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        Introduction to the Electronic Editions
        

         
        
      
        
This e-book edition of The Feynman Lectures on Physics New Millennium Edition derives from the free-to-read online version at www.feynmanlectures.caltech.edu, which in turn derives from the LATEX manuscript used to print the books. Certain adaptations have been made to accommodate the displays of typical e-readers, including narrowing wide equations and tables, and splitting figures into parts for reflowability.



        
The typographical limitations of today’s popular e-book formats are especially evident in science and mathematics texts in which mathematical expressions, formulas and equations clash with the text or degrade when scaled. We consider this unacceptable for The Feynman Lectures on Physics, and so we have created a new kind of e-book especially for this edition – one which seamlessly integrates text, mathematics, figures and tables. 



        
Whenever technically feasible, mathematics are presented using HTML and stylesheet formatting; otherwise, vectorized images are used. Great effort has been put into making the mathematical typography rendered by these two different methods indistinguishable. Vectorized images are used for tables and line-drawn figures so that they also scale without degradation, uniformly with the text and mathematics. 



        
The lasting popularity of The Feynman Lectures on Physics, now more than fifty years in print, stands out as a testament to both the continued relevance of its subject matter and the enthusiastic spirit in which it is presented. It is our sincere hope that the electronic editions of Feynman’s lectures will make them even more accessible, so they may be more widely and better appreciated, and serve as an inspiration and guide to bright eager minds throughout the world, far into the future.




Michael A. Gottlieb, Editor

Rudolf Pfeiffer, Editor

Lars I. Næsheim, Ebook Producer


June 19, 2015
       




        
        
	
        

        

  
    
      
        
        
        About the Authors
        

         
        
        
        Richard Feynman
        

      
        
		
        Born in 1918 in New York City, Richard P. Feynman received his Ph.D from Princeton in 1942.
        Despite his youth, he played an important part in the Manhattan Project at Los Alamos during World
        War II. Subsequently, he taught at Cornell and at the California Institute of Technology. In 1965
        he received the Nobel Prize in Physics, along with Sin-Itiro Tomonaga and Julian Schwinger,
        for his work in quantum electrodynamics.
		

        

        
        
        
		
        Dr. Feynman won his Nobel Prize for successfully resolving problems with the theory of quantum
        electrodynamics. He also created a mathematical theory that accounts for the phenomenon of
        superfluidity in liquid helium. Thereafter, with Murray Gell-Mann, he did fundamental work in the
        area of weak interactions such as beta decay. In later years Feynman played a key role in the
        development of quark theory by putting forward his parton model of high energy proton collision
        processes.
        

        

        
        
		
        Beyond these achievements, Dr. Feynman introduced basic new computational techniques and notations
        into physics—above all, the ubiquitous Feynman diagrams that, perhaps more than any other formalism
        in recent scientific history, have changed the way in which basic physical processes are conceptualized
        and calculated.
        

        

        
        
		
        Feynman was a remarkably effective educator. Of all his numerous awards, he was especially proud of
        the Oersted Medal for Teaching, which he won in 1972. The Feynman Lectures on Physics,
        originally published in 1963, were described by a reviewer in Scientific American as “tough, but
        nourishing and full of flavor. After 25 years it is the guide for teachers and for the best
        of beginning students.” In order to increase the understanding of physics among the lay public,
        Dr. Feynman wrote The Character of Physical Law and QED: The Strange Theory of Light and
        Matter. He also authored a number of advanced publications that have become classic references
        and textbooks for researchers and students.
        

		

		
        
		
        Richard Feynman was a constructive public man. His work on the Challenger commission is well known,
        especially his famous demonstration of the susceptibility of the O-rings to cold, an elegant experiment
        which required nothing more than a glass of ice water and a C-clamp. Less well known were
        Dr. Feynman's efforts on the California State Curriculum Committee in the 1960s, where he protested
        the mediocrity of textbooks.
        

		

		
        
		
        A recital of Richard Feynman's myriad scientific and educational accomplishments cannot adequately
        capture the essence of the man. As any reader of even his most technical publications knows, Feynman's
        lively and multi-sided personality shines through all his work. Besides being a physicist, he was at
        various times a repairer of radios, a picker of locks, an artist, a dancer, a bongo player, and even a
        decipherer of Mayan hieroglyphics. Perpetually curious about his world, he was an exemplary empiricist.
        

		

		
        
		
        Richard Feynman died on February 15, 1988, in Los Angeles.
        

		

        

        
        
        
        Robert Leighton
        

        
        
		
        Born in Detroit in 1919, Robert B. Leighton did ground-breaking work in solid state physics, cosmic ray physics, the beginnings of modern particle physics, solar physics, planetary photography, infrared astronomy, and millimeter- and submillimeter-wave astronomy over the course of his life. He was widely known for his innovative design of scientific instruments, and was deeply admired as a teacher, having authored a highly influential text, Principles of Modern Physics, before joining the team developing The Feynman Lectures on Physics.
        

		


        
		
        In the early 1950s Leighton played a key role in showing the mu-meson decays into two neutrinos and an electron, and  made the first measurement of the energy spectrum of the decay electron.  He was the first to observe strange particle decays after their initial discovery, and elucidated many of the properties of the new strange particles.
        

		


        
		
        In the mid-1950s Leighton devised Doppler-shift and Zeeman-effect solar cameras. With the Zeeman camera, Leighton and his students mapped the sun's magnetic field with excellent resolution, leading to striking discoveries of a five-minute oscillation in local solar surface velocities and of a “super-granulation pattern,” thus opening a new field: solar seismology. Leighton also designed and built equipment to make clearer images of the planets, and opened another new field: adaptive optics. His were considered the best images of the planets until the era of space exploration with probes began in the 1960s.
        

		


        
		
        In the early 1960s, Leighton developed a novel, inexpensive infrared telescope, producing the first survey of the sky at 2.2 microns, which revealed an unexpectedly large number of objects in our galaxy too cool to be seen with the human eye.  During the mid-1960s he was Team Leader at JPL for  Imaging Science Investigations on the Mariner 4, 6, and 7 missions to Mars. Leighton played a key role in the development of JPL's first deep-space digital television system, and contributed to early efforts at image processing and enhancement techniques.
        

		


        
		
        In the 1970s, Leighton's interest shifted to the development of large, inexpensive dish antennae that could be used to pursue millimeter-wave interferometry and submillimeter-wave astronomy. Once again, his remarkable experimental abilities opened a new field of science, which continues to be vigorously pursued at the Owens Valley Radio Observatory and the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile.
        

		


        
		
        Robert Leighton died on March 9, 1997, in Pasadena, California.
        

		

        

        

        
        
        Matthew Sands
        

        
        
		
        Born in 1919 in Oxford, Massachusetts, Matthew Sands received his BA from Clark University in 1940 and his MA from Rice University in 1941. During World War II he served on the Manhattan Project at Los Alamos, working on electronics and instrumentation. After the war Sands helped found the Los Alamos Federation of Atomic Scientists, which lobbied against the further use of nuclear weapons. During that period he earned his Ph.D at MIT researching cosmic rays under Bruno Rossi.
        

		


        
		
        In 1950 Sands was recruited by Caltech to build and operate its 1.5 GeV electron synchrotron. He was the first to show, theoretically and experimentally, the importance of quantum effects in electron accelerators.
        

		


        
		
        From 1960 to 1966, Sands served on the Commission on College Physics, spearheading reforms in the Caltech undergraduate physics program that created The Feynman Lectures on Physics. During that time he also served as a consultant on nuclear weapons and disarmament to the President’s Science Advisory Committee, the Arms Control and Disarmament Agency, and the Department of Defense.
        

		


        
		
        In 1963 Sands became Deputy Director for construction and operation of the Stanford Linear Accelerator (SLAC), where he also worked on the Stanford Positron Electron Asymmetric Rings (SPEAR) 3 GeV collider.
        

		


        
		
        From 1969 to 1985 Sands was a physics professor at University of California, Santa Cruz, serving as its Vice Chancellor for Science from 1969 to 1972. He received a Distinguished Service Award from the American Association of Physics Teachers in 1972. As Professor Emeritus, he continued to be active in particle accelerator research until 1994. In 1998 the American Physical Society awarded Sands the Robert R. Wilson Prize “for his many contributions to accelerator physics and the development of electron-positron and proton colliders.”
        

		


        
		
        In his retirement Sands mentored local elementary and high school science teachers in Santa Cruz, helping them set up computer and laboratory activities for their students. He also supervised the editing of Feynman’s Tips on Physics, to which he contributed a memoir describing the creation of The Feynman Lectures on Physics.
        

		


        
		
        Matthew Sands died on September 13, 2014, in Santa Cruz, California.
        

		

        

        
        

   

  
    
        
        
        
        Preface to the New Millennium Edition
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		Nearly fifty years have passed since Richard Feynman taught the introductory
        physics course at Caltech that gave rise to these three volumes, The Feynman
        Lectures on Physics. In those fifty years our understanding of the physical
        world has changed greatly, but The Feynman Lectures on Physics has
        endured. Feynman’s lectures are as powerful today as when first published, thanks
        to Feynman’s unique physics insights and pedagogy. They have been studied
        worldwide by novices and mature physicists alike; they have been translated into
        at least a dozen languages with more than 1.5 millions copies printed in the
        English language alone. Perhaps no other set of physics books has had such wide
        impact, for so long.

        
        
        
		
        This New Millennium Edition ushers in a new era for The Feynman
        Lectures on Physics (FLP): the twenty-first century era of electronic
        publishing. FLP has been converted to eFLP, with the text and
        equations expressed in the LaTeX electronic typesetting language, and all figures
        redone using modern drawing software.

        
        
        
		
        The consequences for the print version of this edition are not
        startling; it looks almost the same as the original red books that physics
        students have known and loved for decades. The main differences are an expanded
        and improved index, the correction of 885 errata found by readers over the five
        years since the first printing of the previous edition, and the ease of
        correcting errata that future readers may find. To this I shall return
        below.

        
        
        
		
        The eBook Version of this edition, and the Enhanced Electronic
        Version are electronic innovations. By contrast with most eBook versions of
        20th century technical books, whose equations, figures and sometimes even text
        become pixellated when one tries to enlarge them, the LaTeX manuscript of the
        New Millennium Edition makes it possible to create eBooks of the highest
        quality, in which all features on the page (except photographs) can be enlarged
        without bound and retain their precise shapes and sharpness. And the Enhanced
        Electronic Version, with its audio and blackboard photos from Feynman’s
        original lectures, and its links to other resources, is an innovation that would
        have given Feynman great pleasure.
        
		

		

		
		
        Memories of Feynman’s Lectures

        
        
		
        These three volumes are a self-contained pedagogical treatise. They are also a
        historical record of Feynman’s 1961–64 undergraduate physics lectures, a course
        required of all Caltech freshmen and sophomores regardless of their majors.

        
        
        
		
        Readers may wonder, as I have, how Feynman’s lectures impacted the students who
        attended them. Feynman, in his Preface to these volumes, offered a somewhat
        negative view.  “I don’t think I did very well by the students,” he wrote.
        Matthew Sands, in his memoir in Feynman’s Tips on Physics expressed a far
        more positive view. Out of curiosity, in spring 2005 I emailed or talked to a
        quasi-random set of 17 students (out of about 150) from Feynman’s 1961–63
        class—some who had great difficulty with the class, and some who mastered it
        with ease; majors in biology, chemistry, engineering, geology, mathematics and
        astronomy, as well as in physics.

        
        
        
		
        The intervening years might have glazed their memories with a euphoric tint, but
        about 80 percent recall Feynman’s lectures as highlights of their college years.
        “It was like going to church.” The lectures were “a transformational
        experience,” “the experience of a lifetime, probably the most important thing I
        got from Caltech.” “I was a biology major but Feynman’s lectures stand out as a
        high point in my undergraduate experience … though I
        must admit I couldn’t do the homework at the time and I hardly turned any of it
        in.” “I was among the least promising of students in this course, and I never
        missed a lecture. … I remember and can still feel
        Feynman’s joy of discovery. … His lectures had an
        … emotional impact that was probably lost in the
        printed Lectures.”

        
        
        
		
        By contrast, several of the students have negative memories due largely to two
        issues: (i) “You couldn’t learn to work the homework problems by attending the
        lectures. Feynman was too slick—he knew tricks and what approximations could be
        made, and had intuition based on experience and genius that a beginning student
        does not possess.” Feynman and colleagues, aware of this flaw in the course,
        addressed it in part with materials that have been incorporated into Feynman’s
        Tips on Physics: three problem-solving lectures by Feynman, and a set of
        exercises and answers assembled by Robert B. Leighton and Rochus Vogt. (ii) “The
        insecurity of not knowing what was likely to be discussed in the next lecture,
        the lack of a text book or reference with any connection to the lecture material,
        and consequent inability for us to read ahead, were very frustrating. 
        …  I found the lectures exciting and understandable in the
        hall, but they were Sanskrit outside [when I tried to reconstruct the details].”
        This problem, of course, was solved by these three volumes, the printed version
        of The Feynman Lectures on Physics. They became the textbook from which
        Caltech students studied for many years thereafter, and they live on today as one
        of Feynman’s greatest legacies.

		

		

		
		
        A History of Errata

        
        
		
        The Feynman Lectures on Physics was produced very quickly by Feynman and
        his co-authors, Robert B. Leighton and Matthew Sands, working from and expanding
        on tape recordings and blackboard photos of Feynman’s course lectures1 (both of
        which are incorporated into the Enhanced Electronic Version of this New
        Millennium Edition). Given the high speed at which Feynman, Leighton and
        Sands worked, it was inevitable that many errors crept into the first edition.
        Feynman accumulated long lists of claimed errata over the subsequent
        years—errata found by students and faculty at Caltech and by readers around the
        world. In the 1960s and early ’70s, Feynman made time in his intense life to
        check most but not all of the claimed errata for Volumes I and II, and insert
        corrections into subsequent printings. But Feynman’s sense of duty never rose
        high enough above the excitement of discovering new things to make him deal with
        the errata in Volume III.2 After his untimely death in 1988,
        lists of errata for all three volumes were deposited in the Caltech Archives, and
        there they lay forgotten.

        
        
        
		
        In 2002 Ralph Leighton (son of the late Robert Leighton and compatriot of
        Feynman) informed me of the old errata and a new long list compiled by Ralph’s
        friend Michael Gottlieb. Leighton proposed that Caltech produce a new edition of
        The Feynman Lectures with all errata corrected, and publish it alongside a
        new volume of auxiliary material, Feynman’s Tips on Physics, which he and
        Gottlieb were preparing.

        
        
        
		
        Feynman was my hero and a close personal friend. When I saw the lists of errata
        and the content of the proposed new volume, I quickly agreed to oversee this
        project on behalf of Caltech (Feynman’s long-time academic home, to which he,
        Leighton and Sands had entrusted all rights and responsibilities for The
        Feynman Lectures). After a year and a half of meticulous work by Gottlieb,
        and careful scrutiny by Dr. Michael Hartl (an outstanding Caltech postdoc who
        vetted all errata plus the new volume), the 2005 Definitive Edition of The
        Feynman Lectures on Physics was born, with about 200 errata corrected and
        accompanied by Feynman’s Tips on Physics by Feynman, Gottlieb and
        Leighton.

        
        
        
		
        I thought that edition was going to be “Definitive”. What I did not
        anticipate was the enthusiastic response of readers around the world to an appeal
        from Gottlieb to identify further errata, and submit them via a website that
        Gottlieb created and continues to maintain, The Feynman Lectures Website,
        www.feynmanlectures.info.  In
        the five years since then, 965 new errata have been submitted and survived the
        meticulous scrutiny of Gottlieb, Hartl, and Nate Bode (an outstanding Caltech
        physics graduate student, who succeeded Hartl as Caltech’s vetter of errata). Of
        these, 965 vetted errata, 80 were corrected in the fourth printing of the
        Definitive Edition (August 2006) and the remaining 885 are corrected in
        the first printing of this New Millennium Edition (332 in volume I, 263 in
        volume II, and 200 in volume III). For details of the errata, see www.feynmanlectures.info.

        
        
        
		
        Clearly, making The Feynman Lectures on Physics error-free has become a
        world-wide community enterprise. On behalf of Caltech I thank the 50 readers who
        have contributed since 2005 and the many more who may contribute over the coming
        years. The names of all contributors are posted at www.feynmanlectures.info/flp_errata.html.

        
        
        
		
        Almost all the errata have been of three types: (i) typographical errors in
        prose; (ii) typographical and mathematical errors in equations, tables and
        figures—sign errors, incorrect numbers (e.g., a 5 that should be a 4), and
        missing subscripts, summation signs, parentheses and terms in equations; (iii)
        incorrect cross references to chapters, tables and figures. These kinds of
        errors, though not terribly serious to a mature physicist, can be frustrating and
        confusing to Feynman’s primary audience: students.

        
        
        
		
        It is remarkable that among the 1165 errata corrected under my auspices, only
        several do I regard as true errors in physics. An example is Volume II, page 5-9,
        which now says “…no static distribution of charges
        inside a closed grounded conductor can produce any [electric] fields
        outside” (the word grounded was omitted in previous editions). This error was
        pointed out to Feynman by a number of readers, including Beulah Elizabeth Cox, a
        student at The College of William and Mary, who had relied on Feynman’s erroneous
        passage in an exam. To Ms. Cox, Feynman wrote in 1975,3  “Your instructor was right
        not to give you any points, for your answer was wrong, as he demonstrated using
        Gauss’s law. You should, in science, believe logic and arguments, carefully
        drawn, and not authorities. You also read the book correctly and understood it. I
        made a mistake, so the book is wrong. I probably was thinking of a grounded
        conducting sphere, or else of the fact that moving the charges around in
        different places inside does not affect things on the outside. I am not sure how
        I did it, but I goofed. And you goofed, too, for believing me.”

		

		

		
		
        How this New Millennium Edition Came to Be

        
        
		
        Between November 2005 and July 2006, 340 errata were submitted to The Feynman
        Lectures Website www.feynmanlectures.info. Remarkably, the
        bulk of these came from one person: Dr. Rudolf Pfeiffer, then a physics
        postdoctoral fellow at the University of Vienna, Austria. The publisher, Addison
        Wesley, fixed 80 errata, but balked at fixing more because of cost: the books
        were being printed by a photo-offset process, working from photographic images of
        the pages from the 1960s. Correcting an error involved re-typesetting the entire
        page, and to ensure no new errors crept in, the page was re-typeset twice by two
        different people, then compared and proofread by several other people—a very
        costly process indeed, when hundreds of errata are involved.

        
        
        
		
        Gottlieb, Pfeiffer and Ralph Leighton were very unhappy about this, so they
        formulated a plan aimed at facilitating the repair of all errata, and also aimed
        at producing eBook and enhanced electronic versions of The Feynman Lectures on
        Physics. They proposed their plan to me, as Caltech’s representative, in
        2007. I was enthusiastic but cautious. After seeing further details, including a
        one-chapter demonstration of the Enhanced Electronic Version, I
        recommended that Caltech cooperate with Gottlieb, Pfeiffer and Leighton in the
        execution of their plan. The plan was approved by three successive chairs of
        Caltech’s Division of Physics, Mathematics and Astronomy—Tom Tombrello, Andrew
        Lange, and Tom Soifer—and the complex legal and contractual details were worked
        out by Caltech’s Intellectual Property Counsel, Adam Cochran. With the
        publication of this New Millennium Edition, the plan has been executed
        successfully, despite its complexity. Specifically:

        
        
        
		
        Pfeiffer and Gottlieb have converted into LaTeX all three volumes of FLP
        (and also more than 1000 exercises from the Feynman course for incorporation into
        Feynman’s Tips on Physics). The FLP figures were redrawn in modern
        electronic form in India, under guidance of the FLP German translator,
        Henning Heinze, for use in the German edition. Gottlieb and Pfeiffer traded
        non-exclusive use of their LaTeX equations in the German edition (published by
        Oldenbourg) for non-exclusive use of Heinze’s figures in this New
        Millennium English edition. Pfeiffer and Gottlieb have meticulously checked
        all the LaTeX text and equations and all the redrawn figures, and made
        corrections as needed. Nate Bode and I, on behalf of Caltech, have done spot
        checks of text, equations, and figures; and remarkably, we have found no errors.
        Pfeiffer and Gottlieb are unbelievably meticulous and accurate. Gottlieb and
        Pfeiffer arranged for John Sullivan at the Huntington Library to digitize the
        photos of Feynman’s 1962–64 blackboards, and for George Blood Audio to digitize
        the lecture tapes—with financial support and encouragement from Caltech
        Professor Carver Mead, logistical support from Caltech Archivist Shelley Erwin,
        and legal support from Cochran.

        
        
        
		
        The legal issues were serious: In the 1960s, Caltech licensed to Addison Wesley
        rights to publish the print edition, and in the 1990s, rights to distribute the
        audio of Feynman’s lectures and a variant of an electronic edition. In the 2000s,
        through a sequence of acquisitions of those licenses, the print rights were
        transferred to the Pearson publishing group, while rights to the audio and the
        electronic version were transferred to the Perseus publishing group. Cochran,
        with the aid of Ike Williams, an attorney who specializes in publishing,
        succeeded in uniting all of these rights with Perseus (Basic Books), making
        possible this New Millennium Edition.
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		These are the lectures in physics that I gave last year and the year before to
        the freshman and sophomore classes at Caltech. The lectures are, of course, not
        verbatim—they have been edited, sometimes extensively and sometimes less so.
        The lectures form only part of the complete course. The whole group of 180
        students gathered in a big lecture room twice a week to hear these lectures and
        then they broke up into small groups of 15 to 20 students in recitation sections
        under the guidance of a teaching assistant. In addition, there was a laboratory
        session once a week.
		

		

		
		
		The special problem we tried to get at with these lectures was to maintain the
        interest of the very enthusiastic and rather smart students coming out of the
        high schools and into Caltech. They have heard a lot about how interesting and
        exciting physics is—the theory of relativity, quantum mechanics, and other
        modern ideas. By the end of two years of our previous course, many would be very
        discouraged because there were really very few grand, new, modern ideas presented
        to them. They were made to study inclined planes, electrostatics, and so forth,
        and after two years it was quite stultifying. The problem was whether or not we
        could make a course which would save the more advanced and excited student by
        maintaining his enthusiasm.
		

		

		
		
		The lectures here are not in any way meant to be a survey course, but are very
        serious. I thought to address them to the most intelligent in the class and to
        make sure, if possible, that even the most intelligent student was unable to
        completely encompass everything that was in the lectures—by putting in
        suggestions of applications of the ideas and concepts in various directions
        outside the main line of attack. For this reason, though, I tried very hard to
        make all the statements as accurate as possible, to point out in every case where
        the equations and ideas fitted into the body of physics, and how—when they
        learned more—things would be modified. I also felt that for such students it is
        important to indicate what it is that they should—if they are sufficiently
        clever—be able to understand by deduction from what has been said before, and
        what is being put in as something new. When new ideas came in, I would try either
        to deduce them if they were deducible, or to explain that it was a
        new idea which hadn’t any basis in terms of things they had already learned and
        which was not supposed to be provable—but was just added in.
		

		

		
		
		At the start of these lectures, I assumed that the students knew something
        when they came out of high school—such things as geometrical optics, simple
        chemistry ideas, and so on. I also didn’t see that there was any reason to make
        the lectures in a definite order, in the sense that I would not be allowed to
        mention something until I was ready to discuss it in detail. There was a great
        deal of mention of things to come, without complete discussions. These more
        complete discussions would come later when the preparation became more advanced.
        Examples are the discussions of inductance, and of energy levels, which are at
        first brought in in a very qualitative way and are later developed more
        completely.
		

		

		
		
		At the same time that I was aiming at the more active student, I also wanted
        to take care of the fellow for whom the extra fireworks and side applications are
        merely disquieting and who cannot be expected to learn most of the material in
        the lecture at all. For such students I wanted there to be at least a central
        core or backbone of material which he could get. Even if he didn’t
        understand everything in a lecture, I hoped he wouldn’t get nervous. I didn’t
        expect him to understand everything, but only the central and most direct
        features. It takes, of course, a certain intelligence on his part to see which
        are the central theorems and central ideas, and which are the more advanced side
        issues and applications which he may understand only in later years.
		

		

		
		
		In giving these lectures there was one serious difficulty: in the way the
        course was given, there wasn’t any feedback from the students to the lecturer to
        indicate how well the lectures were going over. This is indeed a very serious
        difficulty, and I don’t know how good the lectures really are. The whole thing
        was essentially an experiment. And if I did it again I wouldn’t do it the same
        way—I hope I don’t have to do it again! I think, though, that things
        worked out—so far as the physics is concerned—quite satisfactorily in the
        first year.
		

		

		
		
		In the second year I was not so satisfied. In the first part of the course,
        dealing with electricity and magnetism, I couldn’t think of any really unique or
        different way of doing it—of any way that would be particularly more exciting
        than the usual way of presenting it. So I don’t think I did very much in the
        lectures on electricity and magnetism. At the end of the second year I had
        originally intended to go on, after the electricity and magnetism, by giving some
        more lectures on the properties of materials, but mainly to take up things like
        fundamental modes, solutions of the diffusion equation, vibrating systems,
        orthogonal functions, … developing the first
        stages of what are usually called “the mathematical methods of physics.”
        In retrospect, I think that if I were doing it again I would go back to that
        original idea. But since it was not planned that I would be giving these lectures
        again, it was suggested that it might be a good idea to try to give an
        introduction to the quantum mechanics—what you will find in Volume III.
		

		

		
		
		It is perfectly clear that students who will major in physics can wait until
        their third year for quantum mechanics. On the other hand, the argument was made
        that many of the students in our course study physics as a background for their
        primary interest in other fields. And the usual way of dealing with quantum
        mechanics makes that subject almost unavailable for the great majority of
        students because they have to take so long to learn it. Yet, in its real
        applications—especially in its more complex applications, such as in electrical
        engineering and chemistry—the full machinery of the differential equation
        approach is not actually used. So I tried to describe the principles of quantum
        mechanics in a way which wouldn’t require that one first know the mathematics of
        partial differential equations. Even for a physicist I think that is an
        interesting thing to try to do—to present quantum mechanics in this reverse
        fashion—for several reasons which may be apparent in the lectures themselves.
        However, I think that the experiment in the quantum mechanics part was not
        completely successful—in large part because I really did not have enough time
        at the end (I should, for instance, have had three or four more lectures in order
        to deal more completely with such matters as energy bands and the spatial
        dependence of amplitudes). Also, I had never presented the subject this way
        before, so the lack of feedback was particularly serious. I now believe the
        quantum mechanics should be given at a later time. Maybe I’ll have a chance to do
        it again someday. Then I’ll do it right.
		

		

		
		
		The reason there are no lectures on how to solve problems is because there
        were recitation sections. Although I did put in three lectures in the first year
        on how to solve problems, they are not included here. Also there was a lecture on
        inertial guidance which certainly belongs after the lecture on rotating systems,
        but which was, unfortunately, omitted. The fifth and sixth lectures are actually
        due to Matthew Sands, as I was out of town. The question, of course, is how well
        this experiment has succeeded. My own point of view—which, however, does not
        seem to be shared by most of the people who worked with the students—is
        pessimistic. I don’t think I did very well by the students. When I look at the
        way the majority of the students handled the problems on the examinations, I
        think that the system is a failure. Of course, my friends point out to me that
        there were one or two dozen students who—very surprisingly—understood almost
        everything in all of the lectures, and who were quite active in working with the
        material and worrying about the many points in an excited and interested way.
        These people have now, I believe, a first-rate background in physics—and they
        are, after all, the ones I was trying to get at. But then, "The power of
        instruction is seldom of much efficacy except in those happy dispositions where
        it is almost superfluous.” (Gibbon)
		

		

		
		
		Still, I didn’t want to leave any student completely behind, as perhaps I did.
        I think one way we could help the students more would be by putting more hard
        work into developing a set of problems which would elucidate some of the ideas in
        the lectures. Problems give a good opportunity to fill out the material of the
        lectures and make more realistic, more complete, and more settled in the mind the
        ideas that have been exposed.
		

		

		
		
		I think, however, that there isn’t any solution to this problem of education
        other than to realize that the best teaching can be done only when there is a
        direct individual relationship between a student and a good teacher—a situation
        in which the student discusses the ideas, thinks about the things, and talks
        about the things. It’s impossible to learn very much by simply sitting in a
        lecture, or even by simply doing problems that are assigned. But in our modern
        times we have so many students to teach that we have to try to find some
        substitute for the ideal. Perhaps my lectures can make some contribution. Perhaps
        in some small place where there are individual teachers and students, they may
        get some inspiration or some ideas from the lectures. Perhaps they will have fun
        thinking them through—or going on to develop some of the ideas further.
		

        
        Richard P.
        Feynman

        June, 1963

        

  		

        
      	

    

  

  
    
     
        
        	
        Foreword
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		A great triumph of twentieth-century physics, the theory of quantum 
		mechanics, is now nearly 40 years old, yet we have generally been giving 
		our students their introductory course in physics (for many students, 
		their last) with hardly more than a casual allusion to this central part 
		of our knowledge of the physical world. We should do better by them. 
		These lectures are an attempt to present them with the basic and 
		essential ideas of the quantum mechanics in a way that would, hopefully, 
		be comprehensible. The approach you will find here is novel, 
		particularly at the level of a sophomore course, and was considered very 
		much an experiment. After seeing how easily some of the students take to 
		it, however, I believe that the experiment was a success. There is, of course, 
		room for improvement, and it will come with more experience in 
		the classroom. What you will find here is a record of that first 
		experiment.

		
        
        
		
		In the two-year sequence of the Feynman Lectures on Physics which were 
		given from September 1961 through May 1963 for the introductory physics 
		course at Caltech, the concepts of quantum physics were brought in 
		whenever they were necessary for an understanding of the phenomena being 
		described. In addition, the last twelve lectures of the second year were 
		given over to a more coherent introduction to some of the concepts of 
		quantum mechanics. It became clear as the lectures drew to a close, 
		however, that not enough time had been left for the quantum mechanics. 
		As the material was prepared, it was continually discovered that other 
		important and interesting topics could be treated with the elementary 
		tools that had been developed. There was also a fear that the too brief 
		treatment of the Schrödinger wave function which had been included in 
		the twelfth lecture would not provide a sufficient bridge to the more 
		conventional treatments of many books the students might hope to read. 
		It was therefore decided to extend the series with seven additional 
		lectures; they were given to the sophomore class in May of 1964. These 
		lectures rounded out and extended somewhat the material developed in the 
		earlier lectures.

		
        
        
		
		In this volume we have put together the lectures from both years with 
		some adjustment of the sequence. In addition, two lectures originally 
		given to the freshman class as an introduction to quantum physics have 
		been lifted bodily from Volume I (where they were Chapters
		37 and 38) and placed as the first two
		chapters here—to make this volume a self-contained unit, relatively
		independent of the first two. A few ideas about the quantization of
		angular momentum (including a discussion of the Stern-Gerlach
		experiment) had been introduced in Chapters 34
		and 35 of Volume II, and familiarity with them is
		assumed; for the convenience of those who will not have that volume at
		hand, those two chapters are reproduced here as an Appendix.1


		
        
        
		
		This set of lectures tries to elucidate from the beginning those
		features of the quantum mechanics which are most basic and most
		general. The first lectures tackle head on the ideas of a probability
		amplitude, the interference of amplitudes, the abstract notion of a
		state, and the superposition and resolution of states—and the Dirac
		notation is used from the start. In each instance the ideas are
		introduced together with a detailed discussion of some specific
		examples—to try to make the physical ideas as real as possible. The
		time dependence of states including states of definite energy comes
		next, and the ideas are applied at once to the study of two-state
		systems. A detailed discussion of the ammonia maser provides the
		frame-work for the introduction to radiation absorption and induced
		transitions. The lectures then go on to consider more complex systems,
		leading to a discussion of the propagation of electrons in a crystal,
		and to a rather complete treatment of the quantum mechanics of angular
		momentum. Our introduction to quantum mechanics ends in
		Chapter 20 with a discussion of the Schrödinger wave
		function, its differential equation, and the solution for the hydrogen atom.

		
        
        
		
		The last chapter of this volume is not intended to be a part of the 
		“course.” It is a “seminar” on superconductivity and was given in
		the spirit of some of the entertainment lectures of the first two
		volumes, with the intent of opening to the students a broader view of
		the relation of what they were learning to the general culture of
		physics. Feynman's “epilogue” serves as the period to the
		three-volume series.

		
        
        
		
		As explained in the Foreword to Volume I, these lectures were but one
		aspect of a program for the development of a new introductory course
		carried out at the California Institute of Technology under the
		supervision of the Physics Course Revision Committee (Robert Leighton,
		Victor Neher, and Matthew Sands). The program was made possible by a
		grant from the Ford Foundation. Many people helped with the technical
		details of the preparation of this volume: Marylou Clayton, Julie
		Curcio, James Hartle, Tom Harvey, Martin Israel, Patricia Preuss,
		Fanny Warren, and Barbara Zimmerman. Professors Gerry Neugebauer and
		Charles Wilts contributed greatly to the accuracy and clarity of the
		material by reviewing carefully much of the manuscript.

		
        
        
		
		But the story of quantum mechanics you will find here is Richard
		Feynman's. Our labors will have been well spent if we have been able
		to bring to others even some of the intellectual excitement we
		experienced as we saw the ideas unfold in his real-life Lectures on
		Physics.


		
        Matthew Sands

        December, 1964

        (Photograph by Francis Bello © Estate of Francis Bello/Scence Photo Library)
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1 Quantum Behavior


  
     	
     Note:
     
      	
      This chapter is almost exactly the same as Chapter 37 of Volume I.
      
  





1–1 Atomic mechanics


“Quantum mechanics” is the description of the behavior of matter and
light in all its details and, in particular, of the happenings on an
atomic scale. Things on a very small scale behave like nothing that
you have any direct experience about. They do not behave like waves,
they do not behave like particles, they do not behave like clouds, or
billiard balls, or weights on springs, or like anything that you have
ever seen.




Newton thought that light was made
up of particles, but then it was discovered that it behaves like a wave.
Later, however (in the beginning of the twentieth century), it was found
that light did indeed sometimes behave like a particle. Historically,
the electron, for example, was thought to behave like a
particle, and then it was found that in many respects it behaved like a
wave. So it really behaves like neither. Now we have given up. We say:
“It is like neither.”




There is one lucky break, however—electrons behave just like
light. The quantum behavior of atomic objects (electrons, protons,
neutrons, photons, and so on) is the same for all, they are all
“particle waves,” or whatever you want to call them. So what we
learn about the properties of electrons (which we shall use for our
examples) will apply also to all “particles,” including photons of
light.




The gradual accumulation of information about atomic and small-scale
behavior during the first quarter of the 20th century, which gave some
indications about how small things do behave, produced an increasing
confusion which was finally resolved in 1926 and 1927 by
Schrödinger,
Heisenberg, and
Born. They finally obtained a
consistent description of the behavior of matter on a small scale. We
take up the main features of that description in this chapter.




Because atomic behavior is so unlike ordinary experience, it is very
difficult to get used to, and it appears peculiar and mysterious to
everyone—both to the novice and to the experienced physicist. Even
the experts do not understand it the way they would like to, and it is
perfectly reasonable that they should not, because all of direct,
human experience and of human intuition applies to large objects. We
know how large objects will act, but things on a small scale just do
not act that way. So we have to learn about them in a sort of abstract
or imaginative fashion and not by connection with our direct
experience.




In this chapter we shall tackle immediately the basic element of the
mysterious behavior in its most strange form. We choose to examine a
phenomenon which is impossible, absolutely impossible, to
explain in any classical way, and which has in it the heart of quantum
mechanics. In reality, it contains the only mystery. We cannot
make the mystery go away by “explaining” how it works. We will just
tell you how it works. In telling you how it works we will have
told you about the basic peculiarities of all quantum mechanics.







1–2 An experiment with bullets

[image: -]
Fig. 1–1. Interference experiment with bullets.





To try to understand the quantum behavior of electrons, we
shall compare and contrast their behavior, in a particular experimental
setup, with the more familiar behavior of particles like bullets, and
with the behavior of waves like water waves. We consider first the
behavior of bullets in the experimental setup shown diagrammatically in
Fig. 1–1. We have a machine gun that shoots a stream of
bullets. It is not a very good gun, in that it sprays the bullets
(randomly) over a fairly large angular spread, as indicated in the
figure. In front of the gun we have a wall (made of armor plate) that
has in it two holes just about big enough to let a bullet through.
Beyond the wall is a backstop (say a thick wall of wood) which will
“absorb” the bullets when they hit it. In front of the wall we have an
object which we shall call a “detector” of bullets. It might be a box
containing sand. Any bullet that enters the detector will be stopped and
accumulated. When we wish, we can empty the box and count the number of
bullets that have been caught. The detector can be moved back and forth
(in what we will call the x-direction). With this apparatus, we can
find out experimentally the answer to the question: “What is the
probability that a bullet which passes through the holes in the wall
will arrive at the backstop at the distance x from the center?”
First, you should realize that we should talk about probability, because
we cannot say definitely where any particular bullet will go. A bullet
which happens to hit one of the holes may bounce off the edges of the
hole, and may end up anywhere at all. By “probability” we mean the
chance that the bullet will arrive at the detector, which we can measure
by counting the number which arrive at the detector in a certain time
and then taking the ratio of this number to the total number that
hit the backstop during that time. Or, if we assume that the gun always
shoots at the same rate during the measurements, the probability we want
is just proportional to the number that reach the detector in some
standard time interval.




For our present purposes we would like to imagine a somewhat idealized
experiment in which the bullets are not real bullets, but are
indestructible bullets—they cannot break in half. In our
experiment we find that bullets always arrive in lumps, and when we
find something in the detector, it is always one whole bullet. If the
rate at which the machine gun fires is made very low, we find that at
any given moment either nothing arrives, or one and only one—exactly
one—bullet arrives at the backstop. Also, the size of the lump
certainly does not depend on the rate of firing of the gun. We shall
say: “Bullets always arrive in identical lumps.” What we
measure with our detector is the probability of arrival of a lump. And
we measure the probability as a function of x. The result of such
measurements with this apparatus (we have not yet done the experiment,
so we are really imagining the result) are plotted in the graph drawn
in part (c) of Fig. 1–1. In the graph we plot the
probability to the right and x vertically, so that the x-scale fits
the diagram of the apparatus. We call the probability P12 because
the bullets may have come either through hole 1 or through hole 2.
You will not be surprised that P12 is large near the middle of the
graph but gets small if x is very large. You may wonder, however, why
P12 has its maximum value at x=0. We can understand this fact if
we do our experiment again after covering up hole 2, and once more
while covering up hole 1. When hole 2 is covered, bullets can pass
only through hole 1, and we get the curve marked P1 in part (b) of
the figure. As you would expect, the maximum of P1 occurs at the
value of x which is on a straight line with the gun and hole 1. When
hole 1 is closed, we get the symmetric curve P2 drawn in the
figure. P2 is the probability distribution for bullets that pass
through hole 2. Comparing parts (b) and (c) of Fig. 1–1,
we find the important result that

[image: -*-]
(1.1)




The probabilities just add together. The effect with both holes open
is the sum of the effects with each hole open alone. We shall call
this result an observation of “no interference,” for a reason
that you will see later. So much for bullets. They come in lumps, and
their probability of arrival shows no interference.







1–3 An experiment with waves

[image: -]
Fig. 1–2. Interference experiment with water waves.





Now we wish to consider an experiment with water waves. The apparatus
is shown diagrammatically in Fig. 1–2. We have a shallow
trough of water. A small object labeled the “wave source” is jiggled
up and down by a motor and makes circular waves. To the right of the
source we have again a wall with two holes, and beyond that is a second
wall, which, to keep things simple, is an “absorber,” so that there is
no reflection of the waves that arrive there. This can be done by
building a gradual sand “beach.” In front of the beach we place a
detector which can be moved back and forth in the x-direction, as
before. The detector is now a device which measures the “intensity” of
the wave motion. You can imagine a gadget which measures the height of
the wave motion, but whose scale is calibrated in proportion to the
square of the actual height, so that the reading is proportional
to the intensity of the wave. Our detector reads, then, in proportion to
the energy being carried by the wave—or rather, the rate at
which energy is carried to the detector.




With our wave apparatus, the first thing to notice is that the
intensity can have any size. If the source just moves a very
small amount, then there is just a little bit of wave motion at the
detector. When there is more motion at the source, there is more
intensity at the detector. The intensity of the wave can have any
value at all. We would not say that there was any “lumpiness”
in the wave intensity.




Now let us measure the wave intensity for various values of x
(keeping the wave source operating always in the same way). We get the
interesting-looking curve marked I12 in part (c) of the figure.




We have already worked out how such patterns can come about when we
studied the interference of electric waves in Volume I. In this case
we would observe that the original wave is diffracted at the holes,
and new circular waves spread out from each hole. If we cover one hole
at a time and measure the intensity distribution at the absorber we
find the rather simple intensity curves shown in part (b) of the
figure. I1 is the intensity of the wave from hole 1 (which we
find by measuring when hole 2 is blocked off) and I2 is the
intensity of the wave from hole 2 (seen when hole 1 is blocked).




The intensity I12 observed when both holes are open is certainly
not the sum of I1 and I2. We say that there is
“interference” of the two waves. At some places (where the
curve I12 has its maxima) the waves are “in phase” and the wave peaks
add together to give a large amplitude and, therefore, a large
intensity. We say that the two waves are “interfering
constructively” at such places. There will be such constructive
interference wherever the distance from the detector to one hole is a
whole number of wavelengths larger (or shorter) than the distance from
the detector to the other hole.




At those places where the two waves arrive at the detector with a
phase difference of π (where they are “out of phase”) the
resulting wave motion at the detector will be the difference of the
two amplitudes. The waves “interfere destructively,” and we get a
low value for the wave intensity. We expect such low values wherever
the distance between hole 1 and the detector is different from the
distance between hole 2 and the detector by an odd number of
half-wavelengths. The low values of I12 in Fig. 1–2
correspond to the places where the two waves interfere destructively.




You will remember that the quantitative relationship between
I1, I2, and I12 can be expressed in the following way: The
instantaneous height of the water wave at the detector for the wave from
hole 1 can be written as (the real part of) h1 ei ω t, where
the “amplitude” h1 is, in general, a complex number. The intensity
is proportional to the mean squared height or, when we use the complex
numbers, to the absolute value squared │h1│2. Similarly, for
hole 2 the height is h2 ei ω t and the intensity is
proportional to │h2│2. When both holes are open, the wave
heights add to give the height (h1+h2) ei ω t and the
intensity │h1+h2│2. Omitting the constant of proportionality
for our present purposes, the proper relations for interfering
waves are

[image: -*-]
(1.2)









You will notice that the result is quite different from that obtained
with bullets (Eq. 1.1). If we expand │h1+h2│2
we see that

[image: -*-]
(1.3)




where δ is the phase difference between h1 and h2. In
terms of the intensities, we could write

[image: -*-]
(1.4)




The last term in (1.4) is the “interference term.” So
much for water waves. The intensity can have any value, and it shows
interference.







1–4 An experiment with electrons

[image: -]
Fig. 1–3. Interference experiment with electrons.





Now we imagine a similar experiment with electrons. It is shown
diagrammatically in Fig. 1–3. We make an electron gun
which consists of a tungsten wire heated by an electric current and
surrounded by a metal box with a hole in it. If the wire is at a
negative voltage with respect to the box, electrons emitted by the wire
will be accelerated toward the walls and some will pass through the
hole. All the electrons which come out of the gun will have (nearly) the
same energy. In front of the gun is again a wall (just a thin metal
plate) with two holes in it. Beyond the wall is another plate which will
serve as a “backstop.” In front of the backstop we place a movable
detector. The detector might be a geiger counter or, perhaps better, an
electron multiplier, which is connected to a loudspeaker.




We should say right away that you should not try to set up this
experiment (as you could have done with the two we have already
described). This experiment has never been done in just this way. The
trouble is that the apparatus would have to be made on an impossibly
small scale to show the effects we are interested in. We are doing a
“thought experiment,” which we have chosen because it is easy to
think about. We know the results that would be obtained because
there are many experiments that have been done, in which the
scale and the proportions have been chosen to show the effects we
shall describe.




The first thing we notice with our electron experiment is that we hear
sharp “clicks” from the detector (that is, from the
loudspeaker). And all “clicks” are the same. There are no
“half-clicks.”




We would also notice that the “clicks” come very erratically.
Something like: click ….. click-click … click
……..
click …. click-click
…… click …, etc., just as you have, no doubt,
heard a geiger counter operating. If we count the clicks which arrive in
a sufficiently long time—say for many minutes—and then count again
for another equal period, we find that the two numbers are very nearly
the same. So we can speak of the average rate at which the clicks
are heard (so-and-so-many clicks per minute on the average).





As we move the detector around, the rate at which the clicks
appear is faster or slower, but the size (loudness) of each click is
always the same. If we lower the temperature of the wire in the gun,
the rate of clicking slows down, but still each click sounds the
same. We would notice also that if we put two separate detectors at
the backstop, one or the other would click, but never both at
once. (Except that once in a while, if there were two clicks very
close together in time, our ear might not sense the separation.) We
conclude, therefore, that whatever arrives at the backstop arrives in
“lumps.” All the “lumps” are the same size: only whole “lumps”
arrive, and they arrive one at a time at the backstop. We shall say:
“Electrons always arrive in identical lumps.”




Just as for our experiment with bullets, we can now proceed to find
experimentally the answer to the question: “What is the relative
probability that an electron ‘lump’ will arrive at the backstop at
various distances x from the center?” As before, we obtain the
relative probability by observing the rate of clicks, holding the
operation of the gun constant. The probability that lumps will arrive
at a particular x is proportional to the average rate of clicks at
that x.




The result of our experiment is the interesting curve marked P12
in part (c) of Fig. 1–3. Yes! That is the way electrons
go.







1–5 The interference of electron waves


Now let us try to analyze the curve of Fig. 1–3 to see
whether we can understand the behavior of the electrons. The first thing
we would say is that since they come in lumps, each lump, which we may
as well call an electron, has come either through hole 1 or through
hole 2. Let us write this in the form of a “Proposition”:



	Proposition A:
	Each electron either goes through hole 1 or it goes through hole 2.







Assuming Proposition A, all electrons that arrive at the backstop can
be divided into two classes: (1) those that come through hole 1, and
(2) those that come through hole 2. So our observed curve must be
the sum of the effects of the electrons which come through hole 1
and the electrons which come through hole 2. Let us check this idea
by experiment. First, we will make a measurement for those electrons
that come through hole 1. We block off hole 2 and make our counts
of the clicks from the detector. From the clicking rate, we get P1.
The result of the measurement is shown by the curve marked P1 in
part (b) of Fig. 1–3. The result seems quite
reasonable. In a similar way, we measure P2, the probability
distribution for the electrons that come through hole 2. The result of
this measurement is also drawn in the figure.




The result P12 obtained with both holes open is clearly
not the sum of P1 and P2, the probabilities for each hole
alone. In analogy with our water-wave experiment, we say: “There is
interference.”

[image: -*-]
(1.5)









How can such an interference come about? Perhaps we should say:
“Well, that means, presumably, that it is not true that the
lumps go either through hole 1 or hole 2, because if they did, the
probabilities should add. Perhaps they go in a more complicated
way. They split in half and …” But no! They cannot, they always
arrive in lumps … “Well, perhaps some of them go through 1,
and then they go around through 2, and then around a few more times,
or by some other complicated path … then by closing hole 2,
we changed the chance that an electron that started out through
hole 1 would finally get to the backstop …” But notice! There
are some points at which very few electrons arrive when both
holes are open, but which receive many electrons if we close one hole,
so closing one hole increased the number from the
other. Notice, however, that at the center of the pattern, P12 is
more than twice as large as P1+P2. It is as though closing one
hole decreased the number of electrons which come through the
other hole. It seems hard to explain both effects by proposing
that the electrons travel in complicated paths.




It is all quite mysterious. And the more you look at it the more
mysterious it seems. Many ideas have been concocted to try to explain
the curve for P12 in terms of individual electrons going around
in complicated ways through the holes. None of them has
succeeded. None of them can get the right curve for P12 in terms
of P1 and P2.




Yet, surprisingly enough, the mathematics for relating P1
and P2 to P12 is extremely simple. For P12 is just like
the curve I12 of Fig. 1–2, and that was
simple. What is going on at the backstop can be described by two complex
numbers that we can call ϕ1 and ϕ2 (they are functions
of x, of course). The absolute square of ϕ1 gives the effect with
only hole 1 open. That is, P1=│ϕ1│2. The effect with only
hole 2 open is given by ϕ2 in the same way. That is,
P2=│ϕ2│2. And the combined effect of the two holes is just
P12=│ϕ1+ϕ2│2. The mathematics is the same as
that we had for the water waves! (It is hard to see how one could get
such a simple result from a complicated game of electrons going back and
forth through the plate on some strange trajectory.)




We conclude the following: The electrons arrive in lumps, like
particles, and the probability of arrival of these lumps is
distributed like the distribution of intensity of a wave. It is in
this sense that an electron behaves “sometimes like a particle and
sometimes like a wave.”




Incidentally, when we were dealing with classical waves we defined the
intensity as the mean over time of the square of the wave amplitude,
and we used complex numbers as a mathematical trick to simplify the
analysis. But in quantum mechanics it turns out that the amplitudes
must be represented by complex numbers. The real parts alone
will not do. That is a technical point, for the moment, because the
formulas look just the same.




Since the probability of arrival through both holes is given so
simply, although it is not equal to (P1+P2), that is really all
there is to say. But there are a large number of subtleties involved
in the fact that nature does work this way. We would like to
illustrate some of these subtleties for you now. First, since the
number that arrives at a particular point is not equal to the
number that arrives through 1 plus the number that arrives
through 2, as we would have concluded from Proposition A, undoubtedly we
should conclude that Proposition A is false. It is not
true that the electrons go either through hole 1 or hole 2.
But that conclusion can be tested by another experiment.







1–6 Watching the electrons

[image: -]
Fig. 1–4. A different electron experiment.





We shall now try the following experiment. To our electron apparatus we
add a very strong light source, placed behind the wall and between the
two holes, as shown in Fig. 1–4. We know that electric
charges scatter light. So when an electron passes, however it does pass,
on its way to the detector, it will scatter some light to our eye, and
we can see where the electron goes. If, for instance, an electron
were to take the path via hole 2 that is sketched in
Fig. 1–4, we should see a flash of light coming from the
vicinity of the place marked A in the figure. If an electron passes
through hole 1, we would expect to see a flash from the vicinity of
the upper hole. If it should happen that we get light from both places
at the same time, because the electron divides in half … Let us
just do the experiment!




Here is what we see: every time that we hear a “click” from
our electron detector (at the backstop), we also see a flash of
light either near hole 1 or near hole 2, but
never both at once! And we observe the same result no matter
where we put the detector. From this observation we conclude that when
we look at the electrons we find that the electrons go either through
one hole or the other. Experimentally, Proposition A is necessarily
true.




What, then, is wrong with our argument against Proposition A? Why
isn’t P12 just equal to P1+P2? Back to experiment! Let
us keep track of the electrons and find out what they are doing. For
each position (x-location) of the detector we will count the
electrons that arrive and also keep track of which hole they
went through, by watching for the flashes. We can keep track of things
this way: whenever we hear a “click” we will put a count in
Column 1 if we see the flash near hole 1, and if we see the flash near
hole 2, we will record a count in Column 2. Every electron which
arrives is recorded in one of two classes: those which come
through 1 and those which come through 2. From the number recorded in
Column 1 we get the probability [image: P_1'] that an electron will arrive
at the detector via hole 1; and from the number recorded in
Column 2 we get [image: P_2'], the probability that an electron will arrive at the
detector via hole 2. If we now repeat such a measurement for many
values of x, we get the curves for [image: P_1'] and [image: P_2'] shown in part (b)
of Fig. 1–4.




Well, that is not too surprising! We get for [image: P_1'] something quite
similar to what we got before for P1 by blocking off hole 2; and
[image: P_2'] is similar to what we got by blocking hole 1. So there is
not any complicated business like going through both
holes. When we watch them, the electrons come through just as we would
expect them to come through. Whether the holes are closed or open,
those which we see come through hole 1 are distributed in the same
way whether hole 2 is open or closed.




But wait! What do we have now for the total probability, the probability that an electron will arrive at the detector by any route? We already have that information. We just pretend that we never looked at the light flashes, and we lump together the detector clicks which we have separated into the two columns. We must just add the numbers. For the probability that an electron will arrive at the backstop by passing through either hole, we do find [image: P_{12}'=P_1'+P_2']. That is, although we succeeded in watching which hole our electrons come through, we no longer get the old interference curve P12, but a new one, [image: P_{12}'], showing no interference! If we turn out the light P12 is restored.





We must conclude that when we look at the electrons the
distribution of them on the screen is different than when we do not
look. Perhaps it is turning on our light source that disturbs things?
It must be that the electrons are very delicate, and the light, when
it scatters off the electrons, gives them a jolt that changes their
motion. We know that the electric field of the light acting on a
charge will exert a force on it. So perhaps we should expect
the motion to be changed. Anyway, the light exerts a big influence on
the electrons. By trying to “watch” the electrons we have changed
their motions. That is, the jolt given to the electron when the photon
is scattered by it is such as to change the electron’s motion enough
so that if it might have gone to where P12 was at a
maximum it will instead land where P12 was a minimum; that is why
we no longer see the wavy interference effects.




You may be thinking: “Don’t use such a bright source! Turn the
brightness down! The light waves will then be weaker and will not
disturb the electrons so much. Surely, by making the light dimmer and
dimmer, eventually the wave will be weak enough that it will have a
negligible effect.” O.K. Let’s try it. The first thing we observe
is that the flashes of light scattered from the electrons as they pass
by does not get weaker. It is always the same-sized
flash. The only thing that happens as the light is made dimmer is
that sometimes we hear a “click” from the detector but see no
flash at all. The electron has gone by without being “seen.” What
we are observing is that light also acts like electrons, we
knew that it was “wavy,” but now we find that it is also
“lumpy.” It always arrives—or is scattered—in lumps that we call
“photons.” As we turn down the intensity of the
light source we do not change the size of the photons, only the
rate at which they are emitted. That explains why, when
our source is dim, some electrons get by without being seen. There did
not happen to be a photon around at the time the electron went through.




This is all a little discouraging. If it is true that whenever we “see” the electron we see the same-sized flash, then those electrons we see are always the disturbed ones. Let us try the experiment with a dim light anyway. Now whenever we hear a click in the detector we will keep a count in three columns: in Column (1) those electrons seen by hole 1, in Column (2) those electrons seen by hole 2, and in Column (3) those electrons not seen at all. When we work up our data (computing the probabilities) we find these results: Those “seen by hole 1” have a distribution like [image: P_1']; those “seen by hole 2” have a distribution like [image: P_2'] (so that those “seen by either hole 1 or 2” have a distribution like [image: P_{12}']); and those “not seen at all” have a “wavy” distribution just like P12 of Fig. 1–3! If the electrons are not seen, we have interference!




That is understandable. When we do not see the electron, no photon
disturbs it, and when we do see it, a photon has disturbed it. There
is always the same amount of disturbance because the light photons all
produce the same-sized effects and the effect of the photons being
scattered is enough to smear out any interference effect.




Is there not some way we can see the electrons without
disturbing them? We learned in an earlier chapter that the momentum
carried by a “photon” is inversely proportional to its wavelength
(p=h/λ). Certainly the jolt given to the electron when the
photon is scattered toward our eye depends on the momentum that photon
carries. Aha! If we want to disturb the electrons only slightly we
should not have lowered the intensity of the light, we should
have lowered its frequency (the same as increasing its
wavelength). Let us use light of a redder color. We could even use
infrared light, or radiowaves (like radar), and “see” where the
electron went with the help of some equipment that can “see” light
of these longer wavelengths. If we use “gentler” light perhaps we
can avoid disturbing the electrons so much.




Let us try the experiment with longer waves. We shall keep repeating
our experiment, each time with light of a longer wavelength. At first,
nothing seems to change. The results are the same. Then a terrible
thing happens. You remember that when we discussed the microscope we
pointed out that, due to the wave nature of the light, there is
a limitation on how close two spots can be and still be seen as two
separate spots. This distance is of the order of the wavelength of
light. So now, when we make the wavelength longer than the distance
between our holes, we see a big fuzzy flash when the light is
scattered by the electrons. We can no longer tell which hole the
electron went through! We just know it went somewhere! And it is just
with light of this color that we find that the jolts given to the
electron are small enough so that [image: P_{12}'] begins to look
like P12—that we begin to get some interference effect. And it is
only for wavelengths much longer than the separation of the two holes
(when we have no chance at all of telling where the electron went)
that the disturbance due to the light gets sufficiently small that we
again get the curve P12 shown in Fig. 1–3.





In our experiment we find that it is impossible to arrange the light in
such a way that one can tell which hole the electron went through, and
at the same time not disturb the pattern. It was suggested by
Heisenberg that the then new
laws of nature could only be consistent if there were some basic
limitation on our experimental capabilities not previously recognized.
He proposed, as a general principle, his uncertainty
principle, which we can state in terms of our experiment as follows: “It
is impossible to design an apparatus to determine which hole the
electron passes through, that will not at the same time disturb the
electrons enough to destroy the interference pattern.” If an apparatus
is capable of determining which hole the electron goes through, it
cannot be so delicate that it does not disturb the pattern in an
essential way. No one has ever found (or even thought of) a way around
the uncertainty principle. So we must assume that
it describes a basic characteristic of nature.





The complete theory of quantum mechanics which we now use to describe
atoms and, in fact, all matter, depends on the correctness of the
uncertainty principle. Since quantum mechanics
is such a successful theory, our belief in the uncertainty
principle is reinforced. But if a way to “beat” the uncertainty
principle were ever discovered, quantum mechanics would give inconsistent
results and would have to be discarded as a valid theory of nature.





“Well,” you say, “what about Proposition A? Is it true, or is it
not true, that the electron either goes through hole 1 or it
goes through hole 2?” The only answer that can be given is that we
have found from experiment that there is a certain special way that we
have to think in order that we do not get into inconsistencies. What
we must say (to avoid making wrong predictions) is the following. If
one looks at the holes or, more accurately, if one has a piece of
apparatus which is capable of determining whether the electrons go
through hole 1 or hole 2, then one can say that it goes
either through hole 1 or hole 2. But, when one does
not try to tell which way the electron goes, when there is
nothing in the experiment to disturb the electrons, then one may
not say that an electron goes either through hole 1 or
hole 2. If one does say that, and starts to make any deductions from the
statement, he will make errors in the analysis. This is the logical
tightrope on which we must walk if we wish to describe nature
successfully.







If the motion of all matter—as well as electrons—must be described
in terms of waves, what about the bullets in our first experiment? Why
didn’t we see an interference pattern there? It turns out that for the
bullets the wavelengths were so tiny that the interference patterns
became very fine. So fine, in fact, that with any detector of finite
size one could not distinguish the separate maxima and minima. What we
saw was only a kind of average, which is the classical curve. In
Fig. 1–5 we have tried to indicate schematically what
happens with large-scale objects. Part (a) of the figure shows the
probability distribution one might predict for bullets, using quantum
mechanics. The rapid wiggles are supposed to represent the interference
pattern one gets for waves of very short wavelength. Any physical
detector, however, straddles several wiggles of the probability curve,
so that the measurements show the smooth curve drawn in part (b) of the
figure.



[image: -]
Fig. 1–5. Interference pattern with bullets: (a) actual (schematic), (b) observed.








1–7 First principles of quantum mechanics


We will now write a summary of the main conclusions of our experiments.
We will, however, put the results in a form which makes them true for a
general class of such experiments. We can write our summary more simply
if we first define an “ideal experiment” as one in which there are no
uncertain external influences, i.e., no jiggling or other things going
on that we cannot take into account. We would be quite precise if we
said: “An ideal experiment is one in which all of the initial and final
conditions of the experiment are completely specified.” What we will
call “an event” is, in general, just a specific set of initial and
final conditions. (For example: “an electron leaves the gun, arrives at
the detector, and nothing else happens.”) Now for our summary.




SUMMARY


	
(1) The probability of an event in an ideal experiment is given
by the square of the absolute value of a complex number ϕ which is
called the probability amplitude:
[image: -*-]
(1.6)






	
(2) When an event can occur in several alternative ways, the
probability amplitude for the event is the sum of the probability
amplitudes for each way considered separately. There is interference:
[image: -*-]
(1.7)






	
(3) If an experiment is performed which is capable of
determining whether one or another alternative is actually taken, the
probability of the event is the sum of the probabilities for each
alternative. The interference is lost:
[image: -*-]
(1.8)











One might still like to ask: “How does it work? What is the machinery
behind the law?” No one has found any machinery behind the law. No
one can “explain” any more than we have just “explained.” No one
will give you any deeper representation of the situation. We have no
ideas about a more basic mechanism from which these results can be
deduced.




We would like to emphasize a very important difference between
classical and quantum mechanics. We have been talking about the
probability that an electron will arrive in a given circumstance. We
have implied that in our experimental arrangement (or even in the best
possible one) it would be impossible to predict exactly what would
happen. We can only predict the odds! This would mean, if it were
true, that physics has given up on the problem of trying to predict
exactly what will happen in a definite circumstance. Yes! physics
has given up. We do not know how to predict what would
happen in a given circumstance, and we believe now that it is
impossible—that the only thing that can be predicted is the
probability of different events. It must be recognized that this is a
retrenchment in our earlier ideal of understanding nature. It may be a
backward step, but no one has seen a way to avoid it.




We make now a few remarks on a suggestion that has sometimes been made
to try to avoid the description we have given: “Perhaps the electron
has some kind of internal works—some inner variables—that we do
not yet know about. Perhaps that is why we cannot predict what will
happen. If we could look more closely at the electron, we could be
able to tell where it would end up.” So far as we know, that is
impossible. We would still be in difficulty. Suppose we were to assume
that inside the electron there is some kind of machinery that
determines where it is going to end up. That machine must also
determine which hole it is going to go through on its way. But we must
not forget that what is inside the electron should not be dependent on
what we do, and in particular upon whether we open or close one
of the holes. So if an electron, before it starts, has already made up
its mind (a) which hole it is going to use, and (b) where it is going
to land, we should find P1 for those electrons that have chosen
hole 1, P2 for those that have chosen hole 2, and
necessarily the sum P1+P2 for those that arrive through the two
holes. There seems to be no way around this. But we have verified
experimentally that that is not the case. And no one has figured a way
out of this puzzle. So at the present time we must limit ourselves to
computing probabilities. We say “at the present time,” but we
suspect very strongly that it is something that will be with us
forever—that it is impossible to beat that puzzle—that this is the
way nature really is.







1–8 The uncertainty principle


This is the way Heisenberg
stated the uncertainty principle originally: If you make the measurement
on any object, and you can determine the x-component of its momentum
with an uncertainty Δ p, you cannot, at the same time, know its
x-position more accurately than Δ x≥ℏ/2 Δ p, where
ℏ is a definite fixed number given by nature. It is called the
“reduced Planck constant,” and is approximately
1.05×10−34 joule-seconds. The uncertainties in the position
and momentum of a particle at any instant must have their product
greater than or equal to half the reduced Planck constant. This is a
special case of the uncertainty principle that was stated above more
generally. The more general statement was that one cannot design
equipment in any way to determine which of two alternatives is taken,
without, at the same time, destroying the pattern of interference.




Let us show for one particular case that the kind of relation given by
Heisenberg must be true in
order to keep from getting into trouble. We imagine a modification of
the experiment of Fig. 1–3, in which the wall with the
holes consists of a plate mounted on rollers so that it can move freely
up and down (in the x-direction), as shown in Fig. 1–6.
By watching the motion of the plate carefully we can try to tell which
hole an electron goes through. Imagine what happens when the detector is
placed at x=0. We would expect that an electron which passes through
hole 1 must be deflected downward by the plate to reach the detector.
Since the vertical component of the electron momentum is changed, the
plate must recoil with an equal momentum in the opposite direction. The
plate will get an upward kick. If the electron goes through the lower
hole, the plate should feel a downward kick. It is clear that for every
position of the detector, the momentum received by the plate will have a
different value for a traversal via hole 1 than for a traversal via
hole 2. So! Without disturbing the electrons at all, but just
by watching the plate, we can tell which path the electron used.



[image: -]
Fig. 1–6. An experiment in which the recoil of the wall is measured.





Now in order to do this it is necessary to know what the momentum of
the screen is, before the electron goes through. So when we measure
the momentum after the electron goes by, we can figure out how much
the plate’s momentum has changed. But remember, according to the
uncertainty principle we cannot at the same time know the position of
the plate with an arbitrary accuracy. But if we do not know exactly
where the plate is, we cannot say precisely where the two holes
are. They will be in a different place for every electron that goes
through. This means that the center of our interference pattern will
have a different location for each electron. The wiggles of the
interference pattern will be smeared out. We shall show quantitatively
in the next chapter that if we determine the momentum of the plate
sufficiently accurately to determine from the recoil measurement which
hole was used, then the uncertainty in the x-position of the plate
will, according to the uncertainty principle, be enough to shift the
pattern observed at the detector up and down in the x-direction
about the distance from a maximum to its nearest minimum. Such a
random shift is just enough to smear out the pattern so that no
interference is observed.




The uncertainty principle “protects” quantum mechanics.
Heisenberg recognized that
if it were possible to measure the momentum and the position
simultaneously with a greater accuracy, the quantum mechanics would
collapse. So he proposed that it must be impossible. Then people sat
down and tried to figure out ways of doing it, and nobody could figure
out a way to measure the position and the momentum of anything—a
screen, an electron, a billiard ball, anything—with any greater
accuracy. Quantum mechanics maintains its perilous but still correct
existence.







  
    

2 The Relation of Wave and Particle Viewpoints


   
      	
      Note:
      
      	
      This chapter is almost exactly the same as Chapter 38 of Volume I.
      






2–1 Probability wave amplitudes


In this chapter we shall discuss the relationship of the
wave and particle viewpoints. We already know, from the last chapter,
that neither the wave viewpoint nor the particle viewpoint is correct.
We would always like to present things accurately, or at least precisely
enough that they will not have to be changed when we learn more—it may
be extended, but it will not be changed! But when we try to talk about
the wave picture or the particle picture, both are approximate, and both
will change. Therefore what we learn in this chapter will not be
accurate in a certain sense; we will deal with some half-intuitive
arguments which will be made more precise later. But certain things will
be changed a little bit when we interpret them correctly in quantum
mechanics. We are doing this so that you can have some qualitative
feeling for some quantum phenomena before we get into the mathematical
details of quantum mechanics. Furthermore, all our experiences are with
waves and with particles, and so it is rather handy to use the wave and
particle ideas to get some understanding of what happens in given
circumstances before we know the complete mathematics of the
quantum-mechanical amplitudes. We shall try to indicate the weakest
places as we go along, but most of it is very nearly correct—it is
just a matter of interpretation.




First of all, we know that the new way of representing the world in
quantum mechanics—the new framework—is to give an amplitude for
every event that can occur, and if the event involves the reception of
one particle, then we can give the amplitude to find that one particle
at different places and at different times. The probability of finding
the particle is then proportional to the absolute square of the
amplitude. In general, the amplitude to find a particle in different
places at different times varies with position and time.




In some special case it can be that the amplitude varies sinusoidally
in space and time like ei (ω t−k⋅r), where
r is the vector position from some origin. (Do not forget that
these amplitudes are complex numbers, not real numbers.) Such an
amplitude varies according to a definite frequency ω and wave
number k. Then it turns out that this corresponds to a classical
limiting situation where we would have believed that we have a
particle whose energy E was known and is related to the frequency by
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(2.1)




and whose momentum p is also known and is related to the wave
number by

[image: -*-]
(2.2)




(The symbol ℏ represents the number h divided by 2 π; ℏ=h/2 π.)




This means that the idea of a particle is limited. The idea of a
particle—its location, its momentum, etc.—which we use so much, is
in certain ways unsatisfactory. For instance, if an amplitude to find
a particle at different places is given by ei (ω t−k⋅r), whose absolute square is a constant, that would
mean that the probability of finding a particle is the same at all
points. That means we do not know where it is—it can be
anywhere—there is a great uncertainty in its location.




On the other hand, if the position of a particle is more or less well
known and we can predict it fairly accurately, then the probability of
finding it in different places must be confined to a certain region,
whose length we call Δ x. Outside this region, the probability is
zero. Now this probability is the absolute square of an amplitude, and
if the absolute square is zero, the amplitude is also zero, so that we
have a wave train whose length is Δ x (Fig. 2–1),
and the wavelength (the distance between nodes of the waves in the
train) of that wave train is what corresponds to the particle momentum.



[image: -]
Fig. 2–1. A wave packet of length Δ x.





Here we encounter a strange thing about waves; a very simple thing
which has nothing to do with quantum mechanics strictly. It is
something that anybody who works with waves, even if he knows no
quantum mechanics, knows: namely, we cannot define a unique
wavelength for a short wave train. Such a wave train does not
have a definite wavelength; there is an indefiniteness in the
wave number that is related to the finite length of the train, and
thus there is an indefiniteness in the momentum.







2–2 Measurement of position and momentum


Let us consider two examples of this idea—to see the reason that
there is an uncertainty in the position and/or the momentum, if
quantum mechanics is right. We have also seen before that if there
were not such a thing—if it were possible to measure the position
and the momentum of anything simultaneously—we would have a paradox;
it is fortunate that we do not have such a paradox, and the fact that
such an uncertainty comes naturally from the wave picture shows that
everything is mutually consistent.



[image: -]
Fig. 2–2. Diffraction of particles passing through a slit.





Here is one example which shows the relationship between the position
and the momentum in a circumstance that is easy to understand. Suppose
we have a single slit, and particles are coming from very far away
with a certain energy—so that they are all coming essentially
horizontally (Fig. 2–2). We are going to concentrate on
the vertical components of momentum. All of these particles have a
certain horizontal momentum p0, say, in a classical sense. So, in the
classical sense, the vertical momentum py, before the particle goes
through the hole, is definitely known. The particle is moving neither up
nor down, because it came from a source that is far away—and so the
vertical momentum is of course zero. But now let us suppose that it goes
through a hole whose width is B. Then after it has come out through
the hole, we know the position vertically—the y-position—with
considerable accuracy—namely ±B.1
That is, the uncertainty in position, Δ y, is of order B. Now
we might also want to say, since we know the momentum is absolutely
horizontal, that Δ py is zero; but that is wrong. We once
knew the momentum was horizontal, but we do not know it any more. Before
the particles passed through the hole, we did not know their vertical
positions. Now that we have found the vertical position by having the
particle come through the hole, we have lost our information on the
vertical momentum! Why? According to the wave theory, there is a
spreading out, or diffraction, of the waves after they go through the
slit, just as for light. Therefore there is a certain probability that
particles coming out of the slit are not coming exactly straight. The
pattern is spread out by the diffraction effect, and the angle of
spread, which we can define as the angle of the first minimum, is a
measure of the uncertainty in the final angle.




How does the pattern become spread? To say it is spread means that
there is some chance for the particle to be moving up or down, that
is, to have a component of momentum up or down. We say chance
and particle because we can detect this diffraction pattern
with a particle counter, and when the counter receives the particle,
say at C in Fig. 2–2, it receives the entire
particle, so that, in a classical sense, the particle has a vertical
momentum, in order to get from the slit up to C.




To get a rough idea of the spread of the momentum, the vertical
momentum py has a spread which is equal to p0 Δ θ,
where p0 is the horizontal momentum. And how big is Δ θ
in the spread-out pattern? We know that the first minimum occurs at an
angle Δ θ such that the waves from one edge of the slit
have to travel one wavelength farther than the waves from the other
side—we worked that out before (Chapter 30 of Vol. I).
Therefore Δ θ is λ/B, and so Δ py in this
experiment is p0 λ/B. Note that if we make B smaller and make
a more accurate measurement of the position of the particle, the
diffraction pattern gets wider. So the narrower we make the slit, the
wider the pattern gets, and the more is the likelihood that we would
find that the particle has sidewise momentum. Thus the uncertainty in
the vertical momentum is inversely proportional to the uncertainty
of y. In fact, we see that the product of the two is equal to p0 λ.
But λ is the wavelength and p0 is the momentum,
and in accordance with quantum mechanics, the wavelength times the
momentum is Planck’s constant h.
So we obtain the rule that the
uncertainties in the vertical momentum and in the vertical position have
a product of the order h:
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(2.3)




We cannot prepare a system in which we know the vertical position of a
particle and can predict how it will move vertically with greater
certainty than given by (2.3). That is, the uncertainty
in the vertical momentum must
exceed ℏ/2 Δ y,
where Δ y is the uncertainty in our knowledge of the position.




Sometimes people say quantum mechanics is all wrong. When the particle
arrived from the left, its vertical momentum was zero. And now that it
has gone through the slit, its position is known. Both position and
momentum seem to be known with arbitrary accuracy. It is quite true that
we can receive a particle, and on reception determine what its position
is and what its momentum would have had to have been to have gotten
there. That is true, but that is not what the uncertainty
relation (2.3) refers to. Equation (2.3) refers
to the predictability of a situation, not remarks about the
past. It does no good to say “I knew what the momentum was
before it went through the slit, and now I know the position,” because
now the momentum knowledge is lost. The fact that it went through the
slit no longer permits us to predict the vertical momentum. We are
talking about a predictive theory, not just measurements after the fact.
So we must talk about what we can predict.




Now let us take the thing the other way around. Let us take another
example of the same phenomenon, a little more quantitatively. In the
previous example we measured the momentum by a classical
method. Namely, we considered the direction and the velocity and the
angles, etc., so we got the momentum by classical analysis. But since
momentum is related to wave number, there exists in nature still
another way to measure the momentum of a particle—photon or
otherwise—which has no classical analog, because it uses
Eq. (2.2). We measure the wavelengths of the waves.
Let us try to measure momentum in this way.



[image: -]
Fig. 2–3. Determination of momentum by using a diffraction grating.





Suppose we have a grating with a large number of lines
(Fig. 2–3), and send a beam of particles at the grating.
We have often discussed this problem: if the particles have a definite
momentum, then we get a very sharp pattern in a certain direction,
because of the interference. And we have also talked about how
accurately we can determine that momentum, that is to say, what the
resolving power of such a grating is. Rather than derive it again, we
refer to Chapter 30 of Volume I, where we found that the relative
uncertainty in the wavelength that can be measured with a given grating
is 1/N m, where N is the number of lines on the grating and m is
the order of the diffraction pattern. That is,
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(2.4)









Now formula (2.4) can be rewritten as
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(2.5)




where L is the distance shown in Fig. 2–3. This
distance is the difference between the total distance that the particle
or wave or whatever it is has to travel if it is reflected from the
bottom of the grating, and the distance that it has to travel if it is
reflected from the top of the grating. That is, the waves which form the
diffraction pattern are waves which come from different parts of the
grating. The first ones that arrive come from the bottom end of the
grating, from the beginning of the wave train, and the rest of them come
from later parts of the wave train, coming from different parts of the
grating, until the last one finally arrives, and that involves a point
in the wave train a distance L behind the first point. So in order
that we shall have a sharp line in our spectrum corresponding to a
definite momentum, with an uncertainty given by (2.4), we
have to have a wave train of at least length L. If the wave train is
too short, we are not using the entire grating. The waves which form the
spectrum are being reflected from only a very short sector of the
grating if the wave train is too short, and the grating will not work
right—we will find a big angular spread. In order to get a narrower
one, we need to use the whole grating, so that at least at some moment
the whole wave train is scattering simultaneously from all parts of the
grating. Thus the wave train must be of length L in order to have an
uncertainty in the wavelength less than that given
by (2.5). Incidentally,
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(2.6)




Therefore
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(2.7)




where L is the length of the wave train.




This means that if we have a wave train whose length is less than L,
the uncertainty in the wave number must exceed 2 π/L. Or the
uncertainty in a wave number times the length of the wave train—we
will call that for a moment Δ x—exceeds 2 π. We call it
Δ x because that is the uncertainty in the location of the
particle. If the wave train exists only in a finite length, then that
is where we could find the particle, within an uncertainty Δ x. Now this property of waves, that the length of the wave train
times the uncertainty of the wave number associated with it is at
least 2 π, is a property that is known to everyone who studies
them. It has nothing to do with quantum mechanics. It is simply that
if we have a finite train, we cannot count the waves in it very
precisely.




Let us try another way to see the reason for that. Suppose that we
have a finite train of length L; then because of the way it has to
decrease at the ends, as in Fig. 2–1, the number of
waves in the length L is uncertain by something like ±1. But the
number of waves in L is k L/2 π. Thus k is uncertain, and we again
get the result (2.7), a property merely of waves. The same
thing works whether the waves are in space and k is the number of
radians per centimeter and L is the length of the train, or the waves
are in time and ω is the number of radians per second and
T is the “length” in time that the wave train comes in. That is, if
we have a wave train lasting only for a certain finite time T, then
the uncertainty in the frequency is given by
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(2.8)




We have tried to emphasize that these are properties of waves alone,
and they are well known, for example, in the theory of sound.




The point is that in quantum mechanics we interpret the wave number as
being a measure of the momentum of a particle, with the rule
that p=ℏ k, so that relation (2.7) tells us
that Δ p≈h/Δ x. This, then, is a limitation of the
classical idea of momentum. (Naturally, it has to be limited in some
ways if we are going to represent particles by waves!)  It is nice that
we have found a rule that gives us some idea of when there is a failure
of classical ideas.







2–3 Crystal diffraction


Next let us consider the reflection of particle waves from a
crystal. A crystal is a thick thing which has a whole lot of similar
atoms—we will include some complications later—in a nice
array. The question is how to set the array so that we get a strong
reflected maximum in a given direction for a given beam of, say, light
(x-rays), electrons, neutrons, or anything else. In order to obtain a
strong reflection, the scattering from all of the atoms must be in
phase. There cannot be equal numbers in phase and out of phase, or the
waves will cancel out. The way to arrange things is to find the
regions of constant phase, as we have already explained; they are
planes which make equal angles with the initial and final directions
(Fig. 2–4).



[image: -]
Fig. 2–4. Scattering of waves by crystal planes.





If we consider two parallel planes, as in Fig. 2–4, the
waves scattered from the two planes will be in phase, provided the
difference in distance traveled by a wave front is an integral number of
wavelengths. This difference can be seen to be 2 d sinθ, where d
is the perpendicular distance between the planes. Thus the condition for
coherent reflection is
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(2.9)









If, for example, the crystal is such that the atoms happen to lie on
planes obeying condition (2.9) with n=1, then there
will be a strong reflection. If, on the other hand, there are other
atoms of the same nature (equal in density) halfway between, then the
intermediate planes will also scatter equally strongly and will
interfere with the others and produce no effect. So d
in (2.9) must refer to adjacent planes; we cannot
take a plane five layers farther back and use this formula!




As a matter of interest, actual crystals are not usually as simple as
a single kind of atom repeated in a certain way. Instead, if we make a
two-dimensional analog, they are much like wallpaper, in which there
is some kind of figure which repeats all over the wallpaper. By
“figure” we mean, in the case of atoms, some arrangement—calcium
and a carbon and three oxygens, etc., for calcium carbonate, and so
on—which may involve a relatively large number of atoms. But
whatever it is, the figure is repeated in a pattern. This basic figure
is called a unit cell.




The basic pattern of repetition defines what we call the lattice
type; the lattice type can be immediately determined by looking at the
reflections and seeing what their symmetry is. In other words, where we
find any reflections at all determines the lattice type, but in
order to determine what is in each of the elements of the lattice one
must take into account the intensity of the scattering at the
various directions. Which directions scatter depends on the type
of lattice, but how strongly each scatters is determined by what
is inside each unit cell, and in that way the structure
of crystals is worked out.





Two photographs of x-ray diffraction patterns are shown in Figs.
2–5 and 2–6; they illustrate scattering from
rock salt and myoglobin, respectively.
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Figure 2–5 
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Figure 2–6 






Incidentally, an interesting thing happens if the spacings of the
nearest planes are less than λ/2. In this
case (2.9) has no solution for n. Thus if λ is
bigger than twice the distance between adjacent planes, then there is no
side diffraction pattern, and the light—or whatever it is—will go
right through the material without bouncing off or getting lost. So in
the case of light, where λ is much bigger than the spacing, of
course it does go through and there is no pattern of reflection from the
planes of the crystal.
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Fig. 2–7. Diffusion of pile neutrons through graphite block.





This fact also has an interesting consequence in the case of piles which
make neutrons (these are obviously particles, for anybody’s money!). If
we take these neutrons and let them into a long block of graphite, the
neutrons diffuse and work their way along (Fig. 2–7). They
diffuse because they are bounced by the atoms, but strictly, in the wave
theory, they are bounced by the atoms because of diffraction from the
crystal planes. It turns out that if we take a very long piece of
graphite, the neutrons that come out the far end are all of long
wavelength! In fact, if one plots the intensity as a function of
wavelength, we get nothing except for wavelengths longer than a certain
minimum (Fig. 2–8). In other words, we can get very slow
neutrons that way. Only the slowest neutrons come through; they are not
diffracted or scattered by the crystal planes of the graphite, but keep
going right through like light through glass, and are not scattered out
the sides. There are many other demonstrations of the reality of neutron
waves and waves of other particles.



[image: -]
Fig. 2–8. Intensity of neutrons out of graphite rod as function of
wavelength.








2–4 The size of an atom


We now consider another application of the uncertainty
relation, Eq. (2.3). It must not be taken too seriously; the
idea is right but the analysis is not very accurate. The idea has to do
with the determination of the size of atoms, and the fact that,
classically, the electrons would radiate light and spiral in until they
settle down right on top of the nucleus. But that cannot be right
quantum-mechanically because then we would know where each electron was
and how fast it was moving.





Suppose we have a hydrogen atom, and measure the position of the
electron; we must not be able to predict exactly where the electron will
be, or the momentum spread will then turn out to be infinite. Every time
we look at the electron, it is somewhere, but it has an amplitude to be
in different places so there is a probability of it being found in
different places. These places cannot all be at the nucleus; we shall
suppose there is a spread in position of order a. That is, the
distance of the electron from the nucleus is usually about a. We shall
determine a by minimizing the total energy of the atom.




The spread in momentum is roughly ℏ/a because of the uncertainty
relation,
so that if
we try to measure the momentum of the electron in some manner, such as
by scattering x-rays off it and looking for the Doppler
effect from a moving scatterer, we would
expect not to get zero every time—the electron is not standing
still—but the momenta must be of the order p≈ℏ/a. Then
the kinetic energy is roughly [image: \tfrac{1}{2}mv^2=]p2/2 m=ℏ2/2 m a2.
(In a sense, this is a kind of dimensional analysis to find out in what
way the kinetic energy depends upon
the reduced
Planck constant, upon m, and
upon the size of the atom. We need not trust our answer to within
factors like 2, π, etc. We have not even defined a very
precisely.) Now the potential energy is minus e2 over the distance
from the center, say −e2/a, where, as defined in Volume I, e2 is
the charge of an electron squared, divided by 4 π ϵ0. Now the point
is that the potential energy is reduced if a gets smaller, but the
smaller a is, the higher the momentum required, because of the
uncertainty principle, and therefore the higher
the kinetic energy. The total energy is
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(2.10)




We do not know what a is, but we know that the atom is going to
arrange itself to make some kind of compromise so that the energy is
as little as possible. In order to minimize E, we differentiate with
respect to a, set the derivative equal to zero, and solve
for a. The derivative of E is
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(2.11)




and setting d E/d a=0 gives for a the value

[image: -*-]
(2.12)




This particular distance is called the Bohr
radius, and we have thus learned that atomic
dimensions are of the order of angstroms, which is right. This is pretty
good—in fact, it is amazing, since until now we have had no basis for
understanding the size of atoms! Atoms are completely impossible from
the classical point of view, since the electrons would spiral into the
nucleus.




Now if we put the value (2.12) for a0
into (2.10) to find the energy, it comes out

[image: -*-]
(2.13)




What does a negative energy mean? It means that the electron has less
energy when it is in the atom than when it is free. It means it is
bound. It means it takes energy to kick the electron out; it takes
energy of the order of 13.6 eV to ionize a hydrogen atom. We have no
reason to think that it is not two or three times this—or half of
this—or (1/π) times this, because we have used such a sloppy
argument. However, we have cheated, we have used all the constants in
such a way that it happens to come out the right number! This number,
13.6 electron volts, is called a Rydberg of
energy; it is the ionization energy of hydrogen.





So we now understand why we do not fall through the floor. As we walk,
our shoes with their masses of atoms push against the floor with
its mass of atoms. In order to squash the atoms closer
together, the electrons would be confined to a smaller space and, by the
uncertainty principle, their momenta would have
to be higher on the average, and that means high energy; the resistance
to atomic compression is a quantum-mechanical effect and not a classical
effect. Classically, we would expect that if we were to draw all the
electrons and protons closer together, the energy would be reduced still
further, and the best arrangement of positive and negative charges in
classical physics is all on top of each other. This was well known in
classical physics and was a puzzle because of the existence of the atom.
Of course, the early scientists invented some ways out of the
trouble—but never mind, we have the right way out, now!




Incidentally, although we have no reason to understand it at the
moment, in a situation where there are many electrons it turns out
that they try to keep away from each other. If one electron is
occupying a certain space, then another does not occupy the same
space. More precisely, there are two spin cases, so that two can sit
on top of each other, one spinning one way and one the other way. But
after that we cannot put any more there. We have to put others in
another place, and that is the real reason that matter has
strength. If we could put all the electrons in the same place, it
would condense even more than it does. It is the fact that the
electrons cannot all get on top of each other that makes tables and
everything else solid.




Obviously, in order to understand the properties of matter, we will
have to use quantum mechanics and not be satisfied with classical
mechanics.







2–5 Energy levels


We have talked about the atom in its lowest possible energy condition,
but it turns out that the electron can do other things. It can jiggle
and wiggle in a more energetic manner, and so there are many different
possible motions for the atom. According to quantum mechanics, in a
stationary condition there can only be definite energies for an
atom. We make a diagram (Fig. 2–9) in which we plot the
energy vertically, and we make a horizontal line for each allowed value
of the energy. When the electron is free, i.e., when its energy is
positive, it can have any energy; it can be moving at any speed. But
bound energies are not arbitrary. The atom must have one or another out
of a set of allowed values, such as those in Fig. 2–9.



[image: -]
Fig. 2–9. Energy diagram for an atom, showing several possible
transitions.





Now let us call the allowed values of the energy E0, E1,
E2, E3. If an atom is initially in one of these “excited
states,” E1, E2, etc., it does not remain in that state
forever. Sooner or later it drops to a lower state and radiates energy
in the form of light. The frequency of the light that is emitted is
determined by conservation of energy plus the quantum-mechanical
understanding that the frequency of the light is related to the energy
of the light by (2.1). Therefore the frequency of the light
which is liberated in a transition from energy E3 to energy E1
(for example) is
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(2.14)




This, then, is a characteristic frequency of the atom and defines a
spectral emission line. Another possible transition would be from
E3 to E0. That would have a different frequency
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(2.15)




Another possibility is that if the atom were excited to the state E1
it could drop to the ground state E0, emitting a photon of frequency
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(2.16)




The reason we bring up three transitions is to point out an
interesting relationship. It is easy to see from
(2.14), (2.15), and (2.16) that
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(2.17)




In general, if we find two spectral lines, we shall expect to find
another line at the sum of the frequencies (or the difference in the
frequencies), and that all the lines can be understood by finding a
series of levels such that every line corresponds to the difference in
energy of some pair of levels. This remarkable coincidence in spectral
frequencies was noted before quantum mechanics was discovered, and it is
called the Ritz combination principle. This is again a
mystery from the point of view of classical mechanics. Let us not
belabor the point that classical mechanics is a failure in the atomic
domain; we seem to have demonstrated that pretty well.




We have already talked about quantum mechanics as being represented by
amplitudes which behave like waves, with certain frequencies and wave
numbers. Let us observe how it comes about from the point of view of
amplitudes that the atom has definite energy states. This is something
we cannot understand from what has been said so far, but we are all
familiar with the fact that confined waves have definite
frequencies. For instance, if sound is confined to an organ pipe, or
anything like that, then there is more than one way that the sound can
vibrate, but for each such way there is a definite frequency. Thus an
object in which the waves are confined has certain resonance
frequencies. It is therefore a property of waves in a confined
space—a subject which we will discuss in detail with formulas later
on—that they exist only at definite frequencies. And since the
general relation exists between frequencies of the amplitude and
energy, we are not surprised to find definite energies associated with
electrons bound in atoms.







2–6 Philosophical implications


Let us consider briefly some philosophical implications of quantum
mechanics. As always, there are two aspects of the problem: one is the
philosophical implication for physics, and the other is the
extrapolation of philosophical matters to other fields. When
philosophical ideas associated with science are dragged into another
field, they are usually completely distorted. Therefore we shall
confine our remarks as much as possible to physics itself.




First of all, the most interesting aspect is the idea of the uncertainty
principle; making an observation affects the phenomenon. It has always
been known that making observations affects a phenomenon, but the point
is that the effect cannot be disregarded or minimized or decreased
arbitrarily by rearranging the apparatus. When we look for a certain
phenomenon we cannot help but disturb it in a certain minimum way, and
the disturbance is necessary for the consistency of the
viewpoint. The observer was sometimes important in prequantum physics,
but only in a trivial sense. The problem has been raised: if a tree
falls in a forest and there is nobody there to hear it, does it make a
noise? A real tree falling in a real forest makes a sound,
of course, even if nobody is there. Even if no one is present to hear
it, there are other traces left. The sound will shake some leaves, and
if we were careful enough we might find somewhere that some thorn had
rubbed against a leaf and made a tiny scratch that could not be
explained unless we assumed the leaf were vibrating. So in a certain
sense we would have to admit that there is a sound made. We might ask:
was there a sensation of sound?  No, sensations have to do,
presumably, with consciousness. And whether ants are conscious and
whether there were ants in the forest, or whether the tree was
conscious, we do not know. Let us leave the problem in that form.




Another thing that people have emphasized since quantum mechanics was
developed is the idea that we should not speak about those things
which we cannot measure. (Actually relativity theory also said this.)
Unless a thing can be defined by measurement, it has no place in a
theory. And since an accurate value of the momentum of a localized
particle cannot be defined by measurement it therefore has no place in
the theory. The idea that this is what was the matter with classical
theory is a false position. It is a careless analysis of the
situation. Just because we cannot measure position and momentum
precisely does not a priori mean that we cannot talk
about them. It only means that we need not talk about them. The
situation in the sciences is this: A concept or an idea which cannot
be measured or cannot be referred directly to experiment may or may
not be useful. It need not exist in a theory. In other words, suppose
we compare the classical theory of the world with the quantum theory
of the world, and suppose that it is true experimentally that we can
measure position and momentum only imprecisely. The question is
whether the ideas of the exact position of a particle and the
exact momentum of a particle are valid or not. The classical theory
admits the ideas; the quantum theory does not. This does not in itself
mean that classical physics is wrong. When the new quantum mechanics was
discovered, the classical people—which included everybody except
Heisenberg,
Schrödinger, and
Born—said: “Look, your theory is
not any good because you cannot answer certain questions like: what is
the exact position of a particle?, which hole does it go through?, and
some others.” Heisenberg’s
answer was: “I do not need to answer such questions because you cannot
ask such a question experimentally.” It is that we do not have
to. Consider two theories (a) and (b); (a) contains an idea that cannot
be checked directly but which is used in the analysis, and the other,
(b), does not contain the idea. If they disagree in their predictions,
one could not claim that (b) is false because it cannot explain this
idea that is in (a), because that idea is one of the things that cannot
be checked directly. It is always good to know which ideas cannot be
checked directly, but it is not necessary to remove them all. It is not
true that we can pursue science completely by using only those concepts
which are directly subject to experiment.




In quantum mechanics itself there is a probability amplitude, there is
a potential, and there are many constructs that we cannot measure
directly. The basis of a science is its ability to predict. To
predict means to tell what will happen in an experiment that has never
been done. How can we do that? By assuming that we know what is there,
independent of the experiment. We must extrapolate the experiments to
a region where they have not been done. We must take our concepts and
extend them to places where they have not yet been checked. If we do
not do that, we have no prediction. So it was perfectly sensible for
the classical physicists to go happily along and suppose that the
position—which obviously means something for a baseball—meant
something also for an electron. It was not stupidity. It was a
sensible procedure. Today we say that the law of relativity is
supposed to be true at all energies, but someday somebody may come
along and say how stupid we were. We do not know where we are
“stupid” until we “stick our neck out,” and so the whole idea is
to put our neck out. And the only way to find out that we are wrong is
to find out what our predictions are. It is absolutely
necessary to make constructs.




We have already made a few remarks about the indeterminacy of quantum
mechanics. That is, that we are unable now to predict what will happen
in physics in a given physical circumstance which is arranged as
carefully as possible. If we have an atom that is in an excited state
and so is going to emit a photon, we cannot say when it will
emit the photon. It has a certain amplitude to emit the photon at any
time, and we can predict only a probability for emission; we cannot
predict the future exactly. This has given rise to all kinds of
nonsense and questions on the meaning of freedom of will, and of the
idea that the world is uncertain.




Of course we must emphasize that classical physics is also
indeterminate, in a sense. It is usually thought that this
indeterminacy, that we cannot predict the future, is an important
quantum-mechanical thing, and this is said to explain the behavior of
the mind, feelings of free will, etc. But if the world were
classical—if the laws of mechanics were classical—it is not quite
obvious that the mind would not feel more or less the same. It is true
classically that if we knew the position and the velocity of every
particle in the world, or in a box of gas, we could predict exactly
what would happen. And therefore the classical world is
deterministic. Suppose, however, that we have a finite accuracy and do
not know exactly where just one atom is, say to one part in a
billion. Then as it goes along it hits another atom, and because we
did not know the position better than to one part in a billion, we
find an even larger error in the position after the collision. And
that is amplified, of course, in the next collision, so that if we
start with only a tiny error it rapidly magnifies to a very great
uncertainty. To give an example: if water falls over a dam, it
splashes. If we stand nearby, every now and then a drop will land on
our nose. This appears to be completely random, yet such a behavior
would be predicted by purely classical laws. The exact position of all
the drops depends upon the precise wigglings of the water before it
goes over the dam. How? The tiniest irregularities are magnified in
falling, so that we get complete randomness. Obviously, we cannot
really predict the position of the drops unless we know the motion of
the water absolutely exactly.




Speaking more precisely, given an arbitrary accuracy, no matter how
precise, one can find a time long enough that we cannot make
predictions valid for that long a time. Now the point is that this
length of time is not very large. It is not that the time is millions
of years if the accuracy is one part in a billion. The time goes, in
fact, only logarithmically with the error, and it turns out that in
only a very, very tiny time we lose all our information. If the
accuracy is taken to be one part in billions and billions and
billions—no matter how many billions we wish, provided we do stop
somewhere—then we can find a time less than the time it took to
state the accuracy—after which we can no longer predict what is
going to happen! It is therefore not fair to say that from the
apparent freedom and indeterminacy of the human mind, we should have
realized that classical “deterministic” physics could not ever hope
to understand it, and to welcome quantum mechanics as a release from a
“completely mechanistic” universe. For already in classical
mechanics there was indeterminability from a practical point of view.





	
  
  More precisely, the
error in our knowledge of y is ±B/2. But we are now only
interested in the general idea, so we won’t worry about factors of 2.
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3 Probability Amplitudes



3–1 The laws for combining amplitudes


When Schrödinger first
discovered the correct laws of quantum mechanics, he wrote an equation which
described the amplitude to find a particle in various places. This equation was
very similar to the equations that were already known to classical
physicists—equations that they had used in describing the motion of air in a
sound wave, the transmission of light, and so on. So most of the time at the
beginning of quantum mechanics was spent in solving this equation. But at the
same time an understanding was being developed, particularly by
Born and Dirac, of the basically new physical ideas behind quantum mechanics. As
quantum mechanics developed further, it turned out that there were a large
number of things which were not directly encompassed in the Schrödinger
equation—such as the spin of the electron, and various relativistic phenomena.
Traditionally, all courses in quantum mechanics have begun in the same way,
retracing the path followed in the historical development of the subject. One
first learns a great deal about classical mechanics so that he will be able to
understand how to solve the Schrödinger equation. Then he spends a long time
working out various solutions. Only after a detailed study of this equation does
he get to the “advanced” subject of the electron’s spin.




We had also originally considered that the right way to conclude these
lectures on physics was to show how to solve the equations of
classical physics in complicated situations—such as the description
of sound waves in enclosed regions, modes of electromagnetic radiation
in cylindrical cavities, and so on. That was the original plan for
this course. However, we have decided to abandon that plan and to give
instead an introduction to the quantum mechanics. We have come to the
conclusion that what are usually called the advanced parts of quantum
mechanics are, in fact, quite simple. The mathematics that is involved
is particularly simple, involving simple algebraic operations and no
differential equations or at most only very simple ones. The only
problem is that we must jump the gap of no longer being able to
describe the behavior in detail of particles in space. So this
is what we are going to try to do: to tell you about what
conventionally would be called the “advanced” parts of quantum
mechanics. But they are, we assure you, by all odds the simplest
parts—in a deep sense of the word—as well as the most basic
parts. This is frankly a pedagogical experiment; it has never been
done before, as far as we know.




In this subject we have, of course, the difficulty that the quantum
mechanical behavior of things is quite strange. Nobody has an everyday
experience to lean on to get a rough, intuitive idea of what will
happen. So there are two ways of presenting the subject: We could
either describe what can happen in a rather rough physical way,
telling you more or less what happens without giving the precise laws
of everything; or we could, on the other hand, give the precise laws
in their abstract form. But, then because of the abstractions, you
wouldn’t know what they were all about, physically. The latter method
is unsatisfactory because it is completely abstract, and the first way
leaves an uncomfortable feeling because one doesn’t know exactly what
is true and what is false. We are not sure how to overcome this
difficulty. You will notice, in fact, that Chapters 1
and 2 showed this problem. The first chapter was
relatively precise; but the second chapter was a rough description of
the characteristics of different phenomena. Here, we will try to find
a happy medium between the two extremes.




We will begin in this chapter by dealing with some general quantum
mechanical ideas. Some of the statements will be quite precise, others
only partially precise. It will be hard to tell you as we go along
which is which, but by the time you have finished the rest of the
book, you will understand in looking back which parts hold up and
which parts were only explained roughly. The chapters which follow
this one will not be so imprecise. In fact, one of the reasons we have
tried carefully to be precise in the succeeding chapters is so that we
can show you one of the most beautiful things about quantum
mechanics—how much can be deduced from so little.



[image: -]
Fig. 3–1. Interference experiment with electrons.





We begin by discussing again the superposition of probability
amplitudes. As an example we will refer to the experiment described in
Chapter 1, and shown again here in
Fig. 3–1. There is a source s of particles, say
electrons; then there is a wall with two slits in it; after the wall,
there is a detector located at some position x. We ask for the
probability that a particle will be found at x. Our first
general principle in quantum mechanics is that the probability
that a particle will arrive at x, when let out at the source s, can
be represented quantitatively by the absolute square of a complex number
called a probability amplitude—in this case, the “amplitude
that a particle from s will arrive at x.” We will use such
amplitudes so frequently that we will use a shorthand
notation—invented by Dirac
and generally used in quantum
mechanics—to represent this idea. We write the probability amplitude
this way:

[image: -*-]
(3.1)




In other words, the two brackets [image: \langle\:\rangle] are a sign
equivalent to “the amplitude that”; the expression at the
right of the vertical line always gives the starting
condition, and the one at the left, the final
condition. Sometimes it will also be convenient to abbreviate still
more and describe the initial and final conditions by single
letters. For example, we may on occasion write the
amplitude (3.1) as

[image: -*-]
(3.2)




We want to emphasize that such an amplitude is, of course, just a
single number—a complex number.




We have already seen in the discussion of Chapter 1
that when there are two ways for the particle to reach the detector,
the resulting probability is not the sum of the two probabilities, but
must be written as the absolute square of the sum of two
amplitudes. We had that the probability that an electron arrives at
the detector when both paths are open is

[image: -*-]
(3.3)




We wish now to put this result in terms of our new notation. First,
however, we want to state our second general principle of
quantum mechanics: When a particle can reach a given state by two
possible routes, the total amplitude for the process is the sum
of the amplitudes for the two routes considered separately. In our
new notation we write that

[image: -*-]
(3.4)




Incidentally, we are going to suppose that the holes 1 and 2 are
small enough that when we say an electron goes through the hole, we
don’t have to discuss which part of the hole. We could, of course,
split each hole into pieces with a certain amplitude that the electron
goes to the top of the hole and the bottom of the hole and so on. We
will suppose that the hole is small enough so that we don’t have to
worry about this detail. That is part of the roughness involved; the
matter can be made more precise, but we don’t want to do so at this
stage.




Now we want to write out in more detail what we can say about the
amplitude for the process in which the electron reaches the detector
at x by way of hole 1. We can do that by using our third
general principle: When a particle goes by some particular route the
amplitude for that route can be written as the product of the
amplitude to go part way with the amplitude to go the
rest of the way. For the setup of Fig. 3–1 the amplitude
to go from s to x by way of hole 1 is equal to the amplitude to go
from s to 1, multiplied by the amplitude to go from 1 to x.
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(3.5)




Again this result is not completely precise. We should also include a
factor for the amplitude that the electron will get through the hole
at 1; but in the present case it is a simple hole, and we will take
this factor to be unity.




You will note that Eq. (3.5) appears to be written in
reverse order. It is to be read from right to left: The electron goes
from s to 1 and then from 1 to x. In summary, if events occur
in succession—that is, if you can analyze one of the routes of the
particle by saying it does this, then it does this, then it does
that—the resultant amplitude for that route is calculated by
multiplying in succession the amplitude for each of the successive
events. Using this law we can rewrite Eq. (3.4) as
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Fig. 3–2. A more complicated interference experiment.





Now we wish to show that just using these principles we can calculate
a much more complicated problem like the one shown in
Fig. 3–2. Here we have two walls, one with two holes, 1
and 2, and another which has three holes, a, b, and c. Behind
the second wall there is a detector at x, and we want to know the
amplitude for a particle to arrive there. Well, one way you can find
this is by calculating the superposition, or interference, of the waves
that go through; but you can also do it by saying that there are six
possible routes and superposing an amplitude for each. The electron can
go through hole 1, then through hole a, and then to x; or it could
go through hole 1, then through hole b, and then to x; and so on.
According to our second principle, the amplitudes for alternative routes
add, so we should be able to write the amplitude from s to x as a
sum of six separate amplitudes. On the other hand, using the third
principle, each of these separate amplitudes can be written as a product
of three amplitudes. For example, one of them is the amplitude for s
to 1, times the amplitude for 1 to a, times the amplitude for a
to x. Using our shorthand notation, we can write the complete
amplitude to go from s to x as



[image: -*-]



We can save writing by using the summation notation

[image: -*-]
(3.6)









In order to make any calculations using these methods, it is,
naturally, necessary to know the amplitude to get from one place to
another. We will give a rough idea of a typical amplitude. It leaves
out certain things like the polarization of light or the spin of the
electron, but aside from such features it is quite accurate. We give
it so that you can solve problems involving various combinations of
slits. Suppose a particle with a definite energy is going in empty
space from a location r1 to a location r2. In other
words, it is a free particle with no forces on it. Except for a
numerical factor in front, the amplitude to go from r1
to r2 is
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(3.7)




where r12=r2−r1, and p is the momentum which
is related to the energy E by the relativistic equation
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or the nonrelativistic equation
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Equation (3.7) says in effect that the particle has
wavelike properties, the amplitude propagating as a wave with a wave
number equal to the momentum divided by ℏ.




In the most general case, the amplitude and the
corresponding probability will also involve the time. For most of these
initial discussions we will suppose that the source always emits the
particles with a given energy so we will not need to worry about the
time. But we could, in the general case, be interested in some other
questions. Suppose that a particle is liberated at a certain place P
at a certain time, and you would like to know the amplitude for it to
arrive at some location, say r, at some later time. This could be
represented symbolically as the amplitude [image: \braket{\FLPr,t=t_1}{P,t=0}].
Clearly, this will depend upon both r and t. You will get
different results if you put the detector in different places and
measure at different times. This function of r and t, in
general, satisfies a differential equation which is a wave equation. For
example, in a nonrelativistic case it is the Schrödinger equation. One
has then a wave equation analogous to the equation for electromagnetic
waves or waves of sound in a gas. However, it must be emphasized that
the wave function that satisfies the equation is not like a real wave in
space; one cannot picture any kind of reality to this wave as one does
for a sound wave.




Although one may be tempted to think in terms of “particle waves”
when dealing with one particle, it is not a good idea, for if there
are, say, two particles, the amplitude to find one at r1 and
the other at r2 is not a simple wave in three-dimensional space,
but depends on the six space variables r1
and r2. If we are, for example, dealing with two (or more)
particles, we will need the following additional principle: Provided
that the two particles do not interact, the amplitude that one
particle will do one thing and the other one something else is
the product of the two amplitudes that the two particles would do the
two things separately. For example, if [image: \braket{a}{s_1}] is the
amplitude for particle 1 to go from s1 to a, and
[image: \braket{b}{s_2}] is the amplitude for particle 2 to go from s2
to b, the amplitude that both things will happen together is
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There is one more point to emphasize. Suppose that we didn’t know
where the particles in Fig. 3–2 come from before arriving
at holes 1 and 2 of the first wall. We can still make a prediction
of what will happen beyond the wall (for example, the amplitude to
arrive at x) provided that we are given two numbers: the amplitude to
have arrived at 1 and the amplitude to have arrived at 2. In other
words, because of the fact that the amplitude for successive events
multiplies, as shown in Eq. (3.6), all you need to know to
continue the analysis is two numbers—in this particular case
[image: \braket{1}{s}] and [image: \braket{2}{s}]. These two complex numbers are
enough to predict all the future. That is what really makes quantum
mechanics easy. It turns out that in later chapters we are going to do
just such a thing when we specify a starting condition in terms of two
(or a few) numbers. Of course, these numbers depend upon where the
source is located and possibly other details about the apparatus, but
given the two numbers, we do not need to know any more about such
details.







3–2 The two-slit interference pattern


Now we would like to consider a matter which was discussed in some
detail in Chapter 1. This time we will do it with the
full glory of the amplitude idea to show you how it works out. We take
the same experiment shown in Fig. 3–1, but now with the
addition of a light source behind the two holes, as shown in
Fig. 3–3. In Chapter 1, we discovered the
following interesting result. If we looked behind slit 1 and saw a
photon scattered from there, then the distribution obtained for the
electrons at x in coincidence with these photons was the same as
though slit 2 were closed. The total distribution for electrons that
had been “seen” at either slit 1 or slit 2 was the sum of the
separate distributions and was completely different from the
distribution with the light turned off. This was true at least if we
used light of short enough wavelength. If the wavelength was made longer
so we could not be sure at which hole the scattering had occurred, the
distribution became more like the one with the light turned off.



[image: -]
Fig. 3–3. An experiment to determine which hole the electron goes through.





Let’s examine what is happening by using our new notation and the
principles of combining amplitudes. To simplify the writing, we can
again let ϕ1 stand for the amplitude that the electron will
arrive at x by way of hole 1, that is,
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Similarly, we’ll let ϕ2 stand for the amplitude that the
electron gets to the detector by way of hole 2:

[image: -*-]


These are the amplitudes to go through the two holes and arrive at x
if there is no light. Now if there is light, we ask ourselves the
question: What is the amplitude for the process in which the electron
starts at s and a photon is liberated by the light source L,
ending with the electron at x and a photon seen behind slit 1?
Suppose that we observe the photon behind slit 1 by means of a
detector D1, as shown in Fig. 3–3, and use a similar
detector D2 to count photons scattered behind hole 2. There will be
an amplitude for a photon to arrive at D1 and an electron at x, and
also an amplitude for a photon to arrive at D2 and an electron
at x. Let’s try to calculate them.




Although we don’t have the correct mathematical formula for all the
factors that go into this calculation, you will see the spirit of it
in the following discussion. First, there is the
amplitude [image: \braket{1}{s}] that an electron goes from the source to
hole 1. Then we can suppose that there is a certain amplitude that while
the electron is at hole 1 it scatters a photon into the
detector D1. Let us represent this amplitude by a. Then there is the
amplitude [image: \braket{x}{1}] that the electron goes from slit 1 to the
electron detector at x. The amplitude that the electron goes from
s to x via slit 1 and scatters a photon into D1 is
then
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Or, in our previous notation, it is just a ϕ1.




There is also some amplitude that an electron going through slit 2
will scatter a photon into counter D1. You say, “That’s
impossible; how can it scatter into counter D1 if it is only
looking at hole 1?”  If the wavelength is long enough, there are
diffraction effects, and it is certainly possible. If the apparatus is
built well and if we use photons of short wavelength, then the
amplitude that a photon will be scattered into detector 1, from an
electron at 2 is very small. But to keep the discussion general we
want to take into account that there is always some such amplitude,
which we will call b. Then the amplitude that an electron goes via
slit 2 and scatters a photon into D1 is
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The amplitude to find the electron at x and the photon in D1 is
the sum of two terms, one for each possible path for the
electron. Each term is in turn made up of two factors: first, that the
electron went through a hole, and second, that the photon is scattered
by such an electron into detector 1; we have
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(3.8)









We can get a similar expression when the photon is found in the other
detector D2. If we assume for simplicity that the system is
symmetrical, then a is also the amplitude for a photon in D2 when
an electron passes through hole 2, and b is the amplitude for a
photon in D2 when the electron passes through hole 1. The
corresponding total amplitude for a photon at D2 and an electron
at x is
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(3.9)









Now we are finished. We can easily calculate the probability for
various situations. Suppose that we want to know with what probability
we get a count in D1 and an electron at x. That will be the
absolute square of the amplitude given in Eq. (3.8),
namely, just │a ϕ1+b ϕ2│2. Let’s look more carefully at
this expression. First of all, if b is zero—which is the way we
would like to design the apparatus—then the answer is
simply │ϕ1│2 diminished in total amplitude by the
factor │a│2. This is the probability distribution that you would get
if there were only one hole—as shown in the graph of
Fig. 3–4(a). On the other hand, if the wavelength is very
long, the scattering behind hole 2 into D1 may be just about the
same as for hole 1. Although there may be some phases involved in a
and b, we can ask about a simple case in which the two phases are
equal. If a is practically equal to b, then the total probability
becomes │ϕ1+ϕ2│2 multiplied by │a│2, since the
common factor a can be taken out. This, however, is just the
probability distribution we would have gotten without the photons at
all. Therefore, in the case that the wavelength is very long—and the
photon detection ineffective—you return to the original distribution
curve which shows interference effects, as shown in
Fig. 3–4(b). In the case that the detection is partially
effective, there is an interference between a lot of ϕ1 and a
little of ϕ2, and you will get an intermediate distribution such
as is sketched in Fig. 3–4(c). Needless to say, if we
look for coincidence counts of photons at D2 and electrons at x, we
will get the same kinds of results. If you remember the discussion in
Chapter 1, you will see that these results give a
quantitative description of what was described there.



[image: -]
Fig. 3–4. The probability of counting an electron at x in coincidence with a
photon at D in the experiment of Fig. 3–3: (a) for
b=0; (b) for b=a; (c) for 0<b<a.





Now we would like to emphasize an important point so that you will
avoid a common error. Suppose that you only want the amplitude that
the electron arrives at x, regardless of whether the photon
was counted at D1 or D2. Should you add the amplitudes given in
Eqs. (3.8) and (3.9)? No! You must
never add amplitudes for different and distinct final
states. Once the photon is accepted by one of the photon counters, we
can always determine which alternative occurred if we want, without
any further disturbance to the system. Each alternative has a
probability completely independent of the other. To repeat, do not add
amplitudes for different final conditions, where by “final”
we mean at that moment the probability is desired—that is,
when the experiment is “finished.” You do add the amplitudes for the
different indistinguishable alternatives inside the experiment,
before the complete process is finished. At the end of the process you
may say that you “don’t want to look at the photon.” That’s your
business, but you still do not add the amplitudes. Nature does not
know what you are looking at, and she behaves the way she is going to
behave whether you bother to take down the data or not. So here we
must not add the amplitudes. We first square the amplitudes for all
possible different final events and then sum. The correct result for
an electron at x and a photon at either D1 or D2 is
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(3.10)












3–3 Scattering from a crystal

[image: -]
Fig. 3–5. Measuring the scattering of neutrons by a crystal.





Our next example is a phenomenon in which we have to analyze the
interference of probability amplitudes somewhat carefully. We look at
the process of the scattering of neutrons from a crystal. Suppose we
have a crystal which has a lot of atoms with nuclei at their centers,
arranged in a periodic array, and a neutron beam that comes from far
away. We can label the various nuclei in the crystal by an index i,
where i runs over the integers 1, 2, 3, …, N, with N
equal to the total number of atoms. The problem is to calculate the
probability of getting a neutron into a counter with the arrangement
shown in Fig. 3–5. For any particular atom i, the
amplitude that the neutron arrives at the counter C is the amplitude
that the neutron gets from the source S to nucleus i, multiplied by
the amplitude a that it gets scattered there, multiplied by the
amplitude that it gets from i to the counter C. Let’s write that
down:
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(3.11)





In writing this equation we have assumed that the scattering
amplitude a is the same for all atoms. We have here a large number of
apparently indistinguishable routes. They are indistinguishable
because a low-energy neutron is scattered from a nucleus without
knocking the atom out of its place in the crystal—no “record” is
left of the scattering. According to the earlier discussion, the total
amplitude for a neutron at C involves a sum of Eq. (3.11)
over all the atoms:
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(3.12)





Because we are adding amplitudes of scattering from atoms with
different space positions, the amplitudes will have different phases
giving the characteristic interference pattern that we have already
analyzed in the case of the scattering of light from a grating.




The neutron intensity as a function of angle in such an experiment is
indeed often found to show tremendous variations, with very sharp
interference peaks and almost nothing in between—as shown in
Fig. 3–6(a). However, for certain kinds of crystals it
does not work this way, and there is—along with the interference peaks
discussed above—a general background of scattering in all directions.
We must try to understand the apparently mysterious reasons for this.
Well, we have not considered one important property of the neutron. It
has a spin of one-half, and so there are two conditions in which it can
be: either spin “up” (say perpendicular to the page in
Fig. 3–5) or spin “down.”  If the nuclei of the crystal
have no spin, the neutron spin doesn’t have any effect. But when the
nuclei of the crystal also have a spin, say a spin of one-half, you will
observe the background of smeared-out scattering described above. The
explanation is as follows.




If the neutron has one direction of spin and the atomic nucleus has
the same spin, then no change of spin can occur in the scattering
process. If the neutron and atomic nucleus have opposite spin, then
scattering can occur by two processes, one in which the spins are
unchanged and another in which the spin directions are exchanged. This
rule for no net change of the sum of the spins is analogous to our
classical law of conservation of angular momentum. We can begin to
understand the phenomenon if we assume that all the scattering nuclei
are set up with spins in one direction. A neutron with the same spin
will scatter with the expected sharp interference distribution. What
about one with opposite spin? If it scatters without spin flip, then
nothing is changed from the above; but if the two spins flip over in
the scattering, we could, in principle, find out which nucleus had
done the scattering, since it would be the only one with spin turned
over. Well, if we can tell which atom did the scattering, what have
the other atoms got to do with it? Nothing, of course. The scattering
is exactly the same as that from a single atom.



[image: -][image: -][image: -]
Fig. 3–6. The neutron counting rate as a function of angle: (a) for spin
zero nuclei; (b) the probability of scattering with spin flip; (c) the
observed counting rate with a spin one-half nucleus.





To include this effect, the mathematical formulation of
Eq. (3.12) must be modified since we haven’t described the
states completely in that analysis. Let’s start with all neutrons from
the source having spin up and all the nuclei of the crystal having spin
down. First, we would like the amplitude that at the counter the spin of
the neutron is up and all spins of the crystal are still down.
This is not different from our previous discussion. We will let a be
the amplitude to scatter with no flip or spin. The amplitude for
scattering from the ith atom is, of course,
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Since all the atomic spins are still down, the various alternatives
(different values of i) cannot be distinguished. There is clearly no
way to tell which atom did the scattering. For this process, all the
amplitudes interfere.




We have another case, however, where the spin of the detected neutron
is down although it started from S with spin up. In the crystal, one
of the spins must be changed to the up direction—let’s say that of
the kth atom. We will assume that there is the same scattering
amplitude with spin flip for every atom, namely b. (In a real
crystal there is the disagreeable possibility that the reversed spin
moves to some other atom, but let’s take the case of a crystal for
which this probability is very low.) The scattering amplitude is then



[image: -*-]
(3.13)





If we ask for the probability of finding the neutron spin down and the
kth nucleus spin up, it is equal to the absolute square of this
amplitude, which is simply │b│2
times [image: \abs{\braket{C}{k}\braket{k}{S}}^2]. The second factor is almost
independent of location in the crystal, and all phases have
disappeared in taking the absolute square. The probability of
scattering from any nucleus in the crystal with spin flip is
now
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which will show a smooth distribution as in Fig. 3–6(b).




You may argue, “I don’t care which atom is up.” Perhaps you don’t,
but nature knows; and the probability is, in fact, what we gave
above—there isn’t any interference. On the other hand, if we ask for
the probability that the spin is up at the detector and all the atoms
still have spin down, then we must take the absolute square of
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Since the terms in this sum have phases, they do interfere, and we get
a sharp interference pattern. If we do an experiment in which we don’t
observe the spin of the detected neutron, then both kinds of events
can occur; and the separate probabilities add. The total probability
(or counting rate) as a function of angle then looks like the graph in
Fig. 3–6(c).




Let’s review the physics of this experiment. If you could, in
principle, distinguish the alternative final states (even
though you do not bother to do so), the total, final probability is
obtained by calculating the probability for each state (not the
amplitude) and then adding them together. If you cannot
distinguish the final states even in principle, then the
probability amplitudes must be summed before taking the absolute
square to find the actual probability. The thing you should notice
particularly is that if you were to try to represent the neutron by a
wave alone, you would get the same kind of distribution for the
scattering of a down-spinning neutron as for an up-spinning
neutron. You would have to say that the “wave” would come from all
the different atoms and interfere just as for the up-spinning one with
the same wavelength. But we know that is not the way it works. So as
we stated earlier, we must be careful not to attribute too much
reality to the waves in space. They are useful for certain problems
but not for all.







3–4 Identical particles


The next experiment we will describe is one which shows one of the
beautiful consequences of quantum mechanics. It again involves a
physical situation in which a thing can happen in two
indistinguishable ways, so that there is an interference of
amplitudes—as is always true in such circumstances. We are
going to discuss the scattering, at relatively low energy, of nuclei
on other nuclei. We start by thinking of α-particles (which, as
you know, are helium nuclei) bombarding, say, oxygen. To make it
easier for us to analyze the reaction, we will look at it in the
center-of-mass system, in which the oxygen nucleus and the
α-particle have their velocities in opposite directions before
the collision and again in exactly opposite directions after the
collision. See Fig. 3–7(a). (The magnitudes of the
velocities are, of course, different, since the masses are different.)
We will also suppose that there is conservation of energy and that the
collision energy is low enough that neither particle is broken up or
left in an excited state. The reason that the two particles deflect each
other is, of course, that each particle carries a positive charge and,
classically speaking, there is an electrical repulsion as they go by.
The scattering will happen at different angles with different
probabilities, and we would like to discuss something about the angle
dependence of such scatterings. (It is possible, of course, to calculate
this thing classically, and it is one of the most remarkable accidents
of quantum mechanics that the answer to this problem comes out the same
as it does classically. This is a curious point because it happens for
no other force except the inverse square law—so it is indeed an
accident.)




The probability of scattering in different directions can be measured
by an experiment as shown in Fig. 3–7(a). The counter at
position 1 could be designed to detect only α-particles; the
counter at position 2 could be designed to detect only oxygen—just
as a check. (In the laboratory system the detectors would not be
opposite; but in the CM system they are.) Our experiment consists in
measuring the probability of scattering in various directions. Let’s
call f (θ) the amplitude to scatter into the counters when they
are at the angle θ; then │f (θ)│2 will be our
experimentally determined probability.
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Fig. 3–7. The scattering of α-particles from oxygen nuclei, as
seen in the center-of-mass system.





Now we could set up another experiment in which our counters would
respond to either the α-particle or the oxygen
nucleus. Then we have to work out what happens when we do not bother
to distinguish which particles are counted. Of course, if we are to
get an oxygen in the position θ, there must be an
α-particle on the opposite side at the angle (π−θ), as
shown in Fig. 3–7(b). So if f (θ) is the amplitude for
α-scattering through the angle θ, then f (π−θ)
is the amplitude for oxygen scattering through the
angle θ.1  Thus, the
probability for having some particle in the detector at
position 1 is:
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(3.14)





Note that the two states are distinguishable in principle. Even though
in this experiment we do not distinguish them, we
could. According to the earlier discussion, then, we must add the
probabilities, not the amplitudes.




The result given above is correct for a variety of target nuclei—for
α-particles on oxygen, on carbon, on beryllium, on
hydrogen. But it is wrong for α-particles on
α-particles. For the one case in which both particles are
exactly the same, the experimental data disagree with the prediction
of (3.14). For example, the scattering probability
at 90° is exactly twice what the above theory predicts and has
nothing to do with the particles being “helium” nuclei. If the
target is He3, but the projectiles are α-particles (He4),
then there is agreement. Only when the target is He4—so its
nuclei are identical with the incoming α-particle—does the
scattering vary in a peculiar way with angle.




Perhaps you can already see the explanation. There are two ways to get
an α-particle into the counter: by scattering the bombarding
α-particle at an angle θ, or by scattering it at an
angle of (π−θ). How can we tell whether the bombarding
particle or the target particle entered the counter? The answer is
that we cannot. In the case of α-particles with
α-particles there are two alternatives that cannot be
distinguished. Here, we must let the probability amplitudes
interfere by addition, and the probability of finding an
α-particle in the counter is the square of their sum:
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(3.15)










This is quite a different result than that in Eq. (3.14).
We can take an angle of π/2 as an example, because it is easy to
figure out. For θ=π/2, we obviously
have f (θ)=f (π−θ), so the probability in Eq. (3.15)
becomes │f (π/2)+f (π/2)│2=4 │f (π/2)│2.




On the other hand, if they did not interfere, the result of
Eq. (3.14) gives only 2 │f (π/2)│2. So there is
twice as much scattering at 90° as we might have expected. Of
course, at other angles the results will also be different. And so you
have the unusual result that when particles are identical, a certain new
thing happens that doesn’t happen when particles can be distinguished.
In the mathematical description you must add the amplitudes for
alternative process in which the two particles simply exchange roles and
there is an interference.




An even more perplexing thing happens when we do the same kind of
experiment by scattering electrons on electrons, or protons on
protons. Neither of the above results is then correct! For these
particles, we must invoke still a new rule, a most peculiar rule,
which is the following: When you have a situation in which the
identity of the electron which is arriving at a point is exchanged
with another one, the new amplitude interferes with the old one with
an opposite phase. It is interference all right, but with a
minus sign. In the case of α-particles, when you exchange the
α-particle entering the detector, the interfering amplitudes
interfere with the positive sign. In the case of electrons, the
interfering amplitudes for exchange interfere with a negative
sign. Except for another detail to be discussed below, the proper
equation for electrons in an experiment like the one shown in
Fig. 3–8 is
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(3.16)









The above statement must be qualified, because we have not considered
the spin of the electron (α-particles have no spin). The
electron spin may be considered to be either “up” or “down” with
respect to the plane of the scattering. If the energy of the
experiment is low enough, the magnetic forces due to the currents will
be small and the spin will not be affected. We will assume that this
is the case for the present analysis, so that there is no chance that
the spins are changed during the collision. Whatever spin the electron
has, it carries along with it. Now you see there are many
possibilities. The bombarding and target particles can have both spins
up, both down, or opposite spins. If both spins are up, as in
Fig. 3–8 (or if both spins are down), the same will be
true of the recoil particles and the amplitude for the process is
the difference of the amplitudes for the two possibilities shown
in Fig. 3–8(a) and (b). The probability of
detecting an electron in D1 is then given by Eq. (3.16).
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Fig. 3–8. The scattering of electrons on electrons. If the incoming
electrons have parallel spins, the processes (a) and (b) are
indistinguishable.





Suppose, however, the “bombarding” spin is up and the “target” spin is down.
The electron entering counter 1 can have spin up or spin down, and by
measuring this spin we can tell whether it came from the bombarding beam or from
the target. The two possibilities are shown in Fig. 3–9(a)
and (b); they are distinguishable in principle, and hence there will be no
interference—merely an addition of the two probabilities. The same argument
holds if both of the original spins are reversed—that is, if the left-hand
spin is down and the right-hand spin is up.
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Fig. 3–9. The scattering of electrons with antiparallel spins.





Now if we take our electrons at random—as from a tungsten filament
in which the electrons are completely unpolarized—then the odds are
fifty-fifty that any particular electron comes out with spin up or
spin down. If we don’t bother to measure the spin of the electrons at
any point in the experiment, we have what we call an unpolarized
experiment. The results for this experiment are best calculated by
listing all of the various possibilities as we have done in
Table 3–1. A separate probability is computed for
each distinguishable alternative. The total probability is then the sum
of all the separate probabilities. Note that for unpolarized beams the
result for θ=π/2 is one-half that of the classical result with
independent particles. The behavior of identical particles has many
interesting consequences; we will discuss them in greater detail in the
next chapter.





Table 3–1. Scattering of unpolarized spin one-half particles
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  In general, a scattering direction should, of
course, be described by two angles, the polar angle ϕ, as well as
the azimuthal angle θ. We would then say that an oxygen nucleus
at (θ,ϕ) means that the α-particle is
at (π−θ,ϕ+π). However, for Coulomb scattering (and for many
other cases), the scattering amplitude is independent of ϕ. Then
the amplitude to get an oxygen at θ is the same as the
amplitude to get the α-particle at (π−θ).
  ^
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4–1 Bose particles and Fermi particles


In the last chapter we began to consider the special rules for the
interference that occurs in processes with two identical
particles. By identical particles we mean things like electrons
which can in no way be distinguished one from another. If a process
involves two particles that are identical, reversing which one arrives
at a counter is an alternative which cannot be distinguished
and—like all cases of alternatives which cannot be
distinguished—interferes with the original, unexchanged case. The
amplitude for an event is then the sum of the two interfering
amplitudes; but, interestingly enough, the interference is in some
cases with the same phase and, in others, with the
opposite phase.




Suppose we have a collision of two particles a and b in which
particle a scatters in the direction 1 and particle b scatters
in the direction 2, as sketched in Fig. 4–1(a). Let’s
call f (θ) the amplitude for this process; then the probability P1
of observing such an event is proportional to │f (θ)│2. Of
course, it could also happen that particle b scattered into counter 1
and particle a went into counter 2, as shown in
Fig. 4–1(b). Assuming that there are no special directions
defined by spins or such, the probability P2 for this process is
just │f (π−θ)│2, because it is just equivalent to the first
process with counter 1 moved over to the angle π−θ. You might
also think that the amplitude for the second process is
just f (π−θ). But that is not necessarily so, because there could be
an arbitrary phase factor. That is, the amplitude could be
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Such an amplitude still gives a probability P2 equal
to │f (π−θ)│2.
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Fig. 4–1. In the scattering of two identical particles, the processes (a)
and (b) are indistinguishable.





Now let’s see what happens if a and b are identical
particles. Then the two different processes shown in the two diagrams
of Fig. 4–1 cannot be distinguished. There is an amplitude that
either a or b goes into counter 1, while the other goes
into counter 2. This amplitude is the sum of the amplitudes for the
two processes shown in Fig. 4–1. If we call the first
one f (θ), then the second one is ei δ f (π−θ), where
now the phase factor is very important because we are going to be
adding two amplitudes. Suppose we have to multiply the amplitude by a
certain phase factor when we exchange the roles of the two
particles. If we exchange them again we should get the same factor
again. But we are then back to the first process. The phase factor
taken twice must bring us back where we started—its square must be
equal to 1. There are only two possibilities: ei δ is equal
to +1, or is equal to −1. Either the exchanged case contributes
with the same sign, or it contributes with the opposite
sign. Both cases exist in nature, each for a different class of
particles. Particles which interfere with a positive sign are
called Bose particles and those which interfere with a
negative sign are called Fermi particles. The Bose
particles are the photon, the mesons, and the graviton. The Fermi
particles are the electron, the muon, the neutrinos, the nucleons, and
the baryons. We have, then, that the amplitude for the scattering of
identical particles is:


  Bose particles:
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(4.1)




  Fermi particles:
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(4.2)









For particles with spin—like electrons—there is an additional
complication. We must specify not only the location of the particles
but the direction of their spins. It is only for identical particles
with identical spin states that the amplitudes interfere when
the particles are exchanged. If you think of the scattering of
unpolarized beams—which are a mixture of different spin
states—there is some extra arithmetic.
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Fig. 4–2. The scattering of two α-particles. In (a) the two
particles retain their identity; in (b) a neutron is exchanged during
the collision.





Now an interesting problem arises when there are two or more particles
bound tightly together. For example, an α-particle has four
particles in it—two neutrons and two protons. When two
α-particles scatter, there are several possibilities. It may be
that during the scattering there is a certain amplitude that one of
the neutrons will leap across from one α-particle to the other,
while a neutron from the other α-particle leaps the other way
so that the two alphas which come out of the scattering are not the
original ones—there has been an exchange of a pair of neutrons. See
Fig. 4–2. The amplitude for scattering with an exchange of a pair of
neutrons will interfere with the amplitude for scattering with no such
exchange, and the interference must be with a minus sign because there
has been an exchange of one pair of Fermi particles. On the other
hand, if the relative energy of the two α-particles is so low
that they stay fairly far apart—say, due to the Coulomb
repulsion—and there is never any appreciable probability of
exchanging any of the internal particles, we can consider the
α-particle as a simple object, and we do not need to worry
about its internal details. In such circumstances, there are only two
contributions to the scattering amplitude. Either there is no
exchange, or all four of the nucleons are exchanged in the
scattering. Since the protons and the neutrons in the
α-particle are all Fermi particles, an exchange of any pair
reverses the sign of the scattering amplitude. So long as there are no
internal changes in the α-particles, interchanging the two
α-particles is the same as interchanging four pairs of Fermi
particles. There is a change in sign for each pair, so the net result
is that the amplitudes combine with a positive sign. The
α-particle behaves like a Bose particle.




So the rule is that composite objects, in circumstances in which the
composite object can be considered as a single object, behave like
Fermi particles or Bose particles, depending on whether they contain
an odd number or an even number of Fermi particles.




All the elementary Fermi particles we have mentioned—such as the
electron, the proton, the neutron, and so on—have a spin j=1/2. If
several such Fermi particles are put together to form a composite
object, the resulting spin may be either integral or
half-integral. For example, the common isotope of helium, He4,
which has two neutrons and two protons, has a spin of zero, whereas
Li7, which has three protons and four neutrons, has a spin
of 3/2. We will learn later the rules for compounding angular momentum,
and will just mention now that every composite object which has a
half-integral spin imitates a Fermi particle, whereas
every composite object with an integral spin imitates a
Bose particle.




This brings up an interesting question: Why is it that particles with
half-integral spin are Fermi particles whose amplitudes add with the
minus sign, whereas particles with integral spin are Bose particles
whose amplitudes add with the positive sign? We apologize for the fact
that we cannot give you an elementary explanation. An explanation has
been worked out by
Pauli
from complicated arguments of quantum field
theory and relativity. He has shown that the two must necessarily go
together, but we have not been able to find a way of reproducing his
arguments on an elementary level. It appears to be one of the few
places in physics where there is a rule which can be stated very
simply, but for which no one has found a simple and easy
explanation. The explanation is deep down in relativistic quantum
mechanics. This probably means that we do not have a complete
understanding of the fundamental principle involved. For the moment,
you will just have to take it as one of the rules of the world.







4–2 States with two Bose particles


Now we would like to discuss an interesting consequence of the
addition rule for Bose particles. It has to do with their behavior
when there are several particles present. We begin by considering a
situation in which two Bose particles are scattered from two different
scatterers. We won’t worry about the details of the scattering
mechanism. We are interested only in what happens to the scattered
particles. Suppose we have the situation shown in Fig. 4–3. The
particle a is scattered into the state 1. By a state we
mean a given direction and energy, or some other given condition. The
particle b is scattered into the state 2. We want to assume that
the two states 1 and 2 are nearly the same. (What we really want
to find out eventually is the amplitude that the two particles are
scattered into identical directions, or states; but it is best if we
think first about what happens if the states are almost the same and
then work out what happens when they become identical.)
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Fig. 4–3. A double scattering into nearby final states.





Suppose that we had only particle a; then it would have a certain
amplitude for scattering in direction 1, say [image: \braket{1}{a}]. And
particle b alone would have the amplitude [image: \braket{2}{b}] for
landing in direction 2. If the two particles are not identical, the
amplitude for the two scatterings to occur at the same time is just
the product

[image: -*-]


The probability for such an event is then
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which is also equal to
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To save writing for the present arguments, we will sometimes set
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Then the probability of the double scattering is
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It could also happen that particle b is scattered into direction 1,
while particle a goes into direction 2. The amplitude for this
process is
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and the probability of such an event is
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Imagine now that we have a pair of tiny counters that pick up the two
scattered particles. The probability P2 that they will pick up two
particles together is just the sum
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(4.3)









Now let’s suppose that the directions 1 and 2 are very close
together. We expect that a should vary smoothly with direction, so
a1 and a2 must approach each other as 1 and 2 get close
together. If they are close enough, the amplitudes a1 and a2
will be equal. We can set a1=a2 and call them both just a;
similarly, we set b1=b2=b. Then we get that
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(4.4)









Now suppose, however, that a and b are identical Bose
particles. Then the process of a going into 1 and b going
into 2 cannot be distinguished from the exchanged process in which a
goes into 2 and b goes into 1. In this case the
amplitudes for the two different processes can interfere. The
total amplitude to obtain a particle in each of the two
counters is
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(4.5)




And the probability that we get a pair is the absolute square of this
amplitude,
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(4.6)




We have the result that it is twice as likely to find two
identical Bose particles scattered into the same state as
you would calculate assuming the particles were different.




Although we have been considering that the two particles are observed
in separate counters, this is not essential—as we can see in the
following way. Let’s imagine that both the directions 1 and 2
would bring the particles into a single small counter which is
some distance away. We will let the direction 1 be defined by saying
that it heads toward the element of area d S1 of the
counter. Direction 2 heads toward the surface element d S2 of the
counter. (We imagine that the counter presents a surface at right
angles to the line from the scatterings.) Now we cannot give a
probability that a particle will go into a precise direction or to a
particular point in space. Such a thing is impossible—the
chance for any exact direction is zero. When we want to be so
specific, we shall have to define our amplitudes so that they give the
probability of arriving per unit area of a counter. Suppose
that we had only particle a; it would have a certain amplitude for
scattering in direction 1. Let’s define [image: \braket{1}{a}=a_1] to be
the amplitude that a will scatter into a unit area of the
counter in the direction 1. In other words, the scale of a1 is
chosen—we say it is “normalized” so that the probability that it
will scatter into an element of area d S1 is
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(4.7)




If our counter has the total area Δ S, and we let d S1 range
over this area, the total probability that the particle a will be
scattered into the counter is
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(4.8)









As before, we want to assume that the counter is sufficiently small so
that the amplitude a1 doesn’t vary significantly over the surface
of the counter; a1 is then a constant amplitude which we can
call a. Then the probability that particle a is scattered somewhere
into the counter is
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(4.9)









In the same way, we will have that the probability that
particle b—when it is alone—scatters into some element of area,
say d S2, is
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(We use d S2 instead of d S1 because we will later want a
and b to go into different directions.) Again we set b2 equal to the
constant amplitude b; then the probability that particle b is
counted in the detector is
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(4.10)









Now when both particles are present, the probability that a is
scattered into d S1 and b is scattered into d S2 is
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(4.11)




If we want the probability that both a and b get into the
counter, we integrate both d S1 and d S2 over Δ S and find
that
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(4.12)




We notice, incidentally, that this is just equal to pa⋅pb,
just as you would suppose assuming that the particles a and b act
independently of each other.




When the two particles are identical, however, there are two
indistinguishable possibilities for each pair of surface elements
d S1 and d S2. Particle a going into d S2 and particle b
going into d S1 is indistinguishable from a into d S1 and b
into d S2, so the amplitudes for these processes will
interfere. (When we had two different particles
above—although we did not in fact care which particle went
where in the counter—we could, in principle, have found out;
so there was no interference. For identical particles we cannot tell,
even in principle.) We must write, then, that the probability that the
two particles arrive at d S1 and d S2 is
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(4.13)




Now, however, when we integrate over the area of the counter, we must
be careful. If we let d S1 and d S2 range over the whole
area Δ S, we would count each part of the area twice
since (4.13) contains everything that can happen with any
pair of surface elements d S1
and d S2.1 We can still do the integral
that way, if we correct for the double counting by dividing the result
by 2. We get then that P2 for identical Bose particles is
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(4.14)





Again, this is just twice what we got in Eq. (4.12) for
distinguishable particles.




If we imagine for a moment that we knew that the b channel had
already sent its particle into the particular direction, we can say
that the probability that a second particle will go into the
same direction is twice as great as we would have expected if we had
calculated it as an independent event. It is a property of Bose
particles that if there is already one particle in a condition of some
kind, the probability of getting a second one in the same
condition is twice as great as it would be if the first one were not
already there. This fact is often stated in the following way: If
there is already one Bose particle in a given state, the amplitude for
putting an identical one on top of it is √2 greater than if it
weren’t there. (This is not a proper way of stating the result from
the physical point of view we have taken, but if it is used
consistently as a rule, it will, of course, give the correct result.)







4–3 States with n Bose particles

[image: -]
Fig. 4–4. The scattering of n particles into nearby states.





Let’s extend our result to a situation in which there are n particles
present. We imagine the circumstance shown in Fig. 4–4.
We have n particles a, b, c, …, which are scattered and end
up in the directions 1, 2, 3, …, n. All n directions are
headed toward a small counter a long distance away. As in the last
section, we choose to normalize all the amplitudes so that the
probability that each particle acting alone would go into an element of
surface d S of the counter is
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First, let’s assume that the particles are all distinguishable; then
the probability that n particles will be counted together in
n different surface elements is
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(4.15)




Again we take that the amplitudes don’t depend on where d S is
located in the counter (assumed small) and call them simply a, b,
c, … The probability (4.15) becomes
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(4.16)




Integrating each d S over the surface Δ S of the counter, we
have that Pn (different), the probability of counting
n different particles at once, is
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(4.17)




This is just the product of the probabilities for each particle to
enter the counter separately. They all act independently—the
probability for one to enter does not depend on how many others are
also entering.




Now suppose that all the particles are identical Bose particles. For
each set of directions 1, 2, 3, … there are many
indistinguishable possibilities. If there were, for instance, just
three particles, we would have the following possibilities:
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There are six different combinations. With n particles, there are
n! different, but indistinguishable, possibilities for which
we must add amplitudes. The probability that n particles will be
counted in n surface elements is then
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(4.18)





Once more we assume that all the directions are so close that we can
set a1=a2=⋯=an=a, and similarly for b, c, …; the
probability of (4.18) becomes
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(4.19)









When we integrate each d S over the area Δ S of the counter,
each possible product of surface elements is counted n! times; we
correct for this by dividing by n! and get
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or
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(4.20)




Comparing this result with Eq. (4.17), we see that the
probability of counting n Bose particles together is n! greater
than we would calculate assuming that the particles were all
distinguishable. We can summarize our result this way:
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(4.21)




Thus, the probability in the Bose case is larger by n! than you
would calculate assuming that the particles acted independently.




We can see better what this means if we ask the following question:
What is the probability that a Bose particle will go into a particular
state when there are already n others present? Let’s call the
newly added particle w. If we have (n+1) particles, including w,
Eq. (4.20) becomes
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(4.22)




We can write this as

[image: -*-]


or
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(4.23)









We can look at this result in the following way: The
number │w│2 Δ S is the probability for getting particle w into
the detector if no other particles were present; Pn (Bose) is
the chance that there are already n other Bose particles present. So
Eq. (4.23) says that when there are n other
identical Bose particles present, the probability that one more
particle will enter the same state is enhanced by the
factor (n+1). The probability of getting a boson, where there are
already n, is (n+1) times stronger than it would be if there were none
before. The presence of the other particles increases the
probability of getting one more.







4–4 Emission and absorption of photons

[image: -]
Fig. 4–5. The creation of n photons in nearby states.





Throughout our discussion we have talked about a process like the
scattering of α-particles. But that is not essential; we could
have been speaking of the creation of particles, as for instance the
emission of light. When the light is emitted, a photon is “created.”
In such a case, we don’t need the incoming lines in
Fig. 4–4; we can consider merely that there are some atoms
emitting n photons, as in Fig. 4–5. So our result can
also be stated: The probability that an atom will emit a photon
into a particular final state is increased by the factor (n+1) if
there are already n photons in that state.




People like to summarize this result by saying that the
amplitude to emit a photon is increased by the
factor √n+1 when there are already n photons present. It is, of
course, another way of saying the same thing if it is understood to
mean that this amplitude is just to be squared to get the probability.




It is generally true in quantum mechanics that the amplitude to get
from any condition ϕ to any other condition χ is the complex
conjugate of the amplitude to get from χ to ϕ:

[image: -*-]
(4.24)




We will learn about this law a little later, but for the moment we
will just assume it is true. We can use it to find out how photons are
scattered or absorbed out of a given state. We have that the
amplitude that a photon will be added to some state, say i, when
there are already n photons present is, say,
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(4.25)




where [image: a=\braket{i}{a}] is the amplitude when there are no others
present. Using Eq. (4.24), the amplitude to go the
other way—from (n+1) photons to n—is
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(4.26)









This isn’t the way people usually say it; they don’t like to think of
going from (n+1) to n, but prefer always to start with n photons
present. Then they say that the amplitude to absorb a photon when
there are n present—in other words, to go from n to (n−1)—is
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(4.27)




which is, of course, just the same as Eq. (4.26). Then
they have trouble trying to remember when to use √n
or √n+1. Here’s the way to remember: The factor is always the
square root of the largest number of photons present, whether it is
before or after the reaction. Equations (4.25)
and (4.26) show that the law is really symmetric—it only
appears unsymmetric if you write it as Eq. (4.27).




There are many physical consequences of these new rules; we want to
describe one of them having to do with the emission of light. Suppose
we imagine a situation in which photons are contained in a box—you
can imagine a box with mirrors for walls. Now say that in the box we
have n photons, all of the same state—the same frequency,
direction, and polarization—so they can’t be distinguished, and that
also there is an atom in the box that can emit another photon into the
same state. Then the probability that it will emit a photon is
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(4.28)




and the probability that it will absorb a photon is
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(4.29)




where │a│2 is the probability it would emit if no photons were
present. We have already discussed these rules in a somewhat different
way in Chapter 42 of Vol. I.
Equation (4.29) says that the probability that an atom will
absorb a photon and make a transition to a higher energy state is
proportional to the intensity of the light shining on it. But, as
Einstein first pointed out,
the rate at which an atom will make a
transition downward has two parts. There is the probability that
it will make a spontaneous transition │a│2, plus the probability
of an induced transition n │a│2, which is proportional to the
intensity of the light—that is, to the number of photons present.
Furthermore, as Einstein said,
the coefficients of absorption and of
induced emission are equal and are related to the probability of
spontaneous emission. What we learn here is that if the light intensity
is measured in terms of the number of photons present (instead of as the
energy per unit area, and per sec), the coefficients of absorption of
induced emission and of spontaneous emission are all equal. This is the
content of the relation between the Einstein coefficients A
and B of Chapter 42, Vol. I, Eq. (42.18).







4–5 The blackbody spectrum

[image: -][image: -]

Fig. 4–6. Radiation and absorption of a photon with the frequency ω.





We would like to use our rules for Bose particles to discuss once more
the spectrum of blackbody radiation (see Chapter 42,
Vol. I). We will do it by finding out how many photons there are in a
box if the radiation is in thermal equilibrium with some atoms in the
box. Suppose that for each light frequency ω, there are a certain
number N of atoms which have two energy states separated by the
energy Δ E=ℏ ω. See Fig. 4–6. We’ll call the
lower-energy state the “ground” state and the upper state the
“excited” state. Let Ng and Ne be the average numbers of atoms
in the ground and excited states; then in thermal equilibrium at the
temperature T, we have from statistical mechanics that
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(4.30)









Each atom in the ground state can absorb a photon and go into the
excited state, and each atom in the excited state can emit a photon
and go to the ground state. In equilibrium, the rates for these two
processes must be equal. The rates are proportional to the probability
for the event and to the number of atoms present. Let’s let [image: \overline{n}]
be the average number of photons present in a given state with the
frequency ω. Then the absorption rate from that state
is [image: N_g\overline{n}\abs{a}^2], and the emission rate into that state
is [image: N_e(\overline{n}+1)\abs{a}^2]. Setting the two rates equal, we have that
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(4.31)




Combining this with Eq. (4.30), we have
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Solving for [image: \overline{n}], we have
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(4.32)




which is the mean number of photons in any state with
frequency ω, for a cavity in thermal equilibrium. Since each photon has
the energy ℏ ω, the energy in the photons of a given state
is [image: \overline{n}\hbar\omega], or
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(4.33)
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Fig. 4–7. The energy levels of a harmonic oscillator.





Incidentally, we once found a similar equation in another context
[Chapter 41, Vol. I, Eq. (41.15)]. You
remember that for any harmonic oscillator—such as a weight on a
spring—the quantum mechanical energy levels are equally spaced with a
separation ℏ ω, as drawn in Fig. 4–7. If we call
the energy of the nth level n ℏ ω, we find that the mean
energy of such an oscillator is also given by Eq. (4.33).
Yet this equation was derived here for photons, by counting particles,
and it gives the same results. That is one of the marvelous miracles of
quantum mechanics. If one begins by considering a kind of state or
condition for Bose particles which do not interact with each other (we
have assumed that the photons do not interact with each other), and then
considers that into this state there can be put either zero, or one, or
two, … up to any number n of particles, one finds that this
system behaves for all quantum mechanical purposes exactly like a
harmonic oscillator. By such an oscillator we mean a dynamic system like
a weight on a spring or a standing wave in a resonant cavity. And that
is why it is possible to represent the electromagnetic field by photon
particles. From one point of view, we can analyze the electromagnetic
field in a box or cavity in terms of a lot of harmonic oscillators,
treating each mode of oscillation according to quantum mechanics as a
harmonic oscillator. From a different point of view, we can analyze the
same physics in terms of identical Bose particles. And the results of
both ways of working are always in exact agreement. There is no
way to make up your mind whether the electromagnetic field is really to
be described as a quantized harmonic oscillator or by giving how many
photons there are in each condition. The two views turn out to be
mathematically identical. So in the future we can speak either about the
number of photons in a particular state in a box or the number of the
energy level associated with a particular mode of oscillation of the
electromagnetic field. They are two ways of saying the same thing. The
same is true of photons in free space. They are equivalent to
oscillations of a cavity whose walls have receded to infinity.





We have computed the mean energy in any particular mode in a box at
the temperature T; we need only one more thing to get the blackbody
radiation law: We need to know how many modes there are at each
energy. (We assume that for every mode there are some atoms in the
box—or in the walls—which have energy levels that can radiate into
that mode, so that each mode can get into thermal equilibrium.) The
blackbody radiation law is usually stated by giving the energy per
unit volume carried by the light in a small frequency interval from
ω to ω+Δ ω. So we need to know how many modes
there are in a box with frequencies in the
interval Δ ω. Although this question continually comes up in quantum
mechanics, it is purely a classical question about standing waves.
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Fig. 4–8. The standing wave modes on a line.





We will get the answer only for a rectangular box. It comes out the
same for a box of any shape, but it’s very complicated to compute for
the arbitrary case. Also, we are only interested in a box whose
dimensions are very large compared with a wavelength of the
light. Then there are billions and billions of modes; there will be
many in any small frequency interval Δ ω, so we can speak
of the “average number” in any Δ ω at the
frequency ω. Let’s start by asking how many modes there are in a
one-dimensional case—as for waves on a stretched string. You know
that each mode is a sine wave that has to go to zero at both ends; in
other words, there must be an integral number of half-wavelengths in
the length of the line, as shown in Fig. 4–8. We prefer
to use the wave number k=2 π/λ; calling kj the wave number
of the jth mode, we have that
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(4.34)




where j is any integer. The separation δ k between successive
modes is
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We want to assume that k L is so large that in a small
interval Δ k, there are many modes. Calling Δ N the number
of modes in the interval Δ k, we have
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(4.35)









Now theoretical physicists working in quantum mechanics usually prefer
to say that there are one-half as many modes; they write
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(4.36)




We would like to explain why. They usually like to think in terms of
travelling waves—some going to the right (with a positive k) and
some going to the left (with a negative k). But a “mode” is a
standing wave which is the sum of two waves, one going in each
direction. In other words, they consider each standing wave as
containing two distinct photon “states.” So if by Δ N,
one prefers to mean the number of photon states of a given k (where
now k ranges over positive and negative values), one should then
take Δ N half as big. (All integrals must now go from
k=−∞ to k=+∞, and the total number of states up to any
given absolute value of k will come out O.K.) Of course, we are
not then describing standing waves very well, but we are counting
modes in a consistent way.



[image: -]
Fig. 4–9. Standing wave modes in two dimensions.





Now we want to extend the results to three dimensions. A standing wave
in a rectangular box must have an integral number of half-waves
along each axis. The situation for two of the dimensions is
shown in Fig. 4–9. Each wave direction and frequency is
described by a vector wave number k, whose x, y, and z
components must satisfy equations like Eq. (4.34). So we
have that
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The number of modes with kx in an interval Δ kx is, as
before,
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and similarly for Δ ky and Δ kz. If we
call Δ N (k) the number of modes for a vector wave
number k whose x-component is between kx and kx+Δ kx,
whose y-component is between ky and ky+Δ ky, and whose
z-component is between kz and kz+Δ kz, then
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(4.37)




The product Lx Ly Lz is equal to the volume V of the box. So we
have the important result that for high frequencies (wavelengths small
compared with the dimensions), the number of modes in a cavity is
proportional to the volume V of the box and to the “volume in
k-space” Δ kx Δ ky Δ kz. This result comes up
again and again in many problems and should be memorized:
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(4.38)




Although we have not proved it, the result is independent of the shape
of the box.




We will now apply this result to find the number of photon modes for
photons with frequencies in the range Δ ω. We are just
interested in the energy in various modes—but not interested in the
directions of the waves. We would like to know the number of modes in
a given range of frequencies. In a vacuum the magnitude of k is
related to the frequency by
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(4.39)




So in a frequency interval Δ ω, these are all the modes
which correspond to k’s with a magnitude between k
and k+Δ k, independent of the direction. The “volume in
k-space” between k and k+Δ k is a spherical shell of
volume
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The number of modes is then
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(4.40)




However, since we are now interested in frequencies, we should
substitute k=ω/c, so we get
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(4.41)









There is one more complication. If we are talking about modes of an
electromagnetic wave, for any given wave vector k there can be
either of two polarizations (at right angles to each other). Since
these modes are independent, we must—for light—double the number
of modes. So we have
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(4.42)




We have shown, Eq. (4.33), that each mode (or each
“state”) has on the average the energy
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Multiplying this by the number of modes, we get the energy Δ E
in the modes that lie in the interval Δ ω:
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(4.43)




This is the law for the frequency spectrum of blackbody radiation, which
we have already found in Chapter 41 of Vol. I. The
spectrum is plotted in Fig. 4–10. You see now that the
answer depends on the fact that photons are Bose particles, which have a
tendency to try to get all into the same state (because the amplitude
for doing so is large). You will remember, it was
Planck’s study of the
blackbody spectrum (which was a mystery to classical physics), and his
discovery of the formula in Eq. (4.43) that started the
whole subject of quantum mechanics.



[image: -]
Fig. 4–10. The frequency spectrum of radiation in a cavity in thermal
equilibrium, the “blackbody” spectrum.








4–6 Liquid helium


Liquid helium has at low temperatures many odd properties which we
cannot unfortunately take the time to describe in detail right now,
but many of them arise from the fact that a helium atom is a Bose
particle. One of the things is that liquid helium flows without any
viscous resistance. It is, in fact, the ideal “dry” water we have
been talking about in one of the earlier chapters—provided that the
velocities are low enough. The reason is the following. In order for a
liquid to have viscosity, there must be internal energy losses; there
must be some way for one part of the liquid to have a motion that is
different from that of the rest of the liquid. This means that it must
be possible to knock some of the atoms into states that are different
from the states occupied by other atoms. But at sufficiently low
temperatures, when the thermal motions get very small, all the atoms
try to get into the same condition. So, if some of them are moving
along, then all the atoms try to move together in the same
state. There is a kind of rigidity to the motion, and it is hard to
break the motion up into irregular patterns of turbulence, as would
happen, for example, with independent particles. So in a liquid of
Bose particles, there is a strong tendency for all the atoms to go
into the same state—which is represented by the √n+1 factor
we found earlier. (For a bottle of liquid helium n is, of course, a
very large number!) This cooperative motion does not happen at high
temperatures, because then there is sufficient thermal energy to put
the various atoms into various different higher states. But at a
sufficiently low temperature there suddenly comes a moment in which
all the helium atoms try to go into the same state. The helium becomes
a superfluid. Incidentally, this phenomenon only appears with the
isotope of helium which has atomic weight 4. For the helium isotope
of atomic weight 3, the individual atoms are Fermi particles, and
the liquid is a normal fluid. Since superfluidity occurs only with
He4, it is evidently a quantum mechanical effect—due to the Bose
nature of the α-particle.







4–7 The exclusion principle


Fermi particles act in a completely different way. Let’s see what
happens if we try to put two Fermi particles into the same state. We
will go back to our original example and ask for the amplitude that
two identical Fermi particles will be scattered into almost exactly
the same direction. The amplitude that particle a will go in
direction 1 and particle b will go in direction 2 is
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whereas the amplitude that the outgoing directions will be
interchanged is
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Since we have Fermi particles, the amplitude for the process is the
difference of these two amplitudes:
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(4.44)




Let’s say that by “direction 1” we mean that the particle has not
only a certain direction but also a given direction of its spin, and
that “direction 2” is almost exactly the same as direction 1 and
corresponds to the same spin direction. Then [image: \braket{1}{a}]
and [image: \braket{2}{a}] are nearly equal. (This would not necessarily be
true if the outgoing states 1 and 2 did not have the same spin,
because there might be some reason why the amplitude would depend on
the spin direction.) Now if we let directions 1 and 2 approach
each other, the total amplitude in Eq. (4.44) becomes
zero. The result for Fermi particles is much simpler than for Bose
particles. It just isn’t possible at all for two Fermi
particles—such as two electrons—to get into exactly the same
state. You will never find two electrons in the same position with
their two spins in the same direction. It is not possible for two
electrons to have the same momentum and the same spin directions. If
they are at the same location or with the same state of motion, the
only possibility is that they must be spinning opposite to each other.




What are the consequences of this? There are a number of most
remarkable effects which are a consequence of the fact that two Fermi
particles cannot get into the same state. In fact, almost all the
peculiarities of the material world hinge on this wonderful fact. The
variety that is represented in the periodic table is basically a
consequence of this one rule.




Of course, we cannot say what the world would be like if this one rule
were changed, because it is just a part of the whole structure of
quantum mechanics, and it is impossible to say what else would change
if the rule about Fermi particles were different. Anyway, let’s just
try to see what would happen if only this one rule were
changed. First, we can show that every atom would be more or less the
same. Let’s start with the hydrogen atom. It would not be noticeably
affected. The proton of the nucleus would be surrounded by a
spherically symmetric electron cloud, as shown in
Fig. 4–11(a). As we have described in
Chapter 2, the electron is attracted to the center, but
the uncertainty principle requires that there be a balance between the
concentration in space and in momentum. The balance means that there
must be a certain energy and a certain spread in the electron
distribution which determines the characteristic dimension of the
hydrogen atom.
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Fig. 4–11. How atoms might look if electrons behaved like Bose particles.





Now suppose that we have a nucleus with two units of charge, such as
the helium nucleus. This nucleus would attract two electrons, and if
they were Bose particles, they would—except for their electric
repulsion—both crowd in as close as possible to the nucleus. A
helium atom might look as shown in part (b) of the figure. Similarly,
a lithium atom which has a triply charged nucleus would have an
electron distribution like that shown in part (c) of
Fig. 4–11. Every atom would look more or less the same—a
little round ball with all the electrons sitting near the nucleus,
nothing directional and nothing complicated.
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Fig. 4–12. Atomic configurations for real, Fermi-type, spin one-half
electrons.





Because electrons are Fermi particles, however, the actual situation is
quite different. For the hydrogen atom the situation is essentially
unchanged. The only difference is that the electron has a spin which we
indicate by the little arrow in Fig. 4–12(a). In the
case of a helium atom, however, we cannot put two electrons on top of
each other. But wait, that is only true if their spins are the same. Two
electrons can occupy the same state if their spins are opposite.
So the helium atom does not look much different either. It would appear
as shown in part (b) of Fig. 4–12. For lithium, however,
the situation becomes quite different. Where can we put the third
electron? The third electron cannot go on top of the other two because
both spin directions are occupied. (You remember that for an electron or
any particle with spin 1/2 there are only two possible directions for
the spin.) The third electron can’t go near the place occupied by the
other two, so it must take up a special condition in a different kind of
state farther away from the nucleus in part (c) of the figure. (We are
speaking only in a rather rough way here, because in reality all three
electrons are identical; since we cannot really distinguish which one is
which, our picture is only an approximate one.)




Now we can begin to see why different atoms will have different chemical
properties. Because the third electron in lithium is farther out, it is
relatively more loosely bound. It is much easier to remove an electron
from lithium than from helium. (Experimentally, it takes 25 electron
volts to ionize helium but only 5 electron volts to ionize lithium.)
This accounts for the valence of the lithium atom. The directional
properties of the valence have to do with the pattern of the waves of
the outer electron, which we will not go into at the moment. But we can
already see the importance of the so-called exclusion
principle—which states that no two electrons can be found in exactly
the same state (including spin).




The exclusion principle is also responsible for the stability of
matter on a large scale. We explained earlier that the individual
atoms in matter did not collapse because of the uncertainty principle;
but this does not explain why it is that two hydrogen atoms can’t be
squeezed together as close as you want—why it is that all the
protons don’t get close together with one big smear of electrons
around them. The answer is, of course, that since no more than two
electrons—with opposite spins—can be in roughly the same place,
the hydrogen atoms must keep away from each other. So the stability of
matter on a large scale is really a consequence of the Fermi particle
nature of the electrons.




Of course, if the outer electrons on two atoms have spins in opposite
directions, they can get close to each other. This is, in fact, just
the way that the chemical bond comes about. It turns out that two
atoms together will generally have the lowest energy if there is an
electron between them. It is a kind of an electrical attraction for
the two positive nuclei toward the electron in the middle. It is
possible to put two electrons more or less between the two nuclei so
long as their spins are opposite, and the strongest chemical binding
comes about this way. There is no stronger binding, because the
exclusion principle does not allow there to be more than two electrons
in the space between the atoms. We expect the hydrogen molecule to
look more or less as shown in Fig. 4–13.
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Fig. 4–13. The hydrogen molecule.





We want to mention one more consequence of the exclusion
principle. You remember that if both electrons in the helium atom are
to be close to the nucleus, their spins are necessarily opposite. Now
suppose that we would like to try to arrange to have both electrons
with the same spin—as we might consider doing by putting on a
fantastically strong magnetic field that would try to line up the
spins in the same direction. But then the two electrons could not
occupy the same state in space. One of them would have to take on a
different geometrical position, as indicated in Fig. 4–14.
The electron which is located farther from the nucleus has less binding
energy. The energy of the whole atom is therefore quite a bit higher. In
other words, when the two spins are opposite, there is a much stronger
total attraction.
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Fig. 4–14. Helium with one electron in a higher energy state.





So, there is an apparent, enormous force trying to line up spins
opposite to each other when two electrons are close together. If two
electrons are trying to go in the same place, there is a very strong
tendency for the spins to become lined opposite. This apparent force
trying to orient the two spins opposite to each other is much more
powerful than the tiny force between the two magnetic moments of the
electrons. You remember when we were speaking of ferromagnetism there
was the mystery of why the electrons in different atoms had a strong
tendency to line up parallel. Although there is still no quantitative
explanation, it is believed that what happens is that the electrons
around the core of one atom interact through the exclusion principle
with the outer electrons which have become free to wander throughout
the crystal. This interaction causes the spins of the free electrons
and the inner electrons to take on opposite directions. But the free
electrons and the inner atomic electrons can only be opposite provided
all the inner electrons have the same spin direction, as indicated in
Fig. 4–15. It seems probable that it is the effect of
the exclusion principle acting indirectly through the free electrons
that gives rise to the strong aligning forces responsible for
ferromagnetism.
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Fig. 4–15. The likely mechanism in a ferromagnetic crystal; the conduction
electron is antiparallel to the unpaired inner electrons.





We will mention one further example of the influence of the exclusion
principle. We have said earlier that the nuclear forces are the same
between the neutron and the proton, between the proton and the proton,
and between the neutron and the neutron. Why is it then that a proton
and a neutron can stick together to make a deuterium nucleus, whereas
there is no nucleus with just two protons or with just two neutrons?
The deuteron is, as a matter of fact, bound by an energy of about
2.2 million electron volts, yet, there is no corresponding binding between a
pair of protons to make an isotope of helium with the atomic
weight 2. Such nuclei do not exist. The combination of two protons does not
make a bound state.




The answer is a result of two effects: first, the exclusion principle;
and second, the fact that the nuclear forces are somewhat sensitive to
the direction of spin. The force between a neutron and a proton is
attractive and somewhat stronger when the spins are parallel than when
they are opposite. It happens that these forces are just different
enough that a deuteron can only be made if the neutron and proton have
their spins parallel; when their spins are opposite, the attraction is
not quite strong enough to bind them together. Since the spins of the
neutron and proton are each one-half and are in the same direction,
the deuteron has a spin of one. We know, however, that two protons are
not allowed to sit on top of each other if their spins are
parallel. If it were not for the exclusion principle, two protons
would be bound, but since they cannot exist at the same place and with
the same spin directions, the He2 nucleus does not exist. The
protons could come together with their spins opposite, but then there
is not enough binding to make a stable nucleus, because the nuclear
force for opposite spins is too weak to bind a pair of nucleons. The
attractive force between neutrons and protons of opposite spins can be
seen by scattering experiments. Similar scattering experiments with
two protons with parallel spins show that there is the corresponding
attraction. So it is the exclusion principle that helps explain why
deuterium can exist when He2 cannot.





	
  
  In (4.11) interchanging d S1 and d S2
gives a different event, so both surface elements should range over the
whole area of the counter. In (4.13) we are treating d S1
and d S2 as a pair and including everything that can happen. If
the integrals include again what happens when d S1 and d S2 are
reversed, everything is counted twice.
  ^
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5–1 Filtering atoms with a Stern-Gerlach apparatus


In this chapter we really begin the quantum mechanics proper—in the
sense that we are going to describe a quantum mechanical phenomenon in
a completely quantum mechanical way. We will make no apologies and no
attempt to find connections to classical mechanics. We want to talk
about something new in a new language. The particular situation which
we are going to describe is the behavior of the so-called quantization
of the angular momentum, for a particle of spin one. But we
won’t use words like “angular momentum” or other concepts of
classical mechanics until later. We have chosen this particular
example because it is relatively simple, although not the simplest
possible example. It is sufficiently complicated that it can stand as
a prototype which can be generalized for the description of all
quantum mechanical phenomena. Thus, although we are dealing with a
particular example, all the laws which we mention are immediately
generalizable, and we will give the generalizations so that you will
see the general characteristics of a quantum mechanical
description. We begin with the phenomenon of the splitting of a beam
of atoms into three separate beams in a Stern-Gerlach experiment.




You remember that if we have an inhomogeneous magnetic field made by a
magnet with a pointed pole tip and we send a beam through the
apparatus, the beam of particles may be split into a number of
beams—the number depending on the particular kind of atom and its
state. We are going to take the case of an atom which gives three
beams, and we are going to call that a particle of spin
one. You can do for yourself the case of five beams, seven beams, two
beams, etc.—you just copy everything down and where we have three
terms, you will have five terms, seven terms, and so on.



[image: -]
Fig. 5–1. In a Stern-Gerlach experiment, atoms of spin one are split into
three beams.





Imagine the apparatus drawn schematically in Fig. 5–1. A
beam of atoms (or particles of any kind) is collimated by some slits and
passes through a nonuniform field. Let’s say that the beam moves in the
y-direction and that the magnetic field and its gradient are both in
the z-direction. Then, looking from the side, we will see the beam
split vertically into three beams, as shown in the figure. Now at the
output end of the magnet we could put small counters which count the
rate of arrival of particles in any one of the three beams. Or we can
block off two of the beams and let the third one go on.




Suppose we block off the lower two beams and let the top-most beam go
on and enter a second Stern-Gerlach apparatus of the same kind, as
shown in Fig. 5–2. What happens? There are not
three beams in the second apparatus; there is only the top
beam.1 This is what you would expect if you think of the second
apparatus as simply an extension of the first. Those atoms which are
being pushed upward continue to be pushed upward in the second magnet.



[image: -]
Fig. 5–2. The atoms from one of the beams are sent into a second
identical apparatus.





You can see then that the first apparatus has produced a beam of
“purified” objects—atoms that get bent upward in the particular
inhomogeneous field. The atoms, as they enter the original
Stern-Gerlach apparatus, are of three “varieties,” and the three
kinds take different trajectories. By filtering out all but one of the
varieties, we can make a beam whose future behavior in the same kind
of apparatus is determined and predictable. We will call this a
filtered beam, or a polarized beam, or a beam in which
the atoms all are known to be in a definite state.




For the rest of our discussion, it will be more convenient if we
consider a somewhat modified apparatus of the Stern-Gerlach type. The
apparatus looks more complicated at first, but it will make all the
arguments simpler. Anyway, since they are only “thought
experiments,” it doesn’t cost anything to complicate the
equipment. (Incidentally, no one has ever done all of the experiments
we will describe in just this way, but we know what would
happen from the laws of quantum mechanics, which are, of course, based
on other similar experiments. These other experiments are harder to
understand at the beginning, so we want to describe some
idealized—but possible—experiments.)




[image: -]
Fig. 5–3. (a) An imagined modification of a Stern-Gerlach apparatus.
(b) The paths of spin-one atoms.





Figure 5–3(a) shows a drawing of the “modified
Stern-Gerlach apparatus” we would like to use. It consists of a
sequence of three high-gradient magnets. The first one (on the left) is
just the usual Stern-Gerlach magnet and splits the incoming beam of
spin-one particles into three separate beams. The second magnet has the
same cross section as the first, but is twice as long and the
polarity of its magnetic field is opposite the field in magnet 1. The
second magnet pushes in the opposite direction on the atomic magnets and
bends their paths back toward the axis, as shown in the trajectories
drawn in the lower part of the figure. The third magnet is just like the
first, and brings the three beams back together again, so that leaves
the exit hole along the axis. Finally, we would like to imagine that in
front of the hole at A there is some mechanism which can get the atoms
started from rest and that after the exit hole at B there is a
decelerating mechanism that brings the atoms back to rest at B. That
is not essential, but it will mean that in our analysis we won’t have to
worry about including any effects of the motion as the atoms come out,
and can concentrate on those matters having only to do with the spin.
The whole purpose of the “improved” apparatus is just to bring all the
particles to the same place, and with zero speed.




Now if we want to do an experiment like the one in
Fig. 5–2, we can first make a filtered beam by putting a
plate in the middle of the apparatus that blocks two of the beams, as
shown in Fig. 5–4. If we now put the polarized atoms
through a second identical apparatus, all the atoms will take the upper
path, as can be verified by putting similar plates in the way of the
various beams of the second S filter and seeing whether particles get
through.



[image: -]
Fig. 5–4. The “improved” Stern-Gerlach apparatus as a filter.





Suppose we call the first apparatus by the name S. (We are going to
consider all sorts of combinations, and we will need labels to keep
things straight.) We will say that the atoms which take the top path
in S are in the “plus state with respect to S”; the ones which
take the middle path are in the “zero state with respect to S”;
and the ones which take the lowest path are in the “minus state with
respect to S.” (In the more usual language we would say that the
z-component of the angular momentum was +1 ℏ, 0,
and −1 ℏ, but we are not using that language now.) Now in
Fig. 5–4 the second apparatus is oriented just like the
first, so the filtered atoms will all go on the upper path. Or if we had
blocked off the upper and lower beams in the first apparatus and let
only the zero state through, all the filtered atoms would go through the
middle path of the second apparatus. And if we had blocked off all but
the lowest beam in the first, there would be only a low beam in the
second. We can say that in each case our first apparatus has produced a
filtered beam in a pure state with respect to S (+, 0,
or −), and we can test which state is present by putting the atoms
through a second, identical apparatus.




We can make our second apparatus so that it transmits only atoms of a
particular state—by putting masks inside it as we did for the first
one—and then we can test the state of the incoming beam just by
seeing whether anything comes out the far end. For instance, if we
block off the two lower paths in the second apparatus, 100 percent
of the atoms will still come through; but if we block off the upper
path, nothing will get through.




To make this kind of discussion easier, we are going to invent a
shorthand symbol to represent one of our improved Stern-Gerlach
apparatuses. We will let the symbol

[image: -*-]
(5.1)




stand for one complete apparatus. (This is not a symbol you
will ever find used in quantum mechanics; we’ve just invented it for
this chapter. It is simply meant to be a shorthand picture of the
apparatus of Fig. 5–3.) Since we are going to want to
use several apparatuses at once, and with various orientations, we will
identify each with a letter underneath. So the symbol
in (5.1) stands for the apparatus S. When we block off
one or more of the beams inside, we will show that by some vertical bars
indicating which beam is blocked, like this:

[image: -*-]
(5.2)




The various possible combinations we will be using are shown in
Fig. 5–5.



[image: -][image: -][image: -][image: -]
Fig. 5–5. Special shorthand symbols for Stern-Gerlach type filters.





If we have two filters in succession (as in Fig. 5–4), we
will put the two symbols next to each other, like this:

[image: -*-]
(5.3)




For this setup, everything that comes through the first also gets
through the second. In fact, even if we block off the “zero” and
“minus” channels of the second apparatus, so that we have

[image: -*-]
(5.4)




we still get 100 percent transmission through the second
apparatus. On the other hand, if we have

[image: -*-]
(5.5)




nothing at all comes out of the far end. Similarly,

[image: -*-]
(5.6)




would give nothing out. On the other hand,

[image: -*-]
(5.7)




would be just equivalent to

[image: -*-]


by itself.




Now we want to describe these experiments quantum mechanically. We
will say that an atom is in the (+S) state if it has gone through
the apparatus of Fig. 5–5(b), that it is in a
[image: (\OS)] state if it has gone through (c), and in a (−S) state if it has gone
through (d).2 Then we let [image: \braket{b}{a}] be the
amplitude that an atom which is in state a will get through an
apparatus into the b state. We can say: [image: \braket{b}{a}] is the
amplitude for an atom in the state a to get into the
state b. The experiment (5.4) gives us that

[image: -*-]


whereas (5.5) gives us
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Similarly, the result of (5.6) is

[image: -*-]


and of (5.7) is
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As long as we deal only with “pure” states—that is, we have only
one channel open—there are nine such amplitudes, and we can write
them in a table:

[image: -*-]
(5.8)




This array of nine numbers—called a
matrix—summarizes the phenomena we’ve been
describing.







5–2 Experiments with filtered atoms

[image: -]
Fig. 5–6. Two Stern-Gerlach type filters in series; the second is tilted
at the angle α with respect to the first.





Now comes the big question: What happens if the second apparatus is
tipped to a different angle, so that its field axis is no longer
parallel to the first? It could be not only tipped, but also pointed
in a different direction—for instance, it could take the beam off
at 90° with respect to the original direction. To take it easy at
first, let’s first think about an arrangement in which the second
Stern-Gerlach experiment is tilted by some angle α about the
y-axis, as shown in Fig. 5–6. We’ll call the second
apparatus T. Suppose that we now set up the following experiment:
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or the experiment:

[image: -*-]


What comes out at the far end in these cases?




The answer is this: If the atoms are in a definite state with respect
to S, they are not in the same state with respect to T—a
(+S) state is not also a (+T) state. There is,
however, a certain amplitude to find the atom in a
(+T) state—or a [image: (\OT)] state or a (−T) state.




In other words, as careful as we have been to make sure that we have
the atoms in a definite condition, the fact of the matter is that if
it goes through an apparatus which is tilted at a different angle it
has, so to speak, to “reorient” itself—which it does, don’t
forget, by luck. We can put only one particle through at a time, and
then we can only ask the question: What is the probability that it
gets through? Some of the atoms that have gone through S will end in
a (+T) state, some of them will end in a [image: (\OT)], and some in a
(−T) state—all with different odds. These odds can be calculated
by the absolute squares of complex amplitudes; what we want is some
mathematical method, or quantum mechanical description, for these
amplitudes. What we need to know are various quantities like
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by which we mean the amplitude that an atom initially in the
(+S) state can get into the (−T) condition (which is not zero
unless T and S are lined up parallel to each other). There are
other amplitudes like

[image: -*-]


There are, in fact, nine such amplitudes—another matrix—that a
theory of particles should tell us how to calculate. Just as F=m a
tells us how to calculate what happens to a classical particle in any
circumstance, the laws of quantum mechanics permit us to determine the
amplitude that a particle will get through a particular apparatus. The
central problem, then, is to be able to calculate—for any given tilt
angle α, or in fact for any orientation whatever—the nine
amplitudes:

[image: -*-]
(5.9)









We can already figure out some relations among these
amplitudes. First, according to our definitions, the absolute square

[image: -*-]


is the probability that an atom in a (+S) state will enter a
(+T) state. We will often find it more convenient to write such
squares in the equivalent form
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In the same notation the number

[image: -*-]


is the probability that a particle in the (+S) state will enter the
[image: (\OT)] state, and

[image: -*-]


is the probability that it will enter the (−T) state. But the way
our apparatuses are made, every atom which enters the T apparatus
must be found in some one of the three states of the
T apparatus—there’s nowhere else for a given kind of atom to go. So
the sum of the three probabilities we’ve just written must be equal to
100 percent. We have the relation

[image: -*-]
(5.10)




There are, of course, two other such equations that we get if we start
with a [image: (\OS)] or a (−S) state. But they are all we can easily get,
so we’ll go on to some other general questions.







5–3 Stern-Gerlach filters in series


Here is an interesting question: Suppose we had atoms filtered into
the (+S) state, then we put them through a second filter, say into a
[image: (\OT)] state, and then through another +S filter.
(We’ll call the last filter S′ just so we can distinguish it
from the first S-filter.) Do the atoms remember that they were once
in a (+S) state? In other words, we have the following experiment:

[image: -*-]
(5.11)




We want to know whether all those that get through T also get
through S′. They do not. Once they have been filtered by T,
they do not remember in any way that they were in a
(+S) state when they entered T. Note that the second S apparatus
in (5.11) is oriented exactly the same as the first, so it
is still an S-type filter. The states filtered by S′ are, of course,
still (+S), [image: (\OS)], and (−S).




The important point is this: If the T filter passes only one
beam, the fraction that gets through the second S filter
depends only on the setup of the T filter, and is completely
independent of what precedes it. The fact that the same atoms were
once sorted by an S filter has no influence whatever on what they
will do once they have been sorted again into a pure beam by a
T apparatus. From then on, the probability for getting into different
states is the same no matter what happened before they got into the
T apparatus.





As an example, let’s compare the experiment of (5.11)
with the following experiment:
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(5.12)




in which only the first S is changed. Let’s say that the
angle α (between S and T) is such that in
experiment (5.11) one-third of the atoms that get
through T also get through S′. In experiment (5.12), although
there will, in general, be a different number of atoms coming through T,
the same fraction of these—one-third—will also get through S′.




We can, in fact, show from what you have learned earlier that the
fraction of the atoms that come out of T and get through any
particular S′ depends only on T and S′, not on anything that
happened earlier. Let’s compare experiment (5.12) with

[image: -*-]
(5.13)




The amplitude that an atom that comes out of S will also get through
both T and S′ is, for the experiments of (5.12),
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The corresponding probability is
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The probability for experiment (5.13) is
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The ratio is

[image: -*-]


and depends only on T and S′, and not at all on which beam (+S), [image: (\OS)],
or (−S) is selected by S. (The absolute numbers may go
up and down together depending on how much gets through T.) We
would, of course, find the same result if we compared the
probabilities that the atoms would go into the plus or the minus
states with respect to S′, or the ratio of the probabilities to go
into the zero or minus states.




In fact, since these ratios depend only on which beam is allowed to
pass through T, and not on the selection made by the first S filter,
it is clear that we would get the same result even if the last
apparatus were not an S filter. If we use for the third
apparatus—which we will now call R—one rotated by some arbitrary
angle with respect to T, we would find that a ratio such
as [image: \abs{\braket{\OR}{\OT}}^2/\abs{\braket{+R}{\OT}}^2] was
independent of which beam was passed by the first filter S.







5–4 Base states


These results illustrate one of the basic principles of quantum
mechanics: Any atomic system can be separated by a filtering process
into a certain set of what we will call base states, and the
future behavior of the atoms in any single given base state depends
only on the nature of the base state—it is independent of any
previous history.3 The base
states depend, of course, on the filter used; for instance, the three
states (+T), [image: (\OT)], and (−T) are one set of base states; the
three states (+S), [image: (\OS)], and (−S) are another. There are any
number of possibilities each as good as any other.




We should be careful to say that we are considering good
filters which do indeed produce “pure” beams. If, for instance, our
Stern-Gerlach apparatus didn’t produce a good separation of the three
beams so that we could not separate them cleanly by our masks, then we
could not make a complete separation into base states. We can tell if
we have pure base states by seeing whether or not the beams can be
split again in another filter of the same kind. If we have a pure
(+T) state, for instance, all the atoms will go through
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and none will go through
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or through
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Our statement about base states means that it is possible to
filter to some pure state, so that no further filtering by an
identical apparatus is possible.




We must also point out that what we are saying is exactly true only in
rather idealized situations. In any real Stern-Gerlach apparatus, we
would have to worry about diffraction by the slits that could cause
some atoms to go into states corresponding to different angles, or
about whether the beams might contain atoms with different excitations
of their internal states, and so on. We have idealized the situation
so that we are talking only about the states that are split in a
magnetic field; we are ignoring things having to do with position,
momentum, internal excitations, and the like. In general, one would
need to consider also base states which are sorted out with respect to
such things also. But to keep the concepts simple, we are considering
only our set of three states, which is sufficient for the exact
treatment of the idealized situation in which the atoms don’t get torn
up in going through the apparatus, or otherwise badly treated, and
come to rest when they leave the apparatus.




You will note that we always begin our thought experiments by taking a
filter with only one channel open, so that we start with some definite
base state. We do this because atoms come out of a furnace in various
states determined at random by the accidental happenings inside the
furnace. (It gives what is called an “unpolarized” beam.) This
randomness involves probabilities of the “classical” kind—as in
coin tossing—which are different from the quantum mechanical
probabilities we are worrying about now. Dealing with an unpolarized
beam would get us into additional complications that are better to
avoid until after we understand the behavior of polarized beams. So
don’t try to consider at this point what happens if the first
apparatus lets more than one beam through. (We will tell you how you
can handle such cases at the end of the chapter.)




Let’s now go back and see what happens when we go from a base state
for one filter to a base state for a different filter. Suppose we
start again with
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The atoms which come out of T are in the base state [image: (\OT)] and
have no memory that they were once in the state (+S). Some people
would say that in the filtering by T we have “lost the
information” about the previous state (+S) because we have
“disturbed” the atoms when we separated them into three beams in the
apparatus T. But that is not true. The past information is not lost
by the separation into three beams, but by the blocking
masks that are put in—as we can see by the following set of
experiments.




We start with a +S filter and will call N the number of atoms that
come through it. If we follow this by a [image: \OT] filter, the number of
atoms that come out is some fraction of the original number,
say α N. If we then put another +S filter, only some
fraction β of these atoms will get to the far end. We can indicate this
in the following way:

[image: -*-]
(5.14)




If our third apparatus S′ selected a different state, say the
[image: (\OS)] state, a different fraction, say γ, would get
through.4 We would have

[image: -*-]
(5.15)




Now suppose we repeat these two experiments but remove all the masks
from T. We would then find the remarkable results as follows:

[image: -*-]
(5.16)
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(5.17)




All the atoms get through S′ in the first case, but
none in the second case! This is one of the great laws of
quantum mechanics. That nature works this way is not self-evident, but
the results we have given correspond for our idealized situation to
the quantum mechanical behavior observed in innumerable experiments.







5–5 Interfering amplitudes


How can it be that in going from (5.15)
to (5.17)—by opening more channels—we let
fewer atoms through? This is the old, deep mystery of quantum
mechanics—the interference of amplitudes. It’s the same kind of thing
we first saw in the two-slit interference experiment with electrons. We
saw that we could get fewer electrons at some places with both slits
open than we got with one slit open. It works quantitatively this way.
We can write the amplitude that an atom will get through T and S′ in
the apparatus of (5.17) as the sum of three amplitudes, one
for each of the three beams in T; the sum is equal to zero:
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(5.18)




None of the three individual amplitudes is zero—for example, the
absolute square of the second amplitude is γ α,
see (5.15)—but the sum is zero. We would have also
the same answer if S′ were set to select the (−S) state. However, in
the setup of (5.16), the answer is different. If we call
a the amplitude to get through T and S′, in this case we
have5
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(5.19)









In the experiment (5.16) the beam has been split and
recombined. Humpty Dumpty has been put back together again. The
information about the original (+S) state is retained—it is just
as though the T apparatus were not there at all. This is true
whatever is put after the “wide-open” T apparatus. We could follow
it with an R filter—a filter at some odd angle—or anything we
want. The answer will always be the same as if the atoms were taken
directly from the first S filter.




So this is the important principle: A T filter—or any
filter—with wide-open masks produces no change at all. We should
make one additional condition. The wide-open filter must not only
transmit all three beams, but it must also not produce unequal
disturbances on the three beams. For instance, it should not have a
strong electric field near one beam and not the others. The reason is
that even if this extra disturbance would still let all the atoms
through the filter, it could change the phases of some of the
amplitudes. Then the interference would be changed, and the amplitudes
in Eqs. (5.18) and (5.19) would be
different. We will always assume that there are no such extra
disturbances.




Let’s rewrite Eqs. (5.18) and (5.19) in an
improved notation. We will let i stand for any one of the three
states (+T), [image: (\OT)], or (−T); then the equations can be written:
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(5.20)




and
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(5.21)




Similarly, for an experiment where S′ is replaced by a completely
arbitrary filter R, we have
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(5.22)




The results will always be the same as if the T apparatus were left
out and we had only
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Or, expressed mathematically,
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(5.23)




This is our fundamental law, and it is generally true so long as i
stands for the three base states of any filter.




You will notice that in the experiment (5.22) there is no
special relation of S and R to T. Furthermore, the arguments
would be the same no matter what states they selected. To write the
equation in a general way, without having to refer to the specific
states selected by S and R, let’s call ϕ (“phi”) the state
prepared by the first filter (in our special example, +S) and χ
(“khi”) the state tested by the final filter (in our example,
+R). Then we can state our fundamental law of Eq. (5.23)
in the form

[image: -*-]
(5.24)




where i is to range over the three base states of some particular
filter.




We want to emphasize again what we mean by base states. They are like
the three states which can be selected by one of our Stern-Gerlach
apparatuses. One condition is that if you have a base state, then the
future is independent of the past. Another condition is that if you
have a complete set of base states, Eq. (5.24) is true
for any set of beginning and ending states ϕ and χ. There
is, however, no unique set of base states. We began by
considering base states with respect to a particular
apparatus T. We could equally well consider a different set of base
states with respect to an apparatus S, or with respect to R,
etc.6 We usually speak of the base states “in a certain
representation.”




Another condition on a set of base states in any particular
representation is that they are all completely different. By that we
mean that if we have a (+T) state, there is no amplitude for it to
go into a [image: (\OT)] or a (−T) state. If we let i and j stand for
any two base states of a particular set, the general rules discussed
in connection with (5.8) are that
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for all i and j that are not equal. Of course, we know that

[image: -*-]


These two equations are usually written as

[image: -*-]
(5.25)




where δj i (the “Kronecker delta”) is a symbol that is
defined to be zero for i≠j, and to be one for i=j.




Equation (5.25) is not independent of the other laws we
have mentioned. It happens that we are not particularly interested in
the mathematical problem of finding the minimum set of independent
axioms that will give all the laws as consequences.7 We are satisfied if we have a set that
is complete and not apparently inconsistent. We can, however, show that
Eqs. (5.25) and (5.24) are not
independent. Suppose we let ϕ in Eq. (5.24)
represent one of the base states of the same set as i, say the
jth state; then we have
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But Eq. (5.25) says that [image: \braket{i}{j}] is zero
unless i=j, so the sum becomes just [image: \braket{\chi}{j}] and we have an
identity, which shows that the two laws are not independent.




We can see that there must be another relation among the amplitudes if
both Eqs. (5.10) and (5.24) are true.
Equation (5.10) is
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If we write Eq. (5.24), letting both ϕ and χ
be the state (+S), the left-hand side is [image: \braket{+S}{+S}], which is
clearly=1; so we get once more Eq. (5.19),

[image: -*-]


These two equations are consistent (for all relative orientations of
the T and S apparatuses) only if

[image: -*-]


And it follows that for any states ϕ and χ,

[image: -*-]
(5.26)




If this were not true, probability wouldn’t be “conserved,” and
particles would get “lost.”




Before going on, we want to summarize the three important general laws
about amplitudes. They are Eqs.
(5.24), (5.25), and (5.26):

[image: -*-]
(5.27)




In these equations the i and j refer to all the base states
of some one representation, while ϕ and χ represent
any possible states of the atom. It is important to note that II is
valid only if the sum is carried out over all the base states
of the system (in our case, three: +T, [image: \OT], −T). These laws say
nothing about what we should choose for a base for our set of base
states. We began by using a T apparatus, which is a Stern-Gerlach
experiment with some arbitrary orientation; but any other orientation,
say W, would be just as good. We would have a different set of
states to use for i and j, but all the laws would still be
good—there is no unique set. One of the great games of quantum
mechanics is to make use of the fact that things can be calculated in
more than one way.







5–6 The machinery of quantum mechanics


We want to show you why these laws are useful. Suppose we have an atom
in a given condition (by which we mean that it was prepared in a
certain way), and we want to know what will happen to it in some
experiment. In other words, we start with our atom in the state ϕ
and want to know what are the odds that it will go through some
apparatus which accepts atoms only in the condition χ. The laws
say that we can describe the apparatus completely in terms of three
complex numbers [image: \braket{\chi}{i}], the amplitudes for each base state
to be in the condition χ; and that we can tell what will happen
if an atom is put into the apparatus if we describe the state of the
atom by giving three numbers [image: \braket{i}{\phi}], the amplitudes for
the atom in its original condition to be found in each of the three
base states. This is an important idea.




Let’s consider another illustration. Think of the following problem:
We start with an S apparatus; then we have a complicated mess of
junk, which we can call A, and then an R apparatus—like this:

[image: -*-]
(5.28)




By A we mean any complicated arrangement of Stern-Gerlach
apparatuses with masks or half-masks, oriented at peculiar angles,
with odd electric and magnetic fields … almost anything you
want to put. (It’s nice to do thought experiments—you don’t have to
go to all the trouble of actually building the apparatus!) The
problem then is: With what amplitude does a particle that enters the
section A in a (+S) state come out of A in the [image: (\OR)] state, so
that it will get through the last R filter? There is a regular
notation for such an amplitude; it is

[image: -*-]


As usual, it is to be read from right to left (like Hebrew):

[image: -*-]


If by chance A doesn’t do anything—but is just an open
channel—then we write

[image: -*-]
(5.29)




the two symbols are equivalent. For a more general problem, we might
replace (+S) by a general starting state ϕ and [image: (\OR)] by a
general finishing state χ, and we would want to know the
amplitude

[image: -*-]


A complete analysis of the apparatus A would have to give the
amplitude [image: \bracket{\chi}{A}{\phi}] for every possible pair of states
ϕ and χ—an infinite number of combinations! How then can
we give a concise description of the behavior of the apparatus A? We
can do it in the following way. Imagine that the apparatus
of (5.28) is modified to be

[image: -*-]
(5.30)




This is really no modification at all since the wide-open
T apparatuses don’t do anything. But they do suggest how we can analyze
the problem. There is a certain set of amplitudes [image: \braket{i}{+S}]
that the atoms from S will get into the i state of T. Then there
is another set of amplitudes that an i state (with respect to T)
entering A will come out as a j state (with respect to T). And
finally there is an amplitude that each j state will get through the
last filter as a [image: (\OR)] state. For each possible alternative path,
there is an amplitude of the form

[image: -*-]


and the total amplitude is the sum of the terms we can get with all
possible combinations of i and j. The amplitude we want is

[image: -*-]
(5.31)




If [image: (\OR)] and (+S) are replaced by general states χ
and ϕ, we would have the same kind of expression; so we have the
general result

[image: -*-]
(5.32)









Now notice that the right-hand side of Eq. (5.32) is
really “simpler” than the left-hand side. The apparatus A is
completely described by the nine numbers [image: \bracket{j}{A}{i}]
which tell the response of A with respect to the three base states
of the apparatus T. Once we know these nine numbers, we can handle
any two incoming and outgoing states ϕ and χ if we define
each in terms of the three amplitudes for going into, or from, each of
the three base states. The result of an experiment is predicted using
Eq. (5.32).




This then is the machinery of quantum mechanics for a spin-one
particle. Every state is described by three numbers which are
the amplitudes to be in each of some selected set of base
states. Every apparatus is described by nine numbers which are the
amplitudes to go from one base state to another in the apparatus. From
these numbers anything can be calculated.




The nine amplitudes which describe the apparatus are often written as
a square matrix—called the matrix [image: \bracket{j}{A}{i}]:

[image: -*-]
(5.33)









The mathematics of quantum mechanics is just an extension of this
idea. We will give you a simple illustration. Suppose we have an
apparatus C that we wish to analyze—that is, we want to calculate
the various [image: \bracket{j}{C}{i}]. For instance, we might want to know
what happens in an experiment like

[image: -*-]
(5.34)




But then we notice that C is just built of two pieces of apparatus
A and B in series—the particles go through A and then
through B—so we can write symbolically

[image: -*-]
(5.35)




We can call the C apparatus the “product” of A and B. Suppose
also that we already know how to analyze the two parts; so we can get
the matrices (with respect to T) of A and B. Our problem is then
solved. We can easily find

[image: -*-]


for any input and output states. First we write that

[image: -*-]


Do you see why? (Hint: Imagine putting a T apparatus between
A and B.)  Then if we consider the special case in which ϕ
and χ are also base states (of T), say i and j, we have

[image: -*-]
(5.36)




This equation gives the matrix for the “product” apparatus C in
terms of the two matrices of the apparatuses A and B.
Mathematicians call the new matrix [image: \bracket{j}{C}{i}]—formed
from two matrices [image: \bracket{j}{B}{i}] and [image: \bracket{j}{A}{i}]
according to the sum specified in Eq. (5.36)—the
“product” matrix B A of the two matrices B and A. (Note that
the order is important, A B≠B A.) Thus, we can say that the
matrix for a succession of two pieces of apparatus is the matrix
product of the matrices for the two apparatuses (putting the
first apparatus on the right in the product). Anyone who
knows matrix algebra
then understands that we mean just Eq. (5.36).








5–7 Transforming to a different base


We want to make one final point about the base states used in the
calculations. Suppose we have chosen to work with some particular
base—say the S base—and another fellow decides to do the same
calculations with a different base—say the T base. To keep things
straight let’s call our base states the (i S) states, where i=+,
0, −. Similarly, we can call his base states (j T). How can we
compare our work with his? The final answers for the result of any
measurement should come out the same, but in the calculations the
various amplitudes and matrices used will be different. How are they
related?  For instance, if we both start with the same ϕ, we will
describe it in terms of the three amplitudes [image: \braket{iS}{\phi}] that
ϕ goes into our base states in the S representation, whereas he
will describe it by the amplitudes [image: \braket{jT}{\phi}] that the
state ϕ goes into the base states in his T representation. How can we
check that we are really both describing the same state ϕ? We can
do it with the general rule II in (5.27). Replacing
χ by any one of his states j T, we have

[image: -*-]
(5.37)




To relate the two representations, we need only give the nine complex
numbers of the matrix [image: \braket{jT}{iS}]. This matrix can then be used
to convert all of our equations to his form. It tells us how to
transform from one set of base states to another. (For this
reason [image: \braket{jT}{iS}] is sometimes called “the transformation
matrix from representation S to representation T.” Big words!)




For the case of spin-one particles for which we have only three base
states (for higher spins, there are more) the mathematical situation
is analogous to what we have seen in vector
algebra. Every vector can
be represented by giving three numbers—the components along the axes
x, y, and z. That is, every vector can be resolved into three
“base” vectors which are vectors along the three axes. But suppose
someone else chooses to use a different set of axes—x′, y′,
and z′. He will be using different numbers to represent any particular
vector. His calculations will look different, but the final results
will be the same. We have considered this before and know the rules
for transforming vectors from one set of axes to another.





You may want to see how the quantum mechanical transformations work by
trying some out; so we will give here, without proof, the
transformation matrices for converting the spin-one amplitudes in one
representation S to another representation T, for various special
relative orientations of the S and T filters. (We will show you in
a later chapter how to derive these same results.)




First case: The T apparatus has the same y-axis (along
which the particles move) as the S apparatus, but is rotated about
the common y-axis by the angle α (as in
Fig. 5–6). (To be specific, a set of coordinates x′,
y′, z′ is fixed in the T apparatus, related to the x, y, z
coordinates of the S apparatus by: z′=z cosα+x sinα,
x′=x cosα−z sinα, y′=y.)  Then the transformation
amplitudes are:
[image: -*-]
(5.38)









Second case: The T apparatus has the same z-axis as S,
but is rotated around the z-axis by the angle β. (The
coordinate transformation is z′=z, x′=x cosβ+y sinβ,
y′=y cosβ−x sinβ.) Then the transformation amplitudes are:
[image: -*-]
(5.39)









Note that any rotations of T whatever can be made up of the two
rotations described.





If a state ϕ is defined by the three numbers



[image: -*-]
(5.40)





and the same state is described from the point of view of T by the
three numbers



[image: -*-]
(5.41)





then the coefficients [image: \braket{jT}{iS}] of (5.38)
or (5.39) give the transformation connecting Ci
and [image: C_i']. In other words, the Ci are very much like the components of a
vector that appear different from the point of view of S and T.




For a spin-one particle only—because it requires three
amplitudes—the correspondence with a vector is very close. In each
case, there are three numbers that must transform with coordinate
changes in a certain definite way. In fact, there is a set of base
states which transform just like the three components of a
vector. The three combinations



[image: -*-]
(5.42)





transform to [image: C_x'], [image: C_y'], and [image: C_z'] just the way that x, y,
z transform to x′, y′, z′. [You can check that this is so by
using the transformation laws (5.38)
and (5.39).] Now you see why a spin-one particle is often
called a “vector particle.”







5–8 Other situations


We began by pointing out that our discussion of spin-one particles
would be a prototype for any quantum mechanical problem. The
generalization has only to do with the numbers of states. Instead of
only three base states, any particular situation may involve n base
states.8 Our basic laws in Eq. (5.27) have
exactly the same form—with the understanding that i and j must
range over all n base states. Any phenomenon can be analyzed by
giving the amplitudes that it starts in each one of the base states
and ends in any other one of the base states, and then summing over
the complete set of base states. Any proper set of base states can be
used, and if someone wishes to use a different set, it is just as
good; the two can be connected by using an n by n transformation
matrix. We will have more to say later about such transformations.




Finally, we promised to remark on what to do if atoms come directly
from a furnace, go through some apparatus, say A, and are then
analyzed by a filter which selects the state χ. You do not know
what the state ϕ is that they start out in. It is perhaps best if
you don’t worry about this problem just yet, but instead concentrate
on problems that always start out with pure states. But if you insist,
here is how the problem can be handled.




First, you have to be able to make some reasonable guess about the way
the states are distributed in the atoms that come from the
furnace. For example, if there were nothing “special” about the
furnace, you might reasonably guess that atoms would leave the furnace
with random “orientations.” Quantum mechanically, that corresponds
to saying that you don’t know anything about the states, but that
one-third are in the (+S) state, one-third are in the
[image: (\OS)] state, and one-third are in the (−S) state. For those that are in
the (+S) state the amplitude to get through
is [image: \bracket{\chi}{A}{+S}] and the probability
is [image: \abs{\bracket{\chi}{A}{+S}}^2], and similarly for the others. The
overall probability is then

[image: -*-]


Why did we use S rather than, say, T? The answer is, surprisingly,
the same no matter what we choose for our initial resolution—so long
as we are dealing with completely random orientations. It comes about
in the same way that

[image: -*-]


for any χ. (We leave it for you to prove.)




Note that it is not correct to say that the input state has the
amplitudes √1/3 to be in (+S), √1/3 to be
in [image: (\OS)], and √1/3 to be in (−S); that would imply that
certain interferences might be possible. It is simply that you do not
know, what the initial state is; you have to think in terms of
the probability that the system starts out in the various possible
initial states, and then you have to take a weighted average over the
various possibilities.






	
  
  We are assuming that the deflection angles are very
small.
  ^


	
  
  Read: (+S)= “plus-S”; [image: (\OS)=] “zero-S”;
(−S)= “minus-S.”
  ^


	
  
  We do not intend the word “base state” to
imply anything more than what is said here. They are not to be thought
of as “basic” in any sense. We are using the word base with the
thought of a basis for a description, somewhat in the sense
that one speaks of “numbers to the base ten.”
  ^


	
  
  In terms of our earlier notation
[image: \alpha=\abs{\braket{\OT}{+S}}^2], [image: \beta=\abs{\braket{+S}{\OT}}^2],
and [image: \gamma=\abs{\braket{\OS}{\OT}}^2].
  ^


	
  
  We really cannot conclude from the experiment that a=1,
but only that │a│2=1, so a might be ei δ, but it can
be shown that the choice δ=0 represents no real loss of
generality.
  ^


	
  
  In fact, for atomic systems with three or more base
states, there exist other kinds of filters—quite different from a
Stern-Gerlach apparatus—which can be used to get more choices for
the set of base states (each set with the same number of
states).
  ^


	
  
  Redundant
truth doesn’t bother us!
  ^


	
  
  The number of base states n may be, and generally
is, infinite.
  ^






  
    

6 Spin One-Half 1



6–1 Transforming amplitudes


In the last chapter, using a system of spin one as an
example, we outlined the general principles of quantum mechanics:

   
			Any state ψ can be described in terms of a set of base states 
			by giving the amplitudes to be in each of the base states.

			The amplitude to go from any state to another can, in general, be 
			written as a sum of products, each product being the amplitude to go 
			into one of the base states times the amplitude to go from that base 
			state to the final condition, with the sum including a term for each 
			base state:

[image: -*-]
(6.1)




			The base states are orthogonal—the amplitude to be in one if you are in the
			other is zero:

[image: -*-]
(6.2)




			The amplitude to get from one state to another directly is the complex conjugate
			of the reverse:

[image: -*-]
(6.3)











We also discussed a little bit about the fact that there can be more
than one base for the states and that we can use Eq. (6.1)
to convert from one base to another. Suppose, for example, that we have
the amplitudes [image: \braket{iS}{\psi}] to find the state ψ in every one
of the base states i of a base system S, but that we then decide
that we would prefer to describe the state in terms of another set of
base states, say the states j belonging to the base T. In the
general formula, Eq. (6.1), we could substitute j T
for χ and obtain this formula:

[image: -*-]
(6.4)




The amplitudes for the state (ψ) to be in the base states (j T)
are related to the amplitudes to be in the base states (i S) by the set
of coefficients [image: \braket{jT}{iS}]. If there are N base states, there
are N2 such coefficients. Such a set of coefficients is often called
the “transformation matrix to go from the
S-representation to the T-representation.” This looks
rather formidable mathematically, but with a little renaming we can see
that it is really not so bad. If we call Ci the amplitude that the
state ψ is in the base state i S—that is,
[image: C_i=\braket{iS}{\psi}]—and call [image: C_j'] the corresponding amplitudes
for the base system T—that is, [image: C_j'=\braket{jT}{\psi}], then
Eq. (6.4) can be written as

[image: -*-]
(6.5)




where Rj i means the same thing as [image: \braket{jT}{iS}]. Each
amplitude [image: C_j'] is equal to a sum over all i of one of the
coefficients Rj i times each amplitude Ci. It has the same form
as the transformation of a vector from one coordinate system to another.





In order to avoid being too abstract for too long, we have given you
some examples of these coefficients for the spin-one case, so you can
see how to use them in practice. On the other hand, there is a very
beautiful thing in quantum mechanics—that from the sheer fact that
there are three states and from the symmetry properties of space under
rotations, these coefficients can be found purely by abstract reasoning.
Showing you such arguments at this early stage has a disadvantage in
that you are immersed in another set of abstractions before we get
“down to earth.” However, the thing is so beautiful that we are going
to do it anyway.





We will show you in this chapter how the transformation coefficients can
be derived for spin one-half particles. We pick this case, rather than
spin one, because it is somewhat easier. Our problem is to determine the
coefficients Rj i for a particle—an atomic system—which is split
into two beams in a Stern-Gerlach apparatus. We are going to derive all
the coefficients for the transformation from one representation to
another by pure reasoning—plus a few assumptions. Some
assumptions are always necessary in order to use “pure” reasoning!
Although the arguments will be abstract and somewhat involved, the
result we get will be relatively simple to state and easy to
understand—and the result is the most important thing. You may, if you
wish, consider this as a sort of cultural excursion. We have, in fact,
arranged that all the essential results derived here are also derived in
some other way when they are needed in later chapters. So you need have
no fear of losing the thread of our study of quantum mechanics if you
omit this chapter entirely, or study it at some later time. The
excursion is “cultural” in the sense that it is intended to show that
the principles of quantum mechanics are not only interesting, but are so
deep that by adding only a few extra hypotheses about the structure of
space, we can deduce a great many properties of physical systems. Also,
it is important that we know where the different consequences of quantum
mechanics come from, because so long as our laws of physics are
incomplete—as we know they are—it is interesting to find out whether
the places where our theories fail to agree with experiment is where our
logic is the best or where our logic is the worst. Until now, it appears
that where our logic is the most abstract it always gives correct
results—it agrees with experiment. Only when we try to make specific
models of the internal machinery of the fundamental particles and their
interactions are we unable to find a theory that agrees with experiment.
The theory then that we are about to describe agrees with experiment
wherever it has been tested—for the strange particles as well as for
electrons, protons, and so on.





One remark on an annoying, but interesting, point before we proceed:
It is not possible to determine the coefficients Rj i uniquely,
because there is always some arbitrariness in the probability
amplitudes. If you have a set of amplitudes of any kind, say the
amplitudes to arrive at some place by a whole lot of different routes,
and if you multiply every single amplitude by the same phase
factor—say by ei δ—you have another set that is just as
good. So, it is always possible to make an arbitrary change in phase
of all the amplitudes in any given problem if you want to.





Suppose you calculate some probability by writing a sum of several
amplitudes, say (A+B+C+⋯) and taking the absolute square. Then
somebody else calculates the same thing by using the sum of the
amplitudes (A′+B′+C′+⋯) and taking the absolute square. If all
the A′, B′, C′, etc., are equal to the A, B, C, etc.,
except for a factor ei δ, all probabilities obtained by
taking the absolute squares will be exactly the same, since
(A′+B′+C′+⋯) is then equal to ei δ (A+B+C+⋯). Or
suppose, for instance, that we were computing something with
Eq. (6.1), but then we suddenly change all of the phases of
a certain base system. Every one of the amplitudes [image: \braket{i}{\psi}]
would be multiplied by the same factor ei δ. Similarly, the
amplitudes [image: \braket{i}{\chi}] would also be changed by ei δ,
but the amplitudes [image: \braket{\chi}{i}] are the complex conjugates of the
amplitudes [image: \braket{i}{\chi}]; therefore, the former gets changed by the
factor e−i δ. The plus and minus i δ’s in the exponents
cancel out, and we would have the same expression we had before. So it
is a general rule that if we change all the amplitudes with respect to a
given base system by the same phase—or even if we just change
all the amplitudes in any problem by the same phase—it makes no
difference. There is, therefore, some freedom to choose the phases in
our transformation matrix. Every now and then we will make such an
arbitrary choice—usually following the conventions that are in general
use.





 


6–2 Transforming to a rotated coordinate system

[image: -]
Fig. 6–1. 
Top and side views of an “improved” Stern-Gerlach 
apparatus with beams of a spin one-half particle.





We consider again the “improved” Stern-Gerlach apparatus described
in the last chapter. A beam of spin one-half particles, entering at
the left, would, in general, be split into two beams, as shown
schematically in Fig. 6-1. (There were three beams for
spin one.) As before, the beams are put back together again
unless one or the other of them is blocked off by a “stop” which
intercepts the beam at its half-way point. In the figure we show an
arrow which points in the direction of the increase of the
magnitude of the field—say toward the magnet pole with the
sharp edges. This arrow we take to represent the “up” axis of
any particular apparatus. It is fixed relative to the apparatus and
will allow us to indicate the relative orientations when we use
several apparatuses together. We also assume that the direction of the
magnetic field in each magnet is always the same with respect to the
arrow.





We will say that those atoms which go in the “upper” beam are in the
(+) state with respect to that apparatus and that those in
the “lower” beam are in the (−) state. (There is no “zero” state
for spin one-half particles.)





Now suppose we put two of our modified Stern-Gerlach apparatuses in
sequence, as shown in Fig. 6-2(a). The first one,
which we call S, can be used to prepare a pure (+S) or a pure
(−S) state by blocking one beam or the other. [As shown it prepares
a pure (+S) state.] For each condition, there is some amplitude for
a particle that comes out of S to be in either the (+T) or the
(−T) beam of the second apparatus. There are, in fact, just four
amplitudes: the amplitude to go from (+S) to (+T), from (+S)
to (−T), from (−S) to (+T), from (−S) to (−T). These amplitudes
are just the four coefficients of the transformation matrix Rj i
to go from the S-representation to the T-representation. We can
consider that the first apparatus “prepares” a particular state in
one representation and that the second apparatus “analyzes” that
state in terms of the second representation. The kind of question we
want to answer, then, is this: If an atom has been prepared in a given
condition—say the (+S) state—by blocking one of the beams in the
apparatus S, what is the chance that it will get through the second
apparatus T if this is set for, say, the (−T) state. The result
will depend, of course, on the angles between the two systems S
and T.




[image: -][image: -]
Fig. 6–2. 
Two equivalent experiments.





We should explain why it is that we could have any hope of finding the
coefficients Rj i by deduction. You know that it is almost
impossible to believe that if a particle has its spin lined up in the
+z-direction, that there is some chance of finding the same particle
with its spin pointing in the +x-direction—or in any other
direction at all. In fact, it is almost impossible, but not
quite. It is so nearly impossible that there is only one way it
can be done, and that is the reason we can find out what that unique
way is.





The first kind of argument we can make is this. Suppose we have a
setup like the one in Fig. 6-2(a), in which we have
the two apparatuses S and T, with T cocked at the angle α
with respect to S, and we let only the (+) beam through S and
the (−) beam through T. We would observe a certain number for the
probability that the particles coming out of S get through T. Now
suppose we make another measurement with the apparatus of
Fig. 6-2(b). The relative orientation of S
and T is the same, but the whole system sits at a different angle in
space. We want to assume that both of these experiments give the
same number for the chance that a particle in a pure state with respect
to S will get into some particular state with respect to T. We are
assuming, in other words, that the result of any experiment of this type
is the same—that the physics is the same—no matter how the
whole apparatus is oriented in space. (You say, “That’s
obvious.” But it is an assumption, and it is “right” only if
it is actually what happens.)  That means that the coefficients Rj i
depend only on the relation in space of S and T, and not on the
absolute situation of S and T. To say this in another way, Rj i
depends only on the rotation which carries S to T, for
evidently what is the same in Fig. 6-2(a) and
Fig. 6-2(b) is the three-dimensional rotation which would
carry apparatus S into the orientation of apparatus T. When the
transformation matrix Rj i depends only on a rotation, as it does
here, it is called a rotation matrix.




[image: -][image: -]
Fig. 6–3. 
If T is “wide open,” (b) is equivalent to (a).





For our next step we will need one more piece of information. Suppose
we add a third apparatus which we can call U, which follows T at
some arbitrary angle, as in Fig. 6-3(a). (It’s
beginning to look horrible, but that’s the fun of abstract
thinking—you can make the most weird experiments just by drawing
lines!) Now what is the S→T→U transformation? What we really
want to ask for is the amplitude to go from some state with respect
to S to some other state with respect to U, when we know the
transformation from S to T and from T to U. We are then asking
about an experiment in which both channels of T are open. We can get
the answer by applying Eq. (6.5) twice in
succession. For going from the S-representation to the
T-representation, we have

[image: -*-]
(6.6)




where we put the superscripts T S on the R, so that we can
distinguish it from the coefficients RU T we will have for going
from T to U.





Assuming the amplitudes to be in the base states of the
U-representation [image: C_k''], we can relate them to the T-amplitudes
by using Eq. (6.5) once more; we get
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(6.7)




Now we can combine Eqs. (6.6) and (6.7) to
get the transformation to U directly from S. Substituting [image: C_j']
from Eq. (6.6) in Eq. (6.7), we have

[image: -*-]
(6.8)




Or, since i does not appear in [image: R_{kj}^{UT}], we can put the
i-summation also in front, and write
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(6.9)




This is the formula for a double transformation.





Notice, however, that so long as all the beams in T are unblocked,
the state coming out of T is the same as the one that went in. We
could just as well have made a transformation from the
S-representation directly to the U-representation. It should be
the same as putting the U apparatus right after S, as in
Fig. 6-3(b). In that case, we would have written

[image: -*-]
(6.10)




with the coefficients [image: R_{ki}^{US}] belonging to this
transformation. Now, clearly, Eqs. (6.9)
and (6.10) should give the same amplitudes [image: C_k''], and
this should be true no matter what the original state ϕ was which
gave us the amplitudes Ci. So it must be that
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(6.11)




In other words, for any rotation S→U of a reference base, which
is viewed as a compounding of two successive rotations S→T
and T→U, the rotation matrix [image: R_{ki}^{US}] can be obtained from the
matrices of the two partial rotations by Eq. (6.11). If
you wish, you can find Eq. (6.11) directly from
Eq. (6.1), for it is only a different notation
for [image: \braket{kU}{iS}=\sum_j\braket{kU}{jT}\braket{jT}{iS}].








To be thorough, we should add the following parenthetical
remarks. They are not terribly important, however, so you can skip to
the next section if you want. What we have said is not quite right. We
cannot really say that Eq. (6.9) and
Eq. (6.10) must give exactly the same amplitudes.
Only the physics should be the same; all the amplitudes could be
different by some common phase factor like ei δ without
changing the result of any calculation about the real world. So, instead
of Eq. (6.11), all we can say, really, is that
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(6.12)




where δ is some real constant. What this extra factor
of ei δ means, of course, is that the amplitudes we get if we
use the matrix RU S might all differ by the same
phase (e−i δ) from the amplitude we would get using the two
rotations RU T and RT S. We know that it doesn’t matter if all
amplitudes are changed by the same phase, so we could just ignore this
phase factor if we wanted to. It turns out, however, that if we define
all of our rotation matrices in a particular way, this extra phase
factor will never appear—the δ in Eq. (6.12)
will always be zero. Although it is not important for the rest of our
arguments, we can give a quick proof by using a mathematical theorem
about determinants. [If you don’t yet know much about determinants,
don’t worry about the proof and just skip to the definition of
Eq. (6.15).]






First, we should say that Eq. (6.11) is the
mathematical definition of a “product” of two matrices. (It is just
convenient to be able to say: “RU S is the product of RU T
and RT S.” )  Second, there is a theorem of mathematics—which
you can easily prove for the two-by-two matrices we have here—which
says that the determinant of a “product” of two matrices is the
product of their determinants. Applying this theorem to
Eq. (6.12), we get
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(6.13)




(We leave off the subscripts, because they don’t tell us anything
useful.) Yes, the 2 δ is right. Remember that we are dealing
with two-by-two matrices; every term in the matrix [image: R_{ki}^{US}] is
multiplied by ei δ, so each product in the
determinant—which has two factors—gets multiplied
by ei 2 δ. Now let’s take the square root of
Eq. (6.13) and divide it into Eq. (6.12); we
get
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(6.14)




The extra phase factor has disappeared.






Now it turns out that if we want all of our amplitudes in any given
representation to be normalized (which means, you remember, that
[image: \sum_i\braket{\phi}{i}\braket{i}{\phi}=1]), the rotation matrices
will all have determinants that are pure imaginary exponentials,
like ei α. (We won’t prove it; you will see that it always comes
out that way.) So we can, if we wish, choose to make all our rotation
matrices R have a unique phase by making DetR=1. It is done like
this. Suppose we find a rotation matrix R in some arbitrary way. We
make it a rule to “convert” it to “standard form” by defining
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(6.15)




We can do this because we are just multiplying each term of R by the
same phase factor, to get the phases we want. In what follows, we will
always assume that our matrices have been put in the “standard
form” ; then we can use Eq. (6.11) without having any
extra phase factors.





 


6–3 Rotations about the z-axis


We are now ready to find the transformation matrix Rj i between
two different representations. With our rule for compounding rotations
and our assumption that space has no preferred direction, we have the
keys we need for finding the matrix of any arbitrary rotation. There
is only one solution. We begin with the transformation which
corresponds to a rotation about the z-axis. Suppose we have two
apparatuses S and T placed in series along a straight line with
their axes parallel and pointing out of the page, as shown in
Fig. 6-4(a). We take our “z-axis” in this direction.
Surely, if the beam goes “up” (toward +z) in the S apparatus, it
will do the same in the T apparatus. Similarly, if it goes down
in S, it will go down in T. Suppose, however, that the T apparatus
were placed at some other angle, but still with its axis parallel to the
axis of S, as in Fig. 6-4(b). Intuitively, you would
say that a (+) beam in S would still go with a (+) beam in T,
because the fields and field gradients are still in the same physical
direction. And that would be quite right. Also, a (−) beam in S
would still go into a (−) beam in T. The same result would apply for
any orientation of T in the x y-plane of S. What does this tell us
about the relation between [image: C_+'=\braket{+T}{\psi}],
[image: C_-'=\braket{-T}{\psi}] and [image: C_+=\braket{+S}{\psi}],
[image: C_-=\braket{-S}{\psi}]? You might conclude that any rotation about the
z-axis of the “frame of reference” for base states leaves the
amplitudes to be “up” and “down” the same as before.  We could write
[image: C_+'=C_+] and [image: C_-'=C_-]—but that is wrong. All we can
conclude is that for such rotations the probabilities to be in the
“up” beam are the same for the S and T apparatuses. That is,
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We cannot say that the phases of the amplitudes referred to the
T apparatus may not be different for the two different orientations
in (a) and (b) of Fig. 6-4.




[image: -][image: -]
Fig. 6–4. 
Rotating 90° about the z-axis.





The two apparatuses in (a) and (b) of Fig. 6-4 are, in
fact, different, as we can see in the following way. Suppose that we
put an apparatus in front of S which produces a pure (+x) state.
(The x-axis points toward the bottom of the figure.) Such
particles would be split into (+z) and (−z) beams in S, but the
two beams would be recombined to give a (+x) state again
at P1—the exit of S. The same thing happens again in T. If we
follow T by a third apparatus U, whose axis is in the
(+x) direction and, as shown in Fig. 6-5(a), all the
particles would go into the (+) beam of U. Now imagine what
happens if T and U are swung around together by 90°
to the positions shown in Fig. 6-5(b). Again, the
T apparatus puts out just what it takes in, so the particles that enter
U are in a (+x) state with respect to S. But U now analyzes
for the (+y) state with respect to S, which is different. (By
symmetry, we would now expect only one-half of the particles to get
through.)




[image: -][image: -]
Fig. 6–5. 
Particle in a (+x) state behaves differently in (a) and (b).





What could have changed? The apparatuses T and U are still in the
same physical relationship to each other. Can the
physics be changed just because T and U are in a different
orientation? Our original assumption is that it should not. It must be
that the amplitudes with respect to T are different in the
two cases shown in Fig. 6-5—and, therefore, also in
Fig. 6-4. There must be some way for a particle to
know that it has turned the corner at P1. How could it tell? Well,
all we have decided is that the magnitudes of [image: C_+'] and C+
are the same in the two cases, but they could—in fact,
must—have different phases. We conclude that [image: C_+']
and C+ must be related by
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and that [image: C_-'] and C− must be related by
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where λ and μ are real numbers which must be related in
some way to the angle between S and T.





The only thing we can say at the moment about λ and μ is
that they must not be equal [except for the special case shown in
Fig. 6-5(a), when T is in the same orientation
as S]. We have seen that equal phase changes in all amplitudes have no
physical consequence. For the same reason, we can always add the same
arbitrary amount to both λ and μ without changing
anything. So we are permitted to choose to make λ
and μ equal to plus and minus the same number. That is, we can always
take
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Then
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So we adopt the convention2
that μ=−λ. We have then the general rule that for a rotation of
the reference apparatus by some angle about the z-axis, the
transformation is
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(6.16)




The absolute values are the same, only the phases are different. These
phase factors are responsible for the different results in the two
experiments of Fig. 6-5.





Now we would like to know the law that relates λ to the angle
between S and T. We already know the answer for one case. If the
angle is zero, λ is zero. Now we will assume that the
phase shift λ is a continuous function of angle ϕ between
S and T (see Fig. 6-4) as ϕ goes to zero—as
only seems reasonable. In other words, if we rotate T from the
straight line through S by the small angle ϵ, the λ
is also a small quantity, say m ϵ, where m is some
number. We write it this way because we can show that λ must
be proportional to ϵ. Suppose we were to put after T
another apparatus T′ which makes the angle ϵ with T, and,
therefore, the angle 2 ϵ with S. Then, with respect to T,
we have
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and with respect to T′, we have
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But we know that we should get the same result if we put T′ right
after S. Thus, when the angle is doubled, the phase is doubled. We
can evidently extend the argument and build up any rotation at all by
a sequence of infinitesimal rotations. We conclude that for any
angle ϕ, λ is proportional to the angle. We can,
therefore, write λ=m ϕ.





The general result we get, then, is that for T rotated about the
z-axis by the angle ϕ with respect to S
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(6.17)




For the angle ϕ, and for all rotations we speak of in the future,
we adopt the standard convention that a positive rotation is a
right-handed rotation about the positive direction of the
reference axis. A positive ϕ has the sense of rotation of a
right-handed screw advancing in the positive z-direction.





Now we have to find what m must be. First, we might try this
argument: Suppose T is rotated by 360°; then, clearly, it is
right back at zero degrees, and we should have [image: C_+'=C_+]
and [image: C_-'=C_-], or, what is the same thing, ei m 2 π=1. We
get m=1. This argument is wrong! To see that it is, consider that
T is rotated by 180°. If m were equal to 1, we would have
[image: C_+'=]ei π C+=−C+ and [image: C_-'=]e−i π C−=−C−. However, this
is just the original state all over again. Both
amplitudes are just multiplied by −1 which gives back the original
physical system. (It is again a case of a common phase change.) This
means that if the angle between T and S in Fig. 6-5(b)
is increased to 180°, the system (with respect to T) would be
indistinguishable from the zero-degree situation, and the particles
would again go through the (+) state of the U apparatus.
At 180°, though, the (+) state of the U apparatus is the
(−x) state of the original S apparatus. So a (+x) state would become a
(−x) state. But we have done nothing to change the original
state; the answer is wrong. We cannot have m=1.





We must have the situation that a rotation by 360° and no
smaller angle reproduces the same physical state. This will happen
if [image: m=\tfrac{1}{2}]. Then, and only then, will the first angle that
reproduces the same physical state
be ϕ=360°.3 It gives
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(6.18)




It is very curious to say that if you turn the apparatus 360°
you get new amplitudes. They aren’t really new, though, because the
common change of sign doesn’t give any different physics. If someone
else had decided to change all the signs of the amplitudes because he
thought he had turned 360°, that’s all right; he gets the same
physics.4 So our final
answer is that if we know the amplitudes C+ and C− for spin
one-half particles with respect to a reference frame S, and we then
use a base system referred to T which is obtained from S by a
rotation of ϕ around the z-axis, the new amplitudes are given
in terms of the old by
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(6.19)









 


6–4 Rotations of 180° and
90° about y

[image: -]
Fig. 6–6. 
A rotation of 180° about the y-axis.




Next, we will try to guess the transformation for a rotation of T
with respect to S of 180° around an axis perpendicular
to the z-axis—say, about the y-axis. (We have defined the
coordinate axes in Fig. 6-1.)  In other words, we
start with two identical Stern-Gerlach equipments, with the second
one, T, turned “upside down” with respect to the first one, S,
as in Fig. 6-6. Now if we think of our particles as
little magnetic dipoles, a particle that is in the (+S) state—so
that it goes on the “upper” path in the first apparatus—will also
take the “upper” path in the second, so that it will be in the
minus state with respect to T. (In the inverted
T apparatus, both the gradients and the field direction are
reversed; for a particle with its magnetic moment in a given
direction, the force is unchanged.)  Anyway, what is “up” with
respect to S will be “down” with respect to T. For these
relative positions of S and T, then, we know that the
transformation must give
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As before, we cannot rule out some additional phase factors; we could
have (for 180° about the y-axis)
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(6.20)




where β and γ are still to be determined.





What about a rotation of 360° about the y-axis? Well, we
already know the answer for a rotation of 360° about the
z-axis—the amplitude to be in any state changes sign. A rotation
of 360° around any axis always brings us back to the original
position. It must be that for any 360° rotation, the
result is the same as a 360° rotation about the z-axis—all
amplitudes simply change sign. Now suppose we imagine two successive
rotations of 180° about y—using Eq. (6.20)—we
should get the result of Eq. (6.18). In other words,
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and
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(6.21)




This means that
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So the transformation for a rotation of 180° about the y-axis
can be written
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(6.22)









The arguments we have just used would apply equally well to a rotation
of 180° about any axis in the x y-plane, although
different axes can, of course, give different numbers for β.
However, that is the only way they can differ. Now there is a
certain amount of arbitrariness in the number β, but once it is
specified for one axis of rotation in the x y-plane it is determined
for any other axis. It is conventional to choose to
set β=0 for a 180° rotation about the y-axis.





To show that we have this choice, suppose we imagine that β was
not equal to zero for a rotation about the y-axis; then we can show
that there is some other axis in the x y-plane, for which the
corresponding phase factor will be zero. Let’s find the phase
factor βA for an axis A that makes the angle α with
the y-axis, as shown in Fig. 6-7(a). (For clarity,
the figure is drawn with α equal to a negative number, but that
doesn’t matter.) Now if we take a T apparatus which is initially
lined up with the S apparatus and is then rotated 180° about
the axis A, its axes—which we will call x′′, y′′,
and z′′—will be as shown in Fig. 6-7(a). The
amplitudes with respect to T will then be
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(6.23)
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Fig. 6–7. 
A 180° rotation about the axis A is equivalent to a
rotation of 180° about y, followed by a rotation about z′.





We can now think of getting to the same orientation by the two
successive rotations shown in (b) and (c) of the figure. First, we
imagine an apparatus U which is rotated with respect to S
by 180° about the y-axis. The axes x′, y′, and z′ of U
will be as shown in Fig. 6-7(b), and the amplitudes
with respect to U are given by (6.22).





Now notice that we can go from U to T by a rotation about the
“z-axis” of U, namely about z′, as shown in
Fig. 6-7(c). From the figure you can see that the angle
required is two times the angle α but in the opposite direction
(with respect to z′). Using the transformation of (6.19)
with ϕ=−2 α, we get
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(6.24)




Combining Eqs. (6.24) and (6.22), we get
that
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(6.25)




These amplitudes must, of course, be the same as we got
in (6.23). So βA must be related to α
and β by
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(6.26)




This means that if the angle α between the A-axis and the
y-axis (of S) is equal to β, the transformation for a
rotation of 180° about A will have βA=0.





Now so long as some axis perpendicular to the z-axis is going
to have β=0, we may as well take it to be the y-axis. It is
purely a matter of convention, and we adopt the one in general
use. Our result: For a rotation of 180° about the y-axis, we
have
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(6.27)









While we are thinking about the y-axis, let’s next ask for the
transformation matrix for a rotation of 90° about y. We can
find it because we know that two successive 90° rotations about
the same axis must equal one 180° rotation. We start by writing
the transformation for 90° in the most general form:
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(6.28)




A second rotation of 90° about the same axis would have the
same coefficients:
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(6.29)




Combining Eqs. (6.28) and (6.29), we have
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(6.30)




However, from (6.27) we know that
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so that we must have that
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(6.31)




These four equations are enough to determine all our unknowns: a, b,
c, and d. It is not hard to do. Look at the second and fourth
equations. Deduce that a2=d2, which means that a=d or else that
a=−d. But a=−d is out, because then the first equation wouldn’t be
right. So d=a. Using this, we have immediately that b=1/2 a and
that c=−1/2 a. Now we have everything in terms of a. Putting, say,
the second equation all in terms of a, we have
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This equation has four different solutions, but only two of them give
the standard value for the determinant. We might as well
take a=1/√2; then5
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In other words, for two apparatuses S and T, with T rotated with
respect to S by 90° about the y-axis, the transformation is
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(6.32)









We can, of course, solve these equations for C+ and C−, which will
give us the transformation for a rotation of minus 90°
about y. Changing the primes around, we would conclude that
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(6.33)









 


6–5 Rotations about x


You may be thinking: “This is getting ridiculous. What are they going
to do next, 47° around y, then 33° about x, and so on,
forever?” No, we are almost finished. With just two of the
transformations we have—90° about y, and an arbitrary angle
about z (which we did first if you remember)—we can generate any
rotation at all.





As an illustration, suppose that we want the angle α around x.
We know how to deal with the angle α around z, but now we want
it around x. How do we get it? First, we turn the axis z down
onto x—which is a rotation of +90° about y, as shown in
Fig. 6-8. Then we turn through the angle α
around z′. Then we rotate −90° about y′′. The net result of
the three rotations is the same as turning around x by the
angle α. It is a property of space.




[image: -][image: -][image: -]
Fig. 6–8. 
A rotation by α about the x-axis is equivalent to:
  (a) a rotation by +90° about y, followed by (b) a rotation
  by α about z′, followed by (c) a rotation of −90°
  about y′′.





(These facts of the combinations of rotations, and what they produce,
are hard to grasp intuitively. It is rather strange, because we live
in three dimensions, but it is hard for us to appreciate what happens
if we turn this way and then that way. Perhaps, if we were fish or
birds and had a real appreciation of what happens when we turn
somersaults in space, we could more easily appreciate such things.)





Anyway, let’s work out the transformation for a rotation by α
around the x-axis by using what we know. From the first rotation
by +90° around y the amplitudes go according to
Eq. (6.32). Calling the rotated axes x′, y′, and z′,
the next rotation by the angle α around z′ takes us to a frame
x′′, y′′, z′′, for which
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The last rotation of −90° about y′′ takes us to x′′′,
y′′′, z′′′; by (6.33),
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Combining these last two transformations, we get
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Using Eqs. (6.32) for [image: C_+'] and [image: C_-'], we get the
complete transformation:
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We can put these formulas in a simpler form by remembering that
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We get
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(6.34)




Here is our transformation for a rotation about the x-axis by
any angle α. It is only a little more complicated than
the others.





 


6–6 Arbitrary rotations

[image: -]
Fig. 6–9. 
The orientation of any coordinate frame x′, y′, z′
relative to another frame x, y, z can be defined in terms of
Euler’s angles α, β, γ.





Now we can see how to do any angle at all. First, notice that
any relative orientation of two coordinate frames can be described in
terms of three angles, as shown in Fig. 6-9. If we
have a set of axes x′, y′, and z′ oriented in any way at all
with respect to x, y, and z, we can describe the relationship
between the two frames by means of the three Euler angles α, β,
and γ, which define three successive rotations that
will bring the x, y, z frame into the x′, y′, z′
frame. Starting at x, y, z, we rotate our frame through the
angle β about the z-axis, bringing the x-axis to the
line x1. Then, we rotate by α about this temporary x-axis, to
bring z down to z′. Finally, a rotation about the new z-axis
(that is, z′) by the angle γ will bring the x-axis into x′
and the y-axis into y′.6 We know the transformations for each of the three
rotations—they are given in (6.19)
and (6.34). Combining them in the proper order, we get
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(6.35)









So just starting from some assumptions about the properties of space,
we have derived the amplitude transformation for any rotation at
all. That means that if we know the amplitudes for any state of a spin
one-half particle to go into the two beams of a Stern-Gerlach
apparatus S, whose axes are x, y, and z, we can calculate what
fraction would go into either beam of an apparatus T with the axes
x′, y′, and z′. In other words, if we have a state ψ of a
spin one-half particle, whose amplitudes are [image: C_+=\braket{+}{\psi}]
and [image: C_-=\braket{-}{\psi}] to be “up” and “down” with respect to
the z-axis of the x, y, z frame, we also know the amplitudes
[image: C_+'] and [image: C_-'] to be “up” and “down” with respect to the
z′-axis of any other frame x′, y′, z′. The four coefficients
in Eqs. (6.35) are the terms of the “transformation
matrix” with which we can project the amplitudes of a spin one-half
particle into any other coordinate system.





We will now work out a few examples to show you how it all
works. Let’s take the following simple question. We put a spin
one-half atom through a Stern-Gerlach apparatus that transmits only the
(+z) state. What is the amplitude that it will be in the (+x) state? 
The +x axis is the same as the +z′ axis of a system
rotated 90° about the y-axis. For this problem, then, it is
simplest to use Eqs. (6.32)—although you could, of
course, use the complete equations of (6.35). Since
C+=1 and C−=0, we get [image: C_+'=1/\sqrt{2}]. The probabilities are
the absolute square of these amplitudes; there is a 50 percent
chance that the particle will go through an apparatus that selects the
(+x) state. If we had asked about the (−x) state the amplitude
would have been −1/√2, which also gives a
probability 1/2—as you would expect from the symmetry of space. So if a
particle is in the (+z) state, it is equally likely to be in (+x)
or (−x), but with opposite phase.





There’s no prejudice in y either. A particle in the (+z) state has a
50–50 chance of being in (+y) or in (−y). However, for these
(using the formula for rotating −90° about x), the amplitudes
are 1/√2 and −i/√2. In this case, the two amplitudes
have a phase difference of 90° instead of 180°, as they
did for the (+x) and (−x). In fact, that’s how the distinction
between x and y shows up.
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Fig. 6–10. 
An axis A defined by the polar angles θ and ϕ.





As our final example, suppose that we know that a spin one-half
particle is in a state ψ such that it is polarized “up” along
some axis A, defined by the angles θ and ϕ in
Fig. 6-10. We want to know the amplitude C+ that the
particle is “up” along z and the amplitude C− that it is “down” 
along z.  We can find these amplitudes by imagining that A is the
z-axis of a system whose x-axis lies in some arbitrary
direction—say in the plane formed by A and z. We can then bring
the frame of A into x, y, z by three rotations. First, we make a
rotation by −π/2 about the axis A, which brings the x-axis into
the line B in the figure. Then we rotate by θ about line B
(the new x-axis of frame A) to bring A to the z-axis. Finally,
we rotate by the angle (π/2−ϕ) about z. Remembering that we
have only a (+) state with respect to A, we get
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(6.36)









We would like, finally, to summarize the results of this chapter in a
form that will be useful for our later work. First, we remind you that
our primary result in Eqs. (6.35) can be written in
another notation. Note that Eqs. (6.35) mean just the
same thing as Eq. (6.4). That is, in
Eqs. (6.35) the coefficients of [image: C_+=\braket{+S}{\psi}]
and [image: C_-=\braket{-S}{\psi}] are just the amplitudes [image: \braket{jT}{iS}] of
Eq. (6.4)—the amplitudes that a particle in the
i-state with respect to S will be in the j-state with respect
to T (when the orientation of T with respect to S is given in terms
of the angles α, β, and γ). We also called them
[image: R_{ji}^{TS}] in Eq. (6.6). (We have a plethora of
notations!) For example, [image: R_{-+}^{TS}=\braket{-T}{+S}] is the
coefficient of C+ in the formula for [image: C_-'], namely,
i sin(α/2) ei (β−γ)/2. We can, therefore, make a
summary of our results in the form of a table, as we have done in
Table 6–1.






Table 6–1. The amplitudes [image: \boldsymbol{\braket{jT}{iS}}] for a rotation
defined by the Euler angles α, β,
γ of Fig. 6-9





[image: --]


It will occasionally be handy to have these amplitudes already worked
out for some simple special cases. Let’s let Rz (ϕ) stand for a
rotation by the angle ϕ about the z-axis. We can also let it
stand for the corresponding rotation matrix (omitting the subscripts i
and j, which are to be implicitly understood). In the same spirit
Rx (ϕ) and Ry (ϕ) will stand for rotations by the angle ϕ
about the x-axis or the y-axis. We give in Table 6–2
the matrices—the tables of amplitudes [image: \braket{jT}{iS}]—which
project the amplitudes from the S-frame into the T-frame, where T
is obtained from S by the rotation specified.






Table 6–2. The amplitudes [image: \boldsymbol{\braket{jT}{iS}}] for a rotation
  R (ϕ) by the angle ϕ about the
  z-axis, x-axis, or
  y-axis





[image: --]


 

  	
    
    This chapter is a rather long and abstract
side tour, and it does not introduce any idea which we will not also
come to by a different route in later chapters. You can, therefore, skip
over it, and come back later if you are interested.
    ^
  

 
  	
    
    Looking at it another way, we are
just putting the transformation in the “standard form” described in
Section 6-2 by using Eq. (6.15).
    ^
  

  
  	
    
    It appears that [image: m=-\tfrac{1}{2}] would
also work. However, we see in (6.17) that the change in
sign merely redefines the notation for a spin-up particle.
    ^
  

  
  	
    
    Also, if something has been rotated by a sequence of
small rotations whose net result is to return it to the original
orientation, it is possible to define the idea that it has been
rotated 360°—as distinct from zero net rotation—if you have
kept track of the whole history. (Interestingly enough, this is
not true for a net rotation of 720°.)
    ^
  

  
  	
    
    The other solution changes all signs of
a, b, c, and d and corresponds to a −270° rotation.
    ^
  

  
  	
    
    With a little work you can
show that the frame x, y, z can also be brought into the frame
x′, y′, z′ by the following three rotations about the
original axes: (1) rotate by the angle γ around the
original z-axis; (2) rotate by the angle α around the
original x-axis; (3) rotate by the angle β around the original
z-axis.
    ^
  





  
    

7 The Dependence of Amplitudes on Time
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7–1 Atoms at rest; stationary states


We want now to talk a little bit about the behavior of probability
amplitudes in time. We say a “little bit,” because the actual
behavior in time necessarily involves the behavior in space as
well. Thus, we get immediately into the most complicated possible
situation if we are to do it correctly and in detail. We are always in
the difficulty that we can either treat something in a logically
rigorous but quite abstract way, or we can do something which is not
at all rigorous but which gives us some idea of a real
situation—postponing until later a more careful treatment. With
regard to energy dependence, we are going to take the second
course. We will make a number of statements. We will not try to be
rigorous—but will just be telling you things that have been found
out, to give you some feeling for the behavior of amplitudes as a
function of time. As we go along, the precision of the description
will increase, so don’t get nervous that we seem to be picking things
out of the air. It is, of course, all out of the air—the air of
experiment and of the imagination of people. But it would take us too
long to go over the historical development, so we have to plunge in
somewhere. We could plunge into the abstract and deduce
everything—which you would not understand—or we could go through a
large number of experiments to justify each statement. We choose to do
something in between.




An electron alone in empty space can, under certain circumstances,
have a certain definite energy. For example, if it is standing still
(so it has no translational motion, no momentum, or kinetic energy),
it has its rest energy. A more complicated object like an atom can
also have a definite energy when standing still, but it could also be
internally excited to another energy level. (We will describe later
the machinery of this.) We can often think of an atom in an excited
state as having a definite energy, but this is really only
approximately true. An atom doesn’t stay excited forever because it
manages to discharge its energy by its interaction with the
electromagnetic field. So there is some amplitude that a new state is
generated—with the atom in a lower state, and the electromagnetic
field in a higher state, of excitation. The total energy of the system
is the same before and after, but the energy of the atom is
reduced. So it is not precise to say an excited atom has a
definite energy; but it will often be convenient and not too
wrong to say that it does.




[Incidentally, why does it go one way instead of the other way? Why
does an atom radiate light? The answer has to do with entropy. When
the energy is in the electromagnetic field, there are so many
different ways it can be—so many different places where it can
wander—that if we look for the equilibrium condition, we find that
in the most probable situation the field is excited with a photon, and
the atom is de-excited. It takes a very long time for the photon to
come back and find that it can knock the atom back up again. It’s
quite analogous to the classical problem: Why does an accelerating
charge radiate? It isn’t that it “wants” to lose energy, because, in
fact, when it radiates, the energy of the world is the same as it was
before. Radiation or absorption goes in the direction of increasing
entropy.]




Nuclei can also exist in different energy levels, and in an
approximation which disregards the electromagnetic effects, we can say
that a nucleus in an excited state stays there. Although we know that
it doesn’t stay there forever, it is often useful to start out with an
approximation which is somewhat idealized and easier to think
about. Also it is often a legitimate approximation under certain
circumstances. (When we first introduced the classical laws of a
falling body, we did not include friction, but there is almost never a
case in which there isn’t some friction.)




Then there are the subnuclear “strange particles,” which have
various masses. But the heavier ones disintegrate into other light
particles, so again it is not correct to say that they have a
precisely definite energy. That would be true only if they lasted
forever. So when we make the approximation that they have a definite
energy, we are forgetting the fact that they must blow up. For the
moment, then, we will intentionally forget about such processes and
learn later how to take them into account.




Suppose we have an atom—or an electron, or any particle—which at
rest would have a definite energy E0. By the energy E0 we mean
the mass of the whole thing times c2. This mass includes any
internal energy; so an excited atom has a mass which is different from
the mass of the same atom in the ground state. (The ground state means the
state of lowest energy.) We will call E0 the “energy at rest.”




For an atom at rest, the quantum mechanical amplitude to
find an atom at a place is the same everywhere; it does
not depend on position. This means, of course, that the
probability of finding the atom anywhere is the
same. But it means even more. The probability could be
independent of position, and still the phase of the
amplitude could vary from point to point. But for a particle at
rest, the complete amplitude is identical everywhere. It does,
however, depend on the time. For a particle in a state of
definite energy E0, the amplitude to find the particle at (x,y,z)
at the time t is

[image: -*-]
(7.1)




where a is some constant. The amplitude to be at any point in space
is the same for all points, but depends on time according
to (7.1). We shall simply assume this rule to be true.




Of course, we could also write (7.1) as

[image: -*-]
(7.2)




with

[image: -*-]


where M is the rest mass of the atomic state, or particle. There are
three different ways of specifying the energy: by the frequency of an
amplitude, by the energy in the classical sense, or by the
inertia. They are all equivalent; they are just different ways of
saying the same thing.




You may be thinking that it is strange to think of a “particle”
which has equal amplitudes to be found throughout all space. After
all, we usually imagine a “particle” as a small object located
“somewhere.”  But don’t forget the uncertainty principle. If a
particle has a definite energy, it has also a definite momentum. If
the uncertainty in momentum is zero, the uncertainty relation, Δ p Δ x=ℏ, tells us that the uncertainty in the position must
be infinite, and that is just what we are saying when we say that
there is the same amplitude to find the particle at all points in
space.




If the internal parts of an atom are in a different state with a
different total energy, then the variation of the amplitude with time
is different. If you don’t know in which state it is, there will be a
certain amplitude to be in one state and a certain amplitude to be in
another—and each of these amplitudes will have a different
frequency. There will be an interference between these different
components—like a beat-note—which can show up as a varying
probability. Something will be “going on” inside of the atom—even
though it is “at rest” in the sense that its center of mass is not
drifting. However, if the atom has one definite energy, the amplitude
is given by (7.1), and the absolute square of this
amplitude does not depend on time. You see, then, that if a thing has
a definite energy and if you ask any probability question about
it, the answer is independent of time. Although the amplitudes
vary with time, if the energy is definite they vary as an
imaginary exponential, and the absolute value doesn’t change.





That’s why we often say that an atom in a definite energy level is in
a stationary state. If you make any measurements of the things
inside, you’ll find that nothing (in probability) will change in
time. In order to have the probabilities change in time, we have to
have the interference of two amplitudes at two different frequencies,
and that means that we cannot know what the energy is. The object will
have one amplitude to be in a state of one energy and another
amplitude to be in a state of another energy. That’s the quantum
mechanical description of something when its behavior depends
on time.




If we have a “condition” which is a mixture of two different states
with different energies, then the amplitude for each of the two states
varies with time according to Eq. (7.2), for instance,
as

[image: -*-]
(7.3)




And if we have some combination of the two, we will have an
interference. But notice that if we added a constant to both energies,
it wouldn’t make any difference. If somebody else were to use a
different scale of energy in which all the energies were increased (or
decreased) by a constant amount—say, by the amount A—then the
amplitudes in the two states would, from his point of view, be

[image: -*-]
(7.4)




All of his amplitudes would be multiplied by the same factor
e−i (A/ℏ) t, and all linear combinations, or interferences,
would have the same factor. When we take the absolute squares to find
the probabilities, all the answers would be the same. The choice of an
origin for our energy scale makes no difference; we can measure energy
from any zero we want. For relativistic purposes it is nice to measure
the energy so that the rest mass is included, but for many purposes
that aren’t relativistic it is often nice to subtract some standard
amount from all energies that appear. For instance, in the case of an
atom, it is usually convenient to subtract the energy Ms c2, where
Ms is the mass of all the separate pieces—the nucleus and
the electrons—which is, of course, different from the mass of the
atom. For other problems it may be useful to subtract from all
energies the amount Mg c2, where Mg is the mass of the whole
atom in the ground state; then the energy that appears is just
the excitation energy of the atom. So, sometimes we may shift our zero
of energy by some very large constant, but it doesn’t make any
difference, provided we shift all the energies in a particular
calculation by the same constant. So much for a particle standing
still.







7–2 Uniform motion


If we suppose that the relativity theory is right, a particle at rest
in one inertial system can be in uniform motion in another inertial
system. In the rest frame of the particle, the probability amplitude
is the same for all x, y, and z but varies with t. The
magnitude of the amplitude is the same for all t, but the
phase depends on t. We can get a kind of a picture of the
behavior of the amplitude if we plot lines of equal phase—say, lines
of zero phase—as a function of x and t. For a particle at rest,
these equal-phase lines are parallel to the x-axis and are equally
spaced in the t-coordinate, as shown by the dashed lines in
Fig. 7–1.



[image: -]
Fig. 7–1. Relativistic transformation of the amplitude of a particle at
rest in the x-t systems.





In a different frame—x′, y′, z′, t′—that is moving with
respect to the particle in, say, the x-direction, the x′ and t′
coordinates of any particular point in space are related to x and t
by the Lorentz transformation. This transformation can be represented
graphically by drawing x′ and t′ axes, as is done in
Fig. 7–1. (See Chapter 17, Vol. I,
Fig. 17–2) You can see that in the x′-t′ system,
points of equal phase1 have a different spacing along
the t′-axis, so the frequency of the time variation is different. Also
there is a variation of the phase with x′, so the probability
amplitude must be a function of x′.




Under a Lorentz transformation for the velocity v, say along the
negative x-direction, the time t is related to the time t′ by
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so our amplitude now varies as

[image: -*-]


In the prime system it varies in space as well as in time. If we write
the amplitude as

[image: -*-]


we see that [image: E_p'=E_0/\sqrt{1-v^2/c^2}] is the energy computed
classically for a particle of rest energy E0 travelling at the
velocity v, and [image: p'=E_p'v/c^2] is the corresponding particle
momentum.




You know that xμ=(t,x,y,z) and pμ=(E,px,py,pz) are
four-vectors, and that pμ xμ=E t−p⋅x is a scalar
invariant. In the rest frame of the particle, pμ xμ is
just E t; so if we transform to another frame, E t will be replaced by
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Thus, the probability amplitude of a particle which has the
momentum p will be proportional to

[image: -*-]
(7.5)




where Ep is the energy of the particle whose momentum is p, that
is,
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(7.6)




where E0 is, as before, the rest energy. For nonrelativistic
problems, we can write
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(7.7)




where Wp is the energy over and above the rest energy Ms c2 of
the parts of the atom. In general, Wp would include both the
kinetic energy of the atom as well as its binding or excitation
energy, which we can call the “internal” energy. We would write
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(7.8)




and the amplitudes would be
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(7.9)




Because we will generally be doing nonrelativistic calculations, we
will use this form for the probability amplitudes.




Note that our relativistic transformation has given us the variation
of the amplitude of an atom which moves in space without any
additional assumptions. The wave number of the space variations is,
from (7.9),
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(7.10)




so the wavelength is

[image: -*-]
(7.11)




This is the same wavelength we have used before for particles with the
momentum p. This formula was first arrived at by de Broglie in just
this way. For a moving particle, the frequency of the amplitude
variations is still given by
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(7.12)









The absolute square of (7.9) is just 1, so for a
particle in motion with a definite energy, the probability of
finding it is the same everywhere and does not change with time. (It
is important to notice that the amplitude is a complex wave. If
we used a real sine wave, the square would vary from point to point,
which would not be right.)




We know, of course, that there are situations in which particles move
from place to place so that the probability depends on position and
changes with time. How do we describe such situations? We can do that
by considering amplitudes which are a superposition of two or more
amplitudes for states of definite energy. We have already discussed
this situation in Chapter 48 of Vol. I—even for probability
amplitudes! We found that the sum of two amplitudes with different
wave numbers k (that is, momenta) and frequencies ω (that is,
energies) gives interference humps, or beats, so that the square of
the amplitude varies with space and time. We also found that these
beats move with the so-called “group velocity” given by
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where Δ k and Δ ω are the differences between the
wave numbers and frequencies for the two waves. For more complicated
waves—made up of the sum of many amplitudes all near the same
frequency—the group velocity is
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(7.13)









Taking ω=Ep/ℏ and k=p/ℏ, we see that
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(7.14)




Using Eq. (7.6), we have
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(7.15)




At nonrelativistic speeds Ep≈M c2, so
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(7.16)




which is just the classical velocity of the particle. Alternatively,
if we use the nonrelativistic expressions Eqs. (7.7)
and (7.8), we have
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and
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(7.17)




which is again the classical velocity.




Our result, then, is that if we have several amplitudes for pure
energy states of nearly the same energy, their interference gives
“lumps” in the probability that move through space with a velocity
equal to the velocity of a classical particle of that energy. We
should remark, however, that when we say we can add two amplitudes of
different wave number together to get a beat-note that will correspond
to a moving particle, we have introduced something new—something
that we cannot deduce from the theory of relativity. We said what the
amplitude did for a particle standing still and then deduced what it
would do if the particle were moving. But we cannot deduce from
these arguments what would happen when there are two waves
moving with different speeds. If we stop one, we cannot stop the
other. So we have added tacitly the extra hypothesis that not
only is (7.9) a possible solution, but that there
can also be solutions with all kinds of p’s for the same system, and
that the different terms will interfere.







7–3 Potential energy; energy conservation

[image: -]
Fig. 7–2. A particle of mass M and momentum p in a region of
constant potential.





Now we would like to discuss what happens when the energy of a
particle can change. We begin by thinking of a particle which moves in
a force field described by a potential. We discuss first the effect of
a constant potential. Suppose that we have a large metal can which we
have raised to some electrostatic potential ϕ, as in
Fig. 7–2. If there are charged objects inside the can,
their potential energy will be q ϕ, which we will call V, and will
be absolutely independent of position. Then there can be no change in
the physics inside, because the constant potential doesn’t make any
difference so far as anything going on inside the can is concerned. Now
there is no way we can deduce what the answer should be, so we must make
a guess. The guess which works is more or less what you might expect:
For the energy, we must use the sum of the potential energy V and the
energy Ep—which is itself the sum of the internal and kinetic
energies. The amplitude is proportional to
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(7.18)




The general principle is that the coefficient of t, which we
may call ω, is always given by the total energy of the
system: internal (or “mass”) energy, plus kinetic energy, plus
potential energy:
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(7.19)




Or, for nonrelativistic situations,
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(7.20)









Now what about physical phenomena inside the box? If there are several
different energy states, what will we get? The amplitude for each
state has the same additional factor
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over what it would have with V=0. That is just like a change in the
zero of our energy scale. It produces an equal phase change in all
amplitudes, but as we have seen before, this doesn’t change any of the
probabilities. All the physical phenomena are the same. (We have
assumed that we are talking about different states of the same charged
object, so that q ϕ is the same for all. If an object could change
its charge in going from one state to another, we would have quite
another result, but conservation of charge prevents this.)




So far, our assumption agrees with what we would expect for a change
of energy reference level. But if it is really right, it should hold
for a potential energy that is not just a constant. In general, V
could vary in any arbitrary way with both time and space, and the
complete result for the amplitude must be given in terms of a
differential equation. We don’t want to get concerned with the general
case right now, but only want to get some idea about how some things
happen, so we will think only of a potential that is constant in time
and varies very slowly in space. Then we can make a comparison between
the classical and quantum ideas.



[image: -]
Fig. 7–3. The amplitude for a particle in transit from one potential to
another.





Suppose we think of the situation in Fig. 7–3, which has
two boxes held at the constant potentials ϕ1 and ϕ2 and a
region in between where we will assume that the potential varies
smoothly from one to the other. We imagine that some particle has an
amplitude to be found in any one of the regions. We also assume that the
momentum is large enough so that in any small region in which there are
many wavelengths, the potential is nearly constant. We would then think
that in any part of the space the amplitude ought to look
like (7.18) with the appropriate V for that part of the
space.




Let’s think of a special case in which ϕ1=0, so that the
potential energy there is zero, but in which q ϕ2 is negative, so
that classically the particle would have more energy in the second
box. Classically, it would be going faster in the second box—it
would have more energy and, therefore, more momentum. Let’s see how
that might come out of quantum mechanics.




With our assumption, the amplitude in the first box would be
proportional to
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(7.21)




and the amplitude in the second box would be proportional to
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(7.22)




(Let’s say that the internal energy is not being changed, but remains
the same in both regions.) The question is: How do these two
amplitudes match together through the region between the boxes?




We are going to suppose that the potentials are all constant in
time—so that nothing in the conditions varies. We will then suppose
that the variations of the amplitude (that is, its phase) have the
same frequency everywhere—because, so to speak, there is
nothing in the “medium” that depends on time. If nothing in the
space is changing, we can consider that the wave in one region
“generates” subsidiary waves all over space which will all oscillate
at the same frequency—just as light waves going through materials at
rest do not change their frequency. If the frequencies in
(7.21) and (7.22) are the same, we must have
that
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(7.23)




Both sides are just the classical total energies, so
Eq. (7.23) is a statement of the conservation of energy. In
other words, the classical statement of the conservation of energy is
equivalent to the quantum mechanical statement that the frequencies for
a particle are everywhere the same if the conditions are not changing
with time. It all fits with the idea that ℏ ω=E.




In the special example that V1=0 and V2 is negative,
Eq. (7.23) gives that p2 is greater than p1, so the
wavelength of the waves is shorter in region 2. The surfaces of equal
phase are shown by the dashed lines in Fig. 7–3. We have
also drawn a graph of the real part of the amplitude, which shows again
how the wavelength decreases in going from region 1 to region 2. The
group velocity of the waves, which is p/M, also increases in the way
one would expect from the classical energy conservation, since it is
just the same as Eq. (7.23).




There is an interesting special case where V2 gets so large that
V2−V1 is greater than [image: p_1^2/2M]. Then [image: p_2^2], which is given by
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(7.24)




is negative. That means that p2 is an imaginary number, say,
i p′. Classically, we would say that the particle never gets into
region 2—it doesn’t have enough energy to climb the potential
hill. Quantum mechanically, however, the amplitude is still given by
Eq. (7.22); its space variation still goes as
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But if p2 is imaginary, the space dependence becomes a real
exponential. Say that the particle was initially going in the
+x-direction; then the amplitude would vary as
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(7.25)




The amplitude decreases rapidly with increasing x.



[image: -]
Fig. 7–4. The amplitude for a particle approaching a strongly repulsive
potential.





Imagine that the two regions at different potentials were very close
together, so that the potential energy changed suddenly from V1
to V2, as shown in Fig. 7–4(a). If we plot the real part
of the probability amplitude, we get the dependence shown in part (b) of
the figure. The wave in the first region corresponds to a particle
trying to get into the second region, but the amplitude there falls off
rapidly. There is some chance that it will be observed in the second
region—where it could never get classically—but the amplitude
is very small except right near the boundary. The situation is very much
like what we found for the total internal reflection of light. The light
doesn’t normally get out, but we can observe it if we put something
within a wavelength or two of the surface.



[image: -]
Fig. 7–5. The penetration of the amplitude through a potential barrier.





You will remember that if we put a second surface close to the
boundary where light was totally reflected, we could get some light
transmitted into the second piece of material. The corresponding thing
happens to particles in quantum mechanics. If there is a narrow region
with a potential V, so great that the classical kinetic energy would
be negative, the particle would classically never get past. But
quantum mechanically, the exponentially decaying amplitude can reach
across the region and give a small probability that the particle will
be found on the other side where the kinetic energy is again
positive. The situation is illustrated in Fig. 7–5. This
effect is called the quantum mechanical “penetration of a barrier.”




[image: -]
Fig. 7–6. (a) The potential function for an α-particle in a
uranium nucleus. (b) The qualitative form of the probability amplitude.





The barrier penetration by a quantum mechanical amplitude gives the
explanation—or description—of the α-particle decay of a
uranium nucleus. The potential energy of an α-particle, as a
function of the distance from the center, is shown in
Fig. 7–6(a). If one tried to shoot an α-particle
with the energy E into the nucleus, it would feel an
electrostatic repulsion from the nuclear charge z and would,
classically, get no closer than the distance r1 where its total
energy is equal to the potential energy V. Closer in, however, the
potential energy is much lower because of the strong attraction of the
short-range nuclear forces. How is it then that in radioactive decay we
find α-particles which started out inside the nucleus coming out
with the energy E? Because they start out with the energy E inside
the nucleus and “leak” through the potential barrier. The probability
amplitude is roughly as sketched in part (b) of Fig. 7–6,
although actually the exponential decay is much larger than shown. It
is, in fact, quite remarkable that the mean life of an α-particle
in the uranium nucleus is as long as [image: 4\tfrac{1}{2}] billion years, when
the natural oscillations inside the nucleus are so extremely
rapid—about 1022 per sec! How can one get a number like
109 years from 10−22 sec? The answer is that the exponential gives the
tremendously small factor of about e−45—which gives the very
small, though definite, probability of leakage. Once the
α-particle is in the nucleus, there is almost no amplitude at all
for finding it outside; however, if you take many nuclei and wait long
enough, you may be lucky and find one that has come out.







7–4 Forces; the classical limit

[image: -]
Fig. 7–7. The deflection of a particle by a transverse potential
gradient.





Suppose that we have a particle moving along and passing through a
region where there is a potential that varies at right angles to the
motion. Classically, we would describe the situation as sketched in
Fig. 7–7. If the particle is moving along the
x-direction and enters a region where there is a potential that varies
with y, the particle will get a transverse acceleration from the
force F=−∂V/∂y. If the force is present only in a limited region of
width w, the force will act only for the time w/v. The particle will
be given the transverse momentum
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The angle of deflection δ θ is then
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where p is the initial momentum. Using −∂V/∂y for F, we
get
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(7.26)









It is now up to us to see if our idea that the waves go
as (7.20) will explain the same result. We look at the same
thing quantum mechanically, assuming that everything is on a very large
scale compared with a wavelength of our probability amplitudes. In any
small region we can say that the amplitude varies as
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(7.27)




Can we see that this will also give rise to a deflection of the particle
when V has a transverse gradient? We have sketched in
Fig. 7–8 what the waves of probability amplitude will look
like. We have drawn a set of “wave nodes” which you
can think of as surfaces where the phase of the amplitude is zero. In
every small region, the wavelength—the distance between successive
nodes—is
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where p is related to V through
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(7.28)




In the region where V is larger, p is smaller, and the wavelength
is longer. So the angle of the wave nodes gets changed as shown in the
figure.




[image: -]
Fig. 7–8. The probability amplitude in a region with a transverse
potential gradient.





To find the change in angle of the wave nodes we notice that for the
two paths a and b in Fig. 7–8 there is a difference
of potential Δ V=(∂V/∂y) D, so there is a difference Δ p
in the momentum along the two tracks which can be obtained
from (7.28):

[image: -*-]
(7.29)




The wave number p/ℏ is, therefore, different along the two
paths, which means that the phase is advancing at a different
rate. The difference in the rate of increase of phase is Δ k=Δ p/ℏ, so the accumulated phase difference in the total
distance w is

[image: -*-]
(7.30)




This is the amount by which the phase on path b is “ahead” of the
phase on path a as the wave leaves the strip. But outside the strip,
a phase advance of this amount corresponds to the wave node being
ahead by the amount
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or
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(7.31)




Referring to Fig. 7–8, we see that the new wavefronts
will be at the angle δ θ given by
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(7.32)




so we have

[image: -*-]
(7.33)




This is identical to Eq. (7.26) if we replace p/M
by v and Δ V/D by ∂V/∂y.




The result we have just got is correct only if the potential
variations are slow and smooth—in what we call the classical
limit. We have shown that under these conditions we will get the same
particle motions we get from F=m a, provided we assume that a
potential contributes a phase to the probability amplitude equal
to V t/ℏ. In the classical limit, the quantum mechanics will
agree with Newtonian mechanics.







7–5 The “precession” of a spin one-half particle


Notice that we have not assumed anything special about the potential
energy—it is just that energy whose derivative gives a force. For
instance, in the Stern-Gerlach experiment we had the
energy U=−μ⋅B, which gives a force if B has a spatial
variation. If we wanted to give a quantum mechanical description, we
would have said that the particles in one beam had an energy that
varied one way and that those in the other beam had an opposite energy
variation. (We could put the magnetic energy U into the potential
energy V or into the “internal” energy W; it doesn’t matter.)
Because of the energy variation, the waves are refracted, and the
beams are bent up or down. (We see now that quantum mechanics would
give us the same bending as we would compute from the classical
mechanics.)




From the dependence of the amplitude on potential energy we would also
expect that if a particle sits in a uniform magnetic field along the
z-direction, its probability amplitude must be changing with time
according to
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(We can consider that this is, in effect, a definition of μz.) In
other words, if we place a particle in a uniform field B for a
time τ, its probability amplitude will be multiplied by

[image: -*-]


over what it would be in no field. Since for a spin one-half particle,
μz can be either plus or minus some number, say μ, the two
possible states in a uniform field would have their phases changing at
the same rate but in opposite directions. The two amplitudes get
multiplied by

[image: -*-]
(7.34)









This result has some interesting consequences. Suppose we have a spin
one-half particle in some state that is not purely spin up or spin
down. We can describe its condition in terms of the amplitudes to be
in the pure up and pure down states. But in a magnetic field, these
two states will have phases changing at a different rate. So if we ask
some question about the amplitudes, the answer will depend on how long
it has been in the field.




As an example, we consider the disintegration of the muon in a
magnetic field. When muons are produced as disintegration products of
π-mesons, they are polarized (in other words, they have a
preferred spin direction). The muons, in turn, disintegrate—in about
2.2 microseconds on the average—emitting an electron and two
neutrinos:

[image: -*-]


In this disintegration it turns out that (for at least the highest
energies) the electrons are emitted preferentially in the direction
opposite to the spin direction of the muon.



[image: -]
Fig. 7–9. A muon-decay experiment.





Suppose then that we consider the experimental arrangement shown in
Fig. 7–9. If polarized muons enter from the left and are
brought to rest in a block of material at A, they will, a little while
later, disintegrate. The electrons emitted will, in general, go off in
all possible directions. Suppose, however, that the muons all enter the
stopping block at A with their spins in the x-direction. Without a
magnetic field there would be some angular distribution of decay
directions; we would like to know how this distribution is changed by
the presence of the magnetic field. We expect that it may vary in some
way with time. We can find out what happens by asking, for any moment,
what the amplitude is that the muon will be found in the (+x) state.




We can state the problem in the following way: A muon is known to have
its spin in the +x-direction at t=0; what is the amplitude that it
will be in the same state at the time τ? Now we do not have any
rule for the behavior of a spin one-half particle in a magnetic field
at right angles to the spin, but we do know what happens to the spin
up and spin down states with respect to the field—their amplitudes
get multiplied by the factor (7.34). Our procedure then
is to choose the representation in which the base states are spin up
and spin down with respect to the z-direction (the field
direction). Any question can then be expressed with reference to the
amplitudes for these states.




Let’s say that ψ (t) represents the muon state. When it enters the
block A, its state is ψ (0), and we want to know ψ (τ) at
the later time τ. If we represent the two base states by (+z)
and (−z) we know the two amplitudes [image: \braket{+z}{\psi(0)}]
and [image: \braket{-z}{\psi(0)}]—we know these amplitudes because we know that
ψ (0) represents a state with the spin in the (+x) state. From
the results of the last chapter, these amplitudes are2

[image: -*-]
(7.35)




They happen to be equal. Since these amplitudes refer to the condition
at t=0, let’s call them C+ (0) and C− (0).




Now we know what happens to these two amplitudes with time.
Using (7.34), we have

[image: -*-]
(7.36)




But if we know C+ (t) and C− (t), we have all there is to know
about the condition at t. The only trouble is that what we
want to know is the probability that at t the spin will be in
the +x-direction. Our general rules can, however, take care of this
problem. We write that the amplitude to be in the (+x) state at
time t, which we may call A+ (t), is
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or
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(7.37)




Again using the results of the last chapter—or better the
equality [image: \braket{\phi}{\chi}=\braket{\chi}{\phi}\cconj] from
Chapter 5—we know that
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So we know all the quantities in Eq. (7.37). We get
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or
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A particularly simple result! Notice that the answer agrees with what
we expect for t=0. We get A+ (0)=1, which is right, because we
assumed that the muon was in the (+x) state at t=0.




The probability P+ that the muon will be found in the (+x) state
at t
is [image: (A_+)^2] or
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The probability oscillates between zero and one, as shown in
Fig. 7–10. Note that the probability returns to one
for μ B t/ℏ=π (not 2 π). Because we have squared the
cosine function, the probability repeats itself with the frequency 2 μ B/ℏ.



[image: -]
Fig. 7–10. Time dependence of the probability that a spin one-half
particle will be in a (+) state with respect to the x-axis.





Thus, we find that the chance of catching the decay electron in the
electron counter of Fig. 7–9 varies periodically with
the length of time the muon has been sitting in the magnetic field. The
frequency depends on the magnetic moment μ. The magnetic moment of
the muon has, in fact, been measured in just this way.





We can, of course, use the same method to answer any other questions
about the muon decay. For example, how does the chance of detecting a
decay electron in the y-direction at 90° to the x-direction
but still at right angles to the field depend on t? If you work it
out, the probability to be in the (+y) state varies as cos2{(μ B t/ℏ)−π/4}, which oscillates with the same period but reaches
its maximum one-quarter cycle later, when μ B t/ℏ=π/4. In
fact, what is happening is that as time goes on, the muon goes through
a succession of states which correspond to complete polarization in a
direction that is continually rotating about the z-axis. We can
describe this by saying that the spin is precessing at the
frequency

[image: -*-]
(7.38)









You can begin to see the form that our quantum mechanical description
will take when we are describing how things behave in time.






	
  
  We are assuming that the phase should
have the same value at corresponding points in the two systems. This is
a subtle point, however, since the phase of a quantum mechanical
amplitude is, to a large extent, arbitrary. A complete justification of
this assumption requires a more detailed discussion involving
interferences of two or more amplitudes.
  ^


	
  
  If you
skipped Chapter 6, you can just take (7.35)
as an underived rule for now. We will give later (in
Chapter 10) a more complete discussion of spin precession,
including a derivation of these amplitudes.
  ^
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8–1 Amplitudes and vectors


Before we begin the main topic of this chapter, we would like to
describe a number of mathematical ideas that are used a lot in the
literature of quantum mechanics. Knowing them will make it easier for
you to read other books or papers on the subject. The first idea is
the close mathematical resemblance between the equations of quantum
mechanics and those of the scalar product of two vectors. You remember
that if χ and ϕ are two states, the amplitude to start
in ϕ and end up in χ can be written as a sum over a complete
set of base states of the amplitude to go from ϕ into one of the
base states and then from that base state out again into χ:

[image: -*-]
(8.1)




We explained this in terms of a Stern-Gerlach apparatus, but we remind
you that there is no need to have the apparatus.
Equation (8.1) is a mathematical law that is just as true
whether we put the filtering equipment in or not—it is not always
necessary to imagine that the apparatus is there. We can think of it
simply as a formula for the amplitude [image: \braket{\chi}{\phi}].




We would like to compare Eq. (8.1) to the formula for
the dot product of two vectors B and A. If B
and A are ordinary vectors in three dimensions, we can write the dot
product this way:
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(8.2)




with the understanding that the symbol ei stands for the three
unit vectors in the x, y, and z-directions. Then
B⋅e1 is what we ordinarily call Bx;
B⋅e2 is what we ordinarily call By; and so on. So
Eq. (8.2) is equivalent to
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which is the dot product B⋅A.




Comparing Eqs. (8.1) and (8.2), we can see the
following analogy: The states χ and ϕ correspond to the two vectors
B and A. The base states i correspond to the special
vectors ei to which we refer all other vectors. Any vector can be
represented as a linear combination of the three “base vectors” ei.
Furthermore, if you know the coefficients of each “base vector” in this
combination—that is, its three components—you know everything about a
vector. In a similar way, any quantum mechanical state can be described
completely by the amplitude [image: \braket{i}{\phi}] to go into the base states; and
if you know these coefficients, you know everything there is to know about the
state. Because of this close analogy, what we have called a “state” is often
also called a “state vector.”




Since the base vectors ei are all at right angles, we have the
relation

[image: -*-]
(8.3)




This corresponds to the relations (5.25) among the base
states i,

[image: -*-]
(8.4)




You see now why one says that the base states i are all
“orthogonal.”




There is one minor difference between Eq. (8.1) and the
dot product. We have that
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(8.5)




But in vector algebra

[image: -*-]


With the complex numbers of quantum mechanics we have to keep straight
the order of the terms, whereas in the dot product, the order doesn’t
matter.





Now consider the following vector equation:

[image: -*-]
(8.6)




It’s a little unusual, but correct. It means the same thing as

[image: -*-]
(8.7)




Notice, though, that Eq. (8.6) involves a quantity
which is different from a dot product. A dot product is just a
number, whereas Eq. (8.6) is a vector
equation. One of the great tricks of vector analysis was to abstract
away from the equations the idea of a vector itself. One might
be similarly inclined to abstract a thing that is the analog of a
“vector” from the quantum mechanical formula
Eq. (8.1)—and one can indeed. We remove the [image: \bra{\chi}]
from both sides of Eq. (8.1) and write the following
equation (don’t get frightened—it’s just a notation and in a few
minutes you will find out what the symbols mean):

[image: -*-]
(8.8)




One thinks of the bracket [image: \braket{\chi}{\phi}] as being divided into
two pieces. The second piece [image: \ket{\phi}] is often called a
ket, and the first piece [image: \bra{\chi}] is called a bra
(put together, they make a “bra-ket”—a notation proposed by
Dirac);
the half-symbols [image: \ket{\phi}] and [image: \bra{\chi}] are also called
state vectors. In any case, they are not numbers, and,
in general, we want the results of our calculations to come out as
numbers; so such “unfinished” quantities are only part-way steps in
our calculations.




It happens that until now we have written all our results in terms of
numbers. How have we managed to avoid vectors? It is amusing to note
that even in ordinary vector
algebra
we could make all
equations involve only numbers. For instance, instead of a vector
equation like
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we could always have written
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We have then an equation between dot products that is true for
any vector C. But if it is true for any C, it
hardly makes sense at all to keep writing the C!




Now look at Eq. (8.1). It is an equation that is true
for any χ. So to save writing, we should just leave
out the χ and write Eq. (8.8) instead. It
has the same information provided we understand that it should
always be “finished” by “multiplying on the left by”—which
simply means reinserting—some [image: \bra{\chi}] on both sides. So
Eq. (8.8) means exactly the same thing as
Eq. (8.1)—no more, no less. When you want numbers, you
put in the [image: \bra{\chi}] you want.




Maybe you have already wondered about the ϕ in
Eq. (8.8). Since the equation is true for
any ϕ, why do we keep it? Indeed,
Dirac suggests that the ϕ
also can just as well be abstracted away, so that we have only
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(8.9)




And this is the great law of quantum mechanics! (There is no analog in
vector analysis.) It says that if you put in any two states
χ and ϕ on the left and right of both sides, you get
back Eq. (8.1). It is not really very useful, but it’s
a nice reminder that the equation is true for any two states.







8–2 Resolving state vectors


Let’s look at Eq. (8.8) again; we can think of it in
the following way. Any state vector [image: \ket{\phi}] can be represented as
a linear combination with suitable coefficients of a set of base
“vectors”—or, if you prefer, as a superposition of “unit
vectors” in suitable proportions. To emphasize that the
coefficients [image: \braket{i}{\phi}] are just ordinary (complex) numbers, suppose we
write
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Then Eq. (8.8) is the same as
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(8.10)




We can write a similar equation for any other state vector,
say [image: \ket{\chi}], with, of course, different coefficients—say Di.
Then we have

[image: -*-]
(8.11)




The Di are just the amplitudes [image: \braket{i}{\chi}].




Suppose we had started by abstracting the ϕ from
Eq. (8.1). We would have had

[image: -*-]
(8.12)




Remembering that [image: \braket{\chi}{i}=\braket{i}{\chi}\cconj], we can
write this as

[image: -*-]
(8.13)




Now the interesting thing is that we can just multiply
Eq. (8.13) and Eq. (8.10) to get
back [image: \braket{\chi}{\phi}]. When we do that, we have to be careful of the
summation indices, because they are quite distinct in the two equations.
Let’s first rewrite Eq. (8.13) as
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which changes nothing. Then putting it together with
Eq. (8.10), we have
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(8.14)




Remember, though, that [image: \braket{j}{i}=\delta_{ij}], so that in the sum
we have left only the terms with j=i. We get

[image: -*-]
(8.15)




where, of course, [image: D_i\cconj=][image: \braket{i}{\chi}\cconj=][image: \braket{\chi}{i}],
and [image: C_i=\braket{i}{\phi}]. Again we see the close analogy with the
dot product
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The only difference is the complex conjugate on Di. So
Eq. (8.15) says that if the state vectors [image: \bra{\chi}]
and [image: \ket{\phi}] are expanded in terms of the base vectors [image: \bra{i}]
or [image: \ket{i}], the amplitude to go from ϕ to χ is given by the
kind of dot product in Eq. (8.15). This equation is, of
course, just Eq. (8.1) written with different symbols. So
we have just gone in a circle to get used to the new symbols.




We should perhaps emphasize again that while space vectors in three
dimensions are described in terms of three orthogonal unit
vectors, the base vectors [image: \ket{i}] of the quantum mechanical states
must range over the complete set applicable to any particular
problem. Depending on the situation, two, or three, or five, or an
infinite number of base states may be involved.




We have also talked about what happens when particles go through an
apparatus. If we start the particles out in a certain state ϕ,
then send them through an apparatus, and afterward make a measurement
to see if they are in state χ, the result is described by the
amplitude

[image: -*-]
(8.16)




Such a symbol doesn’t have a close analog in vector
algebra. (It is
closer to tensor algebra,
but the analogy is not particularly useful.)
We saw in Chapter 5, Eq. (5.32), that we
could write (8.16) as
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(8.17)




This is just an example of the fundamental rule Eq. (8.9),
used twice.





We also found that if another apparatus B was added in series
with A, then we could write

[image: -*-]
(8.18)




Again, this comes directly from Dirac’s method of writing Eq. (8.9)—remember that we
can always place a bar (│), which is just like the factor 1, between
B and A.




Incidentally, we can think of Eq. (8.17) in another
way. Suppose we think of the particle entering apparatus A in the
state ϕ and coming out of A in the state ψ, (“psi”). In
other words, we could ask ourselves this question: Can we find
a ψ such that the amplitude to get from ψ to χ is always
identically and everywhere the same as the
amplitude [image: \bracket{\chi}{A}{\phi}]? The answer is yes. We want
Eq. (8.17) to be replaced by
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(8.19)




We can clearly do this if
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(8.20)




which determines ψ. “But it doesn’t determine ψ,” you say;
“it only determines [image: \braket{i}{\psi}].” However, [image: \braket{i}{\psi}]
does determine ψ, because if you have all the coefficients
that relate ψ to the base states i, then ψ is uniquely
defined. In fact, we can play with our notation and write the last
term of Eq. (8.20) as

[image: -*-]
(8.21)




Then, since this equation is true for all i, we can write simply

[image: -*-]
(8.22)




Then we can say: “The state ψ is what we get if we start
with ϕ and go through the apparatus A.”





One final example of the tricks of the trade. We start again with
Eq. (8.17). Since it is true for any χ and ϕ,
we can drop them both!  We then get1
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(8.23)




What does it mean? It means no more, no less, than what you get if you
put back the ϕ and χ. As it stands, it is an “open”
equation and incomplete. If we multiply it “on the right”
by [image: \ket{\phi}], it becomes
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(8.24)




which is just Eq. (8.22) all over again. In fact, we
could have just dropped the j’s from that equation and written
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(8.25)









The symbol A is neither an amplitude, nor a vector; it is a new kind
of thing called an operator. It is something
which “operates on” a state to produce a new
state—Eq. (8.25) says that [image: \ket{\psi}] is what results
if A operates on [image: \ket{\phi}]. Again, it is still an open equation
until it is completed with some bra like [image: \bra{\chi}] to give
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(8.26)




The operator A is, of course, described completely if we give the
matrix of amplitudes [image: \bracket{i}{A}{j}]—also written Ai j—in
terms of any set of base vectors.




We have really added nothing new with all of this new mathematical
notation. One reason for bringing it all up was to show you the way of
writing pieces of equations, because in many books you will find the
equations written in the incomplete forms, and there’s no reason for
you to be paralyzed when you come across them. If you prefer, you can
always add the missing pieces to make an equation between numbers that
will look like something more familiar.




Also, as you will see, the “bra” and “ket” notation is a very
convenient one. For one thing, we can from now on identify a state by
giving its state vector. When we want to refer to a state of definite
momentum p we can say: “the state [image: \ket{\FLPp}].” Or we may
speak of some arbitrary state [image: \ket{\psi}]. For consistency we will
always use the ket, writing [image: \ket{\psi}], to identify a state. (It is,
of course an arbitrary choice; we could equally well have chosen to
use the bra, [image: \bra{\psi}].)







8–3 What are the base states of the world?


We have discovered that any state in the world can be represented as a
superposition—a linear combination with suitable coefficients—of
base states. You may ask, first of all, what base states? Well,
there are many different possibilities. You can, for instance, project
a spin in the z-direction or in some other direction. There are
many, many different representations, which are the analogs of
the different coordinate systems one can use to represent
ordinary vectors. Next, what coefficients? Well, that depends
on the physical circumstances. Different sets of coefficients
correspond to different physical conditions. The important thing to
know about is the “space” in which you are working—in other words,
what the base states mean physically. So the first thing you have to
know about, in general, is what the base states are like. Then you can
understand how to describe a situation in terms of these base states.




We would like to look ahead a little and speak a bit about what the
general quantum mechanical description of nature is going to be—in
terms of the now current ideas of physics, anyway. First, one decides
on a particular representation for the base states—different
representations are always possible. For example, for a spin one-half
particle we can use the plus and minus states with respect to the
z-axis. But there’s nothing special about the z-axis—you can
take any other axis you like. For consistency we’ll always pick the
z-axis, however. Suppose we begin with a situation with one
electron. In addition to the two possibilities for the spin (“up”
and “down” along the z-direction), there is also the momentum of
the electron. We pick a set of base states, each corresponding to one
value of the momentum. What if the electron doesn’t have a definite
momentum?  That’s all right; we’re just saying what the base
states are. If the electron hasn’t got a definite momentum, it has
some amplitude to have one momentum and another amplitude to have
another momentum, and so on. And if it is not necessarily spinning up,
it has some amplitude to be spinning up going at this momentum, and
some amplitude to be spinning down going at that momentum, and so
on. The complete description of an electron, so far as we know,
requires only that the base states be described by the momentum
and the spin. So one acceptable set of base states [image: \ket{i}]
for a single electron refer to different values of the momentum and
whether the spin is up or down. Different mixtures of
amplitudes—that is, different combinations of the C’s describe
different circumstances. What any particular electron is doing is
described by telling with what amplitude it has an up-spin or a
down-spin and one momentum or another—for all possible momenta. So
you can see what is involved in a complete quantum mechanical
description of a single electron.





What about systems with more than one electron? Then the base states
get more complicated. Let’s suppose that we have two electrons. We
have, first of all, four possible states with respect to spin: both
electrons spinning up, the first one down and the second one up, the
first one up and the second one down, or both down. Also we have to
specify that the first electron has the momentum p1, and the second
electron, the momentum p2. The base states for two electrons
require the specification of two momenta and two spin characters. With
seven electrons, we have to specify seven of each.




If we have a proton and an electron, we have to specify the spin
direction of the proton and its momentum, and the spin direction of
the electron and its momentum. At least that’s approximately
true. We do not really know what the correct representation is
for the world. It is all very well to start out by supposing that if
you specify the spin in the electron and its momentum, and likewise
for a proton, you will have the base states; but what about the
“guts” of the proton? Let’s look at it this way. In a hydrogen atom
which has one proton and one electron, we have many different base
states to describe—up and down spins of the proton and electron and
the various possible momenta of the proton and electron. Then there
are different combinations of amplitudes Ci which together describe
the character of the hydrogen atom in different states. But suppose we
look at the whole hydrogen atom as a “particle.” If we didn’t know
that the hydrogen atom was made out of a proton and an electron, we
might have started out and said: “Oh, I know what the base states
are—they correspond to a particular momentum of the hydrogen atom.”
No, because the hydrogen atom has internal parts. It may, therefore,
have various states of different internal energy, and describing the
real nature requires more detail.




The question is: Does a proton have internal parts? Do we have to
describe a proton by giving all possible states of protons, and
mesons, and strange particles? We don’t know. And even though we
suppose that the electron is simple, so that all we have to tell about
it is its momentum and its spin, maybe tomorrow we will discover that
the electron also has inner gears and wheels. It would mean that our
representation is incomplete, or wrong, or approximate—in the same
way that a representation of the hydrogen atom which describes only
its momentum would be incomplete, because it disregarded the fact that
the hydrogen atom could have become excited inside. If an electron
could become excited inside and turn into something else like, for
instance, a muon, then it would be described not just by giving the
states of the new particle, but presumably in terms of some more
complicated internal wheels. The main problem in the study of
the fundamental particles today is to discover what are the correct
representations for the description of nature. At the present time, we
guess that for the electron it is enough to specify its
momentum and spin. We also guess that there is an idealized proton
which has its π-mesons, and K-mesons, and so on, that all have to
be specified. Several dozen particles—that’s crazy! The question of
what is a fundamental particle and what is not a
fundamental particle—a subject you hear so much about these
days—is the question of what is the final representation
going to look like in the ultimate quantum mechanical description of
the world. Will the electron’s momentum still be the right thing with
which to describe nature? Or even, should the whole question be put
this way at all!  This question must always come up in any scientific
investigation. At any rate, we see a problem—how to find a
representation. We don’t know the answer. We don’t even know whether
we have the “right” problem, but if we do, we must first attempt to
find out whether any particular particle is “fundamental” or not.




In the nonrelativistic quantum mechanics—if the energies are not too
high, so that you don’t disturb the inner workings of the strange
particles and so forth—you can do a pretty good job without worrying
about these details. You can just decide to specify the momenta and
spins of the electrons and of the nuclei; then everything will be all
right. In most chemical reactions and other low-energy happenings,
nothing goes on in the nuclei; they don’t get excited. Furthermore, if
a hydrogen atom is moving slowly and bumping quietly against other
hydrogen atoms—never getting excited inside, or radiating, or
anything complicated like that, but staying always in the ground state
of energy for internal motion—you can use an approximation in which
you talk about the hydrogen atom as one object, or particle, and not
worry about the fact that it can do something inside. This will
be a good approximation as long as the kinetic energy in any collision
is well below 10 electron volts—the energy required to excite the
hydrogen atom to a different internal state. We will often be making
an approximation in which we do not include the possibility of inner
motion, thereby decreasing the number of details that we have to put
into our base states. Of course, we then omit some phenomena which
would appear (usually) at some higher energy, but by making such
approximations we can simplify very much the analysis of physical
problems. For example, we can discuss the collision of two hydrogen
atoms at low energy—or any chemical process—without worrying about
the fact that the atomic nuclei could be excited. To summarize, then,
when we can neglect the effects of any internal excited states of a
particle we can choose a base set which are the states of definite
momentum and z-component of angular momentum.




One problem then in describing nature is to find a suitable
representation for the base states. But that’s only the beginning. We
still want to be able to say what “happens.” If we know the
“condition” of the world at one moment, we would like to know the
condition at a later moment. So we also have to find the laws that
determine how things change with time. We now address ourselves to
this second part of the framework of quantum mechanics—how states
change with time.








8–4 How states change with time


We have already talked about how we can represent a situation in which
we put something through an apparatus. Now one convenient, delightful
“apparatus” to consider is merely a wait of a few minutes; that is,
you prepare a state ϕ, and then before you analyze it, you just
let it sit. Perhaps you let it sit in some particular electric or
magnetic field—it depends on the physical circumstances in the
world. At any rate, whatever the conditions are, you let the object
sit from time t1 to time t2. Suppose that it is let out of your
first apparatus in the condition ϕ at t1. And then it goes
through an “apparatus,” but the “apparatus” consists of just delay
until t2. During the delay, various things could be going
on—external forces applied or other shenanigans—so that something
is happening. At the end of the delay, the amplitude to find the thing
in some state χ is no longer exactly the same as it would have
been without the delay. Since “waiting” is just a special case of an
“apparatus,” we can describe what happens by giving an amplitude
with the same form as Eq. (8.17). Because the operation
of “waiting” is especially important, we’ll call it U instead
of A, and to specify the starting and finishing times t1 and t2,
we’ll write U (t2,t1). The amplitude we want is
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(8.27)




Like any other such amplitude, it can be represented in some base
system or other by writing it
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(8.28)




Then U is completely described by giving the whole set of
amplitudes—the matrix

[image: -*-]
(8.29)









We can point out, incidentally, that the
matrix [image: \bracket{i}{U(t_2,t_1)}{j}] gives much more detail than may be
needed. The high-class theoretical physicist working in high-energy
physics considers problems of the following general nature (because
it’s the way experiments are usually done). He starts with a couple of
particles, like a proton and a proton, coming together from
infinity. (In the lab, usually one particle is standing still, and the
other comes from an accelerator that is practically at infinity on
atomic level.) The things go crash and out come, say, two K-mesons,
six π-mesons, and two neutrons in certain directions with certain
momenta. What’s the amplitude for this to happen? The mathematics
looks like this: The ϕ-state specifies the spins and momenta of
the incoming particles. The χ would be the question about what
comes out. For instance, with what amplitude do you get the six mesons
going in such-and-such directions, and the two neutrons going off in
these directions, with their spins so-and-so. In other words, χ
would be specified by giving all the momenta, and spins, and so on of
the final products. Then the job of the theorist is to calculate the
amplitude (8.27). However, he is really only interested
in the special case that t1 is −∞ and t2
is +∞. (There is no experimental evidence on the details of the
process, only on what comes in and what goes out.) The limiting case
of U (t2,t1) as t1→−∞ and t2→+∞ is called S,
and what he wants is
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Or, using the form (8.28), he would calculate the matrix

[image: -*-]


which is called the S-matrix. So if you see a theoretical
physicist pacing the floor and saying, “All I have to do is calculate
the S-matrix,” you will know what he is worried about.




How to analyze—how to specify the laws for—the S-matrix is an
interesting question. In relativistic quantum mechanics for high
energies, it is done one way, but in nonrelativistic quantum mechanics
it can be done another way, which is very convenient. (This other way
can also be done in the relativistic case, but then it is not so
convenient.) It is to work out the U-matrix for a small interval of
time—in other words for t2 and t1 close together. If we can
find a sequence of such U’s for successive intervals of time we can
watch how things go as a function of time. You can appreciate
immediately that this way is not so good for relativity, because you
don’t want to have to specify how everything looks “simultaneously”
everywhere. But we won’t worry about that—we’re just going to worry
about nonrelativistic mechanics.




Suppose we think of the matrix U for a delay from t1 until t3
which is greater than t2. In other words, let’s take three
successive times: t1 less than t2 less than t3. Then we claim
that the matrix that goes between t1 and t3 is the
product in succession of what happens when you delay from t1
until t2 and then from t2 until t3. It’s just like the
situation when we had two apparatuses B and A in series. We can
then write, following the notation of Section 5–6,
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(8.30)




In other words, we can analyze any time interval if we can analyze a
sequence of short time intervals in between. We just multiply together
all the pieces; that’s the way that quantum mechanics is analyzed
nonrelativistically.




Our problem, then, is to understand the matrix U (t2,t1) for an
infinitesimal time interval—for t2=t1+Δ t. We ask ourselves
this: If we have a state ϕ now, what does the state look like an
infinitesimal time Δ t later? Let’s see how we write that
out. Call the state at the time t, [image: \ket{\psi(t)}] (we show the time
dependence of ψ to be perfectly clear that we mean the condition
at the time t). Now we ask the question: What is the condition after
the small interval of time Δ t later? The answer is
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(8.31)




This means the same as we meant by (8.25), namely, that
the amplitude to find χ at the time t+Δ t, is
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(8.32)









Since we’re not yet too good at these abstract things, let’s project
our amplitudes into a definite representation. If we multiply both
sides of Eq. (8.31) by [image: \bra{i}], we get
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(8.33)




We can also resolve the [image: \ket{\psi(t)}] into base states and write
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(8.34)









We can understand Eq. (8.34) in the following way. If
we let [image: C_i(t)=\braket{i}{\psi(t)}] stand for the amplitude to be in
the base state i at the time t, then we can think of this
amplitude (just a number, remember!)  varying with time.
Each Ci becomes a function of t. And we also have some information on
how the amplitudes Ci vary with time. Each amplitude
at (t+Δ t) is proportional to all of the other amplitudes
at t multiplied by a set of coefficients. Let’s call the U-matrix
Ui j, by which we mean
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Then we can write Eq. (8.34) as
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(8.35)




This, then, is how the dynamics of quantum mechanics is going to look.




We don’t know much about the Ui j yet, except for one thing. We
know that if Δ t goes to zero, nothing can happen—we should
get just the original state. So, Ui i→1 and Ui j→0, if
i≠j. In other words, Ui j→δi j for Δ t→0. Also, we can suppose that for small Δ t, each of the
coefficients Ui j should differ from δi j by amounts
proportional to Δ t; so we can write

[image: -*-]
(8.36)




However, it is usual to take the factor (−i/ℏ)2 out of the coefficients Ki j, for
historical and other reasons; we prefer to write
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(8.37)




It is, of course, the same as Eq. (8.36) and, if you
wish, just defines the coefficients Hi j (t). The terms Hi j
are just the derivatives with respect to t2 of the
coefficients Ui j (t2,t1), evaluated at t2=t1=t.




Using this form for U in Eq. (8.35), we have
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(8.38)




Taking the sum over the δi j term, we get just Ci (t),
which we can put on the other side of the equation. Then dividing
by Δ t, we have what we recognize as a derivative
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or
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(8.39)









You remember that Ci (t) is the amplitude [image: \braket{i}{\psi}] to find
the state ψ in one of the base states i (at the time t). So
Eq. (8.39) tells us how each of the
coefficients [image: \braket{i}{\psi}] varies with time. But that is the same as saying
that Eq. (8.39) tells us how the state ψ varies
with time, since we are describing ψ in terms of the
amplitudes [image: \braket{i}{\psi}]. The variation of ψ in time is described in
terms of the matrix Hi j, which has to include, of course, the
things we are doing to the system to cause it to change. If we know
the Hi j—which contains the physics of the situation and can, in
general, depend on the time—we have a complete description of the
behavior in time of the system. Equation (8.39) is then
the quantum mechanical law for the dynamics of the world.




(We should say that we will always take a set of base states which are
fixed and do not vary with time. There are people who use base states
that also vary. However, that’s like using a rotating coordinate
system in mechanics, and we don’t want to get involved in such
complications.)







8–5 The Hamiltonian matrix


The idea, then, is that to describe the quantum mechanical world we
need to pick a set of base states i and to write the physical laws
by giving the matrix of coefficients Hi j. Then we have
everything—we can answer any question about what will happen. So we
have to learn what the rules are for finding the H’s to go with any
physical situation—what corresponds to a magnetic field, or an
electric field, and so on. And that’s the hardest part. For instance,
for the new strange particles, we have no idea what Hi j’s to
use. In other words, no one knows the complete Hi j for the
whole world. (Part of the difficulty is that one can hardly hope to
discover the Hi j when no one even knows what the base states
are!) We do have excellent approximations for nonrelativistic
phenomena and for some other special cases. In particular, we have the
forms that are needed for the motions of electrons in atoms—to
describe chemistry. But we don’t know the full true H for the whole
universe.




The coefficients Hi j are called the Hamiltonian matrix or,
for short, just the Hamiltonian. (How
Hamilton, who worked in
the 1830s, got his name on a quantum mechanical matrix is a tale of
history.) It would be much better called the energy matrix, for
reasons that will become apparent as we work with it. So the
problem is: Know your Hamiltonian!




The Hamiltonian has one property that can be deduced right away,
namely, that
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(8.40)




This follows from the condition that the total probability that the
system is in some state does not change. If you start with a
particle—an object or the world—then you’ve still got it as time
goes on. The total probability of finding it somewhere is
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which must not vary with time. If this is to be true for any starting
condition ϕ, then Eq. (8.40) must also be true.




As our first example, we take a situation in which the physical
circumstances are not changing with time; we mean the external
physical conditions, so that H is independent of time. Nobody is
turning magnets on and off. We also pick a system for which only one
base state is required for the description; it is an approximation we
could make for a hydrogen atom at rest, or something similar.
Equation (8.39) then says
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(8.41)




Only one equation—that’s all! And if H11 is constant, this
differential equation is easily solved to give
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(8.42)




This is the time dependence of a state with a definite
energy E=H11. You see why Hi j ought to be called the energy
matrix. It is the generalization of the energy for more complex
situations.




Next, to understand a little more about what the equations mean, we
look at a system which has two base states. Then Eq. (8.39)
reads
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(8.43)




If the H’s are again independent of time, you can easily solve these
equations. We leave you to try for fun, and we’ll come back and do
them later. Yes, you can solve the quantum mechanics without knowing
the H’s, so long as they are independent of time.







8–6 The ammonia molecule


We want now to show you how the dynamical equation of quantum
mechanics can be used to describe a particular physical
circumstance. We have picked an interesting but simple example in
which, by making some reasonable guesses about the Hamiltonian, we can
work out some important—and even practical—results. We are going
to take a situation describable by two states: the ammonia molecule.



[image: -][image: -]
Fig. 8–1. Two equivalent geometric arrangements of the ammonia molecule.





The ammonia molecule has one nitrogen atom and three hydrogen atoms
located in a plane below the nitrogen so that the molecule has the
form of a pyramid, as drawn in Fig. 8–1(a). Now this molecule,
like
any other, has an infinite number of states. It can spin around any
possible axis; it can be moving in any direction; it can be vibrating
inside, and so on, and so on. It is, therefore, not a two-state system
at all. But we want to make an approximation that all other states
remain fixed, because they don’t enter into what we are concerned with
at the moment. We will consider only that the molecule is spinning
around its axis of symmetry (as shown in the figure), that it has zero
translational momentum, and that it is vibrating as little as
possible. That specifies all conditions except one: there are
still the two possible positions for the nitrogen atom—the nitrogen
may be on one side of the plane of hydrogen atoms or on the other, as
shown in Fig. 8–1(a) and (b). So we will discuss the molecule as
though it were a two-state system. We mean that there are only two
states we are going to really worry about, all other things being
assumed to stay put. You see, even if we know that it is spinning with
a certain angular momentum around the axis and that it is moving with
a certain momentum and vibrating in a definite way, there are still
two possible states. We will say that the molecule is in the
state [image: \ket{\slOne}] when the nitrogen is “up,” as in
Fig. 8–1(a),
and is in the state [image: \ket{\slTwo}] when the nitrogen is “down,” as in (b).
The states [image: \ket{\slOne}] and [image: \ket{\slTwo}] will be taken as the
set of base states for our analysis of the behavior of the ammonia
molecule. At any moment, the actual state [image: \ket{\psi}] of the molecule
can be represented by giving [image: C_1=\braket{\slOne}{\psi}], the
amplitude to be in state [image: \ket{\slOne}], and
[image: C_2=\braket{\slTwo}{\psi}], the amplitude to be in
state [image: \ket{\slTwo}]. Then, using Eq. (8.8) we can write the
state vector [image: \ket{\psi}] as
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or
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(8.44)









Now the interesting thing is that if the molecule is known to be in
some state at some instant, it will not be in the same state a
little while later. The two C-coefficients will be changing with
time according to the equations (8.43)—which hold for
any two-state system. Suppose, for example, that you had made some
observation—or had made some selection of the molecules—so that
you know that the molecule is initially in the
state [image: \ket{\slOne}]. At some later time, there is some chance that it will
be found in state [image: \ket{\slTwo}]. To find out what this chance is, we
have to solve the differential equation which tells us how the
amplitudes change with time.




The only trouble is that we don’t know what to use for the
coefficients Hi j in Eq. (8.43). There are some
things we can say, however. Suppose that once the molecule was
in the state [image: \ket{\slOne}] there was no chance that it could ever get
into [image: \ket{\slTwo}], and vice versa. Then H12 and H21 would
both be zero, and Eq. (8.43) would read
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We can easily solve these two equations; we get
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(8.45)




These are just the amplitudes for stationary states with the
energies E1=H11 and E2=H22. We note, however, that for the
ammonia molecule the two states [image: \ket{\slOne}] and [image: \ket{\slTwo}] have
a definite symmetry. If nature is at all reasonable, the matrix
elements H11 and H22 must be equal. We’ll call them
both E0, because they correspond to the energy the states would have if
H12 and H21 were zero. But Eqs. (8.45) do not
tell us what ammonia really does. It turns out that it is possible for
the nitrogen to push its way through the three hydrogens and flip to
the other side. It is quite difficult; to get half-way through
requires a lot of energy. How can it get through if it hasn’t got
enough energy?  There is some amplitude that it will
penetrate the energy barrier. It is possible in quantum mechanics to
sneak quickly across a region which is illegal energetically. There
is, therefore, some small amplitude that a molecule which starts
in [image: \ket{\slOne}] will get to the state [image: \ket{\slTwo}]. The coefficients
H12 and H21 are not really zero. Again, by symmetry, they
should both be the same—at least in magnitude. In fact, we already
know that, in general, Hi j must be equal to the complex conjugate
of Hj i, so they can differ only by a phase. It turns out, as you
will see, that there is no loss of generality if we take them equal to
each other. For later convenience we set them equal to a negative
number; we take H12=H21=−A. We then have the following pair of
equations:
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(8.46)

(8.47)









These equations are simple enough and can be solved in any number of
ways. One convenient way is the following. Taking the sum of the two,
we get
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whose solution is
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(8.48)




Then, taking the difference of (8.46)
and (8.47), we find that
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which gives
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(8.49)




We have called the two integration constants a and b; they are, of
course, to be chosen to give the appropriate starting condition for
any particular physical problem. Now, by adding and subtracting
(8.48) and (8.49), we get C1 and C2:
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(8.50)

(8.51)




They are the same except for the sign of the second term.




We have the solutions; now what do they mean? (The trouble with
quantum mechanics is not only in solving the equations but in
understanding what the solutions mean!) First, notice that if b=0,
both terms have the same frequency ω=(E0−A)/ℏ. If
everything changes at one frequency, it means that the system is in a
state of definite energy—here, the energy (E0−A). So there is a
stationary state of this energy in which the two amplitudes C1
and C2 are equal. We get the result that the ammonia molecule has
a definite energy (E0−A) if there are equal amplitudes for the
nitrogen atom to be “up” and to be “down.”




There is another stationary state possible if a=0; both amplitudes
then have the frequency (E0+A)/ℏ. So there is another state
with the definite energy (E0+A) if the two amplitudes are equal but
with the opposite sign; C2=−C1. These are the only two states of
definite energy. We will discuss the states of the ammonia molecule in
more detail in the next chapter; we will mention here only a couple of
things.




We conclude that because there is some chance that the nitrogen
atom can flip from one position to the other, the energy of the
molecule is not just E0, as we would have expected, but that there
are two energy levels (E0+A) and (E0−A). Every one of the
possible states of the molecule, whatever energy it has, is “split”
into two levels. We say every one of the states because, you
remember, we picked out one particular state of rotation, and internal
energy, and so on. For each possible condition of that kind there is a
doublet of energy levels because of the flip-flop of the molecule.




Let’s now ask the following question about an ammonia molecule. Suppose that
at t=0, we know that a molecule is in the state [image: \ket{\slOne}] or, in other
words, that C1 (0)=1 and C2 (0)=0. What is the probability that the molecule
will be found in the state [image: \ket{\slTwo}] at the time t, or will still be
found in state [image: \ket{\slOne}] at the time t? Our starting condition tells us
what a and b are in Eqs. (8.50) and (8.51).
Letting t=0, we have that
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Clearly, a=b=1. Putting these values into the formulas for C1 (t)
and C2 (t) and rearranging some terms, we have
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We can rewrite these as
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(8.52)

(8.53)




The two amplitudes have a magnitude that varies harmonically with
time.




The probability that the molecule is found in state [image: \ket{\slTwo}] at
the time t is the absolute square of C2 (t):
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(8.54)




The probability starts at zero (as it should), rises to one, and then
oscillates back and forth between zero and one, as shown in the curve
marked P2 of Fig. 8–2. The probability of being in
the [image: \ket{\slOne}] state does not, of course, stay at one. It “dumps”
into the second state until the probability of finding the molecule in
the first state is zero, as shown by the curve P1 of
Fig. 8–2. The probability sloshes back and forth between
the two.



[image: -]
Fig. 8–2. The probability P1 that an ammonia molecule in
state [image: \ket{\slOne}] at t=0 will be found in state [image: \ket{\slOne}]
at t. The probability P2 that it will be found in
state [image: \ket{\slTwo}].





A long time ago we saw what happens when we have two equal pendulums
with a slight coupling. (See Chapter 49, Vol. I.) When we
lift one back and let go, it swings, but then gradually the other one
starts to swing. Pretty soon the second pendulum has picked up all the
energy. Then, the process reverses, and pendulum number one picks up the
energy. It is exactly the same kind of a thing. The speed at which the
energy is swapped back and forth depends on the coupling between the two
pendulums—the rate at which the “oscillation” is able to leak
across. Also, you remember, with the two pendulums there are two special
motions—each with a definite frequency—which we call the fundamental
modes. If we pull both pendulums out together, they swing together at
one frequency. On the other hand, if we pull one out one way and the
other out the other way, there is another stationary mode also at a
definite frequency.




Well, here we have a similar situation—the ammonia molecule is
mathematically like the pair of pendulums. These are the two
frequencies—(E0−A)/ℏ and (E0+A)/ℏ—for when they are
oscillating together, or oscillating opposite.




The pendulum analogy is not much deeper than the principle that the
same equations have the same solutions. The linear equations for the
amplitudes (8.39) are very much like the linear equations
of harmonic oscillators. (In fact, this is the reason behind the
success of our classical theory of the index of refraction, in which
we replaced the quantum mechanical atom by a harmonic oscillator, even
though, classically, this is not a reasonable view of electrons
circulating about a nucleus.) If you pull the nitrogen to one side,
then you get a superposition of these two frequencies, and you
get a kind of beat note, because the system is not in
one or the other states of definite frequency. The splitting of the
energy levels of the ammonia molecule is, however, strictly a quantum
mechanical effect.




The splitting of the energy levels of the ammonia molecule has
important practical applications which we will describe in the next
chapter. At long last we have an example of a practical physical
problem that you can understand with the quantum mechanics!






	
  
  You might think we should
write │A│ instead of just A. But then it would look like the
symbol for “absolute value of A,” so the bars are usually
dropped. In general, the bar (│) behaves much like the factor one.
  ^


	
  
  We are
in a bit of trouble here with notation. In the factor (−i/ℏ),
the i means the imaginary unit √−1, and not the
index i that refers to the ith base state! We hope that you
won’t find it too confusing.
  ^






  
    

9 The Ammonia Maser


	
			
		MASER   =
		
				
		Microwave Amplification by Stimulated Emission of Radiation
		
	





9–1 The states of an ammonia molecule


In this chapter we are going to discuss the application of quantum
mechanics to a practical device, the ammonia maser. You may wonder why
we stop our formal development of quantum mechanics to do a special
problem, but you will find that many of the features of this special
problem are quite common in the general theory of quantum mechanics,
and you will learn a great deal by considering this one problem in
detail. The ammonia maser is a device for generating electromagnetic
waves, whose operation is based on the properties of the ammonia
molecule which we discussed briefly in the last chapter. We begin by
summarizing what we found there.




The ammonia molecule has many states, but we are considering it as a
two-state system, thinking now only about what happens when the
molecule is in any specific state of rotation or translation. A
physical model for the two states can be visualized as follows. If the
ammonia molecule is considered to be rotating about an axis passing
through the nitrogen atom and perpendicular to the plane of the
hydrogen atoms, as shown in Fig. 9–1, there are still
two possible conditions—the nitrogen may be on one side of the plane
of hydrogen atoms or on the other. We call these two states
[image: \ket{\slOne}] and [image: \ket{\slTwo}]. They are taken as a set of base
states for our analysis of the behavior of the ammonia molecule.



[image: -]
Fig. 9–1. A physical model of two base states for the ammonia molecule.
These states have the electric dipole moments μ.





In a system with two base states, any state [image: \ket{\psi}] of the system
can always be described as a linear combination of the two base
states; that is, there is a certain amplitude C1 to be in one base
state and an amplitude C2 to be in the other. We can write its
state vector as
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(9.1)




where
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These two amplitudes change with time according to the Hamiltonian equations,
Eq. (8.43). Making use of the symmetry of the two states of the
ammonia molecule, we set H11=H22=E0,
and H12=H21=−A, and get the solution [see Eqs.
(8.50) and (8.51)]
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(9.2)

(9.3)









We want now to take a closer look at these general solutions. Suppose
that the molecule was initially put into a state [image: \ket{\psi_{\slII}}]
for which the coefficient b was equal to zero. Then at t=0 the
amplitudes to be in the states [image: \ket{\slOne}] and [image: \ket{\slTwo}] are
identical, and they stay that way for all time. Their phases
both vary with time in the same way—with the
frequency (E0−A)/ℏ. Similarly, if we were to put the molecule into a
state [image: \ket{\psi_{\slI}}] for which a=0, the amplitude C2 is
the negative of C1, and this relationship would stay that
way forever. Both amplitudes would now vary with time with the
frequency (E0+A)/ℏ. These are the only two possibilities of
states for which the relation between C1 and C2 is independent
of time.




We have found two special solutions in which the two amplitudes
do not vary in magnitude and, furthermore, have phases which
vary at the same frequencies. These are stationary states as we
defined them in Section 7–1, which means that they are
states of definite energy. The state [image: \ket{\psi_{\slII}}] has
the energy EII=E0−A, and the state [image: \ket{\psi_{\slI}}] has
the energy EI=E0+A. They are the only two stationary states
that exist, so we find that the molecule has two energy levels, with
the energy difference 2 A. (We mean, of course, two energy levels for
the assumed state of rotation and vibration which we referred to in
our initial assumptions.)1




If we hadn’t allowed for the possibility of the nitrogen flipping back
and forth, we would have taken A equal to zero and the two energy
levels would be on top of each other at energy E0. The actual
levels are not this way; their average energy is E0, but
they are split apart by ±A, giving a separation of 2 A between
the energies of the two states. Since A is, in fact, very small, the
difference in energy is also very small.




In order to excite an electron inside an atom, the energies
involved are relatively very high—requiring photons in the optical
or ultraviolet range. To excite the vibrations of the molecules
involves photons in the infrared. If you talk about exciting
rotations, the energy differences of the states correspond to
photons in the far infrared. But the energy difference 2 A is lower
than any of those and is, in fact, below the infrared and well into
the microwave region. Experimentally, it has been found that there is
a pair of energy levels with a separation of 10−4 electron
volt—corresponding to a frequency 24,000 megacycles. Evidently
this means that 2 A=h f, with f=24,000 megacycles (corresponding
to a wavelength of [image: 1\tfrac{1}{4}] cm). So here we have a molecule
that has a transition which does not emit light in the ordinary sense,
but emits microwaves.




For the work that follows we need to describe these two states of
definite energy a little bit better. Suppose we were to construct an
amplitude CII by taking the sum of the two numbers C1
and C2:

[image: -*-]
(9.4)




What would that mean? Well, this is just the amplitude to find the
state [image: \ket{\Phi}] in a new state [image: \ket{\slII}] in which the
amplitudes of the original base states are equal. That is,
writing [image: C_{\slII}=\braket{\slII}{\Phi}], we can abstract
the [image: \ket{\Phi}]
away from Eq. (9.4)—because it is true for any Φ—and get
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which means the same as
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(9.5)




The amplitude for the state [image: \ket{\slII}] to be in the state
[image: \ket{\slOne}] is

[image: -*-]


which is, of course, just 1, since [image: \ket{\slOne}] and [image: \ket{\slTwo}]
are base states. The amplitude for the state [image: \ket{\slII}] to be in
the state [image: \ket{\slTwo}] is also 1, so the state [image: \ket{\slII}] is
one which has equal amplitudes to be in the two base states
[image: \ket{\slOne}] and [image: \ket{\slTwo}].




We are, however, in a bit of trouble. The state [image: \ket{\slII}] has a
total probability greater than one of being in some base state
or other. That simply means, however, that the state vector is
not properly “normalized.” We can take care of that by remembering
that we should have [image: \braket{\slII}{\slII}=1], which must be so for
any state. Using the general relation that
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letting both Φ and χ be the state II, and taking the
sum over the base states [image: \ket{\slOne}] and [image: \ket{\slTwo}], we get
that
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This will be equal to one as it should if we change our definition
of CII—in Eq. (9.4)—to read
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In the same way we can construct an amplitude
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or
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(9.6)




This amplitude is the projection of the state [image: \ket{\Phi}] into a new
state [image: \ket{\slI}] which has opposite amplitudes to be in the states
[image: \ket{\slOne}] and [image: \ket{\slTwo}]. Namely, Eq. (9.6)
means the same as
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or
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(9.7)




from which it follows that
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Now the reason we have done all this is that the states [image: \ket{\slI}]
and [image: \ket{\slII}] can be taken as a new set of base states
which are especially convenient for describing the stationary states
of the ammonia molecule. You remember that the requirement for a set
of base states is that
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We have already fixed things so that
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You can easily show from Eqs. (9.5) and (9.7)
that
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The amplitudes [image: C_{\slI}=\braket{\slI}{\Phi}]
and [image: C_{\slII}=\braket{\slII}{\Phi}] for any state Φ to be in our new
base states [image: \ket{\slI}] and [image: \ket{\slII}] must also satisfy a
Hamiltonian equation with the form of Eq. (8.39). In
fact, if we just subtract the two equations (9.2)
and (9.3) and differentiate with respect to t, we see
that
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(9.8)




And taking the sum of Eqs. (9.2) and (9.3), we
see that
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(9.9)




Using [image: \ket{\slI}] and [image: \ket{\slII}] for base states, the Hamiltonian
matrix has the simple form
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Note that each of the Eqs. (9.8) and (9.9) look
just like what we had in Section 8–6 for the equation of a
one-state system. They have a simple exponential time dependence corresponding
to a single energy. As time goes on, the amplitudes to be in each state act
independently.




The two stationary states [image: \ket{\psi_{\slI}}] and [image: \ket{\psi_{\slII}}] we found
above are, of course, solutions of Eqs. (9.8)
and (9.9). The state [image: \ket{\psi_{\slI}}] (for which C1=−C2) has
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(9.10)




And the state [image: \ket{\psi_{\slII}}] (for which C1=C2) has
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(9.11)




Remember that the amplitudes in Eq. (9.10) are
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so Eq. (9.10) means the same thing as
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That is, the state vector of the stationary state [image: \ket{\psi_{\slI}}]
is the same as the state vector of the base state [image: \ket{\slI}] except
for the exponential factor appropriate to the energy of the state. In
fact at t=0
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the state [image: \ket{\slI}] has the same physical configuration as the
stationary state of energy E0+A. In the same way, we have for the
second stationary state that
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The state [image: \ket{\slII}] is just the stationary state of energy E0−A
at t=0. Thus our two new base states [image: \ket{\slI}] and [image: \ket{\slII}]
have physically the form of the states of definite energy, with the
exponential time factor taken out so that they can be time-independent
base states. (In what follows we will find it convenient not to have
to distinguish always between the stationary states
[image: \ket{\psi_{\slI}}] and [image: \ket{\psi_{\slII}}] and their base states
[image: \ket{\slI}] and [image: \ket{\slII}], since they differ only by the obvious
time factors.)




In summary, the state vectors [image: \ket{\slI}] and [image: \ket{\slII}] are a
pair of base vectors which are appropriate for describing the definite
energy states of the ammonia molecule. They are related to our
original base vectors by
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(9.12)




The amplitudes to be in [image: \ket{\slI}] and [image: \ket{\slII}] are related to
C1 and C2 by
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(9.13)




Any state at all can be represented by a linear combination of
[image: \ket{\slOne}] and [image: \ket{\slTwo}]—with the coefficients C1
and C2—or by a linear combination of the definite energy base states
[image: \ket{\slI}] and [image: \ket{\slII}]—with the coefficients CI
and CII. Thus,
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or
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The second form gives us the amplitudes for finding the state [image: \ket{\Phi}]
in a state with the energy EI=E0+A or in a state
with the energy EII=E0−A.







9–2 The molecule in a static electric field


If the ammonia molecule is in either of the two states of definite
energy and we disturb it at a frequency ω such
that ℏ ω=EI−EII=2 A, the system may make a transition
from one state to the other. Or, if it is in the upper state, it may
change to the lower state and emit a photon. But in order to induce
such transitions you must have a physical connection to the
states—some way of disturbing the system. There must be some
external machinery for affecting the states, such as magnetic or
electric fields. In this particular case, these states are sensitive
to an electric field. We will, therefore, look next at the problem of
the behavior of the ammonia molecule in an external electric field.




To discuss the behavior in an electric field, we will go back to the
original base system [image: \ket{\slOne}] and [image: \ket{\slTwo}], rather than
using [image: \ket{\slI}] and [image: \ket{\slII}]. Suppose that there is an
electric field in a direction perpendicular to the plane of the
hydrogen atoms. Disregarding for the moment the possibility of
flipping back and forth, would it be true that the energy of this
molecule is the same for the two positions of the nitrogen atom?
Generally, no. The electrons tend to lie closer to the nitrogen than
to the hydrogen nuclei, so the hydrogens are slightly positive. The
actual amount depends on the details of electron distribution. It is a
complicated problem to figure out exactly what this distribution is,
but in any case the net result is that the ammonia molecule has an
electric dipole moment, as indicated in Fig. 9–1. We can
continue our analysis without knowing in detail the direction or amount
of displacement of the charge. However, to be consistent with the
notation of others, let’s suppose that the electric dipole moment
is μ, with its direction pointing from the nitrogen atom and
perpendicular to the plane of the hydrogen atoms.




Now, when the nitrogen flips from one side to the other, the center of
mass will not move, but the electric dipole moment will flip over. As
a result of this moment, the energy in an electric field E
will depend on the molecular orientation.2 With the assumption made above,
the potential energy will be higher if the nitrogen atom points in the
direction of the field, and lower if it is in the opposite direction;
the separation in the two energies will be 2 μ E.




In the discussion up to this point, we have assumed values of E0
and A without knowing how to calculate them. According to the
correct physical theory, it should be possible to calculate these
constants in terms of the positions and motions of all the nuclei and
electrons. But nobody has ever done it. Such a system involves ten
electrons and four nuclei and that’s just too complicated a
problem. As a matter of fact, there is no one who knows much more
about this molecule than we do. All anyone can say is that when there
is an electric field, the energy of the two states is different, the
difference being proportional to the electric field. We have called
the coefficient of proportionality 2 μ, but its value must be
determined experimentally. We can also say that the molecule has the
amplitude A to flip over, but this will have to be measured
experimentally. Nobody can give us accurate theoretical values of
μ and A, because the calculations are too complicated to do in
detail.




For the ammonia molecule in an electric field, our description must be
changed. If we ignored the amplitude for the molecule to flip from one
configuration to the other, we would expect the energies of the two
states [image: \ket{\slOne}] and [image: \ket{\slTwo}] to be (E0±μ E).
Following the procedure of the last chapter, we
take
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(9.14)




Also we will assume that for the electric fields of interest the field
does not affect appreciably the geometry of the molecule and,
therefore, does not affect the amplitude that the nitrogen will jump
from one position to the other. We can then take that H12
and H21 are not changed; so
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(9.15)




We must now solve the Hamiltonian equations, Eq. (8.43),
with these new values of Hi j. We could solve them just as we did
before, but since we are going to have several occasions to want the
solutions for two-state systems, let’s solve the equations once and for
all in the general case of arbitrary Hi j—assuming only that they
do not change with time.




We want the general solution of the pair of Hamiltonian equations
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(9.16)

(9.17)




Since these are linear differential equations with constant
coefficients, we can always find solutions which are exponential
functions of the dependent variable t. We will first look for a
solution in which C1 and C2 both have the same time dependence;
we can use the trial functions
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Since such a solution corresponds to a state of
energy E=ℏ ω, we may as well write right away
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(9.18)

(9.19)




where E is as yet unknown and to be determined so that the
differential equations (9.16) and (9.17) are
satisfied.




When we substitute C1 and C2 from (9.18)
and (9.19) in the differential equations
(9.16) and (9.17), the derivatives give us
just −i E/ℏ times C1 or C2, so the left sides become just
E C1 and E C2. Cancelling the common exponential factors, we get
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Or, rearranging the terms, we have
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(9.20)

(9.21)




With such a set of homogeneous algebraic equations, there will be
nonzero solutions for a1 and a2 only if the determinant of the
coefficients of a1 and a2 is zero, that is, if
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(9.22)









However, when there are only two equations and two unknowns, we don’t
need such a sophisticated idea. The two equations (9.20)
and (9.21) each give a ratio for the two coefficients
a1 and a2, and these two ratios must be equal.
From (9.20) we have that
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(9.23)




and from (9.21) that
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(9.24)




Equating these two ratios, we get that E must satisfy
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This is the same result we would get by solving Eq. (9.22).
Either way, we have a quadratic equation for E which has two
solutions:
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(9.25)




There are two possible values for the energy E. Note that both
solutions give real numbers for the energy, because H11
and H22 are real, and H12 H21 is equal
to [image: H_{12}H_{12}\cconj=\abs{H_{12}}^2], which is both real and positive.




Using the same convention we took before, we will call the upper
energy EI and the lower energy EII. We have
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(9.26)

(9.27)




Using each of these two energies separately in Eqs. (9.18)
and (9.19), we have the amplitudes for the two stationary states
(the states of definite energy). If there are no external disturbances, a system
initially in one of these states will stay that way forever—only its phase
changes.




We can check our results for two special cases. If H12=H21=0, we have
that EI=H11 and EII=H22. This is certainly correct,
because then Eqs. (9.16) and (9.17) are
uncoupled, and each represents a state of energy H11 and H22. Next, if
we set H11=H22=E0 and H21=H12=−A, we get the solution we found
before:
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For the general case, the two solutions EI and EII refer to two
states—which we can again call the states
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These states will have C1 and C2 as given in Eqs.
(9.18) and (9.19), where a1 and a2 are still to
be determined. Their ratio is given by either Eq. (9.23) or
Eq. (9.24). They must also satisfy one more condition. If the
system is known to be in one of the stationary states, the sum of the
probabilities that it will be found in [image: \ket{\slOne}] or [image: \ket{\slTwo}] must
equal one. We must have that
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(9.28)




or, equivalently,
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(9.29)




These conditions do not uniquely specify a1 and a2; they are
still undetermined by an arbitrary phase—in other words, by a factor
like ei δ. Although general solutions for the a’s can be
written down,3 it is usually more convenient to work them out for each special
case.




Let’s go back now to our particular example of the ammonia molecule in
an electric field. Using the values for H11, H22,
and H12 given in (9.14) and (9.15), we get
for the energies of the two stationary states
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(9.30)





These two energies are plotted as a function of the electric field
strength E in Fig. 9–2. When the electric field
is zero, the two energies are, of course, just E0±A. When an
electric field is applied, the splitting between the two levels
increases. The splitting increases at first slowly with E, but
eventually becomes proportional to E. (The curve is a
hyperbola.) For enormously strong fields, the energies are just



[image: -*-]
(9.31)





The fact that there is an amplitude for the nitrogen to flip
back and forth has little effect when the two positions have very
different energies. This is an interesting point which we will come
back to again later.



[image: -]
Fig. 9–2. Energy levels of the ammonia molecule in an electric field.





We are at last ready to understand the operation of the ammonia
maser. The idea is the following. First, we find a way of separating
molecules in the state [image: \ket{\slI}] from those in the
state [image: \ket{\slII}].4 Then the
molecules in the higher energy state [image: \ket{\slI}] are passed through a
cavity which has a resonant frequency of 24,000 megacycles. The
molecules can deliver energy to the cavity—in a way we will discuss
later—and leave the cavity in the state [image: \ket{\slII}]. Each molecule
that makes such a transition will deliver the
energy E=EI−EII to the cavity. The energy from the molecules
will appear as electrical energy in the cavity.




How can we separate the two molecular states? One method is as
follows. The ammonia gas is let out of a little jet and passed through
a pair of slits to give a narrow beam, as shown in
Fig. 9–3. The beam is then sent through a region in which
there is a large transverse electric field. The electrodes to produce
the field are shaped so that the electric field varies rapidly across
the beam. Then the square of the electric
field E⋅E will have a large gradient perpendicular to
the beam. Now a molecule in state [image: \ket{\slI}] has an energy which
increases with E2, and therefore this part of the beam will be
deflected toward the region of lower E2. A molecule in
state [image: \ket{\slII}] will, on the other hand, be deflected toward the region of
larger E2, since its energy decreases as E2 increases.



[image: -]
Fig. 9–3. The ammonia beam may be separated by an electric field in which
E2 has a gradient perpendicular to the beam.





Incidentally, with the electric fields which can be generated in the
laboratory, the energy μ E is always much smaller than A.
In such cases, the square root in Eqs. (9.30) can
be approximated by
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(9.32)




So the energy levels are, for all practical purposes,
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(9.33)




and
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(9.34)




And the energies vary approximately linearly with E2. The
force on the molecules is then
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(9.35)




Many molecules have an energy in an electric field which is
proportional to E2. The coefficient is the polarizability of
the molecule. Ammonia has an unusually high polarizability because of
the small value of A in the denominator. Thus, ammonia molecules are
unusually sensitive to an electric field. (What would you expect for
the dielectric coefficient of NH3 gas?)







9–3 Transitions in a time-dependent field

[image: -]
Fig. 9–4. Schematic diagram of the ammonia maser.





In the ammonia maser, the beam with molecules in the
state [image: \ket{\slI}] and with the energy EI is sent through a resonant
cavity, as shown in Fig. 9–4. The other beam is
discarded. Inside the cavity, there will be a time-varying electric
field, so the next problem we must discuss is the behavior of a molecule
in an electric field that varies with time. We have a completely
different kind of a problem—one with a time-varying Hamiltonian. Since
Hi j depends upon E, the Hi j vary with time, and we
must determine the behavior of the system in this circumstance.




To begin with, we write down the equations to be solved:
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(9.36)




To be definite, let’s suppose that the electric field varies
sinusoidally; then we can write
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(9.37)




In actual operation the frequency ω will be very nearly equal
to the resonant frequency of the molecular
transition ω0=2 A/ℏ, but for the time being we want to keep things
general, so we’ll let it have any value at all. The best way to solve
our equations is to form linear combinations of C1 and C2 as we
did before. So we add the two equations, divide by the square root
of 2, and use the definitions of CI and CII that we had
in Eq. (9.13). We get
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(9.38)




You’ll note that this is the same as Eq. (9.9) with an
extra term due to the electric field. Similarly, if we subtract the
two equations (9.36), we get
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(9.39)









Now the question is, how to solve these equations? They are more
difficult than our earlier set, because E depends on t; and,
in fact, for a general E (t) the solution is not expressible in
elementary functions. However, we can get a good approximation so long
as the electric field is small. First we will write
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(9.40)




If there were no electric field, these solutions would be correct with
γI and γII just chosen as two complex
constants. In fact, since the probability of being in
state [image: \ket{\slI}] is the absolute square of CI and the probability
of being in state [image: \ket{\slII}] is the absolute square of CII,
the probability of being in state [image: \ket{\slI}] or in
state [image: \ket{\slII}] is just │γI│2
or │γII│2. For instance, if the system were to start
originally in state [image: \ket{\slII}] so that γI was zero and
│γII│2 was one, this condition would go on
forever. There would be no chance, if the molecule were originally in
state [image: \ket{\slII}], ever to get into state [image: \ket{\slI}].





Now the idea of writing our equations in the form of
Eq. (9.40) is that if μ E is small in comparison
with A, the solutions can still be written in this way, but then
γI and γII become slowly varying functions of
time—where by “slowly varying” we mean slowly in comparison
with the exponential functions. That is the trick. We use the fact that
γI and γII vary slowly to get an approximate
solution.




We want now to substitute CI from Eq. (9.40) in
the differential equation (9.39), but we must remember
that γI is also a function of t. We have
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The differential equation becomes
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(9.41)





Similarly, the equation in d CII/d t becomes
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(9.42)





Now you will notice that we have equal terms on both sides of each
equation. We cancel these terms, and we also multiply the first
equation by e+i EI t/ℏ and the second
by e+i EII t/ℏ. Remembering that
(EI−EII)=2 A=ℏ ω0, we have finally,
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(9.43)









Now we have an apparently simple pair of equations—and they are
still exact, of course. The derivative of one variable is a function
of time μ E (t) ei ω0 t, multiplied by the second
variable; the derivative of the second is a similar time function,
multiplied by the first. Although these simple equations cannot be
solved in general, we will solve them for some special cases.




We are, for the moment at least, interested only in the case of an
oscillating electric field. Taking E (t) as given in
Eq. (9.37), we find that the equations for γI
and γII become
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(9.44)




Now if E0 is sufficiently small, the rates of change of
γI and γII are also small. The
two γ’s will not vary much with t, especially in comparison with
the rapid variations due to the exponential terms. These exponential
terms have real and imaginary parts that oscillate at the frequency
ω+ω0 or ω−ω0. The terms
with ω+ω0 oscillate very rapidly about an average value of
zero and, therefore, do not contribute very much on the average to the
rate of change of γ. So we can make a reasonably good
approximation by replacing these terms by their average value, namely,
zero. We will just leave them out, and take as our approximation:
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(9.45)




Even the remaining terms, with exponents proportional
to (ω−ω0), will also vary rapidly unless ω is
near ω0. Only then will the right-hand side vary slowly enough that
any appreciable amount will accumulate when we integrate the equations
with respect to t. In other words, with a weak electric field
the only significant frequencies are those near ω0.




With the approximation made in getting Eq. (9.45), the
equations can be solved exactly, but the work is a little elaborate,
so we won’t do that until later when we take up another problem of the
same type. Now we’ll just solve them approximately—or rather, we’ll
find an exact solution for the case of perfect resonance,
ω=ω0, and an approximate solution for frequencies near
resonance.







9–4 Transitions at resonance


Let’s take the case of perfect resonance first. If we take
ω=ω0, the exponentials are equal to one in both equations
of (9.45), and we have just
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(9.46)




If we eliminate first γI and then γII from
these equations, we find that each satisfies the differential equation
of simple harmonic motion:

[image: -*-]
(9.47)




The general solutions for these equations can be made up of sines and
cosines. As you can easily verify, the following equations are a
solution:
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(9.48)




where a and b are constants to be determined to fit any particular
physical situation.




For instance, suppose that at t=0 our molecular system was in the
upper energy state [image: \ket{\slI}], which would require—from
Eq. (9.40)—that γI=1 and γII=0
at t=0. For this situation we would need a=1 and b=0. The
probability that the molecule is in the state [image: \ket{\slI}] at some
later t is the absolute square of γI, or
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(9.49)




Similarly, the probability that the molecule will be in the
state [image: \ket{\slII}] is given by the absolute square of γII,
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(9.50)




So long as E is small and we are on resonance, the
probabilities are given by simple oscillating functions. The
probability to be in state [image: \ket{\slI}] falls from one to zero and
back again, while the probability to be in the state [image: \ket{\slII}]
rises from zero to one and back. The time variation of the two
probabilities is shown in Fig. 9–5. Needless to say, the
sum of the two probabilities is always equal to one; the molecule is
always in some state!




[image: -]
Fig. 9–5. Probabilities for the two states of the ammonia molecule in a
sinusoidal electric field.





Let’s suppose that it takes the molecule the time T to go through
the cavity. If we make the cavity just long enough so
that μ E0 T/ℏ=π/2, then a molecule which enters in
state [image: \ket{\slI}] will certainly leave it in state [image: \ket{\slII}]. If it
enters the cavity in the upper state, it will leave the cavity in the
lower state. In other words, its energy is decreased, and the loss of
energy can’t go anywhere else but into the machinery which generates
the field. The details by which you can see how the energy of the
molecule is fed into the oscillations of the cavity are not simple;
however, we don’t need to study these details, because we can use the
principle of conservation of energy. (We could study them if we had
to, but then we would have to deal with the quantum mechanics of the
field in the cavity in addition to the quantum mechanics of the atom.)




In summary: the molecule enters the cavity, the cavity
field—oscillating at exactly the right frequency—induces
transitions from the upper to the lower state, and the energy released
is fed into the oscillating field. In an operating maser the molecules
deliver enough energy to maintain the cavity oscillations—not only
providing enough power to make up for the cavity losses but even
providing small amounts of excess power that can be drawn from the
cavity. Thus, the molecular energy is converted into the energy of an
external electromagnetic field.




Remember that before the beam enters the cavity, we have to use a
filter which separates the beam so that only the upper state
enters. It is easy to demonstrate that if you were to start with
molecules in the lower state, the process will go the other way and
take energy out of the cavity. If you put the unfiltered beam in, as
many molecules are taking energy out as are putting energy in, so
nothing much would happen. In actual operation it isn’t necessary, of
course, to make (μ E0 T/ℏ) exactly π/2. For any other
value (except an exact integral multiple of π), there is some
probability for transitions from state [image: \ket{\slI}] to
state [image: \ket{\slII}]. For other values, however, the device isn’t
100 percent efficient; many of the molecules which leave the cavity could
have delivered some energy to the cavity but didn’t.




In actual use, the velocity of all the molecules is not the same; they
have some kind of Maxwell distribution. This means that the ideal
periods of time for different molecules will be different, and it is
impossible to get 100 percent efficiency for all the molecules at
once. In addition, there is another complication which is easy to take
into account, but we don’t want to bother with it at this stage. You
remember that the electric field in a cavity usually varies from place
to place across the cavity. Thus, as the molecules drift across the
cavity, the electric field at the molecule varies in a way that is
more complicated than the simple sinusoidal oscillation in time that
we have assumed. Clearly, one would have to use a more complicated
integration to do the problem exactly, but the general idea is still
the same.




There are other ways of making masers. Instead of separating the atoms
in state [image: \ket{\slI}] from those in state [image: \ket{\slII}] by a
Stern-Gerlach apparatus, one can have the atoms already in the cavity
(as a gas or a solid) and shift atoms from state [image: \ket{\slII}] to
state [image: \ket{\slI}] by some means. One way is one used in the so-called
three-state maser. For it, atomic systems are used which have three
energy levels, as shown in Fig. 9–6, with the following
special properties. The system will absorb radiation (say, light) of
frequency ℏ ω1 and go from the lowest energy
level EII, to some high-energy level E′, and then will quickly emit
photons of frequency ℏ ω2 and go to the state [image: \ket{\slI}]
with energy EI. The state [image: \ket{\slI}] has a long lifetime so
its population can be raised, and the conditions are then appropriate
for maser operation between states [image: \ket{\slI}] and [image: \ket{\slII}].
Although such a device is called a “three-state” maser, the maser
operation really works just as a two-state system such as we are
describing.



[image: -]
Fig. 9–6. The energy levels of a “three-state” maser.





A laser (Light Amplification by
Stimulated Emission of Radiation) is just a maser
working at optical frequencies. The “cavity” for a laser usually
consists of just two plane mirrors between which standing waves are
generated.







9–5 Transitions off resonance


Finally, we would like to find out how the states vary in the
circumstance that the cavity frequency is nearly, but not exactly,
equal to ω0. We could solve this problem exactly, but instead
of trying to do that, we’ll take the important case that the electric
field is small and also the period of time T is small, so
that μ E0 T/ℏ is much less than one. Then, even in the case of
perfect resonance which we have just worked out, the probability of
making a transition is small. Suppose that we start again with
γI=1 and γII=0. During the time T we would
expect γI to remain nearly equal to one, and
γII to remain very small compared with unity. Then the
problem is very easy. We can calculate γII from the
second equation in (9.45), taking γI equal
to one and integrating from t=0 to t=T. We get

[image: -*-]
(9.51)




This γII, used with Eq. (9.40), gives the
amplitude to have made a transition from the state [image: \ket{\slI}] to the
state [image: \ket{\slII}] during the time interval T. The
probability P(I→II) to make the transition
is │γII│2, or



[image: -*-]
(9.52)










It is interesting to plot this probability for a fixed length of time
as a function of the frequency of the cavity in order to see how
sensitive it is to frequencies near the resonant frequency ω0.
We show such a plot of P(I→II) in
Fig. 9–7. (The vertical scale has been adjusted to be 1
at the peak by dividing by the value of the probability
when ω=ω0.) We have seen a curve like this in the diffraction
theory, so you should already be familiar with it. The curve falls
rather abruptly to zero for (ω−ω0)=2 π/T and never regains
significant size for large frequency deviations. In fact, by far the
greatest part of the area under the curve lies within the
range ±π/T. It is possible to show5 that the area under the
curve is just 2 π/T and is equal to the area of the shaded rectangle
drawn in the figure.



[image: -]
Fig. 9–7. Transition probability for the ammonia molecule as function of
frequency.





Let’s examine the implication of our results for a real maser. Suppose
that the ammonia molecule is in the cavity for a reasonable length of
time, say for one millisecond. Then for f0=24,000 megacycles, we
can calculate that the probability for a transition falls to zero for
a frequency deviation of (f−f0)/f0=1/f0 T, which is five parts
in 108. Evidently the frequency must be very close to ω0 to
get a significant transition probability. Such an effect is the basis
of the great precision that can be obtained with “atomic”
clocks, which work on the maser principle.








9–6 The absorption of light


Our treatment above applies to a more general situation than the
ammonia maser. We have treated the behavior of a molecule under the
influence of an electric field, whether that field was confined in a
cavity or not. So we could be simply shining a beam of “light”—at
microwave frequencies—at the molecule and ask for the probability of
emission or absorption. Our equations apply equally well to this case,
but let’s rewrite them in terms of the intensity of the
radiation rather than the electric field. If we define the
intensity I to be the average energy flow per unit area per second,
then from Chapter 27 of Volume II, we can write

[image: -*-]


(The maximum value of E is 2 E0.) The transition
probability now becomes:



[image: -*-]
(9.53)











Ordinarily the light shining on such a system is not exactly
monochromatic.  It is, therefore, interesting to solve one more
problem—that is, to calculate the transition probability when the
light has intensity I (ω) per unit frequency interval,
covering a broad range which includes ω0. Then, the
probability of going from [image: \ket{\slI}] to [image: \ket{\slII}] will become an
integral:



[image: -*-]
(9.54)





In general, I (ω) will vary much more slowly
with ω than the sharp resonance term. The two functions might appear
as shown in Fig. 9–8. In such cases, we can
replace I (ω) by its value I (ω0) at the center
of the sharp resonance curve and take it outside of the integral. What
remains is just the integral under the curve of Fig. 9–7,
which is, as we have seen, just equal to 2 π/T. We get the result
that

[image: -*-]
(9.55)








[image: -]
Fig. 9–8. The spectral intensity I (ω) can be approximated
by its value at ω0.





This is an important result, because it is the general theory of the
absorption of light by any molecular or atomic system. Although we began by
considering a case in which state [image: \ket{\slI}]) had a higher energy than
state [image: \ket{\slII}], none of our arguments depended on that fact.
Equation (9.55) still holds if the state [image: \ket{\slI}] has a
lower energy than the state [image: \ket{\slII}]; then P(I→II)
represents the probability for a transition with the absorption of energy
from the incident electromagnetic wave. The absorption of light by any atomic
system always involves the amplitude for a transition in an oscillating electric
field between two states separated by an energy E=ℏ ω0. For any
particular case, it is always worked out in just the way we have done here and
gives an expression like Eq. (9.55). We, therefore, emphasize the
following features of this result. First, the probability is proportional
to T. In other words, there is a constant probability per unit time that
transitions will occur. Second, this probability is proportional to the
intensity of the light incident on the system. Finally, the transition
probability is proportional to μ2, where, you remember, μ E
defined the shift in energy due to the electric field E. Because of
this, μ E also appeared in Eqs. (9.38)
and (9.39) as the coupling term that is responsible for the
transition between the otherwise stationary states [image: \ket{\slI}]
and [image: \ket{\slII}]. In other words, for the small E we have been
considering, μ E is the so-called “perturbation term” in the
Hamiltonian matrix element which connects the states [image: \ket{\slI}]
and [image: \ket{\slII}]. In the general case, we would have that μ E gets
replaced by the matrix element [image: \bracket{\slII}{H}{\slI}] (see
Section 5–6).




In Volume I (Section 42–5) we talked about the relations
among light absorption, induced emission, and spontaneous emission in
terms of the Einstein A- and B-coefficients. Here, we have at last
the quantum mechanical procedure for computing these coefficients. What
we have called P(I→II) for our two-state ammonia molecule
corresponds precisely to the absorption coefficient Bn m of the
Einstein radiation theory. For the complicated ammonia molecule—which
is too difficult for anyone to calculate—we have taken the matrix
element [image: \bracket{\slII}{H}{\slI}] as μ E, saying that μ is
to be gotten from experiment. For simpler atomic systems, the μm n
which belongs to any particular transition can be calculated from the
definition

[image: -*-]
(9.56)




where Hm n is the matrix element of the Hamiltonian which includes
the effects of a weak electric field. The μm n calculated in
this way is called the electric dipole matrix
element. The quantum mechanical
theory of the absorption and emission of light is, therefore, reduced to
a calculation of these matrix elements for particular atomic systems.




Our study of a simple two-state system has thus led us to an
understanding of the general problem of the absorption and emission of
light.






	
  
  In what follows it is helpful—in
reading to yourself or in talking to someone else—to have a handy
way of distinguishing between the Arabic 1 and 2 and the Roman I
and II. We find it convenient to reserve the names “one” and “two”
for the Arabic numbers, and to call I and II by the names “eins” and
“zwei” (although “unus” and “duo” might be more logical!).
  ^


	
  
  We are sorry that
we have to introduce a new notation. Since we have been using p
and E for momentum and energy, we don’t want to use them again for
dipole moment and electric field. Remember, in this section μ is
the electric dipole moment.
  ^


	
  
  For example, the following set is one
acceptable solution, as you can easily verify:
[image: -*-]


   ^


	
  
  From now on we will write [image: \ket{\slI}]
and [image: \ket{\slII}] instead of [image: \ket{\psi_{\slI}}]
and [image: \ket{\psi_{\slII}}]. You must remember that the actual states
[image: \ket{\psi_{\slI}}] and [image: \ket{\psi_{\slII}}] are the energy base
states multiplied by the appropriate exponential factor.
  ^


	
  
  Using the
formula [image: \int_{-\infty}^\infty(\sin^2x/x^2)\,dx=\pi].
  ^






  
    

10 Other Two-State Systems



10–1 The hydrogen molecular ion


In the last chapter we discussed some aspects of the ammonia
molecule under the approximation that it can be considered as a
two-state system. It is, of course, not really a two-state
system—there are many states of rotation, vibration, translation, and
so on—but each of these states of motion must be analyzed in terms of
two internal states because of the flip-flop of the nitrogen atom. Here
we are going to consider other examples of systems which, to some
approximation or other, can be considered as two-state systems. Lots of
things will be approximate because there are always many other states,
and in a more accurate analysis they would have to be taken into
account. But in each of our examples we will be able to understand a
great deal by just thinking about two states.





Since we will only be dealing with two-state systems, the Hamiltonian we
need will look just like the one we used in the last chapter. When the
Hamiltonian is independent of time, we know that there are two
stationary states with definite—and usually different—energies.
Generally, however, we start our analysis with a set of base states
which are not these stationary states, but states which may,
perhaps, have some other simple physical meaning. Then, the stationary
states of the system will be represented by a linear combination of
these base states.




For convenience, we will summarize the important equations from
Chapter 9. Let the original choice of base states be
[image: \ket{\slOne}] and [image: \ket{\slTwo}]. Then any state [image: \ket{\psi}] is
represented by the linear combination



[image: -*-]
(10.1)





The amplitudes Ci (by which we mean either C1 or C2)
satisfy the two linear differential equations

[image: -*-]
(10.2)




where both i and j take on the values 1 and 2.




When the terms of the Hamiltonian Hi j do not depend on t, the two
states of definite energy (the stationary states), which we call

[image: -*-]


have the energies

[image: -*-]
(10.3)




The two C’s for each of these states have the same time
dependence. The state vectors [image: \ket{\slI}] and [image: \ket{\slII}] which go
with the stationary states are related to our original base states
[image: \ket{\slOne}] and [image: \ket{\slTwo}] by

[image: -*-]
(10.4)




The a’s are complex constants, which satisfy

[image: -*-]
(10.5)

(10.6)




If H11 and H22 are equal—say both are equal
to E0—and H12=H21=−A, then EI=E0+A,
EII=E0−A, and the states [image: \ket{\slI}] and [image: \ket{\slII}] are
particularly simple:



[image: -*-]
(10.7)










Now we will use these results to discuss a number of interesting
examples taken from the fields of chemistry and physics. The first
example is the hydrogen molecular ion. A positively ionized hydrogen
molecule consists of two protons with one electron worming its way
around them. If the two protons are very far apart, what states would
we expect for this system? The answer is pretty clear: The electron
will stay close to one proton and form a hydrogen atom in its lowest
state, and the other proton will remain alone as a positive ion. So,
if the two protons are far apart, we can visualize one physical state
in which the electron is “attached” to one of the protons. There is,
clearly, another state symmetric to that one in which the electron is
near the other proton, and the first proton is the one that is an
ion. We will take these two as our base states, and we’ll call them
[image: \ket{\slOne}] and [image: \ket{\slTwo}]. They are sketched in
Fig. 10–1. Of course, there are really many states of an
electron near a proton, because the combination can exist as any one of
the excited states of the hydrogen atom. We are not interested in that
variety of states now; we will consider only the situation in which the
hydrogen atom is in the lowest state—its ground state—and we will,
for the moment, disregard spin of the electron. We can just suppose that
for all our states the electron has its spin “up” along the
z-axis.1



[image: -]
Fig. 10–1. A set of base states for two protons and an electron.





Now to remove an electron from a hydrogen atom requires
13.6 electron volts of energy. So long as the two protons of the hydrogen
molecular ion are far apart, it still requires about this much
energy—which is for our present considerations a great deal of
energy—to get the electron somewhere near the midpoint between the
protons. So it is impossible, classically, for the electron to jump
from one proton to the other. However, in quantum mechanics it is
possible—though not very likely. There is some small amplitude for
the electron to move from one proton to the other. As a first
approximation, then, each of our base states [image: \ket{\slOne}]
and [image: \ket{\slTwo}] will have the energy E0, which is just the energy
of one hydrogen atom plus one proton. We can take that the Hamiltonian
matrix elements H11 and H22 are both approximately
equal to E0. The other matrix elements H12
and H21, which are the amplitudes for the electron to go back and
forth, we will again write as −A.




You see that this is the same game we played in the last two
chapters. If we disregard the fact that the electron can flip back and
forth, we have two states of exactly the same energy. This energy
will, however, be split into two energy levels by the possibility of
the electron going back and forth—the greater the probability of the
transition, the greater the split. So the two energy levels of the
system are E0+A and E0−A; and the states which have these
definite energies are given by Eqs. (10.7).




From our solution we see that if a proton and a hydrogen atom are put
anywhere near together, the electron will not stay on one of the
protons but will flip back and forth between the two protons. If it
starts on one of the protons, it will oscillate back and forth between
the states [image: \ket{\slOne}] and [image: \ket{\slTwo}]—giving a time-varying
solution. In order to have the lowest energy solution (which does not
vary with time), it is necessary to start the system with equal
amplitudes for the electron to be around each proton. Remember, there
are not two electrons—we are not saying that there is an electron
around each proton. There is only one electron, and it
has the same amplitude—1/√2 in magnitude—to be in either
position.




Now the amplitude A for an electron which is near one proton to get to
the other one depends on the separation between the protons. The closer
the protons are together, the larger the amplitude. You remember that we
talked in Chapter 7 about the amplitude for an electron
to “penetrate a barrier,” which it could not do classically. We have
the same situation here. The amplitude for an electron to get across
decreases roughly exponentially with the distance—for large distances.
Since the transition probability, and therefore A, gets larger when
the protons are closer together, the separation of the energy levels
will also get larger. If the system is in the state [image: \ket{\slI}], the
energy E0+A increases with decreasing distance, so these quantum
mechanical effects make a repulsive force tending to keep the
protons apart. On the other hand, if the system is in the
state [image: \ket{\slII}], the total energy decreases if the protons
are brought closer together; there is an attractive force pulling
the protons together. The variation of the two energies with the
distance between the two protons should be roughly as shown in
Fig. 10–2. We have, then, a quantum-mechanical explanation
of the binding force that holds the [image: \text{H}_2^+] ion together.



[image: -]
Fig. 10–2. The energies of the two stationary states of the [image: \text{H}_2^+] ion as
a function of the distance between the two protons.





We have, however, forgotten one thing. In addition to the force we have
just described, there is also an electrostatic repulsive force between
the two protons. When the two protons are far apart—as in
Fig. 10–1—the “bare” proton sees only a neutral atom,
so there is a negligible electrostatic force. At very close distances,
however, the “bare” proton begins to get “inside” the electron
distribution—that is, it is closer to the proton on the average than
to the electron. So there begins to be some extra electrostatic energy
which is, of course, positive. This energy—which also varies with the
separation—should be included in E0. So for E0 we should take
something like the broken-line curve in Fig. 10–2 which
rises rapidly for distances less than the radius of a hydrogen atom. We
should add and subtract the flip-flop energy A from this E0. When
we do that, the energies EI and EII will vary with the
interproton distance D as shown in Fig. 10–3. [In this
figure, we have plotted the results of a more detailed calculation. The
interproton distance is given in units of 1 Å (10−8 cm), and
the excess energy over a proton plus a hydrogen atom is given in units
of the binding energy of the hydrogen atom—the so-called “Rydberg”
energy, 13.6 eV.]
We see that the state [image: \ket{\slII}] has a minimum-energy point. This
will be the equilibrium configuration—the lowest energy
condition—for the [image: \text{H}_2^+] ion. The energy at this point is lower than
the energy of a separated proton and hydrogen ion, so the system is
bound. A single electron acts to hold the two protons together. A
chemist would call it a “one-electron bond.”




[image: -]
Fig. 10–3. The energy levels of the [image: \text{H}_2^+] ion as a function of the interproton
distance D. (EH=13.6 eV.)





This kind of chemical binding is also often called “quantum mechanical
resonance” (by analogy with the two coupled pendulums we have
described before). But that really sounds more mysterious than it is,
it’s only a “resonance” if you start out by making a poor choice for
your base states—as we did also! If you picked the
state [image: \ket{\slII}], you would have the lowest energy state—that’s all.




We can see in another way why such a state should have a lower energy
than a proton and a hydrogen atom. Let’s think about an electron near
two protons with some fixed, but not too large, separation. You
remember that with a single proton the electron is “spread out”
because of the uncertainty principle. It seeks a balance between
having a low Coulomb potential energy and not getting confined
into too small a space, which would make a high kinetic energy
(because of the uncertainty relation Δ p Δ x≈ℏ). Now if there are two protons, there is more space
where the electron can have a low potential energy. It can spread
out—lowering its kinetic energy—without increasing its potential
energy. The net result is a lower energy than a proton and a hydrogen
atom. Then why does the other state [image: \ket{\slI}] have a higher energy?
Notice that this state is the difference of the states
[image: \ket{\slOne}] and [image: \ket{\slTwo}]. Because of the symmetry of
[image: \ket{\slOne}] and [image: \ket{\slTwo}], the difference must have zero
amplitude to find the electron half-way between the two protons. This
means that the electron is somewhat more confined, which leads to a
larger energy.




We should say that our approximate treatment of the [image: \text{H}_2^+] ion as a
two-state system breaks down pretty badly once the protons get as
close together as they are at the minimum in the curve of
Fig. 10–3, and so, will not give a good value for the
actual binding energy. For small separations, the energies of the two
“states” we imagined in Fig. 10–1 are not really equal
to E0; a more refined quantum mechanical treatment is needed.




Suppose we ask now what would happen if instead of two protons, we had
two different objects—as, for example, one proton and one lithium
positive ion (both particles still with a single positive charge). In
such a case, the two terms H11 and H22 of the Hamiltonian
would no longer be equal; they would, in fact, be quite different. If it
should happen that the difference (H11−H22) is, in absolute
value, much greater than A=−H12, the attractive force gets very
weak, as we can see in the following way.




If we put H12 H21=A2 into Eqs. (10.3) we get

[image: -*-]


When H11−H22 is much greater than A2, the square root is
very nearly equal to

[image: -*-]


The two energies are then
[image: -*-]
(10.8)




They are now very nearly just the energies H11 and H22
of the isolated atoms, pushed apart only slightly by the flip-flop
amplitude A.





The energy difference EI−EII is

[image: -*-]


The additional separation from the flip-flop of the electron is
no longer equal to 2 A; it is smaller by the
factor A/(H11−H22), which we are now taking to be much less than
one. Also, the dependence of EI−EII on the separation of
the two nuclei is much smaller than for the [image: \text{H}_2^+] ion—it is also
reduced by the factor A/(H11−H22). We can now see why the
binding of unsymmetric diatomic molecules is generally very weak.




In our theory of the [image: \text{H}_2^+] ion we have discovered an explanation for
the mechanism by which an electron shared by two protons provides, in
effect, an attractive force between the two protons which can be
present even when the protons are at large distances. The attractive
force comes from the reduced energy of the system due to the
possibility of the electron jumping from one proton to the other. In
such a jump the system changes from the configuration (hydrogen atom,
proton) to the configuration (proton, hydrogen atom), or switches
back. We can write the process symbolically as

[image: -*-]


The energy shift due to this process is proportional to the
amplitude A that an electron whose energy is −WH (its binding
energy in the hydrogen atom) can get from one proton to the other.




For large distances R between the two protons, the electrostatic
potential energy of the electron is nearly zero over most of the space
it must go when it makes its jump. In this space, then, the electron
moves nearly like a free particle in empty space—but with a
negative energy! We have seen in Chapter 3
[Eq. (3.7)] that the amplitude for a particle of
definite energy to get from one place to another a distance r away
is proportional to

[image: -*-]


where p is the momentum corresponding to the definite energy. In the
present case (using the nonrelativistic formula), p is given by

[image: -*-]
(10.9)




This means that p is an imaginary number,

[image: -*-]


(the other sign for the radical gives nonsense here).




We should expect, then, that the amplitude A for the [image: \text{H}_2^+] ion
will vary as

[image: -*-]
(10.10)




for large separations R between the two protons. The energy shift
due to the electron binding is proportional to A, so there is a
force pulling the two protons together which is proportional—for
large R—to the derivative of (10.10) with respect
to R.




Finally, to be complete, we should remark that in the two-proton,
one-electron system there is still one other effect which gives a
dependence of the energy on R.  We have neglected it until now because
it is usually rather unimportant—the exception is just for those very
large distances where the energy of the exchange term A has decreased
exponentially to very small values. The new effect we are thinking of is
the electrostatic attraction of the proton for the hydrogen atom, which
comes about in the same way any charged object attracts a neutral
object.  The bare proton makes an electric field E (varying
as 1/R2) at the neutral hydrogen atom. The atom becomes polarized,
taking on an induced dipole moment μ proportional to E. The
energy of the dipole is μ E, which is proportional
to E2—or to 1/R4. So there is a term in the energy of the
system which decreases with the fourth power of the distance. (It is a
correction to E0.) This energy falls off with distance more slowly
than the shift A given by (10.10); at some large
separation R it becomes the only remaining important term giving a
variation of energy with R—and, therefore, the only remaining force.
Note that the electrostatic term has the same sign for both of the base
states (the force is attractive, so the energy is negative) and so also
for the two stationary states, whereas the electron exchange term A
gives opposite signs for the two stationary states.







10–2 Nuclear forces


We have seen that the system of a hydrogen atom and a proton has an
energy of interaction due to the exchange of the single electron which
varies at large separations R as
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(10.11)




with α=√2 m WH/ℏ. (One usually says that there is an
exchange of a “virtual” electron when—as here—the electron has
to jump across a space where it would have a negative energy. More
specifically, a “virtual exchange” means that the phenomenon
involves a quantum mechanical interference between an exchanged state
and a nonexchanged state.)




Now we might ask the following question: Could it be that forces
between other kinds of particles have an analogous origin? What about,
for example, the nuclear force between a neutron and a proton, or
between two protons? In an attempt to explain the nature of nuclear
forces, Yukawa
proposed that the force between two nucleons is due to
a similar exchange effect—only, in this case, due to the virtual
exchange, not of an electron, but of a new particle, which he called a
“meson.” Today, we would identify Yukawa’s meson with the
π-meson (or “pion”) produced in high-energy collisions of
protons or other particles.




Let’s see, as an example, what kind of a force we would expect from
the exchange of a positive pion (π+) of mass mπ between a
proton and a neutron. Just as a hydrogen atom H0 can go into a
proton p+ by giving up an electron e−,

[image: -*-]
(10.12)




a proton p+ can go into a neutron n0 by giving up a
π+ meson:

[image: -*-]
(10.13)




So if we have a proton at a and a neutron at b separated by the
distance R, the proton can become a neutron by emitting a π+,
which is then absorbed by the neutron at b, turning it into a
proton. There is an energy of interaction of the two-nucleon (plus
pion) system which depends on the amplitude A for the pion
exchange—just as we found for the electron exchange in the
[image: \text{H}_2^+] ion.




In the process (10.12), the energy of the H0 atom is
less than that of the proton by WH (calculating
nonrelativistically, and omitting the rest energy m c2 of the
electron), so the electron has a negative kinetic energy—or
imaginary momentum—as in Eq. (10.9). In the nuclear
process (10.13), the proton and neutron have almost equal
masses, so the π+ will have zero total energy. The
relation between the total energy E and the momentum p for a pion
of mass mπ is

[image: -*-]


Since E is zero (or at least negligible in comparison with mπ),
the momentum is again imaginary:

[image: -*-]







Using the same arguments we gave for the amplitude that a bound
electron would penetrate the barrier in the space between two protons,
we get for the nuclear case an exchange amplitude A which
should—for large R—go as

[image: -*-]
(10.14)




The interaction energy is proportional to A, and so varies in the same
way. We get an energy variation in the form of the so-called
Yukawa potential between two nucleons. Incidentally, we
obtained this same formula earlier directly from the differential
equation for the motion of a pion in free space [see
Chapter 28, Vol. II, Eq. (28.18)].




We can, following the same line of argument, discuss the interaction
between two protons (or between two neutrons) which results from the
exchange of a neutral pion (π0). The
basic process is now

[image: -*-]
(10.15)




A proton can emit a virtual π0, but then it remains still a
proton. If we have two protons, proton No. 1 can emit a virtual
π0 which is absorbed by proton No. 2. At the end, we still
have two protons. This is somewhat different from the [image: \text{H}_2^+]
ion. There the H0 went into a different condition—the
proton—after emitting the electron. Now we are assuming that a
proton can emit a π0 without changing its character. Such
processes are, in fact, observed in high-energy collisions. The
process is analogous to the way that an electron emits a photon and
ends up still an electron:

[image: -*-]
(10.16)




We do not “see” the photons inside the electrons before they are
emitted or after they are absorbed, and their emission does not change
the “nature” of the electron.




Going back to the two protons, there is an interaction energy which
arises from the amplitude A that one proton emits a neutral pion
which travels across (with imaginary momentum) to the other proton and
is absorbed there. This amplitude is again proportional
to (10.14), with mπ the mass of the neutral pion. All
the same arguments give an equal interaction energy for two neutrons.
Since the nuclear forces (disregarding electrical effects) between
neutron and proton, between proton and proton, between neutron and
neutron are the same, we conclude that the masses of the charged and
neutral pions should be the same. Experimentally, the masses are indeed
very nearly equal, and the small difference is about what one would
expect from electric self-energy corrections (see
Chapter 28, Vol. II).




There are other kinds of particles—like K-mesons—which can be
exchanged between two nucleons. It is also possible for two pions to
be exchanged at the same time. But all of these other exchanged
“objects” have a rest mass mx higher than the pion mass mπ,
and lead to terms in the exchange amplitude which vary as

[image: -*-]


These terms die out faster with increasing R than the one-meson
term. No one knows, today, how to calculate these higher-mass terms,
but for large enough values of R only the one-pion term
survives. And, indeed, those experiments which involve nuclear
interactions only at large distances do show that the interaction
energy is as predicted from the one-pion exchange theory.




In the classical theory of electricity and magnetism, the Coulomb
electrostatic interaction and the radiation of light by an
accelerating charge are closely related—both come out of the Maxwell
equations. We have seen in the quantum theory that light can be
represented as the quantum excitations of the harmonic oscillations of
the classical electromagnetic fields in a box. Alternatively, the
quantum theory can be set up by describing light in terms of
particles—photons—which obey Bose statistics. We emphasized in
Section 4–5 that the two alternative points of view
always give identical predictions. Can the second point of view be
carried through completely to include all electromagnetic
effects? In particular, if we want to describe the electromagnetic
field purely in terms of Bose particles—that is, in terms of
photons—what is the Coulomb force due to?




From the “particle” point of view the Coulomb interaction between
two electrons comes from the exchange of a virtual photon. One
electron emits a photon—as in reaction (10.16)—which
goes over to the second electron, where it is absorbed in the reverse
of the same reaction. The interaction energy is again given by a
formula like (10.14), but now with mπ replaced by
the rest mass of the photon—which is zero. So the virtual exchange
of a photon between two electrons gives an interaction energy that
varies simply inversely as R, the distance between the two
electrons—just the normal Coulomb potential energy! In the
“particle” theory of electromagnetism, the process of a virtual
photon exchange gives rise to all the phenomena of electrostatics.







10–3 The hydrogen molecule


As our next two-state system we will look at the neutral hydrogen
molecule H2. It is, naturally, more complicated to understand because
it has two electrons. Again, we start by thinking of what happens when
the two protons are well separated. Only now we have two electrons to
add. To keep track of them, we’ll call one of them “electron a” and
the other “electron b.” We can again imagine two possible states.
One possibility is that “electron a” is around the first proton and
“electron b” is around the second, as shown in the top half of
Fig. 10–4. We have simply two hydrogen atoms. We will call
this state [image: \ket{\slOne}]. There is also another possibility: that
“electron b” is around the first proton and that “electron a” is
around the second. We call this state [image: \ket{\slTwo}]. From the symmetry
of the situation, those two possibilities should be energetically
equivalent, but, as we will see, the energy of the system is not
just the energy of two hydrogen atoms. We should mention that there are
many other possibilities. For instance, “electron a” might be near
the first proton and “electron b” might be in another state around
the same proton. We’ll disregard such a case, since it will
certainly have higher energy (because of the large Coulomb repulsion
between the two electrons). For greater accuracy, we would have to
include such states, but we can get the essentials of the molecular
binding by considering just the two states of Fig. 10–4.
To this approximation we can describe any state by giving the
amplitude [image: \braket{\slOne}{\phi}] to be in the state [image: \ket{\slOne}] and
an amplitude [image: \braket{\slTwo}{\phi}] to be in state [image: \ket{\slTwo}]. In
other words, the state vector [image: \ket{\phi}] can be written as the linear
combination
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[image: -]
Fig. 10–4. A set of base states for the H2 molecule.





To proceed, we assume—as usual—that there is some amplitude A
that the electrons can move through the intervening space and exchange
places. This possibility of exchange means that the energy of the
system is split, as we have seen for other two-state systems. As for
the hydrogen molecular ion, the splitting is very small when the
distance between the protons is large. As the protons approach each
other, the amplitude for the electrons to go back and forth increases,
so the splitting increases. The decrease of the lower energy state
means that there is an attractive force which pulls the atoms
together. Again the energy levels rise when the protons get very close
together because of the Coulomb repulsion. The net final result is
that the two stationary states have energies which vary with the
separation as shown in Fig. 10–5. At a separation of
about 0.74 Å, the lower energy level reaches a minimum; this is the
proton-proton distance of the true hydrogen molecule.



[image: -]
Fig. 10–5. The energy levels of the H2 molecule for different
interproton distances D. (EH=13.6 eV.)





Now you have probably been thinking of an objection. What about the
fact that the two electrons are identical particles? We have been
calling them “electron a” and “electron b,” but there really
is no way to tell which is which. And we have said in
Chapter 4 that for electrons—which are Fermi
particles—if there are two ways something can happen by exchanging the
electrons, the two amplitudes will interfere with a negative
sign. This means that if we switch which electron is which, the sign of
the amplitude must reverse. We have just concluded, however, that the
bound state of the hydrogen molecule would be (at t=0)
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However, according to our rules of Chapter 4, this
state is not allowed. If we reverse which electron is which, we get
the state

[image: -*-]


and we get the same sign instead of the opposite one.




These arguments are correct if both electrons have the same
spin. It is true that if both electrons have spin up (or both have
spin down), the only state that is permitted is

[image: -*-]


For this state, an interchange of the two electrons gives

[image: -*-]


which is [image: -\ket{\slI}], as required. So if we bring two hydrogen atoms
near to each other with their electrons spinning in the same direction,
they can go into the state [image: \ket{\slI}] and not state [image: \ket{\slII}]. But
notice that state [image: \ket{\slI}] is the upper energy state. Its
curve of energy versus separation has no minimum. The two hydrogens will
always repel and will not form a molecule. So we conclude that the
hydrogen molecule cannot exist with parallel electron spins. And that is
right.




On the other hand, our state [image: \ket{\slII}] is perfectly symmetric for
the two electrons. In fact, if we interchange which electron we call a
and which we call b we get back exactly the same state. We saw in
Section 4–7 that if two Fermi particles are in the same
state, they must have opposite spins. So, the bound hydrogen
molecule must have one electron with spin up and one with spin down.





The whole story of the hydrogen molecule is really somewhat more
complicated if we want to include the proton spins. It is then no longer
right to think of the molecule as a two-state system. It should
really be looked at as an eight-state system—there are four
possible spin arrangements for each of our states [image: \ket{\slOne}]
and [image: \ket{\slTwo}]—so we were cutting things a little short by
neglecting the spins. Our final conclusions are, however, correct.




We find that the lowest energy state—the only bound state—of the
H2 molecule has the two electrons with spins opposite. The total
spin angular momentum of the electrons is zero. On the other hand, two
nearby hydrogen atoms with spins parallel—and so with a total
angular momentum ℏ—must be in a higher (unbound) energy state;
the atoms repel each other. There is an interesting correlation
between the spins and the energies. It gives another illustration of
something we mentioned before, which is that there appears to be an
“interaction” energy between two spins because the case of parallel
spins has a higher energy than the opposite case. In a certain sense
you could say that the spins try to reach an antiparallel condition
and, in doing so, have the potential to liberate energy—not because
there is a large magnetic force, but because of the exclusion
principle.




We saw in Section 10–1 that the binding of two
different ions by a single electron is likely to be
quite weak. This is not true for binding by two
electrons. Suppose the two protons in Fig. 10–4 were
replaced by any two ions (with closed inner electron shells and a single
ionic charge), and that the binding energies of an electron at the two
ions are different. The energies of states [image: \ket{\slOne}]
and [image: \ket{\slTwo}] would still be equal because in each of these states we
have one electron bound to each ion. Therefore, we always have the
splitting proportional to A. Two-electron binding is ubiquitous—it
is the most common valence bond. Chemical binding usually involves this
flip-flop game played by two electrons. Although two atoms can be bound
together by only one electron, it is relatively rare—because it
requires just the right conditions.




Finally, we want to mention that if the energy of attraction for an
electron to one nucleus is much greater than to the other, then what
we have said earlier about ignoring other possible states is no longer
right. Suppose nucleus a (or it may be a positive ion) has a much
stronger attraction for an electron than does nucleus b. It may then
happen that the total energy is still fairly low even when both
electrons are at nucleus a, and no electron is at nucleus b. The
strong attraction may more than compensate for the mutual repulsion of
the two electrons. If it does, the lowest energy state may have a
large amplitude to find both electrons at a (making a negative ion)
and a small amplitude to find any electron at b. The state looks
like a negative ion with a positive ion. This is, in fact, what
happens in an “ionic” molecule like NaCl. You can see that all the
gradations between covalent binding and ionic binding are possible.




You can now begin to see how it is that many of the facts of chemistry
can be most clearly understood in terms of a quantum mechanical
description.







10–4 The benzene molecule

[image: -]
Fig. 10–6. The benzene molecule, C6H6.





Chemists have invented nice diagrams to represent complicated organic
molecules. Now we are going to discuss one of the most interesting of
them—the benzene molecule shown in Fig. 10–6. It
contains six carbon and six hydrogen atoms in a symmetrical array. Each
bar of the diagram represents a pair of electrons, with spins
opposite, doing the covalent bond dance. Each hydrogen atom contributes
one electron and each carbon atom contributes four electrons to make up
the total of 30 electrons involved. (There are two more electrons
close to the nucleus of the carbon which form the first, or K, shell.
These are not shown since they are so tightly bound that they are not
appreciably involved in the covalent binding.) So each bar in the figure
represents a bond, or pair of electrons, and the double bonds
mean that there are two pairs of electrons between alternate
pairs of carbon atoms.




There is a mystery about this benzene molecule. We can calculate what
energy should be required to form this chemical compound, because the
chemists have measured the energies of various compounds which involve
pieces of the ring—for instance, they know the energy of a double
bond by studying ethylene, and so on. We can, therefore, calculate the
total energy we should expect for the benzene molecule. The actual
energy of the benzene ring, however, is much lower than we get by such
a calculation; it is more tightly bound than we would expect from what
is called an “unsaturated double bond system.” Usually a double bond
system which is not in such a ring is easily attacked chemically
because it has a relatively high energy—the double bonds can be
easily broken by the addition of other hydrogens. But in benzene the
ring is quite permanent and hard to break up.  In other words, benzene
has a much lower energy than you would calculate from the bond
picture.




Then there is another mystery. Suppose we replace two adjacent
hydrogens by bromine atoms to make ortho-dibromobenzene. There are two
ways to do this, as shown in Fig. 10–7. The bromines
could be on the opposite ends of a double bond as shown in part (a) of
the figure, or could be on the opposite ends of a single bond as in (b).
One would think that ortho-dibromobenzene should have two different
forms, but it doesn’t. There is only one such chemical.2



[image: -][image: -]
Fig. 10–7. Two possibilities of orthodibromobenzene. The two bromines
could be separated by a single bond or by a double bond.





Now we want to resolve these mysteries—and perhaps you have already
guessed how: by noticing, of course, that the “ground state” of the
benzene ring is really a two-state system. We could imagine that the
bonds in benzene could be in either of the two arrangements shown in
Fig. 10–8. You say, “But they are really the same; they
should have the same energy.” Indeed, they should. And for that reason
they must be analyzed as a two-state system. Each state represents a
different configuration of the whole set of electrons, and there is some
amplitude A that the whole bunch can switch from one arrangement to
the other—there is a chance that the electrons can flip from one dance
to the other.



[image: -][image: -]
Fig. 10–8. A set of base states for the benzene molecule.





As we have seen, this chance of flipping makes a mixed state whose
energy is lower than you would calculate by looking separately at either
of the two pictures in Fig. 10–8. Instead, there are two
stationary states—one with an energy above and one with an energy
below the expected value. So actually, the true normal state (lowest
energy) of benzene is neither of the possibilities shown in
Fig. 10–8, but it has the amplitude 1/√2 to be in
each of the states shown. It is the only state that is involved in the
chemistry of benzene at normal temperatures. Incidentally, the upper
state also exists; we can tell it is there because benzene has a strong
absorption for ultraviolet light at the
frequency ω=(EI−EII)/ℏ. You will remember that in
ammonia, where the object flipping back and forth was three protons, the
energy separation was in the microwave region. In benzene, the objects
are electrons, and because they are much lighter, they find it easier to
flip back and forth, which makes the coefficient A very much larger.
The result is that the energy difference is much larger—about
1.5 eV, which is the energy of an ultraviolet photon.3




What happens if we substitute bromine? Again the two “possibilities”
(a) and (b) in Fig. 10–7 represent the two different
electron configurations. The only difference is that the two base states
we start with would have slightly different energies. The lowest energy
stationary state will still involve a linear combination of the two
states, but with unequal amplitudes. The amplitude for
state [image: \ket{\slOne}] might have a value something like √2/3,
say, whereas state [image: \ket{\slTwo}] would have the magnitude √1/3.
We can’t say for sure without more information, but once the two
energies H11 and H22 are no longer equal, then the amplitudes
C1 and C2 no longer have equal magnitudes. This means, of course,
that one of the two possibilities in the figure is more likely than the
other, but the electrons are mobile enough so that there is some
amplitude for both. The other state has different amplitudes (like
√1/3 and −√2/3) but lies at a higher energy. There is
only one lowest state, not two as the naive theory of fixed chemical
bonds would suggest.







10–5 Dyes

[image: -][image: -]
Fig. 10–9. Two base states for the molecule of the dye magenta.





We will give you one more chemical example of the two-state
phenomenon—this time on a larger molecular scale. It has to do with
the theory of dyes. Many dyes—in fact, most artificial dyes—have an
interesting characteristic; they have a kind of symmetry.
Figure 10–9 shows an ion of a particular dye called
magenta, which has a purplish red color. The molecule has
three ring structures—two of which are benzene rings. The third is not
exactly the same as a benzene ring because it has only two double bonds
inside the ring. The figure shows two equally satisfactory pictures, and
we would guess that they should have equal energies. But there is a
certain amplitude that all the electrons can flip from one condition to
the other, shifting the position of the “unfilled” position to the
opposite end. With so many electrons involved, the flipping amplitude is
somewhat lower than it is in the case of benzene, and the difference in
energy between the two stationary states is smaller. There are,
nevertheless, the usual two stationary states [image: \ket{\slI}]
and [image: \ket{\slII}] which are the sum and difference combinations of the two
base states shown in the figure. The energy separation of [image: \ket{\slI}]
and [image: \ket{\slII}] comes out to be equal to the energy of a photon in the
optical region. If one shines light on the molecule, there is a very
strong absorption at one frequency, and it appears to be brightly
colored. That’s why it’s a dye!




Another interesting feature of such a dye molecule is that in the two
base states shown, the center of electric charge is located at different
places. As a result, the molecule should be strongly affected by an
external electric field. We had a similar effect in the ammonia
molecule. Evidently we can analyze it by using exactly the same
mathematics, provided we know the numbers E0 and A. Generally,
these are obtained by gathering experimental data. If one makes
measurements with many dyes, it is often possible to guess what will
happen with some related dye molecule. Because of the large shift in the
position of the center of electric charge the value of μ in
formula (9.55) is large and the material has a high
probability for absorbing light of the characteristic
frequency 2 A/ℏ. Therefore, it is not only colored but very
strongly so—a small amount of substance absorbs a lot of light.




The rate of flipping—and, therefore, A—is very sensitive to the
complete structure of the molecule. By changing A, the energy
splitting, and with it the color of the dye, can be changed. Also, the
molecules do not have to be perfectly symmetrical. We have seen that
the same basic phenomenon exists with slight modifications, even if
there is some small asymmetry present. So, one can get some
modification of the colors by introducing slight asymmetries in the
molecules. For example, another important dye, malachite green, is
very similar to magenta, but has two of the hydrogens replaced by
CH3. It’s a different color because the A is shifted and the
flip-flop rate is changed.







10–6 The Hamiltonian of a spin one-half particle in a magnetic field


Now we would like to discuss a two-state system involving an object of
spin one-half. Some of what we will say has been covered in earlier
chapters, but doing it again may help to make some of the puzzling
points a little clearer. We can think of an electron at rest as a
two-state system. Although we will be talking in this section about “an
electron,” what we find out will be true for any spin one-half
particle. Suppose we choose for our base states [image: \ket{\slOne}]
and [image: \ket{\slTwo}] the states in which the z-component of the electron
spin is +ℏ/2 and −ℏ/2.




These states are, of course, the same ones we have called (+)
and (−) in earlier chapters. To keep the notation of this chapter
consistent, though, we call the “plus” spin state [image: \ket{\slOne}] and
the “minus” spin state [image: \ket{\slTwo}]—where “plus” and “minus”
refer to the angular momentum in the z-direction.




Any possible state ψ for the electron can be described as in
Eq. (10.1) by giving the amplitude C1 that the electron
is in state [image: \ket{\slOne}], and the amplitude C2 that it is in
state [image: \ket{\slTwo}]. To treat this problem, we will need to know the
Hamiltonian for this two-state system—that is, for an electron in a
magnetic field. We begin with the special case of a magnetic field in
the z-direction.




Suppose that the vector B has only a z-component Bz. From the
definition of the two base states (that is, spins parallel and
antiparallel to B) we know that they are already stationary states
with a definite energy in the magnetic field. State [image: \ket{\slOne}]
corresponds to an energy4 equal to −μ Bz and state [image: \ket{\slTwo}] to +μ Bz. The
Hamiltonian must be very simple in this case since C1, the amplitude
to be in state [image: \ket{\slOne}], is not affected by C2, and vice versa:

[image: -*-]
(10.17)




For this special case, the Hamiltonian is

[image: -*-]
(10.18)




So we know what the Hamiltonian is for the magnetic field in the
z-direction, and we know the energies of the stationary states.




Now suppose the field is not in the z-direction. What is the
Hamiltonian? How are the matrix elements changed if the field is not in
the z-direction? We are going to make an assumption that there is a
kind of superposition principle for the terms of the Hamiltonian. More
specifically, we want to assume that if two magnetic fields are
superposed, the terms in the Hamiltonian simply add—if we know
the Hi j for a pure Bz and we know the Hi j for a pure Bx,
then the Hi j for both Bz and Bx together is simply the sum.
This is certainly true if we consider only fields in the
z-direction—if we double Bz, then all the Hi j are doubled.
So let’s assume that H is linear in the field B. That’s all we
need to be able to find the Hi j for any magnetic field.




Suppose we have a constant field B. We could have chosen
our z-axis in its direction, and we would have found two
stationary states with the energies ∓μ B. Just choosing our axes
in a different direction won’t change the physics. Our
description of the stationary states will be different, but
their energies will still be ∓μ B—that is,
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(10.19)









The rest of the game is easy. We have here the formulas for the
energies. We want a Hamiltonian which is linear in Bx, By,
and Bz, and which will give these energies when used in our general
formula of Eq. (10.3). The problem: find the Hamiltonian.
First, notice that the energy splitting is symmetric, with an average
value of zero. Looking at Eq. (10.3), we can see directly
that that requires

[image: -*-]


(Note that this checks with what we already know when Bx and By
are both zero; in that case H11=−μ Bz, and H22=μ Bz.)
Now if we equate the energies of Eq. (10.3) with what
we know from Eq. (10.19), we have

[image: -*-]
(10.20)




(We have also made use of the fact that [image: H_{21}=H_{12}\cconj], so that
H12 H21 can also be written as │H12│2.) Again for the
special case of a field in the z-direction, this gives
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Clearly, │H12│ must be zero in this special case, which means
that H12 cannot have any terms in Bz. (Remember, we have said
that all terms must be linear in Bx, By, and Bz.)




So far, then, we have discovered that H11 and H22 have terms
in Bz, while H12 and H21 do not. We can make a simple
guess that will satisfy Eq. (10.20) if we say that
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and
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(10.21)




And it turns out that that’s the only way it can be done!




“Wait”—you say—“H12 is not linear in B;
Eq. (10.21) gives
H12=[image: \mu\sqrt{B_x^2+B_y^2}].” Not necessarily. There is another possibility
which is linear, namely,
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There are, in fact, several such possibilities—most generally, we
could write
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where δ is some arbitrary phase. Which sign and phase should we
use?  It turns out that you can choose either sign, and any phase you
want, and the physical results will always be the same. So the choice
is a matter of convention. People ahead of us have chosen to use the
minus sign and to take ei δ=−1. We might as well follow suit
and write
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(Incidentally, these conventions are related to, and consistent with,
some of the arbitrary choices we made in Chapter 6.)




The complete Hamiltonian for an electron in an arbitrary magnetic
field is, then
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(10.22)




And the equations for the amplitudes C1 and C2 are

[image: -*-]
(10.23)









So we have discovered the “equations of motion for the spin states”
of an electron in a magnetic field. We guessed at them by making some
physical argument, but the real test of any Hamiltonian is that it
should give predictions in agreement with experiment. According to any
tests that have been made, these equations are right. In fact,
although we made our arguments only for constant fields, the
Hamiltonian we have written is also right for magnetic fields which
vary with time. So we can now use Eq. (10.23) to look
at all kinds of interesting problems.







10–7 The spinning electron in a magnetic field


Example number one: We start with a constant field in the z-direction.
There are just the two stationary states with energies ∓μ Bz.
Suppose we add a small field in the x-direction. Then the equations
look like our old two-state problem. We get the flip-flop business once
more, and the energy levels are split a little farther apart. Now let’s
let the x-component of the field vary with time—say, as cosω t. The equations are then the same as we had when we put an oscillating
electric field on the ammonia molecule in Chapter 9. You
can work out the details in the same way. You will get the result that
the oscillating field causes transitions from the +z-state to the
−z-state—and vice versa—when the horizontal field oscillates near
the resonant frequency ω0=2 μ Bz/ℏ. This gives the
quantum mechanical theory of the magnetic resonance phenomena we
described in Chapter 35 of Volume II.




It is also possible to make a maser which uses a spin one-half
system. A Stern-Gerlach apparatus is used to produce a beam of
particles polarized in, say, the +z-direction, which are sent into a
cavity in a constant magnetic field. The oscillating fields in the
cavity can couple with the magnetic moment and induce transitions
which give energy to the cavity.



[image: -]
Fig. 10–10. The direction of B is defined by the polar angle θ
and the azimuthal angle ϕ.





Now let’s look at the following question. Suppose we have a magnetic
field B which points in the direction whose polar angle
is θ and azimuthal angle is ϕ, as in Fig. 10–10.
Suppose, additionally, that there is an electron which has been prepared
with its spin pointing along this field. What are the amplitudes C1
and C2 for such an electron? In other words, calling the state of the
electron [image: \ket{\psi}], we want to write
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where C1 and C2 are

[image: -*-]


where by [image: \ket{\slOne}] and [image: \ket{\slTwo}] we mean the same thing we
used to call [image: \ket{+}] and [image: \ket{-}] (referred to our chosen
z-axis).




The answer to this question is also in our general equations for
two-state systems. First, we know that since the electron’s spin is
parallel to B it is in a stationary state with
energy EI=−μ B. Therefore, both C1 and C2 must vary
as e−i EI t/ℏ, as in (9.18); and their
coefficients a1 and a2 are given by (10.5), namely,

[image: -*-]
(10.24)




An additional condition is that a1 and a2 should be normalized so
that │a1│2+│a2│2=1. We can take H11 and H12
from (10.22) using
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So we have
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(10.25)




The last factor in the second equation is, incidentally, e−i ϕ,
so it is simpler to write
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(10.26)









Using these matrix elements in Eq. (10.24)—and
canceling −μ B from numerator and denominator—we find

[image: -*-]
(10.27)




With this ratio and the normalization condition, we can find both a1
and a2. That’s not hard, but we can make a short cut with a little
trick. Notice that 1−cosθ=2 sin2(θ/2), and that
sinθ=2 sin(θ/2) cos(θ/2). Then
Eq. (10.27) is equivalent to
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(10.28)




So one possible answer is
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(10.29)




since it fits with (10.28) and also makes

[image: -*-]


As you know, multiplying both a1 and a2 by an arbitrary phase
factor doesn’t change anything. People generally prefer to make
Eqs. (10.29) more symmetric by multiplying both
by ei ϕ/2. So the form usually used is

[image: -*-]
(10.30)




and this is the answer to our question. The numbers a1 and a2
are the amplitudes to find an electron with its spin up or down along
the z-axis when we know that its spin is along the axis at θ
and ϕ. (The amplitudes C1 and C2 are just a1 and a2
times e−i EI t/ℏ.)




Now we notice an interesting thing. The strength B of the magnetic
field does not appear anywhere in (10.30). The result is
clearly the same in the limit that B goes to zero. This means that
we have answered in general the question of how to represent a
particle whose spin is along an arbitrary axis. The amplitudes
of (10.30) are the projection amplitudes for spin one-half
particles corresponding to the projection amplitudes we gave in
Chapter 5 [Eqs. (5.38)] for spin-one
particles. We can now find the amplitudes for filtered beams of spin
one-half particles to go through any particular Stern-Gerlach filter.




Let [image: \ket{+z}] represent a state with spin up along the z-axis,
and [image: \ket{-z}] represent the spin down state. If [image: \ket{+z'}] represents a
state with spin up along a z′-axis which makes the polar angles
θ and ϕ with the z-axis, then in the notation of
Chapter 5, we have



[image: -*-]
(10.31)





These results are equivalent to what we found in
Chapter 6, Eq. (6.36), by purely geometrical
arguments. (So if you decided to skip Chapter 6, you now
have the essential results anyway.)




As our final example lets look again at one which we’ve already
mentioned a number of times. Suppose that we consider the following
problem. We start with an electron whose spin is in some given
direction, then turn on a magnetic field in the z-direction for
25 minutes, and then turn it off. What is the final state? Again let’s
represent the state by the linear
combination [image: \ket{\psi}=\ket{\slOne}C_1+\ket{\slTwo}C_2]. For this
problem, however, the states of definite energy are also our base states
[image: \ket{\slOne}] and [image: \ket{\slTwo}]. So C1 and C2 only vary in
phase. We know that
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and
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Now initially we said the electron spin was set in a given direction.
That means that initially C1 and C2 are two numbers given by
Eqs. (10.30). After we wait for a period of time T, the
new C1 and C2 are the same two numbers multiplied respectively by
ei μ Bz T/ℏ and e−i μ Bz T/ℏ. What state is that?
That’s easy. It’s exactly the same as if the angle ϕ had been
changed by the subtraction of 2 μ Bz T/ℏ and the angle θ
had been left unchanged. That means that at the end of the time T, the
state [image: \ket{\psi}] represents an electron lined up in a direction which
differs from the original direction only by a rotation about the
z-axis through the angle Δ ϕ=2 μ Bz T/ℏ. Since this
angle is proportional to T, we can also say the direction of the spin
precesses at the angular velocity 2 μ Bz/ℏ around the
z-axis. This result we discussed several times previously in a less
complete and rigorous manner. Now we have obtained a complete and
accurate quantum mechanical description of the precession of atomic
magnets.




It is interesting that the mathematical ideas we have just gone over
for the spinning electron in a magnetic field can be applied to
any two-state system. That means that by making a mathematical
analogy to the spinning electron, any problem about
two-state systems can be solved by pure geometry. It works like
this. First you shift the zero of energy so that (H11+H22) is
equal to zero so that H11=−H22. Then any two-state problem is
formally the same as the electron in a magnetic field. All you
have to do is identify −μ Bz with H11 and
−μ (Bx−i By) with H12. No matter what the physics is
originally—an ammonia molecule, or whatever—you can translate it
into a corresponding electron problem. So if we can solve the electron
problem in general, we have solved all two-state
problems.



[image: -]
Fig. 10–11. The spin direction of an electron in a varying magnetic
field B (t) precesses at the frequency ω (t) about an axis
parallel to B.





And we have the general solution for the electron! Suppose you have some
state to start with that has spin “up” in some direction, and you have
a magnetic field B that points in some other direction. You just
rotate the spin direction around the axis of B with the
vector angular velocity ω (t) equal to a constant times
the vector B (namely ω=2 μ B/ℏ). As B
varies with time, you keep moving the axis of the rotation to keep it
parallel with B, and keep changing the speed of rotation so that
it is always proportional to the strength of B. See
Fig. 10–11. If you keep doing this, you will end up with a
certain final orientation of the spin axis, and the amplitudes C1
and C2 are just given by the
projections—using (10.30)—into your coordinate frame.
You see, it’s just a geometric problem to keep track of where you end up
after all the rotating. Although it’s easy to see what’s involved, this
geometric problem (of finding the net result of a rotation with a
varying angular velocity vector) is not easy to solve explicitly in the
general case. Anyway, we see, in principle, the general solution
to any two-state problem. In the next chapter we will look some more
into the mathematical techniques for handling the important case of a
spin one-half particle—and, therefore, for handling two-state systems
in general.






	
  
  This is satisfactory so long as there are no
important magnetic fields. We will discuss the effects of magnetic
fields on the electron later in this chapter, and the very small effects
of spin in the hydrogen atom in Chapter 12.
  ^


	
  
  We are
oversimplifying a little. Originally, the chemists thought that there
should be four forms of dibromobenzene: two forms with the
bromines on adjacent carbon atoms (ortho-dibromobenzene), a third form
with the bromines on next-nearest carbons (meta-dibromobenzene), and a
fourth form with the bromines opposite to each other
(para-dibromobenzene). However, they found only three forms—there is
only one form of the ortho-molecule.
  ^


	
  
  What we
have said is a little misleading. Absorption of ultraviolet light would
be very weak in the two-state system we have taken for benzene, because
the dipole moment matrix element between the two states is zero. [The
two states are electrically symmetric, so in our formula
Eq. (9.55) for the probability of a transition, the dipole
moment μ is zero and no light is absorbed.] If these were the only
states, the existence of the upper state would have to be shown in other
ways. A more complete theory of benzene, however, which begins with more
base states (such as those having adjacent double bonds) shows that the
true stationary states of benzene are slightly distorted from the ones
we have found. The resulting dipole moments permit the transition we
mentioned in the text to occur by the absorption of ultraviolet light.
  ^


	
  
  We are taking the rest energy m0 c2
as our “zero” of energy and treating the magnetic moment μ of the
electron as a negative number, since it points opposite to the
spin.
  ^
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11–1 The Pauli spin matrices


We continue our discussion of two-state systems. At the end
of the last chapter we were talking about a spin one-half particle in a
magnetic field. We described the spin state by giving the
amplitude C1 that the z-component of spin angular momentum
is +ℏ/2 and the amplitude C2 that it is −ℏ/2. In earlier
chapters we have called these base states [image: \ket{+}] and [image: \ket{-}]. We
will now go back to that notation, although we may occasionally find it
convenient to use [image: \ket{+}] or [image: \ket{\slOne}], and [image: \ket{-}]
or [image: \ket{\slTwo}], interchangeably.





We saw in the last chapter that when a spin one-half particle with a
magnetic moment μ is in a magnetic field B=(Bx,By,Bz),
the amplitudes C+ (=C1) and C− (=C2) are connected by the
following differential equations:
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(11.1)




In other words, the Hamiltonian matrix Hi j is
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(11.2)




And Eqs. (11.1) are, of course, the same as
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(11.3)




where i and j take on the values + and − (or 1 and 2).





The two-state system of the electron spin is so important that it is
very useful to have a neater way of writing things. We will now make a
little mathematical digression to show you how people usually write
the equations of a two-state system. It is done this way: First, note
that each term in the Hamiltonian is proportional to μ and to some
component of B; we can then—purely formally—write
that

[image: -*-]
(11.4)




There is no new physics here; this equation just means that the
coefficients [image: \sigma_{ij}^x], [image: \sigma_{ij}^y],
and [image: \sigma_{ij}^z]—there are 4×3=12 of them—can be figured out
so that (11.4) is identical with (11.2).





Let’s see what they have to be. We start with Bz. Since Bz appears
only in H11 and H22, everything will be O.K. if
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We often write the matrix Hi j as a little table like this:

[image: -*-]







For the Hamiltonian of a spin one-half particle in the magnetic
field Bz, this is the same as
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In the same way, we can write the coefficients [image: \sigma_{ij}^z] as the matrix
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(11.5)









Working with the coefficients of Bx, we get that the terms
of σx have to be
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Or, in shorthand,
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(11.6)









Finally, looking at By, we get
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or

[image: -*-]
(11.7)




With these three sigma matrices, Eqs.
(11.2) and (11.4) are identical. To leave room
for the subscripts i and j, we have shown which σ goes with
which component of B by putting x, y, and z as superscripts.
Usually, however, the i and j are omitted—it’s easy to imagine
they are there—and the x, y, z are written as subscripts. Then
Eq. (11.4) is written
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(11.8)




Because the sigma matrices are so important—they are used all the
time by the professionals—we have gathered them together in
Table 11–1. (Anyone who is going to work in quantum
physics really has to memorize them.) They are also called the
Pauli spin matrices
after the physicist who invented them.






Table 11–1. The Pauli spin matrices






[image: --]


In the table we have included one more two-by-two matrix which is
needed if we want to be able to take care of a system which has two
spin states of the same energy, or if we want to choose a different
zero energy. For such situations we must add E0 C+ to the first
equation in (11.1) and E0 C− to the second
equation. We can include this in the new notation if we define the
unit matrix “1” as δi j,
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(11.9)




and rewrite Eq. (11.8) as
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(11.10)




Usually, it is understood that any constant like E0 is
automatically to be multiplied by the unit matrix; then one writes
simply
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(11.11)









One reason the spin matrices are useful is that any two-by-two
matrix at all can be written in terms of them. Any matrix you can
write has four numbers in it, say,
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It can always be written as a linear combination of four matrices. For
example,
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There are many ways of doing it, but one special way is to say that
M is a certain amount of σx, plus a certain amount
of σy, and so on, like this:

[image: -*-]


where the “amounts” α, β, γ, and δ may,
in general, be complex numbers.





Since any two-by-two matrix can be represented in terms of the unit
matrix and the sigma matrices, we have all that we ever need for
any two-state system. No matter what the two-state system—the
ammonia molecule, the magenta dye, anything—the Hamiltonian equation
can be written in terms of the sigmas. Although the sigmas seem to
have a geometrical significance in the physical situation of an
electron in a magnetic field, they can also be thought of as just
useful matrices, which can be used for any two-state problem.





For instance, in one way of looking at things a proton and a neutron can
be thought of as the same particle in either of two states. We say the
nucleon (proton or neutron) is a two-state
system—in this case, two states with respect to its charge. When
looked at that way, the [image: \ket{\slOne}] state can represent the proton
and the [image: \ket{\slTwo}] state can represent the neutron. People say that
the nucleon has two “isotopic-spin” states.





Since we will be using the sigma matrices as the “arithmetic” of the
quantum mechanics of two-state systems, let’s review quickly the
conventions of matrix algebra. By the “sum” of any two or more matrices we mean just what
was obvious in Eq. (11.4). In general, if we “add” two
matrices A and B, the “sum” C means that each term Ci j is
given by

[image: -*-]


Each term of C is the sum of the terms in the same slots of A
and B.





In Section 5–6 we have already encountered the idea of
a matrix “product.” The same idea will be useful in dealing with the
sigma matrices. In general, the “product” of two matrices A
and B (in that order) is defined to be a matrix C whose elements are
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(11.12)




It is the sum of products of terms taken in pairs from the ith row
of A and the jth column of B. If the matrices are written out in
tabular form as in Fig. 11-1, there is a good “system”
for getting the terms of the product matrix. Suppose you are
calculating C23. You run your left index finger along the
second row of A and your right index finger down the
third column of B, multiplying each pair and adding as you go.
We have tried to indicate how to do it in the figure.




[image: -]
Fig. 11–1. 
Multiplying two matrices.





It is, of course, particularly simple for two-by-two matrices. For
instance, if we multiply σx times σx, we get
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which is just the unit matrix 1. Or, for another example, let’s work
out σx σy:
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Referring to Table 11–1, you see that the product is
just i times the matrix σz. (Remember that a number times a
matrix just multiplies each term of the matrix.) Since the products of
the sigmas taken two at a time are important—as well as rather
amusing—we have listed them all in Table 11–2. You can
work them out as we have done for [image: \sigma_x^2] and σx σy.






Table 11–2. Products of the spin matrices






[image: --]


There’s another very important and interesting point about these
σ matrices. We can imagine, if we wish, that the three matrices
σx, σy, and σz are analogous to the three
components of a vector—it is sometimes called the “sigma
vector” and is written σ. It is really a
“matrix vector” or a “vector matrix.” It is three different
matrices—one matrix associated with each axis, x, y, and z. With
it, we can write the Hamiltonian of the system in a nice form which
works in any coordinate system:
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(11.13)









Although we have written our three matrices in the representation in
which “up” and “down” are in the z-direction—so that σz
has a particular simplicity—we could figure out what the matrices
would look like in some other representation.  Although it takes a lot
of algebra, you can show that they change among themselves like the
components of a vector. (We won’t, however, worry about proving it right
now. You can check it if you want.) You can use σ in different
coordinate systems as though it is a vector.





You remember that the H is related to energy in quantum
mechanics. It is, in fact, just equal to the energy in the simple
situation where there is only one state. Even for two-state systems of
the electron spin, when we write the Hamiltonian as in
Eq. (11.13), it looks very much like the classical
formula for the energy of a little magnet with magnetic
moment μ in a magnetic field B.
Classically, we would say
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(11.14)




where μ is the property of the object and B is an
external field. We can imagine that Eq. (11.14) can be
converted to (11.13) if we replace the classical energy
by the Hamiltonian and the classical μ by the
matrix μ σ. Then, after this purely formal substitution, we
interpret the result as a matrix equation. It is sometimes said that
to each quantity in classical physics there corresponds a matrix in
quantum mechanics. It is really more correct to say that the
Hamiltonian matrix corresponds to the energy, and any quantity that
can be defined via energy has a corresponding matrix.





For example, the magnetic moment can be defined via energy by saying
that the energy in an external field B is −μ⋅B.
This defines the magnetic moment vector μ. Then we look at
the formula for the Hamiltonian of a real (quantum) object in a magnetic
field and try to identify whatever the matrices are that correspond to
the various quantities in the classical formula. That’s the trick by
which sometimes classical quantities have their quantum
counterparts.





You may try, if you want, to understand how a classical vector is
equal to a matrix μ σ, and maybe you will discover
something—but don’t break your head on it. That’s not the
idea—they are not equal. Quantum mechanics is a different
kind of a theory to represent the world. It just happens that there
are certain correspondences which are hardly more than mnemonic
devices—things to remember with. That is, you remember
Eq. (11.14) when you learn classical physics; then if you
remember the correspondence μ→μ σ, you have a handle
for remembering Eq. (11.13). Of course, nature knows the
quantum mechanics, and the classical mechanics is only an approximation;
so there is no mystery in the fact that in classical mechanics there is
some shadow of quantum mechanical laws—which are truly the ones
underneath. To reconstruct the original object from the shadow is not
possible in any direct way, but the shadow does help you to remember
what the object looks like. Equation (11.13) is the truth,
and Eq. (11.14) is the shadow. Because we learn classical
mechanics first, we would like to be able to get the quantum formula
from it, but there is no sure-fire scheme for doing that. We must always
go back to the real world and discover the correct quantum mechanical
equations. When they come out looking like something in classical
physics, we are in luck.





If the warnings above seem repetitious and appear to you to be
belaboring self-evident truths about the relation of classical physics
to quantum physics, please excuse the conditioned reflexes of a
professor who has usually taught quantum mechanics to students who
hadn’t heard about Pauli spin matrices until they were in graduate
school. Then they always seemed to be hoping that, somehow, quantum
mechanics could be seen to follow as a logical consequence of
classical mechanics which they had learned thoroughly years
before. (Perhaps they wanted to avoid having to learn something new.)
You have learned the classical formula, Eq. (11.14),
only a few months ago—and then with warnings that it was
inadequate—so maybe you will not be so unwilling to take the quantum
formula, Eq. (11.13), as the basic truth.





 


11–2 The spin matrices as operators


While we are on the subject of mathematical notation, we would like to
describe still another way of writing things—a way which is
used very often because it is so compact. It follows directly from the
notation introduced in Chapter 8. If we have a system
in a state [image: \ket{\psi(t)}], which varies with time, we can—as we did
in Eq. (8.34)—write the amplitude that the system
would be in the state [image: \ket{i}] at t+Δ t as
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The matrix element [image: \bracket{i}{U(t+\Delta t,t)}{j}] is the amplitude
that the base state [image: \ket{j}] will be converted into the base
state [image: \ket{i}] in the time interval Δ t. We then
defined Hi j by writing

[image: -*-]


and we showed that the amplitudes [image: C_i(t)=\braket{i}{\psi(t)}] were
related by the differential equations
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(11.15)




If we write out the amplitudes Ci explicitly, the same equation
appears as
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(11.16)




Now the matrix elements Hi j are also amplitudes which we can
write as [image: \bracket{i}{H}{j}]; our differential equation looks like
this:

[image: -*-]
(11.17)




We see that [image: -i/\hbar\,\bracket{i}{H}{j}\,dt] is the amplitude
that—under the physical conditions described by H—a
state [image: \ket{j}] will, during the time d t, “generate” the
state [image: \ket{i}]. (All of this is implicit in the discussion of
Section 8–4.)





Now following the ideas of Section 8–2, we can drop
out the common term [image: \bra{i}] in Eq. (11.17)—since it
is true for any state [image: \ket{i}]—and write that equation simply as
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(11.18)




Or, going one step further, we can also remove the j and write
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(11.19)




In Chapter 8 we pointed out that when things are written
this way, the H in [image: H\,\ket{j}] or [image: H\,\ket{\psi}] is called an
operator. From now on we will put the little
hat ([image: \op{\enspace}]) over an operator to remind you that it is
an operator and not just a number. We will write [image: \Hop\,\ket{\psi}].
Although the two equations (11.18) and (11.19)
mean exactly the same thing as Eq. (11.17) or
Eq. (11.15), we can think about them in a different
way. For instance, we would describe Eq. (11.18) in this
way: “The time derivative of the state vector [image: \ket{\psi}]
times i ℏ is equal to what you get by operating with the
Hamiltonian operator [image: \Hop] on each base state, multiplying by
the amplitude [image: \braket{j}{\psi}] that ψ is in the state j, and
summing over all j.”  Or Eq. (11.19) is described this
way. “The time derivative (times i ℏ) of a state [image: \ket{\psi}] is
equal to what you get if you operate with the Hamiltonian [image: \Hop] on the
state vector [image: \ket{\psi}].” It’s just a shorthand way of saying what is
in Eq. (11.17), but, as you will see, it can be a great
convenience.





If we wish, we can carry the “abstraction” idea one more step.
Equation (11.19) is true for any state [image: \ket{\psi}].
Also the left-hand side, i ℏ d/d t, is also an operator—it’s the
operation “differentiate by t and multiply by i ℏ.”  Therefore,
Eq. (11.19) can also be thought of as an equation between
operators—the operator equation
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The Hamiltonian operator (within a constant) produces the same result
as does d/d t when acting on any state. Remember that this
equation—as well as Eq. (11.19)—is not a
statement that the [image: \Hop] operator is just the identical
operation as i ℏ d/d t. The equations are the dynamical
law of nature—the law of motion—for a quantum system.





Just to get some practice with these ideas, we will show you another
way we could get to Eq. (11.18). You know that we can
write any state [image: \ket{\psi}] in terms of its projections into some
base set [see Eq. (8.8)],
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(11.20)




How does [image: \ket{\psi}] change with time? Well, just take its
derivative:
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(11.21)




Now the base states [image: \ket{i}] do not change with time (at least
we are always taking them as definite fixed states), but the
amplitudes [image: \braket{i}{\psi}] are numbers which may vary. So
Eq. (11.21) becomes
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(11.22)




Since we know [image: d\braket{i}{\psi}/dt] from Eq. (11.16),
we get
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This is Eq. (11.18) all over again.





So we have many ways of looking at the Hamiltonian. We can think of the
set of coefficients Hi j as just a bunch of numbers, or we can think
of the “amplitudes” [image: \bracket{i}{H}{j}], or we can think of the
“matrix” Hi j, or we can think of the “operator” [image: \Hop]. It all
means the same thing.





Now let’s go back to our two-state systems. If we write the Hamiltonian
in terms of the sigma matrices (with suitable numerical coefficients
like Bx, etc.), we can clearly also think of [image: \sigma_{ij}^x] as an
amplitude [image: \bracket{i}{\sigma_x}{j}] or, for short, as the
operator [image: \sigmaop_x]. If we use the operator idea, we can write the
equation of motion of a state [image: \ket{\psi}] in a magnetic field as
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(11.23)




When we want to “use” such an equation we will normally have to
express [image: \ket{\psi}] in terms of base vectors (just as we have to find
the components of space vectors when we want specific numbers). So we
will usually want to put Eq. (11.23) in the somewhat
expanded form:

[image: -*-]
(11.24)









Now you will see why the operator idea is so neat. To use
Eq. (11.24) we need to know what happens when the
[image: \sigmaop] operators work on each of the base states. Let’s find out.
Suppose we have [image: \sigmaop_z\,\ket{+}]; it is some vector [image: \ket{?}], but
what? Well, let’s multiply it on the left by [image: \bra{+}]; we have
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(using Table 11–1). So we know that

[image: -*-]
(11.25)




Now let’s multiply [image: \sigmaop_z\,\ket{+}] on the left by [image: \bra{-}]. We
get
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so
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(11.26)




There is only one state vector that satisfies both
(11.25) and (11.26); it is [image: \ket{+}]. We
discover then that
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(11.27)




By this kind of argument you can easily show that all of the
properties of the sigma matrices can be described in the operator
notation by the set of rules given in Table 11–3.






Table 11–3. Properties of the [image: \boldsymbol{\sigmaop}]-operator






[image: --]


If we have products of sigma matrices, they go over into products of
operators. When two operators appear together as a product, you carry
out first the operation with the operator which is farthest to the
right. For instance, by [image: \sigmaop_x\sigmaop_y\,\ket{+}] we are to
understand [image: \sigmaop_x(\sigmaop_y\,\ket{+})]. From
Table 11–3, we get [image: \sigmaop_y\,\ket{+}=i\,\ket{-}], so

[image: -*-]
(11.28)




Now any number—like i—just moves through an operator (operators
work only on state vectors); so Eq. (11.28) is the same
as
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If you do the same thing for [image: \sigmaop_x\sigmaop_y\,\ket{-}], you will
find that

[image: -*-]


Looking at Table 11–3, you see that
[image: \sigmaop_x\sigmaop_y] operating on [image: \ket{+}] or [image: \ket{-}] gives just
what you get if you operate with [image: \sigmaop_z] and multiply by i. We
can, therefore, say that the operation [image: \sigmaop_x\sigmaop_y] is
identical with the operation [image: i\sigmaop_z] and write this statement as
an operator equation:

[image: -*-]
(11.29)




Notice that this equation is identical with one of our matrix
equations of Table 11–2. So again we see the
correspondence between the matrix and operator points of view. Each of
the equations in Table 11–2 can, therefore, also be
considered as equations about the sigma operators. You can check that
they do indeed follow from Table 11–3. It is best, when
working with these things, not to keep track of whether a
quantity like σ or H is an operator or a matrix. All the
equations are the same either way, so Table 11–2 is for
sigma operators, or for sigma matrices, as you wish.





 


11–3 The solution of the two-state equations


We can now write our two-state equation in various forms, for example,
either as
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or

[image: -*-]
(11.30)




They both mean the same thing. For a spin one-half particle in a
magnetic field, the Hamiltonian H is given by Eq. (11.8)
or by Eq. (11.13).





If the field is in the z-direction, then—as we have seen several
times by now—the solution is that the state [image: \ket{\psi}], whatever it
is, precesses around the z-axis (just as if you were to take the
physical object and rotate it bodily around the z-axis) at an angular
velocity equal to twice the magnetic field times μ/ℏ. The same
is true, of course, for a magnetic field along any other direction,
because the physics is independent of the coordinate system. If we have
a situation where the magnetic field varies from time to time in a
complicated way, then we can analyze the situation in the following way.
Suppose you start with the spin in the +z-direction and you have an
x-magnetic field. The spin starts to turn. Then if the x-field is
turned off, the spin stops turning. Now if a z-field is turned on, the
spin precesses about z, and so on. So depending on how the fields vary
in time, you can figure out what the final state is—along what axis it
will point. Then you can refer that state back to the original [image: \ket{+}]
and [image: \ket{-}] with respect to z by using the projection formulas we
had in Chapter 10 (or Chapter 6). If the
state ends up with its spin in the direction (θ,ϕ), it will
have an up-amplitude cos(θ/2) e−i ϕ/2 and a
down-amplitude sin(θ/2) e+i ϕ/2. That solves any problem.
It is a word description of the solution of the differential equations.





The solution just described is sufficiently general to take care of
any two-state system. Let’s take our example of the ammonia
molecule—including the effects of an electric field. If we describe
the system in terms of the states [image: \ket{\slI}] and [image: \ket{\slII}], the
equations (9.38) and (9.39) look like this:
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(11.31)




You say, “No, I remember there was an E0 in there.” Well, we have
shifted the origin of energy to make the E0 zero. (You can always do
that by changing both amplitudes by the same
factor—ei E0 T/ℏ—and get rid of any constant energy.) Now if
corresponding equations always have the same solutions, then we really
don’t have to do it twice. If we look at these equations and look at
Eq. (11.1), then we can make the following identification.
Let’s call [image: \ket{\slI}] the state [image: \ket{+}] and [image: \ket{\slII}] the
state [image: \ket{-}]. That does not mean that we are lining-up the
ammonia in space, or that [image: \ket{+}] and [image: \ket{-}] has anything to do
with the z-axis. It is purely artificial. We have an artificial space
that we might call the “ammonia molecule representative space,” or
something—a three-dimensional “diagram” in which being “up”
corresponds to having the molecule in the state [image: \ket{\slI}] and being
“down” along this false z-axis represents having a molecule in the
state [image: \ket{\slII}]. Then, the equations will be identified as follows.
First of all, you see that the Hamiltonian can be written in terms of
the sigma matrices as
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(11.32)




Or, putting it another way, μ Bz in Eq. (11.1)
corresponds to −A in Eq. (11.32), and μ Bx
corresponds to −μ E. In our “model” space, then, we have a
constant B field along the z-direction. If we have an electric
field E which is changing with time, then we have a B field
along the x-direction which varies in proportion. So the
behavior of an electron in a magnetic field with a constant component in
the z-direction and an oscillating component in the x-direction is
mathematically analogous and corresponds exactly to the behavior of an
ammonia molecule in an oscillating electric field. Unfortunately, we do
not have the time to go any further into the details of this
correspondence, or to work out any of the technical details. We only
wished to make the point that all systems of two states can be
made analogous to a spin one-half object precessing in a magnetic field.





 


11–4 The polarization states of the photon


There are a number of other two-state systems which are interesting to
study, and the first new one we would like to talk about is the
photon. To describe a photon we must first give its vector
momentum. For a free photon, the frequency is determined by the
momentum, so we don’t have to say also what the frequency is. After
that, though, we still have a property called the
polarization. Imagine that there is a photon coming at you with a
definite monochromatic frequency (which will be kept the same
throughout all this discussion so that we don’t have a variety of
momentum states). Then there are two directions of polarization. In
the classical theory, light can be described as having an electric
field which oscillates horizontally or an electric field which
oscillates vertically (for instance); these two kinds of light are
called x-polarized and y-polarized light. The light can also be
polarized in some other direction, which can be made up from the
superposition of a field in the x-direction and one in the
y-direction. Or if you take the x- and the y-components out of
phase by 90°, you get an electric field that rotates—the
light is elliptically polarized. (This is just a quick reminder of the
classical theory of polarized light that we studied in
Chapter 33, Vol. I.)





Now, however, suppose we have a single photon—just one. There
is no electric field that we can discuss in the same way. All we have
is one photon. But a photon has to have the analog of the
classical phenomena of polarization. There must be at least two
different kinds of photons. At first, you might think there should be
an infinite variety—after all, the electric vector can point in all
sorts of directions. We can, however, describe the polarization of a
photon as a two-state system. A photon can be in the state [image: \ket{x}]
or in the state [image: \ket{y}]. By [image: \ket{x}] we mean the polarization state
of each one of the photons in a beam of light which classically
is x-polarized light. On the other hand, by [image: \ket{y}] we mean the
polarization state of each of the photons in a y-polarized beam. And
we can take [image: \ket{x}] and [image: \ket{y}] as our base states of a photon of
given momentum pointing at you—in what we will call the
z-direction. So there are two base states [image: \ket{x}] and [image: \ket{y}],
and they are all that are needed to describe any photon at all.





For example, if we have a piece of polaroid set with its axis to pass
light polarized in what we call the x-direction, and we send in a
photon which we know is in the state [image: \ket{y}], it will be absorbed by
the polaroid. If we send in a photon which we know is in the
state [image: \ket{x}], it will come right through as [image: \ket{x}]. If we take a
piece of calcite which takes a beam of polarized light and splits it
into an [image: \ket{x}] beam and a [image: \ket{y}] beam, that piece of calcite is
the complete analog of a Stern-Gerlach apparatus which splits a beam of
silver atoms into the two states [image: \ket{+}] and [image: \ket{-}]. So everything
we did before with particles and Stern-Gerlach apparatuses, we can do
again with light and pieces of calcite. And what about light filtered
through a piece of polaroid set at an angle θ? Is that another
state? Yes, indeed, it is another state. Let’s call the axis of
the polaroid x′ to distinguish it from the axes of our base states.
See Fig. 11-2. A photon that comes out will be in the
state [image: \ket{x'}]. However, any state can be represented as a linear
combination of base states, and the formula for the combination is,
here,

[image: -*-]
(11.33)




That is, if a photon comes through a piece of polaroid set at the
angle θ (with respect to x), it can still be resolved into
[image: \ket{x}] and [image: \ket{y}] beams—by a piece of calcite, for example. Or
you can, if you wish, just analyze it into x- and y-components in
your imagination. Either way, you will find the amplitude cosθ
to be in the [image: \ket{x}] state and the amplitude sinθ to be in
the [image: \ket{y}] state.




[image: -]
Fig. 11–2. 
Coordinates at right angles to the momentum vector of the photon.





Now we ask this question: Suppose a photon is polarized in the
x′-direction by a piece of polaroid set at the angle θ and
arrives at a polaroid at the angle zero—as in Fig. 11-3;
what will happen? With what probability will it get through? The answer
is the following. After it gets through the first polaroid, it is
definitely in the state [image: \ket{x'}]. The second polaroid will let the
photon through if it is in the state [image: \ket{x}] (but absorb it if it is
the state [image: \ket{y}]). So we are asking with what probability does the
photon appear to be in the state [image: \ket{x}]? We get that probability from
the absolute square of amplitude [image: \braket{x}{x'}] that a photon in the
state [image: \ket{x'}] is also in the state [image: \ket{x}]. What
is [image: \braket{x}{x'}]? Just multiply Eq. (11.33) by [image: \bra{x}]
to get
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Now [image: \braket{x}{y}=0], from the physics—as they must be if
[image: \ket{x}] and [image: \ket{y}] are base states—and [image: \braket{x}{x}=1]. So we
get
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and the probability is cos2θ. For example, if the first
polaroid is set at 30°, a photon will get through 3/4 of the
time, and 1/4 of the time it will heat the polaroid by being
absorbed therein.




[image: -]
Fig. 11–3. 
Two sheets of polaroid with angle θ between planes of polarization.





Now let us see what happens classically in the same situation. We
would have a beam of light with an electric field which is varying in
some way or another—say “unpolarized.” After it gets through the
first polaroid, the electric field is oscillating in the
x′-direction with a size E; we would draw the field as an
oscillating vector with a peak value E0 in a diagram like
Fig. 11-4. Now when the light arrives at the second
polaroid, only the x-component, E0 cosθ, of the electric
field gets through. The intensity is proportional to the square
of the field and, therefore, to [image: \Efield_0^2\cos^2\theta]. So the energy
coming through is cos2θ weaker than the energy which was
entering the last polaroid.




[image: -]
Fig. 11–4. 
The classical picture of the electric vector E.





The classical picture and the quantum picture give similar results. If
you were to throw 10 billion photons at the second polaroid, and the
average probability of each one going through is, say, 3/4, you
would expect 3/4 of 10 billion would get through. Likewise, the
energy that they would carry would be 3/4 of the energy that you
attempted to put through. The classical theory says nothing about the
statistics of the thing—it simply says that the energy that comes
through will be precisely 3/4 of the energy which you were sending
in. That is, of course, impossible if there is only one photon. There
is no such thing as 3/4 of a photon. It is either all there,
or it isn’t there at all. Quantum mechanics tells us it is all
there 3/4 of the time. The relation of the two theories is
clear.





What about the other kinds of polarization? For example, right-hand
circular polarization? In the classical theory, right-hand circular
polarization has equal components in x and y which are
90° out of phase. In the quantum theory, a right-hand circularly
polarized (RHC) photon has equal amplitudes to be polarized [image: \ket{x}]
or [image: \ket{y}], and the amplitudes are 90° out of phase.
Calling a RHC photon a state [image: \ket{R}] and a LHC photon a
state [image: \ket{L}], we can write (see Vol. I, Section 33-1)
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(11.34)




—the 1/√2 is put in to get normalized states. With these
states you can calculate any filtering or interference effects you
want, using the laws of quantum theory. If you want, you can also
choose [image: \ket{R}] and [image: \ket{L}] as base states and represent
everything in terms of them. You only need to show first
that [image: \braket{R}{L}=0]—which you can do by taking the conjugate
form of the first equation above [see Eq. (8.13)] and
multiplying it by the other. You can resolve light into x- and
y-polarizations, or into x′- and y′-polarizations, or into right
and left polarizations as a basis.





Just as an example, let’s try to turn our formulas around. Can we
represent the state [image: \ket{x}] as a linear combination of right and
left?  Yes, here it is:
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(11.35)









Proof: Add and subtract the two equations
in (11.34). It is easy to go from one base to the other.





One curious point has to be made, though. If a photon is right
circularly polarized, it shouldn’t have anything to do with the x- and
y-axes. If we were to look at the same thing from a coordinate system
turned at some angle about the direction of flight, the light would
still be right circularly polarized—and similarly for left. The right
and left circularly polarized light are the same for any such rotation;
the definition is independent of any choice of the x-direction (except
that the photon direction is given). Isn’t that nice—it doesn’t take
any axes to define it. Much better than x and y. On the other hand,
isn’t it rather a miracle that when you add the right and left
together you can find out which direction x was? If “right” and
“left” do not depend on x in any way, how is it that we can put them
back together again and get x? We can answer that question in part by
writing out the state [image: \ket{R'}], which represents a photon RHC
polarized in the frame x′,y′. In that frame, you would write
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How does such a state look in the frame x,y? Just
substitute [image: \ket{x'}] from Eq. (11.33) and the
corresponding [image: \ket{y'}]—we didn’t write it down, but it
is [image: (-\sin\theta)\,\ket{x}+(\cos\theta)\,\ket{y}]. Then
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The first term is just [image: \ket{R}], and the second is e−i θ;
our result is that

[image: -*-]
(11.36)




The states [image: \ket{R'}] and [image: \ket{R}] are the same except for the
phase factor e−i θ. If you work out the same thing
for [image: \ket{L'}], you get that1

[image: -*-]
(11.37)









Now you see what happens. If we add [image: \ket{R}] and [image: \ket{L}], we get
something different from what we get when we add [image: \ket{R'}]
and [image: \ket{L'}]. For instance, an x-polarized photon is
[Eq. (11.35)] the sum of [image: \ket{R}] and [image: \ket{L}], but a
y-polarized photon is the sum with the phase of one shifted
90° backward and the other 90° forward. That is just what
we would get from the sum of [image: \ket{R'}] and [image: \ket{L'}] for the special
angle θ=90°, and that’s right. An x-polarization in the
prime frame is the same as a y-polarization in the original
frame. So it is not exactly true that a circularly polarized photon
looks the same for any set of axes. Its phase (the phase relation
of the right and left circularly polarized states) keeps track of the
x-direction.





 


11–5 The neutral K-meson2


We will now describe a two-state system in the world of the strange
particles—a system for which quantum mechanics gives a most
remarkable prediction. To describe it completely would involve us in a
lot of stuff about strange particles, so we will, unfortunately, have
to cut some corners. We can only give an outline of how a certain
discovery was made—to show you the kind of reasoning that was
involved. It begins with the discovery by Gell-Mann and Nishijima of
the concept of strangeness and of a new law of
conservation of strangeness. It was when
Gell-Mann and Pais were analyzing the consequences of these
new ideas that they came across the prediction of a most remarkable
phenomenon we are going to describe. First, though, we have to tell you
a little about “strangeness.”





We must begin with what are called the strong interactions of
nuclear particles. These are the interactions which are responsible
for the strong nuclear forces—as distinct, for instance, from the
relatively weaker electromagnetic interactions. The interactions are
“strong” in the sense that if two particles get close enough to
interact at all, they interact in a big way and produce other
particles very easily. The nuclear particles have also what is called
a “weak interaction” by which certain things can happen, such as
beta decay, but always very slowly on a nuclear time scale—the weak
interactions are many, many orders of magnitude weaker than the strong
interactions and even much weaker than electromagnetic interactions.





When the strong interactions were being studied with the big
accelerators, people were surprised to find that certain things that
“should” happen—that were expected to happen—did not occur. For
instance, in some interactions a particle of a certain type did not
appear when it was expected.
Gell-Mann
and Nishijima noticed that many
of these peculiar happenings could be explained at once by inventing a
new conservation law: the conservation of strangeness. They
proposed that there was a new kind of attribute associated with each
particle—which they called its “strangeness” number—and that in
any strong interaction the “quantity of strangeness” is conserved.





Suppose, for instance, that a high-energy negative K-meson—with, say,
an energy of many GeV—collides with a proton. Out of the interaction
may come many other particles: π-mesons, K-mesons, lambda particles,
sigma particles—any of the mesons or baryons listed in
Table 2–2 of Vol. I. It is observed, however, that
only certain combinations appear, and never others. Now certain
conservation laws were already known to apply. First, energy and
momentum are always conserved. The total energy and momentum after an
event must be the same as before the event. Second, there is the
conservation of electric charge which says that the total charge of the
outgoing particles must be equal to the total charge carried by the
original particles. In our example of a K-meson and a proton coming
together, the following reactions do occur:
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(11.38)




We would never get:
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(11.39)





because of the conservation of charge. It was also known that the
number of baryons is
conserved. The number of baryons
out must be equal to the number of baryons in. For this
law, an antiparticle of a baryon is counted
as minus one baryon. This means that we can—and do—see
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(11.40)




(where [image: \overline{\text{p}}] is the antiproton, which
carries a negative charge). But we never see
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(11.41)




(even when there is plenty of energy), because baryons would not be
conserved.





These laws, however, do not explain the strange fact that the
following reactions—which do not immediately appear to be especially
different from some of those in (11.38)
or (11.40)—are also never observed:
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(11.42)




The explanation is the conservation of strangeness. With each particle
goes a number—its strangeness S—and there is a law that in
any strong interaction, the total strangeness out must
equal the total strangeness that went in. The proton and
antiproton (p, [image: \overline{\text{p}}]), the neutron and
antineutron (n, [image: \overline{\text{n}}]), and the π-mesons
(π+, π0, π−) all have the strangeness number zero;
the K+ and K0 mesons have strangeness +1; the
K− and [image: \Kzerobar] (the anti-K0),3 the Λ0 and the
Σ-particles (+, 0, −) have strangeness −1. There is also
a particle with strangeness −2—the Ξ-particle (capital
“ksi”)—and perhaps others as yet unknown. We have made a list of
these strangenesses in Table 11–4.






Table 11-4 The strangeness numbers of the strongly interacting particles






[image: --]


Let’s see how the strangeness conservation works in some of the
reactions we have written down. If we start with a K− and a
proton, we have a total strangeness of (−1+0)=−1. The conservation
of strangeness says that the strangeness of products after the
reaction must also add up to −1. You see that that is so for the
reactions of (11.38) and (11.40). But in the
reactions of (11.42) the strangeness of the right-hand
side is zero in each case. Such reactions do not conserve
strangeness, and do not occur. Why? Nobody knows. Nobody knows any
more than what we have just told you about this. Nature just works
that way.





Now let’s look at the following reaction: a π− hits a proton. You
might, for instance, get a Λ0 particle plus a neutral
K-particle—two neutral particles. Now which neutral K do you get?
Since the Λ-particle has a strangeness −1 and the π
and p+ have a strangeness zero, and since this is a fast
production reaction, the strangeness must not change. The K-particle
must have strangeness +1—it must therefore be the K0. The
reaction is
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with
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If the [image: \Kzerobar] were there instead of the K0, the strangeness
on the right would be −2—which nature does not permit, since the
strangeness on the left side is zero. On the other hand, a [image: \Kzerobar]
can be produced in other reactions, such as
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or
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You may be thinking, “That’s all a lot of stuff, because how do you
know whether it is a [image: \Kzerobar] or a K0?  They look
exactly the same. They are antiparticles of each other, so they have
exactly the same mass, and both have zero electric charge. How do you
distinguish them?” By the reactions they produce. For example,
a [image: \Kzerobar] can interact with matter to produce a
Λ-particle, like this:
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but a K0 cannot. There is no way a K0 can produce a
Λ-particle when it interacts with ordinary matter (protons and
neutrons).4 So the
experimental distinction between the K0 and the [image: \Kzerobar]
would be that one of them will and one of them will not
produce Λ's.





One of the predictions of the strangeness theory is then this—if, in
an experiment with high-energy pions, a Λ-particle is produced
with a neutral K-meson, then that neutral K-meson going into
other pieces of matter will never produce a Λ. The experiment
might run something like this. You send a beam of π−-mesons into a
large hydrogen bubble chamber. A π− track disappears, but somewhere
else a pair of tracks appear (a proton and a π−) indicating that a
Λ-particle has disintegrated5
—see Fig. 11-5. Then you
know that there is a K0 somewhere which you cannot see.




[image: -][image: -]
Fig. 11–5. 
High-energy events as seen in a hydrogen bubble chamber. (a) A
π− meson interacts with a hydrogen nucleus (proton) producing a
Λ0 particle and a K0 meson. Both particles decay in
the chamber. (b) A [image: \Kzerobar] meson interacts with a
proton producing a π+ meson and a Λ0 particle which then
decays. (The neutral particles leave no tracks. Their inferred
trajectories are indicated here by light dashed lines.)





You can, however, figure out where it is going by using the
conservation of momentum and energy. [It could reveal itself later by
disintegrating into two charged particles, as shown in
Fig. 11-5(a).]  As the K0 goes flying along, it may
interact with one of the hydrogen nuclei (protons), producing perhaps
some other particles. The prediction of the strangeness theory is that
it will never produce a Λ-particle in a simple reaction
like, say,
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although a [image: \Kzerobar] can do just that. That is, in a bubble chamber
a [image: \Kzerobar] might produce the event sketched in
Fig. 11-5(b)—in which the Λ0 is seen because it
decays—but a K0 will not. That’s the first part of our story.
That’s the conservation of strangeness.





The conservation of strangeness is, however, not perfect. There
are very slow disintegrations of the strange particles—decays taking
a long6 
time like 10−10 second in which the strangeness
is not conserved. These are called the “weak” decays. For
example, the K0 disintegrates into a pair of π-mesons (+
and −) with a lifetime of 10−10 second. That was, in fact, the
way K-particles were first seen. Notice that the decay reaction
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does not conserve strangeness, so it cannot go “fast” by the strong
interaction; it can only go through the weak decay process.





Now the [image: \Kzerobar] also disintegrates in the same way—into
a π+ and a π−—and also with the same lifetime
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Again we have a weak decay because it does not conserve strangeness.
There is a principle that for any reaction there is the corresponding
reaction with “matter” replaced by “antimatter”
and vice versa. Since the [image: \Kzerobar] is the antiparticle of
the K0, it should decay into the antiparticles of the π+
and π−, but the antiparticle of a π+ is the π−. (Or, if you
prefer, vice versa. It turns out that for the π-mesons it
doesn’t matter which one you call “matter.”) So as a consequence of
the weak decays, the K0 and [image: \Kzerobar] can go into the same final
products. When “seen” through their decays—as in a bubble
chamber—they look like the same particle. Only their strong
interactions are different.





At last we are ready to describe the work of
Gell-Mann and
Pais. They
first noticed that since the K0 and the [image: \Kzerobar] can both
turn into states of two π-mesons there must be some amplitude that
a K0 can turn into a [image: \Kzerobar], and also that a [image: \Kzerobar]
can turn into a K0. Writing the reactions as one does in
chemistry, we would have
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(11.43)




These reactions imply that there is some amplitude per unit time, say
−i/ℏ times [image: \bracket{\Kzerobar}{\text{W}}{\Kzero}], that
a K0 will turn into a [image: \Kzerobar] through the weak interaction
responsible for the decay into two π-mesons. And there is the
corresponding amplitude [image: \bracket{\Kzero}{\text{W}}{\Kzerobar}] for
the reverse process. Because matter and antimatter behave in exactly
the same way, these two amplitudes are numerically equal; we’ll call
them both A:
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(11.44)









Now—said Gell-Mann and Pais—here is an
interesting situation. What people have been calling two distinct states
of the world—the K0 and the [image: \Kzerobar]—should really be
considered as one two-state system, because there is an
amplitude to go from one state to the other. For a complete treatment,
one would, of course, have to deal with more than two states, because
there are also the states of 2 π's, and so on; but since they were
mainly interested in the relation of K0 and [image: \Kzerobar], they did
not have to complicate things and could make the approximation of a
two-state system. The other states were taken into account to the
extent that their effects appeared implicitly in the amplitudes of
Eq. (11.44).





Accordingly, Gell-Mann and Pais analyzed the neutral
particle as a two-state system. They began by choosing as their two base
states the states [image: \ket{\Kzero}] and [image: \ket{\Kzerobar}]. (From here on,
the story goes very much as it did for the ammonia molecule.) Any
state [image: \ket{\psi}] of the neutral K-particle could then be described by
giving the amplitudes that it was in either base state. We’ll call these
amplitudes

[image: -*-]
(11.45)









The next step was to write the Hamiltonian equations for this
two-state system. If there were no coupling between the K0 and
the [image: \Kzerobar], the equations would be simply
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(11.46)




But since there is the amplitude [image: \bracket{\Kzero}{\text{W}}{\Kzerobar}]
for the [image: \Kzerobar] to turn into a K0 there should be the
additional term

[image: -*-]


added to the right-hand side of the first equation. And similarly, the
term A C+ should be inserted in the equation for the rate of change
of C−.





But that’s not all. When the two-pion effect is taken into account
there is an additional amplitude for the K0 to turn into
itself through the process

[image: -*-]


The additional amplitude, which we would
write [image: \bracket{\Kzero}{\text{W}}{\Kzero}], is just equal to the
amplitude [image: \bracket{\Kzerobar}{\text{W}}{\Kzero}], since the amplitudes
to go to and from a pair of π-mesons are identical for the K0
and the [image: \Kzerobar]. If you wish, the argument can be written out in
detail like this. First write7
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and
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Because of the symmetry of matter and antimatter
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and also
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It then follows that [image: \bracket{\Kzero}{\text{W}}{\Kzero}=
\bracket{\Kzerobar}{\text{W}}{\Kzero}], and also that
[image: \bracket{\Kzerobar}{\text{W}}{\Kzero}=
\bracket{\Kzero}{\text{W}}{\Kzerobar}], as we said earlier. Anyway,
there are the two additional amplitudes
[image: \bracket{\Kzero}{\text{W}}{\Kzero}]
and [image: \bracket{\Kzerobar}{\text{W}}{\Kzerobar}], both equal to A, which
should be included in the Hamiltonian equations. The first gives a
term A C+ on the right-hand side of the equation for d C+/d t, and the
second gives a new term A C− in the equation for d C−/d t. Reasoning
this way, Gell-Mann and
Pais concluded that the
Hamiltonian equations for the [image: \Kzero\,\Kzerobar] system should be
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(11.47)









We must now correct something we have said in earlier chapters: that two
amplitudes like [image: \bracket{\Kzero}{\text{W}}{\Kzerobar}]
and [image: \bracket{\Kzerobar}{\text{W}}{\Kzero}] which are the reverse of
each other, are always complex conjugates. That was true when we were
talking about particles that did not decay. But if particles can
decay—and can, therefore, become “lost”—the two amplitudes are not
necessarily complex conjugates. So the equality of (11.44)
does not mean that the amplitudes are real numbers; they are in fact
complex numbers. The coefficient A is, therefore, complex; and we
can’t just incorporate it into the energy E0.





Having played often with electron spins and such, our heroes knew that
the Hamiltonian equations of (11.47) meant that there was
another pair of base states which could also be used to
represent the K-particle system and which would have especially simple
behaviors. They said, “Let’s take the sum and difference of these two
equations. Also, let’s measure all our energies from E0, and use
units for energy and time that make ℏ=1.” (That’s what modern
theoretical physicists always do. It doesn’t change the physics but
makes the equations take on a simple form.) Their result:
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(11.48)










It is apparent that the combinations of amplitudes (C++C−)
and (C+−C−) act independently from each other (corresponding, of
course, to the stationary states we have been studying earlier). So
they concluded that it would be more convenient to use a different
representation for the K-particle. They defined the two states



[image: -*-]
(11.49)





They said that instead of thinking of the K0 and [image: \Kzerobar]
mesons, we can equally well think in terms of the two “particles”
(that is, “states”) K1 and K2. (These correspond, of course,
to the states we have usually called [image: \ket{\slI}]
and [image: \ket{\slII}]. We are not using our old notation because we want now
to follow the notation of the original authors—and the one you will
see in physics seminars.)





Now Gell-Mann and Pais didn’t do all this just to get different names
for the particles—there is also some strange new physics in
it. Suppose that C1 and C2 are the amplitudes that some
state [image: \ket{\psi}] will be either a K1 or a K2 meson:
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From the equations of (11.49),
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(11.50)





Then the Eqs. (11.48) become
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(11.51)




The solutions are
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(11.52)




where, of course, C1 (0) and C2 (0) are the amplitudes at t=0.





These equations say that if a neutral K-particle starts out in the
state [image: \ket{\text{K}_1}] at t=0 [then C1 (0)=1 and C2 (0)=0],
the amplitudes at the time t are
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Remembering that A is a complex number, it is convenient to
take 2 A=α−i β. (Since the imaginary part of 2 A turns out to
be negative, we write it as minus i β.) With this
substitution, C1 (t) reads

[image: -*-]
(11.53)




The probability of finding a K1 particle at t is the absolute
square of this amplitude, which is e−2 β t. And, from
Eqs. (11.52), the probability of finding the K2 state at
any time is zero. That means that if you make a K-particle in the
state [image: \ket{\text{K}_1}], the probability of finding it in the same
state decreases exponentially with time—but you will never find it in
state [image: \ket{\text{K}_2}]. Where does it go?  It disintegrates into two
π-mesons with the mean life τ=1/2 β which is,
experimentally, 10−10 sec. We made provisions for that when we said
that A was complex.





On the other hand, Eq. (11.52) says that if we make a
K-particle completely in the K2 state, it stays that way
forever. Well, that’s not really true. It is observed experimentally
to disintegrate into three π-mesons, but 600 times slower
than the two-pion decay we have described. So there are some other
small terms we have left out in our approximation. But so long as we
are considering only the two-pion decay, the K2 lasts “forever.”





Now to finish the story of Gell-Mann
and Pais. They went on to
consider what happens when a K-particle is produced with a
Λ0 particle in a strong interaction. Since it must
then have a strangeness of +1, it must be produced in the
K0 state. So at t=0 it is neither a K1 nor a K2 but a
mixture. The initial conditions are
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But that means—from Eq. (11.50)—that
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and—from Eqs. (11.52) and (11.53)—that
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(11.54)




Now remember that K0 and [image: \Kzerobar] are each linear combinations
of K1 and K2. In Eqs. (11.54) the amplitudes have
been chosen so that at t=0 the [image: \Kzerobar] parts cancel each other out
by interference, leaving only a K0 state. But the
[image: \ket{\text{K}_1}] state changes with time, and the
[image: \ket{\text{K}_2}] state does not. After t=0 the interference
of C1 and C2 will give finite amplitudes for both K0
and [image: \Kzerobar].





What does all this mean? Let’s go back and think of the experiment we
sketched in Fig. 11-5. A π− meson has produced a
Λ0 particle and a K0 meson which is tooting along through
the hydrogen in the chamber. As it goes along, there is some small but
uniform chance that it will collide with a hydrogen nucleus. At first,
we thought that strangeness conservation would prevent the K-particle
from making a Λ0 in such an interaction. Now, however, we see
that that is not right. For although our K-particle starts out as
a K0—which cannot make a Λ0—it does not stay
this way. After a while, there is some amplitude that it will
have flipped to the [image: \Kzerobar] state. We can, therefore, sometimes
expect to see a Λ0 produced along the K-particle track. The
chance of this happening is given by the amplitude C−, which we can
[by using Eq. (11.50)) backwards] relate to C1
and C2. The relation is
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(11.55)




As our K-particle goes along, the probability that it will “act
like” a [image: \Kzerobar] is equal to │C−│2, which is
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(11.56)




A complicated and strange result!





This, then, is the remarkable prediction of
Gell-Mann and Pais: when a K0 is produced, the chance
that it will turn into a [image: \Kzerobar]—as it can demonstrate by being
able to produce a Λ0—varies with time according to
Eq. (11.56). This prediction came from using only sheer
logic and the basic principles of the quantum mechanics—with no
knowledge at all of the inner workings of the K-particle. Since nobody
knows anything about the inner machinery, that is as far as
Gell-Mann and Pais could go. They could not give any
theoretical values for α and β. And nobody has been able to
do so to this date. They were able to give a value of β obtained
from the experimentally observed rate of decay into two π's
(2 β=1010 sec−1), but they could say nothing
about α.





We have plotted the function of Eq. (11.56) for two
values of α in Fig. 11-6. You can see that the
form depends very much on the ratio of α to β. There is no
[image: \Kzerobar] probability at first; then it builds up. If α is
large, the probability would have large oscillations. If α is
small, there will be little or no oscillation—the probability will
just rise smoothly to 1/4.




[image: -][image: -]
Fig. 11–6. 
The function of Eq. ((11.56)): (a) for α=4 π β,
(b) for α=π β (with 2 β=1010 sec−1).





Now, typically, the K-particle will be travelling at a constant speed
near the speed of light. The curves of Fig. 11-6 then
also represent the probability along the track of observing
a [image: \Kzerobar]—with typical distances of several centimeters. You can see
why this prediction is so remarkably peculiar. You produce a single
particle and instead of just disintegrating, it does something else.
Sometimes it disintegrates, and other times it turns into a different
kind of a particle. Its characteristic probability of producing an
effect varies in a strange way as it goes along. There is nothing else
quite like it in nature. And this most remarkable prediction was made
solely by arguments about the interference of amplitudes.





If there is any place where we have a chance to test the main
principles of quantum mechanics in the purest way—does the
superposition of amplitudes work or doesn’t it?—this is it. In spite
of the fact that this effect has been predicted now for several years,
there is no experimental determination that is very clear. There are
some rough results which indicate that the α is not zero, and
that the effect really occurs—they indicate that α is between
2 β and 4 β. That’s all there is, experimentally. It would
be very beautiful to check out the curve exactly to see if the
principle of superposition really still works in such a mysterious
world as that of the strange particles—with unknown reasons for the
decays, and unknown reasons for the strangeness.





The analysis we have just described is very characteristic of the way
quantum mechanics is being used today in the search for an
understanding of the strange particles. All the complicated theories
that you may hear about are no more and no less than this kind of
elementary hocus-pocus using the principles of superposition and other
principles of quantum mechanics of that level. Some people claim that
they have theories by which it is possible to calculate the β
and α, or at least the α given the β, but these
theories are completely useless. For instance, the theory that
predicts the value of α, given the β, tells us that the
value of α should be infinite. The set of equations with which
they originally start involves two π-mesons and then goes from the
two π’s back to a K0, and so on. When it’s all worked out,
it does indeed produce a pair of equations like the ones we have here;
but because there are an infinite number of states of two π's,
depending on their momenta, integrating over all the possibilities
gives an α which is infinite. But nature’s α is
not infinite. So the dynamical theories are wrong. It is really
quite remarkable that the phenomena which can be predicted at
all in the world of the strange particles come from the principles of
quantum mechanics at the level at which you are learning them now.





 


11–6 Generalization to N-state systems


We have finished with all the two-state systems we wanted to talk
about. In the following chapters we will go on to study systems with
more states. The extension to N-state systems of the ideas we have
worked out for two states is pretty straightforward. It goes like
this.





If a system has N distinct states, we can represent any
state [image: \ket{\psi(t)}] as a linear combination of any set of base
states [image: \ket{i}], where i=1, 2, 3, …, N;
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(11.57)




The coefficients Ci (t) are the amplitudes [image: \braket{i}{\psi(t)}]. The
behavior of the amplitudes Ci with time is governed by the equations

[image: -*-]
(11.58)




where the energy matrix Hi j describes the physics of the problem.
It looks the same as for two states. Only now, both i and j must
range over all N base states, and the energy matrix Hi j—or, if
you prefer, the Hamiltonian—is an N by N matrix with
N2 numbers. As before, [image: H_{ij}\cconj=H_{ji}]—so long as particles
are conserved—and the diagonal elements Hi i are real numbers.





We have found a general solution for the C’s of a two-state system
when the energy matrix is constant (doesn’t depend on t). It is also
not difficult to solve Eq. (11.58) for an N-state
system when H is not time dependent. Again, we begin by looking for
a possible solution in which the amplitudes all have the same
time dependence. We try
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(11.59)




When these Ci’s are substituted into (11.58), the
derivatives d Ci (t)/d t become just (−i/ℏ) E Ci. Canceling the
common exponential factor from all terms, we get
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(11.60)




This is a set of N linear algebraic equations for the N unknowns
a1, a2, …, aN, and there is a solution only if you are
lucky—only if the determinant of the coefficients of all the a's
is zero. But it’s not necessary to be that sophisticated; you can just
start to solve the equations any way you want, and you will find that
they can be solved only for certain values of E. (Remember that E
is the only adjustable thing we have in the equations.)





If you want to be formal, however, you can write
Eq. (11.60) as
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(11.61)




Then you can use the rule—if you know it—that these equations will
have a solution only for those values of E for which
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(11.62)




Each term of the determinant is just Hi j, except that E is
subtracted from every diagonal element. That is, (11.62)
means just
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(11.63)




This is, of course, just a special way of writing an algebraic
equation for E which is the sum of a bunch of products of all the
terms taken a certain way. These products will give all the powers
of E up to EN.





So we have an Nth order polynomial equal to zero, and there are, in
general, N roots. (We must remember, however, that some of them may
be multiple roots—meaning that two or more roots are equal.) Let’s
call the N roots
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(11.64)




(We will use n to represent the nth Roman numeral, so that
n takes on the values I, II, …, N.)  It may
be that some of these energies are
equal—say EII=EIII—but we will still choose to call
them by different names.





The equations (11.60)—or (11.61)—have one
solution for each value of E. If you put any one of
the E's—say En—into (11.60) and solve for
the ai, you get a set which belongs to the energy En. We
will call this set ai (n).





Using these ai (n) in Eq. (11.59), we have the
amplitudes Ci (n) that the definite energy states are in the
base state [image: \ket{i}]. Letting [image: \ket{\bldn}] stand for the state vector
of the definite energy state at t=0, we can write
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with
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(11.65)




The complete definite energy state [image: \ket{\psi_{\bldn}(t)}] can then be written as
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or
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(11.66)




The state vectors [image: \ket{\bldn}] describe the configuration of the
definite energy states, but have the time dependence factored
out. Then they are constant vectors which can be used as a new base
set if we wish.





Each of the states [image: \ket{\bldn}] has the property—as you can easily
show—that when operated on by the Hamiltonian operator [image: \Hop] it
gives just En times the same state:
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(11.67)









The energy En is, then, a number which is a characteristic of
the Hamiltonian operator [image: \Hop]. As we have seen, a Hamiltonian will, in
general, have several characteristic energies. In the mathematician’s
world these would be called the “characteristic values” of the
matrix Hi j. Physicists usually call them the
“eigenvalues” of [image: \Hop]. (“Eigen” is the German
word for “characteristic” or “proper.”) With each eigenvalue
of [image: \Hop]—in other words, for each energy—there is the state of
definite energy, which we have called the “stationary
state.”
Physicists usually call the states [image: \ket{\bldn}] “the
eigenstates of [image: \Hop].”
Each eigenstate corresponds to a particular eigenvalue En.





Now, generally, the states [image: \ket{\bldn}]—of which there are N—can
also be used as a base set. For this to be true, all of the states must
be orthogonal, meaning that for any two of them, say [image: \ket{\bldn}]
and [image: \ket{\bldm}],
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(11.68)




This will be true automatically if all the energies are
different. Also, we can multiply all the ai (n) by a suitable
factor so that all the states are normalized—by which we mean that
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(11.69)




for all n.





When it happens that Eq. (11.63) accidentally has two
(or more) roots with the same energy, there are some minor
complications. First, there are still two different sets of ai's
which go with the two equal energies, but the states they give may
not be orthogonal. Suppose you go through the normal procedure
and find two stationary states with equal energies—let’s call them
[image: \ket{\mu}] and [image: \ket{\nu}]. Then it will not necessarily be so that
they are orthogonal—if you are unlucky,
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It is, however, always true that you can cook up two new states, which
we will call [image: \ket{\mu'}] and [image: \ket{\nu'}], that have the same
energies and are also orthogonal, so that
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(11.70)




You can do this by making [image: \ket{\mu'}] and [image: \ket{\nu'}] a suitable
linear combination of [image: \ket{\mu}] and [image: \ket{\nu}], with the
coefficients chosen to make it come out so that Eq. (11.70)
is true. It is always convenient to do this. We will generally assume
that this has been done so that we can always assume that our proper
energy states [image: \ket{\bldn}] are all orthogonal.





We would like, for fun, to prove that when two of the stationary
states have different energies they are indeed orthogonal. For the
state [image: \ket{\bldn}] with the energy En, we have that
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(11.71)




This operator equation really means that there is an equation between
numbers. Filling the missing parts, it means the same as
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(11.72)




If we take the complex conjugate of this equation, we get
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(11.73)




Remember now that the complex conjugate of an amplitude is the reverse
amplitude, so (11.73) can be rewritten as

[image: -*-]
(11.74)




Since this equation is valid for any i, its “short form” is
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(11.75)




which is called the adjoint to Eq. (11.71).





Now we can easily prove that En is a real number. We multiply
Eq. (11.71) by [image: \bra{\bldn}] to get

[image: -*-]
(11.76)




since [image: \braket{\bldn}{\bldn}=1]. Then we multiply
Eq. (11.75) on the right by [image: \ket{\bldn}] to get
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(11.77)




Comparing (11.76) with (11.77) it is clear
that
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(11.78)




which means that En is real. We can erase the star
on En in Eq. (11.75).





Finally we are ready to show that the different energy states are
orthogonal. Let [image: \ket{\bldn}] and [image: \ket{\bldm}] be any two of the
definite energy base states. Using Eq. (11.75) for the
state m, and multiplying it by [image: \ket{\bldn}], we get that
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But if we multiply (11.71) by [image: \bra{\bldm}], we get
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Since the left sides of these two equations are equal, the right sides
are, also:
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(11.79)




If Em=En the equation does not tell us anything. But
if the energies of the two states [image: \ket{\bldm}] and [image: \ket{\bldn}]
are different (Em≠En),
Eq. (11.79) says that [image: \braket{\bldm}{\bldn}] must be zero,
as we wanted to prove. The two states are necessarily orthogonal so long
as En and Em are numerically different.





 
 

		
	  
It’s similar to what we found (in
Chapter 6) for a spin one-half particle when we rotated
the coordinates about the z-axis—then we got the phase
factors e±i ϕ/2. It is, in fact, exactly what we wrote down in
Section 5–7 for the [image: \ket{+}] and [image: \ket{-}] states of
a spin-one particle—which is no coincidence. The photon is a
spin-one particle which has, however, no “zero” state.
	  ^
	

	
		
	  
We now feel that the material of this
section is longer and harder than is appropriate at this point in our
development. We suggest that you skip it and continue with
Section 11–6. If you are ambitious and have time you may
wish to come back to it later. We leave it here, because it is a
beautiful example—taken from recent work in high-energy physics—of
what can be done with our formulation of the quantum mechanics of
two-state systems.
	  ^
	

	
		
	  
Read as: “K-naught-bar,” or “K-zero-bar.”
	  ^
	

	
	
		
	  
Except, of course, if it also produces
two K+’s or other particles with a total strangeness
of +2. We can think here of reactions in which there is insufficient
energy to produce these additional strange particles.
	  ^
	

	
		
	  
The free
Λ-particle decays slowly via a weak interaction (so
strangeness need not be conserved). The decay products are either a p
and a π−, or an n and a π0. The lifetime
is 2.2×10−10 sec.
	  ^
	

	
	
	
		
	  
A typical time for strong interactions is more like
10−23 sec.
	  ^
	

	
		
	  
We are making a simplification
here. The 2 π-system can have many states corresponding to various
momenta of the π-mesons, and we should make the right-hand side of
this equation into a sum over the various base states of the π's.
The complete treatment still leads to the same conclusions.
	  ^
	

	




  
    

12 The Hyperfine Splitting in Hydrogen



12–1 Base states for a system with two spin one-half particles


In this chapter we take up the “hyperfine splitting” of hydrogen,
because it is a physically interesting example of what we can already
do with quantum mechanics. It’s an example with more than two states,
and it will be illustrative of the methods of quantum mechanics as
applied to slightly more complicated problems. It is enough more
complicated that once you see how this one is handled you can get
immediately the generalization to all kinds of problems.





As you know, the hydrogen atom consists of an electron sitting in the
neighborhood of the proton, where it can exist in any one of a number
of discrete energy states in each one of which the pattern of motion
of the electron is different. The first excited state, for example,
lies 3/4 of a Rydberg, or about 10 electron volts, above the
ground state. But even the so-called ground state of hydrogen is not
really a single, definite-energy state, because of the spins of the
electron and the proton. These spins are responsible for the
“hyperfine structure” in the energy levels, which splits all the
energy levels into several nearly equal levels.





The electron can have its spin either “up” or “down” and, the
proton can also have its spin either “up” or “down.” There
are, therefore, four possible spin states for every dynamical
condition of the atom. That is, when people say “the ground state”
of hydrogen, they really mean the “four ground states,” and not just
the very lowest state. The four spin states do not all have exactly
the same energy; there are slight shifts from the energies we would
expect with no spins. The shifts are, however, much, much smaller than
the 10 electron volts or so from the ground state to the next state above. As
a consequence, each dynamical state has its energy split into a set of
very close energy levels—the so-called hyperfine splitting.





The energy differences among the four spin states is what we want to
calculate in this chapter. The hyperfine splitting is due to the
interaction of the magnetic moments of the electron and proton, which
gives a slightly different magnetic energy for each spin state. These
energy shifts are only about ten-millionths of an electron
volt—really very small compared with 10 electron volts! It is because of
this large gap that we can think about the ground state of hydrogen as
a “four-state” system, without worrying about the fact that there
are really many more states at higher energies. We are going to limit
ourselves here to a study of the hyperfine structure of the ground
state of the hydrogen atom.





For our purposes we are not interested in any of the details about the
positions of the electron and proton because that has all been
worked out by the atom so to speak—it has worked itself out by
getting into the ground state. We need know only that we have an
electron and proton in the neighborhood of each other with some
definite spatial relationship. In addition, they can have various
different relative orientations of their spins. It is only the effect
of the spins that we want to look into.





The first question we have to answer is: What are the base
states for the system? Now the question has been put
incorrectly. There is no such thing as “the” base states,
because, of course, the set of base states you may choose is not
unique. New sets can always be made out of linear combinations of the
old. There are always many choices for the base states, and among
them, any choice is equally legitimate. So the question is not what is
the base set, but what could a base set be? We can
choose any one we wish for our own convenience. It is usually best to
start with a base set which is physically the clearest. It may
not be the solution to any problem, or may not have any direct
importance, but it will generally make it easier to understand what is
going on.





We choose the following four base states:
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We need a handy notation for these four states, so we’ll represent them this way:
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(12.1)




You will have to remember that the first plus or minus sign
refers to the electron and the second, to the proton. For handy
reference, we’ve also summarized the notation in
Fig. 12-1. Sometimes it will also be convenient to call
these states [image: \ket{\slOne}], [image: \ket{\slTwo}], [image: \ket{\slThree}],
and [image: \ket{\slFour}].




[image: -]
Fig. 12–1. 
A set of base states for the ground state of the hydrogen atom.





You may say, “But the particles interact, and maybe these aren’t the
right base states. It sounds as though you are considering the two
particles independently.” Yes, indeed! The interaction raises the
problem: what is the Hamiltonian for the system, but the
interaction is not involved in the question of how to describe
the system. What we choose for the base states has nothing to do with
what happens next. It may be that the atom cannot ever stay in
one of these base states, even if it is started that way. That’s
another question. That’s the question: How do the amplitudes change
with time in a particular (fixed) base? In choosing the base states,
we are just choosing the “unit vectors” for our description.





While we’re on the subject, let’s look at the general problem of
finding a set of base states when there is more than one particle. You
know the base states for a single particle. An electron, for example,
is completely described in real life—not in our simplified cases,
but in real life—by giving the amplitudes to be in each of the
following states:
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or
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There are really two infinite sets of states, one state for each value
of p. That is to say that an electron state [image: \ket{\psi}] is
completely described if you know all the amplitudes
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where the + and − represent the components of angular momentum
along some axis—usually the z-axis—and p is the vector
momentum. There must, therefore, be two amplitudes for every possible
momentum (a multi-infinite set of base states). That is all there is
to describing a single particle.





When there is more than one particle, the base states can be written
in a similar way. For instance, if there were an electron and a proton
in a more complicated situation than we are considering, the base
states could be of the following kind:
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And so on for other spin combinations. If there are more than two
particles—same idea. So you see that to write down the
possible base states is really very easy. The only problem is,
what is the Hamiltonian?





For our study of the ground state of hydrogen we don’t need to use the
full sets of base states for the various momenta. We are specifying
particular momentum states for the proton and electron when we say
“the ground state.” The details of the configuration—the
amplitudes for all the momentum base states—can be calculated, but
that is another problem. Now we are concerned only with the effects of
the spin, so we can take only the four base states
of (12.1). Our next problem is: What is the Hamiltonian for
this set of states?





 


12–2 The Hamiltonian for the ground state of hydrogen


We’ll tell you in a moment what it is. But first, we should remind you
of one thing: any state can always be written as a linear
combination of the base states. For any state [image: \ket{\psi}] we can
write

[image: -*-]
(12.2)




Remember that the complete brackets are just complex numbers, so we
can also write them in the usual fashion as Ci, where i=1, 2,
3, or 4, and write Eq. (12.2) as



[image: -*-]
(12.3)





By giving the four amplitudes Ci we completely describe the spin
state [image: \ket{\psi}]. If these four amplitudes change with time, as they
will, the rate of change in time is given by the operator [image: \Hop]. The
problem is to find the [image: \Hop].





There is no general rule for writing down the Hamiltonian of an atomic
system, and finding the right formula is much more of an art than
finding a set of base states. We were able to tell you a general rule
for writing a set of base states for any problem of a proton and an
electron, but to describe the general Hamiltonian of such a
combination is too hard at this level. Instead, we will lead you to a
Hamiltonian by some heuristic argument—and you will have to accept
it as the correct one because the results will agree with the test of
experimental observation.






Table 12–1. 





[image: --]


You will remember that in the last chapter we were able to describe
the Hamiltonian of a single, spin one-half particle by using the sigma
matrices—or the exactly equivalent sigma operators. The properties
of the operators are summarized in Table 12-1. These
operators—which are just a convenient, shorthand way of keeping
track of the matrix elements of the
type [image: \bracket{+}{\sigma_z}{+}]—were useful for describing the behavior
of a single particle of spin one-half. The question is: Can we
find an analogous device to describe a system with two spins? The
answer is yes, very simply, as follows. We invent a thing which we
will call “sigma electron,” which we represent
by the vector operator σe, and which has the x-, y-,
and z-components, [image: \sigmae_x], [image: \sigmae_y], [image: \sigmae_z]. We now make
the convention that when one of these things operates on any one
of our four base states of the hydrogen atom, it acts only on the
electron spin, and in exactly the same way as if the electron
were all by itself. Example: What is [image: \sigmae_y\,\ket{-\,+}]? Since
σy on an electron “down” is −i times the corresponding state
with the electron “up”,
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(When [image: \sigmae_y] acts on the combined state it flips over the
electron, but does nothing to the proton and multiplies the result
by −i.) Operating on the other states, [image: \sigmae_y] would give
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Just remember that the operators σe work only on the
first spin symbol—that is, on the electron spin.





Next we define the corresponding operator “sigma proton” for the proton spin. Its three components [image: \sigmap_x],
[image: \sigmap_y], [image: \sigmap_z] act in the same way as σe, only on
the proton spin. For example, if we have [image: \sigmap_x] acting on
each of the four base states, we get—always using
Table 12-1—
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As you can see, it’s not very hard.





Now in the most general case we could have more complex things. For
instance, we could have products of the two operators
like [image: \sigmae_y\sigmap_z]. When we have such a product we do first what the
operator on the right says, and then do what the other one
says.1 For
example, we would have that
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Note that these operators don’t do anything on pure numbers—we have
used this fact when we wrote [image: \sigmae_x(-1)=(-1)\sigmae_x]. We say
that the operators “commute” with pure numbers, or that a number
“can be moved through” the operator. You can practice by showing
that the product [image: \sigmae_x\sigmap_z] gives the following results for
the four states:
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If we take all the possible operators, using each kind of operator
only once, there are sixteen possibilities. Yes,
sixteen—provided we include also the “unit
operator” [image: \hat{1}]. First, there are the three: [image: \sigmae_x], [image: \sigmae_y],
[image: \sigmae_z]. Then the three [image: \sigmap_x], [image: \sigmap_y],
[image: \sigmap_z]—that makes six. In addition, there are the nine possible
products of the form [image: \sigmae_x\sigmap_y] which makes a total
of 15. And there’s the unit operator which just leaves any state
unchanged. Sixteen in all.





Now note that for a four-state system, the Hamiltonian matrix has to
be a four-by-four matrix of coefficients—it will have sixteen
entries. It is easily demonstrated that any four-by-four matrix—and,
therefore, the Hamiltonian matrix in particular—can be written as a
linear combination of the sixteen double-spin matrices corresponding to
the set of operators we have just made up. Therefore, for the
interaction between a proton and an electron that involves only their
spins, we can expect that the Hamiltonian operator can be written as a
linear combination of the same 16 operators. The only question is,
how?





Well, first, we know that the interaction doesn’t depend on our choice
of axes for a coordinate system. If there is no external
disturbance—like a magnetic field—to determine a unique direction
in space, the Hamiltonian can’t depend on our choice of the direction
of the x-, y-, and z-axes. That means that the Hamiltonian can’t
have a term like [image: \sigmae_x] all by itself. It would be ridiculous,
because then somebody with a different coordinate system would get
different results.





The only possibilities are a term with the unit matrix, say a
constant a (times [image: \hat{1}]), and some combination of the sigmas that doesn’t
depend on the coordinates—some “invariant” combination. The only
scalar invariant combination of two vectors is the dot product,
which for our σ’s is
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(12.4)




This operator is invariant with respect to any rotation of the
coordinate system. So the only possibility for a Hamiltonian with the
proper symmetry in space is a constant times the unit matrix plus a
constant times this dot product, say,
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(12.5)




That’s our Hamiltonian. It’s the only thing that it can be, by the
symmetry of space, so long as there is no external field. The
constant term doesn’t tell us much; it just depends on the level we
choose to measure energies from. We may just as well take E0=0. The
second term tells us all we need to know to find the level splitting
of the hydrogen.





If you want to, you can think of the Hamiltonian in a different
way. If there are two magnets near each other with magnetic moments
μe and μp, the mutual energy will
depend on μe⋅μp—among other
things. And, you remember, we found that the classical thing we
call μe appears in quantum mechanics
as μe σe. Similarly, what appears classically
as μp will usually turn out in quantum mechanics to
be μp σp (where μp is the magnetic
moment of the proton, which is about 1000 times smaller
than μe, and has the opposite sign). So Eq. (12.5)
says that the interaction energy is like the interaction between two
magnets—only not quite, because the interaction of the two magnets
depends on the radial distance between them. But Eq. (12.5)
could be—and, in fact, is—some kind of an average
interaction. The electron is moving all around inside the atom, and our
Hamiltonian gives only the average interaction energy. All it says is
that for a prescribed arrangement in space for the electron and proton
there is an energy proportional to the cosine of the angle between the
two magnetic moments, speaking classically. Such a classical qualitative
picture may help you to understand where it comes from, but the
important thing is that Eq. (12.5) is the correct quantum
mechanical formula.





The order of magnitude of the classical interaction between two
magnets would be the product of the two magnetic moments divided by
the cube of the distance between them. The distance between the
electron and the proton in the hydrogen atom is, speaking roughly, one
half an atomic radius, or 0.5 angstrom. It is, therefore, possible
to make a crude estimate that the constant A should be about equal
to the product of the two magnetic moments μe
and μp divided by the cube of 1/2 angstrom. Such an
estimate gives a number in the right ball park. It turns out that A
can be calculated accurately once you understand the complete quantum
theory of the hydrogen atom—which we so far do not. It has, in fact,
been calculated to an accuracy of about 30 parts in one million. So,
unlike the flip-flop constant A of the ammonia molecule, which
couldn’t be calculated at all well by a theory, our constant A for
the hydrogen can be calculated from a more detailed theory. But
never mind, we will for our present purposes think of the A as a
number which could be determined by experiment, and analyze the
physics of the situation.





Taking the Hamiltonian of Eq. (12.5), we can use it
with the equation
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(12.6)




to find out what the spin interactions do to the energy levels. To do
that, we need to work out the sixteen matrix
elements [image: H_{ij}=\bracket{i}{H}{j}] corresponding to each pair of the four base
states in (12.1).





We begin by working out what [image: \Hop\,\ket{j}] is for each of the four
base states.  For example,
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(12.7)





Using the method we described a little earlier—it’s easy if you have
memorized Table 12-1—we find what each pair
of σ’s does on [image: \ket{+\,+}]. The answer is
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(12.8)




So (12.7) becomes
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(12.9)





Since our four base states are all orthogonal, that gives us
immediately that
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(12.10)




Remembering that [image: \bracket{j}{H}{i}=\bracket{i}{H}{j}\cconj], we can
already write down the differential equation for the amplitudes C1:
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or
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(12.11)




That’s all! We get only the one term.






Table 12–2. Spin operators for the hydrogen atom





[image: --]


Now to get the rest of the Hamiltonian equations we have to crank
through the same procedure for [image: \Hop] operating on the other
states. First, we will let you practice by checking out all of the
sigma products we have written down in Table 12-2. Then
we can use them to get:
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(12.12)




Then, multiplying each one in turn on the left by all the other state
vectors, we get the following Hamiltonian matrix, Hi j:
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(12.13)




It means, of course, nothing more than that our differential equations
for the four amplitudes Ci are
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(12.14)









Before solving these equations we can’t resist telling you about a
clever rule due to Dirac—it will make you feel that you are really
advanced—although we don’t need it for our work. We have—from the
equations (12.9) and (12.12)—that
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(12.15)




Look, said Dirac, I can also write the first and last equations as
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then they are all quite similar. Now I invent a new operator, which I
will call Pspin exch and which I define to have the
following properties:2
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All the operator does is interchange the spin directions of the two
particles. Then I can write the whole set of equations
in (12.15) as a simple operator equation:
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(12.16)









That’s the formula of Dirac. His “spin exchange operator” gives a
handy rule for figuring out σe⋅σp. (You see, you
can do everything now. The gates are open.)





 


12–3 The energy levels


Now we are ready to work out the energy levels of the ground state of
hydrogen by solving the Hamiltonian equations (12.14). We
want to find the energies of the stationary states. This means that we
want to find those special states [image: \ket{\psi}] for which each
amplitude [image: C_i=\braket{i}{\psi}] in the set belonging to [image: \ket{\psi}]
has the same time dependence—namely, e−i ω t. Then the
state will have the energy E=ℏ ω. So we want a set for which
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(12.17)




where the four coefficients ai are independent of time. To see
whether we can get such amplitudes, we substitute (12.17)
into Eq. (12.14) and see what happens. Each
i ℏ d C/d t in Eq. (12.14) turns into E C,
and—after cancelling out the common exponential factor—each C
becomes an a; we get
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(12.18)




which we have to solve for a1, a2, a3, and a4. Isn’t it nice that
the first equation is independent of the rest—that means we can see one
solution right away. If we choose E=A,
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gives a solution. (Of course, taking all the a’s equal to zero also gives a
solution, but that’s no state at all!) Let’s call our first solution the
state [image: \ket{\slI}]:3
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(12.19)




Its energy is
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With that clue you can immediately see another solution from the last
equation in (12.18):
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We’ll call that solution state [image: \ket{\slII}]:
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(12.20)









Now it gets a little harder; the two equations left
in (12.18) are mixed up. But we’ve done it all before.
Adding the two, we get
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(12.21)




Subtracting, we have
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(12.22)




By inspection—and remembering ammonia—we see that there are two
solutions:
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(12.23)



 
They are mixtures of [image: \ket{\slTwo}] and [image: \ket{\slThree}]. Calling
these states [image: \ket{\slIII}] and [image: \ket{\slIV}], and putting in a
factor 1/√2 to make the states properly normalized, we have
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(12.24)





and
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(12.25)





We have found four stationary states and their energies. Notice,
incidentally, that our four states are orthogonal, so they also can be
used for base states if desired. Our problem is completely solved.





Three of the states have the energy A, and the last has the
energy −3 A. The average is zero—which means that when we took E0=0 in
Eq. (12.5), we were choosing to measure all the energies
from the average energy. We can draw the energy-level diagram for the
ground state of hydrogen as shown in Fig. 12-2.




[image: -]
Fig. 12–2. 
Energy-level diagram for the ground state of atomic hydrogen.





Now the difference in energy between state [image: \ket{\slIV}] and any one
of the others is 4 A. An atom which happens to have gotten into
state [image: \ket{\slI}] could fall from there to state [image: \ket{\slIV}] and emit
light. Not optical light, because the energy is so tiny—it would
emit a microwave quantum. Or, if we shine microwaves on hydrogen gas,
we will find an absorption of energy as the atoms in
state [image: \ket{\slIV}] pick up energy and go into one of the upper states—but
only at the frequency ω=4 A/ℏ. This frequency has been
measured experimentally; the best result, obtained very
recently,4 is
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(12.26)





The error is only two parts in 100 billion! Probably no basic
physical quantity is measured better than that—it’s one of the most
remarkably accurate measurements in physics. The theorists were very
happy that they could compute the energy to an accuracy of 3 parts
in 105, but in the meantime it has been measured to 2 parts
in 1011—a million times more accurate than the theory. So the
experimenters are way ahead of the theorists. In the theory of the
ground state of the hydrogen atom you are as good as
anybody. You, too, can just take your value of A from
experiment—that’s what everybody has to do in the end.





You have probably heard before about the “21-centimeter
line” of hydrogen. That’s the
wavelength of the 1420 megacycle spectral line between the hyperfine
states. Radiation of this wavelength is emitted or absorbed by the
atomic hydrogen gas in the galaxies. So with radio telescopes tuned in
to 21-cm waves (or 1420 megacycles approximately) we can observe the
velocities and the location of concentrations of atomic hydrogen gas. By
measuring the intensity, we can estimate the amount of hydrogen. By
measuring the frequency shift due to the Doppler
effect, we can find out about the motion
of the gas in the galaxy. That is one of the big programs of radio
astronomy. So now we are talking about something that’s very real—it
is not an artificial problem.





 


12–4 The Zeeman splitting


Although we have finished the problem of finding the energy levels of
the hydrogen ground state, we would like to study this interesting
system some more. In order to say anything more about it—for
instance, in order to calculate the rate at which the hydrogen atom
absorbs or emits radio waves at 21 centimeters—we have to know
what happens when the atom is disturbed. We have to do as we did for
the ammonia molecule—after we found the energy levels we went on and
studied what happened when the molecule was in an electric field. We
were then able to figure out the effects from the electric field in a
radio wave. For the hydrogen atom, the electric field does nothing to
the levels, except to move them all by some constant amount
proportional to the square of the field—which is not of any interest
because that won’t change the energy differences. It is now the
magnetic field which is important. So the next step is to write
the Hamiltonian for a more complicated situation in which the atom
sits in an external magnetic field.





What, then, is the Hamiltonian? We’ll just tell you the answer,
because we can’t give you any “proof” except to say that this is the
way the atom works.





The Hamiltonian is
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(12.27)




It now consists of three parts. The first
term A σe⋅σp represents the magnetic interaction
between the electron and the proton—it is the same one that would be
there if there were no magnetic field. This is the term we have
already had; and the influence of the magnetic field on the
constant A is negligible. The effect of the external magnetic field shows up
in the last two terms. The second term,
−μe σe⋅B, is the energy the electron
would have in the magnetic field if it were there
alone.5
In the same way, the last
term −μp σp⋅B, would have been the energy of a
proton alone. Classically, the energy of the two of them together
would be the sum of the two, and that works also quantum
mechanically. In a magnetic field, the energy of interaction due to
the magnetic field is just the sum of the energy of interaction of the
electron with the external field, and of the proton with the
field—both expressed in terms of the sigma operators. In quantum
mechanics these terms are not really the energies, but thinking of the
classical formulas for the energy is a way of remembering the rules
for writing down the Hamiltonian. Anyway, the correct Hamiltonian is
Eq. (12.27).





Now we have to go back to the beginning and do the problem all over
again. Much of the work is, however, done—we need only to add the
effects of the new terms. Let’s take a constant magnetic field B
in the z-direction. Then we have to add to our Hamiltonian
operator [image: \Hop] the two new pieces—which we can call [image: \Hop']:
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Using Table 12-1, we get right away that
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(12.28)




How very convenient! The [image: \Hop'] operating on each state just gives a
number times that state. The matrix [image: \bracket{i}{H'}{j}] has,
therefore, only diagonal elements—we can just add the
coefficients in (12.28) to the corresponding diagonal
terms of (12.13), and the Hamiltonian equations
of (12.14) become
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(12.29)









The form of the equations is not different—only the coefficients. So
long as B doesn’t vary with time, we can continue as we did
before. Substituting Ci=ai e−(i/ℏ) E t, we get—as a
modification of (12.18)—
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(12.30)




Fortunately, the first and fourth equations are still independent of
the rest, so the same technique works again.





One solution is the state [image: \ket{\slI}] for which a1=1, a2=a3=a4=0, or
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(12.31)



 
Another is

[image: -*-]
(12.32)



 





A little more work is involved for the remaining two equations,
because the coefficients of a2 and a3 are no longer equal. But
they are just like the pair we had for the ammonia molecule. Looking
back at Eq. (9.20), we can make the following analogy
(remembering that the labels 1 and 2 there correspond to 2
and 3 here):
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(12.33)




The energies are then given by (9.25), which was
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(12.34)




Making the substitutions from (12.33), the energy formula
becomes

[image: -*-]


Although in Chapter 9 we used to call these energies
EI and EII, and we are in this problem calling them
EIII and EIV,
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(12.35)









So we have found the energies of the four stationary states of a
hydrogen atom in a constant magnetic field. Let’s check our results by
letting B go to zero and seeing whether we get the same energies we
had in the preceding section. You see that we do. For B=0, the
energies EI, EII, and EIII go to +A, and
EIV goes to −3 A. Even our labeling of the states agrees with
what we called them before. When we turn on the magnetic field though,
all of the energies change in a different way. Let’s see how they go.





First, we have to remember that for the electron, μe is
negative, and about 1000 times larger than μp—which
is positive. So μe+μp
and μe−μp are both negative numbers, and nearly
equal. Let’s call them −μ and −μ′:
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(12.36)




(Both μ and μ′ are positive numbers, nearly equal to magnitude
of μe—which is about one Bohr magneton.) Then
our four energies are
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(12.37)




The energy EI starts at A and increases linearly
with B—with the slope μ. The energy EII also starts at A
but decreases linearly with increasing B—its slope
is −μ. These two levels vary with B as shown in
Fig. 12-3. We show also in the figure the energies
EIII and EIV. They have a different B-dependence. For
small B, they depend quadratically on B, so they start out with
horizontal slopes. Then they begin to curve, and for large B
they approach straight lines with slopes ±μ′, which are nearly the
same as the slopes of EI and EII.




[image: -]
Fig. 12–3. 
The energy levels of the ground state of hydrogen in a magnetic field B.





The shift of the energy levels of an atom due to a magnetic field is
called the Zeeman effect. We say that the curves in
Fig. 12-3 show the Zeeman splitting of the ground
state of hydrogen. When there is no magnetic field, we get just one
spectral line from the hyperfine structure of hydrogen. The transitions
between state [image: \ket{\slIV}] and any one of the others occurs with the
absorption or emission of a photon whose frequency 1420 megacycles is
1/h times the energy difference 4 A. When the atom is in a magnetic
field B, however, there are many more lines. There can be
transitions between any two of the four states. So if we have atoms in
all four states, energy can be absorbed—or emitted—in any one of the
six transitions shown by the vertical arrows in Fig. 12-4.
Many of these transitions can be observed by the Rabi molecular beam
technique we described in Volume II, Section 35-3.




[image: -]
Fig. 12–4. 
Transitions between the levels of ground state energy levels of
hydrogen in some particular magnetic field B.





What makes the transitions go? The transitions will occur if you apply
a small disturbing magnetic field that varies with time (in addition
to the steady strong field B). It’s just as we saw for a varying
electric field on the ammonia molecule. Only here, it is the magnetic
field which couples with the magnetic moments and does the trick. But
the theory follows through in the same way that we worked it out for
the ammonia. The theory is the simplest if you take a perturbing
magnetic field that rotates in the x y-plane—although any
horizontal oscillating field will do. When you put in this perturbing
field as an additional term in the Hamiltonian, you get solutions in
which the amplitudes vary with time—as we found for the ammonia
molecule. So you can calculate easily and accurately the probability
of a transition from one state to another. And you find that it all
agrees with experiment.





 


12–5 The states in a magnetic field


We would like now to discuss the shapes of the curves in
Fig. 12-3. In the first place, the energies for large
fields are easy to understand, and rather interesting. For B large
enough (namely for μ B/A≫1) we can neglect the 1 in the formulas
of (12.37). The four energies become
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(12.38)




These are the equations of the four straight lines in
Fig. 12-3. We can understand these energies physically in
the following way. The nature of the stationary states in a zero
field is determined completely by the interaction of the two magnetic
moments.  The mixtures of the base states [image: \ket{+\,-}] and [image: \ket{-\,+}]
in the stationary states [image: \ket{\slIII}] and [image: \ket{\slIV}] are due to
this interaction. In large external fields, however, the proton
and electron will be influenced hardly at all by the field of the other;
each will act as if it were alone in the external field. Then—as we
have seen many times—the electron spin will be either parallel to or
opposite to the external magnetic field.





Suppose the electron spin is “up”—that is, along the field; its
energy will be −μe B. The proton can still be either
way. If the proton spin is also “up,” its energy
is −μp B. The sum of the two
is −(μe+μp) B=μ B. That is just what we find
for EI—which is fine, because we are describing the
state [image: \ket{+\,+}=\ket{\slI}]. There is still the small additional term A
(now μ B≫A) which represents the interaction energy of the
proton and electron when their spins are parallel. (We originally
took A as positive because the theory we spoke of says it should be, and
experimentally it is indeed so.) On the other hand, the proton can
have its spin down. Then its energy in the external field goes
to +μp B, so it and the electron have the
energy −(μe−μp) B=μ′ B. And the interaction energy
becomes −A. The sum is just the energy EIII,
in (12.38). So the state [image: \ket{\slIII}] must for large
fields become the state [image: \ket{+\,-}].





Suppose now the electron spin is “down.” Its energy in the external
field is μe B. If the proton is also “down,” the two
together have the energy (μe+μp) B=−μ B,
plus the interaction energy A—since their spins are
parallel. That makes just the energy EII in (12.38)
and corresponds to the state [image: \ket{-\,-}=\ket{\slII}]—which is nice.
Finally if the electron is “down” and the proton is “up,” we get the
energy (μe−μp) B−A (minus A for the
interaction because the spins are opposite) which is just EIV.
And the state corresponds to [image: \ket{-\,+}].





“But, wait a moment!”, you are probably saying, “The states
[image: \ket{\slIII}] and [image: \ket{\slIV}] are not the states
[image: \ket{+\,-}] and [image: \ket{-\,+}]; they are mixtures of the two.”
Well, only slightly. They are indeed mixtures for B=0, but we have
not yet figured out what they are for large B. When we used the
analogies of (12.33) in our formulas of
Chapter 9 to get the energies of the stationary states,
we could also have taken the amplitudes that go with them. They come
from Eq. (9.24), which is
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The ratio a2/a3 is, of course, just C2/C3. Plugging in the
analogous quantities from (12.33), we get
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(12.39)



}
where for E we are to use the appropriate energy—either
EIII or EIV. For instance, for state [image: \ket{\slIII}]
we have
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(12.40)




So for large B the state [image: \ket{\slIII}] has C2≫C3; the state
becomes almost completely the state [image: \ket{\slTwo}=\ket{+\,-}]. Similarly,
if we put EIV into (12.39) we get (C2/C3)IV≪1;
for high fields state [image: \ket{\slIV}] becomes just the
state [image: \ket{\slThree}=\ket{-\,+}]. You see that the coefficients in the linear
combinations of our base states which make up the stationary states
depend on B. The state we call [image: \ket{\slIII}] is a 50-50 mixture
of [image: \ket{+\,-}] and [image: \ket{-\,+}] at very low fields, but shifts
completely over to [image: \ket{+\,-}] at high fields. Similarly, the
state [image: \ket{\slIV}], which at low fields is also a 50-50 mixture (with
opposite signs) of [image: \ket{+\,-}] and [image: \ket{-\,+}], goes over into the
state [image: \ket{-\,+}] when the spins are uncoupled by a strong external
field.




[image: -]
Fig. 12–5. 
The states of the hydrogen atom for small magnetic fields.





We would also like to call your attention particularly to what happens
at very low magnetic fields. There is one energy—at −3 A—which
does not change when you turn on a small magnetic
field. And there is another energy—at +A—which splits into three different energy levels 
when you turn on a small magnetic field. For weak fields the energies vary with B as shown 
in Fig. 12–5. Suppose that we have somehow selected a bunch 
of hydrogen atoms which all have the energy −3 A. If we put them through a Stern-Gerlach 
experiment—with fields that are not too strong—we would find that they just go straight through. 
(Since their energy doesn’t depend on B, there is—according to the principle of virtual 
work—no force on them in a magnetic field gradient.) Suppose, on the other hand, we were to 
select a bunch of atoms with the energy +A, and put them through a Stern-Gerlach apparatus, 
say an S apparatus. (Again the fields in the apparatus should not be so great that they disrupt 
the insides of the atom, by which we mean a field small enough that the energies vary linearly 
with B.) We would find three beams. The states [image: \ket{\slI}] and 
[image: \ket{\slII}] get opposite forces—their energies vary linearly with B with the slopes ±μ 
so the forces are like those on a dipole with μz=∓μ; but the state 
[image: \ket{\slIII}] goes straight through. So we are right back in Chapter 5. 
A hydrogen atom with the energy +A is a spin-one particle. 
This energy state is a “particle” for which j=1, and it can be described—with respect to
some set of axes in space—in terms of the base states [image: \ket{+S}], [image: \ket{\OS}],
and [image: \ket{-S}] we used in Chapter 5. On the
other hand, when a hydrogen atom has the energy −3 A, it is a spin-zero
particle. (Remember, what we are saying is only strictly true for
infinitesimal magnetic fields.)  So we can group the states of hydrogen
in zero magnetic field this way:

[image: -*-]
(12.41)

(12.42)









We have said in Chapter 35 of Volume II that
for any particle its component of angular momentum along any axis can
have only certain values always ℏ apart. The z-component of
angular momentum Jz can be j ℏ, (j−1) ℏ, (j−2) ℏ, …, (−j) ℏ,
where j is the spin of the particle (which can be
an integer or half-integer). Although we neglected to say so at the
time, people usually write

[image: -*-]
(12.43)




where m stands for one of the numbers j, j−1, j−2, …, −j.
You will, therefore, see people in books label the four ground states of
hydrogen by the so-called quantum numbers
j and m [often called the “total angular momentum quantum
number” (j) and “magnetic quantum number” (m)]. Then, instead of
our state symbols [image: \ket{\slI}], [image: \ket{\slII}], and so on, they will
write a state as [image: \ket{j,m}]. So they would write our little table of
states for zero field in (12.41) and (12.42)
as shown in Table 12-3. It’s not new physics, it’s all
just a matter of notation.






Table 12-3 Zero field states of the hydrogen atom






[image: --]


 


12–6 The projection matrix for spin one6


We would like now to use our knowledge of the hydrogen atom to do
something special. We discussed in Chapter 5 that a
particle of spin one which was in one of the base states (+, 0,
or −) with respect to a Stern-Gerlach apparatus of a particular
orientation—say an S apparatus—would have a certain amplitude to
be in each of the three states with respect to a T apparatus with a
different orientation in space. There are nine such
amplitudes [image: \braket{jT}{iS}] which make up the projection matrix. In
Section 5–77 we gave without proof the terms of this
matrix for various orientations of T with respect to S. Now we will
show you one way they can be derived.





In the hydrogen atom we have found a spin-one system which is made up
of two spin one-half particles. We have already worked out in
Chapter 6 how to transform the spin one-half amplitudes.
We can use this information to calculate the transformation for spin
one. This is the way it works: We have a system—a hydrogen atom with
the energy +A—which has spin one. Suppose we run it through a
Stern-Gerlach filter S, so that we know it is in one of the base
states with respect to S, say [image: \ket{+S}]. What is the amplitude that
it will be in one of the base states, say [image: \ket{+T}], with respect to
the T apparatus? If we call the coordinate system of the S apparatus
the x,y,z system, the [image: \ket{+S}] state is what we have been calling
the state [image: \ket{+\,+}]. But suppose another guy took his z-axis along
the axis of T. He will be referring his states to what we will call
the x′,y′,z′ frame. His “up” and “down” states for the electron
and proton would be different from ours. His “plus-plus”
state—which we can write [image: \ket{+'\,+'}], referring to the “prime”
frame—is the [image: \ket{+T}] state of the spin-one particle. What we want
is [image: \braket{+T}{+S}] which is just another way of writing the
amplitude [image: \braket{+'\,+'}{+\,+}].





We can find the amplitude [image: \braket{+'\,+'}{+\,+}] in the following
way. In our frame the electron in the [image: \ket{+\,+}] state
has its spin “up”. That means that it has some
amplitude [image: \braket{+'}{+}_{\text{e}}] of being “up” in his frame, and
some amplitude [image: \braket{-'}{+}_{\text{e}}] of being “down” in that
frame. Similarly, the proton in the [image: \ket{+\,+}] state has spin
“up” in our frame and the amplitudes [image: \braket{+'}{+}_{\text{p}}]
and [image: \braket{-'}{+}_{\text{p}}] of having spin “up” or spin “down” in
the “prime” frame. Since we are talking about two distinct
particles, the amplitude that both particles will be “up”
together in his frame is the product of the two
amplitudes,

[image: -*-]
(12.44)




We have put the subscripts e and p on the amplitudes [image: \braket{+'}{+}]
to make it clear what we were doing. But they are both just the
transformation amplitudes for a spin one-half particle, so they are
really identical numbers. They are, in fact, just the amplitude we
have called [image: \braket{+T}{+S}] in Chapter 6, and which
we listed in the tables at the end of that chapter.





Now, however, we are about to get into trouble with notation. We have
to be able to distinguish the amplitude [image: \braket{+T}{+S}] for a
spin one-half particle from what we have also
called [image: \braket{+T}{+S}] for a spin-one particle—yet they are
completely different!  We hope it won’t be too confusing, but
for the moment at least, we will have to use some different
symbols for the spin one-half amplitudes. To help you keep things
straight, we summarize the new notation in Table 12-4. We
will continue to use the notation [image: \ket{+S}], [image: \ket{\OS}],
and [image: \ket{-S}] for the states of a spin-one particle.






Table 12-4 Spin one-half amplitudes






[image: --]


With our new notation, Eq. (12.44) becomes simply

[image: -*-]


and this is just the spin-one amplitude [image: \braket{+T}{+S}]. Now,
let’s suppose, for instance, that the other guy’s coordinate
frame—that is, the T, or “primed,” apparatus—is just rotated
with respect to our z-axis by the angle ϕ; then from
Table 6-2,

[image: -*-]


So from (12.44) we have that the spin-one amplitude is

[image: -*-]
(12.45)




You can see how it goes.





Now we will work through the general case for all the states. If the
proton and electron are both “up” in our frame—the
S-frame—the amplitudes that it will be in any one of the
four possible states in the other guy’s frame—the T-frame—are

[image: -*-]
(12.46)




We can, then, write the state [image: \ket{+\,+}] as the following linear
combination:



[image: -*-]
(12.47)





Now we notice that [image: \ket{+'\,+'}] is the state [image: \ket{+T}], that
[image: \{\ket{+'\,-'}+\ket{-'\,+'}\}] is just √2 times the
state [image: \ket{\OT}]—see (12.41)—and that
[image: \ket{-'\,-'}=\ket{-T}]. In other words, Eq. (12.47)
can be rewritten as
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(12.48)




In a similar way you can easily show that

[image: -*-]
(12.49)




For [image: \ket{\OS}] it’s a little more complicated, because

[image: -*-]


But we can express each of the states [image: \ket{+\,-}] and [image: \ket{-\,+}] in
terms of the “prime” states and take the sum. That is,
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(12.50)





and



[image: -*-]
(12.51)





Taking 1/√2 times the sum, we get
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It follows that



[image: -*-]
(12.52)










We have now all of the amplitudes we wanted. The coefficients of Eqs.
(12.48), (12.49), and (12.52) are the
matrix elements [image: \braket{jT}{iS}]. Let’s pull them all together:

[image: -*-]
(12.53)




We have expressed the spin-one transformation in terms of the spin
one-half amplitudes a, b, c, and d.





For instance, if the T-frame is rotated with respect to S by the
angle α about the y-axis—as in Fig. 5-6—the
amplitudes in Table 12-4 are just the matrix elements
of Ry (α) in Table 6-2.

[image: -*-]
(12.54)




Using these in (12.53), we get the formulas
of (5.38), which we gave there without proof.





What ever happened to the state [image: \ket{\slIV}]?! Well, it is a
spin-zero system, so it has only one state—it is the same in
all coordinate systems. We can check that everything works out by
taking the difference of Eq. (12.50)
and (12.51); we get that
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But (a d−b c) is the determinant of the spin one-half matrix, and so
is equal to 1. We get that

[image: -*-]


for any relative orientation of the two coordinate frames.





 

		
	  
For these particular operators, you will notice
it turns out that the sequence of the operators doesn’t matter.
	  ^
	

	
		
	  
This operator is now called the “Pauli
spin exchange operator.”
	  ^
	

	
		
	  
The state is
really [image: \ket{\slI}e^{-(i/\hbar)E_{\slI}t}]; but, as usual we will identify the
states by the constant vectors which are equal to the complete vectors
at t=0.
	  ^
	

	
		
	  
Crampton, Kleppner, and Ramsey; Physical Review Letters, Vol. 11, page 338 (1963).
	  ^
	

	
		
	  
Remember that classically U=−μ⋅B, so
the energy is lowest when the moment is along the field. For positive
particles, the magnetic moment is parallel to the spin and for
negative particles it is opposite. So in Eq. (12.27),
μp is a positive number, but μe is
a negative number.
	  ^
	

	
		
	  
Those who chose to jump
over Chapter 6 should skip this section also.
	  ^
	

	




  
    

13 Propagation in a Crystal Lattice



13–1 States for an electron in a one-dimensional lattice


You would, at first sight, think that a low-energy electron
would have great difficulty passing through a solid crystal. The atoms
are packed together with their centers only a few angstroms apart, and
the effective diameter of the atom for electron scattering is roughly an
angstrom or so. That is, the atoms are large, relative to their spacing,
so that you would expect the mean free path between collisions to be of
the order of a few angstroms—which is practically nothing. You would
expect the electron to bump into one atom or another almost immediately.
Nevertheless, it is a ubiquitous phenomenon of nature that if the
lattice is perfect, the electrons are able to travel through the crystal
smoothly and easily—almost as if they were in a vacuum. This strange
fact is what lets metals conduct electricity so easily; it has also
permitted the development of many practical devices. It is, for
instance, what makes it possible for a transistor to imitate the radio
tube. In a radio tube electrons move freely through a vacuum, while in
the transistor they move freely through a crystal lattice. The machinery
behind the behavior of a transistor will be described in this chapter;
the next one will describe the application of these principles in
various practical devices.




The conduction of electrons in a crystal is one example of a very common
phenomenon. Not only can electrons travel through crystals, but other
“things” like atomic excitations can also travel in a similar manner.
So the phenomenon which we want to discuss appears in many ways in the
study of the physics of the solid state.




You will remember that we have discussed many examples of two-state
systems. Let’s now think of an electron which can be in either one of
two positions, in each of which it is in the same kind of
environment. Let’s also suppose that there is a certain amplitude to
go from one position to the other, and, of course, the same amplitude
to go back, just as we have discussed for the hydrogen molecular ion
in Section 10–1. The laws of quantum mechanics then
give the following results. There are two possible states of definite
energy for the electron. Each state can be described by the amplitude
for the electron to be in each of the two basic positions. In either
of the definite-energy states, the magnitudes of these two amplitudes
are constant in time, and the phases vary in time with the same
frequency. On the other hand, if we start the electron in one
position, it will later have moved to the other, and still later will
swing back again to the first position. The amplitude is analogous to
the motions of two coupled pendulums.




Now consider a perfect crystal lattice in which we imagine that an
electron can be situated in a kind of “pit” at one particular atom
and with some particular energy. Suppose also that the electron has
some amplitude to move into a different pit at one of the nearby
atoms. It is something like the two-state system—but with an
additional complication. When the electron arrives at the neighboring
atom, it can afterward move on to still another position as well as
return to its starting point. Now we have a situation analogous not to
two coupled pendulums, but to an infinite number of
pendulums all coupled together. It is something like what you see in
one of those machines—made with a long row of bars mounted on a
torsion wire—that is used in first-year physics to demonstrate wave
propagation.




If you have a harmonic oscillator which is coupled to another harmonic
oscillator, and that one to another, and so on …, and if you
start an irregularity in one place, the irregularity will propagate as
a wave along the line. The same situation exists if you place an
electron at one atom of a long chain of atoms.




Usually, the simplest way of analyzing the mechanical problem is not
to think in terms of what happens if a pulse is started at a definite
place, but rather in terms of steady-wave solutions. There exist
certain patterns of displacements which propagate through the crystal
as a wave of a single, fixed frequency. Now the same thing happens
with the electron—and for the same reason, because it’s described in
quantum mechanics by similar equations.




You must appreciate one thing, however; the amplitude for the electron
to be at a place is an amplitude, not a probability. If the
electron were simply leaking from one place to another, like water
going through a hole, the behavior would be completely different. For
example, if we had two tanks of water connected by a tube to permit
some leakage from one to the other, then the levels would approach
each other exponentially. But for the electron, what happens is
amplitude leakage and not just a plain probability leakage. And it’s a
characteristic of the imaginary term—the i in the differential
equations of quantum mechanics—which changes the exponential
solution to an oscillatory solution. What happens then is quite
different from the leakage between interconnected tanks.




[image: -]
Fig. 13–1. The base states of an electron in a one-dimensional crystal.





We want now to analyze quantitatively the quantum mechanical
situation. Imagine a one-dimensional system made of a long line of
atoms as shown in Fig. 13–1(a). (A crystal is, of course,
three-dimensional but the physics is very much the same; once you
understand the one-dimensional case you will be able to understand
what happens in three dimensions.) Next, we want to see what happens
if we put a single electron on this line of atoms. Of course, in a
real crystal there are already millions of electrons. But most of them
(nearly all for an insulating crystal) take up positions in some
pattern of motion each around its own atom—and everything is quite
stationary. However, we now want to think about what happens if we put
an extra electron in. We will not consider what the other ones
are doing because we suppose that to change their motion involves a
lot of excitation energy. We are going to add an electron as if to
produce one slightly bound negative ion. In watching what the
one extra electron does we are making an approximation which
disregards the mechanics of the inside workings of the atoms.




Of course the electron could then move to another atom, transferring
the negative ion to another place. We will suppose that just as in the
case of an electron jumping between two protons, the electron can jump
from one atom to the neighbor on either side with a certain amplitude.




Now how do we describe such a system? What will be reasonable base
states? If you remember what we did when we had only two possible
positions, you can guess how it will go. Suppose that in our line of
atoms the spacings are all equal; and that we number the atoms in
sequence, as shown in Fig. 13–1(a). One of the base states
is that the electron is at atom number 6, another base state is that
the electron is at atom number 7, or at atom number 8, and so on. We
can describe the nth base state by saying that the electron is at atom
number n. Let’s say that this is the base state [image: \ket{n}].
Figure 13–1 shows what we mean by the three base states
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Using these base states, any state [image: \ket{\phi}] of the electron in our
one-dimensional crystal can be described by giving all the
amplitudes [image: \braket{n}{\phi}] that the state [image: \ket{\phi}] is in one of the base
states—which means the amplitude that it is located at one
particular atom. Then we can write the state [image: \ket{\phi}] as a
superposition of the base states

[image: -*-]
(13.1)









Next, we are going to suppose that when the electron is at one atom,
there is a certain amplitude that it will leak to the atom on either
side. And we’ll take the simplest case for which it can only leak to
the nearest neighbors—to get to the next-nearest neighbor, it has to
go in two steps. We’ll take that the amplitudes for the electron jump
from one atom to the next is i A/ℏ (per unit time).




For the moment we would like to write the amplitude [image: \braket{n}{\phi}]
to be on the nth atom as Cn. Then Eq. (13.1) will
be written
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(13.2)




If we knew each of the amplitudes Cn at a given moment, we could
take their absolute squares and get the probability that you would
find the electron if you looked at atom n at that time.




What will the situation be at some later time? By analogy with the
two-state systems we have studied, we would propose that the
Hamiltonian equations for this system should be made up of equations
like this:

[image: -*-]
(13.3)









The first coefficient on the right, E0, is, physically, the energy
the electron would have if it couldn’t leak away from one of the
atoms. (It doesn’t matter what we call E0; as we have seen many
times, it represents really nothing but our choice of the zero of
energy.)  The next term represents the amplitude per unit time that
the electron is leaking into the nth pit from the (n+1)st pit; and
the last term is the amplitude for leakage from the (n−1)st pit. As
usual, we’ll assume that A is a constant (independent of t).




For a full description of the behavior of any state [image: \ket{\phi}], we
would have one equation like (13.3) for every one of the
amplitudes Cn. Since we want to consider a crystal with a very
large number of atoms, we’ll assume that there are an indefinitely
large number of states—that the atoms go on forever in both
directions. (To do the finite case, we will have to pay special
attention to what happens at the ends.) If the number N of our base
states is indefinitely large, then also our full Hamiltonian equations
are infinite in number! We’ll write down just a sample:
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(13.4)












13–2 States of definite energy


We could study many things about an electron in a lattice, but first
let’s try to find the states of definite energy. As we have seen in
earlier chapters this means that we have to find a situation in which
the amplitudes all change at the same frequency if they change with
time at all. We look for solutions of the form

[image: -*-]
(13.5)




The complex numbers an tell us about the non-time-varying part of
the amplitude to find the electron at the nth atom. If we put this
trial solution into the equations of (13.4) to test them
out, we get the result

[image: -*-]
(13.6)




We have an infinite number of such equations for the infinite number
of unknowns an—which is rather petrifying.




All we have to do is take the determinant … but wait!
Determinants are fine when there are 2, 3, or 4 equations. But
if there are a large number—or an infinite number—of equations,
the determinants are not very convenient. We’d better just try to
solve the equations directly. First, let’s label the atoms by their
positions; we’ll say that the atom n is at xn and the
atom (n+1) is at xn+1. if the atomic spacing is b—as in
Fig. 13–1—we will have that xn+1=xn+b. By choosing
our origin at atom zero, we can even have it that xn=n b. We can
rewrite Eq. (13.5) as
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(13.7)




and Eq. (13.6) would become
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(13.8)




Or, using the fact that xn+1=xn+b, we could also write
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(13.9)




This equation is somewhat similar to a differential equation. It tells
us that a quantity, a (x), at one point, (xn), is related to the
same physical quantity at some neighboring points, (xn±b). (A
differential equation relates the value of a function at a point to
the values at infinitesimally nearby points.) Perhaps the methods we
usually use for solving differential equations will also work here;
let’s try.




Linear differential equations with constant coefficients can always be
solved in terms of exponential functions. We can try the same thing
here; let’s take as a trial solution
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(13.10)




Then Eq. (13.9) becomes
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(13.11)




We can now divide out the common factor ei k xn; we get
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(13.12)




The last two terms are just equal to (2 A cosk b), so
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(13.13)




We have found that for any choice at all for the constant k
there is a solution whose energy is given by this equation. There are
various possible energies depending on k, and each k corresponds
to a different solution. There are an infinite number of
solutions—which is not surprising, since we started out with an
infinite number of base states.




Let’s see what these solutions mean. For each k, the a’s are given
by Eq. (13.10). The amplitudes Cn are then given by
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(13.14)




where you should remember that the energy E also depends on k as
given in Eq. (13.13). The space
dependence of the
amplitudes is ei k xn. The amplitudes oscillate as we go along from
one atom to the next.




We mean that, in space, the amplitude goes as a complex
oscillation—the magnitude is the same at every atom, but the
phase at a given time advances by the amount (i k b) from one atom to
the next. We can visualize what is going on by plotting a vertical
line to show just the real part at each atom as we have done in
Fig. 13–2. The envelope of these vertical lines (as shown
by the broken-line curve) is, of course, a cosine curve. The imaginary
part of Cn is also an oscillating function, but is shifted 90°
in phase so that the absolute square (which is the sum of the squares of
the real and imaginary parts) is the same for all the C’s.



[image: -]
Fig. 13–2. Variation of the real part of Cn with xn.





Thus if we pick a k, we get a stationary state of a particular
energy E. And for any such state, the electron is equally likely to
be found at every atom—there is no preference for one atom or the
other. Only the phase is different for different atoms. Also, as time
goes on the phases vary. From Eq. (13.14) the real and
imaginary parts propagate along the crystal as waves—namely as the
real or imaginary parts of
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(13.15)




The wave can travel toward positive or negative x depending on the
sign we have picked for k.




Notice that we have been assuming that the number k that we put in
our trial solution, Eq. (13.10), was a real number. We
can see now why that must be so if we have an infinite line of
atoms. Suppose that k were an imaginary number, say i k′. Then the
amplitudes an would go as ek′ xn, which means that the
amplitude would get larger and larger as we go toward large x’s—or
toward large negative x’s if k′ is a negative number. This kind of
solution would be O.K. if we were dealing with line of atoms that
ended, but cannot be a physical solution for an infinite chain of
atoms. It would give infinite amplitudes—and, therefore, infinite
probabilities—which can’t represent a real situation. Later on we
will see an example in which an imaginary k does make sense.




The relation between the energy E and the wave number k as given
in Eq. (13.13) is plotted in Fig. 13–3. As you can
see from the figure, the energy can go from (E0−2 A) at k=0 to
(E0+2 A) at k=±π/b. The graph is plotted for positive A; if
A were negative, the curve would simply be inverted, but the range
would be the same. The significant result is that any energy is
possible within a certain range or “band” of energies, but no
others. According to our assumptions, if an electron in a crystal is
in a stationary state, it can have no energy other than values in this
band.



[image: -]
Fig. 13–3. The energy of the stationary states as a function of the
parameter k.





According to Eq. (13.13), the smallest k’s correspond
to low-energy states—E≈(E0−2 A). As k increases in
magnitude (toward either positive or negative values) the energy at
first increases, but then reaches a maximum at k=±π/b, as shown
in Fig. 13–3. For k’s larger than π/b, the energy would
start
to decrease again. But we do not really need to consider such values
of k, because they do not give new states—they just repeat states
we already have for smaller k. We can see that in the following
way. Consider the lowest energy state for which k=0. The
coefficient a (xn) is the same for all xn. Now we would get the same energy
for k=2 π/b. But then, using Eq. (13.10), we have
that
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However, taking x0 to be at the origin, we can set xn=n b; then
a (xn) becomes
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The state described by these a (xn) is physically the same state we
got for k=0. It does not represent a different solution.




As another example, suppose that k were −π/4 b. The real part
of a (xn) would vary as shown by curve 1 in Fig. 13–4.
If k were 7 π/4 b, the real part of a (xn) would vary as shown by
curve 2 in the figure. (The complete cosine curves don’t mean
anything, of course; all that matters is their values at the
points xn. The curves are just to help you see how things are
going.) You see that both values of k give the same amplitudes at all
of the xn’s.



[image: -]
Fig. 13–4. Two values of k which represent the same physical situation;
curve 1 is for k=−π/4 b, curve 2 is for k=7 π/4 b.





The upshot is that we have all the possible solutions of our problem
if we take only k’s in a certain limited range. We’ll pick the range
between −π/b and +π/b—the one shown in
Fig. 13–3. In this range, the energy of the stationary
states increases uniformly with an increase in the magnitude of k.




One side remark about something you can play with. Suppose that the
electron cannot only jump to the nearest neighbor with
amplitude i A/ℏ, but also has the possibility to jump in one direct leap to
the next nearest neighbor with some other
amplitude i B/ℏ. You will find that the solution can again be written in
the form an=ei k xn—this type of solution is universal. You
will also find that the stationary states with wave number k have an
energy equal to (E0−2 A cosk b−2 B cos2 k b). This shows that the
shape of the curve of E against k is not universal, but depends
upon the particular assumptions of the problem. It is not always a
cosine wave—it’s not even necessarily symmetrical about some
horizontal line. It is true, however, that the curve always repeats
itself outside of the interval from −π/b to π/b, so you never
need to worry about other values of k.




Let’s look a little more closely at what happens for small k—that
is, when the variations of the amplitudes from one xn to the next
are quite slow. Suppose we choose our zero of energy by
defining E0=2 A; then the minimum of the curve in Fig. 13–3 is
at
the zero of energy. For small enough k, we can write that
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and the energy of Eq. (13.13) becomes

[image: -*-]
(13.16)




We have that the energy of the state is proportional to the square of
the wave number which describes the spatial variations of the
amplitudes Cn.







13–3 Time-dependent states


In this section we would like to discuss the behavior of states in the
one-dimensional lattice in more detail. If the amplitude for an electron
to be at xn is Cn, the probability of finding it there
is │Cn│2. For the stationary states described by
Eq. (13.14), this probability is the same for all xn and
does not change with time. How can we represent a situation which we
would describe roughly by saying an electron of a certain energy is
localized in a certain region—so that it is more likely to be found at
one place than at some other place? We can do that by making a
superposition of several solutions like Eq. (13.14) with
slightly different values of k—and, therefore, slightly different
energies. Then at t=0, at least, the amplitude Cn will vary with
position because of the interference between the various terms, just as
one gets beats when there is a mixture of waves of different wavelengths
(as we discussed in Chapter 48, Vol. I). So we can make up
a “wave packet” with a predominant wave
number k0, but with various other wave numbers
near k0.1



[image: -]
Fig. 13–5. The real part of C (xn) as a function of x for a
superposition of several states of similar energy. (The spacing b is
very small on the scale of x shown.)





In our superposition of stationary states, the amplitudes with
different k’s will represent states of slightly different energies, and,
therefore, of slightly different frequencies; the interference pattern
of the total Cn will, therefore, also vary with time—there will be
a pattern of “beats.” As we have seen in Chapter 48 of
Volume I, the peaks of the beats [the place where │C (xn)│2 is
large] will move along in x as time goes on; they move with the speed
we have called the “group velocity.” We found that this group velocity
was related to the variation of k with frequency by
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(13.17)




the same derivation would apply equally well here. An electron state
which is a “clump”—namely one for which the Cn vary in space
like the wave packet of Fig. 13–5—will move along our
one-dimensional “crystal” with the speed v equal to d ω/d k,
where ω=E/ℏ. Using (13.16) for E, we get
that
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(13.18)




In other words, the electrons move along with a speed proportional to
the typical k. Equation (13.16) then says that the
energy of such an electron is proportional to the square of its
velocity—it acts like a classical particle. So long as we
look at things on a scale gross enough that we don’t see the fine
structure, our quantum mechanical picture begins to give results like
classical physics. In fact, if we solve Eq. (13.18)
for k and substitute into (13.16), we can write
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(13.19)




where meff is a constant. The extra “energy of motion”
of the electron in a packet depends on the velocity just as for a
classical particle. The constant meff—called the
“effective mass”—is given by
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(13.20)




Also notice that we can write
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(13.21)




If we choose to call meff v the “momentum,” it is
related to the wave number k in the way we have described earlier
for a free particle.




Don’t forget that meff has nothing to do with the real
mass of an electron. It may be quite different—although in real
crystals it often happens to turn out to be the same general order of
magnitude, about 2 to 20 times the free-space mass of the
electron.




We have now explained a remarkable mystery—how an electron in a
crystal (like an extra electron put into germanium) can ride right
through the crystal and flow perfectly freely even though it has to
hit all the atoms. It does so by having its amplitudes going
pip-pip-pip from one atom to the next, working its way through the
crystal. That is how a solid can conduct electricity.







13–4 An electron in a three-dimensional lattice


Let’s look for a moment at how we could apply the same ideas to see
what happens to an electron in three dimensions. The results turn out
to be very similar. Suppose we have a rectangular lattice of atoms
with lattice spacings of a, b, c in the three directions. (If
you want a cubic lattice, take the three spacings all equal.) Also
suppose that the amplitude to leap in the x-direction to a neighbor
is (i Ax/ℏ), to leap in the y-direction is (i Ay/ℏ), and
to leap in the z-direction is (i Az/ℏ). Now how should we
describe the base states? As in the one-dimensional case, one base
state is that the electron is at the atom whose locations are x,
y, z, where (x,y,z) is one of the lattice points. Choosing our
origin at one atom, these points are all at
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where nx, ny, nz are any three integers. Instead of using
subscripts to indicate such points, we will now just use x, y,
and z, understanding that they take on only their values at the lattice
points. Thus the base state is represented by the
symbol [image: \ket{\text{electron at \(x,y,z\)}}], and the amplitude for an electron
in some state [image: \ket{\psi}] to be in this base state
is [image: C(x,y,z)=\braket{\text{electron at \(x,y,z\)}}{\psi}].




As before, the amplitudes C (x,y,z) may vary with time. With our
assumptions, the Hamiltonian equations should be like this:



[image: -*-]
(13.22)





It looks rather long, but you can see where each term comes from.




Again we can try to find a stationary state in which all the C’s
vary with time in the same way. Again the solution is an exponential:

[image: -*-]
(13.23)




If you substitute this into (13.22) you see that it
works, provided that the energy E is related to kx, ky,
and kz in the following way:
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(13.24)




The energy now depends on the three wave numbers kx, ky,
kz, which, incidentally, are the components of a three-dimensional
vector k. In fact, we can write Eq. (13.23) in
vector notation as
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(13.25)




The amplitude varies as a complex plane wave in three
dimensions, moving in the direction of k, and with the wave
number k=(kx+ky+kz)1/2.




The energy associated with these stationary states depends on the
three components of k in the complicated way given in
Eq. (13.24). The nature, of the variation of E
with k depends on relative signs and magnitudes of Ax, Ay,
and Az. If these three numbers are all positive, and if we are interested
in small values of k, the dependence is relatively simple.




Expanding the cosines as we did before to get Eq. (13.16),
we can now get that
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(13.26)









For a simple cubic lattice with lattice spacing a we expect that
Ax and Ay and Az would be equal—say all are just A—and
we would have just
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or
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(13.27)




This is just like Eq. (13.16). Following the arguments
used there, we would conclude that an electron packet in three
dimensions (made up by superposing many states with nearly equal
energies) also moves like a classical particle with some effective
mass.




In a crystal with a lower symmetry than cubic (or even in a cubic
crystal in which the state of the electron at each atom is not
symmetrical) the three coefficients Ax, Ay, and Az are
different. Then the “effective mass” of an electron localized in a
small region depends on its direction of motion. It could, for
instance, have a different inertia for motion in the x-direction
than for motion in the y-direction. (The details of such a situation
are sometimes described in terms of an “effective mass tensor.”)







13–5 Other states in a lattice


According to Eq. (13.24) the electron states we have
been talking about can have energies only in a certain “band” of
energies which covers the energy range from the minimum energy
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to the maximum energy
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Other energies are possible, but they belong to a different class of
electron states. For the states we have described, we imagined base
states in which an electron is placed on an atom of the crystal in
some particular state, say the lowest energy state.




If you have an atom in empty space, and add an electron to make an ion,
the ion can be formed in many ways. The electron can go on in such a way
as to make the state of lowest energy, or it can go on to make one or
another of many possible “excited states” of the ion each with a definite
energy above the lowest energy. The same thing can happen in a crystal.
Let’s suppose that the energy E0 we picked above corresponds to base
states which are ions of the lowest possible energy. We could also
imagine a new set of base states in which the electron sits near the
nth atom in a different way—in one of the excited states of the
ion—so that the energy E0 is now quite a bit higher. As before
there is some amplitude A (different from before) that the electron
will jump from its excited state at one atom to the same excited state
at a neighboring atom. The whole analysis goes as before; we find a band
of possible energies centered at a higher energy. There can, in general,
be many such bands each corresponding to a different level of
excitation.





There are also other possibilities. There may be some amplitude that
the electron jumps from an excited condition at one atom to an
unexcited condition at the next atom. (This is called an interaction
between bands.) The mathematical theory gets more and more complicated
as you take into account more and more bands and add more and more
coefficients for leakage between the possible states. No new ideas are
involved, however; the equations are set up much as we have done in
our simple example.




We should remark also that there is not much more to be said about the
various coefficients, such as the amplitude A, which appear in the
theory. Generally they are very hard to calculate, so in practical
cases very little is known theoretically about these parameters and
for any particular real situation we can only take values determined
experimentally.




There are other situations where the physics and mathematics are
almost exactly like what we have found for an electron moving in a
crystal, but in which the “object” that moves is quite
different. For instance, suppose that our original crystal—or rather
linear lattice—was a line of neutral atoms, each with a loosely
bound outer electron. Then imagine that we were to remove one
electron. Which atom has lost its electron? Let Cn now represent
the amplitude that the electron is missing from the atom
at xn. There will, in general, be some amplitude i A/ℏ that the
electron at a neighboring atom—say the (n−1)st atom—will jump to
the nth leaving the (n−1)st atom without its electron. This is the
same as saying that there is an amplitude A for the “missing
electron” to jump from the nth atom to the (n−1)st atom. You can
see that the equations will be exactly the same—of course, the value
of A need not be the same as we had before. Again we will get the
same formulas for the energy levels, for the “waves” of probability
which move through the crystal with the group velocity of
Eq. (13.18), for the effective mass, and so on. Only now
the waves describe the behavior of the missing electron—or
“hole” as it is called. So a “hole” acts just like a particle with a
certain mass meff. You can see that this particle will
appear to have a positive charge. We’ll have some more to say about such
holes in the next chapter.




As another example, we can think of a line of identical neutral
atoms one of which has been put into an excited state—that is, with
more than its normal ground state energy. Let Cn be the amplitude
that the nth atom has the excitation. It can interact with a
neighboring atom by handing over to it the extra energy and returning
to the ground state. Call the amplitude for this
process i A/ℏ. You can see that it’s the same mathematics all over
again. Now the object which moves is called an
exciton. It behaves like a neutral “particle”
moving through the crystal, carrying the excitation energy. Such motion
may be involved in certain biological processes such as
vision, or photosynthesis. It has been guessed that the
absorption of light in the retina produces an “exciton”
which moves through some periodic structure (such as the layers in the
rods we described in
Chapter 36, Vol. I; see Fig. 36–5) to be
accumulated at some special station where the energy is used to induce a
chemical reaction.








13–6 Scattering from imperfections in the lattice


We want now to consider the case of a single electron in a crystal
which is not perfect. Our earlier analysis says that perfect crystals
have perfect conductivity—that electrons can go slipping through the
crystal, as in a vacuum, without friction. One of the most important
things that can stop an electron from going on forever is an
imperfection or irregularity in the crystal. As an example, suppose
that somewhere in the crystal there is a missing atom; or suppose that
someone put one wrong atom at one of the atomic sites so that things
there are different than at the other atomic sites. Say the
energy E0 or the amplitude A could be different. How would we describe
what happens then?





To be specific, we will return to the one-dimensional case and we will
assume that atom number “zero” is an “impurity” atom and has a
different value of E0 than any of the other atoms. Let’s call this
energy (E0+F). What happens? When an electron arrives at atom
“zero” there is some probability that the electron is scattered
backwards. If a wave packet is moving along and it reaches a place
where things are a little bit different, some of it will continue
onward and some of it will bounce back. It’s quite difficult to
analyze such a situation using a wave packet, because everything
varies in time. It is much easier to work with steady-state
solutions. So we will work with stationary states, which we will find
can be made up of continuous waves which have transmitted and
reflected parts. In three dimensions we would call the reflected part
the scattered wave, since it would spread out in various directions.




We start out with a set of equations which are just like the ones in
Eq. (13.6) except that the equation for n=0 is
different from all the rest. The five equations for n=−2, −1, 0,
+1, and +2 look like this:
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(13.28)




There are, of course, all the other equations for │n│ is greater
than 2. They will look just like Eq. (13.6).




For the general case, we really ought to use a different A for the
amplitude that the electron jumps to or from atom “zero,” but the
main features of what goes on will come out of a simplified example in
which all the A’s are equal.




Equation (13.10) would still work as a solution for all
of the equations except the one for atom “zero”—it isn’t right for
that one equation. We need a different solution which we can cook up
in the following way. Equation (13.10) represents a wave
going in the positive x-direction. A wave going in the negative
x-direction would have been an equally good solution. It would be
written
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The most general solution we could have taken for
Eq. (13.6) would be a combination of a forward and a
backward wave, namely
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(13.29)




This solution represents a complex wave of amplitude α moving
in the +x-direction and a wave of amplitude β moving in the
−x-direction.




Now take a look at the set of equations for our new problem—the ones
in (13.28) together with those for all the other
atoms. The equations involving an’s with n≤−1 are all
satisfied by Eq. (13.29), with the condition that k
is related to E and the lattice spacing b by
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(13.30)




The physical meaning is an “incident” wave of amplitude α
approaching atom “zero” (the “scatterer”) from the left, and a
“scattered” or “reflected” wave of amplitude β going back
toward the left. We do not lose any generality if we set the
amplitude α of the incident wave equal to 1. Then the
amplitude β is, in general, a complex number.




We can say all the same things about the solutions of an
for n≥1. The coefficients could be different, so we would have for
them
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(13.31)




Here, γ is the amplitude of a wave going to the right and
δ a wave coming from the right. We want to consider the
physical situation in which a wave is originally started only
from the left, and there is only a “transmitted” wave that comes out
beyond the scatterer—or impurity atom. We will try for a solution in
which δ=0. We can, certainly, satisfy all of the equations for
the an except for the middle three in Eq. (13.28) by
the following trial solutions.
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(13.32)




The situation we are talking about is illustrated in Fig. 13–6.



[image: -]
Fig. 13–6. Waves in a one-dimensional lattice with one “impurity” atom
at n=0.





By using the formulas in Eq. (13.32) for a−1
and a+1, the three middle equations of Eq. (13.28)
will allow us to solve for a0 and also for the two coefficients
β and γ. So we have found a complete solution.
Setting xn=n b, we have to solve the three equations
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(13.33)










Remember that E is given in terms of k by Eq. (13.30).
If you substitute this value for E into the equations, and remember
that [image: \cos x=\tfrac{1}{2}(e^{ix}+e^{-ix})], you get from the first
equation that
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(13.34)




and from the third equation that
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(13.35)




These are consistent only if
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(13.36)




This equation says that the transmitted wave (γ) is just the
original incident wave (1) with an added wave (β) equal to the
reflected wave. This is not always true, but happens to be so for a
scattering at one atom only. If there were a clump of impurity atoms,
the amount added to the forward wave would not necessarily be the same
as the reflected wave.




We can get the amplitude β of the reflected wave from the middle
equation of Eq. (13.33); we find that
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(13.37)




We have the complete solution for the lattice with one unusual atom.




You may be wondering how the transmitted wave can be “more” than the
incident wave as it appears in Eq. (13.34). Remember,
though, that β and γ are complex numbers and that the
number of particles (or rather, the probability of finding a particle)
in a wave is proportional to the absolute square of the amplitude. In
fact, there will be “conservation of electrons” only if
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(13.38)




You can show that this is true for our solution.







13–7 Trapping by a lattice imperfection


There is another interesting situation that can arise if F is a
negative number. If the energy of the electron is lower at the
impurity atom (at n=0) than it is anywhere else, then the electron
can get caught on this atom. That is, if (E0+F) is below the bottom
of the band at (E0−2 A), then the electron can get “trapped” in a
state with E<E0−2 A. Such a solution cannot come out of what we have
done so far. We can get this solution, however, if we permit the trial
solution we took in Eq. (13.10) to have an imaginary
number for k. Let’s set k=±i κ. Again, we can have
different solutions for n<0 and for n>0. A possible solution
for n<0 might be
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(13.39)




We have to take a plus sign in the exponent; otherwise the amplitude
would get indefinitely large for large negative values of n.
Similarly, a possible solution for n>0 would be
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(13.40)









If we put these trial solutions into Eq. (13.28) all
but the middle three are satisfied provided that
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(13.41)




Since the sum of the two exponential terms is always greater than 2,
this energy is below the regular band, and is what we are looking
for. The remaining three equations in Eq. (13.28) are
satisfied if a0=c=c′ and if κ is chosen so that
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(13.42)




Combining this equation with Eq. (13.41) we can find
the energy of the trapped electron; we get
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(13.43)




The trapped electron has a unique energy—located somewhat below the
conduction band.




Notice that the amplitudes we have in Eq. (13.39)
and (13.40) do not say that the trapped electron
sits right on the impurity atom. The probability of finding the electron
at nearby atoms is given by the square of these amplitudes. For one
particular choice of the parameters it might vary as shown in the bar
graph of Fig. 13–7. The probability is greatest for
finding the electron on the impurity atom. For nearby atoms the
probability drops off exponentially with the distance from the impurity
atom. This is another example of “barrier penetration.” From the
point-of-view of classical physics the electron doesn’t have enough
energy to get away from the energy “hole” at the trapping center. But
quantum mechanically it can leak out a little way.



[image: -]
Fig. 13–7. The relative probabilities of finding a trapped electron at
atomic sites near the trapping impurity atom.








13–8 Scattering amplitudes and bound states


Finally, our example can be used to illustrate a point which is very
useful these days in the physics of high-energy particles. It has to
do with a relationship between scattering amplitudes and bound
states. Suppose we have discovered—through experiment and
theoretical analysis—the way that pions scatter from protons. Then a
new particle is discovered and someone wonders whether maybe it is
just a combination of a pion and a proton held together in some bound
state (in an analogy to the way an electron is bound to a proton to
make a hydrogen atom). By a bound state we mean a combination which
has a lower energy than the two free-particles.




There is a general theory which says that a bound state will exist at
that energy at which the scattering amplitude becomes infinite if
extrapolated algebraically (the mathematical term is “analytically
continued”) to energy regions outside of the permitted band.




The physical reason for this is as follows. A bound state is a
situation in which there are only waves tied on to a point and there’s
no wave coming in to get it started, it just exists there by
itself. The relative proportion between the so-called “scattered” or
created wave and the wave being “sent in” is infinite. We can test
this idea in our example. Let’s write our expression
Eq. (13.37) for the scattered amplitude directly in terms
of the energy E of the particle being scattered (instead of in terms
of k). Since Equation (13.30) can be rewritten as
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the scattered amplitude is
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(13.44)




From our derivation, this equation should be used only for real states—those
with energies in the energy band, E=E0±2 A. But suppose we forget that fact
and extend the formula into the “unphysical” energy regions
where │E−E0│>2 A. For these unphysical regions we can write2
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Then the “scattering amplitude,” whatever it may mean, is
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(13.45)




Now we ask: Is there any energy E for which β becomes infinite
(i.e., for which the expression for β has a “pole”)? Yes, so
long as F is negative, the denominator of Eq. (13.45)
will be zero when
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or when
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The minus sign gives just the energy we found in Eq. (13.43)
for the trapped energy.




What about the plus sign? This gives an energy above the
allowed energy band. And indeed there is another bound state there
which we missed when we solved the equations of
Eq. (13.28). We leave it as a puzzle for you to find the
energy and amplitudes an for this bound state.




The relation between scattering and bound states provides one of the
most useful clues in the current search for an understanding of the
experimental observations about the new strange particles.






	
  
  Provided we do not try to make the packet too
narrow.
  ^


	
  
  The
sign of the root to be chosen here is a technical point related to the allowed
signs of κ in Eqs. (13.39) and (13.40).
We won’t go into it here.
  ^
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14–1 Electrons and holes in semiconductors


One of the remarkable and dramatic developments in recent
years has been the application of solid state science to technical
developments in electrical devices such as transistors. The study of
semiconductors led to the discovery of their useful properties and to a
large number of practical applications. The field is changing so rapidly
that what we tell you today may be incorrect next year. It will
certainly be incomplete. And it is perfectly clear that with the
continuing study of these materials many new and more wonderful things
will be possible as time goes on. You will not need to understand this
chapter for what comes later in this volume, but you may find it
interesting to see that at least something of what you are learning has
some relation to the practical world.




There are large numbers of semiconductors known, but we’ll concentrate
on those which now have the greatest technical application. They are
also the ones that are best understood, and in understanding them we
will obtain a degree of understanding of many of the others. The
semiconductor substances in most common use today are silicon and
germanium. These elements crystallize in the diamond
lattice, a kind of cubic structure in which the
atoms have tetrahedral bonding with their four nearest neighbors. They
are insulators at very low temperatures—near absolute zero—although
they do conduct electricity somewhat at room temperature. They are not
metals; they are called semiconductors.




If we somehow put an extra electron into a crystal of silicon or
germanium which is at a low temperature, we will have just the
situation we described in the last chapter. The electron will be able
to wander around in the crystal jumping from one atomic site to the
next. Actually, we have looked only at the behavior of electrons in a
rectangular lattice, and the equations would be somewhat different for
the real lattice of silicon or germanium. All of the essential points
are, however, illustrated by the results for the rectangular lattice.




As we saw in Chapter 13, these electrons can have
energies only in a certain energy band—called the conduction
band. Within this band the energy is related to the
wave-number k of the probability amplitude C
(see Eq. (13.24)) by
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(14.1)




The A’s are the amplitudes for jumping in the x-, y-,
and z-directions, and a, b, and c are the lattice spacings in
these directions.




For energies near the bottom of the band, we can approximate
Eq. (14.1) by
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(14.2)




(see Section 13–4).




If we think of electron motion in some particular direction, so that
the components of k are always in the same ratio, the energy is
a quadratic function of the wave number—and as we have seen of the
momentum of the electron. We can write
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(14.3)




where α is some constant, and we can make a graph of E
versus k as in Fig. 14–1. We’ll call such a graph an
“energy diagram.” An electron in a particular
state of energy and momentum can be indicated by a point such as S in
the figure.




[image: -]
Fig. 14–1. The energy diagram for an electron in an insulating crystal.





As we also mentioned in Chapter 13, we can have a similar
situation if we remove an electron from a neutral insulator.
Then, an electron can jump over from a nearby atom and fill the
“hole,” but leaving another “hole” at the atom it started from. We
can describe this behavior by writing an amplitude to find the
hole at any particular atom, and by saying that the hole
can jump from one atom to the next. (Clearly, the amplitudes A that
the hole jumps from atom a to atom b is just the same as the
amplitude that an electron on atom b jumps into the hole at atom a.)
The mathematics is just the same for the hole as it was for the
extra electron, and we get again that the energy of the hole is related
to its wave number by an equation just like Eq.
(14.1) or (14.2), except, of course, with
different numerical values for the amplitudes Ax, Ay, and Az.
The hole has an energy related to the wave number of its probability
amplitudes. Its energy lies in a restricted band, and near the bottom of
the band its energy varies quadratically with the wave number—or
momentum—just as in Fig. 14–1. Following the arguments
of Section 13–3, we would find that the hole also
behaves like a classical particle with a certain effective
mass—except that in noncubic crystals the mass depends on the
direction of motion. So the hole behaves like a positive particle
moving through the crystal. The charge of the hole-particle is positive,
because it is located at the site of a missing electron; and when it
moves in one direction there are actually electrons moving in the
opposite direction.




If we put several electrons into a neutral crystal, they will move
around much like the atoms of a low-pressure gas. If there are not too
many, their interactions will not be very important. If we then put an
electric field across the crystal, the electrons will start to move
and an electric current will flow. Eventually they would all be drawn
to one edge of the crystal, and, if there is a metal electrode there,
they would be collected, leaving the crystal neutral.




Similarly we could put many holes into a crystal. They would roam
around at random unless there is an electric field. With a field they
would flow toward the negative terminal, and would be
“collected”—what actually happens is that they are neutralized by
electrons from the metal terminal.




One can also have both holes and electrons together. If there are not
too many, they will all go their way independently. With an electric
field, they will all contribute to the current. For obvious reasons,
electrons are called the negative carriers and the holes are called the
positive carriers.




We have so far considered that electrons are put into the crystal from
the outside, or are removed to make a hole. It is also possible to
“create” an electron-hole pair by taking a bound electron away from
one neutral atom and putting it some distance away in the same
crystal. We then have a free electron and a free hole, and the two can
move about as we have described.



[image: -]
Fig. 14–2. The energy E− is required to “create” a free electron.





The energy required to put an electron into a state S—we
say to “create” the state S—is the energy E− shown in
Fig. 14–2. It is some energy above [image: E^-_{\text{min}}]. The
energy required to “create” a hole in some state S′ is the
energy E+ of Fig. 14–3, which is some energy greater
than [image: E^+_{\text{min}}]. Now if we create a pair in the states S and S′,
the energy required is just E−+E+.



[image: -]
Fig. 14–3. The energy E+ is required to “create” a hole in the
state S′.





The creation of pairs is a common process (as we will see later), so
many people like to put Fig. 14–2 and
Fig. 14–3 together on the same graph—with the
hole energy plotted downward, although it is, of course a
positive energy. We have combined our two graphs in this way in
Fig. 14–4. The advantage of such a graph is that the
energy Epair=E−+E+ required to create a pair with the
electron in S and the hole in S′ is just the vertical distance
between S and S′ as shown in Fig. 14–4. The minimum
energy required to create a pair is called the “gap” energy and is
equal to [image: E^-_{\text{min}}+E^+_{\text{min}}].



[image: -]
Fig. 14–4. Energy diagrams for an electron and a hole drawn together.





Sometimes you will see a simpler diagram called an energy level
diagram which is drawn when people are not
interested in the k variable. Such a diagram—shown in
Fig. 14–5—just shows the possible energies for the
electrons and holes.1



[image: -]
Fig. 14–5. Energy level diagram for electrons and holes.





How can electron-hole pairs be created? There are several ways. For
example, photons of light (or x-rays) can be absorbed and create a
pair if the photon energy is above the energy of the gap. The rate at
which pairs are produced is proportional to the light intensity. If
two electrodes are plated on a wafer of the crystal and a “bias”
voltage is applied, the electrons and holes will be drawn to the
electrodes. The circuit current will be proportional to the intensity
of the light. This mechanism is responsible for the phenomenon of
photoconductivity and the operation of photoconductive cells.




Electron hole pairs can also be produced by high-energy
particles. When a fast-moving charged particle—for instance, a
proton or a pion with an energy of tens or hundreds of MeV—goes
through a crystal, its electric field will knock electrons out of
their bound states creating electron-hole pairs. Such events occur
hundreds of thousands of times per millimeter of track. After the
passage of the particle, the carriers can be collected and in doing so
will give an electrical pulse. This is the mechanism at play in the
semiconductor counters recently put to use for experiments in nuclear
physics. Such counters do not require semiconductors, they can also be
made with crystalline insulators. In fact, the first of such counters
was made using a diamond crystal which is an insulator at room
temperature. Very pure crystals are required if the holes and
electrons are to be able to move freely to the electrodes without
being trapped. The semiconductors silicon and germanium are used
because they can be produced with high purity in reasonable large
sizes (centimeter dimensions).




So far we have been concerned with semiconductor crystals at
temperatures near absolute zero. At any finite temperature there is
still another mechanism by which electron-hole pairs can be
created. The pair energy can be provided from the thermal energy of
the crystal. The thermal vibrations of the crystal can transfer their
energy to a pair—giving rise to “spontaneous” creation.




The probability per unit time that the energy as large as the gap
energy Egap will be concentrated at one atomic site is
proportional to e−Egap/κ T, where T is the
temperature and κ is Boltzmann’s
constant (see
Chapter 40, Vol. I). Near absolute zero there is no
appreciable probability, but as the temperature rises there is an
increasing probability of producing such pairs. At any finite
temperature the production should continue forever at a constant rate
giving more and more negative and positive carriers. Of course that does
not happen because after a while the electrons and holes accidentally
find each other—the electron drops into the hole and the excess energy
is given to the lattice. We say that the electron and hole
“annihilate.” There is a certain probability per second that a hole
meets an electron and the two things annihilate each other.





If the number of electrons per unit volume is Nn (n for negative
carriers) and the density of positive carriers is Np, the chance
per unit time that an electron and a hole will find each other and
annihilate is proportional to the product Nn Np. In equilibrium
this rate must equal the rate that pairs are created. You see that in
equilibrium the product of Nn and Np should be given by some
constant times the Boltzmann factor:

[image: -*-]
(14.4)




When we say constant, we mean nearly constant. A more complete
theory—which includes more details about how holes and electrons
“find” each other—shows that the “constant” is slightly
dependent upon temperature, but the major dependence on temperature is
in the exponential.




Let’s consider, as an example, a pure material which is originally
neutral. At a finite temperature you would expect the number of
positive and negative carriers to be equal, Nn=Np. Then each of
them should vary with temperature as e−Egap/2 κ T. The variation of many of the properties of a semiconductor—the
conductivity for example—is mainly determined by the exponential
factor because all the other factors vary much more slowly with
temperature. The gap energy for germanium is about 0.72 eV and for
silicon 1.1 eV.




At room temperature κ T is about 1/40 of an electron volt. At
these temperatures there are enough holes and electrons to give a
significant conductivity, while at, say, 30°K—one-tenth of
room temperature—the conductivity is imperceptible. The gap energy
of diamond is 6 or 7 eV and diamond is a good insulator at room
temperature.







14–2 Impure semiconductors


So far we have talked about two ways that extra electrons can be put
into an otherwise ideally perfect crystal lattice. One way was to
inject the electron from an outside source; the other way, was to
knock a bound electron off a neutral atom creating simultaneously an
electron and a hole. It is possible to put electrons into the
conduction band of a crystal in still another way. Suppose we imagine
a crystal of germanium in which one of the germanium atoms is replaced
by an arsenic atom. The germanium atoms have a valence of 4 and the
crystal structure is controlled by the four valence
electrons. Arsenic, on the other hand, has a valence of 5. It turns
out that a single arsenic atom can sit in the germanium lattice
(because it has approximately the correct size), but in doing so it
must act as a valence 4 atom—using four of its valence electrons
to form the crystal bonds and having one electron left over. This
extra electron is very loosely attached—the binding energy is only
about 1/100 of
an electron
volt. At room temperature the electron easily picks
up that much energy from the thermal energy of the crystal, and then
takes off on its own—moving about in the lattice as a free
electron. An impurity atom such as the arsenic is called a donor
site because it can give up a negative carrier to the
crystal. If a crystal of germanium is grown from a melt to which a very
small amount of arsenic has been added, the arsenic donor sites will be
distributed throughout the crystal and the crystal will have a certain
density of negative carriers built in.




You might think that these carriers would get swept away as soon as
any small electric field was put across the crystal. This will not
happen, however, because the arsenic atoms in the body of the crystal
each have a positive charge. If the body of the crystal is to remain
neutral, the average density of negative carrier electrons must be
equal to the density of donor sites. If you put two electrodes on the
edges of such a crystal and connect them to a battery, a current will
flow; but as the carrier electrons are swept out at one end, new
conduction electrons must be introduced from the electrode on the
other end so that the average density of conduction electrons is left
very nearly equal to the density of donor sites.





Since the donor sites are positively charged, there will be some
tendency for them to capture some of the conduction electrons as they
diffuse around inside the crystal. A donor site can, therefore, act as
a trap such as those we discussed in the last section. But if the
trapping energy is sufficiently small—as it is for arsenic—the
number of carriers which are trapped at any one time is a small
fraction of the total. For a complete understanding of the behavior of
semiconductors one must take into account this trapping. For the rest
of our discussion, however, we will assume that the trapping energy is
sufficiently low and the temperature is sufficiently high, that all of
the donor sites have given up their electrons. This is, of course,
just an approximation.




It is also possible to build into a germanium crystal some impurity
atom whose valence is 3, such as aluminum. The aluminum atom tries
to act as a valence 4 object by stealing an extra electron. It can
steal an electron from some nearby germanium atom and end up as a
negatively charged atom with an effective valence of 4. Of course,
when it steals the electron from a germanium atom, it leaves a hole
there; and this hole can wander around in the crystal as a positive
carrier. An impurity atom which can produce a hole in this way is
called an acceptor because it “accepts” an
electron. If a germanium or a silicon crystal is grown from a melt to
which a small amount of aluminum impurity has been added, the crystal
will have built-in a certain density of holes which can act as positive
carriers.




When a donor or an acceptor impurity is added to a semiconductor, we
say that the material has been “doped.”




When a germanium crystal with some built-in donor impurities is at
room temperature, some conduction electrons are contributed by the
thermally induced electron-hole pair creation as well as by the donor
sites. The electrons from both sources are, naturally, equivalent, and
it is the total number Nn which comes into play in the statistical
processes that lead to equilibrium. If the temperature is not too low,
the number of negative carriers contributed by the donor impurity
atoms is roughly equal to the number of impurity atoms present. In
equilibrium Eq. (14.4) must still be valid; at a given
temperature the product Nn Np is determined. This means that if we
add some donor impurity which increases Nn, the number Np of
positive carriers will have to decrease by such an amount that
Nn Np is unchanged. If the impurity concentration is high enough,
the number Nn of negative carriers is determined by the number of
donor sites and is nearly independent of temperature—all of the
variation in the exponential factor is supplied by Np, even though
it is much less than Nn. An otherwise pure crystal with a small
concentration of donor impurity will have a majority of negative
carriers; such a material is called an “n-type”
semiconductor.





If an acceptor-type impurity is added to the crystal lattice, some of
the new holes will drift around and annihilate some of the free
electrons produced by thermal fluctuation. This process will go on until
Eq. (14.4) is satisfied. Under equilibrium conditions the
number of positive carriers will be increased and the number of negative
carriers will be decreased, leaving the product a constant. A material
with an excess of positive carriers is called a “p-type”
semiconductor.





If we put two electrodes on a piece of semiconductor crystal and
connect them to a source of potential difference, there will be an
electric field inside the crystal. The electric field will cause the
positive and the negative carriers to move, and an electric current
will flow. Let’s consider first what will happen in an n-type
material in which there is a large majority of negative carriers. For
such material we can disregard the holes; they will contribute very
little to the current because there are so few of them. In an ideal
crystal the carriers would move across without any impediment. In a
real crystal at a finite temperature, however,—especially in a
crystal with some impurities—the electrons do not move completely
freely. They are continually making collisions which knock them out of
their original trajectories, that is, changing their momentum. These
collisions are just exactly the scatterings we talked about in the
last chapter and occur at any irregularity in the crystal lattice. In
an n-type material the main causes of scattering are the very donor
sites that are producing the carriers. Since the conduction electrons
have a very slightly different energy at the donor sites, the
probability waves are scattered from that point. Even in a perfectly
pure crystal, however, there are (at any finite temperature)
irregularities in the lattice due to thermal vibrations. From the
classical point of view we can say that the atoms aren’t lined up
exactly on a regular lattice, but are, at any instant, slightly out of
place due to their thermal vibrations. The energy E0 associated
with each lattice point in the theory we described in
Chapter 13 varies a little bit from place to place so that
the waves of probability amplitude are not transmitted perfectly but are
scattered in an irregular fashion. At very high temperatures or for very
pure materials this scattering may become important, but in most doped
materials used in practical devices the impurity atoms contribute most
of the scattering. We would like now to make an estimate of the
electrical conductivity of such a material.




When an electric field is applied to an n-type semiconductor, each
negative carrier will be accelerated in this field, picking up
velocity until it is scattered from one of the donor sites. This means
that the carriers which are ordinarily moving about in a random
fashion with their thermal energies will pick up an average drift
velocity along the lines of the electric field and give rise to a
current through the crystal. The drift velocity is in general rather
small compared with the typical thermal velocities so that we can
estimate the current by assuming that the average time that the
carrier travels between scatterings is a constant. Let’s say that the
negative carrier has an effective electric charge qn. In an
electric field E, the force on the carrier will
be qn E. In Section 43–3 of Volume I we
calculated the average drift velocity under such circumstances and found
that it is given by F τ/m, where F is the force on the charge,
τ is the mean free time between collisions, and m is the mass. We
should use the effective mass we calculated in the last chapter but
since we want to make a rough calculation we will suppose that this
effective mass is the same in all directions. Here we will call
it mn. With this approximation the average drift velocity will be
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(14.5)




Knowing the drift velocity we can find the current. Electric current
density j is just the number of carriers per unit volume, Nn,
multiplied by the average drift velocity, and by the charge on each
carrier. The current density is therefore
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(14.6)




We see that the current density is proportional to the electric field;
such a semiconductor material obeys Ohm’s law. The coefficient of
proportionality between j and E, the
conductivity σ, is
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(14.7)




For an n-type material the conductivity is relatively independent of
temperature. First, the number of majority carriers Nn is
determined primarily by the density of donors in the crystal (so long
as the temperature is not so low that too many of the carriers are
trapped). Second, the mean time between collisions τn is mainly
controlled by the density of impurity atoms, which is, of course,
independent of the temperature.




We can apply all the same arguments to a p-type material, changing
only the values of the parameters which appear in
Eq. (14.7). If there are comparable numbers of both
negative and positive carriers present at the same time, we must add the
contributions from each kind of carrier. The total conductivity will be
given by
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(14.8)









For very pure materials, Np and Nn will be nearly equal. They
will be smaller than in a doped material, so the conductivity will be
less. Also they will vary rapidly with temperature
(like e−Egap/2 κ T, as we have seen), so the conductivity
may change extremely fast with temperature.







14–3 The Hall effect

[image: -]
Fig. 14–6. The Hall effect comes from the magnetic forces on the
carriers.





It is certainly a peculiar thing that in a substance where the only
relatively free objects are electrons, there should be an electrical
current carried by holes that behave like positive particles. We would
like, therefore, to describe an experiment that shows in a rather
clear way that the sign of the carrier of electric current is quite
definitely positive. Suppose we have a block made of semiconductor
material—it could also be a metal—and we put an electric field on
it so as to draw a current in some direction, say the horizontal
direction as drawn in Fig. 14–6. Now suppose we put a magnetic field
on the block pointing at a right angle to the current, say into
the plane of the figure. The moving carriers will feel a magnetic
force q (v×B). And since the average drift velocity is
either right or left—depending on the sign of the charge on the
carrier—the average magnetic force on the carriers will be either up
or down. No, that is not right! For the directions we have assumed for
the current and the magnetic field the magnetic force on the moving
charges will always be up. Positive charges moving in the
direction of j (to the right) will feel an upward force. If the
current is carried by negative charges, they will be moving left (for
the same sign of the conduction current) and they will also feel an
upward force. Under steady conditions, however, there is no upward
motion of the carriers because the current can flow only from left to
right. What happens is that a few of the charges initially flow
upward, producing a surface charge density along the upper surface of
semiconductor—leaving an equal and opposite surface charge density
along the bottom surface of the crystal. The charges pile up on the
top and bottom surfaces until the electric forces they produce on the
moving charges just exactly cancel the magnetic force (on the average)
so that the steady current flows horizontally. The charges on the top
and bottom surfaces will produce a potential difference vertically
across the crystal which can be measured with a high-resistance
voltmeter, as shown in Fig. 14–7. The sign of the potential
difference registered by the voltmeter will depend on the sign of the
carrier charges responsible for the current.
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Fig. 14–7. Measuring the Hall effect.





When such experiments were first done it was expected that the sign of
the potential difference would be negative as one would expect for
negative conduction electrons. People were, therefore, quite surprised
to find that for some materials the sign of the potential difference
was in the opposite direction. It appeared that the current carrier
was a particle with a positive charge. From our discussion of doped
semiconductors it is understandable that an n-type semiconductor
should produce the sign of potential difference appropriate to
negative carriers, and that a p-type semiconductor should give an
opposite potential difference, since the current is carried by the
positively charged holes.




The original discovery of the anomalous sign of the potential
difference in the Hall effect was made in a metal rather than a
semiconductor. It had been assumed that in metals the conduction was
always by electron; however, it was found out that for beryllium the
potential difference had the wrong sign. It is now understood that in
metals as well as in semiconductors it is possible, in certain
circumstances, that the “objects” responsible for the conduction are
holes. Although it is ultimately the electrons in the crystal which do
the moving, nevertheless, the relationship of the momentum and the
energy, and the response to external fields is exactly what one would
expect for an electric current carried by positive particles.




Let’s see if we can make a quantitative estimate of the magnitude of
the voltage difference expected from the Hall effect. If the voltmeter
in Fig. 14–7 draws a negligible current, then the charges inside the
semiconductor must be moving from left to right and the vertical
magnetic force must be precisely cancelled by a vertical electric
field which we will call Etr (the “tr” is for
“transverse”). If this electric field is to cancel the magnetic
forces, we must have
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(14.9)




Using the relation between the drift velocity and the electric current
density given in Eq. (14.6), we get
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The potential difference between the top and the bottom of the crystal
is, of course, this electric field strength multiplied by the height
of the crystal. The electric field strength Etr in
the crystal is proportional to the current density and to the magnetic
field strength. The constant of proportionality 1/q N is called the
Hall coefficient and is usually represented by the
symbol RH. The Hall coefficient depends just on the density of
carriers—provided that carriers of one sign are in a large
majority. Measurement of the Hall effect is, therefore, one convenient
way of determining experimentally the density of carriers in a
semiconductor.







14–4 Semiconductor junctions
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Fig. 14–8. A p-n junction.





We would like to discuss now what happens if we take two pieces of
germanium or silicon with different internal characteristics—say
different kinds or amounts of doping—and put them together to make a
“junction.” Let’s start out with what is called a p-n junction
in which we have p-type germanium on one side of the boundary and
n-type germanium on the other side of the boundary—as sketched in
Fig. 14–8. Actually, it is not practical to put together two
separate pieces of crystal and have them in uniform contact on an
atomic scale. Instead, junctions are made out of a single crystal
which has been modified in the two separate regions. One way is to add
some suitable doping impurity to the “melt” after only half of the
crystal has grown. Another way is to paint a little of the impurity
element on the surface and then heat the crystal causing some impurity
atoms to diffuse into the body of the crystal. Junctions made in these
ways do not have a sharp boundary, although the boundaries can be made
as thin as 10−4 centimeters or so. For our discussions we will
imagine an ideal situation in which these two regions of the crystal
with different properties meeting at a sharp boundary.




On the n-type side of the p-n junction there are free electrons
which can move about, as well as the fixed donor sites which balance
the overall electric charge. On the p-type side there are free holes
moving about and an equal number of negative acceptor sites keeping
the charge balanced. Actually, that describes the situation before we
put the two materials in contact. Once they are connected together the
situation will change near the boundary. When the electrons in the
n-type material arrive at the boundary they will not be reflected
back as they would at a free surface, but are able to go right on into
the p-type material. Some of the electrons of the n-type material
will, therefore, tend to diffuse over into the p-type material where
there are fewer electrons. This cannot go on forever because as we
lose electrons from the n-side the net positive charge there
increases until finally an electric voltage is built up which retards
the diffusion of electrons into the p-side. In a similar way, the
positive carriers of the p-type material can diffuse across the
junction into the n-type material. When they do this they leave
behind an excess of negative charge. Under equilibrium conditions the
net diffusion current must be zero. This is brought about by the
electric fields, which are established in such a way as to draw the
positive carriers back toward the p-type material.
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Fig. 14–9. The electric potential and the carrier densities in an unbiased
semiconductor junction.





The two diffusion processes we have been describing go on
simultaneously and, you will notice, both act in the direction which
will charge up the n-type material in a positive sense and the
p-type material in a negative sense. Because of the finite
conductivity of the semiconductor material, the change in potential
from the p-side to the n-side will occur in a relatively narrow
region near the boundary; the main body of each block of material will
have a uniform potential. Let’s imagine an x-axis in a direction
perpendicular to the boundary surface. Then the electric potential
will vary with x, as shown in Fig. 14–9(b). We have also shown in
part (c) of the figure the expected variation of the density Nn of
n-carriers and the density Np of p-carriers. Far away from the
junction the carrier densities Np and Nn should be just the
equilibrium density we would expect for individual blocks of materials
at the same temperature. (We have drawn the figure for a junction in
which the p-type material is more heavily doped than the n-type
material.) Because of the potential gradient at the junction, the
positive carriers have to climb up a potential hill to get to the
n-type side. This means that under equilibrium conditions there can
be fewer positive carriers in the n-type material than there are in
the p-type material. Remembering the laws of statistical mechanics,
we expect that the ratio of p-type carriers on the two sides to be
given by the following equation:
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(14.10)




The product qp V in the numerator of the exponential is just the
energy required to carry a charge of qp through a potential
difference V.




We have a precisely similar equation for the densities of the n-type
carriers:
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(14.11)




If we know the equilibrium densities in each of the two materials, we
can use either of the two equations above to determine the potential
difference across the junction.




Notice that if Eqs. (14.10) and (14.11) are to give the same value for the potential difference V, the product Np Nn must be the same for the p-side as for the n-side. (Remember that qn=−qp.) We have seen earlier, however, that this product depends only on the temperature and the gap energy of the crystal. Provided both sides of the crystal are at the same temperature, the two equations are consistent with the same value of the potential difference.





Since there is a potential difference from one side of the junction to
the other, it looks something like a battery. Perhaps if we connect a
wire from the n-type side to the p-type side we will get an
electrical current. That would be nice because then the current would
flow forever without using up any material and we would have an
infinite source of energy in violation of the second law of
thermodynamics!  There is, however, no current if you connect a wire
from the p-side to the n-side. And the reason is easy to
see. Suppose we imagine first a wire made out of a piece of undoped
material. When we connect this wire to the n-type side, we have a
junction. There will be a potential difference across this
junction. Let’s say that it is just one-half the potential difference
from the p-type material to the n-type material. When we connect
our undoped wire to the p-type side of the junction, there is also a
potential difference at this junction—again, one-half the potential
drop across the p-n junction. At all the junctions the potential
differences adjust themselves so that there is no net current flow in
the circuit. Whatever kind of wire you use to connect together the two
sides of the n-p junction, you are producing two new junctions,
and so long as all the junctions are at the same temperature, the
potential jumps at the junctions all compensate each other and no
current will flow in the circuit. It does turn out, however—if you
work out the details—that if some of the junctions are at a
different temperature than the other junctions, currents will
flow. Some of the junctions will be heated and others will be cooled
by this current and thermal energy will be converted into electrical
energy. This effect is responsible for the operation of thermocouples
which are used for measuring temperatures, and of thermoelectric
generators. The same effect is also used to make small refrigerators.




If we cannot measure the potential difference between the two sides of
an n-p junction, how can we really be sure that the potential
gradient shown in Fig. 14–9 really exists? One way is to
shine light on the junction. When the light photons are absorbed they
can produce an electron-hole pair. In the strong electric field that
exists at the junction (equal to the slope of the potential curve of
Fig. 14–9) the hole will be driven into the p-type
region and the electron will be driven into the n-type region. If the
two sides of the junction are now connected to an external circuit,
these extra charges will provide a current. The energy of the light will
be converted into electrical energy in the junction. The solar cells
which generate electrical power for the operation of some of our
satellites operate on this principle.




In our discussion of the operation of a semiconductor junction we have
been assuming that the holes and the electrons act more-or-less
independently—except that they somehow get into proper statistical
equilibrium. When we were describing the current produced by light
shining on the junction, we were assuming that an electron or a hole
produced in the junction region would get into the main body of the
crystal before being annihilated by a carrier of the opposite
polarity. In the immediate vicinity of the junction, where the density
of carriers of both signs is approximately equal, the effect of
electron-hole annihilation (or as it is often called,
“recombination”) is an important effect, and in a detailed analysis
of a semiconductor junction must be properly taken into account. We
have been assuming that a hole or an electron produced in a junction
region has a good chance of getting into the main body of the crystal
before recombining. The typical time for an electron or a hole to find
an opposite partner and annihilate it is for typical semiconductor
materials in the range between 10−3 and 10−7 seconds. This
time is, incidentally, much longer than the mean free time τ
between collisions with scattering sites in the crystal which we used
in the analysis of conductivity. In a typical n-p junction, the
time for an electron or hole formed in the junction region to be swept
away into the body of the crystal is generally much shorter than the
recombination time. Most of the pairs will, therefore, contribute to
an external current.







14–5 Rectification at a semiconductor junction


We would like to show next how it is that a p-n junction can act
like a rectifier. If we put a voltage across the junction, a large
current will flow if the polarity is in one direction, but a very
small current will flow if the same voltage is applied in the opposite
direction. If an alternating voltage is applied across the junction, a
net current will flow in one direction—the current is “rectified.”
Let’s look again at what is going on in the equilibrium condition
described by the graphs of Fig. 14–9. In the p-type material there
is a large concentration Np of positive carriers. These carriers
are diffusing around and a certain number of them each second approach
the junction. This current of positive carriers which approaches the
junction is proportional to Np. Most of them, however, are turned
back by the high potential hill at the junction and only the
fraction e−q V/κ T gets through. There is also a current of positive
carriers approaching the junction from the other side. This current is
also proportional to the density of positive carriers in the n-type
region, but the carrier density here is much smaller than the density
on the p-type side. When the positive carriers approach the junction
from the n-type side, they find a hill with a negative slope and
immediately slide downhill to the p-type side of the junction. Let’s
call this current I0. Under equilibrium the currents from the two
directions are equal. We expect then the following relation:
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(14.12)




You will notice that this equation is really just the same as
Eq. (14.10). We have just derived it in a different way.




Suppose, however, that we lower the voltage on the n-side of the
junction by an amount Δ V—which we can do by applying an
external potential difference to the junction. Now the difference in
potential across the potential hill is no longer V but V−Δ V. The current of positive carriers from the p-side to the n-side
will now have this potential difference in its exponential
factor. Calling this current I1, we have

[image: -*-]


This current is larger than I0 by just the factor eq Δ V/κ T. So we have the following relation between I1
and I0:

[image: -*-]
(14.13)




The current from the p-side increases exponentially with the
externally applied voltage Δ V. The current of positive
carriers from the n-side, however, remains constant so long
as Δ V is not too large. When they approach the barrier, these
carriers will still find a downhill potential and will all fall down
to the p-side. (If Δ V is larger than the natural potential
difference V, the situation would change, but we will not consider
what happens at such high voltages.) The net current I of positive
carriers which flows across the junction is then the difference
between the currents from the two sides:

[image: -*-]
(14.14)




The net current I of holes flows into the n-type region. There the
holes diffuse into the body of the n-region, where they are
eventually annihilated by the majority n-type carriers—the
electrons. The electrons which are lost in this annihilation will be
made up by a current of electrons from the external terminal of the
n-type material.




When Δ V is zero, the net current in Eq. (14.14)
is zero. For positive Δ V the current increases rapidly with
the applied voltage. For negative Δ V the current reverses in
sign, but the exponential term soon becomes negligible and the
negative current never exceeds I0—which under our assumptions is
rather small. This back current I0 is limited by the small density
of the minority p-type carriers on the n-side of the junction.




If you go through exactly the same analysis for the current of
negative carriers which flows across the junction, first with no
potential difference and then with a small externally applied
potential difference Δ V, you get again an equation just
like (14.14) for the net electron current. Since the total
current is the sum of the currents contributed by the two carriers,
Eq. (14.14) still applies for the total current provided we
identify I0 as the maximum current which can flow for a reversed
voltage.




The voltage-current characteristic of Eq. (14.14) is
shown in Fig. 14–10. It shows the typical behavior of solid state
diodes—such as those used in modern computers. We should remark that
Eq. (14.14) is true only for small voltages. For
voltages comparable to or larger than the natural internal voltage
difference V, other effects come into play and the current no longer
obeys the simple equation.



[image: -]
Fig. 14–10. The current through a junction as a function of the voltage
across it.





You may remember, incidentally, that we got exactly the same equation we
have found here in Eq. (14.14) when we discussed the
“mechanical rectifier”—the ratchet and pawl—in
Chapter 46 of Volume I. We get the same equations in the
two situations because the basic physical processes are quite similar.







14–6 The transistor


Perhaps the most important application of semiconductors is in the
transistor. The transistor consists of two semiconductor junctions very
close together. Its operation is based in part on the same principles
that we just described for the semiconductor diode—the rectifying
junction. Suppose we make a little bar of germanium with three distinct
regions, a p-type region, an n-type region, and another p-type
region, as shown in Fig. 14–11(a). This combination is
called a p-n-p transistor. Each of the two junctions in the
transistor will behave much in the way we have described in the last
section. In particular, there will be a potential gradient at each
junction having a certain potential drop from the n-type region to
each p-type region. If the two p-type regions have the same internal
properties, the variation in potential as we go across the crystal will
be as shown in the graph of Fig. 14–11(b).



[image: -]
Fig. 14–11. The potential distribution in a transistor with no applied
voltages.





Now let’s imagine that we connect each of the three regions to
external voltage sources as shown in part (a) of Fig. 14–12. We will
refer all voltages to the terminal connected to the left-hand
p-region so it will be, by definition, at zero potential. We will
call this terminal the emitter. The n-type region is called
the base and it is connected to a slightly negative
potential. The right-hand p-type region is called the
collector, and is connected to a somewhat larger negative
potential. Under these circumstances the variation of potential across
the crystal will be as shown in the graph of Fig. 14–12(b).



[image: -]
Fig. 14–12. The potential distribution in an operating transistor.





Let’s first see what happens to the positive carriers, since it is
primarily their behavior which controls the operation of the
p-n-p transistor. Since the emitter is at a relatively more
positive potential than the base, a current of positive carriers will
flow from the emitter region into the base region. A relatively large
current flows, since we have a junction operating with a “forward
voltage”—corresponding to the right-hand half of the graph in
Fig. 14–10. With these conditions, positive carriers or holes are
being “emitted” from the p-type region into the n-type
region. You might think that this current would flow out of the
n-type region through the base terminal b. Now, however, comes the
secret of the transistor. The n-type region is made very
thin—typically 10−3 cm or less, much narrower than its
transverse dimensions. This means that as the holes enter the n-type
region they have a very good chance of diffusing across to the other
junction before they are annihilated by the electrons in the n-type
region. When they get to the right-hand boundary of the n-type
region they find a steep downward potential hill and immediately fall
into the right-hand p-type region. This side of the crystal is
called the collector because it “collects” the holes after they have
diffused across the n-type region. In a typical transistor, all but
a fraction of a percent of the hole current which leaves the emitter
and enters the base is collected in the collector region, and only the
small remainder contributes to the net base current. The sum of the
base and collector currents is, of course, equal to the emitter
current.




Now imagine what happens if we vary slightly the potential Vb on
the base terminal. Since we are on a relatively steep part of the
curve of Fig. 14–10, a small variation of the potential Vb will
cause a rather large change in the emitter current Ie. Since the
collector voltage Vc is much more negative than the base voltage,
these slight variations in potential will not effect appreciably the
steep potential hill between the base and the collector. Most of the
positive carriers emitted into the n-region will still be caught by
the collector. Thus as we vary the potential of the base electrode,
there will be a corresponding variation in the collector current Ic.
The essential point, however, is that the base current Ib
always remains a small fraction of the collector current. The
transistor is an amplifier; a small current Ib introduced into the
base electrode gives a large current—100 or so times higher—at
the collector electrode.




What about the electrons—the negative carriers that we have been
neglecting so far? First, note that we do not expect any significant
electron current to flow between the base and the collector. With a
large negative voltage on the collector, the electrons in the base
would have to climb a very high potential energy hill and the
probability of doing that is very small. There is a very small current
of electrons to the collector.




On the other hand, the electrons in the base can go into the
emitter region. In fact, you might expect the electron current in this
direction to be comparable to the hole current from the emitter into
the base. Such an electron current isn’t useful, and, on the contrary,
is bad because it increases the total base current required for a
given current of holes to the collector. The transistor is, therefore,
designed to minimize the electron current to the emitter. The electron
current is proportional to Nn (base), the density of negative
carriers in the base material while the hole current from the emitter
depends on Np (emitter), the density of positive carriers in
the emitter region. By using relatively little doping in the n-type
material Nn (base) can be made much smaller
than Np (emitter). (The very thin base region also helps a great
deal because the sweeping out of the holes in this region by the
collector increases significantly the average hole current from the
emitter into the base, while leaving the electron current unchanged.)
The net result is that the electron current across the emitter-base
junction can be made much less than the hole current, so that the
electrons do not play any significant role in operation of the
p-n-p transistor. The currents are dominated by motion of the
holes, and the transistor performs as an amplifier as we have
described above.




It is also possible to make a transistor by interchanging the p-type
and n-type materials in Fig. 14–11. Then we have what is called an
n-p-n transistor. In the n-p-n transistor the main
currents are carried by the electrons which flow from the emitter into
the base and from there to the collector. Obviously, all the arguments
we have made for the p-n-p transistor also apply to the
n-p-n transistor if the potentials of the electrodes are chosen
with the opposite signs.





	
  
  In many books this same energy diagram is
interpreted in a different way. The energy scale refers only to
electrons. Instead of thinking of the energy of the hole, they
think of the energy an electron would have if it filled the hole.
This energy is lower than the free-electron energy—in fact,
just the amount lower that you see in Fig. 14–5. With this
interpretation of the energy scale, the gap energy is the minimum energy
which must be given to an electron to move it from its bound
state to the conduction band.
  ^





  
    

15 The Independent Particle Approximation



15–1 Spin waves


In Chapter 13 we worked out the theory for the
propagation of an electron or of some other “particle,” such as an
atomic excitation, through a crystal lattice. In the last chapter we
applied the theory to semiconductors. But when we talked about
situations in which there are many electrons we disregarded any
interactions between them. To do this is of course only an
approximation. In this chapter we will discuss further the idea that
you can disregard the interaction between the electrons. We will also
use the opportunity to show you some more applications of the theory
of the propagation of particles. Since we will generally continue to
disregard the interactions between particles, there is very little
really new in this chapter except for the new applications. The first
example to be considered is, however, one in which it is possible to
write down quite exactly the correct equations when there is more than
one “particle” present. From them we will be able to see how the
approximation of disregarding the interactions is made. We will not,
though, analyze the problem very carefully.




As our first example we will consider a “spin wave” in a ferromagnetic
crystal. We have discussed the theory of ferromagnetism in
Chapter 36 of Volume II. At zero temperature all the
electron spins that contribute to the magnetism in the body of a
ferromagnetic crystal are parallel. There is an interaction energy
between the spins, which is lowest when all the spins are down. At any
nonzero temperature, however, there is some chance that some of the
spins are turned over. We calculated the probability in an approximate
manner in Chapter 36. This time we will describe the
quantum mechanical theory—so you will see what you would have to do if
you wanted to solve the problem more exactly. (We will still make some
idealizations by assuming that the electrons are localized at the atoms
and that the spins interact only with neighboring spins.)




We consider a model in which the electrons at each atom are all paired
except one, so that all of the magnetic effects come from one
spin-[image: \tfrac{1}{2}] electron per atom. Further, we imagine that these
electrons are localized at the atomic sites in the lattice. The model
corresponds roughly to metallic nickel.





We also assume that there is an interaction between any two adjacent
spinning electrons which gives a term in the energy of the system
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(15.1)




where σ’s represent the spins and the summation is over all
adjacent pairs of electrons. We have already discussed this kind of
interaction energy when we considered the hyperfine splitting of
hydrogen due to the interaction of the magnetic moments of the
electron and proton in a hydrogen atom. We expressed it then
as A σe⋅σp. Now, for a given
pair, say the electrons at atom 4 and at atom 5, the Hamiltonian
would be −K σ4⋅σ5. We have a term for each such
pair, and the Hamiltonian is (as you would expect for classical
energies) the sum of these terms for each interacting pair. The energy
is written with the factor −K so that a positive K will correspond
to ferromagnetism—that is, the lowest energy results when adjacent
spins are parallel. In a real crystal, there may be other terms which
are the interactions of next nearest neighbors, and so on, but
we don’t need to consider such complications at this stage.




With the Hamiltonian of Eq. (15.1) we have a complete
description of the ferromagnet—within our approximation—and the
properties of the magnetization should come out. We should also be
able to calculate the thermodynamic properties due to the
magnetization. If we can find all the energy levels, the properties of
the crystal at a temperature T can be found from the principle that
the probability that a system will be found in a given state of
energy E is proportional to e−E/κ T. This problem has never been
completely solved.




We will show some of the problems by taking a simple example in which
all the atoms are in a line—a one-dimensional lattice. You can
easily extend the ideas to three dimensions. At each atomic location
there is an electron which has two possible states, either spin up or
spin down, and the whole system is described by telling how all of the
spins are arranged. We take the Hamiltonian of the system to be the
operator of the interaction energy. Interpreting the spin vectors of
Eq. (15.1) as the sigma-operators—or the
sigma-matrices—we write for the linear lattice
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(15.2)




In this equation we have written the constant as A/2 for convenience
(so that some of the later equations will be exactly the same as the
ones in Chapter 13).




Now what is the lowest state of this system? The state of lowest
energy is the one in which all the spins are parallel—let’s say, all
up.1 We can write
this state as [image: \ket{\dotsb+\,+\,+\,+\dotsb}], or [image: \ket{\text{gnd}}]
for the “ground,” or lowest, state. It’s easy to figure out the
energy for this state. One way is to write out all the vector sigmas
in terms of [image: \sigmaop_x], [image: \sigmaop_y], and [image: \sigmaop_z], and work
through carefully what each term of the Hamiltonian does to the ground
state, and then add the results. We can, however, also use a good
short cut. We saw in Section 12–2, that
[image: \FLPsigmaop_i\cdot\FLPsigmaop_j] could be written in terms of the
Pauli spin exchange operator
like this:
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(15.3)




where the operator [image: \Pop^{\text{spin ex}}_{ij}] interchanges the spins
of the ith and jth electrons. With this substitution the
Hamiltonian becomes

[image: -*-]
(15.4)




It is now easy to work out what happens to different states. For
instance if i and j are both up, then exchanging the spins leaves
everything unchanged, so [image: \Pop_{ij}] acting on the state just gives
the same state back, and is equivalent to multiplying by +1. The
expression [image: (\Pop_{ij}-\tfrac{1}{2})] is just equal to one-half. (From
now on we will leave off the descriptive superscript on the [image: \Pop].)





For the ground state all spins are up; so if you exchange a particular
pair of spins, you get back the original state. The ground state is a
stationary state. If you operate on it with the Hamiltonian you get
the same state again multiplied by a sum of terms, −(A/2) for each
pair of spins. That is, the energy of the system in the ground state
is −A/2 per atom.




Next we would like to look at the energies of some of the excited
states. It will be convenient to measure the energies with respect to
the ground state—that is, to choose the ground state as our zero of
energy. We can do that by adding the energy A/2 to each term in the
Hamiltonian. That just changes the “[image: \tfrac{1}{2}]” in
Eq. (15.4) to “1.” Our new Hamiltonian is
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(15.5)




With this Hamiltonian the energy of the lowest state is zero; the spin
exchange operator is equivalent to multiplying by unity (for the
ground state) which is cancelled by the “1” in each term.




For describing states other than the ground state we will need a
suitable set of base states. One convenient approach is to group the
states according to whether one electron has spin down, or two
electrons have spin down, and so on. There are, of course, many states
with one spin down. The down spin could be at atom “4,” or at
atom “5,” or at atom “6,” … We can, in fact, choose just such
states for our base states. We could write them this way:
[image: \ket{4}], [image: \ket{5}], [image: \ket{6}], … It will, however, be more convenient
later if we label the “odd atom”—the one with the down-spinning
electron—by its coordinate x. That is, we’ll define the
state [image: \ket{x_5}] to be one with all the electrons spinning up except for
the one on the atom at x5, which has a down-spinning electron (see
Fig. 15–1). In general, [image: \ket{x_n}] is the state with one down
spin
that is located at the coordinate xn of the nth atom.



[image: -]
Fig. 15–1. The base state [image: \ket{x_5}] of a linear array of spins. All the
spins are up except the one at x5, which is down.





What is the action of the Hamiltonian (15.5) on the
state [image: \ket{x_5}]? One term of the Hamiltonian is
say [image: -A(\Pop_{7,8}-1)]. The operator [image: \Pop_{7,8}] exchanges the two spins
of the adjacent atoms 7, 8. But in the state [image: \ket{x_5}] these are
both up, and nothing happens; [image: \Pop_{7,8}] is equivalent to
multiplying by 1:
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It follows that

[image: -*-]


Thus all the terms of the Hamiltonian give zero—except those
involving atom 5, of course. On the state [image: \ket{x_5}], the
operation [image: \Pop_{4,5}] exchanges the spin of atom 4 (up) and atom 5
(down). The result is the state with all spins up except the atom
at 4. That is
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In the same way
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Hence, the only terms of the Hamiltonian which survive are
[image: -A(\Pop_{4,5}-1)] and [image: -A(\Pop_{5,6}-1)]. Acting on [image: \ket{x_5}] they
produce [image: -A\,\ket{x_4}+A\,\ket{x_5}] and [image: -A\,\ket{x_6}+A\,\ket{x_5}],
respectively. The result is
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(15.6)










When the Hamiltonian acts on state [image: \ket{x_5}] it gives rise to some
amplitude to be in states [image: \ket{x_4}] and [image: \ket{x_6}]. That just means
that there is a certain amplitude to have the down spin jump over to
the next atom. So because of the interaction between the spins, if we
begin with one spin down, then there is some probability that at a
later time another one will be down instead. Operating on the general
state [image: \ket{x_n}], the Hamiltonian gives
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(15.7)




Notice particularly that if we take a complete set of states with only
one spin down, they will only be mixed among themselves. The
Hamiltonian will never mix these states with others that have more
spins down. So long as you only exchange spins you never change the
total number of down spins.





It will be convenient to use the matrix notation for the Hamiltonian,
say [image: H_{n,m}\equiv\bracket{x_n}{\Hop}{x_m}]; Eq. (15.7)
is equivalent to
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(15.8)









Now what are the energy levels for states with one spin down? As usual
we let Cn be the amplitude that some state [image: \ket{\psi}] is in the
state [image: \ket{x_n}]. If [image: \ket{\psi}] is to be a definite energy state,
all the Cn’s must vary with time in the same way, namely,
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(15.9)




We can put this trial solution into our usual Hamiltonian equation
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(15.10)




using Eq. (15.8) for the matrix elements. Of course we
get an infinite number of equations, but they can all be written as
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(15.11)




We have again exactly the same problem we worked out in
Chapter 13, except that where we had E0 we now
have 2 A. The solutions correspond to amplitudes Cn (the down-spin
amplitude) which propagate along the lattice with a propagation
constant k and an energy
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(15.12)




where b is the lattice constant.






The definite energy solutions correspond to “waves” of down
spin—called “spin waves.” And for each wavelength there is a
corresponding energy. For large wavelengths (small k) this energy
varies as
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(15.13)




Just as before, we can consider a localized wave packet (containing,
however, only long wavelengths) which corresponds to a spin-down
electron in one part of the lattice. This down spin will behave like a
“particle.” Because its energy is related to k
by (15.13) the “particle” will have an effective mass:
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(15.14)




These “particles” are sometimes called “magnons.”








15–2 Two spin waves

[image: -]
Fig. 15–2. A state with two down spins.





Now we would like to discuss what happens if there are two down
spins. Again we pick a set of base states. We’ll choose states in
which there are down spins at two atomic locations, such as the state
shown in Fig. 15–2. We can label such a state by the
x-coordinates
of the two sites with down spins. The one shown can be
called [image: \ket{x_2,x_5}]. In general the base states are [image: \ket{x_n,x_m}]—a
doubly infinite set! In this system of description, the
state [image: \ket{x_4,x_9}] and the state [image: \ket{x_9,x_4}] are exactly the same
state, because each simply says that there is a down spin at 4 and
one at 9; there is no meaning to the order. Furthermore, the
state [image: \ket{x_4,x_4}] has no meaning, there isn’t such a thing. We can
describe any state [image: \ket{\psi}] by giving the amplitudes to be in each
of the base states. Thus [image: C_{m,n}=\braket{x_m,x_n}{\psi}] now means
the amplitude for a system in the state [image: \ket{\psi}] to be in a state
in which both the mth and nth atoms have a down spin. The
complications which now arise are not complications of ideas—they
are merely complexities in bookkeeping. (One of the complexities of
quantum mechanics is just the bookkeeping. With more and more down
spins, the notation becomes more and more elaborate with lots of
indices and the equations always look very horrifying; but the ideas
are not necessarily more complicated than in the simplest case.)





The equations of motion of the spin system are the differential
equations for the Cn,m. They are

[image: -*-]
(15.15)




Suppose we want to find the stationary states. As usual, the
derivatives with respect to time become E times the amplitudes and
the Cm,n can be replaced by the coefficients am,n. Next we
have to work out carefully the effect of H on a state with spins m
and n down. It is not hard to figure out. Suppose for a moment that
m and n are far enough apart so that we don’t have to worry about
the obvious trouble. The operation of exchange at the location xn
will move the down spin either to the (n+1) or (n−1) atom, and so
there’s an amplitude that the present state has come from the
state [image: \ket{x_m,x_{n+1}}] and also an amplitude that it has come from the
state [image: \ket{x_m,x_{n-1}}]. Or it may have been the other spin that
moved; so there’s a certain amplitude that Cm,n is fed
from Cm+1,n or from Cm−1,n. These effects should all be
equal. The final result for the Hamiltonian equation on Cm,n is
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(15.16)










This equation is correct except in two situations. If m=n there is
no equation at all, and if m=n±1, then two of the terms in
Eq. (15.16) should be missing. We are going to
disregard these exceptions. We simply ignore the fact that some few of
these equations are slightly altered. After all, the crystal is supposed
to be infinite, and we have an infinite number of terms; neglecting a
few might not matter much. So for a first rough approximation let’s
forget about the altered equations. In other words, we assume that
Eq. (15.16) is true for all m and n, even for m
and n next to each other. This is the essential part of our
approximation.




Then the solution is not hard to find. We get immediately
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(15.17)




with
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(15.18)




where
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(15.19)









Think for a moment what would happen if we had two independent,
single spin waves (as in the previous section) corresponding to
k=k1 and k=k2; they would have energies, from
Eq. (15.12), of
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and
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Notice that the energy E in Eq. (15.19) is just their sum,
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(15.20)




In other words we can think of our solution in this way. There are two
particles—that is, two spin waves. One of them has a momentum
described by k1, the other by k2, and the energy of the system
is the sum of the energies of the two objects. The two particles act
completely independently. That’s all there is to it.




Of course we have made some approximations, but we do not wish to
discuss the precision of our answer at this point. However, you might
guess that in a reasonable size crystal with billions of atoms—and,
therefore, billions of terms in the Hamiltonian—leaving out a few
terms wouldn’t make much of an error. If we had so many down spins
that there was an appreciable density, then we would certainly have to
worry about the corrections.




[Interestingly enough, an exact solution can be written down if there
are just the two down spins. The result is not particularly
important. But it is interesting that the equations can be solved
exactly for this case. The solution is:
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(15.21)




with the energy
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and with the wave numbers kc and k related to k1 and k2 by
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(15.22)




This solution includes the “interaction” of the two spins. It
describes the fact that when the spins come together there is a
certain chance of scattering. The spins act very much like particles
with an interaction. But the detailed theory of their scattering goes
beyond what we want to talk about here.]







15–3 Independent particles


In the last section we wrote down a Hamiltonian, Eq. (15.15), for a
two-particle system. Then using an approximation which is equivalent to
neglecting any “interaction” of the two particles, we found the stationary
states described by Eqs. (15.17) and (15.18).
This state is just the product of two single-particle states. The solution we
have given for am,n in Eq. (15.18) is, however, really not
satisfactory. We have very carefully pointed out earlier that the
state [image: \ket{x_9,x_4}] is not a different state from [image: \ket{x_4,x_9}]—the
order of xm and xn has no significance. In general, the algebraic
expression for the amplitude Cm,n must be unchanged if we interchange the
values of xm and xn, since that doesn’t change the state. Either way, it
should represent the amplitude to find a down spin at xm and a down spin
at xn. But notice that (15.18) is not symmetric in xm
and xn—since k1 and k2 can in general be different.




The trouble is that we have not forced our solution of
Eq. (15.15) to satisfy this additional condition.
Fortunately it is easy to fix things up. Notice first that a solution of
the Hamiltonian equation just as good as (15.18) is
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(15.23)




It even has the same energy we got for (15.18). Any
linear combination of (15.18) and (15.23) is
also a good solution, and has an energy still given by
Eq. (15.19). The solution we should have chosen—because
of our symmetry requirement—is just the sum of (15.18)
and (15.23):
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(15.24)




Now, given any k1 and k2 the amplitude Cm,n is independent
of which way we put xm and xn—if we should happen to define
xm and xn reversed we get the same amplitude. Our interpretation
of Eq. (15.24) in terms of “magnons” must also be
different. We can no longer say that the equation represents
one particle with wave number k1 and a second particle
with wave number k2. The amplitude (15.24) represents
one state with two particles (magnons). The state is
characterized by the two wave numbers k1 and k2. Our solution
looks like a compound state of one particle with the
momentum p1=ℏ k1 and another particle with the momentum p2=ℏ k2, but in our state we can’t say which particle is which.




By now, this discussion should remind you of Chapter 4
and our story of identical particles. We have just been showing that the
particles of the spin waves—the magnons—behave like identical
Bose particles. All amplitudes must
be symmetric in the coordinates of the two particles—which is the same
as saying that if we “interchange the two particles,” we get back the
same amplitude and with the same sign. But, you may be thinking, why did
we choose to add the two terms in making
Eq. (15.24). Why not subtract? With a minus sign,
interchanging xm and xn would just change the sign of am,n
which doesn’t matter. But interchanging xm and xn doesn’t
change anything—all the electrons of the crystal are exactly where
they were before, so there is no reason for even the sign of the
amplitude to change. The magnons will behave like Bose
particles.2




The main points of this discussion have been twofold: First, to show
you something about spin waves, and, second, to demonstrate a state
whose amplitude is a product of two amplitudes, and whose
energy is the sum of the energies corresponding to the two
amplitudes. For independent particles the amplitude is the
product and the energy is the sum. You can easily see why the energy
is the sum. The energy is the coefficient of t in an imaginary
exponential—it is proportional to the frequency. If two objects are
doing something, one of them with the amplitude e−i E1 t/ℏ and
the other with the amplitude e−i E2 t/ℏ, and if the amplitude
for the two things to happen together is the product of the amplitudes
for each, then there is a single frequency in the product which is the
sum of the two frequencies. The energy corresponding to the amplitude
product is the sum of the two energies.




We have gone through a rather long-winded argument to tell you a
simple thing. When you don’t take into account any interaction between
particles, you can think of each particle independently. They can
individually exist in the various different states they would have
alone, and they will each contribute the energy they would have had if
they were alone. However, you must remember that if they are identical
particles, they may behave either as Bose or as Fermi
particles depending upon the problem. Two
extra electrons added to a crystal, for instance, would have to behave
like Fermi particles. When the
positions of two electrons are interchanged, the amplitude must reverse
sign. In the equation corresponding to Eq. (15.24) there
would have to be a minus sign between the two terms on the right. As a
consequence, two Fermi particles
cannot be in exactly the same condition—with equal spins and
equal k’s. The amplitude for this state is zero.








15–4 The benzene molecule


Although quantum mechanics provides the basic laws that determine the
structures of molecules, these laws can be applied exactly only to the
most simple compounds. The chemists have, therefore, worked out
various approximate methods for calculating some of the properties of
complicated molecules. We would now like to show you how the
independent particle approximation is used by the organic chemists. We
begin with the benzene molecule.
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Fig. 15–3. The two base states for the benzene molecules used in
Chapter 10.





We discussed the benzene molecule from another point of view in
Chapter 10. There we took an approximate picture of the
molecule as a two-state system, with the two base states shown in
Fig. 15–3. There is a ring of six carbons with a hydrogen bonded
to
the carbon at each location. With the conventional picture of valence
bonds it is necessary to assume double bonds between half of the
carbon atoms, and in the lowest energy condition there are the two
possibilities shown in the figure. There are also other, higher-energy
states. When we discussed benzene in Chapter 10, we just
took the two states and forgot all the rest. We found that the
ground-state energy of the molecule was not the energy of one of the
states in the figure, but was lower than that by an amount
proportional to the amplitude to flip from one of these states to the
other.




Now we’re going to look at the same molecule from a completely different
point of view—using a different kind of approximation. The two points
of view will give us different answers, but if we improve either
approximation it should lead to the truth, a valid description of
benzene. However, if we don’t bother to improve them, which is of course
the usual situation, then you should not be surprised if the two
descriptions do not agree exactly. We shall at least show that also with
the new point-of-view the lowest energy of the benzene molecule is lower
than either of the three-bond structures of Fig. 15–3.




Now we want to use the following picture. Suppose we imagine the six
carbon atoms of a benzene molecule connected only by single bonds as
in Fig. 15–4. We have removed six electrons—since a bond stands
for a pair of electrons—so we have a six-times ionized benzene
molecule. Now we will consider what happens when we put back the six
electrons one at a time, imagining that each one can run freely around
the ring. We assume also that all the bonds shown in Fig. 15–4 are
satisfied, and don’t need to be considered further.



[image: -]
Fig. 15–4. A benzene ring with six electrons removed.





What happens when we put one electron back into the molecular ion? It
might, of course, be located in any one of the six positions around
the ring—corresponding to six base states. It would also have a
certain amplitude, say A, to go from one position to the next. If we
analyze the stationary states, there would be certain possible energy
levels. That’s only for one electron.




Next put a second electron in. And now we make the most ridiculous
approximation that you can think of—that what one electron
does is not affected by what the other is doing. Of course they
really will interact; they repel each other through the Coulomb force,
and furthermore when they are both at the same site, they must have
considerably different energy than twice the energy for one being
there. Certainly the approximation of independent particles is not
legitimate when there are only six sites—particularly when we want
to put in six electrons. Nevertheless the organic chemists have
been able to learn a lot by making this kind of an approximation.
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Fig. 15–5. The ethylene molecule.





Before we work out the benzene molecule in detail, let’s consider a
simpler example—the ethylene molecule which
contains just two carbon atoms with two hydrogen atoms on either side as
shown in Fig. 15–5. This molecule has one “extra” bond
involving two electrons between the two carbon atoms. Now remove one of
these electrons; what do we have? We can look at it as a two-state
system—the remaining electron can be at one carbon or the other. We
can analyze it as a two-state system. The possible energies for the
single electron are either (E0−A) or (E0+A), as shown in
Fig. 15–6.
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Fig. 15–6. The possible energy levels for the “extra” electrons in the
ethylene molecule.





Now add the second electron. Good, if we have two electrons, we can
put the first one in the lower state and the second one in the
upper. Not quite; we forgot something. Each one of the states is
really double. When we say there’s a possible state with the
energy (E0−A), there are really two. Two electrons can go into the same
state if one has its spin up and the other, its spin down. (No more
can be put in because of the exclusion principle.) So there really are
two possible states of energy (E0−A). We can draw a diagram, as in
Fig. 15–7, which indicates both the energy levels and their
occupancy. In the condition of lowest energy both electrons will be in
the lowest state with their spins opposite. The energy of the extra
bond in the ethylene molecule therefore is 2 (E0−A) if we neglect
the interaction between the two electrons.
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Fig. 15–7. In the extra bond of the ethylene molecule two electrons (one
spin up, one spin down) can occupy the lowest energy level.





Let’s go back to the benzene. Each of the two states of Fig. 15–3
has three double bonds. Each of these is just like the bond in
ethylene, and contributes 2 (E0−A) to the energy if E0 is now the
energy to put an electron on a site in benzene and A is the
amplitude to flip to the next site. So the energy should be
roughly 6 (E0−A). But when we studied benzene before, we got that the energy
was lower than the energy of the structure with three extra
bonds. Let’s see if the energy for benzene comes out lower than three
bonds from our new point of view.




We start with the six-times ionized benzene ring and add one
electron. Now we have a six-state system. We haven’t solved such a
system yet, but we know what to do. We can write six equations in the
six amplitudes, and so on. But let’s save some work—by noticing that
we’ve already solved the problem, when we worked out the problem of an
electron on an infinite line of atoms. Of course, the benzene is not
an infinite line, it has 6 atomic sites in a circle. But imagine
that we open out the circle to a line, and number the atoms along the
line from 1 to 6. In an infinite line the next location would
be 7, but if we insist that this location be identical with number 1
and so on, the situation will be just like the benzene ring. In other
words we can take the solution for an infinite line with an
added requirement that the solution must be periodic with a cycle six
atoms long. From Chapter 13 the electron on a line has
states of definite energy when the amplitude at each site
is ei k xn=ei k b n. For each k the energy is
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(15.25)




We want to use now only those solutions which repeat every
6 atoms. Let’s do first the general case for a ring of N atoms. If the
solution is to have a period of N atomic spacing, ei k b N must be
unity; or k b N must be a multiple of 2 π. Taking s to represent
any integer, our condition is that
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(15.26)




We have seen before that there is no meaning to taking k’s outside
the range ±π/b. This means that we get all possible states by
taking values of s in the range ±N/2.




We find then that for an N-atom ring there are N definite energy
states3
and they have wave numbers ks given by
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(15.27)




Each state has the energy (15.25). We have a line
spectrum of possible energy levels. The spectrum for benzene (N=6)
is shown in Fig. 15–8(b). (The numbers in parentheses indicate the
number of different states with the same energy.)
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Fig. 15–8. The energy levels in a ring with six electron locations (for
example, a benzene ring).





There’s a nice way to visualize the six energy levels, as we have
shown in part (a) of the figure. Imagine a circle centered on a level
with E0, and with a radius of 2 A. If we start at the bottom and
mark off six equal arcs (at angles from the bottom point of ks b=2 π s/N, or 2 π s/6 for benzene), then the vertical heights of the
points on the circle are the solutions of Eq. (15.25). The
six points represent the six possible states. The lowest energy level is
at (E0−2 A); there are two states with the same energy (E0−A), and
so on.4 These are possible states for one electron. If we
have more than one electron, two—with opposite spins—can go into
each state.




For the benzene molecule we have to put in six electrons. For the
ground state they will go into the lowest possible energy states—two
at s=0, two at s=+1, and two at s=−1. According to the
independent particle approximation the energy of the ground state is
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(15.28)




The energy is indeed less than that of three separate double
bonds—by the amount 2 A.




By comparing the energy of benzene to the energy of ethylene it is
possible to determine A. It comes out to be 0.8 electron volt, or,
in the units the chemists like, 18 kilocalories per mole.




We can use this description to calculate or understand other
properties of benzene. For example, using Fig. 15–8 we can discuss
the excitation of benzene by light. What would happen if we tried to
excite one of the electrons? It could move up to one of the empty
higher states. The lowest energy of excitation would be a transition
from the highest filled level to the lowest empty level. That takes
the energy 2 A. Benzene will absorb light of frequency ν
when h ν=2 A. There will also be absorption of photons with the energies
3 A and 4 A. Needless to say, the absorption spectrum of benzene has
been measured and the pattern of spectral lines is more or less
correct except that the lowest transition occurs in the ultraviolet;
and to fit the data one would have to choose a value of A between
1.4 and 2.4 electron volts. That is, the numerical value of A is
two or three times larger than is predicted from the chemical binding
energy.




What the chemist does in situations like this is to analyze many
molecules of a similar kind and get some empirical rules. He learns,
for example: For calculating binding energy use such and such a value
of A, but for getting the absorption spectrum approximately right
use another value of A. You may feel that this sounds a little
absurd. It is not very satisfactory from the point of view of a
physicist who is trying to understand nature from first
principles. But the problem of the chemist is different. He must try
to guess ahead of time what is going to happen with molecules that
haven’t been made yet, or which aren’t understood completely. What he
needs is a series of empirical rules; it doesn’t make much difference
where they come from. So he uses the theory in quite a different way
than the physicist. He takes equations that have some shadow of the
truth in them, but then he must alter the constants in them—making
empirical corrections.




In the case of benzene, the principal reason for the inconsistency is
our assumption that the electrons are independent—the theory we
started with is really not legitimate. Nevertheless, it has some
shadow of the truth because its results seem to be going in the right
direction. With such equations plus some empirical rules—including
various exceptions—the organic chemist makes his way through the
morass of complicated things he chooses to study. (Don’t forget that
the reason a physicist can really calculate from first principles is
that he chooses only simple problems. He never solves a problem with
42 or even 6 electrons in it. So far, he has been able to
calculate reasonably accurately only the hydrogen atom and the helium
atom.)







15–5 More organic chemistry
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Fig. 15–9. The valence band representation of the molecule
butadiene (1,3).





Let’s see how the same ideas can be used to study other
molecules. Consider a molecule like butadiene (1,3)—it is drawn in
Fig. 15–9 according to the usual valence bond picture.
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Fig. 15–10. A line of N molecules.





We can play the same game with the extra four electrons corresponding
to the two double bonds. If we remove four electrons, we have four
carbon atoms in a line. You already know how to solve a line. You
say, “Oh no, I only know how to solve an infinite line.” But
the solutions for the infinite line also include the ones for a finite
line. Watch. Let N be the number of atoms on the line and number
them from 1 to N as shown in Fig. 15–10. In writing the
equations for the amplitude at position 1 you would not have a term
feeding from position 0. Similarly, the equation for position N
would differ from the one that we used for an infinite line because
there would be nothing feeding from position N+1. But suppose that
we can obtain a solution for the infinite line which has the following
property: the amplitude to be at atom 0 is zero and the amplitude to
be at atom (N+1) is also zero. Then the set of equations for all the
locations from 1 to N on the finite line are also satisfied. You
might think no such solution exists for the infinite line because our
solutions all looked like ei k xn which has the same absolute
value of the amplitude everywhere. But you will remember that the
energy depends only on the absolute value of k, so that another
solution, which is equally legitimate for the same energy, would
be e−i k xn. And the same is true of any superposition of these two
solutions. By subtracting them we can get the solution sink xn,
which satisfies the requirement that the amplitude be zero
at x=0. It still corresponds to the energy (E0−2 A cosk b). Now by a
suitable choice for the value of k we can also make the amplitude
zero at xN+1. This requires that (N+1) k b be a multiple
of π, or that
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(15.29)




where s is an integer from 1 to N. (We take only positive k’s
because each solution contains +k and −k; changing the sign of k
gives the same state all over again.) For the butadiene molecule,
N=4, so there are four states with
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(15.30)









We can represent the energy levels using a circle diagram similar to
the one for benzene. This time we use a semicircle divided into five
equal parts as shown in Fig. 15–11. The point at the bottom
corresponds to s=0, which gives no state at all. The same is true of
the point at the top, which corresponds to s=N+1. The remaining
4 points give us four allowed energies. There are four stationary
states, which is what we expect having started with four base
states. In the circle diagram, the angular intervals are π/5 or
36 degrees. The lowest energy comes out (E0−1.618 A). (Ah, what
wonders mathematics holds; the golden mean of the Greeks5  gives us the lowest energy state of the
butadiene molecule according to this theory!)
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Fig. 15–11. The energy levels of butadiene.





Now we can calculate the energy of the butadiene molecule when we put
in four electrons. With four electrons, we fill up the lowest two
levels, each with two electrons of opposite spin. The total energy is
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(15.31)





This result seems reasonable. The energy is a little lower than for
two simple double bonds, but the binding is not so strong as in
benzene. Anyway this is the way the chemist analyzes some organic
molecules.




The chemist can use not only the energies but the probability
amplitudes as well. Knowing the amplitudes for each state, and which
states are occupied, he can tell the probability of finding an
electron anywhere in the molecule. Those places where the electrons
are more likely to be are apt to be reactive in chemical substitutions
which require that an electron be shared with some other group of
atoms. The other sites are more likely to be reactive in those
substitutions which have a tendency to yield an extra electron to the
system.
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Fig. 15–12. A chlorophyll molecule.





The same ideas we have been using can give us some understanding of a
molecule even as complicated as chlorophyll,
one version of which is shown in Fig. 15–12. Notice that
the double and single bonds we have drawn with heavy lines form a long
closed ring with twenty intervals. The extra electrons of the double
bonds can run around this ring. Using the independent particle method we
can get a whole set of energy levels. There are strong absorption lines
from transitions between these levels which lie in the visible part of
the spectrum, and give this molecule its strong color. Similar
complicated molecules such as the xanthophylls, which make leaves turn
red, can be studied in the same way.




There is one more idea which emerges from the application of this kind
of theory in organic chemistry. It is probably the most successful or,
at least in a certain sense, the most accurate. This idea has to do
with the question: In what situations does one get a particularly
strong chemical binding? The answer is very interesting. Take the
example, first, of benzene, and imagine the sequence of events that
occurs as we start with the six-times ionized molecule and add more
and more electrons. We would then be thinking of various benzene
ions—negative or positive. Suppose we plot the energy of the ion (or
neutral molecule) as a function of the number of electrons. If we
take E0=0 (since we don’t know what it is), we get the curve shown in
Fig. 15–13. For the first two electrons the slope of the function
is
a straight line. For each successive group the slope increases, and
there is a discontinuity in slope between the groups of electrons. The
slope changes when one has just finished filling a set of levels which
all have the same energy and must move up to the next higher set of
levels for the next electron.
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Fig. 15–13. The sum of all the electron energies when the lowest states in
Fig. 15–8 are occupied by n electrons if we take
that E0=0.





The actual energy of the benzene ion is really quite different from
the curve of Fig. 15–13 because of the interactions of the
electrons
and because of electrostatic energies we have been neglecting. These
corrections will, however, vary with n in a rather smooth way. Even
if we were to make all these corrections, the resulting energy curve
would still have kinks at those values of n which just fill up a
particular energy level.
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Fig. 15–14. The points of Fig. 15–13 with a smooth curve. Molecules
with n=2, 6, 10 are more stable than the others.





Now consider a very smooth curve that fits the points on the average
like the one drawn in Fig. 15–14. We can say that the points
above this curve have “higher-than-normal” energies, and the
points below the curve have “lower-than-normal” energies. We
would, in general, expect that those configurations with a
lower-than-normal energy would have an above average
stability—chemically speaking. Notice that the configurations
farther below the curve always occur at the end of one of the straight
line segments—namely when there are enough electrons to fill up an
“energy shell,” as it is called. This is the very accurate
prediction of the theory. Molecules—or ions—are particularly
stable (in comparison with other similar configurations) when the
available electrons just fill up an energy shell.
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Fig. 15–15. Energy diagram for a ring of three.





This theory has explained and predicted some very peculiar chemical
facts. To take a very simple example, consider a ring of three. It’s
almost unbelievable that the chemist can make a ring of three and have
it stable, but it has been done. The energy circle for three electrons
is shown in Fig. 15–15. Now if you put two electrons in the lower
state, you have only two of the three electrons that you require. The
third electron must be put in at a much higher level. By our argument
this molecule should not be particularly stable, whereas the
two-electron structure should be stable. It does turn out, in fact,
that the neutral molecule of triphenyl cyclopropenyl is very hard to make, but that the positive ion
shown in Fig. 15–16 is relatively easy to make. The ring
of three is never really easy because there is always a large stress
when the bonds in an organic molecule make an equilateral triangle. To
make a stable compound at all, the structure must be stabilized in some
way. Anyway if you add three benzene rings on the corners, the positive
ion can be made. (The reason for this requirement of added benzene rings
is not really understood.)
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Fig. 15–16. The triphenyl cyclopropanyl cation.





In a similar way the five-sided ring can also be analyzed. If you draw
the energy diagram, you can see in a qualitative way that the
six-electron structure should be an especially stable structure, so
that such a molecule should be most stable as a negative ion. Now the
five-ring is well known and easy to make and always acts as a negative
ion. Similarly, you can easily verify that a ring of 4 or 8 is not
very interesting, but that a ring of 14 or 10—like a ring
of 6—should be especially stable as a neutral object.







15–6 Other uses of the approximation


There are two other similar situations which we will describe only
briefly. In considering the structure of an atom, we can consider that
the electrons fill successive shells. The Schrödinger theory of
electron motion can be worked out easily only for a single
electron moving in a “central” field—one which varies only with
the distance from a point. How can we then understand what goes on in
an atom which has 22 electrons?! One way is to use a kind of
independent particle approximation. First you calculate what happens
with one electron. You get a number of energy levels. You put an
electron into the lowest energy state. You can, for a rough model,
continue to ignore the electron interactions and go on filling
successive shells, but there is a way to get better answers by taking
into account—in an approximate way at least—the effect of the
electric charge carried by the electron. Each time you add an electron
you compute its amplitude to be at various places, and then use this
amplitude to estimate a kind of spherically symmetric charge
distribution. You use the field of this distribution—together with
the field of the positive nucleus and all the previous electrons—to
calculate the states available for the next electron. In this way you
can get reasonably correct estimates for the energies for the neutral
atom and for various ionized states. You find that there are energy
shells, just as we saw for the electrons in a ring molecule. With a
partially filled shell, the atom will show a preference for taking on
one or more extra electrons, or for losing some electrons so as to get
into the most stable state of a filled shell.




This theory explains the machinery behind the fundamental chemical
properties which show up in the periodic table of the elements. The
inert gases are those elements in which a shell has just been
completed, and it is especially difficult to make them react. (Some of
them do react of course—with fluorine and oxygen, for example; but
such compounds are very weakly bound; the so-called inert gases are
nearly inert.) An atom which has one electron more or one electron
less than an inert gas will easily lose or gain an electron to get
into the especially stable (low-energy) condition which comes from
having a completely filled shell—they are the very active chemical
elements of valence +1 or −1.




The other situation is found in nuclear physics. In atomic nuclei the
protons and neutrons interact with each other quite strongly. Even so,
the independent particle model can again be used to analyze nuclear
structure. It was first discovered experimentally that nuclei were
especially stable if they contained certain particular numbers of
neutrons—namely 2, 8, 20, 28, 50, 82. Nuclei containing
protons in these numbers are also especially stable. Since there was
initially no explanation for these numbers they were called the
“magic numbers” of nuclear physics. It is well known that neutrons
and protons interact strongly with each other; people were, therefore,
quite surprised when it was discovered that an independent particle
model predicted a shell structure which came out with the first few
magic numbers. The model assumed that each nucleon (proton or neutron)
moved in a central potential which was created by the average effects
of all the other nucleons. This model failed, however, to give the
correct values for the higher magic numbers. Then it was discovered by
Maria Mayer,
and independently by Jensen
and his collaborators, that by taking the independent particle model and
adding only a correction for what is called the “spin-orbit
interaction,” one could make an improved
model which gave all of the magic numbers. (The spin-orbit interaction
causes the energy of a nucleon to be lower if its spin has the same
direction as its orbital angular momentum from motion in the nucleus.)
The theory gives even more—its picture of the so—called “shell
structure” of the nuclei enables us to predict certain characteristics
of nuclei and of nuclear reactions.





The independent particle approximation has been found useful in a wide
range of subjects—from solid-state physics, to chemistry, to
biology, to nuclear physics. It is often only a crude approximation,
but is able to give an understanding of why there are especially
stable conditions—in shells. Since it omits all of the complexity of
the interactions between the individual particles, we should not be
surprised that it often fails completely to give correctly many
important details.






	
  
  The ground state here is really “degenerate”; there are
other states with the same energy—for example, all spins down, or
all in any other direction. The slightest external field in the
z-direction will give a different energy to all these states, and
the one we have chosen will be the true ground state.
  ^


	
  
  In general, the quasi
particles of the kind we are discussing may act like either Bose
particles or Fermi particles, and as for free particles, the particles
with integral spin are bosons and those with half-integral spins are
fermions. The “magnon” stands for a spin-up electron turned over. The
change in spin is one. The magnon has an integral spin,
and is a boson.
  ^


	
  
  You might think that for N an even number there are
N+1 states. That is not so because s=±N/2 give the same state.
  ^


	
  
  When there are two states (which will have different
amplitude distributions) with the same energy, we say that the two
states are “degenerate.” Notice that four electrons can have
the energy E0−A.
  ^


	
  
  The
ratio of the sides of a rectangle which can be divided into a square
and a similar rectangle.
  ^






  
    

16 The Dependence of Amplitudes on Position



16–1 Amplitudes on a line


We are now going to discuss how the probability amplitudes of quantum
mechanics vary in space. In some of the earlier chapters you may have
had a rather uncomfortable feeling that some things were being left
out. For example, when we were talking about the ammonia molecule, we
chose to describe it in terms of two base states. For one base state
we picked the situation in which the nitrogen atom was “above” the
plane of the three hydrogen atoms, and for the other base state we
picked the condition in which the nitrogen atom was “below” the
plane of the three hydrogen atoms. Why did we pick just these two
states?  Why is it not possible that the nitrogen atom could be at
2 angstroms above the plane of the three hydrogen atoms, or at
3 angstroms, or at 4 angstroms above the plane? Certainly, there are
many positions that the nitrogen atom could occupy. Again when we
talked about the hydrogen molecular ion, in which there is one
electron shared by two protons, we imagined two base states: one for
the electron in the neighborhood of proton number one, and the other
for the electron in the neighborhood of proton number two. Clearly we
were leaving out many details. The electron is not exactly at proton
number two but is only in the neighborhood. It could be somewhere
above the proton, somewhere below the proton, somewhere to the left of
the proton, or somewhere to the right of the proton.




We intentionally avoided discussing these details. We said that we
were interested in only certain features of the problem, so we were
imagining that when the electron was in the vicinity of proton number
one, it would take up a certain rather definite condition. In that
condition the probability to find the electron would have some rather
definite distribution around the proton, but we were not interested in
the details.




We can also put it another way. In our discussion of a hydrogen
molecular ion we chose an approximate description when we described
the situation in terms of two base states. In reality there are lots
and lots of these states. An electron can take up a condition around a
proton in its lowest, or ground, state, but there are also many
excited states. For each excited state the distribution of the
electron around the proton is different. We ignored these excited
states, saying that we were interested in only the conditions of low
energy. But it is just these other excited states which give the
possibility of various distributions of the electron around the
proton. If we want to describe in detail the hydrogen molecular ion,
we have to take into account also these other possible base states. We
could do this in several ways, and one way is to consider in greater
detail states in which the location of the electron in space is more
carefully described.




We are now ready to consider a more elaborate procedure which will
allow us to talk in detail about the position of the electron, by
giving a probability amplitude to find the electron anywhere and
everywhere in a given situation. This more complete theory provides
the underpinning for the approximations we have been making in our
earlier discussions. In a sense, our early equations can be derived as
a kind of approximation to the more complete theory.




You may be wondering why we did not begin with the more complete
theory and make the approximations as we went along. We have felt that
it would be much easier for you to gain an understanding of the basic
machinery of quantum mechanics by beginning with the two-state
approximations and working gradually up to the more complete theory
than to approach the subject the other way around. For this reason our
approach to the subject appears to be in the reverse order to the one
you will find in many books.





As we go into the subject of this chapter you will notice that we are
breaking a rule we have always followed in the past. Whenever we have
taken up any subject we have always tried to give a more or less
complete description of the physics—showing you as much as we could
about where the ideas led to. We have tried to describe the general
consequences of a theory as well as describing some specific detail so
that you could see where the theory would lead. We are now going to
break that rule; we are going to describe how one can talk about
probability amplitudes in space and show you the differential
equations which they satisfy. We will not have time to go on and
discuss many of the obvious implications which come out of the
theory. Indeed we will not even be able to get far enough to relate
this theory to some of the approximate formulations we have used
earlier—for example, to the hydrogen molecule or to the ammonia
molecule. For once, we must leave our business unfinished and
open-ended. We are approaching the end of our course, and we must
satisfy ourselves with trying to give you an introduction to the
general ideas and with indicating the connections between what we have
been describing and some of the other ways of approaching the subject
of quantum mechanics. We hope to give you enough of an idea that you
can go off by yourself and by reading books learn about many of the
implications of the equations we are going to describe. We must, after
all, leave something for the future.




Let’s review once more what we have found out about how an electron
can move along a line of atoms. When an electron has an amplitude to
jump from one atom to the next, there are definite energy states in
which the probability amplitude for finding the electron is
distributed along the lattice in the form of a traveling wave. For
long wavelengths—for small values of the wave number k—the
energy of the state is proportional to the square of the wave
number. For a crystal lattice with the spacing b, in which the
amplitude per unit time for the electron to jump from one atom to the
next is i A/ℏ, the energy of the state is related to k (for
small k b) by
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(16.1)




(see Section 13–2). We also saw that groups of such
waves with similar energies would make up a wave packet which would
behave like a classical particle with a mass meff given
by:
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(16.2)









Since waves of probability amplitude in a crystal behave like a
particle, one might well expect that the general quantum mechanical
description of a particle would show the same kind of wave behavior we
observed for the lattice. Suppose we were to think of a lattice on a
line and imagine that the lattice spacing b were to be made smaller
and smaller. In the limit we would be thinking of a case in which the
electron could be anywhere along the line. We would have gone over to
a continuous distribution of probability amplitudes. We would have the
amplitude to find an electron anywhere along the line. This would be
one way to describe the motion of an electron in a vacuum. In other
words, if we imagine that space can be labeled by an infinity of
points all very close together and we can work out the equations that
relate the amplitudes at one point to the amplitudes at neighboring
points, we will have the quantum mechanical laws of motion of an
electron in space.




Let’s begin by recalling some of the general principles of quantum
mechanics. Suppose we have a particle which can exist in various
conditions in a quantum mechanical system. Any particular condition an
electron can be found in, we call a “state,” which we label with a
state vector, say [image: \ket{\phi}]. Some other condition would be labeled
with another state vector, say [image: \ket{\psi}]. We then introduce the
idea of base states. We say that there is a set of states
[image: \ket{1}], [image: \ket{2}], [image: \ket{3}], [image: \ket{4}], and so on, which have the following
properties. First, all of these states are quite distinct—we say
they are orthogonal. By this we mean that for any two of the base
states [image: \ket{i}] and [image: \ket{j}] the amplitude [image: \braket{i}{j}] that an
electron known to be in the state [image: \ket{i}] is also in the
state [image: \ket{j}] is equal to zero—unless, of course, [image: \ket{i}]
and [image: \ket{j}] stand for the same state. We represent this symbolically by
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(16.3)




You will remember that δi j=0 if i and j are different,
and δi j=1 if i and j are the same number.




Second, the base states [image: \ket{i}] must be a complete set, so that any
state at all can be described in terms of them. That is, any
state [image: \ket{\phi}] at all can be described completely by giving all of the
amplitudes [image: \braket{i}{\phi}] that a particle in the
state [image: \ket{\phi}] will also be found in the state [image: \ket{i}]. In fact, the
state vector [image: \ket{\phi}] is equal to the sum of the base states each
multiplied by a coefficient which is the amplitude of the
state [image: \ket{\phi}] is also in the state [image: \ket{i}]:
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(16.4)









Finally, if we consider any two states [image: \ket{\phi}] and [image: \ket{\psi}],
the amplitude that the state [image: \ket{\psi}] will also be in the
state [image: \ket{\phi}] can be found by first projecting the state [image: \ket{\psi}]
into the base states and then projecting from each base state into the
state [image: \ket{\phi}]. We write that in the following way:
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(16.5)




The summation is, of course, to be carried out over the whole set of
base state [image: \ket{i}].




In Chapter 13 when we were working out what happens with
an electron placed on a linear array of atoms, we chose a set of base
states in which the electron was localized at one or other of the
atoms in the line. The base state [image: \ket{n}] represented the condition
in which the electron was localized at atom number “n.” (There is,
of course, no significance to the fact that we called our base
states [image: \ket{n}] instead of [image: \ket{i}].) A little later, we found it
convenient to label the base states by the coordinate xn of the
atom rather than by the number of the atom in the array. The
state [image: \ket{x_n}] is just another way of writing the state [image: \ket{n}]. Then,
following the general rules, any state at all, say [image: \ket{\psi}] is
described by giving the amplitudes that an electron in the
state [image: \ket{\psi}] is also in one of the states [image: \ket{x_n}]. For convenience
we have chosen to let the symbol Cn stand for these amplitudes,
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(16.6)









Since the base states are associated with a location along the line,
we can think of the amplitude Cn as a function of the
coordinate x and write it as C (xn). The amplitudes C (xn) will, in
general, vary with time and are, therefore, also functions of t. We
will not generally bother to show explicitly this dependence.




In Chapter 13 we then proposed that the
amplitudes C (xn) should vary with time in a way described by the Hamiltonian
equation (Eq. 13.3). In our new notation this equation
is
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(16.7)




The last two terms on the right-hand side represent the process in
which an electron at atom (n+1) or at atom (n−1) can feed into
atom n.




We found that Eq. (16.7) has solutions corresponding to
definite energy states, which we wrote as
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(16.8)




For the low-energy states the wavelengths are large (k is small),
and the energy is related to k by
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(16.9)




or, choosing our zero of energy so that (E0−2 A)=0, the energy is
given by Eq. (16.1).




Let’s see what might happen if we were to let the lattice spacing b
go to zero, keeping the wave number k fixed. If that is all that
were to happen the last term in Eq. (16.9) would just
go to zero and there would be no physics. But suppose A and b are
varied together so that as b goes to zero the product A b2 is kept
constant1—using Eq. (16.2) we will write A b2 as
the constant ℏ2/2 meff. Under these circumstances,
Eq. (16.9) would be unchanged, but what would happen to
the differential equation (16.7)?




First we will rewrite Eq. (16.7) as
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(16.10)





For our choice of E0, the first term drops out. Next, we can think
of a continuous function C (x) that goes smoothly through the proper
values C (xn) at each xn. As the spacing b goes to zero, the
points xn get closer and closer together, and (if we keep the
variation of C (x) fairly smooth) the quantity in the brackets is
just proportional to the second derivative of C (x). We can
write—as you can see by making a Taylor expansion of each term—the
equality
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(16.11)




In the limit, then, as b goes to zero, keeping b2 A equal to ℏ2/2 meff,
Eq. (16.7) goes over into
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(16.12)




We have an equation which says that the time rate of change
of C (x)—the amplitude to find the electron at x—depends on the
amplitude to find the electron at nearby points in a way which is
proportional to the second derivative of the amplitude with respect to
position.




The correct quantum mechanical equation for the motion of an electron
in free space was first discovered by
Schrödinger. For motion along
a line it has exactly the form of Eq. (16.12) if we
replace meff by m, the free-space mass of the
electron. For motion along a line in free space the
Schrödinger equation is
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(16.13)









We do not intend to have you think we have derived the
Schrödinger equation but only
wish to show you one way of thinking about it. When
Schrödinger first wrote it
down, he gave a kind of derivation based on some heuristic arguments and
some brilliant intuitive guesses. Some of the arguments he used were
even false, but that does not matter; the only important thing is that
the ultimate equation gives a correct description of nature. The purpose
of our discussion is then simply to show you that the correct
fundamental quantum mechanical equation (16.13) has the
same form you get for the limiting case of an electron moving along a
line of atoms. This means that we can think of the differential equation
in (16.13) as describing the diffusion of a probability
amplitude from one point to the next along the line. That is, if an
electron has a certain amplitude to be at one point, it will, a little
time later, have some amplitude to be at neighboring points. In fact,
the equation looks something like the diffusion equations which we have
used in Volume I. But there is one main difference: the imaginary
coefficient in front of the time derivative makes the behavior
completely different from the ordinary diffusion such as you would have
for a gas spreading out along a thin tube. Ordinary diffusion gives rise
to real exponential solutions, whereas the solutions of
Eq. (16.13) are complex waves.








16–2 The wave function


Now that you have some idea about how things are going to look, we
want to go back to the beginning and study the problem of describing
the motion of an electron along a line without having to consider
states connected with atoms on a lattice. We want to go back to the
beginning and see what ideas we have to use if we want to describe the
motion of a free particle in space. Since we are interested in the
behavior of a particle, along a continuum, we will be dealing with an
infinite number of possible states and, as you will see, the ideas we
have developed for dealing with a finite number of states will need
some technical modifications.




We begin by letting the state vector [image: \ket{x}] stand for a state in
which a particle is located precisely at the coordinate x. For every
value x along the line—for instance 1.73, or 9.67,
or 10.00—there is the corresponding state. We will take these
states [image: \ket{x}] as our base states and, if we include all the points on the
line, we will have a complete set for motion in one dimension. Now
suppose we have a different kind of a state, say [image: \ket{\psi}], in
which an electron is distributed in some way along the line. One way
of describing this state is to give all the amplitudes that the
electron will be also found in each of the base states [image: \ket{x}]. We
must give an infinite set of amplitudes, one for each value of x. We
will write these amplitudes as [image: \braket{x}{\psi}]. Each of these
amplitudes is a complex number and since there is one such complex
number for each value of x, the amplitude [image: \braket{x}{\psi}] is
indeed just a function of x. We will also write it as C (x),
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(16.14)









We have already considered such amplitudes which vary in a continuous
way with the coordinates when we talked about the variations of
amplitude with time in Chapter 7. We showed there, for
example, that a particle with a definite momentum should be expected
to have a particular variation of its amplitude in space. If a
particle has a definite momentum p and a corresponding definite
energy E, the amplitude to be found at any position x would look
like
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(16.15)




This equation expresses an important general principle of quantum
mechanics which connects the base states corresponding to different
positions in space to another system of base states—all the states
of definite momentum. The definite momentum states are often more
convenient than the states in x for certain kinds of
problems. Either set of base states is, of course, equally acceptable
for a description of a quantum mechanical situation. We will come back
later to the matter of the connection between them. For the moment we
want to stick to our discussion of a description in terms of the
states [image: \ket{x}].




Before proceeding, we want to make one small change in notation which
we hope will not be too confusing. The function C (x), defined in
Eq. (16.14), will of course have a form which depends
on the particular state [image: \ket{\psi}] under consideration. We should
indicate that in some way. We could, for example, specify which
function C (x) we are talking about by a subscript say, Cψ (x).
Although this would be a perfectly satisfactory notation, it is a
little bit cumbersome and is not the one you will find in most
books. Most people simply omit the letter C and use the
symbol ψ to define the function
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(16.16)




Since this is the notation used by everybody else in the world, you
might as well get used to it so that you will not be frightened when
you come across it somewhere else. Remember though, that we will now
be using ψ in two different ways. In Eq. (16.14),
ψ stands for a label we have given to a particular physical state
of the electron. On the left-hand side of Eq. (16.16),
on the other hand, the symbol ψ is used to define a mathematical
function of x which is equal to the amplitude to be associated with
each point x along the line. We hope it will not be too confusing
once you get accustomed to the idea. Incidentally, the
function ψ (x) is usually called “the wave function”—because it more
often than not has the form of a complex wave in its variables.




Since we have defined ψ (x) to be the amplitude that an electron
in the state ψ will be found at the location x, we would like
to interpret the absolute square of ψ to be the probability of
finding an electron at the position x. Unfortunately, the
probability of finding a particle exactly at any particular point is
zero. The electron will, in general, be smeared out in a certain
region of the line, and since, in any small piece of the line, there
are an infinite number of points, the probability that it will be at
any one of them cannot be a finite number. We can only describe the
probability of finding an electron in terms of a probability
distribution2 which gives the relative
probability of finding the electron at various approximate locations
along the line. Let’s let prob (x,Δ x) stand for the chance of
finding the electron in a small interval Δ x located near x. If
we go to a small enough scale in any physical situation, the probability
will be varying smoothly from place to place, and the probability of
finding the electron in any small finite line segment Δ x will be
proportional to Δ x. We can modify our definitions to take this
into account.





We can think of the amplitude [image: \braket{x}{\psi}] as representing a
kind of “amplitude density” for all the base states [image: \ket{x}] in a
small region. Since the probability of finding an electron in a small
interval Δ x at x should be proportional to the
interval Δ x, we choose our definition of [image: \braket{x}{\psi}] so that the
following relation holds:
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The amplitude [image: \braket{x}{\psi}] is therefore proportional to the
amplitude that an electron in the state ψ will be found in the
base state x and the constant of proportionality is chosen so that
the absolute square of the amplitude [image: \braket{x}{\psi}] gives the
probability density of finding an electron in any
small region. We can write, equivalently,
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(16.17)









We will now have to modify some of our earlier equations to make them
compatible with this new definition of a probability
amplitude. Suppose we have an electron in the state [image: \ket{\psi}] and
we want to know the amplitude for finding it in a different
state [image: \ket{\phi}] which may correspond to a different spread-out condition
of the electron. When we were talking about a finite set of discrete
states, we would have used Eq. (16.5). Before modifying
our definition of the amplitudes we would have written
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(16.18)




Now if both of these amplitudes are normalized in the same way as we
have described above, then a sum of all the states in a small region
of x would be equivalent to multiplying by Δ x, and the sum
over all values of x simply becomes an integral. With our modified
definitions, the correct form becomes
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(16.19)









The amplitude [image: \braket{x}{\psi}] is what we are now calling ψ (x)
and, in a similar way, we will choose to let the
amplitude [image: \braket{x}{\phi}] be represented by ϕ (x). Remembering that
[image: \braket{\phi}{x}] is the complex conjugate of [image: \braket{x}{\phi}], we
can write Eq. (16.19) as
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(16.20)




With our new definitions everything follows with the same formulas as
before if you always replace a summation sign by an integral over x.




We should mention one qualification to what we have been saying. Any
suitable set of base states must be complete if it is to be used for
an adequate description of what is going on. For an electron in one
dimension it is not really sufficient to specify only the base
states [image: \ket{x}], because for each of these states the electron may have a
spin which is either up or down. One way of getting a complete set is
to take two sets of states in x, one for up spin and the other for
down spin. We will, however, not worry about such complications for
the time being.







16–3 States of definite momentum


Suppose we have an electron in a state [image: \ket{\psi}] which is described
by the probability amplitude [image: \braket{x}{\psi}=\psi(x)]. We know that
this represents a state in which the electron is spread out along the
line in a certain distribution so that the probability of finding the
electron in a small interval d x at the location x is just
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What can we say about the momentum of this electron? We might ask what
is the probability that this electron has the momentum p? Let’s
start out by calculating the amplitude that the state [image: \ket{\psi}] is
in another state [image: \ket{\mom p}] which we define to be a state with the
definite momentum p. We can find this amplitude by using our basic
equation for the resolution of amplitudes, Eq. (16.19). In
terms of the state [image: \ket{\mom p}]
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(16.21)




And the probability that the electron will be found with the
momentum p should be given in terms of the absolute square of this
amplitude. We have again, however, a small problem about the
normalizations. In general we can only ask about the probability of
finding an electron with a momentum in a small range d p at the
momentum p. The probability that the momentum is exactly some
value p must be zero (unless the state [image: \ket{\psi}] happens to be a state
of definite momentum). Only if we ask for the probability of finding
the momentum in a small range d p at the momentum p will we get a
finite probability. There are several ways the normalizations can be
adjusted. We will choose one of them which we think to be the most
convenient, although that may not be apparent to you just now.




We take our normalizations so that the probability is related to the
amplitude by
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(16.22)




With this definition the normalization of the amplitude [image: \braket{\mom
p}{x}] is determined. The amplitude [image: \braket{\mom p}{x}] is, of
course, just the complex conjugate of the amplitude [image: \braket{x}{\mom
p}], which is just the one we have written down in
Eq. (16.15). With the normalization we have chosen, it
turns out that the proper constant of proportionality in front of the
exponential is just 1. Namely,
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(16.23)




Equation (16.21) then becomes
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(16.24)




This equation together with Eq. (16.22) allows us to
find the momentum distribution for any state [image: \ket{\psi}].




Let’s look at a particular example—for instance one in which an
electron is localized in a certain region around x=0. Suppose we
take a wave function which has the following form:
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(16.25)




The probability distribution in x for this wave function is the
absolute square, or
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(16.26)








[image: -]
Fig. 16–1. The probability density for the wave function of
Eq. (16.25).





The probability density function P (x) is the Gaussian
curve shown in
Fig. 16–1. Most of the probability is concentrated between
x=+σ and x=−σ. We say that the “half-width” of the
curve is σ. (More precisely, σ is equal to the
root-mean-square of the coordinate x for something spread out
according to this distribution.)  We would normally choose the
constant K so that the probability density P (x) is not merely
proportional to the probability per unit length in x of
finding the electron, but has a scale such that P (x) Δ x is
equal to the probability of finding the electron in Δ x
near x. The constant K which does this can be found by requiring
that [image: \int_{-\infty}^{+\infty}P(x)\,dx=1], since there must be unit
probability that the electron is found somewhere. Here, we get that
K=(2 π σ2)−1/4. [We have used the fact that
[image: \int_{-\infty}^{+\infty}e^{-t^2}\,dt=\sqrt{\pi}]; see Vol. I,
footnote 40-1.]




Now let’s find the distribution in momentum. Let’s let ϕ (p) stand
for the amplitude to find the electron with the momentum p,
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Substituting Eq. (16.25) into Eq. (16.24) we
get
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The integral can also be rewritten as
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(16.29)




We can now make the substitution u=x+2 i p σ2/ℏ, and the
integral is
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(16.30)




(The mathematicians would probably object to the way we got there, but
the result is, nevertheless, correct.)
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(16.31)









We have the interesting result that the amplitude function in p has
precisely the same mathematical form as the amplitude function in x;
only the width of the Gaussian is different. We can write this as
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(16.32)




where the half-width η of the p-distribution function is
related to the half-width σ of the x-distribution by
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Our result says: if we make the width of the distribution in x very
small by making σ small, η becomes large and the
distribution in p is very much spread out. Or, conversely: if we
have a narrow distribution in p, it must correspond to a spread-out
distribution in x. We can, if we like, consider η and σ
to be some measure of the uncertainty in the localization of the
momentum and of the position of the electron in the state we are
studying. If we call them Δ p and Δ x respectively
Eq. (16.33) becomes
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Interestingly enough, it is possible to prove that for any other form
of a distribution in x or in p, the product Δ p Δ x
cannot be smaller than the one we have found here. The Gaussian
distribution gives the smallest possible
value for the product of the
root-mean-square widths. In general, we can say
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This is a quantitative statement of the
Heisenberg uncertainty
principle, which we have discussed qualitatively many times before. We
have usually made the approximate statement that the minimum value of
the product Δ p Δ x is of the same order as ℏ.







16–4 Normalization of the states in x


We return now to the discussion of the modifications of our basic
equations which are required when we are dealing with a continuum of
base states. When we have a finite number of discrete states, a
fundamental condition which must be satisfied by the set of base
states is
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If a particle is in one base state, the amplitude to be in another
base state is 0. By choosing a suitable normalization, we have
defined the amplitude [image: \braket{i}{i}] to be 1. These two conditions
are described by Eq. (16.36). We want now to see how
this relation must be modified when we use the base states [image: \ket{x}]
of a particle on a line. If the particle is known to be in one of the
base states [image: \ket{x}], what is the amplitude that it will be in
another base state [image: \ket{x'}]? If x and x′ are two different
locations along the line, then the amplitude [image: \braket{x}{x'}] is
certainly 0, so that is consistent with Eq. (16.36). But
if x and x′ are equal, the amplitude [image: \braket{x}{x'}] will not
be 1, because of the same old normalization problem. To see how we have
to patch things up, we go back to Eq. (16.19), and apply
this equation to the special case in which the state [image: \ket{\phi}] is
just the base state [image: \ket{x'}]. We would have then
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Now the amplitude [image: \braket{x}{\psi}] is just what we have been calling
the function ψ (x). Similarly the amplitude [image: \braket{x'}{\psi}],
since it refers to the same state [image: \ket{\psi}], is the same function of
the variable x′, namely ψ (x′). We can, therefore, rewrite
Eq. (16.37) as
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This equation must be true for any state [image: \ket{\psi}] and, therefore,
for any arbitrary function ψ (x). This requirement should completely
determine the nature of the amplitude [image: \braket{x}{x'}]—which is, of
course, just a function that depends on x and x′.




Our problem now is to find a function f (x,x′), which when multiplied
into ψ (x), and integrated over all x gives just the
quantity ψ (x′). It turns out that there is no mathematical function which
will do this!  At least nothing like what we ordinarily mean by a
“function.”




Suppose we pick x′ to be the special number 0 and define the
amplitude [image: \braket{0}{x}] to be some function of x, let’s
say f (x). Then Eq. (16.38) would read as follows:
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What kind of function f (x) could possibly satisfy this equation?
Since the integral must not depend on what values ψ (x) takes for
values of x other than 0, f (x) must clearly be 0 for all
values of x except 0. But if f (x) is 0 everywhere, the
integral will be 0, too, and Eq. (16.39) will not be
satisfied. So we have an impossible situation: we wish a function to
be 0 everywhere but at a point, and still to give a finite
integral. Since we can’t find a function that does this, the easiest
way out is just to say that the function f (x) is
defined by Eq. (16.39). Namely, f (x) is that
function which makes (16.39) correct. The function which
does this was first invented by Dirac
and carries his name. We write
it δ (x). All we are saying is that the function δ (x) has
the strange property that if it is substituted for f (x) in the
Eq. (16.39), the integral picks out the value
that ψ (x) takes on when x is equal 0; and, since the integral must
be independent of ψ (x) for all values of x other than 0, the
function δ (x) must be 0 everywhere except at x=0.
Summarizing, we write

[image: -*-]
(16.40)




where δ (x) is defined by

[image: -*-]
(16.41)




Notice what happens if we use the special function “1” for the
function ψ in Eq. (16.41). Then we have the result

[image: -*-]
(16.42)




That is, the function δ (x) has the property that it is 0
everywhere except at x=0 but has a finite integral equal to
unity. We must imagine that the function δ (x) has such a
fantastic infinity at one point that the total area comes out equal to
one.



[image: -]
Fig. 16–2. A set of functions, all of unit area, which look more and more
like δ (x).





One way of imagining what the Dirac δ-function is like is to
think of a sequence of rectangles—or any other peaked function you
care to—which gets narrower and narrower and higher and higher,
always keeping a unit area, as sketched in Fig. 16–2.
The integral of this function from −∞ to +∞ is always 1.
If you multiply it by any function ψ (x) and integrate the product,
you get something which is approximately the value of the function
at x=0, the approximation getting better and better as you use the
narrower and narrower rectangles. You can if you wish, imagine the
δ-function in terms of this kind of limiting process. The only
important thing, however, is that the δ-function is defined so
that Eq. (16.41) is true for every possible
function ψ (x). That uniquely defines the δ-function. Its properties
are then as we have described.




If we change the argument of the δ-function from x to x−x′,
the corresponding relations are

[image: -*-]
(16.43)




If we use δ (x−x′) for the amplitude [image: \braket{x}{x'}] in
Eq. (16.38), that equation is satisfied. Our result then is
that for our base states in x, the condition corresponding
to (16.36) is

[image: -*-]
(16.44)









We have now completed the necessary modifications of our basic
equations which are necessary for dealing with the continuum of base
states corresponding to the points along a line. The extension to
three dimensions is fairly obvious; first we replace the
coordinate x by the vector r. Then integrals over x become replaced by
integrals over x, y, and z. In other words, they become volume
integrals. Finally, the one-dimensional δ-function must be
replaced by just the product of three δ-functions, one in x,
one in y, and the other in z,
δ (x−x′) δ (y−y′) δ (z−z′). Putting everything
together we get the following set of equations for the amplitudes for
particle in three dimensions:

[image: -*-]
(16.45)
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(16.48)









What happens when there is more than one particle? We will tell you
about how to handle two particles and you will easily see what you
must do if you want to deal with a larger number. Suppose there are two
particles, which we can call particle No. 1 and particle No. 2. What
shall we use for the base states? One perfectly good set can be
described by saying that particle 1 is at x1 and particle 2 is
at x2, which we can write as [image: \ket{x_1,x_2}]. Notice that describing the
position of only one particle does not define a base state. Each
base state must define the condition of the entire system. You must not
think that each particle moves independently as a wave in three
dimensions. Any physical state [image: \ket{\psi}] can be defined by giving all
of the amplitudes [image: \braket{x_1,x_2}{\psi}] to find the two particles at
x1 and x2. This generalized amplitude is therefore a function of
the two sets of coordinates x1 and x2. You see that such a
function is not a wave in the sense of an oscillation that moves along
in three dimensions. Neither is it generally simply a product of two
individual waves, one for each particle. It is, in general, some kind of
a wave in the six dimensions defined by x1 and x2. If there are
two particles in nature which are interacting, there is no way of
describing what happens to one of the particles by trying to write down
a wave function for it alone. The famous paradoxes that we considered in
earlier chapters—where the measurements made on one particle were
claimed to be able to tell what was going to happen to another particle,
or were able to destroy an interference—have caused people all sorts
of trouble because they have tried to think of the wave function of one
particle alone, rather than the correct wave function in the coordinates
of both particles. The complete description can be given correctly only
in terms of functions of the coordinates of both particles.







16–5 The Schrödinger equation


So far we have just been worrying about how we can describe states
which may involve an electron being anywhere at all in space. Now we
have to worry about putting into our description the physics of what
can happen in various circumstances. As before, we have to worry about
how states can change with time. If we have a state [image: \ket{\psi}] which
goes over into another state [image: \ket{\psi'}] sometime later, we can
describe the situation for all times by making the wave
function—which is just the amplitude [image: \braket{\FLPr}{\psi}]—a
function of time as well as a function of the coordinate. A particle
in a given situation can then be described by giving a time-varying
wave function ψ (r,t)=ψ (x,y,z,t). This time-varying wave
function describes the evolution of successive states that occur as
time develops. This so-called “coordinate representation”—which
gives the projections of the state [image: \ket{\psi}] into the base
states [image: \ket{\FLPr}] may not always be the most convenient one to use—but we
will consider it first.




In Chapter 8 we described how states varied in time in
terms of the Hamiltonian Hi j. We saw that the time variation of
the various amplitudes was given in terms of the matrix equation

[image: -*-]
(16.49)




This equation says that the time variation of each amplitude Ci is
proportional to all of the other amplitudes Cj, with the
coefficients Hi j.




How would we expect Eq. (16.49) to look when we are
using the continuum of base states [image: \ket{x}]? Let’s first remember
that Eq. (16.49) can also be written as

[image: -*-]


Now it is clear what we should do. For the x-representation we would
expect

[image: -*-]
(16.50)




The sum over the base states [image: \ket{j}], gets replaced by an integral
over x′. Since [image: \bracket{x}{\Hop}{x'}] should be some function of
x and x′, we can write it as H (x,x′)—which corresponds
to Hi j in Eq. (16.49). Then Eq. (16.50) is
the same as

[image: -*-]
(16.51)




with

[image: -*-]


According to Eq. (16.51), the rate of change of ψ
at x would depend on the value of ψ at all other points x′;
the factor H (x,x′) is the amplitude per unit time that the electron
will jump from x′ to x. It turns out in nature, however,
that this amplitude is zero except for points x′ very close
to x. This means—as we saw in the example of the chain of atoms at
the beginning of the chapter, Eq. (16.12)—that the
right-hand side of Eq. (16.51) can be expressed
completely in terms of ψ and the derivatives of ψ with
respect to x, all evaluated at the position x.




For a particle moving freely in space with no forces, no disturbances,
the correct law of physics is

[image: -*-]


Where did we get that from? Nowhere. It’s not possible to derive it
from anything you know. It came out of the mind of
Schrödinger,
invented in his struggle to find an understanding of the experimental
observations of the real world. You can perhaps get some clue of why
it should be that way by thinking of our derivation of
Eq. (16.12) which came from looking at the propagation of
an electron in a crystal.




Of course, free particles are not very exciting. What happens if we
put forces on the particle? Well, if the force of a particle can be
described in terms of a scalar potential V (x)—which means we are
thinking of electric forces but not magnetic forces—and if we stick
to low energies so that we can ignore complexities which come from
relativistic motions, then the Hamiltonian which fits the real world
gives



[image: -*-]
(16.52)





Again, you can get some clue as to the origin of this equation if you
go back to the motion of an electron in a crystal, and see how the
equations would have to be modified if the energy of the electron
varied slowly from one atomic site to the other—as it might do if
there were an electric field across the crystal. Then the term E0
in Eq. (16.7) would vary slowly with position and would
correspond to the new term we have added in (16.52).




[You may be wondering why we went straight from Eq. (16.51)
to Eq. (16.52) instead of just giving you the correct
function for the amplitude [image: H(x,x')=\bracket{x}{\Hop}{x'}]. We did that
because H (x,x′) can only be written in terms of strange algebraic
functions, although the whole integral on the right-hand side of
Eq. (16.51) comes out in terms of things you are used to.
If you are really curious, H (x,x′) can be written in the following
way:
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where δ′′ means the second derivative of the delta
function. This rather strange function can be replaced by a somewhat
more convenient algebraic differential operator, which is completely
equivalent:

[image: -*-]


We will not be using these forms, but will work directly with
the form in Eq. (16.52).]




If we now use the expression we have in (16.52) for the
integral in (16.50) we get the following differential
equation for [image: \psi(x)=\braket{x}{\psi}]:

[image: -*-]
(16.53)









It is fairly obvious what we should use instead of
Eq. (16.53) if we are interested in motion in three
dimensions. The only changes are that ∂2/∂x2 gets
replaced by

[image: -*-]


and V (x) gets replaced by V (x,y,z). The amplitude ψ (x,y,z)
for an electron moving in a potential V (x,y,z) obeys the
differential equation

[image: -*-]
(16.54)




It is called the Schrödinger equation, and was the first
quantum-mechanical equation ever known. It was written down by
Schrödinger
before any of the other quantum equations we have
described in this book were discovered.




Although we have approached the subject along a completely different
route, the great historical moment marking the birth of the quantum
mechanical description of matter occurred when
Schrödinger first
wrote down his equation in 1926. For many years the internal atomic
structure of matter had been a great mystery. No one had been able to
understand what held matter together, why there was chemical binding,
and especially how it could be that atoms could be stable. Although
Bohr had been able to give a
description of the internal motion of an
electron in a hydrogen atom which seemed to explain the observed
spectrum of light emitted by this atom, the reason that electrons
moved in this way remained a mystery.
Schrödinger’s discovery of the
proper equations of motion for electrons on an atomic scale provided a
theory from which atomic phenomena could be calculated quantitatively,
accurately, and in detail. In principle, Schrödinger’s equation is
capable of explaining all atomic phenomena except those involving
magnetism and relativity. It explains the energy levels of an atom,
and all the facts of chemical binding. This is, however, true only in
principle—the mathematics soon becomes too complicated to solve
exactly any but the simplest problems. Only the hydrogen and helium
atoms have been calculated to a high accuracy. However, with various
approximations, some fairly sloppy, many of the facts of more
complicated atoms and of the chemical binding of molecules can be
understood. We have shown you some of these approximations in earlier
chapters.




The Schrödinger equation as we have written it does not take into
account any magnetic effects. It is possible to take such effects into
account in an approximate way by adding some more terms to the
equation. However, as we have seen in Volume II, magnetism is
essentially a relativistic effect, and so a correct description of the
motion of an electron in an arbitrary electromagnetic field can only
be discussed in a proper relativistic equation. The correct
relativistic equation for the motion of an electron was discovered by
Dirac
a year after
Schrödinger
brought forth his equation, and takes
on quite a different form. We will not be able to discuss it at all
here.




Before we go on to look at some of the consequences of the
Schrödinger equation, we would like to show you what it looks like
for a system with a large number of particles. We will not be making
any use of the equation, but just want to show it to you to emphasize
that the wave function ψ is not simply an ordinary wave in space,
but is a function of many variables. If there are many particles, the
equation becomes



[image: -*-]
(16.55)





The potential function V is what corresponds classically to the
total potential energy of all the particles. If there are no external
forces acting on the particles, the function V is simply the
electrostatic energy of interaction of all the particles. That is, if
the ith particle carries the charge Zi qe, then the function V
is simply3

[image: -*-]
(16.56)












16–6 Quantized energy levels


In a later chapter we will look in detail at a solution of Schrödinger’s
equation
for a particular example. We would like now, however, to show you how
one of the most remarkable consequence of Schrödinger’s
equation
comes about—namely, the surprising fact that a differential equation
involving only continuous functions of continuous variables in space can
give rise to quantum effects such as the discrete energy levels in an
atom. The essential fact to understand is how it can be that an electron
which is confined to a certain region of space by some kind of a
potential “well” must necessarily have only one or another of a
certain well-defined set of discrete energies.




[image: -]
Fig. 16–3. A potential well for a particle moving along x.





Suppose we think of an electron in a one-dimensional situation in
which its potential energy varies with x in a way described by the
graph in Fig. 16–3. We will assume that this potential
is static—it doesn’t vary with time. As we have done so many times
before, we would like to look for solutions corresponding to states of
definite energy, which means, of definite frequency. Let’s try a
solution of the form

[image: -*-]
(16.57)




If we substitute this function into the Schrödinger equation, we find
that the function a (x) must satisfy the following differential
equation:

[image: -*-]
(16.58)




This equation says that at each x the second derivative of a (x)
with respect to x is proportional to a (x), the coefficient of
proportionality being given by the quantity (2 m/ℏ2) (V−E). The
second derivative of a (x) is the rate of change of its slope. If the
potential V is greater than the energy E of the particle, the rate
of change of the slope of a (x) will have the same sign
as a (x). That means that the curve of a (x) will be concave away from
the x-axis. That is, it will have, more or less, the character of
the positive or negative exponential function, e±x. This means
that in the region to the left of x1, in Fig. 16–3,
where V is greater than the assumed energy E, the function a (x)
would have to look like one or another of the curves shown in part (a)
of Fig. 16–4.



[image: -]
Fig. 16–4. Possible shapes of the wave function a (x) for V>E and for V<E.





If, on the other hand, the potential function V is less than the
energy E, the second derivative of a (x) with respect to x has
the opposite sign from a (x) itself, and the curve of a (x) will
always be concave toward the x-axis like one of the pieces shown in
part (b) of Fig. 16–4. The solution in such a region
has, piece-by-piece, roughly the form of a sinusoidal curve.




Now let’s see if we can construct graphically a solution for the
function a (x) which corresponds to a particle of energy Ea in the
potential V shown in Fig. 16–3. Since we are trying to
describe a situation in which a particle is bound inside the
potential well, we want to look for solutions in which the wave
amplitude takes on very small values when x is way outside the
potential well. We can easily imagine a curve like the one shown in
Fig. 16–5 which tends toward zero for large negative
values of x, and grows smoothly as it approaches x1. Since V is
equal to Ea at x1, the curvature of the function becomes zero at
this point. Between x1 and x2, the quantity V−Ea is always a
negative number, so the function a (x) is always concave toward the
axis, and the curvature is larger the larger the difference between
Ea and V. If we continue the curve into the region between x1
and x2, it should go more or less as shown in
Fig. 16–5.



[image: -]
Fig. 16–5. A wave function for the energy Ea which goes to zero for
negative x.





Now let’s continue this curve into the region to the right
of x2. There it curves away from the axis and takes off toward large
positive values, as drawn in Fig. 16–6. For the
energy Ea we have chosen, the solution for a (x) gets larger and larger
with increasing x. In fact, its curvature is also increasing
(if the potential continues to stay flat). The amplitude rapidly grows
to immense proportions. What does this mean? It simply means that the
particle is not “bound” in the potential well. It is infinitely more
likely to be found outside of the well, than inside. For
the solution we have manufactured, the electron is more likely to be
found at x=+∞ than anywhere else. We have failed to find a
solution for a bound particle.



[image: -]
Fig. 16–6. The wave function a (x) of Fig. 16–5 continued
beyond x2.





Let’s try another energy, say one a little bit higher than Ea—say
the energy Eb in Fig. 16–7. If we start with the same
conditions on the left, we get the solution drawn in the lower half of
Fig. 16–7. It looked at first as though it were going to
be better, but it ends up just as bad as the solution for Ea—except
that now a (x) is getting more and more negative as we go toward
large values of x.



[image: -]
Fig. 16–7. The wave function a (x) for an energy Eb greater than Ea.





Maybe that’s the clue. Since changing the energy a little bit from
Ea to Eb causes the curve to flip from one side of the axis to
the other, perhaps there is some energy lying between Ea and Eb
for which the curve will approach zero for large values of x. There
is, indeed, and we have sketched how the solution might look in
Fig. 16–8.



[image: -]
Fig. 16–8. A wave function for the energy Ec between Ea and Eb.





You should appreciate that the solution we have drawn in the figure is
a very special one. If we were to raise or lower the energy ever so
slightly, the function would go over into curves like one or the other
of the two broken-line curves shown in Fig. 16–8, and we
would not have the proper conditions for a bound particle. We have
obtained a result that if a particle is to be bound in a potential well,
it can do so only if it has a very definite energy.




Does that mean that there is only one energy for a particle bound in a
potential well? No. Other energies are possible, but not energies too
close to Ec. Notice that the wave function we have drawn in
Fig. 16–8 crosses the axis four times in the region
between x1 and x2. If we were to pick an energy quite a bit lower
than Ec, we could have a solution which crosses the axis only three
times, only two times, only once, or not at all. The possible solutions
are sketched in Fig. 16–9. (There may also be other
solutions corresponding to values of the energy higher than the ones
shown.) Our conclusion is that if a particle is bound in a potential
well, its energy can take on only the certain special values in a
discrete energy spectrum. You see how a differential equation can
describe the basic fact of quantum physics.



[image: -]
Fig. 16–9. The function a (x) for the five lowest energy bound states.





We might remark one other thing. If the energy E is above the top of
the potential well, then there are no longer any discrete solutions,
and any possible energy is permitted. Such solutions correspond to the
scattering of free particles by a potential well. We have seen an
example of such solutions when we considered the effects of impurity
atoms in a crystal.






	
  
  You can imagine that as the points xn get closer
together, the amplitude A to jump from xn±1 to xn will
increase.
  ^


	
  
  For a
discussion of probability distributions see Vol. I,
Section 6–4.
  ^


	
  
  We are using the convention of the earlier volumes
according to which [image: e^2\equiv q_e^2/4\pi\epsO].
  ^
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17–1 Symmetry


In classical physics there are a number of quantities which are
conserved—such as momentum, energy, and angular
momentum. Conservation theorems about corresponding quantities also
exist in quantum mechanics. The most beautiful thing of quantum
mechanics is that the conservation theorems can, in a sense, be
derived from something else, whereas in classical mechanics they are
practically the starting points of the laws. (There are ways in
classical mechanics to do an analogous thing to what we will do in
quantum mechanics, but it can be done only at a very advanced level.)
In quantum mechanics, however, the conservation laws are very deeply
related to the principle of superposition of amplitudes, and to the
symmetry of physical systems under various changes. This is the
subject of the present chapter. Although we will apply these ideas
mostly to the conservation of angular momentum, the essential point is
that the theorems about the conservation of all kinds of quantities
are—in the quantum mechanics—related to the symmetries of the
system.





We begin, therefore, by studying the question of symmetries of
systems. A very simple example is the hydrogen molecular ion—we
could equally well take the ammonia molecule—in which there are two
states. For the hydrogen molecular ion we took as our base states one
in which the electron was located near proton number 1, and another
in which the electron was located near proton number 2. The two
states—which we called [image: \ket{\slOne}] and [image: \ket{\slTwo}]—are shown
again in Fig. 17–1(a). Now, so long as the two nuclei
are both exactly the same, then there is a certain symmetry in
this physical system. That is to say, if we were to reflect the
system in the plane halfway between the two protons—by which we mean
that everything on one side of the plane gets moved to the symmetric
position on the other side—we would get the situations in
Fig. 17–1(b). Since the protons are identical, the
operation of reflection changes [image: \ket{\slOne}]
into [image: \ket{\slTwo}] and [image: \ket{\slTwo}] into [image: \ket{\slOne}]. We’ll call this
reflection operation [image: \Pop] and write

[image: -*-]
(17.1)




So our [image: \Pop] is an operator in the sense that it “does
something” to a state to make a new state. The interesting thing is
that [image: \Pop] operating on any state produces some other
state of the system.




[image: -][image: -]
Fig. 17–1. 
If the states [image: \ket{\slOne}] and [image: \ket{\slTwo}] are reflected
in the plane P-P, they go into [image: \ket{\slTwo}] and [image: \ket{\slOne}],
respectively.





Now [image: \Pop], like any of the other operators we have described, has
matrix elements which can be defined by the usual obvious
notation. Namely,

[image: -*-]


are the matrix elements we get if we multiply [image: \Pop\,\ket{\slOne}]
and [image: \Pop\,\ket{\slTwo}] on the left by [image: \bra{\slOne}]. From
Eq. (17.1) they are

[image: -*-]
(17.2)




In the same way we can get P21 and P22. The matrix
of [image: \Pop]—with respect to the base system [image: \ket{\slOne}]
and [image: \ket{\slTwo}]—is

[image: -*-]
(17.3)




We see once again that the words operator and matrix in
quantum mechanics are practically interchangeable. There are slight
technical differences—like the difference between a “numeral” and
a “number”—but the distinction is something pedantic that we don’t
have to worry about. So whether [image: \Pop] defines an operation, or is
actually used to define a matrix of numbers, we will call it
interchangeably an operator or a matrix.





Now we would like to point out something. We will suppose that
the physics of the whole hydrogen molecular ion system is
symmetrical. It doesn’t have to be—it depends, for instance,
on what else is near it. But if the system is symmetrical, the
following idea should certainly be true. Suppose we start at t=0
with the system in the state [image: \ket{\slOne}] and find after an interval
of time t that the system turns out to be in a more complicated
situation—in some linear combination of the two base
states. Remember that in Chapter 8 we used to represent
“going for a period of time” by multiplying by the
operator [image: \Uop]. That means that the system would after a while—say
15 seconds to be definite—be in some other state. For example, it might
be √2/3 parts of the state [image: \ket{\slOne}] and
i √1/3 parts of the state [image: \ket{\slTwo}], and we would write
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(17.4)





Now we ask what happens if we start the system in the symmetric
state [image: \ket{\slTwo}] and wait for 15 seconds under the same
conditions? It is clear that if the world is symmetric—as we are
supposing—we should get the state symmetric to (17.4):



[image: -*-]
(17.5)





The same ideas are sketched diagrammatically in Fig. 17–2.
So if the physics of a system is symmetrical with respect to some
plane, and we work out the behavior of a particular state, we also know
the behavior of the state we would get by reflecting the original state
in the symmetry plane.




[image: -][image: -]
Fig. 17–2. 
In a symmetric system, if a pure [image: \ket{\slOne}] state develops
as shown in part (a), a pure [image: \ket{\slTwo}] state will develop as in
part (b).





We would like to say the same things a little bit more
generally—which means a little more abstractly. Let [image: \Qop] be any
one of a number of operations that you could perform on a system
without changing the physics. For instance, for [image: \Qop] we might
be thinking of [image: \Pop], the operation of a reflection in the
plane between the two atoms in the hydrogen molecule. Or, in a system
with two electrons, we might be thinking of the operation of
interchanging the two electrons. Another possibility would be,
in a spherically symmetric system, the operation of a rotation
of the whole system through a finite angle around some axis—which
wouldn’t change the physics. Of course, we would normally want to give
each special case some special notation for [image: \Qop]. Specifically, we
will normally define the [image: \Rop_y(\theta)] to be the operation “rotate
the system about the y-axis by the angle θ”. By [image: \Qop] we
mean just any one of the operators we have described or any other
one—which leaves the basic physical situation unchanged.





Let’s think of some more examples. If we have an atom with no
external magnetic field or no external electric field, and if
we were to turn the coordinates around any axis, it would be the same
physical system. Again, the ammonia molecule is symmetrical with
respect to a reflection in a plane parallel to that of the three
hydrogens—so long as there is no electric field. When there is an
electric field, when we make a reflection we would have to change the
electric field also, and that changes the physical problem. But if we
have no external field, the molecule is symmetrical.





Now we consider a general situation. Suppose we start with the
state [image: \ket{\psi_1}] and after some time or other under given physical
conditions it has become the state [image: \ket{\psi_2}]. We can write
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(17.6)




[You can be thinking of Eq. (17.4).] Now imagine we
perform the operation [image: \Qop] on the whole system. The
state [image: \ket{\psi_1}] will be transformed to a state [image: \ket{\psi_1'}], which
we can also write as [image: \Qop\,\ket{\psi_1}]. Also the
state [image: \ket{\psi_2}] is changed into [image: \ket{\psi_2'}=\Qop\,\ket{\psi_2}]. Now
if the physics is symmetrical under [image: \Qop] (don’t forget the
if; it is not a general property of systems), then, waiting for
the same time under the same conditions, we should have
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(17.7)




[Like Eq. (17.5).] But we can write
[image: \Qop\,\ket{\psi_1}] for [image: \ket{\psi_1'}] and [image: \Qop\,\ket{\psi_2}]
for [image: \ket{\psi_2'}] so (17.7) can also be written
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(17.8)




If we now replace [image: \ket{\psi_2}]
by [image: \Uop\,\ket{\psi_1}]—Eq. (17.6)—we get
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(17.9)




It’s not hard to understand what this means. Thinking of the hydrogen
ion it says that: “making a reflection and waiting a while”—the
expression on the right of Eq. (17.9)—is the same as
“waiting a while and then making a reflection”—the expression on
the left of (17.9). These should be the same so long
as U doesn’t change under the reflection.





Since (17.9) is true for any starting
state [image: \ket{\psi_1}], it is really an equation about the operators:
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This is what we wanted to get—it is a mathematical statement
of symmetry. When Eq. (17.10) is true, we say that the
operators [image: \Uop] and [image: \Qop] commute. We can then define
“symmetry” in the following way: A physical system is
symmetric with respect to the operation [image: \Qop] when [image: \Qop]
commutes with [image: \Uop], the operation of the passage of time. [In terms
of matrices, the product of two operators is equivalent to the matrix
product, so Eq. (17.10) also holds for the matrices Q
and U for a system which is symmetric under the transformation Q.]





Incidentally, since for infinitesimal times ϵ we have
[image: \Uop=1-i\Hop\epsilon/\hbar]—where [image: \Hop] is the usual Hamiltonian
(see Chapter 8)—you can see that
if (17.10) is true, it is also true that
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So (17.11) is the mathematical statement of the condition
for the symmetry of a physical situation under the operator [image: \Qop]. It
defines a symmetry.





 


17–2 Symmetry and conservation

[image: -][image: -]
Fig. 17–3. 
The state [image: \ket{I}] and the state [image: \Pop\,\ket{I}]
obtained by reflecting [image: \ket{I}] in the central plane.





Before applying the result we have just found, we would like to
discuss the idea of symmetry a little more. Suppose that we have a
very special situation: after we operate on a state with [image: \Qop], we
get the same state. This is a very special case, but let’s suppose it
happens to be true for a state [image: \ket{\psi_0}] that
[image: \ket{\psi'}=\Qop\,\ket{\psi_0}] is physically the same state
as [image: \ket{\psi_0}]. That means that [image: \ket{\psi'}] is equal
to [image: \ket{\psi_0}] except for some phase factor.1 How can that
happen? For instance, suppose that we have an [image: \text{H}_2^+] ion in the state
which we once called [image: \ket{\slI}].2 For
this state there is equal amplitude to be in the base states
[image: \ket{\slOne}] and [image: \ket{\slTwo}]. The probabilities are shown as a bar
graph in Fig. 17–3(a). If we operate on [image: \ket{\slI}] with
the reflection operator [image: \Pop], it flips the state over changing
[image: \ket{\slOne}] to [image: \ket{\slTwo}] and [image: \ket{\slTwo}]
to [image: \ket{\slOne}]—we get the probabilities shown in
Fig. 17–3(b). But that’s just the state [image: \ket{\slI}] all
over again. If we start with state [image: \ket{\slII}] the probabilities
before and after reflection look just the same. However, there is a
difference if we look at the amplitudes. For the
state [image: \ket{\slI}] the amplitudes are the same after the reflection,
but for the state [image: \ket{\slII}] the amplitudes have the opposite sign.
In other words,
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If we write [image: \Pop\,\ket{\psi_0}=e^{i\delta}\,\ket{\psi_0}], we have
that ei δ=1 for the state [image: \ket{\slI}] and ei δ=−1
for the state [image: \ket{\slII}].





Let’s look at another example. Suppose we have a RHC polarized photon
propagating in the z-direction. If we do the operation of a rotation
around the z-axis, we know that this just multiplies the amplitude
by ei ϕ when ϕ is the angle of the rotation. So for the
rotation operation in this case, δ is just equal to the angle
of rotation.





Now it is clear that if it happens to be true that an
operator [image: \Qop] just changes the phase of a state at some time, say t=0,
it is true forever. In other words, if the state [image: \ket{\psi_1}]
goes over into the state [image: \ket{\psi_2}] after a time t, or
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and if the symmetry of the situation makes it so that
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then it is also true that
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This is clear, since
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and if [image: \Qop\,\ket{\psi_1}=e^{i\delta}\,\ket{\psi_1}], then
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[The sequence of equalities follows from (17.13)
and (17.10) for a symmetrical system,
from (17.14), and from the fact that a number
like ei δ commutes with an operator.]





So with certain symmetries something which is true initially is true
for all times. But isn’t that just a conservation law? Yes! It
says that if you look at the original state and by making a little
computation on the side discover that an operation which is a
symmetry operation of the system produces only a multiplication by a
certain phase, then you know that the same property will be true of
the final state—the same operation multiplies the final state by the
same phase factor. This is always true even though we may not know
anything else about the inner mechanism of the universe which changes
a system from the initial to the final state. Even if we do not care
to look at the details of the machinery by which the system gets from
one state to another, we can still say that if a thing is in a state
with a certain symmetry character originally, and if the Hamiltonian
for this thing is symmetrical under that symmetry operation, then the
state will have the same symmetry character for all times. That’s the
basis of all the conservation laws of quantum mechanics.





Let’s look at a special example. Let’s go back to the
[image: \Pop] operator. We would like first to modify a little our definition
of [image: \Pop]. We want to take for [image: \Pop] not just a mirror reflection,
because that requires defining the plane in which we put the
mirror. There is a special kind of a reflection that doesn’t require
the specification of a plane. Suppose we redefine the operation [image: \Pop]
this way: First you reflect in a mirror in the z-plane so that z
goes to −z, x stays x, and y stays y; then you turn the
system 180° about the z-axis so that x is made to go
to −x and y to −y. The whole thing is called an
inversion. Every point is projected through the origin
to the diametrically opposite position. All the coordinates of
everything are reversed. We will still use the symbol [image: \Pop] for this
operation. It is shown in Fig. 17–4. It is a little more
convenient than a simple reflection because it doesn’t require that you
specify which coordinate plane you used for the reflection—you need
specify only the point which is at the center of symmetry.




[image: -][image: -]
Fig. 17–4. 
The operation of inversion, [image: \Pop]. Whatever is at the
point A at (x,y,z) is moved to the point A′ at (−x,−y,−z).





Now let’s suppose that we have a state [image: \ket{\psi_0}] which under the
inversion operation goes into [image: e^{i\delta}\,\ket{\psi_0}]—that is,
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Then suppose that we invert again. After two inversions we are
right back where we started from—nothing is changed at all. We must
have that
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But
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It follows that

[image: -*-]


So if the inversion operator is a symmetry operation of a
state, there are only two possibilities for ei δ:
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which means that
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Classically, if a state is symmetric under an inversion, the operation
gives back the same state. In quantum mechanics, however, there are
the two possibilities: we get the same state or minus
the same state. When we get the same state,
[image: \Pop\,\ket{\psi_0}=\ket{\psi_0}], we say that the state [image: \ket{\psi_0}]
has even parity. When the sign is reversed so
that [image: \Pop\,\ket{\psi_0}=-\,\ket{\psi_0}], we say that the state has
odd parity. (The inversion operator [image: \Pop] is also known as the
parity operator.) The state [image: \ket{\slI}] of the [image: \text{H}_2^+] ion has even
parity; and the state [image: \ket{\slII}] has odd parity—see
Eq. (17.12). There are, of course, states which are not
symmetric under the operation [image: \Pop]; these are states with no definite
parity. For instance, in the [image: \text{H}_2^+] system the state [image: \ket{\slI}] has
even parity, the state [image: \ket{\slII}] has odd parity, and the
state [image: \ket{\slOne}] has no definite parity.





When we speak of an operation like inversion being performed
“on a physical system” we can think about it in two ways. We
can think of physically moving whatever is at r to the
inverse point at −r, or we can think of looking at the
same system from a new frame of reference x′,y′,z′ related to the
old by x′=−x, y′=−y, and z′=−z. Similarly, when we think of
rotations, we can think of rotating bodily a physical system, or of
rotating the coordinate frame with respect to which we measure the
system, keeping the “system” fixed in space. Generally, the two
points of view are essentially equivalent. For rotation they are
equivalent except that rotating a system by the
angle θ is like rotating the reference frame by the negative
of θ. In these lectures we have usually considered what happens
when a projection is made into a new set of axes. What you get that
way is the same as what you get if you leave the axes fixed and rotate
the system backwards by the same amount. When you do that, the
signs of the angles are reversed.3





Many of the laws of physics—but not all—are unchanged by a
reflection or an inversion of the coordinates. They are
symmetric with respect to an inversion. The laws of
electrodynamics, for instance, are unchanged if we change x to −x,
y to −y, and z to −z in all the equations. The same is
true for the laws of gravity, and for the strong interactions of
nuclear physics. Only the weak interactions—responsible for
β-decay—do not have this symmetry. (We discussed this in some
detail in Chapter 52, Vol. I.) We will for now leave out
any consideration of the β-decays. Then in any physical system
where β-decays are not expected to produce any appreciable
effect—an example would be the emission of light by an atom—the
Hamiltonian [image: \Hop] and the operator [image: \Pop] will commute. Under these
circumstances we have the following proposition. If a state originally
has even parity, and if you look at the physical situation at some later
time, it will again have even parity. For instance, suppose an atom
about to emit a photon is in a state known to have even parity. You look
at the whole thing—including the photon—after the emission; it will
again have even parity (likewise if you start with odd parity). This
principle is called the conservation of parity. You can see why
the words “conservation of parity” and “reflection symmetry” are
closely intertwined in the quantum mechanics. Although until a few years
ago it was thought that nature always conserved parity, it is now known
that this is not true. It has been discovered to be false because
the β-decay reaction does not have the inversion symmetry which is
found in the other laws of physics.





Now we can prove an interesting theorem (which is true so long as we
can disregard weak interactions): Any state of definite energy which
is not degenerate must have a definite parity. It must have either
even parity or odd parity. (Remember that we have sometimes seen
systems in which several states have the same energy—we say that
such states are degenerate. Our theorem will not apply to
them.)





For a state [image: \ket{\psi_0}] of definite energy, we know that
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where E is just a number—the energy of the state. If we have
any operator [image: \Qop] which is a symmetry operator of the system
we can prove that
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so long as [image: \ket{\psi_0}] is a unique state of definite
energy. Consider the new state [image: \ket{\psi_0'}] that you get from
operating with [image: \Qop]. If the physics is symmetric, then
[image: \ket{\psi_0'}] must have the same energy as [image: \ket{\psi_0}]. But we
have taken a situation in which there is only one state of that
energy, namely [image: \ket{\psi_0}], so [image: \ket{\psi_0'}] must be the same
state—it can only differ by a phase. That’s the physical argument.





The same thing comes out of our mathematics. Our definition of
symmetry is Eq. (17.10) or Eq. (17.11)
(good for any state ψ),
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But we are considering only a state [image: \ket{\psi_0}] which is a definite
energy state, so that [image: \Hop\,\ket{\psi_0}=E\,\ket{\psi_0}]. Since E
is just a number that floats through [image: \Qop] if we want, we have
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So
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So [image: \ket{\psi_0'}=\Qop\,\ket{\psi_0}] is also a definite energy state
of [image: \Hop]—and with the same E. But by our hypothesis, there is
only one such state; it must be that [image: \ket{\psi_0'}=e^{i\delta}\,\ket{\psi_0}].





What we have just proved is true for any operator [image: \Qop] that is a
symmetry operator of the physical system. Therefore, in a situation in
which we consider only electrical forces and strong interactions—and
no β-decay—so that inversion symmetry is an allowed
approximation, we have that
[image: \Pop\,\ket{\psi}=e^{i\delta}\,\ket{\psi}]. But we have also seen that
ei δ must be either +1 or −1. So any state of a definite
energy (which is not degenerate) has got either an even parity or an
odd parity.





 


17–3 The conservation laws


We turn now to another interesting example of an operation: a
rotation. We consider the special case of an operator that rotates an
atomic system by angle ϕ around the z-axis. We will call this
operator4 [image: \Rop_z(\phi)].
We are going to suppose that we have a physical
situation where we have no influences lined up along the x-
and y-axes. Any electric field or magnetic field is taken to be parallel
to the z-axis5 so that there will be no change in the
external conditions if we rotate the whole physical system
about the z-axis. For example, if we have an atom in empty space and
we turn the atom around the z-axis by an angle ϕ, we have the
same physical system.





Now then, there are special states which have the property that
such an operation produces a new state which is the original state
multiplied by some phase factor. Let us make a quick side remark to
show you that when this is true the phase change must always be
proportional to the angle ϕ. Suppose that you would rotate twice
by the angle ϕ. That’s the same thing as rotating by the
angle 2 ϕ. If a rotation by ϕ has the effect of multiplying the
state [image: \ket{\psi_0}] by a phase ei δ so that
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two such rotations in succession would multiply the state by the
factor (ei δ)2=ei 2 δ, since



[image: -*-]



The phase change δ must be proportional to ϕ.6  We are
considering then those special states [image: \ket{\psi_0}] for which
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where m is some real number.





We also know the remarkable fact that if the system is
symmetrical for a rotation around z and if the original state
happens to have the property that (17.22) is true, then
it will also have the same property later on. So this number m is a
very important one. If we know its value initially, we know its value
at the end of the game. It is a number which is conserved—m
is a constant of the motion. The reason that we pull out m is
because it hasn’t anything to do with any special angle ϕ, and
also because it corresponds to something in classical mechanics. In
quantum mechanics we choose to call m ℏ—for such
states as [image: \ket{\psi_0}]—the angular momentum about the
z-axis. If we do that we find that in the limit of large systems
the same quantity is equal to the z-component of the angular
momentum of classical mechanics. So if we have a state for which a
rotation about the z-axis just produces a phase factor ei m ϕ,
then we have a state of definite angular momentum about that
axis—and the angular momentum is conserved. It is m ℏ now and
forever. Of course, you can rotate about any axis, and you get the
conservation of angular momentum for the various axes. You see that
the conservation of angular momentum is related to the fact that when
you turn a system you get the same state with only a new phase factor.





We would like to show you how general this idea is. We will apply it
to two other conservation laws which have exact correspondence in the
physical ideas to the conservation of angular momentum. In classical
physics we also have conservation of momentum and conservation of
energy, and it is interesting to see that both of these are related in
the same way to some physical symmetry.





Suppose that we have a physical system—an atom, some complicated
nucleus, or a molecule, or something—and it doesn’t make any
difference if we take the whole system and move it over to a different
place. So we have a Hamiltonian which has the property that it depends
only on the internal coordinates in some sense, and does not
depend on the absolute position in space. Under those
circumstances there is a special symmetry operation we can perform
which is a translation in space. Let’s define [image: \Dop_x(a)] as the
operation of a displacement by the distance a along the
x-axis. Then for any state we can make this operation and get a new
state. But again there can be very special states which have the
property that when you displace them by a along the x-axis you get
the same state except for a phase factor. It’s also possible to prove,
just as we did above, that when this happens, the phase must be
proportional to a. So we can write for these special
states [image: \ket{\psi_0}]
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The coefficient k, when multiplied by ℏ, is called the
x-component of the momentum. And the reason it is called that is
that this number is numerically equal to the classical momentum px
when we have a large system. The general statement is this: If the
Hamiltonian is unchanged when the system is displaced, and if the
state starts with a definite momentum in the x-direction, then the
momentum in the x-direction will remain the same as time goes
on. The total momentum of a system before and after collisions—or
after explosions or what not—will be the same.





There is another operation that is quite analogous to the displacement
in space: a delay in time. Suppose that we have a physical situation
where there is nothing external that depends on time, and we
start something off at a certain moment in a given state and let it
roll. Now if we were to start the same thing off again (in another
experiment) two seconds later—or/say, delayed by a time τ—and
if nothing in the external conditions depends on the absolute time,
the development would be the same and the final state would be the
same as the other final state, except that it will get there later by
the time τ. Under those circumstances we can also find special
states which have the property that the development in time has the
special characteristic that the delayed state is just the old,
multiplied by a phase factor. Once more it is clear that for these
special states the phase change must be proportional to τ. We can
write
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It is conventional to use the negative sign in defining ω; with
this convention ω ℏ is the energy of the system,
and it is conserved. So a system of definite energy is one
which when displaced τ in time reproduces itself multiplied
by e−i ω τ. (That’s what we have said before when we defined a
quantum state of definite energy, so we’re consistent with ourselves.)
It means that if a system is in a state of definite energy, and if the
Hamiltonian doesn’t depend on t, then no matter what goes on, the
system will have the same energy at all later times.





You see, therefore, the relation between the conservation laws and the
symmetry of the world. Symmetry with respect to displacements in time
implies the conservation of energy; symmetry with respect to position
in x, y, or z implies the conservation of that component of
momentum. Symmetry with respect to rotations around the x-, y-,
and z-axes implies the conservation of the x-, y-,
and z-components of angular momentum. Symmetry with respect to
reflection implies the conservation of parity. Symmetry with respect
to the interchange of two electrons implies the conservation of
something we don’t have a name for, and so on. Some of these
principles have classical analogs and others do not. There are more
conservation laws in quantum mechanics than are useful in classical
mechanics—or, at least, than are usually made use of.





In order that you will be able to read other books on quantum
mechanics, we must make a small technical aside—to describe the
notation that people use. The operation of a displacement with respect
to time is, of course, just the operation [image: \Uop] that we talked about
before:
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Most people like to discuss everything in terms of
infinitesimal displacements in time, or in terms of
infinitesimal displacements in space, or in terms of rotations through
infinitesimal angles. Since any finite displacement or angle can be
accumulated by a succession of infinitesimal displacements or angles,
it is often easier to analyze first the infinitesimal case. The
operator of an infinitesimal displacement Δ t in time is—as
we have defined it in Chapter 8—
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Then [image: \Hop] is analogous to the classical quantity we call energy,
because if [image: \Hop\,\ket{\psi}] happens to be a constant
times [image: \ket{\psi}] namely, [image: \Hop\,\ket{\psi}=E\,\ket{\psi}] then that
constant is the energy of the system.





The same thing is done for the other operations. If we make a small
displacement in x, say by the amount Δ x, a
state [image: \ket{\psi}] will, in general, go over into some other
state [image: \ket{\psi'}]. We can write
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since as Δ x goes to zero, the [image: \ket{\psi'}] should become
just [image: \ket{\psi}] or [image: \Dop_x(0)=1], and for small Δ x the change
of [image: \Dop_x(\Delta x)] from 1 should be proportional to Δ x. Defined this way, the operator [image: \pop_x] is called the momentum
operator—for the x-component, of course.





For identical reasons, people usually write for small rotations
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and call [image: \Jop_z] the operator of the z-component of angular
momentum. For those special states for which
[image: \Rop_z(\phi)\,\ket{\psi_0}=e^{im\phi}\,\ket{\psi_0}], we can for any
small angle—say Δ ϕ—expand the right-hand side to first
order in Δ ϕ and get
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Comparing this with the definition of [image: \Jop_z] in
Eq. (17.28), we get that
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In other words, if you operate with [image: \Jop_z] on a state with a
definite angular momentum about the z-axis, you get m ℏ times
the same state, where m ℏ is the amount of z-component of
angular momentum. It is quite analogous to operating on a definite
energy state with [image: \Hop] to get [image: E\,\ket{\psi}].





We would now like to make some applications of the ideas of the
conservation of angular momentum—to show you how they work. The
point is that they are really very simple. You knew before that
angular momentum is conserved. The only thing you really have to
remember from this chapter is that if a state [image: \ket{\psi_0}] has the
property that upon a rotation through an angle ϕ about the
z-axis, it becomes [image: e^{im\phi}\,\ket{\psi_0}]; it has a
z-component of angular momentum equal to m ℏ. That’s all we
will need to do a number of interesting things.





 


17–4 Polarized light


First of all we would like to check on one idea. In
Section 11-4 we showed that when RHC polarized light is
viewed in a frame rotated by the angle ϕ about the
z-axis7 it gets multiplied by ei ϕ. Does
that mean then that the photons of light that are right circularly
polarized carry an angular momentum of one unit8 along the z-axis?  Indeed it does.
It also means that if we have a beam of light containing a large number
of photons all circularly polarized the same way—as we would have in a
classical beam—it will carry angular momentum. If the total energy
carried by the beam in a certain time is W, then there are
N=W/ℏ ω photons. Each one carries the angular
momentum ℏ, so there is a total angular momentum of
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Fig. 17–5. 
(a) The electric field E in a circularly polarized
light wave. (b) The motion of an electron being driven by the circularly
polarized light.





Can we prove classically that light which is right circularly
polarized carries an energy and angular momentum in proportion
to W/ω?  That should be a classical proposition if everything is
right. Here we have a case where we can go from the quantum thing to
the classical thing. We should see if the classical physics checks. It
will give us an idea whether we have a right to call m the angular
momentum. Remember what right circularly polarized light is,
classically. It’s described by an electric field with an oscillating
x-component and an oscillating y-component 90° out of phase
so that the resultant electric vector E goes in a
circle—as drawn in Fig. 17–5(a). Now suppose that such
light shines on a wall which is going to absorb it—or at least some of
it—and consider an atom in the wall according to the classical
physics. We have often described the motion of the electron in the atom
as a harmonic oscillator which can be driven into oscillation by an
external electric field. We’ll suppose that the atom is isotropic, so
that it can oscillate equally well in the x- or y-directions. Then
in the circularly polarized light, the x-displacement and the
y-displacement are the same, but one is 90° behind the other.
The net result is that the electron moves in a circle, as shown in
Fig. 17–5(b). The electron is displaced at some
displacement r from its equilibrium position at the origin and
goes around with some phase lag with respect to the vector E.
The relation between E and r might be as shown in
Fig. 17–5(b). As time goes on, the electric field
rotates and the displacement rotates with the same frequency, so their
relative orientation stays the same. Now let’s look at the work being
done on this electron. The rate that energy is being put into this
electron is v, its velocity, times the component of q E
parallel to the velocity:
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But look, there is angular momentum being poured into this electron,
because there is always a torque about the origin. The torque
is q Et r, which must be equal to the rate of change of angular
momentum d Jz/d t:
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Remembering that v=ω r, we have that
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Therefore, if we integrate the total angular momentum which is
absorbed, it is proportional to the total energy—the constant of
proportionality being 1/ω, which agrees with
Eq. (17.30). Light does carry angular momentum—1 unit
(times ℏ) if it is right circularly polarized along the z-axis,
and −1 unit along the z-axis if it is left circularly polarized.





Now let’s ask the following question: If light is linearly polarized
in the x-direction, what is its angular momentum? Light polarized in
the x-direction can be represented as the superposition of RHC and
LHC polarized light. Therefore, there is a certain amplitude that the
angular momentum is +ℏ and another amplitude that the angular
momentum is −ℏ, so it doesn’t have a definite angular
momentum. It has an amplitude to appear with +ℏ and an equal
amplitude to appear with −ℏ. The interference of these two
amplitudes produces the linear polarization, but it has equal
probabilities to appear with plus or minus one unit of angular
momentum. Macroscopic measurements made on a beam of linearly
polarized light will show that it carries zero angular momentum,
because in a large number of photons there are nearly equal numbers of
RHC and LHC photons contributing opposite amounts of angular
momentum—the average angular momentum is zero. And in the classical
theory you don’t find the angular momentum unless there is some
circular polarization.





We have said that any spin-one particle can have three values of Jz,
namely 0 (the three states we saw in the Stern-Gerlach
experiment). But light is screwy; it has only two states. It does not
have the zero case. This strange lack is related to the fact that light
cannot stand still. For a particle of spin j which is standing still,
there must be the 2 j+1 possible states with values of jz going in
steps of 1 from −j to +j. But it turns out that for something of
spin j with zero mass only the states with the components +j
and −j along the direction of motion exist. For example, light does
not have three states, but only two—although a photon is still an
object of spin one. How is this consistent with our earlier
proofs—based on what happens under rotations in space—that for
spin-one particles three states are necessary? For a particle at rest,
rotations can be made about any axis without changing the momentum
state. Particles with zero rest mass (like photons and neutrinos) cannot
be at rest; only rotations about the axis along the direction of motion
do not change the momentum state. Arguments about rotations around one
axis only are insufficient to prove that three states are required,
given that one of them varies as ei ϕ under rotations by the
angle ϕ.9





One further side remark. For a zero rest mass particle, in general,
only one of the two spin states with respect to the line of
motion (+j, −j) is really necessary. For neutrinos—which are
spin one-half particles—only the states with the component of
angular momentum opposite to the direction of
motion (−ℏ/2) exist in nature [and only along the
motion (+ℏ/2) for antineutrinos]. When a system has inversion symmetry
(so that parity is conserved, as it is for light) both components
(+j, and −j) are required.





 


17–5 The disintegration of the Λ0

[image: -]
Fig. 17–6. 
A Λ0 with spin “up” decays into a proton and a pion
(in the CM system). What is the probability that the proton will go off
at the angle θ?





Now we want to give an example of how we use the theorem of
conservation of angular momentum in a specifically quantum physical
problem. We look at break-up of the lambda particle (Λ0),
which disintegrates into a proton and a π− meson by a “weak”
interaction:

[image: -*-]


Assume we know that the pion has spin zero, that the proton has spin
one-half, and that the Λ0 has spin one-half. We would like to
solve the following problem: Suppose that a Λ0 were to be
produced in a way that caused it to be completely polarized—by which
we mean that its spin is, say “up,” with respect to some suitably
chosen z-axis—see Fig. 17–6(a). The question is,
with what probability will it disintegrate so that the proton goes off
at an angle θ with respect to the z-axis—as in
Fig. 17–6(b)? In other words, what is the angular
distribution of the disintegrations? We will look at the disintegration
in the coordinate system in which the Λ0 is at rest—we will
measure the angles in this rest frame; then they can always be
transformed to another frame if we want.




[image: -]
Fig. 17–7. 
Two possibilities for the decay of a spin “up” Λ0
with the proton going along the +z-axis. Only (b) conserves angular
momentum.





We begin by looking at the special circumstance in which the proton is
emitted into a small solid angle Δ Ω along the z-axis
(Fig. 17–7). Before the disintegration we have a
Λ0 with its spin “up,” as in part (a) of the figure. After a
short time—for reasons unknown to this day, except that they are
connected with the weak decays—the Λ0 explodes into a proton
and a pion. Suppose the proton goes up along the +z-axis. Then, from
the conservation of momentum, the pion must go down. Since the proton is
a spin one-half particle, its spin must be either “up” or
“down”—there are, in principle, the two possibilities shown in parts
(b) and (c) of the figure. The conservation of angular momentum,
however, requires that the proton have spin “up.” This is most easily
seen from the following argument. A particle moving along the z-axis
cannot contribute any angular momentum about this axis by virtue of its
motion; therefore, only the spins can contribute to Jz. The spin
angular momentum about the z-axis is +ℏ/2 before the
disintegration, so it must also be +ℏ/2 afterward. We can say that
since the pion has no spin, the proton spin must be “up.”





If you are worried that arguments of this kind may not be valid in
quantum mechanics, we can take a moment to show you that they are. The
initial state (before the disintegration), which we can
call [image: \ket{\Lambda^0,\text{spin \(+z\)}}] has the property that if it is
rotated about the z-axis by the angle ϕ, the state vector gets
multiplied by the phase factor ei ϕ/2. (In the rotated system
the state vector is [image: e^{i\phi/2}\,\ket{\Lambda^0,\text{spin \(+z\)}}].)
That’s what we mean by spin “up” for a spin one-half particle. Since
nature’s behavior doesn’t depend on our choice of axes, the final
state (the proton plus pion) must have the same property. We could
write the final state as, say,

[image: -*-]


But we really do not need to specify the pion motion, since in the
frame we have chosen the pion always moves opposite the proton; we can
simplify our description of the final state to

[image: -*-]


Now what happens to this state vector if we rotate the coordinates
about the z-axis by the angle ϕ?





Since the proton and pion are moving along the z-axis, their motion
isn’t changed by the rotation. (That’s why we picked this special
case; we couldn’t make the argument otherwise.) Also, nothing happens
to the pion, because it is spin zero. The proton, however, has spin
one-half. If its spin is “up” it will contribute a phase change
of ei ϕ/2 in response to the rotation. (If its spin were “down”
the phase change due to the proton would be e−i ϕ/2.) But the
phase change with rotation before and after the excitement must be the
same if angular momentum is to be conserved. (And it will be, since
there are no outside influences in the Hamiltonian.) So the only
possibility is that the proton spin will be “up.” If the proton goes
up, its spin must also be “up.”





We conclude, then, that the conservation of angular momentum permits the
process shown in part (b) of Fig. 17–7, but does not
permit the process shown in part (c). Since we know that the
disintegration occurs, there is some amplitude for process (b)—proton
going up with spin “up.” We’ll let a stand for the amplitude that
the disintegration occurs in this way in any infinitesimal interval of
time.10





Now let’s see what would happen if the Λ0 spin were initially
“down.”  Again we ask about the decays in which the proton goes up
along the z-axis, as shown in Fig. 17–8. You will
appreciate that in this case the proton must have spin “down” if
angular momentum is conserved. Let’s say that the amplitude for such a
disintegration is b.




[image: -]
Fig. 17–8. 
The decay along the z-axis for a Λ0 with spin
“down.”





We can’t say anything more about the two amplitudes a and b. They
depend on the inner machinery of Λ0, and the weak decays, and
nobody yet knows how to calculate them. We’ll have to get them from
experiment. But with just these two amplitudes we can find out
all we want to know about the angular distribution of the
disintegration. We only have to be careful always to define completely
the states we are talking about.





We want to know the probability that the proton will go off at the
angle θ with respect to the z-axis (into a small solid
angle Δ Ω) as drawn in Fig. 17–6. Let’s put a new
z-axis in this direction and call it the z′-axis. We know how to
analyze what happens along this axis. With respect to this new axis, the
Λ0 no longer has its spin “up,” but has a certain amplitude
to have its spin “up” and another amplitude to have its spin “down.”
 We have already worked these out in Chapter 6, and again
in Chapter 10, Eq. (10.30). The amplitude
to be spin “up” is cosθ/2, and the amplitude to be spin
“down” is11 −sinθ/2. When the Λ0 spin is
“up” along the z′-axis it will emit a proton in the +z′-direction
with the amplitude a. So the amplitude to find an “up”-spinning
proton coming out along the z′-direction is

[image: -*-]
(17.33)




Similarly, the amplitude to find a “down”-spinning proton coming
along the positive z′-axis is

[image: -*-]
(17.34)




The two processes that these amplitudes refer to are shown in
Fig. 17–9.




[image: -][image: -]
Fig. 17–9. 
Two possible decay states for the Λ0.





Let’s now ask the following easy question. If the Λ0 has spin
up along the z-axis, what is the probability that the decay proton
will go off at the angle θ? The two spin states (“up” or
“down” along z′) are distinguishable even though we are not going
to look at them. So to get the probability we square the amplitudes
and add. The probability f (θ) of finding a proton in a small
solid angle Δ Ω at θ is

[image: -*-]
(17.35)




Remembering that [image: \sin^2\theta/2=\tfrac{1}{2}(1-\cos\theta)] and that
[image: \cos^2\theta/2=\tfrac{1}{2}(1+\cos\theta)], we can write f (θ)
as

[image: -*-]
(17.36)




The angular distribution has the form

[image: -*-]
(17.37)




The probability has one part that is independent of θ and one
part that varies linearly with cosθ. From measuring the
angular distribution we can get α and β, and therefore,
│a│ and │b│.





Now there are many other questions we can answer. Are we interested
only in protons with spin “up” along the old z-axis? Each
of the terms in (17.33) and (17.34) will
give an amplitude to find a proton with spin “up” and with spin
“down” with respect to the z′-axis (+z′ and −z′). Spin “up”
with respect to the old axis [image: \ket{+z}] can be expressed in terms of
the base states [image: \ket{+z'}] and [image: \ket{-z'}]. We can then combine the
two amplitudes (17.33) and (17.34) with the
proper coefficients (cosθ/2 and −sinθ/2) to get the
total amplitude

[image: -*-]


Its square is the probability that the proton comes out at the
angle θ with its spin the same as the Λ0 (“up” along the
z-axis).





If parity were conserved, we could say one more thing. The
disintegration of Fig. 17–8 is just the reflection—in
the x y-plane of the disintegration—of
Fig. 17–7.12 If parity were
conserved, b would have to be equal to a or to −a. Then the
coefficient α of (17.37) would be zero, and the
disintegration would be equally likely to occur in all directions.





The experimental results show, however, that there is an
asymmetry in the disintegration. The measured angular distribution
does go as cosθ as we predict—and not as cos2θ or
any other power. In fact, since the angular distribution has this
form, we can deduce from these measurements that the spin of the
Λ0 is 1/2. Also, we see that parity is not conserved. In
fact, the coefficient α is found experimentally to
be −0.62±0.05, so b is about twice as large as a. The lack of
symmetry under a reflection is quite clear.





You see how much we can get from the conservation of angular
momentum. We will give some more examples in the next chapter.










Parenthetical note. By the amplitude a in this section we
mean the amplitude that the state [image: \ket{\text{proton going \(+z\), spin
\(+z\)}}] is generated in an infinitesimal time d t from the
state [image: \ket{\text{\(\Lambda\), spin \(+z\)}}], or, in other words, that

[image: -*-]
(17.38)




where H is the Hamiltonian of the world—or, at least, of whatever
is responsible for the Λ-decay. The conservation of angular
momentum means that the Hamiltonian must have the property that

[image: -*-]
(17.39)




By the amplitude b we mean that

[image: -*-]
(17.40)




Conservation of angular momentum implies that

[image: -*-]
(17.41)




If the amplitudes written in (17.33)
and (17.34) are not clear, we can express them more
mathematically as follows. By (17.33) we intend the
amplitude that the Λ with spin along +z will disintegrate into
a proton moving along the +z′-direction with its spin also in the
+z′-direction, namely the amplitude

[image: -*-]
(17.42)




By the general theorems of quantum mechanics, this amplitude can be
written as

[image: -*-]
(17.43)




where the sum is to be taken over the base states [image: \ket{\Lambda,i}] of
the Λ-particle at rest. Since the Λ-particle is spin
one-half, there are two such base states which can be in any reference
base we wish. If we use for base states spin “up” and spin “down”
with respect to z′ (+z′, −z′), the amplitude
of (17.43) is equal to the sum

[image: -*-]
(17.44)




The first factor of the first term is a, and the first factor of the
second term is zero—from the definition of (17.38), and
from (17.41), which in turn follows from angular momentum
conservation. The remaining factor [image: \braket{\Lambda,+z'}{\Lambda,+z}]
of the first term is just the amplitude that a spin one-half particle
which has spin “up” along one axis will also have spin “up” along
an axis tilted at the angle θ, which is cosθ/2—see
Table 6–2. So (17.44) is
just a cosθ/2, as we wrote in (17.33). The amplitude
of (17.34) follows from the same kind of arguments for a
spin “down” Λ-particle.





 


17–6 Summary of the rotation matrices


We would like now to bring together in one place the various things we
have learned about the rotations for particles of spin one-half and
spin one—so they will be convenient for future reference. On the
next page you will find tables of the two rotation matrices
Rz (ϕ) and Ry (θ) for spin one-half particles, for
spin-one particles, and for photons (spin-one particles with zero rest
mass). For each spin we will give the terms of the
matrix [image: \bracket{j}{R}{i}] for rotations about the z-axis or the
y-axis. They are, of course, exactly equivalent to the amplitudes
like [image: \braket{+T}{\OS}] we have used in earlier chapters. We mean
by Rz (ϕ) that the state is projected into a new coordinate system
which is rotated through the angle ϕ about the z-axis—using
always the right-hand rule to define the positive sense of the
rotation. By Ry (θ) we mean that the reference axes are rotated
by the angle θ about the y-axis. Knowing these two rotations,
you can, of course, work out any arbitrary rotation. As usual, we
write the matrix elements so that the state on the left is a
base state of the new (rotated) frame and the state on the
right is a base state of the old (unrotated) frame. You can interpret
the entries in the tables in many ways. For instance, the
entry e−i ϕ/2 in Table 17–1 means that the matrix
element [image: \bracket{-}{R}{-}=e^{-i\phi/2}]. It also means that
[image: \Rop\,\ket{-}=e^{-i\phi/2}\,\ket{-}], or that
[image: \bra{-}\,\Rop=\bra{-}\,e^{-i\phi/2}].  It’s all the same thing.






Table 17–1. Rotation matrices for spin one-half
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Table 17–2. Rotation matrices for spin one
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Table 17–3. Photons
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Incidentally,
you can show that [image: \Qop] is necessarily a unitary
operator—which means that if it operates on [image: \ket{\psi}] to give
some number times [image: \ket{\psi}], the number must be of the
form ei δ, where δ is real. It’s a small point, and the
proof rests on the following observation. Any operation like a
reflection or a rotation doesn’t lose any particles, so the
normalization of [image: \ket{\psi'}] and [image: \ket{\psi}] must be the same; they
can only differ by a pure imaginary phase factor.
	  ^
	

	
		
	  
See
Section 10-1. The states [image: \ket{\slI}] and [image: \ket{\slII}]
are reversed in this Section relative to the earlier discussion.
	  ^
	

	
		
	  
In other books you may find
formulas with different signs; they are probably using a different
definition of the angles.
	  ^
	

	
		
	  
Very precisely, we will define [image: \Rop_z(\phi)] as a
rotation of the physical system by −ϕ about the z-axis, which
is the same as rotating the coordinate frame by +ϕ.
	  ^
	

	
		
	  
We can always choose z along the direction
of the field provided there is only one field at a time, and its
direction doesn’t change.
	  ^
	

	
		
	  
For
a fancier proof we should make this argument for small
rotations ϵ. Since any angle ϕ is the sum of a suitable n number
of these, ϕ=n ϵ, [image: \Rop_z(\phi)=[\Rop_z(\epsilon)]^n] and
the total phase change is n times that for the small
angle ϵ, and is, therefore, proportional to ϕ.
	  ^
	

	
		
	  
Sorry! This angle is the negative of the one we used
in Section 11-4.
	  ^
	

	
		
	  
It is
usually very convenient to measure angular momentum of atomic systems in
units of ℏ. Then you can say that a spin one-half particle has
angular momentum ±1/2 with respect to any axis. Or, in general, that
the z-component of angular momentum is m. You don’t need to repeat
the ℏ all the time.
	  ^
	

	
		
	  
We have tried to find at least a proof that the
component of angular momentum along the direction of motion must for a
zero mass particle be an integral multiple of ℏ/2—and not
something like ℏ/3. Even using all sorts of properties of the
Lorentz transformation and what not, we failed. Maybe it’s not true.
We’ll have to talk about it with Prof. Wigner, who knows all
about such things.
	  ^
	

	
		
	  
We are now assuming that the machinery of the quantum
mechanics is sufficiently familiar to you that we can speak about things
in a physical way without taking the time to write down all the
mathematical details. In case what we are saying here is not clear to
you, we have put some of the missing details in a note at the end of the
section.
	  ^
	

	
		
	  
We have chosen to let z′ be in the x z-plane and
use the matrix elements for Ry (θ). You would get the same answer
for any other choice.
	  ^
	

	
		
	  
Remembering that the spin is an axial
vector and doesn’t flip over in the reflection.
	  ^
	

	




  
    

18 Angular Momentum



18–1 Electric dipole radiation


In the last chapter we developed the idea of the conservation of
angular momentum in quantum mechanics, and showed how it might be used
to predict the angular distribution of the proton from the
disintegration of the Λ-particle. We want now to give you a
number of other, similar, illustrations of the consequences of
momentum conservation in atomic systems. Our first example is the
radiation of light from an atom. The conservation of angular momentum
(among other things) will determine the polarization and angular
distribution of the emitted photons.





Suppose we have an atom which is in an excited state of definite
angular momentum—say with a spin of one—and it makes a transition
to a state of angular momentum zero at a lower energy, emitting a
photon. The problem is to figure out the angular distribution and
polarization of the photons. (This problem is almost exactly the same
as the Λ0 disintegration, except that we have spin-one
instead of spin one-half particles.) Since the upper state of the atom
is spin one, there are three possibilities for its z-component of
angular momentum. The value of m could be +1, or 0, or −1. We
will take m=+1 for our example. Once you see how it goes, you can
work out the other cases. We suppose that the atom is sitting with its
angular momentum along the +z-axis—as in
Fig. 18–1(a)—and ask with what amplitude it will emit
right circularly polarized light upward along the z-axis, so that the
atom ends up with zero angular momentum—as shown in part (b) of the
figure. Well, we don’t know the answer to that. But we do know that
right circularly polarized light has one unit of angular momentum about
its direction of propagation. So after the photon is emitted, the
situation would have to be as shown in Fig. 18–1(b)—the
atom is left with zero angular momentum about the z-axis, since we
have assumed an atom whose lower state is spin zero. We will let a
stand for the amplitude for such an event. More precisely, we let a be
the amplitude to emit a photon into a certain small solid
angle Δ Ω, centered on the z-axis, during a time d t. Notice
that the amplitude to emit a LHC photon in the same direction is zero.
The net angular momentum about the z-axis would be −1 for such a
photon and zero for the atom for a total of −1, which would not
conserve angular momentum.




[image: -]
Fig. 18–1. 
An atom with m=+1 emits a RHC photon along the +z-axis.





Similarly, if the spin of the atom is initially “down” (−1 along
the z-axis), it can emit only a LHC polarized photon in the
direction of the +z-axis, as shown in Fig. 18–2. We
will let b stand for the amplitude for this event—meaning again the
amplitude that the photon goes into a certain solid
angle Δ Ω. On the other hand, if the atom is in the m=0 state, it
cannot emit a photon in the +z-direction at all, because a photon can
have only the angular momentum +1 or −1 along its direction of
motion.




[image: -]
Fig. 18–2. 
An atom with m=−1 emits a LHC photon along the +z-axis.





Next, we can show that b is related to a. Suppose we perform an
inversion of the situation in Fig. 18–1, which means
that we should imagine what the system would look like if we were to
move each part of the system to an equivalent point on the opposite side
of the origin. This does not mean that we should reflect the
angular momentum vectors, because they are artificial. We should,
rather, invert the actual character of the motion that would correspond
to such an angular momentum. In Fig. 18–3(a) and (b) we
show what the process of Fig. 18–1 looks like before and
after an inversion with respect to the center of the atom. Notice that
the sense of rotation of the atom is unchanged.1 In the inverted
system of Fig. 18–3(b) we have an atom with m=+1
emitting a LHC photon downward.




[image: -]
Fig. 18–3. 
If the process of (a) is transformed by an inversion through
the center of the atom, it appears as in (b).





If we now rotate the system of Fig. 18–3(b)
by 180° about the x- or y-axis, it becomes identical to
Fig. 18–2. The combination of the inversion and rotation
turns the second process into the first. Using Table 17–2,
we see that a rotation of 180° about the y-axis just throws an
m=−1 state into an m=+1 state, so the amplitude b must be equal to
the amplitude a except for a possible sign change due to the
inversion. The sign change in the inversion will depend on the parities
of the initial and final state of the atom.





In atomic processes,
parity is conserved, so the parity of the whole
system must be the same before and after the photon emission. What
happens will depend on whether the parities of the initial and final
states of the atom are even or odd—the angular distribution of the
radiation will be different for different cases. We will take the
common case of odd parity for the initial state and even
parity for the final state; it will give what is called “electric
dipole radiation.” (If the initial and final states have the same
parity we say there is “magnetic dipole radiation,” which has the
character of the radiation from an oscillating current in a loop.) If
the parity of the initial state is odd, its amplitude reverses its
sign in the inversion which takes the system from (a) to (b) of
Fig. 18–3. The final state of the atom has even parity, so
its amplitude doesn’t change sign. If the reaction is going to conserve
parity, the amplitude b must be equal to a in magnitude but of the
opposite sign.





We conclude that if the amplitude is a that an m=+1 state will
emit a photon upward, then for the assumed parities of the initial and
final states the amplitude that an m=−1 state will emit a LHC photon
upward is −a.2





We have all we need to know to find the amplitude for a photon to be
emitted at any angle θ with respect to the z-axis. Suppose we
have an atom originally polarized with m=+1. We can resolve this
state into +1, 0, and −1 states with respect to a new z′-axis
in the direction of the photon emission. The amplitudes for these
three states are just the ones given in the lower half of
Table 17–2. The amplitude that a RHC photon is emitted in
the direction θ is then a times the amplitude to have m=+1 in
that direction, namely,

[image: -*-]
(18.1)




The amplitude that a LHC photon is emitted in the same direction is
−a times the amplitude to have m=−1 in the new direction. Using
Table 17–2, it is

[image: -*-]
(18.2)




If you are interested in other polarizations you can find out the
amplitude for them from the superposition of these two amplitudes. To
get the intensity of any component as a function of angle, you must,
of course, take the absolute square of the amplitudes.





 


18–2 Light scattering

[image: -]
Fig. 18–4. 
The scattering of light by an atom seen as a two-step process.





Let’s use these results to solve a somewhat more complicated
problem—but also one which is somewhat more real. We suppose that
the same atoms are sitting in their ground state (j=0), and
scatter an incoming beam of light. Let’s say that the light is
going initially in the +z-direction, so that we have photons coming
up to the atom from the −z-direction, as shown in
Fig. 18–4(a). We can consider the scattering of light as a
two-step process: The photon is absorbed, and then is re-emitted. If we
start with a RHC photon as in Fig. 18–4(a), and angular
momentum is conserved, the atom will be in an m=+1 state after the
absorption—as shown in Fig. 18–4(b). We call the
amplitude for this process c. The atom can then emit a RHC photon in
the direction θ—as in Fig. 18–4(c). The total
amplitude that a RHC photon is scattered in the direction θ is
just c times (18.1). Let’s call this scattering
amplitude [image: \bracket{R'}{S}{R}]; we have

[image: -*-]
(18.3)









There is also an amplitude that a RHC photon will be absorbed and that
a LHC photon will be emitted. The product of the two amplitudes is the
amplitude [image: \bracket{L'}{S}{R}] that a RHC photon is scattered as a LHC
photon. Using (18.2), we have

[image: -*-]
(18.4)









Now let’s ask about what happens if a LHC photon comes in. When it is
absorbed, the atom will go into an m=−1 state. By the same kind of
arguments we used in the preceding section, we can show that this
amplitude must be −c. The amplitude that an atom in the m=−1 state
will emit a RHC photon at the angle θ is a times the
amplitude [image: \bracket{+}{R_y(\theta)}{-}], which
is [image: \tfrac{1}{2}(1-\cos\theta)]. So we have

[image: -*-]
(18.5)




Finally, the amplitude for a LHC photon to be scattered as a LHC
photon is

[image: -*-]
(18.6)




(There are two minus signs which cancel.)





If we make a measurement of the scattered intensity for any
given combination of circular polarizations it will be proportional to
the square of one of our four amplitudes. For instance, with an
incoming beam of RHC light the intensity of the RHC light in the
scattered radiation will vary as (1+cosθ)2.





That’s all very well, but suppose we start out with linearly
polarized light. What then? If we have x-polarized light, it can be
represented as a superposition of RHC and LHC light. We write (see
Section 11-4)

[image: -*-]
(18.7)




Or, if we have y-polarized light, we would have

[image: -*-]
(18.8)




Now what do you want to know? Do you want the amplitude that an
x-polarized photon will scatter into a RHC photon at the
angle θ? You can get it by the usual rule for combining
amplitudes. First, multiply (18.7) by [image: \bra{R'}\,S] to
get

[image: -*-]
(18.9)




and then use (18.3) and (18.5) for the two
amplitudes. You get
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(18.10)




If you wanted the amplitude that an x-photon would scatter into a
LHC photon, you would get

[image: -*-]
(18.11)









Finally, suppose you wanted to know the amplitude that an
x-polarized photon will scatter while keeping its
x-polarization. What you want is [image: \bracket{x'}{S}{x}]. This can be
written as
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(18.12)





If you then use the relations

[image: -*-]
(18.13)

(18.14)




it follows that

[image: -*-]
(18.15)

(18.16)




So you get that

[image: -*-]
(18.17)




The answer is that a beam of x-polarized light will be scattered at
the direction θ (in the x z-plane) with an intensity
proportional to cos2θ. If you ask about y-polarized light,
you find that

[image: -*-]
(18.18)




So the scattered light is completely polarized in the x-direction.





Now we notice something interesting. The results (18.17)
and (18.18) correspond exactly to the classical theory of
light scattering we gave in Vol. I, Section 32-5, where
we imagined that the electron was bound to the atom by a linear
restoring force—so that it acted like a classical oscillator. Perhaps
you are thinking: “It’s so much easier in the classical theory; if it
gives the right answer why bother with the quantum theory?” For one
thing, we have considered so far only the special—though common—case
of an atom with a j=1 excited state and a j=0 ground state. If the
excited state had spin two, you would get a different result. Also,
there is no reason why the model of an electron attached to a spring and
driven by an oscillating electric field should work for a single photon.
But we have found that it does in fact work, and that the polarization
and intensities come out right. So in a certain sense we are bringing
the whole course around to the real truth. Whereas we have, in Vol. I,
done the theory of the index of refraction, and of light scattering, by
the classical theory, we have now shown that the quantum theory gives
the same result for the most common case. In effect we have now done the
polarization of sky light, for instance, by quantum mechanical
arguments, which is the only truly legitimate way.





It should be, of course, that all the classical theories which work
are supported ultimately by legitimate quantum arguments. Naturally,
those things which we have spent a great deal of time in explaining to
you were selected from just those parts of classical physics which
still maintain validity in quantum mechanics. You’ll notice that we
did not discuss in great detail any model of the atom which has
electrons going around in orbits. That’s because such a model doesn’t
give results which agree with the quantum mechanics. But the electron
on a spring—which is not, in a sense, at all the way an atom
“looks”—does work, and so we used that model for the theory of the
index of refraction.





 


18–3 The annihilation of positronium


We would like next to take an example which is very pretty. It is
quite interesting and, although somewhat complicated, we hope not too
much so. Our example is the system called positronium, which is
an “atom” made up of an electron and a positron—a bound state of
an e+ and an e−. It is like a hydrogen atom, except that a
positron replaces the proton. This object has—like the hydrogen
atom—many states. Also like the hydrogen, the ground state is split
into a “hyperfine structure” by the interaction of the magnetic
moments. The spins of the electron and positron are each one-half, and
they can be either parallel or antiparallel to any given axis. (In the
ground state there is no other angular momentum due to orbital
motion.) So there are four states: three are the substates of a
spin-one system, all with the same energy; and one is a state of spin
zero with a different energy. The energy splitting is, however, much
larger than the 1420 megacycles of hydrogen because the positron
magnetic moment is so much stronger—1000 times stronger—than the
proton moment.





The most important difference, however, is that positronium cannot
last forever. The positron is the antiparticle of the electron; they
can annihilate each other. The two particles disappear
completely—converting their rest energy into radiation, which
appears as γ-rays (photons). In the disintegration, two
particles with a finite rest mass go into two or more objects which
have zero rest mass.3





We begin by analyzing the disintegration of the spin-zero state of the
positronium. It disintegrates into two γ-rays with a lifetime
of about 10−10 second. Initially, we have a positron and an
electron close together and with spins antiparallel, making the
positronium system. After the disintegration there are two photons
going out with equal and opposite momenta (Fig. 18–5).
The momenta must be equal and opposite, because the total momentum after
the disintegration must be zero, as it was before, if we are taking the
case of annihilation at rest. If the positronium is not at rest, we can
ride with it, solve the problem, and then transform everything back to
the lab system. (See, we can do anything now; we have all the tools.)




[image: -]
Fig. 18–5. 
The two-photon annihilation of positronium.





First, we note that the angular distribution is not very
interesting. Since the initial state has spin zero, it has no special
axis—it is symmetric under all rotations. The final state must then
also be symmetric under all rotations. That means that all angles for
the disintegration are equally likely—the amplitude is the same for
a photon to go in any direction. Of course, once we find one of
the photons in some direction the other must be opposite.





The only remaining question, which we now want to look at, is about
the polarization of the photons. Let’s call the directions of motion
of the two photons the plus and minus z-axes. We can use any
representations we want for the polarization states of the photons; we
will choose for our description right and left circular
polarization—always with respect to the directions of
motion.4 Right away, we can see that if the photon going
upward is RHC, then angular momentum will be conserved if the downward
going photon is also RHC. Each will carry +1 unit of angular
momentum with respect to its momentum direction, which means
plus and minus one unit about the z-axis. The total will be zero,
and the angular momentum after the disintegration will be the same as
before. See Fig. 18–6.




[image: -]
Fig. 18–6. 
One possibility for positronium annihilation along the
z-axis.





The same arguments show that if the upward going photon is RHC, the
downward cannot be LHC. Then the final state would have two units of
angular momentum. This is not permitted if the initial state has spin
zero. Note that such a final state is also not possible for the other
positronium ground state of spin one, because it can have a maximum of
one unit of angular momentum in any direction.





Now we want to show that two-photon annihilation is not possible at
all from the spin-one state. You might think that if we took the
j=1, m=0 state—which has zero angular momentum about the
z-axis—it should be like the spin-zero state, and could
disintegrate into two RHC photons. Certainly, the disintegration
sketched in Fig. 18–7(a) conserves angular momentum
about the z-axis. But now look what happens if we rotate this system
around the y-axis by 180°; we get the picture shown in
Fig. 18–7(b). It is exactly the same as in part (a) of the
figure. All we have done is interchange the two photons. Now photons are
Bose particles; if we interchange them, the amplitude has the same sign,
so the amplitude for the disintegration in part (b) must be the same as
in part (a). But we have assumed that the initial object is spin one.
And when we rotate a spin-one object in a state with m=0
by 180° about the y-axis, its amplitudes change sign (see
Table 17–2 for θ=π). So the amplitudes for (a)
and (b) in Fig. 18–7 should have opposite signs; the
spin-one state cannot disintegrate into two photons.




[image: -][image: -]
Fig. 18–7. 
For the j=1 state of positronium, the process (a) and its
180° rotation about y (b) are exactly the same.





When positronium is formed you would expect it to end up in the
spin-zero state 1/4 of the time and in the spin-one state (with
m=−1, 0, or +1) 3/4 of the time. So 1/4 of the time you
would get two-photon annihilations. The other 3/4 of the time there
can be no two-photon annihilations. There is still an annihilation,
but it has to go with three photons. It is harder for it to do
that and the lifetime is 1000 times longer—about
10−7 second. This is what is observed experimentally. We will not go into
any more of the details of the spin-one annihilation.





So far we have that if we only worry about angular momentum, the
spin-zero state of the positronium can go into two RHC photons. There
is also another possibility: it can go into two LHC photons as shown
in Fig. 18–8. The next question is, what is the relation
between the amplitudes for these two possible decay modes? We can find
out from the conservation of parity.




[image: -]
Fig. 18–8. 
Another possible process for positronium annihilation.





To do that, however, we need to know the parity of the
positronium. Now theoretical physicists have shown in a way that is
not easy to explain that the parity of the electron and the
positron—its antiparticle—must be opposite, so that the spin-zero
ground state of positronium must be odd. We will just assume that it
is odd, and since we will get agreement with experiment, we can take
that as sufficient proof.





Let’s see then what happens if we make an inversion of the process in
Fig. 18–6. When we do that, the two photons reverse
directions and polarizations. The inverted picture looks just like
Fig. 18–8. Assuming that the parity of the positronium is odd, the
amplitudes for the two processes in Figs. 18–6
and 18–8 must have the opposite sign. Let’s let [image: \ket{R_1R_2}]
stand for the final state of Fig. 18–6 in which both photons are
RHC, and let [image: \ket{L_1L_2}] stand for the final state of
Fig. 18–8, in which both photons are LHC. The true final
state—let’s call it [image: \ket{F}]—must be
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(18.19)




Then an inversion changes the R’s into L’s and gives the state
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(18.20)




which is the negative of (18.19). So the final state [image: \ket{F}] has
negative parity, which is the same as the initial spin-zero state of the
positronium. This is the only final state that conserves both angular momentum
and parity. There is some amplitude that the disintegration into this state will
occur, which we don’t need to worry about now, however, since we are only
interested in questions about the polarization.





What does the final state of (18.19) mean physically? One
thing it means is the following: If we observe the two photons in two
detectors which can be set to count separately the RHC or LHC photons,
we will always see two RHC photons together, or two LHC photons
together. That is, if you stand on one side of the positronium and
someone else stands on the opposite side, you can measure the
polarization and tell the other guy what polarization he will get. You
have a 50-50 chance of catching a RHC photon or a LHC photon;
whichever one you get, you can predict that he will get the same.





Since there is a 50-50 chance for RHC or LHC polarization, it
sounds as though it might be like linear polarization. Let’s ask what
happens if we observe the photon in counters that accept only linearly
polarized light. For γ-rays it is not as easy to measure the
polarization as it is for light; there is no polarizer which works
well for such short wavelengths. But let’s imagine that there is, to
make the discussion easier. Suppose that you have a counter that only
accepts light with x-polarization, and that there is a guy on the
other side that also looks for linear polarized light with, say,
y-polarization. What is the chance you will pick up the two photons
from an annihilation? What we need to ask is the amplitude that
[image: \ket{F}] will be in the state [image: \ket{x_1y_2}]. In other words, we want
the amplitude
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which is, of course, just
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(18.21)









Now although we are working with two-particle amplitudes for the two
photons, we can handle them just as we did the single particle
amplitudes, since each particle acts independently of the other. That
means that the amplitude [image: \braket{x_1y_2}{R_1R_2}] is just the product
of the two independent amplitudes [image: \braket{x_1}{R_1}]
and [image: \braket{y_2}{R_2}]. Using Table 17–3, these two
amplitudes are 1/√2 and i/√2—so
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Similarly, we find that
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Subtracting these two amplitudes according to (18.21), we
get that
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(18.22)




So there is a unit probability5 that
if you get a photon in your x-polarized detector, the other
guy will get a photon in his y-polarized detector.





Now suppose that the other guy sets his counter for x-polarization
the same as yours. He would never get a count when you got one. If you
work it through, you will find that
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It will, naturally, also work out that if you set your counter for
y-polarization he will get coincident counts only if he is set for
x-polarization.





Now this all leads to an interesting situation. Suppose you were to
set up something like a piece of calcite which separated the photons
into x-polarized and y-polarized beams, and put a counter in each
beam. Let’s call one the x-counter and the other the y-counter. If
the guy on the other side does the same thing, you can always tell him
which beam his photon is going to go into. Whenever you and he get
simultaneous counts, you can see which of your detectors caught the
photon and then tell him which of his counters had a photon. Let’s say
that in a certain disintegration you find that a photon went into your
x-counter; you can tell him that he must have had a count in his
y-counter.





Now many people who learn quantum mechanics in the usual
(old-fashioned) way find this disturbing. They would like to think
that once the photons are emitted it goes along as a wave with a
definite character. They would think that since “any given photon”
has some “amplitude” to be x-polarized or to be y-polarized,
there should be some chance of picking it up in either the x-
or y-counter and that this chance shouldn’t depend on what some other
person finds out about a completely different photon. They argue that
“someone else making a measurement shouldn’t be able to change the
probability that I will find something.” Our quantum mechanics says,
however, that by making a measurement on photon number one, you
can predict precisely what the polarization of photon number
two is going to be when it is detected. This point was never accepted by
Einstein, and he worried about
it a great deal—it became known as the
“Einstein-Podolsky-Rosen paradox.” But when the situation is
described as we have done it here, there doesn’t seem to be any paradox
at all; it comes out quite naturally that what is measured in one place
is correlated with what is measured somewhere else. The argument that
the result is paradoxical runs something like this:


	If you have a counter which tells you whether your photon
is RHC or LHC, you can predict exactly what kind of a photon (RHC or
LHC) he will find.


	The photons he receives must, therefore, each be purely RHC
or purely LHC, some of one kind and some of the other.


	Surely you cannot alter the physical nature of his
photons by changing the kind of observation you make on your
photons. No matter what measurements you make on yours, his must still
be either RHC or LHC.


	Now suppose he changes his apparatus to split his photons
into two linearly polarized beams with a piece of calcite so that all
of his photons go either into an x-polarized beam or into a
y-polarized beam. There is absolutely no way, according to quantum
mechanics, to tell into which beam any particular RHC photon will
go. There is a 50% probability it will go into the x-beam and a
50% probability it will go into the y-beam. And the same goes for
a LHC photon.


	Since each photon is RHC or LHC—according to (2)
and (3)—each one must have a 50-50 chance of going into the
x-beam or the y-beam and there is no way to predict which way it
will go.


	(Yet the theory predicts that if you see your photon
go through an x-polarizer you can predict with certainty that
his photon will go into his y-polarized beam. This is in
contradiction to (5) so there is a paradox.








Nature apparently doesn’t see the “paradox,” however, because
experiment shows that the prediction in (6) is, in fact, true. We have
already discussed the key to this “paradox” in our very first lecture
on quantum mechanical behavior in Chapter 37,
Vol. I.6 In the argument above, steps (1), (2), (4), and (6) are all
correct, but (3), and its consequence (5), are wrong; they are not a
true description of nature. Argument (3) says that by your
measurement (seeing a RHC or a LHC photon) you can determine which of
two alternative events occurs for him (seeing a RHC or a LHC photon),
and that even if you do not make your measurement you can
still say that his event will occur either by one alternative or the
other. But it was precisely the point of Chapter 37,
Vol. I, to point out right at the beginning that this is not so in
Nature. Her way requires a description in terms of interfering
amplitudes, one amplitude for each alternative. A measurement of which
alternative actually occurs destroys the interference, but if a
measurement is not made you cannot still say that “one
alternative or the other is still occurring.”





If you could determine for each one of your photons whether it was RHC
and LHC, and also whether it was x-polarized (all for the
same photon) there would indeed be a paradox. But you cannot do
that—it is an example of the uncertainty principle.





Do you still think there is a “paradox”? Make sure that it is, in
fact, a paradox about the behavior of Nature, by setting up an
imaginary experiment for which the theory of quantum mechanics would
predict inconsistent results via two different arguments. Otherwise
the “paradox” is only a conflict between reality and your feeling of
what reality “ought to be.”





Do you think that it is not a “paradox,” but that it is still
very peculiar? On that we can all agree. It is what makes physics
fascinating.





 


18–4 Rotation matrix for any spin


By now you can see, we hope, how important the idea of the angular
momentum is in understanding atomic processes. So far, we have
considered only systems with spins—or “total angular
momentum”—of zero, one-half, or one. There are, of course, atomic
systems with higher angular momenta. For analyzing such systems we
would need to have tables of rotation amplitudes like those in
Section 17-6. That is, we would need the matrix of
amplitudes for spin [image: \tfrac{3}{2}], 2, [image: \tfrac{5}{2}], 3, etc.
Although we will not work out these tables in detail, we would like to
show you how it is done, so that you can do it if you ever need to.





As we have seen earlier, any system which has the spin or “total
angular momentum” j can exist in any one of (2 j+1) states for
which the z-component of angular momentum can have any one of the
discrete values in the sequence j, j−1, j−2, …, −(j−1), −j
(all in units of ℏ). Calling the z-component of angular
momentum of any particular state m ℏ, we can define a particular
angular momentum state by giving the numerical values of the two
“angular momentum quantum numbers” j and m. We can indicate such
a state by the state vector [image: \ket{j,m}]. In the case of a spin
one-half particle, the two states are then
[image: \ket{\tfrac{1}{2},\tfrac{1}{2}}]
and [image: \ket{\tfrac{1}{2},-\tfrac{1}{2}}]; or for a spin-one system, the
states would be written in this notation as [image: \ket{1,+1}], [image: \ket{1,0}],
[image: \ket{1,-1}]. A spin-zero particle has, of course, only the one
state [image: \ket{0,0}].





Now we want to know what happens when we project the general
state [image: \ket{j,m}] into a representation with respect to a rotated set of
axes. First, we know that j is a number which characterizes
the system, so it doesn’t change. If we rotate the axes, all we
do is get a mixture of the various m-values for the same j. In
general, there will be some amplitude that in the rotated frame the
system will be in the state [image: \ket{j,m'}], where m′ gives the new
z-component of angular momentum. So what we want are all the matrix
elements [image: \bracket{j,m'}{R}{j,m}] for various rotations. We already
know what happens if we rotate by an angle ϕ about the
z-axis. The new state is just the old one multiplied
by ei m ϕ—it still has the same m-value. We can write this by
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Or, if you prefer,
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(where δm,m′ is 1 if m′=m, or zero otherwise).





For a rotation about any other axis there will be a mixing of the
various m-states. We could, of course, try to work out the matrix
elements for an arbitrary rotation described by the Euler angles
β, α, and γ. But it is easier to remember that the
most general such rotation can be made up of the three
rotations Rz (γ), Ry (α), Rz (β); so if we know the matrix
elements for a rotation about the y-axis, we will have all we need.





How can we find the rotation matrix for a rotation by the angle
θ about the y-axis for a particle of spin j? We can’t tell
you how to do it in a basic way (with what we have had). We did it for
spin one-half by a complicated symmetry argument. We then did it for
spin one by taking the special case of a spin-one system which was
made up of two spin one-half particles. If you will go along with us
and accept the fact that in the general case the answers depend only
on the spin j, and are independent of how the inner guts of the
object of spin j are put together, we can extend the spin-one
argument to an arbitrary spin. We can, for example, cook up an
artificial system of spin [image: \tfrac{3}{2}] out of three spin one-half
objects. We can even avoid complications by imagining that they are
all distinct particles—like a proton, an electron, and a muon. By
transforming each spin one-half object, we can see what happens to the
whole system—remembering that the three amplitudes are multiplied
for the combined state. Let’s see how it goes in this case.





Suppose we take the three spin one-half objects all with spins “up”;
we can indicate this state by [image: \ket{+\,+\,+}]. If we look at this
system in a frame rotated about the z-axis by the angle ϕ, each
plus stays a plus, but gets multiplied by ei ϕ/2. We have three
such factors, so
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Evidently the state [image: \ket{+\,+\,+}] is just what we mean by the
[image: m=+\tfrac{3}{2}] state, or the state [image: \ket{\tfrac{3}{2},+\tfrac{3}{2}}].





If we now rotate this system about the y-axis, each of the spin
one-half objects will have some amplitude to be plus or to be minus,
so the system will now be a mixture of the eight possible
combinations [image: \ket{+\,+\,+}], [image: \ket{+\,+\,-}], [image: \ket{+\,-\,+}],
[image: \ket{-\,+\,+}], [image: \ket{+\,-\,-}], [image: \ket{-\,+\,-}], [image: \ket{-\,-\,+}],
or [image: \ket{-\,-\,-}]. It is clear, however, that these can be broken up
into four sets, each set corresponding to a particular value of m.
First, we have [image: \ket{+\,+\,+}], for which [image: m=\tfrac{3}{2}]. Then
there are the three states [image: \ket{+\,+\,-}], [image: \ket{+\,-\,+}],
and [image: \ket{-\,+\,+}]—each with two plusses and one minus. Since each spin
one-half object has the same chance of coming out minus under the
rotation, the amounts of each of these three combinations should be
equal. So let’s take the combination
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(18.27)




with the factor 1/√3 put in to normalize the state. If we
rotate this state about the z-axis, we get a factor ei ϕ/2
for each plus, and e−i ϕ/2 for each minus. Each term
in (18.27) is multiplied by ei ϕ/2, so there is the
common factor ei ϕ/2. This state satisfies our idea of an
[image: m=+\tfrac{1}{2}] state; we can conclude that
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Similarly, we can write
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which corresponds to a state with [image: m=-\tfrac{1}{2}]. Notice that we
take only the symmetric combinations—we do not take any
combinations with minus signs. They would correspond to states of the
same m but a different j. (It’s just like the spin-one case, where
we found that [image: (1/\sqrt{2})\{\ket{+\,-}+\ket{-\,+}\}] was the
state [image: \ket{1,0}], but the state [image: (1/\sqrt{2})\{\ket{+\,-}-\ket{-\,+}\}] was
the state [image: \ket{0,0}].) Finally, we would have that
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We summarize our four states in Table 18–1.






Table 18–1. 


		[image: -*-]







Now all we have to do is take each state and rotate it about the
y-axis and see how much of the other states it gives—using our
known rotation matrix for the spin one-half particles. We can proceed
in exactly the same way we did for the spin-one case in
Section 12-6. (It just takes a little more algebra.) We
will follow directly the ideas of Chapter 12, so we won’t
repeat all the explanations in detail. The states in the system S will
be labelled [image: \ket{\tfrac{3}{2},+\tfrac{3}{2},S}=\ket{+\,+\,+}],
[image: \ket{\tfrac{3}{2},+\tfrac{1}{2},S}=
(1/\sqrt{3})\{\ket{+\,+\,-}+\ket{+\,-\,+}+\ket{-\,+\,+}\}], and so on.
The T-system will be one rotated about the y-axis of S by the
angle θ. States in T will be
labelled [image: \ket{\tfrac{3}{2},+\tfrac{3}{2},T}],
[image: \ket{\tfrac{3}{2},+\tfrac{1}{2},T}], and so on. Of course,
[image: \ket{\tfrac{3}{2},+\tfrac{3}{2},T}] is the same as [image: \ket{+'\,+'\,+'}],
the primes referring always to the T-system. Similarly,
[image: \ket{\tfrac{3}{2},+\tfrac{1}{2},T}] will be equal
to [image: (1/\sqrt{3})\{\ket{+'\,+'\,-'}+\ket{+'\,-'\,+'}+\ket{-'\,+'\,+'}\}],
and so on. Each [image: \ket{+'}] state in the T-frame comes from both the
[image: \ket{+}] and [image: \ket{-}] states in S via the matrix elements of
Table 12–4.





When we have three spin one-half particles, Eq. (12.47)
gets replaced by
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Using the transformation of Table 12–4, we get instead
of (12.48) the equation
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This already gives us several of our matrix elements [image: \braket{jT}{iS}].
To get the expression for [image: \ket{\tfrac{3}{2},+\tfrac{1}{2},S}] we begin
with the transformation of a state with two “+” and one “−”
pieces. For instance,
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Adding two similar expressions for [image: \ket{+\,-\,+}] and [image: \ket{-\,+\,+}]
and dividing by √3, we find
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Continuing the process we find all the elements [image: \braket{jT}{iS}] of
the transformation matrix as given in Table 18–2. The
first column comes from Eq. (18.32); the second
from (18.34). The last two columns were worked out in the
same way.






Table 18–2. 
Rotation matrix for a spin [image: \boldsymbol{\tfrac{3}{2}}] particle

The coefficients a, b, c, and d are given in Table 12–4.






[image: --]


Now suppose the T-frame were rotated with respect to S by the
angle θ about their y-axes. Then a, b, c, and d have
the values [see (12.54)] a=d=cosθ/2, and
c=−b=sinθ/2. Using these values in Table 18–2 we
get the forms which correspond to the second part of
Table 17–2, but now for a spin [image: \tfrac{3}{2}] system.





The arguments we have just gone through are readily generalized to a
system of any spin j. The states [image: \ket{j,m}] can be put together
from 2 j particles, each of spin one-half. (There are j+m of them
in the [image: \ket{+}] state and j−m in the [image: \ket{-}] state.) Sums are
taken over all the possible ways this can be done, and the state is
normalized by multiplying by a suitable constant. Those of you who are
mathematically inclined may be able to show that the following result
comes out7:
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where k is to go over all values which give terms ≥0 in all the
factorials.





This is quite a messy formula, but with it you can check
Table 17–2 for j=1 and prepare tables of your own for
larger j. Several special matrix elements are of extra importance and
have been given special names. For example the matrix elements
for m=m′=0 and integral j are known as the Legendre polynomials and
are
called Pj (cosθ):
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The first few of these polynomials are:
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(18.39)

(18.40)









 


18–5 Measuring a nuclear spin


We would like to show you one example of the application of the
coefficients we have just described. It has to do with a recent,
interesting experiment which you will now be able to understand. Some
physicists wanted to find out the spin of a certain excited state of
the Ne20 nucleus. To do this, they bombarded a carbon target with
a beam of accelerated carbon ions, and produced the desired excited
state of Ne20—called Ne20*—in the reaction

[image: -*-]


where α1 is the α-particle, or He4. Several of the
excited states of Ne20 produced this way are unstable and
disintegrate in the reaction

[image: -*-]


So experimentally there are two α-particles which come out of
the reaction. We call them α1 and α2; since they come
off with different energies, they can be distinguished from each
other. Also, by picking a particular energy for α1 we can pick
out any particular excited state of the Ne20.




[image: -]
Fig. 18–9. 
Experimental arrangement for determining the spin of certain
states of Ne20.





The experiment was set up as shown in Fig. 18–9. A beam
of 16-MeV carbon ions was directed onto a thin foil of carbon. The
first α-particle was counted in a silicon diffused junction
detector marked α1—set to accept α-particles of the
proper energy moving in the forward direction (with respect to the
incident C12 beam). The second α-particle was picked up in
the counter α2 at the angle θ with respect to α1.
The counting rate of coincidence signals from α1 and α2
were measured as a function of the angle θ.





The idea of the experiment is the following. First, you need to know
that the spins of C12, O16, and the α-particle are
all zero. If we call the direction of motion of the initial C12
the +z-direction, then we know that the Ne20* must have zero
angular momentum about the z-axis. None of the other particles has
any spin; the C12 arrives along the z-axis and the α1
leaves along the z-axis so they can’t have any angular momentum
about it. So whatever the spin j of the Ne20* is, we know that
it is in the state [image: \ket{j,0}]. Now what will happen when the
Ne20* disintegrates into an O16 and the second
α-particle?  Well, the α-particle is picked up in the
counter α2 and to conserve momentum the O16 must go off
in the opposite direction.8
About the
new axis through α2, there can be no component of angular
momentum. The final state has zero angular momentum about the new
axis, so the Ne20* can disintegrate this way only if it has some
amplitude to have m′ equal to zero, where m′ is the quantum number
of the component of angular momentum about the new axis. In fact, the
probability of observing α2 at the angle θ is just the
square of the amplitude (or matrix element)

[image: -*-]
(18.41)









To find the spin of the Ne20* state in question, the intensity of
the second α-particle was plotted as a function of angle and
compared with the theoretical curves for various values of j. As we
said in the last section, the
amplitudes [image: \bracket{j,0}{R_y(\theta)}{j,0}] are just the
functions Pj (cosθ). So the possible angular distributions are curves
of [Pj (cosθ)]2. The experimental results are shown in
Fig. 18–10 for two of the excited states. You can see that
the angular distribution for the 5.80-MeV state fits very well the
curve for [P1 (cosθ)]2, and so it must be a spin-one state. The
data for the 5.63-MeV state, on the other hand, are quite different;
they fit the curve [P3 (cosθ)]2. The state has a spin of 3.




[image: -]
Fig. 18–10. 
Experimental results for the angular distribution of the α-particles
from two excited states of Ne20 produced in the setup of
Fig. 18–9. [From J. A. Kuehner, Physical Review,
Vol. 125, p. 1650, 1962.]




From this experiment we have been able to find out the angular
momentum of two of the excited states of Ne20*. This information
can then be used for trying to understand what the configuration of
protons and neutrons is inside this nucleus—one more piece of
information about the mysterious nuclear forces.





 


18–6 Composition of angular momentum


When we studied the hyperfine structure of the hydrogen atom in
Chapter 12 we had to work out the internal states of a
system composed of two particles—the electron and the proton—each
with a spin of one-half. We found that the four possible spin states
of such a system could be put together into two groups—a group with
one energy that looked to the external world like a spin-one particle,
and one remaining state that behaved like a particle of zero
spin. That is, putting together two spin one-half particles we can
form a system whose “total spin” is one, or zero. In this section we
want to discuss in more general terms the spin states of a
system which is made up of two particles of arbitrary spin. It
is another important problem about angular momentum in quantum
mechanical systems.





Let’s first rewrite the results of Chapter 12 for the
hydrogen atom in a form that will be easier to extend to the more
general case. We began with two particles which we will now call
particle a (the electron) and particle b (the proton).
Particle a had the spin ja ([image: =\tfrac{1}{2}]), and its z-component of
angular momentum ma could have one of several values (actually 2,
namely [image: m_a=+\tfrac{1}{2}] or [image: m_a=-\tfrac{1}{2}]). Similarly, the
spin state of particle b is described by its spin jb and its
z-component of angular momentum mb. Various combinations of the
spin states of the two particles could be formed. For instance, we
could have particle a with [image: m_a=\tfrac{1}{2}] and particle b
with [image: m_b=-\tfrac{1}{2}], to make a
state [image: \ket{a,+\tfrac{1}{2};b,-\tfrac{1}{2}}]. In general, the combined
states formed a system whose “system spin,” or “total spin,” or
“total angular momentum” J could be 1, or 0. And the system
could have a z-component of angular momentum M, which was
+1, 0, or −1 when J=1, or 0 when J=0. In this new language we
can rewrite the formulas in (12.41)
and (12.42) as shown in Table 18–3.






Table 18–3. Composition of angular momenta for two spin [image: \boldsymbol{\tfrac{1}{2}}] particles






[image: --]


In the table the left-hand column describes the compound state in
terms of its total angular momentum J and the z-component M. The
right-hand column shows how these states are made up in terms of the
m-values of the two particles a and b.





We want now to generalize this result to states made up of two objects
a and b of arbitrary spins ja and jb. We start by
considering an example for which [image: j_a=\tfrac{1}{2}] and jb=1,
namely, the deuterium atom in which particle a is an electron (e)
and particle b is the nucleus—a deuteron (d). We have then that
[image: j_a=j_{\text{e}}=\tfrac{1}{2}]. The deuteron is formed of one proton
and one neutron in a state whose total spin is one,
so jb=jd=1. We want to discuss the hyperfine states of
deuterium—just the way we did for hydrogen. Since the deuteron has
three possible states mb=md=+1, 0, −1, and the
electron has two, [image: m_a=m_{\text{e}}=+\tfrac{1}{2}], [image: -\tfrac{1}{2}],
there are six possible states as follows (using the
notation [image: \ket{\text{e},m_{\text{e}};\text{d},m_{\text{d}}}]:

[image: -*-]
(18.42)




You will notice that we have grouped the states according to the
values of the sum of me and md—arranged in
descending order.





Now we ask: What happens to these states if we project into a
different coordinate system? If the new system is just rotated about
the z-axis by the angle ϕ, then the
state [image: \ket{\text{e},m_{\text{e}};\text{d},m_{\text{d}}}] gets multiplied by

[image: -*-]
(18.43)




(The state may be thought of as the
product [image: \ket{\text{e},m_{\text{e}}}\ket{\text{d},m_{\text{d}}}], and each
state vector contributes independently its own exponential factor.)
The factor (18.43) is of the form ei M ϕ, so the
state [image: \ket{\text{e},m_{\text{e}};\text{d},m_{\text{d}}}] has a
z-component of angular momentum equal to

[image: -*-]
(18.44)




The z-component of the total angular momentum is the sum of
the z-components of angular momentum of the parts.





In the list of (18.42), therefore, the state in the top
line has [image: M=+\tfrac{3}{2}], the two in the second line
have [image: M=+\tfrac{1}{2}], the next two have [image: M=-\tfrac{1}{2}], and the last
state has [image: M=-\tfrac{3}{2}]. We see immediately one possibility for
the spin J of the combined state (the total angular momentum) must
be [image: \tfrac{3}{2}], and this will require four states with
[image: M=+\tfrac{3}{2}], [image: +\tfrac{1}{2}], [image: -\tfrac{1}{2}], and [image: -\tfrac{3}{2}].





There is only one candidate for [image: M=+\tfrac{3}{2}], so we know already
that

[image: -*-]
(18.45)




But what is the state [image: \ket{J=\tfrac{3}{2},M=+\tfrac{1}{2}}]? We have
two candidates in the second line of (18.42), and, in
fact, any linear combination of them would also
have [image: M=\tfrac{1}{2}]. So, in general, we must expect to find that



[image: -*-]
(18.46)





where α and β are two numbers. They are called the
Clebsch-Gordan
coefficients. Our next
problem is to find out what they are.





We can find out easily if we just remember that the deuteron is made
up of a neutron and a proton, and write the deuteron states out more
explicitly using the rules of Table 18–3. If we do that,
the states listed in (18.42) then look as shown in
Table 18–4.






Table 18–4. Angular momentum states of a deuterium atom






[image: --]


We want to form the four states of [image: J=\tfrac{3}{2}], using the states
in the table. But we already know the answer, because in
Table 18–1 we have states of spin [image: \tfrac{3}{2}] formed
from three spin one-half particles. The first state in
Table 18–1 has [image: \ket{J=\tfrac{3}{2},M=+\tfrac{3}{2}}] and
it is [image: \ket{+\,+\,+}], which—in our present notation—is the same
as [image: \ket{\text{e},+\tfrac{1}{2};\text{n},+\tfrac{1}{2};\text{p},+\tfrac{1}{
2}}], or the first state in Table 18–4. But this state is
also the same as the first in the list of (18.42),
confirming our statement in (18.45). The second line of
Table 18–1 says—changing to our present notation—that



[image: -*-]
(18.47)





The right side can evidently be put together from the two entries in
the second line of Table 18–4 by taking √2/3 of
the first term with √1/3 of the second. That is,
Eq. (18.47) is equivalent to



[image: -*-]
(18.48)





We have found our two Clebsch-Gordan coefficients α and β
in Eq. (18.46):

[image: -*-]
(18.49)









Following the same procedure we can find that



[image: -*-]
(18.50)





And, also, of course,

[image: -*-]
(18.51)




These are the rules for the composition of spin 1 and
spin [image: \tfrac{1}{2}] to make a total [image: J=\tfrac{3}{2}]. We summarize
(18.45), (18.48), (18.50),
and (18.51) in Table 18–5.






Table 18–5. The [image: \boldsymbol{J=\tfrac{3}{2}}] states of the deuterium atom






[image: --]


We have, however, only four states here while the system we are
considering has six possible states. Of the two states in the second
line of (18.42) we have used only one linear combination
to form [image: \ket{J=\tfrac{3}{2},M=+\tfrac{1}{2}}]. There is another
linear combination orthogonal to the one we have taken which also
has [image: M=+\tfrac{1}{2}], namely

[image: -*-]
(18.52)




Similarly, the two states in the third line of (18.42)
can be combined to give two orthogonal states, each
with [image: M=-\tfrac{1}{2}]. The one orthogonal to (18.52) is

[image: -*-]
(18.53)




These are the two remaining states. They
have [image: M=m_{\text{e}}+m_{\text{d}}=\pm\tfrac{1}{2}]; and must be the two
states corresponding to [image: J=\tfrac{1}{2}]. So we have



[image: -*-]
(18.54)










We can verify that these two states do indeed behave like the states
of a spin one-half object by writing out the deuterium parts in terms
of the neutron and proton states—using Table 18–4. The
first state in (18.52) is



[image: -*-]
(18.55)





which can also be written



[image: -*-]
(18.56)





Now look at the terms in the first curly brackets, and think of the e
and p taken together. Together they form a spin-zero state (see the
bottom line of Table 18–3), and contribute no angular
momentum. Only the neutron is left, so the whole of the first
curly bracket of (18.56) behaves under rotations like a
neutron, namely as a state with [image: J=\tfrac{1}{2}],
[image: M=+\tfrac{1}{2}]. Following the same reasoning, we see that in the
second curly bracket of (18.56) the electron and
neutron team up to produce zero angular momentum, and only the proton
contribution—with [image: m_{\text{p}}=\tfrac{1}{2}]—is left. The terms
behave like an object with [image: J=\tfrac{1}{2}], [image: M=+\tfrac{1}{2}]. So the
whole expression of (18.56) transforms
like [image: \ket{J=\tfrac{1}{2},M=+\tfrac{1}{2}}] as it should. The
[image: M=-\tfrac{1}{2}] state which corresponds to (18.53) can
be written down (by changing the proper [image: +\tfrac{1}{2}]'s
to [image: -\tfrac{1}{2}]'s) to get



[image: -*-]
(18.57)





You can easily check that this is equal to the second line
of (18.54), as it should be if the two terms of that pair
are to be the two states of a spin one-half system. So our results are
confirmed. A deuteron and an electron can exist in six spin states, four
of which act like the states of a spin [image: \tfrac{3}{2}] object
(Table 18–5) and two of which act like an object of spin
one-half (18.54).





The results of Table 18–5 and of Eq. (18.54)
were obtained by making use of the fact that the deuteron is made up of
a neutron and a proton. The truth of the equations does not depend on
that special circumstance. For any spin-one object put together
with any spin one-half object the composition laws (and the
coefficients) are the same. The set of equations in
Table 18–5 means that if the coordinates are rotated
about, say, the y-axis—so that the states of the spin one-half
particle and of the spin-one particle change according to
Table 17–1 and Table 17–2—the linear
combinations on the right-hand side will change in the proper way for a
spin [image: \tfrac{3}{2}] object. Under the same rotation the states
of (18.54) will change as the states of a spin one-half
object. The results depend only on the rotation properties (that is, the
spin states) of the two original particles but not in any way on the
origins of their angular momenta. We have only made use of this fact to
work out the formulas by choosing a special case in which one of the
component parts is itself made up of two spin one-half particles in a
symmetric state. We have put all our results together in
Table 18–6, changing the notation “e” and “d” to
“a” and “b” to emphasize the generality of the conclusions.






Table 18–6. Composition of a spin one-half particle
([image: \boldsymbol{j_a=\tfrac{1}{2}}]) and a spin-one particle (jb=1)






[image: --]


Suppose we have the general problem of finding the states which can be
formed when two objects of arbitrary spins are combined. Say one
has ja (so its z-component ma runs over the 2 ja+1 values from
−ja to +ja) and the other has jb (with z-component mb
running over the values from −jb to +jb). The combined states
are [image: \ket{a,m_a;b,m_b}], and there are (2 ja+1) (2 jb+1) different
ones. Now what states of total spin J can be found?





The total z-component of angular momentum M is equal to ma+mb,
and the states can all be listed according to M [as
in (18.42)]. The largest M is unique; it corresponds to
ma=ja and mb=jb, and is, therefore, just ja+jb. That means
that the largest total spin J is also equal to the sum ja+jb:

[image: -*-]


For the first M value smaller than (M)max, there are two
states (either ma or mb is one unit less than its maximum). They
must contribute one state to the set that goes with J=ja+jb, and
the one left over will belong to a new set with J=ja+jb−1. The
next M-value—the third from the top of the list—can be formed in
three ways. (From ma=ja−2, mb=jb; from ma=ja−1,
mb=jb−1; and from ma=ja, mb=jb−2.) Two of these belong to
groups already started above; the third tells us that states
of J=ja+jb−2 must also be included. This argument continues until we
reach a stage where in our list we can no longer go one more step down
in one of the m’s to make new states.





Let jb be the smaller of ja and jb (if they are equal take
either one); then only 2 jb values of J are required—going in
integer steps from ja+jb down to ja−jb. That is, when two
objects of spin ja and jb are combined, the system can have a
total angular momentum J equal to any one of the values
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(18.58)




(By writing │ja−jb│ instead of ja−jb we can avoid the
extra admonition that ja≥jb.)





For each of these J values there are the 2 J+1 states of different
M-values—with M going from +J to −J. Each of these is formed
from linear combinations of the original states [image: \ket{a,m_a;b,m_b}]
with appropriate factors—the Clebsch-Gordan
coefficients for each
particular term. We can consider that these coefficients give the
“amount” of the state [image: \ket{j_a,m_a;j_b,m_b}] which appears in the
state [image: \ket{J,M}]. So each of the Clebsch-Gordan coefficients has, if
you wish, six indices identifying its position in the formulas
like those of Tables 18–3 and 18–6. That is,
calling these coefficients C (J,M;ja,ma;jb,mb), we could express
the equality of the second line of Table 18–6 by writing
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We will not calculate here the coefficients for any other special
cases.9 You can, however,
find tables in many books. You might wish to try another special case
for yourself. The next one to do would be the composition of two
spin-one particles. We give just the final result in
Table 18–7.






Table 18–7. Composition of two spin-one particles (ja=1, jb=1)






[image: --]


These laws of the composition of angular momenta are very important in
particle physics—where they have innumerable
applications. Unfortunately, we have no time to look at more examples
here.





 


18–7 Added Note 1: Derivation of the rotation 
matrix10


For those who would like to see the details, we work out here the
general rotation matrix for a system with spin (total angular
momentum) j. It is really not very important to work out the general
case; once you have the idea, you can find the general results in
tables in many books. On the other hand, after coming this far you
might like to see that you can indeed understand even the very
complicated formulas of quantum mechanics, such as
Eq. (18.35), that come into the description of angular
momentum.





We extend the arguments of Section 18-4 to a system
with spin j, which we consider to be made up of 2 j spin one-half
objects. The state with m=j would be [image: \ket{+\,+\,+\dotsb+}] (with
2 j plus signs). For m=j−1, there will be 2 j terms
like [image: \ket{+\,+\dotsb+\,+\,-}], [image: \ket{+\,+\dotsb+\,-\,+}], and so on. Let’s
consider the general case in which there are r plusses and
s minuses—with r+s=2 j. Under a rotation about the z-axis each of
the r plusses will contribute e+i ϕ/2. The result is a phase
change of (r/2−s/2) ϕ. You see that
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(18.59)




Just as for [image: j=\tfrac{3}{2}], each state of definite m must be the
linear combination with plus signs of all the states with the same r
and s—that is, states corresponding to every possible arrangement
which has r plusses and s minuses. We assume that you can figure
out that there are (r+s)!/r! s! such arrangements. To normalize each
state, we should divide the sum by the square root of this number. We
can write
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(18.60)




with

[image: -*-]
(18.61)









It will help our work if we now go to still another notation. Once we
have defined the states by Eq. (18.60), the two numbers
r and s define a state just as well as j and m. It will help
us keep track of things if we write
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(18.62)




where, using the equalities of (18.61)

[image: -*-]


Next, we would like to write Eq. (18.60) with a new
special notation as

[image: -*-]
(18.63)




Note that we have changed the exponent of the factor in front to
plus [image: \tfrac{1}{2}]. We do that because there are just
N=(r+s)!/r! s! terms inside the curly brackets.
Comparing (18.63) with (18.60) it is clear
that
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is just a shorthand way of writing

[image: -*-]


where N is the number of different terms in the bracket. The reason
that this notation is convenient is that each time we make a rotation,
all of the plus signs contribute the same factor, so we get this
factor to the rth power. Similarly, all together the s minus terms
contribute a factor to the sth power no matter what the sequence of
the terms is.





Now suppose we rotate our system by the angle θ about the
y-axis. What we want is [image: R_y(\theta)\,\ket{\tover{r}{s}}]. When
Ry (θ) operates on each [image: \ket{+}] it gives
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(18.64)




where C=cosθ/2 and S=−sinθ/2. When Ry (θ)
operates on each [image: \ket{-}] it gives
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So what we want is

[image: -*-]
(18.65)




Now each binomial has to be expanded out to its appropriate power and
the two expressions multiplied together. There will be terms
with [image: \ket{+}] to all powers from zero to (r+s). Let’s look at all of the
terms which have [image: \ket{+}] to the r′ power. They will appear always
multiplied with [image: \ket{-}] to the s′ power, where s′=2 j−r′. Suppose
we collect all such terms. For each permutation they will have some
numerical coefficient involving the factors of the binomial expansion
as well as the factors C and S. Suppose we call that
factor Ar′. Then Eq. (18.65) will look like
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(18.66)




Now let’s say that we divide Ar′ by the
factor [(r′+s′)!/r′! s′!]1/2 and call the quotient Br′.
Equation (18.66) is then equivalent to
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(18.67)




(We could just say that this equation defines Br′ by the
requirement that (18.67) gives the same expression that
appears in (18.65).)





With this definition of Br′ the remaining factors on the
right-hand side of Eq. (18.67) are just the
states [image: \ket{\tover{r'}{s'}}]. So we have that

[image: -*-]
(18.68)




with s′ always equal to r+s−r′. This means, of course, that the
coefficients Br′ are just the matrix elements we want, namely
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(18.69)









Now we just have to push through the algebra to find the
various Br′. Comparing (18.65) with (18.67)—and
remembering that r′+s′=r+s—we see that Br′ is just the
coefficient of ar′ bs′ in the following expression:
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(18.70)




It is now only a dirty job to make the expansions by the binomial
theorem, and collect the terms with the given power of a and b. If
you work it all out, you find that the coefficient of ar′ bs′
in (18.70) is



[image: -*-]
(18.71)





The sum is to be taken over all integers k which give terms of zero
or greater in the factorials. This expression is then the matrix
element we wanted.





Finally, we can return to our original notation in terms of j, m,
and m′ using
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Making these substitutions, we get Eq. (18.35) in
Section 18-4.





 


18–8 Added Note 2: Conservation of parity in photon emission


In Section 18-1 of this chapter we considered the
emission of light by an atom that goes from an excited state of
spin 1 to a ground state of spin 0. If the excited state has its spin
up (m=+1), it can emit a RHC photon along the +z-axis or a LHC
photon along the −z-axis. Let’s call these two states of the photon
[image: \ket{R_{\text{up}}}] and [image: \ket{L_{\text{dn}}}]. Neither of these
states has a definite parity. Letting [image: \Pop] be the parity operator,
[image: \Pop\,\ket{R_{\text{up}}}=\ket{L_{\text{dn}}}]
and [image: \Pop\,\ket{L_{\text{dn}}}=\ket{R_{\text{up}}}].





What about our earlier proof that an atom in a state of definite
energy must have a definite parity, and our statement that parity is
conserved in atomic processes? Shouldn’t the final state in this
problem (the state after the emission of a photon) have a definite
parity? It does if we consider the complete final state
which contains amplitudes for the emission of photons into all sorts
of angles. In Section 18-1 we chose to consider only a
part of the complete final state.





If we wish we can look only at final states that do have a definite
parity. For example, consider a final state [image: \ket{\psi_{F}}]
which has some amplitude α to be a RHC photon going along +z
and some amplitude β to be a LHC photon going along −z. We can
write
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(18.72)




The parity operation on this state gives
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(18.73)




This state will be [image: \pm\,\ket{\psi_{F}}] if β=α or
if β=−α. So a final state of even parity is
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(18.74)




and a state of odd parity is

[image: -*-]
(18.75)









Next, we wish to consider the decay of an excited state of odd parity
to a ground state of even parity. If parity is to be conserved, the
final state of the photon must have odd parity. It must be the state
in (18.75). If the amplitude to find
[image: \ket{R_{\text{up}}}] is α, the amplitude to find
[image: \ket{L_{\text{dn}}}] is −α.





Now notice what happens when we perform a rotation of 180°
about the y-axis. The initial excited state of the atom becomes an
m=−1 state (with no change in sign, according to
Table 17–2). And the rotation of the final state gives
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(18.76)




Comparing this equation with (18.75), you see that for
the assumed parity of the final state, the amplitude to get a LHC
photon along +z from the m=−1 initial state is the negative of the
amplitude to get a RHC photon from the m=+1 initial state. This
agrees with the result we found in Section 18-1.





 

		
	  
When we change
x,y,z into −x,−y,−z, you might think that all vectors get reversed.
That is true for polar vectors like displacements and velocities,
but not for an axial vector like angular momentum—or any
vector which is derived from a cross product of two polar vectors. Axial
vectors have the same components after an inversion.
	  ^
	
	
		
	  
Some of you may object to the argument we
have just made, on the basis that the final states we have been
considering do not have a definite parity. You will find in Added
Note 2 at the end of this chapter another demonstration, which you may
prefer.
	  ^
	

		
	  
In the deeper understanding of the world
today, we do not have an easy way to distinguish whether the energy of
a photon is less “matter” than the energy of an electron, because as
you remember all the particles behave very similarly. The only
distinction is that the photon has zero rest mass.
	  ^
	

		
	  
Note that we always analyze the angular momentum
about the direction of motion of the particle. If we were to ask about
the angular momentum about any other axis, we would have to worry
about the possibility of “orbital” angular momentum—from a
p×r term. For instance, we can’t say that the photons
leave exactly from the center of the positronium. They could leave
like two things shot out from the rim of a spinning wheel. We don’t
have to worry about such possibilities when we take our axis along the
direction of motion.
	  ^
	

		
	  
We have not normalized
our amplitudes, or multiplied them by the amplitude for the
disintegration into any particular final state, but we can see that
this result is correct because we get zero probability when we look at
the other alternative—see Eq. (18.23).
	  ^
	

		
	  
See also Chapter 1 of the present
volume.
	  ^
	

		
	  
If you want details, they are given in an appendix
to this chapter.
	  ^
	

		
	  
We can neglect the recoil given to
the Ne20* in the first collision. Or better still, we can
calculate what it is and make a correction for it.
	  ^
	

		
	  
A large part of the work is done now that we have the
general rotation matrix Eq. (18.35).
	  ^
	

		
	  
The material of this appendix was originally included
in the body of the lecture.  We now feel that it is unnecessary to
include such a detailed treatment of the general case.
	  ^
	





  
    

19 The Hydrogen Atom and The Periodic Table



19–1 Schrödinger’s equation for the hydrogen atom


The most dramatic success in the history of the quantum
mechanics was the understanding of the details of the spectra of some
simple atoms and the understanding of the periodicities which are found
in the table of chemical elements. In this chapter we will at last bring
our quantum mechanics to the point of this important achievement,
specifically to an understanding of the spectrum of the hydrogen atom.
We will at the same time arrive at a qualitative explanation of the
mysterious properties of the chemical elements. We will do this by
studying in detail the behavior of the electron in a hydrogen atom—for
the first time making a detailed calculation of a distribution-in-space
according to the ideas we developed in Chapter 16.





For a complete description of the hydrogen atom we should describe the
motions of both the proton and the electron. It is possible to do this
in quantum mechanics in a way that is analogous to the classical idea of
describing the motion of each particle relative to the center of
gravity, but we will not do so. We will just discuss an approximation in
which we consider the proton to be very heavy, so we can think of it as
fixed at the center of the atom.





We will make another approximation by forgetting that the electron has a
spin and should be described by relativistic laws of mechanics. Some
small corrections to our treatment will be required since we will be
using the nonrelativistic Schrödinger equation and will disregard
magnetic effects. Small magnetic effects occur because from the
electron’s point-of-view the proton is a circulating charge which
produces a magnetic field. In this field the electron will have a
different energy with its spin up than with it down. The energy of the
atom will be shifted a little bit from what we will calculate. We will
ignore this small energy shift. Also we will imagine that the electron
is just like a gyroscope moving around in space always keeping the same
direction of spin. Since we will be considering a free atom in space the
total angular momentum will be conserved. In our approximation we will
assume that the angular momentum of the electron spin stays constant, so
all the rest of the angular momentum of the atom—what is usually
called “orbital” angular momentum—will also be
conserved. To an excellent approximation the electron moves in the
hydrogen atom like a particle without spin—the angular momentum of the
motion is a constant.





With these approximations the amplitude to find the electron at
different places in space can be represented by a function of position
in space and time. We let ψ (x,y,z,t) be the amplitude to find the
electron somewhere at the time t. According to the quantum mechanics
the rate of change of this amplitude with time is given by the
Hamiltonian operator working on the same function. From
Chapter 16,
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(19.1)




with
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(19.2)




Here, m is the electron mass, and V (r) is the potential energy
of the electron in the electrostatic field of the proton. Taking V=0
at large distances from the proton we can write1
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The wave function ψ must then satisfy the equation
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(19.3)









We want to look for definite energy states, so we try to find
solutions which have the form
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(19.4)




The function ψ (r) must then be a solution of

[image: -*-]
(19.5)




where E is some constant—the energy of the atom.





Since the potential energy term depends only on the radius, it turns
out to be much more convenient to solve this equation in polar
coordinates rather than rectangular coordinates. The Laplacian is
defined in rectangular coordinates by

[image: -*-]


We want to use instead the coordinates r, θ, ϕ shown in
Fig. 19–1. These coordinates are related to x, y,
z by

[image: -*-]


It’s a rather tedious mess to work through the algebra, but you can
eventually show that for any function f (r)=f (r,θ,ϕ),
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(19.6)





So in terms of the polar coordinates, the equation which is to be
satisfied by ψ (r,θ,ϕ) is



[image: -*-]
(19.7)









[image: -]
Fig. 19–1. 
The spherical polar coordinates r, θ, ϕ of the
  point P.





 


19–2 Spherically symmetric solutions


Let’s first try to find some very simple function that satisfies the
horrible equation in (19.7). Although the wave
function ψ will, in general, depend on the angles θ and ϕ as
well as on the radius r, we can see whether there might be a special
situation in which ψ does not depend on the angles. For a
wave function that doesn’t depend on the angles, none of the
amplitudes will change in any way if you rotate the coordinate
system. That means that all of the components of the angular momentum
are zero. Such a ψ must correspond to a state whose total angular
momentum is zero. (Actually, it is only the orbital angular momentum
which is zero because we still have the spin of the electron, but we
are ignoring that part.) A state with zero orbital angular momentum is
called by a special name. It is called an “s-state”—you can
remember “s for spherically symmetric.”2





Now if ψ, is not going to depend on θ and ϕ then the
entire Laplacian contains only the first term and
Eq. (19.7) becomes much simpler:
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(19.8)




Before you start to work on solving an equation like this, it’s a good
idea to get rid of all excess constants like e2, m, and ℏ,
by making some scale changes. Then the algebra will be easier. If we
make the following substitutions:
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(19.9)




and
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(19.10)




then Eq. (19.8) becomes (after multiplying through by ρ)
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(19.11)




These scale changes mean that we are measuring the distance r and
energy E as multiples of “natural” atomic units. That is,
ρ=r/rB, where rB=ℏ2/m e2, is called the “Bohr
radius” and is about 0.528 angstroms.
Similarly, ϵ=E/ER, with ER=m e4/2 ℏ2. This energy is
called the “Rydberg” and is about 13.6 electron volts.





Since the product ρ ψ appears on both sides, it is convenient
to work with it rather than with ψ itself. Letting
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(19.12)




we have the more simple-looking equation
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(19.13)









Now we have to find some function f which satisfies
Eq. (19.13)—in other words, we just have to solve a
differential equation. Unfortunately, there is no very useful, general
method for solving any given differential equation. You just have to
fiddle around. Our equation is not easy, but people have found that it
can be solved by the following procedure. First, you replace f, which
is some function of ρ, by a product of two functions
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(19.14)




This just means that you are factoring e−α ρ out
of f (ρ). You can certainly do that for any f (ρ) at all. This
just shifts our problem to finding the right function g (ρ).





Sticking (19.14) into (19.13), we get the
following equation for g:
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(19.15)




Since we are free to choose α, let’s make
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(19.16)




and get
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(19.17)









You may think we are no better off than we were at
Eq. (19.13), but the happy thing about our new equation is
that it can be solved easily in terms of a power series in ρ. (It
is possible, in principle, to solve (19.13) that way too,
but it is much harder.) We are saying that Eq. (19.17)
can be satisfied by some g (ρ) which can be written as a series,
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(19.18)




in which the ak are constant coefficients. Now all we have to do is
find a suitable infinite set of coefficients! Let’s check to see that
such a solution will work. The first derivative of this g (ρ) is
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and the second derivative is
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Using these expressions in (19.17) we have
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(19.19)




It’s not obvious that we have succeeded; but we forge onward. It will
all look better if we replace the first sum by an equivalent. Since
the first term of the sum is zero, we can replace each k by k+1
without changing anything in the infinite series; with this change the
first sum can equally well be written as
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Now we can put all the sums together to get
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(19.20)









This power series must vanish for all possible values of ρ. It
can do that only if the coefficient of each power of ρ is
separately zero. We will have a solution for the hydrogen atom if we
can find a set ak for which
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(19.21)




for all k≥1. That is certainly easy to arrange. Pick any a1
you like. Then generate all of the other coefficients from
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(19.22)




With this you will get a2, a3, a4, and so on, and
each pair will certainly satisfy (19.21). We get a series
for g (ρ) which satisfies (19.17). With it we can make
a ψ, that satisfies Schrödinger’s equation. Notice that the
solutions depend on the assumed energy (through α), but for each
value of ϵ, there is a corresponding series.





We have a solution, but what does it represent physically? We can get
an idea by seeing what happens far from the proton—for large values
of ρ. Out there, the high-order terms of the series are the most
important, so we should look at what happens for large k. When
k≫1, Eq. (19.22) is approximately the same as
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which means that
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(19.23)




But these are just the coefficients of the series
for e+2 α ρ. The function of g is a rapidly increasing
exponential. Even coupled with e−α ρ to
produce f (ρ)—see Eq. (19.14)—it still gives a solution
for f (ρ) which goes like eα ρ for large ρ. We
have found a mathematical solution but not a physical one. It
represents a situation in which the electron is least likely to
be near the proton!  It is always more likely to be found at a very
large radius ρ. A wave function for a bound electron must
go to zero for large ρ.





We have to think whether there is some way to beat the game, and there
is. Observe! If it just happened by luck that α were equal
to 1/n, where n is any positive integer, then Eq. (19.22)
would make an+1=0. All higher terms would also be zero. We wouldn’t
have an infinite series but a finite polynomial. Any polynomial
increases more slowly than eα ρ, so the
term e−α ρ will eventually beat it down, and the function f
will go to zero for large ρ. The only bound-state solutions
are those for which α=1/n, with n=1, 2, 3, 4, and so on.





Looking back to Eq. (19.16), we see that the
bound-state solutions to the spherically symmetric wave equation can
exist only when
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The allowed energies are just these fractions times the Rydberg,
ER=m e4/2 ℏ2, or the energy of the nth energy level is
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(19.24)




There is, incidentally, nothing mysterious about negative numbers for
the energy. The energies are negative because when we chose to
write V=−e2/r, we picked our zero point as the energy of an electron
located far from the proton. When it is close to the proton, its
energy is less, so somewhat below zero. The energy is lowest (most
negative) for n=1, and increases toward zero with increasing n.





Before the discovery of quantum mechanics, it was known from
experimental studies of the spectrum of hydrogen that the energy
levels could be described by Eq. (19.24), where ER
was found from the observations to be about 13.6 electron volts.
Bohr then devised a model which gave
the same equation and predicted that ER should be m e4/2 ℏ2.
But it was the first great success of the Schrödinger theory that it
could reproduce this result from a basic equation of motion for the
electron.





Now that we have solved our first atom, let’s look at the nature of
the solution we got. Pulling all the pieces together, each solution
looks like this:
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(19.25)




where
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(19.26)




and
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(19.27)




So long as we are mainly interested in the relative probabilities of
finding the electron at various places we can pick any number we wish
for a1. We may as well set a1=1. (People often choose a1 so
that the wave function is “normalized,” that is, so that the
integrated probability of finding the electron anywhere in the atom is
equal to 1. We have no need to do that just now.)





For the lowest energy state, n=1, and
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(19.28)




For a hydrogen atom in its ground (lowest-energy) state, the amplitude
to find the electron at any point drops off exponentially with the
distance from the proton. It is most likely to be found right at the
proton, and the characteristic spreading distance is about one unit
in ρ, or about one Bohr radius, rB.





Putting n=2 gives the next higher level. The wave function for this
state will have two terms. It is
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(19.29)




The wave function for the next level is
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(19.30)




The wave functions for these first three levels are plotted in
Fig. 19–2. You can see the general trend. All of the wave
functions approach zero rapidly for large ρ after oscillating a few
times. In fact, the number of “bumps” is just equal to n—or, if
you prefer, the number of zero-crossings of ψn is n−1.




[image: -]
Fig. 19–2. 
The wave functions for the first three l=0 states of the
hydrogen atom. (The scales are chosen so that the total probabilities
are equal.)





 


19–3 States with an angular dependence


In the states described by the ψn (r) we have found that the
probability amplitude for finding the electron is spherically
symmetric—depending only on r, the distance for the proton. Such
states have zero orbital angular momentum. We should now inquire about
states which may have some angular dependences.





We could, if we wished, just investigate the strictly mathematical
problem of finding the functions of r, θ, and ϕ which
satisfy the differential equation (19.7)—putting in the
additional physical conditions that the only acceptable functions are
ones which go to zero for large r. You will find this done in many
books. We are going to take a short cut by using the knowledge we
already have about how amplitudes depend on angles in space.





The hydrogen atom in any particular state is a particle with a certain
“spin” j—the quantum number of the total angular momentum. Part
of this spin comes from the electron’s intrinsic spin, and part from
the electron’s motion. Since each of these two components acts
independently (to an excellent approximation) we will again ignore the
spin part and think only about the “orbital” angular momentum. This
orbital motion behaves, however, just like a spin. For example, if the
orbital quantum number is l, the z-component of angular momentum
can be l, l−1, l−2, …, −l. (We are, as usual, measuring
in units of ℏ.)  Also, all the rotation matrices and other
properties we have worked out still apply. (From now on we will
really ignore the electron’s spin; when we speak of “angular
momentum” we will mean only the orbital part.)





Since the potential V in which the electron moves depends only
on r and not on θ or ϕ, the Hamiltonian is symmetric under
all rotations. It follows that the angular momentum and all its
components are conserved. (This is true for motion in any
“central field”—one which depends only on r—so is not a
special feature of the Coulomb e2/r potential.)





Now let’s think of some possible state of the electron; its internal
angular structure will be characterized by the quantum
number l. Depending on the “orientation” of the total angular momentum
with respect to the z-axis, the z-component of angular momentum
will be m, which is one of the 2 l+1 possibilities between +l
and −l. Let’s say m=1. With what amplitude will the electron be found
on the z-axis at some distance r? Zero. An electron on the
z-axis cannot have any orbital angular momentum around that
axis. Alright, suppose m is zero, then there can be some nonzero
amplitude to find the electron at each distance from the proton. We’ll
call this amplitude Fl (r). It is the amplitude to find the electron
at the distance r up along the z-axis, when the atom is in the
state [image: \ket{l,0}], by which we mean orbital spin l and
z-component m=0.





If we know Fl (r) everything is known. For any state [image: \ket{l,m}], we
know the amplitude ψl,m (r) to find the electron
anywhere in the atom. How? Watch. Suppose we have the atom in the
state [image: \ket{l,m}], what is the amplitude to find the electron at the
angle θ,ϕ and the distance r from the origin? Put a new
z-axis, say z′, at that angle (see Fig. 19–3), and ask
what is the amplitude that the electron will be at the distance r
along the new axis z′? We know that it cannot be found along z′
unless its z′-component of angular momentum, say m′, is zero. When
m′ is zero, however, the amplitude to find the electron along z′
is Fl (r). Therefore, the result is the product of two factors. The
first is the amplitude that an atom in the state [image: \ket{l,m}] along the
z-axis will be in the state [image: \ket{l,m'=0}] with respect to the
z′-axis. Multiply that amplitude by Fl (r) and you have the
amplitude ψl,m (r) to find the electron at (r,θ,ϕ)
with respect to the original axes.




[image: -]
Fig. 19–3. 
The point (r,θ,ϕ) is on the z′-axis of the
x′,y′,z′ coordinate frame.





Let’s write it out. We have worked out earlier the transformation
matrices for rotations. To go from the frame x,y,z to the
frame x′,y′,z′ of Fig. 19–3, we can rotate first around the
z-axis by the angle ϕ, and then rotate about the new
y-axis (y′) by the angle θ. This combined rotation is the
product
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The amplitude to find the state l,m′=0 after the rotation is
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(19.31)




Our result, then, is
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(19.32)









The orbital motion can have only integral values of l. (If the
electron can be found anywhere at r≠0, there is some amplitude to
have m=0 in that direction. And m=0 states exist only for integral
spins.) The rotation matrices for l=1 are given in
Table 17–2. For larger l you can use the general
formulas we worked out in Chapter 18. The matrices for
Rz (ϕ) and Ry (θ) appear separately, but you know how to
combine them. For the general case you would start with the
state [image: \ket{l,m}] and operate with Rz (ϕ) to get the new
state [image: R_z(\phi)\,\ket{l,m}] (which is just [image: e^{im\phi}\,\ket{l,m}]). Then you
operate on this state with Ry (θ) to get the
state [image: R_y(\theta)R_z(\phi)\,\ket{l,m}]. Multiplying by [image: \bra{l,0}] gives the
matrix element (19.31).





The matrix elements of the rotation operation are functions of
θ and ϕ. The particular functions which appear
in (19.31) also show up in many kinds of problems which
involve waves in spherical geometries and so has been given a special
name. Not everyone uses the same convention; but one of the most common
ones is
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(19.33)




The functions Yl,m (θ,ϕ) are called the spherical
harmonics, and a is just a numerical
factor which depends on the definition chosen for Yl,m. For the
usual definition,
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(19.34)




With this notation, the hydrogen wave functions can be written
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(19.35)









The angle functions Yl,m (θ,ϕ) are important not only in
many quantum-mechanical problems, but also in many areas of classical
physics in which the ∇2 operator appears, such as
electromagnetism. As another example of their use in quantum
mechanics, consider the disintegration of an excited state of
Ne20 (such as we discussed in the last chapter) which decays by
emitting an α-particle and going into O16:
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Suppose that the excited state has some spin l (necessarily an
integer) and that the z-component of angular momentum is m. We
might now ask the following: given l and m, what is the amplitude
that we will find the α-particle going off in a direction which
makes the angle θ with respect to the z-axis and the
angle ϕ with respect to the x z-plane—as shown in
Fig. 19–4.




[image: -]
Fig. 19–4. 
The decay of an excited state of Ne20.





To solve this problem we make, first, the following observation. A
decay in which the α-particle goes straight up along z must
come from a state with m=0. This is so because both O16 and the
α-particle have spin zero, and because their motion cannot have
any angular momentum about the z-axis. Let’s call this amplitude a
(per unit solid angle). Then, to find the amplitude for a decay at the
arbitrary angle of Fig. 19–4, all we need to know is
what amplitude the given initial state has zero angular momentum about
the decay direction. The amplitude for the decay at θ and ϕ
is then a times the amplitude that a state [image: \ket{l,m}] with respect to
the z-axis will be in the state [image: \ket{l,0}] with respect to z′—the
decay direction. This latter amplitude is just what we have written
in (19.31). The probability to see the α-particle
at θ,ϕ is
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As an example, consider an initial state with l=1 and various values
of m. From Table 17–2 we know the necessary
amplitudes. They are
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(19.36)




These are the three possible angular distribution
amplitudes—depending on the m-value of the initial nucleus.





Amplitudes such as the ones in (19.36) appear so often
and are sufficiently important that they are given several
names. If the angular distribution amplitude is proportional to any
one of the three functions or any linear combination of them, we say,
“The system has an orbital angular momentum of one.” Or we may say,
“The Ne20* emits a p-wave α-particle.” Or we say,
“The α-particle is emitted in an l=1 state.” Because there
are so many ways of saying the same thing it is useful to have a
dictionary. If you are going to understand what other physicists are
talking about, you will just have to memorize the language. In
Table 19–1 we give a dictionary of orbital angular
momentum.






Table 19–1. 
Dictionary of orbital angular momentum

(l=j= an integer)






[image: --]


If the orbital angular momentum is zero, then there is no change when
you rotate the coordinate system and there is no variation with
angle—the “dependence” on angle is as a constant, say 1. This is
also called an “s-state”, and there is only one such state—as
far as angular dependence is concerned. If the orbital angular
momentum is 1, then the amplitude of the angular variation may be
any one of the three functions given—depending on the value
of m—or it may be a linear combination. These are called
“p-states,” and there are three of them. If the orbital angular
momentum is 2 then there are the five functions shown. Any linear
combination is called an “l=2,” or a “d-wave” amplitude. Now
you can immediately guess what the next letter is—what should come
after s, p, d? Well, of course, f, g, h, and so on down
the alphabet!  The letters don’t mean anything. (They did once mean
something—they meant “sharp” lines, “principal” lines,
“diffuse” lines and “fundamental” lines of the optical spectra of
atoms. But those were in the days when people did not know where the
lines came from. After f there were no special names, so we now just
continue with g, h, and so on.)





The angular functions in the table go by several names—and are
sometimes defined with slightly different conventions about the
numerical factors that appear out in front. Sometimes they are called
“spherical harmonics,” and written
as Yl,m (θ,ϕ). Sometimes they are
written [image: P_l^m(\cos\theta)e^{im\phi}], and if m=0, simply
as Pl (cosθ). The functions Pl (cosθ) are called the
“Legendre polynomials” in cosθ, and the
functions [image: P_l^m(\cos\theta)] are called the “associated Legendre
functions.” You will find tables of these functions in many books.





Notice, incidentally, that all the functions for a given l have the
property that they have the same parity—for odd l they change sign
under an inversion and for even l they don’t change. So we can write
that the parity of a state of orbital angular momentum l is (−1)l.





As we have seen, these angular distributions may refer to a nuclear
disintegration or some other process, or to the distribution of the
amplitude to find an electron at some place in the hydrogen atom. For
instance, if an electron is in a p-state (l=1) the amplitude to
find it can depend on the angle in many possible ways—but all are
linear combinations of the three functions for l=1 in
Table 19–1. Let’s take the case cosθ. That’s
interesting. That means that the amplitude is positive, say, in the
upper part (θ<π/2), is negative in the lower
part (θ>π/2), and is zero when θ is 90°. Squaring this
amplitude we see that the probability of finding the electron varies
with θ as shown in Fig. 19–5—and is independent
of ϕ. This angular distribution is responsible for the fact that in
molecular binding the attraction of an electron in an l=1 state for
another atom depends on direction—it is the origin of the directed
valences of chemical attraction.




[image: -]
Fig. 19–5. 
A polar graph of cos2θ, which is the relative
probability of finding an electron at various angles from the z-axis
(for a given r) in an atomic state with l=1 and m=0.





 


19–4 The general solution for hydrogen


In Eq. (19.35) we have written the wave functions for
the hydrogen atom as
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(19.37)




These wave functions must be solutions of the differential
equation (19.7). Let’s see what that means. Put
(19.37) into (19.7); you get
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(19.38)





Now multiply through by r2/Fl and rearrange terms. The result is
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(19.39)





The left-hand side of this equation depends on θ and ϕ,
but not on r. No matter what value we choose for r, the
left side doesn’t change. This must also be true for the
right-hand side. Although the quantity in the square brackets has
r’s all over the place, the whole quantity cannot depend on r,
otherwise we wouldn’t have an equation good for all r. As you can
see, the bracket also does not depend on θ or ϕ. It must
be some constant. Its value may well depend on the l-value of the
state we are studying, since the function Fl must be the one
appropriate to that state; we’ll call the constant Kl.
Equation (19.39) is therefore equivalent to two
equations:



[image: -*-]
(19.40)

(19.41)










Now look at what we’ve done. For any state described by l and m,
we know the functions Yl,m; we can use Eq. (19.40)
to determine the constant Kl. Putting Kl into
Eq. (19.41) we have a differential equation for the
function Fl (r). If we can solve that equation for Fl (r), we have
all of the pieces to put into (19.37) to give ψ (r).





What is Kl? First, notice that it must be the same for all m
(which go with a particular l), so we can pick any m we want
for Yl,m and plug it into (19.40) to solve
for Kl. Perhaps the easiest one to use is Yl,l. From
Eq. (18.24),
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(19.42)




The matrix element for Ry (θ) is also quite simple:

[image: -*-]
(19.43)




where b is some number.3  Combining the two, we obtain
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(19.44)




Putting this function into (19.40) gives

[image: -*-]
(19.45)









Now that we have determined Kl, Eq. (19.41) tells us
about the radial function Fl (r). It is, of course, just the
Schrödinger equation with the angular part replaced by its
equivalent Kl Fl/r2. Let’s rewrite (19.41) in the form
we had in Eq. (19.8), as follows:

[image: -*-]
(19.46)




A mysterious term has been added to the potential energy. Although we
got this term by some mathematical shenanigan, it has a simple
physical origin. We can give you an idea about where it comes from in
terms of a semi-classical argument. Then perhaps you will not find it
quite so mysterious.





Think of a classical particle moving around some center of force. The
total energy is conserved and is the sum of the potential and kinetic
energies

[image: -*-]


In general, v can be resolved into a radial component vr and a
tangential component [image: r\dot{\theta}]; then

[image: -*-]


Now the angular momentum [image: mr^2\dot{\theta}] is also conserved; say it
is equal to L. We can then write

[image: -*-]


and the energy is

[image: -*-]


If there were no angular momentum we would have just the first two
terms. Adding the angular momentum L does to the energy just what
adding a term L2/2 m r2 to the potential energy would do. But this
is almost exactly the extra term in (19.46). The only
difference is that l (l+1) ℏ2 appears for the angular momentum
instead of l2 ℏ2 as we might expect. But we have seen before
(for example, Volume II, Section 34-7) that this is just the substitution that is
usually required to make a quasi-classical argument agree with a correct
quantum-mechanical calculation. We can, then, understand the new term as
a “pseudo-potential” which gives the “centrifugal
force” term that
appears in the equations of radial motion for a rotating system. (See
the discussion of “pseudo-forces” in Volume I,
Section 12-5.)





We are now ready to solve Eq. (19.46) for Fl (r). It
is very much like Eq. (19.8), so the same technique
will work again. Everything goes as before until you get to
Eq. (19.19) which will have the additional term
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(19.47)




This term can also be written as
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(19.48)




(We have taken out the first term and then shifted the running
index k down by 1.) Instead of Eq. (19.20) we have

[image: -*-]
(19.49)




There is only one term in ρ−1, so it must be zero. The
coefficient a1 must be zero (unless l=0 and we have our previous
solution). Each of the other terms is made zero by having the square
bracket come out zero for every k. This condition replaces
Eq. (19.22) by

[image: -*-]
(19.50)




This is the only significant change from the spherically symmetric
case.





As before the series must terminate if we are to have solutions which
can represent bound electrons. The series will end at k=n if α n=1. We get again the same condition on α, that it must be
equal to 1/n, where n is some positive integer. However,
Eq. (19.50) also gives a new restriction. The index k
cannot be equal to l, the denominator becomes zero and al+1 is
infinite. That is, since a1=0, Eq. (19.50) implies
that all successive ak are zero until we get to al+1, which can
be nonzero. This means that k must start at l+1 and end at n.





Our final result is that for any l there are many possible solutions
which we can call Fn,l where n≥l+1. Each solution has the
energy
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(19.51)




The wave function for the state of this energy with the angular
quantum numbers l and m is

[image: -*-]
(19.52)




with

[image: -*-]
(19.53)




The coefficients ak are obtained from (19.50). We
have, finally, a complete description of the states of a hydrogen
atom.





 


19–5 The hydrogen wave functions


Let’s review what we have discovered. The states which satisfy
Schrödinger’s equation for an electron in a Coulomb field are
characterized by three quantum numbers n, l, m, all integers. The
angular distribution of the electron amplitude can have only certain
forms which we call Yl,m. They are labeled by l, the
quantum number of total angular momentum, and m, the
“magnetic” quantum number, which can range from −l to +l. For
each angular configuration, various possible radial
distributions Fn,l (r) of the electron amplitude are possible; they
are labeled by the principal quantum number n—which can range from l+1 to ∞. The energy of the state depends only on n, and increases with
increasing n.





The lowest energy, or ground, state is an s-state. It has
l=0, n=1, and m=0. It is a “nondegenerate” state—there is only one
with this energy, and its wave function is spherically symmetric. The
amplitude to find the electron is a maximum at the center, and falls
off monotonically with increasing distance from the center. We can
visualize the electron amplitude as a blob as shown in
Fig. 19–6(a).
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Fig. 19–6. 
Rough sketches showing the general nature of some of the
hydrogen wave functions. The shaded regions show where the amplitudes
are large. The plus and minus signs show the relative sign of the
amplitude in each region.





There are other s-states with higher energies, for n=2, 3,
4, … For each energy there is only one version (m=0), and they
are all spherically symmetric. These states have amplitudes which
alternate in sign one or more times with increasing r. There are
n−1 spherical nodal surfaces—the places where ψ goes through
zero. The 2 s-state (l=0, n=2), for example, will look as
sketched in Fig. 19–6(b). (The dark areas indicate
regions where the amplitude is large, and the plus and minus signs
indicate the relative phases of the amplitude.) The energy levels of the
s-states are shown in the first column of Fig. 19–7.




[image: -]
Fig. 19–7. 
The energy level diagram for hydrogen.





Then there are the p-states—with l=1. For each n, which must
be 2 or greater, there are three states of the same energy, one each
for m=+1, m=0, and m=−1. The energy levels are as shown in
Fig. 19–7. The angular dependences of these states are
given in Table 19–1. For instance, for m=0, if the
amplitude is positive for θ near zero, it will be negative
for θ near 180°. There is a nodal plane coincident with the
x y-plane. For n>2 there are also spherical nodes. The n=2,
m=0 amplitude is sketched in Fig. 19–6(c), and the n=3,
m=0 wave function is sketched in Fig. 19–6(d).





You might think that since m represents a kind of “orientation” in
space, there should be similar distributions with the peaks of
amplitude along the x-axis or along the y-axis. Are these perhaps
the m=+1 and m=−1 states? No. But since we have three states with
equal energies, any linear combinations of the three will also be
stationary states of the same energy. It turns out that the
“x”-state—which corresponds to the “z”-state, or
m=0 state, of Fig. 19–6(c)—is a linear combination of the
m=+1 and m=−1 states. The corresponding “y”-state is another
combination. Specifically, we mean that
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These states all look the same when referred to their particular axes.





The d-states (l=2) have five possible values of m for each
energy, the lowest energy has n=3. The levels go as shown in
Fig. 19–7. The angular dependences get more complicated.
For instance the m=0 states have two conical nodes, so the wave
function reverses phase from +, to −, to + as you go around from
the north pole to the south pole. The rough form of the amplitude is
sketched in (e) and (f) of Fig. 19–6 for the
m=0 states with n=3 and n=4. Again, the larger n’s have spherical
nodes.





We will not try to describe any more of the possible states. You will
find the hydrogen wave functions described in more detail in many books.
Two good references are L. Pauling and E. B. Wilson,
Introduction to Quantum Mechanics, McGraw-Hill (1935); and
R. B. Leighton, Principles of Modern Physics,
McGraw-Hill (1959). You will find in them graphs of some of the
functions and pictorial representations of many states.





We would like to mention one particular feature of the wave functions
for higher l: for l>0 the amplitudes are zero at the center. That
is not surprising, since it’s hard for an electron to have angular
momentum when its radius arm is very small. For this reason, the
higher the l, the more the amplitudes are “pushed away” from the
center. If you look at the way the radial functions Fn,l (r) vary
for small r, you find from (19.53) that
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Such a dependence on r means that for larger l’s you have to go
farther from r=0 before you get an appreciable amplitude. This
behavior is, incidentally, determined by the centrifugal
force term in
the radial equation, so the same thing will apply for any potential
that varies slower than 1/r2 for small r—which most atomic
potentials do.





 


19–6 The periodic table


We would like now to apply the theory of the hydrogen atom in an
approximate way to get some understanding of the chemist’s periodic
table of the elements. For an element with atomic number Z there are
Z electrons held together by the electric attraction of the nucleus
but with mutual repulsion of the electrons. To get an exact solution we
would have to solve Schrödinger’s equation for Z electrons in a
Coulomb field. For helium the equation is
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where [image: \nabla_1^2] is a Laplacian which operates on r1, the
coordinate of one electron; [image: \nabla_2^2] operates on r2;
and r12=│r1−r2│. (We are again neglecting the spin of
the electrons.) To find the stationary states and energy levels we
would have to find solutions of the form

[image: -*-]


The geometrical dependence is contained in f, which is a function of
six variables—the simultaneous positions of the two electrons. No
one has found an analytic solution, although solutions for the lowest
energy states have been obtained by numerical methods.





With 3, 4, or 5 electrons it is hopeless to try to obtain exact
solutions, and it is going too far to say that quantum mechanics has
given a precise understanding of the periodic table. It is possible,
however, even with a sloppy approximation—and some fixing—to
understand, at least qualitatively, many chemical properties which
show up in the periodic table.





The chemical properties of atoms are determined primarily by their
lowest energy states. We can use the following approximate theory to
find these states and their energies. First, we neglect the electron
spin, except that we adopt the exclusion principle and say that
any particular electronic state can be occupied by only one electron.
This means that any particular orbital configuration can have up to
two electrons—one with spin up, the other with spin down. Next
we disregard the details of the interactions between the
electrons in our first approximation, and say that each electron moves
in a central field which is the combined field of the nucleus and
all the other electrons. For neon, which has 10 electrons, we say that
one electron sees an average potential due to the nucleus plus the other
nine electrons. We imagine then that in the Schrödinger equation for
each electron we put a V (r) which is a 1/r field modified by a
spherically symmetric charge density coming from the other electrons.





In this model each electron acts like an independent particle. The
angular dependence of its wave function will be just the same as the
ones we had for the hydrogen atom. There will be s-states,
p-states, and so on; and they will have the various possible
m-values. Since V (r) no longer goes as 1/r, the radial part of
the wave functions will be somewhat different, but it will be
qualitatively the same, so we will have the same radial quantum
numbers, n. The energies of the states will also be somewhat
different.




H


With these ideas, let’s see what we get. The ground state of hydrogen
has l=m=0 and n=1; we say the electron configuration is 1 s. The
energy is −13.6 eV. This means that it takes 13.6 electron volts
to pull the electron off the atom. We call this the “ionization
energy”, WI. A large ionization energy means that it is harder to
pull the electron off and, in general, that the material is chemically
less active.




He


Now take helium. Both electrons can be in the same lowest state (one
spin up and the other spin down). In this lowest state the electron
moves in a potential which is for small r like a Coulomb field
for z=2 and for large r like a Coulomb field for z=1. The result is
a “hydrogen-like” 1 s state with a somewhat lower energy. Both
electrons occupy identical 1 s states (l=0, m=0). The observed
ionization energy (to remove one electron) is 24.6 electron
volts. Since the 1 s “shell” is now filled—we allow only two
electrons—there is practically no tendency for an electron to be
attracted from another atom. Helium is chemically inert.




Li


The lithium nucleus has a charge of 3. The electron states will
again be hydrogen-like, and the three electrons will occupy the lowest
three energy levels. Two will go into 1 s states and the third will
go into an n=2 state. But with l=0 or l=1? In hydrogen these
states have the same energy, but in other atoms they don’t, for the
following reason. Remember that a 2 s state has some amplitude to be
near the nucleus while the 2 p state does not. That means that a
2 s electron will feel some of the triple electric charge of the Li
nucleus, but that a 2 p electron will stay out where the field looks
like the Coulomb field of a single charge. The extra attraction lowers
the energy of the 2 s state relative to the 2 p state. The energy
levels will be roughly as shown in Fig. 19–8—which you
should compare with the corresponding diagram for hydrogen in
Fig. 19–7. So the lithium atom will have two electrons in
1 s states and one in a 2 s. Since the 2 s electron has a higher
energy than a 1 s electron it is relatively easily removed. The
ionization energy of lithium is only 5.4 electron volts, and it is
quite active chemically.




[image: -]
Fig. 19–8. 
Schematic energy level diagram for an atomic electron with other
electrons present. (The scale is not the same as
Fig. 19–7.)





So you can see the patterns which develop; we have given in
Table 19–2 a list of the first 36 elements, showing the
states occupied by the electrons in the ground state of each atom. The
Table gives the ionization energy for the most loosely bound electron,
and the number of electrons occupying each “shell”—by which we mean
states with the same n. Since the different l-states have different
energies, each l-value corresponds to a sub-shell of
2 (2 l+1) possible states (of different m and electron spin). These
all have the same energy—except for some very small effects we are
neglecting.






Table 19–2. The electron configurations of the first 36 elements






[image: --]

Be


Beryllium is like lithium except that it has two electrons in the
2 s state as well as two in the filled 1 s shell.




B to Ne


Boron has 5 electrons. The fifth must go into a 2 p state. There
are 2×3=6 different 2 p states, so we can keep adding
electrons until we get to a total of 8. This takes us to neon. As we
add these electrons we are also increasing Z, so the whole electron
distribution gets pulled in closer and closer to the nucleus and the
energy of the 2 p states goes down. By the time we get to neon the
ionization energy is up to 21.6 electron volts. Neon does not easily give up
an electron. Also there are no more low-energy slots to be filled, so
it won’t try to grab an extra electron. Neon is chemically
inert. Fluorine, on the other hand, does have an empty position
where an electron can drop into a state of low energy, so it is quite
active in chemical reactions.




Na to Ar


With sodium the eleventh electron must start a new shell—going into
a 3 s state. The energy level of this state is much higher; the
ionization energy jumps down; and sodium is an active chemical. From
sodium to argon the s and p states with n=3 are occupied in
exactly the same sequence as for lithium to neon. Angular
configurations of the electrons in the outer unfilled shell have the
same sequence, and the progression of ionization energies is quite
similar. You can see why the chemical properties repeat with
increasing atomic number. Magnesium acts chemically much like
beryllium, silicon like carbon, and chlorine like fluorine. Argon is
inert like neon.





You may have noticed that there is a slight peculiarity in the
sequence of ionization energies between lithium and neon, and a
similar one between sodium and argon. The last electron is bound to
the oxygen atom somewhat less than we might expect. And sulfur is
similar. Why should that be? We can understand it if we put in just a
little bit of the effects of the interactions between individual
electrons. Think of what happens when we put the first 2 p electron
onto the boron atom. It has six possibilities—three possible
p-states, each with two spins. Imagine that the electron goes with
spin up into the m=0 state, which we have also called the
“z” state because it hugs the z-axis. Now what will happen in carbon?
There are now two 2 p electrons. If one of them goes into the
“z” state, where will the second one go? It will have lower energy if it
stays away from the first electron, which it can do by going into,
say, the “x” state of the 2 p shell. (This state is, remember,
just a linear combination of the m=+1 and m=−1 states.) Next, when
we go to nitrogen, the three 2 p electrons will have the lowest
energy of mutual repulsion if they go one each into the “x,” “y,”
and “z” configurations. For oxygen, however, the jig is
up. The fourth electron must go into one of the filled states—with
opposite spin. It is strongly repelled by the electron already in that
state, so its energy will not be as low as it might otherwise be, and
it is more easily removed. That explains the break in the sequence of
binding energies which appears between nitrogen and oxygen, and
between phosphorus and sulfur.




K to Zn


After argon, you would, at first, think that the new electrons would
start to fill up the 3 d states. But they don’t. As we described
earlier—and illustrated in Fig. 19–8—the higher
angular momentum states get pushed up in energy. By the time we get to
the 3 d states they are pushed to an energy a little bit above the
energy of the 4 s state. So in potassium the last electron goes into
the 4 s state. After this shell is filled (with two electrons) at
calcium, the 3 d states begin to be filled for scandium, titanium, and
vanadium.





The energies of the 3 d and 4 s states are so close together that
small effects can shift the balance either way. By the time we get to
put four electrons into the 3 d states, their repulsion raises the
energy of the 4 s state just enough that its energy is slightly above
the 3 d energy, so one electron shifts over. For chromium we don’t
get a 4, 2 combination as we would have expected, but instead a
5, 1 combination. The new electron added to get manganese fills up
the 4 s shell again, and the states of the 3 d shell are then
occupied one by one until we reach copper.





Since the outermost shell of manganese, iron, cobalt, and nickel have
the same configurations, however, they all tend to have similar
chemical properties. (This effect is much more pronounced in the
rare-earth elements which all have the same outer shell but a
progressively filling inner shell which has much less influence on
their chemical properties.)





In copper an electron is robbed from the 4 s shell, finally
completing the 3 d shell. The energy of the 10, 1 combination is,
however, so close to the 9, 2 configuration for copper that just
the presence of another atom nearby can shift the balance. For this
reason the two last electrons of copper are nearly equivalent, and
copper can have a valence of either 1 or 2. (It sometimes acts as
though its electrons were in the 9, 2 combination.) Similar things
happen at other places and account for the fact that other metals,
such as iron, combine chemically with either of two valences. By zinc,
both the 3 d and 4 s shells are filled once and for all.




Ga to Kr


From gallium to krypton the sequence proceeds normally again, filling
the 4 p shell. The outer shells, the energies, and the chemical
properties repeat the pattern of boron to neon and aluminum to argon.





Krypton, like argon and neon, is known as “noble” gas. All three are
chemically “inert.” This means only that, having filled shells of
relatively low energy, there are few situations in which there is an
energy advantage for them to join in a simple combination with other
elements. Having a filled shell is not enough. Beryllium and magnesium
have filled s-shells, but the energy of these shells is too high to
lead to stability. Similarly, one would have expected another
“noble” element at nickel, if the energy of the 3 d shell had been
lower (or the 4 s higher). On the other hand, krypton is not
completely inert; it will form a weakly-bound compound with chlorine.





Since our sample has turned up most of the main features of the
periodic table, we stop our examination at element number 36—there
are still seventy or so more!





We would like to bring up only one more point—that we not only can
understand the valences to some extent but also can say something
about the directional properties of the chemical bonds. Take an atom
like oxygen which has four 2 p electrons. The first three go into
“x,” “y,” and “z” states and the fourth will double one of
these states, leaving two—say “x” and “y”—vacant. Consider
then what happens in H2O. Each of the two hydrogens are willing to
share an electron with the oxygen, helping the oxygen to fill a
shell. These electrons will tend to go into the “x” and “y”
vacancies. So the water molecule should have the two hydrogen atoms
making a right angle with respect to the center of the oxygen. The
angle is actually 105°. We can even understand why the angle is
larger than 90°. In sharing their electrons the hydrogens end
up with a net positive charge. The electric repulsion “strains” the
wave functions and pushes the angle out to 105°. The same
situation occurs in H2S. But because the sulfur atom is larger,
the two hydrogen atoms are farther apart, there is less repulsion, and
the angle is only pushed out to about 93°. Selenium is even
larger, so in H2Se the angle is very nearly 90°.





We can use the same arguments to understand the geometry of ammonia,
H3N. Nitrogen has room for three more 2 p electrons, one each for
the “x,” “y,” and “z” type states. The three hydrogens
should join on at right angles to each other. The angles come out a
little larger than 90°—again from the electric
repulsion—but at least we see why the molecule of H3N is not
flat. The angles in phosphene, H3P, are close to 90°, and in
H3As are still closer. We assumed that NH3 was not flat when we
described it as a two-state system. And the nonflatness is what makes
the ammonia maser possible. Now we see that also that shape can be
understood from our quantum mechanics.





The Schrödinger equation has been one of the great triumphs of
physics. By providing the key to the underlying machinery of atomic
structure it has given an explanation for atomic spectra, for
chemistry, and for the nature of matter.
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	  	Since these
		special names are part of the common vocabulary of atomic physics, you
		will just have to learn them. We will help out by putting them
		together in a short “dictionary” later in the chapter.
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		Section 18-4. A state [image: \ket{l,l}] can be made out of
		2 l spin one-half particles all with spins up; while the state [image: \ket{l,0}]
		would have l up and l down. Under the rotation the amplitude that an
		up-spin remains up is cosθ/2, and that an up-spin goes down
		is −sinθ/2. We are asking for the amplitude that l up-spins stay
		up, while the other l up-spins go down. The amplitude for that
		is (−cosθ/2 sinθ/2)l which is proportional
		to sinlθ.
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20 Operators



20–1 Operations and operators


All the things we have done so far in quantum mechanics could be
handled with ordinary algebra, although we did from time to time show
you some special ways of writing quantum-mechanical quantities and
equations. We would like now to talk some more about some interesting
and useful mathematical ways of describing quantum-mechanical
things. There are many ways of approaching the subject of quantum
mechanics, and most books use a different approach from the one we
have taken. As you go on to read other books you might not see right
away the connections of what you will find in them to what we have
been doing. Although we will also be able to get a few useful results,
the main purpose of this chapter is to tell you about some of the
different ways of writing the same physics. Knowing them you should be
able to understand better what other people are saying. When people
were first working out classical mechanics they always wrote all the
equations in terms of x-, y-, and z-components. Then someone
came along and pointed out that all of the writing could be made much
simpler by inventing the vector notation. It’s true that when you come
down to figuring something out you often have to convert the vectors
back to their components. But it’s generally much easier to see what’s
going on when you work with vectors and also easier to do many of the
calculations. In quantum mechanics we were able to write many things
in a simpler way by using the idea of the “state vector.” The state
vector [image: \ket{\psi}] has, of course, nothing to do with geometric
vectors in three dimensions but is an abstract symbol that
stands for a physical state, identified by the “label,” or
“name,” ψ. The idea is useful because the laws of quantum
mechanics can be written as algebraic equations in terms of these
symbols. For instance, our fundamental law that any state can be made
up from a linear combination of base states is written as

[image: -*-]
(20.1)




where the Ci are a set of ordinary (complex) numbers—the
amplitudes [image: C_i=\braket{i}{\psi}]—while [image: \ket{1}], [image: \ket{2}],
[image: \ket{3}], and so on, stand for the base states in some base, or
representation.




If you take some physical state and do something to it—like rotating
it, or like waiting for the time Δ t—you get a different
state. We say, “performing an operation on a state produces a new
state.” We can express the same idea by an equation:

[image: -*-]
(20.2)




An operation on a state produces another state. The
operator [image: \Aop] stands for some particular operation. When this
operation is performed on any state, say [image: \ket{\psi}], it produces some
other state [image: \ket{\phi}].




What does Eq. (20.2) mean? We define it this
way. If you multiply the equation by [image: \bra{i}] and expand [image: \ket{\psi}]
according to Eq. (20.1), you get

[image: -*-]
(20.3)




(The states [image: \ket{j}] are from the same set as [image: \ket{i}].) This is now
just an algebraic equation. The numbers [image: \braket{i}{\phi}] give the
amount of each base state you will find in [image: \ket{\phi}], and it is
given in terms of a linear superposition of the
amplitudes [image: \braket{j}{\psi}] that you find [image: \ket{\psi}] in each base state. The
numbers [image: \bracket{i}{\Aop}{j}] are just the coefficients which tell
how much of [image: \braket{j}{\psi}] goes into each sum. The operator [image: \Aop]
is described numerically by the set of numbers, or “matrix,”
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(20.4)









So Eq. (20.2) is a high-class way of writing
Eq. (20.3). Actually it is a little more than that;
something more is implied. In Eq. (20.2) we do not make
any reference to a set of base states. Equation (20.3) is
an image of Eq. (20.2) in terms of some set of base
states. But, as you know, you may use any set you wish. And this idea is
implied in Eq. (20.2). The operator way of writing avoids
making any particular choice. Of course, when you want to get definite
you have to choose some set. When you make your choice, you use
Eq. (20.3). So the operator
equation (20.2) is a more abstract way of writing the
algebraic equation (20.3). It’s similar to the
difference between writing
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instead of
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The first way is much handier. When you want results, however,
you will eventually have to give the components with respect to some
set of axes. Similarly, if you want to be able to say what you really
mean by [image: \Aop], you will have to be ready to give the matrix Ai j
in terms of some set of base states. So long as you have in
mind some set [image: \ket{i}], Eq. 20.2 means just the same
as Eq. 20.3. (You should remember also that once you
know a matrix for one particular set of base states you can always
calculate the corresponding matrix that goes with any other base. You
can transform the matrix from one “representation” to another.)	





The operator equation in 20.2 also allows a new way of
thinking. If we imagine some operator [image: \Aop], we can use it with any
state [image: \ket{\psi}] to create a new state [image: \Aop\,\ket{\psi}]. Sometimes
a “state” we get this way may be very peculiar—it may not
represent any physical situation we are likely to encounter in
nature. (For instance, we may get a state that is not normalized to
represent one electron.) In other words, we may at times get
“states” that are mathematically artificial. Such artificial
“states” may still be useful, perhaps as the mid-point of some
calculation.





We have already shown you many examples of quantum-mechanical
operators. We have had the rotation operator [image: \Rop_y(\theta)] which
takes a state [image: \ket{\psi}] and produces a new state, which is the old
state as seen in a rotated coordinate system. We have had the parity
(or inversion) operator [image: \Pop], which makes a new state by reversing
all coordinates. We have had the operators [image: \sigmaop_x], [image: \sigmaop_y],
and [image: \sigmaop_z] for spin one-half particles.





The operator [image: \Jop_z] was defined in Chapter 17 in terms
of the rotation operator for a small angle ϵ.
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(20.5)




This just means, of course, that
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(20.6)




In this example, [image: \Jop_z\,\ket{\psi}] is ℏ/i ϵ times the
state you get if you rotate [image: \ket{\psi}] by the small angle ϵ
and then subtract the original state. It represents a “state” which
is the difference of two states.





One more example. We had an operator [image: \pop_x]—called the momentum
operator (x-component) defined in an equation
like 20.6. If [image: \Dop_x(L)] is the operator which displaces
a state along x by the distance L, then [image: \pop_x] is defined by
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(20.7)




where δ is a small displacement. Displacing the
state [image: \ket{\psi}] along x by a small distance δ gives a new
state [image: \ket{\psi'}].  We are saying that this new state is the old state
plus a small new piece
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The operators we are talking about work on a state vector
like [image: \ket{\psi}], which is an abstract description of a physical
situation. They are quite different from algebraic
operators which work on mathematical functions. For instance, d/d x is an
“operator” that works on f (x) by changing it to a new
function f′ (x)=d f/d x. Another example is the algebraic
operator ∇2. You can see why the same word is used in both
cases, but you should keep in mind that the two kinds of operators are
different. A quantum-mechanical operator [image: \Aop] does not work on
an algebraic function, but on a state vector like [image: \ket{\psi}]. Both
kinds of operators are used in quantum mechanics and often in similar
kinds of equations, as you will see a little later. When you are first
learning the subject it is well to keep the distinction always in mind.
Later on, when you are more familiar with the subject, you will find
that it is less important to keep any sharp distinction between the two
kinds of operators. You will, indeed, find that most books generally use
the same notation for both!





We’ll go on now and look at some useful things you can do with
operators. But first, one special remark. Suppose we have an
operator [image: \Aop] whose matrix in some base
is [image: A_{ij}\equiv\bracket{i}{\Aop}{j}]. The amplitude that the
state [image: \Aop\,\ket{\psi}] is also in some other state [image: \ket{\phi}]
is [image: \bracket{\phi}{\Aop}{\psi}]. Is there some meaning to the complex
conjugate of this amplitude? You should be able to show that
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(20.8)




where [image: \Aop\adj] (read “A dagger”) is an operator whose matrix
elements are
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(20.9)




To get the i,j element of A† you go to the j,i element
of [image: \Aop] (the indexes are reversed) and take its complex conjugate. The
amplitude that the state [image: \Aop\adj\,\ket{\phi}] is in [image: \ket{\psi}] is
the complex conjugate of the amplitude that [image: \Aop\,\ket{\psi}] is
in [image: \ket{\phi}]. The operator [image: \Aop\adj] is called the
“Hermitian adjoint” of [image: \Aop].
Many important operators of quantum mechanics have the special property
that when you take the Hermitian adjoint, you get the same operator
back. If [image: \Bop] is such an operator, then
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and it is called a “self-adjoint” or “Hermitian,” operator.








20–2 Average energies


So far we have reminded you mainly of what you already know. Now we
would like to discuss a new question. How would you find the
average energy of a system—say, an atom? If an atom is in a
particular state of definite energy and you measure the energy, you
will find a certain energy E. If you keep repeating the measurement
on each one of a whole series of atoms which are all selected to be in
the same state, all the measurements will give E, and the
“average” of your measurements will, of course, be just E.





Now, however, what happens if you make the measurement on some
state [image: \ket{\psi}] which is not a stationary state? Since the system
does not have a definite energy, one measurement would give one
energy, the same measurement on another atom in the same state would
give a different energy, and so on. What would you get for the average
of a whole series of energy measurements?





We can answer the question by projecting the state [image: \ket{\psi}] onto
the set of states of definite energy. To remind you that this is a
special base set, we’ll call the states [image: \ket{\eta_i}]. Each of the
states [image: \ket{\eta_i}] has a definite energy Ei. In this
representation,
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(20.10)




When you make an energy measurement and get some number Ei, you
have found that the system was in the state ηi. But you may get
a different number for each measurement. Sometimes you will get E1,
sometimes E2, sometimes E3, and so on. The probability
that you observe the energy E1 is just the probability of finding
the system in the state [image: \ket{\eta_1}], which is, of course, just the
absolute square of the amplitude [image: C_1=\braket{\eta_1}{\psi}]. The
probability of finding each of the possible energies Ei is
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(20.11)









How are these probabilities related to the mean value of a whole
sequence of energy measurements? Let’s imagine that we get a series of
measurements like this: E1, E7, E11, E9, E1,
E10, E7, E2, E3, E9, E6, E4, and so on. We
continue for, say, a thousand measurements. When we are finished we
add all the energies and divide by one thousand. That’s what we mean
by the average. There’s also a short-cut to adding all the
numbers. You can count up how many times you get E1, say that
is N1, and then count up the number of times you get E2, call
that N2, and so on. The sum of all the energies is certainly just
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The average energy is this sum divided by the total number of
measurements which is just the sum of all the Ni's, which we can
call N;
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(20.12)









We are almost there. What we mean by the probability of
something happening is just the number of times we expect it to happen
divided by the total number of tries. The ratio Ni/N should—for
large N—be very near to Pi, the probability of finding the
state [image: \ket{\eta_i}], although it will not be exactly Pi because of
the statistical fluctuations. Let’s write the predicted (or
“expected”) average energy as [image: \av{E}]; then we can say that
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(20.13)




The same arguments apply for any measurement. The average value of a
measured quantity A should be equal to
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where Ai are the various possible values of the observed quantity,
and Pi is the probability of getting that value.





Let’s go back to our quantum-mechanical state [image: \ket{\psi}]. It’s
average energy is
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(20.14)




Now watch this trickery! First, we write the sum as
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(20.15)




Next we treat the left-hand [image: \bra{\psi}] as a common “factor.” We
can take this factor out of the sum, and write it as
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This expression has the form
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where [image: \ket{\phi}] is some “cooked-up” state defined by
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(20.16)




It is, in other words, the state you get if you take each base
state [image: \ket{\eta_i}] in the amount [image: E_i\braket{\eta_i}{\psi}].





Now remember what we mean by the states [image: \ket{\eta_i}]. They are
supposed to be the stationary states—by which we mean that for each
one,
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Since Ei is just a number, the right-hand side is the same
as [image: \ket{\eta_i}E_i], and the sum in Eq. 20.16 is the
same as
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Now i appears only in the famous combination that contracts to
unity, so
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Magic! Equation 20.16 is the same as
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(20.17)




The average energy of the state [image: \ket{\psi}] can be written very
prettily as
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(20.18)




To get the average energy you operate on [image: \ket{\psi}] with [image: \Hop], and
then multiply by [image: \bra{\psi}]. A simple result.





Our new formula for the average energy is not only pretty. It is also
useful, because now we don’t need to say anything about any particular
set of base states. We don’t even have to know all of the possible
energy levels. When we go to calculate, we’ll need to describe our
state in terms of some set of base states, but if we know the
Hamiltonian matrix Hi j for that set we can get the average
energy. Equation 20.18 says that for any set of
base states [image: \ket{i}], the average energy can be calculated from
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(20.19)




where the amplitudes [image: \bracket{i}{\Hop}{j}] are just the elements of
the matrix Hi j.





Let’s check this result for the special case that the states [image: \ket{i}]
are the definite energy states. For them,
[image: \Hop\,\ket{j}=E_j\,\ket{j}],
so [image: \bracket{i}{\Hop}{j}=E_j\,\delta_{ij}] and
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which is right.





Equation 20.19 can, incidentally, be extended to other
physical measurements which you can express as an operator. For
instance, [image: \Lop_z] is the operator of the z-component of the angular
momentum L. The average of the z-component for the
state [image: \ket{\psi}] is
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One way to prove it is to think of some situation in which the energy
is proportional to the angular momentum. Then all the arguments go
through in the same way.





In summary, if a physical observable A is related to a suitable
quantum-mechanical operator [image: \Aop], the average value of A for the
state [image: \ket{\psi}] is given by
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(20.20)




By this we mean that
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(20.21)




with

[image: -*-]
(20.22)












20–3 The average energy of an atom


Suppose we want the average energy of an atom in a state described by
a wave function ψ (r); How do we find it? Let’s first think of
a one-dimensional situation with a state [image: \ket{\psi}] defined by the
amplitude [image: \braket{x}{\psi}=\psi(x)]. We are asking for the special
case of Eq. 20.19 applied to the coordinate
representation. Following our usual procedure, we replace the states
[image: \ket{i}] and [image: \ket{j}] by [image: \ket{x}] and [image: \ket{x'}], and change the
sums to integrals. We get
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(20.23)




This integral can, if we wish, be written in the following way:
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(20.24)




with
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(20.25)




The integral over x′ in 20.25 is the same one we had
in Chapter 16—see Eq. 16.50 and
Eq. 16.52—and is equal to
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We can therefore write
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(20.26)









Remember that [image: \braket{\psi}{x}=][image: \braket{x}{\psi}\cconj=]ψ* (x);
using this equality, the average energy in Eq. 20.23
can be written as
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(20.27)




Given a wave function ψ (x), you can get the average energy by
doing this integral. You can begin to see how we can go back and forth
from the state-vector ideas to the wave-function ideas.





The quantity in the braces of Eq. 20.27 is an
algebraic operator.1 We will write it as [image: \Hcalop]
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With this notation Eq. 20.23 becomes
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(20.28)









The algebraic operator [image: \Hcalop] defined here is, of course, not
identical to the quantum-mechanical operator [image: \Hop]. The new operator
works on a function of position [image: \psi(x)=\braket{x}{\psi}] to give a
new function of x, [image: \phi(x)=\braket{x}{\phi}]; while [image: \Hop] operates
on a state vector [image: \ket{\psi}] to give another state
vector [image: \ket{\phi}], without implying the coordinate representation or any
particular representation at all. Nor is [image: \Hcalop] strictly the same
as [image: \Hop] even in the coordinate representation. If we choose to work
in the coordinate representation, we would interpret [image: \Hop] in terms
of a matrix [image: \bracket{x}{\Hop}{x'}] which depends somehow on the two
“indices” x and x′; that is, we expect—according to
Eq. 20.25—that [image: \braket{x}{\phi}] is related to all the
amplitudes [image: \braket{x}{\psi}] by an integration. On the other hand, we
find that [image: \Hcalop] is a differential operator. We have already worked
out in Section 16–5 the connection
between [image: \bracket{x}{\Hop}{x'}] and the algebraic operator [image: \Hcalop].





We should make one qualification on our results. We have been assuming
that the amplitude [image: \psi(x)=\braket{x}{\psi}] is normalized. By this
we mean that the scale has been chosen so that
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so the probability of finding the electron somewhere is
unity. If you should choose to work with a ψ (x) which is not
normalized you should write
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(20.29)




It’s the same thing.





Notice the similarity in form between Eq. 20.28 and
Eq. 20.18. These two ways of writing the same result
appear often when you work with the x-representation. You can go
from the first form to the second with any [image: \Aop] which is a
local operator, where a local operator is one which in the
integral
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can be written as [image: \Acalop\psi(x)], where [image: \Acalop] is a differential
algebraic operator. There are, however, operators for which this is
not true. For them you must work with the basic equations in
20.21 and 20.22.





You can easily extend the derivation to three dimensions. The result
is that2
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(20.30)




with
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(20.31)




and with the understanding that
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(20.32)




The same equations can be extended to systems with several electrons
in a fairly obvious way, but we won’t bother to write down the
results.





With Eq. 20.30 we can calculate the average
energy of an atomic state even without knowing its energy levels. All we
need is the wave function. It’s an important law. We’ll tell you about
one interesting application. Suppose you want to know the ground-state
energy of some system—say the helium atom, but it’s too hard to solve
Schrödinger’s equation for the wave function, because there are too many
variables. Suppose, however, that you take a guess at the wave
function—pick any function you like—and calculate the average
energy. That is, you use Eq. 20.29—generalized to three
dimensions-to find what the average energy would be if the atom were
really in the state described by this wave function. This energy will
certainly be higher than the ground-state energy which is the
lowest possible energy the atom can have.3
Now pick another function and
calculate its average energy. If it is lower than your first choice
you are getting closer to the true ground-state energy. If you keep on
trying all sorts of artificial states you will be able to get lower
and lower energies, which come closer and closer to the ground-state
energy. If you are clever, you will try some functions which have a
few adjustable parameters. When you calculate the energy it will be
expressed in terms of these parameters. By varying the parameters to
give the lowest possible energy, you are trying out a whole class of
functions at once. Eventually you will find that it is harder and
harder to get lower energies and you will begin to be convinced that
you are fairly close to the lowest possible energy. The helium atom
has been solved in just this way—not by solving a differential
equation, but by making up a special function with a lot of adjustable
parameters which are eventually chosen to give the lowest possible
value for the average energy.








20–4 The position operator


What is the average value of the position of an electron in an atom?
For any particular state [image: \ket{\psi}] what is the average value of the
coordinate x? We’ll work in one dimension and let you extend the
ideas to three dimensions or to systems with more than one particle:
We have a state described by ψ (x), and we keep measuring x over
and over again. What is the average? It is
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where P (x) d x is the probability of finding the electron in a
little element d x at x. Suppose the probability density P (x)
varies with x as shown in Fig. 20–1. 
The electron is most likely
to be found near the peak of the curve. The average value of x is
also somewhere near the peak. It is, in fact, just the center of
gravity of the area under the curve.




[image: -]
Fig. 20–1. A curve of probability density representing a localized
particle.





We have seen earlier that P (x) is
just │ψ (x)│2=ψ* (x) ψ (x), so we can write the average
of x as
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(20.33)









Our equation for [image: \av{x}] has the same form as Eq. (20.28).
For the average energy, the energy operator [image: \Hcalop] appears between
the two ψ’s, for the average position there is just x. (If you
wish you can consider x to be the algebraic operator “multiply
by x.”) We can carry the parallelism still further, expressing the
average position in a form which corresponds to
Eq. (20.18). Suppose we just write
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(20.34)




with
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(20.35)




and then see if we can find the operator [image: \xop] which generates the
state [image: \ket{\alpha}], which will make Eq. (20.34) agree
with Eq. (20.33). That is, we must find
a [image: \ket{\alpha}], so that
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(20.36)




First, let’s expand [image: \braket{\psi}{\alpha}] in the
x-representation. It is
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(20.37)




Now compare the integrals in the last two equations. You see that in
the x-representation
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(20.38)




Operating on [image: \ket{\psi}] with [image: \xop] to get [image: \ket{\alpha}] is
equivalent to multiplying [image: \psi(x)=\braket{x}{\psi}] by x to
get [image: \alpha(x)=\braket{x}{\alpha}]. We have a definition of [image: \xop] in the
coordinate representation.4




[We have not bothered to try to get the x-representation of the
matrix of the operator [image: \xop]. If you are ambitious you can try to
show that
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(20.39)




You can then work out the amusing result that
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(20.40)




The operator [image: \xop] has the interesting property that when it works on
the base states [image: \ket{x}] it is equivalent to multiplying by x.]




Do you want to know the average value of x2? It is
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(20.41)




Or, if you prefer you can write
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with
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(20.42)




By [image: \xop^2] we mean [image: \xop\xop]—the two operators are used one after
the other. With the second form you can calculate [image: \av{x^2}], using
any representation (base-states) you wish. If you want the average
of xn, or of any polynomial in x, you can see how to get it.







20–5 The momentum operator


Now we would like to calculate the mean momentum of an
electron—again, we’ll stick to one dimension. Let P (p) d p be the
probability that a measurement will give a momentum between p
and p+d p. Then
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(20.43)




Now we let [image: \braket{p}{\psi}] be the amplitude that the
state [image: \ket{\psi}] is in a definite momentum state [image: \ket{p}]. This is the
same amplitude we called [image: \braket{\mom p}{\psi}] in
Section 16–3 and is a function of p just
as [image: \braket{x}{\psi}] is a function of x. There we chose to normalize the
amplitude so that
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(20.44)




We have, then,
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(20.45)




The form is quite similar to what we had for [image: \av{x}].





If we want, we can play exactly the same game we did
with [image: \av{x}]. First, we can write the integral above as
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(20.46)




You should now recognize this equation as just the expanded form of
the amplitude [image: \braket{\psi}{\beta}]—expanded in terms of the base
states of definite momentum. From Eq. (20.45) the
state [image: \ket{\beta}] is defined in the momentum representation by
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(20.47)




That is, we can now write
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(20.48)




with
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(20.49)




where the operator [image: \pop] is defined in terms of the
p-representation by Eq. (20.47





[Again, you can if you wish show that the matrix form of [image: \pop] is
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(20.50)




and that
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(20.51)




It works out the same as for x.]




Now comes an interesting question. We can write [image: \av{p}], as we have done in
Eqs. (20.45) and (20.48), and we know the
meaning of the operator [image: \pop] in the momentum representation. But how
should we interpret [image: \pop] in the coordinate representation? That is what
we will need to know if we have some wave function ψ (x), and we want to
compute its average momentum. Let’s make clear what we mean. If we start by
saying that [image: \av{p}] is given by Eq. (20.48), we can expand that
equation in terms of the p-representation to get back to
Eq. (20.46). If we are given the p-description of the
state—namely the amplitude [image: \braket{p}{\psi}], which is an algebraic function
of the momentum p—we can get [image: \braket{p}{\beta}] from
Eq. (20.47) and proceed to evaluate the integral. The question now
is: What do we do if we are given a description of the state in the
x-representation, namely the wave function [image: \psi(x)=\braket{x}{\psi}]?




Well, let’s start by expanding Eq. (20.48) in the
x-representation. It is
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(20.52)




Now, however, we need to know what the state [image: \ket{\beta}] is in the
x-representation. If we can find it, we can carry out the
integral. So our problem is to find the
function [image: \beta(x)=\braket{x}{\beta}].




We can find it in the following way. In Section 16–3 we
saw how [image: \braket{p}{\beta}] was related
to [image: \braket{x}{\beta}]. According to Eq. (16.24),
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(20.53)




If we know [image: \braket{p}{\beta}] we can solve this equation
for [image: \braket{x}{\beta}]. What we want, of course, is to express the result
somehow in terms of [image: \psi(x)=\braket{x}{\psi}], which we are assuming
to be known. Suppose we start with Eq. (20.47) and
again use Eq. (16.24) to write
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Since the integral is over x we can put the p inside the integral
and write

[image: -*-]
(20.55)




Compare this with (20.53). You would say that
[image: \braket{x}{\beta}] is equal to p ψ (x). No, No! The wave
function [image: \braket{x}{\beta}=\beta(x)] can depend only on x—not
on p. That’s the whole problem.




However, some ingenious fellow discovered that the integral
in (20.55) could be integrated by parts. The derivative
of e−i p x/ℏ with respect to x is (−i/ℏ) p e−i p x/ℏ, so
the integral in (20.55) is equivalent to
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If we integrate by parts, it becomes
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So long as we are considering bound states, so that ψ (x) goes to
zero at x=±∞, the bracket is zero and we have
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(20.56)




Now compare this result with Eq. (20.53). You
see that
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(20.57)




We have the necessary piece to be able to complete
Eq. (20.52). The answer is
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We have found how Eq. (20.48) looks in the coordinate
representation.




Now you should begin to see an interesting pattern developing. When we
asked for the average energy of the state [image: \ket{\psi}] we said it was
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The same thing is written in the coordinate world as
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Here [image: \Hcalop] is an algebraic operator which works on a
function of x. When we asked about the average value of x, we
found that it could also be written
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In the coordinate world the corresponding equations are
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When we asked about the average value of p, we wrote
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In the coordinate world the equivalent equations were
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In each of our three examples we start with the state [image: \ket{\psi}] and
produce another (hypothetical) state by a quantum-mechanical
operator. In the coordinate representation we generate the
corresponding wave function by operating on the wave
function ψ (x) with an algebraic operator. There are the following
one-to-one correspondences (for one-dimensional problems):
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In this list, we have introduced the symbol [image: \Pcalop_x] for the
algebraic operator (ℏ/i) ∂/∂x:
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and we have inserted the x subscript on [image: \Pcalop] to remind you that
we have been working only with the x-component of momentum.




You can easily extend the results to three dimensions. For the other
components of the momentum,
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If you want, you can even think of an operator of the vector
momentum and write
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where ex, ey, and ez are the unit vectors in the
three directions. It looks even more elegant if we write

[image: -*-]
(20.61)









Our general result is that for at least some quantum-mechanical
operators, there are corresponding algebraic operators in the
coordinate representation. We summarize our results so far—extended
to three dimensions—in Table 20–1. For each operator
we have the two equivalent forms:5

[image: -*-]
(20.62)




or

[image: -*-]
(20.63)










Table 20–1. 






[image: --]


We will now give a few illustrations of the use of these ideas. The
first one is just to point out the relation between [image: \Pcalop]
and [image: \Hcalop]. If we use [image: \Pcalop_x] twice, we get

[image: -*-]


This means that we can write the equality

[image: -*-]


Or, using the vector notation,

[image: -*-]
(20.64)




(In an algebraic operator, any term without the operator
symbol ([image: \op{\enspace}]) means just a straight multiplication.) This equation
is nice because it’s easy to remember if you haven’t forgotten your
classical physics. Everyone knows that the energy is
(nonrelativistically) just the kinetic energy p2/2 m plus the
potential energy, and [image: \Hcalop] is the operator of the total energy.




This result has impressed people so much that they try to teach
students all about classical physics before quantum mechanics. (We
think differently!) But such parallels are often misleading. For one
thing, when you have operators, the order of various factors is
important; but that is not true for the factors in a classical
equation.




In Chapter 17 we defined an operator [image: \pop_x] in terms
of the displacement operator [image: \Dop_x] by [see Eq. (17.27)]

[image: -*-]
(20.65)




where δ is a small displacement. We should show you that
this is equivalent to our new definition. According to what we have
just worked out, this equation should mean the same as

[image: -*-]


But the right-hand side is just the Taylor expansion
of ψ (x+δ), which is certainly what you get if you displace the
state to the left by δ (or shift the coordinates to the right
by the same amount). Our two definitions of [image: \pop] agree!




Let’s use this fact to show something else. Suppose we have a bunch of
particles which we label 1, 2, 3, …, in some complicated
system. (To keep things simple we’ll stick to one dimension.) The wave
function describing the state is a function of all the coordinates
x1, x2, x3, … We can write it
as ψ (x1,x2,x3,…). Now displace the system (to the left)
by δ. The new wave function

[image: -*-]


can be written as

[image: -*-]
(20.66)




According to Eq. (20.65) the operator of the momentum
of the state [image: \ket{\psi}] (let’s call it the total momentum) is
equal to

[image: -*-]


But this is just the same as

[image: -*-]
(20.67)




The operators of momentum obey the rule that the total momentum is the
sum of the momenta of all the parts. Everything holds together nicely,
and many of the things we have been saying are consistent with each
other.







20–6 Angular momentum


Let’s for fun look at another operation—the operation of orbital
angular momentum. In Chapter 17 we defined an
operator [image: \Jop_z] in terms of [image: \Rop_z(\phi)], the operator of a rotation by the
angle ϕ about the z-axis. We consider here a system described
simply by a single wave function ψ (r), which is a function of
coordinates only, and does not take into account the fact that the
electron may have its spin either up or down. That is, we want for the
moment to disregard intrinsic angular momentum and think about
only the orbital part. To keep the distinction clear, we’ll
call the orbital operator [image: \Lop_z], and define it in terms of the
operator of a rotation by an infinitesimal angle ϵ by

[image: -*-]


(Remember, this definition applies only to a state [image: \ket{\psi}] which
has no internal spin variables, but depends only on the
coordinates r=x,y,z.) If we look at the state [image: \ket{\psi}] in a new
coordinate system, rotated about the z-axis by the small
angle ϵ, we see a new state

[image: -*-]






[image: -]
Fig. 20–2. Rotation of the axes around the z-axis by the small
angle ϵ.





If we choose to describe the state [image: \ket{\psi}] in the coordinate
representation—that is, by its wave function ψ (r), we would
expect to be able to write

[image: -*-]
(20.68)




What is [image: \Lcalop_z]? Well, a point P at x and y in the new
coordinate system (really x′ and y′, but we will drop the primes)
was formerly at x−ϵ y and y+ϵ x, as you can see from
Fig. 20–2. Since the amplitude for the electron to be at P isn’t
changed by the rotation of the coordinates we can write



[image: -*-]



(remembering that ϵ is a small angle). This means that

[image: -*-]
(20.69)




That’s our answer. But notice. It is equivalent to

[image: -*-]
(20.70)




Returning to our quantum-mechanical operators, we can write

[image: -*-]
(20.71)




This formula is easy to remember because it looks like the familiar
formula of classical mechanics; it is the z-component of

[image: -*-]
(20.72)









One of the fun parts of this operator business is that many classical
equations get carried over into a quantum-mechanical form. Which ones
don’t? There had better be some that don’t come out right, because if
everything did, then there would be nothing different about quantum
mechanics. There would be no new physics. Here is one equation which
is different. In classical physics

[image: -*-]


What is it in quantum mechanics?

[image: -*-]


Let’s work it out in the x-representation. So that we’ll know what
we are doing we put in some wave function ψ (x). We have
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or

[image: -*-]


Remember now that the derivatives operate on everything to the
right. We get

[image: -*-]
(20.73)




The answer is not zero. The whole operation is equivalent
simply to multiplication by −ℏ/i:

[image: -*-]
(20.74)




If Planck’s constant were zero,
the classical and quantum results would be the same, and there would be
no quantum mechanics to learn!





Incidentally, if any two operators [image: \Aop] and [image: \Bop], when taken
together like this:

[image: -*-]


do not give zero, we say that “the operators do not commute.”
And an equation such as (20.74) is called a “commutation
rule.” You can see that the commutation rule
for px and y is
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There is another very important commutation rule that has to do with
angular momenta. It is

[image: -*-]
(20.75)




You can get some practice with [image: \xop] and [image: \pop] operators by proving
it for yourself.




It is interesting to notice that operators which do not commute can
also occur in classical physics. We have already seen this when we
have talked about rotation in space. If you rotate something, such as
a book, by 90° around x and then 90° around y, you
get something different from rotating first by 90° around y
and then by 90° around x. It is, in fact, just this property
of space that is responsible for Eq. (20.75).







20–7 The change of averages with time


Now we want to show you something else. How do averages change with
time? Suppose for the moment that we have an operator [image: \Aop], which
does not itself have time in it in any obvious way. We mean an
operator like [image: \xop] or [image: \pop]. (We exclude things like, say, the
operator of some external potential that was being varied with time,
such as V (x,t).)  Now suppose we calculate [image: \av{A}], in some
state [image: \ket{\psi}], which is

[image: -*-]
(20.76)




How will [image: \av{A}], depend on time? Why should it? One reason might be
that the operator itself depended explicitly on time—for instance,
if it had to do with a time-varying potential like V (x,t). But even
if the operator does not depend on t, say, for example, the
operator [image: \Aop=\xop], the corresponding average may depend on time. Certainly
the average position of a particle could be moving. How does such a
motion come out of Eq. (20.76) if [image: \Aop] has no time
dependence? Well, the state [image: \ket{\psi}] might be changing with
time. For nonstationary states we have often shown a time dependence
explicitly by writing a state as [image: \ket{\psi(t)}]. We want to show that
the rate of change of [image: \av{A}], is given by a new operator we will
call [image: \Adotop]. Remember that [image: \Aop] is an operator, so that putting a
dot over the A does not here mean taking the time derivative, but is
just a way of writing a new operator [image: \Adotop] which is defined
by

[image: -*-]
(20.77)




Our problem is to find the operator [image: \Adotop].





First, we know that the rate of change of a state is given by the
Hamiltonian. Specifically,
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(20.78)




This is just the abstract way of writing our original definition of
the Hamiltonian:

[image: -*-]
(20.79)




If we take the complex conjugate of Eq. (20.78), it is
equivalent to
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(20.80)




Next, see what happens if we take the derivatives with respect to t
of Eq. (20.76). Since each ψ depends on t, we
have
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(20.81)




Finally, using the two equations in (20.78)
and (20.80) to replace the derivatives, we get
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This equation is the same as

[image: -*-]


Comparing this equation with Eq. (20.77), you see that

[image: -*-]
(20.82)




That is our interesting proposition, and it is true for any operator [image: \Aop].





Incidentally, if the operator [image: \Aop] should itself be time
dependent, we would have had

[image: -*-]
(20.83)









Let us try out Eq. (20.82) on some example to see
whether it really makes sense. For instance, what operator corresponds
to [image: \xdotop]? We say it should be

[image: -*-]
(20.84)




What is this? One way to find out is to work it through in the
coordinate representation using the algebraic operator for [image: \Hcalop].
In this representation the commutator is



[image: -*-]



If you operate with this or any wave function ψ (x) and work out
all of the derivatives where you can, you end up after a little work
with

[image: -*-]


But this is just the same as

[image: -*-]


so we find that

[image: -*-]
(20.85)




or that

[image: -*-]
(20.86)




A pretty result. It means that if the mean value of x is changing
with time the drift of the center of gravity is the same as the mean
momentum divided by m. Exactly like classical mechanics.





Another example. What is the rate of change of the average momentum of
a state? Same game. Its operator is

[image: -*-]
(20.87)




Again you can work it out in the x representation. Remember that
[image: \pop] becomes d/d x, and this means that you will be taking the
derivative of the potential energy V (in the [image: \Hcalop])—but only
in the second term. It turns out that it is the only term which does
not cancel, and you find that
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or that

[image: -*-]
(20.88)




Again the classical result. The right-hand side is the force, so we
have derived Newton’s law! But remember—these are the laws for the
operators which give the average quantities. They do not
describe what goes on in detail inside an atom.





Quantum mechanics has the essential difference that [image: \pop\xop] is not
equal to [image: \xop\pop]. They differ by a little bit—by the small
number i ℏ. But the whole wondrous complications of interference, waves,
and all, result from the little fact that [image: \xop\pop-\pop\xop] is not
quite zero.





The history of this idea is also interesting. Within a period of a few
months in 1926, Heisenberg and
Schrödinger
independently found
correct laws to describe atomic mechanics.
Schrödinger
invented his wave function ψ (x) and found his
equation.
Heisenberg, on the
other hand, found that nature could be described by classical
equations, except that x p−p x should be equal to i ℏ, which he
could make happen by defining them in terms of special kinds of
matrices. In our language he was using the energy-representation, with
its matrices. Both Heisenberg’s
matrix
algebra and
Schrödinger’s differential equation
explained the hydrogen atom. A few months later
Schrödinger was able to show
that the two theories were equivalent—as we have seen here. But the
two different mathematical forms of quantum mechanics were discovered
independently.







	
  
The “operator” V (x) means “multiply by V (x).
  ^
 

	
  
We write d V for the element of volume. It
is, of course, just d x d y d z, and the integral goes from −∞
to +∞ in all three coordinates. 
  ^
 

	
  
You can also look
at it this way. Any function (that is, state) you choose can be
written as a linear combination of the base states which are definite
energy states. Since in this combination there is a mixture of higher
energy states in with the lowest energy state, the average energy will
be higher than the ground-state energy.
  ^
 

	
  
  Equation (20.38) does
not mean that [image: \ket{\alpha}=x\,\ket{\psi}]. You cannot “factor
out” the [image: \bra{x}], because the multiplier x in front
of [image: \braket{x}{\psi}] is a number which is different for each
state [image: \bra{x}]. It is the value of the coordinate of the electron in the
state [image: \ket{x}]. See Eq. (20.40).
  ^


	
  
  In many books the same
symbol is used for [image: \Aop] and [image: \Acalop], because they both stand for
the same physics, and because it is convenient not to have to write
different kinds of letters. You can usually tell which one is intended
by the context.
  ^






  
    

21 The Schrödinger Equation in a Classical Context: A Seminar on Superconductivity



21–1 Schrödinger’s equation in a magnetic field


This lecture is only for entertainment. I would like to give the
lecture in a somewhat different style—just to see how it works
out. It’s not a part of the course—in the sense that it is not
supposed to be a last minute effort to teach you something new. But,
rather, I imagine that I’m giving a seminar or research report on the
subject to a more advanced audience, to people who have already been
educated in quantum mechanics. The main difference between a seminar
and a regular lecture is that the seminar speaker does not carry out
all the steps, or all the algebra. He says: “If you do such and such,
this is what comes out,” instead of showing all of the details. So in
this lecture I’ll describe the ideas all the way along but just give
you the results of the computations. You should realize that
you’re not supposed to understand everything immediately, but believe
(more or less) that things would come out if you went through the
steps.




All that aside, this is a subject I want to talk about. It is
recent and modern and would be a perfectly legitimate talk to give at
a research seminar. My subject is the Schrödinger equation in a
classical setting—the case of superconductivity.




Ordinarily, the wave function which appears in the Schrödinger
equation applies to only one or two particles. And the wave function
itself is not something that has a classical meaning—unlike the
electric field, or the vector potential, or things of that kind. The
wave function for a single particle is a “field”—in the
sense that it is a function of position—but it does not generally
have a classical significance. Nevertheless, there are some situations
in which a quantum mechanical wave function does have classical
significance, and they are the ones I would like to take up. The
peculiar quantum mechanical behavior of matter on a small scale
doesn’t usually make itself felt on a large scale except in the
standard way that it produces Newton’s laws—the laws of the
so-called classical mechanics. But there are certain situations in
which the peculiarities of quantum mechanics can come out in a special
way on a large scale.




At low temperatures, when the energy of a system has been reduced
very, very low, instead of a large number of states being involved,
only a very, very small number of states near the ground state are
involved. Under those circumstances the quantum mechanical character
of that ground state can appear on a macroscopic scale. It is the
purpose of this lecture to show a connection between quantum mechanics
and large-scale effects—not the usual discussion of the way that
quantum mechanics reproduces Newtonian mechanics on the average, but a
special situation in which quantum mechanics will produce its own
characteristic effects on a large or “macroscopic” scale.




I will begin by reminding you of some of the properties of the
Schrödinger equation.1 I want to describe the behavior of a particle
in a magnetic field using the Schrödinger equation, because the
superconductive phenomena are involved with magnetic fields. An
external magnetic field is described by a vector potential, and the
problem is: what are the laws of quantum mechanics in a vector
potential? The principle that describes the behavior of quantum
mechanics in a vector potential is very simple. The amplitude that a
particle goes from one place to another along a certain route when
there’s a field present is the same as the amplitude that it would go
along the same route when there’s no field, multiplied by the
exponential of the line integral of the vector potential, times the
electric charge divided by
Planck’s constant2 (see Fig. 21–1):

[image: -*-]
(21.1)




It is a basic statement of quantum mechanics.



[image: -]
Fig. 21–1. The amplitude to go from a to b along the path Γ is
proportional to [image: \exp\bigl[(iq/\hbar)\int_a^b\FigA\cdot d\Figs\bigr]].





Now without the vector potential the Schrödinger equation of a
charged particle (nonrelativistic, no spin) is



[image: -*-]
(21.2)





where ϕ is the electric potential so that q ϕ is the
potential energy.3 Equation (21.1) is equivalent
to the statement that in a magnetic field the gradients in the
Hamiltonian are replaced in each case by the gradient minus q A,
so that Eq. (21.2) becomes



[image: -*-]
(21.3)





This is the Schrödinger equation for a particle with charge q
moving in an electromagnetic field A,ϕ (nonrelativistic, no
spin).




To show that this is true I’d like to illustrate by a simple example
in which instead of having a continuous situation we have a line of
atoms along the x-axis with the spacing b and we have an
amplitude −K for an electron to jump from one atom to another when there is no
field.4  Now according to Eq. (21.1) if
there’s a vector potential in the x-direction Ax (x,t), the
amplitude to jump will be altered from what it was before by a
factor exp[(i q/ℏ) Ax b], the exponent being i q/ℏ times the vector
potential integrated from one atom to the next. For simplicity we will
write (q/ℏ) Ax≡f (x), since Ax, will, in general, depend
on x. If the amplitude to find the electron at the atom “n”
located at x is called C (x)≡Cn, then the rate of change of
that amplitude is given by the following equation:

[image: -*-]
(21.4)









There are three pieces. First, there’s some energy E0 if the
electron is located at x. As usual, that gives the
term E0 C (x). Next, there is the term −K C (x+b), which is the amplitude
for the electron to have jumped backwards one step from
atom “n+1,” located at x+b. However, in doing so in a vector
potential, the phase of the amplitude must be shifted according to the
rule in Eq. (21.1). If Ax is not changing
appreciably in one atomic spacing, the integral can be written as just
the value of Ax at the midpoint, times the spacing b. So
(i q/ℏ) times the integral is just i b f (x+b/2). Since the
electron is jumping backwards, I showed this phase shift with a minus
sign. That gives the second piece. In the same manner there’s a
certain amplitude to have jumped from the other side, but this time we
need the vector potential at a distance (b/2) on the other side
of x, times the distance b. That gives the third piece. The sum gives
the equation for the amplitude to be at x in a vector potential.




Now we know that if the function C (x) is smooth enough (we take the
long wavelength limit), and if we let the atoms get closer together,
Eq. (21.4) will approach the behavior of an electron in
free space. So the next step is to expand the right-hand side
of (21.4) in powers of b, assuming b is very small. For
example, if b is zero the right-hand side is just (E0−2 K) C (x), so
in the zeroth approximation the energy is E0−2 K. Next comes the terms
in b. But because the two exponentials have opposite signs, only even
powers of b remain. So if you make a Taylor expansion of C (x),
of f (x), and of the exponentials, and then collect the terms in b2,
you get



[image: -*-]
(21.5)





(The “primes” mean differentiation with respect to x.)




Now this horrible combination of things looks quite complicated. But
mathematically it’s exactly the same as
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(21.6)





The second bracket operating on C (x) gives C′ (x)
plus i f (x) C (x). The first bracket operating on these two terms gives the
C′′ term and terms in the first derivative of f (x) and the first
derivative of C (x). Now remember that the solutions for zero
magnetic field5 represent a
particle with an effective mass meff given by

[image: -*-]


If you then set E0=−2 K, and put back f (x)=(q/ℏ) Ax, you can
easily check that Eq. (21.6) is the same as the first
part of Eq. (21.3). (The origin of the potential energy
term is well known, so I haven’t bothered to include it in this
discussion.) The proposition of Eq. (21.1) that the
vector potential changes all the amplitudes by the exponential factor
is the same as the rule that the momentum operator,
(ℏ/i) ∇ gets replaced by
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as you see in the Schrödinger equation of (21.3).







21–2 The equation of continuity for probabilities


Now I turn to a second point. An important part of the Schrödinger
equation for a single particle is the idea that the probability to
find the particle at a position is given by the absolute square of the
wave function. It is also characteristic of the quantum mechanics that
probability is conserved in a local sense. When the probability of
finding the electron somewhere decreases, while the probability of the
electron being elsewhere increases (keeping the total probability
unchanged), something must be going on in between. In other words, the
electron has a continuity in the sense that if the probability
decreases at one place and builds up at another place, there must be
some kind of flow between. If you put a wall, for example, in the way,
it will have an influence and the probabilities will not be the
same. So the conservation of probability alone is not the complete
statement of the conservation law, just as the conservation of energy
alone is not as deep and important as the local conservation of
energy.6 If energy
is disappearing, there must be a flow of energy to correspond. In the
same way, we would like to find a “current” of probability such that
if there is any change in the probability density (the probability of
being found in a unit volume), it can be considered as coming from an
inflow or an outflow due to some current. This current would be a vector
which could be interpreted this way—the x-component would be the net
probability per second and per unit area that a particle passes in the
x-direction across a plane parallel to the y z-plane. Passage
toward +x is considered a positive flow, and passage in the opposite
direction, a negative flow.




Is there such a current? Well, you know that the probability
density P (r,t) is given in terms of the wave function by
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(21.7)




I am asking: Is there a current J such that
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(21.8)




If I take the time derivative of Eq. (21.7), I get two
terms:

[image: -*-]
(21.9)




Now use the Schrödinger equation—Eq. (21.3)—for ∂ψ/∂t;
and take the complex conjugate of it to get ∂ψ*/∂t—each i
gets its sign reversed. You get



[image: -*-]
(21.10)





The potential terms and a lot of other stuff cancel out. And it turns
out that what is left can indeed be written as a perfect
divergence. The whole equation is equivalent to



[image: -*-]
(21.11)





It is really not as complicated as it seems. It is a symmetrical
combination of ψ* times a certain operation on ψ, plus
ψ times the complex conjugate operation on ψ*. It is
some quantity plus its own complex conjugate, so the whole thing is
real—as it ought to be. The operation can be remembered this way: it
is just the momentum operator [image: \Pcalvecop] minus q A. I could
write the current in Eq. (21.8) as
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(21.12)




There is then a current J which completes Eq. (21.8).




Equation (21.11) shows that the probability is conserved
locally. If a particle disappears from one region it cannot appear in
another without something going on in between. Imagine that the first
region is surrounded by a closed surface far enough out that there is
zero probability to find the electron at the surface. The total
probability to find the electron somewhere inside the surface is the
volume integral of P. But according to Gauss’s theorem the volume integral of the
divergence J is equal to the surface integral of its normal component. If
ψ is zero at the surface, Eq. (21.12) says that
J is zero, so the total probability to find the particle inside
can’t change. Only if some of the probability approaches the boundary
can some of it leak out. We can say that it only gets out by moving
through the surface—and that is local conservation.







21–3 Two kinds of momentum


The equation for the current is rather interesting, and sometimes
causes a certain amount of worry. You would think the current would be
something like the density of particles times the velocity. The
density should be something like ψ ψ*, which is o.k. And
each term in Eq. (21.12) looks like the typical form
for the average-value of the operator
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(21.13)




so maybe we should think of it as the velocity of flow. It looks as
though we have two suggestions for relations of velocity to momentum,
because we would also think that momentum divided by mass,
[image: \Pcalvecop/m], should be a velocity. The two possibilities differ by
the vector potential.




It happens that these two possibilities were also discovered in
classical physics, when it was found that momentum could be defined in
two ways.7 One of them is called “kinematic
momentum,” but for absolute clarity I will in this lecture call
it the “m v-momentum.”  This is the
momentum obtained by multiplying mass by velocity. The other is a more
mathematical, more abstract momentum, some times called the “dynamical
momentum,” which I’ll call “p-momentum.” The two possibilities are
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(21.14)
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(21.15)




It turns out that in quantum mechanics with magnetic fields it is the
p-momentum which is connected to the gradient operator [image: \Pcalvecop],
so it follows that (21.13) is the operator of a velocity.





I’d like to make a brief digression to show you what this is all
about—why there must be something like Eq. (21.15) in
the quantum mechanics. The wave function changes with time according
to the Schrödinger equation in Eq. (21.3). If I would
suddenly change the vector potential, the wave function wouldn’t
change at the first instant; only its rate of change changes. Now
think of what would happen in the following circumstance. Suppose I
have a long solenoid, in which I can produce a flux of magnetic field
(B-field), as shown in Fig. 21–2. And there is a charged
particle sitting nearby. Suppose this flux nearly instantaneously
builds up from zero to something. I start with zero vector potential
and then I turn on a vector potential. That means that I produce
suddenly a circumferential vector potential A. You’ll remember
that the line integral of A around a loop is the same as the flux
of B through the loop.8 Now what
happens if I suddenly turn on a vector potential?  According to the
quantum mechanical equation the sudden change of A does not make a
sudden change of ψ; the wave function is still the same. So the
gradient is also unchanged.



[image: -]
Fig. 21–2. The electric field outside a solenoid with an increasing
current.





But remember what happens electrically when I suddenly turn on a
flux. During the short time that the flux is rising, there’s an
electric field generated whose line integral is the rate of change of
the flux with time:
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That electric field is enormous if the flux is changing rapidly, and
it gives a force on the particle. The force is the charge times the
electric field, and so during the build up of the flux the particle
obtains a total impulse (that is, a change in m v) equal
to −q A. In other words, if you suddenly turn on a vector potential
at a charge, this charge immediately picks up an m v-momentum equal
to −q A. But there is something that isn’t changed immediately
and that’s the difference between m v and −q A. And so the
sum p=m v+q A is something which is not changed when you
make a sudden change in the vector potential. This quantity p is
what we have called the p-momentum and is of importance in classical
mechanics in the theory of dynamics, but it also has a direct
significance in quantum mechanics. It depends on the character of the
wave function, and it is the one to be identified with the operator
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21–4 The meaning of the wave function


When Schrödinger first
discovered his equation he discovered the conservation law of
Eq. (21.8) as a consequence of his equation. But he
imagined incorrectly that P was the electric charge
density of the electron and that J
was the electric current density, so he thought that the electrons
interacted with the electromagnetic field through these charges and
currents. When he solved his equations for the hydrogen atom and
calculated ψ, he wasn’t calculating the probability of
anything—there were no amplitudes at that time—the interpretation
was completely different. The atomic nucleus was stationary but there
were currents moving around; the charges P and currents J would
generate electromagnetic fields and the thing would radiate light. He
soon found on doing a number of problems that it didn’t work out quite
right. It was at this point that Born
made an essential contribution to our ideas regarding quantum mechanics.
It was Born who correctly (as far as
we know) interpreted the ψ of the Schrödinger equation in terms of
a probability amplitude—that very difficult idea that the square of
the amplitude is not the charge density but is only the probability per
unit volume of finding an electron there, and that when you do find the
electron some place the entire charge is there. That whole idea is due
to Born.




The wave function ψ (r) for an electron in an atom does not,
then, describe a smeared-out electron with a smooth charge
density. The electron is either here, or there, or somewhere else, but
wherever it is, it is a point charge. On the other hand, think of a
situation in which there are an enormous number of particles in
exactly the same state, a very large number of them with exactly the
same wave function. Then what? One of them is here and one of them is
there, and the probability of finding any one of them at a given place
is proportional to ψ ψ*. But since there are so many
particles, if I look in any volume d x d y d z I will generally find
a number close to ψ ψ* d x d y d z. So in a situation in
which ψ is the wave function for each of an enormous number of
particles which are all in the same state, ψ ψ* can
be interpreted as the density of particles. If, under these
circumstances, each particle carries the same charge q, we can, in
fact, go further and interpret ψ* ψ as the density of
electricity. Normally, ψ ψ* is given the dimensions
of a probability density, then ψ should be multiplied by q to
give the dimensions of a charge density. For our present purposes we
can put this constant factor into ψ, and take ψ ψ*
itself as the electric charge density. With this understanding,
J (the current of probability I have calculated) becomes
directly the electric current density.




So in the situation in which we can have very many particles in
exactly the same state, there is possible a new physical
interpretation of the wave functions. The charge density and the
electric current can be calculated directly from the wave functions
and the wave functions take on a physical meaning which extends into
classical, macroscopic situations.




Something similar can happen with neutral particles. When we have the
wave function of a single photon, it is the amplitude to find a photon
somewhere. Although we haven’t ever written it down there is an
equation for the photon wave function analogous to the Schrödinger
equation for the electron. The photon equation is just the same as
Maxwell’s equations for the electromagnetic field, and the wave
function is the same as the vector potential A. The wave
function turns out to be just the vector potential. The quantum
physics is the same thing as the classical physics because photons are
noninteracting Bose particles and many of them can be in the same
state—as you know, they like to be in the same state. The
moment that you have billions in the same state (that is, in the same
electromagnetic wave), you can measure the wave function, which is the
vector potential, directly. Of course, it worked historically the
other way. The first observations were on situations with many photons
in the same state, and so we were able to discover the correct
equation for a single photon by observing directly with our hands on a
macroscopic level the nature of wave function.




Now the trouble with the electron is that you cannot put more than one
in the same state. Therefore, it was long believed that the wave
function of the Schrödinger equation would never have a macroscopic
representation analogous to the macroscopic representation of the
amplitude for photons. On the other hand, it is now realized that the
phenomena of superconductivity presents us with just this situation.







21–5 Superconductivity


As you know, very many metals become superconducting below a certain
temperature9—the temperature is different for different metals. When you
reduce the temperature sufficiently the metals conduct electricity
without any resistance. This phenomenon has been observed for a very
large number of metals but not for all, and the theory of this
phenomenon has caused a great deal of difficulty. It took a very long
time to understand what was going on inside of superconductors, and I
will only describe enough of it for our present purposes. It turns out
that due to the interactions of the electrons with the vibrations of the
atoms in the lattice, there is a small net effective attraction
between the electrons. The result is that the electrons form together,
if I may speak very qualitatively and crudely, bound pairs.




Now you know that a single electron is a Fermi particle. But a bound
pair would act as a Bose particle, because if I exchange both
electrons in a pair I change the sign of the wave function twice, and
that means that I don’t change anything. A pair is a Bose
particle.




The energy of pairing—that is, the net attraction—is very, very
weak. Only a tiny temperature is needed to throw the electrons apart
by thermal agitation, and convert them back to “normal”
electrons. But when you make the temperature sufficiently low that
they have to do their very best to get into the absolutely lowest
state; then they do collect in pairs.




I don’t wish you to imagine that the pairs are really held together very
closely like a point particle. As a matter of fact, one of the great
difficulties of understanding this phenomena originally was that that is
not the way things are. The two electrons which form the pair are really
spread over a considerable distance; and the mean distance between pairs
is relatively smaller than the size of a single pair. Several pairs are
occupying the same space at the same time. Both the reason why electrons
in a metal form pairs and an estimate of the energy given up in forming
a pair have been a triumph of recent times. This fundamental point in
the theory of superconductivity was first explained in the theory of
Bardeen, Cooper, and Schrieffer,10 but that is not the subject of
this seminar. We will accept, however, the idea that the electrons do,
in some manner or other, work in pairs, that we can think of these pairs
as behaving more or less like particles, and that we can therefore talk
about the wave function for a “pair.”




Now the Schrödinger equation for the pair will be more or less like
Eq. (21.3). There will be one difference in that the
charge q will be twice the charge of an electron. Also, we don’t
know the inertia—or effective mass—for the pair in the crystal
lattice, so we don’t know what number to put in for m. Nor should we
think that if we go to very high frequencies (or short wavelengths),
this is exactly the right form, because the kinetic energy that
corresponds to very rapidly varying wave functions may be so great as
to break up the pairs. At finite temperatures there are always a few
pairs which are broken up according to the usual Boltzmann theory. The
probability that a pair is broken is proportional
to exp(−Epair/k T). The electrons that are not bound in pairs
are called “normal” electrons and will move around in the crystal in
the ordinary way. I will, however, consider only the situation at
essentially zero temperature—or, in any case, I will disregard the
complications produced by those electrons which are not in pairs.




Since electron pairs are bosons, when there are a lot of them in a
given state there is an especially large amplitude for other pairs to
go to the same state. So nearly all of the pairs will be locked down
at the lowest energy in exactly the same state—it won’t be
easy to get one of them into another state. There’s more amplitude to
go into the same state than into an unoccupied state by the famous
factor √n, where n−1 is the occupancy of the lowest
state. So we would expect all the pairs to be moving in the same
state.




What then will our theory look like? I’ll call ψ the wave
function of a pair in the lowest energy state. However, since
ψ ψ* is going to be proportional to the charge
density ρ, I can just as well write ψ as the square root of the
charge density times some phase factor:
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(21.17)




where ρ and θ are real functions of r. (Any complex
function can, of course, be written this way.) It’s clear what we mean
when we talk about the charge density, but what is the physical
meaning of the phase θ of the wave function? Well, let’s see
what happens if we substitute ψ (r) into
Eq. (21.12), and express the current density in terms of
these new variables ρ and θ. It’s just a change of variables
and I won’t go through all the algebra, but it comes out
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(21.18)




Since both the current density and the charge density have a direct
physical meaning for the superconducting electron gas, both ρ
and θ are real things. The phase is just as observable as ρ;
it is a piece of the current density J. The absolute
phase is not observable, but if the gradient of the phase is known
everywhere, the phase is known except for a constant. You can define
the phase at one point, and then the phase everywhere is determined.




Incidentally, the equation for the current can be analyzed a little
nicer, when you think that the current density J is in
fact the charge density times the velocity of motion of the fluid of
electrons, or ρ v. Equation (21.18) is then
equivalent to
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(21.19)




Notice that there are two pieces in the m v-momentum; one is a
contribution from the vector potential, and the other, a contribution
from the behavior of the wave function. In other words, the
quantity ℏ ∇θ is just what we have called the
p-momentum.







21–6 The Meissner effect


Now we can describe some of the phenomena of superconductivity. First,
there is no electrical resistance. There’s no resistance because all
the electrons are collectively in the same state. In the ordinary flow
of current you knock one electron or the other out of the regular
flow, gradually deteriorating the general momentum. But here to get
one electron away from what all the others are doing is very hard
because of the tendency of all Bose particles to go in the same
state. A current once started, just keeps on going forever.




It’s also easy to understand that if you have a piece of metal in the
superconducting state and turn on a magnetic field which isn’t too
strong (we won’t go into the details of how strong), the magnetic
field can’t penetrate the metal. If, as you build up the magnetic
field, any of it were to build up inside the metal, there would be a
rate of change of flux which would produce an electric field, and an
electric field would immediately generate a current which, by Lenz’s
law, would oppose the flux. Since all the electrons will move
together, an infinitesimal electric field will generate enough current
to oppose completely any applied magnetic field. So if you turn the
field on after you’ve cooled a metal to the superconducting state, it
will be excluded.




Even more interesting is a related phenomenon discovered experimentally
by Meissner.11 If you have a piece
of the metal at a high temperature (so that it is a normal conductor)
and establish a magnetic field through it, and then you lower the
temperature below the critical temperature (where the metal becomes a
superconductor), the field is expelled. In other words, it starts
up its own current—and in just the right amount to push the field out.




We can see the reason for that in the equations, and I’d like to
explain how. Suppose that we take a piece of superconducting material
which is in one lump. Then in a steady situation of any kind the
divergence of the current must be zero because there’s no place for it
to go. It is convenient to choose to make the divergence of A
equal to zero. (I should explain why choosing this convention doesn’t
mean any loss of generality, but I don’t want to take the time.)
Taking the divergence of Eq. (21.18), then gives that
the Laplacian of θ is equal to zero. One moment. What about the
variation of ρ? I forgot to mention an important point. There is
a background of positive charge in this metal due to the atomic ions
of the lattice. If the charge density ρ is uniform there is no
net charge and no electric field. If there would be any accumulation
of electrons in one region the charge wouldn’t be neutralized and
there would be a terrific repulsion pushing the electrons
apart.12 So in
ordinary circumstances the charge density of the electrons in the
superconductor is almost perfectly uniform—I can take ρ as a
constant. Now the only way that ∇2θ can be zero
everywhere inside the lump of metal is for θ to be a
constant. And that means that there is no contribution to J from
p-momentum. Equation (21.18) then says that the current
is proportional to ρ times A. So everywhere in a lump of
superconducting material the current is necessarily proportional to
the vector potential:
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(21.20)




Since ρ and q have the same (negative) sign, and since ρ
is a constant, I can set −ρ q/m=−(some positive constant);
then

[image: -*-]
(21.21)




This equation was originally proposed by London and
London13 to explain the
experimental observations of superconductivity—long before the quantum
mechanical origin of the effect was understood.




Now we can use Eq. (21.20) in the equations of
electromagnetism to solve for the fields. The vector potential is
related to the current density by
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(21.22)




If I use Eq. (21.21) for J, I have
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(21.23)




where λ2 is just a new constant;
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(21.24)









We can now try to solve this equation for A and see what happens
in detail. For example, in one dimension Eq. (21.23)
has exponential solutions of the form e−λ x
and e+λ x. These solutions mean that the vector potential must
decrease exponentially as you go from the surface into the
material. (It can’t increase because there would be a blow up.) If the
piece of metal is very large compared to 1/λ, the field only
penetrates to a thin layer at the surface—a layer about 1/λ
in thickness. The entire remainder of the interior is free of field,
as sketched in Fig. 21–3. This is the explanation of the Meissner
effect.
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Fig. 21–3. (a) A superconducting cylinder in a magnetic field; (b) the
magnetic field B as a function of r.





How big is the distance λ? Well, remember that r0, the
“electromagnetic radius” of the electron (2.8×10−13 cm),
is given by
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Also, remember that q in Eq. (21.24) is twice the
charge of an electron, so
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Writing ρ as qe N, where N is the number of electrons per
cubic centimeter, we have
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(21.25)




For a metal such as lead there are about 3×1022 atoms
per cm3, so if each one contributed only one conduction electron,
1/λ would be about 2×10−6 cm. That gives you the
order of magnitude.







21–7 Flux quantization

[image: -][image: -][image: -]

Fig. 21–4. A ring in a magnetic field: (a) in the normal state; (b) in the
superconducting state; (c) after the external field is removed.





The London equation (21.21) was proposed to account for
the observed facts of superconductivity including the
Meissner effect.
In recent times, however, there have been some even more
dramatic predictions. One prediction made by London was so peculiar
that nobody paid much attention to it until recently. I will now
discuss it. This time instead of taking a single lump, suppose we take
a ring whose thickness is large compared to 1/λ, and
try to see what would happen if we started with a magnetic field
through the ring, then cooled it to the superconducting state, and
afterward removed the original source of B. The sequence of
events is sketched in Fig. 21–4. In the normal state there will be a
field in the body of the ring as sketched in part (a) of the
figure. When the ring is made superconducting, the field is forced
outside of the material (as we have just seen). There will then
be some flux through the hole of the ring as sketched in part (b). If
the external field is now removed, the lines of field going through
the hole are “trapped” as shown in part (c). The flux Φ through
the center can’t decrease because ∂Φ/∂t must be equal to
the line integral of E around the ring, which is zero in a
superconductor. As the external field is removed a super current
starts flowing around the ring to keep the flux through the ring a
constant. (It’s the old eddy-current idea, only with zero resistance.)
These currents will, however, all flow near the surface (down to a
depth 1/λ), as can be shown by the same kind of analysis that
I made for the solid block. These currents can keep the magnetic field
out of the body of the ring, and produce the permanently trapped
magnetic field as well.




Now, however, there is an essential difference, and our equations
predict a surprising effect. The argument I made above that θ
must be a constant in a solid block does not apply for a ring,
as you can see from the following arguments.



[image: -]
Fig. 21–5. The curve Γ inside a superconducting ring.





Well inside the body of the ring the current density J is zero;
so Eq. (21.18) gives
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(21.26)




Now consider what we get if we take the line integral of A
around a curve Γ, which goes around the ring near the center of
its cross-section so that it never gets near the surface, as drawn in
Fig. 21–5. From Eq. (21.26),
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(21.27)




Now you know that the line integral of A around any loop is
equal to the flux of B through the loop
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Equation (21.27) then becomes
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(21.28)




The line integral of a gradient from one point to another (say from
point 1 to point 2) is the difference of the values of the
function at the two points. Namely,
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If we let the two end points 1 and 2 come together to make a
closed loop you might at first think that θ2 would
equal θ1, so that the integral in Eq. (21.28) would
be zero. That would be true for a closed loop in a simply-connected
piece of superconductor, but it is not necessarily true for a
ring-shaped piece. The only physical requirement we can make is that
there can be only one value of the wave function for each
point. Whatever θ does as you go around the ring, when you get
back to the starting point the θ you get must give the same
value for the wave function
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This will happen if θ changes by 2 π n, where n is any
integer. So if we make one complete turn around the ring the left-hand
side of Eq. (21.27) must be ℏ⋅2 π n. Using
Eq. (21.28), I get that
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(21.29)




The trapped flux must always be an integer times 2 π ℏ/q!
If you would think of the ring as a classical object with an ideally
perfect (that is, infinite) conductivity, you would think that
whatever flux was initially found through it would just stay
there—any amount of flux at all could be trapped. But the
quantum-mechanical theory of superconductivity says that the flux can
be zero, or 2 π ℏ/q, or 4 π ℏ/q, or 6 π ℏ/q, and so
on, but no value in between. It must be a multiple of a basic quantum
mechanical unit.




London14 predicted that the
flux trapped by a superconducting ring would be quantized and said
that the possible values of the flux would be given by
Eq. (21.29) with q equal to the electronic charge.
According to London the basic unit of flux should be 2 π ℏ/qe,
which is about 4×10−7 gauss⋅cm2. To
visualize such a flux, think of a tiny cylinder a tenth of a millimeter
in diameter; the magnetic field inside it when it contains this amount
of flux is about one percent of the earth’s magnetic field. It should be
possible to observe such a flux by a sensitive magnetic measurement.




In 1961 such a quantized flux was looked for and found by Deaver and
Fairbank15 at
Stanford University and at about the same time by Doll and
Näbauer16 in
Germany.




In the experiment of Deaver and Fairbank, a tiny cylinder of
superconductor was made by electroplating a thin layer of tin on a
one-centimeter length of No. 56 (1.3×10−3 cm diameter)
copper wire. The tin becomes superconducting below 3.8°K while
the copper remains a normal metal. The wire was put in a small
controlled magnetic field, and the temperature reduced until the tin
became superconducting. Then the external source of field was
removed. You would expect this to generate a current by Lenz’s law so
that the flux inside would not change. The little cylinder should now
have magnetic moment proportional to the flux inside. The magnetic
moment was measured by jiggling the wire up and down (like the needle
on a sewing machine, but at the rate of 100 cycles per second)
inside a pair of little coils at the ends of the tin cylinder. The
induced voltage in the coils was then a measure of the magnetic
moment.




When the experiment was done by Deaver and Fairbank, they found that
the flux was quantized, but that the basic unit was only
one-half as large as London had predicted. Doll and Näbauer got the
same result. At first this was quite mysterious,17 but
we now understand why it should be so. According to the Bardeen,
Cooper, and Schrieffer theory of superconductivity, the q which
appears in Eq. (21.29) is the charge of a pair
of electrons and so is equal to 2 qe. The basic flux unit is
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(21.30)




or one-half the amount predicted by London. Everything now fits
together, and the measurements show the existence of the predicted
purely quantum-mechanical effect on a large scale.







21–8 The dynamics of superconductivity


The Meissner effect
and the flux quantization are two confirmations of
our general ideas. Just for the sake of completeness I would like to
show you what the complete equations of a superconducting fluid would
be from this point of view—it is rather interesting. Up to this
point I have only put the expression for ψ into equations for
charge density and current. If I put it into the complete
Schrödinger equation I get equations for ρ and θ. It
should be interesting to see what develops, because here we have a
“fluid” of electron pairs with a charge density ρ and a
mysterious θ—we can try to see what kind of equations we get
for such a “fluid”!  So we substitute the wave function of
Eq. (21.17) into the Schrödinger
equation (21.3) and remember that ρ and θ are
real functions of x, y, z, and t. If we separate real and
imaginary parts we obtain then two equations. To write them in a shorter
form I will—following Eq. (21.19)—write
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(21.31)




One of the equations I get is then
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(21.32)




Since ρ v is first J, this is just the continuity
equation once more. The other equation I obtain tells how θ
varies; it is
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(21.33)




Those who are thoroughly familiar with hydrodynamics (of which I’m
sure few of you are) will recognize this as the equation of motion for
an electrically charged fluid if we identify ℏ θ as the
“velocity potential”—except that the last term, which should be
the energy of compression of the fluid, has a rather strange
dependence on the density ρ. In any case, the equation says that
the rate of change of the quantity ℏ θ is given by a kinetic
energy term, [image: -\tfrac{1}{2}mv^2], plus a potential energy term,
−q ϕ, with an additional term, containing the factor ℏ2,
which we could call a “quantum mechanical energy.” We have seen that
inside a superconductor ρ is kept very uniform by the
electrostatic forces, so this term can almost certainly be neglected
in every practical application provided we have only one
superconducting region. If we have a boundary between two
superconductors (or other circumstances in which the value of ρ
may change rapidly) this term can become important.




For those who are not so familiar with the equations of hydrodynamics,
I can rewrite Eq. (21.33) in a form that makes the
physics more apparent by using Eq. (21.31) to express
θ in terms of v. Taking the gradient of the whole of
Eq. (21.33) and expressing ∇θ in terms
of A and v by using (21.31), I get
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(21.34)





What does this equation mean? First, remember that
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(21.35)




Next, notice that if I take the curl of Eq. (21.31), I
get
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(21.36)




since the curl of a gradient is always zero. But ∇×A is
the magnetic field B, so the first two terms can be written as
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Finally, you should understand that ∂v/∂t stands for the
rate of change of the velocity of the fluid at a point. If you
concentrate on a particular particle, its acceleration is the
total derivative of v (or, as it is sometimes called in
fluid dynamics, the “comoving acceleration”), which is related
to ∂v/∂t by18
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(21.37)




This extra term also appears as the third term on the right side of
Eq. (21.34). Taking it to the left side, I can write
Eq. (21.34) in the following way:
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(21.38)




We also have from Eq. (21.36) that
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(21.39)









These two equations are the equations of motion of the superconducting
electron fluid. The first equation is just Newton’s law for a charged
fluid in an electromagnetic field. It says that the acceleration of
each particle of the fluid whose charge is q comes from the ordinary
Lorentz force q (E+v×B) plus an additional force,
which is the gradient of some mystical quantum mechanical
potential—a force which is not very big except at the junction
between two superconductors. The second equation says that the fluid
is “ideal”—the curl of v has zero divergence (the divergence
of B is always zero). That means that the velocity can be
expressed in terms of velocity potential. Ordinarily one writes that
∇×v=0 for an ideal fluid, but for an ideal
charged fluid in a magnetic field, this gets modified to
Eq. (21.39).




So, Schrödinger’s equation for the electron pairs in a superconductor
gives us the equations of motion of an electrically charged ideal fluid.
Superconductivity is the same as the problem of the hydrodynamics of a
charged liquid. If you want to solve any problem about superconductors
you take these equations for the fluid [or the equivalent pair,
Eqs. (21.32) and (21.33)], and combine
them with Maxwell’s equations to get the fields. (The charges
and currents you use to get the fields must, of course, include the ones
from the superconductor as well as from the external sources.)




Incidentally, I believe that Eq. (21.38) is not quite
correct, but ought to have an additional term involving the
density. This new term does not depend on quantum mechanics, but comes
from the ordinary energy associated with variations of density. Just
as in an ordinary fluid there should be a potential energy density
proportional to the square of the deviation of ρ from ρ0,
the undisturbed density (which is, here, also equal to the charge
density of the crystal lattice). Since there will be forces
proportional to the gradient of this energy, there should be another
term in Eq. (21.38) of the form:
(const)∇(ρ−ρ0)2. This term did not appear
from the analysis because it comes from the interactions between
particles, which I neglected in using an independent-particle
approximation. It is, however, just the force I referred to when I
made the qualitative statement that electrostatic forces would tend to
keep ρ nearly constant inside a superconductor.







21–9 The Josephson junction
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Fig. 21–6. Two superconductors separated by a thin insulator.





I would like to discuss next a very interesting situation that was
noticed by
Josephson19 while analyzing what might happen at
a junction between two superconductors. Suppose we have two
superconductors which are connected by a thin layer of insulating
material as in Fig. 21–6. Such an arrangement is now called a
“Josephson junction.” If the insulating layer is thick, the
electrons can’t get through; but if the layer is thin enough, there
can be an appreciable quantum mechanical amplitude for electrons to
jump across. This is just another example of the quantum-mechanical
penetration of a barrier.
Josephson analyzed this
situation and discovered that a number of strange phenomena should
occur.




In order to analyze such a junction I’ll call the amplitude to find an
electron on one side, ψ1, and the amplitude to find it on the
other, ψ2. In the superconducting state the wave function,
ψ1 is the common wave function of all the electrons on one side,
and ψ2 is the corresponding function on the other side. I could
do this problem for different kinds of superconductors, but let us
take a very simple situation in which the material is the same on both
sides so that the junction is symmetrical and simple. Also, for a
moment let there be no magnetic field. Then the two amplitudes should
be related in the following way:
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The constant K is a characteristic of the junction. If K were
zero, these two equations would just describe the lowest energy
state—with energy U—of each superconductor. But there is
coupling between the two sides by the amplitude K that there may be
leakage from one side to the other. (It is just the “flip-flop”
amplitude of a two-state system.) If the two sides are identical,
U1 would equal U2 and I could just subtract them off. But now
suppose that we connect the two superconducting regions to the two
terminals of a battery so that there is a potential difference V
across the junction. Then U1−U2=q V. I can, for convenience, define
the zero of energy to be halfway between, then the two equations are

[image: -*-]
(21.40)









These are the standard equations for two quantum mechanical states
coupled together. This time, let’s analyze these equations in another
way. Let’s make the substitutions

[image: -*-]
(21.41)




where θ1 and θ2 are the phases on the two sides of the
junction and ρ1 and ρ2 are the density of electrons at
those two points. Remember that in actual practice ρ1
and ρ2 are almost exactly the same and are equal to ρ0, the
normal density of electrons in the superconducting material. Now if
you substitute these equations for ψ1 and ψ2
into (21.40), you get four equations by equating the real
and imaginary parts in each case. Letting (θ2−θ1)=δ,
for short, the result is

[image: -*-]
(21.42)

(21.43)









The first two equations say that
[image: \dot{\rho}_1=-\dot{\rho}_2]. “But,” you say, “they must both be
zero if ρ1 and ρ2 are both constant and equal
to ρ0.” Not quite. These equations are not the whole story. They
say what [image: \dot{\rho}_1] and [image: \dot{\rho}_2] would be if there
were no extra electric forces due to an unbalance between the
electron fluid and the background of positive ions. They tell how the
densities would start to change, and therefore describe the
kind of current that would begin to flow. This current from side 1
to side 2 would be just [image: \dot{\rho}_1] (or [image: -\dot{\rho}_2]), or

[image: -*-]
(21.44)




Such a current would soon charge up side 2, except that we
have forgotten that the two sides are connected by wires to the
battery. The current that flows will not charge up region 2 (or
discharge region 1) because currents will flow to keep the potential
constant. These currents from the battery have not been included in
our equations. When they are included, ρ1 and ρ2 do not in
fact change, but the current across the junction is still given by
Eq. (21.44).




Since ρ1 and ρ2 do remain constant and equal to ρ0,
let’s set 2 K ρ0/ℏ=J0, and write

[image: -*-]
(21.45)




J0, like K, is then a number which is a characteristic of the
particular junction.





The other pair of equations (21.43) tells us about
θ1 and θ2 We are interested in the
difference δ=θ2−θ1 to use Eq. (21.45); what we
get is

[image: -*-]
(21.46)




That means that we can write

[image: -*-]
(21.47)




where δ0 is the value of δ at t=0. Remember also that
q is the charge of a pair, namely, q=2 qe. In Eqs.
(21.45) and (21.47) we have an important
result, the general theory of the Josephson junction.




Now what are the consequences? First, put on a DC voltage. If you put on
a DC voltage, V0, the argument of the sine
becomes (δ0+(q/ℏ) V0 t). Since ℏ is a small number
(compared to ordinary voltage and times), the sine oscillates rather
rapidly and the net current is nothing. (In practice, since the
temperature is not zero, you would get a small current due to the
conduction by “normal” electrons.) On the other hand if you have
zero voltage across the junction, you can get a current! With no
voltage the current can be any amount between +J0 and −J0
(depending on the value of δ0). But try to put a voltage across
it and the current goes to zero. This strange behavior has recently been
observed experimentally.20




There is another way of getting a current—by applying a voltage at a
very high frequency in addition to a DC voltage. Let

[image: -*-]


where v≪V. Then δ (t) is

[image: -*-]


Now for Δ x small,

[image: -*-]


Using this approximation for sinδ, I get

[image: -*-]


The first term is zero on the average, but the second term is not if

[image: -*-]


There should be a current if the AC voltage has just this frequency.
Shapiro21 claims to have observed such a
resonance effect.




If you look up papers on the subject you will find that they often
write the formula for the current as

[image: -*-]
(21.48)




where the integral is to be taken across the junction. The reason for
this is that when there’s a vector potential across the junction the
flip-flop amplitude is modified in phase in the way that we explained
earlier. If you chase that extra phase through, it comes out as given
above.



[image: -]
Fig. 21–7. Two Josephson junctions in parallel.





Finally, I would like to describe a very dramatic and interesting
experiment which has recently been made on the interference of the
currents from each of two junctions. In quantum mechanics we’re used to
the interference between amplitudes from two different slits. Now we’re
going to do the interference between two junctions caused by the
difference in the phase of the arrival of the currents through two
different paths. In Fig. 21–7, I show two different
junctions, “a” and “b”, connected in parallel. The ends, P
and Q, are connected to our electrical instruments which measure any
current flow. The external current, Jtotal, will be the sum
of the currents through the two junctions. Let Ja
and Jb be the currents through the two junctions, and let
their phases be δa and δb. Now the
phase difference of the wave functions between P and Q must be the
same whether you go on one route or the other. Along the route through
junction “a”, the phase difference between P and Q
is δa plus the line integral of the vector potential
along the upper route:

[image: -*-]
(21.49)




Why? Because the phase θ is related to A by
Eq. (21.26). If you integrate that equation along some
path, the left-hand side gives the phase change, which is then just
proportional to the line integral of A, as we have written here.
The phase change along the lower route can be written similarly

[image: -*-]
(21.50)




These two must be equal; and if I subtract them I get that the
difference of the deltas must be the line integral of A around
the circuit:

[image: -*-]


Here the integral is around the closed loop Γ of Fig. 21–7
which circles through both junctions. The integral over A is the
magnetic flux Φ through the loop. So the two δ’s are going
to differ by 2 qe/ℏ times the magnetic flux Φ which passes
between the two branches of the circuit:

[image: -*-]
(21.51)




I can control this phase difference by changing the magnetic field on
the circuit, so I can adjust the differences in phases and see whether
or not the total current that flows through the two junctions shows
any interference of the two parts. The total current will be the sum
of Ja and Jb. For convenience, I will write

[image: -*-]


Then,

[image: -*-]
(21.52)









Now we don’t know anything about δ0, and nature can adjust
that anyway she wants depending on the circumstances. In particular,
it will depend on the external voltage we apply to the junction. No
matter what we do, however, sinδ0 can never get bigger
than 1. So the maximum current for any given Φ is given by

[image: -*-]


This maximum current will vary with Φ and will itself have maxima
whenever

[image: -*-]


with n some integer. That is to say that the current takes on its
maximum values where the flux linkage has just those quantized values
we found in Eq. (21.30)!




The Josephson current through a double junction was recently
measured22 as a
function of the magnetic field in the area between the junctions. The
results are shown in Fig. 21–8. There is a general
background of current from various effects we have neglected, but the
rapid oscillations of the current with changes in the magnetic field are
due to the interference term cosqe Φ/ℏ of
Eq. (21.52).



[image: -]
Fig. 21–8. A recording of the current through a pair of Josephson junctions as a
function of the magnetic field in the region between the two junctions
(see Fig. 21–7). [This recording was provided by
R. C. Jaklevic, J. Lambe, A. H. Silver, and
J. E. Mercereau of the Scientific Laboratory, Ford Motor
Company.]





One of the intriguing questions about quantum mechanics is the question
of whether the vector potential exists in a place where there’s no
field.23 This
experiment I have just described has also been done with a tiny solenoid
between the two junctions so that the only significant magnetic
B field is inside the solenoid and a negligible amount is on the
superconducting wires themselves. Yet it is reported that the amount of
current depends oscillatorily on the flux of magnetic field inside that
solenoid even though that field never touches the wires—another
demonstration of the “physical reality” of the vector
potential.24




I don’t know what will come next. But look what can be done. First,
notice that the interference between two junctions can be used to make
a sensitive magnetometer. If a pair of junctions is made with an
enclosed area of, say, 1 mm2, the maxima in the curve of
Fig. 21–8 would be separated by 2×10−6 gauss. It
is certainly possible to tell when you are 1/10 of the way between two
peaks; so it should be possible to use such a junction to measure
magnetic fields as small as 2×10−7 gauss—or to measure
larger fields to such a precision. One should be able to go even
further. Suppose for example we put a set of 10 or 20 junctions
close together and equally spaced. Then we can have the interference
between 10 or 20 slits and as we change the magnetic field we will
get very sharp maxima and minima. Instead of a 2-slit interference we
can have a 20- or perhaps even a 100-slit interferometer for
measuring the magnetic field. Perhaps we can predict that the
measurement of magnetic fields will—by using the effects of
quantum-mechanical interference—eventually become almost as precise as
the measurement of wavelength of light.




These then are some illustrations of things that are happening in
modern times—the transistor, the laser, and now these junctions,
whose ultimate practical applications are still not known. The quantum
mechanics which was discovered in 1926 has had nearly 40 years of
development, and rather suddenly it has begun to be exploited in many
practical and real ways. We are really getting control of nature on a
very delicate and beautiful level.




I am sorry to say, gentlemen, that to participate in this adventure it
is absolutely imperative that you learn quantum mechanics as soon as
possible. It was our hope that in this course we would find a way to
make comprehensible to you at the earliest possible moment the
mysteries of this part of physics.
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         Feynman’s Epilogue

		
        
		
		Well, I’ve been talking to you for two years and now I’m going to
		quit. In some ways I would like to apologize, and other ways not. I
		hope—in fact, I know—that two or three dozen of you have been able
		to follow everything with great excitement, and have had a good time
		with it. But I also know that “the powers of instruction are of very
		little efficacy except in those happy circumstances in which they are
		practically superfluous.” So, for the two or three dozen who have
		understood everything, may I say I have done nothing but shown you the
		things. For the others, if I have made you hate the subject, I’m
		sorry. I never taught elementary physics before, and I apologize. I
		just hope that I haven’t caused a serious trouble to you, and that you
		do not leave this exciting business. I hope that someone else can
		teach it to you in a way that doesn’t give you indigestion, and that
		you will find someday that, after all, it isn’t as horrible as it
		looks.

		

		
		
		Finally, may I add that the main purpose of my teaching has not been
		to prepare you for some examination—it was not even to prepare you
		to serve industry or the military. I wanted most to give you some
		appreciation of the wonderful world and the physicist’s way of looking
		at it, which, I believe, is a major part of the true culture of modern
		times. (There are probably professors of other subjects who would
		object, but I believe that they are completely wrong.).

		

		
		
		Perhaps you will not only have some appreciation of this culture; it
		is even possible that you may want to join in the greatest adventure
		that the human mind has ever begun.
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