as it is shown—is not magnetic. The oxide has two kinds
of metal atoms: magnesium and aluminum. Now if we replace the magnesium
and the aluminum by two magnetic elements like iron and zinc, or by zinc
and manganese—in other words, if we put in magnetic atoms
instead of the nonmagnetic ones—an interesting thing happens. Let’s
call one kind of metal atom a[image: -*-] and the other kind of metal atom b[image: -*-];
then the following combination of forces must be considered. There is an
a[image: -*-]-b[image: -*-] interaction which tries to make the a[image: -*-] atoms and the b[image: -*-] atoms
have opposite spins—because quantum mechanics always gives the
opposite sign (except for the mysterious crystals of iron, nickel, and
cobalt). Then, there is a direct a[image: -*-]-a[image: -*-] interaction which tries to make
the a[image: -*-]’s opposite, and also a b[image: -*-]-b[image: -*-] interaction which tries to make
the b[image: -*-]’s opposite. Now, of course we cannot have everything opposite
everything else—a[image: -*-] opposite b[image: -*-], a[image: -*-] opposite a[image: -*-], and b[image: -*-]
opposite b[image: -*-]. Presumably because of the distances between the a[image: -*-]’s and the
presence of the oxygen (although we really don’t know why), it turns out
that the a[image: -*-]-b[image: -*-] interaction is stronger than the a[image: -*-]-a[image: -*-] or
the b[image: -*-]-b[image: -*-]. So the solution that nature uses in this case is to make all
the a[image: -*-]’s parallel to each other, and all the b[image: -*-]’s
parallel to each other, but the two systems opposite. That
gives the lowest energy because of the stronger a[image: -*-]-b[image: -*-] interaction. The
result: all the a[image: -*-]’s are spinning up and all the b[image: -*-]’s are spinning
down—or vice versa, of course. But if the magnetic moments of
the a[image: -*-]-type atom and the b[image: -*-]-type atom are not equal, we can get
the situation shown in Fig. 37–13(c), and there can be a
net magnetization in the material. The material will then be
ferromagnetic—although somewhat weak. Such materials are called
ferrites. They do not have as high a saturation magnetization as
iron—for obvious reasons—so they are only useful for smaller fields.
But they have a very important difference—they are insulators; the
ferrites are ferromagnetic
insulators. In high-frequency fields,
they will have very small eddy currents and so can be used, for example,
in microwave systems. The microwave fields will be able to get inside
such an insulating material, whereas they would be kept out by the eddy
currents in a conductor like iron.




There is another class of magnetic materials which has only recently
been discovered—members of the family of the orthosilicates called
garnets. They are again crystals in which the lattice contains
two kinds of metallic atoms, and we have again a situation in which two
kinds of atoms can be substituted almost at will. Among the many
compounds of interest there is one which is completely ferromagnetic. It
has yttrium and iron in the garnet structure, and the reason it is
ferromagnetic is very curious. Here again quantum mechanics is making
the neighboring spins opposite, so that there is a locked-in system of
spins with the electron spins of the iron one way and the electron spins
of the yttrium the opposite way. But the yttrium atom is complicated. It
is a rare-earth element and gets a large contribution to its magnetic
moment from orbital motion of the electrons. For yttrium, the
orbital motion contribution is opposite that of the spin and also
is bigger. Thus, although quantum mechanics, working through the
exclusion principle, makes the spins of the yttrium opposite
those of the iron, it makes the total magnetic moment of the
yttrium atom parallel to the iron because of the orbital
effect—as sketched in Fig. 37–13(d). The compound is
therefore a regular ferromagnet.




Another interesting example of ferromagnetism occurs in some of the
rare-earth elements. It has to do with a still more peculiar
arrangement of the spins. The material is not ferromagnetic in the
sense that the spins are all parallel, nor is it antiferromagnetic in
the sense that every atom is opposite. In these crystals all of the
spins in one layer are parallel and lie in the plane of the
layer. In the next layer all spins are again parallel to each other,
but point in a somewhat different direction. In the following layer
they are in still another direction, and so on. The result is that the
local magnetization vector varies in the form of a spiral—the
magnetic moments of the successive layers rotate as we proceed along a
line perpendicular to the layers. It is interesting to try to analyze
what happens when a field is applied to such a spiral—all the
twistings and turnings that must go on in all those atomic
magnets. (Some people like to amuse themselves with the theory
of these things!) Not only are there cases of “flat” spirals, but
there are also cases in which the directions the magnetic moments of
successive layers map out a cone, so that it has a spiral component
and also a uniform ferromagnetic component in one direction!




The magnetic properties of materials, worked out on a more advanced
level than we have been able to do here, have fascinated physicists of
all kinds. In the first place, there are those practical people who love
to work out ways of making things in a better way—they love to design
better and more interesting magnetic materials. The discovery of things
like ferrites, or their application, immediately
delights people who like to see clever new ways of doing things. Besides
this, there are those who find a fascination in the terrible complexity
that nature can produce using a few basic laws. Starting with one and
the same general idea, nature goes from the ferromagnetism of iron and
its domains, to the antiferromagnetism of chromium, to the magnetism of
ferrites and garnets, to the spiral
structure of the rare earth elements, and on, and on. It is fascinating
to discover experimentally all the strange things that go on in these
special substances. Then, to the theoretical physicists, ferromagnetism
presents a number of very interesting, unsolved, and beautiful
challenges. One challenge is to understand why it exists at all. Another
is to predict the statistics of the interacting spins in an ideal
lattice. Even neglecting any possible extraneous complications, this
problem has, so far, defied full understanding. The reason that it is so
interesting is that it is such an easily stated problem: Given a lot of
electron spins in a regular lattice, interacting with such-and-such a
law, what do they do? It is simply stated, but it has defied complete
analysis for years. Although it has been analyzed rather carefully for
temperatures not too close to the Curie point, the theory of the
sudden transition at the Curie point still needs to be
completed.





Finally, the whole subject of the system of spinning atomic
magnets—in ferromagnetic, or in paramagnetic materials and in
nuclear magnetism, has also been a fascinating thing to advanced
students in physics. The system of spins can be pushed on and pulled
on with external magnetic fields, so one can do many tricks with
resonances, with relaxation effects, with spin-echoes, and with other
effects. It serves as a prototype of many complicated thermodynamic
systems. But in paramagnetic materials the situation is often fairly
simple, and people have been delighted both to do experiments and to
explain the phenomena theoretically.




We now close our study of electricity and magnetism. In the first
chapter, we spoke of the great strides that have been made since the
early Greek observation of the strange behaviors of amber
and of lodestone. Yet in all our long and involved
discussion we have never explained why it is that when we rub a
piece of amber we get a charge on it, nor have we
explained why a lodestone is magnetized!  You
may say, “Oh, we just didn’t get the right sign.”  No, it is worse
than that. Even if we did get the right sign, we would still have
the question: Why is the piece of lodestone in the
ground magnetized?  There is the earth’s magnetic field, of course, but
where does the earth’s field come from?  Nobody really
knows—there have only been some good guesses. So you see, this physics
of ours is a lot of fakery—we start out with the phenomena of
lodestone and amber, and we end up not
understanding either of them very well. But we have learned a
tremendous amount of very exciting and very practical information in the
process!






	
  
  See Chapter 4 of Vol. III
(section 4–7).
  ↩


	
  
  We write these
equations with H=B−M/ϵ0 c2[image: -*-] instead of B[image: -*-] to agree with the work
of the last chapter. You might prefer to write U=±μ Ba=±μ (B+λ′ M/ϵ0 c2)[image: -*-], where λ′=λ−1[image: -*-]. It’s
the same thing.
  ↩


	
  
  You may be wondering how spins that
have to be either “up” or “down” can also be “sideways”! That’s a
good question, but we won’t worry about it right now. We’ll simply adopt
the classical point of view, thinking of the atomic magnets as classical
dipoles which can be polarized sideways. Quantum mechanics requires
considerable expertness to understand how things can be quantized both
“up-and-down,” and “right-and-left,” all at the same time.
  ↩






  
    

38 Elasticity
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38–1 Hooke’s law


The subject of elasticity deals with the behavior of those
substances which have the property of recovering their size and shape
when the forces producing deformations are removed. We find this elastic
property to some extent in all solid bodies. If we had the time to deal
with the subject at length, we would want to look into many things: the
behavior of materials, the general laws of elasticity, the general
theory of elasticity, the atomic machinery that determine the elastic
properties, and finally the limitations of elastic laws when the forces
become so great that plastic flow and fracture occur. It would take more
time than we have to cover all these subjects in detail, so we will have
to leave out some things. For example, we will not discuss plasticity or
the limitations of the elastic laws.
(We touched on these subjects briefly when we were talking about
dislocations in metals.) Also, we will not be able to discuss the
internal mechanisms of elasticity—so our treatment will not have the
completeness we have tried to achieve in the earlier chapters. Our aim
is mainly to give you an acquaintance with some of the ways of dealing
with such practical problems as the bending of beams.




When you push on a piece of material, it “gives”—the material is
deformed. If the force is small enough, the relative displacements of
the various points in the material are proportional to the force—we
say the behavior is elastic. We will discuss only the elastic
behavior. First, we will write down the fundamental laws of
elasticity, and then we will apply them to a number of different
situations.



[image: -][image: -]
Fig. 38–1. The stretching of a bar under uniform tension.





Suppose we take a rectangular block of material of length l[image: -*-],
width w[image: -*-], and height h[image: -*-], as shown in Fig. 38–1. If we
pull on the ends with a force F[image: -*-], then the length increases by an
amount Δ l[image: -*-]. We will suppose in all cases that the change in
length is a small fraction of the original length. As a matter of fact,
for materials like wood and steel, the material will break if the change
in length is more than a few percent of the original length. For a large
number of materials, experiments show that for sufficiently small
extensions the force is proportional to the extension

[image: -*-][image: -*-]
(38.1)




This relation is known as Hooke’s law.




The lengthening Δ l[image: -*-] of the bar will also depend on its
length. We can figure out how by the following argument. If we cement
two identical blocks together, end to end, the same forces act on each
block; each will stretch by Δ l[image: -*-]. Thus, the stretch of a block
of length 2 l[image: -*-] would be twice as big as a block of the same cross
section, but of length l[image: -*-]. In order to get a number more
characteristic of the material, and less of any particular shape, we
choose to deal with the ratio Δ l/l[image: -*-] of the extension to the
original length. This ratio is proportional to the force but
independent of l[image: -*-]:

[image: -*-][image: -*-]
(38.2)









The force F[image: -*-] will also depend on the area of the block. Suppose that
we put two blocks side by side. Then for a given stretch Δ l[image: -*-] we
would have the force F[image: -*-] on each block, or twice as much on the
combination of the two blocks. The force, for a given amount of
stretch, must be proportional to the cross-sectional area A[image: -*-] of the
block. To obtain a law in which the coefficient of proportionality is
independent of the dimensions of the body, we write Hooke’s law for a
rectangular block in the form

[image: -*-][image: -*-]
(38.3)




The constant Y[image: -*-] is a property only of the nature of the material; it
is known as Young’s modulus. (Usually you will see Young’s
modulus called E[image: -*-]. But we’ve used E[image: -*-] for electric fields, energy,
and emf’s, so we prefer to use a different letter.)




The force per unit area is called the stress, and
the
stretch per unit length—the fractional stretch—is called
the strain. Equation (38.3) can therefore be
rewritten in the following way:

[image: -*-][image: -*-]
(38.4)









There is another part to Hooke’s law: When you stretch a block
of material in one direction it contracts at right angles to
the stretch. The contraction in width is proportional to the width w[image: -*-]
and also to Δ l/l[image: -*-]. The sideways contraction is in the same
proportion for both width and height, and is usually written

[image: -*-][image: -*-]
(38.5)




where the constant σ[image: -*-] is another property of the material called
Poisson’s ratio. It is always positive in sign and is a
number less than 1/2[image: -*-]. (It is “reasonable” that σ[image: -*-] should be
generally positive, but it is not quite clear that it must be
so.)




The two constants Y[image: -*-] and σ[image: -*-] specify completely the elastic
properties of a homogeneous’ isotropic (that is,
noncrystalline) material. In crystalline materials the stretches and
contractions can be different in different directions, so there can be
many more elastic constants. We will restrict our discussion
temporarily to homogeneous’ isotropic materials whose properties can
be described by Y[image: -*-] and σ[image: -*-]. As usual there are different ways of
describing things—some people like to describe the elastic
properties of materials by different constants. It always takes two,
and they can be related to σ[image: -*-] and Y[image: -*-].




The last general law we need is the principle of superposition. Since
the two laws (38.4) and (38.5) are linear in
the forces and in the displacements, superposition will work. If you
have one set of forces and get some displacements, and then you add a
new set of forces and get some additional displacements, the resulting
displacements will be the sum of the ones you would get with the two
sets of forces acting independently.




Now we have all the general principles—the superposition principle and
Eqs. (38.4) and (38.5)—and that’s all there is
to elasticity. But that is like saying that once you have Newton’s laws that’s
all there is to mechanics. Or, given Maxwell’s
equations, that’s all there is to
electricity. It is, of course, true that with these principles you have a great
deal, because with your present mathematical ability you could go a long way. We
will, however, work out a few special applications.








38–2 Uniform strains

[image: -][image: -]
Fig. 38–2. A bar under uniform hydrostatic pressure.





As our first example let’s find out what happens to a rectangular block
under uniform hydrostatic pressure. Let’s put a block under water in a
pressure tank. Then there will be a force acting inward on every face of
the block proportional to the area (see Fig. 38–2). Since
the hydrostatic pressure is uniform, the stress (force per unit
area) on each face of the block is the same. We will work out first the
change in the length. The change in length of the block can be thought
of as the sum of changes in length that would occur in the three
independent problems which are sketched in Fig. 38–3.



[image: -][image: -][image: -][image: -][image: -][image: -]
Fig. 38–3. Hydrostatic pressure is the superposition of three longitudinal
compressions.





Problem 1. If we push on the ends of the block with a
pressure p[image: -*-], the compressional strain is p/Y[image: -*-], and it is negative,
[image: -*-][image: -*-]







Problem 2. If we push on the two sides of the block with
pressure p[image: -*-], the compressional strain is again p/Y[image: -*-], but now we want
the lengthwise strain. We can get that from the sideways strain
multiplied by −σ[image: -*-]. The sideways strain is
[image: -*-][image: -*-]


so
[image: -*-][image: -*-]







Problem 3. If we push on the top of the block, the
compressional strain is once more p/Y[image: -*-], and the corresponding strain
in the sideways direction is again −σ p/Y[image: -*-]. We get
[image: -*-][image: -*-]







Combining the results of the three problems—that is, taking Δ l=Δ l1+Δ l2+Δ l3[image: -*-]—we get

[image: -*-][image: -*-]
(38.6)




The problem is, of course, symmetrical in all three directions; it
follows that

[image: -*-][image: -*-]
(38.7)









The change in the volume under hydrostatic pressure is also of
some interest. Since V=l w h[image: -*-], we can write, for small displacements,

[image: -*-][image: -*-]


Using (38.6) and (38.7), we have

[image: -*-][image: -*-]
(38.8)




People like to call Δ V/V[image: -*-] the volume strain and write

[image: -*-][image: -*-]


The volume stress p[image: -*-] is proportional to the volume strain—Hooke’s
law once more. The coefficient K[image: -*-] is called
the bulk modulus; it is related to the other
constants by

[image: -*-][image: -*-]
(38.9)




Since K[image: -*-] is of some practical interest, many handbooks give Y[image: -*-] and K[image: -*-]
instead of Y[image: -*-] and σ[image: -*-]. If you want σ[image: -*-] you can always get it
from Eq. (38.9). We can also see from Eq. (38.9)
that Poisson’s ratio, σ[image: -*-], must be less than one-half. If it were
not, the bulk modulus K[image: -*-] would be negative, and the material would
expand under increasing pressure. That would allow us to get mechanical
energy out of any old block—it would mean that the block was in
unstable equilibrium. If it started to expand it would continue by
itself with a release of energy.



[image: -][image: -]
Fig. 38–4. A cube in uniform shear.




[image: -][image: -]
Fig. 38–5. A cube with compressing forces on top and bottom and equal
stretching forces on two sides.





Now we want to consider what happens when you put a “shear” strain on
something. By shear strain we mean the kind of distortion shown in
Fig. 38–4. As a preliminary to this, let us look at the
strains in a cube of material subjected to the forces shown in
Fig. 38–5. Again we can break it up into two problems: the
vertical pushes, and the horizontal pulls. Calling A[image: -*-] the area of the
cube face, we have for the change in horizontal length

[image: -*-][image: -*-]
(38.10)




The change in the vertical height is just the negative of this.



[image: -][image: -]
Fig. 38–6. The two pairs of shear forces in (a) produce the same stress as
the compressing and stretching forces of (b).





Now suppose we have the same cube and subject it to the shearing forces
shown in Fig. 38–6(a). Note that all the forces have to be
equal if there are to be no net torques and the cube is to be in
equilibrium. (Similar forces must also exist in Fig. 38–4,
since the block is in equilibrium. They are provided through the
“glue” that holds the block to the table.) The cube is then said to be
in a state of pure shear. But note that if we cut the cube by a plane
at 45°[image: -*-]—say along the diagonal A[image: -*-] in the figure—the total force
acting across the plane is normal to the plane and is equal
to √2 G[image: -*-]. The area over which this force acts is √2 A[image: -*-];
therefore, the tensile stress normal to this plane is simply G/A[image: -*-].
Similarly, if we examine a plane at an angle of 45°[image: -*-] the other
way—the diagonal B[image: -*-] in the figure—we see that there is a
compressional stress normal to this plane of −G/A[image: -*-]. From this, we see
that the stress in a “pure shear” is equivalent to a
combination of tension and compression stresses of equal strength and at
right angles to each other, and at 45°[image: -*-] to the original faces of
the cube. The internal stresses and strains are the same as we would
find in the larger block of material with the forces shown in
Fig. 38–6(b). But this is the problem we have already
solved. The change in length of the diagonal is given by
Eq. (38.10),

[image: -*-][image: -*-]
(38.11)




(One diagonal is shortened; the other is elongated.)



[image: -][image: -]
Fig. 38–7. The shear strain θ[image: -*-] is 2 Δ D/D[image: -*-].





It is often convenient to express a shear strain in terms of the angle
by which the cube is twisted—the angle θ[image: -*-] in
Fig. 38–7. From the geometry of the figure you can see that
the horizontal shift δ[image: -*-] of the top edge is equal
to √2 Δ D[image: -*-]. So

[image: -*-][image: -*-]
(38.12)




The shear stress g[image: -*-] is defined as the tangential force on one face
divided by the area, g=G/A[image: -*-]. Using Eq. (38.11)
in (38.12), we get

[image: -*-][image: -*-]


Or, writing this in the form “stress=constant times strain,”

[image: -*-][image: -*-]
(38.13)




The proportionality coefficient μ[image: -*-] is called the shear
modulus (or, sometimes, the coefficient of
rigidity). It is given in terms of Y[image: -*-] and σ[image: -*-] by

[image: -*-][image: -*-]
(38.14)




Incidentally, the shear modulus must be
positive—otherwise you could
get work out of a self-shearing block. From Eq. (38.14),
σ[image: -*-] must be greater than −1[image: -*-]. We know, then, that σ[image: -*-] must
be between −1[image: -*-] and [image: +\tfrac{1}{2}][image: +\tfrac{1}{2}]; in practice, however, it is
always greater than zero.



[image: -][image: -]
Fig. 38–8. Stretching without lateral contraction.





As a last example of the type of situation where the stresses are
uniform through the material, let’s consider the problem of a block
which is stretched, while it is at the same time constrained so
that no lateral contraction can take place. (Technically, it’s a
little easier to compress it while keeping the sides from bulging
out—but it’s the same problem.) What happens? Well, there must be
sideways forces which keep it from changing its thickness—forces we
don’t know off-hand but will have to calculate. It’s the same kind of
problem we have already done, only with a little different algebra. We
imagine forces on all three sides, as shown in Fig. 38–8; we
calculate the changes in dimensions, and we choose the transverse
forces to make the width and height remain constant. Following the
usual arguments, we get for the three strains:



[image: -*-][image: -*-]
(38.15)

 

(38.16)

(38.17)










Now since Δ ly[image: -*-] and Δ lz[image: -*-] are supposed to be zero, Eqs.
(38.16) and (38.17) give two equations relating Fy[image: -*-]
and Fz[image: -*-] to Fx[image: -*-]. Solving them together, we get that

[image: -*-][image: -*-]
(38.18)




Substituting in (38.15), we have



[image: -*-][image: -*-]
(38.19)





Often, you will see this turned around, and with the quadratic
in σ[image: -*-] factored out, it is then written

[image: -*-][image: -*-]
(38.20)




When we constrain the sides, Young’s modulus gets multiplied by a
complicated function of σ[image: -*-]. As you can most easily see from
Eq. (38.19), the factor in front of Y[image: -*-] is always
greater than 1. It is harder to stretch the block when the sides are
held—which also means that a block is stronger when the sides
are held than when they are not.







38–3 The torsion bar; shear waves


Let’s now turn our attention to an example which is more complicated
because different parts of the material are stressed by different
amounts. We consider a twisted rod such as you would find in a drive
shaft of some machinery, or in a quartz fiber suspension used in a
delicate instrument. As you probably know from experiments with the
torsion pendulum, the torque on a twisted rod is proportional
to the angle—the constant of proportionality obviously
depending upon the length of the rod, on the radius of the rod, and on
the properties of the material. The question is: In what way? We are
now in a position to answer this question; it’s just a matter of
working out some geometry.



[image: -][image: -]
Fig. 38–9. (a) A cylindrical bar in torsion. (b) A cylindrical shell in
torsion. (c) Each small piece of the shell is in shear.





Fig. 38–9(a) shows a cylindrical rod of length L[image: -*-], and radius a[image: -*-],
with one end twisted by the angle ϕ[image: -*-] with respect to the other. If
we want to relate the strains to what we already know, we can think of
the rod as being made up of many cylindrical shells and work out
separately what happens to each shell. We start by looking at a thin,
short cylinder of radius r[image: -*-] (less than a[image: -*-]) and thickness Δ r[image: -*-]—as drawn in Fig. 38–9(b). Now if we look at a piece of this
cylinder that was originally a small square, we see that it has been
distorted into a parallelogram. Each such element of the cylinder is
in shear, and the shear angle θ[image: -*-] is

[image: -*-][image: -*-]


The shear stress g[image: -*-] in the material is, therefore [from
Eq. (38.13)],

[image: -*-][image: -*-]
(38.21)









The shear stress is the tangential force Δ F[image: -*-] on the end of the
square divided by the area Δ l Δ r[image: -*-] of the end [see
Fig. 38–9(c)]

[image: -*-][image: -*-]


The force Δ F[image: -*-] on the end of such a square contributes a
torque Δ τ[image: -*-] around the axis of the rod equal to

[image: -*-][image: -*-]
(38.22)




The total torque τ[image: -*-] is the sum of such torques around a complete
circumference of the cylinder. So putting together enough pieces so
that the Δ l[image: -*-]’s add up to 2 π r[image: -*-], we find that the total
torque, for a hollow tube, is

[image: -*-][image: -*-]
(38.23)




Or, using (38.21),

[image: -*-][image: -*-]
(38.24)




We get that the rotational stiffness, τ/ϕ[image: -*-], of a hollow tube is
proportional to the cube of the radius r[image: -*-] and to the
thickness Δ r[image: -*-], and inversely proportional to the length L[image: -*-].




We can now imagine a solid rod to be made up of a series of concentric
tubes, each twisted by the same angle ϕ[image: -*-] (although the internal
stresses are different for each tube). The total torque is the
sum of the torques required to rotate each shell; for the solid
rod

[image: -*-][image: -*-]


where the integral goes from r=0[image: -*-] to r=a[image: -*-], the radius of the
rod. Integrating, we have

[image: -*-][image: -*-]
(38.25)




For a rod in torsion, the torque is proportional to the angle and is
proportional to the fourth power of the diameter—a rod twice
as thick is sixteen times as stiff for torsion.




Before leaving the subject of torsion, let us apply what we have just
learned to an interesting problem: torsional waves. If you take a long
rod and suddenly twist one end, a wave of twist works it way along the
rod, as sketched in Fig. 38–10(a). That’s a little more exciting
than a steady twist—let’s see whether we can work out what happens.



[image: -][image: -]
Fig. 38–10. (a) A torsional wave on a rod. (b) A volume element of the rod.





Let z[image: -*-] be the distance to some point down the rod. For a static torsion
the torque is the same everywhere along the rod, and is proportional
to ϕ/L[image: -*-], the total torsion angle over the total length. What matters to
the material is the local torsional strain, which is, you will
appreciate, ∂ϕ/∂z[image: -*-]. When the torsion along the rod is not
uniform, we should replace Eq. (38.25) by

[image: -*-][image: -*-]
(38.26)




Now let’s look at what happens to an element of length Δ z[image: -*-]
shown magnified in Fig. 38–10(b). There is a torque τ (z)[image: -*-] at
end 1 of the little hunk of rod, and a different torque τ (z+Δ z)[image: -*-] at end 2. If Δ z[image: -*-] is small enough, we can use a Taylor
expansion and write

[image: -*-][image: -*-]
(38.27)









The net torque Δ τ[image: -*-] acting on the little piece of rod
between z[image: -*-] and z+Δ z[image: -*-] is clearly the difference between τ (z)[image: -*-]
and τ (z+Δ z)[image: -*-], or Δ τ=(∂τ/∂z) Δ z[image: -*-].
Differentiating Eq. (38.26), we get

[image: -*-][image: -*-]
(38.28)









The effect of this net torque is to give an angular acceleration to
the little slice of the rod. The mass of the slice is

[image: -*-][image: -*-]


where ρ[image: -*-] is the density of the material. We worked out in
Chapter 19, Vol. I, that the moment of inertia of a
circular cylinder is m r2/2[image: -*-]; calling the moment of inertia of our
piece Δ I[image: -*-], we have

[image: -*-][image: -*-]
(38.29)




Newton’s law says the torque is equal to the moment of inertia times
the angular acceleration, or

[image: -*-][image: -*-]
(38.30)




Pulling everything together, we get

[image: -*-][image: -*-]


or

[image: -*-][image: -*-]
(38.31)




You will recognize this as the one-dimensional wave equation. We have
found that waves of torsion will propagate down the rod with the speed

[image: -*-][image: -*-]
(38.32)




The denser the rod—for the same stiffness—the slower
the waves; and the stiffer the rod, the quicker the waves work
their way down. The speed does not depend upon the diameter of
the rod.




Torsional waves are a special example of shear waves. In
general, shear waves are those in which the strains do not change the
volume of any part of the material. In torsional waves, we have
a particular distribution of such shear stresses—namely, distributed
on a circle. But for any arrangement of shear stresses, waves will
propagate with the same speed—the one given in
Eq. (38.32). For example, the seismologists find such shear
waves travelling in the interior of the earth.




We can have another kind of a wave in the elastic world inside a solid
material. If you push something, you can start “longitudinal”
waves—also called “compressional” waves. They are like the sound
waves in air or in water—the displacements are in the same direction
as the wave propagation. (At the surfaces of an elastic body there can
also be other types of waves—called “Rayleigh waves” or
“Love waves.”  In them, the strains are neither purely longitudinal
nor purely transverse. We will not have time to study them.)




While we’re on the subject of waves, what is the velocity of the pure
compressional waves in a large solid body like the earth? We
say “large” because the speed of sound in a thick body is different
from what it is, for instance, along a thin rod. By a “thick” body
we mean one in which the transverse dimensions are much larger than
the wavelength of the sound. Then, when we push on the object, it
cannot expand sideways—it can only compress in one
dimension. Fortunately, we have already worked out the special case of
the compression of a constrained elastic material. We have also worked
out in Chapter 47, Vol. I, the speed of sound waves in
a gas. Following the same arguments you can see that the speed of
sound in a solid is equal to √Y′/ρ[image: -*-], where Y′[image: -*-] is the
“longitudinal modulus”—or pressure divided by the relative change
in length—for the constrained case. This is just the ratio of
Δ l/l[image: -*-] to F/A[image: -*-] we got in Eq. (38.20). So the
speed of the longitudinal waves is given by

[image: -*-][image: -*-]
(38.33)









So long as σ[image: -*-] is between zero and 1/2[image: -*-], the shear modulus μ[image: -*-]
is less than Young’s modulus Y[image: -*-], and also Y′[image: -*-] is greater than Y[image: -*-],
so

[image: -*-][image: -*-]


This means that longitudinal waves travel faster than shear waves. One
of the most precise ways of measuring the elastic constants of a
substance is by measuring the density of the material and the speeds
of the two kinds of waves. From this information one can get both Y[image: -*-]
and σ[image: -*-]. It is, incidentally, by measuring the difference in the
arrival times of the two kinds of waves from an earthquake that a
seismologist can estimate—even from the signals at only one
station—the distance to the quake.







38–4 The bent beam


We want now to look at another practical matter—the bending
of a rod or a beam. What are the forces when we bend a bar of some
arbitrary cross section? We will work it out thinking of a bar with a
circular cross section, but our answer will be good for any shape. To
save time, however, we will cut some corners, so our theory we will
work out is only approximate. Our results will be correct only when
the radius of the bend is much larger than the thickness of the beam.



[image: -][image: -]
Fig. 38–11. A bent beam.





Suppose you grab the two ends of a straight bar and bend it into some
curve like the one shown in Fig. 38–11. What goes on inside the
bar?
Well, if it is curved, that means that the material on the inside of
the curve is compressed and the material on the outside is
stretched. There is some surface which goes along more or less
parallel to the axis of the bar that is neither stretched nor
compressed. This is called the neutral surface. You would
expect this surface to be near the “middle” of the cross section. It
can be shown (but we won’t do it here) that, for small bending of
simple beams, the neutral surface goes through the “center of
gravity” of the cross section. This is true only for “pure”
bending—if you are not stretching or compressing the beam at the
same time.



[image: -][image: -]
Fig. 38–12. (a) Small segment of a bent beam. (b) Cross section of the beam.





For pure bending, then, a thin transverse slice of the bar is
distorted as shown in Fig. 38–12(a). The material below the neutral
surface has a compressional strain which is proportional to the
distance from the neutral surface; and the material above is
stretched, also in proportion to its distance from the neutral
surface. So the longitudinal stretch Δ l[image: -*-] is proportional
to the height y[image: -*-]. The constant of proportionality is just l[image: -*-] over
the radius of curvature of the bar—see Fig. 38–12:

[image: -*-][image: -*-]


So the force per unit area—the stress—in a small strip at y[image: -*-] is
also proportional to the distance from the neutral surface

[image: -*-][image: -*-]
(38.34)









Now let’s look at the forces that would produce such a strain.
The forces acting on the little segment drawn in Fig. 38–12
are shown in the figure. If we think of any transverse cut, the forces
acting across it are one way above the neutral surface and the other way
below. They come in pairs to make a “bending
moment” M[image: -*-]—by which we mean the torque about the neutral
line. We can compute the total moment by integrating the force times the
distance from the neutral surface for one of the faces of the segment of
Fig. 38–12:

[image: -*-][image: -*-]
(38.35)




From Eq. (38.34), d F=Y y/R d A[image: -*-], so

[image: -*-][image: -*-]


The integral of y2 d A[image: -*-] is what we can call the “moment of
inertia” of the geometric cross section about a horizontal axis
through its “center of mass”;1 we will
call it I[image: -*-]:

[image: -*-][image: -*-]
(38.36)

(38.37)









Equation (38.36), then, gives us the relation between the
bending moment M[image: -*-] and the curvature 1/R[image: -*-] of the beam. The
“stiffness” of the beam is proportional to Y[image: -*-] and to the moment of
inertia I[image: -*-]. In other words, if you want the stiffest possible beam
with a given amount of, say, aluminum, you want to put as much of it
as possible as far as you can from the neutral surface, to make a
large moment of inertia. You can’t carry this to an extreme, however,
because then the thing will not curve as we have supposed—it will
buckle or twist and become weaker again. But now you see why
structural beams are made in the form of an I or an H—as shown in
Fig. 38–13.



[image: -][image: -]
Fig. 38–13. An “I” beam.




[image: -][image: -]
Fig. 38–14. A cantilevered beam with a weight at one end.





As an example of the use of our beam equation (38.36), let’s
work out the deflection of a cantilevered beam
with a concentrated force W[image: -*-] acting at the free end, as sketched in
Fig. 38–14. (By “cantilevered” we simply mean that the
beam is supported in such a way that both the position and the
slope are fixed at one end—it is stuck into a cement wall.) What is
the shape of the beam?  Let’s call the deflection at the distance x[image: -*-]
from the fixed end z[image: -*-]; we want to know z (x)[image: -*-]. We’ll work it out only
for small deflections. We will also assume that the beam is long in
comparison with its cross section. Now, as you know from your
mathematics courses, the curvature 1/R[image: -*-] of any curve z (x)[image: -*-] is given by

[image: -*-][image: -*-]
(38.38)




Since we are interested only in small slopes—this is usually the
case in engineering structures—we neglect (d z/d x)2[image: -*-] in comparison
with 1, and take

[image: -*-][image: -*-]
(38.39)




We also need to know the bending moment M[image: -*-]. It is a function
of x[image: -*-] because it is equal to the torque about the neutral axis of any
cross section. Let’s neglect the weight of the beam and take only the
downward force W[image: -*-] at the end of the beam. (You can put in the beam
weight yourself if you want.) Then the bending moment at x[image: -*-] is

[image: -*-][image: -*-]


because that is the torque about the point at x[image: -*-], exerted by the
weight W[image: -*-]—the torque which the beam must support of x[image: -*-]. We get

[image: -*-][image: -*-]


or

[image: -*-][image: -*-]
(38.40)




This one we can integrate without any tricks; we get

[image: -*-][image: -*-]
(38.41)




using our assumptions that z (0)=0[image: -*-] and that d z/d x[image: -*-] is also zero
at x=0[image: -*-]. That is the shape of the beam. The displacement of the end is

[image: -*-][image: -*-]
(38.42)




the displacement of the end of a beam increases as the cube of the
length.




In deriving our approximate beam theory, we have assumed that the cross
section of the beam did not change when the beam was bent. When the
thickness of the beam is small compared to the radius of curvature, the
cross section changes very little and our result is O.K. In general,
however, this effect cannot be neglected, as you can easily demonstrate
for yourselves by bending a soft-rubber eraser in your fingers. If the
cross section was originally rectangular, you will find that when it is
bent it bulges at the bottom (see Fig. 38–15). This happens
because when we compress the bottom, the material expands sideways—as
described by Poisson’s ratio. Rubber is easy to bend or stretch,
but it is somewhat like a liquid in that it’s hard to change the
volume—as shows up nicely when you bend the eraser. For an
incompressible material, Poisson’s ratio would be
exactly 1/2[image: -*-]—for rubber it is nearly that.



[image: -][image: -]
Fig. 38–15. (a) A bent eraser; (b) cross section.








38–5 Buckling


We want now to use our beam theory to understand the theory of the
“buckling” of beams, or columns, or rods. Consider the situation
sketched in Fig. 38–16 in which a rod that would normally be
straight is held in its bent shape by two opposite forces that push on
the ends of the rod. We would like to calculate the shape of the rod
and the magnitude of the forces on the ends.



[image: -][image: -]
Fig. 38–16. A buckled beam.





Let the deflection of the rod from the straight line between the ends
be y (x)[image: -*-], where x[image: -*-] is the distance from one end. The bending
moment M[image: -*-] at the point P[image: -*-] in the figure is equal to the force F[image: -*-]
multiplied by the moment arm, which is the perpendicular distance y[image: -*-],

[image: -*-][image: -*-]
(38.43)




Using the beam equation (38.36), we have

[image: -*-][image: -*-]
(38.44)




For small deflections, we can take 1/R=−d2 y/d x2[image: -*-] (the minus sign
because the curvature is downward). We get

[image: -*-][image: -*-]
(38.45)




which is the differential equation of a sine wave. So for small
deflections, the curve of such a bent beam is a sine curve. The
“wavelength” λ[image: -*-] of the sine wave is twice the distance L[image: -*-]
between the ends. If the bending is small, this is just twice the
unbent length of the rod. So the curve is

[image: -*-][image: -*-]


Taking the second derivative, we get

[image: -*-][image: -*-]


Comparing this to Eq. (38.45), we see that the force is

[image: -*-][image: -*-]
(38.46)




For small bendings the force is independent of the bending
displacement y[image: -*-]!




We have, then, the following thing physically. If the force is less
than the F[image: -*-] given in Eq. (38.46), there will be no
bending at all. But if it is slightly greater than this force,
the material will suddenly bend a large amount—that is, for forces
above the critical force π2 Y I/L2[image: -*-] (often called the “Euler
force” the beam will “buckle.” If the
loading on the second floor of a building exceeds the Euler
force” for the supporting columns, the
building will collapse. Another place where the buckling force is most
important is in space rockets. On one hand, the rocket must be able to
hold its own weight on the launching pad and endure the stresses during
acceleration; on the other hand, it is important to keep the weight of
the structure to a minimum, so that the payload and fuel capacity may be
made as large as possible.




[image: -][image: -]
Fig. 38–17. The coordinates S[image: -*-] and θ[image: -*-] for the curve of a bent
beam.





Actually a beam will not necessarily collapse completely when the force
exceeds the Euler force. When the
displacements get large, the force is larger than what we have found
because of the terms in 1/R[image: -*-] in Eq. (38.38) that we have
neglected. To find the forces for a large bending of the beam, we have
to go back to the exact equation, Eq. (38.44), which we had
before we used the approximate relation between R[image: -*-] and y[image: -*-].
Equation (38.44) has a rather simple geometrical
property.2 It’s a little complicated to work out, but rather
interesting. Instead of describing the curve in terms of x[image: -*-] and y[image: -*-], we
can use two new variables: S[image: -*-], the distance along the curve, and
θ[image: -*-] the slope of the tangent to the curve. See
Fig. 38–17. The curvature is the rate of change of angle
with distance:

[image: -*-][image: -*-]


We can, therefore write the exact equation (38.44) as

[image: -*-][image: -*-]


If we take the derivative of this equation with respect to S[image: -*-] and
replace d y/d S[image: -*-] by sinθ[image: -*-], we get

[image: -*-][image: -*-]
(38.47)




[If θ[image: -*-] is small, we get back Eq. (38.45). Everything
is O.K.]




Now it may or may not delight you to know that Eq. (38.47)
is exactly the same one you get for the large amplitude oscillations of
a pendulum—with F/Y I[image: -*-] replaced by another constant, of course. We
learned way back in Chapter 9, Vol. I, how to find the
solution of such an equation by a numerical calculation.3 The answers you get are some fascinating curves—known as
the curves of the “Elastica.”
Figure 38–18 shows three curves for different values
of F/Y I[image: -*-].




[image: -][image: -]
Fig. 38–18. Curves of a bent rod.







	
  
  It is, of course, really the
moment of inertia of a slice with unit mass per unit area.
  ↩


	
  
  The same equation appears, incidentally, in other
physical situations—for example, the meniscus at the surface of a
liquid contained between parallel planes—and the same geometrical
solution can be used.
  ↩


	
  
  The
solutions can also be expressed in terms of some functions, called the
“Jacobian elliptic functions,” that someone else has already
computed.
  ↩
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39–1 The tensor of strain


In the last chapter we talked about the distortions of particular
elastic objects.  In this chapter we want to look at what can happen
in general inside an elastic material. We would like to be able
to describe the conditions of stress and strain inside some big glob
of jello which is twisted and squashed in some complicated way. To do
this, we need to be able to describe the local strain at every
point in an elastic body; we can do it by giving a set of six
numbers—which are the components of a symmetric tensor—for each
point. Earlier, we spoke of the stress tensor (Chapter 31);
now we need the tensor of strain.



[image: -][image: -][image: -][image: -]
Fig. 39–1. A speck of the material at the point P[image: -*-] in an unstrained block
moves to P′[image: -*-] where the block is strained.





Imagine that we start with the material initially unstrained and watch
the motion of a small speck of “dirt” embedded in the material when
the strain is applied. A speck that was at the point P[image: -*-] located at r=(x,y,z)[image: -*-] moves to a
new position P′[image: -*-] at r′=(x′,y′,z′)[image: -*-] as shown in
Fig. 39–1. We will call u[image: -*-] the vector displacements
from P[image: -*-] to P′[image: -*-]. Then

[image: -*-][image: -*-]
(39.1)




The displacement u[image: -*-] depends, of course, on which point P[image: -*-] we
start with, so u[image: -*-] is a vector function of r[image: -*-]—or, if you
prefer, of (x,y,z)[image: -*-].



[image: -][image: -]
Fig. 39–2. A homogenous stretch-type strain.





Let’s look first at a simple situation in which the strain is constant
over the material—so we have what is called a homogeneous
strain. Suppose, for instance, that we have a block of material and we
stretch it uniformly. We just change its dimensions uniformly in one
direction—say, in the x[image: -*-]-direction, as shown in
Fig. 39–2. The motion ux[image: -*-] of a speck at x[image: -*-] is
proportional to x[image: -*-]. In fact,

[image: -*-][image: -*-]


We will write ux[image: -*-] this way:

[image: -*-][image: -*-]


The proportionality constant ex x[image: -*-] is, of course, the same thing
as Δ l/l[image: -*-]. (You will see shortly why we use a double subscript.)




If the strain is not uniform, the relation between ux[image: -*-] and x[image: -*-] will
vary from place to place in the material. For the general situation,
we define the ex x[image: -*-] by a kind of local Δ l/l[image: -*-], namely by

[image: -*-][image: -*-]
(39.2)




This number—which is now a function of x[image: -*-], y[image: -*-], and z[image: -*-]—describes
the amount of stretching in the x[image: -*-]-direction throughout the hunk of
jello. There may, of course, also be stretching in the y[image: -*-]-
and z[image: -*-]-directions. We describe them by the numbers

[image: -*-][image: -*-]
(39.3)








[image: -][image: -][image: -][image: -]
Fig. 39–3. A homogenous shear strain.





We need to be able to describe also the shear-type strains. Suppose we
imagine a little cube marked out in the initially undisturbed
jello. When the jello is pushed out of shape, this cube may get
changed into a parallelogram, as sketched in Fig. 39–3.1  In this kind of a strain, the x[image: -*-]-motion of each particle is
proportional to its y[image: -*-]-coordinate,

[image: -*-][image: -*-]
(39.4)




And there is also a y[image: -*-]-motion proportional to x[image: -*-],

[image: -*-][image: -*-]
(39.5)




So we can describe such a shear-type strain by writing

[image: -*-][image: -*-]


with

[image: -*-][image: -*-]







Now you might think that when the strains are not homogeneous we could
describe the generalized shear strains by defining the quantities
ex y[image: -*-] and ey x[image: -*-] by

[image: -*-][image: -*-]
(39.6)




But there is one difficulty. Suppose that the displacements ux[image: -*-]
and uy[image: -*-] were given by

[image: -*-][image: -*-]


They are like Eqs. (39.4) and (39.5) except that the sign of uy[image: -*-] is reversed. With these displacements a little cube in the jello simply gets shifted by the angle θ/2[image: -*-], as shown in Fig. 39–4. There is no strain at all—just a rotation in space. There is no distortion of the material; the relative positions of all the atoms are not changed at all. We must somehow make our definitions so that pure rotations are not included in our definitions of a shear strain. The key point is that if ∂uy/∂x[image: -*-] and ∂ux/∂y[image: -*-] are equal and opposite, there is no strain; so we can fix things up by defining

[image: -*-][image: -*-]


For a pure rotation they are both zero, but for a pure shear we get
that ex y[image: -*-] is equal to ey x[image: -*-], as we would like.




[image: -][image: -][image: -][image: -]
Fig. 39–4. A homogenous rotation—there is no strain.





In the most general distortion—which may include stretching or
compression as well as shear—we define the state of strain by
giving the nine numbers

[image: -*-][image: -*-]
(39.7)




These are the terms of a tensor of strain. Because it is a
symmetric tensor—our definitions make ex y=ey x[image: -*-],
always—there are really only six different numbers. You remember
(see Chapter 31) that the general characteristic of a
tensor is that the terms transform like the products of the components
of two vectors. (If A[image: -*-] and B[image: -*-] are vectors, Ci j=Ai Bj[image: -*-]
is a tensor.) Each term of ei j[image: -*-] is a product (or the sum of such
products) of the components of the vector u=(ux,uy,uz)[image: -*-], and
of the operator ∇=(∂/∂x,∂/∂y,∂/∂z)[image: -*-], which
we know transforms like a vector. Let’s let x1[image: -*-], x2[image: -*-], and x3[image: -*-]
stand for x[image: -*-], y[image: -*-], and z[image: -*-] and u1[image: -*-], u2[image: -*-], and u3[image: -*-] stand for
ux[image: -*-], uy[image: -*-], and uz[image: -*-]; then we can write the general term ei j[image: -*-]
of the strain tensor as

[image: -*-][image: -*-]
(39.8)




where i[image: -*-] and j[image: -*-] can be 1, 2, or 3.




When we have a homogeneous strain—which may include both stretching
and shear—all of the ei j[image: -*-] are constants, and we can write

[image: -*-][image: -*-]
(39.9)




(We choose our origin of x[image: -*-], y[image: -*-], z[image: -*-] at the point where u[image: -*-] is
zero.) In this case, the strain tensor ei j[image: -*-] gives the relationship
between two vectors: the coordinate vector r=(x,y,z)[image: -*-] and the
displacement vector u=(ux,uy,uz)[image: -*-].




When the strains are not homogeneous, any piece of the jello may also
get somewhat twisted—there will be a local rotation. If the
distortions are all small, we would have

[image: -*-][image: -*-]
(39.10)




where ωi j[image: -*-] is an antisymmetric tensor,

[image: -*-][image: -*-]
(39.11)




which describes the rotation. We will, however, not worry any more
about rotations, but only about the strains described by the symmetric
tensor ei j[image: -*-].







39–2 The tensor of elasticity


Now that we have described the strains, we want to relate them to the
internal forces—the stresses in the material. For each small piece of
the material, we assume Hooke’s law
holds and write that the stresses are proportional to the strains. In
Chapter 31 we defined the stress tensor Si j[image: -*-] as the
i[image: -*-]th component of the force across a unit-area perpendicular to the
j[image: -*-]-axis. Hooke’s law says that each
component of Si j[image: -*-] is linearly related to each of the
components of strain. Since S[image: -*-] and e[image: -*-] each have nine components, there
are 9×9=81[image: -*-] possible coefficients which describe the elastic
properties of the material. They are constants if the material itself is
homogeneous. We write these coefficients as Ci j k l[image: -*-] and define them
by the equation

[image: -*-][image: -*-]
(39.12)




where i[image: -*-], j[image: -*-], k[image: -*-], l[image: -*-] all take on the values 1, 2, or 3.
Since the coefficients Ci j k l[image: -*-] relate one tensor to another,
they also form a tensor—a tensor of the fourth rank. We can
call it the tensor of elasticity.




Suppose that all the C[image: -*-]’s are known and that you put a complicated
force on an object of some peculiar shape. There will be all kinds of
distortion, and the thing will settle down with some twisted
shape. What are the displacements? You can see that it is a
complicated problem. If you knew the strains, you could find the
stresses from Eq. (39.12)—or vice versa. But the
stresses and strains you end up with at any point depend on what
happens in all the rest of the material.




The easiest way to get at the problem is by thinking of the
energy. When there is a force F[image: -*-] proportional to a displacement x[image: -*-],
say F=k x[image: -*-], the work required for any displacement x[image: -*-] is k x2/2[image: -*-]. In
a similar way, the work w[image: -*-] that goes into each unit volume of
a distorted material turns out to be

[image: -*-][image: -*-]
(39.13)




The total work W[image: -*-] done in distorting the body is the integral of w[image: -*-]
over its volume:

[image: -*-][image: -*-]
(39.14)




This is then the potential energy stored in the internal stresses of
the material. Now when a body is in equilibrium, this internal energy
must be at a minimum. So the problem of finding the strains in
a body can be solved by finding the set of displacements u[image: -*-]
throughout the body which will make W[image: -*-] a minimum. In
Chapter 19 we gave some of the general ideas of the
calculus of variations that are used in tackling minimization problems
like this. We cannot go into the problem in any more detail here.




What we are mainly interested in now is what we can say about the
general properties of the tensor of elasticity. First, it is clear
that there are not really 81[image: -*-] different terms
in Ci j k l[image: -*-]. Since both Si j[image: -*-] and ei j[image: -*-] are symmetric tensors,
each with only six different terms, there can be at most
36[image: -*-] different terms in Ci j k l[image: -*-]. There are, however, usually many fewer
than this.




Let’s look at the special case of a cubic crystal. In it, the energy
density w[image: -*-] starts out like this:

[image: -*-][image: -*-]
(39.15)




with 81[image: -*-] terms in all! Now a cubic crystal has certain symmetries. In
particular, if the crystal is rotated 90°[image: -*-], it has the same
physical properties. It has the same stiffness for stretching in the
y[image: -*-]-direction as for stretching in the x[image: -*-]-direction. Therefore, if we
change our definition of the coordinate directions x[image: -*-] and y[image: -*-] in
Eq. (39.15), the energy wouldn’t change. It must be that
for a cubic crystal

[image: -*-][image: -*-]
(39.16)









Next we can show that the terms like Cx x x y[image: -*-] must be zero. A cubic
crystal has the property that it is symmetric under a
reflection about any plane perpendicular to one of the axes. If
we replace y[image: -*-] by −y[image: -*-], nothing is different. But changing y[image: -*-] to −y[image: -*-]
changes ex y[image: -*-] to −ex y[image: -*-]—a displacement which was toward +y[image: -*-]
is now toward −y[image: -*-]. If the energy is not to change, Cx x x y[image: -*-] must go
into −Cx x x y[image: -*-] when we make a reflection. But a reflected crystal is
the same as before, so Cx x x y[image: -*-] must be the same as −Cx x x y[image: -*-].
This can happen only if both are zero.




You say, “But the same argument will make Cy y y y=0[image: -*-]!” No, because
there are four y[image: -*-]’s. The sign changes once for each y[image: -*-], and
four minuses make a plus. If there are two or four y[image: -*-]’s,
the term does not have to be zero. It is zero only when there
is one, or three. So, for a cubic crystal, any nonzero
term of C[image: -*-] will have only an even number of identical
subscripts. (The arguments we have made for y[image: -*-] obviously hold also
for x[image: -*-] and z[image: -*-].) We might then have terms like Cx x y y[image: -*-],
Cx y x y[image: -*-], Cx y y x[image: -*-], and so on. We have already shown, however,
that if we change all x[image: -*-]’s to y[image: -*-]’s and vice versa (or all
z[image: -*-]’s and x[image: -*-]’s, and so on) we must get—for a cubic crystal—the
same number. This means that there are only three different
nonzero possibilities:

[image: -*-][image: -*-]
(39.17)









For a cubic crystal, then, the energy density will look like this:

[image: -*-][image: -*-]
(39.18)









For an isotropic—that is, noncrystalline—material, the symmetry is
still higher. The C[image: -*-]’s must be the same for any choice of the
coordinate system. Then it turns out that there is another relation
among the C[image: -*-]’s, namely, that

[image: -*-][image: -*-]
(39.19)




We can see that this is so by the following general argument. The
stress tensor Si j[image: -*-] has to be related to ei j[image: -*-] in a way that
doesn’t depend at all on the coordinate directions—it must be
related only by scalar quantities. “That’s easy,” you
say. “The only way to obtain Si j[image: -*-] from ei j[image: -*-] is by
multiplication by a scalar constant. It’s just Hooke’s law. It must be
that Si j=(const) ei j[image: -*-].” But that’s not quite right;
there could also be the unit tensor δi j[image: -*-] multiplied by
some scalar, linearly related to ei j[image: -*-]. The only invariant you can
make that is linear in the e[image: -*-]’s is ∑ei i[image: -*-]. (It transforms
like x2+y2+z2[image: -*-], which is a scalar.) So the most general form for the
equation relating Si j[image: -*-] to ei j[image: -*-]—for isotropic materials—is

[image: -*-][image: -*-]
(39.20)




(The first constant is usually written as two times μ[image: -*-]; then
the coefficient μ[image: -*-] is equal to the shear modulus we defined in the
last chapter.) The constants μ[image: -*-] and λ[image: -*-] are called the
Lamé elastic constants. Comparing
Eq. (39.20) with Eq. (39.12), you see that

[image: -*-][image: -*-]
(39.21)




So we have proved that Eq. (39.19) is indeed true. You
also see that the elastic properties of an isotropic material are
completely given by two constants, as we said in the last chapter.





The C[image: -*-]’s can be put in terms of any two of the elastic constants we
have used earlier—for instance, in terms of Young’s modulus Y[image: -*-] and
Poisson’s ratio σ[image: -*-]. We will leave it for you to show that

[image: -*-][image: -*-]
(39.22)












39–3 The motions in an elastic body

[image: -][image: -]
Fig. 39–5. A small volume element V[image: -*-] bounded by the surface A[image: -*-].





We have pointed out that for an elastic body in equilibrium the
internal stresses adjust themselves to make the energy a minimum. Now
we take a look at what happens when the internal forces are not
in equilibrium. Let’s say we have a small piece of the material inside
some surface A[image: -*-]. See Fig. 39–5. If the piece is in equilibrium, the
total force F[image: -*-] acting on it must be zero. We can think of this
force as being made up of two parts. There could be one part due to
“external” forces like gravity, which act from a distance on the
matter in the piece to produce a force per unit
volume fext[image: -*-]. The total external force Fext[image: -*-] is
the integral of fext[image: -*-] over the volume of the piece:

[image: -*-][image: -*-]
(39.23)




In equilibrium, this force would be balanced by the total
force Fint[image: -*-] from the neighboring material which acts across
the surface A[image: -*-]. When the piece is not in equilibrium—if it
is moving—the sum of the internal and external forces is equal to
the mass times the acceleration. We would have

[image: -*-][image: -*-]
(39.24)




where ρ[image: -*-] is the density of the material, and [image: \ddot{\FLPr}][image: \ddot{\FLPr}] is its acceleration. We can now combine Eqs. (39.23) and (39.24), writing

[image: -*-][image: -*-]
(39.25)




We will simplify our writing by defining

[image: -*-][image: -*-]
(39.26)




Then Eq. (39.25) is written

[image: -*-][image: -*-]
(39.27)









What we have called Fint[image: -*-] is related to the stresses in
the material. The stress tensor Si j[image: -*-] was defined
(Chapter 31) so that the x[image: -*-]-component of the force d F[image: -*-]
across a surface element d a[image: -*-], whose unit normal is n[image: -*-], is given by

[image: -*-][image: -*-]
(39.28)




The x[image: -*-]-component of Fint[image: -*-] on our little piece is then
the integral of d Fx[image: -*-] over the surface. Substituting this into the
x[image: -*-]-component of Eq. (39.27), we get

[image: -*-][image: -*-]
(39.29)









We have a surface integral related to a volume integral—and that
reminds us of something we learned in electricity. Note that if you
ignore the first subscript x[image: -*-] on each of the S[image: -*-]’s in the left-hand
side of Eq. (39.29), it looks just like the integral of
a quantity “ S ”⋅n[image: -*-]—that is, the normal
component of a vector—over the surface. It would be the flux
of “S[image: -*-]” out of the volume. And this could be written, using Gauss
law, as the volume integral of the divergence of “S[image: -*-]”. It is,
in fact, true whether the x[image: -*-]-subscript is there or not—it is just a
mathematical theorem you get by integrating by parts. In other words,
we can change Eq. (39.29) into

[image: -*-][image: -*-]
(39.30)




Now we can leave off the volume integrals and write the differential
equation for the general component of f[image: -*-] as

[image: -*-][image: -*-]
(39.31)




This tells us how the force per unit volume is related to the stress
tensor Si j[image: -*-].




The theory of the motions inside a solid works this way. If we start out
knowing the initial displacements—given by, say, u[image: -*-]—we can work
out the strains ei j[image: -*-]. From the strains we can get the stresses from
Eq. (39.12). From the stresses we can get the force
density f[image: -*-] in Eq. (39.31). Knowing f[image: -*-], we can get, from
Eq. (39.26), the acceleration [image: \ddot{\FLPr}][image: \ddot{\FLPr}] of the
material, which tells us how the displacements will be changing. Putting
everything together, we get the horrible equation of motion for an
elastic solid. We will just write down the results that come out for an
isotropic material. If you use (39.20) for Si j[image: -*-], and
write the ei j[image: -*-] as [image: \tfrac{1}{2}(\ddpl{u_i}{x_j}+\ddpl{u_j}{x_i})][image: \tfrac{1}{2}(\ddpl{u_i}{x_j}+\ddpl{u_j}{x_i})],
you end up with the vector equation

[image: -*-][image: -*-]
(39.32)









You can, in fact, see that the equation relating f[image: -*-] and u[image: -*-]
must have this form. The force must depend on the second
derivatives of the displacements u[image: -*-]. What second derivatives
of u[image: -*-] are there that are vectors? One
is ∇(∇⋅u)[image: -*-]; that’s a true vector. The only other one
is ∇2u[image: -*-]. So the most general form is

[image: -*-][image: -*-]


which is just (39.32) with a different definition of the
constants. You may be wondering why we don’t have a third term using
∇×∇×u[image: -*-], which is also a vector. But remember that
∇×∇×u[image: -*-] is the same thing
as ∇(∇⋅u)−∇2u[image: -*-], so it is a linear
combination of the two terms we have. Adding it would add nothing
new. We have proved once more that isotropic material has only two
elastic constants.





For the equation of motion of the material, we can
set (39.32) equal to ρ ∂2u/∂t2[image: -*-]—neglecting for now any body forces like gravity—and get

[image: -*-][image: -*-]
(39.33)




It looks something like the wave equation we had in electromagnetism,
except that there is an additional complicating term. For materials
whose elastic properties are everywhere the same we can see what the
general solutions look like in the following way. You will remember
that any vector field can be written as the sum of two vectors: one
whose divergence is zero, and the other whose curl is zero. In other
words, we can put

[image: -*-][image: -*-]
(39.34)




where

[image: -*-][image: -*-]
(39.35)




Substituting u1+u2[image: -*-] for u[image: -*-] in (39.33), we
get



[image: -*-][image: -*-]
(39.36)





We can eliminate u1[image: -*-] by taking the divergence of this equation,



[image: -*-][image: -*-]



Since the operators (∇2[image: -*-]) and (∇⋅[image: -*-]) can be
interchanged, we can factor out the divergence to get

[image: -*-][image: -*-]
(39.37)




Since ∇×u2[image: -*-] is zero by definition, the curl of the
bracket {}[image: -*-] is also zero; so the bracket itself is identically
zero, and

[image: -*-][image: -*-]
(39.38)




This is the vector wave equation for waves which move at the
speed C2=√(λ+2 μ)/ρ[image: -*-]. Since the curl of u2[image: -*-] is zero,
there is no shearing associated with this wave; this wave is just the
compressional—sound-type—wave we discussed in the last chapter,
and the velocity is just what we found for Clong[image: -*-].




In a similar way—by taking the curl of Eq. (39.36)—we
can show that u1[image: -*-] satisfies the
equation

[image: -*-][image: -*-]
(39.39)




This is again a vector wave equation for waves with the
speed C1=√μ/ρ[image: -*-]. Since ∇⋅u1[image: -*-] is zero, u1[image: -*-]
produces no changes in density; the vector u1[image: -*-] corresponds to
the transverse, or shear-type, wave we saw in the last chapter,
and C1=Cshear[image: -*-].




If we wished to know the static stresses in an isotropic material, we
could, in principle, find them by solving Eq. (39.32)
with f[image: -*-] equal to zero—or equal to the static body forces from
gravity such as ρ g[image: -*-]—under certain conditions which are
related to the forces acting on the surfaces of our large block of
material. This is somewhat more difficult to do than the corresponding
problems in electromagnetism. It is more difficult, first, because the
equations are a little more difficult to handle, and second, because
the shape of the elastic bodies we are likely to be interested in are
usually much more complicated. In electromagnetism, we are often
interested in solving Maxwell’s
equations around relatively simple
geometric shapes such as cylinders, spheres, and so on, since these are
convenient shapes for electrical devices. In elasticity, the objects we
would like to analyze may have quite complicated shapes—like a crane
hook, or an automobile crankshaft, or the rotor of a gas turbine. Such
problems can sometimes be worked out approximately by numerical methods,
using the minimum energy principle we mentioned earlier. Another way is
to use a model of the object and measure the internal strains
experimentally, using polarized light.




[image: -][image: -]
Fig. 39–6. Measuring internal stresses with polarized light.





It works this way: When a transparent isotropic material—for example,
a clear plastic like lucite—is put under stress, it becomes
birefringent. If you put polarized light through it, the plane of
polarization will be rotated by an amount related to the stress: by
measuring the rotation, you can measure the stress.
Figure 39–6 shows how such a setup might look.
Figure 39–7 is a photograph of a photoelastic model of a
complicated shape under stress.




[image: -]
Fig. 39–7. A stressed plastic model as seen between crossed polaroids.
[From F. W. Sears, Optics, Addison-Wesley Publishing
Co., Mass., 1949.]








39–4 Nonelastic behavior


In all that has been said so far, we have assumed that stress is
proportional to strain; in general, that is not true.
Figure 39–8 shows a typical stress-strain curve for a
ductile material. For small strains, the stress is proportional to the
strain. Eventually, however, after a certain point, the relationship
between stress and strain begins to deviate from a straight line. For
many materials—the ones we would call “brittle”—the object breaks
for strains only a little above the point where the curve starts to bend
over. In general, there are other complications in the stress-strain
relationship. For example, if you strain an object, the stresses may be
high at first, but decrease slowly with time. Also if you go to high
stresses, but still not to the “breaking” point, when you lower the
strain the stress will return along a different curve. There is a small
hysteresis effect (like the one we saw between B[image: -*-] and H[image: -*-] in magnetic
materials).



[image: -][image: -]
Fig. 39–8. A typical stress-strain relation for large strains.





The stress at which a material will break varies widely from one
material to another. Some materials will break when the maximum
tensile stress reaches a certain value. Other materials will fail
when the maximum shear stress reaches a certain value. Chalk is
an example of a material which is much weaker in tension than in shear.
If you pull on the ends of a piece of blackboard chalk, the chalk will
break perpendicular to the direction of the applied stress, as shown in
Fig. 39–9(a). It breaks perpendicular to the applied force
because it is only a bunch of particles packed together which are easily
pulled apart. The material is, however, much harder to shear, because
the particles get in each other’s way. Now you will remember that when
we had a rod in torsion there was a shear all around it. Also, we showed
that a shear was equivalent to a combination of a tension and
compression at 45°[image: -*-]. For these reasons, if you twist a
piece of blackboard chalk, it will break along a complicated surface
which starts out at 45°[image: -*-] to the axis. A photograph of a piece of
chalk broken in this way is shown in Fig. 39–9(b). The
chalk breaks where the material is in maximum tension.



[image: -][image: -]
Fig. 39–9. (a) A piece of chalk broken by pulling on the ends; (b) a piece
broken by twisting.





Other materials behave in strange and complicated ways. The more
complicated the materials are, the more interesting their behavior. If
we take a sheet of “Saran-Wrap” and crumple it up into a ball and
throw it on the table, it slowly unfolds itself and returns toward its
original flat form. At first sight, we might be tempted to think that
it is inertia which prevents it from returning to its original
form. However, a simple calculation shows that the inertia is several
orders of magnitude too small to account for the effect. There appear
to be two important competing effects: “something” inside the
material “remembers” the shape it had initially and “tries” to get
back there, but something else “prefers” the new shape and
“resists” the return to the old shape.




We will not attempt to describe the mechanism at play in the Saran
plastic, but you can get an idea of how such an effect might come
about from the following model. Suppose you imagine a material
made of long, flexible, but strong, fibers mixed together with some
hollow cells filled with a viscous liquid. Imagine also that there are
narrow pathways from one cell to the next so the liquid can leak
slowly from a cell to its neighbor. When we crumple a sheet of this
stuff, we distort the long fibers, squeezing the liquid out of the
cells in one place and forcing it into other cells which are being
stretched. When we let go, the long fibers try to return to their
original shape. But to do this, they have to force the liquid back to
its original location—which will happen relatively slowly because of
the viscosity. The forces we apply in crumpling the sheet are much
larger than the forces exerted by the fibers. We can crumple the sheet
quickly, but it will return more slowly. It is undoubtedly a
combination of large stiff molecules and smaller, movable ones in the
Saran-Wrap that is responsible for its behavior. This idea also fits
with the fact that the material returns more quickly to its original
shape when it’s warmed up than when it’s cold—the heat increases the
mobility (decreases the viscosity) of the smaller molecules.




Although we have been discussing how Hooke’s law breaks down, the
remarkable thing is perhaps not that Hooke’s law breaks down for large
strains but that it should be so generally true. We can get some idea
of why this might be by looking at the strain energy in a material. To
say that the stress is proportional to the strain is the same thing as
saying that the strain energy varies as the square of the
strain. Suppose we have a rod and we twist it through a small angle θ[image: -*-].
If Hooke’s law holds, the strain energy should be
proportional to the square of θ[image: -*-]. Suppose we were to assume that
the energy were some arbitrary function of the angle; we could write
it as a Taylor expansion about zero angle



[image: -*-][image: -*-]
(39.40)





The torque τ[image: -*-] is the derivative of U[image: -*-] with respect to angle; we
would have

[image: -*-][image: -*-]
(39.41)




Now if we measure our angles from the equilibrium position, the
first term is zero. So the first remaining term is proportional
to θ[image: -*-]; and for small enough angles, it will dominate the term
in θ2[image: -*-]. [Actually, materials are sufficiently symmetric internally
so that τ (θ)=−τ (−θ)[image: -*-]; the term in θ2[image: -*-] will be
zero, and the departures from linearity would come only from the
θ3[image: -*-] term. There is, however, no reason why this should be true
for compressions and tensions.] The thing we have not explained is why
materials usually break soon after the higher-order terms become
significant.








39–5 Calculating the elastic constants


As our last topic on elasticity we would like to show how one could
try to calculate the elastic constants of a material, starting with
some knowledge of the properties of the atoms which make up the
material. We will take only the simple case of an ionic cubic
crystal like sodium chloride. When a crystal is strained, its volume
or its shape is changed. Such changes result in an increase in the
potential energy of the crystal. To calculate the change in strain
energy, we have to know where each atom goes. In complicated crystals,
the atoms will rearrange themselves in the lattice in very complicated
ways to make the total energy as small as possible. This makes the
computation of the strain energy rather difficult. In the case of a
simple cubic crystal, however, it is easy to see what will happen. The
distortions inside the crystal will be geometrically similar to the
distortions of the outside boundaries of the crystal.




We can calculate the elastic constants for a cubic crystal in the
following way. First, we assume some force law between each pair of
atoms in the crystal. Then, we calculate the change in the internal
energy of the crystal when it is distorted from its equilibrium
shape. This gives us a relation between the energy and the strains
which is quadratic in all the strains. Comparing the energy obtained
this way with Eq. (39.13), we can identify the
coefficient of each term with the elastic constants Ci j k l[image: -*-].




For our example we will assume a simple force law: that the force
between neighboring atoms is a central force, by which we mean
that it acts along the line between the two atoms. We would expect the
forces in ionic crystals to be like this, since they are just
primarily Coulomb forces. (The forces of covalent bonds are usually
more complicated, since they can exert a sideways push on a nearby
atom; we will leave out this complication.) We are also going to
include only the forces between each atom and its nearest and
next-nearest neighbors. In other words, we will make an
approximation which neglects all forces beyond the next-nearest
neighbor. The forces we will include are shown for the x y[image: -*-]-plane in
Fig. 39–10(a). The corresponding forces in the y z[image: -*-]- and z x[image: -*-]-planes
also have to be included.



[image: -][image: -][image: -][image: -]
Fig. 39–10. (a) The interatomic forces we are taking into account; (b) a
model in which the atoms are connected by springs.





Since we are only interested in the elastic coefficients which apply
to small strains, and therefore only want the terms in the energy
which vary quadratically with the strains, we can imagine that the
force between each atom pair varies linearly with the
displacements. We can then imagine that each pair of atoms is joined
by a linear spring, as drawn in Fig. 39–10(b). All of the springs
between a sodium atom and a chlorine atom should have the same spring
constant, say k1[image: -*-]. The springs between two sodiums and between two
chlorines could have different constants, but we will make our
discussion simpler by taking them equal; we call them k2[image: -*-]. (We could
come back later and make them different after we have seen how the
calculations go.)



[image: -][image: -]
Fig. 39–11. The displacements of the nearest and next-nearest neighbors of
atom 1 (exaggerated).





Now we assume that the crystal is distorted by a homogeneous strain
described by the strain tensor ei j[image: -*-]. In general, it will have
components involving x[image: -*-], y[image: -*-], and z[image: -*-]; but we will consider now only a
strain with the three components ex x[image: -*-], ex y[image: -*-], and ey y[image: -*-] so
that it will be easy to visualize. If we pick one atom as our origin,
the displacement of every other atom is given by equations like
Eq. (39.9):

[image: -*-][image: -*-]
(39.42)




Suppose we call the atom at x=y=0[image: -*-] “atom 1” and number its
neighbors in the x y[image: -*-]-plane as shown in Fig. 39–11. Calling
the lattice constant a[image: -*-], we get the x[image: -*-] and y[image: -*-] displacements
ux[image: -*-] and uy[image: -*-] listed in Table 39–1.





Table 39–1. 



[image: --][image: --]


Now we can calculate the energy stored in the springs, which is k/2[image: -*-]
times the square of the extension for each spring. For example, the
energy in the horizontal spring between atom 1 and atom 2 is

[image: -*-][image: -*-]
(39.43)




Note that to first order, the y[image: -*-]-displacement of atom 2 does not
change the length of the spring between atom 1 and atom 2. To get
the strain energy in a diagonal spring, such as that to atom 3,
however, we need to calculate the change in length due to both the
horizontal and vertical displacements. For small displacements from
the original cube, we can write the change in the distance to atom 3
as the sum of the components of ux[image: -*-] and uy[image: -*-] in the diagonal
direction, namely as

[image: -*-][image: -*-]


Using the values of ux[image: -*-] and uy[image: -*-] from the table, we get the energy

[image: -*-][image: -*-]
(39.44)









For the total energy for all the springs in the x y[image: -*-]-plane, we need the
sum of eight terms like (39.43) and (39.44).
Calling this energy U0[image: -*-], we get

[image: -*-][image: -*-]
(39.45)




To get the total energy of all the springs connected to atom 1, we
must make one addition to the energy in Eq. (39.45). Even
though we have only x[image: -*-]- and y[image: -*-]-components of the strain, there are
still some energies associated with the next-nearest neighbors off the
x y[image: -*-]-plane. This additional energy is

[image: -*-][image: -*-]
(39.46)









The elastic constants are related to the energy density w[image: -*-] by
Eq. (39.13). The energy we have calculated is the energy
associated with one atom, or rather, it is twice the energy per
atom, since one-half of the energy of each spring should be assigned to
each of the two atoms it joins. Since there are 1/a3[image: -*-] atoms per unit
volume, w[image: -*-] and U0[image: -*-] are related by

[image: -*-][image: -*-]







To find the elastic constants Ci j k l[image: -*-], we need only to expand out the
squares in Eq. (39.45)—adding the terms
of (39.46)—and compare the coefficients of ei j ek l[image: -*-]
with the corresponding coefficient in Eq. (39.13). For
example, collecting the terms in [image: e_{xx}^2][image: e_{xx}^2] and in [image: e_{yy}^2][image: e_{yy}^2], we get
the factor

[image: -*-][image: -*-]


so

[image: -*-][image: -*-]


For the remaining terms, there is a slight complication. Since we
cannot distinguish the product of two terms like ex x ey y[image: -*-], from
ey y ex x[image: -*-], the coefficient of such terms in our energy is equal
to the sum of two terms in Eq. (39.13). The coefficient
of ex x ey y[image: -*-] in Eq. (39.45) is 2 k2[image: -*-], so we have
that

[image: -*-][image: -*-]


But because of the symmetry in our crystal, Cx x y y=Cy y x x[image: -*-], so we
have that

[image: -*-][image: -*-]


By a similar process, we can also get

[image: -*-][image: -*-]


Finally, you will notice that any term which involves either x[image: -*-] or y[image: -*-]
only once is zero—as we concluded earlier from symmetry arguments.
Summarizing our results:

[image: -*-][image: -*-]
(39.47)









We have been able to relate the bulk elastic constants to the atomic
properties which appear in the constants k1[image: -*-] and k2[image: -*-]. In our
particular case, Cx y x y=Cx x y y[image: -*-]. It turns out—as you can
perhaps see from the way the calculations went—that these terms are
always equal for a cubic crystal, no matter how many force
terms are taken into account, provided only that the forces act
along the line joining each pair of atoms—that is, so long as the
forces between atoms are like springs and don’t have a sideways part
such as you might get from a cantilevered beam (and you do get in
covalent bonds).




We can check this conclusion with the experimental measurements of the
elastic constants. In Table 39–2 we give the observed
values of the three elastic coefficients for several cubic
crystals.2 You will
notice that Cx x y y[image: -*-] and Cx y x y[image: -*-] are, in general, not equal. The
reason is that in metals like sodium and potassium the interatomic
forces are not along the line joining the atoms, as we assumed in our
model. Diamond does not obey the law either, because the forces in
diamond are covalent forces and have some directional properties—the
bonds would prefer to be at the tetrahedral angle. The ionic crystals
like lithium fluoride, sodium chloride, and so on, do have nearly all
the physical properties assumed in our model, and the table shows that
the constants Cx x y y[image: -*-] and Cx y x y[image: -*-] are almost equal. It is not
clear why silver chloride should not satisfy the condition
that Cx x y y=Cx y x y[image: -*-].





Table 39–2. Elastic Moduli of Cubic Crystals in 1012[image: -*-] dynes/cm2*[image: -*-]



[image: --][image: --]




	
  
  We
choose for the moment to split the total shear angle θ[image: -*-] into two
equal parts and make the strain symmetric with respect to x[image: -*-]
and y[image: -*-].
  ↩


	
  
  In the literature you will often find that a
different notation is used. For instance, people usually write
Cx x x x=C11[image: -*-], Cx x y y=C12[image: -*-], and Cx y x y=C44[image: -*-].
  ↩






  
    

40 The Flow of Dry Water



40–1 Hydrostatics


The subject of the flow of fluids, and particularly of water,
fascinates everybody. We can all remember, as children, playing in the
bathtub or in mud puddles with the strange stuff. As we get older, we
watch streams, waterfalls, and whirlpools, and we are fascinated by
this substance which seems almost alive relative to solids. The
behavior of fluids is in many ways very unexpected and
interesting—it is the subject of this chapter and the next. The
efforts of a child trying to dam a small stream flowing in the street
and his surprise at the strange way the water works its way out has
its analog in our attempts over the years to understand the flow of
fluids. We have tried to dam the water up—in our understanding—by
getting the laws and the equations that describe the flow. We will
describe these attempts in this chapter. In the next chapter, we will
describe the unique way in which water has broken through the dam and
escaped our attempts to understand it.





We suppose that the elementary properties of water are already known
to you. The main property that distinguishes a fluid from a solid is
that a fluid cannot maintain a shear stress for any length of
time. If a shear is applied to a fluid, it will move under the
shear. Thicker liquids like honey move less easily than fluids like
air or water. The measure of the ease with which a fluid yields is its
viscosity. In this chapter we will consider only situations in which
the viscous effects can be ignored. The effects of viscosity will be
taken up in the next chapter.




[image: -][image: -]
Fig. 40–1. 
In a static fluid the force per unit area across any surface is
normal to the surface and is the same for all orientations of the
surface.





We begin by considering hydrostatics, the theory of liquids at
rest. When liquids are at rest, there are no shear forces (even for
viscous liquids). The law of hydrostatics, therefore, is that the
stresses are always normal to any surface inside the fluid. The normal
force per unit area is called the pressure. From the fact that there
is no shear in a static fluid it follows that the pressure stress is the
same in all directions (Fig. 40-1). We will let you
entertain yourself by proving that if there is no shear on any plane in
a fluid, the pressure must be the same in any direction.




[image: -][image: -]
Fig. 40–2. 
The pressure in a static liquid.





The pressure in a fluid may vary from place to place. For example, in
a static fluid at the earth’s surface the pressure will vary with
height because of the weight of the fluid. If the density ρ[image: -*-] of
the fluid is considered constant, and if the pressure at some
arbitrary zero level is called p0[image: -*-] (Fig. 40-2), then the pressure
at a height h[image: -*-] above this point is p=p0−ρ g h[image: -*-], where g[image: -*-] is the
gravitational force per unit mass. The combination

[image: -*-][image: -*-]


is, therefore, a constant in the static fluid. This relation is
familiar to you, but we will now derive a more general result of which
it is a special case.





If we take a small cube of water, what is the net force on it from the
pressure? Since the pressure at any place is the same in all
directions, there can be a net force per unit volume only because the
pressure varies from one point to another. Suppose that the pressure
is varying in the x[image: -*-]-direction—and we take the coordinate
directions parallel to the cube edges. The pressure on the face at x[image: -*-]
gives the force p Δ y Δ z[image: -*-] (Fig. 40-3), and the
pressure on the face at x+Δ x[image: -*-] gives the
force −[p+(∂p/∂x) Δ x] Δ y Δ z[image: -*-], so that the
resultant force is −(∂p/∂x) Δ x Δ y Δ z[image: -*-]. If
we take the remaining pairs of faces of the cube, we easily see that
the pressure force per unit volume is −∇p[image: -*-]. If there are
other forces in addition—such as gravity—then the pressure must
balance them to give equilibrium.




[image: -][image: -]
Fig. 40–3. 
The net pressure force on a cube is −∇p[image: -*-] per unit volume.





Let’s take a circumstance in which such an additional force can be
described by a potential energy, as would be true in the case of
gravitation; we will let ϕ[image: -*-] stand for the potential energy per
unit mass. (For gravity, for instance, ϕ[image: -*-] is just g z[image: -*-].) The force
per unit mass is given in terms of the potential by −∇ϕ[image: -*-],
and if ρ[image: -*-] is the density of the fluid, the force per unit volume
is −ρ ∇ϕ[image: -*-]. For equilibrium this force per unit volume
added to the pressure force per unit volume must give zero:

[image: -*-][image: -*-]
(40.1)




Equation (40.1) is the equation of hydrostatics. In
general, it has no solution. If the density varies in
space in an arbitrary way, there is no way for the forces to be in
balance, and the fluid cannot be in static equilibrium. Convection
currents will start up. We can see this from the equation since the
pressure term is a pure gradient, whereas for variable ρ[image: -*-] the
other term is not. Only when ρ[image: -*-] is a constant is the potential
term a pure gradient. Then the equation has a solution

[image: -*-][image: -*-]


Another possibility which allows hydrostatic equilibrium is for ρ[image: -*-]
to be a function only of p[image: -*-]. However, we will leave the subject of
hydrostatics because it is not nearly so interesting as the situation
when fluids are in motion.





 


40–2 The equations of motion


First, we will discuss fluid motions in a purely abstract, theoretical
way and then consider special examples. To describe the motion of a
fluid, we must give its properties at every point. For example, at
different places, the water (let us call the fluid “water”) is
moving with different velocities. To specify the character of
the flow, therefore, we must give the three components of velocity at
every point and for any time. If we can find the equations that
determine the velocity, then we would know how the liquid moves at all
times. The velocity, however, is not the only property that the fluid
has which varies from point to point. We have just discussed the
variation of the pressure from point to point. And there are
still other variables. There may also be a variation of density
from point to point. In addition, the fluid may be a conductor and
carry an electric current whose density j[image: -*-] varies from
point to point in magnitude and direction. There may be a
temperature which varies from point to point, or a
magnetic field, and so on. So the number of fields needed to
describe the complete situation will depend on how complicated the
problem is. There are interesting phenomena when currents and
magnetism play a dominant part in determining the behavior of the
fluid; the subject is called magnetohydrodynamics, and great
attention is being paid to it at the present time. However, we are not
going to consider these more complicated situations because there are
already interesting phenomena at a lower level of complexity, and even
the more elementary level will be complicated enough.





We will take the situation where there is no magnetic field and no
conductivity, and we will not worry about the temperature because we
will suppose that the density and pressure determine in a unique manner
the temperature at any point. As a matter of fact, we will reduce the
complexity of our work by making the assumption that the density is a
constant—we imagine that the fluid is essentially incompressible.
Putting it another way, we are supposing that the variations of pressure
are so small that the changes in density produced thereby are
negligible. If that is not the case, we would encounter phenomena
additional to the ones we will be discussing here—for example, the
propagation of sound or of shock waves. We have already discussed the
propagation of sound and shocks to some extent, so we will now isolate
our consideration of hydrodynamics from these other phenomena by making
the approximation that the density ρ[image: -*-] is a constant. It is easy to
determine when the approximation of constant ρ[image: -*-] is a good one. We can
say that if the velocities of flow are much less than the speed of a
sound wave in the fluid, we do not have to worry about variations in
density. The escape that water makes in our attempts to understand it is
not related to the approximation of constant density. The complications
that do permit the escape will be discussed in the next chapter.





In the general theory of fluids one must begin with an equation
of state for the fluid which connects the pressure to the density. In
our approximation this equation of state is simply

[image: -*-][image: -*-]


This then is the first relation for our variables. The next relation
expresses the conservation of matter—if matter flows away from a
point, there must be a decrease in the amount left behind. If the
fluid velocity is v[image: -*-], then the mass which flows in a unit time
across a unit area of surface is the component of ρ v[image: -*-] normal
to the surface. We have had a similar relation in electricity. We also
know from electricity that the divergence of such a quantity gives the
rate of decrease of the density per unit time. In the same way, the
equation

[image: -*-][image: -*-]
(40.2)




expresses the conservation of mass for a fluid; it is the hydrodynamic
equation of continuity. In our approximation, which is the
incompressible fluid approximation, ρ[image: -*-] is a constant, and the
equation of continuity is simply

[image: -*-][image: -*-]
(40.3)




The fluid velocity v[image: -*-]—like the magnetic field B[image: -*-]—has
zero divergence. (The hydrodynamic equations are often closely
analogous to the electrodynamic equations; that’s why we studied
electrodynamics first. Some people argue the other way; they think
that one should study hydrodynamics first so that it will be easier to
understand electricity afterwards. But electrodynamics is really much
easier than hydrodynamics.)





We will get our next equation from Newton’s law which tells us how the
velocity changes because of the forces. The mass of an element of
volume of the fluid times its acceleration must be equal to the force
on the element. Taking an element of unit volume, and writing the
force per unit volume as f[image: -*-], we have

[image: -*-][image: -*-]


We will write the force density as the sum of three terms. We have
already considered the pressure force per unit volume,
−∇p[image: -*-]. Then there are the “external” forces which act at a
distance—like gravity or electricity. When they are conservative
forces with a potential per unit mass, ϕ[image: -*-], they give a force
density −ρ ∇ϕ[image: -*-]. (If the external forces are not
conservative, we would have to write fext[image: -*-] for the
external force per unit volume.) Then there is another “internal”
force per unit volume, which is due to the fact that in a
flowing fluid there can also be a shearing stress. This is
called the viscous force, which we will
write fvisc[image: -*-]. Our equation of motion is

[image: -*-][image: -*-]
(40.4)









For this chapter we are going to suppose that the liquid is “thin” in
the sense that the viscosity is unimportant, so we will
omit fvisc[image: -*-]. When we drop the viscosity term, we will be
making an approximation which describes some ideal stuff rather than
real water. John von Neumann was
well aware of the tremendous difference between what happens when you
don’t have the viscous terms and when you do, and he was also aware
that, during most of the development of hydrodynamics until about 1900,
almost the main interest was in solving beautiful mathematical
problems with this approximation which had almost nothing to do with
real fluids. He characterized the theorist who made such analyses as a
man who studied “dry water.” Such analyses leave out an
essential property of the fluid. It is because we are leaving
this property out of our calculations in this chapter that we have given
it the title “The Flow of Dry Water.”  We are postponing a discussion
of real water to the next chapter.




[image: -][image: -]
Fig. 40–4. 
The acceleration of a fluid particle.





If we leave out fvisc[image: -*-], we have in Eq. (40.4)
everything we need except an expression for the acceleration. You might
think that the formula for the acceleration of a fluid particle would be
very simple, for it seems obvious that if v[image: -*-] is the velocity of a
fluid particle at some place in the fluid, the acceleration would just
be ∂v/∂t[image: -*-]. It is not—and for a rather subtle reason.
The derivative ∂v/∂t[image: -*-], is the rate at which the
velocity v (x,y,z,t)[image: -*-] changes at a fixed point in space. What we need
is how fast the velocity changes for a particular piece of fluid.
Imagine that we mark one of the drops of water with a colored speck so
we can watch it. In a small interval of time Δ t[image: -*-], this drop will
move to a different location. If the drop is moving along some path as
sketched in Fig. 40-4, it might in Δ t[image: -*-] move from
P1[image: -*-] to P2[image: -*-]. In fact, it will move in the x[image: -*-]-direction by an
amount vx Δ t[image: -*-], in the y[image: -*-]-direction by the amount vy Δ t[image: -*-], and
in the z[image: -*-]-direction by the amount vz Δ t[image: -*-]. We see that, if
v (x,y,z,t)[image: -*-] is the velocity of the fluid particle which is
at (x,y,z)[image: -*-] at the time t[image: -*-], then the velocity of the same
particle, at the time t+Δ t[image: -*-] is given by v (x+Δ x,y+Δ y,z+Δ z,t+Δ t)[image: -*-]—with

[image: -*-][image: -*-]


From the definition of the partial derivatives—recall
Eq. (2.7)—we have, to first order, that



[image: -*-][image: -*-]



The acceleration Δ v/Δ t[image: -*-] is

[image: -*-][image: -*-]


We can write this symbolically—treating ∇[image: -*-] as a vector—as

[image: -*-][image: -*-]
(40.5)




Note that there can be an acceleration even
though ∂v/∂t=0[image: -*-] so that velocity at a given point is
not changing. As an example, water flowing in a circle at a constant
speed is accelerating even though the velocity at a given point is not
changing. The reason is, of course, that the velocity of a particular
piece of water which is initially at one point on the circle has a
different direction a moment later; there is a centripetal
acceleration.





The rest of our theory is just mathematical—finding solutions of the
equation of motion we get by putting the acceleration (40.5)
into Eq. (40.4). We get

[image: -*-][image: -*-]
(40.6)




where viscosity has been omitted. We can rearrange this equation by
using the following identity from vector analysis:

[image: -*-][image: -*-]


If we now define a new vector field Ω[image: -*-], as the
curl of v[image: -*-],

[image: -*-][image: -*-]
(40.7)




the vector identity can be written as

[image: -*-][image: -*-]


and our equation of motion (40.6) becomes

[image: -*-][image: -*-]
(40.8)




You can verify that Eqs. (40.6)
and (40.8) are equivalent by checking that the components of
the two sides of the equation are equal—and making use
of (40.7).





The vector field Ω[image: -*-] is called the
vorticity. If the vorticity is zero everywhere,
we say that the flow is irrotational. We have already defined in
Section 3-5 a thing called the circulation of a
vector field. The circulation around any closed loop in a fluid is the
line integral of the fluid velocity, at a given instant of time, around
that loop:

[image: -*-][image: -*-]


The circulation per unit area for an infinitesimal loop is
then—using Stokes’ theorem—equal to ∇×v[image: -*-]. So the
vorticity Ω[image: -*-] is the circulation around a unit area
(perpendicular to the direction of Ω[image: -*-]). It also follows that
if you put a little piece of dirt—not an infinitesimal
point—at any place in the liquid it will rotate with the angular
velocity Ω/2[image: -*-]. Try to see if you can prove that. You can also
check it out that for a bucket of water on a turntable, Ω[image: -*-] is
equal to twice the local angular velocity of the water.





If we are interested only in the velocity field, we can eliminate the
pressure from our equations. Taking the curl of both sides of
Eq. (40.8), remembering that ρ[image: -*-] is a constant and that
the curl of any gradient is zero, and using Eq. (40.3), we get

[image: -*-][image: -*-]
(40.9)




This equation, together with the equations

[image: -*-][image: -*-]
(40.10)




and

[image: -*-][image: -*-]
(40.11)




describes completely the velocity field v[image: -*-]. Mathematically
speaking, if we know Ω[image: -*-] at some time, then we know the curl
of the velocity vector, and we also know that its divergence is zero,
so given the physical situation we have all we need to
determine v[image: -*-] everywhere. (It is just like the situation in magnetism where
we had ∇⋅B=0[image: -*-] and ∇×B=j/ϵ0 c2[image: -*-].)
Thus, a given Ω[image: -*-] determines v[image: -*-] just as a given j[image: -*-]
determines B[image: -*-]. Then, knowing v[image: -*-], Eq. (40.9)
tells us the rate of change of Ω[image: -*-] from which we can get the
new Ω[image: -*-] for the next instant. Using Eq. (40.10),
again we find the new v[image: -*-], and so on. You see how these equations
contain all the machinery for calculating the flow. Note, however,
that this procedure gives the velocity field only; we have lost all
information about the pressure.





We point out one special consequence of our equation. If
Ω=0[image: -*-] everywhere at any time t[image: -*-], ∂Ω/∂t[image: -*-]
also vanishes, so that Ω[image: -*-] is still zero everywhere
at t+Δ t[image: -*-]. We have a solution to the equation; the flow is
permanently irrotational. If a flow was started with zero rotation, it
would always have zero rotation. The equations to be solved then are

[image: -*-][image: -*-]


They are just like the equations for the electrostatic or
magnetostatic fields in free space. We will come back to them and look
at some special problems later.





 


40–3 Steady flow—Bernoulli’s theorem


Now we want to return to the equation of motion, Eq. (40.8),
but limit ourselves to situations in which the flow is “steady.” By
steady flow we mean that at any one place in the fluid the velocity
never changes. The fluid at any point is always replaced by new fluid
moving in exactly the same way. The velocity picture always looks the
same—v[image: -*-] is a static vector field. In the same way that we drew
“field lines” in magnetostatics, we can now draw lines which are
always tangent to the fluid velocity as shown in Fig. 40-5.
These lines are called streamlines.  For
steady flow, they are evidently the actual paths of fluid particles. (In
unsteady flow the streamline pattern changes in time, and the streamline
pattern at any instant does not represent the path of a fluid particle.)




[image: -][image: -]
Fig. 40–5. 
Streamlines in steady fluid flow.





A steady flow does not mean that nothing is happening—atoms in the
fluid are moving and changing their velocities. It only means that
∂v/∂t=0[image: -*-]. Then if we take the dot product of v[image: -*-]
into the equation of motion, the
term v⋅(Ω×v)[image: -*-] drops out, and we are left with

[image: -*-][image: -*-]
(40.12)




This equation says that for a small displacement in the
direction of the fluid velocity the quantity inside the brackets
doesn’t change. Now in steady flow all displacements are along
streamlines, so Eq. (40.12) tells us that for all
the points along a streamline, we can write

[image: -*-][image: -*-]
(40.13)




This is Bernoulli’s theorem. The constant may in general be
different for different streamlines; all we know is that the left-hand
side of Eq. (40.13) is the same all along a given
streamline. Incidentally, we may notice that for steady
irrotational motion for which Ω=0[image: -*-], the
equation of motion (40.8) gives us the relation

[image: -*-][image: -*-]


so that

[image: -*-][image: -*-]
(40.14)




It’s just like Eq. (40.13) except that now
the constant has the same value throughout the fluid.





The theorem of Bernoulli is in fact nothing more than a statement of
the conservation of energy. A conservation theorem such as this gives
us a lot of information about a flow without our actually having to
solve the detailed equations. Bernoulli’s theorem is so important and
so simple that we would like to show you how it can be derived in a
way that is different from the formal calculations we have just
used. Imagine a bundle of adjacent streamlines which form a stream
tube as sketched in Fig. 40-6. Since the walls of the tube consist
of streamlines, no fluid flows out through the wall. Let’s call the
area at one end of the stream tube A1[image: -*-], the fluid velocity
there v1[image: -*-], the density of the fluid ρ1[image: -*-], and the potential
energy ϕ1[image: -*-]. At the other end of the tube, we have the corresponding
quantities A2[image: -*-], v2[image: -*-], ρ2[image: -*-], and ϕ2[image: -*-]. Now after a short
interval of time Δ t[image: -*-], the fluid at A1[image: -*-] has moved a
distance v1 Δ t[image: -*-], and the fluid at A2[image: -*-] has moved a
distance v2 Δ t[image: -*-] [Fig. 40-6(b)]. The conservation of mass
requires that the mass which enters through A1[image: -*-] must be equal to the
mass which leaves through A2[image: -*-]. These masses at these two ends must
be the same:

[image: -*-][image: -*-]


So we have the equality

[image: -*-][image: -*-]
(40.15)




This equation tells us that the velocity varies inversely with the
area of the stream tube if ρ[image: -*-] is constant.




[image: -][image: -][image: -][image: -]Fig. 40–6. 
Fluid motion in a flow tube.





Now we calculate the work done by the fluid pressure. The work done on
the fluid entering at A1[image: -*-] is p1 A1 v1 Δ t[image: -*-], and the work
given up at A2[image: -*-] is p2 A2 v2 Δ t[image: -*-]. The net work on the fluid
between A1[image: -*-] and A2[image: -*-] is, therefore,

[image: -*-][image: -*-]


which must equal the increase in the energy of a mass Δ M[image: -*-] of
fluid in going from A1[image: -*-] to A2[image: -*-]. In other words,

[image: -*-][image: -*-]
(40.16)




where E1[image: -*-] is the energy per unit mass of fluid at A1[image: -*-], and E2[image: -*-]
is the energy per unit mass at A2[image: -*-]. The energy per unit mass of the
fluid can be written as

[image: -*-][image: -*-]


where [image: \tfrac{1}{2}v^2][image: \tfrac{1}{2}v^2] is the kinetic energy per unit mass, ϕ[image: -*-] is
the potential energy per unit mass, and U[image: -*-] is an additional term
which represents the internal energy per unit mass of fluid. The
internal energy might correspond, for example, to the thermal energy
in a compressible fluid, or to chemical energy. All these quantities can
vary from point to point. Using this form for the energies
in (40.16), we have



[image: -*-][image: -*-]



But we have seen that Δ M=ρ A v Δ t[image: -*-], so we get



[image: -*-][image: -*-]
(40.17)





which is the Bernoulli result with an additional term for the internal
energy. If the fluid is incompressible, the internal energy term is the
same on both sides, and we get again that Eq. (40.14) holds
along any streamline.




[image: -][image: -]
Fig. 40–7. 
Flow from a tank.





We consider now some simple examples in which the Bernoulli integral
gives us a description of the flow. Suppose we have water flowing out
of a hole near the bottom of a tank, as drawn in Fig. 40-7. We take
a situation in which the flow speed vout[image: -*-] at the hole is
much larger than the flow speed near the top of the tank; in other
words, we imagine that the diameter of the tank is so large that we
can neglect the drop in the liquid level. (We could make a more
accurate calculation if we wished.) At the top of the tank the
pressure is p0[image: -*-], the atmospheric pressure, and the pressure at the
sides of the jet is also p0[image: -*-]. Now we write our Bernoulli equation
for a streamline, such as the one shown in the figure. At the top of
the tank, we take v[image: -*-] equal to zero and we also take the gravity
potential ϕ[image: -*-] to be zero. At the speed vout[image: -*-], and
ϕ=−g h[image: -*-], so that

[image: -*-][image: -*-]


or

[image: -*-][image: -*-]
(40.18)




This velocity is just what we would get for something which falls the
distance h[image: -*-].  It is not too surprising, since the water at the exit
gains kinetic energy at the expense of the potential energy of the
water at the top. Do not get the idea, however, that you can figure
out the rate that the fluid flows out of the tank by multiplying this
velocity by the area of the hole. The fluid velocities as the jet
leaves the hole are not all parallel to each other but have components
inward toward the center of the stream—the jet is converging. After
the jet has gone a little way, the contraction stops and the
velocities do become parallel. So the total flow is the velocity times
the area at that point. In fact, if we have a discharge opening
which is just a round hole with a sharp edge, the jet contracts to
62[image: -*-] percent of the area of the hole.  The reduced effective area of
the discharge varies for different shapes of discharge tubes, and
experimental contractions are available as tables of efflux
coefficients.




[image: -][image: -]
Fig. 40–8. 
With a re-entrant discharge tube, the stream contracts to
one-half the area of the opening.





If the discharge tube is re-entrant, as shown in Fig. 40-8,
it is possible to prove in a most beautiful way that the efflux
coefficient is exactly 50[image: -*-] percent. We will give just a hint of how the
proof goes. We have used the conservation of energy to get the velocity,
Eq. (40.18), but there is also momentum conservation to
consider. Since there is an outflow of momentum in the discharge jet,
there must be a force applied over the cross section of the discharge
tube. Where does the force come from? The force must come from the
pressure on the walls. As long as the efflux hole is small and away from
the walls, the fluid velocity near the walls of the tank will be very
small. Therefore, the pressure on every face is almost exactly the same
as the static pressure in a fluid at rest—from
Eq. (40.14). Then the static pressure at any point on the
side of the tank must be matched by an equal pressure at the point on
the opposite wall, except at the points on the wall opposite the
charge tube. If we calculate the momentum poured out through the jet by
this pressure, we can show that the efflux coefficient is 1/2[image: -*-]. We
cannot use this method for a discharge hole like that shown in
Fig. 40-7, however, because the velocity increase along the
wall right near the discharge area gives a pressure fall which we are
not able to calculate.




[image: -][image: -]
Fig. 40–9. 
The pressure is lowest where the velocity is highest.





Let’s look at another example—a horizontal pipe with changing cross
section, as shown in Fig. 40-9, with water flowing in one end and
out the other. The conservation of energy, namely Bernoulli’s formula,
says that the pressure is lower in the constricted area where the
velocity is higher. We can easily demonstrate this effect by measuring
the pressure at different cross sections with small vertical columns
of water attached to the flow tube through holes small enough so that
they do not disturb the flow. The pressure is then measured by the
height of water in these vertical columns. The pressure is found to be
less at the constriction than it is on either side. If the area beyond
the constriction comes back to the same value it had before the
constriction, the pressure rises again. Bernoulli’s formula would
predict that the pressure downstream of the constriction should be the
same as it was upstream, but actually it is noticeably less. The
reason that our prediction is wrong is that we have neglected the
frictional, viscous forces which cause a pressure drop along the
tube. Despite this pressure drop the pressure is definitely lower at
the constriction (because of the increased speed) than it is on either
side of it—as predicted by Bernoulli. The speed v2[image: -*-] must certainly
exceed v1[image: -*-] to get the same amount of water through the narrower
tube. So the water accelerates in going from the wide to the narrow
part. The force that gives this acceleration comes from the drop in
pressure.




[image: -][image: -]
Fig. 40–10. 
Proof that v[image: -*-] is not equal to √2 g h[image: -*-].





We can check our results with another simple demonstration. Suppose we
have on a tank a discharge tube which throws a jet of water upward as
shown in Fig. 40-10. If the efflux velocity were
exactly √2 g h[image: -*-], the discharge water should rise to a level even with the
surface of the water in the tank. Experimentally, it falls somewhat
short. Our prediction is roughly right, but again viscous friction
which has not been included in our energy conservation formula has
resulted in a loss of energy.





Have you ever held two pieces of paper close together and tried to
blow them apart? Try it! They come together. The reason, of
course, is that the air has a higher speed going through the
constricted space between the sheets than it does when it gets
outside. The pressure between the sheets is lower than
atmospheric pressure, so they come together rather than separating.





 


40–4 Circulation


We saw at the beginning of the last section that if we have an
incompressible fluid with no circulation, the flow satisfies the
following two equations:

[image: -*-][image: -*-]
(40.19)




They are the same as the equations of electrostatics or magnetostatics
in empty space. The divergence of the electric field is zero when
there are no charges, and the curl of the electrostatic field is
always zero. The curl of the magnetostatic field is zero if there are
no currents, and the divergence of the magnetic field is always
zero. Therefore, Eqs. (40.19) have the same solutions as
the equations for E[image: -*-] in electrostatics or for B[image: -*-] in
magnetostatics. As a matter of fact, we have already solved the
problem of the flow of a fluid past a sphere, as an electrostatic
analogy, in Section 12-5. The electrostatic analog is a
uniform electric field plus a dipole field. The dipole field is so
adjusted that the flow velocity normal to the surface of the sphere is
zero. The same problem for the flow past a cylinder can be worked out
in a similar way by using a suitable line dipole with a uniform flow
field. This solution holds for a situation in which the fluid velocity
at large distances is constant—both in magnitude and direction. The
solution is sketched in Fig. 40-11(a).




[image: -][image: -][image: -][image: -][image: -][image: -]Fig. 40–11. 
(a) Ideal fluid flow past a cylinder. (b) Circulation around a
cylinder. (c) The superposition of (a) and (b).





There is another solution for the flow around a cylinder when the
conditions are such that the fluid at large distances moves in circles
around the cylinder. The flow is, then, circular everywhere, as in
Fig. 40-11(b). Such a flow has a circulation around the cylinder,
although ∇×v[image: -*-] is still zero in the fluid. How can
there be circulation without a curl? We have a circulation around the
cylinder because the line integral of v[image: -*-] around any loop
enclosing the cylinder is not zero. At the same time, the line
integral of v[image: -*-] around any closed path which does not
include the cylinder is zero. We saw the same thing when we found the
magnetic field around a wire. The curl of B[image: -*-] was zero outside of
the wire, although a line integral of B[image: -*-] around a path which
encloses the wire did not vanish. The velocity field in an
irrotational circulation around a cylinder is precisely the same as
the magnetic field around a wire. For a circular path with its center
at the center of the cylinder, the line integral of the velocity is

[image: -*-][image: -*-]


For irrotational flow the integral must be independent of r[image: -*-]. Let’s
call the constant value C[image: -*-], then we have that

[image: -*-][image: -*-]
(40.20)




where v[image: -*-] is the tangential velocity, and r[image: -*-] is the distance from the
axis.





There is a nice demonstration of a fluid circulating around a
hole. You take a transparent cylindrical tank with a drain hole in the
center of the bottom. You fill it with water, stir up some circulation
with a stick, and pull the drain plug. You get the pretty effect shown
in Fig. 40-12. (You’ve seen a similar thing many times in the
bathtub!) Although you put in some ω[image: -*-] at beginning, it soon dies
down because of viscosity and the flow becomes irrotational—although
still with some circulation around the hole.




[image: -][image: -]
Fig. 40–12. 
Water with circulation draining from a tank.





From the theory, we can calculate the shape of the inner surface of
the water. As a particle of the water moves inward it picks up
speed. From Eq. (40.20) the tangential velocity goes
as 1/r[image: -*-]—it’s just from the conservation of angular momentum, like the
skater pulling in her arms. Also the radial velocity goes as 1/r[image: -*-].
Ignoring the tangential motion, we have water going radially
inward toward a hole; from ∇⋅v=0[image: -*-], it follows that the
radial velocity is proportional to 1/r[image: -*-]. So the total velocity also
increases as 1/r[image: -*-], and the water goes in along Archimedean
spirals. The air-water surface is all at atmospheric pressure, so it
must have—from Eq. (40.14)—the property that

[image: -*-][image: -*-]


But v[image: -*-] is proportional to 1/r[image: -*-], so the shape of the surface is

[image: -*-][image: -*-]







An interesting point—which is not true in general but is true
for incompressible, irrotational flow—is that if we have one solution
and a second solution, then the sum is also a solution. This is true
because the equations in (40.19) are linear. The complete
equations of hydrodynamics, Eqs.
(40.9), (40.10), and (40.11), are
not linear, which makes a vast difference. For the irrotational flow
about the cylinder, however, we can superpose the flow of
Fig. 40-11(a) on the flow of Fig. 40-11(b) and
get the new flow pattern shown in Fig. 40-11(c). This flow
is of special interest. The flow velocity is higher on the upper side of
the cylinder than on the lower side. The pressures are therefore
lower on the upper side than on the lower side. So when we
have a combination of a circulation around a cylinder and a net
horizontal flow, there is a net vertical force on the
cylinder—it is called a lift force. Of course, if there is no
circulation, there is no net force on any body according to our theory
of “dry” water.





 


40–5 Vortex lines


We have already written down the general equations for the flow of an
incompressible fluid when there may be vorticity. They are

[image: -*-][image: -*-]


The physical content of these equations has been described in words by
Helmholtz in terms of three
theorems. First, imagine that in the fluid we were to draw vortex
lines rather than streamlines. By vortex lines we mean field lines that
have the direction of Ω[image: -*-] and have a density in any region
proportional to the magnitude of Ω[image: -*-]. From II the divergence
of Ω[image: -*-] is always zero
(remember—Section 3-7—that the divergence of a curl
is always zero). So vortex lines are like lines of B[image: -*-]—they never
start or stop, and will tend to go in closed loops. Now
Helmholtz described III in
words by the following statement: the vortex lines move with the
fluid. This means that if you were to mark the fluid particles along
some vortex lines—by coloring them with ink, for example—then as the
fluid moves and carries those particles along, they will always mark the
new positions of the vortex lines. In whatever way the atoms of the
liquid move, the vortex lines move with them. That is one way to
describe the laws.





It also suggests a method for solving any problems. Given the initial
flow pattern—say v[image: -*-] everywhere—then you can
calculate Ω[image: -*-]. From the v[image: -*-] you can also tell where the
vortex lines are going to be a little later—they move with the
speed v[image: -*-]. With the new Ω[image: -*-] you can use I and II to find the
new v[image: -*-]. (That’s just like the problem of finding B[image: -*-], given the
currents.) If we are given the flow pattern at one instant we can in
principle calculate it for all subsequent times. We have the general
solution for nonviscous flow.




[image: -][image: -][image: -][image: -]Fig. 40–13. 
(a) A group of vortex lines at t[image: -*-]; (b) the same lines at a
later time t′[image: -*-].





We would like to show how Helmholtz’s statement—and, therefore, III—can
be at least partly understood. It is really just the law of conservation
of angular momentum applied to the fluid. Suppose we imagine a small
cylinder of the liquid whose axis is parallel to the vortex lines, as in
Fig. 40-13(a). At some time later, this same piece
of fluid will be somewhere else. Generally it will occupy a cylinder
with a different diameter and be in a different place. It may also have
a different orientation, say as in Fig. 40-13(b). If,
however, the diameter has decreased as shown in Fig. 40-13,
the length will have increased to keep the volume constant (since we are
assuming an incompressible fluid). Also, since the vortex lines are
stuck with the material, their density will go up as the cross-sectional
area goes down. The product of the vorticity Ω[image: -*-] and area A[image: -*-] of
the cylinder will remain constant, so according to
Helmholtz, we should have

[image: -*-][image: -*-]
(40.21)









Now notice that with zero viscosity all the forces on the surface of
the cylindrical volume (or any volume, for that matter) are
perpendicular to the surface. The pressure forces can cause the volume
to be moved from place to place, or can cause it to change shape; but
with no tangential forces the magnitude of the angular
momentum of the material inside cannot change. The angular momentum
of the liquid in the little cylinder is its moment of inertia I[image: -*-]
times the angular velocity of the liquid, which is proportional to the
vorticity Ω[image: -*-]. For a cylinder, the moment of inertia is
proportional to m r2[image: -*-]. So from the conservation of angular momentum,
we would conclude that

[image: -*-][image: -*-]


But the mass is the same, M1=M2[image: -*-], and the areas are proportional
to R2[image: -*-], so we get again just Eq. (40.21). Helmholtz’s
statement—which is equivalent to III—is just a consequence of the fact
that in the absence of viscosity the angular momentum of an element of
the fluid cannot change.




[image: -][image: -]
Fig. 40–14. 
Making a travelling vortex ring.





There is a nice demonstration of a moving vortex which is made with
the simple apparatus of Fig. 40-14. It is a “drum” two feet in
diameter and two feet long made by stretching a thick rubber sheet
over the open end of a cylindrical “box.” The “bottom”—the drum
is tipped on its side—is solid except for a 3-inch diameter
hole. If you give a sharp blow on the rubber diaphragm with your hand,
a vortex ring is projected out of the hole. Although the vortex is
invisible, you can tell it’s there because it will blow out a candle
10[image: -*-] to 20[image: -*-] feet away. By the delay in the effect, you can tell that
“something” is travelling at a finite speed. You can see better what
is going on if you first blow some smoke into the box. Then you see
the vortex as a beautiful round “smoke ring.”




[image: -][image: -][image: -][image: -]Fig. 40–15. 
A moving vortex ring (a smoke ring). (a) The vortex lines.
(b) A cross section of the ring.





The smoke ring is a torus-shaped bundle of vortex lines, as shown in 
Fig. 40-15(a). 
Since Ω=∇×v[image: -*-], these vortex lines
represent also a circulation of v[image: -*-] as shown in part (b) of the
figure. We can understand the forward motion of the ring in the
following way: The circulating velocity around the bottom of
the ring extends up to the top of the ring, having there a forward
motion. Since the lines of Ω[image: -*-] move with the fluid, they also
move ahead with the velocity v[image: -*-]. (Of course, the circulation
of v[image: -*-] around the top part of the ring is responsible for the forward
motion of the vortex lines at the bottom.)





We must now mention a serious difficulty. We have already noted that
Eq. (40.9) says that, if Ω[image: -*-] is initially zero,
it will always be zero. This result is a great failure of the theory
of “dry” water, because it means that once Ω[image: -*-] is zero it is
always zero—it is impossible to produce any vorticity
under any circumstance.  Yet, in our simple demonstration with the
drum, we can generate a vortex ring starting with air which was
initially at rest. (Certainly, v=0[image: -*-], Ω=0[image: -*-]
everywhere in the box before we hit it.) Also, we all know that we can
start some vorticity in a lake with a paddle. Clearly, we must go to a
theory of “wet” water to get a complete understanding of the
behavior of a fluid.





Another feature of the dry water theory which is incorrect is the
supposition we make regarding the flow at the boundary between it and
the surface of a solid.  When we discussed the flow past a
cylinder—as in Fig. 40-11, for example—we permitted the fluid to
slide along the surface of the solid. In our theory, the velocity at a
solid surface could have any value depending on how it got started,
and we did not consider any “friction” between the fluid and the
solid. It is an experimental fact, however, that the velocity of a
real fluid always goes to zero at the surface of a solid
object. Therefore, our solution for the cylinder, with or without
circulation, is wrong—as is our result regarding the generation of
vorticity. We will tell you about the more correct theories in the
next chapter.





 


  
    

41 The Flow of Wet Water



41–1 Viscosity


In the last chapter we discussed the behavior of water, disregarding
the phenomenon of viscosity. Now we would like to discuss the
phenomena of the flow of fluids, including the effects of
viscosity. We want to look at the real behavior of fluids. We
will describe qualitatively the actual behavior of the fluids under
various different circumstances so that you will get some feel for the
subject. Although you will see some complicated equations and hear
about some complicated things, it is not our purpose that you should
learn all these things. This is, in a sense, a “cultural” chapter
which will give you some idea of the way the world is. There is only
one item which is worth learning, and that is the simple definition of
viscosity which we will come to in a moment. The rest is only for your
entertainment.




In the last chapter we found that the laws of motion of a fluid are
contained in the equation

[image: -*-][image: -*-]
(41.1)




In our “dry” water approximation we left out the last term, so we
were neglecting all viscous effects. Also, we sometimes made an
additional approximation by considering the fluid as incompressible;
then we had the additional equation
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This last approximation is often quite good—particularly when flow
speeds are much slower than the speed of sound. But in real fluids it
is almost never true that we can neglect the internal friction that we
call viscosity; most of the interesting things that happen come from
it in one way or another. For example, we saw that in “dry” water
the circulation never changes—if there is none to start out with,
there will never be any. Yet, circulation in fluids is an everyday
occurrence. We must fix up our theory.




We begin with an important experimental fact. When we worked out the
flow of “dry” water around or past a cylinder—the so-called
“potential flow”—we had no reason not to permit the water to have
a velocity tangent to the surface; only the normal component had to be
zero. We took no account of the possibility that there might be a
shear force between the liquid and the solid. It turns out—although
it is not at all self-evident—that in all circumstances where it has
been experimentally checked, the velocity of a fluid is exactly
zero at the surface of a solid. You have noticed, no doubt, that the
blade of a fan will collect a thin layer of dust—and that it is
still there after the fan has been churning up the air. You can see
the same effect even on the great fan of a wind tunnel. Why isn’t the
dust blown off by the air? In spite of the fact that the fan blade is
moving at high speed through the air, the speed of the air relative to
the fan blade goes to zero right at the surface. So the very smallest
dust particles are not disturbed.1 We must modify
the theory to agree with the experimental fact that in all ordinary
fluids, the molecules next to a solid surface have zero velocity
(relative to the surface).2



[image: -][image: -]
Fig. 41–1. Viscous drag between two parallel plates.





We originally characterized a liquid by the fact that if you put a
shearing stress on it—no matter how small—it would give way. It
flows. In static situations, there are no shear stresses. But before
equilibrium is reached—as long as you still push on it—there can
be shear forces. Viscosity describes these shear forces which
exist in a moving fluid. To get a measure of the shear forces during
the motion of a fluid, we consider the following kind of
experiment. Suppose that we have two solid plane surfaces with water
between them, as in Fig. 41–1, and we keep one stationary while
moving the other parallel to it at the slow speed v0[image: -*-]. If you
measure the force required to keep the upper plate moving, you find
that it is proportional to the area of the plates and to v0/d[image: -*-],
where d[image: -*-] is the distance between the plates. So the shear
stress F/A[image: -*-] is proportional to v0/d[image: -*-]:
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The constant of proportionality η[image: -*-] is called the coefficient
of viscosity.



[image: -][image: -]
Fig. 41–2. The shear stress in a viscous fluid.





If we have a more complicated situation, we can always consider a
little, flat, rectangular cell in the water with its faces parallel to
the flow, as in Fig. 41–2. The shear force across this cell is given
by

[image: -*-][image: -*-]
(41.2)




Now, ∂vx/∂y[image: -*-] is the rate of change of the shear strain
we defined in Chapter 39, so for a liquid, the shear
stress is proportional to the rate of change of the shear
strain.




In the general case we write

[image: -*-][image: -*-]
(41.3)




If there is a uniform rotation of the fluid, ∂vx/∂y[image: -*-] is the
negative of ∂vy/∂x[image: -*-] and Sx y[image: -*-] is zero—as it should be
since there are no stresses in a uniformly rotating fluid. (We did a
similar thing in defining ex y[image: -*-] in Chapter 39.) There
are, of course, the corresponding expressions for Sy z[image: -*-] and Sz x[image: -*-].



[image: -][image: -]
Fig. 41–3. The flow in a fluid between two concentric cylinders rotating
at different angular velocities.





As an example of the application of these ideas, we consider the
motion of a fluid between two coaxial cylinders. Let the inner one
have the radius a[image: -*-] and the peripheral velocity va[image: -*-], and let the
outer one have radius b[image: -*-] and velocity vb[image: -*-]. See Fig. 41–3. We
might ask, what is the velocity distribution between the cylinders? To
answer this question, we begin by finding a formula for the viscous
shear in the fluid at a distance r[image: -*-] from the axis. From the symmetry
of the problem, we can assume that the flow is always tangential and
that its magnitude depends only on r[image: -*-]; v=v (r)[image: -*-]. If we watch a speck
in the water at the radius r[image: -*-], its coordinates as a function of time
are

[image: -*-][image: -*-]


where ω=v/r[image: -*-]. Then the x[image: -*-]- and y[image: -*-]-components of velocity are
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(41.4)





From Eq. (41.3), we have



[image: -*-][image: -*-]
(41.5)





For a point at y=0[image: -*-], ∂ω/∂y=0[image: -*-], and x ∂ω/∂x[image: -*-]
is the same as r d ω/d r[image: -*-]. So at that point
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(41.6)




(It is reasonable that S[image: -*-] should depend on ∂ω/∂r[image: -*-]; when
there is no change in ω[image: -*-] with r[image: -*-], the liquid is in uniform
rotation and there are no stresses.)




The stress we have calculated is the tangential shear which is the
same all around the cylinder. We can get the torque acting
across a cylindrical surface at the radius r[image: -*-] by multiplying
the shear stress by the moment arm r[image: -*-] and the area 2 π r l[image: -*-] (where
l[image: -*-] is the length of the cylinder). We get
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(41.7)









Since the motion of the water is steady—there is no angular
acceleration—the net torque on the cylindrical shell of water
between r[image: -*-] and r+d r[image: -*-] must be zero; that is, the torque at r[image: -*-] must
be balanced by an equal and opposite torque at r+d r[image: -*-], so that τ[image: -*-]
must be independent of r[image: -*-]. In other words, r3 d ω/d r[image: -*-] is equal
to some constant, say A[image: -*-], and
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(41.8)




Integrating, we find that ω[image: -*-] varies with r[image: -*-] as

[image: -*-][image: -*-]
(41.9)




The constants A[image: -*-] and B[image: -*-] are to be determined to fit the conditions
that ω=ωa[image: -*-] at r=a[image: -*-], and ω=ωb[image: -*-] at r=b[image: -*-]. We
get that

[image: -*-][image: -*-]
(41.10)




So we know ω[image: -*-] as a function of r[image: -*-], and from it v=ω r[image: -*-].




If we want the torque, we can get it from Eqs. (41.7)
and (41.8):
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or

[image: -*-][image: -*-]
(41.11)




It is proportional to the relative angular velocities of the two
cylinders. One standard apparatus for measuring the coefficients of
viscosity is built this way. One cylinder—say the outer one—is on
pivots but is held stationary by a spring balance which measures the
torque on it, while the inner one is rotated at a constant angular
velocity. The coefficient of viscosity is then determined from
Eq. (41.11).




From its definition, you see that the units of η[image: -*-] are
newton⋅[image: -*-]sec/m2. For water at 20°[image: -*-]C,

[image: -*-][image: -*-]


It is usually more convenient to use the specific viscosity,
which is η[image: -*-] divided by the density ρ[image: -*-]. The values for water
and air are then comparable:

[image: -*-][image: -*-]
(41.12)




Viscosities usually depend strongly on temperature. For instance, for
water just above the freezing point, η/ρ[image: -*-] is 1.8[image: -*-] times larger
than it is at 20°[image: -*-]C.







41–2 Viscous flow


We now go to a general theory of viscous flow—at least in the most
general form known to man. We already understand that the shear stress
components are proportional to the spatial derivatives of the various
velocity components such as ∂vx/∂y[image: -*-]
or ∂vy/∂x[image: -*-]. However, in the general case of a compressible
fluid there is another term in the stress which depends on other
derivatives of the velocity. The general expression is
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(41.13)




where xi[image: -*-] is any one of the rectangular coordinates x[image: -*-], y[image: -*-],
or z[image: -*-], and vi[image: -*-] is any one of the rectangular coordinates of the
velocity. (The symbol δi j[image: -*-] is the Kronecker delta which
is 1 when i=j[image: -*-] and 0 for i≠j[image: -*-].)  The additional term adds
η′ ∇⋅v[image: -*-] to all the diagonal elements Si i[image: -*-] of the
stress tensor. If the liquid is incompressible ∇⋅v=0[image: -*-], and
this extra term doesn’t appear. So it has to do with internal forces
during compression. So two constants are required to describe the
liquid, just as we had two constants to describe a homogeneous elastic
solid. The coefficient η[image: -*-] is the “ordinary” coefficient of
viscosity which we have already encountered. It is also called the
first coefficient of viscosity or the “shear viscosity
coefficient,” and the new coefficient η′[image: -*-] is called the
second coefficient of viscosity.




Now we want to determine the viscous force per unit volume,
fvisc[image: -*-], so we can put it into Eq. (41.1)
to get the equation of motion for a real fluid. The force on a small
cubical volume element of a fluid is the resultant of the forces on
all the six faces. Taking them two at a time, we will get differences
that depend on the derivatives of the stresses, and, therefore, on the
second derivatives of the velocity. This is nice because it will get
us back to a vector equation. The component of the viscous force per
unit volume in the direction of the rectangular coordinate xi[image: -*-] is
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(41.14)





Usually, the variation of the viscosity coefficients with position is
not significant and can be neglected. Then, the viscous force per unit
volume contains only second derivatives of the velocity. We saw in
Chapter 39 that the most general form of second derivatives
that can occur in a vector equation is the sum of a term in the
Laplacian (∇⋅∇v=∇2v[image: -*-]), and a term in the
gradient of the divergence (∇(∇⋅v))[image: -*-].
Equation (41.14) is just such a sum with the
coefficients η[image: -*-] and (η+η′)[image: -*-]. We get
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(41.15)




In the incompressible case, ∇⋅v=0[image: -*-], and the viscous force
per unit volume is just η ∇2v[image: -*-]. That is all that many
people use; however, if you should want to calculate the absorption of
sound in a fluid, you would need the second term.




We can now complete our general equation of motion for a real fluid.
Substituting Eq. (41.15) into Eq. (41.1), we get
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It’s complicated. But that’s the way nature is.




If we introduce the vorticity Ω=∇×v[image: -*-], as we did
before, we can write our equation as
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(41.16)





We are supposing again that the only body forces acting are
conservative forces like gravity. To see what the new term means,
let’s look at the incompressible fluid case. Then, if we take the curl
of Eq. (41.16), we get
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(41.17)




This is like Eq. (40.9) except for the new term on the
right-hand side. When the right-hand side was zero, we had the Helmholtz
theorem that the vorticity stays with the fluid. Now, we have the rather
complicated nonzero term on the right-hand side which, however, has
straightforward physical consequences. If we disregard for the moment
the term ∇×(Ω×v)[image: -*-], we have a diffusion
equation. The new term means that the vorticity Ω[image: -*-]
diffuses through the fluid. If there is a large gradient in the
vorticity, it will spread out into the neighboring fluid.





This is the term that causes the smoke ring to get thicker as it goes
along. Also, it shows up nicely if you send a “clean” vortex (a
“smokeless” ring made by the apparatus described in the last
chapter) through a cloud of smoke. When it comes out of the cloud, it
will have picked up some smoke, and you will see a hollow shell of a
smoke ring. Some of the Ω[image: -*-] diffuses outward into the smoke,
while still maintaining its forward motion with the vortex.







41–3 The Reynolds number


We will now describe the changes which are made in the character of
fluid flow as a consequence of the new viscosity term. We will look at
two problems in some detail. The first of these is the flow of a fluid
past a cylinder—a flow which we tried to calculate in the previous
chapter using the theory for nonviscous flow. It turns out that the
viscous equations can be solved by man today only for a few special
cases. So some of what we will tell you is based on experimental
measurements—assuming that the experimental model satisfies
Eq. (41.17).





The mathematical problem is this: We would like the solution for the
flow of an incompressible, viscous fluid past a long cylinder of
diameter D[image: -*-]. The flow should be given by Eq. (41.17)
and by

[image: -*-][image: -*-]
(41.18)




with the conditions that the velocity at large distances is some
constant velocity, say V[image: -*-] (parallel to the x[image: -*-]-axis), and at the
surface of the cylinder is zero. That is,

[image: -*-][image: -*-]
(41.19)




for

[image: -*-][image: -*-]


That specifies completely the mathematical problem.




If you look at the equations, you see that there are four different
parameters to the problem: η[image: -*-], ρ[image: -*-], D[image: -*-], and V[image: -*-]. You might
think that we would have to give a whole series of cases for
different V[image: -*-]’s, different D[image: -*-]’s, and so on. However, that is not the case. All
the different possible solutions correspond to different values of
one parameter. This is the most important general thing we can
say about viscous flow. To see why this is so, notice first that the
viscosity and density appear only in the ratio η/ρ[image: -*-]—the
specific viscosity. That reduces the number of independent
parameters to three. Now suppose we measure all distances in the only
length that appears in the problem, the diameter D[image: -*-] of the cylinder;
that is, we substitute for x[image: -*-], y[image: -*-], z[image: -*-], the new variables x′[image: -*-],
y′[image: -*-], z′[image: -*-] with

[image: -*-][image: -*-]


Then D[image: -*-] disappears from (41.19). In the same way, if we
measure all velocities in terms of V[image: -*-]—that is, we set v=v′ V[image: -*-]—we
get rid of the V[image: -*-], and v′[image: -*-] is just equal to 1 at large
distances. Since we have fixed our units of length and velocity, our
unit of time is now D/V[image: -*-]; so we should set

[image: -*-][image: -*-]
(41.20)









With our new variables, the derivatives in Eq. (41.18)
get changed from ∂/∂x[image: -*-] to (1/D) ∂/∂x′[image: -*-], and so on; so
Eq. (41.18) becomes

[image: -*-][image: -*-]
(41.21)




Our main equation (41.17) then reads

[image: -*-][image: -*-]


All the constants condense into one factor which we write, following
tradition, as 1/R[image: -*-]:

[image: -*-][image: -*-]
(41.22)




If we just remember that all of our equations are to be written with
all quantities in the new units, we can omit all the primes. Our
equations for the flow are then

[image: -*-][image: -*-]
(41.23)




and

[image: -*-][image: -*-]


with the conditions

[image: -*-][image: -*-]


for

[image: -*-][image: -*-]
(41.24)




and

[image: -*-][image: -*-]


for

[image: -*-][image: -*-]







What this all means physically is very interesting. It means, for
example, that if we solve the problem of the flow for one velocity V1[image: -*-]
and a certain cylinder diameter D1[image: -*-], and then ask about the flow for a
different diameter D2[image: -*-] and a different fluid, the flow will be the
same for the velocity V2[image: -*-] which gives the same Reynolds number—that
is, when

[image: -*-][image: -*-]
(41.25)




For any two situations which have the same Reynolds number, the flows
will “look” the same—in terms of the appropriate scaled x′[image: -*-], y′[image: -*-],
z′[image: -*-], and t′[image: -*-]. This is an important proposition because it
means that we can determine what the behavior of the flow of air past
an airplane wing will be without having to build an airplane and try
it. We can, instead, make a model and make measurements using a
velocity that gives the same Reynolds number. This is the principle
which allows us to apply the results of “wind-tunnel” measurements
on small-scale airplanes, or “model-basin” results on scale model
boats, to the full-scale objects. Remember, however, that we can only
do this provided the compressibility of the fluid can be
neglected. Otherwise, a new quantity enters—the speed of sound. And
different situations will really correspond to each other only if the
ratio of V[image: -*-] to the sound speed is also the same. This latter ratio is
called the Mach number. So, for velocities near the speed of
sound or above, the flows are the same in two situations if
both the Mach number and the Reynolds number are
the same for both situations.







41–4 Flow past a circular cylinder

[image: -][image: -]
Fig. 41–4. The drag coefficient CD[image: -*-] of a circular cylinder as a function
of the Reynolds number.





Let’s go back to the problem of low-speed (nearly incompressible) flow
over the cylinder. We will give a qualitative description of the flow
of a real fluid. There are many things we might want to know about
such a flow—for instance, what is the drag force on the cylinder?
The drag force on a cylinder is plotted in Fig. 41–4 as a function
of R[image: -*-]—which is proportional to the air speed V[image: -*-] if
everything else is held fixed. What is actually plotted is the
so-called drag coefficient CD[image: -*-], which is a
dimensionless number equal to the force divided by [image: \tfrac{1}{2}\rho V^2Dl][image: \tfrac{1}{2}\rho V^2Dl], where D[image: -*-] is the diameter, l[image: -*-] is the length of the cylinder,
and ρ[image: -*-] is the density of the liquid:

[image: -*-][image: -*-]


The coefficient of drag varies in a rather complicated way, giving us
a pre-hint that something rather interesting and complicated is
happening in the flow. We will now describe the nature of flow for the
different ranges of the Reynolds number. First, when the Reynolds
number is very small, the flow is quite steady; that is, the velocity
is constant at any place, and the flow goes around the cylinder. The
actual distribution of the flow lines is, however, not like it is in
potential flow. They are solutions of a somewhat different
equation. When the velocity is very low or, what is equivalent, when
the viscosity is very high so the stuff is like honey, then the
inertial terms are negligible and the flow is described by the
equation

[image: -*-][image: -*-]


This equation was first solved by Stokes. He also solved the same
problem for a sphere. If you have a small sphere moving under such
conditions of low Reynolds number, the force needed to drag it is
equal to 6 π η a V[image: -*-], where a[image: -*-] is the radius of the sphere and V[image: -*-]
is its velocity. This is a very useful formula because it tells the
speed at which tiny grains of dirt (or other particles which can be
approximated as spheres) move through a fluid under a given
force—as, for instance, in a centrifuge, or in sedimentation, or
diffusion. In the low Reynolds number region—for R[image: -*-] less
than 1—the lines of v[image: -*-] around a cylinder are as drawn
in Fig. 41–5.



[image: -][image: -]
Fig. 41–5. Viscous flow (low velocities) around a circular cylinder.





If we now increase the fluid speed to get a Reynolds number somewhat
greater than 1, we find that the flow is different. There is a
circulation behind the sphere, as shown in Fig. 41–6(b). It is still
an open question as to whether there is always a circulation there
even at the smallest Reynolds number or whether things suddenly change
at a certain Reynolds number. It used to be thought that the
circulation grew continuously. But it is now thought that it appears
suddenly, and it is certain that the circulation increases
with R[image: -*-]. In any case, there is a different character to the flow
for R[image: -*-] in the region from about 10[image: -*-] to 30[image: -*-]. There is a
pair of vortices behind the cylinder.



[image: -][image: -][image: -][image: -][image: -][image: -][image: -][image: -][image: -][image: -]
Fig. 41–6. Flow past a cylinder for various Reynolds numbers.





The flow changes again by the time we get to a number of 40[image: -*-] or so.
There is suddenly a complete change in the character of the motion. What
happens is that one of the vortices behind the cylinder gets so long
that it breaks off and travels downstream with the fluid. Then the fluid
curls around behind the cylinder and makes a new vortex. The vortices
peel off alternately on each side, so an instantaneous view of the flow
looks roughly as sketched in Fig. 41–6(c). The stream of
vortices is called a “Kármán vortex street.”  They always appear
for R>40[image: -*-]. We show a photograph of such a flow in
Fig. 41–7.



[image: -]
Fig. 41–7. Photograph by Ludwig Prandtl of the “vortex street” in the
flow behind a cylinder.





The difference between the two flows in Fig. 41–6(c)
and 41–6(b) or 41–6(a) is almost a complete
difference in regime. In Fig. 41–6(a) or (b), the
velocity is constant, whereas in Fig. 41–6(c), the velocity
at any point varies with time. There is no steady solution
above R=40[image: -*-]—which we have marked on Fig. 41–4
by a dashed line. For these higher Reynolds numbers, the flow varies
with time but in a regular, cyclic fashion.




We can get a physical idea of how these vortices are produced. We know
that the fluid velocity must be zero at the surface of the cylinder
and that it also increases rapidly away from that surface. Vorticity
is created by this large local variation in fluid velocity. Now when
the main stream velocity is low enough, there is sufficient time for
this vorticity to diffuse out of the thin region near the solid
surface where it is produced and to grow into a large region of
vorticity. This physical picture should help to prepare us for the
next change in the nature of the flow as the main stream velocity,
or R[image: -*-], is increased still more.




As the velocity gets higher and higher, there is less and less time
for the vorticity to diffuse into a larger region of fluid. By the
time we reach a Reynolds number of several hundred, the vorticity
begins to fill in a thin band, as shown in Fig. 41–6(d). In this
layer the flow is chaotic and irregular. The region is called the
boundary layer and this irregular flow
region works its way farther and farther upstream as R[image: -*-] is
increased. In the turbulent region, the velocities are very irregular
and “noisy”; also the flow is no longer two-dimensional but twists and
turns in all three dimensions. There is still a regular alternating
motion superimposed on the turbulent one.




As the Reynolds number is increased further, the turbulent region
works its way forward until it reaches the point where the flow lines
leave the cylinder—for flows somewhat above R=105[image: -*-]. The
flow is as shown in Fig. 41–6(e), and we have what is called a
“turbulent boundary layer.” Also, there is a drastic change in, the
drag force; it drops by a large factor, as shown in Fig. 41–4. In
this speed region, the drag force actually decreases with
increasing speed. There seems to be little evidence of periodicity.




What happens for still larger Reynolds numbers? As we increase the
speed further, the wake increases in size again and the drag
increases. The latest experiments—which go up to R=107[image: -*-]
or so—indicate that a new periodicity appears in the wake, either
because the whole wake is oscillating back and forth in a gross motion
or because some new kind of vortex is occurring together with an
irregular noisy motion. The details are as yet not entirely clear, and
are still being studied experimentally.







41–5 The limit of zero viscosity


We would like to point out that none of the flows we have described are
anything like the potential flow solution we found in the preceding
chapter. This is, at first sight, quite surprising. After all,
R[image: -*-] is proportional to 1/η[image: -*-]. So η[image: -*-] going to zero is
equivalent to R[image: -*-] going to infinity. And if we take the limit
of large R[image: -*-] in Eq. (41.23), we get rid of the
right-hand side and get just the equations of the last chapter. Yet, you
would find it hard to believe that the highly turbulent flow
at R=107[image: -*-] was approaching the smooth flow computed from the
equations of “dry” water. How can it be that as we
approach R=∞[image: -*-], the flow described by Eq. (41.23) gives
a completely different solution from the one we obtained taking η=0[image: -*-]
to start out with? The answer is very interesting. Note that the
right-hand term of Eq. (41.23) has 1/R[image: -*-] times a
second derivative. It is a higher derivative than any other
derivative in the equation. What happens is that although the
coefficient 1/R[image: -*-] is small, there are very rapid variations
of Ω[image: -*-] in the space near the surface. These rapid variations
compensate for the small coefficient, and the product does not go
to zero with increasing R[image: -*-]. The solutions do not approach the
limiting case as the coefficient of ∇2Ω[image: -*-] goes to zero.




You may be wondering, “What is the fine-grain turbulence and how does
it maintain itself? How can the vorticity which is made somewhere at the
edge of the cylinder generate so much noise in the background?” The
answer is again interesting. Vorticity has a tendency to amplify itself.
If we forget for a moment about the diffusion of vorticity which causes
a loss, the laws of flow say (as we have seen) that the vortex lines are
carried along with the fluid, at the velocity v[image: -*-]. We can imagine a
certain number of lines of Ω[image: -*-] which are being distorted and
twisted by the complicated flow pattern of v[image: -*-]. This pulls the lines
closer together and mixes them all up. Lines that were simple before
will get knotted and pulled close together. They will be longer and
tighter together. The strength of the vorticity will increase and its
irregularities—the pluses and minuses—will, in general, increase. So
the magnitude of vorticity in three dimensions increases as we twist the
fluid about.




You might well ask, “When is the potential flow a satisfactory theory
at all?” In the first place, it is satisfactory outside the turbulent
region where the vorticity has not entered appreciably by
diffusion. By making special streamlined bodies, we can keep the
turbulent region as small as possible; the flow around airplane
wings—which are carefully designed—is almost entirely true
potential flow.







41–6 Couette flow

[image: -][image: -][image: -][image: -]
Fig. 41–8. Liquid flow patterns between two transparent rotating
cylinders.





It is possible to demonstrate that the complex and shifting character of
the flow past a cylinder is not special but that the great variety of
flow possibilities occurs generally. We have worked out in
Section 41–1 a solution for the viscous flow between two
cylinders, and we can compare the results with what actually happens. If
we take two concentric cylinders with an oil in the space between them
and put a fine aluminum powder as a suspension in the oil, the flow is
easy to see. Now if we turn the outer cylinder slowly, nothing
unexpected happens; see Fig. 41–8(a). Alternatively, if we
turn the inner cylinder slowly, nothing very striking occurs. However,
if we turn the inner cylinder at a higher rate, we get a surprise. The
fluid breaks into horizontal bands, as indicated in
Fig. 41–8(b). When the outer cylinder rotates at a similar
rate with the inner one at rest, no such effect occurs. How can it be
that there is a difference between rotating the inner or the out
cylinder? After all, the flow pattern we derived in
Section 41–1 depended only on ωb−ωa[image: -*-]. We can
get the answer by looking at the cross sections shown in
Fig. 41–9. When the inner layers of the fluid are moving
more rapidly than the outer ones, they tend to move outward—the
centrifugal force
is larger than the pressure holding them in place. A
whole layer cannot move out uniformly because the outer layers are in
the way. It must break into cells and circulate, as shown in
Fig. 41–9(b). It is like the convection currents in a room
which has hot air at the bottom. When the inner cylinder is at rest and
the outer cylinder has a high velocity, the centrifugal
forces build up
a pressure gradient which keeps everything in equilibrium—see
Fig. 41–9(c) (as in a room with hot air at the top).




[image: -][image: -][image: -][image: -][image: -][image: -]
Fig. 41–9. Why the flow breaks up into bands.





Now let’s speed up the inner cylinder. At first, the number of bands
increases. Then suddenly you see the bands become wavy, as in
Fig. 41–8(c), and the waves travel around the cylinder. The
speed of these waves is easily measured. For high rotation speeds they
approach 1/3[image: -*-] the speed of the inner cylinder. And no one knows why!
There’s a challenge. A simple number like 1/3[image: -*-], and no explanation. In
fact, the whole mechanism of the wave formation is not very well
understood; yet it is steady laminar flow.




If we now start rotating the outer cylinder also—but in the opposite
direction—the flow pattern starts to break up. We get wavy regions
alternating with apparently quiet regions, as sketched in
Fig. 41–8(d), making a spiral pattern. In these “quiet”
regions, however, we can see that the flow is really quite irregular; it
is, in fact completely turbulent. The wavy regions also begin to show
irregular turbulent flow. If the cylinders are rotated still more
rapidly, the whole flow becomes chaotically turbulent.




In this simple experiment we see many interesting regimes of flow
which are quite different, and yet which are all contained in our
simple equation for various values of the one parameter R[image: -*-].
With our rotating cylinders, we can see many of the
effects which occur in the flow past a cylinder: first, there is a
steady flow; second, a flow sets in which varies in time but in a
regular, smooth way; finally, the flow becomes completely
irregular. You have all seen the same effects in the column of smoke
rising from a cigarette in quiet air. There is a smooth steady column
followed by a series of twistings as the stream of smoke begins to
break up, ending finally in an irregular churning cloud of smoke.




The main lesson to be learned from all of this is that a tremendous
variety of behavior is hidden in the simple set of equations
in (41.23). All the solutions are for the same equations,
only with different values of R[image: -*-]. We have no reason to think
that there are any terms missing from these equations. The only
difficulty is that we do not have the mathematical power today to
analyze them except for very small Reynolds numbers—that is, in the
completely viscous case. That we have written an equation does not
remove from the flow of fluids its charm or mystery or its surprise.




If such variety is possible in a simple equation with only one
parameter, how much more is possible with more complex equations!
Perhaps the fundamental equation that describes the swirling nebulae
and the condensing, revolving, and exploding stars and galaxies is
just a simple equation for the hydrodynamic behavior of nearly pure
hydrogen gas. Often, people in some unjustified fear of physics say
you can’t write an equation for life. Well, perhaps we can. As a
matter of fact, we very possibly already have the equation to a
sufficient approximation when we write the equation of quantum
mechanics:

[image: -*-][image: -*-]


We have just seen that the complexities of things can so easily and
dramatically escape the simplicity of the equations which describe
them. Unaware of the scope of simple equations, man has often
concluded that nothing short of God, not mere equations, is required
to explain the complexities of the world.




We have written the equations of water flow. From experiment, we find
a set of concepts and approximations to use to discuss the
solution—vortex streets, turbulent wakes, boundary layers. When we
have similar equations in a less familiar situation, and one for which
we cannot yet experiment, we try to solve the equations in a
primitive, halting, and confused way to try to determine what new
qualitative features may come out, or what new qualitative forms are a
consequence of the equations. Our equations for the sun, for example,
as a ball of hydrogen gas, describe a sun without sunspots, without
the rice-grain structure of the surface, without prominences, without
coronas. Yet, all of these are really in the equations; we just
haven’t found the way to get them out.




There are those who are going to be disappointed when no life is found
on other planets. Not I—I want to be reminded and delighted and
surprised once again, through interplanetary exploration, with the
infinite variety and novelty of phenomena that can be generated from
such simple principles. The test of science is its ability to
predict. Had you never visited the earth, could you predict the
thunderstorms, the volcanos, the ocean waves, the auroras, and the
colorful sunset? A salutary lesson it will be when we learn of all
that goes on on each of those dead planets—those eight or ten balls,
each agglomerated from the same dust cloud and each obeying exactly
the same laws of physics.




The next great era of awakening of human intellect may well produce a
method of understanding the qualitative content of
equations. Today we cannot. Today we cannot see that the water flow
equations contain such things as the barber pole structure of
turbulence that one sees between rotating cylinders. Today we cannot
see whether Schrödinger’s equation contains frogs, musical
composers, or morality—or whether it does not. We cannot say whether
something beyond it like God is needed, or not. And so we can all hold
strong opinions either way.







	
  
  You can blow
large dust particles from a table top, but not the very
finest ones. The large ones stick up into the breeze.
  ↩


	
  
  You can imagine circumstances when
it is not true: glass is theoretically a “liquid,” but it can
certainly be made to slide along a steel surface. So our assertion
must break down somewhere.
  ↩






  
    

42 Curved Space



42–1 Curved spaces with two dimensions


According to Newton
everything attracts everything else with a force inversely proportional
to the square of the distance from it, and objects respond to forces
with accelerations proportional to the forces. They are Newton’s
laws of universal gravitation and of
motion. As you know, they account for the motions of balls, planets,
satellites, galaxies, and so forth.





Einstein had a different
interpretation of the law of gravitation. According
to him, space and time—which must be put together as space-time—are
curved near heavy masses. And it is the attempt of things to go
along “straight lines” in this curved space-time which makes them move
the way they do. Now that is a complex idea—very complex. It is the
idea we want to explain in this chapter.




Our subject has three parts. One involves the effects of gravitation.
Another involves the ideas of space-time which we already studied. The
third involves the idea of curved space-time. We will simplify our
subject in the beginning by not worrying about gravity and by leaving
out the time—discussing just curved space. We will talk later about
the other parts, but we will concentrate now on the idea of curved
space—what is meant by curved space, and, more specifically, what is
meant by curved space in this application of
Einstein. Now even that much
turns out to be somewhat difficult in three dimensions. So we will first
reduce the problem still further and talk about what is meant by the
words “curved space” in two dimensions.



[image: -][image: -]
Fig. 42–1. A bug on a plane surface.





In order to understand this idea of curved space in two dimensions you
really have to appreciate the limited point of view of the character who
lives in such a space. Suppose we imagine a bug with no eyes who lives
on a plane, as shown in Fig. 42–1. He can move only on the
plane, and he has no way of knowing that there is anyway to discover any
“outside world.” (He hasn’t got your imagination.) We are, of course,
going to argue by analogy. We live in a three-dimensional world,
and we don’t have any imagination about going off our three-dimensional
world in a new direction; so we have to think the thing out by analogy.
It is as though we were bugs living on a plane, and there was a space in
another direction. That’s why we will first work with the bug,
remembering that he must live on his surface and can’t get out.



[image: -][image: -]
Fig. 42–2. A bug on a sphere.





As another example of a bug living in two dimensions, let’s imagine one
who lives on a sphere. We imagine that he can walk around on the surface
of the sphere, as in Fig. 42–2 but that he can’t look
“up,” or “down,” or “out.”



[image: -][image: -]
Fig. 42–3. A bug on a hot plate.





Now we want to consider still a third kind of creature. He is
also a bug like the others, and also lives on a plane, as our first bug
did, but this time the plane is peculiar. The temperature is different
at different places. Also, the bug and any rulers he uses are all made
of the same material which expands when it is heated. Whenever he puts a
ruler somewhere to measure something the ruler expands immediately to
the proper length for the temperature at that place. Wherever he puts
any object—himself, a ruler, a triangle, or anything—the thing
stretches itself because of the thermal expansion. Everything is longer
in the hot places than it is in the cold places, and everything has the
same coefficient of expansion. We will call the home of our third bug a
“hot plate,” although we will particularly want to think of a special
kind of hot plate that is cold in the center and gets hotter as we go
out toward the edges (Fig. 42–3).



[image: -][image: -]
Fig. 42–4. Making a “straight” line on a plane.





Now we are going to imagine that our bugs begin to study geometry.
Although we imagine that they are blind so that they can’t see any
“outside” world, they can do a lot with their legs and feelers. They
can draw lines, and they can make rulers, and measure off lengths.
First, let’s suppose that they start with the simplest idea in geometry.
They learn how to make a straight line—defined as the shortest line
between two points. Our first bug—see Fig. 42–4—learns
to make very good lines. But what happens to the bug on the sphere? He
draws his straight line as the shortest distance—for
him—between two points, as in Fig. 42–5. It may look
like a curve to us, but he has no way of getting off the sphere and
finding out that there is “really” a shorter line. He just knows that
if he tries any other path in his world it is always longer than
his straight line. So we will let him have his straight line as the
shortest arc between two points. (It is, of course an arc of a great
circle.)



[image: -][image: -]
Fig. 42–5. Making a “straight line” on a sphere.





Finally, our third bug—the one in Fig. 42–3—will also
draw “straight lines” that look like curves to us. For instance, the
shortest distance between A[image: -*-] and B[image: -*-] in Fig. 42–6 would be
on a curve like the one shown. Why? Because when his line curves out
toward the warmer parts of his hot plate, the rulers get longer (from
our omniscient point of view) and it takes fewer “yardsticks” laid
end-to-end to get from A[image: -*-] to B[image: -*-]. So for him the line is
straight—he has no way of knowing that there could be someone out in a
strange three-dimensional world who would call a different line
“straight.”



[image: -][image: -]
Fig. 42–6. Making a “straight line” on the hot plate.





We think you get the idea now that all the rest of the analysis will
always be from the point of view of the creatures on the particular
surfaces and not from our point of view. With that in mind let’s
see what the rest of their geometries looks like. Let’s assume that the
bugs have all learned how to make two lines intersect at right angles.
(You can figure out how they could do it.) Then our first bug (the one
on the normal plane) finds an interesting fact. If he starts at the
point A[image: -*-] and makes a line 100[image: -*-] inches long, then makes a right angle
and marks off another 100[image: -*-] inches, then makes another right angle and
goes another 100[image: -*-] inches, then makes a third right angle and a fourth
line 100[image: -*-] inches long, he ends up right at the starting point as shown
in Fig. 42–7(a). It is a property of his world—one of the
facts of his “geometry.”



[image: -][image: -][image: -][image: -][image: -][image: -]
Fig. 42–7. A square, triangle, and circle in flat space.





Then he discovers another interesting thing. If he makes a triangle—a
figure with three straight lines—the sum of the angles is equal
to 180°[image: -*-], that is, to the sum of two right angles. See
Fig. 42–7(b).




Then he invents the circle. What’s a circle? A circle is made this way:
You rush off on straight lines in many many directions from a single
point, and lay out a lot of dots that are all the same distance from
that point. See Fig. 42–7(c). (We have to be careful how we
define these things because we’ve got to be able to make the analogs for
the other fellows.) Of course, its equivalent to the curve you can make
by swinging a ruler around a point. Anyway, our bug learns how to make
circles. Then one day he thinks of measuring the distance around a
circle. He measures several circles and finds a neat relationship: The
distance around is always the same number times the radius r[image: -*-] (which
is, of course, the distance from the center out to the curve). The
circumference and the radius always have the same
ratio—approximately 6.283[image: -*-]—independent of the size of the circle.



[image: -][image: -]
Fig. 42–8. Trying to make a “square” on a sphere.





Now let’s see what our other bugs have been finding out about
their geometries. First, what happens to the bug on the sphere
when he tries to make a “square”? If he follows the prescription we
gave above, he would probably think that the result was hardly worth the
trouble. He gets a figure like the one shown in Fig. 42–8.
His endpoint B[image: -*-] isn’t on top of the starting point A[image: -*-]. It doesn’t work
out to a closed figure at all. Get a sphere and try it. A similar thing
would happen to our friend on the hot plate. If he lays out four
straight lines of equal length—as measured with his expanding
rulers—joined by right angles he gets a picture like the one in
Fig. 42–9.



[image: -][image: -]
Fig. 42–9. Trying to make a “square” on the hot plate.





Now suppose that our bugs had each had their own Euclid who had told them what geometry “should” be like, and
that they had checked him out roughly by making crude measurements on a
small scale. Then as they tried to make accurate squares on a
larger scale they would discover that something was wrong. The point is,
that just by geometrical measurements they would discover that
something was the matter with their space. We define a curved
space to be a space in which the geometry is not what we expect for a
plane. The geometry of the bugs on the sphere or on the hot plate is the
geometry of a curved space. The rules of Euclidean geometry fail. And it
isn’t necessary to be able to lift yourself out of the plane in order to
find out that the world that you live in is curved. It isn’t necessary
to circumnavigate the globe in order to find out that it is a ball. You
can find out that you live on a ball by laying out a square. If the
square is very small you will need a lot of accuracy, but if the square
is large the measurement can be done more crudely.



[image: -][image: -]
Fig. 42–10. On a sphere a “triangle” can have three 90°[image: -*-] angles.





Let’s take the case of a triangle on a plane. The sum of the angles is
180[image: -*-] degrees. Our friend on the sphere can find triangles that are very
peculiar. He can, for example, find triangles which have three
right angles. Yes indeed! One is shown in Fig. 42–10.
Suppose our bug starts at the north pole and makes a straight line all
the way down to the equator. Then he makes a right angle and another
perfect straight line the same length. Then he does it again. For the
very special length he has chosen he gets right back to his starting
point, and also meets the first line with a right angle. So there is no
doubt that for him this triangle has three right angles, or
270[image: -*-] degrees in the sum. It turns out that for him the sum of the
angles of the triangle is always greater than 180[image: -*-] degrees. In
fact, the excess (for the special case shown, the extra 90[image: -*-] degrees) is
proportional to how much area the triangle has. If a triangle on a
sphere is very small, its angles add up to very nearly 180[image: -*-] degrees,
only a little bit over. As the triangle gets bigger the discrepancy goes
up. The bugs on the hot plate would discover similar difficulties with
their triangles.



[image: -][image: -]
Fig. 42–11. Making a circle on a sphere.





Let’s look next at what our other bugs find out about circles. They make
circles and measure their circumferences. For example, the bug on the
sphere might make a circle like the one shown in
Fig. 42–11. And he would discover that the circumference is
less than 2 π[image: -*-] times the radius. (You can see that because from
the wisdom of our three-dimensional view it is obvious that what he
calls the “radius” is a curve which is longer than the true
radius of the circle.) Suppose that the bug on the sphere had read
Euclid, and decided to predict a radius
by dividing the circumference C[image: -*-] by 2 π[image: -*-], taking

[image: -*-][image: -*-]
(42.1)




Then he would find that the measured radius was larger than the
predicted radius. Pursuing the subject, he might define the difference
to be the “excess radius,” and write

[image: -*-][image: -*-]
(42.2)




and study how the excess radius effect depended on the size of the circle.




[image: -][image: -]
Fig. 42–12. Making a circle on the hot plate.





Our bug on the hot plate would discover a similar phenomenon. Suppose he
was to draw a circle centered at the cold spot on the plate as in
Fig. 42–12. If we were to watch him as he makes the circle
we would notice that his rulers are short near the center and get longer
as they are moved outward—although the bug doesn’t know it, of course.
When he measures the circumference the ruler is long all the time, so
he, too, finds out that the measured radius is longer than the predicted
radius, C/2 π[image: -*-]. The hot-plate bug also finds an “excess
radius effect.” And
again the size of the effect depends on the radius of the circle.





We will define a “curved space” as one in which these types of
geometrical errors occur: The sum of the angles of a triangle is
different from 180[image: -*-] degrees; the circumference of a circle divided
by 2 π[image: -*-] is not equal to the radius; the rule for making a square
doesn’t give a closed figure. You can think of others.




We have given two different examples of curved space: the sphere and the
hot plate. But it is interesting that if we choose the right temperature
variation as a function of distance on the hot plate, the two
geometries will be exactly the same. It is rather amusing. We can
make the bug on the hot plate get exactly the same answers as the bug on
the ball. For those who like geometry and geometrical problems we’ll
tell you how it can be done. If you assume that the length of the rulers
(as determined by the temperature) goes in proportion to one plus some
constant times the square of the distance away from the origin, then you
will find that the geometry of that hot plate is exactly the same in all
details1 as the geometry
of the sphere.




There are, of course, other kinds of geometry. We could ask about the
geometry of a bug who lived on a pear, namely something which has a
sharper curvature in one place and a weaker curvature in the other
place, so that the excess in angles in triangles is more severe when he
makes little triangles in one part of his world than when he makes them
in another part. In other words, the curvature of a space can vary from
place to place. That’s just a generalization of the idea. It can also be
imitated by a suitable distribution of temperature on a hot plate.




We may also point out that the results could come out with the opposite
kind of discrepancies. You could find out, for example, that all
triangles when they are made too large have the sum of their angles
less than 180[image: -*-] degrees. That may sound impossible, but it isn’t
at all. First of all, we could have a hot plate with the temperature
decreasing with the distance from the center. Then all the effects would
be reversed. But we can also do it purely geometrically by looking at
the two-dimensional geometry of the surface of a saddle. Imagine a
saddle-shaped surface like the one sketched in Fig. 42–13.
Now draw a “circle” on the surface, defined as the locus of all points
the same distance from a center. This circle is a curve that oscillates
up and down with a scallop effect. So its circumference is larger than
you would expect from calculating 2 π rmeas[image: -*-]. So C/2 π[image: -*-] is
now greater than rmeas[image: -*-]. The “excess
radius” would be
negative.




[image: -][image: -]
Fig. 42–13. Making a “circle” on a saddle-shaped surface.





Spheres and pears and such are all surfaces of positive
curvatures; and the others are called
surfaces of negative curvature.
In general, a two-dimensional world will have a curvature which varies
from place to place and may be positive in some places and negative in
other places. In general, we mean by a curved space simply one in which
the rules of Euclidean geometry break down with one sign of discrepancy
or the other. The amount of curvature—defined, say, by the excess
radius—may vary from
place to place.




[image: -][image: -]
Fig. 42–14. A two-dimensional space with zero intrinsic curvature.







We might point out that, from our definition of curvature, a cylinder
is, surprisingly enough, not curved. If a bug lived on a cylinder, as
shown in Fig. 42–14, he would find out that triangles,
squares, and circles would all have the same behavior they have on a
plane. This is easy to see, by just thinking about how all the figures
will look if the cylinder is unrolled onto a plane. Then all the
geometrical figures can be made to correspond exactly to the way they
are in a plane. So there is no way for a bug living on a cylinder
(assuming that he doesn’t go all the way around, but just makes local
measurements) to discover that his space is curved. In our technical
sense, then, we consider that his space is not curved. What we
want to talk about is more precisely called intrinsic
curvature; that is, a curvature which
can be found by measurements only in a local region. (A cylinder has no
intrinsic curvature.) This was the sense intended by
Einstein when he said that our
space is curved. But we as yet only have defined a curved space in two
dimensions; we must go onward to see what the idea might mean in three
dimensions.






42–2 Curvature in three-dimensional space


We live in three-dimensional space and we are going to consider the idea
that three-dimensional space is curved. You say, “But how can you
imagine it being bent in any direction?” Well, we can’t imagine space
being bent in any direction because our imagination isn’t good enough.
(Perhaps it’s just as well that we can’t imagine too much, so that we
don’t get too free of the real world.) But we can still define a
curvature without getting out of our three-dimensional world. All we
have been talking about in two dimensions was simply an exercise to show
how we could get a definition of curvature which didn’t require that we
be able to “look in” from the outside.




We can determine whether our world is curved or not in a way quite
analogous to the one used by the gentlemen who live on the sphere and on
the hot plate. We may not be able to distinguish between two such cases
but we certainly can distinguish those cases from the flat space, the
ordinary plane. How? Easy enough: We lay out a triangle and measure the
angles. Or we make a great big circle and measure the circumference and
the radius. Or we try to lay out some accurate squares, or try to make a
cube. In each case we test whether the laws of geometry work. If they
don’t work, we say that our space is curved. If we lay out a big
triangle and the sum of its angles exceeds 180[image: -*-] degrees, we can say our
space is curved. Or if the measured radius of a circle is not equal to
its circumference over 2 π[image: -*-], we can say our space is curved.




You will notice that in three dimensions the situation can be much more
complicated than in two. At any one place in two dimensions there is a
certain amount of curvature. But in three dimensions there can be
several components to the curvature. If we lay out a triangle in
some plane, we may get a different answer than if we orient the plane of
the triangle in a different way. Or take the example of a circle.
Suppose we draw a circle and measure the radius and it doesn’t check
with C/2 π[image: -*-] so that there is some excess radius. Now we draw another circle at right
angles—as in Fig. 42–15. There’s no need for the excess
to be exactly the same for both circles. In fact, there might be a
positive excess for a circle in one plane, and a defect (negative
excess) for a circle in the other plane.




[image: -][image: -]
Fig. 42–15. The excess radius may be different for circles with different
orientations.





Perhaps you are thinking of a better idea: Can’t we get around all of
these components by using a sphere in three dimensions? We can
specify a sphere by taking all the points that are the same distance
from a given point in space. Then we can measure the surface area by
laying out a fine scale rectangular grid on the surface of the sphere
and adding up all the bits of area. According to Euclid the total
area A[image: -*-] is supposed to be 4 π[image: -*-] times the square of the radius; so we
can define a “predicted radius” as √A/4 π[image: -*-]. But we can also
measure the radius directly by digging a hole to the center and
measuring the distance. Again, we can take the measured radius minus the
predicted radius and call the difference the radius excess,

[image: -*-][image: -*-]


which would be a perfectly satisfactory measure of the curvature. It has
the great advantage that it doesn’t depend upon how we orient a triangle
or a circle.





But the excess radius
of a sphere also has a disadvantage; it doesn’t completely characterize
the space. It gives what is called the mean
curvature of the three-dimensional world,
since there is an averaging effect over the various curvatures. Since it
is an average, however, it does not solve completely the problem of
defining the geometry. If you know only this number you can’t predict
all properties of the geometry of the space, because you can’t tell what
would happen with circles of different orientation. The complete
definition requires the specification of six “curvature numbers” at
each point. Of course the mathematicians know how to write all those
numbers. You can read someday in a mathematics book how to write them
all in a high-class and elegant form, but it is first a good idea to
know in a rough way what it is that you are trying to write about. For
most of our purposes the average curvature will be enough.2







42–3 Our space is curved


Now comes the main question. Is it true? That is, is the actual physical
three-dimensional space we live in curved? Once we have enough
imagination to realize the possibility that space might be curved, the
human mind naturally gets curious about whether the real world is curved
or not. People have made direct geometrical measurements to try to find
out, and haven’t found any deviations. On the other hand, by arguments
about gravitation, Einstein
discovered that space is curved, and we’d like to tell you what
Einstein’s law is for the amount of curvature, and also tell you a
little bit about how he found out about it.




Einstein said that space is
curved and that matter is the source of the curvature. (Matter is also
the source of gravitation, so gravity is related to the curvature—but
that will come later in the chapter.)  Let us suppose, to make things a
little easier, that the matter is distributed continuously with some
density, which may vary, however, as much as you want from place to
place.3 The rule that
Einstein gave for the curvature
is the following: If there is a region of space with matter in it and we
take a sphere small enough that the density ρ[image: -*-] of matter inside it
is effectively constant, then the radius excess for the sphere is proportional to
the mass inside the sphere. Using the definition of excess
radius, we have

[image: -*-][image: -*-]
(42.3)




Here, G[image: -*-] is the gravitational constant (of Newton’s theory), c[image: -*-] is the
velocity of light, and M=4 π ρ r3/3[image: -*-] is the mass of the matter
inside the sphere. This is Einstein’s law for the mean curvature of
space.





Suppose we take the earth as an example and forget that the density
varies from point to point—so we won’t have to do any integrals.
Suppose we were to measure the surface of the earth very carefully, and
then dig a hole to the center and measure the radius. From the surface
area we could calculate the predicted radius we would get from setting
the area equal to 4 π r2[image: -*-]. When we compared the predicted radius with
the actual radius, we would find that the actual radius exceeded the
predicted radius by the amount given in Eq. (42.3). The
constant G/3 c2[image: -*-] is about 2.5×10−29[image: -*-] cm per gram, so for each
gram of material the measured radius is off by 2.5×10−29[image: -*-] cm.
Putting in the mass of the earth, which is about 6×1027[image: -*-] grams,
it turns out that the earth has 1.5[image: -*-] millimeters more radius than it
should have for its surface area.4 Doing the same
calculation for the sun, you find that the sun’s radius is one-half a
kilometer too long.




You should note that the law says that the average curvature
above the surface area of the earth is zero. But that does
not mean that all the components of the curvature are zero. There
may still be—and, in fact, there is—some curvature above the earth.
For a circle in a plane there will be an excess radius of one sign for some orientations
and of the opposite sign for other orientations. It just turns out that
the average over a sphere is zero when there is no mass inside
it. Incidentally, it turns out that there is a relation between the
various components of the curvature and the variation of the
average curvature from place to place. So if you know the average
curvature everywhere, you can figure out the details of the curvature
components at each place. The average curvature inside the earth varies
with altitude, and this means that some curvature components are nonzero
both inside the earth and outside. It is that curvature that we see as a
gravitational force.




Suppose we have a bug on a plane, and suppose that the “plane” has
little pimples in the surface. Wherever there is a pimple the bug would
conclude that his space had little local regions of curvature. We have
the same thing in three dimensions. Wherever there is a lump of matter,
our three-dimensional space has a local curvature—a kind of
three-dimensional pimple.




If we make a lot of bumps on a plane there might be an overall curvature
besides all the pimples—the surface might become like a ball. It would
be interesting to know whether our space has a net average curvature as
well as the local pimples due to the lumps of matter like the earth and
the sun. The astrophysicists have been trying to answer that question by
making measurements of galaxies at very large distances. For example, if
the number of galaxies we see in a spherical shell at a large distance
is different from what we would expect from our knowledge of the radius
of the shell, we would have a measure of the excess radius of a tremendously large sphere. From
such measurements it is hoped to find out whether our whole universe is
flat on the average, or round—whether it is “closed,” like a sphere,
or “open” like a plane. You may have heard about the debates that are
going on about this subject. There are debates because the astronomical
measurements are still completely inconclusive; the experimental data
are not precise enough to give a definite answer. Unfortunately, we
don’t have the slightest idea about the overall curvature of our
universe on a large scale.








42–4 Geometry in space-time


Now we have to talk about time. As you know from the special theory of
relativity, measurements of space and measurements of time are
interrelated. And it would be kind of crazy to have something happening
to the space, without the time being involved in the same thing. You
will remember that the measurement of time depends on the speed at which
you move. For instance, if we watch a guy going by in a spaceship we see
that things happen more slowly for him than for us. Let’s say he takes
off on a trip and returns in 100[image: -*-] seconds flat by our watches;
his watch might say that he had been gone for only 95[image: -*-] seconds. In
comparison with ours, his watch—and all other processes, like his
heart beat—have been running slow.




Now let’s consider an interesting problem. Suppose you are the one in
the spaceship. We ask you to start off at a given signal and return to
your starting place just in time to catch a later signal—at, say,
exactly 100[image: -*-] seconds later according to our clock. And you are
also asked to make the trip in such a way that your watch will
show the longest possible elapsed time. How should you move? You
should stand still. If you move at all your watch will read less than
100[image: -*-] sec when you get back.




Suppose, however, we change the problem a little. Suppose we ask you to
start at point A[image: -*-] on a given signal and go to point B[image: -*-] (both fixed
relative to us), and to do it in such a way that you arrive back just at
the time of a second signal (say 100[image: -*-] seconds later according to our
fixed clock). Again you are asked to make the trip in the way that lets
you arrive with the latest possible reading on your watch. How would you
do it? For which path and schedule will your watch show the
greatest elapsed time when you arrive? The answer is that you will spend
the longest time from your point of view if you make the trip by
going at a uniform speed along a straight line. Reason: Any extra
motions and any extra-high speeds will make your clock go slower. (Since
the time deviations depend on the square of the velocity, what
you lose by going extra fast at one place you can never make up by going
extra slowly in another place.)




The point of all this is that we can use the idea to define “a straight
line” in space-time. The analog of a straight line in space is for
space-time a motion at uniform velocity in a constant direction.




The curve of shortest distance in space corresponds in space-time not to
the path of shortest time, but to the one of longest time,
because of the funny things that happen to signs of the t[image: -*-]-terms in
relativity. “Straight-line” motion—the analog of “uniform velocity
along a straight line”—is then that motion which takes a watch from
one place at one time to another place at another time in the way that
gives the longest time reading for the watch. This will be our
definition for the analog of a straight line in space-time.







42–5 Gravity and the principle of equivalence


Now we are ready to discuss the laws of gravitation.
Einstein was trying to generate
a theory of gravitation that would fit with the relativity theory that
he had developed earlier. He was struggling along until he latched onto
one important principle which guided him into getting the correct laws.
That principle is based on the idea that when a thing is falling freely
everything inside it seems weightless. For example, a satellite in orbit
is falling freely in the earth’s gravity, and an astronaut in it feels
weightless. This idea, when stated with greater precision, is called
Einstein’s principle of
equivalence. It depends on the fact that all objects fall with exactly
the same acceleration no matter what their mass, or what they are made
of. If we have a spaceship that is “coasting”—so it’s in a free
fall—and there is a man inside, then the laws governing the fall of
the man and the ship are the same. So if he puts himself in the middle
of the ship he will stay there. He doesn’t fall with respect to
the ship. That’s what we mean when we say he is “weightless.”




Now suppose you are in a rocket ship which is accelerating. Accelerating
with respect to what? Let’s just say that its engines are on and
generating a thrust so that it is not coasting in a free fall. Also
imagine that you are way out in empty space so that there are
practically no gravitational forces on the ship. If the ship is
accelerating with “1 g” you will be able to stand on the “floor”
and will feel your normal weight. Also if you let go of a ball, it will
“fall” toward the floor. Why? Because the ship is accelerating
“upward,” but the ball has no forces on it, so it will not accelerate;
it will get left behind. Inside the ship the ball will appear to have a
downward acceleration of “1 g.”




Now let’s compare that with the situation in a spaceship sitting at rest
on the surface of the earth. Everything is the same! You would be
pressed toward the floor, a ball would fall with an acceleration of
1 g, and so on. In fact, how could you tell inside a space ship
whether you are sitting on the earth or are accelerating in free space?
According to Einstein’s
equivalence principle there is no way to tell if you only make
measurements of what happens to things inside!




To be strictly correct, that is true only for one point inside the ship.
The gravitational field of the earth is not precisely uniform, so a
freely falling ball has a slightly different acceleration at different
places—the direction changes and the magnitude changes. But if we
imagine a strictly uniform gravitational field, it is completely
imitated in every respect by a system with a constant acceleration. That
is the basis of the principle of equivalence.







42–6 The speed of clocks in a gravitational field

[image: -][image: -]
Fig. 42–16. An accelerating rocket ship with two clocks.





Now we want to use the principle of equivalence for figuring out a
strange thing that happens in a gravitational field. We’ll show you
something that happens in a rocket ship which you probably wouldn’t have
expected to happen in a gravitational field. Suppose we put a clock at
the “head” of the rocket ship—that is, at the “front” end—and we
put another identical clock at the “tail,” as in
Fig. 42–16. Let’s call the two clocks A[image: -*-] and B[image: -*-]. If we
compare these two clocks when the ship is accelerating, the clock at the
head seems to run fast relative to the one at the tail. To see that,
imagine that the front clock emits a flash of light each second, and
that you are sitting at the tail comparing the arrival of the light
flashes with the ticks of clock B[image: -*-]. Let’s say that the rocket is in the
position a[image: -*-] of Fig. 42–17 when clock A[image: -*-] emits a flash,
and at the position b[image: -*-] when the flash arrives at clock B[image: -*-]. Later on
the ship will be at position c[image: -*-] when the clock A[image: -*-] emits its next
flash, and at position d[image: -*-] when you see it arrive at clock B[image: -*-].



[image: -][image: -]
Fig. 42–17. A clock at the head of an accelerating rocket ship appears to
run faster than a clock at the tail.





The first flash travels the distance L1[image: -*-] and the second flash travels
the shorter distance L2[image: -*-]. It is a shorter distance because the ship is
accelerating and has a higher speed at the time of the second flash. You
can see, then, that if the two flashes were emitted from clock A[image: -*-] one
second apart, they would arrive at clock B[image: -*-] with a separation somewhat
less than one second, since the second flash doesn’t spend as much time
on the way. The same thing will also happen for all the later flashes.
So if you were sitting in the tail you would conclude that clock A[image: -*-] was
running faster than clock B[image: -*-]. If you were to do the same thing in
reverse—letting clock B[image: -*-] emit light and observing it at
clock A[image: -*-]—you would conclude that B[image: -*-] was running slower
than A[image: -*-]. Everything fits together and there is nothing mysterious about
it all.




But now let’s think of the rocket ship at rest in the earth’s gravity.
The same thing happens. If you sit on the floor with one clock
and watch another one which is sitting on a high shelf, it will appear
to run faster than the one on the floor! You say, “But that is wrong.
The times should be the same. With no acceleration there’s no reason for
the clocks to appear to be out of step.” But they must if the principle
of equivalence is right. And Einstein insisted that the principle was right, and went
courageously and correctly ahead. He proposed that clocks at different
places in a gravitational field must appear to run at different speeds.
But if one always appears to be running at a different speed with
respect to the other, then so far as the first is concerned the other
is running at a different rate.




But now you see we have the analog for clocks of the hot ruler we were
talking about earlier, when we had the bug on a hot plate. We imagined
that rulers and bugs and everything changed lengths in the same way at
various temperatures so they could never tell that their measuring
sticks were changing as they moved around on the hot plate. It’s the
same with clocks in a gravitational field. Every clock we put at a
higher level is seen to go faster. Heartbeats go faster, all processes
run faster.




If they didn’t you would be able to tell the difference between a
gravitational field and an accelerating reference system. The idea that
time can vary from place to place is a difficult one, but it is the idea
Einstein used, and it is
correct—believe it or not.




Using the principle of equivalence we can figure out how much the speed
of a clock changes with height in a gravitational field. We just work
out the apparent discrepancy between the two clocks in the accelerating
rocket ship. The easiest way to do this is to use the result we found in
Chapter 34 of Vol. I for the Doppler
effect. There, we found—see
Eq. (34.14)—that if v[image: -*-] is the relative velocity
of a source and a receiver, the received frequency ω[image: -*-] is
related to the emitted frequency ω0[image: -*-] by

[image: -*-][image: -*-]
(42.4)




Now if we think of the accelerating rocket ship in
Fig. 42–17 the emitter and receiver are moving with equal
velocities at any one instant. But in the time that it takes the light
signals to go from clock A[image: -*-] to clock B[image: -*-] the ship has accelerated. It
has, in fact, picked up the additional velocity g t[image: -*-], where g[image: -*-] is the
acceleration and t[image: -*-] is time it takes light to travel the distance H[image: -*-]
from A[image: -*-] to B[image: -*-]. This time is very nearly H/c[image: -*-]. So when the signals
arrive at B[image: -*-], the ship has increased its velocity by g H/c[image: -*-]. The
receiver always has this velocity with respect to the emitter at
the instant the signal left it. So this is the velocity we should use in
the Doppler shift formula, Eq. (42.4). Assuming that the
acceleration and the length of the ship are small enough that this
velocity is much smaller than c[image: -*-], we can neglect the term in v2/c2[image: -*-].
We have that

[image: -*-][image: -*-]
(42.5)




So for the two clocks in the spaceship we have the relation



[image: -*-][image: -*-]
(42.6)





where H[image: -*-] is the height of the emitter above the receiver.




From the equivalence principle the same result must hold for two
clocks separated by the height H[image: -*-] in a gravitational field with the
free fall acceleration g[image: -*-].




This is such an important idea we would like to demonstrate that it also
follows from another law of physics—from the conservation of energy.
We know that the gravitational force on an object is proportional to its
mass M[image: -*-], which is related to its total internal energy E[image: -*-]
by M=E/c2[image: -*-]. For instance, the masses of nuclei determined from the
energies of nuclear reactions which transmute one nucleus into
another agree with the masses obtained from atomic weights.




Now think of an atom which has a lowest energy state of total
energy E0[image: -*-] and a higher energy state E1[image: -*-], and which can go from the
state E1[image: -*-] to the state E0[image: -*-] by emitting light. The frequency ω[image: -*-]
of the light will be given by

[image: -*-][image: -*-]
(42.7)









Now suppose we have such an atom in the state E1[image: -*-] sitting on the
floor, and we carry it from the floor to the height H[image: -*-]. To do that we
must do some work in carrying the mass m1=E1/c2[image: -*-] up against the
gravitational force. The amount of work done is

[image: -*-][image: -*-]
(42.8)




Then we let the atom emit a photon and go into the lower energy
state E0[image: -*-]. Afterward we carry the atom back to the floor. On the
return trip the mass is E0/c2[image: -*-]; we get back the energy

[image: -*-][image: -*-]
(42.9)




so we have done a net amount of work equal to

[image: -*-][image: -*-]
(42.10)









When the atom emitted the photon it gave up the energy E1−E0[image: -*-]. Now
suppose that the photon happened to go down to the floor and be
absorbed. How much energy would it deliver there? You might at first
think that it would deliver just the energy E1−E0[image: -*-]. But that can’t be
right if energy is conserved, as you can see from the following
argument. We started with the energy E1[image: -*-] at the floor. When we finish,
the energy at the floor level is the energy E0[image: -*-] of the atom in its
lower state plus the energy Eph[image: -*-] received from the photon. In
the meantime we have had to supply the additional energy Δ U[image: -*-] of
Eq. (42.10). If energy is conserved, the energy we end up
with at the floor must be greater than we started with by just the work
we have done. Namely, we must have that

[image: -*-][image: -*-]


or

[image: -*-][image: -*-]
(42.11)




It must be that the photon does not arrive at the floor with just
the energy E1−E0[image: -*-] it started with, but with a little more
energy. Otherwise some energy would have been lost. If we substitute in
Eq. (42.11) the Δ U[image: -*-] we got in Eq. (42.10)
we get that the photon arrives at the floor with the energy

[image: -*-][image: -*-]
(42.12)




But a photon of energy Eph[image: -*-] has the
frequency ω=Eph/ℏ[image: -*-]. Calling the frequency of the
emitted photon ω0[image: -*-]—which is by Eq. (42.7)
equal to (E1−E0)/ℏ[image: -*-]—our result in Eq. (42.12) gives
again the relation of (42.5) between the frequency of the
photon when it is absorbed on the floor and the frequency with which it
was emitted.




The same result can be obtained in still another way. A photon of
frequency ω0[image: -*-] has the energy E0=ℏ ω0[image: -*-]. Since the
energy E0[image: -*-] has the relativistic mass E0/c2[image: -*-] the photon has a mass
(not rest mass) ℏ ω0/c2[image: -*-], and is “attracted” by the
earth. In falling the distance H[image: -*-] it will gain an additional
energy (ℏ ω0/c2) g H[image: -*-], so it arrives with the energy

[image: -*-][image: -*-]


But its frequency after the fall is E/ℏ[image: -*-], giving again the result
in Eq. (42.5). Our ideas about relativity, quantum physics,
and energy conservation all fit together only if
Einstein’s predictions about
clocks in a gravitational field are right. The frequency changes we are
talking about are normally very small. For instance, for an altitude
difference of 20[image: -*-] meters at the earth’s surface the frequency
difference is only about two parts in 1015[image: -*-]. However, just such a
change has recently been found experimentally using the Mössbauer
effect.5 Einstein was perfectly correct.







42–7 The curvature of space-time

[image: -][image: -][image: -][image: -][image: -][image: -][image: -][image: -][image: -][image: -]
Fig. 42–18. Trying to make a rectangle in space-time.





Now we want to relate what we have just been talking about to the idea
of curved space-time. We have already pointed out that if the time goes
at different rates in different places, it is analogous to the curved
space of the hot plate. But it is more than an analogy; it means that
space-time is curved. Let’s try to do some geometry in
space-time. That may at first sound peculiar, but we have often made
diagrams of space-time with distance plotted along one axis and time
along the other. Suppose we try to make a rectangle in space-time. We
begin by plotting a graph of height H[image: -*-] versus t[image: -*-] as in
Fig. 42–18(a). To make the base of our rectangle we take an
object which is at rest at the height H1[image: -*-] and follow its world
line for 100[image: -*-] seconds. We get the line B D[image: -*-] in part (b) of the figure
which is parallel to the t[image: -*-]-axis. Now let’s take another object which
is 100[image: -*-] feet above the first one at t=0[image: -*-]. It starts at the point A[image: -*-]
in Fig. 42–18(c). Now we follow its world line for
100[image: -*-] seconds as measured by a clock at A[image: -*-]. The object goes from A[image: -*-]
to C[image: -*-], as shown in part (d) of the figure. But notice that since time
goes at a different rate at the two heights—we are assuming that there
is a gravitational field—the two points C[image: -*-] and D[image: -*-] are not
simultaneous. If we try to complete the square by drawing a line to the
point C′[image: -*-] which is 100[image: -*-] feet above D[image: -*-] at the same time, as in
Fig. 42–18(e), the pieces don’t fit. And that’s what we
mean when we say that space-time is curved.







42–8 Motion in curved space-time

[image: -][image: -]
Fig. 42–19. In a uniform gravitational field the trajectory with the
maximum proper time for a fixed elapsed time is a parabola.





Let’s consider an interesting little puzzle. We have two identical
clocks, A[image: -*-] and B[image: -*-], sitting together on the surface of the earth as in
Fig. 42–19. Now we lift clock A[image: -*-] to some height H[image: -*-], hold
it there awhile, and return it to the ground so that it arrives at just
the instant when clock B[image: -*-] has advanced by 100[image: -*-] seconds. Then clock A[image: -*-]
will read something like 107[image: -*-] seconds, because it was running faster
when it was up in the air. Now here is the puzzle. How should we move
clock A[image: -*-] so that it reads the latest possible time—always assuming
that it returns when B[image: -*-] reads 100[image: -*-] seconds? You say, “That’s easy.
Just take A[image: -*-] as high as you can. Then it will run as fast as possible,
and be the latest when you return.” Wrong. You forgot something—we’ve
only got 100[image: -*-] seconds to go up and back. If we go very high, we have to
go very fast to get there and back in 100[image: -*-] seconds. And you mustn’t
forget the effect of special relativity which causes moving clocks to
slow down by the factor √1−v2/c2[image: -*-]. This relativity
effect works in the direction of making clock A[image: -*-] read less time
than clock B[image: -*-]. You see that we have a kind of game. If we stand still
with clock A[image: -*-] we get 100[image: -*-] seconds. If we go up slowly to a small
height and come down slowly we can get a little more than 100[image: -*-] seconds.
If we go a little higher, maybe we can gain a little more. But if we go
too high we have to move fast to get there, and we may slow down the
clock enough that we end up with less than 100[image: -*-] seconds. What program
of height versus time—how high to go and with what speed to get there,
carefully adjusted to bring us back to clock B[image: -*-] when it has increased
by 100[image: -*-] seconds—will give us the largest possible time reading on
clock A[image: -*-]?




Answer: Find out how fast you have to throw a ball up into the air so
that it will fall back to earth in exactly 100[image: -*-] seconds. The ball’s
motion—rising fast, slowing down, stopping, and coming back down—is
exactly the right motion to make the time the maximum on a wrist watch
strapped to the ball.




Now consider a slightly different game. We have two points A[image: -*-] and B[image: -*-]
both on the earth’s surface at some distance from one another. We play
the same game that we did earlier to find what we call the straight
line. We ask how we should go from A[image: -*-] to B[image: -*-] so that the time on our
moving watch will be the longest—assuming we start at A[image: -*-] on a given
signal and arrive at B[image: -*-] on another signal at B[image: -*-] which we will say is
100[image: -*-] seconds later by a fixed clock. Now you say, “Well we found out
before that the thing to do is to coast along a straight line at a
uniform speed chosen so that we arrive at B[image: -*-] exactly 100[image: -*-] seconds
later. If we don’t go along a straight line it takes more speed, and our
watch is slowed down.” But wait! That was before we took gravity into
account. Isn’t it better to curve upward a little bit and then come
down? Then during part of the time we are higher up and our watch will
run a little faster? It is, indeed. If you solve the mathematical
problem of adjusting the curve of the motion so that the elapsed time of
the moving watch is the most it can possibly be, you will find that the
motion is a parabola—the same curve followed by something that moves
on a free ballistic path in the gravitational field, as in
Fig. 42–19. Therefore the law of motion in a gravitational
field can also be stated: An object always moves from one place to
another so that a clock carried on it gives a longer time than it would
on any other possible trajectory—with, of course, the same starting
and finishing conditions. The time measured by a moving clock is often
called its “proper time.” In free fall, the trajectory makes the
proper time of an object a maximum.





Let’s see how this all works out. We begin with Eq. (42.5)
which says that the excess rate of the moving watch is

[image: -*-][image: -*-]
(42.13)




Besides this, we have to remember that there is a correction of the
opposite sign for the speed. For this effect we know that

[image: -*-][image: -*-]


Although the principle is valid for any speed, we take an example in
which the speeds are always much less than c[image: -*-]. Then we can write this
equation as

[image: -*-][image: -*-]


and the defect in the rate of our clock is

[image: -*-][image: -*-]
(42.14)




Combining the two terms in (42.13) and (42.14)
we have that

[image: -*-][image: -*-]
(42.15)




Such a frequency shift of our moving clock means that if we measure a
time d t[image: -*-] on a fixed clock, the moving clock will register the time

[image: -*-][image: -*-]
(42.16)




The total time excess over the trajectory is the integral of the extra
term with respect to time, namely

[image: -*-][image: -*-]
(42.17)




which is supposed to be a maximum.




The term g H[image: -*-] is just the gravitational potential ϕ[image: -*-]. Suppose we
multiply the whole thing by a constant factor −m c2[image: -*-], where m[image: -*-] is the
mass of the object. The constant won’t change the condition for the
maximum, but the minus sign will just change the maximum to a minimum.
Equation (42.16) then says that the object will move so that

[image: -*-][image: -*-]
(42.18)




But now the integrand is just the difference of the kinetic and
potential energies. And if you look in Chapter 19 of
Volume II you will see that when we discussed the principle of least
action we showed that Newton’s laws
for an object in any potential could be written exactly in the form of
Eq. (42.18).








42–9 Einstein’s theory of gravitation


Einstein’s form of the
equations of motion—that the proper time should be a maximum in curved
space-time—gives the same results as Newton’s laws for low velocities.
As he was circling around the earth, Gordon Cooper’s watch was reading
later than it would have in any other path you could have imagined for
his satellite.6




So the law of gravitation can be stated in terms of the ideas of the
geometry of space-time in this remarkable way. The particles always take
the longest proper time—in space-time a quantity analogous to the
“shortest distance.” That’s the law of motion in a gravitational
field. The great advantage of putting it this way is that the law
doesn’t depend on any coordinates, or any other way of defining the
situation.




Now let’s summarize what we have done. We have given you two laws for
gravity:


	
How the geometry of space-time changes when matter is
present—namely, that the curvature expressed in terms of the excess
radius is proportional
to the mass inside a sphere, Eq. (42.3).


	
How objects move if there are only gravitational
forces—namely, that objects move so that their proper time between two
end conditions is a maximum.



Those two laws correspond to similar pairs of laws we have seen earlier.
We originally described motion in a gravitational field in terms of
Newton’s inverse square law of gravitation and his laws of motion. Now
laws (1) and (2) take their places. Our new pair of laws also correspond
to what we have seen in electrodynamics. There we had our law—the set
of Maxwell’s equations—which
determines the fields produced by charges. It tells how the character of
“space” is changed by the presence of charged matter, which is what
law (1) does for gravity. In addition, we had a law about how particles
move in the given fields—d (m v)/d t=q (E+v×B)[image: -*-].
This, for gravity, is done by law (2).





In the laws (1) and (2) you have a precise statement of
Einstein’s theory of
gravitation—although you will usually find it stated in a more
complicated mathematical form. We should, however, make one further
addition. Just as time scales change from place to place in a
gravitational field, so do also the length scales. Rulers change lengths
as you move around. It is impossible with space and time so intimately
mixed to have something happen with time that isn’t in some way
reflected in space. Take even the simplest example: You are riding past
the earth. What is “time” from your point of view is
partly space from our point of view. So there must also be
changes in space. It is the entire space-time which is distorted
by the presence of matter, and this is more complicated than a change
only in time scale. However, the rule that we gave in
Eq. (42.3) is enough to determine completely all the laws of
gravitation, provided that it is understood that this rule about the
curvature of space applies not only from one man’s point of view but is
true for everybody. Somebody riding by a mass of material sees a
different mass content because of the kinetic energy he calculates for
its motion past him, and he must include the mass corresponding to that
energy. The theory must be arranged so that everybody—no matter how he
moves—will, when he draws a sphere, find that the excess
radius is
G/3 c2[image: -*-] times the total mass (or, better, G/3 c4[image: -*-] times the total
energy content) inside the sphere. That this law—law (1)—should be
true in any moving system is one of the great laws of gravitation,
called Einstein’s field
equation. The other great law is (2)—that things must move so
that the proper time is a maximum—and is called
Einstein’s equation of
motion.




To write these laws in a complete algebraic form, to compare them with
Newton’s laws, or to relate them to electrodynamics is difficult
mathematically. But it is the way our most complete laws of the physics
of gravity look today.




Although they gave a result in agreement with Newton’s mechanics for the
simple example we considered, they do not always do so. The three
discrepancies first derived by Einstein have been experimentally confirmed: The orbit of Mercury
is not a fixed ellipse; starlight passing near the sun is deflected
twice as much as you would think; and the rates of clocks depend on
their location in a gravitational field. Whenever the predictions of
Einstein have been found to
differ from the ideas of Newtonian mechanics Nature has chosen
Einstein’s.




Let’s summarize everything that we have said in the following way.
First, time and distance rates depend on the place in space you measure
them and on the time. This is equivalent to the statement that
space-time is curved. From the measured area of a sphere we can define a
predicted radius, √A/4 π[image: -*-], but the actual measured radius will
have an excess over this which is proportional (the constant is G/c2[image: -*-])
to the total mass contained inside the sphere. This fixes the exact
degree of the curvature of space-time. And the curvature must be the
same no matter who is looking at the matter or how it is moving. Second,
particles move on “straight lines” (trajectories of maximum proper
time) in this curved space-time. This is the content of
Einstein’s formulation of the
laws of gravitation.






	
  
  Except for the one point at infinity.
  ↩


	
  
  We
should mention one additional point for completeness. If you want to
carry the hot-plate model of curved space over into three dimensions you
must imagine that the length of the ruler depends not only on where you
put it, but also on which orientation the ruler has when it is laid
down. It is a generalization of the simple case in which the length of
the ruler depends on where it is, but is the same if set north-south, or
east-west, or up-down. This generalization is needed if you want to
represent a three-dimensional space with any arbitrary geometry with
such a model, although it happens not to be necessary for two
dimensions.
  ↩


	
  
  Nobody—not even Einstein—knows how to do it if mass
comes concentrated at points.
  ↩


	
  
  Approximately, because the
density is not independent of radius as we are assuming.
  ↩


	
  
  R. V. Pound and
G. A. Rebka, Jr., Physical Review Letters
Vol. 4, p. 337 (1960).
  ↩


	
  
  Strictly speaking it is only a local
maximum. We should have said that the proper time is larger than for any
nearby path. For example, the proper time on an elliptical orbit
around the earth need not be longer than on a ballistic path of an
object which is shot to a great height and falls back down.
  ↩
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