

Microsoft Excel 2019 VBA and Macros

Bill Jelen
Tracy Syrstad

Microsoft Excel 2019 VBA and Macros

Published with the authorization of Microsoft Corporation by:
Pearson Education, Inc.

Copyright © 2019 by Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or
by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, request
forms, and the appropriate contacts within the Pearson Education Global Rights & Permissions Department, please visit
www.pearsoned.com/permissions/. No patent liability is assumed with respect to the use of the information contained herein.
Although every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for
errors or omissions. Nor is any liability assumed for damages resulting from the use of the information contained herein.

ISBN-13: 978-1-5093-0611-4
ISBN-10: 1-5093-0611-0

Library of Congress Control Number: 2018963483

1 18

Trademarks

Microsoft and the trademarks listed at http://www.microsoft.com on the “Trademarks” webpage are trademarks of the
Microsoft group of companies. All other marks are property of their respective owners.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is implied.
The information provided is on an “as is” basis. The author, the publisher, and Microsoft Corporation shall have neither
liability nor responsibility to any person or entity with respect to any loss or damages arising from the information contained in
this book.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic
versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests),
please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Editor-in-Chief: Brett Bartow

Executive Editor: Loretta Yates

Project Editor: Charlotte Kughen

Managing Editor: Sandra Schroeder

Senior Project Editor: Tracey Croom

Copy Editor: Charlotte Kughen

Indexer: Cheryl Lenser

Proofreaders: Sarah Kearns and Karen Davis

Technical Editor: Bob Umlas

Editorial Assistant: Cindy Teeters

Cover Designer: Twist Creative, Seattle

http://www.pearsoned.com/permissions/
http://www.microsoft.com
mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com

Compositor: Bronkella Publishing LLC

For Chip Pearson. Chip’s website on VBA helped tens of thousands of people
around the globe. We were sorry to hear that he died this year in an auto accident
and dedicate this edition of the book to Chip.

—Bill Jelen & Tracy Syrstad

Contents at a Glance

Introduction

CHAPTER 1 Unleashing the power of Excel with VBA

CHAPTER 2 This sounds like BASIC, so why doesn’t it look familiar?

CHAPTER 3 Referring to ranges

CHAPTER 4 Looping and flow control

CHAPTER 5 R1C1-style formulas

CHAPTER 6 Creating and manipulating names in VBA

CHAPTER 7 Event programming

CHAPTER 8 Arrays

CHAPTER 9 Creating classes and collections

CHAPTER 10 Userforms: An introduction

CHAPTER 11 Data mining with Advanced Filter

CHAPTER 12 Using VBA to create pivot tables

CHAPTER 13 Excel power

CHAPTER 14 Sample user-defined functions

CHAPTER 15 Creating charts

CHAPTER 16 Data visualizations and conditional formatting

CHAPTER 17 Dashboarding with sparklines in Excel 2019

CHAPTER 18 Reading from and writing to the web

CHAPTER 19 Text file processing

CHAPTER 20 Automating Word

CHAPTER 21 Using Access as a back end to enhance multiuser access to data

CHAPTER 22 Advanced userform techniques

CHAPTER 23 The Windows Application Programming Interface (API)

CHAPTER 24 Handling errors

CHAPTER 25 Customizing the ribbon to run macros

CHAPTER 26 Creating add-ins

CHAPTER 27 An introduction to creating Office add-ins

CHAPTER 28 What’s new in Excel 2019 and what’s changed

Index

Contents

Introduction

Chapter 1 Unleashing the power of Excel with VBA
Barriers to entry

The macro recorder doesn’t work!
No one person on the Excel team is focused on the macro recorder
Visual Basic is not like BASIC
Good news: Climbing the learning curve is easy
Great news: Excel with VBA is worth the effort

Knowing your tools: The Developer tab
Understanding which file types allow macros
Macro security

Adding a trusted location
Using macro settings to enable macros in workbooks outside trusted

locations
Using Disable All Macros With Notification

Overview of recording, storing, and running a macro
Filling out the Record Macro dialog box

Running a macro
Creating a macro button on the ribbon
Creating a macro button on the Quick Access Toolbar
Assigning a macro to a form control, text box, or shape

Understanding the VB Editor
VB Editor settings
The Project Explorer
The Properties window

Understanding shortcomings of the macro recorder
Recording the macro
Examining code in the Programming window
Running the macro on another day produces undesired results
Possible solution: Use relative references when recording

Never use AutoSum or Quick Analysis while recording a macro
Four tips for using the macro recorder

Next steps

Chapter 2 This sounds like BASIC, so why doesn’t it look familiar?
Understanding the parts of VBA “speech”
VBA is not really hard

VBA Help files: Using F1 to find anything
Using Help topics

Examining recorded macro code: Using the VB Editor and Help
Optional parameters
Defined constants
Properties can return objects

Using debugging tools to figure out recorded code
Stepping through code
More debugging options: Breakpoints
Backing up or moving forward in code
Not stepping through each line of code
Querying anything while stepping through code
Using a watch to set a breakpoint
Using a watch on an object

Object Browser: The ultimate reference
Seven tips for cleaning up recorded code

Tip 1: Don’t select anything
Tip 2: Use Cells(2,5) because it’s more convenient than Range("E2")
Tip 3: Use more reliable ways to find the last row
Tip 4: Use variables to avoid hard-coding rows and formulas
Tip 5: Use R1C1 formulas that make your life easier
Tip 6: Copy and paste in a single statement
Tip 7: Use With...End With to perform multiple actions

Next steps

Chapter 3 Referring to ranges
The Range object

Syntax for specifying a range
Referencing named ranges

Shortcut for referencing ranges
Referencing ranges in other sheets
Referencing a range relative to another range
Using the Cells property to select a range
Using the Offset property to refer to a range
Using the Resize property to change the size of a range
Using the Columns and Rows properties to specify a range
Using the Union method to join multiple ranges
Using the Intersect method to create a new range from overlapping ranges
Using the IsEmpty function to check whether a cell is empty
Using the CurrentRegion property to select a data range
Using the Areas collection to return a noncontiguous range
Referencing tables
Next steps

Chapter 4 Looping and flow control
For...Next loops

Using variables in the For statement
Variations on the For...Next loop
Exiting a loop early after a condition is met
Nesting one loop inside another loop

Do loops
Using the While or Until clause in Do loops

The VBA loop: For Each
Object variables

Flow control: Using If...Then...Else and Select Case
Basic flow control: If...Then...Else
Using Select Case...End Select for multiple conditions

Next steps

Chapter 5 R1C1-style formulas
Toggling to R1C1-style references
Witnessing the miracle of Excel formulas

Entering a formula once and copying 1,000 times
The secret: It’s not that amazing

Understanding the R1C1 reference style
Using R1C1 with relative references
Using R1C1 with absolute references
Using R1C1 with mixed references
Referring to entire columns or rows with R1C1 style
Replacing many A1 formulas with a single R1C1 formula
Remembering column numbers associated with column letters

Using R1C1 formulas with array formulas
Next steps

Chapter 6 Creating and manipulating names in VBA
Global versus local names
Adding names
Deleting names
Adding comments
Types of names

Formulas
Strings
Numbers
Tables
Using arrays in names
Reserved names

Hiding names
Checking for the existence of a name
Next steps

Chapter 7 Event programming
Levels of events
Using events

Event parameters
Enabling events

Workbook events
Workbook-level sheet events

Worksheet events
Chart events

Embedded charts
Embedded chart and chart sheet events

Application-level events
Next steps

Chapter 8 Arrays
Declaring an array
Declaring a multidimensional array
Filling an array
Retrieving data from an array
Using arrays to speed up code
Using dynamic arrays
Passing an array
Next steps

Chapter 9 Creating classes and collections
Inserting a class module
Trapping application and embedded chart events

Application events
Embedded chart events

Creating a custom object
Using a custom object
Using collections

Creating a collection
Creating a collection in a standard module
Creating a collection in a class module

Using dictionaries
Using user-defined types to create custom properties
Next steps

Chapter 10 Userforms: An introduction
Input boxes
Message boxes
Creating a userform
Calling and hiding a userform

Programming userforms
Userform events

Programming controls
Using basic form controls

Using labels, text boxes, and command buttons
Deciding whether to use list boxes or combo boxes in forms
Using the MultiSelect property of a list box
Adding option buttons to a userform
Adding graphics to a userform
Using a spin button on a userform
Using the MultiPage control to combine forms

Verifying field entry
Illegal window closing
Getting a file name
Next steps

Chapter 11 Data mining with Advanced Filter
Replacing a loop with AutoFilter

Using AutoFilter techniques
Selecting visible cells only

Advanced Filter—easier in VBA than in Excel
Using the Excel interface to build an advanced filter

Using Advanced Filter to extract a unique list of values
Extracting a unique list of values with the user interface
Extracting a unique list of values with VBA code
Getting unique combinations of two or more fields

Using Advanced Filter with criteria ranges
Joining multiple criteria with a logical OR
Joining two criteria with a logical AND
Other slightly complex criteria ranges
The most complex criteria: Replacing the list of values with a condition

created as the result of a formula
Setting up a condition as the result of a formula

Using filter in place in Advanced Filter
Catching no records when using a filter in place

Showing all records after running a filter in place
The real workhorse: xlFilterCopy with all records rather than unique records

only
Copying all columns
Copying a subset of columns and reordering
Excel in practice: Turning off a few drop-down menus in the AutoFilter

Next steps

Chapter 12 Using VBA to create pivot tables
Understanding how pivot tables evolved over various Excel versions
While building a pivot table in Excel VBA

Defining the pivot cache
Creating and configuring the pivot table
Adding fields to the data area
Learning why you cannot move or change part of a pivot report
Determining the size of a finished pivot table to convert the pivot table to

values
Using advanced pivot table features

Using multiple value fields
Grouping daily dates to months, quarters, or years
Changing the calculation to show percentages
Eliminating blank cells in the values area
Controlling the sort order with AutoSort
Replicating the report for every product

Filtering a data set
Manually filtering two or more items in a pivot field
Using the conceptual filters
Using the search filter
Setting up slicers to filter a pivot table
Setting up a timeline to filter an Excel 2019 pivot table

Using the Data Model in Excel 2019
Adding both tables to the Data Model
Creating a relationship between the two tables
Defining the pivot cache and building the pivot table
Adding model fields to the pivot table
Adding numeric fields to the values area

Putting it all together
Using other pivot table features

Calculated data fields
Calculated items
Using ShowDetail to filter a record set
Changing the layout from the Design tab
Settings for the report layout
Suppressing subtotals for multiple row fields

Next steps

Chapter 13 Excel power
File operations

Listing files in a directory
Importing and deleting a CSV file
Reading a text file into memory and parsing

Combining and separating workbooks
Separating worksheets into workbooks
Combining workbooks
Copying data to separate worksheets without using Filter
Exporting data to an XML file

Working with cell comments
Resizing comments
Placing a chart in a comment

Tracking user changes
Techniques for VBA pros

Creating an Excel state class module
Drilling-down a pivot table
Filtering an OLAP pivot table by a list of items
Creating a custom sort order
Creating a cell progress indicator
Using a protected password box
Changing case
Selecting with SpecialCells
Resetting a table’s format
Using VBA Extensibility to add code to new workbooks

Next steps

Chapter 14 Sample user-defined functions
Creating user-defined functions

Building a simple custom function
Sharing UDFs
Useful custom Excel functions

Setting the current workbook’s name in a cell
Setting the current workbook’s name and file path in a cell
Checking whether a workbook is open
Checking whether a sheet in an open workbook exists
Counting the number of workbooks in a directory
Retrieving the user ID
Retrieving date and time of last save
Retrieving permanent date and time
Validating an email address
Summing cells based on interior color
Counting unique values
Removing duplicates from a range
Finding the first nonzero-length cell in a range
Substituting multiple characters
Retrieving numbers from mixed text
Converting week number into date
Extracting a single element from a delimited string
Sorting and concatenating
Sorting numeric and alpha characters
Searching for a string within text
Reversing the contents of a cell
Returning the addresses of duplicate maximum values
Returning a hyperlink address
Returning the column letter of a cell address
Using static random
Using Select…Case on a worksheet

Next steps

Chapter 15 Creating charts
Using .AddChart2 to create a chart
Understanding chart styles

Formatting a chart
Referring to a specific chart
Specifying a chart title
Applying a chart color
Filtering a chart
Using SetElement to emulate changes from the plus icon
Using the format method to micromanage formatting options
Changing an object’s fill
Formatting line settings

Creating a combo chart
Creating map charts
Creating waterfall charts
Exporting a chart as a graphic
Considering backward compatibility
Next steps

Chapter 16 Data visualizations and conditional formatting
VBA methods and properties for data visualizations
Adding data bars to a range
Adding color scales to a range
Adding icon sets to a range

Specifying an icon set
Specifying ranges for each icon

Using visualization tricks
Creating an icon set for a subset of a range
Using two colors of data bars in a range

Using other conditional formatting methods
Formatting cells that are above or below average
Formatting cells in the top 10 or bottom 5
Formatting unique or duplicate cells
Formatting cells based on their value
Formatting cells that contain text
Formatting cells that contain dates
Formatting cells that contain blanks or errors
Using a formula to determine which cells to format

Using the new NumberFormat property
Next steps

Chapter 17 Dashboarding with sparklines in Excel 2019
Creating sparklines
Scaling sparklines
Formatting sparklines

Using theme colors
Using RGB colors
Formatting sparkline elements
Formatting win/loss charts

Creating a dashboard
Observations about sparklines
Creating hundreds of individual sparklines in a dashboard

Next steps

Chapter 18 Reading from and writing to the web
Getting data from the web

Building multiple queries with VBA
Finding results from retrieved data
Putting it all together
Examples of scraping websites using web queries

Using Application.OnTime to periodically analyze data
Using ready mode for scheduled procedures
Specifying a window of time for an update
Canceling a previously scheduled macro
Closing Excel cancels all pending scheduled macros
Scheduling a macro to run x minutes in the future
Scheduling a verbal reminder
Scheduling a macro to run every two minutes

Publishing data to a web page
Using VBA to create custom web pages
Using Excel as a content management system
Bonus: FTP from Excel

Next steps

Chapter 19 Text file processing
Importing from text files

Importing text files with fewer than 1,048,576 rows
Dealing with text files with more than 1,048,576 rows

Writing Text Files
Next steps

Chapter 20 Automating Word
Using early binding to reference a Word object
Using late binding to reference a Word object
Using the New keyword to reference the Word application
Using the CreateObject function to create a new instance of an object
Using the GetObject function to reference an existing instance of Word
Using constant values

Using the Watches window to retrieve the real value of a constant
Using the Object Browser to retrieve the real value of a constant

Understanding Word’s objects
The Document object

Controlling form fields in Word
Next steps

Chapter 21 Using Access as a back end to enhance multiuser access to data
ADO versus DAOs
The tools of ADO
Adding a record to a database
Retrieving records from a database
Updating an existing record
Deleting records via ADO
Summarizing records via ADO
Other utilities via ADO

Checking for the existence of tables
Checking for the existence of a field
Adding a table on the fly
Adding a field on the fly

SQL Server examples

Next steps

Chapter 22 Advanced userform techniques
Using the UserForm toolbar in the design of controls on userforms
More userform controls

CheckBox controls
TabStrip controls
RefEdit controls
ToggleButton controls
Using a scrollbar as a slider to select values

Controls and collections
Modeless userforms
Using hyperlinks in userforms
Adding controls at runtime

Resizing the userform on the fly
Adding a control on the fly
Sizing on the fly
Adding other controls
Adding an image on the fly
Putting it all together

Adding help to a userform
Showing accelerator keys
Adding control tip text
Creating the tab order
Coloring the active control

Creating transparent forms
Next steps

Chapter 23 The Windows Application Programming Interface (API)
Understanding an API declaration
Using an API declaration
Making 32-bit- and 64-bit-compatible API declarations
API function examples

Retrieving the computer name
Checking whether an Excel file is open on a network

Retrieving display-resolution information
Customizing the About dialog box
Disabling the X for closing a userform
Creating a running timer
Playing sounds

Next steps

Chapter 24 Handling errors
What happens when an error occurs?

A misleading debug error in userform code
Basic error handling with the On Error GoTo syntax
Generic error handlers

Handling errors by choosing to ignore them
Suppressing Excel warnings
Encountering errors on purpose

Training your clients
Errors that won’t show up in debug mode
Errors while developing versus errors months later

Runtime error 9: Subscript out of range
Runtime error 1004: Method range of object global failed

The ills of protecting code
More problems with passwords
Errors caused by different versions
Next steps

Chapter 25 Customizing the ribbon to run macros
Where to add code: The customui folder and file
Creating a tab and a group
Adding a control to a ribbon
Accessing the file structure
Understanding the RELS file
Renaming an Excel file and opening a workbook
Using images on buttons

Using Microsoft Office icons on a ribbon
Adding custom icon images to a ribbon

Troubleshooting error messages
The attribute “Attribute Name” on the element “customui ribbon” is not

defined in the DTD/schema
Illegal qualified name character
Element “customui Tag Name” is unexpected according to content model

of parent element “customui Tag Name”
Found a problem with some content
Wrong number of arguments or invalid property assignment
Invalid file format or file extension
Nothing happens

Other ways to run a macro
Using a keyboard shortcut to run a macro
Attaching a macro to a command button
Attaching a macro to a shape
Attaching a macro to an ActiveX control
Running a macro from a hyperlink

Next steps

Chapter 26 Creating add-ins
Characteristics of standard add-ins
Converting an Excel workbook to an add-in

Using Save As to convert a file to an add-in
Using the VB Editor to convert a file to an add-in

Having a client install an add-in
Standard add-ins are not secure
Closing add-ins
Removing add-ins
Using a hidden workbook as an alternative to an add-in
Next steps

Chapter 27 An introduction to creating Office add-ins
Creating your first Office add-in—Hello World
Adding interactivity to an Office add-in
A basic introduction to HTML

Using tags
Adding buttons

Using CSS files
Using XML to define an Office add-in
Using JavaScript to add interactivity to an Office add-in

The structure of a function
Curly braces and spaces
Semicolons and line breaks
Comments
Variables
Strings
Arrays
JavaScript for loops
How to do an if statement in JavaScript
How to do a Select..Case statement in JavaScript
How to use a For each..next statement in JavaScript
Mathematical, logical, and assignment Operators
Math functions in JavaScript
Writing to the content pane or task pane
JavaScript changes for working in an Office add-in

Next steps

Chapter 28 What’s new in Excel 2019 and what’s changed
Office 365 subscription versus Excel 2019 perpetual
If it has changed in the front end, it has changed in VBA

The ribbon
Single-document interface
Modern array formulas
Quick Analysis tool
Charts
Pivot tables
Slicers
Icons
3D Models
SmartArt

Learning the new objects and methods
Compatibility mode

Using the Version property

Using the Excel8CompatibilityMode property
Next steps

Index

Acknowledgments

Thanks to Tracy Syrstad for being a great coauthor.

Bob Umlas is the smartest Excel guy I know and is an awesome technical editor. At Pearson,
Loretta Yates is an excellent acquisitions editor. Thanks to the Kughens for guiding this book
through production. I updated this edition in residence at the Kola Mi Writing Camp. My
sincere thanks to the staff there for keeping me on track.

Along the way, I’ve learned a lot about VBA programming from the awesome community at
the MrExcel.com message board. VoG, Richard Schollar, and Jon von der Heyden all stand out
as having contributed posts that led to ideas in this book. Thanks to Pam Gensel for Excel
macro lesson #1. Mala Singh taught me about creating charts in VBA.

My family was incredibly supportive during this time. Thanks to Mary Ellen Jelen, Robert F.
Jelen, Barbara Jelen, and Robert K. Jelen.

—Bill

Thank you to all the moderators at the MrExcel forum who keep the board organized, despite
the best efforts of the spammers. Thank you to Joe4, RoryA, and Petersss for helping process
all the forum’s contact emails.

Programming is a constant learning experience, and I really appreciate the clients who have
encouraged me to program outside my comfort zone so that my skills and knowledge have
expanded.

World of Warcraft is how I de-stress. I’d like to give a special thank you to my in-game friends
who help make the game so much fun and let me unwind: Louisiv (for teaching me how to
tank), War (best co-tank ever), Amabeast (for pushing me out of my comfort zone), Chraz (for
keeping my toon alive), and Jagdeule (for showing me how great an MM hunter could be).

And last, but not least, thanks to Bill Jelen. His site, MrExcel.com, is a place where thousands
come for help. It’s also a place where I, and others like me, have an opportunity to learn from
and assist others.

—Tracy

About the Authors

Bill Jelen, Excel MVP and the host of MrExcel.com, has been using spreadsheets
since 1985, and he launched the MrExcel.com website in 1998. Bill was a regular
guest on Call for Help with Leo Laporte and has produced more than 2,200
episodes of his daily video podcast, Learn Excel from MrExcel. He is the author

of 57 books about Microsoft Excel and writes the monthly Excel column for Strategic Finance
magazine. Before founding MrExcel.com, Bill Jelen spent 12 years in the trenches—working
as a financial analyst for finance, marketing, accounting, and operations departments of a $500
million public company. He lives in Merritt Island, Florida, with his wife, Mary Ellen.

Tracy Syrstad is a Microsoft Excel developer and author of nine Excel books. She has been
helping people with Microsoft Office issues since 1997, when she discovered free online
forums where anyone could ask and answer questions. Tracy found out she enjoyed teaching
others new skills, and when she began working as a developer, she was able to integrate the fun
of teaching with one-on-one online desktop sharing sessions. Tracy lives on an acreage in
eastern South Dakota with her husband, one dog, two cats, one horse, and a variety of wild
foxes, squirrels, and rabbits.

Introduction

In this Introduction, you will:

Find out what is in this book

Have a peek at the future of VBA and Windows versions of Excel

Learn about special elements and typographical conventions in this book

Find out where to find code files for this book

As corporate IT departments have found themselves with long backlogs of requests, Excel
users have discovered that they can produce the reports needed to run their businesses
themselves using the macro language Visual Basic for Applications (VBA). VBA enables you
to achieve tremendous efficiencies in your day-to-day use of Excel. VBA helps you figure out
how to import data and produce reports in Excel so that you don′t have to wait for the IT
department to help you.

Is JavaScript a threat to VBA?
Your first questions are likely: ″Should I invest time in learning VBA? How long will
Microsoft support VBA? Will the new JavaScript language announced in May 2018 replace
VBA?˝

Your investments in VBA will serve you well until at least 2046.

The last macro language change—from XLM to VBA—happened in 1993. XLM is still
supported in Excel to this day. That was a case where VBA was better than XLM, but XLM is
still supported 26 years later. If Microsoft ever switches from VBA to JavaScript, I expect that
they will continue to support VBA in the Windows and Mac versions of Excel for the next 26
years.

In May 2018, Microsoft announced a new JavaScript user-defined function (UDF) that
would allow macro code to run on both the client version of Excel and in Excel Online. The
cross-platform ability is interesting.

In the Excel universe today, there are versions of Excel running in Windows, in MacOS, on
mobile phones powered by Android and iOS, and in modern browsers using Excel Online. In
my world, I use Excel 99% of the time on a Windows computer. There is perhaps 1% of the

time where I will open an Excel workbook on an iPad. But, if you are in a mobile environment
where you are using Excel in a browser, then the JavaScript UDFs might be appropriate for
you.

For an introduction to JavaScript UDFs in Excel, read Suat M. Ozgur′s Excel JavaScript
UDFs Straight to the Point (ISBN 978-1-61547-247-5).

However, JavaScript performance is still horrible. If you don′t need your macros to run in
Exc el Online, t he VBA ver si on of your macr o wil l run ei ght t i mes qui cker th an t he JavaScr i pt
version. For people who plan to run Excel only on the Mac or Windows platforms, VBA will
be your go-to macro language for another decade.

The threat to Excel VBA is the new Excel Power Query tools found in the Get & Transform
tab of the Data tab in Excel for Windows. If you are writing macros to clean imported data, you
should consider cleaning the data once with Power Query and then refreshing the query each
day. I have a lot of Power Query workflows set up that would have previously required VBA.
For a primer on Power Query, check out Master Your Data with Excel and Power BI:
Leveraging Power Query to Get & Transform Your Task Flow by Ken Puls and Miguel
Escobar (ISBN 978-1-61547-058-7).

What is in this book?
You have taken the right step by purchasing this book. We can help you reduce the learning
curve so that you can write your own VBA macros and put an end to the burden of generating
reports manually.

Reducing the learning curve

This Introduction provides a case study about the power of macros. Chapter 1, ″Unleashing the
power of Excel with VBA,˝ introduces the tools and confirms what you probably already know:
The macro recorder does not work reliably. Chapter 2, ″This sounds like BASIC, so why doesn
′t it look familiar?˝ helps you understand the crazy syntax of VBA. Chapter 3, ″Referring to
ranges,˝ cracks the code on how to work efficiently with ranges and cells.

Chapter 4, ″Looping and flow control,˝ covers the power of looping using VBA. The case
study in this chapter demonstrates creating a program to produce a department report and then
wrapping that report routine in a loop to produce 46 reports.

Chapter 5, ″R1C1-style formulas,˝ covers, obviously, R1C1-style formulas. Chapter 6,
″Creating and manipulating names in VBA,˝ covers names. Chapter 7, ″Event programming,˝
includes some great tricks that use event programming. Chapters 8, ″Arrays,˝ and 9, ″Creating
classes and collections,˝ cover arrays, classes, and collections. Chapter 10, ″Userforms: An
introduction,˝ introduces custom dialog boxes that you can use to collect information from a

human using Excel.

Excel VBA power

Chapters 11, ″Data mining with Advanced Filter,˝ and 12, ″Using VBA to create pivot tables,˝
provide an in-depth look at Filter, Advanced Filter, and pivot tables. Report automation tools
rely heavily on these concepts. Chapters 13, ″Excel power,˝ and 14, ″Sample user-defined
functions,˝ include dozens of code samples designed to exhibit the power of Excel VBA and
custom functions.

Chapters 15, ″Creating charts,˝ through 20, ″Automating Word,˝ handle charting, data
visualizations, web queries, sparklines, and automating Word.

Techie stuff needed to produce applications

Chapter 21, ″Using Access as a back end to enhance multiuser access to data,˝ handles reading
and writing to Access databases and SQL Server. The techniques for using Access databases
enable you to build an application with the multiuser features of Access while keeping the
friendly front end of Excel.

Chapter 22, ″Advanced userform techniques,˝ shows you how to go further with userforms.
Chapter 23, ″The Windows Application Programming Interface (API),˝ teaches some tricky
ways to achieve tasks using the Windows API. Chapters 24, ″Handling errors,˝ through 26,
″Creating add-ins,˝ deal with error handling, custom menus, and add-ins. Chapter 27, ″An
introduction to creating Office add-ins,˝ provides a brief introduction to building your own
JavaScript application within Excel. Chapter 28, ″What′s new in Excel 2019 and what′s
changed,˝ summarizes the changes in Excel 2019.

Does this book teach Excel?

Microsoft believes that the ordinary Office customer touches only 10% of the features in
Office. We realize that everyone reading this book is above average, and the visitors to
MrExcel.com are a pretty smart audience. Even so, a poll of 8,000 MrExcel.com readers
showed that only 42% of smarter-than-average users are using any 1 of the top 10 power
features in Excel.

Bill regularly presents a Power Excel seminar for accountants. These are hard-core Excelers
who use Excel 30 to 40 hours every week. Even so, two things come out in every seminar.
First, half of the audience gasps when they see how quickly you can do tasks with a particular
feature, such as automatic subtotals or pivot tables. Second, someone in the audience routinely
trumps me. For example, someone asks a question, I answer, and someone in the second row
raises a hand to give a better answer.

The point? Both the authors and the audience of this book know a lot about Excel.

However, we assume that in any given chapter, maybe 58% of the people have not used pivot
tables before and maybe even fewer have used the Top 10 Filter feature of pivot tables. With
this in mind, before we show how to automate something in VBA, we briefly cover how to do
the same task in the Excel interface. This book does not teach you how to make pivot tables,
but it does alert you when you might need to explore a topic and learn more about it elsewhere.

Case study: Monthly accounting reports
This is a true story. Valerie is a business analyst in the accounting department of a
medium-size corporation. Her company recently installed an overbudget $16 million
enterprise resource planning (ERP) system. As the project ground to a close, there were no
resources left in the IT budget to produce the monthly report that this corporation used to
summarize each department.

However, Valerie had been close enough to the implementation to think of a way to
produce the report herself. She understood that she could export general ledger data from
the ERP system to a text file with comma-separated values. Using Excel, Valerie was able
to import the general ledger data from the ERP system into Excel.

Creating the report was not easy. As in many other companies, there were exceptions in
the data. Valerie knew that certain accounts in one particular cost center needed to be
reclassed as expenses. She knew that other accounts needed to be excluded from the report
entirely. Working carefully in Excel, Valerie made these adjustments. She created one
pivot table to produce the first summary section of the report. She cut the pivot table
results and pasted them into a blank worksheet. Then she created a new pivot table report
for the second section of the summary. After about three hours, she had imported the data,
produced five pivot tables, arranged them in a summary, and neatly formatted the report in
color.

Becoming the hero

Valerie handed the report to her manager. The manager had just heard from the IT
department that it would be months before they could get around to producing ″that
convoluted report.˝ When Valerie created the Excel report, she became the instant hero of
the day. In three hours, Valerie had managed to do the impossible. Valerie was on cloud
nine after a well-deserved ″atta-girl.˝

More cheers

The next day, Valerie′s manager attended the monthly department meeting. When the
department managers started complaining that they could not get the report from the ERP
system, this manager pulled out his department′s report and placed it on the table. The
other managers were amazed. How was he able to produce this report? Everyone was
relieved to hear that someone had cracked the code. The company president asked Valerie

′s manager if he could have the report produced for each department.

Cheers turn to dread

You can probably see what′s coming. This particular company had 46 departments. That
means 46 one-page summaries had to be produced once a month. Each report required
importing data from the ERP system, backing out certain accounts, producing five pivot
tables, and then formatting the reports in color. It had taken Valerie three hours to produce
the first report, but after she got into the swing of things, she could produce the 46 reports
in 40 hours. Even after she reduced her time per report, though, this is horrible. Valerie
had a job to do before she became responsible for spending 40 hours a month producing
these reports in Excel.

VBA to the rescue

Valerie found Bill′s company, MrExcel Consulting, and explained her situation. In the
course of about a week, Bill was able to produce a series of macros in Visual Basic that
did all the mundane tasks. For example, the macros imported the data, backed out certain
accounts, made five pivot tables, and applied the color formatting. From start to finish, the
entire 40-hour manual process was reduced to two button clicks and about 4 minutes.

Right now, either you or someone in your company is probably stuck doing manual tasks
in Excel that can be automated with VBA. We are confident that we can walk into any
company that has 20 or more Excel users and find a case just as amazing as Valerie′s.

Versions of Excel
This sixth edition of VBA and Macros is designed to work with Excel 2019 and Office 365
features released up through June 2018. The previous editions of this book covered code for
Excel 97 through Excel 2016. In 80% of the chapters, the code for Excel 2019 is identical to the
code in previous versions.

Differences for Mac users

Although Excel for Windows and Excel for the Mac are similar in terms of user interface, there
are a number of differences when you compare the VBA environment. Certainly, nothing in
Chapter 23 that uses the Windows API will work on the Mac. That said, the overall concepts
discussed in this book apply to the Mac. You can find a general list of differences as they apply
to the Mac at http://www.mrexcel.com/macvba.html Development in VBA for Mac Excel 2019
is far more difficult than in Windows, with only rudimentary VBA editing tools. Microsoft
actually recommends that you write all of your VBA in Excel 2019 for Windows and then use
that VBA on the Mac.

http://www.mrexcel.com/macvba.html

Special elements and typographical conventions
The following typographical conventions are used in this book:

Italic—Indicates new terms when they are defined, special emphasis, non-English words
or phrases, and letters or words used as words.

Monospace—Indicates parts of VBA code, such as object or method names.

Bold monospace—Indicates user input.

In addition to these typographical conventions, there are several special elements. Each
chapter has at least one case study that presents a real-world solution to common problems. The
case study also demonstrates practical applications of topics discussed in the chapter.

In addition to the case studies, you will see Notes, Tips, and Cautions.

Note Notes provide additional information outside the main thread of the chapter
discussion that might be useful for you to know.

Tip Tips provide quick workarounds and time-saving techniques to help you work
more efficiently.

Caution Cautions warn about potential pitfalls you might encounter. Pay
attention to the Cautions; they alert you to problems that might otherwise cause
you hours of frustration.

About the companion content
As a thank-you for buying this book, we have put together a set of 50 Excel workbooks that
demonstrate the concepts included in this book. This set of files includes all the code from the
book, sample data, and additional notes from the authors. To download the code files, visit this
book′s web page at microsoftpressstore.com/Excel2019VBAMacros/downloads.

Support and feedback

http://microsoftpressstore.com/Excel2019VBAMacros/downloads

The following sections provide information on errata, book support, feedback, and contact
information.

Stay in touch

Let′s keep the conversation going! We′re on Twitter:

http://twitter.com/MicrosoftPress

http://twitter.com/MrExcel

Errata, updates, and book support

We′ve made every effort to ensure the accuracy of this book and its companion content. Any
errors that have been reported since this book was published are listed at
microsoftpressstore.com/Excel2019VBAMacros/errata.

If you find an error that is not already listed, you can report it to us through the same page.

If you need additional support, email Microsoft Press Book Support at
microsoftpresscs@pearson.com.

Please note that product support for Microsoft software and hardware is not offered through
the previous addresses. For help with Microsoft software or hardware, go to
http://support.microsoft.com.

http://twitter.com/MicrosoftPress
http://twitter.com/MrExcel
http://microsoftpressstore.com/Excel2019VBAMacros/errata
mailto:microsoftpresscs@pearson.com
http://support.microsoft.com

CHAPTER 1
Unleashing the power of Excel with VBA

In this chapter, you will:

Understand the power of Excel

Learn the barriers to entry of using Excel

Get to know your tools: The Developer tab

Understand which file types allow macros

Be introduced to macro security

Get an overview of recording, storing, and running a macro

Find out how to run a macro

Understand the VB Editor

Understand the shortcomings of the macro recorder

Visual Basic for Applications (VBA) combined with Microsoft Excel is probably the most
powerful tool available to you. VBA is sitting on the desktops of 850 million users of Microsoft
Office, and most have never figured out how to harness the power of VBA in Excel. Using
VBA, you can speed the production of any task in Excel. If you regularly use Excel to produce
a series of monthly charts, for example, you can have VBA do that task for you in a matter of
seconds.

Barriers to entry
There are two barriers to learning successful VBA programming. First, Excel’s macro recorder
is flawed and does not produce workable code for you to use as a model. Second, for many who
learned a programming language such as BASIC, the syntax of VBA is horribly frustrating.

The macro recorder doesn’t work!

Microsoft began to dominate the spreadsheet market in the mid-1990s. Although it was wildly
successful in building a powerful spreadsheet program to which any Lotus 1-2-3 user could
easily transition, the macro language was just too different. Anyone proficient in recording
Lotus 1-2-3 macros who tried recording a few macros in Excel most likely failed. Although the

Microsoft VBA programming language is much more powerful than the Lotus 1-2-3 macro
language, the fundamental flaw is that the macro recorder does not work when you use the
default settings.

With Lotus 1-2-3, you could record a macro today and play it back tomorrow, and it would
faithfully work. When you attempt the same feat in Microsoft Excel, the macro might work
today but not tomorrow. In 1995, when I tried to record my first Excel macro, I was horribly
frustrated by this. In this book, I teach you the three rules for getting the most out of the macro
recorder.

No one person on the Excel team is focused on the macro recorder

As Microsoft adds new features to Excel, the individual project manager for a feature makes
sure that the macro recorder will record something when you execute the command. In the past
decade, the recorded code might work in some situations, but it often does not work in all
situations. If Microsoft had someone who was focused on creating a useful macro recorder, the
recorded code could often be a lot more general than it currently is.

It used to be that you could record a command in any of five ways and the recorded code
would work. Unfortunately, today, if you want to use the macro recorder, you often have to try
recording the macro several different ways to find a set of steps that records code that reliably
works.

Visual Basic is not like BASIC

Two decades ago, the code generated by the macro recorder was unlike anything I had ever
seen. It said this was “Visual Basic” (VB). I have had the pleasure of learning half a dozen
programming languages at various times; this bizarre-looking language was horribly unintuitive
and did not resemble the BASIC language I had learned in high school.

To make matters worse, even in 1995 I was the spreadsheet expert in my office. My
company had forced everyone to convert from Lotus 1-2-3 to Excel, which meant I was faced
with a macro recorder that didn’t work and a language that I couldn’t understand. This was not
a good combination of events.

My assumption in writing this book is that you are pretty talented with a spreadsheet. You
probably know more than 90% of the people in your office. I also assume that even though you
are not a programmer, you might have taken a class in BASIC at some point. However,
knowing BASIC is not a requirement—it actually is a barrier to entry into the ranks of being a
successful VBA programmer. There is a good chance that you have recorded a macro in Excel,
and there’s a similar chance that you were not happy with the results.

Good news: Climbing the learning curve is easy

Even if you’ve been frustrated with the macro recorder, it is really just a small speed bump on
your road to writing powerful programs in Excel. This book teaches you not only why the
macro recorder fails but also how to change the recorded code into something useful. For all
the former BASIC programmers in the audience, I decode VBA so that you can easily pick
through recorded macro code and understand what is happening.

Great news: Excel with VBA is worth the effort

Although you probably have been frustrated with Microsoft over the inability to record macros
in Excel, the great news is that Excel VBA is powerful. Absolutely anything you can do in the
Excel interface can be duplicated with stunning speed in Excel VBA. If you find yourself
routinely creating the same reports manually day after day or week after week, Excel VBA will
greatly streamline those tasks.

The authors of this book work for MrExcel Consulting. In this role, we have automated
reports for hundreds of clients. The stories are often similar: The IT department has a several-
month backlog of requests. Someone in accounting or engineering discovers that he or she can
import some data into Excel and get the reports necessary to run the business. This is a
liberating event: You no longer need to wait months for the IT department to write a program.
However, the problem is that after you import the data into Excel and win accolades from your
manager for producing the report, you will likely be asked to produce the same report every
month or every week. This becomes very tedious.

Again, the great news is that with a few hours of VBA programming, you can automate the
reporting process and turn it into a few button clicks. The reward is great. So hang with me as
we cover a few of the basics.

This chapter exposes why the macro recorder does not work. It also walks through an
example of recorded code and demonstrates why it works today but will fail tomorrow. I realize
that the code you see in this chapter might not be familiar to you, but that’s okay. The point of
this chapter is to demonstrate the fundamental problem with the macro recorder. This chapter
also explains the fundamentals of the Visual Basic environment.

Knowing your tools: The Developer tab
Let’s start with a basic overview of the tools needed to use VBA. By default, Microsoft hides
the VBA tools. You need to complete the following steps to change a setting to access the
Developer tab:

1. Right-click the ribbon and choose Customize The Ribbon.

2. In the right list box, select the Developer check box, which is the tenth item.

3. Click OK to return to Excel.

Excel displays the Developer tab, as shown in Figure 1-1.

FIGURE 1-1 The Developer tab provides an interface for running and recording macros.

The Code group on the Developer tab contains the icons used for recording and playing
back VBA macros, as listed here:

Visual Basic—Opens the Visual Basic Editor.

Macros—Displays the Macro dialog box, where you can choose to run or edit a macro
from the list of macros.

Record Macro—Begins the process of recording a macro.

Use Relative References—Toggles between using relative or absolute recording. With
relative recording, Excel records that you move down three cells. With absolute
recording, Excel records that you selected cell A4.

Macro Security—Accesses the Trust Center, where you can choose to allow or disallow
macros to run on this computer.

The Add-ins group provides icons for managing regular add-ins and COM add-ins.

The Controls group of the Developer tab contains an Insert menu where you can access a
variety of programming controls that can be placed on the worksheet. See “Assigning a macro
to a form control, text box, or shape,” later in this chapter. Other icons in this group enable you
to work with the on-sheet controls. The Run Dialog button enables you to display a custom
dialog box or userform that you designed in VBA. For more on userforms, see Chapter 10,
“Userforms: An introduction.”

The XML group of the Developer tab contains tools for importing and exporting XML
documents.

The Modify group enables you to specify whether the Document Panel is always displayed
for new documents. Users can enter keywords and a document description in the Document
Panel. If you have SharePoint and InfoPath, you can define custom fields to appear in the
Document Panel.

Understanding which file types allow macros
Excel 2019 offers support for four file types. Macros are not allowed to be stored in the .xlsx
file type, and this file type is the default file type! You have to use the Save As setting for all of
your macro workbooks, or you can change the default file type used by Excel 2019.

The available files types are as listed here:

Excel Workbook (.xlsx)—Files are stored as a series of XML objects and then zipped
into a single file. This creates significantly smaller file sizes. It also allows other
applications (even Notepad!) to edit or create Excel workbooks. Unfortunately, macros
cannot be stored in files with an .xlsx extension.

Excel Macro-Enabled Workbook (.xlsm)—This is similar to the default .xlsx format,
except macros are allowed. The basic concept is that if someone has an .xlsx file, he will
not need to worry about malicious macros. However, if he sees an .xlsm file, he should
be concerned that there might be macros attached.

Excel Binary Workbook (.xlsb)—This is a binary format designed to handle the larger
1-million-row grid size introduced in Excel 2007. Legacy versions of Excel stored their
files in a proprietary binary format. Although binary formats might load more quickly,
they are more prone to corruption, and a few lost bits can destroy a whole file. Macros
are allowed in this format.

Excel 97-2003 Workbook (.xls)—This format produces files that can be read by anyone
using legacy versions of Excel. Macros are allowed in this binary format; however, when
you save in this format, you lose access to any cells outside A1:IV65536. In addition, if
someone opens the file in Excel 2003, she loses access to anything that used features
introduced in Excel 2007 or later.

To avoid having to choose a macro-enabled workbook in the Save As dialog box, you can
customize your copy of Excel to always save new files in the .xlsm format by following these
steps:

1. Click the File menu and select Options.

2. In the Excel Options dialog box, select the Save category from the left navigation pane.

3. Open the Save Files In This Format drop-down menu and select Excel Macro-Enabled
Workbook (*.xlsm). Click OK.

Note Although you and I are not afraid to use macros, I have encountered people
who freak out when they see the .xlsm file type. They actually seem angry that I
sent them an .xlsm file that did not have any macros. Google’s Gmail has joined

this camp, refusing to show a preview of any attachments sent in the .xlsm format.

If you encounter someone who seems to have a fear of the .xlsm file type, remind them of
these points:

Every workbook created in the past 30 years could have had macros, but in fact,
most did not.

If someone is trying to avoid macros, she should use the security settings to prevent
macros from running anyway. The person can still open the .xlsm file to get the data
in the spreadsheet.

With these arguments, I hope you can overcome any fears of the .xlsm file type so that it
can be your default file type.

Macro security
After a Word VBA macro was used as the delivery method for the Melissa virus, Microsoft
changed the default security settings to prevent macros from running. Therefore, before we can
begin discussing the recording of a macro, it’s important to look at how to adjust the default
settings.

In Excel 2019, you can either globally adjust the security settings or control macro settings
for certain workbooks by saving the workbooks in a trusted location. Any workbook stored in a
folder that is marked as a trusted location automatically has its macros enabled.

You can find the macro security settings under the Macro Security icon on the Developer
tab. When you click this icon, the Macro Settings category of the Trust Center is displayed.
You can use the left navigation bar in the dialog box to access the Trusted Locations list.

Adding a trusted location

You can choose to store your macro workbooks in a folder that is marked as a trusted location.
Any workbook stored in a trusted folder will have its macros enabled. Microsoft suggests that a
trusted location should be on your hard drive. The default setting is that you cannot trust a
location on a network drive.

To specify a trusted location, follow these steps:

1. Click Macro Security in the Developer tab.

2. Click Trusted Locations in the left navigation pane of the Trust Center.

3. If you want to trust a location on a network drive, select Allow Trusted Locations On My
Network.

4. Click the Add New Location button. Excel displays the Microsoft Office Trusted
Location dialog box (see Figure 1-2).

FIGURE 1-2 You manage trusted folders in the Trusted Locations category of the Trust Center.

5. Click the Browse button. Excel displays the Browse dialog box.

6. Browse to the parent folder of the folder you want to be a trusted location. Click the
trusted folder. Although the folder name does not appear in the Folder Name box, click
OK. The correct folder name will appear in the Browse dialog box.

7. If you want to trust subfolders of the selected folder, select Subfolders Of This Location
Are Also Trusted.

8. Click OK to add the folder to the Trusted Locations list.

Caution Use care when selecting a trusted location. When you double-click an
Excel attachment in an email message, Outlook stores the file in a temporary
folder on your C: drive. You will not want to globally add the C drive and all
subfolders to the Trusted Locations list.

Using macro settings to enable macros in workbooks outside trusted locations

For all macros not stored in a trusted location, Excel relies on the macro settings. The Low,
Medium, High, and Very High settings that were familiar in Excel 2003 have been renamed.

To access the macro settings, click Macro Security in the Developer tab. Excel displays the

Macro Settings category of the Trust Center dialog box. Select the second option, Disable All
Macros With Notification. A description of each option follows:

Disable All Macros Without Notification—This setting prevents all macros from
running. This setting is for people who never intend to run macros. Because you are
currently holding a book that teaches you how to use macros, it is assumed that this
setting is not for you. This setting is roughly equivalent to the old Very High security
setting in Excel 2003. With this setting, only macros in the Trusted Locations folders can
run.

Disable All Macros With Notification—The operative words in this setting are “With
Notification.” This means that you see a notification when you open a file with macros
and you can choose to enable the content. If you ignore the notification, the macros
remain disabled. This setting is similar to the Medium security setting in Excel 2003 and
is the recommended setting. In Excel 2019, a message is displayed in the Message area
indicating that macros have been disabled. You can choose to enable the content by
clicking that option, as shown in Figure 1-3.

FIGURE 1-3 The Enable Content option appears when you use Disable All Macros With Notification.

Disable All Macros Except Digitally Signed Macros—This setting requires you to
obtain a digital signing tool from Verisign or another provider. This might be appropriate
if you are going to be selling add-ins to others, but it’s a bit of a hassle if you just want to
write macros for your own use.

Enable All Macros (Not Recommended: Potentially Dangerous Code Can Run)—
This setting is similar to the Low macro security setting in Excel 2003. Although it
requires the least amount of hassle, it also opens your computer to attacks from malicious
Melissa-like viruses. Microsoft suggests that you not use this setting.

Using Disable All Macros With Notification

It is recommended that you set your macro settings to Disable All Macros With Notification. If
you use this setting and open a workbook that contains macros, you see a security warning in
the area just above the formula bar. If you are expecting macros in this workbook, click Enable
Content. If you do not want to enable macros for the current workbook, dismiss the security
warning by clicking the X at the far right of the message bar.

If you forget to enable the macros and attempt to run a macro, Excel indicates that you
cannot run the macro because all macros have been disabled. If this occurs, close the workbook
and reopen it to access the message bar again.

Caution After you enable macros in a workbook stored on a local hard drive
and then save the workbook, Excel remembers that you previously enabled
macros in this workbook. The next time you open this workbook, macros are
automatically enabled.

Overview of recording, storing, and running a macro
Recording a macro is useful when you do not have experience writing lines of code in a macro.
As you gain more knowledge and experience, you will record macros less frequently.

To begin recording a macro, select Record Macro from the Developer tab. Before recording
begins, Excel displays the Record Macro dialog box, as shown in Figure 1-4.

FIGURE 1-4 Use the Record Macro dialog box to assign a name and a shortcut key to the macro being recorded.

Filling out the Record Macro dialog box

In the Macro Name field, type a name for the macro. Be sure to type continuous characters. For
example, type Macro1 (without a space), not Macro 1 (with a space). Assuming that you will
soon be creating many macros, use a meaningful name for the macro. A name such as
FormatReport is more useful than one like Macro1.

The second field in the Record Macro dialog box is a shortcut key. If you type a lowercase j
in this field and later press Ctrl+J, this macro runs. Be careful, however, because Ctrl+A
through Ctrl+Z (except Ctrl+J) are all already assigned to other tasks in Excel. If you assign a

macro to Ctrl+B, you won’t be able to use Ctrl+B for bold anymore. One alternative is to
assign the macros to Ctrl+Shift+A through Ctrl+Shift+Z. To assign a macro to Ctrl+Shift+A,
you type Shift+A in the shortcut key box.

Caution You can reuse a shortcut key for a macro. For example, if you assign a
macro to Ctrl+C, Excel runs your macro instead of doing the normal action of
copy.

In the Record Macro dialog box, choose where you want to save a macro when it is
recorded: Personal Macro Workbook, New Workbook, or This Workbook. My
recommendation is that you store macros related to a particular workbook in This Workbook.

The Personal Macro Workbook (Personal.xlsm) is not a visible workbook; it is created if
you choose to save the recording in the Personal Macro Workbook. This workbook is used to
save a macro in a workbook that opens automatically when you start Excel, thereby enabling
you to use the macro. After Excel is started, the workbook is hidden. If you want to display it,
select Unhide from the View tab.

Tip I do not recommend that you use the personal workbook for every macro you
save. Save only those macros that assist you in general tasks—not in tasks that are
performed in a specific sheet or workbook.

The fourth box in the Record Macro dialog box is for a description. This description is
added as a comment to the beginning of your macro.

After you select the location where you want to store the macro, click OK. Record your
macro. For this example, type Hello World in the active cell and press Ctrl+Enter to accept the
entry and stay in the same cell. When you are finished recording the macro, click the Stop
Recording icon in the Developer tab.

Tip You also can access a Stop Recording icon in the lower-left corner of the
Excel window. Look for a small white square to the right of the word Ready in
the status bar. Using this Stop button might be more convenient than returning to

the Developer tab. After you record your first macro, this area usually has a Record Macro
icon, which is a small dot on an Excel worksheet.

Running a macro
If you assigned a shortcut key to your macro, you can play it by pressing the key combination.
You also can assign macros to a button on the ribbon or the Quick Access Toolbar, form
controls, or drawing objects, or you can run them from the Visual Basic toolbar.

Creating a macro button on the ribbon

You can add an icon to a new group on the ribbon to run your macro. This is appropriate for
macros stored in the Personal Macro Workbook. Icons added to the ribbon are still enabled
even when your macro workbook is not open. If you click the icon when the macro workbook
is not open, Excel opens the workbook and runs the macro. Follow these steps to add a macro
button to the ribbon:

1. Right-click the ribbon and choose Customize The Ribbon.

2. In the list box on the right, choose the tab name where you want to add an icon.

3. Click the New Group button below the right list box. Excel adds a new entry called New
Group (Custom) to the end of the groups in that ribbon tab.

4. To move the group to the left in the ribbon tab, click the up arrow icon on the right side
of the dialog box several times.

5. To rename the group, click the Rename button. Type a new name, such as Report
Macros. Click OK. Excel shows the group in the list box as Report Macros (Custom).
Note that the word Custom does not appear in the ribbon.

6. Open the upper-left drop-down menu and choose Macros from the list. The Macros
category is fourth in the list. Excel displays a list of available macros in the left list box.

7. Choose a macro from the left list box. Click the Add button in the center of the dialog
box. Excel moves the macro to the right list box in the selected group. Excel uses a
generic VBA icon for all macros.

8. Click the macro in the right list box. Click the Rename button at the bottom of the right
list box. Excel displays a list of 180 possible icons. Choose an icon. Alternatively, type a
friendly label for the icon, such as Format Report.

9. You can move the Report Macros group to a new location on the ribbon tab. Click
Report Macros (Custom) and use the up and down arrow icons on the right of the dialog
box.

10. Click OK to close the Excel Options dialog box. The new button appears on the selected
ribbon tab.

Creating a macro button on the Quick Access Toolbar

You can add an icon to the Quick Access Toolbar to run a macro. If a macro is stored in the
Personal Macro Workbook, you can have the button permanently displayed in the Quick
Access Toolbar. If the macro is stored in the current workbook, you can specify that the icon
should appear only when the workbook is open. Follow these steps to add a macro button to the
Quick Access Toolbar:

1. Right-click the Quick Access Toolbar and choose Customize Quick Access Toolbar.

2. If your macro should be available only when the current workbook is open, open the
upper-right drop-down menu and change For All Documents (Default) to For
FileName.xlsm. Any icons associated with the current workbook are displayed at the end
of the Quick Access Toolbar.

3. Open the upper-left drop-down menu and select Macros from the list. The Macros
category is fourth in the list. Excel displays a list of available macros in the left list box.

4. Choose a macro from the left list box. Click the Add button in the center of the dialog
box. Excel moves the macro to the right list box. Excel uses a generic VBA icon for all
macros.

5. Click the macro in the right list box. Click the Modify button at the bottom of the right
list box. Excel displays a list of 180 possible icons (see Figure 1-5). Choose an icon from
the list. In the Display Name box, replace the macro name with a short name that appears
in the ToolTip for the icon.

FIGURE 1-5 You can attach a macro to a button on the Quick Access Toolbar.

6. Click OK to close the Modify Button dialog box.

7. Click OK to close the Excel Options dialog box. The new button appears on the Quick
Access Toolbar.

Assigning a macro to a form control, text box, or shape

If you want to create a macro specific to a workbook, you can store the macro in the workbook
and attach it to a form control or any object on the sheet.

Follow these steps to attach a macro to a form control on the sheet:

1. On the Developer tab, click the Insert button to open its drop-down menu. Excel offers
12 form controls and 12 ActiveX controls in this one drop-down menu. The form
controls are at the top, and the ActiveX controls are at the bottom. Most icons in the
ActiveX section of the drop-down menu look identical to an icon in the form controls
section of the drop-down menu. Click the Button Form Control icon at the upper-left
corner of the Insert drop-down menu.

2. Move your cursor over the worksheet; the cursor changes to a plus sign.

3. Draw a button on the sheet by clicking and holding the left mouse button while drawing a
box shape. Release the button when you have finished.

4. Choose a macro from the Assign Macro dialog box and click OK. The button is created
with generic text such as Button 1.

5. Type a new label for the button. Note that while you are typing, the selection border
around the button changes from dots to diagonal lines to indicate that you are in Text
Edit mode. You cannot change the button color while in Text Edit mode. To exit Text
Edit mode, either click the diagonal lines to change them to dots or Ctrl+click the button
again. Note that if you accidentally click away from the button, you should Ctrl+click the
button to select it. Then drag the cursor over the text on the button to select the text.

6. Right-click the dots surrounding the button and select Format Control. Excel displays the
Format Control dialog box, which has seven tabs across the top. If your Format Control
dialog box has only a Font tab, you failed to exit Text Edit mode. If this occurred, close
the dialog box, Ctrl+click the button, and repeat this step.

7. Use the settings in the Format Control dialog box to change the font size, font color,
margins, and similar settings for the control. Click OK to close the Format Control dialog
box when you have finished. Click a cell to deselect the button.

8. Click the new button to run the macro.

Macros can be assigned to any worksheet object, such as clip art, a shape, SmartArt
graphics, or a text box. In Figure 1-6, the top button is a traditional button form control. The
other images are clip art, a shape with WordArt, and a SmartArt graphic. To assign a macro to
any object, right-click the object and select Assign Macro.

FIGURE 1-6 Assigning a macro to a form control or an object is appropriate for macros stored in the same workbook as
the control. You can assign a macro to any of these objects.

Understanding the VB Editor
If you want to edit a recorded macro, you do it in the VB Editor. Press Alt+F11 or use the
Visual Basic icon in the Developer tab.

Figure 1-7 shows an example of a typical VB Editor screen. You can see three windows:
the Project Explorer, the Properties window, and the Programming window. Don’t worry if
your window doesn’t look exactly like this because you will see how to display the windows
you need in this review of the editor.

FIGURE 1-7 The VB Editor window.

VB Editor settings

Several settings in the VB Editor enable you to customize this editor and assist you in writing
your macros.

Under Tools, Options, Editor, you find several useful settings. All settings except for one
are set correctly by default. The remaining setting requires some consideration on your part.
This setting is Require Variable Declaration. By default, Excel does not require you to declare
variables. I prefer selecting this setting because it can save time when you create a program.
My coauthor prefers to change this setting to require variable declaration. This change forces
the compiler to stop if it finds a variable that it does not recognize, which reduces misspelled
variable names. Whether you turn this setting on or keep it off is a matter of your personal
preference.

The Project Explorer

The Project Explorer lists any open workbooks and add-ins that are loaded. If you click the +

icon next to the VBA Project, you see that there is a folder containing Microsoft Excel objects.
There can also be folders for forms, class modules, and standard modules. Each folder includes
one or more individual components.

Right-clicking a component and selecting View Code or just double-clicking the
components brings up any code in the Programming window. The exception is userforms,
where double-clicking displays the userform in Design view.

To display the Project Explorer window, select View, Project Explorer from the menu or
press Ctrl+R or locate the bizarre Project Explorer icon just below the Tools menu, sandwiched
between Design Mode and Properties Window.

To insert a module, right-click your project, select Insert, and then choose the type of
module you want. The available modules are as follows:

Microsoft Excel objects—By default, a project consists of sheet modules for each sheet
in the workbook and a single ThisWorkbook module. Code specific to a sheet such as
controls or sheet events is placed on the corresponding sheet. Workbook events are
placed in the ThisWorkbook module. You read more about events in Chapter 7, “Event
programming.”

Forms—Excel enables you to design your own forms to interact with the user. You read
more about these forms in Chapter 10.

Modules—When you record a macro, Excel automatically creates a module in which to
place the code. Most of your code resides in these types of modules.

Class modules—Class modules are Excel’s way of letting you create your own objects.
They also allow pieces of code to be shared among programmers without the
programmer’s needing to understand how it works. You read more about class modules
in Chapter 9, “Creating classes and collections.”

The Properties window

The Properties window enables you to edit the properties of various components such as sheets,
workbooks, modules, and form controls. The properties list varies according to what
component is selected. To display this window, select View, Properties Window from the
menu, press F4, or click the Project Properties icon on the toolbar.

Understanding shortcomings of the macro recorder
Suppose you work in an accounting department. Each day you receive a text file from the
company system showing all the invoices produced the prior day. This text file has commas
separating the fields. The columns in the file are Invoice Date, Invoice Number, Sales Rep
Number, Customer Number, Product Revenue, Service Revenue, and Product Cost (see Figure

1-8).

FIGURE 1-8 The Invoice.txt file has seven columns separated by commas.

Each morning, you manually import this file into Excel. You add a total row to the data,
bold the headings, and then print the report for distribution to a few managers.

This seems like a simple process that would be ideally suited to using the macro recorder.
However, due to some problems with the macro recorder, your first few attempts might not be
successful. The following example explains how to overcome these problems.

Case study: Preparing to record a macro
The task mentioned in the preceding section is perfect for a macro. However, before you
record a macro, think about the steps you will use. In this case, the steps are as follows:

1. Click the File menu and select Open.

2. Navigate to the folder where Invoice.txt is stored.

3. Select All Files (*.*) from the Files of Type drop-down menu.

4. Select Invoice.txt.

5. Click Open.

6. In the Text Import Wizard—Step 1 Of 3 dialog box, select Delimited from the
Original Data Type section.

7. Click Next.

8. In the Text Import Wizard—Step 2 Of 3 dialog box, clear the Tab key and select
Comma in the Delimiters section.

9. Click Next.

10. In the Text Import Wizard—Step 3 Of 3 dialog box, select General in the Column
Data Format section and change it to Date: MDY.

11. Click Finish to import the file.

12. Press the Ctrl key and the down arrow key to move to the last row of data.

13. Press the down arrow one more time to move to the total row.

14. Type the word Total.
15. Press the right arrow key four times to move to column E of the total row.

16. Click the AutoSum button and press Ctrl+Enter to add a total to the Product Revenue
column while remaining in that cell.

17. Click the AutoFill handle and drag it from column E to column G to copy the total
formula to columns F and G.

18. Highlight row 1 and click the Bold icon on the Home tab to set the headings in bold.

19. Highlight the total row and click the Bold icon on the Home tab to set the totals in
bold.

20. Press Ctrl+* to select the current region.

21. From the Home tab, select Format, AutoFit Column Width.

After you have rehearsed these steps in your head, you are ready to record your first
macro. Open a blank workbook and save it with a name such as
MacroToImportInvoices.xlsm. Click the Record Macro button on the Developer tab.

In the Record Macro dialog box, the default macro name is Macro1. Change this to
something descriptive like ImportInvoice. Make sure that the macros will be stored in This
Workbook. You might want an easy way to run this macro later, so type the letter i in the
Shortcut Key field. In the Description field, add a little descriptive text to tell what the
macro is doing (see Figure 1-9). Click OK when you are ready.

FIGURE 1-9 Before recording the macro, you need to complete the Record Macro dialog box.

Recording the macro

The macro recorder is now recording your every move. For this reason, perform your steps in
exact order without extraneous actions. If you accidentally move to column F, type a value,
clear the value, and then move back to E to enter the first total, the recorded macro will blindly
make that same mistake day after day after day. Recorded macros move fast, but there is
nothing like watching the macro recorder play out your mistakes repeatedly.

Carefully execute all the actions necessary to produce the report. After you have performed
the final step, click the Stop Recording button in the Developer tab of the ribbon.

Examining code in the Programming window

Let’s look at the code you just recorded in the “Preparing to record a macro” section. Don’t
worry if it doesn’t make sense yet.

To open the VB Editor, press Alt+F11. In your VBA project
(MacroToImportInvoices.xlsm), find the component Module1, right-click the module, and
select View Code. Notice that some lines start with an apostrophe; these are comments and are
ignored by the program. The macro recorder starts your macros with a few comments, using the
description you entered in the Record Macro dialog box. The comment for the keyboard
shortcut is there to remind you of the shortcut.

Note The comment does not assign the shortcut. If you change the comment to
be Ctrl+J, it does not change the shortcut. You must change the setting in the
Macro dialog box in Excel or run this line of code:

Click here to view code image
Application.MacroOptions Macro:="ImportInvoice", _
Description:="", ShortcutKey:="j"

Recorded macro code is usually pretty tidy (see Figure 1-10). Each line of code that is not a
comment is indented 4 characters. If a line is longer than 100 characters, the recorder breaks it
into multiple lines and indents the continued lines an additional 4 characters. To continue a line
of code, type a space and an underscore at the end of the first line and then continue the code
on the next line. Don’t forget the space before the underscore. Using an underscore without the
preceding space causes an error.

FIGURE 1-10 The recorded macro is neat looking and nicely indented.

Note The physical limitations of this book do not allow 100 characters on a
single line. Therefore, the lines are broken at 80 characters so that they fit on a
page. For this reason, your recorded macro might look slightly different from the

ones that appear in this book.

Consider that the following seven lines of recorded code are actually only one line of code
that has been broken into seven lines for readability:

Click here to view code image
Workbooks.OpenText Filename:="C:\somepath\invoice.txt", _
Origin:=437, StartRow:=1, DataType:=xlDelimited, _
TextQualifier:=xlDoubleQuote, ConsecutiveDelimiter:=False, _
Tab:=True, Semicolon:=False, Comma:=True, Space:=False, _
Other:=False, FieldInfo:=Array(Array(1, 3), Array(2, 1), _
Array(3, 1), Array(4, 1), Array(5, 1), Array(6, 1), _
Array(7, 1)), TrailingMinusNumbers:=True

Counting this as one line, the macro recorder was able to record the 21-step process in 14
lines of code, which is pretty impressive.

Note Each action you perform in the Excel user interface might equate to one or
more lines of recorded code. Some actions might generate a dozen lines of code.

Test each macro

It is always a good idea to test macros. To test your new macro, return to the regular Excel
interface by pressing Alt+F11. Close Invoice.txt without saving any changes.
MacroToImportInvoices.xls is still open.

Press Ctrl+I to run the recorded macro. It should work beautifully if you completed the
steps correctly. The data is imported, totals are added, bold formatting is applied, and the
columns are made wider. This seems like a perfect solution (see Figure 1-11).

FIGURE 1-11 The macro formats the data in the sheet.

Running the macro on another day produces undesired results

After testing the macro, be sure to save your macro file to use on another day. But suppose that
the next day, after receiving a new Invoice.txt file from the system, you open the macro and
press Ctrl+I to run it, and disaster strikes. The data for June 5 happened to have 9 invoices, but
the data for June 6 now has 17 invoices. The recorded macro blindly added the totals in Row 11
because this was where you put the totals when the macro was recorded (see Figure 1-12).

FIGURE 1-12 The intent of the recorded macro was to add a total at the end of the data, but the recorder made a macro
that always adds totals at row 11.

For those of you working along using the sample files in this book, follow these steps to try
importing data for another day:

1. Close Invoice.txt in Excel.

2. In Windows Explorer, rename Invoice.txt to be Invoice1.txt.

3. In Windows Explorer, rename Invoice2.txt to be Invoice.txt.

4. Return to Excel and the MacroToImportInvoices.xlsm workbook.

5. Press Ctrl+I to run the macro with the larger data set.

This problem arises because the macro recorder is recording all your actions in Absolute
mode by default. As an alternative to using the default state of the macro recorder, the next
section discusses relative recording and how it might get you closer to the desired solution.

Possible solution: Use relative references when recording

By default, the macro recorder records all actions as absolute actions. If you navigate to row 11
when you record the macro, the macro will always go to row 11 when the macro is run. This is
rarely appropriate when dealing with variable numbers of rows of data. The better option is to
use relative references when recording.

Macros recorded with absolute references note the actual address of the cell pointer, such as
A11. Macros recorded with relative references note that the cell pointer should move a certain
number of rows and columns from its current position. For example, if the cell pointer starts in
cell A1, the code ActiveCell.Offset(16, 1).Select would move the cell pointer to B17,
which is the cell 16 rows down and 1 column to the right.

Although relative recording is appropriate in most situations, there are times when you need
to do something absolute while recording a macro. Here’s a great example: After adding the
totals to a data set, you need to return to row 1. If you simply click row 1 while in Relative
mode, Excel records that you want to select the row 10 rows above the current row. This works
with the first invoice file but not with longer or shorter invoice files. Here are two
workarounds:

Toggle relative recording off, click row 1, and then toggle relative recording back on.

Keep relative recording turned on. Display the Go To dialog box by pressing F5. Type
A1 and click OK. The Go To dialog box gets recorded as always, going to the absolute
address you typed, even if relative recording is turned on. A variation of this method is
used in the following example.

The next example shows the same task as before but uses relative references this time. The
solution will be much closer to working correctly.

Case study: Recording a macro with relative references
Let’s try to record the macro again, this time using relative references.

Note: If you are following along with the sample files, complete these steps:

1. Close Invoice.txt in Excel.

2. Rename Invoice.txt as Invoice2.txt.

3. Rename Invoice1.txt as Invoice.txt.

4. Return to the MacroToImportInvoices.xlsm workbook.

In the Developer tab, choose Use Relative References to toggle on relative recording. This
setting persists until you turn it off or until you close Excel.

In the workbook MacroToImportInvoices.xlsm, record a new macro by selecting Record
Macro from the Developer tab. Give the new macro the name ImportInvoicesRelative and
assign a different shortcut key, such as Ctrl+J.

Repeat steps 1 through 11 from the “Preparing to record a macro” section to import the
file and then follow these steps:

1. Press Ctrl+down arrow to move to the last row of data.

2. Press the down arrow key one more time to move to the total row.

3. Type the word Total.
4. Press the right arrow key four times to move to column E of the total row.

5. Hold the Shift key while pressing the right arrow key twice to select E11:G11.

6. Click the AutoSum button.

7. Press Shift+spacebar to select the entire row. Type Ctrl+B to apply bold formatting to
it.

8. Press F5 to display the Go To dialog box.

9. In the Go To dialog box, type A1:G1 and click OK. Even though relative recording is
turned on, any navigation through the Go To dialog box is recorded as an absolute
reference.

10. Click the Bold icon to set the headings in bold.

11. Press Ctrl+* to select all data in the current region.

12. From the Home tab, select Format, AutoFit Column Width.

13. Stop recording.

Press Alt+F11 to go to the VB Editor to review your code. The new macro appears in
Module1, below the previous macro.

If you close Excel between recording the first and second macros, Excel inserts a new
module called Module2 for the newly recorded macro:

Click here to view code image
Sub ImportInvoicesRelative()
' ImportInvoicesRelative Macro
' Import. Total Row. Format.
' Keyboard Shortcut: Ctrl+J
Workbooks.OpenText Filename:="C:\data\invoice.txt", _
 Origin:= 437, StartRow:=1, DataType:=xlDelimited, _
 TextQualifier:=xlDoubleQuote, ConsecutiveDelimiter:=False,

_
 Tab:=False, Semicolon:=False, Comma:=True, Space:=False, _
 Other:=False, FieldInfo:=Array(Array(1, 3), Array(2, 1), _
 Array(3, 1), Array(4, 1), Array(5, 1), Array(6, 1), _
 Array(7, 1)), TrailingMinusNumbers:=True
Selection.End(xlDown).Select
ActiveCell.Offset(1, 0).Range("A1").Select
ActiveCell.FormulaR1C1 = "Total"
ActiveCell.Offset(0, 4).Range("A1:C1").Select
Selection.FormulaR1C1 = "=SUM(R[-9]C:R[-1]C)"
ActiveCell.Rows("1:1").EntireRow.Select
ActiveCell.Activate
Selection.Font.Bold = True
Application.Goto Reference:="R1C1:R1C7"
Selection.Font.Bold = True
Selection.CurrentRegion.Select
Selection.Columns.AutoFitSelection.Font.Bold = True
End Sub

To test the macro, close Invoice.txt without saving and then run the macro with Ctrl+J.
Everything should look good, and you should get the same results as with the macro you
created with the macro recorder.

The next test is to see whether the program works on the next day when you might have
more rows. If you are working along with the sample files, close Invoice.txt in Excel.
Rename Invoice.txt to Invoice1.txt. Rename Invoice2.txt to Invoice.txt.

Open MacroToImportInvoices.xls and run the new macro with Ctrl+J. This time,
everything should look good, with the totals in the correct places. Look at Figure 1-13. Do
you see anything out of the ordinary?

FIGURE 1-13 After running the Relative macro, the totals appear in the correct row.

If you aren’t careful, you might print these reports for your manager. If you did, you
would be in trouble. When you look in cell E19, you can see that Excel has inserted a
green triangle to tell you to look at the cell.

When you move the cell pointer to E19, an alert indicator pops up near the cell. This
indicator tells you that the formula fails to include adjacent cells. If you look in the
formula bar, you see that the macro totaled only from row 10 to row 18. Neither the
relative recording nor the nonrelative recording is smart enough to replicate the logic of
the AutoSum button.

Imagine that you had fewer invoice records on this particular day. Excel would have
rewarded you with the illogical formula =SUM(E6:E1048574), as shown in Figure 1-14.
Since this formula would be in E7, circular reference warnings appear in the status bar.

FIGURE 1-14 An incorrect formula appears when you run the relative macro with fewer invoice records.

Note To try this yourself, close Invoice.txt in Excel. Rename Invoice.txt to
Invoice2.txt. Rename Invoice4.txt to Invoice.txt.

If you have tried using the macro recorder, most likely you have run into problems similar
to the ones produced in the previous two case studies. Although this is frustrating, you
should be happy to know that the macro recorder actually gets you 95% of the way to a
useful macro.

Your job is to recognize where the macro recorder is likely to fail and then be able to dive
into the VBA code to fix the one or two lines that require adjusting to have a perfect
macro. With some added human intelligence, you can produce awesome macros to speed
up your daily work.

If you are like me, you are cursing Microsoft about now. We have wasted a good deal of
time over a couple of days, and neither macro works. What makes it worse is that this sort
of procedure would have been handled perfectly by the old Lotus 1-2-3 macro recorder
introduced in 1983. Mitch Kapor solved this problem 33 years ago, and Microsoft still
can’t get it right.

Did you know that up through Excel 97, Microsoft Excel secretly ran Lotus command-line
macros? I found this out right after Microsoft quit supporting Excel 97. At that time, a
number of companies upgraded to Excel XP, which no longer supported the Lotus 1-2-3
macros. Many of these companies hired my company to convert the old Lotus 1-2-3
macros to Excel VBA. It is interesting that in Excel 5, Excel 95, and Excel 97, Microsoft
offered an interpreter that could handle the Lotus macros that solved this problem
correctly, yet its own macro recorder couldn’t (and still can’t!) solve the problem.

Never use AutoSum or Quick Analysis while recording a macro

There actually is a macro recorder solution to the current problem with recording an AutoSum.
It is important to recognize that the macro recorder will never correctly record the intent of the
AutoSum button.

If you are in cell E99 and click the AutoSum button, Excel starts scanning from cell E98
upward until it locates a text cell, a blank cell, or a formula. It then proposes a formula that
sums everything between the current cell and the found cell.

However, the macro recorder records the particular result of that search on the day that the
macro was recorded. Rather than record something along the lines of “do the normal AutoSum
logic,” the macro recorder inserts a single line of code to add up the previous 98 cells.

Excel 2013 added the Quick Analysis feature. Select E2:G99; click the Quick Analysis icon
that appears below and to the right of a rectangular selection; choose Totals, Sum at Bottom;
and you get the correct totals in row 100. The macro recorder hard-codes the formulas to
always appear in row 100 and to always total row 2 through row 99.

The somewhat bizarre workaround is to type a SUM function that uses a mix of relative and
absolute row references. If you type =SUM(E$2:E10) while the macro recorder is running,
Excel correctly adds code that always sums from a fixed row two down to the relative reference
that is just above the current cell.

Here is the resulting code, with a few comments:

Click here to view code image
Sub FormatInvoice3()
' FormatInvoice3 Macro
' Import. Total. Format.
' Keyboard Shortcut: Ctrl+K
Workbooks.OpenText Filename:="C:\Data\invoice.txt", _

Origin:=437, StartRow:=1, DataType:=xlDelimited, _
TextQualifier:=xlDoubleQuote, ConsecutiveDelimiter:=False,
_
Tab:=False, Semicolon:=False, Comma:=True, Space:=False, _
Other:=False, FieldInfo:=Array(Array(1, 3), Array(2, 1), _
Array(3, 1), Array(4, 1), Array(5, 1), Array(6, 1), _
Array(7, 1)), TrailingMinusNumbers:=True

Selection.End(xlDown).Select
ActiveCell.Offset(1, 0).Range("A1").Select
ActiveCell.FormulaR1C1 = "Total"
ActiveCell.Offset(0, 4).Range("A1").Select
Selection.FormulaR1C1 = "=SUM(R2C:R[-1]C)"

Selection.AutoFill Destination:=ActiveCell.Range("A1:C1"), _
Type:=xlFillDefault

ActiveCell.Range("A1:C1").Select
ActiveCell.Rows("1:1").EntireRow.Select
ActiveCell.Activate
Selection.Font.Bold = True
Application.Goto Reference:="R1C1:R1C7"
Selection.Font.Bold = True
Selection.CurrentRegion.Select
Selection.Columns.AutoFit
End Sub

This third macro consistently works with a data set of any size.

Four tips for using the macro recorder

You will rarely be able to record 100% of your macros and have them work. However, you will
get much closer by using the following four tips.

Tip 1: Turn on the Use Relative References setting

Microsoft should have made this setting the default. Turn the setting on and leave it on while
recording your macros.

Tip 2: Use special navigation keys to move to the bottom of a data set

If you are at the top of a data set and need to move to the last cell that contains data, you can
press Ctrl+down arrow or press the End key and then the down arrow key.

Similarly, to move to the last column in the current row of the data set, press Ctrl+right
arrow or press End and then press the right arrow key.

By using these navigation keys, you can jump to the end of the data set, no matter how
many rows or columns you have today.

Use Ctrl+* to select the current region around the active cell. Provided that you have no
blank rows or blank columns in your data, this key combination selects the entire data set.

Tip 3: Never touch the AutoSum icon while recording a macro

The macro recorder does not record the “essence” of the AutoSum button. Instead, it hard-
codes the formula that resulted from pressing the AutoSum button. This formula does not work
any time you have more or fewer records in the data set.

Instead, type a formula with a single dollar sign, such as =SUM(E$2:E10). When this is
done, the macro recorder records the first E$2 as a fixed reference and starts the SUM range
directly below the row 1 headings. Provided that the active cell is E11, the macro recorder
recognizes E10 as a relative reference pointing directly above the current cell.

Tip 4: Try recording different methods if one method does not work

There are often many ways to perform tasks in Excel. If you encounter buggy code from one
method, try another method. With 16 different project managers on the Excel team, it is likely
that each method was programmed by a different group. In one of the case studies in this
chapter, one task involved applying AutoFit Column Width to all cells. Some people might
press Ctrl+A to select all cells. Others might press Ctrl+*. Since Excel 2007, the code
generated by Ctrl+A when pressed in Relative mode does not work. The Ctrl+* code is very
old and continues to work in all cases.

Next steps
Chapter 2, “This sounds like BASIC, so why doesn’t it look familiar?” examines the three
macros you recorded in this chapter to make more sense out of them. When you know how to
decode the VBA code, it will feel natural to either correct the recorded code or simply write
code from scratch. Hang on through one more chapter. You’ll soon learn that VBA is the
solution, and you’ll be writing useful code that works consistently.

CHAPTER 2
This sounds like BASIC, so why doesn’t it look
familiar?

In this chapter, you will:

Find out how VBA is different than BASIC

Understand the parts of VBA “speech”

Find out that learning VBA is not really hard

Examine recorded macro code using the VB Editor and Help

Use debugging tools to figure out recorded code

Get to know the Object Browser

Learn seven tips for cleaning up recorded code

As mentioned in Chapter 1, “Unleashing the power of Excel with VBA,” if you have taken a
class in a procedural language such as BASIC or COBOL, you might be confused when you
look at VBA code. Even though VBA stands for Visual Basic for Applications, it is an object-
oriented version of BASIC. Here is a bit of VBA code:

Click here to view code image
Selection.End(xlDown).Select
Range("A11").Select
ActiveCell.FormulaR1C1 = "Total"
Range("E11").Select
Selection.FormulaR1C1 = _
"=SUM(R[-9]C:R[-1]C)"
Selection.AutoFill _
Destination:=Range("E11:G11"), _
Type:=xlFillDefault

This code likely makes no sense to anyone who knows only procedural languages.
Unfortunately, your first introduction to programming in school (assuming that you are more
than 40 years old) would have been a procedural language.

Here is a section of code written in the BASIC language:

For x = 1 to 10
Print Rpt$(" ",x);
Print "*"
Next x

If you run this code, you get a pyramid of asterisks on your screen:
*
*
*
*
*
*
*
*
*
*

If you have ever been in a procedural programming class, you can probably look at the code
and figure out what is going on because procedural languages are more English-like than
object-oriented languages. The statement Print "Hello World" follows the verb–object
format, which is how you would generally talk. Let’s step away from programming for a
second and look at a concrete example.

Understanding the parts of VBA “speech”
If you were going to write code for instructions to play soccer using BASIC, the instruction to
kick a ball would look something like this:

"Kick the Ball"

Hey, this is how you talk! It makes sense. You have a verb (kick) and then a noun (ball).
The BASIC code in the preceding section has a verb (Print) and a noun (the asterisk, *). Life
is good.

Here is the problem: VBA doesn’t work like this. In fact, no object-oriented language
works like this. In an object-oriented language, the objects (nouns) are most important, hence
the name: object-oriented. If you were going to write code for instructions to play soccer with
VBA, the basic structure would be as follows:

Ball.Kick

You have a noun (Ball), which comes first. In VBA, this is an object. Then you have the
verb (Kick), which comes next. In VBA, this is a method.

The basic structure of VBA is a bunch of lines of code with this syntax:

Object.Method

Needless to say, this is not English. If you took a romance language in high school, you will
remember that those languages use a “noun–adjective” construct. However, no one uses “noun–
verb” to tell someone to do something:
Water.Drink
Food.Eat
Girl.Kiss

That is why VBA is confusing to someone who previously took a procedural programming
class.

Let’s carry the analogy a bit further. Imagine that you walk onto a grassy field, and there
are five balls in front of you: a soccer ball, basketball, baseball, bowling ball, and tennis ball.
You want to instruct a kid on your soccer team to “kick the soccer ball.”

If you tell him to kick the ball (or ball.kick), you really aren’t sure which one of the five
balls he will kick. Maybe he will kick the one closest to him, which could be a problem if he is
standing in front of the bowling ball.

For almost any noun, or object in VBA, there is a collection of that object. Think about
Excel. If you can have one row, you can have a bunch of rows. If you can have one cell, you
can have a bunch of cells. If you can have one worksheet, you can have a bunch of worksheets.
The only difference between an object and a collection is that you add an s to the name of the
object:

Row becomes Rows.

Cell becomes Cells.

Ball becomes Balls.

When you refer to something that is a collection, you have to tell the programming
language to which item you are referring. There are a couple of ways to do this. You can refer
to an item by using a number. For example, if the soccer ball is the second ball, you might say
this:

Balls(2).Kick

This works fine, but it could be a dangerous way to program. For example, it might work on
Tuesday. However, if you get to the field on Wednesday and someone has rearranged the balls,
Balls(2).Kick might be a painful exercise.

A much safer way to go is to use a name for the object in a collection. You can say the

following:

Balls("Soccer").Kick

With this method, you always know that it will be the soccer ball that is being kicked.

So far, so good. You know that a ball will be kicked, and you know that it will be the soccer
ball. For most of the verbs, or methods in Excel VBA, there are parameters that tell how to do
the action. These parameters act as adverbs. You might want the soccer ball to be kicked to the
left and with a hard force. In this case, the method would have a number of parameters that tell
how the program should perform the method:

Click here to view code image

Balls("Soccer").Kick Direction:=Left, Force:=Hard

When you are looking at VBA code, the colon–equal sign combination (:=) indicates that
you are looking at parameters of how the verb should be performed.

Sometimes, a method will have a list of 10 parameters, some of which are optional. For
example, if the Kick method has an Elevation parameter, you would have this line of code:

Click here to view code image

Balls("Soccer").Kick Direction:=Left, Force:=Hard,
Elevation:=High

Here is the confusing part: Every method has a default order for its parameters. If you are
not a conscientious programmer, and you happen to know the order of the parameters, you can
leave off the parameter names. The following code is equivalent to the previous line of code:

Click here to view code image

Balls("Soccer").Kick Left, Hard, High

This throws a monkey wrench into our understanding. Without :=, it is not obvious that
you have parameters. Unless you know the parameter order, you might not understand what is
being said. It is pretty easy with Left, Hard, and High, but when you have parameters like the
following:

Click here to view code image
ActiveSheet.Shapes.AddShape type:=1, Left:=10, Top:=20, _
Width:=100, Height:=200

it gets confusing if you instead have this:

Click here to view code image

ActiveSheet.Shapes.AddShape 1, 10, 20, 100, 200

The preceding line is valid code. However, unless you know that the default order of the
parameters for this Add method is Type, Left, Top, Width, Height, this code does not make
sense. The default order for any particular method is the order of the parameters as shown in
the Help topic for that method.

To make life more confusing, you are allowed to start specifying parameters in their default
order without naming them, and then you can switch to naming parameters when you hit one
that does not match the default order. If you want to kick the ball to the left and high but do not
care about the force (that is, you are willing to accept the default force), the following two
statements are equivalent:

Click here to view code image
Balls("Soccer").Kick Direction:=Left, Elevation:=High
Balls("Soccer").Kick Left, Elevation:=High

However, keep in mind that as soon as you start naming parameters, they have to be named
for the remainder of that line of code.

Some methods simply act on their own. To simulate pressing the F9 key, you use this code:

Application.Calculate

Other methods perform an action and create something. For example, you can add a
worksheet by using the following:

Click here to view code image

Worksheets.Add Before:=Worksheets(1)

However, because Worksheets.Add creates a new object, you can assign the results of this
method to a variable. In this case, you must surround the parameters with parentheses:

Click here to view code image

Set MyWorksheet = Worksheets.Add(Before:=Worksheets(1))

One final bit of grammar is necessary: adjectives. Just as adjectives describe a noun,
properties describe an object. Because you are an Excel fan, let’s switch from the soccer

analogy to an Excel analogy. There is an object to describe the active cell. Fortunately, it has a
very intuitive name:

ActiveCell

Suppose you want to change the color of the active cell to red. There is a property called
Interior.Color for a cell that uses a complex series of codes. However, you can turn a cell
to red by using this code:

ActiveCell.Interior.Color = 255

You can see how this can be confusing. Again, there is the noun-dot-something construct,
but this time it is Object.Property rather than Object.Method. How you tell them apart is
quite subtle: There is no colon before the equal sign. A property is almost always set equal to
something, or perhaps the value of a property is assigned to something else.

To make this cell color the same as cell A1, you might say this:

Click here to view code image

ActiveCell.Interior.Color = Range("A1").Interior.Color

Interior.Color is a property. By changing the value of a property, you can make things
look different. It is kind of bizarre: Change an adjective, and you are actually doing something
to the cell. Humans would say, “Color the cell red,” whereas VBA says this:

ActiveCell.Interior.Color = 255

Table 2-1 summarizes the VBA “parts of speech.”

TABLE 2-1 Parts of the VBA programming language

VBA
Component

Analogous
To Notes

Object Noun Examples include cell or sheet.

Collection Plural noun Usually specifies which object: Worksheets(1).

Method Verb Appears as Object.Method.

Parameter Adverb Lists parameters after the method. Separate the parameter name from its value with :=.

Property Adjective You can set a property (for example, activecell.height=10) or store the value of a
property (for example, x = activecell.height).

VBA is not really hard
Knowing whether you are dealing with properties or methods helps you set up the correct
syntax for your code. Don’t worry if it all seems confusing right now. When you are writing
VBA code from scratch, it is tough to know whether the process of changing a cell to yellow
requires a verb or an adjective. Is it a method or a property?

This is where the macro recorder is especially helpful. When you don’t know how to code
something, you record a short little macro, look at the recorded code, and figure out what is
going on.

VBA Help files: Using F1 to find anything

Excel VBA Help is an amazing feature, provided that you are connected to the Internet. If you
are going to write VBA macros, you absolutely must have access to the VBA Help topics
installed. Follow these steps to see how easy it is to get help in VBA:

1. Open Excel and switch to the VB Editor by pressing Alt+F11. From the Insert menu,
select Module.

2. Type these three lines of code:
Sub Test()
MsgBox "Hello World!"
End Sub

3. Click inside the word MsgBox.

4. With the cursor in the word MsgBox, press F1. If you can reach the Internet, you see the
Help topic for the MsgBox function.

Using Help topics

If you request help on a function or method, the Help topic walks you through the various
available arguments. If you browse to the bottom of a Help topic, you can see a great resource:
code samples under the Example heading (see Figure 2-1).

FIGURE 2-1 Most Help topics include code samples.

It is possible to select the code, copy it to the Clipboard by pressing Ctrl+C, and then paste
it into a module by pressing Ctrl+V.

After you record a macro, if there are objects or methods about which you are unsure, you
can get help by inserting the cursor in any keyword and pressing F1.

Examining recorded macro code: Using the VB Editor and
Help
Let’s take a look at the code you recorded in Chapter 1 to see whether it makes more sense now
that you know about objects, properties, and methods. You can also see whether it’s possible to
correct the errors created by the macro recorder.

Figure 2-2 shows the first code that Excel recorded in the example from Chapter 1.

FIGURE 2-2 Here is the recorded code from the example in Chapter 1.

Now that you understand the concept of Noun.Verb or Object.Method, consider the first
line of code that says Workbooks.OpenText. In this case, Workbooks is an object, and
OpenText is a method. Click your cursor inside the word OpenText and press F1 for an
explanation of the OpenText method (see Figure 2-3).

FIGURE 2-3 This shows part of the Help topic for the OpenText method.

The Help file confirms that OpenText is a method, or an action word. The default order for
all the arguments that can be used with OpenText appears in the gray box. Notice that only one
argument is required: Filename. All the other arguments are listed as optional.

Optional parameters

The Help file can tell you if you happen to skip an optional parameter. For StartRow, the Help
file indicates that the default value is 1. If you leave out the StartRow parameter, Excel starts
importing at row 1. This is fairly safe.

Now look at the Help file note about Origin. If this argument is omitted, you inherit
whatever value was used for Origin the last time someone used this feature in Excel on this
computer. That is a recipe for disaster. For example, your code might work 98% of the time.
However, immediately after someone imports an Arabic file, Excel remembers the setting for
Arabic and thereafter assumes that this is what your macro wants if you don’t explicitly code
this parameter.

Defined constants

Look at the Help file entry for DataType in Figure 2-3, which says it can be one of these
constants: xlDelimited or xlFixedWidth. The Help file says these are the valid
xlTextParsingType constants that are predefined in Excel VBA. In the VB Editor, press
Ctrl+G to bring up the Immediate window. In the Immediate window, type this line and press
Enter:

Print xlFixedWidth

The answer appears in the Immediate window. xlFixedWidth is the equivalent of saying 2
(see Figure 2-4). In the Immediate window, type Print xlDelimited, which is really the
same as typing 1. Microsoft correctly assumes that it is easier for someone to read code that
uses the somewhat English-like term xlDelimited than to read 1.

FIGURE 2-4 In the Immediate window of the VB Editor, you can query to see the true value of constants such as
xlFixedWidth.

If you were an evil programmer, you could certainly memorize all these constants and write
code using the numeric equivalents of the constants. However, the programming gods (and the
next person who has to look at your code) will curse you for this.

In most cases, the Help file either specifically calls out the valid values of the constants or
offers a hyperlink that opens the Help topic showing the complete enumeration and the valid
values for the constants (see Figure 2-5).

FIGURE 2-5 Click the hyperlink to see all the possible constant values. Here, the 10 possible xlColumnDataType
constants are revealed in a new Help topic.

One complaint with this excellent Help system is that it does not identify which parameters
are new to a given version. In this particular case, TrailingMinusNumbers was introduced in
Excel 2002. If you attempt to give this program to someone who is still using Excel 2000, the
code does not run because Excel does not understand the TrailingMinusNumbers parameter.

Sadly, the only way to learn to handle this frustrating problem is through trial and error.

If you read the Help topic on OpenText, you can surmise that it is basically the equivalent
of opening a file using the Text Import Wizard. In step 1 of the wizard, you normally choose
either Delimited or Fixed Width. You also specify the file origin and at which row to start. This
first step of the wizard is handled by these parameters of the OpenText method:
Origin:=437
StartRow:=1
DataType:=xlDelimited

Step 2 of the Text Import Wizard enables you to specify that your fields be delimited by
commas. Because you do not want to treat two commas as a single comma, the Treat
Consecutive Delimiters As One check box should not be selected. Sometimes, a field may
contain a comma, such as “XYZ, Inc.” In this case, the field should have quotes around the
value, as specified in the Text Qualifier box. This second step of the wizard is handled by the
following parameters of the OpenText method:
TextQualifier:=xlDoubleQuote
ConsecutiveDelimiter:=False
Tab:=False
Semicolon:=False
Comma:=True
Space:=False
Other:=False

Step 3 of the wizard is where you actually identify the field types. In this case, you leave all
fields as General except for the first field, which is marked as a date in MDY (Month, Day,
Year) format. This is represented in code by the FieldInfo parameter.

The third step of the Text Import Wizard is fairly complex. The entire FieldInfo
parameter of the OpenText method duplicates the choices made in this step of the wizard. If
you happen to click the Advanced button on the third step of the wizard, you have an
opportunity to specify something other than the default decimal and thousands separators, as
well as the setting Trailing Minus For Negative Numbers.

Note Note that the macro recorder does not write code for DecimalSeparator
or ThousandsSeparator unless you change these from the defaults. The macro
recorder does, however, always record the TrailingMinusNumbers parameter.

Remember that every action you perform in Excel while recording a macro gets translated
to VBA code. In the case of many dialog boxes, the settings you do not change are often
recorded along with the items you do change. When you click OK to close the dialog box, the

macro recorder often records all the current settings from the dialog box in the macro.

Here is another example. The next line of code in the macro is this:

Selection.End(xlDown).Select

You can click to get help for three topics in this line of code: Selection, End, and
Select. Assuming that Selection and Select are somewhat self-explanatory, click in the
word End and press F1 for Help.

This Help topic says that End is a property. It returns a Range object that is equivalent to
pressing End+up arrow or End+down arrow in the Excel interface (see Figure 2-6). If you click
the blue hyperlink for xlDirection, you see the valid parameters that can be passed to the
End function.

FIGURE 2-6 The correct Help topic for the End property.

Properties can return objects

Recall from earlier in this chapter that the basic syntax of VBA is Object.Method. Consider
the line of code currently under examination:

Selection.End(xlDown).Select

In this particular line of code, the method is Select. The End keyword is a property, but
from the Help file, you see that it returns a Range object. Because the Select method can
apply to a Range object, the method is actually appended to a property.

Based on this information, you might assume that Selection is the object in this line of
code. If you click the mouse in the word Selection and press F1, you will see that according
to the Help topic, Selection is actually a property and not an object. In reality, the proper
code would be Application.Selection. However, when you are running within Excel,
VBA assumes you are referring to the Excel object model, so you can leave off the
Application object. If you were to write a program in Word VBA to automate Excel, you
would be required to include an object variable before the Selection property to qualify to
which application you are referring.

In this case, the Application.Selection can return several types of objects. If a cell is
selected, it returns the Range object.

Using debugging tools to figure out recorded code
The following sections introduce some awesome debugging tools that are available in the VB
Editor. These tools are excellent for helping you see what a recorded macro code is doing.

Stepping through code

Generally, a macro runs quickly: You start it, and less than a second later, it is done. If
something goes wrong, you do not have an opportunity to figure out what the macro is doing.
However, using Excel’s Step Into feature makes it possible to run one line of code at a time.

To use this feature, make sure your cursor is in the procedure you want to run, such as the
ImportInvoice procedure, and then from the menu, select Debug, Step Into, as shown in
Figure 2-7. Alternatively, you can press F8.

FIGURE 2-7 You can use the Step Into feature to run a single line of code at a time.

The VB Editor is now in Break mode. The line about to be executed is highlighted in
yellow, with a yellow arrow in the margin before the code (see Figure 2-8).

FIGURE 2-8 The first line of the macro is about to run.

In this case, the next line to be executed is the Sub ImportInvoice() line. This basically
says, “You are about to start running this procedure.” Press the F8 key to execute the line in
yellow and move to the next line of code. The long code for OpenText is then highlighted.
Press F8 to run this line of code. When you see that Selection.End(xlDown).Select is
highlighted, you know that Visual Basic has finished running the OpenText command. At this
point, you can press Alt+Tab to switch to Excel and see that the Invoice.txt file has been
parsed into Excel. Note that A1 is selected.

Note If you have a wide monitor, you can use the Restore Down icon at the top
right of the VBA window to arrange the window so that you can see both the
VBA window and the Excel window. (Restore Down is the two-tiled-window

icon between the Minimize “dash” and the Close Window X icon at the top of every
window.)

This is also a great trick to use while recording new code. You can actually watch the code
appear as you do things in Excel.

Switch back to the VB Editor by pressing Alt+Tab. The next line about to be executed is
Selection.End(xlDown).Select. Press F8 to run this code. Switch to Excel to see that the
last cell in your data set is selected.

Press F8 again to run the Range("A11").Select line. If you switch to Excel by pressing
Alt+Tab, you see that this is where the macro starts to have problems. Instead of moving to the
first blank row, the program moves to the wrong row.

Now that you have identified the problem area, you can stop the code execution by using
the Reset command. You can start the Reset command either by selecting Run, Reset or by
clicking the Reset button on the toolbar (it is a small blue square next to icons for Run and
Pause). After clicking Reset, you should return to Excel and undo anything done by the
partially completed macro. In this case, you need to close the Invoice.txt file without saving.

More debugging options: Breakpoints

If you have hundreds of lines of code, you might not want to step through each line one at a
time. If you have a general idea that a problem is happening in one particular section of the
program, you can set a breakpoint. You can then have the code start to run, but the macro
breaks just before it executes the breakpoint line of code.

To set a breakpoint, click in the gray margin area to the left of the line of code on which
you want to break. A large maroon dot appears next to this code, and the line of code is
highlighted in brown (see Figure 2-9). (If you don’t see the margin area, go to Tools, Options,
Editor Format and choose Margin Indicator Bar.) Or select a line of code and press F9 to toggle
a breakpoint on or off.

FIGURE 2-9 The large maroon dot signifies a breakpoint.

Next, from the Visual Basic menu, select Run, Run Sub/UserForm or press F5. The
program executes but stops just before running the line in the breakpoint. The VB Editor shows
the breakpoint line highlighted in yellow. You can now press F8 to begin stepping through the
code.

After you have finished debugging your code, remove the breakpoints by clicking the dark
brown dot in the margin next to each breakpoint to toggle it off. Alternatively, you can select
Debug, Clear All Breakpoints or press Ctrl+Shift+F9 to clear all breakpoints that you set in the
project.

Backing up or moving forward in code

When you are stepping through code, you might want to jump over some lines of code, or you
might have corrected some lines of code that you want to run again. This is easy to do when
you are working in Break mode. One favorite method is to use the mouse to grab the yellow
arrow. The cursor changes to a three-arrow icon, which enables you to move the next line up or
down. Drag the yellow line to whichever line you want to execute next. The other option is to
right-click the line to which you want to jump and then select Set Next Statement.

Not stepping through each line of code

When you are stepping through code, you might want to run a section of code without stepping
through each line, such as when you get to a loop. You might want VBA to run through the
loop 100 times so you can step through the lines after the loop. It is particularly monotonous to
press the F8 key hundreds of times to step through a loop. Instead, click the cursor on the line
you want to step to and then press Ctrl+F8 or select Debug, Run To Cursor. This command is
also available in the right-click menu.

Querying anything while stepping through code

Even though variables have not yet been discussed, you can query the value of anything while
in Break mode. However, keep in mind that the macro recorder never records a variable.

Using the Immediate window

Press Ctrl+G to display the Immediate window in the VB Editor. While the macro is in Break
mode, ask the VB Editor to tell you the currently selected cell, the name of the active sheet, or
the value of any variable. Figure 2-10 shows several examples of queries typed into the
Immediate window.

FIGURE 2-10 Queries that can be typed into the Immediate window while a macro is in Break mode, shown along with
their answers.

Instead of typing Print, you can type a question mark: ? Selection.Address. Read the
question mark as, “What is.”

When invoked with Ctrl+G, the Immediate window usually appears at the bottom of the
code window. You can use the resize handle, which is located above the blue Immediate title
bar, to make the Immediate window larger or smaller.

There is a scrollbar on the side of the Immediate window that you can use to scroll
backward or forward through past entries in the Immediate window.

It is not necessary to run queries only at the bottom of the Immediate window. For example,
if you have just run a line of code, in the Immediate window you can ask for the
Selection.Address to ensure that this line of code worked.

Press the F8 key to run the next line of code. Instead of retyping the same query, click in
the Immediate window anywhere in the line that contains the last query and press Enter.

The Immediate window runs this query again, displays the results on the next line, and
pushes the old results farther down the window. In this case, the selected address is
E11:G11. The previous answer, A6, is pushed down the window.

You also can use this method to change the query by clicking to the right of the word
Address in the Immediate window. Press the Backspace key to erase the word Address and
instead type Columns.Count. Press Enter, and the Immediate window shows the number of
columns in the selection.

This is an excellent technique to use when you are trying to figure out a sticky bit of code.
For example, you can query the name of the active sheet (Print Activesheet.Name), the
selection (Print Selection.Address), the active cell (Print ActiveCell.Address), the

formula in the active cell (Print ActiveCell.Formula), the value of the active cell (Print
ActiveCell.Value or Print ActiveCell because Value is the default property of a cell),
and so on.

To dismiss the Immediate window, click the X in its upper-right corner.

Note Ctrl+G does not toggle the window off. Use the X at the top right of the
Immediate window to close it.

Querying by hovering

In many instances, you can hover the cursor over an expression in code and then wait a second
for a ToolTip to show the current value of the expression. This is incredibly helpful when you
get to looping in Chapter 4, “Looping and flow control.” It also comes in handy with recorded
code. Note that the expression that you hover over does not have to be in the line of code just
executed. In Figure 2-11, Visual Basic just selected E11, making E11 the active cell. If you
hover the cursor over ActiveCell.FormulaR1C1, you see a ToolTip showing that the formula
in the active cell is "=SUM(R[-9]C:R[-1]C)".

FIGURE 2-11 Hover the mouse cursor over any expression for a few seconds, and a ToolTip shows the current value of
the expression.

Sometimes the VBA window seems to not respond to hovering. Because some expressions
are not supposed to show values, it is difficult to tell whether VBA is not displaying a value on
purpose or whether you are in the buggy “not responding” mode. Try hovering over something
that you know should respond, such as a variable. If you get no response, hover, click into the
variable, and continue to hover. This tends to wake Excel from its stupor, and hovering works
again.

Are you impressed yet? This chapter started with a complaint that VBA doesn’t seem much
like BASIC. However, by now you have to admit that the Visual Basic environment is great to
work in and that the debugging tools are excellent.

Querying by using a Watches window

In Visual Basic, a watch is not something you wear on your wrist; instead, it allows you to

watch the value of any expression while you step through code. Let’s say that in the current
example, you want to watch to see what is selected as the code runs. You can do this by setting
up a watch for Selection.Address.

From the VB Editor Debug menu, select Add Watch. In the Add Watch dialog box, enter
Selection.Address in the Expression text box and click OK (see Figure 2-12).

FIGURE 2-12 Setting up a watch to see the address of the current selection.

A Watches window is added to the busy Visual Basic window, usually at the bottom of the
code window. When you start running the macro, import the file and press End+down arrow to
move to the last row with data. The Watches window confirms that Selection.Address is
A18 (see Figure 2-13).

FIGURE 2-13 Without having to hover or type in the Immediate window, you always can see the value of watched
expressions.

Press the F8 key to run the code Rows("1:1").Select. The Watches window is updated
to show that the current address of the Selection is now $1:$1.

In the Watches window, the value column is read/write (where possible)! You can type a
new value here and see it change on the worksheet.

Using a watch to set a breakpoint

Right-click any line in the Watches window and select Edit Watch. In the Watch Type section
of the Edit Watch dialog box, select Break When Value Changes. Click OK.

The glasses icon changes to a hand with triangle icon. You can now press F5 to run the
code. The macro starts running lines of code until something new is selected. This is very
powerful. Instead of having to step through each line of code, you can now conveniently have
the macro stop only when something important has happened. You also can set up a watch to
stop when the value of a particular variable changes.

Using a watch on an object

In the preceding example, you watched a specific property: Selection.Address. It also is
possible to watch an object such as Selection. In Figure 2-14, when a watch has been set up
on Selection, you get the glasses icon and a + icon.

FIGURE 2-14 Setting a watch on an object gives you a + icon next to the glasses.

By clicking the + icon, you can see all the properties associated with Selection. When

you look at Figure 2-15, you can see more than you ever wanted to know about Selection!
There are properties you probably never realized are available. You can see that the
AddIndent property is set to False and the AllowEdit property is set to True. There are
useful properties further down in the list, such as the Formula of the selection.

FIGURE 2-15 Clicking the + icon shows a plethora of properties and their current values.

In this Watches window, some entries can be expanded. For example, the Borders
collection has a plus next to it, which means you can click any + icon to see more details.

Object Browser: The ultimate reference
In the VB Editor, press F2 to open the Object Browser, which lets you browse and search the
entire Excel object library. I’ve previously owned large Excel books that devoted 400-plus
pages to listing every object in the Object Browser. You can save a tree by learning to use the
more-powerful Object Browser. The built-in Object Browser is always available; you simply
press the F2 key. The next few pages show you how to use it.

When you press F2, the Object Browser appears where the code window normally appears.
The topmost drop-down menu currently shows <All Libraries>. There are entries in this drop-
down menu for Excel, Office, VBA, and each workbook that you have open, plus additional
entries for anything you check in Tools, References. For now, go to the drop-down menu and
select only Excel.

In the left window of the Object Browser is a list of all classes available for Excel. Click the

Application class in the left window. The right window adjusts to show all properties and
methods that apply to the Application object. Click something in the right window, such as
ActiveCell. The bottom window of the Object Browser tells you that ActiveCell is a
property that returns a range. It also tells you that ActiveCell is read-only (an alert that you
cannot assign an address to ActiveCell to move the cell pointer).

You have learned from the Object Browser that ActiveCell returns a range. When you
click the green hyperlink for Range in the bottom window, you see all the properties and
methods that apply to Range objects and, hence, to the ActiveCell property. Click any
property or method and then click the yellow question mark near the top of the Object Browser
to go to the Help topic for that property or method.

Type any term in the text box next to the binoculars and click the binoculars to find all
matching members of the Excel library. Methods appear as green books with speed lines.
Properties appear as index cards, each with a hand pointing to it.

The search capabilities and hyperlinks available in the Object Browser make it much more
valuable than an alphabetic printed listing of all the information. Learn to make use of the
Object Browser in the VBA window by pressing F2. To close the Object Browser and return to
your code window, click the X in the upper-right corner.

Seven tips for cleaning up recorded code
Chapter 1 gave you four tips for recording code. So far, this chapter has covered how to
understand the recorded code, how to access VBA help for any word, and how to use the
excellent VBA debugging tools to step through your code. The remainder of this chapter
presents seven tips to use when cleaning up recorded code.

Tip 1: Don’t select anything

Nothing screams “recorded code” more than having code that selects things before acting on
them. This makes sense in a way: In the Excel interface, you have to select row 1 before you
can make it bold.

However, this is done rarely in VBA. There are a couple of exceptions to this rule. For
example, you need to select a cell when setting up a formula for conditional formatting. And it
is possible to directly turn on bold font to row 1 without selecting it.

To streamline the code the macro recorder gives you, in many cases you can remove the
part of the code that performs the selection. The following two lines are macro recorder code
before it has been streamlined:
Cells.Select
Selection.Columns.AutoFit

You can streamline the recorded code so it looks like this:

Cells.Columns.AutoFit

There are a couple of advantages to doing this streamlining. First, there will be half as many
lines of code in your program. Second, the program will run faster.

To do this streamlining, after recording code, highlight from before the word Select at the
end of one line all the way to the dot after the word Selection on the next line and press
Delete (see Figures 2-16 and 2-17).

FIGURE 2-16 Select the part of the code highlighted here…

FIGURE 2-17 …and press the Delete key. This is Cleaning Up Recorded Macros 101.

Tip 2: Use Cells(2,5) because it’s more convenient than Range("E2")

The macro recorder uses the Range() property frequently. If you follow the macro recorder’s
example, you will find yourself building a lot of complicated code. For example, if you have
the row number for the total row stored in a variable, you might try to build this code:

Click here to view code image

Range("E" & TotalRow).Formula = "=SUM(E2:E" & TotalRow-1 & ")"

In this code, you are using concatenation to join the letter E with the current value of the
TotalRow variable. This works, but eventually you have to refer to a range where the column
is stored in a variable. Say that FinalCol is 10, which indicates column J. To refer to this
column in a Range command, you need to do something like this:

Click here to view code image
FinalColLetter = MID("ABCDEFGHIJKLMNOPQRSTUVWXYZ",FinalCol,1)
Range(FinalColLetter & "2").Select

Alternatively, perhaps you could do something like this:

Click here to view code image
FinalColLetter = CHR(64 + FinalCol)
Range(FinalColLetter & "2").Select

These approaches work for the first 26 columns but fail for the remaining 99.85% of the
columns.

You could start to write 10-line functions to calculate that the column letter for column
15896 is WMJ, but it is not necessary. Instead of using Range("WMJ17"), you can use the
Cells(Row,Column) syntax.

Chapter 3, “Referring to ranges,” covers this topic in complete detail. However, for now
you need to understand that Range("E10") and Cells(10, 5) both point to the cell at the
intersection of the fifth column and the tenth row. Chapter 3 also shows you how to use
.Resize to point to a rectangular range. Cells(11, 5).Resize(1, 3) is E11:G11.

Tip 3: Use more reliable ways to find the last row

It is difficult to trust data from just anywhere. If you are analyzing data in Excel, remember that
the data can come from who-knows-what system written who-knows-how-long-ago. The
universal truth is that eventually some clerk will find a way to break the source system and
enter a record without an invoice number. Maybe it will take a power failure to do it, but
invariably, you cannot count on having every cell filled in.

This is a problem when you’re using the End+down arrow shortcut. This key combination
does not take you to the last row with data in the worksheet. It takes you to the last row with
data in the current range. In Figure 2-18, pressing End+down arrow would move the cursor to
cell A7 rather than the true last row with data.

FIGURE 2-18 End+down arrow fails in the user interface if a record is missing a value. Similarly, End(xlDown) fails
in Excel VBA.

One better solution is to start at the bottom of the worksheet and look for the first non-blank
cell by using this:

Click here to view code image

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

This method could fail if the very last record happens to contain the blank row. If the data is
dense enough that there will always be a diagonal path of non-blank cells to the last row, you
could use this:

Click here to view code image

FinalRow = Cells(1,1).CurrentRegion.Rows.Count

If you are sure that there are not any notes or stray activated cells below the data set, you
might try this:

Click here to view code image

FinalRow = Cells(1, 1).SpecialCells(xlLastCell).Row

The xlLastCell property is often wrong. Say that you have data in A1:F500. If you
accidentally press Ctrl+down arrow from A500, you will arrive at A1048576. If you then apply
Bold to the empty cell, it becomes activated. Or, if you type Total and then clear the cell, it
becomes activated. At this point, xlLastCell will refer to F1048576.

Another method is to use the Find method:

Click here to view code image
FinalRow = Cells.Find("*", SearchOrder:=xlByRows, _
SearchDirection:=xlPrevious).Row

You will have to choose from these various methods based on the nature of your data set. If
you are not sure, you could loop through all columns. If you are expecting seven columns of
data, you could use this code:

Click here to view code image
FinalRow = 0
For i = 1 to 7
ThisFinal = Cells(Rows.Count, i).End(xlUp).Row
If ThisFinal > FinalRow then FinalRow = ThisFinal
Next i

Tip 4: Use variables to avoid hard-coding rows and formulas

The macro recorder never records a variable. Variables are easy to use, but just as in BASIC, a
variable can remember a value. Variables are discussed in more detail in Chapter 4.

It is recommended that you set the last row that contains data to a variable. Be sure to use
meaningful variable names such as FinalRow:

Click here to view code image

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

When you know the row number of the last record, put the word Total in column A of the
next row:

Click here to view code image

Cells(FinalRow + 1, 1).Value = "Total"

You can even use the variable when building the formula. This formula totals everything
from E2 to the FinalRow of E:

Click here to view code image

Cells(FinalRow + 1, 5).Formula = "=SUM(E2:E" & FinalRow & ")"

Tip 5: Use R1C1 formulas that make your life easier

The macro recorder often writes formulas in an arcane R1C1 style. However, most people
change the code back to use a regular A1-style formula. After reading Chapter 5, “R1C1-style
formulas,” you will understand that there are times when you can build an R1C1 formula that is
much simpler than the corresponding A1-style formula. By using an R1C1 formula, you can
add totals to all three cells in the total row with the following:

Click here to view code image

Cells(FinalRow+1, 5).Resize(1, 3).FormulaR1C1 =
"=SUM(R2C:R[-1]C)"

Tip 6: Copy and paste in a single statement

Recorded code is notorious for copying a range, selecting another range, and then doing an
ActiveSheet.Paste. The Copy method as it applies to a range is actually much more
powerful. You can specify what to copy and also specify the destination in one statement.

Here’s the recorded code:
Range("E14").Select
Selection.Copy
Range("F14:G14").Select
ActiveSheet.Paste

Here’s better code:

Click here to view code image

Range("E14").Copy Destination:=Range("F14:G14")

Tip 7: Use With...End With to perform multiple actions

If you are making the total row bold with double underline and a larger font and special color,
you might get recorded code like this:

Click here to view code image
Range("A14:G14").Select
Selection.Font.Bold = True
Selection.Font.Size = 12
Selection.Font.ColorIndex = 5
Selection.Font.Underline = xlUnderlineStyleDoubleAccounting

For four of these lines of code, VBA must resolve the expression Selection.Font.
Because you have four lines that all refer to the same object, you can name the object once at

the top of a With block. Inside the With...End With block, everything that starts with a
period is assumed to refer to the With object:

Click here to view code image
With Range("A14:G14").Font
.Bold = True
.Size = 12
.ColorIndex = 5
.Underline = xlUnderlineStyleDoubleAccounting
End With

Case study: Putting it all together—Fixing the recorded code
Using the seven tips discussed in the preceding section, you can convert the recorded code
from Chapter 1 into efficient, professional-looking code. Here is the code as recorded by
the macro recorder at the end of Chapter 1:

Click here to view code image
Sub FormatInvoice3()
Workbooks.OpenText Filename:="C:\Data\invoice.txt",
Origin:=437, _
StartRow:=1, DataType:=xlDelimited,
TextQualifier:=xlDoubleQuote, _
ConsecutiveDelimiter:=False, Tab:=False, Semicolon:=False,
_
Comma:=True, Space:=False, Other:=False, FieldInfo:=Array(_
Array(1, 3), Array(2, 1), Array(3, 1), Array(4, 1), _
Array(5, 1), Array(6, 1), Array(7, 1))
Selection.End(xlDown).Select
ActiveCell.Offset(1, 0).Range("A1").Select
ActiveCell.FormulaR1C1 = "Total"
ActiveCell.Offset(0, 4).Range("A1").Select
Selection.FormulaR1C1 = "=SUM(R2C:R[-1]C)"
Selection.AutoFill Destination:=ActiveCell.Range("A1:C1"),
Type:= _
xlFillDefault
ActiveCell.Range("A1:C1").Select
ActiveCell.Rows("1:1").EntireRow.Select
ActiveCell.Activate
Selection.Font.Bold = True
Application.Goto Reference:="R1C1:R1C7"

Selection.Font.Bold = True
Selection.CurrentRegion.Select
Selection.Columns.AutoFit
End Sub

Follow these steps to clean up the recorded macro code:

1. Leave the Workbook.OpenText lines alone; they are fine as recorded.

2. Note that the following line of code attempts to locate the final row of data so that the
program knows where to enter the total row:
Selection.End(xlDown).Select

3. You do not need to select anything to find the last row. It also helps to assign the row
number of the final row and the total row to a variable so that they can be used later.
To handle the unexpected case in which a single cell in column A is blank, start at the
bottom of the worksheet and go up to find the last used row:

Click here to view code image
' Find the last row with data. This might change every day
FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
TotalRow = FinalRow + 1

Note that these lines of code enter the word Total in column A of the total row:

Click here to view code image
ActiveCell.Offset(1,0).Select
ActiveCell.FormulaR1C1 = "'Total"

Better code uses the TotalRow variable to locate where to enter the word Total.
Again, there is no need to select the cell before entering the label:

Click here to view code image
' Build a Total row below this
Cells(TotalRow,1).Value = "Total"

4. Note that these lines of code enter the Total formula in column E and copy it to the
next two columns:

Click here to view code image
ActiveCell.Offset(0, 4).Range("A1").Select
Selection.FormulaR1C1 = "=SUM(R2C:R[-1]C)"
Selection.AutoFill Destination:=ActiveCell.Range("A1:C1"),
Type:= _

xlFillDefault
ActiveCell.Range("A1:C1").Select

There is no reason to do all this selecting. The following line enters the formula in
three cells:

Click here to view code image

Cells(TotalRow,5).Resize(1, 3).FormulaR1C1 =
"=SUM(R2C:R[-1]C)"

(The R1C1 style of formulas is discussed in Chapter 5.)

5. Note that the macro recorder selects a range and then applies formatting:

Click here to view code image

ActiveCell.Rows("1:1").EntireRow.Select

ActiveCell.Activate

Selection.Font.Bold = True

Application.Goto Reference:="R1C1:R1C7"

Selection.Font.Bold = True

There is no reason to select before applying the formatting. The preceding five lines
can be simplified to the two lines below. These two lines perform the same action and
do it much more quickly:

Click here to view code image
Cells(TotalRow, 1).Resize(1, 7).Font.Bold = True
Cells(1, 1).Resize(1, 7).Font.Bold = True

6. Note that the macro recorder selects all cells before doing the AutoFit command:
Selection.CurrentRegion.Select
Selection.Columns.AutoFit

There is no need to select the cells before doing the AutoFit:

Click here to view code image
Cells(1, 1).Resize(TotalRow, 7).Columns.AutoFit

7. Note that the macro recorder adds a short description to the top of each macro:

' ImportInvoice Macro

You have changed the recorded macro code into something that will actually work, so
you should feel free to add your name as author to the description and mention what
the macro does:

Click here to view code image

' Written by Bill Jelen. Import invoice.txt and add
totals.

Here is the final macro with all the changes:

Click here to view code image
Sub FormatInvoiceFixed()
' Written by Bill Jelen. Import invoice.txt and add
totals.

Click here to view code image
Workbooks.OpenText Filename:="C:\Data\invoice.txt",
Origin:=437, _

StartRow:=1, DataType:=xlDelimited,
TextQualifier:=xlDoubleQuote, _
ConsecutiveDelimiter:=False, Tab:=False,
Semicolon:=False, _
Comma:=True, Space:=False, Other:=False,
FieldInfo:=Array(_
Array(1, 3), Array(2, 1), Array(3, 1), Array(4, 1), _
Array(5, 1), Array(6, 1), Array(7, 1))

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
TotalRow = FinalRow + 1
Cells(TotalRow, 1).Value = "Total"
Cells(TotalRow, 5).Resize(1, 3).FormulaR1C1 =
"=SUM(R2C:R[-1]C)"
Cells(TotalRow, 1).Resize(1, 7).Font.Bold = True
Cells(1, 1).Resize(1, 7).Font.Bold = True
Cells(1, 1).Resize(TotalRow, 7).Columns.AutoFit
End Sub

Next steps

By now, you should know how to record a macro. You should also be able to use Help and
debugging to figure out how code works. This chapter provides seven tools for making the
recorded code look like professional code.

The next chapters go into more detail about referring to ranges, looping, and the crazy but
useful R1C1 style of formulas that the macro recorder loves to use.

CHAPTER 3
Referring to ranges

In this chapter, you will:

Learn how to reference the Range object

Reference ranges in other sheets

Reference a range relative to another range

Use the Cells property to select a range

Use the Offset property to refer to a range

Use the Resize property to change the size of a range

Use the Columns and Rows properties to specify a range

Use the Union method to join multiple ranges

Use the Intersect method to create a new range from overlapping ranges

Use the IsEmpty function to check whether a cell is empty

Use the CurrentRegion property to select a data range

Use the SpecialCells property to interact with specific cells in a range

Use the Areas collection to return a noncontiguous range

Learn the syntax used for tables

A range can be a cell, a row, a column, or a grouping of any of these. The Range object is
probably the most frequently used object in Excel VBA; after all, you’re manipulating data on a
sheet. Although a range can refer to any grouping of cells on a sheet, it can refer to only one
sheet at a time. If you want to refer to ranges on multiple sheets, you must refer to each sheet
separately.

This chapter shows you different ways of referring to ranges, such as specifying a row or
column. You’ll also find out how to manipulate cells based on the active cell and how to create
a new range from overlapping ranges.

The Range object

The following is the Excel object hierarchy:

Click here to view code image
Application > Workbook > Worksheet > Range

The Range object is a property of the Worksheet object. This means it requires that a sheet
be active or else it must reference a worksheet. Both of the following lines mean the same thing
if Worksheets(1) is the active sheet:

Click here to view code image
Range("A1")
Worksheets(1).Range("A1")

There are several ways to refer to a Range object. Range("A1") is the most identifiable
because that is how the macro recorder refers to it. However, all the following are equivalent
when referring to cell D5:

Click here to view code image
Range("D5")
[D5]
Range("B3").Range("C3")
Cells(5,4)
Range("A1").Offset(4,3)
Range("MyRange") 'assuming that D5 has a 'Name of MyRange

Which format you use depends on your needs. Keep reading. It will all make sense soon!

Syntax for specifying a range

The Range property has two acceptable syntaxes. To specify a rectangular range in the first
syntax, specify the complete range reference just as you would in a formula in Excel:

Range("A1:B5")

In the alternative syntax, specify the upper-left corner and lower-right corner of the desired
rectangular range. In this syntax, the equivalent statement might be this:

Range("A1", "B5")

For either corner, you can substitute a named range, the Cells property, or the
ActiveCell property. The following line of code selects the rectangular range from A1 to the
active cell:

Range("A1", ActiveCell).Select

The following statement selects from the active cell to five rows below the active cell and
two columns to the right:

Click here to view code image

Range(ActiveCell, ActiveCell.Offset(5, 2)).Select

Referencing named ranges

You probably have already used named ranges on your worksheets and in formulas. You can
also use them in VBA.

Use the following code to refer to the range "MyRange" in Sheet1:

Click here to view code image

Worksheets("Sheet1").Range("MyRange")

Notice the name of the range is in quotes—unlike the use of named ranges in formulas on
the sheet itself. If you forget to put the name in quotes, Excel thinks you are referring to a
variable in the program. One exception is if you use the shortcut syntax discussed in the next
section. In that case, quotes aren’t used.

Shortcut for referencing ranges

A shortcut is available when referencing ranges. The shortcut involves using square brackets,
as shown in Table 3-1.

TABLE 3-1 Shortcuts for referencing ranges

Standard Method Shortcut
Range("D5") [D5]

Range("A1:D5") [A1:D5]

Range("A1:D5, G6:I17") [A1:D5, G6:I17]

Range("MyRange") [MyRange]

Referencing ranges in other sheets
Switching between sheets by activating the needed sheet slows down your code. To avoid this,
refer to a sheet that is not active by first referencing the Worksheet object:

Worksheets("Sheet1").Range("A1")

This line of code references Sheet1 of the active workbook even if Sheet2 is the active
sheet.

To reference a range in another workbook, include the Workbook object, the Worksheet
object, and then the Range object:

Click here to view code image

Workbooks("InvoiceData.xlsx").Worksheets("Sheet1").Range("A1")

To use the Range property as an argument within another Range property, identify the
range fully each time. For example, suppose that Sheet1 is your active sheet and you need to
total data from Sheet2:

Click here to view code image
WorksheetFunction.Sum(Worksheets("Sheet2").Range(Range("A1"), _
Range("A7")))

This line does not work. Why not? Although Range("A1"), Range("A7") is meant to refer
to the sheet at the beginning of the code line (Sheet2), Excel does not assume that you want to
carry the Worksheet object reference over to these other Range objects and assumes that they
refer to the active sheet, Sheet1. So what do you do? Well, you could write this:

Click here to view code image
WorksheetFunction.Sum(Worksheets("Sheet2").Range(Worksheets("Sheet2").
_
Range("A1"), Worksheets("Sheet2").Range("A7")))

But this not only is a long line of code but also difficult to read! Thankfully, there is a
simpler way, using With...End With:

Click here to view code image
With Worksheets("Sheet2")
 WorksheetFunction.Sum(.Range(.Range("A1"), .Range("A7")))
End With

Notice now there is a .Range in your code but without the preceding object reference.
That’s because With Worksheets("Sheet2") implies that the object of the range is that
worksheet. Whenever Excel sees a period without an object reference directly to the left of it, it
looks up the code for the closest With statement and uses that as the object reference.

Referencing a range relative to another range
Typically, the Range object is a property of a worksheet. It is also possible to have Range be
the property of another range. In this case, the Range property is relative to the original range,
which makes for unintuitive code. Consider this example:

Range("B5").Range("C3").Select

This code actually selects cell D7. Think about cell C3, which is located two rows below
and two columns to the right of cell A1. The preceding line of code starts at cell B5. If we
assume that B5 is in the A1 position, VBA finds the cell that would be in the C3 position
relative to B5. In other words, VBA finds the cell that is two rows below and two columns to
the right of B5, which is D7.

Again, I consider this coding style to be very unintuitive. This line of code mentions two
addresses, and the actual cell selected is neither of these addresses! It seems misleading when
you’re trying to read this code.

You might consider using this syntax to refer to a cell relative to the active cell. For
example, the following line of code activates the cell three rows down and four columns to the
right of the currently active cell:

Selection.Range("E4").Select

I mention this syntax only because the macro recorder uses it. Recall that when you
recorded a macro in Chapter 1, “Unleashing the power of Excel with VBA,” with relative
references on, the following line was recorded:

Click here to view code image

ActiveCell.Offset(0, 4).Range("A2").Select

This line found the cell four columns to the right of the active cell, and from there it
selected the cell that would correspond to A2. This is not the easiest way to write code, but it is
the way the macro recorder does it.

Although a worksheet is usually the object of the Range property, occasionally, such as
during recording, a range may be the property of a range.

Using the Cells property to select a range
The Cells property refers to all the cells of the specified Range object, which can be a
worksheet or a range of cells. For example, this line selects all the cells of the active sheet:

Cells.Select

Using the Cells property with the Range object might seem redundant:

Range("A1:D5").Cells

This line refers to the original Range object. However, the Cells property has an Item
property that makes the Cells property very useful. The Item property enables you to refer to
a specific cell relative to the Range object.

The syntax for using the Item property with the Cells property is as follows:

Cells.Item(Row,Column)

You must use a numeric value for Row, but you may use the numeric value or string value
for Column. Both of the following lines refer to cell C5:
Cells.Item(5,"C")
Cells.Item(5,3)

Because the Item property is the default property of the Range object, you can shorten
these lines as follows:
Cells(5,"C")
Cells(5,3)

The ability to use numeric values for parameters is particularly useful if you need to loop
through rows or columns. The macro recorder usually uses something like
Range("A1").Select for a single cell and Range("A1:C5").Select for a range of cells. If
you’re learning to code only from the recorder, you might be tempted to write code like this:

Click here to view code image
FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
For i = 1 to FinalRow
 Range("A" & i & ":E" & i).Font.Bold = True
Next i

This little piece of code, which loops through rows and bolds the cells in columns A
through E, is awkward to read and write. But how else can you do it? Like this:

Click here to view code image
FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
For i = 1 to FinalRow
Cells(i,"A").Resize(,5).Font.Bold = True
Next i

Instead of trying to type the range address, the new code uses the Cells and Resize
properties to find the required cell, based on the active cell. See the “Using the Resize
property to change the size of a range” section later in this chapter for more information on the
Resize property.

You can use the Cells properties for parameters in the Range property. The following
refers to the range A1:E5:

Range(Cells(1,1),Cells(5,5))

This is particularly useful when you need to specify variables with a parameter, as in the
previous looping example.

Using the Offset property to refer to a range
You’ve already seen a reference to Offset when you recorded a relative reference. Offset
enables you to manipulate a cell based on the location of another cell, such as the active cell.
Therefore, you do not need to know the address of the cell you want to manipulate.

The syntax for the Offset property is as follows:

Click here to view code image

Range.Offset(RowOffset, ColumnOffset)

For example, the following code affects cell F5 from cell A1:

Click here to view code image

Range("A1").Offset(RowOffset:=4, ColumnOffset:=5)

Or, shorter yet, you can write this:

Range("A1").Offset(4,5)

The count of the rows and columns starts at A1 but does not include A1.

If you need to go over only a row or a column, but not both, you don’t have to enter both
the row and the column parameters. To refer to a cell one column over, use one of these lines:

Click here to view code image
Range("A1").Offset(ColumnOffset:=1)
Range("A1").Offset(,1)

Both of these lines have the same meaning, so the choice is yours. If you use the second
line, make sure to include the comma so Excel knows that the 1 refers to the ColumnOffset
argument. Referring to a cell one row up is similar:

Click here to view code image
Range("B2").Offset(RowOffset:=-1)
Range("B2").Offset(-1)

Once again, you can choose which one to use. It’s a matter of readability of the code.

Suppose you have a list of produce in column A, with totals next to the produce items in
column B. If you want to find any total equal to zero and place LOW in the cell next to it, do
this:

Click here to view code image
Set Rng = Range("B1:B16").Find(What:="0", LookAt:=xlWhole, _

LookIn:=xlValues)
Rng.Offset(, 1).Value = "LOW"

When used in a Sub and looping through a data set, it would look like this:

Click here to view code image
Sub FindLow()
With Range("B1:B16")
Set Rng = .Find(What:="0", LookAt:=xlWhole,
LookIn:=xlValues)
If Not Rng Is Nothing Then

firstAddress = Rng.Address
Do
Rng.Offset(, 1).Value = "LOW"
Set Rng = .FindNext(Rng)

Loop While Not Rng Is Nothing And Rng.Address <>
firstAddress

End If
End With

End Sub

The LOW totals are noted by the program, as shown inFigure 3-1.

FIGURE 3-1 The code puts “LOW” next to the zeros in the data set.

Note Refer to the section “Object variables” in Chapter 4, “Looping and flow
control,” for more information on the Set statement.

Offsetting isn’t only for single cells; you can use it with ranges. You can shift the focus of a
range over in the same way you can shift the active cell. The following line refers to B2:D4
(seeFigure 3-2):

Range("A1:C3").Offset(1,1)

FIGURE 3-2 Offsetting the original range A1:C3 by one row and one column references a new range, B2:D4.

Using the Resize property to change the size of a range
The Resize property enables you to change the size of a range based on the location of the
active cell. You can create a new range as needed. This is the syntax for the Resize property:

Click here to view code image

Range.Resize(RowSize, ColumnSize)

To reference the range B3:D13, use the following:

Click here to view code image

Range("B3").Resize(RowSize:=11, ColumnSize:=3)

Here’s a simpler way to reference this range:

Range("B3").Resize(11, 3)

But what if you need to resize by only a row or a column—not both? You don’t have to
enter both the row and the column parameters.

To expand by two columns, use either of the following:

Click here to view code image

Range("B3").Resize(ColumnSize:=2)

or

Range("B3").Resize(,2)

Both lines mean the same thing. The choice is yours. If you use the second line, make sure
to include the comma so Excel knows the 2 refers to the ColumnSize argument. Resizing just
the rows is similar. You can use either of the following:

Range("B3").Resize(RowSize:=2)

or

Range("B3").Resize(2)

Once again, the choice is yours. It is a matter of readability of the code.

From the list of produce, say that you want to find the zero totals and color the cells of the
total and corresponding produce (seeFigure 3-3). Here’s what you do:

Click here to view code image
Set Rng = Range("B1:B16").Find(What:="0", LookAt:=xlWhole, _

LookIn:=xlValues)
Rng.Offset(, -1).Resize(, 2).Interior.ColorIndex = 15

FIGURE 3-3 You can resize a range to extend the selection.

Notice that the Offset property first moves the active cell over to the produce column.
When you’re resizing, the upper-left-corner cell must remain the same.

Resizing isn’t only for single cells; you can use it to resize an existing range. For example,
if you have a named range but need it and the column next to it, use this:

Range("Produce").Resize(,2)

Remember, the number you resize by is the total number of rows/columns you want to
include.

Using the Columns and Rows properties to specify a range
The Columns and Rows properties refer to the columns and rows of a specified Range object,
which can be a worksheet or a range of cells. They return a Range object referencing the rows
or columns of the specified object.

You’ve seen the following line used, but what is it doing?

Click here to view code image

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

This line of code finds the last row in a sheet in which column A has a value and places the
row number of that Range object into the variable called FinalRow. This can be useful when
you need to loop through a sheet row by row; you will know exactly how many rows you need
to go through.

Note Some properties of columns and rows require contiguous rows and
columns in order to work properly. For example, if you were to use the
following line of code, 9 would be the answer because only the first range would

be evaluated:

Click here to view code image

Range("A1:B9, C10:D19").Rows.Count

However, if the ranges were grouped separately, the answer would be 19. Excel takes the
top-left cell address, A1, and the bottom-right cell address, D19, and counts the rows in
the range A1:D19:

Click here to view code image

Range("A1:B9", "C10:D19").Rows.Count

Using the Union method to join multiple ranges
The Union method enables you to join two or more noncontiguous ranges. It creates a
temporary object of the multiple ranges, which enables you to affect them at the same time:

Click here to view code image

Application.Union(argument1, argument2, etc.)

The expression Application is not required. The following code joins two named ranges
on the sheet, inserts the =RAND() formula, and bolds them:

Click here to view code image
Set UnionRange = Union(Range("Range1"), Range("Range2"))
With UnionRange

.Formula = "=RAND()"

.Font.Bold = True
End With

Using the Intersect method to create a new range from
overlapping ranges
The Intersect method returns the cells that overlap between two or more ranges. If there is
no overlap, an error is returned:

Click here to view code image

Application.Intersect(argument1, argument2, etc.)

The expression Application is not required. The following code colors the overlapping
cells of the two ranges:

Click here to view code image
Set IntersectRange = Intersect(Range("Range1"), Range("Range2"))
IntersectRange.Interior.ColorIndex = 6

Using the IsEmpty function to check whether a cell is empty
The IsEmpty function returns a Boolean value that indicates whether a single cell is empty:

True if empty, False if not. The cell must truly be empty for the function to return True. If it
contains even just a space that you cannot see, Excel does not consider the cell to be empty:

IsEmpty(Cell)

Say that you have several groups of data separated by a blank row. You want to make the
separations a little more obvious. The following code goes down the data in column A. When it
finds an empty cell in column A, it colors in the first four cells of that row (seeFigure 3-4):

Click here to view code image
LastRow = Cells(Rows.Count, 1).End(xlUp).Row
For i = 1 To LastRow

If IsEmpty(Cells(i, 1)) Then
Cells(i, 1).Resize(1, 4).Interior.ColorIndex = 1

End If
Next i

FIGURE 3-4 You can make separations more obvious by using colored rows.

Using the CurrentRegion property to select a data range
CurrentRegion returns a Range object that represents a set of contiguous data. As long as the
data is surrounded by one empty row and one empty column, you can select the data set by
using CurrentRegion:

RangeObject.CurrentRegion

The following line selects A1:D3 because this is the contiguous range of cells around cell
A1 (seeFigure 3-5):

Range("A1").CurrentRegion.Select

This is useful if you have a data set whose size is in constant flux.

FIGURE 3-5 You can use CurrentRegion to select a range of contiguous data around the active cell.

Case Study: Using the SpecialCells method to select specific cells
Even Excel power users might not have encountered the Go To Special dialog box. If you
press the F5 key in an Excel worksheet, you get the normal Go To dialog box (seeFigure
3-6). In the lower-left corner of this dialog box is a button labeled Special. Click this
button to get to the super-powerful Go To Special dialog box (seeFigure 3-7).

FIGURE 3-6 Although the Go To dialog box doesn’t seem useful, click the Special button in the lower-left
corner to specify what type of cells to select.

In the Excel interface, the Go To Special dialog box enables you to select only cells with
formulas, only blank cells, or only the visible cells. Selecting only visible cells is excellent
for grabbing the visible results of AutoFiltered data.

To simulate the Go To Special dialog box in VBA, use the SpecialCells method. This
enables you to act on cells that meet certain criteria, like this:

Click here to view code image

RangeObject.SpecialCells(Type, Value)

FIGURE 3-7 The Go To Special dialog box has many incredibly useful selection tools, such as one for selecting
only the formulas on a sheet.

The SpecialCells method has two parameters: Type and Value. Type is one of the
xlCellType constants:
xlCellTypeAllFormatConditions
xlCellTypeAllValidation
xlCellTypeBlanks
xlCellTypeComments
xlCellTypeConstants
xlCellTypeFormulas
xlCellTypeLastCell
xlCellTypeSameFormatConditions
xlCellTypeSameValidation
xlCellTypeVisible

Set one of the following optional Value constants if you use xlCellTypeConstants or
xlCellTypeFormulas:

Click here to view code image
xlErrors
xlLogical

xlNumbers
xlTextValues

The following code returns all the ranges that have conditional formatting. It produces an
error if there are no conditional formats and adds a border around each contiguous section
it finds:

Click here to view code image
Set rngCond =
ActiveSheet.Cells.SpecialCells(xlCellTypeAllFormatConditions)
If Not rngCond Is Nothing Then
 rngCond.BorderAround xlContinuous
End If

Have you ever had someone send you a worksheet without all the labels filled in? Some
people think that the data shown inFigure 3-8 looks tidy. They enter the Region field only
once for each region. This might look aesthetically pleasing, but it’s impossible to sort.

FIGURE 3-8 The blank cells in the Region column make it difficult to sort data sets such as this.

Using the SpecialCells method to select all the blanks in this range is one way to fill
the blank region cells quickly using the region found above them:

Click here to view code image
Sub FillIn()
On Error Resume Next 'Need this because if there aren't any
blank
'cells, the code will error
Range("A1").CurrentRegion.SpecialCells(xlCellTypeBlanks).FormulaR1C1
_
 = "=R[-1]C"
Range("A1").CurrentRegion.Value =
Range("A1").CurrentRegion.Value
End Sub

In this code, Range("A1").CurrentRegion refers to the contiguous range of data in the
report. The SpecialCells method returns just the blank cells in that range. This
particular formula fills in all the blank cells with a formula that points to the cell above the
blank cell. (You can read more about R1C1-Style Formulas in Chapter 5, “R1C1-style
formulas.”) The second line of code is a fast way to simulate using the Copy and Paste
Special Values commands.Figure 3-9 shows the results.

FIGURE 3-9 After the macro runs, the blank cells in the Region column have been filled with data.

Using the Areas collection to return a noncontiguous range
The Areas collection is a collection of noncontiguous ranges within a selection. It consists of
individual Range objects representing contiguous ranges of cells within the selection. If a
selection contains only one area, the Areas collection contains a single Range object that
corresponds to that selection.

You might be tempted to loop through the rows in a sheet and check the properties of a cell
in a row, such as its formatting (for example, font or fill) or whether the cell contains a formula
or value. Then you could copy the row and paste it to another section. However, there is an
easier way. InFigure 3-10, the user enters the values below each fruit and vegetable. The
percentages are formulas. The following line of code selects the cells with numeric constants
and copies them to another area:

Click here to view code image
Range("A:D").SpecialCells(xlCellTypeConstants, xlNumbers).Copy _

Range("I1")

FIGURE 3-10 The Areas collection makes it easier to manipulate noncontiguous ranges.

Referencing tables
A table is a special type of range that offers the convenience of referencing named ranges.
However, tables are not created in the same manner as other ranges. For more information on
how to create a named table, see Chapter 6, “Creating and manipulating names in VBA.”

Although you can reference a table by using Worksheets(1).Range("Table1"), you
have access to more of the properties and methods that are unique to tables if you use the
ListObjects object, like this:

Click here to view code image

Worksheets(1).ListObjects("Table1")

This opens the properties and methods of a table, but you can’t use that line to select the
table. To do that, you have to specify the part of the table you want to work with. To select the
entire table, including the header and total rows, specify the Range property:

Click here to view code image

Worksheets(1).ListObjects("Table1").Range.Select

The table part properties include the following:

Range—Returns the entire table.

DataBodyRange—Returns the data part only.

HeaderRowRange—Returns the header row only.

TotalRowRange—Returns the total row only.

What I really like about coding with tables is the ease of referencing specific columns of a
table. You don’t have to know how many columns to move in from a starting position or the
letter/number of the column, and you don’t have to use a FIND function. Instead, you can use
the header name of the column. For example, to select the data of the Qty column of the table,
but not the header or total rows, do this:

Click here to view code image
Worksheets(1).ListObjects("Table1").ListColumns("Qty")_

.DataBodyRange.Select

Note For more details on coding with tables, check out Excel Tables: A
Complete Guide for Creating, Using, and Automating Lists and Tables by Zack
Barresse and Kevin Jones (ISBN: 9781615470280).

Next steps
Chapter 4 describes a fundamental component of any programming language: loops. If you
have taken a programming class, you will be familiar with basic loop structures. VBA supports
all the usual loops. That chapter also describes a special loop, For Each...Next, which is
unique to object-oriented programming such as VBA.

CHAPTER 4
Looping and flow control

In this chapter, you will:

Work with For...Next loops

Get to know Do loops

Be introduced to the VBA loop: For Each

Use If...Then...Else and Select Case for flow control

Loops make your life easier. You might have 20 lines of macro code that do something cool
one time. Add a line of code above and below, and suddenly your macro fixes a million rows
instead of one row. Loops are a fundamental component of any programming language. If
you’ve taken any programming classes—even BASIC—you’ve likely encountered a
For...Next loop. Fortunately, VBA supports all the usual loops, plus a special loop that is
excellent to use with VBA.

This chapter covers the basic loop constructs:

For...Next

Do...While

Do...Until

While...Wend

Do Until...Loop

This chapter also discusses the useful loop construct that is unique to object-oriented
languages: For Each...Next.

For...Next loops
For and Next are common loop constructs. Everything between For and the Next is run
multiple times. Each time the code runs, a certain counter variable, specified in the For
statement, has a different value.

Consider this code:

Click here to view code image
For i = 1 to 10

Cells(i, i).Value = i
Next i

As this program starts to run, you need to give the counter variable a name. In this example,
the name of the variable is i. The first time through the code, the variable i is set to 1. The first
time the loop is executed, i is equal to 1, so the cell in row 1, column 1 is set to 1 (see Figure
4-1).

FIGURE 4-1 After the first iteration through the loop, the cell in row 1, column 1 has the value 1.

Note To improve readability, you should always indent lines of code inside of a
loop. It is your preference whether you use 1, 2, 3, or 4 spaces for the indent.

Let’s take a close look at what happens as VBA gets to the line that says Next i. Before
this line is run, the variable i is equal to 1. During the execution of Next i, VBA must make a
decision. VBA adds 1 to the variable i and compares it to the maximum value in the To clause
of the For statement. If it is within the limits specified in the To clause, the loop is not finished.
In this case, the value of i is incremented to 2. Code execution then moves back to the first line
of code after the For statement. Figure 4-2 shows the state of the program before it runs the
Next line. Figure 4-3 shows what happens after the Next line is executed.

FIGURE 4-2 Before the Next i statement is run, i is equal to 1. VBA can safely add 1 to i, and it will be less than or
equal to the 10 specified in the To clause of the For statement.

FIGURE 4-3 After the Next i statement is run, i is incremented to 2. Code execution continues with the line of code
immediately following the For statement, which writes a 2 to cell B2.

The second time through the loop, the value of i is 2. The cell in row 2, column 2 (that is,
cell B2) gets the value 2.

As the process continues, the Next i statement advances i up to 3, 4, and so on. On the
tenth pass through the loop, the cell in row 10, column 10 is assigned the value 10.

It is interesting to watch what happens to the variable i on the last pass through Next i.
Before running the Next i line, the variable contains 10. VBA is now at a decision point. It
adds 1 to the variable i. The value stored in i is now equal to 11, which is greater than the limit
in the For...Next loop. VBA then moves execution to the next line in the macro after the
Next statement (see Figure 4-4). In case you are tempted to use the variable i later in the
macro, it is important to realize that it will be incremented beyond the limit specified in the To
clause of the For statement.

FIGURE 4-4 After incrementing i to 11, code execution moves to the line after the Next statement.

The common use for such a loop is to walk through all the rows in a data set and decide to
perform some action based on some criteria. For example, to mark all the rows with positive
service revenue in column F, you could use this loop:

Click here to view code image
For i = 2 to 10
 If Cells(i, 6).Value > 0 Then
 Cells(i, 8).Value = “Service Revenue”
 Cells(i, 1).Resize(1, 8).Interior.ColorIndex = 4
 End If
Next i

This loop checks each item of data from row 2 through row 10. If there is a positive number
in column F, column H of that row has a new label, and the cells in columns A:H of the row are
colored using the color index 4, which is green. After this macro has been run, the results look
as shown in Figure 4-5.

Using variables in the For statement

The previous example is not very useful in that it works only when there are exactly 10 rows of
data. It is possible to use a variable to specify the upper and lower limit of the For statement.
This code sample identifies FinalRow with data and then loops from row 2 to that row:

Click here to view code image
FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
For i = 2 to FinalRow

If Cells(i, 6).Value > 0 Then
Cells(i, 8).Value = "Service Revenue"
Cells(i, 1).Resize(1, 8).Interior.ColorIndex = 4

End If
Next i

FIGURE 4-5 After the loop completes all nine iterations, any rows with positive values in column F are colored green
and have the label ServiceRevenue added to column H.

Warning Exercise caution when using variables. What if the imported file
today is empty and has only a heading row? In this case, the FinalRow
variable is equal to 1. This makes the first statement of the loop essentially,
say, For i = 2 to 1. Because the start number is higher than the end

number, the loop does not execute at all. The variable i is equal to 2, and code execution
jumps to the line after Next.

Variations on the For...Next loop

In a For...Next loop, it is possible to have the loop variable jump up by something other than
1. For example, you might use it to apply greenbar formatting to every other row in a data set.
In this case, you want to have the counter variable i examine every other row in the data set.
Indicate this by adding the Step clause to the end of the For statement:

Click here to view code image

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
For i = 2 to FinalRow Step 2
Cells(i, 1).Resize(1, 7).Interior.ColorIndex = 35
Next i

While running this code, VBA adds a light green shading to rows 2, 4, 6, and so on (see
Figure 4-6).

FIGURE 4-6 The Step clause in the For statement of the loop causes the action to occur on every other row.

The Step clause can be any number. You might want to check every tenth row of a data set
to extract a random sample. In this case, you would use Step 10:

Click here to view code image
FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
NextRow = FinalRow + 5
Cells(NextRow-1, 1).Value = "Random Sample of Above Data"
For i = 2 to FinalRow Step 10

Cells(i, 1).Resize(1, 8).Copy Destination:=Cells(NextRow,
1)
NextRow = NextRow + 1

Next i

You can also have a For...Next loop run backward from high to low. This is particularly
useful if you are selectively deleting rows. To do this, reverse the order of the For statement
and have the Step clause specify a negative number:

Click here to view code image
’ Delete all rows where column C is the Internal rep - S54
FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
For i = FinalRow to 2 Step -1

If Cells(i, 3).Value = "S54" Then
Rows(i).Delete

End If

Next i

Note There is a faster way to delete the records, which is discussed in the
“Replacing a loop with AutoFilter” section of Chapter 11, “Data mining with
Advanced Filter.”

Exiting a loop early after a condition is met

Sometimes you don’t need to execute a whole loop. Perhaps you just need to read through a
data set until you find one record that meets a certain criteria. In this case, you want to find the
first record and then stop the loop. A statement called Exit For does this.

The following sample macro looks for a row in the data set where service revenue in
column F is positive and product revenue in column E is 0. If such a row is found, you might
indicate a message that the file needs manual processing today and move the cell pointer to that
row:

Click here to view code image
’ Are there any special processing situations in the data?
FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
ProblemFound = False
For i = 2 to FinalRow

If Cells(i, 6).Value > 0 Then
If cells(i, 5).Value = 0 Then

Cells(i, 6).Select

ProblemFound = True
Exit For

End If
End If

Next i

If ProblemFound Then
MsgBox “There is a problem at row” & i
Exit Sub

End If

Nesting one loop inside another loop

It is okay to run a loop inside another loop. The following code has the first loop run through

all the rows in a record set while the second loop runs through all the columns:

Click here to view code image
' Loop through each row and column
' Add a checkerboard format
FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
FinalCol = Cells(1, Columns.Count).End(xlToLeft).Column
For I = 2 To FinalRow

' For even numbered rows, start in column 1
' For odd numbered rows, start in column 2
If I Mod 2 = 1 Then ' Divide I by 2 and keep remainder

StartCol = 1
Else

StartCol = 2
End If
For J = StartCol To FinalCol Step 2

Cells(I, J).Interior.ColorIndex = 35
Next J

Next I

In this code, the outer loop is using the i counter variable to loop through all the rows in the
data set. The inner loop is using the j counter variable to loop through all the columns in that
row. Because Figure 4-7 has seven data rows, the code runs through the i loop seven times.
Each time through the i loop, the code runs through the j loop six or seven times. This means
that the line of code that is inside the j loop ends up being executed several times for each pass
through the i loop. Figure 4-7 shows the result.

FIGURE 4-7 The result of nesting one loop inside the other; VBA can loop through each row and then each column.

Do loops
There are several variations of the Do loop. The most basic Do loop is useful for doing a bunch

of mundane tasks. For example, suppose that someone sends you a list of addresses going down
a column, as shown in Figure 4-8.

In this case, you might need to rearrange these addresses into a database with name in
column B, street in column C, and city and state in column D. By setting relative recording (see
Chapter 1, “Unleashing the power of Excel with VBA”) and using the shortcut Ctrl+A, you can
record this bit of useful code:

Click here to view code image
Sub FixOneRecord()
' Keyboard Shortcut: Ctrl+Shift+A

ActiveCell.Offset(1, 0).Range("A1").Select
Selection.Cut
ActiveCell.Offset(-1, 1).Range("A1").Select
ActiveSheet.Paste
ActiveCell.Offset(2, -1).Range("A1").Select
Selection.Cut
ActiveCell.Offset(-2, 2).Range("A1").Select
ActiveSheet.Paste
ActiveCell.Offset(1, -2).Range("A1:A3").Select
Selection.EntireRow.Delete
ActiveCell.Select

End Sub

"/>
FIGURE 4-8 It would be more useful to have these addresses in a database format to use in a mail merge.

This code is designed to copy one single address into database format. The code also
navigates the cell pointer to the name of the next address in the list. Each time you press
Ctrl+A, one address is reformatted.

Note Do not assume that the preceding code is suitable for a professional
application. Remember that you don’t need to select something before acting on
it. However, sometimes macros are written just to automate a one-time mundane

task.

Without a macro, a lot of manual copying and pasting would be required. However, with
the preceding recorded macro, you can simply place the cell pointer on a name in column A
and press Ctrl+Shift+A. That one address is copied into three columns, and the cell pointer
moves to the start of the next address (see Figure 4-9).

FIGURE 4-9 After the macro is run once, one address is moved into the proper format, and the cell pointer is positioned
to run the macro again.

When you use this macro, you are able to process an address every second using the
shortcut. However, when you need to process 5,000 addresses, you do not want to keep running
the same macro over and over. In this case, you can use a Do...Loop to set up the macro to run
continuously. You can have VBA run this code continuously by enclosing the recorded code
with Do at the top and Loop at the end. Now you can sit back and watch the code perform this
insanely boring task in minutes rather than hours.

Note that this particular Do...Loop will run forever because there is no mechanism to stop
it. This works for the task at hand because you can watch the progress on the screen and press
Ctrl+Break to stop execution when the program advances past the end of this database.

This code uses a Do loop to fix the addresses:

Click here to view code image
Sub FixAllRecords()
Do

ActiveCell.Offset(1, 0).Range("A1").Select
Selection.Cut
ActiveCell.Offset(-1, 1).Range("A1").Select

ActiveSheet.Paste
ActiveCell.Offset(2, -1).Range("A1").Select
Selection.Cut
ActiveCell.Offset(-2, 2).Range("A1").Select
ActiveSheet.Paste
ActiveCell.Offset(1, -2).Range("A1:A3").Select
Selection.EntireRow.Delete
ActiveCell.Select

Loop
End Sub

These examples have shown quick-and-dirty loops that are great for when you need to
accomplish a task quickly. The Do...Loop provides a number of options that enable you to
have the program stop automatically when it accomplishes the end of the task.

The first option is to have a line in the Do...Loop that detects the end of the data set and
exits the loop. In the current example, this could be accomplished by using the Exit Do
command in an If statement. If the current cell is on a cell that is empty, you can assume that
you have reached the end of the data and stopped processing the loop:

Click here to view code image
Sub LoopUntilDone()
Do

If Selection.Value = "" Then Exit Do
ActiveCell.Offset(1, 0).Range("A1").Select
Selection.Cut
ActiveCell.Offset(-1, 1).Range("A1").Select
ActiveSheet.Paste
ActiveCell.Offset(2, -1).Range("A1").Select
Selection.Cut
ActiveCell.Offset(-2, 2).Range("A1").Select
ActiveSheet.Paste
ActiveCell.Offset(1, -2).Range("A1:A3").Select
Selection.EntireRow.Delete
ActiveCell.Select

Loop
End Sub

Using the While or Until clause in Do loops

There are four variations of using While or Until. These clauses can be added to either the Do
statement or the Loop statement. In each case, the While or Until clause includes some test

that evaluates to True or False.

With a Do While <test expression>...Loop construct, the loop is never executed if
<test expression> is false. If you are reading records from a text file, you cannot assume
that the file has one or more records. Instead, you need to test to see whether you are already at
the end of file with the EOF function before you enter the loop:

Click here to view code image
' Read a text file, skipping the Total lines
Open "C:\Invoice.txt" For Input As #1
R = 1
Do While Not EOF(1)

Line Input #1, Data
If Not Left (Data, 5) = "TOTAL" Then
' Import this row

r = r + 1
Cells(r, 1).Value = Data
End If

Loop
Close #1

In this example, the Not keyword EOF(1) evaluates to True after there are no more records
to be read from Invoice.txt. Some programmers think it is hard to read a program that contains
a lot of instances of Not. To avoid the use of Not, use the Do Until <test
expression>...Loop construct:

Click here to view code image
' Read a text file, skipping the Total lines
Open "C:\Invoice.txt" For Input As #1
r = 1
Do Until EOF(1)

Line Input #1, Data
If Not Left(Data, 5) = "TOTAL" Then
' Import this row

r = r + 1
Cells(r, 1).Value = Data
End If

Loop
Close #1

In other examples, you might always want the loop to be executed the first time. In these
cases, move the While or Until instruction to the end of the loop. This code sample asks the

user to enter sales amounts made that day; it continually asks for sales amounts until the user
enters a zero:

Click here to view code image
TotalSales = 0
Do

x = InputBox(_
Prompt:="Enter Amount of Next Invoice. Enter 0 when
done.", _
Type:=1)

TotalSales = TotalSales + x
Loop Until x = 0
MsgBox "The total for today is $" & TotalSales

In the following loop, a check amount is entered, and then it looks for open invoices to
which the check can be applied. However, it is often the case that a single check is received that
covers several invoices. The following program sequentially applies the check to the oldest
invoices until 100% of the check has been applied:

Click here to view code image
' Ask for the amount of check received. Add zero to convert to
numeric.
AmtToApply = InputBox("Enter Amount of Check") + 0
' Loop through the list of open invoices.

' Apply the check to the oldest open invoices and Decrement
AmtToApply

NextRow = 2
Do While AmtToApply > 0
OpenAmt = Cells(NextRow, 3)
If OpenAmt > AmtToApply Then
' Apply total check to this invoice
Cells(NextRow, 4).Value = AmtToApply
AmtToApply = 0
Else

Cells(NextRow, 4).Value = OpenAmt
AmtToApply = AmtToApply - OpenAmt

End If
NextRow = NextRow + 1
Loop

Because you can construct the Do...Loop with the While or Until qualifiers at the
beginning or end, you have a great deal of subtle control over whether the loop is always

executed once, even when the condition is true at the beginning.

While...Wend loops

While...Wend loops are included in VBA for backward compatibility. In the VBA help
file, Microsoft suggests that the Do...Loop construction is more flexible. However, because
you might encounter While...Wend loops in code written by others, this chapter includes a
quick example. In this loop, the first line is always While <condition>. The last line of the
loop is always Wend. Note that there is no Exit While statement. In general, these loops are
okay, but the Do...Loop construct is more robust and flexible. Because the Do loop offers
either the While or the Until qualifier, you can use this qualifier at the beginning or the end of
the loop, and you can exit a Do loop early:

Click here to view code image
' Read a text file, adding the amounts

Open "C:\Invoice.txt" For Input As #1
TotalSales = 0
While Not EOF(1)
Line Input #1, Data
TotalSales = TotalSales + Data

Wend
MsgBox "Total Sales=" & TotalSales

 Close #1

The VBA loop: For Each
Even though the VBA loop is an excellent loop, the macro recorder never records this type of
loop. VBA is an object-oriented language. It is common to have a collection of objects in
Excel, such as a collection of worksheets in a workbook, cells in a range, pivot tables on a
worksheet, or data series on a chart.

This special type of loop is great for looping through all the items in a collection. However,
before discussing this loop in detail, you need to understand a special kind of variable called
object variables.

Object variables

At this point, you have seen a variable that contains a single value. When you have a variable
such as TotalSales = 0, TotalSales is a normal variable and generally contains only a
single value. It is also possible to have a more powerful variable called an object variable that
holds many values. In other words, any property associated with the object is also associated

with the object variable.

Generally, developers do not take the time to declare variables. Many books implore you to
use the DIM statement to identify all your variables at the top of the procedure. This enables you
to specify that a certain variable must be of a certain type, such as Integer or Double.
Although this saves a tiny bit of memory, it requires you to know up front which variables you
plan on using. However, developers tend to whip up a new variable on the fly as the need
arises. Even so, there are great benefits to declaring object variables. For example, the VBA
AutoComplete feature turns on if you declare an object variable at the top of your procedure.
The following lines of code declare three object variables—a worksheet, a range, and a pivot
table:

Click here to view code image
Sub Test()
Dim WSD as Worksheet
Dim MyCell as Range
Dim PT as PivotTable
Set WSD = ThisWorkbook.Worksheets("Data")
Set MyCell = WSD.Cells(Rows.Count, 1).End(xlUp).Offset(1, 0)
Set PT = WSD.PivotTables(1)
...

In this code, you can see that more than an equal sign is used to assign object variables.
You also need to use the Set statement to assign a specific object to the object variable.

There are many good reasons to use object variables, not the least of which is the fact that it
can be a great shorthand notation. It is easier to have many lines of code refer to WSD than to
ThisWorkbook.Worksheets("Data"). In addition, as mentioned earlier, the object variable
inherits all the properties of the object to which it refers.

The For Each loop employs an object variable rather than a Counter variable. The
following code loops through all the cells in column A:

Click here to view code image
For Each cell in Range("A1").CurrentRegion.Resize(, 1)
If cell.Value = "Total" Then

cell.Resize(1,8).Font.Bold = True
End If

Next cell

This code uses the .CurrentRegion property to define the current region and then uses the
.Resize property to limit the selected range to a single column. The object variable is called
Cell. Any name could be used for the object variable, but Cell seems more appropriate than

something arbitrary like Fred.

The following code sample searches all open workbooks, looking for a workbook in which
the first worksheet is called Menu:

Click here to view code image
For Each wb in Workbooks

If wb.Worksheets(1).Name = "Menu" Then
WBFound = True
WBName = wb.Name
Exit For

End If
Next wb

This code sample deletes all pivot tables on the current sheet:

Click here to view code image
For Each pt in ActiveSheet.PivotTables

pt.TableRange2.Clear
Next pt

Flow control: Using If...Then...Else and Select Case
Another aspect of programming that will never be recorded by the macro recorder is the
concept of flow control. Sometimes you do not want every line of a program to be executed
every time you run a macro. VBA offers two excellent choices for flow control: the
If...Then...Else construct and the Select Case construct.

Basic flow control: If...Then...Else

The most common device for program flow control is the If statement. For example, suppose
you have a list of products, as shown in Figure 4-10. You want to loop through each product in
the list and copy it to either a Fruits list or a Vegetables list. Beginning programmers might be
tempted to loop through the rows twice—once to look for fruit and a second time to look for
vegetables. However, there is no need to loop through twice because you can use an
If...Then...Else construct on a single loop to copy each row to the correct place.

FIGURE 4-10 A single loop can look for fruits or vegetables.

Using conditions

Any If statement needs a condition that is being tested. The condition should always evaluate
to TRUE or FALSE. Here are some examples of simple and complex conditions:

If Range("A1").Value = "Title" Then

If Not Range("A1").Value = "Title" Then

If Range("A1").Value = "Title" And Range("B1").Value = "Fruit" Then

If Range("A1").Value = "Title" Or Range("B1").Value = "Fruit" Then

Using If...Then...End If

After the If statement, you can include one or more program lines that will be executed only if
the condition is met. You should then close the If block with an End If line. Here is a simple
example of an If statement:

Click here to view code image
Sub ColorFruitRedBold()
FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
For i = 2 To FinalRow

If Cells(i, 1).Value = "Fruit" Then
Cells(i, 1).Resize(1, 3).Font.Bold = True
Cells(i, 1).Resize(1, 3).Font.ColorIndex = 3

End If
Next i

MsgBox "Fruit is now bold and red"
End Sub

Either/or decisions: If...Then...Else...End If

Sometimes you will want to do one set of statements if a condition is true and another set of
statements if the condition is not true. To do this with VBA, the second set of conditions would
be coded after the Else statement. There is still only one End If statement associated with this
construct. For example, you could use the following code to color the fruit red and the
vegetables green:

Click here to view code image
Sub FruitRedVegGreen()

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

For i = 2 To FinalRow
If Cells(i, 1).Value = "Fruit" Then

Cells(i, 1).Resize(1, 3).Font.ColorIndex = 3
Else

Cells(i, 1).Resize(1, 3).Font.ColorIndex = 50
End If

Next i

MsgBox "Fruit is red / Veggies are green"
End Sub

Using If...ElseIf...End If for multiple conditions

Notice that the product list includes one item that is classified as an herb. Three conditions can
be used to test items on the list. It is possible to build an If...End If structure with multiple
conditions. First, test to see whether the record is a fruit. Next, use an ElseIf to test whether
the record is a vegetable. Then test to see whether the record is an herb. Finally, if the record is
none of those, highlight the record as an error. Here’s the code that does all this:

Click here to view code image
Sub MultipleIf()

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

For i = 2 To FinalRow
If Cells(i, 1).Value = "Fruit" Then

Cells(i, 1).Resize(1, 3).Font.ColorIndex = 3

ElseIf Cells(i, 1).Value = "Vegetable" Then
Cells(i, 1).Resize(1, 3).Font.ColorIndex = 50

ElseIf Cells(i, 1).Value = "Herbs" Then
Cells(i, 1).Resize(1, 3).Font.ColorIndex = 5

Else
' This must be a record in error
Cells(i, 1).Resize(1, 3).Interior.ColorIndex = 6

End If
Next i

MsgBox "Fruit is red / Veggies are green / Herbs are blue"
End Sub

Using Select Case...End Select for multiple conditions

When you have many different conditions, it becomes unwieldy to use many ElseIf
statements. For this reason, VBA offers another construct, known as the Select Case
construct. In your running example, always check the value of the class in column A. This
value is called the test expression. The basic syntax of this construct starts with the words
Select Case followed by the test expression:

Select Case Cells(i, 1).Value

Thinking about this problem in English, you might say, “In cases in which the record is
fruit, color the record with red.” VBA uses a shorthand version of this. You write the word
Case followed by the literal "Fruit". Any statements that follow Case "Fruit" are executed
whenever the test expression is a fruit. After these statements, you have the next Case
statement: Case "Vegetables". You continue in this fashion, writing a Case statement
followed by the program lines that are executed if that case is true.

After you have listed all the possible conditions you can think of, you can optionally
include a Case Else section at the end. The Case Else section includes what the program
should do if the test expression matches none of your cases. Below, the macro adds a note in
column D if an unexpected value is found in A. Finally, you close the entire construct with the
End Select statement.

The following program does the same operation as the previous macro but uses a Select
Case statement:

Click here to view code image
Sub SelectCase()

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

For i = 2 To FinalRow
Select Case Cells(i, 1).Value

Case "Fruit"
Cells(i, 1).Resize(1, 3).Font.ColorIndex = 3

Case "Vegetable"
Cells(i, 1).Resize(1, 3).Font.ColorIndex = 50

Case "Herbs"
Cells(i, 1).Resize(1, 3).Font.ColorIndex = 5

Case Else
Cells(i, 4).Value = "Unexpected value!"

End Select
Next i

MsgBox "Fruit is red / Veggies are green / Herbs are blue"
End Sub

Complex expressions in Case statements

It is possible to have fairly complex expressions in Case statements. For example, say that you
want to perform the same actions for all berry records:

Click here to view code image
Case "Strawberry", "Blueberry", "Raspberry"

AdCode = 1

If it makes sense to do so, you might code a range of values in the Case statement:

Click here to view code image
Case 1 to 20

Discount = 0.05
Case 21 to 100

Discount = 0.1

You can include the keyword Is and a comparison operator, such as > or <:

Click here to view code image
Case Is < 10

Discount = 0
Case Is > 100

Discount = 0.2
Case Else

Discount = 0.10

Nesting If statements

It is not only possible but also common to nest an If statement inside another If statement. In
this situation, it is important to use proper indentation. You often will find that you have several
End If lines at the end of the construct. With proper indentation, it is easier to tell which End
If is associated with a particular If.

The final macro in this chapter contains a lot of logic that handles the following discount
rules:

For fruit, quantities less than 5 cases get no discount.

Quantities of fruit from 5 to 20 cases get a 10% discount.

Quantities of fruit greater than 20 cases get a 15% discount.

For herbs, quantities less than 10 cases get no discount.

Quantities of herbs from 10 cases to 15 cases get a 3% discount.

Quantities of herbs greater than 15 cases get a 6% discount.

For vegetables except asparagus, quantities of 5 cases and greater earn a 12% discount.

Asparagus requires 20 cases for a discount of 12%.

None of the discounts applies if the product is on sale this week. The sale price is 25%
off the normal price. This week’s sale items are strawberries, lettuce, and tomatoes.

The code to execute this logic follows:

Click here to view code image
Sub ComplexIf()
FinalRow = Cells(Rows.Count, 1).End(xlUp).Row

For i = 2 To FinalRow
ThisClass = Cells(i, 1).Value
ThisProduct = Cells(i, 2).Value
ThisQty = Cells(i, 3).Value

' First, figure out if the item is on sale
Select Case ThisProduct
Case "Strawberry", "Lettuce", "Tomatoes"
Sale = True

Case Else
Sale = False

End Select

' Figure out the discount
If Sale Then
Discount = 0.25

Elseif ThisClass = "Fruit" Then
Select Case ThisQty
Case Is < 5
Discount = 0

Case 5 To 20
Discount = 0.1

Case Is > 20
Discount = 0.15

End Select
ElseIf ThisClass = "Herbs" Then
Select Case ThisQty
Case Is < 10
Discount = 0

Case 10 To 15
Discount = 0.03

Case Is > 15
Discount = 0.06

End Select
ElseIf ThisClass = "Vegetables" Then

' There is a special condition for asparagus
If ThisProduct = "Asparagus" Then
If ThisQty < 20 Then
Discount = 0

Else
Discount = 0.12
End If

Else
If ThisQty < 5 Then
Discount = 0

Else
Discount = 0.12

End If ' Is the product asparagus or not?
End If ' Is the product on sale?
Cells(i, 4).Value = Discount

If Sale Then
Cells(i, 4).Font.Bold = True

End If

Next i

Range("D1").Value = "Discount"

MsgBox "Discounts have been applied"
End Sub

Next steps
Loops add a tremendous amount of power to your recorded macros. Any time you need to
repeat a process over all worksheets or all rows in a worksheet, using a loop is the way to go.
Excel VBA supports the traditional programming loops of For...Next and Do...Loop and
the object-oriented loop For Each...Next. Chapter 5, “R1C1-style formulas,” discusses the
seemingly arcane R1C1 style of formulas and shows why it is important in Excel VBA.

CHAPTER 5
R1C1-style formulas

In this chapter, you will:

Understand A1 versus R1C1 references

Toggle to R1C1-style references

Witness the miracle of Excel formulas

Examine the R1C1 reference style

Use R1C1 formulas with array formulas

Understanding R1C1 formulas will make your job easier in VBA. You could skip this chapter,
but if you do, your code will be harder to write. Taking 30 minutes to understand R1C1 will
make every macro you write for the rest of your life easier to code.

We can trace the A1 style of referencing back to VisiCalc. Dan Bricklin and Bob Frankston
used A1 to refer to the cell in the upper-left corner of the spreadsheet. Mitch Kapor used this
same addressing scheme in Lotus 1-2-3. Upstart Multiplan from Microsoft attempted to buck
the trend and used something called R1C1-style addressing. In R1C1 addressing, the cell
known as A1 is referred to as R1C1 because it is in row 1, column 1.

With the dominance of Lotus 1-2-3 in the 1980s and early 1990s, the A1 style became the
standard. Microsoft realized it was fighting a losing battle and eventually offered either R1C1-
style addressing or A1-style addressing in Excel. When you open Excel today, the A1 style is
used by default. Officially, however, Microsoft supports both styles of addressing.

You would think that this chapter would be a non-issue. Anyone who uses the Excel
interface would agree that the R1C1 style is dead. However, we have what on the face of it
seems to be an annoying problem: The macro recorder records formulas in the R1C1 style. So
you might be thinking that you just need to learn R1C1 addressing so that you can read the
recorded code and switch it back to the familiar A1 style.

I have to give Microsoft credit. R1C1-style formulas, you’ll grow to understand, are
actually more efficient, especially when you are dealing with writing formulas in VBA. Using
R1C1-style addressing enables you to write more efficient code. Plus, there are some features
such as setting up array formulas that require you to enter a formula in R1C1 style.

I can hear the collective groan from Excel users everywhere. You could skip these pages on

this old-fashioned addressing style if it were only an annoyance or an efficiency issue.
However, because it is necessary to understand R1C1 addressing to effectively use important
features such as array formulas, you have to dive in and learn this style.

Toggling to R1C1-style references
You don’t need to switch to R1C1 style in order to use .FormulaR1C1 in your code. However,
while you’re learning about R1C1, it helps to temporarily switch to R1C1 style.

To switch to R1C1-style addressing, select Options from the File menu. In the Formulas
category, select the R1C1 Reference Style check box (see Figure 5-1).

FIGURE 5-1 Selecting the R1C1 reference style in the Formulas category of the Excel Options dialog box causes Excel
to use R1C1 style in the Excel user interface.

After you switch to R1C1 style, the column letters A, B, C across the top of the worksheet
are replaced by numbers 1, 2, 3 (see Figure 5-2).

FIGURE 5-2 In R1C1 style, the column letters are replaced by numbers.

In this format, the cell that you know as B5 is called R5C2 because it is in row 5, column 2.

Every couple weeks, someone manages to accidentally turn on this option, and we get an
urgent support request at MrExcel. This style is foreign to 99% of spreadsheet users.

Witnessing the miracle of Excel formulas
Automatically recalculating thousands of cells is the main benefit of electronic spreadsheets
over the green ledger paper used up until 1979. However, a close second-prize award would be
that you can enter one formula and copy that formula to thousands of cells.

Entering a formula once and copying 1,000 times

Switch back to A1 style referencing. Consider the worksheet shown in Figure 5-3. Enter a
simple formula such as =B4*C4 in cell D4, double-click the AutoFill handle, and the formula
intelligently changes as it is copied down the range.

FIGURE 5-3 Double-click the AutoFill handle, and Excel intelligently copies this relative-reference formula down the
column.

The formula is rewritten for each row, eventually becoming =C9*B9. It seems intimidating
to consider having a macro enter all these different formulas. Figure 5-4 shows how the
formulas change when you copy them down columns D, F, and G.

Note Press Ctrl+’ to switch to showing formulas rather than their results. Press it
again to toggle back to seeing values.

FIGURE 5-4 Amazingly, Excel adjusts the cell references in each formula as you copy down the column.

The formula in cell F4 includes both relative and absolute formulas:
=IF(E4,ROUND(D4*B1,2),0). Thanks to the dollar signs inserted in cell B1, you can copy
down this formula, and it always multiplies the total price in this row by the tax rate in cell B1.

The secret: It’s not that amazing

Excel actually uses R1C1-style formulas behind the scenes. Excel shows addresses and
formulas in A1 style merely because it needs to adhere to the standard made popular by
VisiCalc and Lotus.

If you switch the worksheet in Figure 5-4 to use R1C1 notation, you can see that the
“different” formulas in D4:D9 are all actually identical formulas in R1C1 notation. The same is
true of F4:F9 and G4:G9.

Use the Options dialog box to change the sample worksheet to R1C1-style addresses. If you
examine the formulas in Figure 5-5, you see that in R1C1 language, every formula in column 4
is identical. Given that Excel is storing the formulas in R1C1 style, copying them, and then
merely translating to A1 style for us to understand, it is no longer that amazing that Excel can
easily manipulate A1-style formulas as it does.

FIGURE 5-5 The same formulas as in Figure 5-4 are shown in R1C1 style. Note that every formula in column 4 is the
same, and every formula in column 6 is the same.

This is one of the reasons R1C1-style formulas are more efficient than A1-style formulas in
VBA. When you have the same formula being entered in an entire range, it is less confusing.

Case study: Entering A1 versus R1C1 in VBA
Think about how you would set up this spreadsheet in the Excel interface. First, you enter
a formula in cells D4, F4, and G4. Next, you copy these cells and paste them the rest of
the way down the column. By using R1C1-style formulas, you can enter the same formula
in the entire column at once.

The equivalent code in R1C1 style allows the formulas to be entered for the entire column
in a single statement. Remember, the advantage of R1C1-style formulas is that all the
formulas in Columns D and F, and most of G, are identical:

Click here to view code image
Sub R1C1Style()

' Locate the FinalRow
FinalRow = Cells(Rows.Count, 2).End(xlUp).Row
' Enter the first formula
Range("D4:D" & FinalRow).FormulaR1C1 = "=RC[-1]*RC[-2]"
Range("F4:F" & FinalRow).FormulaR1C1 = _
"=IF(RC[-1],ROUND(RC[-2]*R1C2,2),0)"
Range("G4:G" & FinalRow).FormulaR1C1 = "=RC[-1]+RC[-3]"
' Enter the Total Row
Cells(FinalRow + 1, 1).Value = "Total"
Cells(FinalRow + 1, 6).FormulaR1C1 = "=SUM(R4C:R[-1]C)"

End Sub

Note It seems counterintuitive, but when you specify an A1-style formula,
Microsoft internally converts the formula to R1C1 and then enters that formula
in the entire range. Thus, you can actually add the “same” A1-style formula to an

entire range by using a single line of code:

Click here to view code image

Range("D4:D" & FinalRow).Formula = "=B4*C4"

Note Although you are asking for the formula =B4*C4 to be entered in
D4:D1000, Excel enters this formula in row 4 and appropriately adjusts the
formula for the additional rows.

Understanding the R1C1 reference style
An R1C1-style reference includes the letter R to refer to row and the letter C to refer to column.
Because the most common reference in a formula is a relative reference, let’s first look at
relative references in R1C1 style.

Using R1C1 with relative references

Imagine that you are entering a formula in a cell. To point to a cell in a formula, you use the
letters R and C. After each letter, enter the number of rows or columns in square brackets.

The following list explains the “rules” for using R1C1 relative references:

For columns, a positive number means to move to the right a certain number of columns,
and a negative number means to move to the left a certain number of columns. For
example, from cell E5, use RC[1] to refer to F5 and RC[-1] to refer to D5.

For rows, a positive number means to move down the spreadsheet a certain number of
rows. A negative number means to move toward the top of the spreadsheet a certain
number of rows. For example, from cell E5, use R[1]C to refer to E6 and use cell
R[-1]C to refer to E4.

If you leave off the number for either the R or the C, it means that you are pointing to a
cell in the same row or column as the cell with the formula. For example, the R in RC[3]

means that you are pointing to the current row.

If you enter =R[-1]C[-1] in cell E5, you are referring to a cell one row up and one
column to the left: cell D4.

If you enter =RC[1] in cell E5, you are referring to a cell in the same row but one column
to the right: cell F5.

If you enter =RC in cell E5, you are referring to a cell in the same row and column, which
is cell E5 itself. You would generally not do this because it would create a circular
reference.

Figure 5-6 shows how you would enter a reference in cell E5 to point to various cells
around E5.

FIGURE 5-6 Here are various relative references. These would be entered in cell E5 to describe each cell around E5.

You can use R1C1 style to refer to a range of cells. If you want to add up the 12 cells to the
left of the current cell, you use this formula:

=SUM(RC[-12]:RC[-1])

Using R1C1 with absolute references

An absolute reference is a reference in which the row and column remain fixed when the
formula is copied to a new location. In A1-style notation, Excel uses a $ before the row number
or column letter to keep that row or column absolute as the formula is copied.

To always refer to an absolute row or column number, just leave off the square brackets.
This reference refers to cell B3, no matter where it is entered:

=R3C2

Using R1C1 with mixed references

A mixed reference is a reference in which the row is fixed and the column is allowed to be
relative or in which the column is fixed and the row is allowed to be relative. This is useful in
many situations.

Imagine that you have written a macro to import Invoice.txt into Excel. Using
.End(xlUp), you find where the total row should go. As you are entering totals, you know that
you want to sum from the row above the formula up to row 2. The following code would
handle that:

Click here to view code image
Sub MixedReference()

TotalRow = Cells(Rows.Count, 1).End(xlUp).Row + 1
Cells(TotalRow, 1).Value = "Total"
Cells(TotalRow, 5).Resize(1, 3).FormulaR1C1 =
"=SUM(R2C:R[-1]C)"

End Sub

In this code, the reference R2C:R[-1]C indicates that the formula should add from row 2 in
the same column to the row just above the formula in the current column. Do you see the
advantage to using R1C1 formulas in this case? You can use a single R1C1 formula with a
mixed reference to easily enter a formula to handle an indeterminate number of rows of data
(see Figure 5-7).

FIGURE 5-7 After the macro has run, the formulas in columns 5:7 of the total row will have a reference to a range that
is locked to row 2, but all other aspects are relative.

Referring to entire columns or rows with R1C1 style

You will occasionally write a formula that refers to an entire column. For example, you might
want to know the maximum value in column G. If you don’t know how many rows you will
have in G, you can write =MAX($G:$G) in A1 style or =MAX(C7) in R1C1 style. To find the

minimum value in row 1, use =MIN($1:$1) in A1 style or =MIN(R1) in R1C1 style. You can
use relative reference for either rows or columns. To find the average of the row above the
current cell, use =AVERAGE(R[-1]).

Replacing many A1 formulas with a single R1C1 formula

When you get used to R1C1-style formulas, they actually seem a lot more intuitive to build.
One classic example to illustrate R1C1-style formulas is building a multiplication table. It is
easy to build a multiplication table in Excel using a single mixed-reference formula.

Building the table

Enter the numbers 1 through 12 going across B1:M1. Copy and transpose these so that the
same numbers are going down A2:A13. Now the challenge is to build a single formula that
works in all cells of B2:M13 and that shows the multiplication of the number in row 1 by the
number in column 1. Using A1-style formulas, you must press the F4 key five times to get the
dollar signs in the proper locations. The following is a far simpler formula in R1C1 style:

Click here to view code image
Sub MultiplicationTable()

' Build a multiplication table using a single formula
Range("B1:M1").Value = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12)
Range("B1:M1").Font.Bold = True
Range("B1:M1").Copy
Range("A2:A13").PasteSpecial Transpose:=True
Range("B2:M13").FormulaR1C1 = "=RC1*R1C"
Cells.EntireColumn.AutoFit

End Sub

The R1C1-style reference =RC1*R1C could not be simpler. In English, it is saying, “Take
this row’s column 1 and multiply it by row 1 of this column.” It works perfectly to build the
multiplication table shown in Figure 5-8.

FIGURE 5-8 The macro creates a multiplication table. The formula in B2 uses two mixed references: =$A2*B$1.

Caution After running the macro and producing the multiplication table shown
in Figure 5-8, note that Excel still has the copied range from line 2 of the macro
as the active Clipboard item. If the user of this macro selects a cell and presses
Enter, the contents of those cells copy to the new location. However, this is

generally not desirable. To get Excel out of Cut/Copy mode, add this line of code before
your program ends:

Application.CutCopyMode = False

An interesting twist

Try this experiment: Move the cell pointer to F6. Turn on macro recording using the Record
Macro button on the Developer tab. Click the Use Relative Reference button on the Developer
tab. Enter the formula =A1 and press Ctrl+Enter to stay in F6. Click the Stop Recording button
on the floating toolbar. You get this single-line macro, which enters a formula that points to a
cell five rows up and five columns to the left:

Click here to view code image
Sub Macro1()
 ActiveCell.FormulaR1C1 = "=R[-5]C[-5]"

End Sub

Now, move the cell pointer to cell A1 and run the macro that you just recorded. You might
think that pointing to a cell five rows above A1 would lead to the ubiquitous Run Time Error
1004. But it doesn’t! When you run the macro, the formula in cell A1 is pointing to
=XFA1048572, as shown in Figure 5-9, meaning that R1C1-style formulas actually wrap from
the left side of the workbook to the right side. I cannot think of any instance in which this
would actually be useful, but for those of you who rely on Excel to error out when you ask for
something that does not make sense, be aware that your macro will happily provide a result
that’s probably not the one that you expected!

FIGURE 5-9 The formula to point to five rows above B1 wraps around to the bottom of the worksheet.

Remembering column numbers associated with column letters

I like R1C1-style formulas enough to use them regularly in VBA. I don’t like them enough to
change my Excel interface over to R1C1-style numbers. So I routinely have to know that the
cell known as U21, for example, is really R21C21.

Knowing that U is the twenty-first letter of the alphabet is not something that comes
naturally. We have 26 letters, so A is 1 and Z is 26. M is the halfway point of the alphabet and
is column 13. The rest of the letters are not particularly intuitive. A quick way to get the
column number for any column is to enter =COLUMN() in any empty cell in that column. The
result tells you that, for example, DGX is column 2910 (see Figure 5-10).

FIGURE 5-10 Use the temporary formula =COLUMN() to learn the column number of any cell.

You could also select any cell in DGX, switch to VBA, press Ctrl+G for the Immediate
window, type ? ActiveCell.Column, and press Enter.

Using R1C1 formulas with array formulas
Array formulas are powerful “superformulas.” At MrExcel.com, we call these CSE formulas
because you have to use Ctrl+Shift+Enter to enter them. If you are not familiar with array
formulas, you probably think they look as though they should not work.

The array formula in F4 in Figure 5-11 is a formula that does more than 19,000
multiplications and then sums the result. It looks as though this would be an illegal formula. In
fact, if you happen to enter it without using Ctrl+Shift+Enter, you get the expected #VALUE!
error. However, if you enter it with Ctrl+Shift+Enter, the formula miraculously pops out an
array of 19,000 values and evaluates each one.

FIGURE 5-11 The array formula in F4 does 19,000 calculations. You must use Ctrl+Shift+Enter to enter this formula.

Note You do not type the curly braces when entering the formula. Excel adds
them for you when you press Ctrl+Shift+Enter.

The code to enter these formulas follows:

Click here to view code image
Sub EnterArrayFormulas()
Cells(4, 6).FormulaArray = "=SUM((WEEKDAY(ROW(INDIRECT(" & _

"R[-3]C[-1]& "":""&R[-2]C[-1])),3)=6)*
(DAY(ROW(INDIRECT(" & _
"(R[-3]C[-1]&"":""&R[-2]C[-1])))=13))"

 End Sub

Note that although the formulas appear in the user interface in A1-style notation, you must
use R1C1-style notation for entering array formulas.

Tip Use this trick to quickly find the R1C1 formula: Enter a regular A1-style
formula or an array formula in any cell in Excel. Select that cell. Switch to the VB
Editor. Press Ctrl+G to display the Immediate window. Type Print

ActiveCell.FormulaR1C1 and press Enter. Excel converts the formula in the formula bar
to an R1C1-style formula. You also can use a question mark instead of Print.

Next steps
Read Chapter 6, “Creating and manipulating names in VBA,” to learn how to use named ranges
in macros.

CHAPTER 6
Creating and manipulating names in VBA

In this chapter, you will:

Learn the difference between global and local names

Learn how to add and delete names

Include information about a name by adding a comment

Learn about the different types of names

Make names invisible

Check for the existence of a name

You’ve probably named ranges in a worksheet by highlighting a range and typing a name in the
Name box to the left of the formula bar. You also might have created more complicated names
containing formulas. For example, perhaps you created a name with a formula that finds the
last row in a column. The ability to name a range makes it much easier to write formulas.

The ability to create and manipulate names is also available in VBA, which provides the
same benefits as naming ranges in a worksheet. For example, you can store a new range in a
name.

This chapter explains different types of names and the various ways you can use them.

Global versus local names
Names that are global are available anywhere in a workbook. Names that are local are available
only on a specific worksheet. With local names, you can have multiple references in the
workbook with the same name. Global names must be unique to the workbook.

The Name Manager dialog box (accessed via the Formulas tab) lists all the visible names in
a workbook, even a name that has been assigned to both the global and the local levels. The
Scope column lists the scope of the name, whether it is the workbook or a specific sheet, such
as Sheet1.

For example, in Figure 6-1, the name Apples is assigned to Sheet1 and also to the
workbook.

FIGURE 6-1 The Name Manager lists all local and global names.

Adding names
If you record the creation of a named range and then view the code, you see something like
this:

Click here to view code image
ActiveWorkbook.Names.Add Name:="Fruits",
RefersToR1C1:="=Sheet2!R1C1:R6C6"

This creates a global name Fruits, which includes the range A1:F6 (R1C1:R6C6). The
formula is enclosed in quotes, and the equal sign in the formula must be included. In addition,
the range reference must be absolute (that is, it must include the $ sign) or in R1C1 notation. If
the sheet on which the name is created is the active sheet, the sheet reference does not have to
be included. However, including the sheet reference can make the code easier to understand.

To create a local name, include the sheet name with the Name parameter:

Click here to view code image
ActiveWorkbook.Names.Add Name:="Sheet2!Fruits", _
RefersToR1C1:="=Sheet2!R1C1:R6C6"

Alternatively, specify that the Names collection belongs to a worksheet:

Click here to view code image

Worksheets("Sheet2").Names.Add Name:="Fruits", _
RefersToR1C1:="=Sheet2!R1C1:R6C6"

Note If a reference is not absolute, the name might be created, but it will not
point to the correct range. For example, if you run the following line of code, the
name is created in the workbook:

Click here to view code image
ActiveWorkbook.Names.Add Name:="Citrus", _
RefersTo:="=Sheet1!A1"

However, as you can see in Figure 6-2, the name hasn’t actually been assigned to the
range. The reference will change depending on which cell is the active cell when the name
is viewed.

FIGURE 6-2 Despite what was coded, because absolute referencing was not used, Citrus refers to the active cell.

The preceding example shows what you would get from the macro recorder. There is
simpler code to get the same result:
Range("A1:F6").Name = "Fruits"

Alternatively, for a local variable only, you can use this:

Click here to view code image
Range("A1:F6").Name = "Sheet1!Fruits"

When creating names with these methods, absolute referencing is not required.

Note You can use table names like defined names, but you don’t create them the
same way. See the “Tables” section later in this chapter for more information
about creating table names.

Although this method is much easier and quicker than what the macro recorder creates, it’s
limited in that it works only for ranges. Formulas, strings, numbers, and arrays require the use
of the Add method.

The name you create becomes an object when referenced like this:
Names("Fruits")

The object has many properties, including Name, which you can use to rename the existing
name, like this:
Names("Fruits").Name = "Produce"

Fruits no longer exists; Produce is now the name of the range.

When you are renaming names in which a local reference and a global reference both carry
the same name, the previous line renames the local reference first.

Deleting names
Use the Delete method to delete a name:
Names("ProduceNum").Delete

An error occurs if you attempt to delete a name that does not exist.

Note If both local and global references with the same name exist, be more
specific about which name is being deleted because the local reference is deleted
first.

Adding comments

You can add comments about names, such as why a name was created or where it is used. To
insert a comment for the local name LocalOffice, do this:

Click here to view code image
ActiveWorkbook.Worksheets("Sheet7").Names("LocalOffice").Comment
= _
"Holds the name of the current office"

The comments appear in a column in the Name Manager, as shown in Figure 6-3.

Warning The name must exist before a comment can be added to it.

FIGURE 6-3 You can add comments about names to help remember their purpose.

Types of names
The most common use of names is for storing ranges; however, names can store more than just
ranges. After all, names store information. Names make it simple to remember and use
potentially complex or large amounts of information. In addition, unlike variables, names
remember what they store beyond the life of the program.

You know how to create range names, but you can also assign names to name formulas,
strings, numbers, and arrays, as described in the following pages.

Formulas

The syntax for storing a formula in a name is the same as for a range because the range is
essentially a formula. The following code allows for a dynamic named column with the item
listing starting in A2:

Click here to view code image
Names.Add Name:="ProductList", _

RefersTo:="=OFFSET(Sheet2!A2,0,0,COUNTA(Sheet2!$A:$A))"

This code is useful for creating dynamic data sets or for referencing any dynamic listing on
which calculations may be performed, as shown in Figure 6-4.

FIGURE 6-4 You can assign names to dynamic formulas.

Strings

When using names to hold strings such as the name of the current fruit producer, enclose the
string value in quotation marks. Because no formula is involved, an equal sign is not needed. If
you were to include an equal sign, Excel would treat the value as a formula. Let Excel include
the equal sign shown in the Name Manager:

Click here to view code image
Names.Add Name: = "Company", RefersTo:="CompanyA"

Figure 6-5 shows how the coded name appears in the Name Manager window.

FIGURE 6-5 You can assign a name to a string value.

Tip Because names do not lose their references between sessions, using names is
a great way to store values as opposed to storing values in cells from which the
information would have to be retrieved. For example, to track the leading

producer between seasons, create the name Leader. If the new season’s leading producer
matches the name reference, you could create a special report comparing the seasons. The
other option is to create a special sheet to track the values between sessions and then
retrieve the values when needed. With names, the values are readily available.

The following procedure shows how cells in a variable sheet are used to retain information
between sessions:

Click here to view code image
Sub NoNames(ByRef CurrentTop As String)
TopSeller = Worksheets("Variables").Range("A1").Value
If CurrentTop = TopSeller Then

MsgBox "Top Producer is " & TopSeller & " again."
Else

MsgBox "New Top Producer is " & CurrentTop
End If
End Sub

The following procedure shows how names are used to store information between sessions:

Click here to view code image
Sub WithNames()
If Evaluate("Current") = Evaluate("Previous") Then

MsgBox "Top Producer is " & Evaluate("Previous") & "
again."

Else
MsgBox "New Top Producer is " & Evaluate("Current")

End If
End Sub

If Current and Previous are previously declared names, you access them directly rather
than create variables in which to pass them. Note the use of the Evaluate method to extract
the values in names. The string being stored cannot have more than 255 characters.

Numbers

You can use names to store numbers between sessions. Here’s an example:

Click here to view code image
NumofSales = 5123
Names.Add Name:="TotalSales", RefersTo:=NumofSales

Alternatively, you can use this:

Click here to view code image
Names.Add Name:="TotalSales", RefersTo:=5123

Notice the lack of quotation marks and an equal sign in the RefersTo parameter. Using
quotation marks changes the number to a string. With the addition of an equal sign in the
quotation marks, the number changes to a formula.

To retrieve the value in the name, you have a longer and a shorter option:

Click here to view code image
NumofSales = Names("TotalSales").Value

or this:
NumofSales = [TotalSales]

Note Keep in mind that someone reading your code might not be familiar with
the use of the Evaluate method (square brackets). If you know that someone
else will be reading your code, avoid the use of the Evaluate method or add a

comment explaining it.

Tables

Excel tables share some of the properties of defined names, but they also have their own unique
methods. Unlike with the defined names you are used to dealing with, you cannot manually
create tables. In other words, you cannot select a range on a sheet and type a name in the Name
field. However, you can manually create them via VBA.

Tables are not created using the same method as defined names. Instead of
Range(xx).Add or Names.Add, use ListObjects.Add.

To create a table from cells A1:C26, and assuming that the data table has column headers,
as shown in Figure 6-6, use this:

Click here to view code image
ActiveSheet.ListObjects.Add(xlSrcRange, Range("A1:C26"), ,
xlYes).Name = "Table1"

FIGURE 6-6 You can turn a normal table into an Excel table by assigning a name to it using VBA.

xlSrcRange (the SourceType) tells Excel that the source of the data is an Excel range.
You then need to specify the range (the source) of the table. If you have headers in the table,
include that row when indicating the range. The next argument, which is not used in the
preceding example, is LinkSource, a Boolean indicating whether there is an external data
source that is not used if SourceType is
xlSrc
Range. xlYes lets Excel know that the data table has column headers; otherwise, Excel

automatically generates them. The final argument, which is not shown in the preceding
example, is the destination. This is used when SourceType is xlSrcExternal, indicating the
upper-left cell where the table will begin.

Using arrays in names

A name can hold the data stored in an array. The array size is limited by available memory. See
Chapter 8, “Arrays,” for more information about arrays.

An array reference is stored in a name the same way as a numeric reference:

Click here to view code image
Sub NamedArray()
Dim myArray(10, 5)
Dim i As Integer, j As Integer
'The following For loops fill the array myArray
For i = 0 To 10 'by default arrays start at 0

For j = 0 To 5
myArray(i, j) = i + j
Next j

Next i
'The following line takes our array and gives it a name
Names.Add Name:="FirstArray", RefersTo:=myArray
End Sub

Because the name references a variable, no quotation marks or equal signs are required.

Reserved names

Excel uses local names of its own to keep track of information. These local names are
considered reserved, and if you use them for your own references, they might cause problems.

Highlight an area on a sheet. Then from the Page Layout tab, select Print Area, Set Print
Area.

As shown in Figure 6-7, a Print_Area listing is in the Name field. Deselect the area and
look again in the Name field drop-down menu. The name is still listed there. Select it, and the
print area that was previously set is now highlighted. If you save, close, and reopen the
workbook, Print_Area is still set to the same range. Print_Area is a name reserved by Excel
for its own use.

FIGURE 6-7 Excel creates its own names.

Note Each sheet has its own print area. In addition, setting a new print area on a
sheet that has an existing print area overwrites the original print-area name.

Fortunately, Excel does not have a large list of reserved names:
Criteria
Database
Extract
Print_Area
Print_Titles

Criteria and Extract are used when Advanced Filter (on the Data tab, select Advanced
from the Sort & Filter group) is configured to extract the results of the filter to a new location.

Database is no longer required in Excel. However, some features, such as Data Form, still
recognize it. Legacy versions of Excel used it to identify the data you wanted to manipulate in
certain functions.

Print_Area is used when a print area is set (from the Page Layout tab, select Print Area,
Set Print Area) or when Page Setup options that designate the print area (from the Page Layout
tab, Scale) are changed.

Print_Titles is used when print titles are set (select Page Layout, Print Titles).

You should avoid using these reserved names, and you should use variations on them with
caution. For example, if you create the name PrintTitles, you might accidentally code this:

Click here to view code image
Worksheets("Sheet4").Names("Print_Titles").Delete

If you do this, you delete the Excel name rather than your custom name.

Hiding names
Names are incredibly useful, but you don’t necessarily want to see all the names you have
created. Like many other objects, names have a Visible property. To hide a name, set the
Visible property to False. To unhide a name, set the Visible property to True:

Click here to view code image

Names.Add Name:="ProduceNum", RefersTo:="=A1", Visible:=False

Tip If a user creates a Name object with the same name as the hidden one, the
hidden name is overwritten without any warning message. To prevent this, protect
the worksheet.

Checking for the existence of a name
You can use the following function to check for the existence of a user-defined name, even a
hidden one:

Click here to view code image
Function NameExists(ByVal FindName As String, _

Optional TargetBook As Workbook) As Boolean
If TargetBook Is Nothing Then

If ActiveWorkbook Is Nothing Then
NameExists = False
Exit Function

End If
Set TargetBook = ActiveWorkbook

End If

On Error Resume Next
NameExists = CBool(Len(TargetBook.Names(FindName).Name) <> 0)
On Error GoTo 0
End Function

Keep in mind that this function does not return the existence of Excel’s reserved names.
Even so, this is a handy addition to your arsenal of “programmers’ useful code.” (See Chapter
14, “Sample user-defined functions,” for more information on implementing custom functions.)

The preceding code is also an example of how to use errors to your advantage. If the name

for which you are searching does not exist, an error message is generated. By adding the On
Error Resume Next line, you force the code to continue. Use On Error Goto 0 to reset
error trapping; otherwise, other errors may be skipped. The use of CBool ensures that a
Boolean is the value returned to the function.

Using named ranges for VLOOKUP
Say that every day you import a file of sales data from a chain of retail stores. The file
includes the store number but not the store name. You obviously don’t want to have to
type store names every day, but you would like to have store names appear on all the
reports that you run.

You have a table (listobject) of store numbers and names on a hidden worksheet. You
want to use VBA to help maintain the list of stores each day and then use the VLOOKUP
function to get store names from the list into your data set.

The basic steps are listed here:

1. Import the data file.

2. Find all the unique store numbers in today’s file.

3. See whether any of these store numbers are not in your current table of store names.

4. For any stores that are new, add them to the table, and ask the user for a store name.

5. The StoreList table is larger, but because tables automatically size themselves, you
don’t need to do anything.

6. Use a VLOOKUP function in the original data set to add a store name to all records.
This VLOOKUP references the named range of the newly expanded Store Names data
set.

The following code handles these six steps:

Click here to view code image
Sub ImportData()
'This routine imports sales.csv to the data sheet
'Check to see whether any stores in column A are new
'If any are new, then add them to the StoreList table
Dim WSD As Worksheet, WSM As Worksheet
Dim WB As Workbook
Dim tblStores As ListObject
Dim NewRow As ListRow

Set WB = ThisWorkbook

'Data is stored on the Data worksheet
Set WSD = WB.Worksheets("Data")
'StoreList is stored on a menu worksheet
Set WSM = WB.Worksheets("Menu")
Set tblStores = WSM.ListObjects("tblStoreLookup")

'Open the file. This makes the csv file active
Workbooks.Open Filename:="C:\Sales.csv"
'Copy the data to WSD and close
ActiveWorkbook.Range("A1").CurrentRegion.Copy _
Destination:=WSD.Range("A1")
ActiveWorkbook.Close SaveChanges:=False

'Create a list of unique stores from column A and place in Z
FinalRow = WSD.Cells(WSD.Rows.Count, 1).End(xlUp).Row
WSD.Range("A1").Resize(FinalRow, 1).AdvancedFilter _
 Action:=xlFilterCopy, CopyToRange:=WSD.Range("Z1"),
Unique:=True

'For all the unique stores, see whether they are in the
'current store list
'ISNA returns True for missing store because the VLOOKUP
will
'return an error
FinalStore = WSD.Range("Z" & WSD.Rows.Count).End(xlUp).Row
WSD.Range("AA1").Value = "There?"

Click here to view code image
WSD.Range("AA2:AA" & FinalStore).FormulaR1C1 = _
"=ISNA(VLOOKUP(RC[-1], tblStoreLookup[#All],1,False))"
'Loop through the list of today's stores. If they are shown
' as missing, then add them at the bottom of the StoreList
For i = 2 To FinalStore
If WSD.Cells(i, 27).Value = True Then

'get the next available row in the table
Set NewRow = tblStores.ListRows.Add
ThisStore = Cells(i, 26).Value
With NewRow.Range

.Columns(1) = ThisStore

.Columns(2) = _
InputBox(Prompt:="Enter name of store " _
& ThisStore, Title:="New Store Found")

End With
End If
Next i

'Delete the temporary list of stores in Z & AA
WSD.Range("Z1:AA" & FinalStore).Clear

'Use VLOOKUP to add StoreName to column B of the data set
WSD.Range("B1").EntireColumn.Insert
WSD.Range("B1").Value = "StoreName"
WSD.Range("B2:B" & FinalRow).FormulaR1C1 = _
 "=VLOOKUP(RC1, tblStoreLookup[#All],2,False)"

'Change Formulas to Values
WSD.Range("B2:B" & FinalRow).Value = Range("B2:B" &
FinalRow).Value

'Fix columnwidths
WSD.Range("A1").CurrentRegion.EntireColumn.AutoFit

'Release variables to free system memory
Set NewRow = Nothing
Set tblStores = Nothing
Set WB = Nothing
Set WSD = Nothing
Set WSM = Nothing
End Sub

Next steps
In Chapter 7, “Event programming,” you find out how you can write code to run automatically
based on a person’s actions such as activating a sheet or selecting a cell. This is done with
events, which are actions in Excel that you can capture and use to your advantage.

CHAPTER 7
Event programming

In this chapter, you will:

Learn what events are and how to use them

Review the different types of workbook, worksheet, chart, and application-level
events

Use a sheet event to quickly enter military time into a cell

In this book, you’ve read about workbook events, and you’ve seen examples of worksheet
events. An event allows you to automatically trigger a procedure to run based on something a
user or another procedure does in Excel. For example, if a person changes the contents of a cell,
after he or she presses Enter or Tab, you can have code run automatically. The event that
triggers the code is the changing of the contents of the cell.

Levels of events
You can find events at the following levels:

Application level—Control based on application actions, such as
Application_NewWorkbook

Workbook level—Control based on workbook actions, such as Workbook_Open

Worksheet level—Control based on worksheet actions, such as
Worksheet_SelectionChange

Chart sheet level—Control based on chart actions, such as Chart_Activate

These are the places where you should put different types of events:

Workbook events go into the ThisWorkbook module.

Worksheet events go into the module of the sheet they affect, such as Sheet1.

Chart sheet events go into the module of the chart sheet they affect, such as Chart1.

Pivot table events go into the module of the sheet with the pivot table, or they can go into
the ThisWorkbook module.

Embedded chart and application events go into class modules.

The events can still make procedure or function calls outside their own modules. Therefore,
if you want the same action to take place for two different sheets, you don’t have to copy the
code. Instead, place the code in a module and have each sheet event call the procedure.

This chapter explains different levels of events, where to find them, and how to use the
events.

Note Userform and control events are discussed in Chapter 10, “Userforms: An
introduction,” and Chapter 22, “Advanced userform techniques.”

Using events
Each level consists of several types of events, and memorizing the syntax of them all would be
a feat. Excel makes it easy to view and insert the available events in their proper modules right
from the VB Editor.

When a ThisWorkbook, Sheet, Chart Sheet, or Class module is active, the corresponding
events are available through the Object and Procedure drop-down menus, as shown in Figure 7-
1.

FIGURE 7-1 The different events are easy to access from the VB Editor Object and Procedure drop-down menus.

After an object is selected, the Procedure drop-down menu updates to list the events
available for that object. Selecting a procedure automatically places the procedure header
(Private Sub) and footer (End Sub) in the editor, as shown in Figure 7-2.

FIGURE 7-2 The procedure header and footer are automatically placed when you make selections from the drop-down
menus.

Event parameters

Some events have parameters, such as Target or Cancel, that allow values to be passed into
the procedure. For example, some procedures are triggered before the actual event, such as
BeforeRightClick. Assigning True to the Cancel parameter prevents the default action
from taking place. In this case, the shortcut menu is prevented from appearing:

Click here to view code image
Private Sub Worksheet_BeforeRightClick(ByVal Target As Range, _

Cancel As Boolean)
Cancel = True
End Sub

Enabling events

Some events can trigger other events, including themselves. For example, the
Worksheet_Change event is triggered by a change in a cell. If the event is triggered and the
procedure itself changes a cell, the event gets triggered again, which changes a cell, triggering
the event, and so on. The procedure gets stuck in an endless loop.

To prevent an endless loop, disable the events and then re-enable them at the end of the
procedure:

Click here to view code image
Private Sub Worksheet_Change(ByVal Target As Range)

Application.EnableEvents = False
Range("A1").Value = Target.Value
Application.EnableEvents = True

End Sub

Tip To interrupt a macro, press Esc or Ctrl+Break. To restart it, use Run on the
toolbar or press F5.

Workbook events
Table 7-1 lists event procedures that are available at the workbook level. Some events, such as

Workbook_SheetActivate, are sheet events that are available at the workbook level. This
means you don’t have to copy and paste the code in each sheet in which you want it to run.

Note Table 7-1 does not include the sheet events that are also available at the
sheet level. To learn more about such events, such as Workbook_SheetChange,
look up the Change event in Table 7-3.

TABLE 7-1 Workbook events

Event Name Description
Workbook_Activate Occurs when the workbook containing this event becomes the active workbook.

Workbook_Deactivate Occurs when the active workbook is switched from the workbook containing
the event to another workbook.

Workbook_Open The default workbook event; occurs when a workbook is opened; no user
interface is required.

Workbook_BeforeSave Occurs when the workbook is saved. SaveAsUI is set to True if the Save As
dialog box is to be displayed. Setting Cancel to True prevents the workbook
from being saved.

Workbook_AfterSave Occurs after the workbook is saved. Success returns True if the file saved
successfully and False if the save was not successful.

Workbook_BeforePrint Occurs when any print command is used, whether it is in the ribbon, on the
keyboard, or in a macro. Setting Cancel to True prevents the workbook from
being printed.

Workbook_BeforeClose Occurs when the user closes a workbook. Setting Cancel to True prevents the
workbook from closing.

Workbook_NewSheet Occurs when a new sheet is added to the active workbook. Sh is the new
worksheet or chart sheet object.

Workbook_NewChart Occurs when the user adds a new chart to the active workbook. Ch is the new
chart object. The event is not triggered if a chart is moved from one location to
another, unless it is moved between a chart sheet and a chart object. In that
case, the event is triggered because a new chart sheet or object is being created.

Workbook_WindowResize Occurs when the user resizes the active workbook’s window. Wn is the window.

Workbook_WindowActivate Occurs when the user activates any workbook window. Wn is the window. Only
activating the workbook window starts this event.

Workbook_WindowDeactivate Occurs when the user deactivates any workbook window. Wn is the window.
Only deactivating the workbook window starts this event.

Workbook_AddInInstall Occurs when the user installs the workbook as an add-in (by selecting File,
Options, Add-ins). Double-clicking an .xlam file (an add-in) to open it does not
activate the event.

Workbook_AddInUninstall Occurs when the user uninstalls the workbook (add-in). The add-in is not

automatically closed.

Workbook_Sync Occurs when the user synchronizes the local copy of a sheet in a workbook that
is part of a Document Workspace with the copy on the server.
SyncEventType is the status of the synchronization.

Workbook_PivotTableCloseConnection Occurs when a pivot table report closes its connection to its data source.
Target is the pivot table that has closed the connection.

Workbook_PivotTableOpenConnection Occurs when a pivot table report opens a connection to its data source. Target
is the pivot table that has opened the connection.

Workbook_RowsetComplete Occurs when the user drills through a record set or calls on the row set action
on an OLAP pivot table. Description is a description of the event; Sheet is
the name of the sheet on which the record set is created; Success indicates
success or failure.

Workbook_BeforeXmlExport Occurs when the user exports or saves XML data. Map is the map used to
export or save the data; Url is the location of the XML file; setting Cancel to
True cancels the export operation.

Workbook_AfterXmlExport Occurs after the user exports or saves XML data. Map is the map used to export
or save the data; Url is the location of the XML file; Result indicates success
or failure.

Workbook_BeforeXmlImport Occurs when the user imports or refreshes XML data. Map is the map used to
import the data; Url is the location of the XML file; IsRefresh returns True
if the event was triggered by refreshing an existing connection and False if
triggered by importing from a new data source; setting Cancel to True cancels
the import or refresh operation.

Workbook_AfterXmlImport Occurs when the user exports or saves XML data. Map is the map used to
export or save the data; IsRefresh returns True if the event was triggered by
refreshing an existing connection and False if triggered by importing from a
new data source; Result indicates success or failure.

Workbook_ModelChange Occurs when the user changes the Data Model. Changes is the type of change,
such as columns added, changed, or deleted, that was made to the Data Model.

Workbook_BeforeRemoteChange Occurs before changes by a remote user are merged into the workbook.

Workbook_AfterRemoteChange Occurs after changes by a remote user are merged into the workbook.

Workbook-level sheet events

Table 7-2 lists sheet and pivot table events that are available at the workbook level. These
events affect all sheets in the workbook.

TABLE 7-2 Workbook-level sheet and pivot table events

Event Name Description
Workbook_SheetActivate Occurs when the user activates any chart sheet or worksheet in

the workbook. Sh is the active sheet.

Workbook_SheetBeforeDelete Occurs before any worksheet in the workbook is deleted. Sh is
the sheet being deleted.

Workbook_SheetBeforeDoubleClick Occurs when the user double-clicks any chart sheet or worksheet
in the active workbook. Sh is the active sheet; Target is the
object that’s double-clicked; setting Cancel to True prevents
the default action from taking place.

Workbook_SheetBeforeRightClick Occurs when the user right-clicks any worksheet in the active
workbook. Sh is the active worksheet; Target is the object
that’s right-clicked; setting Cancel to True prevents the default
action from taking place.

Workbook_SheetCalculate Occurs when any worksheet is recalculated or any updated data
is plotted on a chart. Sh is the sheet that triggers the calculation.

Workbook_SheetChange Occurs when the user changes any range in a worksheet. Sh is
the worksheet; Target is the changed range.

Workbook_SheetDeactivate Occurs when the user deactivates any chart sheet or worksheet in
the workbook. Sh is the sheet being switched from.

Workbook_SheetFollowHyperlink Occurs when the user clicks any hyperlink in Excel. Sh is the
active worksheet; Target is the hyperlink.

Workbook_SheetSelectionChange Occurs when the user selects a new range on any sheet. Sh is the
active sheet; Target is the affected range.

Workbook_SheetTableUpdate Occurs after a query table (not a list object) connected to a data
model is updated. Sh is the sheet with the query table; Target is
the query table that was updated.

Workbook_SheetLensGalleryRenderComplete Occurs when the user selects the Quick Analysis tool. Sh is the
active sheet.

Workbook_SheetPivotTableUpdate Occurs when the user updates a pivot table. Sh is the sheet with
the pivot table; Target is the updated pivot table.

Workbook_SheetPivotTableAfterValueChange Occurs after the user edits cells inside a pivot table or the user
recalculates them if they contain a formula. Sh is the sheet the
pivot table is on; TargetPivotTable is the pivot table with
the changed cells; TargetRange is the range that was changed.

Workbook_SheetPivotTableBeforeAllocateChangesOccurs before a pivot table is updated from its OLAP data
source. Sh is the sheet the pivot table is on;
TargetPivotTable is the updated pivot table;
ValueChangeStart is the index number of the first change;
ValueChangeEnd is the index number of the last change;
setting Cancel to True prevents the changes from being
applied to the pivot table.

Workbook_SheetPivotTableBeforeCommitChanges Occurs before an OLAP pivot table updates its data source. Sh is
the sheet the pivot table is on; TargetPivotTable is the
updated pivot table; ValueChangeStart is the index number
of the first change; ValueChangeEnd is the index number of
the last change; setting Cancel to True prevents the changes
from being applied to the data source.

Workbook_SheetPivotTableBeforeDiscardChanges Occurs before an OLAP pivot table discards changes from its
data source. Sh is the sheet the pivot table is on;
TargetPivotTable is the pivot table with changes to discard;
ValueChangeStart is the index number of the first change;

ValueChangeEnd is the index number of the last change.

Workbook_SheetPivotTableChangeSync Occurs after the user changes a pivot table. Sh is the sheet the
pivot table is on; Target is the pivot table that has been
changed.

Worksheet events
Table 7-3 lists event procedures that are available at the worksheet level.

TABLE 7-3 Worksheet events

Event Name Description
Worksheet_Activate Occurs when the sheet on which the event is located becomes the

active sheet.

Worksheet_BeforeDelete Occurs before the sheet on which the event is located is deleted.

Worksheet_Deactivate Occurs when another sheet becomes the active sheet. If a Deactivate
event is on the active sheet and you switch to a sheet with an
Activate event, the Deactivate event runs first, followed by the
Activate event.

Worksheet_BeforeDoubleClick Allows control over what happens when the user double-clicks the
sheet. Target is the selected range on the sheet; Cancel is set to
False by default, but if set to True, it prevents the default action,
such as entering a cell, from happening.

Worksheet_BeforeRightClick Occurs when the user right-clicks a range. Target is the object that’s
right-clicked; setting Cancel to True prevents the default action
from taking place.

Worksheet_Calculate Occurs after a sheet is recalculated.

Worksheet_Change Triggered by a change to a cell’s value, such as when the user enters,
edits, deletes, or pastes text. Recalculation of a value does not trigger
the event. Target is the cell that has been changed.

Worksheet_SelectionChange Occurs when the user selects a new range. Target is the newly
selected range.

Worksheet_FollowHyperlink Occurs when the user clicks a hyperlink. Target is the hyperlink.

Worksheet_LensGalleryRenderComplete Occurs when the user selects the Quick Analysis tool.

Worksheet_PivotTableUpdate Occurs when the user updates a pivot table. Target is the updated
pivot table.

Worksheet_PivotTableAfterValueChange Occurs after the user edits cells inside a pivot table or the user
recalculates them if they contain a formula. TargetPivotTable is
the pivot table with the changed cells; TargetRange is the range that
was changed.

Worksheet_PivotTableBeforeAllocateChanges Occurs before a pivot table is updated from its OLAP data source. Sh
is the sheet the pivot table is on; TargetPivotTable is the updated

pivot table; ValueChangeStart is the index number of the first
change; ValueChangeEnd is the index number of the last change;
setting Cancel to True prevents the changes from being applied to
the pivot table.

Worksheet_PivotTableBeforeCommitChanges Occurs before an OLAP pivot table updates its data source.
TargetPivotTable is the updated pivot table;
ValueChangeStart is the index number of the first change;
ValueChangeEnd is the index number of the last change; setting
Cancel to True prevents the changes from being applied to the data
source.

Worksheet_PivotTableBeforeDiscardChanges Occurs before an OLAP pivot table discards changes from its data
source. TargetPivotTable is the pivot table with changes to
discard; ValueChangeStart is the index number of the first change;
ValueChangeEnd is the index number of the last change.

Worksheet_PivotTableChangeSync Occurs after a pivot table has been changed. Target is the pivot table
that has been changed.

Worksheet_TableUpdate Occurs after a query table (not a list object) connected to a data model
is updated. Target is the query table that has been changed..

Case study: Quickly entering military time into a cell
Say that you’re entering arrival and departure times and want the times to be formatted
with a 24-hour clock, also known as military time. You have tried formatting the cell, but
no matter how you enter the times, they are displayed in the 0:00 hours and minutes
format.

The only way to get the time to appear as military time, such as 23:45, is to have the time
entered in the cell in that manner. Because typing the colon is time-consuming, it would
be more efficient to enter the numbers and let Excel format the time for you.

The solution is to use a Change event to take what is in the cell and insert the colon for
you:

Click here to view code image
Private Sub Worksheet_Change(ByVal Target As Range)
Dim ThisColumn As Integer
Dim UserInput As String, NewInput As String
ThisColumn = Target.Column
If ThisColumn < 3 Then

If Target.Count > 1 Then Exit Sub 'more than 1 cell
selected
If Len(Target) = 1 Then Exit Sub 'only 1 character
entered
UserInput = Target.Value

If IsNumeric(UserInput) Then
If UserInput > 1 Then

NewInput = Left(UserInput, Len(UserInput) - 2) &
":" & _

Right(UserInput, 2)
Application.EnableEvents = False
Target = NewInput
Application.EnableEvents = True

End If
End If

End If

End Sub

An entry of 2345 displays as 23:45. Note that the code limits this format change to
columns A and B (If ThisColumn < 3). Without this limitation, entering numbers
anywhere on a sheet, such as in a totals column, would force the numbers to be
reformatted.

Note Use Application.EnableEvents = False to prevent the
procedure from calling itself when the value in the target is updated.

Chart events
Chart events occur when a chart is changed or activated. Embedded charts require the use of
class modules to access the events. For more information about class modules, see Chapter 9,
“Creating classes and collections.”

Embedded charts

Because embedded charts do not create chart sheets, the chart events are not as readily
available as those of chart sheets. However, you can make them available by adding a class
module, as described here:

1. Insert a class module.

2. Rename the module to something that will make sense to you, such as cl_ChartEvents.

3. Enter the following line of code in the class module:

Click here to view code image
Public WithEvents myChartClass As Chart

The chart events are now available to the chart, as shown in Figure 7-3. They are
accessed in the class module rather than on a chart sheet.

4. Insert a standard module.

5. Enter the following lines of code in the standard module:

Click here to view code image
Dim myClassModule As New cl_ChartEvents
Sub InitializeChart()

Set myClassModule.myChartClass = _
Worksheets(1).ChartObjects(1).Chart

End Sub

These lines initialize the embedded chart to be recognized as a chart object. The procedure
must be run once per Excel session.

Note You can use Workbook_Open to automatically run the InitializeChart
procedure.

FIGURE 7-3 Embedded chart events are now available in the class module.

Embedded chart and chart sheet events

Whether a chart is embedded on a regular sheet or is its own chart sheet, the same events are
available. The only difference will be that the procedure heading for an embedded chart
replaces Chart with the class object you created. For example, to trigger the
BeforeDoubleClick event on a chart sheet, the procedure header would be this:
Chart_BeforeDoubleClick.

To trigger the BeforeDoubleClick event on an embedded chart (using the class object
created in the previous section), the procedure header would be this:
myChartClass_BeforeDoubleClick.

Table 7-4 lists the various chart events available to both embedded charts and chart sheets.

TABLE 7-4 Chart events

Event Name Description
Chart_Activate Occurs when a chart sheet is activated or changed.

Chart_BeforeDoubleClickOccurs when any part of a chart is double-clicked. ElementID is the part of the chart that is
double-clicked, such as the legend. Arg1 and Arg2 are dependent on the ElementID; setting
Cancel to True prevents the default double-click action from occurring.

Chart_BeforeRightClick Occurs when the user right-clicks a chart. Setting Cancel to True prevents the default right-
click action from occurring.

Chart_Calculate Occurs when the user changes a chart’s data.

Chart_Deactivate Occurs when the user makes another object (such as another chart or sheet) the active object.

Chart_MouseDown Occurs when the cursor is over the chart and the user presses any mouse button. Button is the
mouse button that was clicked; Shift is whether a Shift, Ctrl, or Alt key was pressed; X is the
X coordinate of the cursor when the button is pressed; Y is the Y coordinate of the cursor when
the button is pressed.

Chart_MouseMove Occurs as the user moves the cursor over a chart. Button is the mouse button being held
down, if any; Shift is whether a Shift, Ctrl, or Alt key was pressed; X is the X coordinate of
the cursor on the chart; Y is the Y coordinate of the cursor on the chart.

Chart_MouseUp Occurs when the user releases any mouse button while the cursor is on the chart. Button is the
mouse button that was clicked; Shift is whether a Shift, Ctrl, or Alt key was pressed; X is the
X coordinate of the cursor when the button is released; Y is the Y coordinate of the cursor
when the button is released.

Chart_Resize Occurs when the user resizes a chart using the resize handles. However, this does not occur
when the size is changed using the size controls on the Chart Tools, Format tab or Format
Chart Area task pane.

Chart_Select Occurs when the user selects a chart element. ElementID is the part of the chart selected, such
as the legend. Arg1 and Arg2 are dependent on the ElementID.

Chart_SeriesChange Occurs when a chart data point is updated. SeriesIndex is the offset in the Series collection
of updated series; PointIndex is the offset in the Point collection of updated points..

Application-level events
Application-level events, listed in Table 7-5, affect all open workbooks in an Excel session.
You need a class module to access them. This is similar to the class module used to access
events for embedded chart events. For more information about class modules, see Chapter 9.

Follow these steps to create the class module:

1. Insert a class module.

2. Rename the module to something that makes sense to you, such as cl_AppEvents.

3. Enter the following line of code in the class module:

Click here to view code image
Public WithEvents AppEvent As Application

The application events are now available to the workbook, as shown in Figure 7-4. They
are accessed in the class module rather than in a standard module.

4. Insert a standard module.

5. Enter the following lines of code in the standard module:

Click here to view code image
Dim myAppEvent As New cl_AppEvents
Sub InitializeAppEvent()

Set myAppEvent.AppEvent = Application
End Sub

These lines initialize the application to recognize application events. The procedure must be
run once per session.

Tip You can use Workbook_Open to automatically run the
InitializeAppEvent procedure.

FIGURE 7-4 Application events are now available through the class module.

Note The object in front of the event, such as AppEvent, is dependent on the
name given in the class module.

TABLE 7-5 Application events

Event Name Description
AppEvent_AfterCalculate Occurs after all calculations are complete, after AfterRefresh,

and SheetChange events, and after
Application.CalculationState is set to xlDone, and
there aren’t any outstanding queries or incomplete calculations.

AppEvent_NewWorkbook Occurs when the user creates a new workbook. Wb is the new
workbook.

AppEvent_ProtectedViewWindowActivate Occurs when the user activates a workbook in Protected View
mode. Pvw is the workbook being activated.

AppEvent_ProtectedViewWindowBeforeClose Occurs when the user closes a workbook in Protected View
mode. Pvw is the workbook being deactivated; Reason is why
the workbook closed; setting Cancel to True prevents the
workbook from closing.

AppEvent_ProtectedViewWindowDeactivate Occurs when the user deactivates a workbook in Protected View
mode. Pvw is the workbook being deactivated.

AppEvent_ProtectedViewWindowOpen Occurs when a workbook is open in Protected View mode. Pvw
is the workbook being opened.

AppEvent_ProtectedViewWindowResize Occurs when the user resizes the window of the protected
workbook. However, this does not occur in the application itself.
Pvw is the workbook that’s being resized.

AppEvent_ProtectedViewWindowBeforeEdit Occurs when the user clicks the Enable Editing button of a
protected workbook. Pvw is the protected workbook; setting
Cancel to True prevents the workbook from being enabled.

AppEvent_SheetActivate Occurs when the user activates a sheet. Sh is the worksheet or
chart sheet.

AppEvent_SheetBeforeDelete Occurs before any worksheet in a workbook is deleted. Sh is the
sheet being deleted.

AppEvent_SheetBeforeDoubleClick Occurs when the user double-clicks a worksheet. Target is the
selected range on the sheet; Cancel is set to False by default.
However, when set to True, it prevents the default action, such
as entering a cell, from happening.

AppEvent_SheetBeforeRightClick Occurs when the user right-clicks any worksheet. Sh is the
active worksheet; Target is the object that’s right-clicked;
setting Cancel to True prevents the default action from taking
place.

AppEvent_SheetCalculate Occurs when the user recalculates any worksheet or plots any
updated data on a chart. Sh is the active sheet.

AppEvent_SheetChange Occurs when the user changes the value of any cell. Sh is the
worksheet; Target is the changed range.

AppEvent_SheetDeactivate Occurs when the user deactivates any chart sheet or worksheet in
a workbook. Sh is the sheet being deactivated.

AppEvent_SheetFollowHyperlink Occurs when the user clicks any hyperlink in Excel. Sh is the
active worksheet; Target is the hyperlink.

AppEvent_SheetSelectionChange Occurs when the user selects a new range on any sheet. Sh is the
active sheet; Target is the selected range.

AppEvent_SheetTableUpdate Occurs when the user changes a table object. Sh is the active

sheet; Target is the table object that was updated.

AppEvent_SheetLensGalleryRenderComplete Occurs when the user selects the Quick Analysis tool. Sh is the
active sheet.

AppEvent_SheetPivotTableUpdate Occurs when the user updates a pivot table. Sh is the active
sheet; Target is the updated pivot table.

AppEvent_SheetPivotTableAfterValueChange Occurs after the user edits cells inside a pivot table or, if the cells
contain a formula, the user recalculates them. Sh is the sheet the
pivot table is on; TargetPivotTable is the pivot table with
the changed cells; TargetRange is the range that was changed.

AppEvent_SheetPivotTableBeforeAllocateChangesOccurs before a pivot table is updated from its OLAP data
source. Sh is the sheet the pivot table is on;
TargetPivotTable is the updated pivot table;
ValueChangeStart is the index number of the first change;
ValueChangeEnd is the index number of the last change;
setting Cancel to True prevents the changes from being
applied to the pivot table.

AppEvent_SheetPivotTableBeforeCommitChanges Occurs before an OLAP pivot table updates its data source. Sh is
the sheet the pivot table is on; TargetPivotTable is the
updated pivot table; ValueChangeStart is the index number
of the first change; ValueChangeEnd is the index number of
the last change; setting Cancel to True prevents the changes
from being applied to the data source.

AppEvent_SheetPivotTableBeforeDiscardChanges Occurs before an OLAP pivot table discards changes from its
data source. Sh is the sheet the pivot table is on;
TargetPivotTable is the pivot table with changes to discard;
ValueChangeStart is the index number of the first change;
ValueChangeEnd is the index number of the last change.

AppEvent_WindowActivate Occurs when the user activates any workbook window. Wb is the
workbook that’s being deactivated; Wn is the window. This
works only if there are multiple windows.

AppEvent_WindowDeactivate Occurs when the user deactivates any workbook window. Wb is
the active workbook; Wn is the window. This works only if there
are multiple windows.

AppEvent_WindowResize Occurs when the user resizes the active workbook. Wb is the
active workbook; Wn is the window.

AppEvent_WorkbookActivate Occurs when the user activates any workbook. Wb is the
workbook being activated.

AppEvent_WorkbookDeactivate Occurs when the user switches between workbooks. Wb is the
workbook that’s being switched away from.

AppEvent_WorkbookAddinInstall Occurs when the user installs a workbook as an add-in (via File,
Options, Add-ins). Double-clicking an .xlam file to open it does
not activate the event. Wb is the workbook being installed.

AppEvent_WorkbookAddinUninstall Occurs when the user uninstalls a workbook (add-in). The add-in
is not automatically closed. Wb is the workbook being
uninstalled.

AppEvent_WorkbookBeforeClose Occurs when the user closes a workbook. Wb is the workbook;

setting Cancel to True prevents the workbook from closing.

AppEvent_WorkbookBeforePrint Occurs when the user uses any print command (via the ribbon,
keyboard, or a macro). Wb is the workbook; setting Cancel to
True prevents the workbook from being printed.

AppEvent_Workbook_BeforeSave Occurs when the user saves the workbook. Wb is the workbook;
SaveAsUI is set to True if the Save As dialog box is to be
displayed; setting Cancel to True prevents the workbook from
being saved.

AppEvent_WorkbookAfterSave Occurs after the user has saved the workbook. Wb is the
workbook; Success returns True if the file saved successfully
and returns False if the save was not successful.

AppEvent_WorkbookNewSheet Occurs when the user adds a new sheet to the active workbook.
Wb is the workbook; Sh is the new worksheet.

AppEvent_WorkbookNewChart Occurs when the user adds a new chart to the active workbook.
Wb is the workbook; Ch is the new chart object. The event is not
triggered if the user moves a chart from one location to another,
unless the user moves it between a chart sheet and a chart object.
In that case, the event is triggered because a new chart sheet or
object is being created.

AppEvent_WorkbookOpen Occurs when the user opens a workbook. Wb is the workbook
that was just opened.

AppEvent_WorkbookPivotTableCloseConnection Occurs when a pivot table report closes its connection to its data
source. Wb is the workbook containing the pivot table that
triggered the event; Target is the pivot table that has closed the
connection.

AppEvent_WorkbookPivotTableOpenConnection Occurs when a pivot table report opens a connection to its data
source. Wb is the workbook containing the pivot table that
triggered the event; Target is the pivot table that has opened
the connection.

AppEvent_WorkbookRowsetComplete Occurs when the user drills through a record set or calls upon the
row set action on an OLAP pivot table. Wb is the workbook that
triggered the event; Description is a description of the event;
Sheet is the name of the sheet on which the record set is
created; Success indicates success or failure.

AppEvent_WorkbookSync Occurs when the user synchronizes the local copy of a sheet in a
workbook that is part of a document workspace with the copy on
the server. Wb is the workbook that triggered the event;
SyncEventType is the status of the synchronization.

AppEvent_WorkbookBeforeXmlExport Occurs when the user exports or saves XML data. Wb is the
workbook that triggered the event; Map is the map used to export
or save the data; Url is the location of the XML file; Cancel set
to True cancels the export operation.

AppEvent_WorkbookAfterXmlExport Occurs after the user exports or saves XML data. Wb is the
workbook that triggered the event; Map is the map used to export
or save the data; Url is the location of the XML file; Result
indicates success or failure.

AppEvent_WorkbookBeforeXmlImport Occurs when the user imports or refreshes XML data. Wb is the

workbook that triggered the event; Map is the map used to
import the data; Url is the location of the XML file;
IsRefresh returns True if the event was triggered by
refreshing an existing connection and False if triggered by
importing from a new data source; setting Cancel to True
cancels the import or refresh operation.

AppEvent_WorkbookAfterXmlImport Occurs after the user imports or refreshes XML data. Wb is the
workbook that triggered the event; Map is the map used to
import the data; IsRefresh returns True if the event was
triggered by refreshing an existing connection and False if
triggered by importing from a new data source; Result
indicates success or failure.

AppEvent_WorkbookModelChange Occurs when the user changes the Data Model. Wb is the
workbook that triggered the event; Changes is the type of
change, such as columns added, changed, or deleted, that the
user made to the Data Model.

AppEvent_WorkbookAfterRemoteChange Occurs after changes by a remote user are merged into the
workbook. Wb is the workbook that triggered the event.

AppEvent_WorkbookBeforeRemoteChange Occurs before changes by a remote user are merged into the
workbook. Wb is the workbook that triggered the event..

Next steps
In this chapter, you’ve learned more about interfacing with Excel. In Chapter 8, “Arrays,” you
find out how to use multidimensional arrays. Reading data into a multidimensional array,
performing calculations on the array, and then writing the array back to a range can speed up
your macros dramatically.

CHAPTER 8
Arrays

In this chapter, you will:

Learn how to declare an array

Fill an array

Retrieve data from an array

Use an array to speed up code

Use dynamic arrays

Pass an array to another procedure or function

An array is a type of variable that can be used to hold more than one piece of data. For
example, if you have to work with the name and address of a client, your first thought might be
to assign one variable for the name and another for the address of the client. Instead, consider
using an array, which can hold both pieces of information—and not for just one client but for
hundreds.

Declaring an array
You declare an array by adding parentheses after the array name and specifying the number of
array elements in the parentheses:

Dim myArray(2)

This creates an array, myArray, that contains three elements:

Click here to view code image
myArray(0) = 10
myArray(1) = 20
myArray(2) = 30

Three elements are included because, by default, the index count starts at 0. If the index
count needs to start at 1, use Option Base 1 to force the count to start at 1. To do this, place
the Option Base statement in the declarations section at the top of the module:

Click here to view code image
Option Base 1
Sub MyFirstArray()
Dim myArray(2)

This now forces the array to have only two elements.

You also can create an array independently of the Option Base statement by declaring its
lower and upper bounds:

Click here to view code image
Dim myArray(1 to 10)
Dim BigArray(100 to 200)

Every array has a lower bound (LBound) and an upper bound (UBound). When you declare
Dim myArray(2), you are declaring the upper bound and allowing the Option Base
statement to declare the lower bound. By declaring Dim myArray(1 to 10), you declare the
lower bound, 1, and the upper bound, 10.

Declaring a multidimensional array
The arrays just discussed are considered one-dimensional arrays because only one number
designates the location of an element of the array. Such an array is like a single row of data, but
because there can be only one row, you do not have to worry about the row number — only the
column number. For example, to retrieve the second element (Option Base 0), use
myArray(1).

In some cases, a single dimension is not enough. This is where multidimensional arrays
come in. Whereas a one-dimensional array is a single row of data, a two-dimensional array
contains rows and columns.

To declare another dimension to an array, you add another argument. The following creates
an array of 10 rows and 20 columns:

Dim myArray(1 to 10, 1 to 20)

Note Another word for array is matrix, which is what a spreadsheet is. The
Cells object refers to elements of a spreadsheet—and a cell consists of a row
and a column. You’ve been using arrays all along!

You can create additional dimensions by including additional arguments. For example, to
create a three-dimensional array, do this:

Dim myArray (1 to 4, 1 to 10, 1 to 4)

The following code places values in the first two columns of the first row, as shown in
Figure 8-1:
myArray(1,1) = 10
myArray(1,2) = 20

FIGURE 8-1 The VB Editor Watches window shows the first “row” of the array being filled from the previous lines of
code.

The following code places values in the first two columns of the second row:
myArray(2,1) = 20
myArray(2,2) = 40

And so on. Of course, this is time-consuming and can require many lines of code. Other
ways to fill an array are discussed in the next section.

Note To get the upper or lower bounds of another dimension, you have to
specify the dimension. For example, to retrieve the upper bound of the second
dimension, use this: UBound(MyArray,2).

Filling an array
Now that you can declare an array, you need to fill it. One method discussed earlier is to enter a
value for each element of the array individually. However, there is a quicker way, as shown in
the following sample code and Figure 8-2:

Click here to view code image
Option Base 1
Sub ColumnHeaders()
Dim myArray As Variant 'Variants can hold any type of data,

including arrays
Dim myCount As Integer

'Fill the variant with array data
myArray = Array("Name", "Address", "Phone", "Email")

'Unload the array onto a sheet by placing it in a range of the
same size
'if not using Option Base 1, then add 1 to LBound
Worksheets("Sheet2").Range("A1").Resize(LBound(myArray), _

UBound(myArray)).Value = myArray
End With
End Sub

FIGURE 8-2 Use an array to create column headers quickly.

Variant variables can hold any type of information. Create a Variant-type variable that
can be treated like an array. Use the Array function to shove the data into the variant and force
the variant to take on the properties of an array. Notice that you don’t declare the size of the
array when you fill it, as shown in the previous example.

If the information needed in the array is on the sheet already, use the following to fill an
array quickly. This code creates an array that is 16 rows by 2 columns:

Click here to view code image
Dim myArray As Variant
myArray = Worksheets("Sheet1").Range("B2:C17")

Although these two methods are quick and straightforward, they might not always suit the
situation. For example, if you need every other row in an array, use the following code (see
Figure 8-3):

Click here to view code image
Sub EveryOtherRow()
'there are 16 rows of data, but we are only filling every other
row
'half the table size, so our array needs only 8 rows

Dim myArray(1 To 8, 1 To 2)
Dim i As Integer, j As Integer, myCount As Integer
'Fill the array with every other row
For i = 1 To 8

For j = 1 To 2
'i*2 directs the program to retrieve every other row

myArray(i, j) = Worksheets("Sheet1").Cells(i * 2, j +
1).Value

Next j
Next i
'Calculate contents of array and transfer results to sheet
For myCount = LBound(myArray) To UBound(myArray)

Worksheets("Sheet1").Cells(myCount * 2, 4).Value = _
WorksheetFunction.Sum(myArray(myCount, 1),
myArray(myCount, 2))

Next myCount
End Sub

FIGURE 8-3 You can fill the array with data from every other row.

LBound finds the start location—the lower bound—of the array (myArray). UBound finds
the end location—the upper bound—of the array. The program can then loop through the array
and sum the information as it writes it to the sheet. How to extract data from an array is
explained in the following section.

Retrieving data from an array
After an array is filled, the data needs to be retrieved. However, before you do that, you can
manipulate the data or return information about it, such as the maximum integer, as shown in
the following code (see Figure 8-4):

Click here to view code image
Sub QuickFillMax()
Dim myArray As Variant

Click here to view code image
myArray = Worksheets("Sheet1").Range("B2:C12").Value
MsgBox "Maximum Integer is: " & WorksheetFunction.Max(myArray)

End Sub

FIGURE 8-4 You can return the Max value in an array.

Data also can be manipulated before it is returned to the sheet. In the following example,
LBound and UBound are used with a For loop to loop through the elements of the array and
average each set:

Note MyCount + 1 is used to place the results back on the sheet because
LBound is 1 and the data starts in row 2.

Click here to view code image
Sub QuickFillAverage()
Dim myArray As Variant
Dim myCount As Integer
'fill the array
myArray = Worksheets("Sheet1").Range("B2:C12")
'Average the data in the array just as it is placed on the sheet
For myCount = LBound(myArray) To UBound(myArray)
'calculate the average and place the result in column E

Worksheets("Sheet1").Cells(myCount + 1, 5).Value = _
WorksheetFunction.Average(myArray(myCount, 1),
myArray(myCount, 2))

Next myCount
End Sub

The results are placed on the sheet in a new column (see Figure 8-5).

FIGURE 8-5 Calculations can be done on the data as it is returned to the sheet.

Using arrays to speed up code
So far you have learned that arrays can make it easier to manipulate data and get information
from it, but is that all they are good for? No, arrays are powerful because they can actually
make the code run faster!

In the preceding example, each row was processed as it was placed on the sheet. Imagine
doing that 10,000 times, 100,000 times, or more. Each time Excel has to write to the sheet, it
slows down. You can minimize writing to the sheet by doing all the processing in memory and
then writing the data to the sheet one time.

In the following example, the calculated average is placed in a second array: MyAverage.
First, you ReDim it so that it has enough room to hold all the calculated values. (See the next
section, “Using dynamic arrays,” for more information.) Then, after looping and filling it, you
place the entire array on the sheet. Notice that the range you place it in is resized to fit the entire
array. Also, because the array was created in code and is just a single element (row), you have
to transpose it so it’s in column form:

Click here to view code image
Sub QuickFillAverageFast()
'Writes the data to the sheet once
'Also more flexible with dynamic range
Dim myArray As Variant, MyAverage As Variant
Dim myCount As Long, LastRow As Long
Dim wksData As Worksheet
Set wksData = Worksheets("EveryOther")
With wksData

LastRow = .Range("A" & .Rows.Count).End(xlUp).Row
myArray = .Range("B2:C" & LastRow)

ReDim MyAverage(UBound(myArray))

For myCount = LBound(myArray) To UBound(myArray)
MyAverage(myCount) = _
WorksheetFunction.Average(myArray(myCount, 1), _
myArray(myCount, 2))

Next myCount
.Range("E2").Resize(UBound(MyAverage)).Value = _

Application.Transpose(MyAverage)
End With
End Sub

Using dynamic arrays
You don’t always know how big an array needs to be. You could create an array based on how
big it could ever need to be, but that’s a waste of memory—and what if it turns out that it needs
to be even bigger? To avoid this problem, you can use a dynamic array. A dynamic array is an
array that does not have a set size. In other words, you declare the array but leave the
parentheses empty, like this:

Dim myArray()

Later, as the program needs to use the array, ReDim is used to set the size of the array. The
following program, which returns the names of all the sheets in the workbook, first creates a
boundless array and then sets the upper bound after it knows how many sheets are in the
workbook:

Click here to view code image
Sub MySheets()
Dim myArray() As String
Dim myCount As Integer, NumShts As Integer

NumShts = ActiveWorkbook.Worksheets.Count

'Size the array
ReDim myArray(1 To NumShts)

For myCount = 1 To NumShts
myArray(myCount) = ActiveWorkbook.Sheets(myCount).Name
Next myCount
End Sub

Using ReDim reinitializes the array. Therefore, if you use it many times, such as in a loop,
you lose all the data it holds. To prevent this from happening, use Preserve. The Preserve

keyword enables you to resize the last array dimension, but you cannot use it to change the
number of dimensions.

The following example looks for all the Excel files in a directory and puts the results in an
array. Because you do not know how many files there will be until you actually look at them,
you can’t size the array before the program is run:

Click here to view code image
Sub XLFiles()
Dim FName As String
Dim arNames() As String
Dim myCount As Integer

FName = Dir("C:\Excel VBA 2019 by Jelen & Syrstad*.xls*")
Do Until FName = ""

myCount = myCount + 1
ReDim Preserve arNames(1 To myCount)
arNames(myCount) = FName
FName = Dir

Loop
End Sub

Note Using Preserve with large amounts of data in a loop can slow down the
program. If possible, use code to figure out the maximum size of an array as
soon as possible.

Passing an array
Just like strings, integers, and other variables, arrays can be passed into other procedures. This
makes for more efficient and easier-to-read code. The following sub, PassAnArray, passes the
array myArray into the function RegionSales. The data in the array is summed for the
specified region, and the result is returned to the sub:

Click here to view code image
Sub PassAnArray()
Dim myArray() As Variant
Dim myRegion As String

myArray = Range("mySalesData") 'named range containing all the

data
myRegion = InputBox("Enter Region - Central, East, West")
MsgBox myRegion & " Sales are: " & Format(RegionSales(myArray, _
myRegion), "$#,#00.00")
End Sub

Function RegionSales(ByRef BigArray As Variant, sRegion As
String) As Long
Dim myCount As Integer
RegionSales = 0
For myCount = LBound(BigArray) To UBound(BigArray)
'The regions are listed in column 1 of the data,
'hence the 1st column of the array

If BigArray(myCount, 1) = sRegion Then
'The data to sum is the 6th column in the data
RegionSales = BigArray(myCount, 6) + RegionSales

End If
Next myCount
End Function

Warning You can’t assign the values of one array to be the values of another
unless both arrays are the same size or the second array doesn’t have
specifically declared dimensions. To append values from one array to another
or to pass values between arrays of differing sizes, you have to loop through the

arrays.

Next steps
Arrays are a type of variable used for holding more than one piece of data. In Chapter 9,
“Creating classes and collections,” you discover the powerful technique of setting up your own
class module. With this technique, you can set up your own object with its own methods and
properties.

CHAPTER 9
Creating classes and collections

In this chapter, you will:

Learn how to insert a class module

Trap application and embedded chart events

Create and use a custom object

Learn various methods of creating collections

Minimize the use of repeated code by using a collection

Learn about dictionaries

Create custom properties with user-defined types (UDTs)

Excel already has many objects available, but there are times when the job at hand requires a
custom object. You can create custom objects that you use in the same way as Excel’s built-in
objects. These special objects are created in class modules.

Class modules are used to create custom objects with custom properties and methods. They
can also be used to trap application events, embedded chart events, ActiveX control events, and
more.

Collections are a variable type that can hold groups of similar items, including custom
objects. Each item in a collection has a unique key, and you can use that unique key to retrieve
a value, including all the properties of an object, from the collection.

Inserting a class module
From the VB Editor, select Insert, Class Module. A new module, Class1, is added to the
VBAProject workbook and is visible in the Project Explorer window (see Figure 9-1). Here are
two things to keep in mind concerning class modules:

Each custom object must have its own module. (Event trapping can share a module.)

The class module should be renamed to reflect the custom object.

FIGURE 9-1 Custom objects are created in class modules.

Trapping application and embedded chart events
Chapter 7, “Event programming,” explains how certain actions in workbooks, worksheets, and
nonembedded charts can be trapped and used to activate code. It briefly reviews how to set up a
class module to trap application and chart events. The following text goes into more detail
about what was shown in that chapter.

Application events

The Workbook_BeforePrint event is triggered when the workbook in which it resides is
printed. If you want to run the same code in every workbook available, you have to copy the
code to each workbook. Alternatively, you can use an application event,
WorkbookBeforePrint, which is triggered when any workbook is printed.

The application events already exist, but a class module must be set up first so that the
events can be seen. To create a class module, follow these steps:

1. Insert a class module into the project. Select View, Properties Window and rename it
something that makes sense to you, such as cAppEvents.

2. Enter the following into the class module:

Public WithEvents xlApp As Application

The name of the variable, xlApp, can be any variable name. The WithEvents keyword
exposes the events associated with the Application object.

3. Select xlApp from the class module’s Object drop-down menu and then click the
Procedure drop-down menu to its right to view the events that are available for the
xlApp’s object type (Application), as shown in see Figure 9-2.

Tip For a review of the various application events, see the “Application-level
events” section in Chapter 7.

FIGURE 9-2 Events are made available after an object is created.

Any of the events listed can be captured, just as workbook and worksheet events were
captured in Chapter 7. The following example uses the NewWorkbook event to set up footer
information automatically. This code is placed in the class module, below the xlApp
declaration line you just added:

Click here to view code image
Private Sub xlApp_NewWorkbook(ByVal Wb As Workbook)
Dim wks As Worksheet
With Wb

For Each wks In .Worksheets
wks.PageSetup.LeftFooter = "Created by: " &
Application.UserName
wks.PageSetup.RightFooter = Now

Next wks
End With
End Sub

The procedure placed in a class module does not run automatically, as events in workbook
or worksheet modules would. An instance of the class module must be created, and the
Application object must be assigned to the xlApp property. After that is complete, the
TrapAppEvent procedure needs to run. As long as the procedure is running, the footer is
created on each sheet every time a new workbook is added. Place the following in a standard
module:

Click here to view code image

Public clsAppEvent As New cAppEvents
Sub TrapAppEvent()

Set myAppEvent.xlApp = Application
End Sub

Note The application event trapping can be terminated by any action that resets
the module level or public variables, including editing code in the VB Editor. To
restart event trapping, run the procedure that creates the object (TrapAppEvent).

In this example, the public myAppEvent declaration was placed in a standard module with
the TrapAppEvent procedure. To automate the running of the entire event trapping, all the
modules could be transferred to the Personal.xlsb and the procedure transferred to a
Workbook_Open event. In any case, the Public declaration of myAppEvent must remain in a
standard module so that it can be shared among modules.

Embedded chart events

Preparing to trap embedded chart events is the same as preparing to trap application events.
Create a class module, insert the public declaration for a chart type, create a procedure for the
desired event, and then add a standard module procedure to initiate the trapping. The same
class module used for the application event can be used for the embedded chart event.

Place the following line in the declaration section of the class module:

Click here to view code image

Public WithEvents xlChart As Chart

The available chart events are now viewable (see Figure 9-3).

Tip For a review of the various charts events, see “Embedded chart and chart
sheet events” in Chapter 7.

FIGURE 9-3 The chart events are available after the chart type variable has been declared.

Next you’ll create a program to change the chart scale. You need to set up three events. The
primary event, MouseDown, changes the chart scale with a right-click or double-click. Because
these actions also have actions associated with them, you need two more events,
BeforeRightClick and BeforeDoubleClick, which prevent the usual action from taking
place.

The following BeforeDoubleClick event prevents the normal result of a double-click
from taking place:

Click here to view code image
Private Sub xlChart_BeforeDoubleClick(ByVal ElementID As Long, _

ByVal Arg1 As Long, ByVal Arg2 As Long, Cancel As Boolean)
Cancel = True

End Sub

The following BeforeRightClick event prevents the normal result of a right-click from
taking place:

Click here to view code image
Private Sub xlChart_BeforeRightClick(Cancel As Boolean)

Cancel = True
End Sub

Now that the normal actions of the double-click and right-click have been controlled,
MouseDown rewrites the actions initiated by a right-click and double-click:

Click here to view code image
Private Sub xlChart_MouseDown(ByVal Button As Long, _

ByVal Shift As Long, ByVal x As Long, ByVal y As Long)
If Button = 1 Then 'left mouse button

xlChart.Axes(xlValue).MaximumScale = _
xlChart.Axes(xlValue).MaximumScale - 50

End If

If Button = 2 Then 'right mouse button
xlChart.Axes(xlValue).MaximumScale = _
xlChart.Axes(xlValue).MaximumScale + 50

End If
End Sub

After the events are set in the class module, all that is left to do is declare the variable in a
standard module, as follows:

Click here to view code image

Public myChartEvent As New clsEvents

Then create a procedure that captures the events on the embedded chart:

Click here to view code image
Sub TrapChartEvent()

Set myChartEvent.xlChart = Worksheets("EmbedChart"). _
ChartObjects("Chart 2").Chart

End Sub

Creating a custom object
Class modules are useful for trapping events, but they also are valuable because you can use
them to create custom objects. When you are creating a custom object, the class module
becomes a template of the object’s properties and methods. To help you understand this better,
in this section you create an employee object to track employee name, ID, hourly wage rate,
and hours worked.

Insert a class module and rename it cEmployee. The cEmployee object has six properties
and one method. Properties are variables in the object that you can assign a value to or read a
value from. They can be private, in which case they are accessible only within the class module
itself, or they can be public, which means they’re available from any module.

At the very top of the class module, place the following private variables. Notice that each
line begins with the word Private. These variables will be used only within the class module
itself. They receive their values from properties or functions within the class module:

Click here to view code image

Private m_employeename As String
Private m_employeeid As String
Private m_employeehourlyrate As String
Private m_employeeweeklyhours As String
Private m_normalhours As Double
Private m_overtimehours As Double

Property Let procedures are used to assign values to properties. By default, properties
are public, so you don’t actually have to state that:

Click here to view code image
Property Let EmployeeName(RHS As String)

m_employeename = RHS
End Property

Property Let EmployeeID(RHS As String)
m_employeeid = RHS

End Property

Property Let EmployeeHourlyRate(RHS As Double)
m_employeehourlyrate = RHS

End Property

Property Let EmployeeWeeklyHours(RHS As Double)
m_employeeweeklyhours = RHS
m_normalhours = WorksheetFunction.Min(40, RHS)
m_overtimehours = WorksheetFunction.Max(0, RHS - 40)

End Property

These four objects’ properties are writable. Place them after declaring the private variables.
The argument, RHS, is the value being assigned to the property, which is then assigned to one of
the private variables. I like to use RHS (Right Hand Side—easy to remember!) as a common
argument name for consistency, but you can use what you want.

Property Get procedures are read-only properties of the class module:

Click here to view code image
Property Get EmployeeName() As String

EmployeeName = m_employeename
End Property

Property Get EmployeeID() As String
EmployeeID = m_employeeid

End Property

Property Get EmployeeWeeklyHours() As Double
EmployeeWeeklyHours = m_employeeweeklyhours

End Property

Property Get EmployeeNormalHours() As Double
EmployeeNormalHours = m_normalhours

End Property

Property Get EmployeeOverTimeHours() As Double
EmployeeOverTimeHours = m_overtimehours

End Property

In addition to three of the properties you assign values to, two more are available to get
values from: EmployeeNormalHours and EmployeeOverTimeHours. EmployeeHourlyRate
is the one property that a value can be written to but not read from. Why? Imagine that you
have another routine that reads all the values from a database into the program’s memory. A
programmer using your class module doesn’t need to see this raw data. Using the Get property,
you can control what data the programmer can access but still have the data available to the
program.

Note Property Set procedures are used to assign an object to a property. For
example, if you want to create a worksheet property that gets passed a worksheet
object, do this:

Property Set DataWorksheets (RHS as Worksheet)

You would use Get to retrieve, like this:
Property Get DataWorksheets () As Worksheet

Finally, you have the function that becomes an object method:

Click here to view code image
Public Function EmployeeWeeklyPay() As Double

EmployeeWeeklyPay = (m_normalhours * m_employeehourlyrate)
+ _
(m_overtimehours * m_employeehourlyrate * 1.5)

End Function

Like a normal function, it can have arguments, but in this case, you’ve previously set all the
variables it needs by using Let.

You also can use subs in class modules. In this case, a function is used because you want to
return a value. But if you want to do an action, like Range.Cut, then you use a sub.

The object is now complete. The next step is to use the object in an actual program.

Using a custom object
When a custom object is properly configured in a class module, it can be referenced from other
modules. To access the properties and functions of the object, first declare a variable as the
class module and then set a new instance of the object. You can then write the code,
referencing the custom object and taking advantage of IntelliSense to access its properties and
methods, as shown in see Figure 9-4.

The following example uses the custom object created in the previous section, “Creating a
custom object.” It sets the values of the properties and then generates a message box, retrieving
some of those values and accessing the method you created:

Click here to view code image
Sub SingleEmployeePayTime()
'declare a variable as the class module/object
Dim clsEmployee As cEmployee
'set a new instance to the object
Set clsEmployee = New cEmployee
With clsEmployee

.EmployeeName = "Tracy Syrstad"

.EmployeeID = "1651"

.EmployeeHourlyRate = 35.15

.EmployeeWeeklyHours = 45
MsgBox .EmployeeName & Chr(10) & Chr(9) & _
"Normal Hours: " & .EmployeeNormalHours & Chr(10) & Chr(9)
& _
"OverTime Hours: " & .EmployeeOverTimeHours & Chr(10) &
Chr(9) & _
"Weekly Pay : $" & .EmployeeWeeklyPay

End With
End Sub

FIGURE 9-4 The properties and method of the custom object are just as easily accessible as they are for standard
objects.

Using collections
A collection holds a group of similar items. For example, Worksheet is a member of the
Worksheets collection. You can add, remove, count, and refer to each worksheet in a workbook
by its item number.

Creating a collection

To use a collection, you first declare a variable as the collection and then set a new instance of
the collection. You can then use the Add method to add items to it:

Click here to view code image
CollectionName.Add Item, Key, Before, After

The Add method has four arguments. Item is whatever information the collection holds. It
can be anything from a string to an object such as a worksheet. The second value, which is
optional, is Key. It is used to look up a member of the collection. It must be a unique string
value. You can use Key to directly reference an item in a collection. If you don’t know Key,
then the only way to find an item in a collection is to loop through the collection.

Before and After are optional arguments you can use to position an item in a collection.
You can refer to the key or position of the item. The following example creates a collection

with two items. The first item is added with a key; the second item is not.

Click here to view code image
Dim myFirstCollection as Collection
Set MyFirstCollection = New Collection
MyFirstCollection.Add Item1, "Key1" 'with a key
MyFirstCollection.Add Item2 'without a key

Notice that the key is a string. If you want to use numbers for the key, then force the
number to be treated as a string, like this:

Click here to view code image
MyFirstCollection.Add Item3, CStr(1)

Creating a collection in a standard module

By setting up a collection in a standard module, you can access the four default collection
methods: Add, Remove, Count, and Item. The following example reads a list of employees
from a sheet into an array. It then loops through the array, supplying each property of the
custom object with a value, and places each record in the collection, as shown in see Figure 9-
5.

FIGURE 9-5 A collection can hold any type of variable, including a custom object’s properties.

Note This example stores a custom object in a collection. As I said earlier, the
value a collection holds can be anything, including the multiple properties of a
class module. Technically, a single record of the collection holds just one value:

the custom object. But the custom object itself consists of multiple values.

Click here to view code image
Sub EmployeesPayUsingCollection()
Dim colEmployees As Collection 'declare a variable for the
collection
Dim clsEmployee As cEmployee
Dim arrEmployees
Dim tblEmployees As ListObject
Dim i As Long
Dim FullName As String

Set colEmployees = New Collection 'set a new instance of the
collection
Set tblEmployees = Worksheets("Employee
Info").ListObjects("tblEmployees")

arrEmployees = tblEmployees.DataBodyRange
'loop through each employee
'assign values to the custom object properties
'then place the custom object into the collection
'using the employee id as the unique key
For i = 1 To UBound(arrEmployees)

Set clsEmployee = New cEmployee
With clsEmployee

.EmployeeName = arrEmployees(i, 1)

.EmployeeID = arrEmployees(i, 2)

.EmployeeHourlyRate = arrEmployees(i, 3)

.EmployeeWeeklyHours = arrEmployees(i, 4)
colEmployees.Add clsEmployee, CStr(.EmployeeID)

Click here to view code image
End With

Next i

'retrieve information from the custom object in the collection
'specifically, the second member of the collection
Set clsEmployee = colEmployees(2)
MsgBox "Number of Employees: " & colEmployees.Count & Chr(10) &
_
"Employee(2) Name: " & clsEmployee.EmployeeName
'retrieve information using the key

FullName = colEmployees("1651").EmployeeName
MsgBox Left(FullName, Len(FullName) - InStr(1, FullName, " ") -
2) & _

"'s Weekly Pay: $" & colEmployees("1651").EmployeeWeeklyPay
Set colEmployees = Nothing
Set tblEmployees = Nothing
Set clsEmployee = Nothing
End Sub

The collection colEmployees is declared as a new collection, and the record
clsEmployee is assigned as a new object of the class module cEmployee.

After the object’s properties are given values, the record clsEmployee is added to the
collection. The second parameter of the Add method applies a unique key to the record, which,
in this case, is EmployeeID. This allows a specific record to be accessed quickly, as shown by
the second message box (colEmployees(“1651”).EmployeeWeeklyPay) (see Figure 9-6).

FIGURE 9-6 Individual records in a collection can be easily accessed.

Creating a collection in a class module

When you create a collection in a class module, the innate methods of the collection (Add,
Remove, Count, Item) cannot be accessed outside the class module; you need to create your
own methods and properties. The advantages of creating a collection in a class module are the
following:

The entire code is in one module.

You have more control over what is done with the collection.

You can prevent access to the collection.

Insert a new class module for the collection and rename it cEmployees. Declare a private
collection to be used within the class module:

Click here to view code image

Private AllEmployees As New Collection

Add the new properties and methods required to make the collection work. The innate
methods of the collection are available within the class module, and you can use them to create
the custom methods and properties.

Insert an Add method for adding new items to the collection:

Click here to view code image
Public Sub Add(recEmployee As clsEmployee)
AllEmployees.Add recEmployee, CStr(recEmployee.EmployeeID)
End Sub

Insert a Remove method to remove a specific item from the collection:

Click here to view code image
Public Sub Remove(myItem As Variant)
AllEmployees.Remove (myItem)
End Sub

Insert a Count property to return the number of items in the collection:

Click here to view code image
Public Property Get Count() As Long
Count = AllEmployees.Count
End Property

Insert an Items property to return the entire collection:

Click here to view code image
Public Property Get Items() As Collection
Set Items = AllEmployees
End Property

Insert an Item property to return a specific item from the collection:

Click here to view code image
Public Property Get Item(myItem As Variant) As cEmployee
Set Item = AllEmployees(myItem)
End Property

Property Get is used with Count, Item, and Items because these are read-only

properties. Item returns a reference to a single member of the collection, whereas Items
returns the entire collection so that it can be used in For Each Next loops.

After the collection is configured in the class module, you can write a procedure in a
standard module to use it:

Click here to view code image
Sub EmployeesPayUsingCollection()
'using a collection in a class module
Dim colEmployees As cEmployees
Dim clsEmployee As cEmployee
Dim arrEmployees
Dim tblEmployees As ListObject
Dim i As Long
Dim FullName as String

Set colEmployees = New cEmployees 'set a new instance of the
collection
Set tblEmployees = Worksheets("Employee
Info").ListObjects("tblEmployees")

Click here to view code image
arrEmployees = tblEmployees.DataBodyRange
'loop through each employee
'assign values to the custom object properties
'then place the custom object into the collection
'using the employee id as the unique key
For i = 1 To UBound(arrEmployees)

Set clsEmployee = New cEmployee
With clsEmployee

.EmployeeName = arrEmployees(i, 1)

.EmployeeID = arrEmployees(i, 2)

.EmployeeHourlyRate = arrEmployees(i, 3)

.EmployeeWeeklyHours = arrEmployees(i, 4)
'the key is added by the class module Add method
colEmployees.Add clsEmployee

End With
Next i

'retrieve information from the custom object in the collection
'specifically, the second member of the collection
Set clsEmployee = colEmployees.Item(2)

MsgBox "Number of Employees: " & colEmployees.Count & Chr(10) &
_

"Employee(2) Name: " & clsEmployee.EmployeeName
'retrieve information using the key
FullName = colEmployees("1651").EmployeeName
MsgBox Left(FullName, Len(FullName) - InStr(1, FullName, " ") -
2) & _

"'s Weekly Pay: $" & colEmployees("1651").EmployeeWeeklyPay
Set colEmployees = Nothing
Set tblEmployees = Nothing
Set clsEmployee = Nothing
End Sub

This program is not too different from the one used with the standard collection, but there
are a few key differences:

Instead of declaring colEmployees as Collection, you declare it as type cEmployees,
the new class module collection.

The array and collection are filled the same way, but the way the records in the collection
are referenced has changed. When a member of the collection, such as employee record
2, is referenced, the Item property must be used.

Using dictionaries
The ability to use a key to look up values in a collection is a major plus. I often parallel
collections and arrays to help find information in an array. For example, I use the key in the
collection to look up a value, which is the location of a record in the array.

But a major downside to collections is that after you add an item to a collection, you can’t
change it. So, if you need the advantages of a collection but also need to change the value, you
should use a dictionary. A dictionary does everything a collection does and more, but it needs a
little more setup because it’s part of the Microsoft Scripting Runtime Library.

Some of the other differences between collections and dictionaries include the following:

A dictionary requires a key.

A dictionary key can be any variable type except for an array.

A dictionary key can be changed.

You have to use the key to retrieve a value. You can’t use the item’s position.

You can change a value.

You can check for the existence of a key.

In the following example, which declares the dictionary using late binding, data is placed
into an array and processed, using the product name as the key. The summed quantities are then
placed on the sheet, with the dictionary keys as labels, as shown in see Figure 9-7.

FIGURE 9-7 You can use a dictionary to hold values that could change multiple times as the code runs.

Tip See Chapter 20, “Automating Word,” for information on early versus late
binding.

Click here to view code image
Sub UsingADictionary()
Dim dictData As Object
Dim bItemExists As Boolean
Dim tblSales As ListObject

Click here to view code image
Dim arrData, arrReport, arrHeaders
Dim i As Long
Dim rng As Range

'create the dictionary object
Set dictData = CreateObject("Scripting.Dictionary")
Set tblSales = Worksheets("Table”).ListObjects("tblSales")

'put the data into an array for faster processing
arrData = tblSales.DataBodyRange

'loop through the array
For i = 1 To UBound(arrData)

'if key exists, add to it
'else create and add to it
If dictData.Exists(arrData(i, 2)) Then

dictData.Item(arrData(i, 2)) = dictData.Item(arrData(i,
2)) + _
arrData(i, 5)

Else
dictData.Add arrData(i, 2), arrData(i, 5)

End If
Next i

'rename a key, just for the heck of it
'the only way to rename a key is to know the name of it
dictData.Key("Tools") = "Electrical Tools"

'the location 2 rows beneath the table
Set rng = tblSales.Range.Offset(tblSales.Range.Rows.Count +
2).Resize(1, 1)

'put the dictionary keys and values each into an array
'then dump them on the sheet
arrHeaders = dictData.Keys
rng.Resize(dictData.Count, 1).Value =
Application.Transpose(arrHeaders)
arrReport = dictData.Items
rng.Offset(, 1).Resize(dictData.Count, 1).Value = _

Application.Transpose(arrReport)
Set dictData = Nothing

Set tblSales = Nothing
Set rng = Nothing
End Sub

The Exists method allows you to check for the existence of a key. If the key exists, True
is returned; otherwise, False is returned. You can rename a key simply by assigning a new
name to it (dictData.Key(“Tools”) = “Electrical Tools”). Dictionaries also have two
methods, Keys and Items, that allow you to dump those values into an array. Collections do
not include those methods.

Case study: Minimizing duplicate code for ActiveX labels
Say that you have a complex sheet that requires a way for the user to get help. You can
place the information in comment boxes, but they are not very obvious, especially to
novice Excel users. Another option is to create help buttons.

To do this, create small ActiveX labels (not Form Control labels) with a question mark in
each one on the worksheet. To get the button-like appearance shown in Figure 9-8, set the
SpecialEffect property of the labels to Raised and darken the BackColor. Place one
label per row. On another sheet, enter the help text you want to appear when the label is
clicked. Ensure that the label name number matches the row in which the text is placed.
For example, if the label name is Label1, place the corresponding text in cell A1; if the
label name is label51, place the text in cell A51.

FIGURE 9-8 You can attach help buttons to the sheet and enter help text on another sheet, which you can later
hide.

Create a simple userform with a label and a close button. (see Chapter 10, “Userforms—
An Introduction,” for more information on userforms.) Rename the form HelpForm, the
button CloseHelp, and the label HelpText. Size the label large enough to hold the help
text. Add the following macro, CloseHelp_Click, behind the form to hide it when the
button is clicked:

Click here to view code image
Private Sub CloseHelp_Click()
Unload Me
End Sub

At this point, you could program each button separately. If you have many buttons, this
would be tedious. And if you ever need to add more buttons, you will have to update the
code. Or you could create a class module and a collection that will automatically include
all the help buttons on the sheet, now and in the future.

Insert a class module named cLabel. You need a public variable, HelpLabel, to capture
the control events:

Click here to view code image
Public WithEvents HelpLabel As MSForms.Label

In addition, you need a method of finding and displaying the corresponding help text. The
following code extracts the number at the end of the label name and uses that to find the
corresponding row on the sheet with the help text:

Click here to view code image
Private Sub HelpLabel_Click()
Dim RowNumber As Long

RowNumber = Right(HelpLabel.Name, Len(HelpLabel.Name) - 5)
If HelpLabel.Caption = "?" Then

HelpForm.Caption = "Label in cell " & "A" & RowNumber
HelpForm.HelpText.Caption = Worksheets("Help
Text").Cells(RowNumber, 1)
HelpForm.Show

End If
End Sub

In the ThisWorkbook module, declare a global collection at the top of the module. Then
create a Workbook_Open procedure to create a collection of the labels in the workbook:

Click here to view code image

Dim colLabels As Collection
Sub Workbook_Open()
Dim wks As Worksheet
Dim clsLbl As cLabel
Dim OleObj As OLEObject

Set colLabels= New Collection
For Each wks In ThisWorkbook.Worksheets

For Each OleObj In wks.OLEObjects
If OleObj.OLEType = xlOLEControl Then

'in case you have other controls on the sheet, include only
the labels

If TypeName(OleObj.Object) = "Label" Then
Set clsLbl = New cLabel
Set clsLbl.HelpLabel = OleObj.Object
colLabels.Add clsLbl

End If
End If

Next OleObj
Next wks
End Sub

Run Workbook_Open to create the collection. Click a label on the worksheet. The
corresponding help text appears in the help form, as shown in see Figure 9-9.

FIGURE 9-9 Help text is only a click away.

Using user-defined types to create custom properties
User-defined types (UDTs) provide some of the power of a custom object, but without the need
for a class module. A class module allows for the creation of custom properties and methods,
whereas a UDT allows only custom properties. However, sometimes that is all you need.

A UDT is declared with a Type...End Type statement. It can be public or private. A

name that is treated like an object is given to the UDT. Within Type, individual variables are
declared that become the properties of the UDT.

Within a procedure, a variable of the custom type is defined. When that variable is used, the
properties are available, just as they are in a custom object (see Figure 9-10).

FIGURE 9-10 The properties of a UDT are available as they are in a custom object.

The following example uses two UDTs to summarize a report of product styles in various
stores. The first UDT consists of properties for each product style:

Click here to view code image
Public Type Style

StyleName As String
Price As Single
UnitsSold As Long
UnitsOnHand As Long

End Type

The second UDT consists of the store name and an array whose type is the first UDT:

Click here to view code image

Public Type Store
ID As String
Styles() As Style

End Type

After the UDTs are established, the main program is written. Only a variable of the second
UDT type, Store, is needed because that type contains the first type, Style (see Figure 9-11).
However, all the properties of the UDTs are easily available. In addition, with the use of the
UDT, the various variables are easy to remember—they are only a dot (.) away. Here is the
main program:

Click here to view code image
Sub UDTMain()
Dim ThisStore As Long, ThisStyle As Long
Dim CurrRow As Long, i As Long
Dim TotalDollarsSold As Double, TotalDollarsOnHand As Double
Dim TotalUnitsSold As Long, TotalUnitsOnHand As Long
Dim StoreID As String
Dim tblStores As ListObject
Dim arrStores 'to hold the data from the table
ReDim Stores(0 To 0) As Store 'The UDT is declared as the outer
array

Set tblStores = Worksheets("Sales
Data").ListObjects("tblStores")
'ensure data is sorted by name

Click here to view code image
With tblStores

.Sort.SortFields.Add .ListColumns(1).DataBodyRange, _
xlSortOnValues, xlAscending

.Sort.Apply

.Sort.SortFields.Clear
End With
'put the data into an array so it's faster to process
arrStores = tblStores.DataBodyRange

'The following For loop fills both arrays.
'The outer array is filled with the
'store name and an inner array consisting of product details.
'To accomplish this, the store name is tracked, and when it
changes,

'the outer array is expanded.
'The inner array for each outer array expands with each new
product
For i = LBound(arrStores) To UBound(arrStores)

StoreID = arrStores(i, 1)
'Checks whether this is the first entry in the outer array
If LBound(Stores) = 0 Then

ThisStore = 1
ReDim Stores(1 To 1) As Store
Stores(1).ID = StoreID
ReDim Stores(1).Styles(0 To 0) As Style

Else
'if it's not the first entry, see if the store has
already been added
For ThisStore = LBound(Stores) To UBound(Stores)

'the store has already been added; no need to add
again
If Stores(ThisStore).ID = StoreID Then Exit For

Next ThisStore
'the store hasn't been added, so add it now
If ThisStore > UBound(Stores) Then

ReDim Preserve Stores(LBound(Stores) To_
UBound(Stores) + 1) As Store
Stores(ThisStore).ID = StoreID
ReDim Stores(ThisStore).Styles(0 To 0) As Style

End If
End If
'now add the store details
With Stores(ThisStore)

'check if the style already exists in the inner array
If LBound(.Styles) = 0 Then

ReDim .Styles(1 To 1) As Style
Else

ReDim Preserve .Styles(LBound(.Styles) To _
UBound(.Styles) + 1) As Style

End If
'add the rest of the details for the Style
With .Styles(UBound(.Styles))

.StyleName = arrStores(i, 2)

.Price = arrStores(i, 3)

.UnitsSold = arrStores(i, 4)

.UnitsOnHand = arrStores(i, 5)

End With
End With

Next i

Click here to view code image
'Create a report on a new sheet
Sheets.Add
Range("A1").Resize(, 5).Value = Array("Store ID", "Units Sold",
_

"Dollars Sold", "Units On Hand", "Dollars On Hand")
CurrRow = 2

'loop through the outer array
For ThisStore = LBound(Stores) To UBound(Stores)

With Stores(ThisStore)
TotalDollarsSold = 0
TotalUnitsSold = 0
TotalDollarsOnHand = 0
TotalUnitsOnHand = 0
'Go through the inner array of product styles within the
array
'of stores to summarize information
For ThisStyle = LBound(.Styles) To UBound(.Styles)
With .Styles(ThisStyle)

TotalDollarsSold = TotalDollarsSold + .UnitsSold
*.Price
TotalUnitsSold = TotalUnitsSold + .UnitsSold
TotalDollarsOnHand = TotalDollarsOnHand +
.UnitsOnHand * _
.Price
TotalUnitsOnHand = TotalUnitsOnHand + .UnitsOnHand

End With
Next ThisStyle
Range("A" & CurrRow).Resize(, 5).Value = _

Array(.ID, TotalUnitsSold, TotalDollarsSold, _
TotalUnitsOnHand, TotalDollarsOnHand)

End With
CurrRow = CurrRow + 1

Next ThisStore
Set tblStores = Nothing
End Sub

FIGURE 9-11 The Stores variable is of type Store, which includes the Styles variable array. This allows you to
organize multiple pieces of data in a couple variables.

Next steps
Chapter 10 introduces the tools you can use to interact with users. You’ll find out how to
prompt people for information to use in your code, warn them of illegal actions, and provide
them with an interface to work with other than the spreadsheet.

CHAPTER 10
Userforms: An introduction

In this chapter, you will:

Use an input box to request user input

Use a message box to display information

Learn how to create a userform

Add controls to the userform

Verify a required field has an entry

Prevent a user from closing a form

Prompt the user to select a file

Userforms enable you to display information and allow the user to input information. Using
InputBox and MsgBox controls are simple ways of doing this. You can use the userform
controls in the VB Editor to create forms that are more complex.

This chapter covers simple user interfaces using input boxes and message boxes and the
basics of creating userforms in the VB Editor.

Note To learn more about advanced userform programming, see Chapter 22,
“Advanced userform techniques.”

Input boxes
The InputBox function is used to create a basic interface element that requests input from the
user before the program can continue. You can configure the prompt, the title for the window, a
default value, the window position, and user help files. The only two buttons provided are the
OK and Cancel buttons. The returned value is a string.

The following code asks the user for the number of months to be averaged. Figure 10-1
shows the resulting input box.

Click here to view code image
AveMos = InputBox(Prompt:="Enter the number " & " of months to
average", _

Title:="Enter Months", Default:="3")

FIGURE 10-1 An input box can be simple but still effective.

Tip If you need to force the entry of a variable type other than string, use
Application.InputBox. This method allows you to specify the return data
type, including a formula, number, or cell reference.

Message boxes
The MsgBox function creates a message box that displays information and waits for the user to
click a button before continuing. Whereas InputBox has only OK and Cancel buttons, the
MsgBox function enables you to choose from several configurations of buttons, including Yes,
No, OK, and Cancel. You also can configure the prompt, the window title, and help files. The
following code produces a prompt to find out whether the user wants to continue. You use a
Select Case statement to continue the program with the appropriate action:

Click here to view code image
myTitle = "Report Finalized"
MyMsg = "Do you want to save changes and close?"
Response = MsgBox(myMsg, vbExclamation + vbYesNoCancel, myTitle)
Select Case Response

Case Is = vbYes
ActiveWorkbook.Close SaveChanges:=True

Case Is = vbNo
ActiveWorkbook.Close SaveChanges:=False

Case Is = vbCancel

Exit Sub
End Select

Figure 10-2 shows the resulting customized message box.

FIGURE 10-2 The MsgBox function is used to display information and obtain a basic response from the user.

Tip You can combine an icon option and a buttons option for the buttons
argument by separating them with the plus (+) symbol. In the previous
example,vbExclamation + vbYesNoCancel instructed Excel to show the

exclamation symbol and the Yes, No, and Cancel buttons.

Creating a userform
Userforms combine the capabilities of InputBox and MsgBox to create a more efficient way of
interacting with the user. For example, rather than have the user fill out personal information on
a sheet, you can create a userform that prompts for the required data (see Figure 10-3).

FIGURE 10-3 Create a custom userform to get more information from the user.

Insert a userform in the VB Editor by selecting Insert, UserForm from the main menu.

When a UserForm module is added to the Project Explorer, a blank form appears in the
window where your code usually is, and the Controls toolbox appears.

To change the codename of the userform, select the form and change the (Name) property.
The codename of a userform is used to refer to the form, as shown in the following sections.
You can resize a userform by grabbing and dragging the handles on its right side, bottom edge,
or lower-right corner. To add controls to the form, click the desired control in the toolbox and
draw it on the form. You can move and resize controls at any time.

Note By default, the toolbox displays the most common controls. To access
more controls, right-click the toolbox and select Additional Controls. However,
be careful; other users might not have the same additional controls as you do. If

you send users a form with a control they do not have installed, the program generates an
error.

After you add a control to a form, you can change its properties from the Properties
window. (Or, if you don’t want to set the properties manually now, you can set them later
programmatically.) If the Properties window is not visible, you can bring it up by selecting
View, Properties Window. Figure 10-4 shows the Properties window for a text box.

FIGURE 10-4 Use the Properties window to change the properties of a control.

Calling and hiding a userform
A userform can be called from any module. The syntax FormName.Show causes a form for the
user to pop up:

frm_AddEmp.Show

The Load method can also be used to call a userform to place it in memory. It allows a form

to be loaded while remaining hidden:

Load frm_AddEmp

To hide a userform, use the Hide method. When you do, the form is still active but is
hidden from the user. However, the controls on the form can still be accessed
programmatically:

frm_AddEmp.Hide

The Unload method unloads a form from memory and removes it from the user’s view,
which means the form cannot be accessed by the user or programmatically:

Unload Me

TIP Me is a keyword that can be used to refer to the userform. It can be used in the
code of any control to refer to itself.

Programming userforms
The code for a control goes in the form’s module. Unlike with the other modules, double-
clicking the form’s module opens the form in Design view. To view the code, you can right-
click either the module or the userform in Design view and select View Code.

Userform events

Just like a worksheet, a userform has events that are triggered by actions. After the userform
has been added to a project, the events are available in the Properties drop-down menu at the
top right of the code window (see Figure 10-5); to access them, select UserForm from the
Object drop-down menu on the left.

FIGURE 10-5 Various events for a userform can be selected from the drop-down menu at the top of the code window.

The available events for userforms are described in Table 10-1.

TABLE 10-1 Userform events

Event Description
Activate Occurs when a userform is either loaded or shown. This event is triggered after the Initialize

event.

AddControl Occurs when a control is added to a userform at runtime. Does not run at design time or upon userform
initialization.

BeforeDragOver Occurs while the user does a drag and drop onto the userform.

BeforeDropOrPaste Occurs right before the user is about to drop or paste data into the userform.

Click Occurs when the user clicks the userform with the mouse.

DblClick Occurs when the user double-clicks the userform with the mouse. If a click event is also in use, the
double-click event will not work.

Deactivate Occurs when a userform is deactivated.

Error Occurs when the userform runs into an error and cannot return the error information.

Initialize Occurs when the userform is first loaded, before the Activate event.

KeyDown Occurs when the user presses a key on the keyboard.

KeyPress Occurs when the user presses an ANSI key. An ANSI key is a typable character such as the letter A.
An example of a nontypable character is the Tab key.

KeyUp Occurs when the user releases a key on the keyboard.

Layout Occurs when the control changes size.

MouseDown Occurs when the user presses the mouse button within the borders of the userform.

MouseMove Occurs when the user moves the mouse within the borders of the userform.

MouseUp Occurs when the user releases the mouse button within the borders of the userform.

QueryClose Occurs before a userform closes. It allows you to recognize the method used to close a formand have
code respond accordingly.

RemoveControl Occurs when a control is deleted from within the userform.

Resize Occurs when the userform is resized.

Scroll Occurs when a visible scrollbar box is repositioned.

Terminate Occurs after the userform has been unloaded. This is triggered after QueryClose.

Zoom Occurs when the zoom value is changed.

Programming controls
To program a control, highlight the control and select View, Code. The footer, header, and

default action for the control are entered in the programming field automatically. To see the
other actions that are available for a control, select the control from the Object drop-down
menu and view the actions in the Properties drop-down menu, as shown in Figure 10-6.

FIGURE 10-6 You can select various actions for a control from the VB Editor drop-down menus.

The controls are objects, like ActiveWorkbook. They have properties and methods that
depend on the type of control. Most of the programming for the controls is done in the form’s
module. However, if another module needs to refer to a control, the parent, which is the form,
needs to be included with the object. Here’s an example of a button event that closes the form:

Click here to view code image
Private Sub btn_EmpCancel_Click()
Unload Me
End Sub

The preceding code can be broken down into three sections.

btn_EmpCancel—Name given to the control

Click—Action of the control

Unload Me—Code behind the control, which, in this case, is unloading the form

Tip Change the (Name) property in the control’s Properties window to rename a
control from the default assigned by the editor.

Case study: Bug fix when adding controls to an existing form
If you’ve been using a userform for some time and later try to add a new control, you
might find that Excel seems to get confused about the control. You will see that the
control is added to the form, but when you right-click the control and select View Code,

the code module does not seem to acknowledge that the control exists. The control name is
not available in the left drop-down menu at the top of the code module.

To work around this situation, follow these steps:

1. Add all the controls you need to add to the existing userform.

2. In the Project Explorer, right-click the userform and select Export File. Select Save to
save the file in the default location.

3. In the Project Explorer, right-click the userform and select Remove. Because you just
exported the userform, click No to the question about exporting.

4. Right-click anywhere in the Project Explorer and select Import File. Select the file
name that you saved in step 2.

The new controls are now available in the code window of the userform.

Using basic form controls
Each control has different events associated with it, so you can code what happens based on the
user’s actions. A table reviewing the control events is available at the end of each of the
sections that follow.

A label control is used to display text with information for the user.

A text box control is used to get a manual entry from the user.

A command button control is used to create a button a user can press to have the
program perform an action.

Using labels, text boxes, and command buttons

The basic form shown in Figure 10-7 consists of labels, text boxes, and command buttons.
Using such a form is a simple yet effective method of requesting information from the user.
After the text boxes have been filled in, the user clicks OK, and your code reformats the data, if
needed, then adds the information to a sheet (see Figure 10-8), as shown in the following code:

FIGURE 10-7 You can use a simple form like this to collect information from the user.

FIGURE 10-8 The information from the form is added to the sheet.

Click here to view code image
Private Sub btn_EmpOK_Click()
Dim LastRow As Long
Dim tblEmployees As ListObject
Set tblEmployees =
Worksheets("Employees").ListObjects("tblEmployees")
With tblEmployees

 .ListRows.Add 'add a new row
With .DataBodyRange

LastRow = .Rows.Count 'get the new row
.Cells(LastRow, 1).Value = tb_EmpName.Value
.Cells(LastRow, 2).Value = tb_EmpPosition.Value
 .Cells(LastRow, 3).Value = tb_EmpHireDate.Value

End With
End With
Set tblEmployees = Nothing
End Sub

By changing the code as shown in the following sample, you can use the same form design
to retrieve information. The following code retrieves the position and hire date after the
employee’s name is entered:

Click here to view code image
Private Sub btn_EmpOK_Click()

Dim EmpFound As Range
Dim tblEmployees As ListObject

Set tblEmployees =
Worksheets("Employees").ListObjects("tblEmployees")
With tblEmployees.ListColumns("Name").DataBodyRange

 Set EmpFound = .Find(tb_EmpName.Value)
 If EmpFound Is Nothing Then

Msgbox ("Employee not found!")
tb_EmpName.Value = ""

 Else
With .Cells(EmpFound.Row - 1, 1)

tb_EmpPosition = .Offset(0, 1)
tb_HireDate = .Offset(0, 2)

End With
 End If

End With
Set EmpFound = Nothing
Set tblEmployees = Nothing
End Sub

EmpFound returns the location of the match as it pertains to the sheet, not the listobject. To
return the correct location as it pertains to the listobject’s databodyrange, subtract 1 from
Emfound.Row.

The available events for Label, TextBox, and CommandButton controls are described in
Table 10-2.

TABLE 10-2 Label, TextBox, and CommandButton control events

Event Description
AfterUpdate1 Occurs after the control’s data has been changed by the user.

BeforeDragOver Occurs while the user drags and drops data onto the control.

BeforeDropOrPaste Occurs right before the user is about to drop or paste data into the control.

BeforeUpdate1 Occurs before the data in the control is changed.

Change1 Occurs when the value of the control is changed.

Click2 Occurs when the user clicks the control with the mouse.

DblClick Occurs when the user double-clicks the control with the mouse.

DropButtonClick1 Occurs when the user presses F4 on the keyboard. This is similar to the drop-down controlon the
combo box, but there is no drop-down feature on a text box.

Enter3 Occurs right before the control receives the focus from another control on the same user-form.

Error Occurs when the control runs into an error and cannot return the error information.

Exit3 Occurs right after the control loses focus to another control on the same userform.

KeyDown3 Occurs when the user presses a key on the keyboard.

KeyPress3 Occurs when the user presses an ANSI key. An ANSI key is a typable character such as the letter A.
An example of a nontypable character is the Tab key.

KeyUp3 Occurs when the user releases a key on the keyboard.

MouseDown Occurs when the user presses the mouse button within the borders of the control.

MouseMove Occurs when the user moves the mouse within the borders of the control.

MouseUp Occurs when the user releases the mouse button within the borders of the control.

1
TextBox control only

2
Label and CommandButton controls

3
TextBox and CommandButton controls

Deciding whether to use list boxes or combo boxes in forms

You can let users type employee names to search for, but what if they misspell a name? You
need a way to make sure that names are typed correctly. Which do you use for this, a list box or
a combo box? As explained below, the two are similar, but the combo box has an additional
feature that you may or may not need.

A list box displays a list of values from which the user can choose.

A combo box displays a list of values from which the user can choose and allows the
user to enter a new value.

In this case, when you want to limit user options, you should use a list box to list the
employee names, as shown in Figure 10-9.

FIGURE 10-9 You can use a list box to control user input and selections.

Use the following Initialize event to fill the list box with names:

Click here to view code image
Private Sub UserForm_Initialize()
Dim tblEmployees As ListObject

Set tblEmployees =
Worksheets("Employees").ListObjects("tblEmployees")
Me.lb_EmpName.RowSource =
tblEmployees.ListColumns(1).DataBodyRange.Address
Set tblEmployees = Nothing
End Sub

Use the Click event to fill in the position and hire date fields when a name is selected:

Click here to view code image
Private Sub lb_EmpName_Click()
Dim EmpFound As Range
Dim tblEmployees As ListObject

Set tblEmployees =
Worksheets("Employees").ListObjects("tblEmployees")
With tblEmployees.ListColumns("Name").DataBodyRange

Set EmpFound = .Find(lb_EmpName.Value)
With .Cells(EmpFound.Row - 1, 1)

tb_EmpPosition.Value = .Offset(0, 1)
tb_HireDate.Value = .Offset(0, 2)

End With
End With

Set EmpFound = Nothing
Set tblEmployees = Nothing
End Sub

Using the MultiSelect property of a list box

List boxes have a MultiSelect property, which enables the user to select multiple items from
the choices in the list box (see in Figure 10-10):

fmMultiSelectSingle—The default setting allows only a single item selection at a
time.

fmMultiSelectMulti—This allows an item to be deselected when it is clicked again;
multiple items can also be selected.

fmMultiSelectExtended—This allows the Ctrl and Shift keys to be used to select
multiple items.

If multiple items are selected, the Value property cannot be used to retrieve the items.
Instead, check to see whether the item is selected and then manipulate it as needed, using the
following code:

Click here to view code image
Private Sub btn_EmpOK_Click()
Dim LastRow As Integer, i As Integer
Dim tblEmployees As ListObject

Set tblEmployees =
Worksheets("Employees").ListObjects("tblEmployees")
With tblEmployees

.ListRows.Add 'add a new row
With .DataBodyRange

LastRow = .Rows.Count 'get the new row
.Cells(LastRow, 1).Value = tb_EmpName.Value
For i = 0 To lb_EmpPosition.ListCount - 1

'if the item is selected, add it to the sheet
If lb_EmpPosition.Selected(i) = True Then

.Cells(LastRow, 2).Value = .Cells(LastRow,
2).Value & _
lb_EmpPosition.List(i) & ","

End If
Next i
.Cells(LastRow, 3).Value = tb_HireDate.Value
'remove excess comma

.Cells(LastRow, 2).Value = Left(.Cells(LastRow,
2).Value, _

Len(.Cells(LastRow, 2).Value) - 1)
End With

End With
Set tblEmployees = Nothing
End Sub

FIGURE 10-10 The MultiSelect property enables the user to select multiple items from a list box.

The items in a list box start counting at zero. For this reason, if you use the ListCount
property, you must subtract one from the result:

Click here to view code image

For i = 0 To lb_EmpPosition.ListCount - 1

The available events for ListBox controls and ComboBox controls are described in Table
10-3.

TABLE 10-3 ListBox and ComboBox control events

Event Description
AfterUpdate Occurs after the control’s data has been changed by the user.

BeforeDragOver Occurs while the user drags and drops data onto the control.

BeforeDropOrPaste Occurs right before the user is about to drop or paste data into the control.

BeforeUpdate Occurs before the data in the control is changed.

Change Occurs when the value of the control is changed.

Click Occurs when the user selects a value from the list box or combo box.

DblClick Occurs when the user double-clicks the control with the mouse.

DropButtonClick1 Occurs when the drop-down menu appears after the user clicks the drop-down arrow of thecombo box
or presses F4 on the keyboard.

Enter Occurs right before the control receives the focus from another control on the same user-form.

Error Occurs when the control runs into an error and can’t return the error information.

Exit Occurs right after the control loses focus to another control on the same userform.

KeyDown Occurs when the user presses a key on the keyboard.

KeyPress Occurs when the user presses an ANSI key. An ANSI key is a typable character such as the letter A.
An example of a nontypable character is the Tab key.

KeyUp Occurs when the user releases a key on the keyboard.

MouseDown Occurs when the user presses the mouse button within the borders of the control.

MouseMove Occurs when the user moves the mouse within the borders of the control.

MouseUp Occurs when the user releases the mouse button within the borders of the control.

1 ComboBox control only

Adding option buttons to a userform

Option buttons are similar to check boxes in that they can be used to make selections.
However, unlike check boxes, option buttons can be configured to allow only one
selection out of a group.

Using the Frame tool, draw a frame to separate the next set of controls from the other
controls on the userform. The frame is used to group option buttons together, as shown
in Figure 10-11.

FIGURE 10-11 You can use a frame to group option buttons together.

Option buttons have a GroupName property. If you assign the same group name, Buildings,
to a set of option buttons, you force them to act collectively, as a toggle, so that only one button
in the set can be selected. Selecting an option button automatically deselects the other buttons
in the same group or frame. To prevent this behavior, either leave the GroupName property
blank or enter a unique name for each option button.

Note For users who prefer to select the option button’s label rather than the
button itself, create a separate label and add code to the label, like this, to trigger
the option button:

Click here to view code image
Private Sub Lbl_Bldg1_Click()
Obtn_Bldg1.Value = True
End Sub

The available events for OptionButton controls and Frame controls are described in Table
10-4.

TABLE 10-4 OptionButton and Frame control events

Event Description
AfterUpdate1 Occurs after the control’s data has been changed by the user.

AddControl2 Occurs when a control is added to a frame on a form at runtime. Does not run at design timeor upon
userform initialization.

BeforeDragOver Occurs while the user does a drag and drop onto the control.

BeforeDropOrPaste Occurs right before the user is about to drop or paste data into the control.

BeforeUpdate1 Occurs before the data in the control is changed.

Change1 Occurs when the value of the control is changed.

Click Occurs when the user clicks the control with the mouse.

DblClick Occurs when the user double-clicks the control with the mouse.

Enter Occurs right before the control receives the focus from another control on the same user-form.

Error Occurs when the control runs into an error and cannot return the error information.

Exit Occurs right after the control loses focus to another control on the same userform.

KeyDown Occurs when the user presses a key on the keyboard.

KeyPress

Occurs when the user presses an ANSI key. An ANSI key is a typable character such as the letter A.
An example of a nontypable character is the Tab key.

KeyUp Occurs when the user releases a key on the keyboard.

Layout2 Occurs when the frame changes size.

MouseDown Occurs when the user presses the mouse button within the borders of the control.

MouseMove Occurs when the user moves the mouse within the borders of the control.

MouseUp Occurs when the user releases the mouse button within the borders of the control.

RemoveControl2 Occurs when a control is deleted from within the frame control.

Scroll2 Occurs when the scrollbar box, if visible, is repositioned.

Zoom2 Occurs when the zoom value is changed.

1 OptionButton control only
2 Frame control only

Adding graphics to a userform

A list on a form can be even more helpful if a corresponding graphic is added to the
form. The following code displays a photograph corresponding to the selected
employee from the list box:

Click here to view code image
Private Sub lb_EmpName_Change()
Dim EmpFound As Range
Dim tblEmployees As ListObject

Set tblEmployees =
Worksheets("Employees").ListObjects("tblEmployees")
With tblEmployees

Set EmpFound = .ListColumns("Name"). _
DataBodyRange.Find(lb_EmpName.Value)

If EmpFound Is Nothing Then
MsgBox ("Employee not found!")
lb_EmpName.Value = ""
Exit Sub

Else
With .DataBodyRange.Cells(EmpFound.Row - 1, _

.ListColumns("Name").Index)
tb_EmpPosition = .Offset(0, 1)
tb_HireDate = .Offset(0, 2)

On Error Resume Next
Img_Employee.Picture = LoadPicture _
(ThisWorkbook.Path & "\" & EmpFound.Value & ".jpg")
On Error GoTo 0

End With
End If

End With
Set EmpFound = Nothing
Set tblEmployees = Nothing
End Sub

The available events for Graphic controls are described in Table 10-5.

TABLE 10-5 Graphic control events

Event Description
BeforeDragOver Occurs while the user drags and drops data onto the control.

BeforeDropOrPaste Occurs right before the user is about to drop or paste data into the control.

Click Occurs when the user clicks the image with the mouse.

DblClick Occurs when the user double-clicks the image with the mouse.

Error Occurs when the control runs into an error and can’t return the error information.

MouseDown Occurs when the user presses the mouse button within the borders of the image.

MouseMove Occurs when the user moves the mouse within the borders of the image.

MouseUp Occurs when the user releases the mouse button within the borders of the control.

Using a spin button on a userform

In the example we’ve been working with, the Hire Date field allows the user to enter the
date in any format, such as 1/1/18 or January 1, 2018. This possible inconsistency can
create problems later on, if you need to use or search for dates. The solution? Force

users to enter dates in a unified manner.

Spin buttons allow the user to increment/decrement through a series of numbers. In this
way, the user is forced to enter numbers rather than text. Draw a spin button for a Month entry
on the form. In the Properties window, set Min to 1 for January and Max to 12 for December.
For the Value property, enter 1, the first month. Next, draw a text box next to the spin button.
This text box reflects the value of the spin button. In addition, you can use labels. Place the
code below behind the month’s spin button control:

Click here to view code image

Private Sub SpBtn_Month_Change()
tb_Month.Value = SpBtn_Month.Value
End Sub

Finish building the form. Use a Min of 1 and Max of 31 for Day, or a Min of 1900 and a
Max of 2100 for Year:

Click here to view code image
Private Sub btn_EmpOK_Click()
Dim LastRow As Integer, i As Integer
Dim tblEmployees As ListObject

Set tblEmployees =
Worksheets("Employees").ListObjects("tblEmployees")
If tb_EmpName.Value = "" Then

frm_AddEmp.Hide
MsgBox ("Please enter an Employee Name")
frm_AddEmp.Show
Exit Sub

End If
With tblEmployees

.ListRows.Add 'add a new row
With .DataBodyRange

LastRow = .Rows.Count 'get the new row
.Cells(LastRow, 1).Value = tb_EmpName.Value
For i = 0 To lb_EmpPosition.ListCount - 1

If lb_EmpPosition.Selected(i) = True Then
.Cells(LastRow, 2).Value = _
.Cells(LastRow, 2).Value & lb_EmpPosition.List(i)
& ","

End If
Next i
'Concatenate the values from the textboxes to create
the date
.Cells(LastRow, 3).Value = tb_Month.Value & "/" &
tb_Day.Value & _

"/" & tb_Year.Value
End With

End With
End Sub

The available events for SpinButton controls are described in Table 10-6.

TABLE 10-6 SpinButton control events

Event Description
AfterUpdate Occurs after the control’s data has been changed by the user.

BeforeDragOver Occurs while the user drags and drops data onto the control.

BeforeDropOrPaste Occurs right before the user is about to drop or paste data into the control.

BeforeUpdate Occurs before the data in the control is changed.

Change Occurs when the value of the control is changed.

Enter Occurs right before the control receives the focus from another control on the sameuserform.

Error Occurs when the control runs into an error and cannot return the error information.

Exit Occurs right after the control loses focus to another control on the same userform.

KeyDown Occurs when the user presses a key on the keyboard.

KeyPress Occurs when the user presses an ANSI key. An ANSI key is a typable character such as theletter A. An
example of a nontypable character is the Tab key.

KeyUp Occurs when the user releases a key on the keyboard.

SpinDown Occurs when the user clicks the lower or left spin button, decreasing the value.

SpinUp Occurs when the user clicks the upper or right spin button, increasing the value.

Using the MultiPage control to combine forms

The MultiPage control provides a neat way of organizing multiple forms. Instead of
having one form for personal employee information and one for on-the-job information,
combine the information into one multipage form, as shown in Figures 10-12 and 10-13.

FIGURE 10-12 Use the MultiPage control to combine multiple forms. This is the first page of the form.

FIGURE 10-13 This is the second page of the form.

You can modify a page by right-clicking the tab of the page and then choosing from the
following menu options: New Page, Delete Page, Rename, and Move.

Tip Adding multipage forms after the rest of the form has been created is not an
easy task. Therefore, plan multipage forms from the beginning. If you decide later
that you need a multipage form, insert a new form, draw the MultiPage control,

and copy/paste the controls from the other forms to the new form.

Note Do not right-click in the tab area to view the MultiPage code. Instead,
right-click in the MultiPage control’s main area to get the View Code option.

Unlike many of the other controls in which the Value property holds a user-entered or user-
selected value, the MultiPage control uses the Value property to hold the number of the active
page, starting at zero. For example, if you have a five-page form and want to activate the fourth
page, use this:

MultiPage1.Value = 3

If you have a control you want all the pages to share, such as a Save, Cancel, or Close
button, place the control on the main userform rather than on the individual pages, as shown in
Figure 10-14.

FIGURE 10-14 Place common controls such as the Close button on the main userform.

The available events for MultiPage controls are described in Table 10-7.

TABLE 10-7 MultiPage control events

Event Description
AddControl Occurs when a control is added to a page of the MultiPage control. Does not run at designtime or

upon userform initialization.

BeforeDragOver Occurs while the user drags and drops data onto a page of the MultiPage control.

BeforeDropOrPaste Occurs right before the user is about to drop or paste data onto a page of the MultiPage control.

Change Occurs when the user changes pages of a MultiPage control.

Click Occurs when the user clicks on a page of the MultiPage control.

DblClick Occurs when the user double-clicks a page of the MultiPage control.

Enter Occurs right before the MultiPage control receives the focus from another control on the same
userform.

Error Occurs when the MultiPage control runs into an error and cannot return the error informa-tion.

Exit Occurs right after the MultiPage control loses focus to another control on the same user-form.

KeyDown Occurs when the user presses a key on the keyboard.

KeyPress Occurs when the user presses an ANSI key. An ANSI key is a typable character, such as the letter A.
An example of a nontypable character is the Tab key.

KeyUp Occurs when the user releases a key on the keyboard.

Layout Occurs when the MultiPage control changes size.

MouseDown Occurs when the user presses the mouse button within the borders of the control.

MouseMove Occurs when the user moves the mouse within the borders of the control.

MouseUp Occurs when the user releases the mouse button within the borders of the control.

RemoveControl Occurs when a control is removed from a page of the MultiPage control.

Scroll Occurs when the scrollbar box, if visible, is repositioned.

Zoom Occurs when the zoom value is changed.

Verifying field entry
Even when users are told to fill in all the fields, they don’t always do it. With a paper form,
there is no way to force them to do so. As a programmer, you can ensure that all required fields
are filled in by not allowing the user to continue until all requirements are met. Here’s how to
do this:

Click here to view code image
If tb_EmpName.Value = "" Then

frm_AddEmp.Hide
MsgBox "Please enter an Employee Name"
frm_AddEmp.Show
Exit Sub

End If

Illegal window closing
The userforms created in the VB Editor are not that different from normal dialog boxes; they
also include the X close button in the upper-right corner. Although using the button is not
wrong, it can cause problems, depending on the objective of the userform. In cases like this,
you might want to control what happens if the user clicks the button. Use the QueryClose
event of the userform to find out what method is used to close the form and code an appropriate
action:

Click here to view code image
Private Sub UserForm_QueryClose(Cancel As Integer, CloseMode As
Integer)
If CloseMode = vbFormControlMenu Then

MsgBox "Please use the OK or Cancel buttons to close the
form", _

vbCritical
Cancel = True 'prevent the form from closing

End If
End Sub

When you know which method the user used to try to close the form, you can create a
message box similar to the one shown in Figure 10-15 to warn the user that the method was
illegal.

FIGURE 10-15 You can control what happens when the user clicks the X button.

The QueryClose event can be triggered in four ways:

vbFormControlMenu—The user either right-clicks on the form’s title bar and selects the
Close command or clicks the X in the upper-right corner of the form.

vbFormCode—The Unload statement is used.

vbAppWindows—Windows shuts down.

vbAppTaskManager—The application is shut down by the Task Manager.

Getting a file name
One of the most common client interactions occurs when you need the client to specify a path
and file name. Excel VBA has a built-in function to display the File Open dialog box, as shown
in Figure 10-16. The client browses to and selects a file. When the client clicks the Open
button, instead of opening the file, Excel VBA returns the full path and file name to the code:

FIGURE 10-16 Use the File Open dialog box to allow the user to select a file.

Click here to view code image
Sub SelectFile()
'Ask which file to copy
x = Application.GetOpenFilename(_

FileFilter:="Excel Files (*.xls*), *.xls*", _
Title:="Choose File to Copy", MultiSelect:=False)

'check in case no files were selected
If x = "False" Then Exit Sub
MsgBox "You selected " & x
End Sub

The preceding code allows the client to select one file. If you want the user to specify
multiple files, use this code:

Click here to view code image
Sub ManyFiles()
Dim x As Variant
x = Application.GetOpenFilename(_

FileFilter:="Excel Files (*.xls*), *.xls*", _
Title:="Choose Files", MultiSelect:=True)

On Error Resume Next
If Ubound(x) > 0 Then

For i = 1 To UBound(x)
MsgBox "You selected " & x(i)
Next i

ElseIf x = "False" Then
Exit Sub

End If
On Error GoTo 0
End Sub

In a similar fashion, you can use Application.GetSaveAsFileName to find the path and
file name that should be used to save a file.

Next steps
Userforms allow you to get information from the users and guide them on how to provide the
program with that information. In Chapter 11, “Data mining with Advanced Filter,” you’ll find
out about using Advanced Filter to produce reports quickly.

CHAPTER 11
Data mining with Advanced Filter

In this chapter, you will:

Replace a loop by using AutoFilter

Get to know Advanced Filter

Use Advanced Filter to extract a unique list of values

Use Advanced Filter with criteria ranges

Use filter in place in Advanced Filter

Use Advanced Record to return all records that match the criteria

Read this chapter.

Although very few people use Advanced Filter in Excel, it is a workhorse in Excel VBA. I
estimate that I end up using one of these filtering techniques as the core of a macro in 80% of
the macros I develop for clients. Given that Advanced Filter is used in fewer than 1% of Excel
sessions, this is a dramatic statistic.

So even if you hardly ever use Advanced Filter in regular Excel, you should study this
chapter to learn some powerful VBA techniques.

Replacing a loop with AutoFilter
In Chapter 4, “Looping and flow control,” you read about several ways to loop through a data
set to format records that match certain criteria. By using Filter (Microsoft’s name for what was
originally AutoFilter), you can achieve the same result much faster. While other examples in
this chapter use the Advanced Filter, this example can be solved with the simpler Filter.
Although Microsoft changed the name of AutoFilter to Filter in Excel 2007, the VBA code still
refers to AutoFilter.

When AutoFilter was added to Excel, the team at Microsoft added extra care and attention
to it. Items hidden because of AutoFilter are not simply treated like other hidden rows.
AutoFilter gets special treatment. You’ve likely run into the frustrating situation in the past
where you have applied formatting to visible rows and the formatting has gotten applied to the
hidden rows. This is certainly a problem when you’ve hidden rows by clicking the #2 Group

and Outline button after using the Subtotal command. This is always a problem when you
manually hide rows. But it is never a problem when the rows are hidden because of AutoFilter.

After you’ve applied AutoFilter to hide rows, any action performed on the CurrentRegion
is applied only to the visible rows. You can apply bold. You can change the font to red. You
can even use CurrentRegion.EntireRow.Delete to delete the visible rows and not affect
the rows hidden by the filter.

Let’s say that you have a data set like the one shown in Figure 11-1, and you want to
perform some action on all the records that match a certain criteria, such as all Ford records.

FIGURE 11-1 Find all Ford records and mark them.

In Chapter 5, “R1C1-style formulas,” you learned to write code like the following, which
you could use to color all the Ford records green:

Click here to view code image
Sub OldLoop()

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
For i = 2 To FinalRow
If Cells(i, 4) = "Ford" Then
Cells(i, 1).Resize(1, 8).Interior.Color = RGB(0,255,0)
End If
Next i

End Sub

If you needed to delete records, you had to be careful to run the loop from the bottom of the
data set to the top, using code like this:

Click here to view code image
Sub OldLoopToDelete()

FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
For i = FinalRow To 2 Step -1
If Cells(i, 4) = "Ford" Then

Rows(i).Delete
End If
Next i

End Sub

The AutoFilter method, however, enables you to isolate all the Ford records in a single
line of code:

Click here to view code image

Range("A1").AutoFilter Field:=4, Criteria1:= "Ford"

After isolating the matching records, you do not need to use the VisibleCellsOnly
setting to format the matching records. Instead, you can use the following line of code to make
all the matching records green:

Click here to view code image

Range("A1").CurrentRegion.Interior.Color = RGB(0,255,0)

There are two problems with the current two-line macro. First, the program leaves the
AutoFilter drop-down menus in the data set. Second, the heading row is also formatted in
green.

Note The .CurrentRegion property extends the A1 reference to include the
entire data set.

This single line of code turns off the AutoFilter drop-down menus and clears the filter:

Range("A1").AutoFilter

If you want to leave the AutoFilter drop-down menus on but clear the column D drop-down
menu from showing Ford, you can use this line of code:

ActiveSheet.ShowAllData

Addressing the second problem is a bit more difficult. After you apply the filter and select
Range("A1").CurrentRegion, the selection automatically includes the headers in the
selection. Any formatting is also applied to the header row.

If you do not care about the first blank row below the data, you can simply add OFFSET(1)
to move the current region down to start in A2. This would be fine if your goal were to delete

all the Ford records:

Click here to view code image
Sub DeleteFord()

' skips header, but also deletes blank row below
Range("A1").AutoFilter Field:=4, Criteria1:="Ford"
Range("A1").CurrentRegion.Offset(1).EntireRow.Delete
Range("A1").AutoFilter

End Sub

Note The OFFSET property usually requires the number of rows and the number
of columns. Using .OFFSET(-2, 5) moves two rows up and five columns
right. If you do not want to adjust by any columns, you can leave off the column

parameter. Using .OFFSET(1) means one row down and zero columns over.

The preceding code works when you do not mind if the first blank row below the data is
deleted. However, when you apply a green format to those rows, the code applies the green
format to the blank row below the data set, and that would not look right.

If you will be doing some formatting, you can determine the height of the data set and use
.Resize to reduce the height of the current region while you use OFFSET:

Click here to view code image
Sub ColorFord()

DataHt = Range("A1").CurrentRegion.Rows.Count
Range("A1").AutoFilter Field:=4, Criteria1:="Ford"

Click here to view code image
With Range("A1").CurrentRegion.Offset(1).Resize(DataHt - 1)
' No need to use VisibleCellsOnly for formatting
.Interior.Color = RGB(0,255,0)
.Font.Bold = True

End With
' Clear the AutoFilter & remove drop-downs
Range("A1").AutoFilter

End Sub

Using AutoFilter techniques

Excel 2007 introduced the possibility of selecting multiple items from a filter, filtering by

color, filtering by icon, filtering by top 10, and filtering to virtual date filters. Excel 2010
introduced the search box in the filter drop-down menu. All these filters have VBA equivalents,
although some of them are implemented in VBA using legacy filtering methods.

Selecting multiple items

Legacy versions of Excel allowed you to select two values, joined by AND or OR. In this case,
you would specify xlAnd or xlOr as the operator:

Click here to view code image
Range("A1").AutoFilter Field:=4, _

Criteria1:="Ford", _
Operator:=xlOr, _
Criteria2:="General Motors"

As the AutoFilter command became more flexible, Microsoft continued to use the same
three parameters, even if they didn’t quite make sense. For example, Excel still lets you filter a
field by asking for the top five items or the bottom 8% of records. To use this type of filter,
specify either "5" or "8" as the Criteria1 argument and then specify xlTop10Items,
xlTop10Percent, xlBottom10Items, or xlBottom10Percent as the operator. For example,
the following code produces the top 12 revenue records:

Click here to view code image
Sub Top10Filter()

' Top 12 Revenue Records
Range("A1").AutoFilter Field:=6, _
Criteria1:="12", _
Operator:=xlTop10Items

End Sub

There are a lot of numbers (6, 12, 10) in the code for this AutoFilter. Field:=6
indicates that you are looking at the sixth column. xlTop10Items is the name of the filter, but
the filter is not limited to 10 items. The criteria 12 indicates the number of items that you want
the filter to return.

Excel offers several new filter options. It continues to force these filter options to fit in the
old object model, where the filter command must fit in an operator and up to two criteria fields.

If you want to choose three or more items, change the operator to Operator:
=xlFilterValues and specify the list of items as an array in the Criteria1 argument:

Click here to view code image

Range("A1").AutoFilter Field:=4, _
Criteria1:=Array("General Motors", "Ford", "Fiat"), _
Operator:=xlFilterValues

Selecting using the Search box

Excel 2010 introduced the Search box in the AutoFilter drop-down menu. After typing
something in the Search box, you can use the Select All Search Results item.

The macro recorder does a poor job of recording the Search box. The macro recorder hard-
codes a list of customers who matched the search at the time you ran the macro.

Think about the Search box. It is really a shortcut way of selecting Text Filters, Contains.
Furthermore, the Contains filter is actually a shortcut way of specifying the search string
surrounded by asterisks. Therefore, to filter to all the records that contain “at,” use this:

Click here to view code image

Range("A1").AutoFilter, Field:=4, Criteria1:="*at*"

Filtering by color

To find records that have a particular font color, use the operator xlFilterFontColor and
specify a particular RGB value as the criteria. This code finds all cells with a red font in
column F:

Click here to view code image
Sub FilterByFontColor()

Range("A1").AutoFilter Field:=6, _
Criteria1:=RGB(255, 0, 0), Operator:=xlFilterFontColor

End Sub

To find records that have no particular font color, use the operator
xlFilterAutomaticFillColor and do not specify criteria:

Click here to view code image
Sub FilterNoFontColor()

Range("A1").AutoFilter Field:=6, _
Operator:=xlFilterAutomaticFontColor

End Sub

To find records that have a particular fill color, use the operator xlFilterCellColor and

specify a particular RGB value as the criteria. This code finds all red cells in column F:

Click here to view code image
Sub FilterByFillColor()

Range("A1").AutoFilter Field:=6, _
Criteria1:=RGB(255, 0, 0), Operator:=xlFilterCellColor

End Sub

To find records that have no fill color, use the operator xlFilterNoFill and do not
specify criteria.

Filtering by icon

If you are expecting a data set to have an icon set applied, you can filter to show only records
with one particular icon by using the xlFilterIcon operator.

For the criteria, you have to know which icon set has been applied, as well as which icon
within the set you want to filter by. The icon sets are identified using the names shown in
column A in Figure 11-2. The items range from 1 through 5. The following code filters the
Revenue column to show the rows containing an upward-pointing arrow in the 5 Arrows Gray
icon set:

Click here to view code image
Sub FilterByIcon()

Range("A1").AutoFilter Field:=6, _
Criteria1:=ActiveWorkbook.IconSets(xl5ArrowsGray).Item(5), _
Operator:=xlFilterIcon

End Sub

To find records that have no conditional formatting icon, use the operator
xlFilterNoIcon and do not specify criteria.

FIGURE 11-2 To search for a particular icon, you need to know the icon set from column A and the item number from
row 1.

Selecting a dynamic date range using AutoFilters

Perhaps the most powerful feature in the world of Excel filters is the dynamic filters. These
filters enable you to choose records that are above average or with a date field to select virtual
periods, such as next week or last year.

To use a dynamic filter, specify xlFilterDynamic as the operator and then use 1 of 34
values as Criteria1. The following code finds all dates that are in the next year:

Click here to view code image
Sub DynamicAutoFilter()

Range("A1").AutoFilter Field:=3, _
Criteria1:=xlFilterNextYear, _

Click here to view code image
Operator:=xlFilterDynamic

End Sub

The following are all the dynamic filter criteria options, which you specify as Criteria1

in the AutoFilter method:

Criteria for values—Use xlFilterAboveAverage or xlFilterBelowAverage to
find all the rows that are above or below average.

Criteria for future periods—Use xlFilterTomorrow, xlFilterNextWeek,
xlFilterNextMonth, xlFilterNextQuarter, or xlFilterNextYear to find rows
that fall in a certain future period. Note that “next week” starts on Sunday and ends on
Saturday.

Criteria for current periods—Use xlFilterToday, xlFilterThisWeek,
xlFilterThisMonth, xlFilterThisQuarter, or xlFilterThisYear to find rows that
fall within the current period. Excel uses the system clock to find the current day.

Criteria for past periods—Use xlFilterYesterday, xlFilterLastWeek,
xlFilterLastMonth, xlFilterLastQuarter, xlFilterLastYear, or
xlFilterYearToDate to find rows that fall within a previous period.

Criteria for specific quarters—Use xlFilterDatesInPeriodQuarter1,
xlFilterDatesInPeriodQuarter2, xlFilterDatesInPeriodQuarter3, or
xlFilterDatesInPeriodQuarter4 to filter to rows that fall within a specific quarter.
Note that these filters do not differentiate based on a year. If you ask for quarter 1, you
might get records from this January, last February, and next March.

Criteria for specific months—Use xlFilterDatesInPeriodJanuary through
xlFilterDatesInPeriodDecember to filter to records that fall during a certain month.
As with quarters, the filter does not filter to any particular year.

Unfortunately, you cannot combine criteria. You might think that you can specify
xlFilterDatesInPeriodJanuary as Criteria1 and xlFilterDatesNextYear as
Criteria2. Even though this is a brilliant thought, Microsoft does not support this syntax
(yet).

Selecting visible cells only

After you apply a filter, most commands operate only on the visible rows in the selection. If
you need to delete the records, format the records, or apply a conditional format to the records,
you can simply refer to the .CurrentRegion of the first heading cell and perform the
command.

However, if you have a data set in which the rows have been hidden using the Hide Rows
command, any formatting applied to .CurrentRegion applies to the hidden rows, too. In these
cases, you should use the Visible Cells Only option in the Go To Special dialog box, as shown
in Figure 11-3.

FIGURE 11-3 If rows have been manually hidden, use Visible Cells Only in the Go To Special dialog box.

To use Visible Cells Only in code, use the SpecialCells property:

Click here to view code image

Range("A1").CurrentRegion.SpecialCells(xlCellTypeVisible)

Case study: Using Go To Special instead of looping
The Go To Special dialog box also plays a role in this case study.

At a Data Analyst Boot Camp, one of the attendees had a macro that was taking a long
time to run. The workbook had a number of selection controls. A complex IF() function in
cells H10:H750 was choosing which records should be included in a report. While that
IF() statement had many nested conditions, the formula was inserting either KEEP or HIDE
in each cell:

=IF(logical_test, "KEEP","HIDE")

The following section of code was hiding individual rows:

Click here to view code image
For Each cell In Range("H10:H750")
If cell.Value = "HIDE" Then

cell.EntireRow.Hidden = True
End If
Next cell

The macro was taking several minutes to run. SUBTOTAL formulas that excluded hidden
rows were recalculating after each pass through the loop. The first attempts to speed up the
macro involved turning off screen updating and calculation:

Click here to view code image
Application.ScreenUpdating = False
Application.Calculation = xlCalculationManual
For Each cell In Range("H10:H750")
If cell.Value = "HIDE" Then
cell.EntireRow.Hidden = True
End If
Next cell
Application.Calculation = xlCalculationAutomatic
Application.ScreenUpdating = True

For some reason, looping through all the records was still taking too long. We tried using
AutoFilter to isolate the HIDE records and then hiding those rows, but we lost the manual
row hiding after turning off AutoFilter.

The solution was to make use of the Go To Special dialog box’s ability to limit the
selection to text results of formulas. First, the formula in column H was changed to return
either HIDE or a number:

=IF(logical_test, "HIDE",1)

Then, the following single line of code was able to hide the rows that evaluated to a text
value in column H:

Click here to view code image
Range("H10:H750") _
.SpecialCells(xlCellTypeFormulas, xlTextValues) _
.EntireRow.Hidden = True

Because all the rows were hidden in a single command, that section of the macro ran in
seconds rather than minutes.

Advanced Filter—easier in VBA than in Excel

Using the arcane Advanced Filter command is so difficult in the Excel user interface that it is
pretty rare to find someone who enjoys using it regularly.

However, in VBA, advanced filters are a joy to use. With a single line of code, you can
rapidly extract a subset of records from a database or quickly get a unique list of values in any
column. This is critical when you want to run reports for a specific region or customer. Two
advanced filters are used most often in the same procedure—one to get a unique list of
customers and a second to filter to each customer, as shown in Figure 11-4. The rest of this
chapter builds toward such a routine.

FIGURE 11-4 A typical macro uses two advanced filters.

Using the Excel interface to build an advanced filter

Because not many people use the Advanced Filter feature, this section walks you through
examples using the user interface to build an advanced filter and then shows you the analogous
code. You will be amazed at how complex the user interface seems and yet how easy it is to
program a powerful advanced filter to extract records.

One reason Advanced Filter is hard to use is that you can use it in several different ways.
Every Advanced Filter has to have a List Range. You must make three basic choices in the
Advanced Filter dialog box. Because each choice has two options, there are eight (2 × 2 × 2)
possible combinations of these choices. The three basic choices are shown in Figure 11-5 and
described here:

Action—You can select Filter The List, In-Place or you can select Copy To Another

Location. If you choose to filter the records in place, the nonmatching rows are hidden.
Choosing to copy to a new location copies the records that match the filter to a new
range.

Criteria—You can filter with or without criteria. Filtering with criteria is appropriate for
getting a subset of rows. Filtering without criteria is still useful when you want a subset
of columns or when you are using the Unique Records Only option.

Unique—You can choose to request Unique Records Only or request all matching
records. The Unique option makes using the Advanced Filter command one of the fastest
ways to find a unique list of values in one field. By placing the Customer heading in the
output range, you get a unique list of values for that one column.

FIGURE 11-5 The Advanced Filter dialog box is complicated to use in the Excel user interface. Fortunately, it is much
easier in VBA.

Using Advanced Filter to extract a unique list of values
One of the simplest uses of Advanced Filter is to extract a unique list of a single field from a
data set. In this example, you want to get a unique list of customers from a sales report. You
know that Customer is in column D of the data set. You have an unknown number of records
starting in cell A2, and row 1 is the header row. There is nothing located to the right of the data
set.

Extracting a unique list of values with the user interface

To extract a unique list of values, follow these steps:

1. With the cursor anywhere in the data range, select Advanced from the Sort & Filter
group on the Data tab. The first time you use the Advanced Filter command on a

worksheet, Excel automatically populates the List Range text box with the entire range of
your data set. On subsequent uses of the Advanced Filter command, this dialog box
remembers the settings from the prior advanced filter.

2. Select the Unique Records Only check box at the bottom of the dialog box.

3. In the Action section, select Copy To Another Location.

4. Type J1 in the Copy To text box.

By default, Excel copies all the columns in the data set. You can filter just the Customer
column either by limiting List Range to include only column D or by specifying one or more
headings in the Copy To range. Each method has its own drawbacks.

Changing the list range to a single column

Edit List Range to point to the Customer column. In this case, you need to change the default
A1:H1127 to D1:D1127. The Advanced Filter dialog box should appear.

Note When you initially edit any range in the dialog box, Excel might be in
Point mode. In this mode, pressing a left- or right-arrow key inserts a cell
reference in the text box. If you see the word Point in the lower-left corner of

your Excel window, press the F2 key to change from Point mode to Edit mode.

The drawback of this method is that Excel remembers the list range on subsequent uses of
the Advanced Filter command. If you later want to get a unique list of regions, you will be
constantly specifying the list range.

Copying the customer heading before filtering

With a little thought before invoking the Advanced Filter command, you can allow Excel to
keep the default list range A1:H1127. In cell J1, type the Customer heading as shown in
Figure 11-6. Leave the List Range field pointing to columns A through H. Because the Copy
To range of J1 already contains a valid heading from the list range, Excel copies data only from
the Customer column. This is the preferred method, particularly if you will be using multiple
advanced filters. Because Excel remembers the settings from the preceding advanced filter, it is
more convenient to always filter the entire columns of the list range and limit the columns by
setting up headings in the Copy To range.

After you use either of these methods to perform the advanced filter, a concise list of the
unique customers appears in column J (see Figure 11-6).

FIGURE 11-6 The advanced filter extracted a unique list of customers from the data set and copied it to column J.

Extracting a unique list of values with VBA code

In VBA, you use the AdvancedFilter method to carry out the Advanced Filter command.
Again, you have three choices to make:

Action—Choose to either filter in place with the parameter
Action:=xlFilterInPlace or copy with Action:=xlFilterCopy. If you want to
copy, you also have to specify the parameter CopyToRange:=Range("J1").

Criteria—To filter with criteria, include the parameter
CriteriaRange:=Range("L1:L2"). To filter without criteria, omit this optional
parameter.

Unique—To return only unique records, specify the parameter Unique:=True.

The following code sets up a single-column output range two columns to the right of the
last-used column in the data range:

Click here to view code image
Sub GetUniqueCustomers()
Dim IRange As Range
Dim ORange As Range

' Find the size of today's data set
FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
NextCol = Cells(1, Columns.Count).End(xlToLeft).Column + 2

' Set up the output range. Copy heading from D1 there
Range("D1").Copy Destination:=Cells(1, NextCol)

Set ORange = Cells(1, NextCol)

' Define the input range
Set IRange = Range("A1").Resize(FinalRow, NextCol - 2)

' Use the Advanced Filter to get a unique list of customers
IRange.AdvancedFilter Action:=xlFilterCopy,
CopyToRange:=ORange, _
Unique:=True
End Sub

By default, an advanced filter copies all columns. If you want just one particular column,
use that column heading as the heading in the output range.

The first bit of code finds the final row and column in the data set. Although it is not
necessary to do so, you can define an object variable for the output range (ORange) and for the
input range (IRange).

This code is generic enough that it will not have to be rewritten if new columns are added to
the data set later. Setting up the object variables for the input and output range is done for
readability rather than out of necessity. The previous code could be written just as easily like
this shortened version:

Click here to view code image
Sub UniqueCustomerRedux()

' Copy a heading to create an output range
Range("J1").Value = Range("D1").Value
' Use the Advanced Filter
Range("A1").CurrentRegion.AdvancedFilter xlFilterCopy, _
CopyToRange:=Range("J1"), Unique:=True

End Sub

When you run either of the previous blocks of code on the sample data set, you get a unique
list of customers off to the right of the data. The key to getting a unique list of customers is
copying the header from the Customer field to a blank cell and specifying this cell as the output
range.

After you have the unique list of customers, you can sort the list and add a SUMIF formula
to get total revenue by customer. The following code gets the unique list of customers, sorts it,
and then builds a formula to total revenue by customer. Figure 11-7 shows the results:

Click here to view code image
Sub RevenueByCustomers()

Dim IRange As Range
Dim ORange As Range

' Find the size of today's data set
FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
NextCol = Cells(1, Columns.Count).End(xlToLeft).Column + 2

' Set up the output range. Copy the heading from D1 there
Range("D1").Copy Destination:=Cells(1, NextCol)
Set ORange = Cells(1, NextCol)

' Define the input range
Set IRange = Range("A1").Resize(FinalRow, NextCol - 2)

' Use the Advanced Filter to get a unique list of customers
IRange.AdvancedFilter Action:=xlFilterCopy, _
CopyToRange:=ORange, Unique:=True

' Determine how many unique customers we have
LastRow = Cells(Rows.Count, NextCol).End(xlUp).Row

' Sort the data
Cells(1, NextCol).Resize(LastRow, 1).Sort Key1:=Cells(1,
NextCol), _
Order1:=xlAscending, Header:=xlYes

Click here to view code image

' Add a SUMIF formula to get totals
Cells(1, NextCol + 1).Value = "Revenue"
Cells(2, NextCol + 1).Resize(LastRow - 1).FormulaR1C1 = _

"=SUMIF(R2C4:R" & FinalRow & _
"C4,RC[-1],R2C6:R" & FinalRow & "C6)"

End Sub

FIGURE 11-7 This macro produced a summary report by customer from a lengthy data set. Using AdvancedFilter is
the key to powerful macros such as these.

Another use of a unique list of values is to quickly populate a list box or a combo box on a
userform. For example, suppose that you have a macro that can run a report for any one
specific customer. To allow your clients to choose which customers to report, create a simple
userform. Add a list box to the userform and set the list box’s MultiSelect property to 1-
fmMultiSelectMulti. In this case, the form is named frmReport. In addition to the list box,
there are four command buttons: OK, Cancel, Mark All, and Clear All. The code to run the
form follows. Note that the Userform_Initialize procedure includes an advanced filter to
get the unique list of customers from the data set:

Click here to view code image
Private Sub CancelButton_Click()

Unload Me
End Sub

Private Sub cbSubAll_Click()
For i = 0 To lbCust.ListCount - 1
Me.lbCust.Selected(i) = True
Next i

End Sub

Private Sub cbSubClear_Click()
For i = 0 To lbCust.ListCount - 1
Me.lbCust.Selected(i) = False
Next i

End Sub

Private Sub OKButton_Click()
For i = 0 To lbCust.ListCount - 1

If Me.lbCust.Selected(i) = True Then
' Call a routine (discussed later) to produce this report
RunCustReport WhichCust:=Me.lbCust.List(i)

End If
Next i

Click here to view code image
Unload Me
End Sub

Private Sub UserForm_Initialize()
Dim IRange As Range
Dim ORange As Range

' Find the size of today's data set
FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
NextCol = Cells(1, Columns.Count).End(xlToLeft).Column + 2

' Set up the output range. Copy the heading from D1 there
Range("D1").Copy Destination:=Cells(1, NextCol)
Set ORange = Cells(1, NextCol)

' Define the input range
Set IRange = Range("A1").Resize(FinalRow, NextCol - 2)

' Use the Advanced Filter to get a unique list of customers
IRange.AdvancedFilter Action:=xlFilterCopy, _

CopyToRange:=ORange, Unique:=True

' Determine how many unique customers we have
LastRow = Cells(Rows.Count, NextCol).End(xlUp).Row

' Sort the data
Cells(1, NextCol).Resize(LastRow, 1).Sort Key1:=Cells(1,
NextCol), _
Order1:=xlAscending, Header:=xlYes

With Me.lbCust
.RowSource = ""
.List = Cells(2, NextCol).Resize(LastRow - 1, 1).Value

End With

' Erase the temporary list of customers

Cells(1, NextCol).Resize(LastRow, 1).Clear
End Sub

Launch this form with a simple module, like this:
Sub ShowCustForm()

frmReport.Show
End Sub

Your clients are presented with a list of all valid customers from the data set. Because the
list box’s MultiSelect property is set to allow it, the clients can select any number of
customers.

Getting unique combinations of two or more fields

To get all unique combinations of two or more fields, build the output range to include the
additional fields. This code sample builds a list of unique combinations of two fields: Customer
and Product:

Click here to view code image
Sub UniqueCustomerProduct()

Dim IRange As Range

Click here to view code image
Dim ORange As Range

' Find the size of today's data set
FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
NextCol = Cells(1, Columns.Count).End(xlToLeft).Column + 2

' Set up the output range. Copy headings from D1 & B1
Range("D1").Copy Destination:=Cells(1, NextCol)
Range("B1").Copy Destination:=Cells(1, NextCol + 1)
Set ORange = Cells(1, NextCol).Resize(1, 2)

' Define the input range
Set IRange = Range("A1").Resize(FinalRow, NextCol - 2)

' Use the Advanced Filter to get a unique list of customers &
product
IRange.AdvancedFilter Action:=xlFilterCopy, _
CopyToRange:=ORange, Unique:=True

' Determine how many unique rows we have
LastRow = Cells(Rows.Count, NextCol).End(xlUp).Row

' Sort the data
Cells(1, NextCol).Resize(LastRow, 2).Sort Key1:=Cells(1,
NextCol), _
Order1:=xlAscending, Key2:=Cells(1, NextCol + 1), _
Order2:=xlAscending, Header:=xlYes

End Sub

In the result shown in Figure 11-8, you can see that Enhanced Eggbeater buys only one
product, and Distinctive Wax buys three products. This might be useful as a guide in running
reports on either customer by product or product by customer.

FIGURE 11-8 By including two columns in the output range on a Unique Values query, you get every combination of
customer and product.

Using Advanced Filter with criteria ranges
As the name implies, Advanced Filter is usually used to filter records—in other words, to get a
subset of data. You specify the subset by setting up a criteria range.

Note Even if you are familiar with criteria, be sure to check out using the
powerful Boolean formula in criteria ranges later in this chapter, in the section
“The most complex criteria: Replacing the list of values with a condition created

as the result of a formula.”

Set up a criteria range in a blank area of a worksheet. A criteria range always includes two
or more rows. The first row of the criteria range contains one or more field header values to
match the one(s) in the data range you want to filter. The second row contains a value showing
which records to extract. In Figure 11-9, J1:J2 is the criteria range, and L1 is the output range.

In the Excel user interface, to extract a unique list of products that were purchased by a
particular customer, select Advanced Filter and set up the Advanced Filter dialog box as shown
in Figure 11-9. Figure 11-10 shows the results.

FIGURE 11-9 To learn a unique list of products purchased by Cool Saddle Traders, set up the criteria range in J1:J2.

FIGURE 11-10 Here is the result of the advanced filter that uses a criteria range and asks for a unique list of products.
Of course, more complex and interesting criteria can be built.

You can use the following VBA code to perform an equivalent advanced filter:

Click here to view code image
Sub UniqueProductsOneCustomer()

Dim IRange As Range
Dim ORange As Range
Dim CRange As Range

' Find the size of today's data set

Click here to view code image
FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
NextCol = Cells(1, Columns.Count).End(xlToLeft).Column + 2

' Set up the output range with one customer
Cells(1, NextCol).Value = Range("D1").Value
' In reality, this value should be passed from the userform
Cells(2, NextCol).Value = Range("D2").Value
Set CRange = Cells(1, NextCol).Resize(2, 1)

' Set up the output range. Copy the heading from B1 there
Range("B1").Copy Destination:=Cells(1, NextCol + 2)
Set ORange = Cells(1, NextCol + 2)

' Define the input range
Set IRange = Range("A1").Resize(FinalRow, NextCol - 2)

' Use the Advanced Filter to get a unique list of customers &
product
IRange.AdvancedFilter Action:=xlFilterCopy, _
CriteriaRange:=CRange, CopyToRange:=ORange, Unique:=True
' The above could also be written as:
'IRange.AdvancedFilter xlFilterCopy, CRange, ORange, True

' Determine how many unique rows we have
LastRow = Cells(Rows.Count, NextCol + 2).End(xlUp).Row

' Sort the data
Cells(1, NextCol + 2).Resize(LastRow, 1).Sort Key1:=Cells(1,
_
NextCol + 2), Order1:=xlAscending, Header:=xlYes

End Sub

Joining multiple criteria with a logical OR

You might want to filter records that match one criteria or another. For example, you can
extract customers who purchased either product M556 or product R537. This is called a logical
OR criteria.

When your criteria should be joined by a logical OR, place the criteria on subsequent rows
of the criteria range. For example, the criteria range shown in J1:J3 in Figure 11-11 tells you
which customers order product M556 or product W435.

FIGURE 11-11 Place criteria on successive rows to join them with an OR. This criteria range gets customers who
ordered either product M556 or product W435.

Joining two criteria with a logical AND

Sometimes, you will want to filter records that match one criteria and another criteria. For
example, you might want to extract records in which the product sold was W435 and the region
was the West region. This is called a logical AND.

To join two criteria with AND, put both criteria on the same row of the criteria range. For
example, the criteria range shown in J1:K2 in Figure 11-12 gets the customers who ordered
product W435 in the West region.

FIGURE 11-12 Place criteria on the same row to join them with an AND. The criteria range in J1:K2 gets customers
from the West region who ordered product W435.

Other slightly complex criteria ranges

The criteria range shown in Figure 11-13 is based on two different fields that are joined with an
OR. The query finds all records that are from the West region or whose product is W435.

FIGURE 11-13 The criteria range in J1:K3 returns records in which either the region is West or the product is W435.

The most complex criteria: Replacing the list of values with a condition created
as the result of a formula

It is possible to have a criteria range with multiple logical AND and logical OR criteria joined
together. Although this might work in some situations, in other scenarios it quickly gets out of

hand. Fortunately, Excel allows for criteria in which the records are selected as the result of a
formula to handle this situation.

Case study: Working with very complex criteria
Your clients so loved the “Create a Customer” report that they hired you to write a new
report. In this case, they could select any customer, any product, any region, or any
combination of them. You can quickly adapt the frmReport userform to show three list
boxes, as shown in Figure 11-14.

FIGURE 11-14 This super-flexible form lets clients run any types of reports that they can imagine. It creates
some nightmarish criteria ranges, though, unless you know the way out.

In your first test, imagine that you select two customers and two products. In this case,
your program has to build a five-row criteria range, as shown in Figure 11-15. This isn’t
too bad.

FIGURE 11-15 This criteria range returns any records for which the two selected customers ordered any of the
two selected products.

This gets crazy if someone selects 10 products, all regions except the house region, and all
customers except the internal customer. Your criteria range would need unique
combinations of the selected fields. This could easily be 10 products times 9 regions times
499 customers—or more than 44,000 rows of criteria range. You could quickly end up
with a criteria range that spans thousands of rows and three columns. I was once foolish
enough to actually try running an advanced filter with such a criteria range. It would still
be trying to compute if I hadn’t rebooted the computer.

The solution for this report is to replace the lists of values with a formula-based condition.

Setting up a condition as the result of a formula

Amazingly, there is an incredibly obscure version of Advanced Filter criteria that can replace
the 44,000-row criteria range in the previous case study. In the alternative form of criteria
range, the top row is left blank. There is no heading above the criteria. The criteria set up in
row 2 is a formula that results in True or False. If the formula contains any relative references
to row 2 of the data range, Excel compares that formula to every row of the data range, one by
one.

For example, if you want all records in which Gross Profit Percentage is below 53%, the
formula built in J2 references the profit in H2 and the revenue in F2. You need to leave J1
blank to tell Excel that you are using a computed criteria. Cell J2 contains the formula =
(H2/F2)<0.53. The criteria range for the advanced filter would be specified as J1:J2.

As Excel performs the advanced filter, it logically copies the formula and applies it to all
rows in the database. Anywhere that the formula evaluates to True, the record is included in
the output range.

This is incredibly powerful and runs remarkably fast. You can combine multiple formulas
in adjacent columns or rows to join the formula criteria with AND or OR, just as you do with
regular criteria.

Note Row 1 of the criteria range doesn’t have to be blank, but it cannot contain
words that are headings in the data range. You could perhaps use that row to
explain that someone should look to this page in this book for an explanation of

these computed criteria.

Case study: Using formula-based conditions in the Excel user interface
You can use formula-based conditions to solve the report introduced in the previous case
study. Figure 11-16 shows the flow involved in setting up a formula-based condition.

To illustrate, off to the right of the criteria range, set up a column of cells with the list of
selected customers. Assign a name to the range, such as MyCust. In cell J2 of the criteria
range, enter a formula such as =NOT(ISNA(Match(D2, MyCust,0))).

To the right of the MyCust range, set up a range with a list of selected products. Assign
this range the name MyProd. In K2 of the criteria range, add this formula to check
products: =NOT(ISNA(Match(B2,MyProd,0))).

To the right of the MyProd range, set up a range with a list of selected regions. Assign this
range the name MyRegion. In L2 of the criteria range, add this formula to check for
selected regions: =NOT(ISNA(Match(A2, MyRegion,0))).

Now, with a criteria range of J1:L2, you can effectively retrieve records that match any
combination of selections from the userform.

FIGURE 11-16 Here are the logical steps in using formula-based conditions to solve the problem.

Using formula-based conditions with VBA

Referring back to the userform shown in Figure 11-14, you can use formula-based conditions to
filter the report using the userform. The following is the code for this userform. Note the logic
in OKButton_Click that builds the formula. Figure 11-17 shows the Excel sheet just before
the advanced filter is run.

FIGURE 11-17 Here is the worksheet just before the macro runs the advanced filter.

The following code initializes the userform. Three advanced filters find the unique list of
customers, products, and regions:

Click here to view code image
Private Sub UserForm_Initialize()

Dim IRange As Range
Dim ORange As Range

' Find the size of today's data set
FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
NextCol = Cells(1, Columns.Count).End(xlToLeft).Column + 2

' Define the input range
Set IRange = Range("A1").Resize(FinalRow, NextCol - 2)

' Set up the output range for Customer. Copy the heading
from D1 there
Range("D1").Copy Destination:=Cells(1, NextCol)
Set ORange = Cells(1, NextCol)

' Use the Advanced Filter to get a unique list of customers
IRange.AdvancedFilter Action:=xlFilterCopy,
CriteriaRange:="", _
CopyToRange:=ORange, Unique:=True

' Determine how many unique customers we have
LastRow = Cells(Rows.Count, NextCol).End(xlUp).Row

' Sort the data
Cells(1, NextCol).Resize(LastRow, 1).Sort Key1:=Cells(1,
NextCol), _
Order1:=xlAscending, Header:=xlYes

With Me.lbCust
.RowSource = ""
.List = Application.Transpose(_
Cells(2,NextCol).Resize(LastRow-1,1))
End With

' Erase the temporary list of customers
Cells(1, NextCol).Resize(LastRow, 1).Clear

' Set up an output range for the product. Copy the heading
from D1 there
Range("B1").Copy Destination:=Cells(1, NextCol)
Set ORange = Cells(1, NextCol)

' Use the Advanced Filter to get a unique list of customers
IRange.AdvancedFilter Action:=xlFilterCopy, _
CopyToRange:=ORange, Unique:=True

' Determine how many unique customers we have
LastRow = Cells(Rows.Count, NextCol).End(xlUp).Row

' Sort the data
Cells(1, NextCol).Resize(LastRow, 1).Sort Key1:=Cells(1,
NextCol), _
Order1:=xlAscending, Header:=xlYes

With Me.lbProduct

Click here to view code image
.RowSource = ""
' The list has to go across, so transpose the vertical
data.
.List = Application.Transpose(_
Cells(2,NextCol).Resize(LastRow-1,1))
End With

' Erase the temporary list of customers
Cells(1, NextCol).Resize(LastRow, 1).Clear

' Set up the output range for Region. Copy the heading from
A1 there
Range("A1").Copy Destination:=Cells(1, NextCol)
Set ORange = Cells(1, NextCol)

' Use the Advanced Filter to get a unique list of customers
IRange.AdvancedFilter Action:=xlFilterCopy,
CopyToRange:=ORange, _
Unique:=True

' Determine how many unique customers we have
LastRow = Cells(Rows.Count, NextCol).End(xlUp).Row

' Sort the data
Cells(1, NextCol).Resize(LastRow, 1).Sort Key1:=Cells(1,
NextCol), _

Order1:=xlAscending, Header:=xlYes

With Me.lbRegion
.RowSource = ""
.List = Application.Transpose(_
Cells(2,NextCol).Resize(LastRow-1,1))

End With

' Erase the temporary list of customers
Cells(1, NextCol).Resize(LastRow, 1).Clear

End Sub

These tiny procedures run when someone clicks Mark All or Clear All in the userform in
Figure 11-14:

Click here to view code image
Private Sub CancelButton_Click()

Unload Me
End Sub

Private Sub cbSubAll_Click()
For i = 0 To lbCust.ListCount - 1
Me.lbCust.Selected(i) = True
Next i

End Sub

Private Sub cbSubClear_Click()
For i = 0 To lbCust.ListCount - 1
Me.lbCust.Selected(i) = False
Next i

End Sub

Private Sub CommandButton1_Click()
' Clear all products
For i = 0 To lbProduct.ListCount - 1

Click here to view code image
Me.lbProduct.Selected(i) = False

Next i
End Sub

Private Sub CommandButton2_Click()
' Mark all products
For i = 0 To lbProduct.ListCount - 1
Me.lbProduct.Selected(i) = True

Next i
End Sub

Private Sub CommandButton3_Click()
' Clear all regions
For i = 0 To lbRegion.ListCount - 1
Me.lbRegion.Selected(i) = False
Next i

End Sub

Private Sub CommandButton4_Click()
' Mark all regions
For i = 0 To lbRegion.ListCount - 1
Me.lbRegion.Selected(i) = True
Next i

End Sub

The following code is attached to the OK button. This code builds three ranges in O, P, and
Q that list the selected customers, products, and regions. The actual criteria range is composed
of three blank cells in J1:L1 and then three formulas in J2:L2:

Click here to view code image

Private Sub OKButton_Click()
Dim CRange As Range, IRange As Range, ORange As Range
' Build a complex criteria that ANDs all choices together
NextCCol = 10
NextTCol = 15

For j = 1 To 3
Select Case j
Case 1
MyControl = "lbCust"
MyColumn = 4

Case 2
MyControl = "lbProduct"
MyColumn = 2

Case 3
MyControl = "lbRegion"
MyColumn = 1

End Select
NextRow = 2
' Check to see what was selected.
For i = 0 To Me.Controls(MyControl).ListCount - 1
If Me.Controls(MyControl).Selected(i) = True Then

Cells(NextRow, NextTCol).Value = _
Me.Controls(MyControl).List(i)

NextRow = NextRow + 1

Click here to view code image
End If
Next i
' If anything was selected, build a new criteria formula
If NextRow > 2 Then

' the reference to Row 2 must be relative in order to work
MyFormula = "=NOT(ISNA(MATCH(RC" & MyColumn & ",R2C" & _

NextTCol & ":R" & NextRow - 1 & "C" & NextTCol & ",0)))"
Cells(2, NextCCol).FormulaR1C1 = MyFormula
NextTCol = NextTCol + 1
NextCCol = NextCCol + 1

End If
Next j
Unload Me

' Figure 11-17 shows the worksheet at this point

' If we built any criteria, define the criteria range
If NextCCol > 10 Then

Set CRange = Range(Cells(1, 10), Cells(2, NextCCol - 1))
Set IRange = Range("A1").CurrentRegion
Set ORange = Cells(1, 20)
IRange.AdvancedFilter xlFilterCopy, CRange, Orange

' Clear out the criteria
Cells(1, 10).Resize(1, 10).EntireColumn.Clear
End If

' At this point, the matching records are in T1
End Sub

Figure 11-17 shows the worksheet just before the AdvancedFilter method is called. The
user has selected customers, products, and regions. The macro has built temporary tables in
columns O, P, and Q to show which values the user selected. The criteria range is J1:L2. The
criteria formula in J2 looks to see whether the value in $D2 is in the list of selected customers
in O. The formulas in K2 and L2 compare $B2 to column P and $A2 to column Q.

Note Excel VBA Help says that if you do not specify a criteria range, no criteria
are used. This is not true in Excel 2013, 2016, and 2019. If no criteria range is
specified in these versions of Excel, the advanced filter inherits the criteria range

from the prior advanced filter. You should include CriteriaRange:="" to clear the prior
value.

Using formula-based conditions to return above-average records

The formula-based conditions formula criteria are cool but are a rarely used feature in a rarely
used function. Some interesting business applications use this technique. For example, this
criteria formula would find all the above-average rows in the data set:

=$A2>Average($A$2:$A$1048576)

Using filter in place in Advanced Filter
It is possible to filter a large data set in place. In this case, you do not need an output range.
You normally specify a criteria range; otherwise, you return 100% of the records, and there is
no need to use the advanced filter!

In the user interface of Excel, running Filter In Place makes sense: You can easily peruse
the filtered list, looking for something in particular.

Running a filter in place in VBA is a little less convenient. The only good way to
programmatically peruse the filtered records is to use the xlCellTypeVisible option of the
SpecialCells method. In the Excel user interface, the equivalent action is to select Home, Find
& Select, Go to Special. In the Go to Special dialog box, select Visible Cells Only.

To run a Filter In Place, use the constant XLFilterInPlace as the Action parameter in the
AdvancedFilter command and remove the CopyToRange from the command:

Click here to view code image

IRange.AdvancedFilter Action:=xlFilterInPlace,
CriteriaRange:=CRange, _Unique:=False

Then you use this programmatic equivalent to looping by using Visible Cells Only:

Click here to view code image
For Each cell In Range("A2:A" &
FinalRow).SpecialCells(xlCellTypeVisible)
Ctr = Ctr + 1
Next cell
MsgBox Ctr & " cells match the criteria"

If you know that there will be no blanks in the visible cells, you can eliminate the loop with
this:

Click here to view code image
Ctr = Application.Counta(Range("A2:A" &
_FinalRow).SpecialCells(xlCellTypeVisible))

Catching no records when using a filter in place

Just as when using Copy, you have to watch out for the possibility of having no records match
the criteria. However, in this case, it is more difficult to realize that nothing is returned. You
generally find out when the .SpecialCells method returns a runtime error 1004, which
indicates that no cells were found.

To catch this condition, you have to set up an error trap to anticipate the 1004 error with the
SpecialCells method:

Click here to view code image

On Error GoTo NoRecs
For Each cell In _
Range("A2:A" & FinalRow).SpecialCells(xlCellTypeVisible)
Ctr = Ctr + 1

Next cell
On Error GoTo 0
MsgBox Ctr & " cells match the criteria"
Exit Sub

Click here to view code image
NoRecs:

MsgBox "No records match the criteria"
End Sub

Note See Chapter 24, “Handling errors,” for more information on catching
errors.

This error trap works because it specifically excludes the header row from the
SpecialCells range. The header row is always visible after an advanced filter. Including it in
the range would prevent the 1004 error from being raised.

Showing all records after running a filter in place

After doing a filter in place, you can get all records to show again by using the ShowAllData
method:

ActiveSheet.ShowAllData

The real workhorse: xlFilterCopy with all records rather
than unique records only
The examples at the beginning of this chapter talk about using xlFilterCopy to get a unique
list of values in a field. You used unique lists of customers, regions, and products to populate
the list boxes in your report-specific userforms.

However, a more common scenario is to use an advanced filter to return all records that
match the criteria. After the client selects which customer to report, an advanced filter can
extract all records for that customer.

In all the examples in the following sections, you want to keep the Unique Records Only

check box cleared. You do this in VBA by specifying Unique:=False as a parameter to the
AdvancedFilter method. This is not difficult to do, and you have some powerful options. If
you need only a subset of fields for a report, copy only those field headings to the output range.
If you want to resequence the fields to appear exactly as you need them in the report, you can
do this by changing the sequence of the headings in the output range.

The next sections walk you through three quick examples to show the options available.

Copying all columns

To copy all columns, specify a single blank cell as the output range. You get all columns for
those records that match the criteria, as shown in Figure 11-18:

Click here to view code image
Sub AllColumnsOneCustomer()

Dim IRange As Range

Click here to view code image
Dim ORange As Range
Dim CRange As Range

' Find the size of today's data set
FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
NextCol = Cells(1, Columns.Count).End(xlToLeft).Column + 2

' Set up the criteria range with one customer
Cells(1, NextCol).Value = Range("D1").Value
' In reality, this value should be passed from the userform
Cells(2, NextCol).Value = Range("D2").Value
Set CRange = Cells(1, NextCol).Resize(2, 1)

' Set up the output range. It is a single blank cell
Set ORange = Cells(1, NextCol + 2)

' Define the input range
Set IRange = Range("A1").Resize(FinalRow, NextCol - 2)

' Use the Advanced Filter to get a unique list of customers
& product
IRange.AdvancedFilter Action:=xlFilterCopy, _
CriteriaRange:=CRange, CopyToRange:=Orange

End Sub

FIGURE 11-18 When using xlFilterCopy with a blank output range, you get all columns in the same order as they
appear in the original list range.

Copying a subset of columns and reordering

If you are doing an advanced filter to send records to a report, it is likely that you might need
only a subset of columns, and you might need them in a different sequence.

This example finishes the frmReport example that was presented earlier in this chapter. As
you recall, frmReport allows the client to select a customer. The OK button then calls the
RunCustReport routine, passing a parameter to identify for which customer to prepare a
report.

Imagine that this is a report being sent to the customer. The customer really does not care
about the surrounding region, and you do not want to reveal your cost of goods sold or profit.
Assuming that you will put the customer’s name in the title of the report, the fields that you
need in order to produce the report are Date, Quantity, Product, and Revenue.

The following code copies those headings to the output range:

Click here to view code image
Sub RunCustReport(WhichCust As Variant)

Dim IRange As Range

Click here to view code image
Dim ORange As Range
Dim CRange As Range
Dim WBN As Workbook
Dim WSN As Worksheet
Dim WSO As Worksheet

Set WSO = ActiveSheet
' Find the size of today's data set
FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
NextCol = Cells(1, Columns.Count).End(xlToLeft).Column + 2

' Set up the criteria range with one customer

Cells(1, NextCol).Value = Range("D1").Value
Cells(2, NextCol).Value = WhichCust
Set CRange = Cells(1, NextCol).Resize(2, 1)

' Set up the output range. We want Date, Quantity, Product,
Revenue
' These columns are in C, E, B, and F
Cells(1, NextCol + 2).Resize(1, 4).Value = _
Array(Cells(1, 3), Cells(1, 5), Cells(1, 2), Cells(1, 6))
Set ORange = Cells(1, NextCol + 2).Resize(1, 4)

' Define the input range
Set IRange = Range("A1").Resize(FinalRow, NextCol - 2)

' Use the Advanced Filter to get a unique list of customers
& products
IRange.AdvancedFilter Action:=xlFilterCopy, _
CriteriaRange:=CRange, CopyToRange:=ORange

' Create a new workbook with one blank sheet to hold the
output
' xlWBATWorksheet is the template name for a single
worksheet
Set WBN = Workbooks.Add(xlWBATWorksheet)
Set WSN = WBN.Worksheets(1)

' Set up a title on WSN
WSN.Cells(1, 1).Value = "Report of Sales to " & WhichCust

' Copy data from WSO to WSN
WSO.Cells(1, NextCol + 2).CurrentRegion.Copy _
Destination:=WSN.Cells(3, 1)
TotalRow = WSN.Cells(Rows.Count, 1).End(xlUp).Row + 1
WSN.Cells(TotalRow, 1).Value = "Total"
WSN.Cells(TotalRow, 2).FormulaR1C1 = "=SUM(R2C:R[-1]C)"
WSN.Cells(TotalRow, 4).FormulaR1C1 = "=SUM(R2C:R[-1]C)"

' Format the new report with bold
WSN.Cells(3, 1).Resize(1, 4).Font.Bold = True
WSN.Cells(TotalRow, 1).Resize(1, 4).Font.Bold = True
WSN.Cells(1, 1).Font.Size = 18

WBN.SaveAs ThisWorkbook.Path & Application.PathSeparator &

_
WhichCust & ".xlsx"
WBN.Close SaveChanges:=False

Click here to view code image
WSO.Select

' clear the output range, etc.
Range("J:Z").Clear

End Sub

The advanced filter produces data, as shown in Figure 11-19. The program then goes on to
copy the matching records to a new workbook. A title and a total row are added, and the report
is saved with the customer’s name. Figure 11-20 shows the final report.

FIGURE 11-19 Immediately after the advanced filter, you have just the columns and records needed for the report.

FIGURE 11-20 After copying the filtered data to a new sheet and applying some formatting, you have a good-looking
report to send to each customer.

Case study: Utilizing two kinds of advanced filters to create a report for
each customer
The final advanced filter example for this chapter uses several advanced filter techniques.
Let’s say that after importing invoice records, you want to send a purchase summary to
each customer. The process would be as follows:

1. Run an advanced filter, requesting unique values, to get a list of customers in column
J. This AdvancedFilter specifies the Unique:=True parameter and uses a
CopyToRange that includes a single heading, Customer:

Click here to view code image

' Set up the output range. Copy the heading from D1 there
Range("D1").Copy Destination:=Cells(1, NextCol)

Click here to view code image
Set ORange = Cells(1, NextCol)

' Define the input range
Set IRange = Range("A1").Resize(FinalRow, NextCol - 2)

' Use the Advanced Filter to get a unique list of
customers

IRange.AdvancedFilter Action:=xlFilterCopy,
CriteriaRange:="", _
CopyToRange:=ORange, Unique:=True

2. For each customer in the list of unique customers in column J, perform steps 3 through
7. Find the number of customers in the output range from step 1. Then use a For Each
Cell loop to loop through the customers:

Click here to view code image

' Loop through each customer
FinalCust = Cells(Rows.Count, NextCol).End(xlUp).Row
For Each cell In Cells(2, NextCol).Resize(FinalCust - 1,
1)
ThisCust = cell.Value
' ... Steps 3 through 7 here
Next Cell

3. Build a criteria range in L1:L2 to be used in a new advanced filter. The criteria range
would include the heading Customer in L1 and the customer name from this iteration
of the loop in cell L2:

Click here to view code image
' Set up the criteria range with one customer
Cells(1, NextCol + 2).Value = Range("D1").Value
Cells(2, NextCol + 2).Value = ThisCust
Set CRange = Cells(1, NextCol + 2).Resize(2, 1)

4. Use an advanced filter to copy matching records for this customer to column N. This
Advanced Filter statement specifies the Unique:=False parameter. Because you want
only the columns Date, Quantity, Product, and Revenue, the CopyToRange specifies a
four-column range with those headings copied in the proper order:

Click here to view code image

' Set up the output range. We want Date, Quantity,
Product, Revenue
' These columns are in C, E, B, and F
Cells(1, NextCol + 4).Resize(1, 4).Value = _
Array(Cells(1, 3), Cells(1, 5), Cells(1, 2), Cells(1, 6))
Set ORange = Cells(1, NextCol + 4).Resize(1, 4)

' Use the Advanced Filter to get a unique list of
customers & product

IRange.AdvancedFilter Action:=xlFilterCopy,
CriteriaRange:=CRange, _
CopyToRange:=Orange

5. Copy the customer records to a report sheet in a new workbook. The VBA code uses
the Workbooks. Add method to create a new blank workbook. Using the template
name xlWBATWorksheet is the way to specify that you want a workbook with a single
worksheet. The extracted records from step 4 are copied to cell A3 of the new
workbook:

Click here to view code image

' Create a new workbook with one blank sheet to hold the
output
Set WBN = Workbooks.Add(xlWBATWorksheet)
Set WSN = WBN.Worksheets(1)
' Copy data from WSO to WSN
WSO.Cells(1, NextCol + 4).CurrentRegion.Copy _
Destination:=WSN.Cells(3, 1)

6. Format the report with a title and totals. In VBA, add a title that reflects the customer’s
name in cell A1. Make the headings bold and add a total below the final row:

Click here to view code image

' Set up a title on WSN
WSN.Cells(1, 1).Value = "Report of Sales to " & ThisCust

TotalRow = WSN.Cells(Rows.Count, 1).End(xlUp).Row + 1
WSN.Cells(TotalRow, 1).Value = "Total"
WSN.Cells(TotalRow, 2).FormulaR1C1 = "=SUM(R2C:R[-1]C)"
WSN.Cells(TotalRow, 4).FormulaR1C1 = "=SUM(R2C:R[-1]C)"

' Format the new report with bold
WSN.Cells(3, 1).Resize(1, 4).Font.Bold = True
WSN.Cells(TotalRow, 1).Resize(1, 4).Font.Bold = True
WSN.Cells(1, 1).Font.Size = 18

7. Use Save As to save the workbook based on the customer name. After the workbook is
saved, close the new workbook. Return to the original workbook and clear the output
range to prepare for the next pass through the loop:

Click here to view code image

WBN.SaveAs ThisWorkbook.Path & Application.PathSeparator &

_
WhichCust & ".xlsx"
WBN.Close SaveChanges:=False

WSO.Select
' Free up memory by setting object variables to nothing
Set WSN = Nothing
Set WBN = Nothing
' clear the output range, etc.
Cells(1, NextCol + 2).Resize(1, 10).EntireColumn.Clear

The complete code is as follows:

Click here to view code image

Sub RunReportForEachCustomer()
Dim IRange As Range
Dim ORange As Range
Dim CRange As Range
Dim WBN As Workbook
Dim WSN As Worksheet
Dim WSO As Worksheet

Set WSO = ActiveSheet
' Find the size of today's data set
FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
NextCol = Cells(1, Columns.Count).End(xlToLeft).Column + 2
' First - get a unique list of customers in J
' Set up the output range. Copy the heading from D1 there

Range("D1").Copy Destination:=Cells(1, NextCol)
Set ORange = Cells(1, NextCol)

' Define the input range
Set IRange = Range("A1").Resize(FinalRow, NextCol - 2)

Click here to view code image
' Use the Advanced Filter to get a unique list of
customers
IRange.AdvancedFilter Action:=xlFilterCopy,
CriteriaRange:="", _
CopyToRange:=ORange, Unique:=True

' Loop through each customer
FinalCust = Cells(Rows.Count, NextCol).End(xlUp).Row
For Each cell In Cells(2, NextCol).Resize(FinalCust - 1,
1)
ThisCust = cell.Value

' Set up the criteria range with one customer
Cells(1, NextCol + 2).Value = Range("D1").Value
Cells(2, NextCol + 2).Value = ThisCust
Set CRange = Cells(1, NextCol + 2).Resize(2, 1)

' Set up the output range. We want Date, Quantity,
Product, Revenue
' These columns are in C, E, B, and F
Cells(1, NextCol + 4).Resize(1, 4).Value = _
Array(Cells(1, 3), Cells(1, 5), Cells(1, 2), Cells(1, 6))
Set ORange = Cells(1, NextCol + 4).Resize(1, 4)

' Adv. Filter for unique customers & product
IRange.AdvancedFilter Action:=xlFilterCopy, _
CriteriaRange:=CRange, _
CopyToRange:=Orange

' Create a new workbook with one blank sheet to hold the
output
Set WBN = Workbooks.Add(xlWBATWorksheet)
Set WSN = WBN.Worksheets(1)
' Copy data from WSO to WSN
WSO.Cells(1, NextCol + 4).CurrentRegion.Copy _
Destination:=WSN.Cells(3, 1)

' Set up a title on WSN
WSN.Cells(1, 1).Value = "Report of Sales to " & ThisCust

TotalRow = WSN.Cells(Rows.Count, 1).End(xlUp).Row + 1
WSN.Cells(TotalRow, 1).Value = "Total"
WSN.Cells(TotalRow, 2).FormulaR1C1 = "=SUM(R2C:R[-1]C)"
WSN.Cells(TotalRow, 4).FormulaR1C1 = "=SUM(R2C:R[-1]C)"

' Format the new report with bold
WSN.Cells(3, 1).Resize(1, 4).Font.Bold = True
WSN.Cells(TotalRow, 1).Resize(1, 4).Font.Bold = True
WSN.Cells(1, 1).Font.Size = 18

WBN.SaveAs ThisWorkbook.Path & Application.PathSeparator &
_
WhichCust & ".xlsx"
WBN.Close SaveChanges:=False
WSO.Select
Set WSN = Nothing

Set WBN = Nothing

' clear the output range, etc.
Cells(1, NextCol + 2).Resize(1, 10).EntireColumn.Clear

Click here to view code image
Next cell

Cells(1, NextCol).EntireColumn.Clear
MsgBox FinalCust - 1 & " Reports have been created!"
End Sub

This is a remarkable 58 lines of code. By incorporating a couple of advanced filters and
not much else, you have managed to produce a tool that created 27 reports in less than 1
minute. Even an Excel power user would normally take 2 to 3 minutes per report to create
these manually. In less than 60 seconds, this code will save someone a few hours every
time these reports need to be created. Imagine a real scenario in which there are hundreds
of customers. Undoubtedly, there are people in every city who are manually creating these
reports in Excel because they simply don’t realize the power of Excel VBA.

Excel in practice: Turning off a few drop-down menus in the AutoFilter

A really cool trick is possible only in Excel VBA. When you AutoFilter a list in the Excel user
interface, every column in the data set gets a field drop-down arrow in the heading row.
Sometimes you have a field that does not make a lot of sense to AutoFilter. For example, in
your current data set, you might want to provide AutoFilter drop-down menus for Region,
Product, and Customer but not the numeric or date fields. After setting up the AutoFilter, you
need one line of code to turn off each drop-down menu that you do not want to appear. The
following code turns off the drop-down menus for columns C, E, F, G, and H:

Click here to view code image
Sub AutoFilterCustom()
Range("A1").AutoFilter Field:=3, VisibleDropDown:=False
Range("A1").AutoFilter Field:=5, VisibleDropDown:=False

Range("A1").AutoFilter Field:=6, VisibleDropDown:=False
Range("A1").AutoFilter Field:=7, VisibleDropDown:=False
Range("A1").AutoFilter Field:=8, VisibleDropDown:=False

End Sub

Using this tool is a fairly rare treat. Most of the time, Excel VBA lets you do things that are
possible in the user interface—and lets you do them rapidly. The VisibleDropDown parameter
actually enables you to do something in VBA that is generally not available in the Excel user
interface. Your knowledgeable clients will be scratching their heads, trying to figure out how
you set up the cool automatic filter with only a few filterable columns (see Figure 11-21).

FIGURE 11-21 Using VBA, you can set up an automatic filter in which only certain columns have the AutoFilter drop-
down arrow.

To clear the filter from the customer column, use this code:

Click here to view code image
Sub SimpleFilter()
Worksheets("SalesReport").Select
Range("A1").AutoFilter
Range("A1").AutoFilter Field:=4
End Sub

Next steps
The techniques from this chapter give you many reporting techniques available via the arcane
Advanced Filter tool. Chapter 12, “Using VBA to create pivot tables,” introduces the most
powerful feature in Excel: the pivot table. The combination of advanced filters and pivot tables
can help you create reporting tools that enable amazing applications.

CHAPTER 12
Using VBA to create pivot tables

In this chapter, you will:

Find out how pivot tables evolved

Build a pivot table

Use advanced pivot table features

Filter a data set

Use the data model in Excel 2019

Use other pivot table features

Pivot tables are the most powerful tools that Excel has to offer. The concept was first put into
practice by Lotus, with its Improv product.

I love pivot tables because they help you very quickly summarize massive amounts of data.
The name pivot table comes from the ability you have to drag fields in the PivotTable Fields
list and have them recalculate. You can use a basic pivot table to produce a concise summary in
seconds. However, pivot tables come in so many varieties that they can be the tools of choice
for many different uses. You can build pivot tables to act as the calculation engine to produce
reports by store or by style or to quickly find the top 5 or bottom 10 of anything.

I don’t suggest that you use VBA to build pivot tables for a user; rather, I suggest that you
use pivot tables as a means to an end—to extract a summary of data that you can then take on
to better uses.

Understanding how pivot tables evolved over various Excel
versions
As Microsoft invests in making Excel the premier choice in business intelligence, pivot tables
continue to evolve. They were introduced in Excel 5 and perfected in Excel 97. In Excel 2000,
pivot table creation in VBA was dramatically altered. Some new parameters were added in
Excel 2002. A few new properties, such as PivotFilters and TableStyle2, were added in
Excel 2007. These are some of the changes Microsoft has made in the most recent four
versions:

Excel 2010 introduced slicers, Repeat All Item Labels, Named Sets, and several new
calculation options: xlPercentOfParentColumn, xlPercentOfParentRow,
xlPercentRunningTotal, xlRankAscending, and xlRankDescending. These do not
work in Excel 2007.

Excel 2013 introduced timelines, the xlDistinctCount function, and the Power Pivot
Data Model. You can add tables to the Data Model, create a relationship, and produce a
pivot table, but this code does not run in Excel 2010 or earlier.

Excel 2016 introduced AutoGrouping for dates. Although this is automatic, it does not
affect pivot tables built with VBA.

Excel 2019 introduced PivotTable defaults. This does not affect pivot tables built with
VBA.

Because of all the changes from version to version, you need to be extremely careful when
writing code in Excel 2019 that might be run in other versions.

Note Much of the code in this chapter works with Excel 2010 and newer.
Although this book does not include code for Excel 2007, one Excel 2007
example has been included in the sample file for this chapter. The code listings

from this chapter are available for download at
http://www.MrExcel.com/getcode2019.html.

While building a pivot table in Excel VBA
As I mentioned earlier, this chapter does not mean to imply that you should use VBA to build
pivot tables to give to your clients. Instead, the purpose of this chapter is to remind you that you
can use pivot tables as a means to an end: You can use a pivot table to extract a summary of
data and then use that summary elsewhere.

Note Although the Excel user interface has names for the various sections of a
pivot table, VBA code continues to refer to the old names. Microsoft made this
choice because, otherwise, millions of lines of code would stop working in Excel

2007 because they would refer to, say, a page field rather than a filter field. Today the four
sections of a pivot table in the Excel user interface are Filter, Columns, Rows, and Values,
but VBA continues to use the old terms: Page fields, Column fields, Row fields, and Data
fields.

http://www.MrExcel.com/getcode2019.html

Defining the pivot cache

In this first part of this chapter, the data set is an eight-column by 5,000-row data set, as shown
in Figure 12-1. The macros create a regular pivot table from the worksheet data. Near the end
of the chapter, an example shows how to build a pivot table based on the Data Model and
Power Pivot.

FIGURE 12-1 You can create summary reports from this data set.

In Excel 2010 and later, you first create a pivot cache object to describe the input area of
the data:

Click here to view code image
Dim WSD As Worksheet
Dim PTCache As PivotCache
Dim PT As PivotTable
Dim PRange As Range
Dim FinalRow As Long
Dim FinalCol As Long
Set WSD = Worksheets("PivotTable")
' Delete any prior pivot tables
For Each PT In WSD.PivotTables

PT.TableRange2.Clear
Next PT
' Define input area and set up a pivot cache
FinalRow = WSD.Cells(Rows.Count, 1).End(xlUp).Row
FinalCol = WSD.Cells(1, Columns.Count).End(xlToLeft).Column
Set PRange = WSD.Cells(1, 1).Resize(FinalRow, FinalCol)
Set PTCache = ActiveWorkbook.PivotCaches.Create(_
SourceType:=xlDatabase, _
SourceData:=PRange, _
Version:=xlPivotTableVersion14)

Creating and configuring the pivot table

After defining the pivot cache, use the CreatePivotTable method to create a blank pivot
table based on the defined pivot cache:

Click here to view code image
Set PT = PTCache.CreatePivotTable(TableDestination:=WSD.Cells(2,
_
FinalCol + 2), TableName:="PivotTable1",
Version:=xlPivotTableVersion14)

In the CreatePivotTable method, you specify the output location and optionally give the
table a name. After running the preceding code, you have a strange-looking blank pivot table
like the one shown in Figure 12-2. You need to use code to drop fields onto the table.

FIGURE 12-2 When you use the CreatePivotTable method, Excel gives you a four-cell blank pivot table that is not
very useful.

You can now run through the steps needed to lay out the pivot table. In the .AddFields

method, you can specify one or more fields that should be in the row, column, or filter area of
the pivot table.

The RowFields parameter enables you to define fields that appear in the Rows area of the
PivotTable Fields list. The ColumnFields parameter corresponds to the Columns area. The
PageFields parameter corresponds to the Filter area.

The following line of code populates a pivot table with two fields in the row area and one
field in the column area:

Click here to view code image
' Set up the row & column fields
PT.AddFields RowFields:=Array("Region", "Customer"), _

ColumnFields:="Product"

To add a field such as Revenue to the values area of the table, you change the
Orientation property of the field to be xlDataField.

Adding fields to the data area

When you are adding fields to the data area of a pivot table, there are many settings you should
control instead of letting Excel’s IntelliSense decide. For example, say that you are building a
report with revenue that you will likely want to sum. If you don’t explicitly specify the
calculation, Excel scans through the values in the underlying data. If 100% of the revenue
columns are numeric, Excel sums those columns. If one cell is blank or contains text, Excel
decides on that day to count the revenue, which produces confusing results. Because of this
possible variability, you should never use the DataFields argument in the AddFields
method. Instead, change the property of the field to xlDataField. You can then specify the
Function to be xlSum.

Although you are setting up the Data field, you can change several other properties within
the same With...End With block. For example, the Position property is useful when you
are adding multiple fields to the data area. Specify 1 for the first field, 2 for the second field,
and so on.

By default, Excel renames a Revenue field to have a strange name like Sum of Revenue.
You can use the .Name property to change that heading back to something normal.

Note You cannot reuse the word Revenue as a name. Instead, you should add a
trailing space after the word Revenue.

You are not required to specify a number format, but doing so can make the resulting pivot

table easier to understand and takes only one extra line of code:

Click here to view code image
' Set up the data fields
With PT.PivotFields("Revenue")
.Orientation = xlDataField
.Function = xlSum
.Position = 1
.NumberFormat = "#,##0"
.Name = "Revenue "
End With

Your pivot table inherits the table style settings selected as the default on whatever
computer happens to run the code. If you want control over the final format, you can explicitly
choose a table style. The following code applies banded rows and a medium table style:

Click here to view code image
' Format the pivot table
PT.ShowTableStyleRowStripes = True
PT.TableStyle2 = "PivotStyleMedium10"

If you want to reuse the data from the pivot table, turn off the grand totals and subtotals and
fill in the labels along the left column. The fastest way to suppress the 11 possible subtotals is
to set Subtotals(1) to True and then to False, like this:

Click here to view code image
With PT
.ColumnGrand = False
.RowGrand = False
.RepeatAllLabels xlRepeatLabels ' New in Excel 2010
End With
PT.PivotFields("Region").Subtotals(1) = True
PT.PivotFields("Region").Subtotals(1) = False

At this point, you have a complete pivot table like the one shown in Figure 12-3.

FIGURE 12-3 Running fewer than 50 lines of code created this pivot table in less than a second.

Listing 12-1 shows the complete code used to generate this pivot table.

Listing 12-1 Code to generate the pivot table shown in Figure 12-3

Click here to view code image
Sub CreatePivot()
Dim WSD As Worksheet
Dim PTCache As PivotCache
Dim PT As PivotTable
Dim PRange As Range
Dim FinalRow As Long
Set WSD = Worksheets("PivotTable")

' Delete any prior pivot tables
For Each PT In WSD.PivotTables
PT.TableRange2.Clear
Next PT

' Define input area and set up a pivot cache
FinalRow = WSD.Cells(Application.Rows.Count, 1).End(xlUp).Row
FinalCol = WSD.Cells(1, Application.Columns.Count). _
End(xlToLeft).Column

Set PRange = WSD.Cells(1, 1).Resize(FinalRow, FinalCol)
Set PTCache = ActiveWorkbook.PivotCaches.Create(_
SourceType:= xlDatabase, _
SourceData:=PRange.Address, _
Version:=xlPivotTableVersion14)

' Create the pivot table from the pivot cache
Set PT = PTCache.CreatePivotTable(TableDestination:=WSD. _
Cells(2, FinalCol + 2), TableName:="PivotTable1")

' Set up the row and column fields
PT.AddFields RowFields:=Array("Region", "Customer"), _
ColumnFields:="Product"

' Set up the data fields
With PT.PivotFields("Revenue")
.Orientation = xlDataField

Click here to view code image
.Function = xlSum
.Position = 1
.NumberFormat = "#,##0"
.Name = "Revenue "
End With

'Format the pivot table
PT.ShowTableStyleRowStripes = True
PT.TableStyle2 = "PivotStyleMedium10"
With PT
.ColumnGrand = False
.RowGrand = False
.RepeatAllLabels xlRepeatLabels
End With
PT.PivotFields("Region").Subtotals(1) = True
PT.PivotFields("Region").Subtotals(1) = False
WSD.Activate
Range("J2").Select
End Sub

Learning why you cannot move or change part of a pivot report

Although pivot tables are incredible, they have annoying limitations; for example, you cannot

move or change just part of a pivot table. Try to run a macro that clears row 2. The macro
comes to a screeching halt with the error 1004, as shown in Figure 12-4. To get around this
limitation, you can copy the pivot table and paste as values.

FIGURE 12-4 You cannot delete just part of a pivot table.

Determining the size of a finished pivot table to convert the pivot table to values

Knowing the size of a pivot table in advance is difficult. If you run a report of transactional
data on one day, you might or might not have sales from the West region, for example. This
could cause your table to be either six or seven columns wide. Therefore, you should use the
special property TableRange2 to refer to the entire pivot table.

PT.TableRange2 includes the entire pivot table. In Figure 12-5, TableRange2 includes
the extra row at the top with the field heading Revenue. To eliminate that row, the code copies
PT.TableRange2 but offsets this selection by one row by using .Offset(1, 0). Depending
on the nature of your pivot table, you might need to use an offset of two or more rows to get rid
of extraneous information at the top of the pivot table.

FIGURE 12-5 This figure shows an intermediate result of the macro. Only the summary in J12:M17 will remain after
the macro finishes.

The code copies PT.TableRange2 and uses PasteSpecial on a cell four rows below the
current pivot table. At that point in the code, your worksheet looks as shown in Figure 12-5.
The table in J2 is a live pivot table, and the table in J12 is the copied results.

You can then eliminate the pivot table by applying the Clear method to the entire table. If
your code is then going on to do additional formatting, you should remove the pivot cache from
memory by setting PTCache equal to Nothing.

The code in Listing 12-2 uses a pivot table to produce a summary from the underlying data.
At the end of the code, the pivot table is copied to static values, and the pivot table is cleared.

Listing 12-2 Code to produce a static summary from a pivot table

Click here to view code image
Sub CreateSummaryReportUsingPivot()
' Use a pivot table to create a static summary report
' with product going down the rows and regions across
Dim WSD As Worksheet
Dim PTCache As PivotCache

Dim PT As PivotTable
Dim PRange As Range
Dim FinalRow As Long
Set WSD = Worksheets("PivotTable")

' Delete any prior pivot tables
For Each PT In WSD.PivotTables
PT.TableRange2.Clear
Next PT
WSD.Range("J1:Z1").EntireColumn.Clear

Click here to view code image
' Define input area and set up a pivot cache
FinalRow = WSD.Cells(Application.Rows.Count, 1).End(xlUp).Row
FinalCol = WSD.Cells(1, Application.Columns.Count). _
End(xlToLeft).Column
Set PRange = WSD.Cells(1, 1).Resize(FinalRow, FinalCol)
Set PTCache = ActiveWorkbook.PivotCaches.Create(_
SourceType:= xlDatabase, _
SourceData:=PRange.Address, _
Version:=xlPivotTableVersion14)

' Create the pivot table from the pivot cache
Set PT = PTCache.CreatePivotTable(TableDestination:=WSD. _
Cells(2, FinalCol + 2), TableName:="PivotTable1")

' Set up the row fields
PT.AddFields RowFields:="Product", ColumnFields:="Region"

' Set up the data fields
With PT.PivotFields("Revenue")
.Orientation = xlDataField
.Function = xlSum
.Position = 1
.NumberFormat = "#,##0"
.Name = "Revenue "
End With

With PT
.ColumnGrand = False
.RowGrand = False
.NullString = "0"

End With

' PT.TableRange2 contains the results. Move these to J12
' as just values and not a real pivot table.
PT.TableRange2.Offset(1, 0).Copy
WSD.Cells(5 + PT.TableRange2.Rows.Count, FinalCol + 2). _
PasteSpecial xlPasteValues

' At this point, the worksheet looks like Figure 12-5

' Delete the original pivot table and the pivot cache
PT.TableRange2.Clear
Set PTCache = Nothing

WSD.Activate
Range("J12").Select
End Sub

The code in Listing 12-2 creates the pivot table. It then copies the results and pastes them as
values in J12:M13. Figure 12-5, which was shown previously, includes an intermediate result
just before the original pivot table is cleared.

So far, this chapter has walked you through building very simple pivot table reports. Pivot
tables offer far more flexibility, though. The sections that follow present more complex
reporting examples.

Using advanced pivot table features
In this section, you use the detailed transactional data to produce a series of reports for each
product line manager. This section covers the following advanced pivot table steps that are
required in these reports:

1. Group the daily dates up to yearly dates.

2. Add multiple fields to the values area.

3. Control the sort order so the largest customers are listed first.

4. Use the ShowPages feature to replicate the report for each product line manager.

5. After producing the pivot tables, convert each pivot table to values and do some basic
formatting.

Figure 12-6 shows the report for one product line manager to give you an idea of the final
goal.

FIGURE 12-6 Using pivot tables simplifies the creation of the report.

Using multiple value fields

The report has three fields in the values area: # of Orders, Revenue, and % of Total Revenue.
Anytime you have two or more fields in the values area, a new virtual field named Data
becomes available in your pivot table. In Excel 2019, the Data field appears as Σ Values in the
PivotTable Fields list. When creating your pivot table, you can specify Data as one of the
column fields or row fields. The position of the Data field is important: It usually works best as
the innermost column field.

When you define a pivot table in VBA, you have two column fields: the Date field and the
Data field. To specify two or more fields in the AddFields method, you wrap those fields in an
array function.

Use this code to define the pivot table:

Click here to view code image
' Set up the row fields
PT.AddFields RowFields:="Customer", _
ColumnFields:=Array("Date", "Data"), _
PageFields:="Product"

This is the first time you have seen the PageFields parameter in this chapter. When you
are creating a pivot table for someone to use, you should know that the fields in PageFields
allow for easy ad hoc analysis. In this case, the value in PageFields is going to make it easy
to replicate the report for every product line manager.

Counting the number of records

So far, the .Function property of the Data fields has always been xlSum. A total of 11
functions are available: xlSum, xlCount, xlAverage, xlStdDev, xlMin, xlMax, and so on.

Count is the only function that works for text fields. To count the number of records, and
hence the number of orders, add a text field to the data area and choose xlCount as the

function:

Click here to view code image
With PT.PivotFields("Region")
.Orientation = xlDataField
.Function = xlCount
.Position = 1
.NumberFormat = "#,##0"
.Name = "# of Orders "
End With

Note This is a count of the number of records. It is not a count of the distinct
values in a field. This kind of count was previously difficult to do in a pivot
table. It is now possible using the Data Model. See the “Using the Data Model in

Excel 2019” section later in this chapter for details.

Grouping daily dates to months, quarters, or years

Pivot tables have the amazing capability to group daily dates up to months, quarters, and years.
In VBA, this feature is a bit annoying because you must select a date cell before issuing the
grouping command.

Note I used to go through all sorts of gyrations to figure out where the first date
field was. In fact, you can simply refer to
PT.PivotFields("Date").LabelRange to point to the Date heading.

There are seven choices for group times or dates: Seconds, Minutes, Hours, Days, Months,
Quarters, and Years. Note that you can group a field by multiple items. To do so, you specify a
series of True/False values corresponding to Seconds, Minutes, and so on.

For example, to group by Months, Quarters, and Years, you would use the following:

Click here to view code image
PT.PivotFields("Date").LabelRange.Group , Periods:= _
Array(False, False, False, False, True, True, True)

Note Never choose to group by only months without including years. If you do this, Excel

combines January from all years in the data into a single item called January.
Although this is great for seasonality analyses, it is rarely what you want in a
summary. Always choose Years and Months in the Grouping dialog box.

If you want to group by week, you group only by day and use 7 as the value for the By
parameter:

Click here to view code image
PT.PivotFields("Date").LabelRange.Group _
Start:=True, End:=True, By:=7, _
Periods:=Array(False, False, False, True, False, False, False)

Specifying True for Start and End starts the first week at the earliest date in the data. If
you want to show only the weeks from Monday, January 1, 2018, to Sunday, January 2, 2020,
use this code:

Click here to view code image
With PT.PivotFields("Date")

.LabelRange.Group _
Start:=DateSerial(2018, 1, 1), _
End:=DateSerial(2020, 1, 4), _
By:=7, _
Periods:=Array(False, False, False, True, False, False,
False)

On Error Resume Next
.PivotItems("<1/1/2018").Visible = False
.PivotItems(">1/2/2020").Visible = False
On Error Goto 0

End With

Note There is one limitation to grouping by week. When you group by week,
you cannot also group by any other measure. For example, grouping by both
week and quarter is not valid.

Excel 2019 introduced the concept of AutoGrouping for dates. Excel 2019 has built-in rules
that analyze the span of dates and decide whether dates should be grouped by month or by
month, quarter, and year. This does not happen in VBA, but you can force it by using this:

PT.AutoGroup

For this report, you need to group only by year, so the code is as follows:

Click here to view code image
' Group daily dates up to years
PT.PivotFields("Date").LabelRange.Group , Periods:= _
Array(False, False, False, False, False, False, True)

Tip Before grouping the daily dates up to years, you had about 500 date columns
across this report. After grouping, you have two date columns plus a total. I prefer
to group the dates as soon as possible in the macro. If you added the other two

data fields to the report before grouping, your report would be 1,500 columns wide.
Although this is not a problem since Excel 2007 increased the column limit from 256 to
16,384, it still creates an unusually large report when you ultimately need only a few
columns. Allowing the pivot table to grow to 1,500 columns, even for a few lines of code,
would make the worksheet’s last cell be column BER.

After you group daily dates to years, the new Year field is still called Date. This might not
always be the case. If you roll daily dates up to months and to years, the Date field contains
months, and a new Year field is added to the PivotTable Fields list to hold years.

Changing the calculation to show percentages

Excel 2019 offers 15 choices on the Show Values As tab of the Value Field Settings dialog
box. These calculations enable you to change how a field is displayed in the report. Instead of
showing sales, you could show sales as a percentage of total sales. You could show a running
total. You could show each day’s sales as a percentage of the previous day’s sales.

All these settings are controlled through the .Calculation property of the pivot field.
Each calculation has its own unique set of rules. Some, such as % Of Column, work without
any further settings. Others, such as Running Total In, require a base field. Others, such as
Running Total, require a base field and a base item.

To get the percentage of the total, specify xlPercentOfTotal as the .Calculation
property for the page field:

.Calculation = xlPercentOfTotal

To set up a running total, you have to specify a BaseField. If you need a running total
along a date column, use this:

Click here to view code image

' Set up Running Total
.Calculation = xlRunningTotal
.BaseField = "Date"

With ship months going down the rows, you might want to see the percentage of revenue
growth from month to month. You can set up this arrangement with the
xlPercentDifferenceFrom setting. In this case, you must specify that the BaseField is
"Date" and that the BaseItem is something called “(previous)":

Click here to view code image
' Set up % change from prior month
With PT.PivotFields("Revenue")
.Orientation = xlDataField
.Function = xlSum
.Caption = "%Change"
.Calculation = xlPercentDifferenceFrom
.BaseField = "Date"
.BaseItem = "(previous)"
.NumberFormat = "#0.0%"
End With

Note that with positional calculations, you cannot use the AutoShow or AutoSort methods.
This is too bad; it would be interesting to sort the customers from high to low and see their
sizes in relation to each other.

You can use the xlPercentDifferenceFrom setting to express revenues as a percentage
of the West region sales:

Click here to view code image
' Show revenue as a percentage of California
With PT.PivotFields("Revenue")
.Orientation = xlDataField
.Function = xlSum
.Caption = "% of West"
.Calculation = xlPercentDifferenceFrom
.BaseField = "State"
.BaseItem = "California"
.Position = 3
.NumberFormat = "#0.0%"
End With

Table 12-1 shows the complete list of .Calculation options. The second column

indicates the compatibility of the calculation with earlier versions of Excel. The third column
indicates whether you need a base field or a base item.

TABLE 12-1 Complete list of .Calculation options

Calculation Version compatibility BaseField/BaseItem
xlDifferenceFrom All Both required

xlIndex All Neither

xlPercentDifferenceFrom All Both required

xlPercentOf All Both required

xlPercentOfColumn All Neither

xlPercentOfParent 2010+ BaseField only

xlPercentOfParentColumn 2010+ Both required

xlPercentOfParentRow 2010+ Both required

xlPercentOfRow All Neither

xlPercentOfTotal All Neither

xlPercentRunningTotal 2010+ BaseField only

xlRankAscending 2010+ BaseField only

xlRankDescending 2010+ BaseField only

xlRunningTotal All BaseField only

After that long explanation of the .Calculation property, you can build the other two
pivot table fields for the product line report.

Add Revenue to the report twice. The first time, there is no calculation. The second time,
calculate the percentage of total:

Click here to view code image
' Set up the data fields - Revenue
With PT.PivotFields("Revenue")
.Orientation = xlDataField
.Function = xlSum
.Position = 2
.NumberFormat = "#,##0"
.Name = "Revenue "
End With
' Set up the data fields - % of total Revenue
With PT.PivotFields("Revenue")
.Orientation = xlDataField

.Function = xlSum

.Position = 3

.NumberFormat = "0.0%"

.Name = "% of Total "

.Calculation = xlPercentOfColumn
End With

Note Take careful note of the name of the first field in the preceding code. By
default, Excel would use Sum of Revenue. If you think this is a goofy title (as I
do), you can change it. However, you cannot change it to Revenue because there

is already a field in the PivotTable Fields list with that name.

In the preceding code, I use the name Revenue with a trailing space. This works fine, and
no one notices the extra space. However, in the rest of the macro, when you refer to this
field, remember to refer to it as Revenue with a trailing space.

Eliminating blank cells in the values area

If you have some customers who were new in year 2, their sales will appear blank in year 1.
Anyone using Excel 97 or later can replace blank cells with zeros. In the Excel interface, you
can find the setting for this on the Layout & Format tab of the PivotTable Options dialog box.
Select the For Empty Cells, Show option and type 0 in the box.

The equivalent operation in VBA is to set the NullString property for the pivot table to
"0":

PT.NullString = "0"

Note Although the proper code is to set this value to a text zero, Excel puts a real
zero in the empty cells.

FIGURE 12-7 The Product drop-down menu in column K enables you to filter the report to certain products.

Controlling the sort order with AutoSort

The Excel interface offers an AutoSort option that enables you to show customers in
descending order, based on revenue. The equivalent code in VBA to sort the product field by
descending revenue uses the AutoSort method:

Click here to view code image
PT.PivotFields("Customer").AutoSort Order:=xlDescending, _
Field:="Revenue "

After applying some formatting in the macro, you now have one report with totals for all
products, as shown in Figure 12-7.

Replicating the report for every product

As long as your pivot table was not built on an OLAP data source, you now have access to one
of the most powerful, but least-well-known, features in pivot tables. The command is called
Show Report Filter Pages, and it replicates your pivot table for every item in one of the fields in
the Filters area.

Because you built the report in this example with Product as a filter field, it takes only the
following code to replicate the pivot table for every product:

Click here to view code image
' Replicate the pivot table for each product
PT.ShowPages PageField:="Product"

After running this code, you have a new worksheet for every product in the data set. From
there, you have some simple formatting and calculations to do. Check the end of the macro,
shown in Listing 12-3, for these techniques, which should be second nature by this point in the
book.

Listing 12-3 Code to produce one report per product

Click here to view code image
Sub CustomerByProductReport()
' Use a pivot table to create a report for each product
' with customers in rows and years in columns
Dim WSD As Worksheet
Dim PTCache As PivotCache

Click here to view code image
Dim PT As PivotTable
Dim PT2 As PivotTable
Dim WS As Worksheet
Dim WSF As Worksheet
Dim PRange As Range
Dim FinalRow As Long
Set WSD = Worksheets("PivotTable")
' Delete any prior pivot tables
For Each PT In WSD.PivotTables

PT.TableRange2.Clear
Next PT
WSD.Range("J1:Z1").EntireColumn.Clear

' Define input area and set up a pivot cache
FinalRow = WSD.Cells(Application.Rows.Count, 1).End(xlUp).Row
FinalCol = WSD.Cells(1, Application.Columns.Count). _

End(xlToLeft).Column
Set PRange = WSD.Cells(1, 1).Resize(FinalRow, FinalCol)
Set PTCache = ActiveWorkbook.PivotCaches.Create(_

SourceType:= xlDatabase, _
SourceData:=PRange.Address, _
Version:=xlPivotTableVersion14)

' Create the pivot table from the pivot cache
Set PT = PTCache.CreatePivotTable(TableDestination:=WSD. _

Cells(2, FinalCol + 2), TableName:="PivotTable1")
' Set up the row fields
PT.AddFields RowFields:="Customer", _

ColumnFields:=Array("Date", "Data"), _
PageFields:="Product"

' Set up the data fields - count of orders
With PT.PivotFields("Region")

.Orientation = xlDataField

.Function = xlCount

.Position = 1

.NumberFormat = "#,##0"

.Name = "# of Orders "
End With

' Group daily dates up to years
PT.PivotFields("Date").LabelRange.Group , Periods:= _
Array(False, False, False, False, False, False, True)

' Set up the data fields - Revenue
With PT.PivotFields("Revenue")

.Orientation = xlDataField

.Function = xlSum

.Position = 2

.NumberFormat = "#,##0"

.Name = "Revenue "
End With

Click here to view code image
' Set up the data fields - % of total Revenue
With PT.PivotFields("Revenue")

.Orientation = xlDataField

.Function = xlSum

.Position = 3

.NumberFormat = "0.0%"

.Name = "% of Total "

.Calculation = xlPercentOfColumn
End With

' Sort the customers so the largest is at the top
PT.PivotFields("Customer").AutoSort Order:=xlDescending, _

Field:="Revenue "
With PT

.ShowTableStyleColumnStripes = True

.ShowTableStyleRowStripes = True

.TableStyle2 = "PivotStyleMedium10"

.NullString = "0"
End With

' Replicate the pivot table for each product
PT.ShowPages PageField:="Product"

Ctr = 0
For Each WS In ActiveWorkbook.Worksheets

If WS.PivotTables.Count > 0 Then
If WS.Cells(1, 1).Value = "Product" Then
' Save some info
WS.Select
ThisProduct = Cells(1, 2).Value
Ctr = Ctr + 1
If Ctr = 1 Then

Set WSF = ActiveSheet
End If
Set PT2 = WS.PivotTables(1)
CalcRows = PT2.TableRange1.Rows.Count - 3

PT2.TableRange2.Copy
PT2.TableRange2.PasteSpecial xlPasteValues

Range("A1:C3").ClearContents
Range("A1:B2").Clear
Range("A1").Value = "Product report for " & ThisProduct
Range("A1").Style = "Title"

' Fix some headings
Range("b5:d5").Copy Destination:=Range("H5:J5")
Range("H4").Value = "Total"
Range("I4:J4").Clear

Click here to view code image
' Copy the format
Range("J1").Resize(CalcRows + 5, 1).Copy
Range("K1").Resize(CalcRows + 5, 1). _
PasteSpecial xlPasteFormats
Range("K5").Value = "% Rev Growth"
Range("K6").Resize(CalcRows, 1).FormulaR1C1 = _
"=IFERROR(RC6/RC3-1,1)"

Range("A2:K5").Style = "Heading 4"
Range("A2").Resize(CalcRows + 10, 11).Columns.AutoFit

End If
End If
Next WS

WSD.Select
PT.TableRange2.Clear
Set PTCache = Nothing

WSF.Select
MsgBox Ctr & " product reports created."

End Sub

Filtering a data set
There are many ways to filter a pivot table, from using the slicers, to the conceptual filters, to
simply selecting and clearing items from one of the many field drop-down menus.

Manually filtering two or more items in a pivot field

When you open a field heading drop-down menu and select or clear items from the list, you are
applying a manual filter (see Figure 12-8).

For example, say that you have one client who sells shoes. In the report showing sales of
sandals, he wants to see just the stores that are in warm-weather states. The code to hide a
particular store is as follows:

Click here to view code image

PT.PivotFields("Store").PivotItems("Minneapolis").Visible =
False

FIGURE 12-8 This filter drop-down menu offers manual filters, a search box, and conceptual filters.

This process is easy in VBA. After building the table with Product in the page field, loop
through to change the Visible property to show only the total of certain products:

Click here to view code image
' Make sure all PivotItems along line are visible
For Each PivItem In _
PT.PivotFields("Product").PivotItems
PivItem.Visible = True
Next PivItem

' Now - loop through and keep only certain items visible
For Each PivItem In _
PT.PivotFields("Product").PivotItems

Select Case PivItem.Name
Case "Landscaping/Grounds Care", _
"Green Plants and Foliage Care"
PivItem.Visible = True

Case Else
PivItem.Visible = False

End Select
Next PivItem

Using the conceptual filters

Excel 2007 introduced conceptual filters for date fields, numeric fields, and text fields. Open
the drop-down menu for any field label in the pivot table, and you can choose Label Filters,
Date Filters, or Value Filters. The date filters offer the capability to filter to a conceptual period
such as last month or next year (see Figure 12-9).

FIGURE 12-9 These date filters were introduced in Excel 2007.

To apply a label filter in VBA, use the PivotFilters.Add method. The following code
filters to the customers that start with the letter E:

Click here to view code image
PT.PivotFields("Customer").PivotFilters.Add _

Type:=xlCaptionBeginsWith, Value1:="E"

To clear the filter from the Customer field, use the ClearAllFilters method:

Click here to view code image

PT.PivotFields("Customer").ClearAllFilters

To apply a date filter to the date field to find records from this week, use this code:

Click here to view code image

PT.PivotFields("Date").PivotFilters.Add Type:=xlThisWeek

The value filters enable you to filter one field based on the value of another field. For
example, to find all the markets where the total revenue is more than $100,000, use this code:

Click here to view code image
PT.PivotFields("Market").PivotFilters.Add _
Type:=xlValueIsGreaterThan, _
DataField:=PT.PivotFields("Sum of Revenue"), _
Value1:=100000

Other value filters might enable you to specify, for example, that you want branches where
the revenue is between $50,000 and $100,000. In this case, you specify one limit as Value1
and the second limit as Value2:

Click here to view code image
PT.PivotFields("Market").PivotFilters.Add _
Type:=xlValueIsBetween, _
DataField:=PT.PivotFields("Sum of Revenue"), _
Value1:=50000, Value2:=100000

Table 12-2 lists all the possible filter types.

TABLE 12-2 Filter types

Filter type Description
xlBefore Filters for all dates before a specified date.

xlBeforeOrEqualTo Filters for all dates on or before a specified date.

xlAfter Filters for all dates after a specified date.

xlAfterOrEqualTo Filters for all dates on or after a specified date.

xlAllDatesInPeriodJanuary Filters for all dates in January.

xlAllDatesInPeriodFebruary Filters for all dates in February.

xlAllDatesInPeriodMarch Filters for all dates in March.

xlAllDatesInPeriodApril Filters for all dates in April.

xlAllDatesInPeriodMay Filters for all dates in May.

xlAllDatesInPeriodJune Filters for all dates in June.

xlAllDatesInPeriodJuly Filters for all dates in July.

xlAllDatesInPeriodAugust Filters for all dates in August.

xlAllDatesInPeriodSeptember Filters for all dates in September.

xlAllDatesInPeriodOctober Filters for all dates in October.

xlAllDatesInPeriodNovember Filters for all dates in November.

xlAllDatesInPeriodDecember Filters for all dates in December.

xlAllDatesInPeriodQuarter1 Filters for all dates in Quarter 1.

xlAllDatesInPeriodQuarter2 Filters for all dates in Quarter 2.

xlAllDatesInPeriodQuarter3 Filters for all dates in Quarter 3.

xlAllDatesInPeriodQuarter4 Filters for all dates in Quarter 4.

xlBottomCount Filters for the specified number of values from the bottom of a list.

xlBottomPercent Filters for the specified percentage of values from the bottom of a list.

xlBottomSum Sums the values from the bottom of the list.

xlCaptionBeginsWith Filters for all captions, beginning with the specified string.

xlCaptionContains Filters for all captions that contain the specified string.

xlCaptionDoesNotBeginWith Filters for all captions that do not begin with the specified string.

xlCaptionDoesNotContain Filters for all captions that do not contain the specified string.

xlCaptionDoesNotEndWith Filters for all captions that do not end with the specified string.

xlCaptionDoesNotEqual Filters for all captions that do not match the specified string.

xlCaptionEndsWith Filters for all captions that end with the specified string.

xlCaptionEquals Filters for all captions that match the specified string.

xlCaptionIsBetween Filters for all captions that are within a specified range of values.

xlCaptionIsGreaterThan Filters for all captions that are greater than the specified value.

xlCaptionIsGreaterThanOrEqualTo Filters for all captions that are greater than or match the specified value.

xlCaptionIsLessThan Filters for all captions that are less than the specified value.

xlCaptionIsLessThanOrEqualTo Filters for all captions that are less than or match the specified value.

xlCaptionIsNotBetween Filters for all captions that are not within a specified range of values.

xlDateBetween Filters for all dates that are within a specified range of dates.

xlDateLastMonth Filters for all dates that apply to the previous month.
xlDateLastQuarter Filters for all dates that apply to the previous quarter.

xlDateLastWeek Filters for all dates that apply to the previous week.

xlDateLastYear Filters for all dates that apply to the previous year.

xlDateNextMonth Filters for all dates that apply to the next month.

xlDateNextQuarter Filters for all dates that apply to the next quarter.

xlDateNextWeek Filters for all dates that apply to the next week.

xlDateNextYear Filters for all dates that apply to the next year.

xlDateThisMonth Filters for all dates that apply to the current month.

xlDateThisQuarter Filters for all dates that apply to the current quarter.

xlDateThisWeek Filters for all dates that apply to the current week.

xlDateThisYear Filters for all dates that apply to the current year.

xlDateToday Filters for all dates that apply to the current date.

xlDateTomorrow Filters for all dates that apply to the next day.

xlDateYesterday Filters for all dates that apply to the previous day.

xlNotSpecificDate Filters for all dates that do not match a specified date.

xlSpecificDate Filters for all dates that match a specified date.

xlTopCount Filters for the specified number of values from the top of a list.

xlTopPercent Filters for the specified percentage of values from the top of a list.

xlTopSum Sums the values from the top of the list.

xlValueDoesNotEqual Filters for all values that do not match the specified value.

xlValueEquals Filters for all values that match the specified value.

xlValueIsBetween Filters for all values that are within a specified range of values.

xlValueIsGreaterThan Filters for all values that are greater than the specified value.

xlValueIsGreaterThanOrEqualTo Filters for all values that are greater than or match the specified value.

xlValueIsLessThan Filters for all values that are less than the specified value.

xlValueIsLessThanOrEqualTo Filters for all values that are less than or match the specified value.

xlValueIsNotBetween Filters for all values that are not within a specified range of values.

xlYearToDate Filters for all values that are within one year of a specified date.

Using the search filter

Excel 2010 added a Search box to the filter drop-down menu. Although this is a slick feature in
the Excel interface, there is no equivalent magic in VBA. Whereas the drop-down menu offers
the Select All Search Results check box, the equivalent VBA just lists all the items that match
the selection. To achieve the same results in VBA, use the xlCaptionContains filter

described in the code that precedes Table 12-2.

Case study: Filtering to the top 5 or top 10 by using a filter
If you are designing an executive dashboard utility, you might want to spotlight the top 5
customers. As with the AutoSort option, you could be a pivot table pro and never have
stumbled across the Top 10 AutoShow feature in Excel. This setting enables you to select
either the top or the bottom n records, based on any data field in the report.

The code to use AutoShow in VBA involves the .AutoShow method:

Click here to view code image
' Show only the top 5 customers
PT.PivotFields("Customer").AutoShow Top:=xlAutomatic,
Range:=xlTop, _
Count:=5, Field:= "Sum of Revenue"

When you create a report using the .AutoShow method, it is often helpful to copy the data
and then go back to the original pivot report to get the totals for all markets. In the code,
this is achieved by removing the Customer field from the pivot table and copying the
grand total to the report. The code that follows produces the report shown in Figure 12-10:

Click here to view code image
Sub Top5Customers()
' Produce a report of the top 5 customers
Dim WSD As Worksheet
Dim WSR As Worksheet
Dim WBN As Workbook
Dim PTCache As PivotCache
Dim PT As PivotTable
Dim PRange As Range
Dim FinalRow As Long
Set WSD = Worksheets("PivotTable")

' Delete any prior pivot tables
For Each PT In WSD.PivotTables

PT.TableRange2.Clear
Next PT
WSD.Range("J1:Z1").EntireColumn.Clear

' Define input area and set up a pivot cache
FinalRow = WSD.Cells(Application.Rows.Count,

1).End(xlUp).Row

FinalCol = WSD.Cells(1, Application.Columns.Count). _
End(xlToLeft).Column

Set PRange = WSD.Cells(1, 1).Resize(FinalRow, FinalCol)
Set PTCache = ActiveWorkbook.PivotCaches.Create(_

SourceType:= xlDatabase, _
SourceData:=PRange.Address, _

Click here to view code image
Version:=xlPivotTableVersion14)

' Create the pivot table from the pivot cache
Set PT = PTCache.CreatePivotTable(TableDestination:=WSD. _
Cells(2, FinalCol + 2), TableName:="PivotTable1")

' Set up the row fields
PT.AddFields RowFields:="Customer", ColumnFields:="Product"

' Set up the data fields
With PT.PivotFields("Revenue")

.Orientation = xlDataField

.Function = xlSum

.Position = 1

.NumberFormat = "#,##0"

.Name = "Total Revenue"
End With

' Ensure that we get zeros instead of blanks in the data
area
PT.NullString = "0"

' Sort customers descending by sum of revenue
PT.PivotFields("Customer").AutoSort Order:=xlDescending, _
Field:="Total Revenue"

' Show only the top 5 customers
PT.PivotFields("Customer").AutoShow _
Type:=xlAutomatic, Range:=xlTop, _
Count:=5, Field:="Total Revenue"

' Create a new blank workbook with one worksheet
Set WBN = Workbooks.Add(xlWBATWorksheet)

Set WSR = WBN.Worksheets(1)
WSR.Name = "Report"
' Set up title for report
With WSR.[A1]

.Value = "Top 5 Customers"

.Font.Size = 14
End With

' Copy the pivot table data to row 3 of the report sheet
' Use offset to eliminate the title row of the pivot table

PT.TableRange2.Offset(1, 0).Copy
WSR.[A3].PasteSpecial Paste:=xlPasteValuesAndNumberFormats
LastRow = WSR.Cells(Rows.Count, 1).End(xlUp).Row
WSR.Cells(LastRow, 1).Value = "Top 5 Total"

' Go back to the pivot table to get totals without the
AutoShow
PT.PivotFields("Customer").Orientation = xlHidden
PT.ManualUpdate = False
PT.ManualUpdate = True
PT.TableRange2.Offset(2, 0).Copy
WSR.Cells(LastRow + 2, 1).PasteSpecial Paste:= _

Click here to view code image
xlPasteValuesAndNumberFormats
WSR.Cells(LastRow + 2, 1).Value = "Total Company"

' Clear the pivot table
PT.TableRange2.Clear
Set PTCache = Nothing

' Do some basic formatting

' Autofit columns, bold the headings, right-align
WSR.Range(WSR.Range("A3"), WSR.Cells(LastRow + 2,
6)).Columns.AutoFit
Range("A3").EntireRow.Font.Bold = True
Range("A3").EntireRow.HorizontalAlignment = xlRight
Range("A3").HorizontalAlignment = xlLeft

Range("A2").Select
MsgBox "CEO Report has been Created"

End Sub

FIGURE 12-10 The Top 5 Customers report contains two pivot tables.

The Top 5 Customers report actually contains two snapshots of a pivot table. After using
the AutoShow feature to grab the top five markets with their totals, the macro went back
to the pivot table, removed the AutoShow option, and grabbed the total of all customers to
produce the Total Company row.

Setting up slicers to filter a pivot table

Excel 2010 introduced the concept of slicers for filtering pivot tables. A slicer is a visual filter
that you can resize and reposition. You can control the color of a slicer and control the number
of columns in it. You can also select or unselect items from a slicer by using VBA.

Figure 12-11 shows a pivot table with two slicers. Both of the slicers have been modified to
show multiple columns.

FIGURE 12-11 Slicers provide a visual filter of several fields.

Slicers work only with pivot tables designed to be used by Excel 2010 or newer. A slicer
consists of a slicer cache and a slicer. To define a slicer cache, you need to specify a pivot table
as the source and a field name as the SourceField. The slicer cache is defined at the
workbook level. The following code would enable you to have a slicer on a different worksheet
than the pivot table:

Click here to view code image
Dim SCP as SlicerCache
Dim SCR as SlicerCache
Set SCP = ActiveWorkbook.SlicerCaches.Add(Source:=PT,
SourceField:="Product")
Set SCR = ActiveWorkbook.SlicerCaches.Add(Source:=PT,
SourceField:="Region")

After you have defined the slicer cache, you can add the slicer. The slicer is defined as an
object of the slicer cache. Specify a worksheet as the destination. The name argument controls
the internal name for the slicer. The Caption argument is the heading that is visible in the
slicer. This might be useful if you would like to show the name Region, but the IT department
defined the field as IDKRegn. Specify the size of the slicer by using height and width in points.
Specify the location by using top and left in points.

In the following code, the values for top, left, height, and width are assigned to be equal to
the location or size of certain cell ranges:

Click here to view code image
Dim SLP as Slicer
Set SLP = SCP.Slicers.Add(SlicerDestination:=WSD,
Name:="Product", _
Caption:="Product", _
Top:=WSD.Range("A12").Top, _
Left:=WSD.Range("A12").Left + 10, _
Width:=WSR.Range("A12:C12").Width, _
Height:=WSD.Range("A12:A16").Height)

Every slicer starts out as one column. You can change the style and number of columns
code like this:

Click here to view code image
' Format the color and number of columns
With SLP
.Style = "SlicerStyleLight6"
.NumberOfColumns = 5
End With

After the slicer is defined, you can use VBA to choose which items are activated in the
slicer. It seems counterintuitive, but to choose items in the slicer, you have to change
SlicerItem, which is a member of the SlicerCache, not a member of the Slicer:

Click here to view code image
With SCP
.SlicerItems("A292").Selected = True
.SlicerItems("B722").Selected = True
.SlicerItems("C409").Selected = False
.SlicerItems("D625").Selected = False
.SlicerItems("E438").Selected = False
End With

Listing 12-4 shows how to build a pivot table with two slicers.

Listing 12-4 Code to build a pivot table with two slicers

Click here to view code image

Sub PivotWithTwoSlicers()
Dim SCP As SlicerCache ' For Product slicer
Dim SCC As SlicerCache ' For Customer slicer
Dim SLP As Slicer
Dim SLC As Slicer
Dim WSD As Worksheet
Dim WSR As Worksheet
Dim WBD As Workbook
Dim PT As PivotTable
Dim PTCache As PivotCache
Dim PRange As Range
Dim FinalRow As Long
Set WBD = ActiveWorkbook
Set WSD = Worksheets("Data")

' Delete any prior pivot tables
For Each PT In WSD.PivotTables

PT.TableRange2.Clear
Next PT

' Delete any prior slicer cache
For Each SC In ActiveWorkbook.SlicerCaches

SC.Delete
Next SC

' Define input area and set up a pivot cache
WSD.Select
FinalRow = WSD.Cells(Rows.Count, 1).End(xlUp).Row
FinalCol = WSD.Cells(1, Columns.Count). _

End(xlToLeft).Column
Set PRange = WSD.Cells(1, 1).Resize(FinalRow, FinalCol)

' Define the pivot table cache
Set PTCache = ActiveWorkbook.PivotCaches.Create(_

SourceType:=xlDatabase, _

Click here to view code image
SourceData:=PRange.Address, _
Version:=xlPivotTableVersion15)

' Create the pivot table from the pivot cache
Set PT = PTCache.CreatePivotTable(_

TableDestination:=Cells(18, FinalCol + 2), _
TableName:="PivotTable1", _
DefaultVersion:=xlPivotTableVersion15)

' Set up the row and column fields
PT.AddFields RowFields:=Array("Region")

' Set up the data fields
With PT.PivotFields("Quantity")

.Orientation = xlDataField

.Function = xlSum

.Position = 1

.NumberFormat = "#,##0"

.Name = "Quantity "
End With

With PT.PivotFields("Revenue")
.Orientation = xlDataField
.Function = xlSum
.Position = 1
.NumberFormat = "$#,##0"
.Name = "Revenue "

End With

With PT.PivotFields("Profit")
.Orientation = xlDataField
.Function = xlSum
.Position = 1
.NumberFormat = "$#,##0"
.Name = "Profit "

End With

' Define the slicer caches
Set SCC = WBD.SlicerCaches.Add(PT, "Customer")
Set SCP = WBD.SlicerCaches.Add(PT, "Product")

' Define Product as a slicer
Set SLP = SCP.Slicers.Add(WSD, , _

Name:="Product", _
Caption:="Product", _
Top:=WSD.Range("J14").Top + 5, _
Left:=WSD.Range("J14").Left + 5, _
Width:=343, Height:=54)

SLP.Style = "SlicerStyleLight4"
SLP.NumberOfColumns = 5

' Define Customer as a slicer
Set SLC = SCC.Slicers.Add(WSD, , _

Name:="Customer", _

Click here to view code image
Caption:="Customer", _
Top:=WSD.Range("J1").Top + 5, _
Left:=WSD.Range("J1").Left + 5, _
Width:=415, Height:=184)
SLC.Style = "SlicerStyleLight2"
SLC.NumberOfColumns = 3

' Unselect some products
With SCP

.SlicerItems("C409").Selected = False

.SlicerItems("D625").Selected = False

.SlicerItems("E438").Selected = False
End With

' Unselect one customer
With SCC

.SlicerItems("Guarded Kettle Corporation").Selected = False
End With
End Sub

The preceding code assigned the newly created slicer to an object variable so you could
easily format the slicer. What if a slicer was created before your macro starts running? You can
easily figure out the name of the slicer. If a slicer is created for the Product field, for example,
the name of the SlicerCache is "Slicer_Product". The following code formats existing
slicers:

Click here to view code image
Sub MoveAndFormatSlicer()
Dim SCP As SlicerCache
Dim SLP as Slicer
Dim WSD As Worksheet
Set WSD = ActiveSheet
Set SCP = ActiveWorkbook.SlicerCaches("Slicer_Product")
Set SLP = SCS.Slicers("Product")

With SLP
.Style = "SlicerStyleLight6"
.NumberOfColumns = 5
.Top = WSD.Range("A1").Top + 5
.Left = WSD.Range("A1").Left + 5
.Width = WSD.Range("A1:B14").Width - 60
.Height = WSD.Range("A1:B14").Height
End With

End Sub

Setting up a timeline to filter an Excel 2019 pivot table

Microsoft introduced the Timeline slicer in Excel 2013. This is a special type of slicer that is
not compatible with Excel 2010 or earlier. The marketing name of Excel 2013 was Version 15,
and VBA still uses that name, so if you plan on using a Timeline slicer, you have to specify
xlPivotTableVersion15 (or higher) in two places in the code:

Click here to view code image
' Define the pivot table cache
Set PTCache = ActiveWorkbook.PivotCaches.Create(_
SourceType:=xlDatabase, _
SourceData:=PRange.Address, _
Version:=xlPivotTableVersion15)
' Create the pivot table from the pivot cache
Set PT = PTCache.CreatePivotTable(_
TableDestination:=Cells(10, FinalCol + 2), _
TableName:="PivotTable1", _
DefaultVersion:=xlPivotTableVersion15)

Later, after adding fields to your pivot table, you define a slicer cache and specify the type
as xlTimeLine:

Click here to view code image
' Define the slicer cache
' First two arguments are Source and SourceField
' Third argument, Name, should be skipped
Set SC = WBD.SlicerCaches.Add2(PT, "ShipDate", , _
SlicerCacheType:=xlTimeline)

Then you add the slicer to the slicer cache:

Click here to view code image

' Define the timeline as a slicer
Set SL = SC.Slicers.Add(WSD, , _
Name:="ShipDate", _
Caption:="Year", _
Top:=WSD.Range("J1").Top, _
Left:=WSD.Range("J1").Left, _
Width:=262.5, Height:=108)

Timelines can exist at the day, month, quarter, or year level. To change the level of a
timeline, use the TimelineViewState.Level property:

Click here to view code image

SL.TimelineViewState.Level = xlTimelineLevelYears

To filter a timeline to certain dates, you have to use the Timeline
State.SetFilterDataRange property, which applies to the slicer cache:

Click here to view code image

SC.TimelineState.SetFilterDateRange "1/1/2014", "12/31/2015"

Listing 12-5 shows the complete macro to build a version 15 pivot table and add a Timeline
slicer.

Listing 12-5 Code to build a pivot with a timeline

Click here to view code image
Sub PivotWithYearSlicer()
Dim SC As SlicerCache
Dim SL As Slicer
Dim WSD As Worksheet
Dim WSR As Worksheet
Dim WBD As Workbook
Dim PT As PivotTable
Dim PTCache As PivotCache
Dim PRange As Range
Dim FinalRow As Long

Click here to view code image
Set WBD = ActiveWorkbook
Set WSD = Worksheets("Data")

' Delete any prior pivot tables
For Each PT In WSD.PivotTables
PT.TableRange2.Clear
Next PT

' Delete any prior slicer cache
For Each SC In ActiveWorkbook.SlicerCaches

SC.Delete
Next SC

' Define input area and set up a pivot cache
WSD.Select
FinalRow = WSD.Cells(Rows.Count, 1).End(xlUp).Row
FinalCol = WSD.Cells(1, Columns.Count). _
End(xlToLeft).Column
Set PRange = WSD.Cells(1, 1).Resize(FinalRow, FinalCol)

' Define the pivot table cache
Set PTCache = ActiveWorkbook.PivotCaches.Create(_

SourceType:=xlDatabase, _
SourceData:=PRange.Address, _
Version:=xlPivotTableVersion15)

' Create the pivot table from the pivot cache
Set PT = PTCache.CreatePivotTable(_

TableDestination:=Cells(10, FinalCol + 2), _
TableName:="PivotTable1", _
DefaultVersion:=xlPivotTableVersion15)

' Set up the row and column fields
PT.AddFields RowFields:=Array("Customer")

' Set up the data fields
With PT.PivotFields("Revenue")

.Orientation = xlDataField

.Function = xlSum

.Position = 1

.NumberFormat = "#,##0"

.Name = "Revenue "
End With

' Define the slicer cache
' First two arguments are Source and SourceField

' Third argument, Name, should be skipped
Set SC = WBD.SlicerCaches.Add2(PT, "ShipDate", , _
SlicerCacheType:=xlTimeline)

' Define the timeline as a slicer
Set SL = SC.Slicers.Add(WSD, , _

Name:="ShipDate", _
Caption:="Year", _

Click here to view code image
Top:=WSD.Range("J1").Top, _
Left:=WSD.Range("J1").Left, _
Width:=262.5, Height:=108)

' Set the timeline to show years
SL.TimelineViewState.Level = xlTimelineLevelYears

' Set the dates for the timeline
SC.TimelineState.SetFilterDateRange "1/1/2018", "12/31/2018"
End Sub

Figure 12-12 shows the Timeline slicer built by the code in Listing 12-5.

FIGURE 12-12 Timelines were introduced in Excel 2013.

Using the Data Model in Excel 2019

Excel 2019 incorporates most parts of Power Pivot into the core Excel product. This means you
can add two tables to the Data Model, create a relationship, build a measure, and then build a
pivot table from the Data Model.

To follow along with this example, open the Figure 12-BeforeDataModel.xlsm file from the
sample download files. This workbook has two tables: Sales and Sector. Sector is a lookup
table that is related to the Sales table via a customer field. To build the pivot table, follow these
general steps:

1. Add the main table to the Data Model.

2. Add the lookup table to the Data Model.

3. Link the two tables with a relationship.

4. Create a pivot cache from ThisWorkbookDataModel.

5. Create a pivot table from the cache.

6. Add row fields.

7. Define a measure. Add the measure to the pivot table.

Adding both tables to the Data Model

You should already have a data set in the workbook that has been converted to a table using the
Ctrl+T shortcut. On the Table Tools Design tab, change the table name to Sales. To link this
table to the Data Model, use this code:

Click here to view code image
' Build Connection to the main Sales table
Set WBT = ActiveWorkbook
TableName = "Sales"
WBT.Connections.Add Name:="LinkedTable_" & TableName, _
Description:="", _
ConnectionString:="WORKSHEET;" & WBT.FullName, _
CommandText:=WBT.Name & "!" & TableName, _
lCmdType:=7, _
CreateModelConnection:=True, _
ImportRelationships:=False

There are several variables in this code that use the table name, the workbook path, or the
workbook name. By storing the table name in a variable at the top of the code, you can use the
variables to build the connection name, connection string, and command text.

Adapting the preceding code to link to the lookup table then requires only changing the

TableName variable:

Click here to view code image
TableName = "Sector"
WBT.Connections.Add Name:="LinkedTable_" & TableName, _
Description:="", _
ConnectionString:="WORKSHEET;" & WBT.FullName, _
CommandText:=WBT.Name & "!" & TableName, _
lCmdType:=7, _
CreateModelConnection:=True, _
ImportRelationships:=False

Creating a relationship between the two tables

When you create a relationship in the Excel interface, you specify four items in the Create
Relationship dialog box. The code to create the relationship is more streamlined. There can be
only one Data Model per workbook. Set an object variable MO to refer to the model in this
workbook. Use the ModelRelationships.Add method, specifying the two fields that are
linked:

Click here to view code image
' Relate the two tables
Dim MO As Model
Set MO = ActiveWorkbook.Model
MO.ModelRelationships.Add _
ForeignKeyColumn:= _

MO.ModelTables("Sales").ModelTableColumns("Customer"), _
PrimaryKeyColumn:= _
MO.ModelTables("Sector").ModelTableColumns("Customer")

Defining the pivot cache and building the pivot table

The code to define the pivot cache specifies that the data is external. Even though the linked
tables are in your workbook, and even though the Data Model is stored as a binary large object
within the workbook, this is still considered an external data connection. The connection is
always called ThisWorkbookDataModel. To set up the pivot cache, use this code:

Click here to view code image
' Define the PivotCache
Set PTCache = WBT.PivotCaches.Create(SourceType:=xlExternal, _

SourceData:=WBT.Connections("ThisWorkbookDataModel"), _

Version:=xlPivotTableVersion15)

' Create the pivot table from the pivot cache
Set PT = PTCache.CreatePivotTable(_

TableDestination:=WSD.Cells(1, 1), TableName:="PivotTable1")

Adding model fields to the pivot table

There are two types of fields you need to add to the pivot table. Text fields such as
Customer, Sector, and Product are simply fields that can be added to the row or column area of
the pivot table. No calculation has to happen to these fields. The code for adding text fields is
shown in this section. When you add a numeric field to the values area in the Excel interface,
you are actually implicitly defining a new calculated field. To do this in VBA, you have to
explicitly define the field and then add it.

First, let’s look at the simpler example of adding a text field to the row area. The VBA code
generically looks like this:

Click here to view code image
With PT.CubeFields("[TableName].[FieldName]")

.Orientation = xlRowField

.Position = 1
End With

In the current example, add the Sector field from the Sector table by using this code:

Click here to view code image
With PT.CubeFields("[Sector].[Sector]")

.Orientation = xlRowField
.Position = 1

End With

Adding numeric fields to the values area

If you have a Data Model pivot table and you check the Revenue field, you see the Revenue
field move to the Values area. Behind the scenes, though, Excel is implicitly defining a new
measure called Sum of Revenue. (You can see the implicit measures in the Power Pivot
window if you have Excel 2019 Pro Plus.) In VBA, you need to define a new measure for Sum
of Revenue. To make it easier to refer to this measure later, assign the new measure to an object
variable:

Click here to view code image

' Before you can add Revenue to the pivot table,
' you have to define the measure.
' This happens using the GetMeasure method.
' Assign the cube field to the CFRevenue object
Dim CFRevenue As CubeField
Set CFRevenue = PT.CubeFields.GetMeasure(_
AttributeHierarchy:="[Sales].[Revenue]", _
Function:=xlSum, _
Caption:="Sum of Revenue")
' Add the newly created cube field to the pivot table
PT.AddDataField Field:=CFRevenue, _
Caption:="Total Revenue"
PT.PivotFields("Total Revenue").NumberFormat = "$#,##0,K"

You can use the preceding code to create a new measure. The following measure uses the
new xlDistinctCount function to count the number of unique customers in each sector:

Click here to view code image
' Add distinct count of customer as a cube field
Dim CFCustCount As CubeField
Set CFCustCount = PT.CubeFields.GetMeasure(_
AttributeHierarchy:="[Sales].[Customer]", _
Function:=xlDistinctCount, _
Caption:="Customer Count")
' Add the newly created cube field to the pivot table
PT.AddDataField Field:=CFCustCount, _
Caption:="Customer Count"

Now that PowerPivot ships with every copy of Excel 2019, you can use DAX formulas to
create new measures. The following code adds a field for Median Sales:

Click here to view code image
' Add Median Sales using DAX
ActiveWorkbook.Model.ModelMeasures.Add _
MeasureName:="Median Sales", _

AssociatedTable:=ActiveWorkbook.Model.ModelTables("Sales"), _
Formula:="Median([Revenue])", _
FormatInformation:=ActiveWorkbook.Model.ModelFormatCurrency("Default",
2)
PT.AddDataField PT.CubeFields("[Measures].[Median Sales]")

Putting it all together

Figure 12-13 shows the Data Model pivot table created using the code in Listing 12-6.

FIGURE 12-13 Two tables are linked with a pivot table and two measures via a macro.

Listing 12-6 Code to create a Data Model pivot table

Click here to view code image
Sub BuildModelPivotTable()
Dim WBT As Workbook
Dim WC As WorkbookConnection
Dim MO As Model
Dim PTCache As PivotCache
Dim PT As PivotTable
Dim WSD As Worksheet
Dim CFRevenue As CubeField
Dim CFCustCount As CubeField

Set WBT = ActiveWorkbook
Set WSD = WBT.Worksheets("Report")

' Build connection to the main Sales table
TableName = "Sales"
WBT.Connections.Add2 Name:="LinkedTable_" & TableName, _

Description:="MainTable", _
ConnectionString:="WORKSHEET;" & WBT.FullName, _
CommandText:=WBT.Name & "!" & TableName, _
lCmdType:=7, _
CreateModelConnection:=True, _
ImportRelationships:=False

' Build connection to the Sector lookup table
TableName = "Sector"
WBT.Connections.Add2 Name:="LinkedTable_" & TableName, _

Description:="LookupTable", _
ConnectionString:="WORKSHEET;" & WBT.FullName, _
CommandText:=WBT.Name & "!" & TableName, _
lCmdType:=7, _
CreateModelConnection:=True, _
ImportRelationships:=False

' Relate the two tables
Set MO = ActiveWorkbook.Model
MO.ModelRelationships.Add _

ForeignKeyColumn:=MO.ModelTables("Sales") _
.ModelTableColumns("Customer"), _
PrimaryKeyColumn:=MO.ModelTables("Sector") _
.ModelTableColumns("Customer")

' Delete any prior pivot tables
For Each PT In WSD.PivotTables

PT.TableRange2.Clear
Next PT

' Define the PivotCache
Set PTCache = WBT.PivotCaches.Create(SourceType:=xlExternal, _
SourceData:=WBT.Connections("ThisWorkbookDataModel"), _
Version:=xlPivotTableVersion15)

' Create the pivot table from the pivot cache
Set PT = PTCache.CreatePivotTable(_
TableDestination:=WSD.Cells(1, 1), TableName:="PivotTable1")

Click here to view code image
' Add the Sector field from the Sector table to the Row areas
With PT.CubeFields("[Sector].[Sector]")

.Orientation = xlRowField

.Position = 1
End With

' Before you can add Revenue to the pivot table,
' you have to define the measure.
' This happens using the GetMeasure method

' Assign the cube field to the CFRevenue object
Set CFRevenue = PT.CubeFields.GetMeasure(_

AttributeHierarchy:="[Sales].[Revenue]", _
Function:=xlSum, _
Caption:="Sum of Revenue")

' Add the newly created cube field to the pivot table
PT.AddDataField Field:=CFRevenue, _
Caption:="Total Revenue"
PT.PivotFields("[Measures].[Sum of Revenue]") _
.NumberFormat = "$#,##0,K"

' Add Distinct Count of Customer as a cube field
Set CFCustCount = PT.CubeFields.GetMeasure(_

AttributeHierarchy:="[Sales].[Customer]", _
Function:=xlDistinctCount, _
Caption:="Customer Count")

' Add the newly created cube field to the pivot table
PT.AddDataField Field:=CFCustCount, _

Caption:="Customer Count"
' Add Median Sales using DAX
ActiveWorkbook.Model.ModelMeasures.Add _
MeasureName:="Median Sales", _
AssociatedTable:= _
ActiveWorkbook.Model.ModelTables("Sales"), _
Formula:="Median([Revenue])", _
FormatInformation:= _
ActiveWorkbook.Model.ModelFormatCurrency("Default", 2)

PT.AddDataField PT.CubeFields("[Measures].[Median Sales]")

End Sub

Using other pivot table features
This section covers a few additional features in pivot tables that you might need to code with
VBA.

Calculated data fields

Pivot tables offer two types of formulas. The most useful type creates a calculated field. This
adds a new field to the pivot table. Calculations for calculated fields are always done at the
summary level. If you define a calculated field for average price as revenue divided by units

sold, Excel first adds the total revenue and total quantity, and then it does the division of these
totals to get the result. In many cases, this is exactly what you need. If your calculation does not
follow the associative law of mathematics, it might not work as you expect.

To set up a calculated field, use the Add method with the CalculatedFields object. You
have to specify a field name and a formula, as shown here:

Click here to view code image
' Define calculated fields
PT.CalculatedFields.Add Name:="ProfitPercent", _

Formula:="=Profit/Revenue"
With PT.PivotFields("ProfitPercent")

.Orientation = xlDataField

.Function = xlSum

.Position = 3

.NumberFormat = "#0.0%"

.Name = "GP Pct"
End With

Note If you create a field called Profit Percent, the default pivot table produces a
field called Sum of Profit Percent. This title is misleading and downright silly.
To prevent this, use the Name property when defining the Data field to replace

Sum of Profit Percent with something such as GP Pct. Keep in mind that this name must
differ from the name for the calculated field.

Calculated items

Suppose you have a Measure field with two items: Budget and Actual. You would like to add a
new position to calculate Variance as Actual minus Budget. You can do this with a calculated
item by using this code:

Click here to view code image
' Define calculated item along the product dimension
PT.PivotFields("Measure").CalculatedItems _

.Add "Variance", "='Actual'-'Budget'"

Using ShowDetail to filter a record set

When you double-click any number in any pivot table in the Excel user interface, Excel inserts
a new sheet in the workbook and copies all the source records that represent that number. In the

Excel user interface, this is a great way to perform a drill-down query into a data set.

The equivalent VBA property is ShowDetail. By setting this property to True for any cell
in the pivot table, you generate a new worksheet with all the records that make up that cell:

Click here to view code image

PT.TableRange2.Offset(2, 1).Resize(1, 1).ShowDetail = True

Changing the layout from the Design tab

The Layout group on the Design tab contains four drop-down menus that control the following:

Location of subtotals (top or bottom)

Presence of grand totals

Report layout, including whether outer row labels are repeated

Presence of blank rows

Subtotals can appear either at the top or at the bottom of a group of pivot items. The
SubtotalLocation property applies to the entire pivot table; valid values are xlAtBottom
and xlAtTop:

PT.SubtotalLocation:=xlAtTop

Grand totals can be turned on or off for rows or columns. Because these two settings can be
confusing, remember that at the bottom of a report, there is a total line that most people would
call the grand total row. To turn off that row, you have to use the following:

PT.ColumnGrand = False

You need to turn off ColumnGrand when you want to suppress the total row because
Microsoft calls that row the “grand total for columns.” Get it? In other words, Microsoft is
saying that the row at the bottom contains the total of the columns above it. It is one of the
more awkward phrases in the Excel ribbon. It confuses me every time.

To suppress what you would call the grand total column along the right side of the report,
you have to suppress what Microsoft calls the “total for rows” by using the following code:

PT.RowGrand = False

Settings for the report layout

There are three settings for the report layout:

Tabular layout—Similar to the default layout in Excel 2003

Outline layout—Optionally available in Excel 2003

Compact layout—Introduced in Excel 2007

When you create a pivot table in the Excel interface, you get the Compact layout. When
you build a pivot table in VBA, you get the Tabular layout. You can change to one of the other
layouts with one of these lines:

Click here to view code image
PT.RowAxisLayout xlTabularRow
PT.RowAxisLayout xlOutlineRow
PT.RowAxisLayout xlCompactRow

Starting in Excel 2007, you can add a blank line to the layout after each group of pivot
items. Although the Design tab offers a single setting to affect the entire pivot table, the setting
is actually applied individually to each pivot field. The macro recorder responds by recording a
dozen lines of code for a pivot table with 12 fields. You can intelligently add a single line of
code for the outer row fields:

Click here to view code image

PT.PivotFields("Region").LayoutBlankLine = True

Suppressing subtotals for multiple row fields

As soon as you have more than one row field, Excel automatically adds subtotals for all but the
innermost row field. That extra row field can get in the way if you plan to reuse the results of
the pivot table as a new data set for some other purpose. Although accomplishing this task
manually can be relatively simple, the VBA code to suppress subtotals is surprisingly complex.

Most people do not realize that it is possible to show multiple types of subtotals. For
example, you can choose to show Total, Average, Min, and Max in the same pivot table.

To suppress subtotals for a field, you must set the Subtotals property equal to an array of
12 False values. The first False turns off automatic subtotals, the second False turns off the
Sum subtotal, the third False turns off the Count subtotal, and so on. This code suppresses the
Region subtotal:

Click here to view code image
PT.PivotFields("Region").Subtotals = Array(False, False, False,
False, _
False, False, False, False, False, False, False, False)

A different technique is to turn on the first subtotal. This method automatically turns off the
other 11 subtotals. You can then turn off the first subtotal to make sure that all subtotals are
suppressed:

Click here to view code image
PT.PivotFields("Region").Subtotals(1) = True
PT.PivotFields("Region").Subtotals(1) = False

Case study: Applying a data visualization
Beginning with Excel 2007, fantastic data visualizations such as icon sets, color gradients,
and in-cell data bars are offered. When you apply a visualization to a pivot table, you
should exclude the total rows from the visualization.

If you have 20 customers that average $3 million in revenue each, the total for the 20
customers is $60 million. If you include the total in the data visualization, the total gets the
largest bar, and all the customer records have tiny bars.

In the Excel user interface, you always want to use the Add Rule or Edit Rule choice to
select the option All Cells Showing “Sum of Revenue” for “Customer.”

The code to add a data bar to the Revenue field is as follows:

Click here to view code image
' Apply a data bar
PT.TableRange2.Cells(3, 2).Select
Selection.FormatConditions.AddDatabar
Selection.FormatConditions(1).ShowValue = True
Selection.FormatConditions(1).SetFirstPriority
With Selection.FormatConditions(1)
.MinPoint.Modify newtype:=xlConditionValueLowestValue
.MaxPoint.Modify newtype:=xlConditionValueHighestValue
End With
With Selection.FormatConditions(1).BarColor
.ThemeColor = xlThemeColorAccent3
.TintAndShade = -0.5
End With
Selection.FormatConditions(1).ScopeType = xlFieldsScope

Next steps

You may be able to tell that pivot tables are my favorite feature in Excel. They are incredibly
powerful and flexible. Combined with VBA, they provide an excellent calculation engine and
power many of the reports I build for clients. Chapter 13, “Excel power,” offers multiple
techniques for handling various tasks in VBA.

CHAPTER 13
Excel power

In this chapter, you will:

List all files in a folder

Import data from a CSV file

Learn methods of splitting and merging data

Export data to an XML file

Create a log file

Learn favorite techniques of various VBA pros

Amajor secret of successful programmers is to never waste time writing the same code twice.
They all have little bits—or even big bits—of code that they use over and over again. Another
big secret is to never take 8 hours doing something that can be done in 10 minutes—which is
what this book is about!

This chapter contains programs donated by several Excel power programmers. These are
programs they have found useful and that they hope will help you, too. Not only can these
programs save you time, but they also can teach you new ways of solving common problems.

Different programmers have different programming styles, and we didn’t rewrite the
submissions. As you review the code in this chapter, you’ll notice different ways of doing the
same task, such as referring to ranges.

File operations
The utilities shown in the following sections deal with handling files in folders. Being able to
loop through a list of files in a folder is a useful task.

Listing files in a directory

This utility was submitted by our good friend Nathan P. Oliver of Minneapolis, Minnesota.

This program returns the filename, size, and date modified of all specified file types in the
selected directory and its subfolders:

Click here to view code image
Sub ExcelFileSearch()
Dim srchExt As Variant, srchDir As Variant
Dim i As Long, j As Long, strName As String
Dim varArr(1 To 1048576, 1 To 3) As Variant
Dim strFileFullName As String
Dim ws As Worksheet
Dim fso As Object

Let srchExt = Application.InputBox("Please Enter File
Extension", _
"Info Request")

If srchExt = False And Not TypeName(srchExt) = "String" Then
Exit Sub

End If

Let srchDir = BrowseForFolderShell
If srchDir = False And Not TypeName(srchDir) = "String" Then

Exit Sub
End If
Application.ScreenUpdating = False
Set ws = ThisWorkbook.Worksheets.Add(Sheets(1))
On Error Resume Next
Application.DisplayAlerts = False
ThisWorkbook.Worksheets("FileSearch Results").Delete
Application.DisplayAlerts = True
On Error GoTo 0
ws.Name = "FileSearch Results"

Let strName = Dir$(srchDir & "*" & srchExt)
Do While strName <> vbNullString

Let i = i + 1
Let strFileFullName = srchDir & strName
Let varArr(i, 1) = strFileFullName
Let varArr(i, 2) = FileLen(strFileFullName) \ 1024
Let varArr(i, 3) = FileDateTime(strFileFullName)
Let strName = Dir$()

Loop

Set fso = CreateObject("Scripting.FileSystemObject")
Call recurseSubFolders(fso.GetFolder(srchDir), varArr(), i,
CStr(srchExt))

Set fso = Nothing

ThisWorkbook.Windows(1).DisplayHeadings = False
With ws

If i > 0 Then
.Range("A2").Resize(i, UBound(varArr, 2)).Value =
varArr
For j = 1 To i

.Hyperlinks.Add anchor:=.Cells(j + 1, 1),
Address:=varArr(j, 1)

Next
End If
.Range(.Cells(1, 4), .Cells(1,
.Columns.Count)).EntireColumn.Hidden = _

True
.Range(.Cells(.Rows.Count, 1).End(xlUp)(2), _

.Cells(.Rows.Count, 1)).EntireRow.Hidden = True
With .Range("A1:C1")

Click here to view code image
.Value = Array("Full Name", "Kilobytes", "Last
Modified")
.Font.Underline = xlUnderlineStyleSingle
.EntireColumn.AutoFit
.HorizontalAlignment = xlCenter

End With
End With
Application.ScreenUpdating = True
End Sub

Private Sub recurseSubFolders(ByRef Folder As Object, _
ByRef varArr() As Variant, _
ByRef i As Long, _
ByRef srchExt As String)

Dim SubFolder As Object
Dim strName As String, strFileFullName As String
For Each SubFolder In Folder.SubFolders

Let strName = Dir$(SubFolder.Path & "*" & srchExt)
Do While strName <> vbNullString

Let i = i + 1
Let strFileFullName = SubFolder.Path & "\" & strName
Let varArr(i, 1) = strFileFullName

Let varArr(i, 2) = FileLen(strFileFullName) \ 1024
Let varArr(i, 3) = FileDateTime(strFileFullName)
Let strName = Dir$()

Loop
If i > 1048576 Then Exit Sub
Call recurseSubFolders(SubFolder, varArr(), i, srchExt)

Next
End Sub

Private Function BrowseForFolderShell() As Variant
Dim objShell As Object, objFolder As Object
Set objShell = CreateObject("Shell.Application")
Set objFolder = objShell.BrowseForFolder(0, "Please select a
folder", _
0, "C:\")
If Not objFolder Is Nothing Then

On Error Resume Next
If IsError(objFolder.Items.Item.Path) Then

BrowseForFolderShell = CStr(objFolder)
Else

On Error GoTo 0
If Len(objFolder.Items.Item.Path) > 3 Then

BrowseForFolderShell = objFolder.Items.Item.Path & _
Application.PathSeparator

Else
BrowseForFolderShell = objFolder.Items.Item.Path

End If
End If

Else
BrowseForFolderShell = False

End If
Set objFolder = Nothing: Set objShell = Nothing
End Function

Importing and deleting a CSV file

This utility was submitted by Masaru Kaji of Kobe, Japan. Masaru is a computer systems
administrator. He maintains an Excel VBA tip site, Cell Masters, at
cellmasters.net/vbatips.htm.

If you find yourself importing a lot of comma-separated value (CSV) files and then having
to go back and delete them, this program is for you. It quickly opens a CSV file in Excel and
permanently deletes the original file:

http://cellmasters.net/vbatips.htm

Click here to view code image
Option Base 1
Sub OpenLargeCSVFast()
Dim buf(1 To 16384) As Variant
Dim i As Long
'Change the file location and name here
Const strFilePath As String = "C:\temp\Sales.CSV"

Dim strRenamedPath As String
strRenamedPath = Split(strFilePath, ".")(0) & "txt"

With Application
.ScreenUpdating = False
.DisplayAlerts = False

End With
'Setting an array for FieldInfo to open CSV
For i = 1 To 16384

buf(i) = Array(i, 2)
Next
Name strFilePath As strRenamedPath
Workbooks.OpenText Filename:=strRenamedPath,
DataType:=xlDelimited, _

Comma:=True, FieldInfo:=buf
Erase buf
ActiveSheet.UsedRange.Copy ThisWorkbook.Sheets(1).Range("A1")
ActiveWorkbook.Close False
Kill strRenamedPath
With Application

.ScreenUpdating = True

.DisplayAlerts = True
End With
End Sub

Reading a text file into memory and parsing

This utility was submitted by Rory Archibald, a reinsurance analyst residing in East Sussex,
United Kingdom. A self-admitted geek by inclination, he also maintains the website
ExcelMatters.com.

This utility takes a different approach to reading a text file than you might have used in the
past. Instead of reading one record at a time, the macro loads the entire text file into memory in
a single string variable. The macro then parses the string into individual records, all still in

http://ExcelMatters.com

memory. It then places all the records on the sheet at one time (what I like to call “dumping”
the data onto the sheet). The advantage of this method is that you access the file on disk only
one time. All subsequent processing occurs in memory and is very fast. Without further ado,
here’s the utility:

Click here to view code image
Sub LoadLinesFromCSV()
Dim sht As Worksheet
Dim strtxt As String
Dim textArray() As String

' Add new sheet for output
Set sht = Sheets.Add

' open the csv file
With CreateObject("Scripting.FileSystemObject") _

.GetFile("c:\temp\sales.csv").OpenAsTextStream(1)
'read the contents into a variable
strtxt = .ReadAll
' close it!
.Close

End With
'split the text into an array using carriage return and line
feed
'separator
textArray = VBA.Split(strtxt, vbCrLf)

sht.Range("A1").Resize(UBound(textArray) + 1).Value = _
Application.Transpose(textArray)

End Sub

Combining and separating workbooks
The utilities in the following sections demonstrate how to combine worksheets into a single
workbook or separate a single workbook into individual worksheets or export data on a sheet to
an XML file.

Separating worksheets into workbooks

This utility was submitted by Tommy Miles of Houston, Texas.

This sample goes through the active workbook and saves each sheet as its own workbook in

the same path as the original workbook. It names the new workbooks based on the sheet name,
and it overwrites files without prompting. Notice that you need to choose whether you save the
file as .xlsm (macro-enabled) or .xlsx (with macros stripped). In the following code, both lines
are included—xlsm and xlsx—but the xlsx lines are commented out to make them inactive:

Click here to view code image
Sub SplitWorkbook()
Dim ws As Worksheet
Dim DisplayStatusBar As Boolean

DisplayStatusBar = Application.DisplayStatusBar
Application.DisplayStatusBar = True
Application.ScreenUpdating = False
Application.DisplayAlerts = False

Click here to view code image
For Each ws In ThisWorkbook.Sheets

Dim NewFileName As String
Application.StatusBar = ThisWorkbook.Sheets.Count & _
" Remaining Sheets"
If ThisWorkbook.Sheets.Count <> 1 Then

NewFileName = ThisWorkbook.Path & "\" & ws.Name &
".xlsm" _
'Macro-Enabled
' NewFileName = ThisWorkbook.Path & "\" & ws.Name &
".xlsx" _
'Not Macro-Enabled
ws.Copy
ActiveWorkbook.Sheets(1).Name = "Sheet1"
ActiveWorkbook.SaveAs Filename:=NewFileName, _
FileFormat:=xlOpenXMLWorkbookMacroEnabled
' ActiveWorkbook.SaveAs Filename:=NewFileName, _
FileFormat:=xlOpenXMLWorkbook
ActiveWorkbook.Close SaveChanges:=False

Else
NewFileName = ThisWorkbook.Path & "\" & ws.Name &
".xlsm"
' NewFileName = ThisWorkbook.Path & "\" & ws.Name &
".xlsx"
ws.Name = "Sheet1"

End If
Next

Application.DisplayAlerts = True
Application.StatusBar = False
Application.DisplayStatusBar = DisplayStatusBar
Application.ScreenUpdating = True
End Sub

Combining workbooks

This utility was submitted by Tommy Miles.

This sample goes through all the Excel files in a specified directory and combines them into
a single workbook. It renames the sheets based on the name of the original workbook:

Click here to view code image
Sub CombineWorkbooks()
Dim CurFile As String, DirLoc As String
Dim DestWB As Workbook
Dim ws As Object 'allows for different sheet types

DirLoc = ThisWorkbook.Path & "\tst\" 'location of files
CurFile = Dir(DirLoc & "*.xls*")

Application.ScreenUpdating = False
Application.EnableEvents = False
Set DestWB = Workbooks.Add(xlWorksheet)
Do While CurFile <> vbNullString

Dim OrigWB As Workbook
Set OrigWB = Workbooks.Open(Filename:=DirLoc & CurFile, _

ReadOnly:=True)

Click here to view code image
'Limits to valid sheet names and removes ".xls*"
CurFile = Left(Left(CurFile, Len(CurFile) - 5), 29)

For Each ws In OrigWB.Sheets
ws.Copy After:=DestWB.Sheets(DestWB.Sheets.Count)

If OrigWB.Sheets.Count > 1 Then
DestWB.Sheets(DestWB.Sheets.Count).Name = CurFile &
ws.Index

Else
DestWB.Sheets(DestWB.Sheets.Count).Name = CurFile

End If
Next

OrigWB.Close SaveChanges:=False
CurFile = Dir

Loop
Application.DisplayAlerts = False
DestWB.Sheets(1).Delete
Application.DisplayAlerts = True
Application.ScreenUpdating = True
Application.EnableEvents = True

Set DestWB = Nothing
End Sub

Copying data to separate worksheets without using Filter

This utility was submitted by Zack Barresse from Boardman, Oregon. Zack is an Excel ninja
and VBA nut, and he’s a former firefighter and paramedic who owns/operates exceltables.com.
He co-authored one of my favorite books, Excel Tables: A Complete Guide for Creating,
Using, and Automating Lists and Tables (Holy Macro! Books, 2014), with Kevin Jones.

You can use Filter to select specific records and then copy them to another sheet. But if you
are dealing with a lot of data or have formulas in the data set, it can take a while to run. Instead
of using Filter, consider using a formula to mark the desired records and then sort by that
column to group the desired records together. Combine this with SpecialCells, and you
could have a procedure that runs up to 10 times faster than code that uses Filter. Here’s how it
looks:

Click here to view code image
Sub CriteriaRange_Copy()
Dim Table As ListObject
Dim SortColumn As ListColumn
Dim CriteriaColumn As ListColumn
Dim FoundRange As Range
Dim TargetSheet As Worksheet
Dim HeaderVisible As Boolean

Set Table = ActiveSheet.ListObjects(1) ' Set as desired
HeaderVisible = Table.ShowHeaders
Table.ShowHeaders = True

On Error GoTo RemoveColumns

http://exceltables.com

Click here to view code image
Set SortColumn = Table.ListColumns.Add(Table.ListColumns.Count +
1)
Set CriteriaColumn = Table.ListColumns.Add _
(Table.ListColumns.Count + 1)

On Error GoTo 0

'Add a column to keep track of the original order of the records
SortColumn.Name = " Sort"
CriteriaColumn.Name = " Criteria"
SortColumn.DataBodyRange.Formula = "=ROW(A1!)"
SortColumn.DataBodyRange.Value = SortColumn.DataBodyRange.Value

'add the formula to mark the desired records
'the records not wanted will have errors
CriteriaColumn.DataBodyRange.Formula = "=1/(([@Units]<10)*
([@Cost]<5))"
CriteriaColumn.DataBodyRange.Value =
CriteriaColumn.DataBodyRange.Value

Table.Range.Sort Key1:=CriteriaColumn.Range(1, 1), _
Order1:=xlAscending, Header:=xlYes

On Error Resume Next
Set FoundRange = Intersect(Table.Range,
CriteriaColumn.DataBodyRange. _
SpecialCells(xlCellTypeConstants, xlNumbers).EntireRow)

On Error GoTo 0

If Not FoundRange Is Nothing Then
Set TargetSheet =
ThisWorkbook.Worksheets.Add(After:=ActiveSheet)
FoundRange(1, 1).Offset(-1, 0).Resize(FoundRange.Rows.Count
+ 1, _
FoundRange.Columns.Count - 2).Copy
TargetSheet.Range("A1").PasteSpecial
xlPasteValuesAndNumberFormats
Application.CutCopyMode = False

End If
Table.Range.Sort Key1:=SortColumn.Range(1, 1),
Order1:=xlAscending, _
Header:=xlYes

RemoveColumns:

If Not SortColumn Is Nothing Then SortColumn.Delete
If Not CriteriaColumn Is Nothing Then CriteriaColumn.Delete
Table.ShowHeaders = HeaderVisible
End Sub

Exporting data to an XML file

This utility was submitted by Livio Lanzo. Livio is currently working as a business analyst in
finance in Luxembourg. His main task is to develop Excel/Access tools for a bank. Livio is also
active on the MrExcel.com forum under the handle VBA Geek.

This program exports the data from a table to an XML file. It uses early binding, so a
reference must be established in the VB Editor using Tools, References to the Microsoft XML,
v6.0 library:

Click here to view code image
Const ROOT_ELEMENT_NAME = "SAMPLEDATA"
Const GROUPS_NAME = "EMPLOYEES"
Const XML_EXPORT_PATH = "C:\temp\myXMLFile.xml"

Click here to view code image
Sub CreateXML()
Dim xml_DOM As MSXML2.DOMDocument60
Dim xml_El As MSXML2.IXMLDOMElement
Dim xRow As Long
Dim xCol As Long
Set xml_DOM = CreateObject("MSXML2.DOMDocument.6.0")
xml_DOM.appendChild xml_DOM.createElement(ROOT_ELEMENT_NAME)
With Sheet1.ListObjects("TableEmployees")

For xRow = 1 To .ListRows.Count
CREATE_APPEND_ELEMENT xml_DOM, ROOT_ELEMENT_NAME,
GROUPS_NAME, _
0, NODE_ELEMENT

For xCol = 1 To .ListColumns.Count
CREATE_APPEND_ELEMENT xml_DOM, GROUPS_NAME,

.HeaderRowRange(1, xCol).Text, (xRow - 1),
NODE_ELEMENT

CREATE_APPEND_ELEMENT xml_DOM, .HeaderRowRange(1,
xCol).Text, _

.DataBodyRange(xRow, xCol).Text, (xRow - 1),
NODE_TEXT

Next xCol

Next xRow
End With
xml_DOM.Save XML_EXPORT_PATH
MsgBox "File Created: " & XML_EXPORT_PATH, vbInformation
End Sub

Private Sub CREATE_APPEND_ELEMENT(xmlDOM As
MSXML2.DOMDocument60, _

ParentElName As String, _
NewElName As String, _
ParentElIndex As Long, _
ELType As MSXML2.tagDOMNodeType)

Dim xml_ELEMENT As Object
If ELType = NODE_ELEMENT Then

Set xml_ELEMENT = xmlDOM.createElement(NewElName)
ElseIf ELType = NODE_TEXT Then

Set xml_ELEMENT = xmlDOM.createTextNode(NewElName)
End If
xmlDOM.getElementsByTagName(ParentElName)
(ParentElIndex).appendChild _

xml_ELEMENT
End Sub

Working with cell comments
Cell comments are an often-underused feature in Excel. The following two utilities help you
get the most out of cell comments.

Resizing comments

This utility was submitted by Tom Urtis of San Francisco, California. Tom is the principal
owner of Atlas Programming Management, an Excel consulting firm in the Bay Area.

Excel doesn’t automatically resize cell comments. In addition, if you have several of them
on a sheet, as shown in Figure 13-1, resizing them one at a time can be a hassle. The following
utility resizes all the comment boxes on a sheet so that, when selected, the entire comment is
easily viewable, as shown in Figure 13-2.

FIGURE 13-1 By default, Excel doesn’t size the comment boxes to show all the entered text.

FIGURE 13-2 Resize the comment boxes to fit all the text.

Click here to view code image
Sub CommentFitter()
Application.ScreenUpdating = False
Dim x As Range, y As Long

For Each x In Cells.SpecialCells(xlCellTypeComments)
Select Case True

Case Len(x.NoteText) <> 0
With x.Comment

.Shape.TextFrame.AutoSize = True
If .Shape.Width > 250 Then

y = .Shape.Width * .Shape.Height
.Shape.Width = 150
.Shape.Height = (y / 200) * 1.3

End If

End With
End Select

Next x
Application.ScreenUpdating = True
End Sub

Placing a chart in a comment

This is another utility submitted by Tom Urtis.

A live chart cannot exist in a shape, but you can take a picture of a chart and load it into the
comment shape, as shown in Figure 13-3.

FIGURE 13-3 Place a chart in a cell comment.

These are the steps to do this manually:

1. Create and save the picture image you want the comment to display.

2. If you have not already done so, create the comment and select the cell in which the
comment is located.

3. From the Review tab, select Edit Comment or right-click the cell and select Edit
Comment.

4. Right-click the comment border and select Format Comment.

5. Select the Colors And Lines tab and click the down arrow belonging to the Color field of
the Fill section.

6. Select Fill Effects, select the Picture tab, and then click the Select Picture button.

7. Navigate to your desired image, select the image, and click OK twice.

The effect of having a “live chart” in a comment can be achieved if, for example, the code
is part of a SheetChange event when the chart’s source data is being changed. In addition,
business charts are updated often, so you might want a macro to keep the comment updated and
to avoid repeating the same steps.

The following utility does just that—and you can use it by simply modifying the file
pathname, chart name, destination sheet, cell, and size of comment shape, depending on the
size of the chart:

Click here to view code image
Sub PlaceGraph()
Dim x As String, z As Range
Application.ScreenUpdating = False

'assign a temporary location to hold the image

Click here to view code image
x = "C:\temp\XWMJGraph.gif"
'assign the cell to hold the comment
Set z = Worksheets("ChartInComment").Range("A3")

'delete any existing comment in the cell
On Error Resume Next
z.Comment.Delete
On Error GoTo 0

'select and export the chart
ActiveSheet.ChartObjects("Chart 1").Activate
ActiveChart.Export x

'add a new comment to the cell, set the size and insert the
chart
With z.AddComment

With .Shape
.Height = 322

.Width = 465

.Fill.UserPicture x
End With

End With

'delete the temporary image
Kill x

Range("A1").Activate
Application.ScreenUpdating = True

Set z = Nothing
End Sub

Tracking user changes
The Change event is a code solution posted often at Excel forums, primarily because it fills a
void that formulas alone can’t manage (for example, inserting a date and time stamp when a
user changes a specific range). The following utility takes advantage of the Change event in
order to create a log file that tracks the cell address, new value, date, time, and username for
changes made to column A of the sheet in which the code is placed:

This utility was submitted by Chris “Smitty” Smith of Crested Butte, Colorado. Smitty
writes Excel help content for Microsoft on support.office.com. Prior to that he was a
professional Office developer. When he’s not busy at work, he is an avid rock and ice climber
and an occasional mountaineer.

Click here to view code image
Private Sub Worksheet_Change(ByVal Target As Range)
'Code goes in the Worksheet specific module
Dim ws As Worksheet
Dim lr As Long
Dim rng As Range
'Set the Destination worksheet

Click here to view code image
Set ws = Sheets("Log Sheet")
'Get the first unused row on the Log sheet
lr = ws.Cells(Rows.Count, "A").End(xlUp).Row
'Set Target Range, i.e. Range("A1, B2, C3"), or Range("A1:B3")
Set rng = Target.Parent.Range("A:A")
'Only look at single cell changes

http://support.office.com

If Target.Count > 1 Then Exit Sub
'Only look at that range
If Intersect(Target, rng) Is Nothing Then Exit Sub
'Action if Condition(s) are met (do your thing here...)
'Put the Target cell's Address in Column A
ws.Cells(lr + 1, "A").Value = Target.Address
'Put the Target cell's value in Column B
ws.Cells(lr + 1, "B").Value = Target.Value
'Put the Date in Column C
ws.Cells(lr + 1, "C").Value = Date
'Put the Time in Column D
ws.Cells(lr + 1, "D").Value = Format(Now, "HH:MM:SS AM/PM")
'Put the Date in Column E
ws.Cells(lr + 1, "E").Value = Environ("UserName")
End Sub

Techniques for VBA pros
The utilities provided in the following sections amaze me. In the various message board
communities on the Internet, VBA programmers are constantly coming up with new ways to do
things faster and better. When someone posts some new code that obviously runs circles around
the prior generally accepted best code, everyone benefits.

Creating an Excel state class module

This utility was submitted by Juan Pablo Gonzàlez Ruiz of Bogotà, Colombia. Juan Pablo is an
Excel consultant who runs his photography business at www.juanpg.com.

The following class module is one of my favorites, and I use it in almost every project I
create. Before Juan shared the module with me, I used to enter the eight lines of code to turn off
and back on screen updating, events, alerts, and calculations. At the beginning of a sub I would
turn them off, and at the end I would turn them back on. That was quite a bit of typing. Now I
just place the class module in a new workbook I create and call it as needed.

Insert a class module named CAppState and place the following code in it:

Click here to view code image
Private m_su As Boolean
Private m_ee As Boolean
Private m_da As Boolean
Private m_calc As Long
Private m_cursor As Long

http://www.juanpg.com

Private m_except As StateEnum

Click here to view code image
Public Enum StateEnum
None = 0
ScreenUpdating = 1
EnableEvents = 2
DisplayAlerts = 4
Calculation = 8
Cursor = 16

End Enum

Public Sub SetState(Optional ByVal except As StateEnum =
StateEnum.None)
m_except = except
With Application

If Not m_except And StateEnum.ScreenUpdating Then
.ScreenUpdating = False

End If

If Not m_except And StateEnum.EnableEvents Then
.EnableEvents = False

End If

If Not m_except And StateEnum.DisplayAlerts Then
.DisplayAlerts = False

End If

If Not m_except And StateEnum.Calculation Then
.Calculation = xlCalculationManual

End If

If Not m_except And StateEnum.Cursor Then
.Cursor = xlWait

End If
End With
End Sub

Private Sub Class_Initialize()
With Application

m_su = .ScreenUpdating
m_ee = .EnableEvents
m_da = .DisplayAlerts

m_calc = .Calculation
m_cursor = .Cursor

End With
End Sub

Private Sub Class_Terminate()
With Application

If Not m_except And StateEnum.ScreenUpdating Then
.ScreenUpdating = m_su

End If

If Not m_except And StateEnum.EnableEvents Then
.EnableEvents = m_ee

End If

Click here to view code image
If Not m_except And StateEnum.DisplayAlerts Then

.DisplayAlerts = m_da
End If

If Not m_except And StateEnum.Calculation Then
.Calculation = m_calc

End If

If Not m_except And StateEnum.Cursor Then
.Cursor = m_cursor

End If
End With
End Sub

The following code is an example of calling the class module to turn off the various states,
running your code, and then setting the states back:

Click here to view code image
Sub RunFasterCode
Dim appState As CAppState
Set appState = New CAppState
appState.SetState None
'run your code
'if you have any formulas that need to update, use
'Application.Calculate
'to force the workbook to calculate

Set appState = Nothing
End Sub

Drilling-down a pivot table

This is yet another utility submitted by Tom Urtis.

When you are double-clicking the data section, a pivot table’s default behavior is to insert a
new worksheet and display that drill-down information on the new sheet. This utility serves as
an option for convenience, to keep the drilled-down record sets on the same sheet as the pivot
table (see Figure 13-4) so that you can delete them as you want.

FIGURE 13-4 Show the drill-down record set on the same sheet as the pivot table.

To use this macro, double-click the data section or the totals section to create stacked drill-
down record sets in the next available row of the sheet. To delete any drill-down record sets
you have created, double-click anywhere in their respective current region.

Here’s the utility:

Click here to view code image
Private Sub Worksheet_BeforeDoubleClick(ByVal Target As Range, _
Cancel As Boolean)
Application.ScreenUpdating = False
Dim LPTR&

With ActiveSheet.PivotTables(1).DataBodyRange
LPTR = .Rows.Count + .Row - 1

End With

Dim PTT As Integer
On Error Resume Next
PTT = Target.PivotCell.PivotCellType
If Err.Number = 1004 Then

Err.Clear

If Not IsEmpty(Target) Then
If Target.Row > Range("A1").CurrentRegion.Rows.Count +
1 Then

Cancel = True
With Target.CurrentRegion

.Resize(.Rows.Count + 1).EntireRow.Delete
End With

End If
Else

Cancel = True
End If

Else
CS = ActiveSheet.Name

End If
Application.ScreenUpdating = True
End Sub

Filtering an OLAP pivot table by a list of items

This utility was submitted by Jerry Sullivan of San Diego, California. Jerry is an operations
manager for exp (www.exp.com), a building engineering consulting firm.

This procedure filters an OLAP pivot table to show items in a separate list, regardless of
whether an item in that list has a matching record.

The code converts user-friendly items into MDX member references—for example, from
“banana” to “[tblSales].[product_name].&[banana]"]”:

Click here to view code image
Sub FilterOLAP_PT()
'example showing call to function sOLAP_FilterByItemList

Dim pvt As PivotTable
Dim sErrMsg As String, sTemplate As String
Dim vItemsToBeVisible As Variant

On Error GoTo ErrProc
With Application

Click here to view code image
.EnableCancelKey = xlErrorHandler
.ScreenUpdating = False

http://www.exp.com

.DisplayStatusBar = False

.EnableEvents = False
End With

'read filter items from worksheet table
vItemsToBeVisible = Application.Transpose(_
wksPivots.ListObjects("tblVisibleItemsList").DataBodyRange.Value)

Set pvt = wksPivots.PivotTables("PivotTable1")
'call function
sErrMsg = sOLAP_FilterByItemList(_

pvf:=pvt.PivotFields("[tblSales].[product_name].
[product_name]"), _
vItemsToBeVisible:=vItemsToBeVisible, _
sItemPattern:="[tblSales].[product_name].&[ThisItem]")

ExitProc:
On Error Resume Next
With Application

.EnableEvents = True

.DisplayStatusBar = True

.ScreenUpdating = True
End With
If Len(sErrMsg) > 0 Then MsgBox sErrMsg
Exit Sub

ErrProc:
sErrMsg = Err.Number & " - " & Err.Description
Resume ExitProc
End Sub

Private Function sOLAP_FilterByItemList(ByVal pvf As PivotField,
_
ByVal vItemsToBeVisible As Variant, _
ByVal sItemPattern As String) As String
'filters an OLAP pivot table to display a list of items,
' where some of the items might not exist
'works by testing whether each pivotitem exists, then building
an
' array of existing items to be used with the VisibleItemsList '
property

'Input Parameters:
'pvf - pivotfield object to be filtered

'vItemsToBeVisible - 1-D array of strings representing items to
be ' visible
'sItemPattern - string that has MDX pattern of pivotItem
reference
' where the text "ThisItem" will be replaced by each
' item in vItemsToBeVisible to make pivotItem references.
' e.g.: "[tblSales].[product_name].&[ThisItem]"

Dim lFilterItemCount As Long, lNdx As Long
Dim vFilterArray As Variant
Dim vSaveVisibleItemsList As Variant
Dim sReturnMsg As String, sPivotItemName As String

Click here to view code image
'store existing visible items
vSaveVisibleItemsList = pvf.VisibleItemsList

If Not (IsArray(vItemsToBeVisible)) Then _
vItemsToBeVisible = Array(vItemsToBeVisible)
ReDim vFilterArray(1 To _
UBound(vItemsToBeVisible) - LBound(vItemsToBeVisible) + 1)
pvf.Parent.ManualUpdate = True

'check if pivotitem exists then build array of items that exist
For lNdx = LBound(vItemsToBeVisible) To
UBound(vItemsToBeVisible)

'create MDX format pivotItem reference by substituting item
into
'pattern
sPivotItemName = Replace(sItemPattern, "ThisItem", _

vItemsToBeVisible(lNdx))

'attempt to make specified item the only visible item
On Error Resume Next
pvf.VisibleItemsList = Array(sPivotItemName)
On Error GoTo 0

'if item doesn't exist in field, this will be false
If LCase$(sPivotItemName) = LCase$(pvf.VisibleItemsList(1))
Then

lFilterItemCount = lFilterItemCount + 1
vFilterArray(lFilterItemCount) = sPivotItemName

End If
Next lNdx

'if at least one existing item found, filter pivot using array
If lFilterItemCount > 0 Then

ReDim Preserve vFilterArray(1 To lFilterItemCount)
pvf.VisibleItemsList = vFilterArray

Else
sReturnMsg = "No matching items found."
pvf.VisibleItemsList = vSaveVisibleItemsList

End If
pvf.Parent.ManualUpdate = False
sOLAP_FilterByItemList = sReturnMsg
End Function

Creating a custom sort order

This utility was submitted by Wei Jiang of Wuhan City, China.

By default, Excel enables you to sort lists numerically or alphabetically, but sometimes that
is not what is needed. For example, a client might need each day’s sales data sorted by the
default division order of belts, handbags, watches, wallets, and everything else. Although you
can manually set up a custom series and sort using it, if you’re creating an automated workbook
for other users, that might not be an option. This utility uses a custom sort order list to sort a
range of data into default division order and then deletes the custom sort order, and Figure 13-5
shows the results:

FIGURE 13-5 When you use the macro, the list in A:C is sorted first by date and then by the custom sort list in Column
I.

Click here to view code image
Sub CustomSort()
' add the custom list to Custom Lists
Application.AddCustomList ListArray:=Range(“I1:I5”)

' get the list number
nIndex = Application.GetCustomListNum(Range(“I1:I5”).Value)

' Now, we could sort a range with the custom list.
' Note, we should use nIndex + 1 as the custom list number here,
' for the first one is Normal order
Range(“A2:C16”).Sort Key1:=Range(“B2”), Order1:=xlAscending, _
Header:=xlNo, Orientation:=xlSortColumns, _
OrderCustom:=nIndex + 1
Range(“A2:C16”).Sort Key1:=Range(“A2”), Order1:=xlAscending, _
Header:=xlNo, Orientation:=xlSortColumns
' At the end, we should remove this custom list...
Application.DeleteCustomList nIndex
End Sub

Creating a cell progress indicator

Here is another utility submitted by the prolific Tom Urtis.

I have to admit, the conditional formatting options in Excel, such as data bars, are fantastic.
However, there still isn’t an option for a visual like the example shown in Figure 13-6. The
following utility builds a progress indicator in column C, based on entries in columns A and B:

Click here to view code image
Private Sub Worksheet_Change(ByVal Target As Range)
If Target.Column > 2 Or Target.Cells.Count > 1 Then Exit Sub
If Application.IsNumber(Target.Value) = False Then

Application.EnableEvents = False
Application.Undo
Application.EnableEvents = True
MsgBox "Numbers only please."
Exit Sub

End If
Select Case Target.Column

Case 1
If Target.Value > Target.Offset(0, 1).Value Then

Application.EnableEvents = False

Click here to view code image
Application.Undo
Application.EnableEvents = True
MsgBox "Value in column A may not be larger than

value " & _
"in column B."

Exit Sub
End If

Case 2
If Target.Value < Target.Offset(0, -1).Value Then

Application.EnableEvents = False
Application.Undo
Application.EnableEvents = True
MsgBox "Value in column B may not be smaller " & _

"than value in column A."
Exit Sub

End If
End Select
Dim x As Long
x = Target.Row
Dim z As String
z = Range("B" & x).Value - Range("A" & x).Value
With Range("C" & x)

.Formula = "=IF(RC[-1]<=RC[-2],REPT(""n"",RC[-1])&" & _
"REPT(""n"",RC[-2]-RC[-1]),REPT(""n"",RC[-2])&" & _
"REPT(""o"",RC[-1]-RC[-2]))"

.Value = .Value

.Font.Name = "Wingdings"

.Font.ColorIndex = 1

.Font.Size = 10
If Len(Range("A" & x)) <> 0 Then

.Characters(1, (.Characters.Count - z)).Font.ColorIndex
= 3
.Characters(1, (.Characters.Count - z)).Font.Size = 12

End If
End With
End Sub

FIGURE 13-6 You can use indicators in cells to show progress.

Using a protected password box

This utility was submitted by Daniel Klann of Sydney, Australia. Daniel works mainly with
VBA in Excel and Access but dabbles in all sorts of languages.

Using an input box for password protection has a major security flaw: The characters being
entered are easily viewable. This program changes the characters to asterisks as they are
entered—just like a real password field (see Figure 13-7). Note that the code that follows does
not work in 64-bit Excel. Refer to Chapter 23, “The Windows Application Programming
Interface (API),” for information on modifying the code for 64-bit Excel.

FIGURE 13-7 You can use an input box as a secure password field.

Here is the utility:

Click here to view code image
Private Declare Function CallNextHookEx Lib "user32" _
(ByVal hHook As Long, _
ByVal ncode As Long, ByVal wParam As Long, lParam As Any) As
Long

Private Declare Function GetModuleHandle Lib "kernel32" _
Alias "GetModuleHandleA" (ByVal lpModuleName As String) As Long
Private Declare Function SetWindowsHookEx Lib "user32" _
Alias "SetWindowsHookExA" _
(ByVal idHook As Long, ByVal lpfn As Long, _
ByVal hmod As Long,ByVal dwThreadId As Long) As Long
Private Declare Function UnhookWindowsHookEx Lib "user32" _
(ByVal hHook As Long) As Long
Private Declare Function SendDlgItemMessage Lib "user32" _
Alias "SendDlgItemMessageA" _
(ByVal hDlg As Long, _
ByVal nIDDlgItem As Long, ByVal wMsg As Long, _
ByVal wParam As Long, ByVal lParam As Long) As Long
Private Declare Function GetClassName Lib "user32" _
Alias "GetClassNameA" (ByVal hwnd As Long, _
ByVal lpClassName As String, _
ByVal nMaxCount As Long) As Long
Private Declare Function GetCurrentThreadId _
Lib "kernel32" () As Long
'Constants to be used in our API functions
Private Const EM_SETPASSWORDCHAR = &HCC
Private Const WH_CBT = 5
Private Const HCBT_ACTIVATE = 5
Private Const HC_ACTION = 0

Click here to view code image
Private hHook As Long
Public Function NewProc(ByVal lngCode As Long, _
ByVal wParam As Long, ByVal lParam As Long) As Long
Dim RetVal
Dim strClassName As String, lngBuffer As Long

If lngCode < HC_ACTION Then
NewProc = CallNextHookEx(hHook, lngCode, wParam, lParam)
Exit Function

End If

strClassName = String$(256, " ")
lngBuffer = 255

If lngCode = HCBT_ACTIVATE Then 'A window has been activated

RetVal = GetClassName(wParam, strClassName, lngBuffer)

'Check for class name of the Inputbox
If Left$(strClassName, RetVal) = "#32770" Then

'Change the edit control to display the password
character *.
'You can change the Asc("*") as you please.
SendDlgItemMessage wParam, &H1324, EM_SETPASSWORDCHAR,
Asc("*"), &H0

End If
End If
'This line will ensure that any other hooks that may be in place
are
'called correctly.
CallNextHookEx hHook, lngCode, wParam, lParam
End Function

Public Function InputBoxDK(Prompt, Optional Title, _
Optional Default, Optional XPos, _
Optional YPos, Optional HelpFile, Optional Context) As String
Dim lngModHwnd As Long, lngThreadID As Long

lngThreadID = GetCurrentThreadId
lngModHwnd = GetModuleHandle(vbNullString)

hHook = SetWindowsHookEx(WH_CBT, AddressOf NewProc, lngModHwnd,
_
lngThreadID)
On Error Resume Next
InputBoxDK = InputBox(Prompt, Title, Default, XPos, YPos,
HelpFile, _
Context)
UnhookWindowsHookEx hHook
End Function

Sub PasswordBox()
If InputBoxDK("Please enter password", "Password Required") <> _
"password" Then

MsgBox "Sorry, that was not a correct password."
Else

Click here to view code image

MsgBox "Correct Password! Come on in."
End If
End Sub

Changing case

This utility was submitted by Ivan F. Moala of Auckland, New Zealand. Ivan is the site author
of The XcelFiles (excelplaza.com/ep_ivan/default.php), where you can find out how to do
things you thought you could not do in Excel.

Word can change the case of selected text, but that capability is notably lacking in Excel.
This program enables an Excel user to change the case of text in any selected range, as shown
in Figure 13-8.

FIGURE 13-8 You can now change the case of words, just like in Word.

Click here to view code image
Sub TextCaseChange()
Dim RgText As Range
Dim oCell As Range
Dim Ans As String
Dim strTest As String
Dim sCap As Integer, _
lCap As Integer, _
i As Integer
'// You need to select a range to alter first!
Again:
Ans = Application.InputBox("[L]owercase" & vbCr & "[U]ppercase"
& vbCr & _

"[S]entence" & vbCr & "[T]itles" & vbCr & "[C]apsSmall", _

http://excelplaza.com/ep_ivan/default.php

"Type in a Letter", Type:=2)
If Ans = "False" Then Exit Sub
If InStr(1, "LUSTC", UCase(Ans), vbTextCompare) = 0 _
Or Len(Ans) > 1 Then GoTo Again
On Error GoTo NoText
If Selection.Count = 1 Then

Set RgText = Selection
Else

Set RgText = Selection.SpecialCells(xlCellTypeConstants, 2)
End If

Click here to view code image
On Error GoTo 0
For Each oCell In RgText

Select Case UCase(Ans)
Case "L": oCell = LCase(oCell.Text)
Case "U": oCell = UCase(oCell.Text)
Case "S": oCell = UCase(Left(oCell.Text, 1)) & _

LCase(Right(oCell.Text, Len(oCell.Text) - 1))
Case "T": oCell =
Application.WorksheetFunction.Proper(oCell.Text)
Case "C"

lCap = oCell.Characters(1, 1).Font.Size
sCap = Int(lCap * 0.85)
'Small caps for everything.
oCell.Font.Size = sCap
oCell.Value = UCase(oCell.Text)
strTest = oCell.Value
'Large caps for 1st letter of words.
strTest = Application.Proper(strTest)
For i = 1 To Len(strTest)

If Mid(strTest, i, 1) = UCase(Mid(strTest, i,
1)) Then

oCell.Characters(i, 1).Font.Size = lCap
End If

Next i
End Select

Next

Exit Sub
NoText:
MsgBox "No text in your selection @ " & Selection.Address

End Sub

Selecting with SpecialCells

Ivan F. Moala also submitted this handy utility.

Typically, when you want to find certain values, text, or formulas in a range, the range is
selected, and each cell is tested. The following utility shows how you can use SpecialCells to
select only the desired cells. Having fewer cells to check speeds up your code.

The following code ran in the blink of an eye on my machine. However, the version that
checked each cell in the range (A1:Z20000) took 14 seconds—an eternity in the automation
world!

Click here to view code image
Sub SpecialRange()
Dim TheRange As Range
Dim oCell As Range

Set TheRange = Range("A1:Z20000").SpecialCells(__
xlCellTypeConstants, xlTextValues)
For Each oCell In TheRange

If oCell.Text = "Your Text" Then

Click here to view code image
MsgBox oCell.Address
MsgBox TheRange.Cells.Count

End If
Next oCell
End Sub

Resetting a table’s format

Here’s another utility submitted by Zack Barresse.

Tables are great tools to use, but they’re not perfect. One issue you’ll eventually run into is
a table’s formatting acting up. For example, formatting might suddenly no longer be applied to
new rows. The following procedure resets a table’s format so it functions properly:

Click here to view code image
Sub ResetFormat(ByVal Table As ListObject, _
Optional ByVal RetainNumberFormats As Boolean = True)

Dim Formats() As Variant
Dim ColumnStep As Long

If Table.Parent.ProtectContents = True Then
MsgBox "The worksheet is protected.", vbExclamation,
"Whoops!"
Exit Sub

End If

If RetainNumberFormats Then
ReDim Formats(Table.ListColumns.Count - 1)
For ColumnStep = 1 To Table.ListColumns.Count

On Error Resume Next
Formats(ColumnStep - 1) =
Table.ListColumns(ColumnStep). _

DataBodyRange.NumberFormat
On Error GoTo 0
If IsEmpty(Formats(ColumnStep - 1)) Then

Formats(ColumnStep - 1) = "General"
End If

Next ColumnStep
End If

Table.Range.Style = "Normal"
If RetainNumberFormats Then

For ColumnStep = 1 To Table.ListColumns.Count
On Error Resume Next
Table.ListColumns(ColumnStep).DataBodyRange.NumberFormat
= _

Formats(ColumnStep - 1)
On Error GoTo 0
If Err.Number <> 0 Then

Table.ListColumns(ColumnStep).DataBodyRange.NumberFormat
= _

"General"
Err.Clear

End If
Next ColumnStep

End If
End Sub

Using VBA Extensibility to add code to new workbooks

Say that you have a macro that moves data to a new workbook for the regional managers. What
if you need to also copy macros to the new workbook? You can use VBA Extensibility to
import modules to a workbook or to actually write lines of code to the workbook.

To use any of the following examples, you must trust access to VBA by going to the
Developer tab, choosing Macro Security, and checking Trust Access To The VBA Project
Object Model.

The easiest way to use VBA Extensibility is to export a complete module or userform from
the current project and import it to the new workbook. Perhaps you have an application with
thousands of lines of code, and you want to create a new workbook with data for the regional
manager and give her three macros to enable custom formatting and printing. Place all of these
macros in a module called modToRegion. Macros in this module also call the frmRegion
userform. The following code transfers this code from the current workbook to the new
workbook:

Click here to view code image
Sub MoveDataAndMacro()
Dim WSD as worksheet
Set WSD = Worksheets("Report")
' Copy Report to a new workbook
WSD.Copy
' The active workbook is now the new workbook
' Delete any old copy of the module from C
On Error Resume Next
' Delete any stray copies from hard drive
Kill ("C:\temp\ModToRegion.bas")
Kill ("C:\temp\frmRegion.frm")
On Error GoTo 0
' Export module & form from this workbook
ThisWorkbook.VBProject.VBComponents("ModToRegion").Export _
("C:\temp\ModToRegion.bas")
ThisWorkbook.VBProject.VBComponents("frmRegion").Export _
("C:\temp\frmRegion. frm")
' Import to new workbook
ActiveWorkbook.VBProject.VBComponents.Import
("C:\temp\ModToRegion.bas")
ActiveWorkbook.VBProject.VBComponents.Import
("C:\temp\frmRegion.frm")
On Error Resume Next
Kill ("C:\temp\ModToRegion.bas")
Kill ("C:\temp\frmRegion.bas")
On Error GoTo 0

End Sub

This method works if you need to move modules or userforms to a new workbook.
However, what if you need to write some code to the Workbook_Open macro in the
ThisWorkbook module? There are two tools to use. The Lines method enables you to return a
particular set of code lines from a given module. The InsertLines method enables you to
insert code lines to a new module.

Note With each call to InsertLines, you must insert a complete macro. Excel
attempts to compile the code after each call to InsertLines. If you insert lines
that do not completely compile, Excel might crash with a general protection fault

(GPF).

Click here to view code image
Sub MoveDataAndMacro()
Dim WSD as worksheet
Dim WBN as Workbook
Dim WBCodeMod1 As Object, WBCodeMod2 As Object
Set WSD = Worksheets("Report")
' Copy Report to a new workbook
WSD.Copy
' The active workbook is now the new workbook
Set WBN = ActiveWorkbook
' Copy the Workbook level Event handlers
Set WBCodeMod1 =
ThisWorkbook.VBProject.VBComponents("ThisWorkbook") _
.CodeModule
Set WBCodeMod2 =
WBN.VBProject.VBComponents("ThisWorkbook").CodeModule
WBCodeMod2.InsertLines 1, WBCodeMod1.Lines(1,
WBCodeMod1.countoflines)
End Sub

Next steps
The utilities in this chapter aren’t Excel’s only source of programming power. User-defined
functions (UDFs) enable you to create complex custom formulas to cover what Excel’s
functions don’t. In Chapter 14, “Sample user-defined functions,” you’ll find out how to create
and share your own functions.

CHAPTER 14
Sample user-defined functions

In this chapter, you will:

Learn how to create and share user-defined functions

Review useful custom functions

Excel provides many built-in functions. However, sometimes you need a complex custom
function that Excel doesn’t offer, such as a function that sums a range of cells based on their
interior color.

So, what do you do? You could use the calculator next to you as you work your way down
your list—but be careful not to enter the same number twice! Or, you could convert the data set
to a table, set a SUBTOTAL function for visible cells in the total row, and filter by color. Both
methods are time-consuming and prone to accidents. What to do?

You could write a procedure to solve this problem—after all, that’s what this book is about.
However, you have another option: user-defined functions (UDFs).

Creating user-defined functions
You can create your own functions in VBA and then use them just like you use Excel’s built-in
functions, such as SUM. After the custom function is created, a user needs to know only the
function name and its arguments.

Note You can enter UDFs only into standard modules. Sheet and ThisWorkbook
modules are a special type of module. If you enter a UDF in either of those
modules, Excel does not recognize that you are creating a UDF.

Building a simple custom function

To learn the basics of UDFs, you’ll build a custom function to add two values. After you’ve
created it, you’ll use it on a worksheet.

Insert a new module in the VB Editor. Type the following function into the module. It is a

function called ADD that totals two numbers in different cells. The function has two arguments:

Add(Number1,Number2)

Number1 is the first number to add; Number2 is the second number to add:

Click here to view code image
Function Add(Number1 As Integer, Number2 As Integer) As Integer
Add = Number1 + Number2
End Function

Let’s break this down:

The function name is ADD.

Arguments are placed in parentheses after the name of the function. This example has
two arguments: Number1 and Number2.

As Integer defines the variable type of the result as a whole number.

ADD = Number1 + Number2 is the result of the function that is returned.

Here is how to use the function on a worksheet:

1. Type numbers into cells A1 and A2.

2. Select cell A3.

3. Press Shift+F3 to open the Insert Function dialog box, or choose Formulas, Insert
Function.

4. In the Insert Function dialog box, select the User Defined category (see Figure 14-1).

5. Select the ADD function.

6. In the first argument box, select cell A1 (see Figure 14-2).

7. In the second argument box, select cell A2.

8. Click OK.

Congratulations! You have created your first custom function.

FIGURE 14-1 You can find your UDFs under the User Defined category of the Insert Function dialog box.

FIGURE 14-2 You can use the Function Arguments dialog box to enter your arguments.

Note You can easily share custom functions because users are not required to
know how the function works. See the next section, “Sharing UDFs,” for more
information.

Most of the functions used on sheets can also be used in VBA and vice versa. However, in
VBA you call the UDF (ADD) from a procedure (Addition), like this:

Click here to view code image
Sub Addition ()
Dim Total as Integer
Total = Add (1,10) 'we use a user-defined function Add
MsgBox "The answer is: " & Total
End Sub

Sharing UDFs
Where you store a UDF affects how you can share it:

Personal.xlsb—Store a UDF in Personal.xlsb if it is just for your use and won’t be
used in a workbook opened on another computer.

Workbook—Store a UDF in the workbook in which it is being used if it needs to be
distributed to many people.

Add-in—Distribute a UDF via an add-in if the workbook is to be shared among a select
group of people. See Chapter 26, “Creating add-ins,” for information on how to create an
add-in.

Template—Store a UDF in a template if it needs to be used to create several workbooks
and the workbooks are distributed to many people.

Useful custom Excel functions
The sections that follow include a sampling of functions that can be useful in the everyday
Excel world.

Note This chapter shows functions donated by several Excel programmers.
These are functions that they have found useful and that they hope will also be
of help to you.

Different programmers have different programming styles. We did not rewrite the
submissions. As you review the lines of code, you might notice different ways of doing
the same task, such as referring to ranges.

Setting the current workbook’s name in a cell

The following function sets the name of the active workbook in a cell, as shown in Figure 14-3:

MyName()

FIGURE 14-3 You can use a UDF to show the file name or the file name with the directory path.

No arguments are used with this function:

Click here to view code image
Function MyName() As String
 MyName = ThisWorkbook.Name
End Function

Setting the current workbook’s name and file path in a cell

A variation of the preceding function, the following function sets the file path and name of the
active workbook in a cell, as shown previously in Figure 14-3:

MyFullName()

No arguments are used with this function:

Click here to view code image
Function MyFullName() As String
 MyFullName = ThisWorkbook.FullName
End Function

Checking whether a workbook is open

There might be times when you need to check whether a workbook is open. The following
function returns True if a workbook is open and False if it is not:

BookOpen(Bk)

The argument is Bk, which is the name of the workbook being checked:

Click here to view code image
Function BookOpen(Bk As String) As Boolean

Dim T As Excel.Workbook
Err.Clear 'clears any errors
On Error Resume Next 'if the code runs into an error, it skips
it and
'continues
Set T = Application.Workbooks(Bk)
BookOpen = Not T Is Nothing
'If the workbook is open, then T will hold the workbook object
and
'therefore will NOT be Nothing
Err.Clear
On Error GoTo 0
End Function

Here is an example of using the function:

Click here to view code image
Sub OpenAWorkbook()
Dim IsOpen As Boolean
Dim BookName As String
BookName = "ProjectFilesChapter14.xlsm"
IsOpen = BookOpen(BookName) 'calling our function - don't forget
the 'parameter
If IsOpen Then

MsgBox BookName & " is already open!"
Else

Workbooks.Open BookName
End If
End Sub

Checking whether a sheet in an open workbook exists

This function requires that the workbook(s) it checks be open. It returns True if the sheet is
found and False if it is not:

SheetExists(SName, WBName)

These are the arguments:

SName—The name of the sheet being searched

WBName—(Optional) The name of the workbook that contains the sheet

Here is the function. If the workbook argument is not provided, it uses the active workbook:

Click here to view code image
Function SheetExists(SName As String, Optional WB As Workbook)
As Boolean
 Dim WS As Worksheet
 ' Use active workbook by default
 If WB Is Nothing Then

Set WB = ActiveWorkbook
 End If
 On Error Resume Next
 SheetExists = CBool(Not WB.Sheets(SName) Is Nothing)
 On Error GoTo 0
End Function

Note CBool is a function that converts the expression between the parentheses to
a Boolean value.

Here is an example of using this function:

Click here to view code image
Sub CheckForSheet()
Dim ShtExists As Boolean
ShtExists = SheetExists("Sheet9")
'notice that only one parameter was passed; the workbook name is
optional
If ShtExists Then

MsgBox "The worksheet exists!"
Else

MsgBox "The worksheet does NOT exist!"
End If
End Sub

Counting the number of workbooks in a directory

This function searches the current directory, and its subfolders if you want, counting all Excel
macro workbook files (.xlsm), including hidden files, or just the ones starting with a string of
letters:

NumFilesInCurDir (LikeText, Subfolders)

These are the arguments:

LikeText—(Optional) A string value to search for; must include an asterisk (*), such as
Mr*

Subfolders—(Optional) True to search subfolders, False (default) not to

Note FileSystemObject requires the Microsoft Scripting Runtime reference
library. To enable this setting, go to Tools, References and check Microsoft
Scripting Runtime.

This function is a recursive function, which means it calls itself until a specific condition is
met—in this case, until all subfolders are processed. Here is the function:

Click here to view code image
Function NumFilesInCurDir(Optional strInclude As String = "", _
Optional blnSubDirs As Boolean = False)
Dim fso As FileSystemObject
Dim fld As Folder
Dim fil As File
Dim subfld As Folder
Dim intFileCount As Integer
Dim strExtension As String
strExtension = "XLSM"
Set fso = New FileSystemObject
Set fld = fso.GetFolder(ThisWorkbook.Path)
 For Each fil In fld.Files

If UCase(fil.Name) Like "*" & UCase(strInclude) & "*." & _
UCase(strExtension) Then
intFileCount = intFileCount + 1

End If
Next fil
If blnSubDirs Then

For Each subfld In fld.Subfolders
intFileCount = intFileCount + NumFilesInCurDir(strInclude,
True)

Next subfld
End If
NumFilesInCurDir = intFileCount
Set fso = Nothing
End Function

Here is an example of using this function:

Click here to view code image
Sub CountMyWkbks()
Dim MyFiles As Integer
MyFiles = NumFilesInCurDir("MrE*", True)
MsgBox MyFiles & " file(s) found"
End Sub

Retrieving the user ID

Ever need to keep a record of who saves changes to a workbook? With the USERID function,
you can retrieve the name of the user who is logged in to a computer. Combine it with the
function discussed in the “Retrieving permanent date and time” section, later in this chapter,
and you have a nice log file. You can also use the USERID function to set up user rights to a
workbook:
WinUserName ()

No arguments are used with this function.

Note The USERID function is an advanced function that uses the application
programming interface (API), which is reviewed in Chapter 23, “The Windows
Application Programming Interface (API).” The code is specific to 32-bit Excel.

If you are running 64-bit Excel, refer to Chapter 23 for changes to make it work.

This first section (Private declarations) must be at the top of the module:

Click here to view code image
Private Declare Function WNetGetUser Lib "mpr.dll" Alias
"WNetGetUserA" _
(ByVal lpName As String, ByVal lpUserName As String, _
lpnLength As Long) As Long
Private Const NO_ERROR = 0
Private Const ERROR_NOT_CONNECTED = 2250&
Private Const ERROR_MORE_DATA = 234
Private Const ERROR_NO_NETWORK = 1222&
Private Const ERROR_EXTENDED_ERROR = 1208&
Private Const ERROR_NO_NET_OR_BAD_PATH = 1203&

You can place the following section of code anywhere in the module, as long as it is below

the preceding section:

Click here to view code image
Function WinUsername() As String
'variables
Dim strBuf As String, lngUser As Long, strUn As String
'clear buffer for user name from api func
strBuf = Space$(255)
'use api func WNetGetUser to assign user value to lngUser
'will have lots of blank space
lngUser = WNetGetUser("", strBuf, 255)
'if no error from function call
If lngUser = NO_ERROR Then

'clear out blank space in strBuf and assign val to function
strUn = Left(strBuf, InStr(strBuf, vbNullChar) - 1)
WinUsername = strUn

Else
'error, give up

WinUsername = "Error :" & lngUser
 End If
End Function

Here’s an example of using this function:

Click here to view code image
Sub CheckUserRights()
Dim UserName As String
UserName = WinUsername
Select Case UserName
Case "Administrator"

MsgBox "Full Rights"
Case "Guest"

MsgBox "You cannot make changes"
Case Else

MsgBox "Limited Rights"
End Select
End Sub

Retrieving date and time of last save

This function retrieves the saved date and time of any workbook, including the current one:

LastSaved(FullPath)

Note The cell must be formatted for date and time to display the date/time
correctly.

The argument is FullPath, a string showing the full path and file name of the file in
question:

Click here to view code image
Function LastSaved(FullPath As String) As Date
LastSaved = FileDateTime(FullPath)
End Function

Retrieving permanent date and time

Because of the volatility of the NOW function, it isn’t very useful for stamping a worksheet with
the creation or editing date. Every time the workbook is opened or recalculated, the result of the
NOW function is updated. The following UDF uses the NOW function. However, because you
need to reenter the cell to update the function, it is much less volatile (see Figure 14-4).

No arguments are used with this function:

DateTime()

FIGURE 14-4 Even after forcing a recalculation, the DateTime() cell shows the time when it was originally placed in
the cell, whereas NOW() shows the current system time.

Note The cell must be formatted properly to display the date/time.

Here’s is the function:

Click here to view code image
Function DateTime()
DateTime = Now
End Function

Validating an email address

If you manage an email subscription list, you might receive invalid email addresses, such as
addresses with a space before the “at” symbol (@). The IsEmailValid function can check
addresses and confirm that they are proper email addresses (see Figure 14-5):

IsEmailValid (strEmail)

FIGURE 14-5 Validating email addresses.

Note This function cannot verify that an email address is an existing one. It only
checks the syntax to verify that the address might be legitimate.

The function’s only argument is strEmail, an email address:

Click here to view code image
Function IsEmailValid(strEmail As String) As Boolean
Dim strArray As Variant
Dim strItem As Variant
Dim i As Long
Dim c As String
Dim blnIsItValid As Boolean
blnIsItValid = True
'count the @ in the string
i = Len(strEmail) - Len(Application.Substitute(strEmail, "@",
""))
'if there is more than one @, invalid email
If i <> 1 Then IsEmailValid = False: Exit Function
ReDim strArray(1 To 2)
'the following two lines place the text to the left and right
'of the @ in their own variables
strArray(1) = Left(strEmail, InStr(1, strEmail, "@", 1) - 1)
strArray(2) = Application.Substitute(Right(strEmail,
Len(strEmail) - _
 Len(strArray(1))), "@", "")

For Each strItem In strArray
'verify there is something in the variable.
'If there isn't, then part of the email is missing
If Len(strItem) <= 0 Then

blnIsItValid = False
IsEmailValid = blnIsItValid
Exit Function

End If
'verify only valid characters in the email
For i = 1 To Len(strItem)

'lowercases all letters for easier checking
c = LCase(Mid(strItem, i, 1))

If InStr("abcdefghijklmnopqrstuvwxyz_-.", c) <= 0 _
And Not IsNumeric(c) Then
blnIsItValid = False
IsEmailValid = blnIsItValid
Exit Function

End If
Next i
'verify that the first character of the left and right
aren't periods
If Left(strItem, 1) = "." Or Right(strItem, 1) = "." Then

blnIsItValid = False
IsEmailValid = blnIsItValid
Exit Function

End If
Next strItem
'verify there is a period in the right half of the address
If InStr(strArray(2), ".") <= 0 Then

Click here to view code image
blnIsItValid = False
IsEmailValid = blnIsItValid
Exit Function

End If
i = Len(strArray(2)) - InStrRev(strArray(2), ".") 'locate the
period
'verify that the number of letters corresponds to a valid domain
'extension
If i <> 2 And i <> 3 And i <> 4 Then

blnIsItValid = False
IsEmailValid = blnIsItValid

Exit Function
End If
'verify that there aren't two periods together in the email
If InStr(strEmail, "..") > 0 Then

blnIsItValid = False
IsEmailValid = blnIsItValid
Exit Function

End If
IsEmailValid = blnIsItValid
End Function

Summing cells based on interior color

Let’s say you have created a list of how much each of your clients owes. From this list, you
want to sum just the cells to which you have applied a cell fill to indicate clients who are 30
days past due. This function sums cells based on their fill color:

SumColor(CellColor, SumRange)

Note Cells colored by conditional formatting will not work with this function;
the cells must have an interior color.

These are the arguments:

CellColor—The address of a cell with the target color

SumRange—The range of cells to be searched

Here is the function’s code:

Click here to view code image
Function SumByColor(CellColor As Range, SumRange As Range)
Dim myCell As Range
Dim iCol As Integer
Dim myTotal
iCol = CellColor.Interior.ColorIndex 'get the target color
For Each myCell In SumRange 'look at each cell in the designated
range
'if the cell color matches the target color
If myCell.Interior.ColorIndex = iCol Then

'add the value in the cell to the total

myTotal = WorksheetFunction.Sum(myCell) + myTotal
End If

Next myCell
SumByColor = myTotal
End Function

Figure 14-6 shows a sample worksheet using this function.

FIGURE 14-6 The function sums cells based on interior color.

Counting unique values

How many times have you had a long list of values and needed to know how many were unique
values? This function goes through a range and provides that information, as shown in Figure
14-7:

NumUniqueValues(Rng)

FIGURE 14-7 The function counts the number of unique values in a range.

The argument is Rng, the range to search unique values.

Here is the function’s code:

Click here to view code image
Function NumUniqueValues(Rng As Range) As Long
Dim myCell As Range
Dim UniqueVals As New Collection
Application.Volatile 'forces the function to recalculate when
the range 'changes
On Error Resume Next
'the following places each value from the range into a
collection
'because a collection, with a key parameter, can contain only
unique
'values,there will be no duplicates. The error statements force
the
'program to continue when the error messages appear for
duplicate
'items in the collection
For Each myCell In Rng

UniqueVals.Add myCell.Value, CStr(myCell.Value)
Next myCell
On Error GoTo 0
'returns the number of items in the collection
NumUniqueValues = UniqueVals.Count
End Function

Removing duplicates from a range

No doubt you have also had a list of items and needed to list only the unique values. The
following function goes through a range and stores only the unique values:

UniqueValues (OrigArray)

The argument is OrigArray, an array from which the duplicates will be removed.

This first section (Const declarations) must be at the top of the module:

Click here to view code image
Const ERR_BAD_PARAMETER = "Array parameter required"
Const ERR_BAD_TYPE = "Invalid Type"
Const ERR_BP_NUMBER = 20000
Const ERR_BT_NUMBER = 20001

You can place the following section of code anywhere in the module, as long as it is below

the code just shown:

Click here to view code image
Public Function UniqueValues(ByVal OrigArray As Variant) As
Variant
 Dim vAns() As Variant
 Dim lStartPoint As Long
 Dim lEndPoint As Long
 Dim lCtr As Long, lCount As Long
 Dim iCtr As Integer
 Dim col As New Collection
 Dim sIndex As String
 Dim vTest As Variant, vItem As Variant
 Dim iBadVarTypes(4) As Integer
'Function does not work if array element is one of the
'following types
 iBadVarTypes(0) = vbObject
 iBadVarTypes(1) = vbError
 iBadVarTypes(2) = vbDataObject
 iBadVarTypes(3) = vbUserDefinedType
 iBadVarTypes(4) = vbArray
'Check to see whether the parameter is an array
 If Not IsArray(OrigArray) Then
Err.Raise ERR_BP_NUMBER, , ERR_BAD_PARAMETER
Exit Function

 End If
 lStartPoint = LBound(OrigArray)
 lEndPoint = UBound(OrigArray)
 For lCtr = lStartPoint To lEndPoint

vItem = OrigArray(lCtr)
'First check to see whether variable type is acceptable

Click here to view code image
For iCtr = 0 To UBound(iBadVarTypes)

If VarType(vItem) = iBadVarTypes(iCtr) Or _
VarType(vItem) = iBadVarTypes(iCtr) + vbVariant Then

Err.Raise ERR_BT_NUMBER, , ERR_BAD_TYPE
Exit Function

End If
Next iCtr
'Add element to a collection, using it as the index
'if an error occurs, the element already exists

sIndex = CStr(vItem)
'first element, add automatically
If lCtr = lStartPoint Then

col.Add vItem, sIndex
ReDim vAns(lStartPoint To lStartPoint) As Variant
vAns(lStartPoint) = vItem

Else
On Error Resume Next
col.Add vItem, sIndex
If Err.Number = 0 Then
lCount = UBound(vAns) + 1
ReDim Preserve vAns(lStartPoint To lCount)
vAns(lCount) = vItem

End If
End If
Err.Clear

 Next lCtr
 UniqueValues = vAns
End Function

Here is an example of using this function:

Click here to view code image
Function nodupsArray(rng As Range) As Variant
 Dim arr1() As Variant
 If rng.Columns.Count > 1 Then Exit Function
 arr1 = Application.Transpose(rng)
 arr1 = UniqueValues(arr1)
 nodupsArray = Application.Transpose(arr1)
End Function

Finding the first nonzero-length cell in a range

Suppose you have imported a large list of data with many empty cells. Here is a function that
evaluates a range of cells and returns the value of the first nonzero-length cell:

FirstNonZeroLength(Rng)

The argument is Rng, the range to search.

Here’s the function:

Click here to view code image

Function FirstNonZeroLength(Rng As Range)
Dim myCell As Range
FirstNonZeroLength = 0#
For Each myCell In Rng

If Not IsNull(myCell) And myCell <> "" Then
FirstNonZeroLength = myCell.Value
Exit Function

End If
Next myCell
FirstNonZeroLength = myCell.Value
End Function

Figure 14-8 shows the function on a sample worksheet.

FIGURE 14-8 You can use a user-defined function to find the value of the first nonzero-length cell in a range.

Substituting multiple characters

Excel has a substitute function, but it is a value-for-value substitution. What if you have several
characters you need to substitute? Figure 14-9 shows several examples of how this function
works:

MSubstitute(trStr, frStr, toStr)

FIGURE 14-9 You can substitute multiple characters in a cell.

These are the arguments:

trStr—The string to be searched

frStr—The text being searched for

toStr—The replacement text

Here’s the function’s code:

Click here to view code image
Function MSubsitute(ByVal trStr As Variant, frStr As String, _
 toStr As String) As Variant
Dim iCol As Integer
Dim j As Integer
Dim Ar As Variant

Click here to view code image
Dim vfr() As String
Dim vto() As String
ReDim vfr(1 To Len(frStr))
ReDim vto(1 To Len(frStr))
'place the strings into an array
For j = 1 To Len(frStr)

vfr(j) = Mid(frStr, j, 1)
If Mid(toStr, j, 1) <> "" Then
vto(j) = Mid(toStr, j, 1)

Else
vto(j) = ""

End If
Next j
'compare each character and substitute if needed
If IsArray(trStr) Then

Ar = trStr
For iRow = LBound(Ar, 1) To UBound(Ar, 1)

For iCol = LBound(Ar, 2) To UBound(Ar, 2)
For j = 1 To Len(frStr)
Ar(iRow, iCol) = Application.Substitute(Ar(iRow,
iCol), _

vfr(j), vto(j))
Next j

Next iCol
Next iRow

Else
Ar = trStr

For j = 1 To Len(frStr)
Ar = Application.Substitute(Ar, vfr(j), vto(j))

Next j
End If
MSUBSTITUTE = Ar
End Function

Note The toStr argument is assumed to be the same length as frStr. If it isn’t,
the remaining characters are considered null (""). The function is case sensitive.
To replace all instances of a, use a and A. You cannot replace one character with

two characters. For example, this:

Click here to view code image

=MSUBSTITUTE("This is a test","i","$@")

results in this:

"Th$s $s a test"

Retrieving numbers from mixed text

This function extracts and returns numbers from text that is a mixture of numbers and letters:

RetrieveNumbers (myString)

The argument is myString, the text containing the numbers to be extracted.

Here’s the function’s code:

Click here to view code image
Function RetrieveNumbers(myString As String)
Dim i As Integer, j As Integer
Dim OnlyNums As String
'starting at the END of the string and moving backwards (Step
-1)
For i = Len(myString) To 1 Step -1

'IsNumeric is a VBA function that returns True if a
variable is a number
'When a number is found, it is added to the OnlyNums string

If IsNumeric(Mid(myString, i, 1)) Then
j = j + 1
OnlyNums = Mid(myString, i, 1) & OnlyNums

End If
If j = 1 Then OnlyNums = CInt(Mid(OnlyNums, 1, 1))

Next i
RetrieveNumbers = CLng(OnlyNums)
End Function

Converting week number into date

Have you ever received a spreadsheet report in which all the headers showed the week number?
This can be confusing because you probably wouldn’t know what Week 15 actually is. You
would have to get out your calendar and count the weeks. This problem is exacerbated if you
need to count weeks in a previous year. In this case, you need a nice little function that converts
Week ## Year into the date of a particular day in a given week, as shown in Figure 14-10.

FIGURE 14-10 You can convert a week number into a date that’s more easily referenced.

Note The result must be formatted as a date.

The argument is Str, the week to be converted, in “Week ## YYYY” format.

Here’s the function’s code:

Click here to view code image
Function ConvertWeekDay(Str As String) As Date
Dim Week As Long
Dim FirstMon As Date
Dim TStr As String
FirstMon = DateSerial(Right(Str, 4), 1, 1)
FirstMon = FirstMon - FirstMon Mod 7 + 2

TStr = Right(Str, Len(Str) - 5)
Week = Left(TStr, InStr(1, TStr, " ", 1)) + 0
ConvertWeekDay = FirstMon + (Week - 1) * 7
End Function

Extracting a single element from a delimited string

Say that you need to paste a column of delimited data. You could use Excel’s Text To Columns
feature, but you need only an element or two from each cell. Text To Columns parses the entire
thing. In this case, you need a function that lets you specify the number of the element in a
string that you need, as shown in Figure 14-11:

StringElement(str,chr,ind)

FIGURE 14-11 This function extracts a single element from delimited text.

These are the arguments:

str—The string to be parsed

chr—The delimiter

ind—The position of the element to be returned

Here’s the function’s code:

Click here to view code image
Function StringElement(str As String, chr As String, ind As
Integer)
Dim arr_str As Variant
arr_str = Split(str, chr)
StringElement = arr_str(ind - 1)
End Function

Sorting and concatenating

The following function enables you to take a column of data, sort it by numbers and then by

letters, and concatenate it using a comma (,) as the delimiter (see Figure 14-12). Note that since
the numbers are treated as strings, they are sorted lexicographically (all numbers that start with
1, then numbers that start with 2, etc.). For example, if sorting 1,2,10, you would actually get
1,10,2 because 10 starts with a 1, which comes before 2:

SortConcat(Rng)

FIGURE 14-12 This function sorts and concatenates a range of variables.

The argument is Rng, the range of data to be sorted and concatenated. SortConcat calls
another procedure, BubbleSort, that must be included.

Here’s the main function:

Click here to view code image
Function SortConcat(Rng As Range) As Variant
Dim MySum As String, arr1() As String
Dim j As Integer, i As Integer
Dim cl As Range
Dim concat As Variant
On Error GoTo FuncFail:
'initialize output
SortConcat = 0#
'avoid user issues
If Rng.Count = 0 Then Exit Function
'get range into variant variable holding array
ReDim arr1(1 To Rng.Count)
'fill array

i = 1
For Each cl In Rng

arr1(i) = cl.Value
i = i + 1

Next
'sort array elements
Call BubbleSort(arr1)
'create string from array elements
For j = UBound(arr1) To 1 Step -1

If Not IsEmpty(arr1(j)) Then
MySum = arr1(j) & ", " & MySum

End If
Next j
'assign value to function
SortConcat = Left(MySum, Len(MySum) - 1)
'exit point
concat_exit:
Exit Function
'display error in cell
FuncFail:
SortConcat = Err.Number & " - " & Err.Description
Resume concat_exit
End Function

The following function is the ever-popular BubbleSort. Many developers use this program
to do a simple sort of data:

Click here to view code image
Sub BubbleSort(List() As String)
' Sorts the List array in ascending order
Dim First As Integer, Last As Integer
Dim i As Integer, j As Integer
Dim Temp
First = LBound(List)
Last = UBound(List)
For i = First To Last - 1
For j = i + 1 To Last

If List(i) > List(j) Then
Temp = List(j)
List(j) = List(i)
List(i) = Temp

End If

Next j
Next i
End Sub

Sorting numeric and alpha characters

This function takes a mixed range of numeric and alpha characters and sorts them—first
numerically and then alphabetically:

sorter(Rng)

The result is placed in an array that can be displayed on a worksheet by using an array
formula, as shown in Figure 14-13.

FIGURE 14-13 This function sorts a mixed alphanumeric list.

The argument is Rng, the range to be sorted.

The function uses the following two procedures to sort the data in the range:

Click here to view code image
Public Sub QuickSort(ByRef vntArr As Variant, _
 Optional ByVal lngLeft As Long = -2, _
 Optional ByVal lngRight As Long = -2)
Dim i, j, lngMid As Long
Dim vntTestVal As Variant

If lngLeft = -2 Then lngLeft = LBound(vntArr)
If lngRight = -2 Then lngRight = UBound(vntArr)
If lngLeft < lngRight Then
lngMid = (lngLeft + lngRight) \ 2
vntTestVal = vntArr(lngMid)
i = lngLeft
j = lngRight
Do

Do While vntArr(i) < vntTestVal
i = i + 1

Loop
Do While vntArr(j) > vntTestVal
j = j - 1

Loop
If i <= j Then
Call SwapElements(vntArr, i, j)
i = i + 1
j = j - 1

End If
Loop Until i > j
If j <= lngMid Then

Call QuickSort(vntArr, lngLeft, j)
Call QuickSort(vntArr, i, lngRight)

Else
Call QuickSort(vntArr, i, lngRight)
Call QuickSort(vntArr, lngLeft, j)

End If
End If
End Sub
Private Sub SwapElements(ByRef vntItems As Variant, _

ByVal lngItem1 As Long, _
ByVal lngItem2 As Long)

Dim vntTemp As Variant
vntTemp = vntItems(lngItem2)
vntItems(lngItem2) = vntItems(lngItem1)
vntItems(lngItem1) = vntTemp
End Sub

Here’s an example of using this function:

Click here to view code image
Function sorter(Rng As Range) As Variant

'returns an array
Dim arr1() As Variant
If Rng.Columns.Count > 1 Then Exit Function
arr1 = Application.Transpose(Rng)
QuickSort arr1
sorter = Application.Transpose(arr1)
End Function

Searching for a string within text

Ever needed to find out which cells contain a specific string of text? This function can search
strings in a range, looking for specified text:

ContainsText(Rng,Text)

It returns a result that identifies which cells contain the text, as shown in Figure 14-14.

FIGURE 14-14 The ContainsText function returns a result that identifies which cells contain a specified string.

These are the arguments:

Rng—The range in which to search

Text—The text for which to search

Here’s the function’s code:

Click here to view code image
Function ContainsText(Rng As Range, Text As String) As String
Dim T As String
Dim myCell As Range
For Each myCell In Rng 'look in each cell
If InStr(myCell.Text, Text) > 0 Then 'look in the string for
the text

If Len(T) = 0 Then
'if the text is found, add the address to my result
T = myCell.Address(False, False)

Else

T = T & "," & myCell.Address(False, False)
End If

End If
Next myCell
ContainsText = T
End Function

Reversing the contents of a cell

This function is mostly fun, but you might find it useful—it reverses the contents of a cell:

ReverseContents(myCell, IsText)

These are the arguments:

myCell—The specified cell

IsText—(Optional) Whether the cell value should be treated as text (default) or a
number

Here’s the function’s code:

Click here to view code image
Function ReverseContents(myCell As Range, _
 Optional IsText As Boolean = True)
Dim i As Integer
Dim OrigString As String, NewString As String
OrigString = Trim(myCell) 'remove leading and trailing spaces
For i = 1 To Len(OrigString)

'by adding the variable NewString to the character,
'instead of adding the character to NewString the string is
reversed
NewString = Mid(OrigString, i, 1) & NewString

Next i
If IsText = False Then

ReverseContents = CLng(NewString)
Else

ReverseContents = NewString
End If
End Function

Returning the addresses of duplicate maximum values

MAX finds and returns the maximum value in a range, but it doesn’t tell you whether there is
more than one maximum value. This function returns the addresses of the maximum values in a
range, as shown in Figure 14-15:

ReturnMaxs(Rng)

FIGURE 14-15 This function returns the addresses of all maximum values in a range.

The argument is Rng, the range to search for the maximum values.

Here’s the function’s code:

Click here to view code image
Function ReturnMaxs(Rng As Range) As String
Dim Mx As Double
Dim myCell As Range
'if there is only one cell in the range, then exit
If Rng.Count = 1 Then ReturnMaxs = Rng.Address(False, False): _
 Exit Function
Mx = Application.Max(Rng) 'uses Excel's Max to find the max in
the range
'Because you now know what the max value is,
'search the range to find matches and return the address
For Each myCell In Rng
If myCell = Mx Then

If Len(ReturnMaxs) = 0 Then
ReturnMaxs = myCell.Address(False, False)

Else
ReturnMaxs = ReturnMaxs & ", " & myCell.Address(False,
False)

End If

End If
Next myCell
End Function

Returning a hyperlink address

Let’s say that you’ve received a spreadsheet containing a list of hyperlinked information. You
want to see the actual links, not the descriptive text. You could just right-click a hyperlink and
select Edit Hyperlink, but you want something more permanent. This function extracts the
hyperlink address, as shown in Figure 14-16:

GetAddress(HyperlinkCell)

FIGURE 14-16 You can extract the hyperlink address from behind a hyperlink.

The argument is HyperlinkCell, the hyperlinked cell from which you want the address
extracted.

Here’s the function’s code:

Click here to view code image
Function GetAddress(HyperlinkCell As Range)
 GetAddress = Replace(HyperlinkCell.Hyperlinks(1).Address,
"mailto:", "")
End Function

Returning the column letter of a cell address

You can use CELL("Col") to return a column number, but what if you need the column letter?
This function extracts the column letter from a cell address, as shown in Figure 14-17:

ColName(Rng)

FIGURE 14-17 You can get the column letter of a cell address.

The argument is Rng, the cell for which you want the column letter.

Here’s the function’s code:

Click here to view code image
Function ColName(Rng As Range) As String
ColName = Left(Rng.Range("A1").Address(True, False), _
 InStr(1, Rng.Range("A1").Address(True, False), "$", 1) - 1)
End Function

Using static random

The function RAND can be very useful for creating random numbers, but it constantly
recalculates. What if you need random numbers but don’t want them to change constantly? The
following function places a random number, but the number changes only if you force the cell
to recalculate, as shown in Figure 14-18:

StaticRAND()

FIGURE 14-18 You can produce random numbers that are not quite so volatile as the numbers created with RAND.

There are no arguments for this function.

Here’s the function’s code:

Click here to view code image
Function StaticRAND() As Double
Randomize
StaticRAND = Rnd
End Function

Using Select...Case on a worksheet

At some point, you have probably nested an If...Then...Else on a worksheet to return a
value. The Select...Case statement available in VBA makes this a lot easier, but you can’t
use Select...Case statements in a worksheet formula. Instead, you can create a UDF (see
Figure 14-19).

FIGURE 14-19 The ExcelExperience function uses the Select...Case structure rather than nested If...Then
statements.

This example takes the user input and returns a response, as shown in Figure 14-19.
Although you could use the following formula instead, consider how long it could get if you
had more options. Or what if you needed to compare the results of a calculation? You would
have to do the calculation for each logical comparison.

Click here to view code image

=IF(E3="yes","Well done! Please continue to question
2",IF(E3="no","Check out Chapter 12 for some help. Please skip
to question 10", "Please clarify your response in the box
below"))

Because Select...Case is case sensitive, I’ve developed the habit of always using
uppercase (UCase) when comparing strings. Here is the code:

Click here to view code image
Function ExcelExperience(ByVal UserResponse As String) As String
Select Case UCase(UserResponse)

Case Is = "YES"
ExcelExperience = "Well done! Please continue to
question 2"

Case Is = "NO"
ExcelExperience = "Check out Chapter 12 for some help. "
& _ "Please skip to question 10"

Case Is = "MAYBE"
ExcelExperience = "Please clarify your response " & _
"in the box below"

Case Else
ExcelExperience = "Invalid response"

End Select
End Function

Next steps

In Chapter 15, “Creating charts,” you’ll find out how spreadsheet charting has become highly
customizable and capable of handling large amounts of data.

CHAPTER 15
Creating charts

In this chapter, you will:

Use .AddChart2 to create a chart

Understand chart styles

Format a chart

Create a combo chart, map chart, and waterfall chart

Export a chart as a graphic

Consider backward compatibility

Two new chart types have been introduced since Excel 2016. The filled map chart and the
funnel chart join the six chart types that were added to Excel 2016.

More importantly, the macro bug that prevented Excel 2016 from creating the new charts
has been fixed. Whether you are creating a new Ivy chart or a legacy chart, you can use this
code:

Click here to view code image
Dim CH As Chart
Set CH = ActiveSheet.Shapes _
.AddChart2(-1, xlRegionMap).Chart

CH.SetSourceData Source:=Range("D1:E7")
' Settings specific to xlRegionMap:
With CH.FullSeriesCollection(1)
.GeoMappingLevel = xlGeoMappingLevelDataOnly
.RegionLabelOption = xlRegionLabelOptionsBestFitOnly
End With

Traditionally, the goal of VBA is to never select anything in the worksheet. Thus, you first
create a chart by using the .AddChart2 method, and then you assign the data to the chart by
using the .SetSourceData method. If you have co-workers who are still using the Perpetual
version of Excel 2016, you will have to create the new charts using this code instead:

Click here to view code image

.Range("A1:B7").Select
ActiveSheet.Shapes.AddChart2(-1, xlWaterfall).Select

The alternative code would be needed for any of the Ivy chart types:

xlBoxWhisker

xlFunnel

xlHistogram

xlPareto

xlRegionMap

xlSunburst

xlTreeMap

xlWaterfall

Note In May 2018, Microsoft announced that Office 365 would offer support for
Power BI Custom Visuals. In the summer of 2018, the Excel team said that there
will not initially be support for inserting these chart types using VBA. It is

possible that Microsoft will add VBA support over time.

Using .AddChart2 to create a chart
Excel 2013 introduced a streamlined .AddChart2 method. With this method, you can specify a
chart style, type, size, and location, as well as a property introduced in Excel 2013:
NewLayout:=True. When you choose NewLayout, you can avoid having a legend in a single-
series chart.

The .AddChart2 method enables you to specify the chart style, chart type, left, top, width,
height, and new layout. This code takes the data from A3:G6 and creates a chart to fill B8:G20:

Click here to view code image
Sub CreateChartUsingAddChart2()
'Create a Clustered Column Chart in B8:G15 from data in A3:G6
Dim CH As Chart
Range("A3:G6").Select
Set CH = ActiveSheet.Shapes.AddChart2(_
Style:=201, _
 XlChartType:=xlColumnClustered, _

 Left:=Range("B8").Left, _
 Top:=Range("B8").Top, _
 Width:=Range("B8:G20").Width, _
 Height:=Range("B8:G20").Height, _
 NewLayout:=True).Chart
End Sub

The values for Left, Top, Width, and Height are in pixels. Here you don’t have to try
to guess that column B is 27.34 pixels from the left edge of the worksheet because the
preceding code finds the .Left property of cell B8 and uses that as the Left of the chart.

Figure 15-1 shows the resulting chart.

FIGURE 15-1 Create a chart to fill a specific range.

Understanding chart styles
Excel 2013 introduced professionally designed chart styles that are shown in the Chart Styles
gallery on the Design tab of the ribbon. These innovative designs use combinations of

properties that have been in Excel for years, but they allow you to apply a group of properties
in a single command. The AddChart2 method enables you to specify the style number to use
when creating the chart. Unfortunately, the style numbering system is fairly complex.

Figure 15-2 shows the Chart Styles gallery for a clustered column chart.

FIGURE 15-2 Apply a chart style to quickly format a chart.

In Figure 15-2, the chart styles are numbered 201 through 215. However, if you switch to a
bar chart, the similar chart styles are numbered 216 to 230.

The styles for the old chart types run from 201 to 353. Styles 354 to 497 are for the eight
new chart types.

Follow these steps to learn the style number associated with your favorite style:

1. Create a chart in the Excel user interface.

2. Open the Chart Styles gallery on the Design tab and choose the chart style you want to
use. Keep the chart selected before moving to Step 3.

Caution You might have a tendency to click away from the chart to
admire the newly selected style. If you do unselect the chart, be certain to
re-select the chart before continuing with the following steps.

3. Switch to VBA by pressing Alt+F11.

4. Open the Immediate window by pressing Ctrl+G.

5. Type ? ActiveChart.ChartStyle in the Immediate window and press Enter. The
resulting number shows you the value to use for the .Style argument in the
.AddChart2 method.

6. If you don’t care what chart style you will get, specify -1 as the .Style argument. This
gives you the default style for that chart type.

It is strange that the .AddChart2 method uses an argument called Style:=201, but if you

want to change the chart style later, you have to use the .ChartStyle property. Both Style
and ChartStyle refer to the chart styles introduced in Excel 2013.

Table 15-1 lists the ChartType argument values.

TABLE 15-1 Chart types for use in VBA

Chart Type Enumerated Constant
Clustered column xlColumnClustered

Stacked column xlColumnStacked

100% stacked column xlColumnStacked100

3-D clustered column xl3DColumnClustered

Stacked column in 3-D xl3DColumnStacked

100% stacked column in 3-D xl3DColumnStacked100

3-D column xl3DColumn

Waterfall xlWaterfall

Tree map xlTreeMap

Sunburst xlSunburst

Histogram xlHistogram

Pareto xlPareto

Box and whisker xlBoxWhisker

Funnel XlFunnel

Filled Region Map XlRegionMap

Line xlLine

Stacked line xlLineStacked

100% stacked line xlLineStacked100

Line with markers xlLineMarkers

Stacked line with markers xlLineMarkersStacked

100% stacked line with markers xlLineMarkersStacked100

Pie xlPie

Pie in 3-D xl3DPie

Pie of pie xlPieOfPie

Exploded pie xlPieExploded

Exploded pie in 3-D xl3DPieExploded

Bar of pie xlBarOfPie

Clustered bar xlBarClustered

Stacked bar xlBarStacked

100% stacked bar xlBarStacked100

Clustered bar in 3-D xl3DBarClustered

Stacked bar in 3-D xl3DBarStacked

100% stacked bar in 3-D xl3DBarStacked100

Area xlArea

Stacked area xlAreaStacked

100% stacked area xlAreaStacked100

3-D area xl3DArea

Stacked area in 3-D xl3DAreaStacked

100% stacked area in 3-D xl3DAreaStacked100

Scatter with only markers xlXYScatter

Scatter with smooth lines and markers xlXYScatterSmooth

Scatter with smooth lines xlXYScatterSmoothNoMarkers

Scatter with straight lines and markers xlXYScatterLines

Scatter with straight lines xlXYScatterLinesNoMarkers

High-low-close xlStockHLC

Open-high-low-close xlStockOHLC

Volume-high-low-close xlStockVHLC

Volume-open-high-low-close xlStockVOHLC

3-D surface xlSurface

Wireframe 3-D surface xlSurfaceWireframe

Contour xlSurfaceTopView

Wireframe contour xlSurfaceTopViewWireframe

Doughnut xlDoughnut

Exploded doughnut xlDoughnutExploded

Bubble xlBubble

Bubble with a 3-D effect xlBubble3DEffect

Radar xlRadar

Radar with markers xlRadarMarkers

Filled radar xlRadarFilled

Excel supports a few other chart types that misrepresent your data, such as the cone and
pyramid charts. For backward compatibility, these are still in VBA, but they are omitted from
Table 15-1. If your manager forces you to create those old chart types, you can find them by

searching for xlChartType enumeration in your favorite search engine.

Formatting a chart
After creating a chart, you will often want to add or move elements of the chart. The following
sections describe code to control the myriad chart elements.

Referring to a specific chart

The macro recorder has an unsatisfactory way of writing code for chart creation. The macro
recorder uses the .AddChart2 method and adds a .Select to the end of the line to select the
chart. The rest of the chart settings then apply to the ActiveChart object. This approach is a
bit frustrating because you are required to do all the chart formatting before you select anything
else in the worksheet. The macro recorder does this because chart names are unpredictable. The
first time you run a macro, the chart might be called Chart 1. But if you run the macro on
another day or on a different worksheet, the chart might be called Chart 3 or Chart 5.

For the most flexibility, you should assign each new chart to a Chart object. Since Excel
2007, the Chart object has existed inside a Shape object.

Ignoring the specifics of the AddChart2 method for a moment, you could use this coding
approach, which captures the Shape object in the SH object variable and then assigns
SH.Chart to the CH object variable:

Click here to view code image
Dim WS as Worksheet
Dim SH as Shape
Dim CH as Chart
Set WS = ActiveSheet
Set SH = WS.Shapes.AddChart2(...)
Set CH = SH.Chart

You can simplify the preceding code by appending .Chart to the end of the AddChart2
method. The following code has one object variable fewer:

Click here to view code image
Dim WS as Worksheet
Dim CH as Chart
Set WS = ActiveSheet
Set CH = WS.Shapes.AddChart2(...).Chart

If you need to modify a preexisting chart—such as a chart that you did not create—and

there is only one shape on the worksheet, you can use this line of code:

Click here to view code image
WS.Shapes(1).Chart.Interior.Color = RGB(0,0,255)

If there are many charts, and you need to find the one with the upper-left corner located in
cell A4, you can loop through all the Shape objects until you find one in the correct location,
like this:

Click here to view code image
For each Sh in ActiveSheet.Shapes
If Sh.TopLeftCell.Address = "A4" then
Sh.Chart.Interior.Color = RGB(0,255,0)
End If
Next Sh

Specifying a chart title

Every chart created with NewLayout:=True has a chart title. When the chart has two or more
series, that title is “Chart Title.” You should plan on changing the chart title to something
useful.

To specify a chart title in VBA, use this code:

Click here to view code image
ActiveChart.ChartTitle.Caption = "Sales by Region"

If you are changing the chart title of a newly created chart that is assigned to the CH object
variable, you can use this:

Click here to view code image
CH.ChartTitle.Caption = "Sales by Region"

This code works if your chart already has a title. If you are not sure that the selected chart
style has a title, you can ensure that the title is present first with this:

Click here to view code image
CH.SetElement msoElementChartTitleAboveChart

Although it is relatively easy to add a chart title and specify the words in the title, it
becomes increasingly complex to change the formatting of the chart title. The following code
changes the font, size, and color of the title:

Click here to view code image
With CH.ChartTitle.Format.TextFrame2.TextRange.Font
.Name = "Rockwell"
.Fill.ForeColor.ObjectThemeColor = msoThemeColorAccent2
.Size = 14
End With

The two axis titles operate the same as the chart title. To change the words, use the
.Caption property. To format the words, use the Format property. Similarly, you can specify
the axis titles by using the Caption property. The following code changes the axis title along
the category axis:

Click here to view code image
CH.SetElement msoElementPrimaryCategoryAxisTitleHorizontal
CH.Axes(xlCategory, xlPrimary).AxisTitle.Caption = "Months"
CH.Axes(xlCategory, xlPrimary).AxisTitle. _
Format.TextFrame2.TextRange.Font.Fill. _
ForeColor.ObjectThemeColor = msoThemeColorAccent2

Applying a chart color

Excel 2013 introduced a ch.ChartColor property that assigns 1 of 26 color themes to a chart.
Assign a value from 1 to 26, but be aware that the order of the colors in the Chart Styles fly-out
menu (see Figure 15-3) has nothing to do with the 26 values.

FIGURE 15-3 Color schemes in the menu are called Color 1, Color 2, and so on but have nothing to do with the VBA
settings.

To understand the ChartColor values, consider the color drop-down menu shown in
Figure 15-4. This drop-down menu offers 10 columns of colors: Background 1, Text 1,
Background 2, Text 2, and then Theme 1 through Theme 6.

Here is a synopsis of the 26 values you can use for ChartColor:

ChartColor 1, 9, and 20 use grayscale colors from column 3. A ChartColor value of
1 starts with a dark gray, then a light gray, then a medium gray. A ChartColor value of
9 starts with a light gray and moves to darker grays. A ChartColor value of 20 starts
with three medium grays, then black, then very light gray, then medium gray.

Value 2 uses the six theme colors in the top row, from left to right.

Values 3 through 8 use a single column of colors. For example, ChartColor = 3 uses
the six colors in Theme 1, from dark to light. ChartColor values of 4 through 8
correspond to Themes 2 through 6.

Value 10 repeats value 2 but adds a light border around the chart element.

Vaues 11 through 13 are the most inventive. They use three theme colors from the top
row combined with the same three theme colors from the bottom row. This produces
light and dark versions of three different colors. ChartColor 11 uses the odd-numbered
themes (1, 3, and 5). ChartColor 12 uses the even-numbered themes. ChartColor 13
uses Themes 4, 5, and 6.

Values 14 through 19 repeat values 3 through 8 but add a light border.

Values 21 through 26 are similar to values 3 through 8, but the colors progress from light
to dark.

FIGURE 15-4 ChartColor combinations include a mix of colors from the current theme.

The following code changes the chart to use varying shades of Themes 4, 5, and 6:
ch.ChartColor = 13

Filtering a chart

In real life, creating charts from tables of data is not always simple. Tables frequently have
totals or subtotals. The table in Figure 15-5 has quarterly total columns intermixed with
monthly values. When you create a chart from this data, the total columns create a bad chart.

To filter a row or column in VBA, you set the new .IsFiltered property to True. The
following code removes the total columns:

Click here to view code image
CH.ChartGroups(1).FullCategoryCollection(4).IsFiltered = True
CH.ChartGroups(1).FullCategoryCollection(8).IsFiltered = True
CH.ChartGroups(1).FullCategoryCollection(12).IsFiltered = True

CH.ChartGroups(1).FullCategoryCollection(16).IsFiltered = True

FIGURE 15-5 The subtotals in this table cause a bad-looking chart.

Using SetElement to emulate changes from the plus icon

When you select a chart, three icons appear to the right of the chart. The top icon is a plus sign.
All the choices in the first- and second-level fly-out menus use the SetElement method in
VBA. Note that the Add Chart Element drop-down menu on the Design tab includes all these
settings, plus Lines and Up/Down Bars.

Note SetElement does not cover all of the choices in the Format task pane that
often appears. See the “Using the Format method to micromanage formatting
options” section later in this chapter to change those settings.

If you do not feel like looking up the proper constant in this book, you can always quickly
record a macro.

The SetElement method is followed by a constant that specifies which menu item to
select. For example, if you want to choose Show Legend At Left, you can use this code:

Click here to view code image
ActiveChart.SetElement msoElementLegendLeft

Table 15-2 shows all the available constants you can use with the SetElement method.
These constants are in roughly the same order in which they appear in the Add Chart Element
drop-down menu.

TABLE 15-2 Constants available with SetElement

Element Group SetElement Constant
Axes msoElementPrimaryCategoryAxisNone

Axes msoElementPrimaryCategoryAxisShow

Axes msoElementPrimaryCategoryAxisWithoutLabels

Axes msoElementPrimaryCategoryAxisReverse

Axes msoElementPrimaryCategoryAxisThousands

Axes msoElementPrimaryCategoryAxisMillions

Axes msoElementPrimaryCategoryAxisBillions

Axes msoElementPrimaryCategoryAxisLogScale

Axes msoElementSecondaryCategoryAxisNone

Axes msoElementSecondaryCategoryAxisShow

Axes msoElementSecondaryCategoryAxisWithoutLabels

Axes msoElementSecondaryCategoryAxisReverse

Axes msoElementSecondaryCategoryAxisThousands

Axes msoElementSecondaryCategoryAxisMillions

Axes msoElementSecondaryCategoryAxisBillions

Axes msoElementSecondaryCategoryAxisLogScaIe

Axes msoElementPrimaryValueAxisNone

Axes msoElementPrimaryValueAxisShow

Axes msoElementPrimaryValueAxisThousands

Axes msoElementPrimaryValueAxisMillions

Axes msoElementPrimaryValueAxisBillions

Axes msoElementPrimaryValueAxisLogScale

Axes msoElementSecondaryValueAxisNone

Axes msoElementSecondaryValueAxisShow

Axes msoElementSecondaryValueAxisThousands

Axes msoElementSecondaryValueAxisMillions

Axes msoElementSecondaryValueAxisBillions

Axes msoElementSecondaryValueAxisLogScale

msoElementSeriesAxisNone

Axes

Axes msoElementSeriesAxisShow

Axes msoElementSeriesAxisReverse

Axes msoElementSeriesAxisWithoutLabeling

Axis Titles msoElementPrimaryCategoryAxisTitleNone

Axis Titles msoElementPrimaryCategoryAxisTitleBelowAxis

Axis Titles msoElementPrimaryCategoryAxisTitleAdjacentToAxis

Axis Titles msoElementPrimaryCategoryAxisTitleHorizontal

Axis Titles msoEIementPrimaryCategoryAxisTitleVertical

Axis Titles msoElementPrimaryCategoryAxisTitleRotated

Axis Titles msoElementSecondaryCategoryAxisTitleAdjacentToAxis

Axis Titles msoElementSecondaryCategoryAxisTitleBelowAxis

Axis Titles msoElementSecondaryCategoryAxisTitleHorizontal

Axis Titles msoElementSecondaryCategoryAxisTitleNone

Axis Titles msoElementSecondaryCategoryAxisTitleRotated

Axis Titles msoElementSecondaryCategoryAxisTitleVertical

Axis Titles msoElementPrimaryValueAxisTitleAdjacentToAxis

Axis Titles msoElementPrimaryValueAxisTitleBelowAxis

Axis Titles msoElementPrimaryValueAxisTitleHorizontal

Axis Titles msoElementPrimaryValueAxisTitleNone

Axis Titles msoElementPrimaryValueAxisTitleRotated

Axis Titles msoElementPrimaryValueAxisTitleVertical

Axis Titles msoElementSecondaryValueAxisTitleBelowAxis

Axis Titles msoElementSecondaryValueAxisTitleHorizontal

Axis Titles msoElementSecondaryValueAxisTitleNone

Axis Titles msoElementSecondaryValueAxisTitleRotated

Axis Titles msoElementSecondaryValueAxisTitleVertical

Axis Titles msoElementSeriesAxisTitleHorizontal

Axis Titles msoElementSeriesAxisTitleNone

Axis Titles msoElementSeriesAxisTitleRotated

Axis Titles msoElementSeriesAxisTitleVertical

Axis Titles msoElementSecondaryValueAxisTitleAdjacentToAxis

Chart Title msoElementChartTitleNone

Chart Title msoElementChartTitleCenteredOverlay

Chart Title msoElementChartTitleAboveChart

Data Labels msoElementDataLabelCallout (new in Excel 2019)

Data Labels msoElementDataLabelCenter

Data Labels msoElementDataLabelInsideEnd

Data Labels msoElementDataLabelNone

Data Labels msoElementDataLabelInsideBase

Data Labels msoElementDataLabelOutSideEnd

Data Labels msoElementDataLabelTop

Data Labels msoElementDataLabelBottom

Data Labels msoElementDataLabelRight

Data Labels msoElementDataLabelLeft

Data Labels msoElementDataLabelShow

Data Labels msoElementDataLabelBestFit

Data Table msoElementDataTableNone

Data Table msoElementDataTableShow

Data Table msoElementDataTableWithLegendKeys

Error Bars msoElementErrorBarNone

Error Bars msoElementErrorBarStandardError

Error Bars msoElementErrorBarPercentage

Error Bars msoElementErrorBarStandardDeviation

GridLines msoElementPrimaryCategoryGridLinesNone

GridLines msoElementPrimaryCategoryGridLinesMajor

GridLines msoElementPrimaryCategoryGridLinesMinor

GridLines msoElementPrimaryCategoryGridLinesMinorMajor

GridLines msoElementSecondaryCategoryGridLinesNone

GridLines msoElementSecondaryCategoryGridLinesMajor

GridLines msoElementSecondaryCategoryGridLinesMinor

GridLines msoElementSecondaryCategoryGridLinesMinorMajor

GridLines msoElementPrimaryValueGridLinesNone

GridLines msoElementPrimaryValueGridLinesMajor

GridLines msoElementPrimaryValueGridLinesMinor

GridLines msoElementPrimaryValueGridLinesMinorMajor

GridLines msoElementSecondaryValueGridLinesNone

GridLines msoElementSecondaryValueGridLinesMajor

GridLines msoElementSecondaryValueGridLinesMinor

GridLines msoElementSecondaryValueGridLinesMinorMajor

GridLines msoElementSeriesAxisGridLinesNone

GridLines msoElementSeriesAxisGridLinesMajor

GridLines msoElementSeriesAxisGridLinesMinor

GridLines msoElementSeriesAxisGridLinesMinorMajor

Legend msoElementLegendNone

Legend msoElementLegendRight

Legend msoElementLegendTop

Legend msoElementLegendLeft

Legend msoElementLegendBottom

Legend msoElementLegendRightOverlay

Legend msoElementLegendLeftOverlay

Lines msoElementLineNone

Lines msoElementLineDropLine

Lines msoElementLineHiLoLine

Lines msoElementLineDropHiLoLine

Lines msoElementLineSeriesLine

Trendline msoElementTrendlineNone

Trendline msoElementTrendlineAddLinear

Trendline msoElementTrendlineAddExponential

Trendline msoElementTrendlineAddLinearForecast

Trendline msoElementTrendlineAddTwoPeriodMovingAverage

Up/Down Bars msoElementUpDownBarsNone

Up/Down Bars msoElementUpDownBarsShow

Plot Area msoElementPlotAreaNone

Plot Area msoElementPlotAreaShow

Chart Wall msoElementChartWallNone

Chart Wall msoElementChartWallShow

Chart Floor msoElementChartFloorNone

Chart Floor msoElementChartFloorShow

Note If you attempt to format an element that is not present, Excel returns a
-2147467259 Method Failed error.

Using SetElement enables you to change chart elements quickly. As an example, charting
gurus say that the legend should always appear to the left or above the chart. Few of the built-in
styles show the legend above the chart. I also prefer to show the values along the axis in
thousands or millions, when appropriate. This is better than displaying three or six zeros on
every line.

The following code handles these settings after you create the chart:

Click here to view code image
Sub UseSetElement()
Dim WS As Worksheet
Dim CH As Chart
Set WS = ActiveSheet
Range("A1:M4").Select
Set CH = WS.Shapes.AddChart2(Style:=201, _
XlChartType:=xlColumnClustered, _
Left:=[B6].Left, _
Top:=[B6].Top, _
NewLayout:=False).Chart
' Set value axis to display thousands
CH.SetElement msoElementPrimaryValueAxisThousands
' move the legend to the top
CH.SetElement msoElementLegendTop
End Sub

Using the format method to micromanage formatting options

The Format tab offers icons for changing colors and effects for individual chart elements.
Although many people call the Shadow, Glow, Bevel, and Material settings “chart junk,” there
are ways in VBA to apply these formats.

Excel 2019 includes an object called the ChartFormat object that contains the settings for
Fill, Glow, Line, PictureFormat, Shadow, SoftEdge, TextFrame2, and ThreeD. You can
access the ChartFormat object by using the Format method on many chart elements. Table
15-3 lists a sampling of chart elements you can format using the Format method.

TABLE 15-3 Chart elements to which formatting applies

Chart Element VBA to Refer to This Chart Element
Chart Title ChartTitle

Axis Title–Category Axes(xlCategory, xlPrimary).AxisTitle

Axis Title–Value Axes(xlValue, xlPrimary).AxisTitle

Legend Legend

Data Labels For Series 1 SeriesCollection(1).DataLabels

Data Labels For Point 2 SeriesCollection(1).DataLabels(2) or

SeriesCollection(1).Points(2).DataLabel

Data Table DataTable

Axes–Horizontal Axes(xlCategory, xlPrimary)

Axes–Vertical Axes(xlValue, xlPrimary)

Axis–Series (Surface Charts
Only)

Axes(xlSeries, xlPrimary)

Major Gridlines Axes(xlValue, xlPrimary).MajorGridlines

Minor Gridlines Axes(xlValue, xlPrimary).MinorGridlines

Plot Area PlotArea

Chart Area ChartArea

Chart Wall Walls

Chart Back Wall BackWall

Chart Side Wall SideWall

Chart Floor Floor

Trendline For Series 1 SeriesCollection(1).TrendLines(1)

Droplines ChartGroups(1).DropLines

Up/Down Bars ChartGroups(1).UpBars

Error Bars SeriesCollection(1).ErrorBars

Series(1) SeriesCollection(1)

Series(1) DataPoint SeriesCollection(1).Points(3)

The Format method is the gateway to settings for Fill, Glow, and so on. Each of those
objects has different options. The following sections provide examples of how to set up each
type of format.

Changing an object’s fill

The Shape Fill drop-down menu on the Format tab enables you to choose a single color, a
gradient, a picture, or a texture for the fill.

To apply a specific color, you can use the RGB (red, green, blue) setting. To create a color,
you specify a value from 0 to 255 for levels of red, green, and blue. The following code applies
a simple blue fill:

Click here to view code image

Dim cht As Chart
Dim upb As UpBars
Set cht = ActiveChart
Set upb = cht.ChartGroups(1).UpBars
upb.Format.Fill.ForeColor.RGB = RGB(0, 0, 255)

If you would like an object to pick up the color from a specific theme accent color, you use
the ObjectThemeColor property. The following code changes the bar color of the first series
to accent color 6, which is an orange color in the Office theme (but might be another color if
the workbook is using a different theme):

Click here to view code image
Sub ApplyThemeColor()
Dim cht As Chart
Dim ser As Series
Set cht = ActiveChart
Set ser = cht.SeriesCollection(1)
ser.Format.Fill.ForeColor.ObjectThemeColor =
msoThemeColorAccent6
End Sub

To apply a built-in texture, you use the PresetTextured method. The following code
applies a green marble texture to the second series. However, you can apply any of the 20
textures:

Click here to view code image
Sub ApplyTexture()
Dim cht As Chart
Dim ser As Series
Set cht = ActiveChart
Set ser = cht.SeriesCollection(2)
ser.Format.Fill.PresetTextured msoTextureGreenMarble
End Sub

Note When you type PresetTextured followed by a space, the VB Editor
offers a complete list of possible texture values.

To fill the bars of a data series with a picture, you use the UserPicture method and
specify the path and file name of an image on the computer, as in the following example:

Click here to view code image
Sub FormatWithPicture()
Dim cht As Chart
Dim ser As Series
Set cht = ActiveChart
Set ser = cht.SeriesCollection(1)
MyPic = "C:\PodCastTitle1.jpg"
ser.Format.Fill.UserPicture MyPic
End Sub

In Excel 2019, you can apply a pattern by using the .Patterned method. Patterns have a
type such as msoPatternPlain, as well as foreground and background colors. The following
code creates dark red vertical lines on a white background:

Click here to view code image
Sub FormatWithPicture()
Dim cht As Chart
Dim ser As Series
Set cht = ActiveChart
Set ser = cht.SeriesCollection(1)
With ser.Format.Fill
.Patterned msoPatternDarkVertical
.BackColor.RGB = RGB(255,255,255)
.ForeColor.RGB = RGB(255,0,0)
End With
End Sub

Caution Code that uses patterns does not work with Excel 2007. Patterns were
removed from Excel 2007, but they were restored in Excel 2010 due to outcry
from fans of patterns.

Gradients are more difficult to specify than fills. Excel 2019 provides three methods that
help you set up the common gradients. The OneColorGradient and TwoColorGradient
methods require that you specify a gradient direction, such as msoGradientFromCorner. You
can then specify one of four styles, numbered 1 through 4, depending on whether you want the
gradient to start at the top left, top right, bottom left, or bottom right. After using a gradient
method, you need to specify the ForeColor and the BackColor settings for the object. The
following macro sets up a two-color gradient using two theme colors:

Click here to view code image

Sub TwoColorGradient()
Dim cht As Chart
Dim ser As Series
Set cht = ActiveChart
Set ser = cht.SeriesCollection(1)
ser.Format.Fill.TwoColorGradient msoGradientFromCorner, 3
ser.Format.Fill.ForeColor.ObjectThemeColor =
msoThemeColorAccent6
ser.Format.Fill.BackColor.ObjectThemeColor =
msoThemeColorAccent2
End Sub

When using the OneColorGradient method, you specify a direction, a style (1 through 4),
and a darkness value between 0 and 1 (0 for darker gradients to 1 for lighter gradients).

When using the PresetGradient method, you specify a direction, a style (1 through 4),
and the type of gradient, such as msoGradientBrass, msoGradientLateSunset, or
msoGradientRainbow. Again, as you are typing this code in the VB Editor, the AutoComplete
tool provides a complete list of the available preset gradient types.

Formatting line settings

The LineFormat object formats either a line or the border around an object. You can change
numerous properties of a line, such as the color, arrows, and dash style.

The following macro formats the trendline for the first series in a chart:

Click here to view code image
Sub FormatLineOrBorders()
Dim cht As Chart
Set cht = ActiveChart
With cht.SeriesCollection(1).Trendlines(1).Format.Line
.DashStyle = msoLineLongDashDotDot
.ForeColor.RGB = RGB(50, 0, 128)
.BeginArrowheadLength = msoArrowheadShort
.BeginArrowheadStyle = msoArrowheadOval
.BeginArrowheadWidth = msoArrowheadNarrow
.EndArrowheadLength = msoArrowheadLong
.EndArrowheadStyle = msoArrowheadTriangle
.EndArrowheadWidth = msoArrowheadWide
End With
End Sub

When you are formatting a border, the arrow settings are not relevant, so the code is shorter
than the code for formatting a line. The following macro formats the border around a chart:

Click here to view code image
Sub FormatBorder()
Dim cht As Chart
Set cht = ActiveChart
With cht.ChartArea.Format.Line
.DashStyle = msoLineLongDashDotDot
.ForeColor.RGB = RGB(50, 0, 128)
End With
End Sub

Creating a combo chart
Sometimes you need to chart series of data that are of differing orders of magnitude. Normal
charts do a lousy job of showing smaller series. Combo charts can save the day.

Consider the data and chart in Figure 15-6. Here you want to plot the number of sales per
month and also show two quality ratings. Perhaps this is a fictitious car dealer that sells 80 to
100 cars a month, and the customer satisfaction usually runs in the 80% to 90% range. When
you try to plot this data on a regular line chart, the column for 90 cars sold dwarfs the column
for 80% customer satisfaction.

FIGURE 15-6 The two small series are moved to a secondary axis.

Case study: Creating a combo chart
Let’s look at an example of the VBA needed to create a combo chart. You want to create a
chart that shows the number of sales and also two percentage measurements. In this
process, you have to format each of the three series. At the top of the macro, declare object
variables for the worksheet, the chart, and each of the series:

Click here to view code image
Dim WS As Worksheet
Dim CH As Chart
Dim Ser1 As Series
Dim Ser2 As Series
Dim Ser3 As Series

Create the chart as a regular clustered column chart:

Click here to view code image
Set WS = ActiveSheet
Range("A1:G4").Select
Set CH = WS.Shapes.AddChart2(Style:=201, _
XlChartType:=xlColumnClustered, _
Left:=[B6].Left, _
Top:=[B6].Top, _
NewLayout:=False).Chart

To work with a series, assign FullSeriesCollection to an object variable such as
Ser2. You could get away with a single object variable called Ser that you use over and
over. This code enables you to come back later in the macro to refer to any of the three
series. After you have the Ser2 object variable defined, assign the series to the secondary
axis group and change the chart type of just that series to a line; then repeat the code for
Series 3:

Click here to view code image
' Move Series 2 to secondary axis as line
Set Ser2 = CH.FullSeriesCollection(2)
With Ser2
.AxisGroup = xlSecondary
.ChartType = xlLine
End With

' Move Series 3 to secondary axis as line
Set Ser3 = CH.FullSeriesCollection(3)
With Ser3
.AxisGroup = xlSecondary
.ChartType = xlLine
End With

Note that so far, you have not had to touch Series 1. Series 1 is fine as a column chart on
the primary axis. You’ll come back to Series 1 later in the macro. Because too many of the
data points in Series 3 were close to 100%, the Excel charting engine decided to make the
right axis span all the way up to 120%. This is silly because no one can get a rating higher
than 100%. You can override the automatic settings and choose a scale for the right axis.
The following code uses 0.6 (for 60%) as the minimum and 1 (for 100%) as the
maximum:

Click here to view code image
' Set the secondary axis to go from 60% to 100%
CH.Axes(xlValue, xlSecondary).MinimumScale = 0.6
CH.Axes(xlValue, xlSecondary).MaximumScale = 1

When you override the scale values, Excel automatically guesses where you want the
gridlines and axis labels. Rather than leave this to chance, you can use MajorUnit and
MinorUnit:

Click here to view code image
' Labels every 10%, secondary gridline at 5%
CH.Axes(xlValue, xlSecondary).MajorUnit = 0.1
CH.Axes(xlValue, xlSecondary).MinorUnit = 0.05
CH.Axes(xlValue, xlSecondary).TickLabels.NumberFormat = "0%"

Axis labels and major gridlines appear at the increment specified by MajorUnit.
MinorUnit, and that is important only if you plan on showing minor gridlines.

At this point, there are numbers on the left axis and numbers on the right axis. I instantly
went to the percentages on the right side and tried to follow the gridlines across. But this
doesn’t work because the gridlines don’t line up with the numbers on the right side. They
line up with the numbers on the left side. You can’t really tell this for sure, though,
because the gridlines coincidentally happen to line up with 100%, 80%, and 60%.

At this point, you might decide to get creative. You could use the following code to delete
the gridlines for the left axis, add major and minor gridlines for the right axis, delete the
numbers along the left axis, and replace the numbers on the axis with a data label in the
center of each column:

Click here to view code image
' Turn off the gridlines for left axis
CH.Axes(xlValue).HasMajorGridlines = False
' Add gridlines for right axis
CH.SetElement msoElementSecondaryValueGridLinesMajor
CH.SetElement msoElementSecondaryValueGridLinesMinorMajor

' Hide the labels on the primary axis
CH.Axes(xlValue).TickLabelPosition = xlNone
' Replace axis labels with a data label on the column
Set Ser1 = CH.FullSeriesCollection(1)
Ser1.ApplyDataLabels
Ser1.DataLabels.Position = xlLabelPositionCenter

Now you almost have it. Because the book is printed in monochrome, change the color of
the Series 1 data label to white:

Click here to view code image
' Data Labels in white
With Ser1.DataLabels.Format.TextFrame2.TextRange.Font.Fill
.Visible = msoTrue
.ForeColor.ObjectThemeColor = msoThemeColorBackground1
.Solid
End With

And because my charting mentors drilled it into my head, the legend has to be at the top or
the left. Here’s how you move it to the top:

Click here to view code image
' Legend at the top, per Gene Z.
CH.SetElement msoElementLegendTop

The resulting chart is shown in Figure 15-7. Thanks to the minor gridlines, you can easily
tell if each rating was in the 80%–85%, 85%–90%, or 90%–95% range. The columns
show the sales, and the labels stay out of the way, but they are still readable.

FIGURE 15-7 The gridlines and the two series represented by a line correspond to the axis labels on the right
side.

Creating map charts
The new filled map chart offers some settings unique to map charts. Say that you have data for
six states in the southeast United States. By default, the map chart shows 48 of the 50 states.
Set the .GeoMappingLevel to xlGeoMappingDataOnly to limit the map to only states with
data, as shown in Figure 15-8.

Click here to view code image
Sub RegionMapChart()

Dim CH As Chart
Set CH = ActiveSheet.Shapes.AddChart2(-1,
xlRegionMap).Chart
CH.SetSourceData Source:=ActiveSheet.Range("A1:B7")
' the following properties are specific to filled map
charts
With CH.FullSeriesCollection(1)
.GeoMappingLevel = xlGeoMappingLevelDataOnly
.RegionLabelOption = xlRegionLabelOptionsBestFitOnly

End With
End Sub

Note that Mississippi is not labeled in the chart in Figure 15-8. This is because
RegionLabelOption is set to xlRegionLabelOptionsBestFitOnly. To force all labels to
appear, use xlRegionLabelOptionsShowAll instead.

You can export any chart to an image file on your hard drive. The ExportChart method
requires you to specify a file name and a graphic type. The available graphic types depend on
graphic file filters installed in your Registry. It is a safe bet that JPG, BMP, PNG, and GIF
work on most computers.

FIGURE 15-8 Limit the filled map chart to only regions with data.

Creating waterfall charts
Waterfall charts are often used to show profit on a sale or cash flow over the course of a year.
A waterfall chart is composed of floating columns that raise or lower from the previous
column. However, some points will be marked as Totals, such as the Net Price column in
Figure 15-9. Use the .IsTotal property to force a column to not float.

Click here to view code image
Sub WaterfallChart()
Dim CH As Chart
Set CH = ActiveSheet.Shapes.AddChart2(-1, xlWaterfall).Chart
CH.SetSourceData Source:=ActiveSheet.Range("A1:B7")
' Mark certain points as totals
With CH.FullSeriesCollection(1)

.Points(1).IsTotal = True

.Points(3).IsTotal = True

.Points(7).IsTotal = True
End With
End Sub

FIGURE 15-9 Any column marked as a total will touch the x-axis.

One of the frustrations with the new Ivy charting engines is this: It is often difficult to
figure out how to change the colors. In the waterfall chart in Figure 15-9, there are colors for
Increase, Decrease, and Total. The only way to format those colors is to do the following:

1. Click the legend to select the legend.

2. Click the Increase legend entry to select that one single legend entry.

3. Right-click to see a menu with a choice to change the fill for Increase.

The equivalent VBA often crashes Excel. This might be a temporary bug, and it might be
fixed by the time you are reading this:

Click here to view code image
Sub FormatWaterfall()
Dim cht As Chart
Dim lg As Legend
Dim lgentry As LegendEntry
Dim iLegEntry As Long

Set cht = ActiveChart
Set lg = cht.Legend
For iLegEntry = 1 To lg.LegendEntries.Count

Set lgentry = lg.LegendEntries(iLegEntry)
lgentry.Format.Fill.ForeColor.ObjectThemeColor =
msoThemeColorAccent1 + iLegEntry - 1

Next
End Sub

Note Thanks to charting legend Jon Peltier for discovering this obscure way to
change the waterfall fill colors. Jon’s awesome website is PeltierTech.com.

Exporting a chart as a graphic
You can export any chart to an image file on your hard drive. The ExportChart method
requires you to specify a file name and a graphic type. The available graphic types depend on
graphic file filters installed in your Registry—usually JPG, BMP, PNG, and GIF.

For example, the following code exports the active chart as a GIF file:

Click here to view code image
Sub ExportChart()
Dim cht As Chart
Set cht = ActiveChart
cht.Export Filename:="C:\Chart.gif", Filtername:="GIF"
End Sub

Considering backward compatibility
The .AddChart2 method works in Excel 2013 through Excel 2019. For Excel 2007 and 2010,
you have to revert to using the .AddChart method, as shown here:

Click here to view code image
Sub CreateChartIn20072010()
'Create a Clustered Column Chart in B8:G15 from data in A3:G6
Dim CH As Chart
Range("A3:G6").Select
Set CH = ActiveSheet.Shapes.AddChart(_
XlChartType:=xlColumnClustered, _

http://PeltierTech.com

Left:=Range("B8").Left, _
Top:=Range("B8").Top, _
Width:=Range("B8:G15").Width, _
Height:=Range("B8:G15").Height).Chart
End Sub

With this method, you can specify neither a Style nor a NewLayout.

Next steps
In Chapter 16, “Data visualizations and conditional formatting,” you’ll find out how to
automate data visualization tools such as icon sets, color scales, and data bars.

CHAPTER 16
Data visualizations and conditional formatting

In this chapter, you will:

Use VBA methods and properties for data visualizations

Add data bars to a range

Add color scales to a range

Add icon sets to a range

Use visualization tricks

Use other conditional formatting methods

Data visualization tools were introduced in Excel 2007 and improved in Excel 2010. Data
visualizations appear on a drawing layer that can hold icon sets, data bars, color scales, and
sparklines. Unlike with SmartArt graphics, Microsoft exposed the entire object model for the
data visualization tools, so you can use VBA to add data visualizations to your reports.

Note See Chapter 17, “Dashboarding with sparklines in Excel 2019,” for more
information about sparklines.

Excel 2019 provides a variety of data visualizations, as described here and shown in Figure
16-1:

Data bars—A data bar adds an in-cell bar chart to each cell in a range. The largest
numbers have the largest bars, and the smallest numbers have the smallest bars. You can
control the bar color as well as the values that should receive the smallest and largest
bars. Data bars can be solid or a gradient. The gradient bars can have borders.

Color scales—Excel applies a color to each cell from among a two- or three-color
gradient. The two-color gradients are best for reports that are presented in monochrome.
The three-color gradients require a presentation in color but can represent a report in a
traditional traffic light color combination of red–yellow–green. You can control the
points along the continuum where each color begins, and you can choose the two or three
colors.

Icon sets—Excel assigns an icon to each number. Icon sets can contain three icons, such
as the red–yellow–green traffic lights; four icons; or five icons (as with cell-phone signal
bars). With icon sets, you can control the numeric limits for each icon, reverse the order
of the icons, or choose to show only the icons.

Above/below average—These rules, which are under the Top/Bottom Rules flyout
menu, make it easy to highlight all the cells that are above or below average. You can
choose the formatting to apply to the cells. Note in column G of Figure 16-1 that only
30% of the cells are above average. Contrast this with the top 50% in column K.

Duplicate values—Excel highlights any values that are repeated within a data set.
Because the Delete Duplicates command on the Data tab of the ribbon is so destructive,
you might prefer to highlight the duplicates and then intelligently decide which records
to delete. This also can be used to highlight values that appear only once in the data.
Microsoft refers to this as “Unique Values,” although I disagree with that term. I would
prefer an option that highlights the values that would be left after applying Remove
Duplicates. If the word “Apple” appears twice in a column, neither cell will be marked as
a unique value.

Top/bottom rules—Excel highlights the top or bottom n percent of cells or highlights
the top or bottom n cells in a range.

Highlight cells—The legacy conditional formatting rules such as greater than, less than,
between, and text that contains are still available in Excel 2019. The powerful Formula
conditions are also available, although you might need to use these less frequently now
that you have the average and top/bottom rules.

FIGURE 16-1 Visualizations such as data bars, color scales, icon sets, and top/bottom rules are controlled in the Excel
user interface from the Conditional Formatting drop-down menu on the Home tab of the ribbon.

VBA methods and properties for data visualizations
All the data visualization settings are managed in VBA with the FormatConditions
collection. Conditional formatting has been in Excel since Excel 97. In Excel 2007, Microsoft
expanded the FormatConditions object to handle the new visualizations. Whereas legacy
versions of Excel would use the FormatConditions.Add method, Excel 2007–2019 offer
additional methods, such as AddDataBar, AddIconSetCondition, AddColorScale,
AddTop10, AddAboveAverage, and AddUniqueValues.

You can apply several different conditional formatting conditions to the same range. For
example, you can apply a two-color color scale, an icon set, and a data bar to the same range.
Excel includes a Priority property to specify which conditions should be calculated first.
Methods such as SetFirstPriority and SetLastPriority ensure that a new format
condition is executed before or after all others.

The StopIfTrue property works in conjunction with the Priority property. Say that you
are highlighting duplicates but want to check only text cells. Create a new formula-based
condition that uses =ISNUMBER() to find numeric values. Give the ISNUMBER condition a
higher priority and apply StopIfTrue to prevent Excel from ever reaching the duplicates
condition for numeric cells.

Beginning with Excel 2007, the Type property was expanded dramatically. This property
was formerly a toggle between CellValue and Expression, but 13 new types were added in
Excel 2007. Table 16-1 shows the valid values for the Type property. Items 3 and above were
introduced in Excel 2007. The Excel team must have had plans for more conditions; items 7,
14, and 15 do not exist, so they must have been on the drawing board at one time but then
removed from the final version of Excel 2007. One of these was likely the ill-fated “highlight
entire table row” feature that was in the Excel 2007 beta but removed in the final version.

TABLE 16-1 Valid types for a format condition

Value Description VBA Constant
1 Cell value xlCellValue

2 Expression xlExpression

3 Color scale xlColorScale

4 Data bar xlDatabar

5 Top 10 values xlTop10

6 Icon set xlIconSet

8 Unique values xlUniqueValues

9 Text string xlTextString

10 Blanks condition xlBlanksCondition

11 Time period xlTimePeriod

12 Above average condition xlAboveAverageCondition

13 No blanks condition xlNoBlanksCondition

16 Errors condition xlErrorsCondition

17 No errors condition xlNoErrorsCondition

Adding data bars to a range
The Data Bar command adds an in-cell bar chart to each cell in a range. Many charting experts
complained to Microsoft about problems in the Excel 2007 data bars. For this reason, Microsoft
changed the data bars in Excel 2010 to address these problems.

In Figure 16-2, the next-to-last cell In the left column reflects changes introduced in Excel
2010. Notice that this cell, which has a value of 0, has no data bar at all. In Excel 2007, the
smallest value receives a 4-pixel data bar, even if that smallest value is 0. In addition, in Excel
2019, the largest bar in the data set typically takes up the entire width of the cell.

FIGURE 16-2 Excel 2019 offers many variations on data bars.

In Excel 2007, the data bars would end in a gradient that made it difficult to tell where the
bar ended. Versions from Excel 2010 through 2019 offer a border around the bar. You can
choose to change the color of the border or even to remove the border, as shown in the right
column of Figure 16-2.

Excel 2010–2019 also offer support for negative data bars, as shown in the middle column
of Figure 16-2; the data bars run right to left for negative values. These allow comparative
histograms.

To add a data bar, you apply the FormatConditions.AddDataBar method to a range that
contains your numbers. This method requires no arguments, and it returns an object of the
DataBar type.

After you add the data bar, you will most likely need to change some of its properties. One
method of referring to the data bar is to assume that the recently added data bar is the last item
in the collection of format conditions. This code would add a data bar, identify the data bar by
counting the conditions, and then change the color:

Click here to view code image
Range("A2:A11").FormatConditions.AddDatabar
ThisCond = Range("A2:A11").FormatConditions.Count
With Range("A2:A11").FormatConditions(ThisCond).BarColor
.Color = RGB(255, 0, 0) ' Red
.TintAndShade = -0.5 ' Darker than normal
End With

A safer way to go is to define an object variable of type DataBar. You can then assign the
newly created data bar to the variable:

Click here to view code image
Dim DB As Databar
' Add the data bars
Set DB = Range("A2:A11").FormatConditions.AddDatabar
' Use a red that is 25% darker
With DB.BarColor
.Color = RGB(255, 0, 0)
.TintAndShade = -0.5
End With

When specifying colors for the data bar or the border, you should use the RGB function to
assign a color. You can modify the color by making it darker or lighter, using the
TintAndShade property. Valid values are from -1 to 1. Negative values make the color darker,
a value of 0 means no modification, and positive values make the color lighter.

By default, Excel assigns the shortest data bar to the minimum value and the longest data
bar to the maximum value. If you want to override the defaults, use the Modify method for
either the MinPoint or MaxPoint properties. Specify a type from those shown in Table 16-2.
Types 0, 3, 4, and 5 require a value. Table 16-2 shows valid types.

TABLE 16-2 MinPoint and MaxPoint types

Value Description VBA Constant
0 Number is used. xlConditionNumber

1 Lowest value from the list of values. xlConditionValueLowestValue

2 Highest value from the list of values. xlConditionValueHighestValue

3 Percentage is used. xlConditionValuePercent

4 Formula is used. xlConditionValueFormula

5 Percentile is used. xlConditionValuePercentile

-1 No conditional value. xlConditionValueNone

Use the following code to have the smallest bar assigned to values of 0 and below:

Click here to view code image
DB.MinPoint.Modify _
 Newtype:=xlConditionValueNumber, NewValue:=0

To give the top 20% of the bars the largest bar, use this code:

Click here to view code image
DB.MaxPoint.Modify _
 Newtype:=xlConditionValuePercent, NewValue:=80

An interesting alternative is to show only the data bars and not the value. To do this, use
this code:

DB.ShowValue = False

To show negative data bars in Excel 2019, use this line:

Click here to view code image

DB.AxisPosition = xlDataBarAxisAutomatic

When you allow negative data bars, you can specify an axis color, a negative bar color, and
a negative bar border color. The following code shows samples of how to change the various
colors. Figure 16-3 shows the data bars in column C:

Click here to view code image
Sub DataBar2()
' Add a Data bar
' Include negative data bars
' Control the min and max point
'

Click here to view code image

Dim DB As Databar
With Range("C4:C11")
.FormatConditions.Delete
' Add the data bars
Set DB = .FormatConditions.AddDatabar()

End With

' Set the lower limit
DB.MinPoint.Modify newtype:=xlConditionFormula, NewValue:="-600"
DB.MaxPoint.Modify newtype:=xlConditionValueFormula,
NewValue:="600"
' Change the data bar to Green
With DB.BarColor
.Color = RGB(0, 255, 0)
.TintAndShade = -0.15
End With

With DB
' Use a gradient
.BarFillType = xlDataBarFillGradient
' Left to Right for direction of bars
.Direction = xlLTR
' Assign a different color to negative bars
.NegativeBarFormat.ColorType = xlDataBarColor
' Use a border around the bars
.BarBorder.Type = xlDataBarBorderSolid
' Assign a different border color to negative
.NegativeBarFormat.BorderColorType = xlDataBarSameAsPositive
' All borders are solid black
With .BarBorder.Color
.Color = RGB(0, 0, 0)

End With
' Axis where it naturally would fall, in black
.AxisPosition = xlDataBarAxisAutomatic
With .AxisColor
.Color = 0
.TintAndShade = 0

End With
' Negative bars in red
With .NegativeBarFormat.Color
.Color = 255
.TintAndShade = 0

End With
' Negative borders in red

 End With
End Sub

In Excel 2019, you have a choice of showing a gradient or a solid bar. To show a solid bar,
use the following:

DB.BarFillType = xlDataBarFillSolid

The following code sample produces the solid bars shown in column E in Figure 16-3:

Click here to view code image
Sub DataBar3()
' Add a Data bar
' Show solid bars
' Allow negative bars
' hide the numbers, show only the data bars
'
Dim DB As Databar
With Range("E4:E11")

.FormatConditions.Delete
' Add the data bars
Set DB = .FormatConditions.AddDatabar()

End With

With DB.BarColor
.Color = RGB(0, 0, 255)
.TintAndShade = 0.1

End With
' Hide the numbers
DB.ShowValue = False
DB.BarFillType = xlDataBarFillSolid
DB.NegativeBarFormat.ColorType = xlDataBarColor
With DB.NegativeBarFormat.Color
.Color = 255
.TintAndShade = 0

End With
' Allow negatives
DB.AxisPosition = xlDataBarAxisAutomatic
' Negative border color is different
DB.NegativeBarFormat.BorderColorType = xlDataBarColor
With DB.NegativeBarFormat.BorderColor

.Color = RGB(127, 127, 0)

.TintAndShade = 0
End With
End Sub

To allow the bars to go right to left, use this code:

DB.Direction = xlRTL ' Right to Left

FIGURE 16-3 Data bars created by the macros in this section.

Adding color scales to a range
You can add color scales in either two-color or three-color scale varieties. Figure 16-4 shows
the available settings in the Excel user interface for a color scale using three colors.

FIGURE 16-4 Color scales enable you to show hot spots in your data set.

As with data bars, you apply a color scale to a range object by using the AddColorScale
method. You should specify a ColorScaleType of either 2 or 3 as the only argument of the
AddColorScale method.

Next, you can indicate a color and tint for both or all three of the color scale criteria. Using
the values shown previously in Table 16-2, you can also specify whether the shade is applied to
the lowest value, the highest value, a particular value, or a percentage or at a percentile.

The following code generates a three-color color scale in the range A1:A10:

Click here to view code image
Sub Add3ColorScale()
 Dim CS As ColorScale

With Range("A1:A10")
.FormatConditions.Delete
' Add the Color Scale as a 3-color scale
Set CS = .FormatConditions.AddColorScale(ColorScaleType:=3)

End With

'' Format the first color as light red
With CS.ColorScaleCriteria(1)
.Type = xlConditionValuePercent
.Value = 30

.FormatColor.Color = RGB(255, 0, 0)

.FormatColor.TintAndShade = 0.25
End With

'' Format the second color as green at 50%
With CS.ColorScaleCriteria(2)
.Type = xlConditionValuePercent
.Value = 50
.FormatColor.Color = RGB(0, 255, 0)
.FormatColor.TintAndShade = 0

End With

'' Format the third color as dark blue
With CS.ColorScaleCriteria(3)
.Type = xlConditionValuePercent
.Value = 80
.FormatColor.Color = RGB(0, 0, 255)
.FormatColor.TintAndShade = -0.25

End With
End Sub

Adding icon sets to a range
Icon sets in Excel come with three, four, or five different icons in the set. Figure 16-5 shows
the settings for an icon set with five different icons.

To add an icon set to a range, use the AddIconSet method. No arguments are required.
You can adjust three properties that apply to the icon set, and you can use several additional
lines of code to specify the icon set in use and the limits for each icon.

FIGURE 16-5 With additional icons, the complexity of the code increases.

Specifying an icon set

After adding an icon set, you can control whether the icon order is reversed and whether Excel
shows only the icons, and you can also specify 1 of the 20 built-in icon sets, like this:

Click here to view code image
Dim ICS As IconSetCondition
With Range("A1:C10")
.FormatConditions.Delete
Set ICS = .FormatConditions.AddIconSetCondition()
End With

' Global settings for the icon set
With ICS
.ReverseOrder = False
.ShowIconOnly = False
.IconSet = ActiveWorkbook.IconSets(xl5CRV)
End With

Table 16-3 shows the complete list of icon sets.

TABLE 16-3 Available icon sets and their VBA constants

Icon Set Value Description Constant
1 3 arrows xl3Arrows

2 3 arrows gray xl3ArrowsGray

3 3 flags xl3Flags

4 3 traffic lights 1 xl3TrafficLights1

5 3 traffic lights 2 xl3TrafficLights2

6 3 signs xl3Signs

7 3 symbols xl3Symbols

8 3 symbols 2 xl3Symbols2

9 4 arrows xl4Arrows

10 4 arrows gray xl4ArrowsGray

11 4 red to black xl4RedToBlack

12 4 power bars xl4CRV

13 4 traffic lights xl4TrafficLights

14 5 arrows xl5Arrows

15 5 arrows gray xl5ArrowsGray

16 5 power bars xl5CRV

17 5 quarters xl5Quarters

18 3 stars xl3Stars

19 3 triangles xl3Triangles

20 5 boxes xl5Boxes

Specifying ranges for each icon

After specifying the type of icon set, you can specify ranges for each icon within the set. By
default, the first icon starts at the lowest value. You can adjust the settings for each of the
additional icons in the set, as shown here:

Click here to view code image
' The first icon always starts at 0
' Settings for the second icon - start at 50%
With ICS.IconCriteria(2)
.Type = xlConditionValuePercent
.Value = 50
.Operator = xlGreaterEqual
End With
With ICS.IconCriteria(3)
.Type = xlConditionValuePercent
.Value = 60
.Operator = xlGreaterEqual
End With
With ICS.IconCriteria(4)
.Type = xlConditionValuePercent
.Value = 80
.Operator = xlGreaterEqual
End With
With ICS.IconCriteria(5)
.Type = xlConditionValuePercent
.Value = 90
.Operator = xlGreaterEqual

End With

Valid values for the Operator property are XlGreater or xlGreaterEqual.

Caution With VBA, it is easy to create overlapping ranges such as icon 1
from 0 to 50 and icon 2 from 30 to 90. Even though the Edit Formatting Rule
dialog box prevents overlapping ranges, VBA allows them. However, keep in
mind that your icon set will display unpredictably if you create invalid ranges.

Using visualization tricks
If you use an icon set or a color scale, Excel applies a color to all cells in the data set. Two
tricks in this section enable you to apply an icon set to only a subset of the cells or to apply two
different colors of data bars to the same range. The first trick is available in the user interface,
but the second trick is available only in VBA.

Creating an icon set for a subset of a range

Sometimes, you might want to apply a red X only to the bad cells in a range. This is tricky to do
in the Excel user interface.

In the user interface, follow these steps to apply a red X to values greater than or equal to
66:

1. Add a three-symbols icon set to the range.

2. Choose Home, Conditional Formatting, Manage Rules, and edit the rule. You see the
default settings that appear in Figure 16-6.

3. Specify no cell icon for the first two groups.

4. Specify that the top group has a Type of Number and >=80.

5. Specify that the second group has a Type of Number and >66. Excel defaults the Red X
group to be used for <=66 (see Figure 16-7).

FIGURE 16-6 These default rules appear when you add a three-icon set.

FIGURE 16-7 Although the first two ranges have no cell icon, use the number values to force the red X to show when
the value is <=66.

The code to create this effect in VBA is straightforward. A great deal of the code makes
sure that the icon set has the red X symbols on the cells with values less than or equal to 66. To
hide the icons for rules 1 and 2, set the Icon property to xlIconNoCellIcon.

The code to highlight values less than or equal to 66 with a red X is shown here:

Click here to view code image
Sub TrickyFormatting()
' mark the bad cells
Dim ICS As IconSetCondition
Dim FC As FormatCondition
With Range("A1:D9")
.FormatConditions.Delete
Set ICS = .FormatConditions.AddIconSetCondition()
End With
With ICS

.ShowIconOnly = False

.IconSet = ActiveWorkbook.IconSets(xl3Symbols2)
End With
With ICS.IconCriteria(1)
.Type = xlConditionValue
.Value = 80
.Operator = xlGreater
.Icon = xlIconNoCellIcon

End With
' The threshold for this icon doesn't really matter,
' but you have to make sure that it does not overlap the 3rd
icon
With ICS.IconCriteria(2)
.Type = xlConditionValue
.Value = 66
.Operator = xlGreater
.Icon = xlIconNoCellIcon

End With
End Sub

Using two colors of data bars in a range

This trick is particularly cool because it can be achieved only with VBA. Say that values
greater than 90 are acceptable and those 90 and below indicate trouble. You would like
acceptable values to have a green bar and others to have a red bar.

Using VBA, you first add the green data bars. Then, without deleting the format condition,
you add red data bars.

In VBA, every format condition has a Formula property that defines whether the condition
is displayed for a given cell. Therefore, the trick is to write a formula that defines when the
green bars are displayed. When the formula is not True, the red bars are allowed to show
through.

In Figure 16-8, the effect is applied to the range A1:D10. You need to write the formula in
A1 style, as if it applies to the top-left corner of the selection. The formula needs to evaluate to
True or False. Excel automatically copies the formula to all the cells in the range. The
formula for this condition is =IF(A1>90,True,False).

Note The formula is evaluated relative to the current cell pointer location. Even
though it is not usually necessary to select cells before adding a
FormatCondition, in this case, selecting the range ensures that the formula will

work.

FIGURE 16-8 The dark bars are red, and the lighter bars are green. VBA was used to create two overlapping data bars,
and then the Formula property hid the top bars for cells 90 and below.

The following code creates the two-color data bars:

Click here to view code image
Sub AddTwoDataBars()
' passing values in green, failing in red
Dim DB As Databar
Dim DB2 As Databar
With Range("A1:D10")
.FormatConditions.Delete
' Add a Light Green Data Bar
Set DB = .FormatConditions.AddDatabar()

DB.BarColor.Color = RGB(0, 255, 0)
DB.BarColor.TintAndShade = 0.25
' Add a Red Data Bar
Set DB2 = .FormatConditions.AddDatabar()
DB2.BarColor.Color = RGB(255, 0, 0)
' Make the green bars only
.Select ' Required to make the next line work
.FormatConditions(1).Formula = "=IF(A1>90,True,False)"
DB.Formula = "=IF(A1>90,True,False)"
DB.MinPoint.Modify newtype:=xlConditionFormula,
NewValue:="60"
DB.MaxPoint.Modify newtype:=xlConditionValueFormula, _

NewValue:="100"
DB2.MinPoint.Modify newtype:=xlConditionFormula,
NewValue:="60"
DB2.MaxPoint.Modify newtype:=xlConditionValueFormula, _
NewValue:="100"

 End With
End Sub

The Formula property works for all the conditional formats, which means you could
potentially create some obnoxious combinations of data visualizations. In Figure 16-9, five
different icon sets are combined in a single range. No one will be able to figure out whether a
red flag is worse than a gray down arrow. Even so, this ability opens interesting combinations
for those with a little creativity.

FIGURE 16-9 VBA created this mixture of five different icon sets in a single range. The Formula property in VBA is
the key to combining icon sets.

Use the following code to create the crazy icon set shown in Figure 16-9:

Click here to view code image
Sub AddCrazyIcons()
 With Range("A1:C10")

.Select ' The .Formula lines below require .Select here

.FormatConditions.Delete

' First icon set
.FormatConditions.AddIconSetCondition
.FormatConditions(1).IconSet =
ActiveWorkbook.IconSets(xl3Flags)
.FormatConditions(1).Formula = "=IF(A1<5,TRUE,FALSE)"

' Next icon set
.FormatConditions.AddIconSetCondition
.FormatConditions(2).IconSet = _
ActiveWorkbook.IconSets(xl3ArrowsGray)
.FormatConditions(2).Formula = "=IF(A1<12,TRUE,FALSE)"

' Next icon set
.FormatConditions.AddIconSetCondition
.FormatConditions(3).IconSet = _
ActiveWorkbook.IconSets(xl3Symbols2)
.FormatConditions(3).Formula = "=IF(A1<22,TRUE,FALSE)"

' Next icon set
.FormatConditions.AddIconSetCondition
.FormatConditions(4).IconSet =
ActiveWorkbook.IconSets(xl4CRV)
.FormatConditions(4).Formula = "=IF(A1<27,TRUE,FALSE)"

' Next icon set
.FormatConditions.AddIconSetCondition
.FormatConditions(5).IconSet =
ActiveWorkbook.IconSets(xl5CRV)

End With
End Sub

Using other conditional formatting methods
Although the icon sets, data bars, and color scales get most of the attention, there are still plenty
of other uses for conditional formatting.

The remaining examples in this chapter show some of the other conditional formatting rules
and methods available.

Formatting cells that are above or below average

Use the AddAboveAverage method to format cells that are above or below average. After
adding the conditional format, specify whether the AboveBelow property is xlAboveAverage
or xlBelowAverage.

The following two macros highlight cells that are above and below average:

Click here to view code image

Sub FormatAboveAverage()
 With Selection
.FormatConditions.Delete
.FormatConditions.AddAboveAverage
.FormatConditions(1).AboveBelow = xlAboveAverage
.FormatConditions(1).Interior.Color = RGB(255, 0, 0)
End With

End Sub

Sub FormatBelowAverage()
With Selection
.FormatConditions.Delete
.FormatConditions.AddAboveAverage
.FormatConditions(1).AboveBelow = xlBelowAverage
.FormatConditions(1).Interior.Color = RGB(255, 0, 0)
End With

End Sub

Formatting cells in the top 10 or bottom 5

Four of the choices on the Top/Bottom Rules flyout menu are controlled with the AddTop10
method. After you add the format condition, you need to set three properties that control how
the condition is calculated:

TopBottom—Set this to either xlTop10Top or xlTop10Bottom.

Rank—Set this to 5 for the top 5, 6 for the top 6, and so on.

Percent—Set this to False if you want the top 10 items. Set this to True if you want
the top 10% of the items.

The following code highlights the top or bottom cells:

Click here to view code image
Sub FormatTop10Items()
With Selection
.FormatConditions.Delete
.FormatConditions.AddTop10
.FormatConditions(1).TopBottom = xlTop10Top
.FormatConditions(1).Rank = 10
.FormatConditions(1).Percent = False
.FormatConditions(1).Interior.Color = RGB(255, 0, 0)
End With

End Sub

Sub FormatBottom5Items()
With Selection
.FormatConditions.Delete
.FormatConditions.AddTop10
.FormatConditions(1).TopBottom = xlTop10Bottom
.FormatConditions(1).Rank = 5
.FormatConditions(1).Percent = False
.FormatConditions(1).Interior.Color = RGB(255, 0, 0)
End With

End Sub

Sub FormatTop12Percent()
With Selection
.FormatConditions.Delete
.FormatConditions.AddTop10
.FormatConditions(1).TopBottom = xlTop10Top
.FormatConditions(1).Rank = 12
.FormatConditions(1).Percent = True
.FormatConditions(1).Interior.Color = RGB(255, 0, 0)
End With

End Sub

Formatting unique or duplicate cells

The Remove Duplicates command on the Data tab of the ribbon is a destructive command.
Instead of using it, you might want to mark the duplicates without removing them. If so, you
can use the AddUniqueValues method to mark the duplicate or unique cells. After you call
this method, set the DupeUnique property to either xlUnique or xlDuplicate.

I do not really like either of these options. Choosing duplicate values marks both cells that
contain the duplicate, as shown in column A in Figure 16-10. For example, both A2 and A8 are
marked, when A8 is really the only duplicate value.

Choosing unique values marks only the cells that do not have duplicates, as shown in
column C in Figure 16-10. This leaves several cells unmarked. For example, none of the cells
containing 17 is marked.

FIGURE 16-10 The AddUniqueValues method can mark cells such as those in columns A and C. Unfortunately, it
cannot mark the truly useful pattern in column E.

As any data analyst knows, the truly useful option would be to mark the first unique value.
In this wishful state, Excel would mark one instance of each unique value. In this case, the 17
in E2 would be marked, but any subsequent cells that contain 17, such as E8, would remain
unmarked.

The code to mark duplicates or unique values is shown here:

Click here to view code image
Sub FormatDuplicate()
With Selection

.FormatConditions.Delete

.FormatConditions.AddUniqueValues
.FormatConditions(1).DupeUnique = xlDuplicate
.FormatConditions(1).Interior.Color = RGB(255, 0, 0)

End With
End Sub

Sub FormatUnique()
With Selection

.FormatConditions.Delete

.FormatConditions.AddUniqueValues

.FormatConditions(1).DupeUnique = xlUnique

.FormatConditions(1).Interior.Color = RGB(255, 0, 0)
 End With
End Sub

Sub HighlightFirstUnique()
With Range("E2:E16")
.Select
.FormatConditions.Delete
.FormatConditions.Add Type:=xlExpression, _
Formula1:="=COUNTIF(E$2:E2,E2)=1"
.FormatConditions(1).Interior.Color = RGB(255, 0, 0)

End With
End Sub

Formatting cells based on their value

The value conditional formats have been around for several versions of Excel. Use the Add
method with the following arguments:

Type—Because this section deals with formatting based on the cell value, the type is
xlCellValue.

Operator—This argument can be xlBetween, xlEqual, xlGreater,
xlGreaterEqual, xlLess, xlLessEqual, xlNotBetween, or xlNotEqual.

Formula1—Formula1 is used with each of the operators specified to provide a numeric
value.

Formula2—This argument is used for xlBetween and xlNotBetween.

The following code sample highlights cells based on their values:

Click here to view code image
Sub FormatBetween10And20()
With Selection
.FormatConditions.Delete
.FormatConditions.Add Type:=xlCellValue, Operator:=xlBetween,
_
Formula1:="=10", Formula2:="=20"

.FormatConditions(1).Interior.Color = RGB(255, 0, 0)
End With
End Sub

Sub FormatLessThan15()
With Selection
.FormatConditions.Delete
.FormatConditions.Add Type:=xlCellValue, Operator:=xlLess, _
Formula1:="=15"

.FormatConditions(1).Interior.Color = RGB(255, 0, 0)
End With
End Sub

Formatting cells that contain text

When you are trying to highlight cells that contain a certain bit of text, you use the Add method,
the xlTextString type, and an operator of xlBeginsWith, xlContains,
xlDoesNotContain, or xlEndsWith.

The following code highlights all cells that contain an upper- or lowercase letter A:

Click here to view code image
Sub FormatContainsA()
With Selection
.FormatConditions.Delete
.FormatConditions.Add Type:=xlTextString, String:="A", _
TextOperator:=xlContains
' other choices: xlBeginsWith, xlDoesNotContain, xlEndsWith
.FormatConditions(1).Interior.Color = RGB(255, 0, 0)

End With
End Sub

Formatting cells that contain dates

Conditional formatting allows you to filter to a virtual date filter. The list of available date
operators is a subset of the date operators available in the pivot table filters. Use the Add
method, the xlTimePeriod type, and one of these DateOperator values: xlYesterday,
xlToday, xlTomorrow, xlLastWeek, xlLast7Days, xlThisWeek, xlNextWeek,
xlLastMonth, xlThisMonth, or xlNextMonth.

The following code highlights all dates in the past week:

Click here to view code image
Sub FormatDatesLastWeek()
With Selection

.FormatConditions.Delete

' DateOperator choices include xlYesterday, xlToday,
xlTomorrow,
' xlLastWeek, xlThisWeek, xlNextWeek, xlLast7Days
' xlLastMonth, xlThisMonth, xlNextMonth,
.FormatConditions.Add Type:=xlTimePeriod, _
DateOperator:=xlLastWeek

.FormatConditions(1).Interior.Color = RGB(255, 0, 0)
End With
End Sub

Formatting cells that contain blanks or errors

Buried deep within the Excel interface are options to format cells that contain blanks, that
contain errors, that do not contain blanks, or that do not contain errors. If you use the macro
recorder, Excel uses the complicated xlExpression version of conditional formatting. For
example, to look for a blank, Excel tests to see whether =LEN(TRIM(A1))=0. Instead, you can
use any of these four self-explanatory types:

Click here to view code image
.FormatConditions.Add Type:=xlBlanksCondition
.FormatConditions.Add Type:=xlErrorsCondition
.FormatConditions.Add Type:=xlNoBlanksCondition
.FormatConditions.Add Type:=xlNoErrorsCondition

You are not required to use any other arguments with these types.

Using a formula to determine which cells to format

The most powerful conditional format is the xlExpression type. With this type, you provide a
formula for the active cell that evaluates to True or False. Make sure to write the formula with
relative or absolute references so that the formula is correct when Excel copies it to the
remaining cells in the selection.

An infinite number of conditions can be identified with a formula. Two popular conditions
are shown here.

Highlighting the first unique occurrence of each value in a range

Say that in column A in Figure 16-11, you would like to highlight the first occurrence of each
value in the column. The highlighted cells will then contain a complete list of the unique
numbers found in the column.

FIGURE 16-11 A formula-based condition can mark the first unique occurrence of each value, as shown in column A,
or the entire row with the largest sales, as shown in D:F.

The macro should select cells A1:A15. The formula should be written to return a True or
False value for cell A1. Because Excel logically copies this formula to the entire range, you
should use a careful combination of relative and absolute references.

The formula can use the COUNTIF function. Check to see how many times the range from
A$1 to A1 contains the value A1. If the result is equal to 1, the condition is True, and the cell is
highlighted. The first formula is =COUNTIF(A$1:A1,A1)=1. As the formula is copied down to,
say A12, the formula changes to =COUNTIF(A$1:A12,A12)=1.

The following macro creates the formatting shown in column A in Figure 16-11:

Click here to view code image
Sub HighlightFirstUnique()
With Range("A1:A15")

.Select

.FormatConditions.Delete

.FormatConditions.Add Type:=xlExpression, _
Formula1:="=COUNTIF(A$1:A1,A1)=1"
.FormatConditions(1).Interior.Color = RGB(255, 0, 0)

End With
End Sub

Highlighting the entire row for the largest sales value

Another example of a formula-based condition involves highlighting the entire row of a data set
in response to a value in one column. Consider the data set in cells D2:F15 of Figure 16-11. If
you want to highlight the entire row that contains the largest sale, you select cells D2:F15 and
write a formula that works for cell D2: =$F2=MAX($F$2:$F$15). The code required to format
the row with the largest sales value is as follows:

Click here to view code image
Sub HighlightWholeRow()

With Range("D2:F15")
.Select
.FormatConditions.Delete
.FormatConditions.Add Type:=xlExpression, _
Formula1:="=$F2=MAX($F$2:$F$15)"
.FormatConditions(1).Interior.Color = RGB(255, 0, 0)

 End With
End Sub

Using the new NumberFormat property

In legacy versions of Excel, a cell that matched a conditional format could have a particular
font, font color, border, or fill pattern. Since Excel 2007, you have also been able to specify a
number format. This can be useful for selectively changing the number format used to display
the values.

For example, you might want to display numbers greater than 999 in thousands, numbers
greater than 999,999 in hundred thousands, and numbers greater than 9,999,999 in millions.

If you turn on the macro recorder and attempt to record setting the conditional format to a
custom number format, the Excel 2019 VBA macro recorder actually records the action of
executing an XL4 macro! You can skip the recorded code and use the NumberFormat property
as shown here:

Click here to view code image
Sub NumberFormat()
With Range("E1:G26")

.FormatConditions.Delete

.FormatConditions.Add Type:=xlCellValue,
Operator:=xlGreater, _
Formula1:="=9999999"
.FormatConditions(1).NumberFormat = "$#,##0,""M"""

.FormatConditions.Add Type:=xlCellValue,
Operator:=xlGreater,
Formula1:="=999999"
.FormatConditions(2).NumberFormat = "$#,##0.0,""M"""
.FormatConditions.Add Type:=xlCellValue,
Operator:=xlGreater,
Formula1:="=999"
.FormatConditions(3).NumberFormat = "$#,##0,K"

End With
End Sub

Figure 16-12 shows the original numbers in columns A:C. The results of running the macro
are shown in columns E:G. The dialog box shows the conditional format rules that are applied.

FIGURE 16-12 Since Excel 2007, conditional formats have been able to specify a specific number format.

Next steps
Chapter 17 shows you how to create dashboards from tiny charts called sparklines.

CHAPTER 17
Dashboarding with sparklines in Excel 2019

In this chapter, you will:

Create sparklines

Scale sparklines

Format sparklines

Create a dashboard

A feature that’s been around since Excel 2010 is the ability to create tiny, word-size charts
c all ed sparklines . I f you are creat i ng dashboards, you will want t o l ever age t hese char t s.

The concept of sparklines was first introduced by Professor Edward Tufte, who promoted
sparklines as a way to show a maximum amount of information with a minimal amount of ink.

Microsoft supports three types of sparklines:

Line—A sparkline shows a single series on a line chart within a single cell. On a
sparkline, you can add markers for the highest point, the lowest point, the first point, and
the last point. Each of those points can have a different color. You can also choose to
mark all the negative points or even all points.

Column—A spark column shows a single series on a column chart. You can choose to
show a different color for the first bar, the last bar, the lowest bar, the highest bar, or all
negative points.

Win/loss—This is a special type of column chart in which every positive point is plotted
at 100% height and every negative point is plotted at –100% height. The theory is that
positive columns represent wins and negative columns represent losses. With these
charts, you always want to change the color of the negative columns. It is possible to
highlight the highest/lowest point based on the underlying data.

Creating sparklines
Microsoft figures that you will usually be creating a group of sparklines. The main VBA object
for sparklines is SparklineGroup. To create sparklines, you apply the
SparklineGroups.Add method to the range where you want the sparklines to appear.

In the Add method, you specify a type for the sparkline and the location of the source data.

Say that you apply the Add method to the three-cell range B2:D2. Then the source must be
a range that is either three columns wide or three rows tall.

The Type parameter can be xlSparkLine for a line, xlSparkColumn for a column, or
xlSparkColumn100 for win/loss.

If the SourceData parameter is referring to ranges on the current worksheet, it can be as
simple as "D3:F100". If it is pointing to another worksheet, use "Data!D3:F100" or "'My
Data'!D3:F100". If you’ve defined a named range, you can specify the name of the range as
the source data.

Figure 17-1 shows a table of S&P 500 closing prices for three years. Notice that the actual
data for the sparklines is in three contiguous columns: D, E, and F.

FIGURE 17-1 Arrange the data for the sparklines in a contiguous range.

In this example, the data is on the Data worksheet, and the sparklines are created on the
Dashboard worksheet. The WSD object variable is used for the Data worksheet. WSL is used for
the Dashboard worksheet.

Because each column might have one or two extra points, the code to find the final row is
slightly different than usual:

Click here to view code image

FinalRow = WSD.[A1].CurrentRegion.Rows.Count

The .CurrentRegion property starts from cell A1 and extends in all directions until it hits
the edge of the worksheet or the edge of the data. In this case, the CurrentRegion reports that
row 253 is the final row.

For this example, the sparklines are created in a row of three cells. Because each cell is
showing 252 points, I am going with fairly large sparklines. The sparkline grows to the size of

the cell, so this code makes each cell fairly wide and tall:

Click here to view code image
With WSL.Range("B1:D1")
.Value = array(2012,2013,2014)
.HorizontalAlignment = xlCenter
.Style = "Title"
.ColumnWidth = 39
.Offset(1, 0).RowHeight = 100
End With

The following code creates three default sparklines:

Click here to view code image
Dim SG as SparklineGroup
Set SG = WSL.Range("B2:D2").SparklineGroups.Add(_
Type:=xlSparkLine, _
SourceData:="Data!D2:F" & FinalRow)

As shown in Figure 17-2, these sparklines aren’t perfect (but the next section shows how to
format them). There are a number of problems with the default sparklines. Think about the
vertical axis of a chart. Sparklines always default to have the scale automatically selected.
Because you never really get to see what the scale is, you cannot tell the range of the chart.

FIGURE 17-2 Three default sparklines are shown here.

Figure 17-3 shows the minimum and maximum for each year. From this data, you can
guess that the sparkline for 2015 probably goes from about 1850 to 2150. The sparkline for
2016 probably goes from 1800 to 2300. The sparkline for 2017 probably goes from 2225 to
2690.

FIGURE 17-3 Each sparkline assigns the minimum and maximum scales to be just outside these limits.

Scaling sparklines
The default choice for the sparkline vertical axis is that each sparkline has a different minimum
and maximum. There are two other choices available.

One choice is to group all the sparklines together but to continue to allow Excel to choose
the minimum and maximum scales. You still won’t know exactly what values are chosen for
the minimum and maximum.

To force the sparklines to have the same automatic scale, use this code:

Click here to view code image
' Allow automatic axis scale, but all three of them the same
With SG.Axes.Vertical
.MinScaleType = xlSparkScaleGroup
.MaxScaleType = xlSparkScaleGroup
End With

Note that .Axes belongs to the sparkline group, not to the individual sparklines themselves.
In fact, almost all the good properties are applied at the SparklineGroup level. This has some
interesting ramifications. If you want one sparkline to have an automatic scale and another
sparkline to have a fixed scale, you have to create each of those sparklines separately, or at
least ungroup them.

Figure 17-4 shows the sparklines when both the minimum and the maximum scales are set
to act as a group. All three lines nearly meet now, which is a good sign. You can guess that the

scale runs from about 1850 up to perhaps 2700. Again, though, there is no way to tell. The
solution is to use a custom value for both the minimum and the maximum axes.

FIGURE 17-4 All three sparklines have the same minimum and maximum scales, but you don’t know what it is.

Another choice is to take absolute control and assign a minimum and a maximum for the
vertical axis scale. The following code forces the sparklines to run from a minimum of 1829 up
to a maximum that rounds up to 2191:

Click here to view code image
Set AF = Application.WorksheetFunction
AllMin = AF.Min(WSD.Range("D2:F" & FinalRow))
AllMax = AF.Max(WSD.Range("D2:F" & FinalRow))
AllMin = Int(AllMin)
AllMax = Int(AllMax + 0.9)
With SG.Axes.Vertical
.MinScaleType = xlSparkScaleCustom
.MaxScaleType = xlSparkScaleCustom
.CustomMinScaleValue = AllMin
.CustomMaxScaleValue = AllMax
End With

Figure 17-5 shows the resulting sparklines. Now you know the minimum and the
maximum, but you need a way to communicate it to the reader.

FIGURE 17-5 You’ve manually assigned a minimum and a maximum scale, but it does not appear on the chart.

One method is to put the minimum and maximum values in A2. With 8-point bold Calibri,
a row height of 113 allows 10 rows of wrapped text in the cell. So you could put the maximum
value, then vbLf eight times, then the minimum value. (Using vbLf is the equivalent of
pressing Alt+Enter when you are entering values in a cell.)

On the right side, you can put the final point’s value and attempt to position it within the
cell so that it falls roughly at the same height as the final point. Figure 17-6 shows this option.

FIGURE 17-6 Labels on the left show the minimum and the maximum. Labels on the right show the final value.

The following code produces the sparklines in Figure 17-6:

Click here to view code image
Sub SP500Macro()
' SP500 Macro
'
Dim SG As SparklineGroup
Dim SL As Sparkline
Dim WSD As Worksheet ' Data worksheet
Dim WSL As Worksheet ' Dashboard

On Error Resume Next
Application.DisplayAlerts = False
Worksheets("Dashboard").Delete
On Error GoTo 0

Set WSD = Worksheets("Data")
Set WSL = ActiveWorkbook.Worksheets.Add
WSL.Name = "Dashboard"

Click here to view code image
FinalRow = WSD.Cells(1, 1).CurrentRegion.Rows.Count
WSD.Cells(2, 4).Resize(FinalRow - 1, 3).Name = "MyData"

WSL.Select
' Set up headings
With WSL.Range("B1:D1")
.Value = Array(2015, 2016, 2017)
.HorizontalAlignment = xlCenter
.Style = "Title"
.ColumnWidth = 39
.Offset(1, 0).RowHeight = 100

End With

Set SG = WSL.Range("B2:D2").SparklineGroups.Add(_
Type:=xlSparkLine, _
SourceData:="Data!D2:F250")
Set SL = SG.Item(1)
Set AF = Application.WorksheetFunction
AllMin = AF.Min(WSD.Range("D2:F" & FinalRow))
AllMax = AF.Max(WSD.Range("D2:F" & FinalRow))
AllMin = Int(AllMin)
AllMax = Int(AllMax + 0.9)
' Allow automatic axis scale, but all three of them the same
With SG.Axes.Vertical
.MinScaleType = xlSparkScaleCustom
.MaxScaleType = xlSparkScaleCustom
.CustomMinScaleValue = AllMin
.CustomMaxScaleValue = AllMax

End With

' Add two labels to show minimum and maximum
With WSL.Range("A2")

.Value = AllMax & vbLf & vbLf & vbLf & vbLf _
& vbLf & vbLf & vbLf & vbLf & AllMin

.HorizontalAlignment = xlRight

.VerticalAlignment = xlTop
.Font.Size = 8
.Font.Bold = True
.WrapText = True

End With

' Put the final value on the right
FinalVal = Round(WSD.Cells(Rows.Count, 6).End(xlUp).Value, 0)
Rg = AllMax - AllMin
RgTenth = Rg / 10
FromTop = AllMax - FinalVal
FromTop = Round(FromTop / RgTenth, 0) - 1

Click here to view code image
If FromTop < 0 Then FromTop = 0
Select Case FromTop
Case 0

RtLabel = FinalVal
Case Is > 0

RtLabel = Application.WorksheetFunction. _
Rept(vbLf, FromTop) & FinalVal

End Select

With WSL.Range("E2")
.Value = RtLabel
.HorizontalAlignment = xlLeft
.VerticalAlignment = xlTop
.Font.Size = 8
.Font.Bold = True

End With
End Sub

Formatting sparklines
Most of the formatting available with sparklines involves setting the color of various elements
of the sparkline.

There are a few methods for assigning colors in Excel 2019. Before diving into the
sparkline properties, you can read about the two methods of assigning colors in Excel VBA.

Using theme colors

Excel 2007 introduced the concept of a theme for a workbook. A theme is composed of a body
font, a headline font, a series of effects, and then a series of colors.

The first four colors are used for text and backgrounds. The next six colors are the accent
colors. The 20-plus built-in themes include colors that work well together. There are also two
colors used for hyperlinks and followed hyperlinks. For now, focus on the accent colors.

Go to Page Layout, Themes and choose a theme. Next to the theme drop-down menu is a
Colors drop-down menu. Open that drop-down menu and select Create New Theme Colors
from the bottom of the list. Excel shows the Create New Theme Colors dialog box (see Figure
17-7). This dialog box gives you a good picture of the 12 colors associated with the theme.

Throughout Excel, there are many color chooser drop-down menus. As shown in Figure 17-
8, a section of each color chooser drop-down menu is called Theme Colors. The top row under
Theme Colors shows the four font and six accent colors.

FIGURE 17-7 The current theme includes 12 colors.

FIGURE 17-8 All but the hyperlink colors from the theme appear across the top row.

If you want to choose the last color in the first row, the VBA is as follows:

Click here to view code image

ActiveCell.Font.ThemeColor = xlThemeColorAccent6

Going across that top row of Figure 17-8, these are the 10 colors:

Click here to view code image
xlThemeColorDark1
xlThemeColorLight1
xlThemeColorDark2
xlThemeColorLight2
xlThemeColorAccent1
xlThemeColorAccent2

Click here to view code image
xlThemeColorAccent3
xlThemeColorAccent4
xlThemeColorAccent5
xlThemeColorAccent6

Caution The first four colors seem to be reversed. xlThemeColorDark1 is a
white color. This is because the VBA constants were written from the point of
view of the font color to use when the cell contains a dark or light background.
If you have a cell filled with a dark color, you want to display a white font.

Hence, xlThemeColorDark1 is white, and xlThemeColorLight1 is black.

On your computer, open the Fill Color drop-down menu on the Home tab and look at it in
color. If you are using the Office theme, the last column is various shades of green. The top
row is the actual color from the theme. Then there are five rows that go from a light green to a
very dark green.

Excel lets you modify the theme color by lightening or darkening it. The values range from
–1, which is very dark, to +1, which is very light. For example, the very light green in row 2 of
Figure 17-8 has a tint and shade value of 0.8, which is almost completely light. The next row
has a tint and shade level of 0.6. The next row has a tint and shade level of 0.4. That gives you
three choices that are lighter than the theme color. The next two rows are darker than the theme
color. These two darker rows have values of –.25 and –.5.

If you turn on the macro recorder and choose one of these colors, you see a confusing
bunch of code:

Click here to view code image
.Pattern = xlSolid
.PatternColorIndex = xlAutomatic
.ThemeColor = xlThemeColorAccent6
.TintAndShade = 0.799981688894314
.PatternTintAndShade = 0

If you are using a solid fill, you can leave out the first, second, and fifth lines of code.

The .TintAndShade line looks confusing because computers cannot round decimal tenths
very well. Remember that computers store numbers in binary. In binary, a simple number like
0.1 is a repeating decimal. As the macro recorder tries to convert 0.8 from binary to decimal, it
“misses” by a bit and comes up with a very close number: 0.7998168894314. This is really
saying that it should be 80% lighter than the base number.

If you are writing code by hand, you only have to assign two values to use a theme color.
Assign the .ThemeColor property to one of the six xlThemeColorAccent1 through
xlThemeColorAccent6 values. If you want to use a theme color from the top row of the drop-
down menu, the .TintAndShade should be 0 and can be omitted. If you want to lighten the
color, use a positive decimal for .TintAndShade. If you want to darken the color, use a

negative decimal.

Tip The five shades in the color palette drop-down menus are not the complete set
of variations. In VBA, you can assign any two-digit decimal value from –1.00 to
+1.00. Figure 17-9 shows 201 variations of one theme color created using the

.TintAndShade property in VBA.

FIGURE 17-9 These are shades of one theme color.

To recap, if you want to work with theme colors, you generally change two properties: the
theme color, in order to choose one of the six accent colors, and the tint and shade, to lighten or
darken the base color, like this:

Click here to view code image

.ThemeColor = xlThemeColorAccent6

.TintAndShade = 0.4

Note One advantage of using theme colors is that your sparklines change color
based on the theme. If you later decide to switch from the Office theme to the
Metro theme, the colors change to match the theme.

Using RGB colors

For the past three decades, computers have offered a palette of 16 million colors. These colors
derive from adjusting the amount of red, green, and blue light in a cell.

Do you remember art class in elementary school? You probably learned that the three
primary colors are red, yellow, and blue. You could make green by mixing some yellow and
blue paint. You could make purple by mixing some red and blue paint. You could make orange
by mixing some yellow and red paint. As all of my male classmates and I soon discovered, you
could make black by mixing all the paint colors. Those rules all work with pigments in paint,
but they don’t work with light.

Those pixels on your computer screen are made up of light. In the light spectrum, the three
primary colors are red, green, and blue. You can make the 16 million colors of the RGB color
palette by mixing various amounts of red, green, and blue light. Each of the three colors is
assigned an intensity from 0 (no light) to 255 (full light).

You will often see a color described using the RGB function. In this function, the first value
is the amount of red, the second value is the amount of green, and the third value is the amount
of blue:

To make red, you use =RGB(255,0,0).

To make green, use =RGB(0,255,0).

To make blue, use =RGB(0,0,255).

What happens if you mix 100% of all three colors of light? You get white! To make
white, use =RGB(255,255,255).

What if you shine no light in a pixel? You get black: =RGB(0,0,0).

To make purple, you use some red, a little green, and some blue: RGB(139,65,123).

To make yellow, use full red and green and no blue: =RGB(255,255,0).

To make orange, use less green than for yellow: =RGB(255,153,0).

In VBA, you can use the RGB function just as it is shown here. The macro recorder is not a

big fan of using the RGB function, though. It instead shows the result of the RGB function. Here
is how you convert from the three arguments of the RGB function to the color value:

Take the red value times 1.

Add the green value times 256.

Add the blue value times 65,536.

Note Why 65,536? It is 256 raised to the second power.

If you choose a red for your sparkline, you frequently see the macro recorder assign
.Color = 255. This is because =RGB(255,0,0) is 255.

When the macro recorder assigns a value of 5287936, what color does this mean? Here are
the steps you follow to find out:

1. In Excel, enter =Dec2Hex(5287936). You get the answer 50B000. This is the color that
web designers refer to as #50B000.

2. Go to your favorite search engine and search for “color chooser.” Choose a utility that
allows you to type in the hex color code and see the color. Type 50B000. You see that
#50B000 is RGB(80,176,0).

While at the color chooser web page, you’re offered additional colors that complement the
original color. Click around to find other shades of colors and see the RGB values for those.

To recap, to skip theme colors and use RGB colors, you set the .Color property to the
result of an RGB function.

Formatting sparkline elements

Figure 17-10 shows a plain sparkline. The data is created from 12 points that show performance
versus a budget. You really have no idea about the scale from this sparkline.

FIGURE 17-10 This is a default sparkline.

If your sparkline includes both positive and negative numbers, it helps to show the
horizontal axis so that you can figure out which points are above budget and which points are
below budget.

To show the axis, use the following:

Click here to view code image
SG.Axes.Horizontal.Axis.Visible = True

Figure 17-11 shows the horizontal axis. This helps to show which months were above or
below budget.

FIGURE 17-11 Add the horizontal axis to show which months were above or below budget.

Using code from the section “Scaling sparklines” earlier in this chapter, you can add high

and low labels to the cell to the left of the sparkline:

Click here to view code image
Set AF = Application.WorksheetFunction
MyMax = AF.Max(Range("B5:B16"))
MyMin = AF.Min(Range("B5:B16"))
LabelStr = MyMax & vbLf & vbLf & vbLf & vbLf & MyMin

With SG.Axes.Vertical
.MinScaleType = xlSparkScaleCustom
.MaxScaleType = xlSparkScaleCustom
.CustomMinScaleValue = MyMin
.CustomMaxScaleValue = MyMax
End With

With Range("D2")
.WrapText = True
.Font.Size = 8
.HorizontalAlignment = xlRight
.VerticalAlignment = xlTop
.Value = LabelStr
.RowHeight = 56.25
End With

The result of this macro is shown in Figure 17-12.

FIGURE 17-12 Use a nonsparkline feature to label the vertical axis.

To change the color of the sparkline, use this:

Click here to view code image
SG.SeriesColor.Color = RGB(255, 191, 0)

The Show group of the Sparkline Tools Design tab offers six options. You can further
modify those elements by using the Marker Color drop-down menu. You can choose to turn on
a marker for every point in the data set, as shown in Figure 17-13.

FIGURE 17-13 Show All Markers.

This code shows a black marker at every point:

Click here to view code image
With SG.Points
.Markers.Color.Color = RGB(0, 0, 0) ' black
.Markers.Visible = True
End With

Instead, you can use markers to show only the minimum, maximum, first, and last points.
The following code shows the minimum in red, maximum in green, and first and last points in
blue:

Click here to view code image
With SG.Points
.Lowpoint.Color.Color = RGB(255, 0, 0) ' red
.Highpoint.Color.Color = RGB(51, 204, 77) ' green
.Firstpoint.Color.Color = RGB(0, 0, 255) ' blue
.Lastpoint.Color.Color = RGB(0, 0, 255) ' blue
.Negative.Color.Color = RGB(127, 0, 0) ' pink
.Markers.Color.Color = RGB(0, 0, 0) ' black
' Choose Which points to Show
.Highpoint.Visible = True
.Lowpoint.Visible = True
.Firstpoint.Visible = True
.Lowpoint.Visible = True
.Negative.Visible = False
.Markers.Visible = False
End With

Figure 17-14 shows the sparkline with only the high, low, first, and last points marked.

FIGURE 17-14 This sparkline shows only key markers.

Note Negative markers are particularly handy when you are formatting win/loss
charts, which are discussed in the next section.

Formatting win/loss charts

Win/loss charts are a special type of sparkline for tracking binary events. A win/loss chart
shows an upward-facing marker for a positive value and a downward-facing marker for any
negative value. For a zero, no marker is shown.

You can use these charts to track proposal wins versus losses. In Figure 17-15, a win/loss
chart shows the last 25 regular-season baseball games of the famed 1951 pennant race between
the Brooklyn Dodgers and the New York Giants. This chart shows that the Giants went on a
seven-game winning streak to finish the regular season. The Dodgers went 3–4 during this
period and ended in a tie with the Giants, forcing a three-game playoff. The Giants won the
first game, lost the second, and then advanced to the World Series by winning the third playoff
game. The Giants leapt out to a 2–1 lead over the Yankees but then lost three straight.

FIGURE 17-15 This win/loss chart documents the most famous pennant race in history.

Note The words Regular season, Playoff, and W. Series, as well as the two
dotted lines, are not part of the sparkline. The lines are drawing objects manually
added with Insert, Shapes.

To create the chart, you use SparklineGroups.Add with the type
xlSparkColumnStacked100, like this:

Click here to view code image
Set SG = Range("B2:B3").SparklineGroups.Add(_
Type:=xlSparkColumnStacked100, _
SourceData:="C2:AD3")

You generally show the wins and losses using different colors. One obvious color scheme is
red for losses and green for wins.

There is no specific way to change only the “up” markers, so change the color of all
markers to be green:

Click here to view code image
' Show all points as green
SG.SeriesColor.Color = 5287936

Then change the color of the negative markers to red:

Click here to view code image
'Show losses as red
With SG.Points.Negative
.Visible = True
.Color.Color = 255
End With

It is easier to create the up/down charts. You don’t have to worry about setting the line
color, and the vertical axis is always fixed.

Creating a dashboard
Sparklines provide the benefit of communicating a lot of information in a very tiny space. In
this section, you’ll see how to fit 130 charts on one page.

Figure 17-16 shows a data set that summarizes a 1.8-million-row data set. I used the Power
Pivot add-in for Excel to import the records and then calculated three new measures:

YTD sales by month by store

YTD sales by month for the previous year

Percent increase of YTD sales versus the previous year

A key statistic in retail stores is how you are doing now compared to the same time last
year. Also, this analysis has the benefit of being cumulative. The final number for December
represents whether the store was up or down compared to the previous year.

FIGURE 17-16 This summary of 1.8 million records is a sea of numbers.

Observations about sparklines

After working with sparklines for a while, some observations come to mind:

Sparklines are transparent. You can see through them to the underlying cell. This means
that the fill color of the underlying cell shows through, and the text in the underlying cell
shows through.

If you make the font really small and align the text with the edge of the cell, you can
make the text look like a title or a legend.

If you turn on text wrapping and make the cell tall enough for 5 or 10 lines of text in the
cell, you can control the position of the text in the cell by using vbLf characters in VBA.

Sparklines work best when they are bigger than a typical cell. For all the examples in this
chapter I made the column wider, the height taller, or both.

Sparklines created together are grouped. Changes made to one sparkline are made to all
s parkli nes.

Sparklines can be created on a worksheet separate from the data.

Sparklines look better when there is some white space around the cells. This would be
tough to do manually because you would have to create the sparklines one at a time. It is
easy to do here because you can leverage VBA.

Creating hundreds of individual sparklines in a dashboard

You address all the issues just listed as you are creating this dashboard. The plan is to create
each store’s sparkline individually. This way, a blank row and column appear between the
sparklines.

After inserting a new worksheet for the dashboard, you can format the cells in Figure 17-17
with this code:

Click here to view code image
' Set up the dashboard as alternating cells for the sparkline
and then blank
For c = 1 To 11 Step 2
WSL.Cells(1, c).ColumnWidth = 15
WSL.Cells(1, c + 1).ColumnWidth = 0.6
Next c
For r = 1 To 45 Step 2
WSL.Cells(r, 1).RowHeight = 38
WSL.Cells(r + 1, 1).RowHeight = 3
Next r

Keep track of which cell contains the next sparkline with two variables:
NextRow = 1
NextCol = 1

Figure out how many rows of data there are on the Data worksheet. Loop from row 4 to the
final row. For each row, you make a sparkline.

Build a text string that points back to the correct row on the Data sheet, using this code, and
use that as the source data argument when defining the sparkline:

Click here to view code image
ThisSource = "Data!B" & i & ":M" & i
Set SG = WSL.Cells(NextRow, NextCol).SparklineGroups.Add(_
Type:=xlSparkColumn, _
SourceData:=ThisSource)

In this case, you want to show a horizontal axis at the zero location. The range of values for
all stores was –5% to +10%. The maximum scale value here is being set to 0.15 (which is
equivalent to 15%) to allow extra room for the “title” in the cell:

Click here to view code image
SG.Axes.Horizontal.Axis.Visible = True
With SG.Axes.Vertical

.MinScaleType = xlSparkScaleCustom

.MaxScaleType = xlSparkScaleCustom

.CustomMinScaleValue = -0.05

.CustomMaxScaleValue = 0.15
End With

As in the previous example with the win/loss chart, you want the positive columns to be
green and the negative columns to be red:

Click here to view code image
' All columns green
SG.SeriesColor.Color = RGB(0, 176, 80)
' Negative columns red
SG.Points.Negative.Visible = True
SG.Points.Negative.Color.Color = RGB(255, 0, 0)

Remember that the sparkline has a transparent background. Thus, you can write really small
text to the cell, and it behaves almost like chart labels.

The following code joins the store name and the final percentage change for the year into a
title for the chart. The program writes this title to the cell but makes it small, centered, and
vertically aligned:

Click here to view code image
ThisStore = WSD.Cells(i, 1).Value & " " & _
Format(WSD.Cells(i, 13), "+0.0%;-0.0%;0%")
' Add a label
With WSL.Cells(NextRow, NextCol)
.Value = ThisStore
.HorizontalAlignment = xlCenter
.VerticalAlignment = xlTop
.Font.Size = 8
.WrapText = True
End With

The final element is to change the background color of the cell based on the final
percentage so that if it is up, the background is light green, and if it is down, the background is
light red:

Click here to view code image
FinalVal = WSD.Cells(i, 13)
' Color the cell light red for negative, light green for

positive
With WSL.Cells(NextRow, NextCol).Interior
If FinalVal <= 0 Then
.Color = RGB(255, 0, 0)
.TintAndShade = 0.9

Else
.Color = RGB(197, 247, 224)
.TintAndShade = 0.7

End If
End With

After that sparkline is done, the column or row positions are incremented to prepare for the
next chart:

Click here to view code image
NextCol = NextCol + 2
If NextCol > 11 Then
NextCol = 1
NextRow = NextRow + 2
End If

After this, the loop continues with the next store.

The complete code is shown here:

Click here to view code image
Sub StoreDashboard()
Dim SG As SparklineGroup
Dim SL As Sparkline
Dim WSD As Worksheet ' Data worksheet
Dim WSL As Worksheet ' Dashboard

On Error Resume Next
Application.DisplayAlerts = False
Worksheets("Dashboard").Delete
On Error GoTo 0

Set WSD = Worksheets("Data")
Set WSL = ActiveWorkbook.Worksheets.Add
WSL.Name = "Dashboard"

' Set up the dashboard as alternating cells for the sparkline

and then blank
For c = 1 To 11 Step 2
WSL.Cells(1, c).ColumnWidth = 15
WSL.Cells(1, c + 1).ColumnWidth = 0.6

Next c
For r = 1 To 45 Step 2
WSL.Cells(r, 1).RowHeight = 38
WSL.Cells(r + 1, 1).RowHeight = 3

Next r

NextRow = 1
NextCol = 1

FinalRow = WSD.Cells(Rows.Count, 1).End(xlUp).Row

For i = 4 To FinalRow
ThisStore = WSD.Cells(i, 1).Value & " " & _
Format(WSD.Cells(i, 13), "+0.0%;-0.0%;0%")
ThisSource = "Data!B" & i & ":M" & i
FinalVal = WSD.Cells(i, 13)

Set SG = WSL.Cells(NextRow, NextCol).SparklineGroups.Add(_
Type:=xlSparkColumn, _
SourceData:=ThisSource)

SG.Axes.Horizontal.Axis.Visible = True
With SG.Axes.Vertical

.MinScaleType = xlSparkScaleCustom

.MaxScaleType = xlSparkScaleCustom

.CustomMinScaleValue = -0.05

.CustomMaxScaleValue = 0.15
End With

' All columns green
SG.SeriesColor.Color = RGB(0, 176, 80)
' Negative columns red
SG.Points.Negative.Visible = True

Click here to view code image
SG.Points.Negative.Color.Color = RGB(255, 0, 0)

' Add a label
With WSL.Cells(NextRow, NextCol)

.Value = ThisStore
.HorizontalAlignment = xlCenter
.VerticalAlignment = xlTop
.Font.Size = 8
.WrapText = True

End With

' Color the cell light red for negative, light green for
positive
With WSL.Cells(NextRow, NextCol).Interior

If FinalVal <= 0 Then
.Color = 255
.TintAndShade = 0.9

Else
.Color = RGB(197, 247, 224)
.TintAndShade = 0.7

End If
End With

NextCol = NextCol + 2
If NextCol > 11 Then

NextCol = 1
NextRow = NextRow + 2

End If
Next i
End Sub

Figure 17-17 shows the final dashboard, which prints on a single page and summarizes 1.8
million rows of data.

FIGURE 17-17 One page summarizes the sales from hundreds of stores.

If you zoom in, you can see that every cell tells a story. In Figure 17-18, Park Meadows in
cell I33 had a great January, managed to stay ahead of last year through the entire year, and

finished up 0.8%. Lakeside in cell I35 also had a positive January, but then it had a bad
February and a worse March. Lakeside struggled back toward 0% for the rest of the year but
ended up down seven-tenths of a percent.

Note The report is addictive. I find myself studying all sorts of trends, but then I
have to remind myself that I created the 1.8-million-row data set using
RandBetween just a few weeks ago! The report is so compelling that I am

getting drawn into studying fictional data.

FIGURE 17-18 Note the detail of two sparkline charts.

Next steps
In Chapter 18, “Reading from and writing to the web,” you find out how to use web queries

to automatically import data from the Internet to your Excel applications.

CHAPTER 18
Reading from and writing to the web

In this chapter, you will:

Get data from the web

Use Application.OnTime to periodically analyze data

Publish data to a web page

The Internet has become pervasive and has changed our lives. From your desktop, millions of
answers are available at your fingertips. In addition, publishing a report on the web enables
millions of others to instantly access your information.

This chapter discusses automated ways to pull data from the web into spreadsheets, using
new features from the former Power Query add-in. You’ll find out how to use VBA to call a
website repeatedly to gather information for many data points. This chapter also shows how to
save data from a spreadsheet directly to the web.

Getting data from the web
There is an endless variety of data on the Internet. You have two options when it comes to
getting data from the web: You can use the Excel interface to build a query and then use VBA
to refresh the query, or you can attempt to write the query in the M language. The Power Query
add-in that Microsoft introduced for Excel 2010/2013 is built in to Excel 2019. When you use
New Query in the Get & Transform group on the Data tab, you are using the former Power
Query add-in to build your query in the M language.

The code for the query you would need to write to get data from the web is lengthy and
difficult:

Click here to view code image
Sub CreatePowerQuery()
ActiveWorkbook.Queries.Add Name:="Table 1", _

Formula:="let" & Chr(13) & "" & Chr(10) & _
" Source = Web.Page(Web.Contents(" & _
"""http://www.flightstats.com/go/FlightStatus/" & _
"flightStatusByFlightPositionDetails.do?id=" & _

"562694389&airlineCode=AA&flightNumber=5370""))," _

Click here to view code image
& Chr(13) & "" & Chr(10) & " Data1 = Source{1}[Data]," _
& Chr(13) & "" & Chr(10) & " #""Changed Type"" = " & _
"Table.TransformColumnTypes(Data1,{{""UTC Time""," & _
"type text}, {""Time At Departure"", type text}, " & _
"{""Time At Arrival"", type text}, {""Spee" & _
"d"", type text}, {""Altitude"", type text}, " & _
"{""Latitude"", type number}, {""Longitude"", " & _
"type number}})," & Chr(13) & "" & Chr(10) & " " & _
"#""Removed Columns"" = Table.RemoveColumns" & _
"(#""Changed Type"",{""UTC Time"", ""Time At " & _
"Departure""})," & Chr(13) & "" & Chr(10) & _
" #""Split Column by Position"" = Table.Split" & _
"Column(#""Removed Columns"",""Time At Arrival""," & _
"Splitter.SplitTextByPositions({0, 6}, false),"
Formula = Formula & _
"{""Time At Arrival.1"", ""Time At Arrival.2""})," &
Chr(13) & _
"" & Chr(10) & " #""Changed Type1"" = " & _
"Table.TransformColumnTypes(#""Split Column by " & _
"Position"",{{""Time At Arrival.1"", type date}," & _
"{""Time At Arrival.2"", type time}})," & Chr(13) & _
"" & Chr(10) & " #""Removed Columns1"" = " & _
"Table.RemoveColumns(#""Changed Type1"",{""Time At
Arrival.1" _
"})," & _
Chr(13) & "" & Chr(10) & " #""Split Column by Delimiter""
= " & _
"Table.SplitColumn(#""Removed Columns1"",""Spe" & _
"ed"",Splitter.SplitTextByEachDelimiter({"" ""}, " & _
"null, false),{""Speed.1"", ""Speed.2""})," & Chr(13) & _
"" & Chr(10) & " #""Changed Type2"" = " & _
"Table.TransformColumnTypes(#""Split Column by
Delimiter""," & _
"{{""Speed.1"", Int64.Type}, {""Speed.2"", type text}}),"
& _
Chr(13) & "" & Chr(10) & " #""Removed Columns2"" = " & _
"Table.RemoveColumns(#""Changed Type2"",{""Speed.2""})," &
_
Chr(13) & "" & Chr(10) & " #""Split Column by Delimiter1""

" & _
"= Table.SplitColumn(#""Removed Columns2""," & _
"""Altitude"",Splitter.SplitTextByEachDelimiter({"" ""}, "
& _
"null, false),{""Altitude.1"", ""Altitude.2""})," & _
Chr(13) & "" & Chr(10) & " #""Changed Type3"" = "
Formula = Formula & "Table.TransformColumnTypes(#""Split "
& _
"Column by Delimiter1""," & _
"{{""Altitude.1"", Int64.Type}, {""Altitude.2"", type
text}})," & _
Chr(13) & "" & Chr(10) & " #""Removed Columns3"" = " & _
"Table.RemoveColumns(#""Changed Type3"",{""Altitude.2""})"
& _
Chr(13) & "" & Chr(10) & "in" & Chr(13) & "" & Chr(10) & "
" & _
" #""Removed Columns3"""

Sheets.Add After:=ActiveSheet
With ActiveSheet.ListObjects.Add(SourceType:=0, _
Source:="OLEDB;Provider=Microsoft.Mashup.OleDb.1;" & _
"Data Source=$Workbook$;Location=Table1", _
Destination:=Range("A1")).QueryTable .CommandType = xlCmdSql

.CommandText = Array("SELECT * FROM [Table 1]")

.RowNumbers = False

.FillAdjacentFormulas = False

.PreserveFormatting = True

.RefreshOnFileOpen = False

.BackgroundQuery = True

Click here to view code image
.RefreshStyle = xlInsertDeleteCells
.SavePassword = False
.SaveData = True
.AdjustColumnWidth = True
.RefreshPeriod = 0
.PreserveColumnInfo = False
.ListObject.DisplayName = "Table_1"
.Refresh BackgroundQuery:=False

End With
Selection.ListObject.QueryTable.Refresh BackgroundQuery:=False
End Sub

The easier solution is to build the query in the Power Query interface and then refresh the
query with this code:

Click here to view code image
Sub RefreshPowerQuery()

ActiveWorkbook.RefreshAll
End Sub

Building multiple queries with VBA

Say that you want to collect data from a website, such as historical weather statistics. Hourly
weather statistics are available from
http://www.wunderground.com/history/airport/KCAK/2018/6/17/DailyHistory.html. In this
URL, KCAK is the location code for the Akron Canton airport (CAK). The 2018/6/17 refers to
June 17, 2018. You can imagine how you can iterate through multiple cities or multiple dates.

The strategy would be to build the Power Query from scratch, refresh, copy the data to a
new sheet, and then delete the Power Query and move on to the next city or date.

To gather weather data for 24 months, you have to repeat the web query process more than
700 times. Doing this manually would be tedious.

The first part can be hard-coded because it never changes:
"URL;http://www.wunderground.com/history/airport/K"

The next part is the three-letter airport code. If you are retrieving data for many cities, this
part will change:

CAK

The third part is a slash, the date in YYYY/M/D format, and a slash:

/2018/6/17/

The final part can be hard-coded:

"DailyHistory.html"

Insert a new worksheet and build an output table. In cell A2, enter the first date for which
you have sales history. Use the fill handle to drag the dates down to the current date.

The formula in B2 is ="/"&Text(A2,"YYYY/M/D")&"/".

Add friendly headings across row 1 for the statistics you will collect.

http://www.wunderground.com/history/airport/KCAK/2018/6/17/DailyHistory.html

Finding results from retrieved data

Next, you have a decision to make. It looks as though the Weather Underground website is
fairly static. The snow statistic even shows up if I ask for JHM airport in Maui. If you are
positive that rainfall is always going to appear in cell B28 of your results sheet, you could write
the macro to get data from there. However, to be safe, you can build some lookup formulas at
the top of the worksheet to look for certain row labels and to pull that data. In Figure 18-1,
eight VLOOKUP formulas find the statistics for high, low, rain, and snow from the web query.

FIGURE 18-1 VLOOKUPs at the top of the web worksheet find and pull the relevant data from a web page.

Note The variable web location of the web data happens more often than you
might think. If you are pulling name and address information, some addresses
have three lines, and some have four lines. Anything that appears after that

address might be off by a row. Some stock quote sites show a different version of the data,
depending on whether the market is open or closed. If you kick off a series of web queries
at 3:45 p.m., the macro might work until 4:00 p.m. and then stop working. For these
reasons, it is often safer to take the extra steps of retrieving the correct data from the web
query by using VLOOKUP statements.

To build the macro, you add some code before the recorded code:

Click here to view code image
Dim WSD as worksheet
Dim WSW as worksheet
Set WSD = Worksheets("Data")
Set WSW = Worksheets("Web")
FinalRow = WSD.Cells(Rows.Count, 1).End(xlUp).Row

Then add a loop to go through all the dates in the data worksheet:

Click here to view code image
For I = 2 to FinalRow

ThisDate = WSD.Cells(I, 2).value
' Build the ConnectString
CS = "URL:
URL;http://www.wunderground.com/history/airport/KCAK"
CS = CS & ThisDate & "DailyHistory.html"

If a web query is about to overwrite existing data on the worksheet, it moves that data to the
right. You want to clear the previous web query and all the contents:

Click here to view code image
For Each qt In WSD.QueryTables
qt.Delete
Next qt
WSD.Range("A10:A300").EntireRow.Clear

You can now go into the recorded code and change the QueryTables.Add line to the
following:

Click here to view code image
With WSD.QueryTables.Add(Connection:= CS,
Destination:=WSW.Range("A10"))

After the recorded code, add some lines to calculate the VLOOKUPs, copy the results, and
finish the loop:

Click here to view code image
WSW.Calculate
WSD.Cells(i, 3).Resize(1, 4).Value = WSW.Range("B4:E4").Value
Next i

Step through the code as it goes through the first loop to make sure that everything is
working. You should notice that the actual .Refresh line takes about 5 to 10 seconds.
Gathering two or three years’ worth of web pages requires more than an hour of processing
time. Run the macro, head to lunch, and then come back to a good data set.

Putting it all together

In the final macro here, I turned off screen updating and showed the row number that the macro
is processing in the status bar. I also deleted some unnecessary properties from the recorded
code:

Click here to view code image

Sub GetData()
Dim WSD As Worksheet
Dim WSW As Worksheet
Set WSD = Worksheets("Data")
Set WSW = Worksheets("Web")
FinalRow = WSD.Cells(Rows.Count, 1).End(xlUp).Row

For i = 1 To FinalRow
ThisDate = WSD.Cells(i, 2).Value
' Build the ConnectString
CS = "URL;http://www.wunderground.com/history/airport/KCAK/"
CS = CS & ThisDate
CS = CS & "DailyHistory.html"
' Clear results of last web query
For Each qt In WSW.QueryTables
qt.Delete
Next qt
WSD.Range("A10:A300").EntireRow.Clear

With WSW.QueryTables.Add(Connection:=CS, _
Destination:=Range("A10"))
.Name = "DailyHistory"
.FieldNames = True

Click here to view code image
.RowNumbers = False
.FillAdjacentFormulas = False
.PreserveFormatting = True
.RefreshOnFileOpen = False
.BackgroundQuery = True
.RefreshStyle = xlInsertDeleteCells
.SavePassword = False
.SaveData = True
.AdjustColumnWidth = True
.RefreshPeriod = 0
.WebSelectionType = xlEntirePage
.WebFormatting = xlWebFormattingNone
.WebPreFormattedTextToColumns = True
.WebConsecutiveDelimitersAsOne = True
.WebSingleBlockTextImport = False
.WebDisableDateRecognition = False
.WebDisableRedirections = False

.Refresh BackgroundQuery:=False
End With

WSD.Range("K3:N3").FormulaR1C1 = _
"=VLOOKUP(R[-1]C,Web!C1:C2,2,FALSE)"

WSD.Cells(i, 3).Resize(1, 4).Value = _
WSD.Range("K3:N3").Value

Next i

End Sub

After an hour, you have data retrieved from hundreds of web pages (see Figure 18-2).

FIGURE 18-2 Here are the results of running the web query hundreds of times.

Examples of scraping websites using web queries

Over the years, I have used the web query trick many times. Examples include the following:

I used a web query to get names and company addresses for all Fortune 1000 CFOs so
that I could pitch my Power Excel seminars to them.

I used a web query to find the complete membership roster for a publishing association
of which I am a member. (I already had the printed roster, but with an electronic
database, I could filter to find publishers in certain cities.)

I used a web query to get a mailing address for every public library in the United States.

I used a web query to get a complete list of Chipotle restaurants (which later ended up in
my GPS, but that is a story for the [yet unwritten] Microsoft MapPoint book).

Using Application.OnTime to periodically analyze data

VBA offers the OnTime method for running any VBA procedure at a specific time of day or
after a specific amount of time has passed.

You can write a macro to capture data every hour throughout the day. This macro would
have times hard-coded. The following code will, theoretically, capture data from a website
every hour throughout the day:

Click here to view code image
Sub ScheduleTheDay()
Application.OnTime EarliestTime:=TimeValue("8:00 AM"), _
Procedure:= "CaptureData"
Application.OnTime EarliestTime:=TimeValue("9:00 AM"), _
Procedure:= "CaptureData"
Application.OnTime EarliestTime:=TimeValue("10:00 AM"), _
Procedure:= "CaptureData"
Application.OnTime EarliestTime:=TimeValue("11:00 AM"), _
Procedure:= "CaptureData"
Application.OnTime EarliestTime:=TimeValue("12:00 AM"), _
Procedure:= "CaptureData"
Application.OnTime EarliestTime:=TimeValue("1:00 PM"), _
Procedure:= "CaptureData"
Application.OnTime EarliestTime:=TimeValue("2:00 PM"), _
Procedure:= "CaptureData"
Application.OnTime EarliestTime:=TimeValue("3:00 PM"), _
Procedure:= "CaptureData"
Application.OnTime EarliestTime:=TimeValue("4:00 PM"), _
Procedure:= "CaptureData"
Application.OnTime EarliestTime:=TimeValue("5:00 PM"), _
Procedure:= "CaptureData"

End Sub

Sub CaptureData()
Dim WSQ As Worksheet
Dim NextRow As Long
Set WSQ = Worksheets("MyQuery")
' Refresh the web query
WSQ.Range("A2").QueryTable.Refresh BackgroundQuery:=False
' Make sure the data is updated
Application.Wait Now + TimeValue("0:00:10")
' Copy the web query results to a new row
NextRow = WSQ.Cells(Rows.Count, 1).End(xlUp).Row + 1
WSQ.Range("A2:B2").Copy WSQ.Cells(NextRow, 1)

End Sub

Using ready mode for scheduled procedures

The OnTime method runs only when Excel is in Ready, Copy, Cut, or Find mode at the
prescribed time. If you start to edit a cell at 7:59:55 a.m. and keep that cell in Edit mode, Excel
cannot run the CaptureData macro at 8:00 a.m., as directed.

In the preceding code example, I specified only the start time for the procedure to run.
Excel waits anxiously until the spreadsheet is returned to Ready mode and then runs the
scheduled program as soon as it can.

The classic example is that you start to edit a cell at 7:59 a.m., and then your manager
walks in and asks you to attend a surprise staff meeting down the hall. If you leave your
spreadsheet in Edit mode and attend the staff meeting until 10:30 a.m., the program cannot run
the first three scheduled hours of updates. As soon as you return to your desk and press Enter to
exit Edit mode, the program runs all previously scheduled tasks. In the preceding code, you
find that the first three scheduled updates of the program all happen between 10:30 and 10:31
a.m.

Specifying a window of time for an update

You can provide Excel with a window of time within which to make an update. The following
code tells Excel to run an update at any time between 8:00 a.m. and 8:05 a.m.:

Click here to view code image
Application.OnTime EarliestTime:=TimeValue("8:00 AM"), _
Procedure:= "CaptureData ", _
LatestTime:=TimeValue("8:05 AM")

If the Excel session remains in Edit mode for the entire five minutes, the scheduled task is
skipped.

Canceling a previously scheduled macro

It is fairly difficult to cancel a previously scheduled macro. You must know the exact time that
the macro is scheduled to run. To cancel a pending operation, call the OnTime method and use
the Schedule:=False parameter to unschedule the event. The following code cancels the
11:00 a.m. run of CaptureData:

Click here to view code image
Sub CancelEleven()
Application.OnTime EarliestTime:=TimeValue("11:00 AM"), _

Procedure:= "CaptureData", Schedule:=False
End Sub

It is interesting to note that the OnTime schedules are remembered by a running instance of
Excel. If you keep Excel open but close the workbook with the scheduled procedure, it still
runs. Consider this hypothetical series of events:

1. Open Excel at 7:30 a.m.

2. Open Schedule.xlsm and run a macro to schedule a procedure at 8:00 a.m.

3. Close Schedule.xlsm but keep Excel open.

4. Open a new workbook and begin entering data.

At 8:00 a.m., Excel reopens Schedule.xlsm and runs the scheduled macro. Excel doesn’t
close Schedule.xlsm. As you can imagine, this is fairly annoying and alarming if you are not
expecting it. If you are going to make extensive use of Application.Ontime, you might want
to have it running in one instance of Excel while you work in a second instance of Excel.

Note If you are using a macro to schedule a macro a certain amount of time later,
you could remember the time in an out-of-the way cell to be able to cancel the
update. See an example in the “Scheduling a macro to run x minutes in the

future” section of this chapter.

Closing Excel cancels all pending scheduled macros

If you close Excel with File, Exit, all future scheduled macros are automatically canceled.
When you have a macro that has scheduled a bunch of macros at indeterminate times, closing
Excel is the only way to prevent the macros from running.

Scheduling a macro to run x minutes in the future

You can schedule a macro to run at a certain time in the future. The following macro uses the
TIME function to return the current time and adds 2 minutes and 30 seconds to the time. The
following macro runs something 2 minutes and 30 seconds from now:

Click here to view code image
Sub ScheduleAnything()
' This macro can be used to schedule anything
WaitHours = 0
WaitMin = 2

WaitSec = 30
NameOfScheduledProc = "CaptureData"
' --- End of Input Section -------

' Determine the next time this should run
NextTime = Time + TimeSerial(WaitHours, WaitMin, WaitSec)

' Schedule ThisProcedure to run then
Application.OnTime EarliestTime:=NextTime,
Procedure:=NameOfScheduledProc
End Sub

Later, canceling this scheduled event would be nearly impossible. You won’t know the
exact time that the macro grabbed the TIME function. You might try to save this value in an out-
of-the-way cell:

Click here to view code image
Sub ScheduleWithCancelOption
NameOfScheduledProc = "CaptureData"

Click here to view code image
' Determine the next time this should run
NextTime = Time + TimeSerial(0,2,30)
Range("ZZ1").Value = NextTime

' Schedule ThisProcedure to run then
Application.OnTime EarliestTime:=NextTime, _
Procedure:=NameOfScheduledProc

End Sub
Sub CancelLater()

NextTime = Range("ZZ1").value
Application.OnTime EarliestTime:=NextTime, _

Procedure:=CaptureData, Schedule:=False
End Sub

Scheduling a verbal reminder

The text-to-speech tools in Excel can be fun. The following macro sets up a schedule that
reminds you when it is time to go to a staff meeting:

Click here to view code image
Sub ScheduleSpeak()

Application.OnTime EarliestTime:=TimeValue("9:14 AM"), _
Procedure:="RemindMe"

End Sub

Sub RemindMe()
Application.Speech.Speak _
Text:="Bill. It is time for the staff meeting."

End Sub

If you want to pull a prank on your manager, you can schedule Excel to automatically turn
on the Speak On Enter feature. Follow this scenario:

1. Tell your manager that you are taking him out to lunch to celebrate April 1.

2. At some point in the morning, while your manager is getting coffee, run the
ScheduleSpeech macro. Design the macro to run 15 minutes after your lunch starts.

3. Take your manager to lunch.

4. While the manager is away, the scheduled macro runs.

5. When the manager returns and starts typing data in Excel, the computer will repeat the
cells as they are entered. This is slightly reminiscent of the computer on Star Trek that
repeated everything Lieutenant Uhura said.

After this starts happening, you can pretend to be innocent; after all, you have a strong alibi
for when the prank began to happen. Here’s the code you use to do it:

Click here to view code image
Sub ScheduleSpeech()
Application.OnTime EarliestTime:=TimeValue("12:15 PM"), _

Click here to view code image
Procedure:="SetUpSpeech"

End Sub

Sub SetupSpeech())
Application.Speech.SpeakCellOnEnter = True
End Sub

Note To turn off Speak on Enter, you can either dig out the button from the QAT
customization panel (look in the category called Commands Not On The
Ribbon) or, if you can run some VBA, change the SetupSpeech macro to

change the True to False.

Scheduling a macro to run every two minutes

Say that you want to ask Excel to run a certain macro every two minutes. However, you realize
that if a macro gets delayed because you accidentally left the workbook in Edit mode while
going to the staff meeting, you don’t want dozens of updates to happen in a matter of seconds.

The easy solution is to have the ScheduleAnything procedure recursively schedule itself
to run again in two minutes. The following code schedules a run in two minutes and then
performs CaptureData:

Click here to view code image
Sub ScheduleAnything()
' This macro can be used to schedule anything
' Enter how often you want to run the macro in hours and
minutes
WaitHours = 0
WaitMin = 2
WaitSec = 0
NameOfThisProcedure = "ScheduleAnything"
NameOfScheduledProc = "CaptureData"
' --- End of Input Section -------

' Determine the next time this should run
NextTime = Time + TimeSerial(WaitHours, WaitMin, WaitSec)

' Schedule ThisProcedure to run then
Application.OnTime EarliestTime:=NextTime, _
Procedure:=NameOfThisProcedure

' Get the Data
Application.Run NameOfScheduledProc
End Sub

This method has some advantages. It doesn’t schedule a million updates in the future. You
have only one future update scheduled at any given time. Therefore, if you decide that you are
tired of seeing the national debt every 15 seconds, you only need to comment out the
Application.OnTime line of code and wait 15 seconds for the last update to happen.

Publishing data to a web page

This chapter has highlighted many ways to capture data from the web. But you can also publish
Excel data back to the web. That’s what this section is about.

The RunReportForEachCustomer macro shown in Chapter 11, “Data mining with
Advanced Filter,” produces reports for each customer in a company. Instead of printing and
faxing a report, it would be cool to save the Excel file as HTML and post the results on a
company intranet so that the customer service reps can instantly access the latest version of the
report.

With the Excel user interface, it is easy to save the report as a web page to create an HTML
view of the data.

In Excel 2019, use File, Save As. Select Web Page (*.htm, *html) in the Save as Type drop-
down menu. You have control over the title that appears in the window title bar. This title also
gets written to the top center of your web page. Click the Change Title button to change the
<Title> tag for the web page. Type a name that ends in either .htm or .html and click Publish.

The result is a file that can be viewed in any web browser. The web page accurately shows
the number formats and font sizes (see Figure 18-3).

FIGURE 18-3 The formatting is close to that of the original worksheet.

Whereas the macro from Chapter 11 did WBN.SaveAs, the current macro uses this code to
write out each web page:

Click here to view code image
HTMLFN = "C:\Intranet\" & ThisCust & ".html"

On Error Resume Next
Kill HTMLFN
On Error GoTo 0
With WBN.PublishObjects.Add(_
SourceType:=xlSourceSheet, _
Filename:=HTMLFN, _
Sheet:="Sheet1", _
Source:="", _
HtmlType:=xlHtmlStatic, _
DivID:="A", _

Click here to view code image
Title:="Sales to " & ThisCust)
.Publish True
.AutoRepublish = False
End With

Although the data is accurately presented in Figure 18-3, it is not extremely fancy. For
example, you don’t have a company logo or navigation bar to examine other reports.

Using VBA to create custom web pages

Long before Microsoft introduced the Save As Web Page functionality, people had been using
VBA to publish Excel data as HTML. The advantage of using VBA for this is that you can
write out specific HTML statements to display company logos and navigation bars.

Consider a typical web page template:

There is code to display a logo and navigation bar at the top/side.

There is content for the page.

There is some HTML code to finish the page.

The following macro reads the code behind a web page and writes it to Excel:

Click here to view code image
Sub ImportHTML()
ThisFile = "C:\Intranet\schedule.html"
Open ThisFile For Input As #1
Ctr = 2
Do
Line Input #1, Data
Worksheets("HTML").Cells(Ctr, 2).Value = Data

Ctr = Ctr + 1
Loop While EOF(1) = False
Close #1
End Sub

If you import the text of a web page into Excel, even if you don’t understand the HTML
involved, you can probably find the first lines that contain the page content.

Examine the HTML code in Excel. Copy the lines needed to draw the top part of the web
page to a worksheet called Top. Copy the lines of code needed to close the web page to a
worksheet called Bottom.

You can use VBA to write out the top, generate content from your worksheet, and then
write out the bottom.

Using Excel as a content management system

Half a billion people are proficient in Excel. Companies everywhere have data in Excel and
many staffers who are comfortable maintaining that data. Rather than force these people to
learn how to create HTML pages, why not build a content management system to take their
Excel data and write out custom web pages?

You probably already have data for a web page in Excel. Using the ImportHTML routine to
read the HTML into Excel, you know the top and bottom portions of the HTML needed to
render the web page. Building a content management system with these tools is simple, and I’ll
show you an example. To the existing Excel data, I added two worksheets. In the worksheet
called Top, I copied the HTML needed to generate the navigation bar of the website. To the
worksheet called Bottom, I copied the HTML needed to generate the end of the HTML page.
Figure 18-4 shows the simple Bottom worksheet.

FIGURE 18-4 Companies everywhere are maintaining all sorts of data in Excel and are comfortable updating the data in
Excel. Why not marry Excel with a simple bit of VBA so that custom HTML can be produced from Excel?

The macro code opens a text file called directory.html for output. First, all the HTML
code from the Top worksheet is written to the file. Then the macro loops through each row in
the membership directory, writing data to the file. After completing this loop, the following
macro writes out the HTML code from the Bottom worksheet to finish the file:

Click here to view code image
Sub WriteMembershipHTML()
' Write web pages
Dim WST As Worksheet
Dim WSB As Worksheet
Dim WSM As Worksheet
Set WSB = Worksheets("Bottom")
Set WST = Worksheets("Top")
Set WSM = Worksheets("Membership")

' Figure out the path

Click here to view code image
MyPath = ThisWorkbook.Path

LineCtr = 0

FinalT = WST.Cells(Rows.Count, 1).End(xlUp).Row
FinalB = WSB.Cells(Rows.Count, 1).End(xlUp).Row
FinalM = WSM.Cells(Rows.Count, 1).End(xlUp).Row

MyFile = "sampleschedule.html"

ThisFile = MyPath & Application.PathSeparator & MyFile
ThisHostFile = MyFile

' Delete the old HTML page
On Error Resume Next
Kill (ThisFile)
On Error GoTo 0

' Build the title
ThisTitle = "<Title>LTCC Membership Directory</Title>"
WST.Cells(3, 2).Value = ThisTitle

' Open the file for output
Open ThisFile For Output As #1

' Write out the top part of the HTML
For j = 2 To FinalT
Print #1, WST.Cells(j, 2).Value
Next j

' For each row in Membership, write out lines of data to the
HTML file
For j = 2 To FinalM
' Surround Member name with bold tags
Print #1, "" & WSM.Cells(j, 1).Value
Next j

' Close the old file
Print #1, "This page current as of " & Format(Date, "mmmm dd,
yyyy") & _
" " & Format(Time, "h:mm AM/PM")

' Write out HTML code from the Bottom worksheet
For j = 2 To FinalB
Print #1, WSB.Cells(j, 2).Value
Next j
Close #1

Application.StatusBar = False
Application.CutCopyMode = False
MsgBox "web pages updated"
End Sub

Figure 18-5 shows the finished web page. This web page looks a lot better than the generic
page created by Excel’s Save As Web Page option, and it maintains the look and feel of the rest
of the site.

Using this approach has many advantages. The person who maintains the schedule data is
comfortable working in Excel. She has already been maintaining the data in Excel on a regular
basis. Now, after updating some records, she clicks a button to produce a new version of the
web page.

Of course, the web designer is clueless about Excel. However, if he ever wants to change
the web design, it is a simple matter of opening his new sample.html file in Notepad and
copying the new code to the Top and Bottom worksheets.

FIGURE 18-5 A simple content management system in Excel was used to generate this web page. The look and feel
match the look and feel of the rest of the website. Excel achieved it without any expensive web database coding.

The resulting web page has a small file size—about one-sixth the size of an equivalent page
created by Excel’s Save As Web Page.

Note In real life, the content management system in this example was extended

to allow easy maintenance of the organization’s calendar, board members, and so
on. The resulting workbook made it possible to maintain 41 web pages at the
click of a button.

Bonus: FTP from Excel

Even when you are able to update web pages from Excel, you still have the hassle of using an
FTP program to upload the pages from your hard drive to the Internet. Again, many people are
proficient in Excel, but not so many are comfortable with using an FTP client.

Ken Anderson has written a cool command-line FTP freeware utility. Download WCL_FTP
from http://www.softlookup.com/display.asp?id=20483. Save WCL_FTP.exe to the root
directory of your hard drive and then use this code to automatically upload your recently
created HTML files to your web server:

Click here to view code image
Sub DoFTP(fname, pathfname)
' To have this work, copy wcl_ftp.exe to the C:\ root directory
' Download from http://www.softlookup.com/display.asp?id=20483

' Build a string to FTP. The syntax is
' WCL_FTP.exe "Caption" hostname username password host-
directory _
' host-filename local-filename get-or-put 0Ascii1Binanry 0NoLog
_
' 0Background 1CloseWhenDone 1PassiveMode 1ErrorsText

Click here to view code image
If Not Worksheets("Menu").Range("I1").Value = True Then Exit Sub
s = """c:\wcl_ftp.exe "" " _
& """Upload File to website"" " _
& "ftp.MySite.com FTPUser FTPPassword www " _
& fname & " " _
& """" & pathfname & """ " _
& "put " _
& "0 0 0 1 1 1"
Shell s, vbMinimizedNoFocus
End Sub

Next steps

http://www.softlookup.com/display.asp?id=20483

Chapter 19, “Text file processing,” covers importing from a text file and writing to a text file.
Being able to write to a text file is useful when you need to write out data for another system to
read.

CHAPTER 19
Text file processing

In this chapter, you will:

Import from text files

Write text files

VBA simplifies both reading and writing from text files. This chapter covers importing from a
text file and writing to a text file. Being able to write to a text file is useful when you need to
write out data for another system to read or even when you need to produce HTML files.

Importing from text files
There are two basic scenarios when reading from text files. If a file contains fewer than
1,048,576 records, it is not difficult to import the file using the Workbooks.OpenText method.
If the file contains more than 1,048,576 records, you have to read the file one record at a time.

Importing text files with fewer than 1,048,576 rows

Text files typically come in one of two formats. In one format, the fields in each record are
separated by some delimiter, such as a comma, pipe, or tab. In the second format, each field
takes a particular number of character positions. This is called a fixed-width file, and this format
was very popular in the days of COBOL.

Excel can import either type of file. You can also open both types by using the OpenText
method. In both cases, it is best to record the process of opening the file and then use the
recorded snippet of code.

Opening a fixed-width file

Figure 19-1 shows a text file in which each field takes up a certain amount of space in the
record. Writing the code to open this type of file is slightly arduous because you need to specify
the length of each field. In my collection of antiques, I still have a metal ruler used by COBOL
programmers to measure the number of characters in a field printed on a green-bar printer. In
theory, you could change the font of your file to a monospace font and use this same method.
However, using the macro recorder is a slightly more up-to-date method.

FIGURE 19-1This file is fixed width. Because you must specify the exact length of each field in the file, opening this
file is quite involved.

Turn on the macro recorder by selecting Record Macro from the Developer tab. Use the
default macro name. From the File menu, select Open. Change the Files Of Type to All Files
and find your text file.

In the Text Import Wizard’s step 1, specify that the data is Fixed Width and click Next.
Excel looks at your data and attempts to figure out where each field begins and ends. Figure 19-
2 shows Excel’s guess on this particular file. Because the Date field is too close to the
Customer field, Excel missed drawing that line.

FIGURE 19-2 Excel guesses at where each field starts and ends. In this case, it guessed incorrectly for two of the fields.

To add a new field indicator in step 2 of the wizard, click in the appropriate place in the
Data Preview window. If you click in the wrong column, click the line and drag it to the right
place. If Excel inadvertently put in an extra field line, double-click the line to remove it. Figure
19-3 shows the Data Preview window after the appropriate changes have been made. Note the
little ruler above the data. When you click to add a field marker, Excel is actually handling the
tedious work of figuring out that the Customer field starts in position 25 and has a length of 11.

FIGURE 19-3 After you add a new field marker and adjust the marker between Customer and Quantity to the right
place, Excel can build the code that gives you an idea of the start position and length of each field.

In step 3 of the wizard, Excel assumes that every field is in General format. Change the
format of any fields that require special handling. Click the third column and choose the
appropriate format from the Column Data Format section of the dialog box. Figure 19-4 shows
the selections for this file.

FIGURE 19-4 The third column is a date, and you do not want to import the Cost and Profit columns.

If you have date fields, click the heading above that column and change the column data
format to a Date format. If you have a file with dates in year-month-day format or day-month-
year format, select the drop-down menu next to Date and choose the appropriate date sequence.

If you prefer to skip some fields, click those columns and select Do Not Import Column
(Skip) from the Column Data Format section. This is useful in a couple of instances. If the file
includes sensitive data that you do not want to show to a client, you can leave it out of the
import. For example, perhaps this report is for a customer to whom you do not want to show
the cost of goods sold or profit. In this case, you can choose to skip these fields in the import.
In addition, occasionally you will encounter a text file that is both fixed width and delimited by
a character such as the pipe character. Setting the one-character-wide pipe columns as “do not
import” is a great way to get rid of the pipe characters.

If you have text fields that contain alphabetic characters, you can choose the General
format. The only time you should choose the Text format is if you have a numeric field that
you explicitly need imported as text. One example of this is an account number with leading
zeros or a column of ZIP Codes. In this case, change the field to Text format to ensure that ZIP
Code 01234 does not lose the leading zero.

Note After you import a text file and specify that one field is text, that field
exhibits seemingly bizarre behavior. Try inserting a new row and entering a
formula in the middle of a column imported as text. Instead of getting the results

of the formula, Excel enters the formula as text. The solution is to delete the formula,
format the entire column as General, and then enter the formula again.

After opening the file, turn off the macro recorder and examine the recorded code, which
should look like this:

Click here to view code image
Workbooks.OpenText Filename:="C:\sales.prn", Origin:=437,
StartRow:=1, _
DataType:=xlFixedWidth, FieldInfo:=Array(Array(0, 1), Array(8,
1), _
Array(17, 3), Array(27, 1), Array(54, 1), Array(62, 1),
Array(71, 9), _
Array(79, 9)), TrailingMinusNumbers:=True

The most confusing part of this code is the FieldInfo parameter. You are supposed to
code an array of two-element arrays. Each field in the file gets a two-element array to identify
both where the field starts and what type of field it is.

The field start position is zero based. Because the Region field is in the first character
position, its start position is listed as zero.

The field type is a numeric code. If you were coding this by hand, you would use the
xlColumnDataType constant names; but for some reason, the macro recorder uses the harder-
to-understand numeric equivalents.

By using Table 19-1, you can decode the meaning of the individual arrays in the
FieldInfo array. Array(0, 1) means that this field starts zero characters from the left edge
of the file and is a General format. Array(8, 1) indicates that the next field starts eight
characters from the left edge of the file and is General format. Array(17, 3) indicates that the
next field starts 17 characters from the left edge of the file and is a Date format in month-day-
year sequence.

TABLE 19-1 xlColumnDataType values

Value Constant Used For
1 xlGeneralFormat General

2 xlTextFormat Text

3 xlMDYFormat MDY date

4 xlDMYFormat DMY date

5 xlYMDFormat YMD date

6 xlMYDFormat MYD date

7 xlDYMFormat DYM date

8 xlYDMFormat YDM date

9 xlSkipColumn Skip Column

10 xlEMDFormat EMD date (for use in Taiwan)

As you can see, the FieldInfo parameter for fixed-width files is arduous to code and
confusing to look at. This is one situation in which it is easier to record the macro and copy the
code snippet.

Opening a delimited file

Figure 19-5 shows a text file in which the fields are comma separated. The main task in
opening such a file is to tell Excel that the delimiter in the file is a comma and then identify any
special processing for each field. In this case, you definitely want to identify the third column
as being a date in MDY format.

FIGURE 19-5 This file is comma delimited. Opening this file involves telling Excel to look for a comma as the
delimiter and then identifying any special handling, such as treating the third column as a date. This is much easier than
handling fixed-width files.

Note If you try to record the process of opening a comma-delimited file whose
filename ends in .csv, Excel records the Workbooks.Open method rather than

Workbooks.OpenText. If you need to control the formatting of certain columns,
rename the file to have a .txt extension before recording the macro. You can then edit the
recorded macro to change the filename back to a .csv extension.

Turn on the macro recorder and record the process of opening the text file. In step 1 of the
wizard, specify that the file is delimited.

In step 2 of the Text Import Wizard, the Data Preview window might initially look horrible.
This is because Excel defaults to assuming that the fields are separated by tab characters (see
Figure 19-6).

FIGURE 19-6 Before you import a delimited text file, the initial Data Preview window is a confusing mess of data
because Excel is looking for tab characters between fields when a comma is actually the delimiter in this file.

After you’ve cleared the Tab check box and selected the proper delimiter choice, which in
this case is a comma, the Data Preview window in step 2 looks perfect, as shown in Figure 19-
7.

Step 3 of the wizard is identical to step 3 for a fixed-width file. In this case, specify that the
third column has a date format. Click Finish, and you have this code in the macro recorder:

Click here to view code image
Workbooks.OpenText Filename:="C:\sales.txt", Origin:=437, _
StartRow:=1, DataType:=xlDelimited,
TextQualifier:=xlDoubleQuote, _
ConsecutiveDelimiter:=False, Tab:=False, Semicolon:=False, _
Comma:=True, Space:=False, Other:=False, _
FieldInfo:=Array(Array(1, 1), Array(2, 1), _
Array(3, 3), Array(4, 1), Array(5, 1), Array(6, 1), _
Array(7, 1), Array(8, 1)), TrailingMinusNumbers:=True

Although this code appears longer than the earlier code, it is actually simpler. In the
FieldInfo parameter, the two element arrays consist of a sequence number, starting at 1 for
the first field, and then an xlColumnDataType from Table 19-1. In this example, Array(2,
1) is saying “the second field is of general type.” Array(3, 3) is saying “the third field is a
date in MDY format.” The code is longer because it explicitly specifies that each possible
delimiter is set to False. Because False is the default for all delimiters, you really need only
the one you will use. The following code is equivalent:

Click here to view code image
Workbooks.OpenText Filename:= "C:\sales.txt", _
DataType:=xlDelimited, Comma:=True, _
FieldInfo:=Array(Array(1, 1), Array(2, 1), Array(3, 3), _
Array(4, 1), Array(5, 1), Array(6, 1), _
Array(7, 1), Array(8, 1))

FIGURE 19-7 After the delimiter field has been changed from a tab to a comma, the Data Preview window looks
perfect. This is certainly easier than the cumbersome process in step 2 for a fixed-width file. Note that Excel ignores the
commas in the Customer field when there are quotation marks around the customer.

Finally, to make the code more readable, you can use the constant names rather than the
code numbers:

Click here to view code image
Workbooks.OpenText Filename:="C:\sales.txt", _
DataType:=xlDelimited, _Comma:=True, _
FieldInfo:=Array(Array(1, xlGeneralFormat), _
Array(2, xlGeneralFormat), _
Array(3, xlMDYFormat), Array(4, xlGeneralFormat), _
Array(5, xlGeneralFormat), Array(6, xlGeneralFormat), _
Array(7, xlGeneralFormat), Array(8, xlGeneralFormat))

Excel has built-in options to read files in which fields are delimited by tabs, semicolons,
commas, or spaces. Excel can actually handle anything as a delimiter. If someone sends pipe-
delimited text, you set the Other parameter to True and specify an OtherChar parameter:

Click here to view code image
Workbooks.OpenText Filename:= "C:\sales.txt", Origin:=437, _
 DataType:=xlDelimited, Other:=True, OtherChar:= "|",
FieldInfo:=...

Dealing with text files with more than 1,048,576 rows

If you use the Text Import Wizard to read a file that has more than 1,048,576 rows of data, you
get this error: “File not loaded completely.” The first 1,048,576 rows of the file load correctly.

If you use Workbooks.OpenText to open a file that has more than 1,048,576 rows of data,
you are given no indication that the file did not load completely. Excel 2019 loads the first
1,048,576 rows and allows macro execution to continue. Your only indication that there is a
problem is if someone notices that the reports are not reporting all the sales. If you think that
your files will ever get this large, it would be good to check whether cell A1048576 is nonblank
after an import. If it is, the odds are that the entire file was not loaded.

Reading text files one row at a time

You might run into a text file that has more than 1,048,576 rows. When this happens, you have
to read the text file one row at a time.

You need to open the file for INPUT as #1. You use #1 to indicate that this is the first file
you are opening. If you had to open two files, you could open the second file as #2. You can
then use the Line Input #1 statement to read a line of the file into a variable. The following
code opens sales.txt, reads 10 lines of the file into the first 10 cells of the worksheet, and closes
the file:

Click here to view code image
Sub Import10()
ThisFile = "C\sales.txt"
Open ThisFile For Input As #1
For i = 1 To 10

Line Input #1, Data
Cells(i, 1).Value = Data

Next i
Close #1
End Sub

Rather than read only 10 records, you want to read until you get to the end of the file. Excel
automatically updates a variable called EOF. If you open a file for input as #1, checking EOF(1)
tells you whether you have read the last record.

Use a Do...While loop to keep reading records until you have reached the end of the file:

Click here to view code image
Sub ImportAll()
ThisFile = "C:\sales.txt"
Open ThisFile For Input As #1
Ctr = 0
Do

Line Input #1, Data
Ctr = Ctr + 1
Cells(Ctr, 1).Value = Data

Loop While EOF(1) = False
Close #1
End Sub

After reading records with code such as this, note in Figure 19-8 that the data is not parsed
into columns. All the fields are in column A of the file.

Use the TextToColumns method to parse the records into columns. The parameters for
TextToColumns are nearly identical to those for the OpenText method:

Click here to view code image
Cells(1, 1).Resize(Ctr, 1).TextToColumns
Destination:=Range("A1"), _
DataType:=xlDelimited, Comma:=True, FieldInfo:=Array(Array(1, _
xlGeneralFormat), Array(2, xlMDYFormat), Array(3,
xlGeneralFormat), _
Array(4, xlGeneralFormat), Array(5, xlGeneralFormat), Array(6, _
xlGeneralFormat), Array(7,xlGeneralFormat), Array(8,
xlGeneralFormat), _
Array(9, xlGeneralFormat), Array(10,xlGeneralFormat), Array(11,
_
xlGeneralFormat))

FIGURE 19-8 When you are reading a text file one row at a time, all the data fields end up in one long entry in column
A.

Note For the remainder of your Excel session, Excel remembers the delimiter
settings. There is an annoying bug (feature?) in Excel. After Excel remembers
that you are using a comma or a tab as a delimiter, any time that you attempt to

paste data from the Clipboard to Excel, the data is parsed automatically by the delimiters
specified in the OpenText method. Therefore, if you attempt to paste some text that
includes the customer ABC, Inc., the text is parsed automatically into two columns, with
text up to ABC in one column and Inc. in the next column.

Rather than hard-code that you are using the #1 designator to open the text file, it is safer to
use the FreeFile function. This returns an integer representing the next file number available
for use by the Open statement. The complete code to read a text file smaller than 1,048,576
rows is as follows:

Click here to view code image
Sub ImportAll()
ThisFile = "C:\sales.txt"
FileNumber = FreeFile
Open ThisFile For Input As #FileNumber
Ctr = 0
Do
Line Input #FileNumber, Data
Ctr = Ctr + 1
Cells(Ctr, 1).Value = Data

Loop While EOF(FileNumber) = False

Close #FileNumber
Cells(1, 1).Resize(Ctr, 1).TextToColumns
Destination:=Range("A1"), _
DataType:=xlDelimited, Comma:=True, _
FieldInfo:=Array(Array(1, xlGeneralFormat), _
Array(2, xlMDYFormat), Array(3, xlGeneralFormat), _
Array(4, xlGeneralFormat), Array(5, xlGeneralFormat), _
Array(5, xlGeneralFormat), Array(6, xlGeneralFormat), _
Array(7, xlGeneralFormat), Array(8, xlGeneralFormat), _
Array(9, xlGeneralFormat), Array(10, xlGeneralFormat), _
Array(10, xlGeneralFormat), Array(11, xlGeneralFormat))

End Sub

Reading text files with more than 1,048,576 rows

You can use the Line Input method to read a large text file. A good strategy is to read rows
into cells A1:A1048575 and then begin reading additional rows into cell AA2. You can start in
row 2 on the second set so that the headings can be copied from row 1 of the first data set. If
the file is large enough that it fills up column AA, move to BA2, CA2, and so on.

Also, you should stop writing columns when you get to row 1048574 and leave two blank
rows at the bottom. This ensures that the code Cells(Rows.Count, 1).End(xlup).Row
finds the final row. The following code reads a large text file into several sets of columns:

Click here to view code image
Sub ReadLargeFile()
ThisFile = "C:\sales.txt"
FileNumber = FreeFile
Open ThisFile For Input As #FileNumber

NextRow = 1
NextCol = 1
Do While Not EOF(1)
Line Input #FileNumber, Data
Cells(NextRow, NextCol).Value = Data
NextRow = NextRow + 1
If NextRow = (Rows.Count -2) Then
' Parse these records
Range(Cells(1, NextCol), Cells(Rows.Count, NextCol)) _

.TextToColumns _
Destination:=Cells(1, NextCol), DataType:=xlDelimited, _
Comma:=True, FieldInfo:=Array(Array(1, xlGeneralFormat),

_
Array(2, xlMDYFormat), Array(3, xlGeneralFormat), _
Array(4, xlGeneralFormat), Array(5, xlGeneralFormat), _
Array(6, xlGeneralFormat), Array(7, xlGeneralFormat), _
Array(8, xlGeneralFormat), Array(9, xlGeneralFormat), _
Array(10, xlGeneralFormat), Array(11, xlGeneralFormat))

' Copy the headings from section 1
If NextCol > 1 Then

Range("A1:K1").Copy Destination:=Cells(1, NextCol)
End If
' Set up the next section
NextCol = NextCol + 26
NextRow = 2

End If
Loop
Close #FileNumber
' Parse the final section of records
FinalRow = NextRow - 1
If FinalRow = 1 Then
' Handle if the file coincidentally had 1048574 rows exactly
NextCol = NextCol - 26

Else
Range(Cells(2, NextCol), Cells(FinalRow,
NextCol)).TextToColumns _

Destination:=Cells(1, NextCol), DataType:=xlDelimited, _
Comma:=True, FieldInfo:=Array(Array(1, xlGeneralFormat), _

Click here to view code image
Array(2, xlMDYFormat), Array(3, xlGeneralFormat), _
Array(4, xlGeneralFormat), Array(5, xlGeneralFormat), _
Array(6, xlGeneralFormat), Array(7, xlGeneralFormat), _
Array(8, xlGeneralFormat), Array(9, xlGeneralFormat), _
Array(10, xlGeneralFormat), Array(11, xlGeneralFormat))

If NextCol > 1 Then
Range("A1:K1").Copy Destination:=Cells(1, NextCol)

End If
End If

DataSets = (NextCol - 1) / 26 + 1

End Sub

Usually you should write the DataSets variable to a named cell somewhere in the
workbook so that later you know how many data sets you have in the worksheet.

As you can imagine, using this method, it is possible to read 660,601,620 rows of data into
a single worksheet. The code you formerly used to filter and report the data now becomes more
complex. You might find yourself creating pivot tables from each set of columns to create a
data set summary and then summarizing all the summary tables with a final pivot table. At
some point, you need to consider whether the application really belongs in Access. You can
also consider whether the data should be stored in Access with an Excel front end, which is
discussed in Chapter 21, “Using Access as a back end to enhance multiuser access to data.”

Using Power Query to load large files to the Data Model

If your goal is to create a pivot table from the text file, you can bypass the worksheet grid and
load millions of rows directly into the Data Model. Now that Power Query is built in to Excel
2019, the macro recorder will record the process of importing data to the Data Model with
Power Query. Use the following steps:

1. On the Data tab, in the Power Query group, select New Query, From File, From Text
File.

2. Browse to the text file.

3. In the Power Query Home tab, open the Close And Load drop-down menu and choose
Close And Load To.

4. In the Load To dialog box, choose Only Create Connection And Add This Data To The
Data Model. Click OK. The data is loaded to the Power Pivot engine.

If you use the macro recorder during this process, your recorded code includes the M
language statements required to define the query:

Click here to view code image
Sub ImportToDataModel()
'
' ImportToDataModel Macro
ActiveWorkbook.Queries.Add Name:="demo", Formula:= _
 "let" & Chr(13) & "" & Chr(10) & _
 " Source = Csv.Document(File.Contents(""C:\demo.txt""), " & _
 "[Delimiter="","",Encoding=1252])," & Chr(13) & "" & Chr(10) &
_
 " #""First Row as Header"" = Table.PromoteHeaders(Source)," &
_
Chr(13) & "" & Chr(10) & _

 " #""Changed Type"" = Table.TransformColumnTypes(" & _
 "#""First Row as Header""," & _
 "{{""StoreID"", Int64.Type}, {""Date"", type date}," & _
 "{""Division"", type text}, {""Units"", Int64.Type}," & _
 "{""Revenue"", Int64.Type}})" & Chr(13) & "" & Chr(10) & "i" &
_
 """Changed Type"""
Workbooks("Book4").Connections.Add2 "Power Query - demo", _
 "Connection to the 'demo' query in the workbook.", _
 "OLEDB;Provider=Microsoft.Mashup.OleDb.1;" & _
 "Data Source=$Workbook$;Location=demo", _
 """demo""", 6, True, False
End Sub

You can now use Insert, Pivot Table and specify This Workbook Data Model as the source
for the pivot table.

Writing Text Files
The code for writing text files is similar to the code for reading text files. You need to open a
specific file for output as #1. Then, as you loop through various records, you write them to the
file by using the Print #1 statement.

Before you open a file for output, make sure that any prior examples of the file have been
deleted. You can use the Kill statement to delete a file. Kill returns an error if the file was
not there in the first place. In this case, you use On Error Resume Next to prevent an error.

The following code writes out a text file for use by another application:

Click here to view code image
Sub WriteFile()
ThisFile = "C:\Results.txt"

' Delete yesterday's copy of the file
On Error Resume Next
Kill ThisFile
On Error GoTo 0

' Open the file
Open ThisFile For Output As #1
FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
' Write out the file

For j = 1 To FinalRow
Print #1, Cells(j, 1).Value
Next j
End Sub

This is a somewhat trivial example. You can use this method to write out any type of text-
based file. The code at the end of Chapter 18, “Reading from and writing to the web,” uses the
same concept to write out HTML files.

Next steps
The next chapter steps outside the world of Excel and talks about how to transfer Excel data
into Microsoft Word documents. Chapter 20, “Automating Word,” looks at using Excel VBA
to automate and control Microsoft Word.

CHAPTER 20
Automating Word

In this chapter, you will:

Use early and late binding to reference a Word object

Use the New keyword to reference the Word application

Use the CreateObject function to create a new instance of an object

Use the GetObject function to reference an existing instance of Word

Use constant values

Be introduced to some of Word’s objects

Control form fields in Word

Word, Excel, PowerPoint, Outlook, and Access all use the same VBA language. The only
difference is their object models. For example, Excel has a Workbooks object, and Word has
Documents. Any one of these applications can access the object model of another of the
applications, as long as the second application is installed.

To access Word’s object library, Excel must establish a link to it by using either early
binding or late binding. With early binding, the reference to the application object is created
when the program is compiled. With late binding, the reference is created when the program is
run.

This chapter provides an introduction to accessing Word from Excel.

Note This chapter does not review Word’s entire object model or the object
models of other applications. Refer to the VBA Object Browser in the
appropriate application to learn about other object models.

Using early binding to reference a Word object
Code written with early binding executes faster than code with late binding. A reference is
made to Word’s object library before the code is written so that Word’s objects, properties, and

methods are available in the Object Browser. Tips such as a list of members of an object also
appear, as shown in Figure 20-1.

The disadvantage of early binding is that the referenced object library must exist on the
system. For example, if you write a macro referencing Word 2019’s object library and someone
with Word 2010 attempts to run the code, the program fails because it cannot find the Word
2019 object library.

FIGURE 20-1 Early binding allows access to a Word object’s syntax.

You add the object library through the VB Editor, as described here:

1. Select Tools, References.

2. Check Microsoft Word 16.0 Object Library in the Available References list (see Figure
20-2). If the object library is not found, Word is not installed. If another version is found
in the list, such as 12.0, another version of Word is installed, and you should check that.

3. Click OK.

FIGURE 20-2 Select the object library from the Available References list.

After the reference is set, Word variables can be declared with the correct Word variable
type, such as Document. However, if the object variable is declared As Object, this forces the
program to use late binding. The following example creates a new instance of Word and opens
an existing Word document from Excel using early binding:

Click here to view code image
Sub WordEarlyBinding()
Dim wdApp As Word.Application
Dim wdDoc As Document
Set wdApp = New Word.Application
wdApp.Visible = True 'make Word visible
Set wdDoc = wdApp.Documents.Open(ThisWorkbook.Path & _
"\Automating Word.docx")
Set wdApp = Nothing
Set wdDoc = Nothing
End Sub

The declared variables, wdApp and wdDoc, are Word object types. wdApp is used to create a
reference to the Word application in the same way the Application object is used in Excel. New
Word.Application is used to create a new instance of Word. If you are opening a document
in a new instance of Word, Word is not visible. If the application needs to be shown, it must be

unhidden (wdApp.Visible = True). When the program is done, release the connection to
Word by setting the object, wdApp, to Nothing.

Tip Excel searches through the selected libraries to find the reference for the
object type. If the type is found in more than one library, the first reference is
selected. You can influence which library is chosen by changing the priority of the

reference in the list of selected libraries.

When the process is finished, it’s a good idea to set the object variables to Nothing and
release the memory being used by the application, as shown here:
Set wdApp = Nothing

Set wdDoc = Nothing

If the referenced version of Word does not exist on the system, an error message appears
when the code is compiled. View the References list; the missing object is highlighted with the
word MISSING, as shown in Figure 20-3.

FIGURE 20-3 Excel won’t find the expected Word 2019 object library if someone opens the workbook in Excel 2010.

If a previous version of Word is available, you can try running the program with that
version referenced. Many objects are the same between versions.

Using late binding to reference a Word object
When using late binding, you create an object that refers to the Word application before linking
to the Word library. Because you do not set up a reference beforehand, the only constraint on
the Word version is that the objects, properties, and methods must exist. When there are
differences between versions of Word, the version can be verified and the correct object used
accordingly.

The disadvantage of late binding is that because Excel does not know what is going on, it
does not understand that you are referring to Word. This prevents the IntelliSense from
appearing when referencing Word objects. In addition, built-in constants are not available. This
means that when Excel is compiling, it cannot verify that the references to Word are correct.
After the program is executed, the links to Word begin to build, and any coding errors are
detected at that point.

The following example creates a new instance of Word and then opens and makes visible
an existing Word document:

Click here to view code image
Sub WordLateBinding()
Dim wdApp As Object, wdDoc As Object
Set wdApp = CreateObject("Word.Application")
Set wdDoc = wdApp.Documents.Open(ThisWorkbook.Path & _
"\Automating Word.docx")
wdApp.Visible = True
Set wdApp = Nothing
Set wdDoc = Nothing
End Sub

An object variable (wdApp) is declared and set to reference the application (
CreateObject("Word.Application")). Other required variables are then declared (
wdDoc), and the application object is used to refer these variables to Word’s object model.
Declaring wdApp and wdDoc as objects forces the use of late binding. The program cannot
create the required links to the Word object model until it executes the CreateObject
function.

Using the New keyword to reference the Word application
In the early-binding example, the keyword New was used to reference the Word application.
The New keyword can be used only with early binding; it does not work with late binding.
CreateObject or GetObject would also work, but New is best for this example. If an instance
of the application is running and you want to use it, use the GetObject function instead.

Caution If your code to open Word runs smoothly but you don’t see an
instance of Word (and should because you code it to be Visible), open your
Task Manager and look for the process WinWord.exe. If it exists, from the
Immediate window in Excel’s VB Editor, type the following (which uses early

binding):

Word.Application.Visible = True

If multiple instances of WinWord.exe are found, you need to make each instance visible
and close the extra instance(s) of WinWord.exe.

Using the CreateObject function to create a new instance of
an object
The earlier late-binding example uses the CreateObject function. However, you also can use
this function in early binding. You use it to create a new instance of an object, in this case the
Word application. CreateObject has a class parameter, which consists of the name and type
of the object to be created (Name.Type). For example, the examples in this chapter have used (
Word.Application), in which Word is the Name and Application is the Type.

Using the GetObject function to reference an existing instance
of Word
You can use the GetObject function to reference an instance of Word that’s already running.
An error is generated if no instance of the application can be found. You can use the existence
of the error to include code that creates an instance of the application.

The two parameters for GetObject are optional. The first parameter specifies the full path
and file name to open, and the second parameter specifies the application program. The
following example leaves off the application and allows the default program, which is Word, to
open the document:

Click here to view code image
Sub UseGetObject()
Dim wdDoc As Object
Set wdDoc = GetObject(ThisWorkbook.Path & "\Automating
Word.docx")
wdDoc.Application.Visible = True

'more code interacting with the Word document
Set wdDoc = Nothing
End Sub

This example opens a document in an existing instance of Word, if there is one; otherwise,
it creates one. It ensures that the Word application’s Visible property is set to True. Note that
to make the document visible, you have to refer to the application object (
wdDoc.Application.Visible) because wdDoc is referencing a document rather than the
application.

Note Although the Word application’s Visible property is set to True, this
code does not make the Word application the active application. In most cases,
the Word application icon stays in the taskbar, and Excel remains the active

application on the screen.

The following example uses errors to learn whether Word is already open before pasting the
selected chart at the end of a document. If Word is not open, it opens Word and creates a new
document:

Click here to view code image
Sub IsWordOpen()
Dim wdApp As Word.Application 'early binding
ActiveChart.ChartArea.Copy
On Error Resume Next 'returns Nothing if Word isn't open
Set wdApp = GetObject(, "Word.Application")
If wdApp Is Nothing Then

'because Word isn't open, open it
Set wdApp = GetObject("", "Word.Application")
With wdApp

.Documents.Add

.Visible = True
End With

End If
On Error GoTo 0

With wdApp.Selection
.EndKey Unit:=wdStory
.TypeParagraph
.PasteSpecial Link:=False, DataType:=wdPasteOLEObject, _
Placement:=wdInLine, DisplayAsIcon:=False

End With
Set wdApp = Nothing
End Sub

Using On Error Resume Next forces the program to continue even if it runs into an error.
In this case, an error occurs when you attempt to link wdApp to an object that does not exist.
wdApp will have no value. The next line, If wdApp Is Nothing Then, takes advantage of
this and opens an instance of Word, adds an empty document, and makes the application
visible. Use On Error Goto 0 to return to normal VBA error-handling behavior.

Tip Note the use of empty quotes for the first parameter in GetObject("",
"Word.Application"). This is how you use the GetObject function to open a
new instance of Word.

Using constant values
The preceding example used constants, such as wdPasteOLEObject and wdInLine, that are
specific to Word. When you are programming using early binding, Excel helps by showing
these constants in the member list.

With late binding, IntelliSense doesn’t appear. So what can you do? You might write your
program using early binding and then change it to late binding after you compile and test the
program. The problem with this method is that the program will not compile because Excel
doesn’t recognize the Word constants.

The words wdPasteOLEObject and wdInLine are just terms for your convenience as a
programmer. Behind each of these text constants is the real value that VBA understands. The
solution to this is to retrieve and use these real values with your late-binding program.

Using the Watches window to retrieve the real value of a constant

One way to retrieve the value of a constant is to add a watch for constants. Then you step
through your code and check the value of the constant as it appears in the Watches window, as
shown in Figure 20-4.

FIGURE 20-4 Use the Watches window to get the real value behind a Word constant.

Note See “Querying by using a Watches window” in chapter 2, “This sounds
Like BASIC, so why doesn’t it look familiar?” for more information on using
the Watches window.

Using the Object Browser to retrieve the real value of a constant

Another way to retrieve the value of a constant is to look up the constant in the Object Browser.
However, you need the Word library to be set up as a reference to use this method. Once it is
set up, right-click the constant and select Definition. The Object Browser opens to the constant
and shows the value in the bottom window (see Figure 20-5).

FIGURE 20-5 Use the Object Browser to get the real value of a Word constant.

Tip You can set up the Word reference library to be accessed from the Object
Browser. However, you do not have to set up your code with early binding. When
you do this, the reference is at your fingertips, but your code is still late binding.

Turning off the reference library is just a few clicks away.

Replacing the constants in the earlier code example with their real values would look like
this:

Click here to view code image
With wdApp.Selection

.EndKey Unit:=6

.TypeParagraph

.PasteSpecial Link:=False, DataType:=0, Placement:=0, _
DisplayAsIcon:=False

End With

However, what happens a month from now, when you return to the code and you try to
remember what those numbers mean? The solution is up to you. Some programmers add
comments to the code, referencing the Word constant. Other programmers create their own
variables to hold the real value and use those variables in place of the constants, like this:

Click here to view code image
Const xwdStory As Long = 6
Const xwdPasteOLEObject As Long = 0
Const xwdInLine As Long = 0

With wdApp.Selection
 .EndKey Unit:=xwdStory
 .TypeParagraph
 .PasteSpecial Link:=False, DataType:=xwdPasteOLEObject, _
Placement:=xwdInLine, DisplayAsIcon:=False

End With

Understanding Word’s objects
You can use Word’s macro recorder to get a preliminary understanding of the Word object
model. However, much as with Excel’s macro recorder, the results will be long-winded. Keep
this in mind and use the recorder to lead you toward the objects, properties, and methods in
Word.

Caution Word’s macro recorder is limited in what it allows you to record.
While the mouse can be used to move the cursor or select objects, it doesn’t
record those movements. But there are no limits on what it records from
keyboard movements.

This is what the Word macro recorder produces when you add a new, blank document by
selecting File, New, Blank Document:

Click here to view code image

Documents.Add Template:="Normal", NewTemplate:=False,

DocumentType:=0

You can make this more efficient in Word by using this:

Documents.Add

Template, NewTemplate, and DocumentType are optional properties that the recorder
includes but that are not required unless you need to change a default property or ensure that a
property is what you require.

To use the same line of code in Excel, a link to the Word object library is required, as you
learned earlier. After that link is established, an understanding of Word’s objects is all you
need. The next section provides a review of some of Word’s objects” enough to get you off the
ground. For a more detailed listing, refer to the object model in Word’s VB Editor.

The Document object

Word’s Document object is equivalent to Excel’s Workbook object. It consists of characters,
words, sentences, paragraphs, sections, and headers/footers. It is through the Document object
that methods and properties affecting the entire document” such as printing, closing, searching,
and reviewing” are accomplished.

Creating a new blank document

To create a blank document in an existing instance of Word, use the Add method, as shown
here:

Click here to view code image
Sub NewDocument()
Dim wdApp As Word.Application

Set wdApp = GetObject(, "Word.Application")
wdApp.Documents.Add
'any other Word code you need here

Set wdApp = Nothing
End Sub

This example opens a new, blank document that uses the default template.

Note You already learned how to create a new document when Word is closed:
Refer to GetObject and CreateObject.

To create a new document that uses a specific template, use this:

Click here to view code image

wdApp.Documents.Add Template:="Interoffice Memo (Professional
design).dotx"

This creates a new document that uses the Interoffice Memo (Professional design) template.
Template can be either the name of a template from the default template location or the file
path and name.

Opening an existing document

To open an existing document, use the Open method. Several parameters are available,
including ReadOnly and AddtoRecentFiles. The following example opens an existing
document as ReadOnly and prevents the file from being added to the Recent File List under the
File menu:

Click here to view code image
wdApp.Documents.Open _

Filename:="C:\Excel VBA 2019 by Jelen & Syrstad\" & _

"Chapter 8 - Arrays.docx", ReadOnly:=True, AddtoRecentFiles:=False

Saving changes to a document

After you’ve made changes to a document, most likely you’ll want to save it. To save a
document with its existing name, use this:

wdApp.Documents.Save

If you use the Save command with a new document without a name, nothing happens. To
save a document with a new name, you must use the SaveAs2 method:

Click here to view code image
wdApp.ActiveDocument.SaveAs2 _
 "C:\Excel VBA 2019 by Jelen & Syrstad\MemoTest.docx"

SaveAs2 requires the use of members of the Document object, such as ActiveDocument.

Note SaveAs still works, but it isn’t an IntelliSense option. SaveAs2 offers a
compatibility mode argument. If you don’t need it, you can still use SaveAs.

Closing an open document

Use the Close method to close a specified document or all open documents. By default, a Save
dialog box appears for any documents that have unsaved changes. You can use the
SaveChanges argument to change this. To close all open documents without saving changes,
use this code:

Click here to view code image

wdApp.Documents.Close SaveChanges:=wdDoNotSaveChanges

To close a specific document, you can close the active document, like this:

wdApp.ActiveDocument.Close

or you can specify a document name, like this:

Click here to view code image

wdApp.Documents("Chapter 8 - Arrays.docx").Close

Printing a document

Use the PrintOut method to print part or all of a document. To print a document with the
default print settings, use this:

wdApp.ActiveDocument.PrintOut

By default, the print range is the entire document, but you can change this by setting the
Range and Pages arguments of the PrintOut method. For example, to print only page 2 of the
active document, use this:

Click here to view code image

wdApp.ActiveDocument.PrintOut Range:=wdPrintRangeOfPages,
Pages:="2"

The Selection object

The Selection object represents what is selected in the document, such as a word, a sentence,
or the insertion point. It also has a Type property that returns the type that is selected, such as
wdSelectionIP, wdSelectionColumn, or wdSelectionShape.

Navigating with HomeKey and EndKey

The HomeKey and EndKey methods are used to change the selection; they correspond to using
the Home and End keys, respectively, on the keyboard. They have two parameters: Unit and
Extend. Unit is the range of movement to make to either the beginning (Home) or the end (
End) of a line (wdLine), document (wdStory), column (wdColumn), or row (wdRow).
Extend is the type of movement: wdMove moves the selection, and wdExtend extends the
selection from the original insertion point to the new insertion point.

To move the cursor to the beginning of the document, use this code:

Click here to view code image

wdApp.Selection.HomeKey Unit:=wdStory, Extend:=wdMove

To select the document from the insertion point to the end of the document, use this code:

Click here to view code image

wdApp.Selection.EndKey Unit:=wdStory, Extend:=wdExtend

Inserting text with TypeText

The TypeText method is used to insert text into a Word document. Settings, such as the
ReplaceSelection setting, can affect what happens when text is typed into the document
when text is selected. The following example first makes sure that the setting for overwriting
selected text is turned on. Then it selects the second paragraph (using the Range object,
described in the next section) and overwrites it:

Click here to view code image
Sub InsertText()
Dim wdApp As Word.Application
Dim wdDoc As Document
Dim wdSln As Selection
Set wdApp = GetObject(, "Word.Application")
Set wdDoc = wdApp.ActiveDocument

wdDoc.Application.Options.ReplaceSelection = True
wdDoc.Paragraphs(2).Range.Select
wdApp.Selection.TypeText "Overwriting the selected paragraph."

Set wdApp = Nothing
Set wdDoc = Nothing
End Sub

The Range object

The Range object uses the following syntax:

Range(StartPosition, EndPosition)

The Range object represents a contiguous area or areas in a document. It has a starting
character position and an ending character position. The object can be the insertion point, a
range of text, or the entire document, including nonprinting characters such as spaces or
paragraph marks.

The Range object is similar to the Selection object, but in some ways it is better. For
example, the Range object requires less code to accomplish the same tasks, and it has more
capabilities. In addition, it saves time and memory because the Range object does not require
Word to move the cursor or highlight objects in the document to manipulate them.

Defining a range

To define a range, enter a starting position and an ending position, as shown in the following
code:

Click here to view code image
Sub RangeText()
Dim wdApp As Word.Application
Dim wdDoc As Document
Dim wdRng As Word.Range
Set wdApp = GetObject(, "Word.Application")
Set wdDoc = wdApp.ActiveDocument
Set wdRng = wdDoc.Range(0, 50)
wdRng.Select

Set wdApp = Nothing
Set wdDoc = Nothing
Set wdRng = Nothing
End Sub

Figure 20-6 shows the results of running this code. The first 50 characters are selected,
including nonprinting characters such as paragraph returns.

FIGURE 20-6 The Range object selects everything in its path.

Note In Figure 20-6 the range was selected (wdRng.Select) for easier viewing.
It is not required that the range be selected in order to be manipulated. For
example, to delete the range, do this:

wdRng.Delete

The first character position in a document is always zero, and the last is equivalent to the
number of characters in the document.

The Range object also selects paragraphs. The following example copies the third
paragraph in the active document and pastes it into Excel. Depending on how the paste is done,
the text can be pasted into a text box (see Figure 20-7) or into a cell:

Click here to view code image
Sub SelectSentence()
Dim wdApp As Word.Application
Dim wdRng As Word.Range
Set wdApp = GetObject(, "Word.Application")

With wdApp.ActiveDocument
If .Paragraphs.Count >= 3 Then

Set wdRng = .Paragraphs(3).Range
wdRng.Copy

End If
End With

'This line pastes the copied text into a text box

'because that is the default PasteSpecial method for Word text
Worksheets("Sheet2").PasteSpecial

'This line pastes the copied text into cell A1
Worksheets("Sheet2").Paste
Destination:=Worksheets("Sheet2").Range("A1")

Set wdApp = Nothing
Set wdRng = Nothing
End Sub

FIGURE 20-7 Paste Word text into an Excel text box.

Formatting a Range

After a range is selected, you can apply formatting to it (see Figure 20-8). The following
program loops through all the paragraphs of the active document and applies bold to the first
word of each paragraph:

Click here to view code image
Sub ChangeFormat()
Dim wdApp As Word.Application
Dim wdRng As Word.Range
Dim count As Integer
Set wdApp = GetObject(, "Word.Application")

With wdApp.ActiveDocument
For count = 1 To .Paragraphs.Count

Set wdRng = .Paragraphs(count).Range
With wdRng

.Words(1).Font.Bold = True

.Collapse 'unselects the text
End With

Next count
End With

Set wdApp = Nothing
Set wdRng = Nothing
End Sub

FIGURE 20-8 Format the first word of each paragraph in a document.

A quick way to change the formatting of entire paragraphs is to change the style (see
Figures 20-9 and 20-10). The following program finds a paragraph with the Normal style and
changes it to H3:

Click here to view code image
Sub ChangeStyle()
Dim wdApp As Word.Application
Dim wdRng As Word.Range
Dim count As Integer
Set wdApp = GetObject(, "Word.Application")

With wdApp.ActiveDocument
For Count = 1 To .Paragraphs.Count

Set wdRng = .Paragraphs(Count).Range
With wdRng

If .Style = "Normal" Then
.Style = "H3"

End If
End With

Next Count
End With

Set wdApp = Nothing
Set wdRng = Nothing
End Sub

FIGURE 20-9 Before: A paragraph with the Normal style needs to be changed to the H3 style.

FIGURE 20-10 After: Apply styles with code to change paragraph formatting quickly.

Bookmarks

Bookmarks are members of the Document, Selection, and Range objects. They can make it
easier to navigate around Word. Instead of having to choose words, sentences, or paragraphs,
use bookmarks to manipulate sections of a document swiftly.

Note You’re not limited to using only existing bookmarks. Instead, you can
create bookmarks using code.

Bookmarks appear as gray I-bars in Word documents. In Word, go to File, Options,
Advanced, Show Document Content and select Show Bookmarks to turn on bookmarks.

After you have set up bookmarks in a document, you can use the bookmarks to move
quickly to a range to insert text or other items, such as charts. The following code automatically
inserts text and a chart after bookmarks that were previously set up in the document. Figure 20-
11 shows the results.

Click here to view code image
Sub FillInMemo()
Dim myArray()
Dim wdBkmk As String

Dim wdApp As Word.Application
Dim wdRng As Word.Range

myArray = Array("To", "CC", "From", "Subject", "Chart")
Set wdApp = GetObject(, "Word.Application")

'insert text
Set wdRng = wdApp.ActiveDocument.Bookmarks(myArray(0)).Range
wdRng.InsertBefore ("Bill Jelen")
Set wdRng = wdApp.ActiveDocument.Bookmarks(myArray(1)).Range
wdRng.InsertBefore ("Tracy Syrstad")
Set wdRng = wdApp.ActiveDocument.Bookmarks(myArray(2)).Range
wdRng.InsertBefore ("MrExcel")
Set wdRng = wdApp.ActiveDocument.Bookmarks(myArray(3)).Range
wdRng.InsertBefore ("Fruit & Vegetable Sales")

'insert chart
Set wdRng = wdApp.ActiveDocument.Bookmarks(myArray(4)).Range
Worksheets("Fruit Sales").ChartObjects("Chart 1").Copy
wdRng.PasteAndFormat Type:=wdPasteOLEObject

wdApp.Activate
Set wdApp = Nothing
Set wdRng = Nothing

End Sub

FIGURE 20-11 Use bookmarks to enter text or charts into a Word document.

Controlling form fields in Word
You have seen how to modify a document by inserting charts and text, modifying formatting,
and deleting text. However, a document might contain other items, such as controls, that you
can modify.

For the following example, a template named New Client.dotx was created, consisting of
text and bookmarks. The bookmarks are placed after the Name and Date fields. Form field
check boxes were also added. The controls are found under Legacy Forms in the Controls

section of the Developer tab in Word, as shown in Figure 20-12. Notice in the code sample that
follows that all the check boxes have been renamed so they make more sense. For example, one
check box was renamed chk401k from Checkbox5. To rename a check box, right-click the
check box, select Properties, and type a new name in the Bookmark field.

FIGURE 20-12 You can use the form fields found under the Legacy Forms to add check boxes to a document.

The questionnaire was set up in Excel, and it enables a person to enter free text in B1 and
B2 but select from data validation in B3 and B5:B8, as shown in Figure 20-13.

FIGURE 20-13 Create an Excel sheet to collect your data.

The following code goes into a standard module, and the name and date go straight into the
document:

Click here to view code image
Sub FillOutWordForm()
Dim TemplatePath As String
Dim wdApp As Object
Dim wdDoc As Object

'Open the template in a new instance of Word
TemplatePath = ThisWorkbook.Path & "\New Client.dotx"
Set wdApp = CreateObject("Word.Application")
Set wdDoc = wdApp.documents.Add(Template:=TemplatePath)

'Place our text values in document
With wdApp.ActiveDocument

.Bookmarks("Name").Range.InsertBefore Range("B1").Text

.Bookmarks("Date").Range.InsertBefore Range("B2").Text
End With

'Using basic logic, select the correct form object
If Range("B3").Value = "Yes" Then

Click here to view code image
wdDoc.formfields("chkCustYes").CheckBox.Value = True

Else
wdDoc.formfields("chkCustNo").CheckBox.Value = True

End If

With wdDoc
If Range("B5").Value = "Yes" Then .Formfields("chk401k"). _
CheckBox.Value = True
If Range("B6").Value = "Yes" Then .Formfields("chkRoth"). _
CheckBox.Value = True
If Range("B7").Value = "Yes" Then .Formfields("chkStocks").
_
CheckBox.Value = True
If Range("B8").Value = "Yes" Then .Formfields("chkBonds"). _
CheckBox.Value = True

End With
wdApp.Visible = True

ExitSub:
Set wdDoc = Nothing
Set wdApp = Nothing

End Sub

The check boxes use logic to verify whether the person selected Yes or No to confirm
whether the corresponding check box should be checked. Figure 20-14 shows a sample
document that has been completed.

FIGURE 20-14 Excel can control Word’s form fields and help automate filling out documents.

Next steps
Chapter 19, “Text file processing,” showed you how to read from a text file to import data

from another system. In this chapter, you learned how to connect to another Office program
and access its object module. In Chapter 21, “Using Access as a back end to enhance multiuser
access to data,” you’ll connect to an Access database and learn about writing to Access
multidimensional database (MDB) files. Compared to text files, Access files are faster; in
addition, Access file are indexable and allow multiuser access to data.

CHAPTER 21
Using Access as a back end to enhance multiuser
access to data

In this chapter, you will:

Understand the difference between ADO and DAOs

Get to know the tools of ADO

Add a record to a database

Retrieve records from a database

Update an existing record

Delete records via ADO

Summarize records via ADO

Get to know other utilities via ADO

Examine SQL Server examples

The example near the end of Chapter 19, “Text file processing,” proposes a method for storing
660,601,620 records in an Excel worksheet. At some point, you need to admit that even though
Excel is the greatest product in the world, there is a time to move to Access and take advantage
of Access multidimensional database (MDB) files.

Even before you have more than 1 million rows, another compelling reason to use MDB
data files is to allow multiuser access to data without the headaches associated with shared
workbooks.

Microsoft Excel offers an option to share a workbook, but you automatically lose a number
of important Excel features when you do this type of sharing. After you share a workbook, you
cannot use automatic subtotals, pivot tables, Group and Outline mode, scenarios, protection, or
the Styles, Pictures, Add Charts, and Insert Worksheets options.

By using an Excel VBA front end and storing data in an MDB database, you have the best
of both worlds. You have the power and flexibility of Excel and the multiuser access capability
available in Access.

Tip MDB is the official file format of both Microsoft Access and Microsoft
Visual Basic. This means you can deploy an Excel solution that reads and writes
from an MDB to customers who do not have Microsoft Access. Of course, it helps

if you as the developer have a copy of Access because you can use the Access front end to
set up tables and queries.

Tip The examples in this chapter make use of the Microsoft Jet Database Engine
for reading from and writing to an Access database. The Jet engine works with
Access data stored in Access 97 through 2013. If you are sure that all the people

running the macro will have Office 2007 or newer, you could instead use the ACE engine.
Microsoft now offers a 64-bit version of the ACE engine but not the Jet engine.

ADO versus DAO
For several years, Microsoft recommended using data access objects (DAOs) for accessing data
in an external database. DAOs became very popular, and a great deal of code was written for
them. When Microsoft released Excel 2000, it started pushing ActiveX Data Objects (ADOs).
The concepts are similar, and the syntax differs only slightly. I use ADO in this chapter.
Realize that if you start going through code written a decade ago, you might run into DAO
code. Other than a few syntax changes, the code for both ADO and DAO looks similar.

To use any code in this chapter, open the VB Editor. Select Tools, References from the
main menu and then select Microsoft ActiveX Data Objects Library from the Available
References list, as shown in Figure 21-1.

FIGURE 21-1 To read or write from an Access MDB file, add the reference for Microsoft ActiveX Data Objects
Library 2.8 or higher.

Note If you have Windows 7 or newer, you have access to version 6.1 of this
library. Windows Vista offered version 6.0 of the library. If you will be
distributing the application to anyone who is still on Windows XP, you should

choose version 2.8 instead.

Case study: Creating a shared Access database
Linda and Janine are two buyers for a retail chain of stores. Each morning, they import
data from the cash registers to get current information on sales and inventory for 2,000
styles. Throughout the day, either buyer may enter transfers of inventory from one store to
another. It would be ideal if Linda could see the pending transfers entered by Janine and
vice versa.

Each buyer has an Excel application with VBA running on her desktop. They each import
the cash register data and have VBA routines that facilitate the creation of pivot table
reports to help them make buying decisions.

Attempting to store the transfer data in a common Excel file causes problems. When either
buyer attempts to write to the Excel file, the entire file becomes read-only for the other

buyer. With a shared workbook, Excel turns off the capability to create pivot tables, and
this is required in their application.

Neither Linda nor Janine has the professional version of Office, so they do not have
Access running on their desktop PCs. The solution is to produce an Access database on a
network drive that both Linda and Janine can see. These are the steps:

1. Using Access on another PC, produce a new database called transfers.mdb and add a
table called tblTransfer, as shown in Figure 21-2.

FIGURE 21-2 Multiple people using their own Excel workbooks will read and write to this table inside an
MDB file on a network drive.

2. Move the transfers.mdb file to a network drive. You might find that this common
folder uses different drive-letter mappings on each machine. It might be H:\Common\
on Linda’s machine and I:\Common\ on Janine’s machine.

3. On both machines, go to the VB Editor and under Tools, References, add a reference
to ActiveX Data Objects Library.

4. In both of their applications, find an out-of-the-way cell in which to store the path to
transfers.mdb. Name this cell TPath.

The application provides nearly seamless multiuser access to both buyers. Both Linda and
Janine can read or write to the table at the same time. The only time a conflict occurs is
when they both happen to try to update the same record at the same time.

Other than the out-of-the-way cell reference to the path to transfers.mdb, neither buyer is
aware that her data is being stored in a shared Access table, and neither computer needs to
have Access installed.

The remainder of this chapter gives you the code necessary to allow the application
included in the preceding case study to read or write data from the tblTransfer table.

The tools of ADO
You encounter several terms when using ADO to connect to an external data source:

Record set—When connecting to an Access database, the record set is either a table in
the database or a query in the database. Most of the ADO methods reference the record
set. You might also want to create your own query on the fly. In this case, write a SQL
statement to extract only a subset of records from a table.

Connection—The connection defines the path to the database and the type of database.
In the case of Access databases, you specify that the connection is using the Microsoft Jet
Engine.

Cursor—Think of the cursor as a pointer that keeps track of which record you are using
in the database. There are several types of cursors and two places for the cursor to be
located (described in the following bullets).

Cursor type—A dynamic cursor is the most flexible cursor. If you define a record set
and someone else updates a row in the table while a dynamic cursor is active, the
dynamic cursor knows about the updated record. Although this is the most flexible, it
requires the most overhead. If your database doesn’t have a lot of transactions, you might
specify a static cursor; this type of cursor returns a snapshot of the data at the time the
cursor is established.

Cursor location—The cursor can be located either on the client or on the server. For an
Access database residing on your hard drive, a server location for the cursor means that
the Access Jet Engine on your computer is controlling the cursor. When you specify a
client location for the cursor, your Excel session is controlling the cursor. On a very large
external data set, it would be better to allow the server to control the cursor. For small
data sets, a client cursor is faster.

Lock type—The point of this chapter is to allow multiple people to access a data set at
the same time. The lock type defines how ADO will prevent crashes when two people try
to update a record at the same time. With an optimistic lock type, an individual record is
locked only when you attempt to update the record. If your application will be doing 90%
reads and only occasionally updating, then an optimistic lock is perfect. However, if you
know that every time you read a record, you will soon update the record, you should use
a pessimistic lock type. With pessimistic locks, a record is locked as soon as you read it.
If you know that you will never write back to the database, you can use a read-only lock.
This enables you to read the records without preventing others from writing to them.

The primary objects needed to access data in an MDB file are an ADO connection and an

ADO record set.

The ADO connection defines the path to the database and specifies that the connection is
based on the Microsoft Jet Engine.

After you have established the connection to the database, you usually use that connection
to define a record set. A record set can be a table or a subset of records in the table or a
predefined query in the Access database. To open a record set, you have to specify the
connection and the values for the CursorType, CursorLocation, LockType, and Options
parameters.

Assuming that you have only two users trying to access the table at a time, you should use a
dynamic cursor and an optimistic lock type. For large data sets, the adUseServer value of the
CursorLocation property allows the database server to process records without using up
RAM on the client machine. If you have a small data set, it might be faster to use
adUseClient for the CursorLocation. When the record set is opened, all the records are
transferred to memory of the client machine. This allows faster navigation from record to
record.

Reading data from the Access database is easy, provided that you have fewer than 1048576
records. You can use the CopyFromRecordset method to copy all selected records from the
record set to a blank area of the worksheet.

To add a record to an Access table, use the AddNew method for the record set. You then
specify the value for each field in the table and use the Update method to commit the changes
to the database.

To delete a record from the table, you can use a pass-through query to delete records that
match a certain criteria.

Note If you ever find yourself frustrated with ADO and think, “If I could just
open Access, I could knock out a quick SQL statement to do exactly what I
need,” then the pass-through query is for you. Rather than use ADO to read

through the records, the pass-through query sends a request to the database to run the SQL
statement that your program builds. This effectively enables you to handle any tasks that
your database might support but that are not handled by ADO. The types of SQL
statements handled by the pass-through query are dependent on which database type you
are connecting to.

Other tools are available that let you make sure that a table exists or that a particular field
exists in a table. You can also use VBA to add new fields to a table definition on the fly.

Adding a record to a database
Going back to the case study earlier in the chapter, the application you are creating has a
userform where buyers can enter transfers. To make the calls to the Access database as simple
as possible, a series of utility modules handle the ADO connection to the database. This way,
the userform code can simply call AddTransfer(Style, FromStore, ToStore, Qty).

Here’s how you add records after the connection is defined:

1. Open a record set that points to the table. In the code that follows, see the sections
commented ' Open the Connection, ' Define the Recordset, and ' Open the
Table.

2. Use AddNew to add a new record.

3. Update each field in the new record.

4. Use Update to update the record set.

5. Close the record set and then close the connection.

The following code adds a new record to the tblTransfer table:

Click here to view code image
Sub AddTransfer(Style As Variant, FromStore As Variant, _
ToStore As Variant, Qty As Integer)
Dim cnn As ADODB.Connection
Dim rst As ADODB.Recordset

MyConn = "J:\transfers.mdb"

' Open the Connection
Set cnn = New ADODB.Connection
With cnn
.Provider = "Microsoft.Jet.OLEDB.4.0"
.Open MyConn

End With

' Define the Recordset
Set rst = New ADODB.Recordset
rst.CursorLocation = adUseServer

' Open the Table
rst.Open Source:="tblTransfer", _
ActiveConnection:=cnn, _

CursorType:=adOpenDynamic, _
LockType:=adLockOptimistic, _
Options:=adCmdTable

' Add a record
rst.AddNew

' Set up the values for the fields. The first four fields
' are passed from the calling userform. The date field
' is filled with the current date.

rst("Style") = Style
rst("FromStore") = FromStore
rst("ToStore") = ToStore
rst("Qty") = Qty
rst("tDate") = Date
rst("Sent") = False
rst("Receive") = False

' Write the values to this record
rst.Update

' Close
rst.Close
cnn.Close

End Sub

Retrieving records from a database
Reading records from an Access database is easy. As you define a record set, you pass a SQL
string to return the records you are interested in.

Note A great way to generate the SQL is to design a query in Access that
retrieves the records. While viewing the query in Access, select SQL View from
the View drop-down menu on the Query Tools Design tab of the ribbon. Access

shows you the SQL statement required to execute that query. You can use that SQL
statement as a model for building the SQL string in your VBA code.

After the record set is defined, use the CopyFromRecordSet method to copy all the

matching records from Access to a specific area of the worksheet.

The following routine queries the Transfer table to find all records in which the Sent flag
is not yet set to True:

Click here to view code image
Sub GetUnsentTransfers()
Dim cnn As ADODB.Connection
Dim rst As ADODB.Recordset
Dim WSOrig As Worksheet
Dim WSTemp As Worksheet
Dim sSQL as String
Dim FinalRow as Long

Set WSOrig = ActiveSheet

'Build a SQL String to get all fields for unsent transfers
sSQL = "SELECT ID, Style, FromStore, ToStore, Qty, tDate" _
& "FROM tblTransfer"
sSQL = sSQL & " WHERE Sent=FALSE"

' Path to Transfers.mdb
MyConn = "J:\transfers.mdb"

Set cnn = New ADODB.Connection
With cnn
.Provider = "Microsoft.Jet.OLEDB.4.0"
.Open MyConn

End With

Set rst = New ADODB.Recordset
rst.CursorLocation = adUseServer
rst.Open Source:=sSQL, ActiveConnection:=cnn, _

CursorType:=AdForwardOnly, LockType:=adLockOptimistic, _
Options:=adCmdText

' Create the report in a new worksheet
Set WSTemp = Worksheets.Add

' Add Headings
Range("A1:F1").Value = Array("ID", "Style", "From", "To",
"Qty", "Date")

' Copy from the record set to row 2
Range("A2").CopyFromRecordset rst

' Close the connection
rst.Close
cnn.Close

' Format the report
FinalRow = Range("A65536").End(xlUp).Row

' If there were no records, then stop
If FinalRow = 1 Then

Application.DisplayAlerts = False
WSTemp.Delete
Application.DisplayAlerts = True
WSOrig.Activate
MsgBox "There are no transfers to confirm"
Exit Sub

End If

' Format column F as a date
Range("F2:F" & FinalRow).NumberFormat = "m/d/y"

' Show the userform -- used in next section
frmTransConf.Show

' Delete the temporary sheet
Application.DisplayAlerts = False
WSTemp.Delete
Application.DisplayAlerts = True

End Sub

The results are placed on a blank worksheet. The final few lines display the results in a
userform to illustrate how to update a record in the next section.

The CopyFromRecordSet method copies records that match the SQL query to a range on
the worksheet. Note that you receive only the data rows. The headings do not come along
automatically. You must use code to write the headings to row 1. Figure 21-3 shows the results.

FIGURE 21-3 Range("A2").CopyFromRecord Set brought matching records from the Access database to the
worksheet.

Updating an existing record
To update an existing record, you need to build a record set with exactly one record. This
requires that the user select some sort of unique key when identifying the records. After you
have opened the record set, use the Fields property to change the field in question and then
the Update method to commit the changes to the database.

The earlier example returned a record set to a blank worksheet and then called the userform
frmTransConf. This form uses a simple Userform_Initialize to display the range in a
large list box:

Click here to view code image
Private Sub UserForm_Initialize()

' Determine how many records we have
FinalRow = Cells(Rows.Count, 1).End(xlUp).Row
If FinalRow > 1 Then
Me.lbXlt.RowSource = "A2:F" & FinalRow
End If

End Sub

The list box’s properties have the MultiSelect property set to True.

After the Userform_Initialize procedure is run, the unconfirmed records are displayed
in a list box. The logistics planner can mark all the records that have been sent, as shown in
Figure 21-4.

FIGURE 21-4 This userform displays particular records from the Access record set. When the buyer selects certain
records and then clicks the Confirm button, you have to use ADO’s Update method to update the Sent field on the
selected records.

The code attached to the Confirm button follows:

Click here to view code image
Private Sub cbConfirm_Click()
Dim cnn As ADODB.Connection
Dim rst As ADODB.Recordset

' If nothing is selected, warn them
CountSelect = 0
For x = 0 To Me.lbXlt.ListCount - 1
If Me.lbXlt.Selected(x) Then
CountSelect = CountSelect + 1

End If
Next x

If CountSelect = 0 Then
MsgBox "There were no transfers selected. " & _
"To exit without confirming any transfers, use Cancel."

Exit Sub
End If

' Establish a connection to transfers.mdb
' Path to Transfers.mdb is on Menu
MyConn = "J:\transfers.mdb"

Set cnn = New ADODB.Connection

With cnn
.Provider = "Microsoft.Jet.OLEDB.4.0"
.Open MyConn

End With

' Mark as complete
For x = 0 To Me.lbXlt.ListCount - 1
If Me.lbXlt.Selected(x) Then
ThisID = Cells(2 + x, 1).Value
' Mark ThisID as complete
'Build SQL String
sSQL = "SELECT * FROM tblTransfer Where ID=" & ThisID
Set rst = New ADODB.Recordset
With rst

.Open Source:=sSQL, ActiveConnection:=cnn, _
CursorType:=adOpenKeyset, LockType:=adLockOptimistic

' Update the field
.Fields("Sent").Value = True
.Update
.Close
End With
End If

Next x

' Close the connection
cnn.Close
Set rst = Nothing
Set cnn = Nothing

' Close the userform
Unload Me

End Sub

Including the ID field in the fields returned in the prior example is important if you want to
narrow the information down to a single record.

Deleting records via ADO
As with updating a record, the key to deleting records is being able to write a bit of SQL to
uniquely identify the records to be deleted. The following code uses the Execute method to
pass the Delete command through to Access:

Click here to view code image
Public Sub ADOWipeOutAttribute(RecID)
' Establish a connection to transfers.mdb
MyConn = "J:\transfers.mdb"

With New ADODB.Connection
.Provider = "Microsoft.Jet.OLEDB.4.0"
.Open MyConn
.Execute "Delete From tblTransfer Where ID = " & RecID
.Close

End With
End Sub

Summarizing records via ADO
One strength of Access is running summary queries that group by a particular field. If you build
a summary query in Access and examine the SQL view, you’ll see that complex queries can be
written. Similar SQL can be built in Excel VBA and passed to Access via ADO.

The following code uses a fairly complex query to get a net total by store:

Click here to view code image
Sub NetTransfers(Style As Variant)
' This builds a table of net open transfers
' on Styles AI1
Dim cnn As ADODB.Connection
Dim rst As ADODB.Recordset

' Build the large SQL query
' Basic Logic: Get all open Incoming Transfers by store,

' union with -1* outgoing transfers by store
' Sum that union by store, and give us min date as well
' A single call to this macro will replace 60
' calls to GetTransferIn, GetTransferOut, TransferAge
sSQL = "Select Store, Sum(Quantity), Min(mDate) From " & _
"(SELECT ToStore AS Store, Sum(Qty) AS Quantity, " & _
"Min(TDate) AS mDate FROM tblTransfer where Style='" & Style
& _
"& "' AND Receive=FALSE GROUP BY ToStore "

sSQL = sSQL & " Union All SELECT FromStore AS Store, " & _
"Sum(-1*Qty) AS Quantity, Min(TDate) AS mDate " & _
"FROM tblTransfer where Style='" & Style & "' AND " & _
"Sent=FALSE GROUP BY FromStore)"

sSQL = sSQL & " Group by Store"

MyConn = "J:\transfers.mdb"

' open the connection.
Set cnn = New ADODB.Connection
With cnn
.Provider = "Microsoft.Jet.OLEDB.4.0"
.Open MyConn

End With

Set rst = New ADODB.Recordset

rst.CursorLocation = adUseServer

' open the first query
rst.Open Source:=sSQL, _

ActiveConnection:=cnn, _
CursorType:=AdForwardOnly, _
LockType:=adLockOptimistic, _
Options:=adCmdText

Range("A1:C1").Value = Array("Store", "Qty", "Date")
' Return Query Results
Range("A2").CopyFromRecordset rst
rst.Close
cnn.Close

End Sub

Other utilities via ADO
Consider the application you created for this chapter’s case study: The buyers now have an
Access database located on their network but possibly no copy of Access. It would be ideal if
you could deliver changes to the Access database on the fly as their application opens.

Note If you are wondering how you would ever coax the person using the
application to run these queries, consider using an update macro hidden in the
Workbook_Open routine of the client application. Such a routine might first

check to see whether a field exists and then add the field if it is missing.

Note For details on the mechanics of hiding the update query in the
Workbook_Open routine, see the case study, “Using a hidden code workbook to
hold all macros and forms,” in Chapter 26, “Creating add-ins.”

Checking for the existence of tables

If the application in this chapter’s example needs a new table in the database, you can use the
code in the next section. However, because you have a multiuser application, only the first
person who opens the application has to add the table on the fly. When the next buyer shows
up, the table might have already been added by the first buyer’s application. Because this code
is a function instead of a sub, it returns either True or False to the calling routine.

This code uses the OpenSchema method to query the database schema:

Click here to view code image
Function TableExists(WhichTable)
Dim cnn As ADODB.Connection
Dim rst As ADODB.Recordset
Dim fld As ADODB.Field
TableExists = False

' Path to Transfers.mdb is on Menu
MyConn = "J:\transfers.mdb"

Set cnn = New ADODB.Connection
With cnn
.Provider = "Microsoft.Jet.OLEDB.4.0"

.Open MyConn
End With

Set rst = cnn.OpenSchema(adSchemaTables)

Do Until rst.EOF
If LCase(rst!Table_Name) = LCase(WhichTable) Then

TableExists = True
GoTo ExitMe

End If
rst.MoveNext

Loop

ExitMe:
rst.Close
Set rst = Nothing
' Close the connection
cnn.Close

End Function

Checking for the existence of a field

Sometimes you want to add a new field to an existing table. The following code does this, and
it uses the OpenSchema method but this time looks at the columns in the tables:

Click here to view code image
Function ColumnExists(WhichColumn, WhichTable)
Dim cnn As ADODB.Connection
Dim rst As ADODB.Recordset
Dim WSOrig As Worksheet
Dim WSTemp As Worksheet
Dim fld As ADODB.Field
ColumnExists = False

' Path to Transfers.mdb is on menu
MyConn = ActiveWorkbook.Worksheets("Menu").Range("TPath").Value
If Right(MyConn, 1) = "\" Then

MyConn = MyConn & "transfers.mdb"
Else

MyConn = MyConn & "\transfers.mdb"
End If

Set cnn = New ADODB.Connection

With cnn
.Provider = "Microsoft.Jet.OLEDB.4.0"
.Open MyConn

End With

Set rst = cnn.OpenSchema(adSchemaColumns)
Do Until rst.EOF
If LCase(rst!Column_Name) = LCase(WhichColumn) And _

LCase(rst!Table_Name) = LCase(WhichTable) Then
ColumnExists = True
GoTo ExitMe
End If

rst.MoveNext
Loop

ExitMe:
rst.Close
Set rst = Nothing
' Close the connection
cnn.Close

End Function

Adding a table on the fly

The following code uses a pass-through query to tell Access to run a Create Table
command:

Click here to view code image
Sub ADOCreateReplenish()
' This creates tblReplenish
' There are five fields:
' Style
' A = Auto replenishment for A
' B = Auto replenishment level for B stores
' C = Auto replenishment level for C stores
' RecActive = Yes/No field
Dim cnn As ADODB.Connection
Dim cmd As ADODB.Command

' Define the connection

MyConn = "J:\transfers.mdb"

' open the connection
Set cnn = New ADODB.Connection
With cnn
.Provider = "Microsoft.Jet.OLEDB.4.0"
.Open MyConn
End With

Set cmd = New ADODB.Command
Set cmd.ActiveConnection = cnn
'create table
cmd.CommandText = "CREATE TABLE tblReplenish " & _

"(Style Char(10) Primary Key, " & _
"A int, B int, C Int, RecActive YesNo)"

cmd.Execute , , adCmdText
Set cmd = Nothing
Set cnn = Nothing
Exit Sub
End Sub

Adding a field on the fly

If you determine that a field does not exist, you can use a pass-through query to add a field to
the table, like this:

Click here to view code image
Sub ADOAddField()
' This adds a grp field to tblReplenish
Dim cnn As ADODB.Connection
Dim cmd As ADODB.Command

' Define the connection
MyConn = "J:\transfers.mdb"

' open the connection
Set cnn = New ADODB.Connection
With cnn

.Provider = "Microsoft.Jet.OLEDB.4.0"

.Open MyConn
End With

Set cmd = New ADODB.Command
Set cmd.ActiveConnection = cnn
'create table
cmd.CommandText = "ALTER TABLE tblReplenish Add Column Grp
Char(25)"
cmd.Execute , , adCmdText
Set cmd = Nothing
Set cnn = Nothing

End Sub

SQL Server examples
If you have 64-bit versions of Office and if Microsoft does not provide the 64-bit
Microsoft.Jet.OLEDB.4.0 drivers, you have to switch over to using SQL Server or another
database technology:

Click here to view code image
Sub DataExtract()

Application.DisplayAlerts = False

'clear out all previous data
Sheet1.Cells.Clear

' Create a connection object.
Dim cnPubs As ADODB.Connection
Set cnPubs = New ADODB.Connection

' Provide the connection string.
Dim strConn As String

'Use the SQL Server OLE DB Provider.

Click here to view code image
strConn = "PROVIDER=SQLOLEDB;"

'Connect to the Pubs database on the local server.
strConn = strConn & "DATA SOURCE=a_sql_server;INITIAL
CATALOG=a_database;"

'Use an integrated login.

strConn = strConn & " INTEGRATED SECURITY=sspi;"

'Now open the connection.
cnPubs.Open strConn

' Create a record set object.
Dim rsPubs As ADODB.Recordset
Set rsPubs = New ADODB.Recordset

With rsPubs
' Assign the Connection object.
.ActiveConnection = cnPubs
' Extract the required records.
.Open "exec a_database..a_stored_procedure"
' Copy the records into cell A1 on Sheet1.
Sheet1.Range("A2").CopyFromRecordset rsPubs

Dim myColumn As Range
'Dim title_string As String
Dim K As Integer
For K = 0 To rsPubs.Fields.Count - 1

'Sheet1.Columns(K).Value = rsPubs.Fields(K).Name
'title_string = title_string & rsPubs.Fields(K).Name &
Chr(9)
'Sheet1.Columns(K).Cells(1).Name = rsPubs.Fields(K).Name
'Sheet1.Columns.Column(K) = rsPubs.Fields(K).Name
'Set myColumn = Sheet1.Columns(K)
'myColumn.Cells(1, K).Value = rsPubs.Fields(K).Name
'Sheet1.Cells(1, K) = rsPubs.Fields(K).Name
Sheet1.Cells(1, K + 1) = rsPubs.Fields(K).Name
Sheet1.Cells(1, K + 1).Font.Bold = "TRUE"

Next K
'Sheet1.Range("A1").Value = title_string

' Tidy up
.Close

End With

cnPubs.Close
Set rsPubs = Nothing
Set cnPubs = Nothing

'clear out errors

Dim cellval As Range
Dim myRng As Range
Set myRng = ActiveSheet.UsedRange
For Each cellval In myRng

Click here to view code image
cellval.Value = cellval.Value
'cellval.NumberFormat = "@" 'this works as well as setting
'HorizontalAlignment
cellval.HorizontalAlignment = xlRight

Next

End Sub

Next steps
In Chapter 22, “Advanced userform techniques,” you’ll discover more controls and techniques
you can use in building userforms.

CHAPTER 22
Advanced userform techniques

In this chapter, you will:

Access the UserForm toolbar

Learn how to use CheckBox, TabStrip, RefEdit, and ToggleButton controls

Use a collection to control multiple controls

Select a cell on a sheet while a userform is open

Use hyperlinks in userforms

Add controls at runtime

Add help to a userform

Set up a multicolumn list box

Create transparent forms

Chapter 10, “Userforms: An introduction,” covered the basics of adding controls to userforms.
This chapter continues the topic, looking at more advanced controls and methods for making
the most out of userforms.

Using the UserForm toolbar in the design of controls on
userforms
In the VB Editor, under View, Toolbars, you’ find a few toolbars that do not appear unless you
select them. One of these is the UserForm toolbar, shown in Figure 22-1. It has functionality
useful for organizing the controls you add to a userform; for example, you can use it to make
all the controls you select the same size.

FIGURE 22-1 The UserForm toolbar has tools for organizing the controls on a userform.

More userform controls
The following sections cover more userform controls you can use to help obtain information
from people. At the end of each of the following subsections is a table that lists that control’
events.

CheckBox controls
Check boxes allow the user to select one or more options on a userform. Unlike with
the option buttons discussed in Chapter 10, a person can select one or more check
boxes at a time.

The value of a checked box is True; the value of an unchecked box is False. If you clear
the value of a check box (CheckBox1.Value = ""), when the userform runs, the check box
will have a grayed-out check in it, as shown in Figure 22-2. This can be useful for verifying
that users have viewed all options and made a selection.

FIGURE 22-2 Use the null value of the check box to verify that a person has viewed and answered all options.

You can use code like the following to review all the check boxes in the Languages group
of the dialog box shown in Figure 22-2. If a value is null, the user is prompted to review the
selections:

Click here to view code image
Private Sub btnClose_Click()
Dim Msg As String
Dim Chk As Control
Set Chk = Nothing
'narrow down the search to just the 2nd page's controls
For Each Chk In frm_Multipage.MultiPage1.Pages(1).Controls

'only need to verify checkbox controls
If TypeName(Chk) = "CheckBox" Then

'and just in case we add more check box controls,
'just check the ones in the group
If Chk.GroupName = "Languages" Then

'if the value is null (the property value is empty)
If IsNull(Chk.Object.Value) Then

'add the caption to a string
Msg = Msg & vbNewLine & Chk.Caption

End If
End If

End If
Next Chk

If Msg <> "" Then

Msg = "The following check boxes were not verified:" &
vbNewLine & Msg
MsgBox Msg, vbInformation, "Additional Information
Required"

End If
Unload Me
End Sub

Table 22-1 lists the events for CheckBox controls.

TABLE 22-1 CheckBox control events

Event Description
AfterUpdate Occurs after a check box has been selected/cleared.

BeforeDragOver Occurs while the person drags and drops data onto the check box.

BeforeDropOrPaste Occurs right before the person is about to drop or paste data onto the check box.

BeforeUpdate Occurs before the check box is selected/cleared.

Change Occurs when the value of the check box is changed.

Click Occurs when the person clicks the control with the mouse.

DblClick Occurs when the person double-clicks the check box with the mouse.

Enter Occurs right before the check box receives the focus from another control on the same userform.

Error Occurs when the check box runs into an error and cannot return the error information.

Exit Occurs right after the check box loses focus to another control on the same userform.

KeyDown Occurs when the person presses a key on the keyboard.

KeyPress Occurs when the person presses an ANSI key. An ANSI key is a typable character such as the letter A.

KeyUp Occurs when the person releases a key on the keyboard.

MouseDown Occurs when the person presses the mouse button within the borders of the check box.

MouseMove Occurs when the person moves the mouse within the borders of the check box.

MouseUp Occurs when the person releases the mouse button within the borders of the check box.

TabStrip controls
The MultiPage control allows a userform to have several pages. Each page of the
form can have its own set of controls, unrelated to any other control on the form. A
TabStrip control also allows a userform to have many pages, but the controls on a
tab strip are identical; they are drawn only once. Yet when the form is run, the

information changes depending on which tab strip is active (see Figure 22-3).

Note To learn more about MultiPage controls, see “Using the MultiPage
control to combine forms” in Chapter 10.

FIGURE 22-3 A tab strip allows a userform with multiple pages to share controls but not information.

By default, a tab strip is thin, with two tabs at the top. Right-clicking a tab enables you to
add, remove, rename, or move that tab. Size the tab strip to hold all the controls. Outside the
tab strip area, draw a button for closing the form.

You can move the tabs around the strip, as shown in Figure 22-3, by changing the
TabOrientation property. The tabs can be at the top, bottom, left, or right side of the
userform.

The following lines of code were used to create the tab strip form shown in Figure 22-3.
The Initialize sub calls the sub SetValuesToTabStrip, which sets the value for the first
tab:

Click here to view code image
Private Sub UserForm_Initialize()
SetValuesToTabStrip 1 'As default
End Sub

These lines of code handle what happens when a new tab is selected:

Click here to view code image
Private Sub TabStrip1_Change()
Dim lngRow As Long

lngRow = TabStrip1.Value + 1
SetValuesToTabStrip lngRow
End Sub

This sub provides the data shown on each tab. A sheet was set up, with each row
corresponding to a tab:

Click here to view code image
Private Sub SetValuesToTabStrip(ByVal lngRow As Long)
With frm_Staff

.lbl_Address.Caption = Cells(lngRow, 2).Value

.lbl_Phone.Caption = Cells(lngRow, 3).Value

.lbl_Fax.Caption = Cells(lngRow, 4).Value

.lbl_Email.Caption = Cells(lngRow, 5).Value

.lbl_Website.Caption = Cells(lngRow, 6).Value

.Show
End With
End Sub

The tab strip’ values are automatically filled in. They correspond to the tab’ position in the
strip; moving a tab changes its value. The value of the first tab of a tab strip is 0, which is why,
in the preceding code, we add 1 to the tab strip value when the form is initialized to get it to
correspond with the row on the sheet.

Tip If you want a single tab to have an extra control, the control could be added at
runtime, when the tab is activated, and removed when the tab is deactivated.

Table 22-2 lists the events for the TabStrip control.

TABLE 22-2 TabStrip control events

Event Description
BeforeDragOver Occurs while the person drags and drops data onto the control.

BeforeDropOrPaste Occurs right before the person drops or pastes data into the control.

Change Occurs when the value of the control is changed.

Click Occurs when the person clicks the control with the mouse.

DblClick Occurs when the person double-clicks the control with the mouse.

Enter Occurs right before the control receives the focus from another control on the same userform.

Error Occurs when the control runs into an error and cannot return the error information.

Exit Occurs right after the control loses focus to another control on the same userform.

KeyDown Occurs when the person presses a key on the keyboard.

KeyPress Occurs when the person presses an ANSI key. An ANSI key is a typable character, such as the letter A.

KeyUp Occurs when the person releases a key on the keyboard.

MouseDown Occurs when the person presses the mouse button within the borders of the control.

MouseMove Occurs when the person moves the mouse within the borders of the control.

MouseUp Occurs when the person releases the mouse button within the borders of the control.

RefEdit controls
The RefEdit control allows a person to select a range on a sheet; the range is
returned as the value of the control. You can add it to any form. When you click the
button on the right side of the field, the userform disappears and is replaced with the
range selection form that is used for selecting ranges with Excel’ many wizard tools,

as shown in Figure 22-4. Click the button on the right of the field to show the userform once
again.

FIGURE 22-4 Use RefEdit to enable a person to select a range on a sheet.

The following code used with a RefEdit control allows a person to select a range, which is
then made bold:

Click here to view code image
Private Sub cb1_Click()
Range(RefEdit1.Value).Font.Bold = True
Unload Me
End Sub

Table 22-3 lists the events for RefEdit controls.

Caution RefEdit control events are notorious for not working properly. If you
run into this problem, use a different control’ event to trigger code.

TABLE 22-3 RefEdit control events

Event Description
AfterUpdate Occurs after the control’ data has been changed.

BeforeDragOver Occurs while the person drags and drops data onto the control.

BeforeDropOrPaste Occurs right before the person drops or pastes data into the control.

BeforeUpdate Occurs before the data in the control is changed.

Change Occurs when the value of the control is changed.

Click Occurs when the person clicks the control with the mouse.

DblClick Occurs when the person double-clicks the control with the mouse.

DropButtonClick Occurs when the person clicks the drop button on the right side of the field.

Enter Occurs right before the control receives the focus from another control on the same userform.

Error Occurs when the control runs into an error and cannot return the error information.

Exit Occurs right after the control loses focus to another control on the same userform.

KeyDown Occurs when the person presses a key on the keyboard.

KeyPress Occurs when the person presses an ANSI key. An ANSI key is a typable character, such as the letter A.

KeyUp Occurs when the person releases a key on the keyboard.

MouseDown Occurs when the person presses the mouse button within the borders of the control.

MouseMove Occurs when the person moves the mouse within the borders of the control.

MouseUp Occurs when the person releases the mouse button within the borders of the control.

ToggleButton controls
A toggle button looks like a normal command button, but when it’ clicked, it stays
pressed until it’ clicked again. This allows a True or False value to be returned
based on the status of the button. Table 22-4 lists the events for the ToggleButton
controls.

TABLE 22-4 ToggleButton control events

Event Description
AfterUpdate Occurs after the control’ data has been changed.

BeforeDragOver Occurs while the person drags and drops data onto the control.

BeforeDropOrPaste Occurs right before the person drops or pastes data into the control.

BeforeUpdate Occurs before the data in the control is changed.

Change Occurs when the value of the control is changed.

Click Occurs when someone clicks the control with the mouse.

DblClick Occurs when the person double-clicks the control with the mouse.

Enter Occurs right before the control receives the focus from another control on the same userform.

Error Occurs when the control runs into an error and cannot return the error information.

Exit Occurs right after the control loses focus to another control on the same userform.

KeyDown Occurs when the person presses a key on the keyboard.

KeyPress Occurs when the person presses an ANSI key. An ANSI key is a typable character, such as the letter A.

KeyUp Occurs when the person releases a key on the keyboard.

MouseDown Occurs when the person presses the mouse button within the borders of the control.

MouseMove Occurs when the person moves the pointer within the borders of the control.

MouseUp Occurs when the person releases the mouse button within the borders of the control.

Using a scrollbar as a slider to select values
Chapter 10 discusses using a SpinButton control to enable someone to choose a
date. A spin button is useful, but it enables you to adjust up or down by only one
unit at a time. An alternative method is to draw a horizontal or vertical scrollbar in
the middle of the userform and use it as a slider. People can use arrows on the ends

of the scrollbar as they would the spin button arrows, but they can also grab the scrollbar and
instantly drag it to a certain value.

The userform shown in Figure 22-5 includes a label named Label1 and a scrollbar called
ScrollBar1.

FIGURE 22-5 Using a ScrollBar control allows the person to drag to a particular numeric or data value.

The userform’ Initialize code sets up the Min and Max values for the scrollbar. It
initializes the scrollbar to a value from cell A1 and updates the Label1.Caption:

Click here to view code image

Private Sub UserForm_Initialize()
Me.ScrollBar1.Min = 0
Me.ScrollBar1.Max = 100
Me.ScrollBar1.Value = Worksheets("Scrollbar").Range("A1").Value
Me.Label1.Caption = Me.ScrollBar1.Value
End Sub

Two event handlers are needed for the scrollbar. The Change event triggers when a person
clicks the arrows at the ends of the scrollbar. The Scroll event triggers when they drag the
slider to a new value:

Click here to view code image
Private Sub ScrollBar1_Change()

'This event triggers when the user touches
'the arrows on the end of the scrollbar
Me.Label1.Caption = Me.ScrollBar1.Value

End Sub

Private Sub ScrollBar1_Scroll()
'This event triggers when the user drags the slider
Me.Label1.Caption = Me.ScrollBar1.Value

End Sub

Finally, the event attached to the button writes the scrollbar value out to the worksheet:

Click here to view code image
Private Sub btnClose_Click()

Worksheets("Scrollbar").Range("A1").Value =
Me.ScrollBar1.Value
Unload Me

End Sub

Table 22-5 lists the events for ScrollBar controls.

TABLE 22-5 ScrollBar control events

Event Description
AfterUpdate Occurs after a person has changed the control’ data.

BeforeDragOver Occurs while someone drags and drops data onto the control.

BeforeDropOrPaste Occurs right before the person drops or pastes data into the control.

BeforeUpdate Occurs before the data in the control is changed.

Change Occurs when the value of the control is changed.

Enter Occurs right before the control receives the focus from another control on the same userform.

Error Occurs when the control runs into an error and cannot return the error information.

Exit Occurs right after the control loses focus to another control on the same userform.

KeyDown Occurs when the person presses a key on the keyboard.

KeyPress Occurs when the person presses an ANSI key. An ANSI key is a typable character, such as the letter A.

KeyUp Occurs when the person releases a key on the keyboard.

Scroll Occurs when the slider is moved.

Controls and collections
In Chapter 9, “Creating classes and collections,” several labels on a sheet were grouped into a
collection. With a little more code, these labels were turned into help screens. Userform
controls can also be grouped into collections to take advantage of class modules. The following
example selects or clears all the check boxes on the userform, depending on which label
someone chooses.

Place the following code in the class module, clsFormCtl. It consists of one property, chb,
and two methods, SelectAll and UnselectAll.

The SelectAll method selects a check box by setting its value to True:

Click here to view code image
Public WithEvents chb As MSForms.CheckBox
Public Sub SelectAll()
chb.Value = True
End Sub

The UnselectAll method clears the check box:

Click here to view code image
Public Sub UnselectAll()
chb.Value = False
End Sub

That sets up the class module. Next, the controls need to be placed in a collection. The
following code, placed behind the form frm_Movies, places the check boxes into a collection.
The check boxes are part of the frame frm_Selection, which makes it easier to create the
collection because it narrows the number of controls that need to be checked from the entire
userform to just those controls within the frame:

Click here to view code image
Dim col_Selection As New Collection
Private Sub UserForm_Initialize()
Dim ctl As MSForms.CheckBox
Dim chb_ctl As clsFormCtl
'Go through the members of the frame and add them to the
collection
For Each ctl In frm_Selection.Controls

Set chb_ctl = New clsFormCtl
Set chb_ctl.chb = ctl
col_Selection.Add chb_ctl

Next ctl
End Sub

When the form is opened, the controls are placed into the collection. All that’ left now is to
add the code for labels to select and clear the check boxes:

Click here to view code image
Private Sub lbl_SelectAll_Click()
Dim ctl As clsFormCtl
For Each ctl In col_Selection

ctl.SelectAll
Next ctl
End Sub

The following code clears the check boxes in the collection:

Click here to view code image
Private Sub lbl_unSelectAll_Click()
Dim ctl As clsFormCtl
For Each ctl In col_Selection

ctl.Unselectall
Next ctl
End Sub

All the check boxes can be selected and cleared with a single click of the mouse, as shown
in Figure 22-6.

FIGURE 22-6 Use frames, collections, and class modules together to create quick and efficient userforms.

Tip If your controls cannot be placed in a frame, you can use the Tag property to
create an improvised grouping. Tag is a property that holds more information
about a control. Its value is of type String, so it can hold any type of information.

For example, you can use it to create an informal group of controls from different
groupings.

Modeless userforms
Have you ever had a userform active but needed to manipulate something on the active sheet or
switch to another sheet? Forms can be modeless, in which case they don’t have to interfere with
the functionality of Excel. A person can type in a cell, switch to another sheet, copy/paste data,
and use the ribbon—as if the userform were not there.

By default, a userform is modal, which means that there can be no interaction with Excel
other than with the form. To make the form modeless, change the ShowModal property to
False. For example, to make Userform1 modeless when it’ opened, do this:
Userform1.Show False

After it is modeless, someone can select a cell on the sheet while the form is active, as
shown in Figure 22-7.

FIGURE 22-7 A modeless form enables a person to enter a cell while the form is still active.

Using hyperlinks in userforms
In the userform example shown in Figure 22-3, there is a field for email and a field for website
address. It would be nice to click these and have a blank email message or web page appear
automatically. You can do this by using the following program, which creates a new message
or opens a web browser when someone clicks the corresponding label:

Click here to view code image
Private Declare PtrSafe Function ShellExecute Lib "shell32.dll"
Alias _
"ShellExecuteA"(ByVal hWnd As Long, ByVal lpOperation As
String, _
ByVal lpFile As String, ByVal lpParameters As String, _
ByVal lpDirectory As String, ByVal nShowCmd As Long) As LongPtr

Const SWNormal = 1

The application programming interface (API) declaration and any other constants go at the
very top of the module.

This sub controls what happens when the email label is clicked, as shown in Figure 22-8:

Click here to view code image

Private Sub lbl_Email_Click()
Dim lngRow As Long
lngRow = TabStrip1.Value + 1
ShellExecute 0&, "open", "mailto:" & Cells(lngRow, 5).Value, _
vbNullString, vbNullString, SWNormal
End Sub

FIGURE 22-8 Turn email addresses and websites into clickable links by using a few lines of code.

This sub controls what happens when someone clicks a website label:

Click here to view code image
Private Sub lbl_Website_Click()
Dim lngRow As Long
lngRow = TabStrip1.Value + 1
ShellExecute 0&, "open", Cells(lngRow, 6).Value, vbNullString, _
vbNullString, SWNormal
End Sub

Adding controls at runtime
It’ possible to add controls to a userform at runtime. This is convenient if you’re not sure how
many items you’ be adding to a form.

Figure 22-9 shows a plain form with only one button. This plain form is used to display any
number of pictures from a product catalog. The pictures and accompanying labels appear at
runtime, as the form is being displayed.

A sales rep making a sales presentation uses this form to display a product catalog. She can
select any number of SKUs from an Excel worksheet and press a hotkey to display the form. If
she selects six items on the worksheet, the form displays with a small version of each picture,

as shown in Figure 22-10.

If the sales rep selects fewer items, the images are displayed larger, as shown in Figure 22-
11.

A number of techniques are used to create this userform on the fly. The initial form
contains only one button, cbClose. Everything else is added on the fly.

FIGURE 22-9 You can create flexible forms if you add most controls at runtime.

FIGURE 22-10 The sales rep asked to see photos of six SKUs. The UserForm_Initialize procedure adds each
picture and label on the fly.

FIGURE 22-11 The logic in Userform_Initialize decides how many pictures are being displayed and adds the
appropriately sized image controls.

Resizing the userform on the fly

Giving the best view of the images in the product catalog involves having the form appear as
large as possible. The following code uses the form’ Height and Width properties to make
sure the form fills almost the entire screen:

Click here to view code image
'resize the form
Me.Height = Int(0.98 * ActiveWindow.Height)
Me.Width = Int(0.98 * ActiveWindow.Width)

Adding a control on the fly

For a normal control added at design time, such as a button called cbClose, it is easy to refer
to the control by using its name:
Me.cbClose.Left = 100

However, for a control that’ added at runtime, you have to use the Controls collection to
set any properties for the control. For this reason, it’ important to set up a variable, such as LC,
to hold the name of the control. Controls are added with the .Add method. The important
parameter is bstrProgId. This property dictates whether the added control is a label, a text
box, a command button, or something else.

The following code adds a new label to the form. PicCount is a counter variable used to
ensure that each label has a unique name. After the form is added, specify a position for the
control by setting the Top and Left properties. You should also set Height and Width
properties for the control:

Click here to view code image
LC = "LabelA" & PicCount
Me.Controls.Add bstrProgId:="forms.label.1", Name:=LC,
Visible:=True
Me.Controls(LC).Top = 25
Me.Controls(LC).Left = 50
Me.Controls(LC).Height = 18
Me.Controls(LC).Width = 60
Me.Controls(LC).Caption = Cell.Value

Caution You lose some of the AutoComplete options with this method.

Normally, if you would start to type Me.cbClose., the AutoComplete options
would present the valid choices for a command button. However, when you use
the Me.Controls(LC) collection to add controls on the fly, VBA does not
know what type of control is referenced. In this case, it is helpful to know you

need to set the Caption property rather than the Value property for a label.

Sizing on the fly

In reality, you need to be able to calculate values for Top, Left, Height, and Width on the fly.
You do this based on the actual height and width of a form and based on how many controls are
needed.

Adding other controls

To add other types of controls, change the ProgId used with the Add method. Table 22-6
shows the ProgIds for various types of controls.

TABLE 22-6 Userform controls and corresponding ProgIds

Control ProgId
CheckBox Forms.CheckBox.1

ComboBox Forms.ComboBox.1

CommandButton Forms.CommandButton.1

Frame Forms.Frame.1

Image Forms.Image.1

Label Forms.Label.1

ListBox Forms.ListBox.1

MultiPage Forms.MultiPage.1

OptionButton Forms.OptionButton.1

ScrollBar Forms.ScrollBar.1

SpinButton Forms.SpinButton.1

TabStrip Forms.TabStrip.1

TextBox Forms.TextBox.1

ToggleButton Forms.ToggleButton.1

Adding an image on the fly

There is some unpredictability in adding images to a userform. Any given image might be
shaped either landscape or portrait. An image might be small or huge. The strategy you might

want to use is to let an image load at full size by setting the .AutoSize parameter to True
before loading it:

Click here to view code image
TC = "Image" & PicCount
Me.Controls.Add bstrProgId:="forms.image.1", Name:=TC,
Visible:=True
Me.Controls(TC).Top = LastTop
Me.Controls(TC).Left = LastLeft
Me.Controls(TC).AutoSize = True
On Error Resume Next
Me.Controls(TC).Picture = LoadPicture(fname)
On Error GoTo 0

After the image has loaded, you can read the control’ Height and Width properties to
determine whether the image is landscape or portrait and whether the image is constrained by
available width or available height:

Click here to view code image
'The picture resized the control to full size
'determine the size of the picture
Wid = Me.Controls(TC).Width
Ht = Me.Controls(TC).Height
'CellWid and CellHt are calculated in the full code sample below
WidRedux = CellWid / Wid
HtRedux = CellHt / Ht
If WidRedux < HtRedux Then

Redux = WidRedux
Else

Redux = HtRedux
End If
NewHt = Int(Ht * Redux)
NewWid = Int(Wid * Redux)

After you find the proper size for the image so that it draws without distortion, set the
AutoSize property to False and use the correct height and width to have the image not appear
distorted:

Click here to view code image
'Now resize the control
Me.Controls(TC).AutoSize = False

Me.Controls(TC).Height = NewHt
Me.Controls(TC).Width = NewWid
Me.Controls(TC).PictureSizeMode = fmPictureSizeModeStretch

Putting it all together

This is the complete code for the picture catalog userform:

Click here to view code image
Private Sub UserForm_Initialize()
'Display pictures of each SKU selected on the worksheet
'This may be anywhere from 1 to 36 pictures
PicPath = "C:\qimage\qi"
'resize the form
Me.Height = Int(0.98 * ActiveWindow.Height)
Me.Width = Int(0.98 * ActiveWindow.Width)
'determine how many cells are selected
'We need one picture and label for each cell
CellCount = Selection.Cells.Count
ReDim Preserve Pics(1 To CellCount)
'Figure out the size of the resized form
TempHt = Me.Height
TempWid = Me.Width
'The number of columns is a roundup of SQRT(CellCount)
'This will ensure 4 rows of 5 pictures for 20, etc.
NumCol = Int(0.99 + Sqr(CellCount))
NumRow = Int(0.99 + CellCount / NumCol)
'Figure out the height and width of each square
'Each column will have 2 points to left & right of pics
CellWid = Application.WorksheetFunction.Max(Int(TempWid /
NumCol) - 4, 1)
'each row needs to have 33 points below it for the label
CellHt = Application.WorksheetFunction.Max(Int(TempHt / NumRow)
- 33, 1)

Click here to view code image
PicCount = 0 'Counter variable
LastTop = 2
MaxBottom = 1
'Build each row on the form
For x = 1 To NumRow

LastLeft = 3

'Build each column in this row
For Y = 1 To NumCol

PicCount = PicCount + 1
If PicCount > CellCount Then

'There is not an even number of pictures to fill
'out the last row
Me.Height = MaxBottom + 100
Me.cbClose.Top = MaxBottom + 25
Me.cbClose.Left = Me.Width - 70
Repaint 'redraws the form
Exit Sub

End If
ThisStyle = Selection.Cells(PicCount).Value
ThisDesc = Selection.Cells(PicCount).Offset(0, 1).Value
fname = PicPath & ThisStyle & ".jpg"
TC = "Image" & PicCount
Me.Controls.Add bstrProgId:="forms.image.1", Name:=TC,
_

Visible:=True
Me.Controls(TC).Top = LastTop
Me.Controls(TC).Left = LastLeft
Me.Controls(TC).AutoSize = True
On Error Resume Next
Me.Controls(TC).Picture = LoadPicture(fname)
On Error GoTo 0

'The picture resized the control to full size
'determine the size of the picture
Wid = Me.Controls(TC).Width
Ht = Me.Controls(TC).Height
WidRedux = CellWid / Wid
HtRedux = CellHt / Ht
If WidRedux < HtRedux Then

Redux = WidRedux
Else

Redux = HtRedux
End If
NewHt = Int(Ht * Redux)
NewWid = Int(Wid * Redux)

'Now resize the control
Me.Controls(TC).AutoSize = False

Me.Controls(TC).Height = NewHt
Me.Controls(TC).Width = NewWid
Me.Controls(TC).PictureSizeMode =
fmPictureSizeModeStretch
Me.Controls(TC).ControlTipText = "Style " & _

ThisStyle & " " & ThisDesc

Click here to view code image
'Keep track of the bottommost & rightmost picture
ThisRight = Me.Controls(TC).Left +
Me.Controls(TC).Width
ThisBottom = Me.Controls(TC).Top +
Me.Controls(TC).Height
If ThisBottom > MaxBottom Then MaxBottom = ThisBottom

'Add a label below the picture
LC = "LabelA" & PicCount
Me.Controls.Add bstrProgId:="forms.label.1", Name:=LC,
_

Visible:=True
Me.Controls(LC).Top = ThisBottom + 1
Me.Controls(LC).Left = LastLeft
Me.Controls(LC).Height = 18
Me.Controls(LC).Width = CellWid
Me.Controls(LC).Caption = ThisDesc

'Keep track of where the next picture should display
LastLeft = LastLeft + CellWid + 4

Next Y ' end of this row
LastTop = MaxBottom + 21 + 16

Next x

Me.Height = MaxBottom + 100
Me.cbClose.Top = MaxBottom + 25
Me.cbClose.Left = Me.Width - 70
Repaint
End Sub

Adding help to a userform
You have already designed a great userform in this chapter, but there is one thing missing:
guidance for users. The following sections show four ways you can help people fill out the

form properly.

Showing accelerator keys

Built-in forms often have keyboard shortcuts that allow actions to be triggered or fields selected
with a few keystrokes. These shortcuts are identified by an underlined letter on a button or
label.

You can add this same capability to custom userforms by entering a value in the
Accelerator property of the control. Pressing Alt + the accelerator key selects the control.
For example, in Figure 22-12, Alt+T selects the Streaming check box. Repeating the
combination clears the box.

FIGURE 22-12 Use accelerator key combinations, like Alt+T to select Streaming, to give userforms the power of
keyboard shortcuts.

Adding control tip text

When a cursor passes over a ribbon control, tip text appears, hinting at what the control does.
You can also add tip text to userforms by entering a value in the ControlTipText property of
a control. In Figure 22-13, tip text has been added to the frame surrounding the various
categories.

FIGURE 22-13 Add tips to controls to provide help to people.

Creating the tab order

People can tab from one field to another. This is an automatic feature in a form. To control
which field the next tab goes to, set the TapStop property value for each control.

The first tab stop is 0, and the last tab stop is equal to the number of controls in a group.
Remember that you can create a group can with a frame. Excel doesn’t allow multiple controls
within a group to have the same tab stop. After tab stops are set, a person can use the Tab key
and spacebar to select or deselect various options.

Tip If you right-click a userform (not one of its controls) and select Tab Order, a
form appears, listing all the controls. You can reorder the controls on this form to
set the tab order.

Coloring the active control

Another method for helping a person fill out a form is to color the active field. The following
example changes the color of a text box or combo box when it is active. RaiseEvent is used to
call the events declared at the top of the class module. The code for the events is part of the
userform.

Place the following code in a class module called clsCtlColor:

Click here to view code image

Public Event GetFocus()
Public Event LostFocus(ByVal strCtrl As String)
Private strPreCtr As String
Public Sub CheckActiveCtrl(objForm As MSForms.UserForm)
With objForm

If TypeName(.ActiveControl) = "ComboBox" Or _
TypeName(.ActiveControl) = "TextBox" Then
strPreCtr = .ActiveControl.Name
On Error GoTo Terminate
Do

DoEvents
If .ActiveControl.Name <> strPreCtr Then

If TypeName(.ActiveControl) = "ComboBox" Or _

TypeName(.ActiveControl) = "TextBox" Then
RaiseEvent LostFocus(strPreCtr)
strPreCtr = .ActiveControl.Name
RaiseEvent GetFocus

End If
End If

Loop
End If

End With

Terminate:
Exit Sub
End Sub

Place the following code behind the userform:

Click here to view code image
Private WithEvents objForm As clsCtlColor
Private Sub UserForm_Initialize()
Set objForm = New clsCtlColor
End Sub

This sub changes the BackColor of the active control when the form is activated:

Click here to view code image
Private Sub UserForm_Activate()
If TypeName(ActiveControl) = "ComboBox" Or _

TypeName(ActiveControl) = "TextBox" Then

ActiveControl.BackColor = &HC0E0FF
End If
objForm.CheckActiveCtrl Me
End Sub

This sub changes the BackColor of the active control when it gets the focus:

Click here to view code image
Private Sub objForm_GetFocus()
ActiveControl.BackColor = &HC0E0FF
End Sub

This sub changes the BackColor back to white when the control loses the focus:

Click here to view code image
Private Sub objForm_LostFocus(ByVal strCtrl As String)
Me.Controls(strCtrl).BackColor = &HFFFFFF
End Sub

This sub clears the objForm when the form is closed:

Click here to view code image
Private Sub UserForm_QueryClose(Cancel As Integer, CloseMode As
Integer)
Set objForm = Nothing
End Sub

Case study: Setting up multicolumn list boxes
You’ve created several spreadsheets containing store data. The primary key of each set is
the store number. The workbook is used by several people, but not everyone memorizes
stores by store numbers. You need some way of letting people select a store by its name.
At the same time, you need to return the store number to be used in the code. You could
use VLOOKUP or MATCH, but there is another way.

A list box can have more than one column, but not all the columns need to be visible. In
addition, a person can select an item from the visible list, but the list box can return the
corresponding value from another column.

Draw a list box and set the ColumnCount property to 2. Set the RowSource to a two-
column range called Stores. The first column of the range is the store number; the second
column is the store name. At this point, the list box is displaying both columns of data. To

change this, set the ColumnWidths to 0, 100—and the text automatically updates to 0
pt;100 pt. The first column is now hidden. Figure 22-14 shows the list box properties as
they need to be.

FIGURE 22-14 Setting the list box properties creates a two-column list box that appears to be a single column of
data.

The appearance of the list box has now been set. When someone activates the list box, she
sees only the store names. To return the value of the first column, set the BoundColumn
property to 1. You can do this through the Properties window or through code. This
example uses code to maintain the flexibility of returning the store number (see Figure 22-
15):

Click here to view code image
Private Sub UserForm_Initialize()
lb_StoreName.BoundColumn = 1
End Sub

Private Sub lb_StoreName_Click()
lbl_StoreNum.Caption = lb_StoreName.Value
End Sub

FIGURE 22-15 Use a two-column list box to allow the user to select a store name but return the store number.

Creating transparent forms
Have you ever had a form that you had to keep moving out of the way so you could see the data
behind it? The following code sets the userform at a 50% transparency (see Figure 22-16) so
that you can see the data behind it without moving the form somewhere else on the screen (and
blocking more data).

FIGURE 22-16 Create a 50% transparent form to view the data on the sheet behind it.

Place the following code in the declarations section at the top of the userform:

Click here to view code image
Private Declare PtrSafe Function GetActiveWindow Lib "USER32" ()
As LongPtr
Private Declare PtrSafe Function SetWindowLongPtr Lib "USER32"
Alias _
"SetWindowLongA" (ByVal hWnd As LongPtr, ByVal nIndex As Long,
_
ByVal dwNewLong As LongPtr) As LongPtr
Private Declare PtrSafe Function GetWindowLongPtr Lib "USER32"
Alias _
"GetWindowLongA" (ByVal hWnd As LongPtr, ByVal nIndex As Long)
As Long
Private Declare PtrSafe Function SetLayeredWindowAttributes Lib
"USER32" _

(ByVal hWnd As LongPtr, ByVal crKey As Integer, _
ByVal bAlpha As Integer, ByVal dwFlags As LongPtr) As LongPtr
Private Const WS_EX_LAYERED = &H80000
Private Const LWA_COLORKEY = &H1
Private Const LWA_ALPHA = &H2
Private Const GWL_EXSTYLE = &HFFEC
Dim hWnd As Long

Place the following code behind a toggle button. When the button is pressed in, the
transparency is reduced 50%. When a person toggles the button back up, the transparency is set
to 0.

Click here to view code image
Private Sub ToggleButton1_Click()
If ToggleButton1.Value = True Then

'127 sets the 50% semitransparent
SetTransparency 127

Else
'a value of 255 is opaque and 0 is transparent
SetTransparency 255

End If
End Sub

Private Sub SetTransparency(TRate As Integer)
Dim nIndex As Long
hWnd = GetActiveWindow
nIndex = GetWindowLong(hWnd, GWL_EXSTYLE)
SetWindowLong hWnd, GWL_EXSTYLE, nIndex Or WS_EX_LAYERED
SetLayeredWindowAttributes hWnd, 0, TRate, LWA_ALPHA
End Sub

Next steps
This chapter showed you how to use more advanced userform controls. It also reviewed various
methods to maximize the use of userforms. In Chapter 23, “The Windows Application
Programming Interface (API),” you’ discover more about how to access these functions and
procedures that are hidden in files on your computer.

CHAPTER 23
The Windows Application Programming
Interface (API)

In this chapter, you will:

Understand the parts of an API declaration

Learn how to use an API declaration

Make 32-bit- and 64-bit-compatible API declarations

Review some API function examples

With all the wonderful things you can do in Excel VBA, there are some things that are out of
VBA’s reach or that are just too difficult to do, such as finding out what the user’s screen
resolution setting is. This is where the Windows application programming interface (API) can
help.

If you look in the Windows System directory \Windows\System32 (Windows NT systems),
you will see many files with the extension .dll. These files, which are dynamic link libraries
(DLLs), contain various functions and procedures that other programs, including VBA, can
access. They give the user access to functionality used by the Windows operating system and
many other programs.

Caution Keep in mind that Windows API declarations are accessible only on
computers running the Microsoft Windows operating system.

This chapter does not teach you how to write API declarations, but it does teach you the
basics of interpreting and using them. Several useful examples are also included. Jan Karel
Pieterse of JKP Application Development Services (www.jkp-ads.com) is working on an ever-
growing web page that lists the proper syntax for the 64-bit declarations. You can find it at
www.jkp-ads.com/articles/apideclarations.asp.

Understanding an API declaration

http://www.jkp-ads.com
http://www.jkp-ads.com/articles/apideclarations.asp

The following is an example of an API function:

Click here to view code image
Private Declare PtrSafe Function GetUserName _
Lib "advapi32.dll" Alias "GetUserNameA" _
(ByVal lpBuffer As String, nSize As Long) _
As LongPtr

There are two types of API declarations, which are structured similarly:

Functions—Return information

Procedures—Do something to the system

Basically, you can tell the following about this API function:

It is Private; therefore, you can use it only in the module in which it is declared.
Declare it Public in a standard module if you want to share it among several modules.

Caution API declarations in standard modules can be public or private. API
declarations in class modules must be private.

It will be referred to as GetUserName in a program. This is the variable name assigned in
the code.

The function being used is found in advapi32.dll.

The alias, GetUserNameA, is what the function is referred to in the DLL. This name is
case sensitive and cannot be changed; it is specific to the DLL (dynamic link library).
There are often two versions of each API function. One version uses the ANSI character
set and has aliases that end with the letter A. The other version uses the Unicode
character set and has aliases that end with the letter W. When specifying the alias, you are
telling VBA which version of the function to use.

There are two parameters: lpBuffer and nSize. These are two arguments that the DLL
function accepts.

Caution The downside of using APIs is that there may be no errors when your
code compiles or runs. This means that an incorrectly configured API call can
cause your computer to crash or lock up. For this reason, it is a good idea to
save often.

Using an API declaration
Using an API is no different from calling a function or procedure you created in VBA. The
following example uses the GetUserName declaration in a function to return the Windows user
name to Excel:

Click here to view code image
Public Function UserName() As String
Dim sName As String * 256
Dim cChars As Long
cChars = 256
If GetUserName(sName, cChars) Then
UserName = Left$(sName, cChars - 1)
End If
End Function
Sub ProgramRights()
Dim NameofUser As String
NameofUser = UserName
Select Case NameofUser
Case Is = "Administrator"
MsgBox "You have full rights to this computer"
Case Else
MsgBox "You have limited rights to this computer"

End Select
End Sub

Run the ProgramRights macro, and you learn whether you are currently signed on as
Administrator. The result shown in Figure 23-1 indicates that Administrator is the current
username.

FIGURE 23-1 The GetUserName API function can be used to get a user’s Windows login name—which is more
difficult to edit than the Excel username. You can then control what rights a user has with your program.

Making 32-bit- and 64-bit-compatible API declarations
With Excel 2010, Microsoft increased the compatibility between 32-bit and 64-bit API calls by
allowing 64-bit calls to work on 32-bit systems but not vice versa. This is not the case with
Excel 2007, so if you’re writing code that might be used in Excel 2007, you need to check the
bit version and adjust accordingly.

The examples in this chapter are 64-bit API declarations and might not work in older
versions of 32-bit Excel. For example, say that in a 64-bit version you have this declaration:

Click here to view code image
Private Declare PtrSafe Function GetWindowLongptr Lib "USER32"
Alias _
"GetWindowLongA" (ByVal hWnd As LongPtr, ByVal nIndex As Long)
As LongPtr

It will need to be changed to the following to work in the 32-bit version:

Click here to view code image
Private Declare Function GetWindowLongptr Lib "USER32" Alias _
"GetWindowLongA" (ByVal hWnd As Long, ByVal nIndex As Long) As
LongPtr

The difference is that PtrSafe needs to be removed from the declaration. You might also
notice that there is a new variable type in use: LongPtr. Actually, LongPtr isn’t a true data
type; it is LongLong for 64-bit environments and Long in 32-bit environments. This does not
mean that you should use it throughout your code; it has a specific use, such as in API calls.
But you might find yourself using it in your code for API variables. For example, if you return
an API variable of LongPtr to another variable in your code, that variable must also be
LongPtr.

If you need to distribute a workbook to Excel 2007 32-bit and 64-bit users, you don’t need
to create two workbooks. You can create an If...Then...Else statement in the declarations
area and set up the API calls for both versions. So, for the preceding two examples, you could
declare them like so:

Click here to view code image
#If VBA7 Or Win64 Then
Private Declare PtrSafe Function GetUserName Lib "advapi32.dll"
_
Alias "GetUserNameA" (ByVal lpBuffer As String, nSize As Long)
_

As LongPtr
#Else
Private Declare Function GetUserName Lib "advapi32.dll" _
Alias "GetUserNameA" (ByVal lpBuffer As String, nSize As Long)
_
As LongPtr
#End If

The pound sign (#) is used to mark conditional compilation. The code compiles only the
line(s) of code that satisfy the logic check. #If VBA7 Or Win64 checks to see whether the
current environment is using the new code base (VBA7, in use only since Office 2010) or
whether the environment (Excel, not Windows) is 64-bit. If true, the first API declaration is
processed; otherwise, the second one is used. For example, if Excel 2007 64-bit or Excel 2010
or newer is running, the first API declaration is processed, but if the environment is 32-bit
Excel 2007, the second one is used. Note that in 64-bit environments, the second API
declaration will be colored as an error but will compile just fine.

API function examples
The following sections provide more examples of helpful API declarations you can use in your
Excel programs. Each example starts with a short description of what the function can do,
followed by the actual declarations and an example of its use.

Retrieving the computer name

This API function returns the computer name (that is, the name of the computer found under
Computer, Computer Name):

Click here to view code image
Private Declare PtrSafe Function GetComputerName Lib "kernel32"
Alias _
"GetComputerNameA" (ByVal lpBuffer As String, ByRef nSize As
Long) _
As LongPtr

Private Function ComputerName() As String
Dim stBuff As String * 255, lAPIResult As LongPtr
Dim lBuffLen As Long

lBuffLen = 255
lAPIResult = GetComputerName(stBuff, lBuffLen)
If lBuffLen > 0 Then ComputerName = Left(stBuff, lBuffLen)

End Function

Sub ComputerCheck()
Dim CompName As String
CompName = ComputerName
If CompName <> "BillJelenPC" Then
MsgBox _
"This application does not have the right to run on this
computer."
ActiveWorkbook.Close SaveChanges:=False

End If
End Sub

The ComputerCheck macro uses an API call to get the name of the computer. In this
example, the workbook refuses to open on any computer except the hard-coded computer name
of the owner.

Checking whether an Excel file is open on a network

You can check whether you have a file open in Excel by trying to set the workbook to an
object. If the object is Nothing (empty), you know that the file is not open. However, what if
you want to see whether someone else on a network has the file open? The following API
function returns that information:

Click here to view code image
Private Declare PtrSafe Function lOpen Lib "kernel32" Alias
"_lopen" _
(ByVal lpPathName As String, ByVal iReadWrite As Long) As
LongPtr
Private Declare PtrSafe Function lClose Lib "kernel32" _
Alias "_lclose" (ByVal hFile As LongPtr) As LongPtr
Private Const OF_SHARE_EXCLUSIVE = &H10

Private Function FileIsOpen(strFullPath_FileName As String) As
Boolean
Dim hdlFile As LongPtr
Dim lastErr As Long

hdlFile = -1
hdlFile = lOpen(strFullPath_FileName, OF_SHARE_EXCLUSIVE)

If hdlFile = -1 Then

lastErr = Err.LastDllError
Else
lClose (hdlFile)

End If
FileIsOpen = (hdlFile = -1) And (lastErr = 32)
End Function

Sub CheckFileOpen()
If FileIsOpen("C:\XYZ Corp.xlsx") Then
MsgBox "File is open"

Else
MsgBox "File is not open"

End If
End Sub

You can call the FileIsOpen function with a particular path and file name as the parameter
to find out whether someone has the file open.

Retrieving display-resolution information

The following API function retrieves the computer’s display size:

Click here to view code image
Declare PtrSafe Function DisplaySize Lib "user32" Alias _
"GetSystemMetrics" (ByVal nIndex As Long) As LongPtr

Public Const SM_CXSCREEN = 0
Public Const SM_CYSCREEN = 1

Function VideoRes() As String
Dim vidWidth as LongPtr, vidHeight as LongPtr

vidWidth = DisplaySize(SM_CXSCREEN)
vidHeight = DisplaySize(SM_CYSCREEN)

Select Case (vidWidth * vidHeight)
Case 307200

VideoRes = "640 x 480"
Case 480000

VideoRes = "800 x 600"
Case 786432

VideoRes = "1024 x 768"
Case Else

VideoRes = "Something else"
End Select
End Function

Sub CheckDisplayRes()
Dim VideoInfo As String
Dim Msg1 As String, Msg2 As String, Msg3 As String

VideoInfo = VideoRes
Msg1 = "Current resolution is set at " & VideoInfo & Chr(10)
Msg2 = "Optimal resolution for this application is 1024 x 768" &
Chr(10)
Msg3 = "Please adjust resolution"

Select Case VideoInfo
Case Is = "640 x 480"

MsgBox Msg1 & Msg2 & Msg3
Case Is = "800 x 600"

MsgBox Msg1 & Msg2
Case Is = "1024 x 768"

MsgBox Msg1
Case Else

MsgBox Msg2 & Msg3
End Select
End Sub

The CheckDisplayRes macro warns the client that the display setting is not optimal for
the application.

Customizing the About dialog box

If you go to File, Help, About Windows in File Explorer, you get a nice little About dialog box
with information about the File Explorer and a few system details. With the following code,
you can get that window to pop up in your own program and customize a few items, as shown
in Figure 23-2.

FIGURE 23-2 You can customize the About dialog box used by Windows for your own program.

Click here to view code image
Declare PtrSafe Function ShellAbout Lib "shell32.dll" Alias
"ShellAboutA" _
(ByVal hwnd As LongPtr, ByVal szApp As String, ByVal
szOtherStuff As _
String, ByVal hIcon As Long) As LongPtr
Declare PtrSafe Function GetActiveWindow Lib "user32" () As
LongPtr

Sub AboutThisProgram()
Dim hwnd As LongPtr
On Error Resume Next
hwnd = GetActiveWindow()
ShellAbout hwnd, Nm, "Developed by Tracy Syrstad", 0
On Error GoTo 0
End Sub

Disabling the X for closing a userform

A person can use the X button located in the upper-right corner of a userform to shut down the
form. You can capture the close event with QueryClose, but to prevent the button from being
active and working at all, you need an API call. The following API declarations work together
to disable that X and force the person to use the Close button. When the form is initialized, the
X button is disabled. After the form is closed, the X button is reset to normal:

Click here to view code image
Private Declare PtrSafe Function FindWindow Lib "user32" Alias _
"FindWindowA" (ByVal lpClassName As String, ByVal lpWindowName
_
As String) As Long
Private Declare PtrSafe Function GetSystemMenu Lib "user32" _
(ByVal hWnd As LongPtr, ByVal bRevert As Long) As LongPtr
Private Declare PtrSafe Function DeleteMenu Lib "user32" _
(ByVal hMenu As LongPtr, ByVal nPosition As Long, _
ByVal wFlags As Long) As LongPtr
Private Const SC_CLOSE As Long = &HF060

Private Sub UserForm_Initialize()
Dim hWndForm As LongPtr
Dim hMenu As LongPtr
'ThunderDFrame is the class name of all userforms
hWndForm = FindWindow("ThunderDFrame", Me.Caption)
hMenu = GetSystemMenu(hWndForm, 0)
DeleteMenu hMenu, SC_CLOSE, 0&
End Sub

The DeleteMenu macro in the UserForm_Initialize procedure causes the X in the
corner of the userform to be grayed out, as shown in Figure 23-3. The client must therefore use
your programmed Close button.

FIGURE 23-3 Disable the X button on a userform to force users to use the Close button to shut down the form properly
and prevent them from bypassing any code attached to the Close button.

Creating a running timer

You can use the NOW function to get the time, but what if you need a running timer that displays
the time as the seconds tick by? The following API declarations work together to provide this
functionality. The timer is placed in cell A1 of Sheet1:

Click here to view code image
Public Declare PtrSafe Function SetTimer Lib "user32" _
(ByVal hWnd As Long, ByVal nIDEvent As Long, _
ByVal uElapse As Long, ByVal lpTimerFunc As LongPtr) As LongPtr
Public Declare PtrSafe Function KillTimer Lib "user32" _
(ByVal hWnd As Long, ByVal nIDEvent As LongPtr) As LongPtr
Public Declare PtrSafe Function FindWindow Lib "user32" _
Alias "FindWindowA" (ByVal lpClassName As String, _
ByVal lpWindowName As String) As LongPtr
Private lngTimerID As Long
Private datStartingTime As Date

Public Sub StartTimer()
StopTimer 'stop previous timer
datStartingTime = Now
lngTimerID = SetTimer(0, 1, 10, AddressOf RunTimer)
End Sub

Public Sub StopTimer()
Dim lRet As LongPtr, lngTID As Long
If IsEmpty(lngTimerID) Then Exit Sub
lngTID = lngTimerID
lRet = KillTimer(0, lngTID)
lngTimerID = Empty
End Sub

Private Sub RunTimer(ByVal hWnd As Long, _
ByVal uint1 As Long, ByVal nEventId As Long, _
ByVal dwParam As Long)
On Error Resume Next
Sheet1.Range("A1").Value = Format(Now - datStartingTime,
"hh:mm:ss")
End Sub

Run the StartTimer macro to have a running timer update in cell A1.

Playing sounds

Have you ever wanted to play a sound to warn users or congratulate them? To do this, you can
add a sound object to a sheet and then call that sound. However, it would be easier to use the
following API declaration and specify the proper path to a sound file:

Click here to view code image
Public Declare PtrSafe Function PlayWavSound Lib "winmm.dll" _
Alias "sndPlaySoundA" (ByVal LpszSoundName As String, _
ByVal uFlags As Long) As LongPtr

Public Sub PlaySound()
Dim SoundName As String
SoundName = "C:\Windows\Media\Chimes.wav"
PlayWavSound SoundName, 0
End Sub

Next steps
In Chapter 24, “Handling errors,” you find out about error handling. In a perfect world, you
want to be able to hand off your applications to a coworker, leave for vacation, and not have to
worry about an unhandled error appearing while you are on the beach. Chapter 24 discusses
how to handle obvious and not-so-obvious errors.

CHAPTER 24
Handling errors

In this chapter, you will:

Find out what happens when an error occurs

Do basic error handling with the On Error GoTo syntax

Get to know generic error handlers

Find out how to train your clients

Compare errors while developing with errors months later

Understand the ills of protecting code

Find out more about problems with passwords

Examine errors caused by different versions

Errors are bound to happen. Even when you test and retest your code, after a report is put into
daily production and used for hundreds of days, something unexpected eventually happens.
Your goal should be to try to head off obscure errors as you code. For this reason, you should
always be thinking of what unexpected things could happen someday that could make your
code not work.

What happens when an error occurs?
When VBA encounters an error and you have no error-checking code in place, the program
stops and presents you or your client with the 1004 runtime error message, as shown in Figure
24-1.

FIGURE 24-1 With an unhandled error in an unprotected module, you get a choice to end or debug.

When presented with the choice to end or debug, you should click Debug. (If Debug is
grayed out, then someone has protected the VBA code, and you will have to call the
developer.) The VB Editor highlights in yellow the line that caused the error. When you hover
the cursor over any variable, you see the current value of the variable, which provides a lot of
information about what could have caused the error (see Figure 24-2).

FIGURE 24-2 After clicking Debug, the macro is in break mode. Hover the cursor over a variable; after a second, the
current value of the variable is shown.

Especially in older versions, Excel has been notorious for returning error messages that are
not very meaningful. For example, dozens of situations can cause a 1004 error. Seeing the
offending line highlighted in yellow and examining the current value of any variables helps you
discover the real cause of an error. However, many error messages in Excel 2019—including
the VBA error messages—are more meaningful than the equivalent message in Excel 2010.

After examining the line in error, click the Reset button to stop execution of the macro. The
Reset button is the square button under the Run item in the main menu, as shown in Figure 24-
3.

FIGURE 24-3 The Reset button looks like the Stop button in the set of three buttons that resembles a DVD control
panel.

If you fail to click Reset to end the macro and then attempt to run another macro, you are
presented with the annoying error message shown in Figure 24-4. The message is annoying
because you start in Excel, but when this message window is displayed, the screen
automatically switches to display the VB Editor. You can see the Reset button in the
background, but you cannot click it due to the message box being displayed. However,
immediately after you click OK to close the message box, you are returned to the Excel user
interface instead of being left in the VB Editor. Because this error message occurs quite often,
it would be more convenient if you could be returned to the VB Editor after clicking OK.

FIGURE 24-4 This message appears if you forget to click Reset to end a debug session and then attempt to run another
macro.

A misleading debug error in userform code

After you click Debug, the line highlighted as the error can be misleading in some situations.
For example, suppose you call a macro that displays a userform. Somewhere in the userform
code, an error occurs. When you click Debug, instead of showing the problem inside the
userform code, Excel highlights the line in the original macro that displayed the userform.
Follow these steps to find the real error:

1. After the error message box shown in Figure 24-5 is displayed, click the Debug button.

FIGURE 24-5 Select Debug in response to this error 13.

You see that the error allegedly occurred on a line that shows a userform, as shown in
Figure 24-6. Because you have read this chapter, you know that this is not the line in
error.

FIGURE 24-6 The line in error is indicated as the frmChoose.Show line.

2. Press F8 to execute the Show method. Instead of getting an error, you are taken into the
Userform_Initialize procedure.

3. Keep pressing F8 until you get the error message again. Stay alert because as soon as you
encounter the error, the error message box is displayed. Click Debug, and you are
returned to the frmChoose.Show line. It is particularly difficult to follow the code when
the error occurs on the other side of a long loop, as shown in Figure 24-7.

FIGURE 24-7 With 25 items to add to the list box, you must press F8 53 times to get through this three-line loop.

Imagine trying to step through the code in Figure 24-7. You carefully press F8 5 times with
no problems through the first pass of the loop. Because the problem could be in future
iterations through the loop, you continue to press F8. If there are 25 items to add to the list box,
48 more presses of F8 are required to get through the loop safely. Each time before pressing F8,
you should mentally note that you are about to run some specific line.

At the point shown in Figure 24-7, the next press of the F8 key displays the error and
returns you to the frmChoose.Show line back in Module1. This is an annoying situation.

At that point, you need to start pressing F8 again. If you can recall the general area where
the debug error occurred, click the mouse cursor in a line right before that section and use
Ctrl+F8 to run the macro up to the cursor. Alternatively, right-click that line and choose Run to
Cursor.

Sometimes an error will occur within a loop. Add Debug.Print i inside the loop and use
the Immediate pane (which you open by pressing Ctrl+G) to locate which time through the loop
caused the problem.

Basic error handling with the On Error GoTo syntax
The basic error-handling option is to tell VBA that in case of an error, you want to have code
branch to a specific area of the macro. In this area, you might have special code that alerts users
of the problem and enables them to react.

A typical scenario is to add the error-handling routine at the end of the macro. To set up an

error handler, follow these steps:

1. After the last code line of the macro, insert the code line Exit Sub. This makes sure that
the execution of the macro does not continue into the error handler.

2. After the Exit Sub line, add a label. A label is a name followed by a colon. For
example, you might create a label called MyErrorHandler:.

3. Write the code to handle the error. If you want to return control of the macro to the line
after the one that caused the error, use the statement Resume Next.

In your macro, just before the line that might likely cause the error, add a line reading On
Error GoTo MyErrorHandler. Note that in this line, you do not include the colon after the
label name.

Immediately after the line of code that you suspect will cause the error, add code to turn off
the special error handler. Because this is not intuitive, it tends to confuse people. The code to
cancel any special error handling is On Error GoTo 0. There is no label named 0. Instead,
this line is a fictitious one that instructs Excel to go back to the normal state of displaying the
debug error message when an error is encountered. This is why it is important to cancel the
error handling.

Note The following code includes a special error handler to handle the necessary
action if the file has been moved or is missing:

Click here to view code image
Sub HandleAnError()
Dim MyFile as Variant
' Set up a special error handler
On Error GoTo FileNotThere
Workbooks.Open Filename:="C:\NotHere.xls"
' If we get here, cancel the special error handler
On Error GoTo 0
MsgBox "The program is complete"

' The macro is done. Use Exit sub; otherwise, the macro
' execution will continue into the error handler
Exit Sub

' Set up a name for the error handler
FileNotThere:
MyPrompt = "There was an error opening the file. " & _
"It is possible the file has been moved. " & _

"Click OK to browse for the file, or click " & _
"Cancel to end the program"
Ans = MsgBox(Prompt:=MyPrompt, Buttons:=vbOKCancel)
If Ans = vbCancel Then Exit Sub

' The client clicked OK. Let him browse for the file
MyFile = Application.GetOpenFilename
If MyFile = False Then Exit Sub

' If the 2nd file is corrupt, do not recursively throw
' back into this error handler. Just stop the program.
On Error GoTo 0
Workbooks.Open MyFile
' If we get here, then return to the original
' macro, to the line after the error.
Resume Next
End Sub

You definitely do not want this error handler invoked for another error later in the macro,
such as a divide-by-zero error.

Note It is possible to have more than one error handler at the end of a macro.
Make sure that each error handler ends with either Resume Next or Exit Sub
so that macro execution does not accidentally move into the next error handler.

Generic error handlers
Some developers like to direct any error to a generic error handler to make use of the Err
object. This object has properties for error number and description. You can offer this
information to the client and prevent her from getting a debug message. Here is the code to do
this:

Click here to view code image
On Error GoTo HandleAny
Sheets(9).Select

Exit Sub
HandleAny:
Msg = "We encountered " & Err.Number & " - " & Err.Description

MsgBox Msg
Exit Sub

Handling errors by choosing to ignore them

Some errors can simply be ignored. For example, suppose you are going to use VBA to write
out an index.html file. Your code erases any existing index.html file from a folder before
writing out the next file.

The Kill (FileName) statement returns an error if FileName does not exist. This
probably is not something you need to worry about. After all, you are trying to delete the file,
so you probably do not care whether someone already deleted it before running the macro. In
this case, tell Excel to just skip over the offending line and resume macro execution with the
next line. The code to do this is On Error Resume Next:

Click here to view code image
Sub WriteHTML()
MyFile = "C:\Index.html"
On Error Resume Next
Kill MyFile
On Error Goto 0
Open MyFile for Output as #1
' etc...
End Sub

Note Be careful with On Error Resume Next. You can use it selectively in
situations in which you know that the error can be ignored. You should
immediately return error checking to normal after the line that might cause an

error with On Error GoTo 0.

If you attempt to have On Error Resume Next skip an error that cannot be skipped, the
macro immediately steps out of the current macro. If you have a situation in which
MacroA calls MacroB, and MacroB encounters a nonskippable error, the program jumps
out of MacroB and continues with the next line in MacroA. This is rarely a good thing.

VBA code to handle printer settings runs much faster if you turn off
PrintCommunication at the beginning of the preceding code and turn it back on at the end of
the code. This trick was new in Excel 2010. Before that, Excel would pause for almost a half-
second during each line of print setting code. Now the whole block of code runs in less than a
second.

Case study: Overlooking page setup problems
When you record a macro and perform page setup, even if you change just one item in the
Page Setup dialog box, the macro recorder records two dozen settings for you. These
settings notoriously differ from printer to printer. For example, if you record the
PageSetup on a system with a color printer, it might record a setting for
.BlackAndWhite = True. This setting will fail on another system on which the printer
does not offer the choice. Your printer might offer a .PrintQuality = 600 setting. If
the client’s printer offers only a 300 resolution setting, this code fails. For this reason, you
should surround the entire PageSetup with On Error Resume Next to ensure that most
settings happen but the trivial ones that fail do not cause runtime errors. Here is how to do
this:

Click here to view code image
On Error Resume Next
Application.PrintCommunication = False
With ActiveSheet.PageSetup
.PrintTitleRows = ""
.PrintTitleColumns = ""
End With
ActiveSheet.PageSetup.PrintArea = "A1:L27"
With ActiveSheet.PageSetup
.LeftHeader = ""
.CenterHeader = ""
.RightHeader = ""
.LeftFooter = ""
.CenterFooter = ""
.RightFooter = ""
.LeftMargin = Application.InchesToPoints(0.25)
.RightMargin = Application.InchesToPoints(0.25)
.TopMargin = Application.InchesToPoints(0.75)
.BottomMargin = Application.InchesToPoints(0.5)
.HeaderMargin = Application.InchesToPoints(0.5)
.FooterMargin = Application.InchesToPoints(0.5)
.PrintHeadings = False
.PrintGridlines = False
.PrintComments = xlPrintNoComments
.PrintQuality = 300
.CenterHorizontally = False
.CenterVertically = False
.Orientation = xlLandscape
.Draft = False

.PaperSize = xlPaperLetter

.FirstPageNumber = xlAutomatic

.Order = xlDownThenOver

.BlackAndWhite = False

.Zoom = False

.FitToPagesWide = 1

.FitToPagesTall = False

.PrintErrors = xlPrintErrorsDisplayed
End With
Application.PrintCommunication = True
On Error GoTo 0

Suppressing Excel warnings

Some messages appear even if you have set Excel to ignore errors. For example, try to delete a
worksheet using code, and you still get the message “You can’t undo deleting sheets, and you
might be removing some data. If you don’t need it, click Delete.” This is annoying. You do not
want your clients to have to answer this warning; it gives them a chance to choose not to delete
the sheet your macro wants to delete. In fact, this is not an error but an alert. To suppress all
alerts and force Excel to take the default action, use Application.DisplayAlerts =
False, like this:

Click here to view code image
Sub DeleteSheet()
Application.DisplayAlerts = False
Worksheets("Sheet2").Delete
Application.DisplayAlerts = True
End Sub

Encountering errors on purpose

Because programmers hate errors, this concept might seem counterintuitive, but errors are not
always bad. Sometimes it is faster to simply encounter an error.

Suppose, for example, that you want to find out whether the active workbook contains a
worksheet named Data. To find this out without causing an error, you could use the following
eight lines of code:

Click here to view code image
DataFound = False

For Each ws in ActiveWorkbook.Worksheets
If ws.Name = "Data" then
DataFound = True
Exit For
End if

Click here to view code image
Next ws
If not DataFound then Sheets.Add.Name = "Data"

If your workbook has 128 worksheets, the program loops through 128 times before
deciding that the data worksheet is missing.

An alternative is to try to reference the Data worksheet. If you have error checking set to
Resume Next, the code runs, and the Err object is assigned a number other than zero:

Click here to view code image
On Error Resume Next
X = Worksheets("Data").Name
If Err.Number <> 0 then Sheets.Add.Name = "Data"
On Error GoTo 0

This code runs much faster. Errors usually make programmers cringe. However, in this case
and in many other cases, the errors are perfectly acceptable.

Training your clients
Suppose you are developing code for a client across the globe or for the administrative assistant
so that he can run the code while you are on vacation. In both cases, you might find yourself
trying to debug code remotely while you are on the telephone with the client.

For this reason, it is important to train clients about the difference between an error and a
simple MsgBox. Even though a MsgBox is a planned message, it still appears out of the blue
with a beep. Teach your users that error messages are bad, but not everything that pops up is an
error message. For example, I had a client who kept reporting to her boss that she was getting
an error from my program. In reality, she was getting an informational MsgBox message. Both
debug errors and MsgBox messages beep at the user, and this user didn’t know that there’s a
difference between them.

Train clients to call you while any debug messages they get are still onscreen. This way you
can get the error number and description. You also can ask the client to click Debug and tell
you the module name, the procedure name, and which line is in yellow. Armed with this

information, you can usually figure out what is going on. Without this information, it is
unlikely that you will be able to resolve the problem. Getting a call from a client saying that
there was a 1004 error is of little help because 1004 is a catchall error that can mean any
number of things.

Errors that won’t show up in debug mode
This problem is happening more frequently today. You write a macro that does stuff. When you
run the macro, you get an error. But then you click Debug and start stepping through code with
F8. The macro runs fine without errors.

Every time you step through the code one line at a time, the macro works. Every time you
run the code using the Run button, you get the error.

Here is what is happening. It used to be that one line of macro code would run and Excel
would pause until that line is complete. But now, it seems that sometimes the command will
return control to the macro before the command actually completes. Charting guru Jon Peltier
reports that this frequently happens when inserting new charts. Say you have a macro where
line 1 is insert a chart, and line 2 is do something to the chart. It can be really bad if line 2 tries
to run before the chart fully exists.

Of course, when you are running code one line at a time, the routine is to see what line is in
yellow. Press F8. See that the next line is in yellow. Press F8. You might be pressing F8 just
one second later, but that one second is enough for the chart to finish rendering.

The workaround is to liberally apply a bunch of lines that say:

DoEvents

DoEvents is supposed to make the macro pause long enough for all current events to finish.
Sometimes this does not work and you have to use Application.Wait to pause the macro for
a second or two.

Errors while developing versus errors months later
When you have just written code that you are running for the first time, you expect errors. In
fact, you might decide to step through code line by line to watch the progress of the code the
first time through.

It is another thing to have a program that has been running daily in production suddenly
stop working because of an error. That can be perplexing. The code has been working for
months, so why did it suddenly stop working today? It is easy to blame the client. However,
when you get right down to it, it is really the fault of developers for not considering the

possibilities.

The following sections describe a couple of common problems that can strike an
application months later.

Runtime error 9: Subscript out of range

You set up an application for a client and you provided a Menu worksheet where some settings
are stored. Then one day this client reports getting the error message shown in Figure 24-8.

FIGURE 24-8 Runtime error 9 often occurs when you expect a worksheet to be there, but it has been deleted or renamed
by the client.

Your code expected a worksheet named Menu. For some reason, the client either
accidentally deleted the worksheet or renamed it. When the client then tried to select the sheet,
she received an error:

Click here to view code image
Sub GetSettings()
ThisWorkbook.Worksheets("Menu").Select
x = Range("A1").Value
End Sub

This is a classic situation where you cannot believe that the client would do something so
crazy. After you have been burned by this one a few times, you might go to lengths like
implementing this code to prevent an unhandled debug error:

Click here to view code image
Sub GetSettings()
On Error Resume Next
x = ThisWorkbook.Worksheets("Menu").Name

If Not Err.Number = 0 Then
MsgBox "Expected to find a Menu worksheet, but it is missing"
Exit Sub

End If
On Error GoTo 0

ThisWorkbook.Worksheets("Menu").Select
x = Range("A1").Value
End Sub

Runtime error 1004: Method range of object global failed

You have code that imports a text file each day. You expect the text file to end with a Total
row. After importing the text, you want to convert all the detail rows to italic.

The following code works fine for months:

Click here to view code image
Sub SetReportInItalics()
TotalRow = Cells(Rows.Count,1).End(xlUp).Row
FinalRow = TotalRow - 1
Range("A1:A" & FinalRow).Font.Italic = True
End Sub

Then one day, the client calls with the error message shown in Figure 24-9.

FIGURE 24-9 Runtime error 1004 can be caused by a number of things.

Upon examining the code, you discover that something bizarre went wrong when the text
file was transferred via FTP to the client that day. The text file ended up as an empty file.
Because the worksheet was empty, TotalRow was determined to be row 1. If you assume that

the last detail row was TotalRow - 1, the code is set up to attempt to format row 0, which
clearly does not exist.

After an episode like this, you find yourself writing code that preemptively looks for this
situation:

Click here to view code image
Sub SetReportInItalics()
TotalRow = Cells(Rows.Count,1).End(xlUp).Row
FinalRow = TotalRow - 1
If FinalRow > 0 Then
Range("A1:A" & FinalRow).Font.Italic = True

Else
MsgBox "It appears the file is empty today. Check the FTP
process"

 End If
End Sub

The ills of protecting code
It is possible to lock a VBA project so that it cannot be viewed. However, doing so is not
recommended. When code is protected and an error is encountered, your user is presented with
an error message but no opportunity to debug. The Debug button is there, but it is grayed out
and useless in helping you discover the problem.

Further, the Excel VBA protection scheme is horribly easy to break. Programmers in
Estonia offer $40 software that lets you unlock any project. Therefore, you need to understand
that office VBA code is not secure—and then get over it.

If you absolutely need to truly protect your code, invest $100 for a license to Unviewable+
VBA Project from Esoteric Software. This crowd-funded software allows you to create a
compiled version of a workbook where most people will be able to view the VBA. For more
details, visit http://mrx.cl/hidevba.

Case study: Password cracking
Password-hacking schemes were very easy in Excel 97 and Excel 2000. The password-
cracking software could immediately locate the actual password in the VBA project and
report it to the software user.

Then, in Excel 2002, Microsoft offered a brilliant protection scheme that temporarily
appeared to foil the password-cracking utilities. The password was tightly encrypted. For

http://mrx.cl/hidevba

several months after the release of Excel 2002, password-cracking programs had to try
brute-force combinations. The software could crack an easy password like blue in 10
minutes. However, given a 24-character password like *A6%kJJ542(9$GgU44#2drt8, the
program would take 20 hours to find the password. This was a fun annoyance to foist upon
other VBA programmers who would potentially break into your code.

However, the next version of the password-cracking software was able to break a 24-
character password in Excel 2002 in about 2 seconds. When I tested my 24-character
password-protected project, the password utility quickly told me that my password was
XVII. I thought this was certainly wrong, but after testing, I found the project had a new
password of XVII. Yes, this latest version of the software resorted to another approach.
Instead of using brute force to crack the password, it simply wrote a new random four-
character password to the project and saved the file.

Now, this causes an embarrassing problem for whoever cracked the password, and I’ll
explain why.

The developer has a sign on his wall reminding him that the password is
*A6%kJJ542(9$GgU44#2drt8. However, in the cracked version of the file, the password
is now XVII. If there is a problem with the cracked file and it is sent back to the
developer, the developer can no longer open the file. The only person getting anything
from this is the programmer in Estonia who wrote the cracking software.

There are not enough Excel VBA developers in the world, and there are more projects
than there are programmers. In my circle of developer friends, we acknowledge that
business prospects slip through the cracks because we are too busy with other customers.
Therefore, the situation of a newbie developer is common. In this scenario, this new
developer does an adequate job of writing code for a customer and then locks the VBA
project.

The customer needs some changes. The original developer does the work. A few weeks
later, the developer delivers some requested changes. A month later, the customer needs
more work. Either the developer is busy with other projects or has underpriced these
maintenance jobs and has more lucrative work he is attending to instead. The client tries to
contact the programmer a few times before realizing he needs to get the project fixed by
someone else and calls another developer—you!

You get the code. It is protected. You break the password and see who wrote the code.
You have no interest in stealing the new developer’s customer. In fact, you prefer to do
this one job and then have the customer return to the original developer. However, because
of the password hacking, you have created a situation in which the two developers—you
and the original one—have different passwords. Your only choice is to remove the
password entirely. This will tip off the other developer that someone else has been in his
code. Maybe you could try to placate the other developer with a few lines of comment that
the password was removed after the customer could not contact the original developer.

More problems with passwords
Office 2013 introduced a new SHA-2 class SHA512 algorithm to calculate encryption keys.
This algorithm causes significant slowdowns in macros that protect or unprotect sheets.

The password scheme for any version of Excel from 2002 forward is incompatible with
Excel 97. If you protected code in Excel 2002, you cannot unlock the project in Excel 97. As
your application is given to more employees in a company, you will invariably find an
employee using Excel 97. Of course, that user will come up with a runtime error. However, if
you locked the project in Excel 2002 or newer, you are not able to unlock the project in Excel
97, which means you cannot debug the program in Excel 97.

Bottom line: Locking code causes more trouble than it is worth.

Note If you are using a combination of Excel 2003 through Excel 2019, the
passwords transfer easily back and forth between versions. This holds true even
if the file is saved as an .xlsm file and opened in Excel 2003 using the file

converter. You can change code in Excel 2003, save the file, and successfully round-trip
back to Excel 2019.

Errors caused by different versions
Microsoft improves VBA in every version of Excel. Pivot table creation was improved
dramatically between Excel 97 and Excel 2000. Sparklines and slicers were new in Excel 2010.
The Data Model was introduced in Excel 2013. Power Query was built in to the object model in
Excel 2016.

The TrailingMinusNumbers parameter was new in Excel 2002. This means that if you
write code in Excel 2016 and then send the code to a client with Excel 2000, that user gets a
compile error as soon as she tries to run any code that’s in the same module as the offending
code. For this reason, you need to consider this application in two modules.

Module1 has macros ProcA, ProcB, and ProcC. Module2 has macros ProcD and ProcE. It
happens that ProcE has an ImportText method with the TrailingMinusNumbers parameter.

The client can run ProcA and ProcB on the Excel 2000 machine without problem. As soon
as she tries to run ProcD, she gets a compile error reported in ProcD because Excel tries to
compile all of Module2 when she tries to run code in that module. This can be incredibly
misleading: An error being reported when the client runs ProcD is actually caused by an error

in ProcE.

One solution is to have access to every supported version of Excel and test the code in all
versions.

Macintosh users will believe that their version of Excel is the same as Excel for Windows.
Microsoft promised compatibility of files, but that promise ends in the Excel user interface.
VBA code is not compatible between Windows and the Mac. Excel VBA on the Mac in Excel
2019 is close to Excel 2019 VBA but annoyingly different. Further, anything you do with the
Windows API is not going to work on a Mac.

Next steps
In this chapter you’ve learned how to make your code more bulletproof for your clients. In
Chapter 25, “Customizing the ribbon to run macros,” you find out how to customize the ribbon
to allow your clients to enjoy a professional user interface.

CHAPTER 25
Customizing the ribbon to run macros

In this chapter, you will:

Learn where to add ribbon code: the customui folder and file

Add controls to a ribbon

Understand the RELS file

Use images on buttons

Troubleshoot error messages

Learn other ways to run a macro

Unlike the command bars of old, a ribbon isn’t designed via VBA code. Instead, if you want to
modify the ribbon and add your own tab, you need to modify the Excel file itself, which isn’t as
impossible as it sounds. The new Excel file is actually a zipped file, containing various files
and folders. All you need to do is unzip it, make your changes, and you’re done. Okay, it’s not
that simple—a few more steps are involved—but it’s not impossible.

Before beginning, go to the File tab and select Options, Advanced, General and select Show
Add-In User Interface Errors. This allows error messages to appear so that you can
troubleshoot errors in your custom toolbar.

Note See the “Troubleshooting error messages” section later in this chapter for
more details.

Caution Unlike when programming in the VB Editor, you won’t have any
assistance with automatic correction of letter case; and the XML code—which
is what the ribbon code is—is very particular. Note the case of the XML-
specific words; for example, for, using will generate an error.

One thing to keep in mind is that with the change to the single-document interface (SDI)
that was made to Excel 2013 (and later versions), the custom ribbon tab attached to a workbook

is visible only when that workbook is active. When you activate another workbook, the tab will
not appear on the ribbon. The exception is with an add-in; its custom ribbon is visible on any
workbook open after the add-in is opened.

Note see Chapter 26, “Creating add-ins,” for more information on creating an
add-in.

Note The original CommandBars object in legacy Excel still works, but the
customized menus and toolbars are now all placed on the Add-Ins tab.

Where to add code: The customui folder and file
Create a folder called customui. This folder contains the elements of your custom ribbon tab.
Within the folder, create a text file and call it customUI14.xml, as shown in Figure 25-1. Open
the XML file in a text editor; either Notepad or WordPad work.

The
figure shows a screenshot of the Windows File Explorer with the customUI14.xml file in
the customui folder." />
FIGURE 25-1 Create a customuUI14.xml file within a customui folder.

Tip My favorite text editor is Notepad ++ by Don Ho (see www.notepad-plus-plus.org).

http://www.notepad-plus-plus.org

Like the VB Editor, it colors XML-specific syntax after you choose XML as the
language you’re typing. It also has a lot of other useful tools.

Insert the basic structure for the XML code, shown here, into your XML file. For every
opening tag grouping, such as <ribbon>, there must be a closing tag, </ribbon>:

Click here to view code image
<customUI
xmlns="http://schemas.microsoft.com/office/2009/07/customui">
 <ribbon startFromScratch="false">

<tabs>

<!-- your ribbon controls here -->

</tabs>
 </ribbon>
</customUI>

startFromScratch is optional and has a default value of false. You use it to tell the
code the other tabs in Excel will not be shown; only yours will be shown. true means to show
only your tab; false means to show your tab and all the other tabs.

Caution Note the case of the letters in startFromScratch—the small s at the
beginning followed by the capital F in From and capital S in Scratch. It is
crucial that you not deviate from this.

The <!-- your ribbon controls here --> you see in the previous code is
commented text. Just enter your comments between <!-- and -->, and the program ignores the
line when it runs.

Note If you’re creating a ribbon that needs to be Excel 2007 compatible, you
need to use the following schema:
http://schemas.microsoft.com/office/2006/01/customui. Also, where you see
customUI14, use customUI.

http://schemas.microsoft.com/office/2006/01/customui

Creating a tab and a group
Before you can add a control to a tab, you need to identify the tab and group. A tab can hold
many different controls, which you can group together, like the Font group on the Home tab.

Name your tab My First Ribbon and add a group called My Programs to it, like this (see
Figure 25-2):

Click here to view code image
<customUI
xmlns="http://schemas.microsoft.com/office/2009/07/customui">
 <ribbon startFromScratch="false">
<tabs>
<tab id="CustomTab" label="My First Ribbon">
<group id="CustomGroup" label="My Programs">

<!-- your ribbon controls here -->

</group>
</tab>
</tabs>
</ribbon>
</customUI>

id is a unique identifier for the control (in this case, the tab and group). label is the text
you want to appear on your ribbon for the specified control.

Adding a control to a ribbon
After you’ve set up the ribbon and group, you can add controls. Depending on the type of
control, there are different attributes you can include in your XML code. (Refer to Table 25-1
for more information on various controls and their attributes.)

The following code adds a normal-sized button with the text Click to Run to the Reports
group and runs the sub HelloWorld when the button is clicked (see Figure 25-2):

Click here to view code image
<customUI
xmlns="http://schemas.microsoft.com/office/2009/07/customui">
 <ribbon startFromScratch="false">

<tabs>
<tab id="CustomTab" label="My First Ribbon">

<group id="CustomGroup" label="My Programs">

<button id="button1" label="Click to run"
onAction="Module1.HelloWorld" size="normal"/>

</group>
</tab>
</tabs>
</ribbon>
</customUI>

FIGURE 25-2 Run a program with a click of a button on your custom ribbon.

The properties of the button include id, a unique identifier for the control button, and
label, which holds the text you want to appear on your button. size, which is the size of the
button, has a default value of normal; the other option is large. onAction is the sub,
HelloWorld, to call when the button is clicked. The sub, shown here, goes in a standard
module, Module1, in the workbook:

Click here to view code image
Sub HelloWorld(control As IRibbonControl)
MsgBox "Hello World"
End Sub

Notice the argument control As IRibbonControl. This is the standard argument for a sub,
and it is called by a button control via the onAction attribute. Table 25-2 lists the required
arguments for other attributes and controls.

TABLE 25-1 Ribbon control attributes

Attribute

Type
or
Value Description

description String Specifies description text displayed in menus when the itemSize attribute is set to
Large.

enabled true,
false

Specifies whether the control is enabled.

getContent Callback Retrieves XML content that describes a dynamic menu.

getDescription Callback Gets the description of a control.

getEnabled Callback Gets the enabled state of a control.

getImage Callback Gets the image for a control.

getImageMso Callback Gets a built-in control’s icon by using the control ID.

getItemCount Callback Gets the number of items to be displayed in a combo box, drop-down menu, or gallery.

getItemID Callback Gets the ID for a specific item in a combo box, drop-down menu, or gallery.

getItemImage Callback Gets the image of a combo box, drop-down menu, or gallery.

getItemLabel Callback Gets the label of a combo box, drop-down menu, or gallery.

getItemScreentip Callback Gets the screentip for a combo box, drop-down menu, or gallery.

getItemSupertip Callback Gets the enhanced screentip for a combo box, drop-down menu, or gallery.

getKeytip Callback Gets the keytip for a control.

getLabel Callback Gets the label for a control.

getPressed Callback Gets a value that indicates whether a toggle button is pressed or not pressed. Gets a
value that indicates whether a check box is selected or cleared.

getScreentip Callback Gets the screentip for a control.

getSelectedItemID Callback Gets the ID of the selected item in a drop-down menu or gallery.

getSelectedItemIndexCallback Gets the index of the selected item in a drop-down menu or gallery.

getShowImage Callback Gets a value that specifies whether to display the control image.

getShowLabel Callback Gets a value that specifies whether to display the control label.

getSize Callback Gets a value that specifies the size of a control (normal or large).

getSupertip Callback Gets a value that specifies the enhanced screentip for a control.

getText Callback Gets the text to be displayed in the edit portion of a text box or edit box.

getTitle Callback Gets the text to be displayed (rather than a horizontal line) for a menu separator.

getVisible Callback Gets a value that specifies whether the control is visible.

id String Acts as a user-defined unique identifier for the control (and is mutually exclusive with
idMso and idQ—so specify only one of these values).

idMso Control id Acts as a built-in control ID (and is mutually exclusive with id and idQ—so specify
only one of these values).

idQ Qualified
id

Acts as a qualified control ID, prefixed with a namespace identifier (and is mutually
exclusive with id and idMso—so specify only one of these values).

image String Specifies an image for the control.

imageMso Control id Specifies an identifier for a built-in image.

insertAfterMso Control id Specifies the identifier for the built-in control after which to position this control.

insertAfterQ Qualified Specifies the identifier of a control whose idQ property was specified after which to

id position this control.

insertBeforeMso Control id Specifies the identifier for the built-in control before which to position this control.

insertBeforeQ Qualified
id

Specifies the identifier of a control whose idQ property was specified before which to
position this control.

itemSize large,
normal

Specifies the size for the items in a menu.

Keytip String Specifies the keytip for the control.

label String Specifies the label for the control.

onAction Callback Called when the user clicks the control.

onChange Callback Called when the user enters or selects text in an edit box or combo box.

screentip String Specifies the control’s screentip.

showImage true,
false

Specifies whether the control’s image is shown.

showItemImage true,
false

Specifies whether to show the image in a combo box, drop-down menu, or gallery.

showItemLabel true,
false

Specifies whether to show the label in a combo box, drop-down menu, or gallery.

showLabel true,
false

Specifies whether the control’s label is shown.

size large,
normal

Specifies the size for the control.

sizeString String Indicates the width for the control by specifying a string, such as “xxxxxx”.

supertip String Specifies the enhanced screentip for the control.

tag String Specifies user-defined text.

title String Specifies the text to be displayed, rather than a horizontal line, for a menu separator.

visible true,
false

Specifies whether the control is visible.

TABLE 25-2 Required arguments for other attributes and controls

Control Callback Name Signature
Various controls getDescription Sub GetDescription(control as IRibbonControl, ByRef

description)

getEnabled Sub GetEnabled(control As IRibbonControl, ByRef enabled)

getImage Sub GetImage(control As IRibbonControl, ByRef image)

getImageMso Sub GetImageMso(control As IRibbonControl, ByRef imageMso)

getLabel Sub GetLabel(control As IRibbonControl, ByRef label)

getKeytip Sub GetKeytip (control As IRibbonControl, ByRef label)

getSize Sub GetSize(control As IRibbonControl, ByRef size)

getScreentip Sub GetScreentip(control As IRibbonControl, ByRef

screentip)

getSupertip Sub GetSupertip(control As IRibbonControl, ByRef screentip)

getVisible Sub GetVisible(control As IRibbonControl, ByRef visible)

button getShowImage Sub GetShowImage (control As IRibbonControl, ByRef

showImage)

getShowLabel Sub GetShowLabel (control As IRibbonControl, ByRef

showLabel)

onAction Sub OnAction(control As IRibbonControl)

checkBox getPressed Sub GetPressed(control As IRibbonControl, ByRef

returnValue)

onAction Sub OnAction(control As IRibbonControl, pressed As Boolean)

comboBox getItemCount Sub GetItemCount(control As IRibbonControl, ByRef count)

getItemID Sub GetItemID(control As IRibbonControl, index As Integer,

ByRef id)

getItemImage Sub GetItemImage(control As IRibbonControl, index As

Integer, ByRef image)

getItemLabel Sub GetItemLabel(control As IRibbonControl, index As

Integer, ByRef label)

getItemScreenTip Sub GetItemScreenTip(control As IRibbonControl, index As

Integer, ByRef screentip)

getItemSuperTip Sub GetItemSuperTip (control As IRibbonControl, index As

Integer, ByRef supertip)

getText Sub GetText(control As IRibbonControl, ByRef text)

onChange Sub OnChange(control As IRibbonControl, text As String)

customUI loadImage Sub LoadImage(imageId As string, ByRef image)

onLoad Sub OnLoad(ribbon As IRibbonUI)

dropDown getItemCount Sub GetItemCount(control As IRibbonControl, ByRef count)

getItemID Sub GetItemID(control As IRibbonControl, index As Integer,

ByRef id)

getItemImage Sub GetItemImage(control As IRibbonControl, index As

Integer, ByRef image)

getItemLabel Sub GetItemLabel(control As IRibbonControl, index As

Integer, ByRef label)

getItemScreenTip Sub GetItemScreenTip(control As IRibbonControl, index As

Integer ByRef screenTip)

getItemSuperTip Sub GetItemSuperTip (control As IRibbonControl, index As

Integer, ByRef superTip)

getSelectedItemID Sub GetSelectedItemID(control As IRibbonControl, ByRef

index)

getSelectedItemIndex Sub GetSelectedItemIndex(control As IRibbonControl, ByRef

index)

onAction Sub OnAction(control As IRibbonControl, selectedId As

String, selectedIndex As Integer)

dynamicMenu getContent Sub GetContent(control As IRibbonControl, ByRef content)

editBox getText Sub GetText(control As IRibbonControl, ByRef text)

onChange Sub OnChange(control As IRibbonControl, text As String)

gallery getItemCount Sub GetItemCount(control As IRibbonControl, ByRef count)

getItemHeight Sub getItemHeight(control As IRibbonControl, ByRef height)

getItemID Sub GetItemID(control As IRibbonControl, index As Integer,

ByRef id)

getItemImage Sub GetItemImage(control As IRibbonControl, index As

Integer, ByRef image)

getItemLabel Sub GetItemLabel(control As IRibbonControl, index As

Integer, ByRef label)

getItemScreenTip Sub GetItemScreenTip(control As IRibbonControl, index as

Integer, ByRef screen)

getItemSuperTip Sub GetItemSuperTip (control As IRibbonControl, index as

Integer, ByRef screen)

getItemWidth Sub getItemWidth(control As IRibbonControl, ByRef width)

getSelectedItemID Sub GetSelectedItemID(control As IRibbonControl, ByRef

index)

getSelectedItemIndex Sub GetSelectedItemIndex(control As IRibbonControl, ByRef

index)

onAction Sub OnAction(control As IRibbonControl, selectedId As

String, selectedIndex As Integer)

menuSeparator getTitle Sub GetTitle (control As IRibbonControl, ByRef title)

toggleButton getPressed Sub GetPressed(control As IRibbonControl, ByRef

returnValue)

onAction Sub OnAction(control As IRibbonControl, pressed As Boolean)

Accessing the file structure
Excel files are actually zipped files that contain various files and folders to create the workbook
and worksheets you see when you open the workbook. To view this structure, rename the file,
adding a .zip extension to the end of the filename. For example, if your filename is Chapter 25 -
Simple Ribbon.xlsm, rename it Chapter 25 - Simple Ribbon.xlsm.zip. You can then use your
zip utility to access the folders and files within.

Copy into the zip file your customui folder and file, as shown in Figure 25-3. After placing
them in the .xlsm file, you need to let the rest of the Excel file know that they are there and
what their purpose is. To do that, you need to modify the RELS file, as described in the next
section.

The figure shows a screenshot of the Windows File Explorer with the customUI14.xml file
in the customui folder." />
FIGURE 25-3 Using a zip utility, open the .xlsm file and copy in the customui folder and file.

Understanding the RELS file
The RELS file, found in the _rels folder, contains the various relationships of an Excel file.
Extract this file from the zip file and open it using a text editor.

The file already contains existing relationships that you do not want to change. Instead, you
need to add one for the customui folder. Scroll all the way to the right of the <Relationships
line and place your cursor before the </Relationships> tag, as shown in Figure 25-4. Insert
the following code:

Click here to view code image
<Relationship Id="rAB67989"
Type="http://schemas.microsoft.com/office/2007/relationships/ui/_
extensibility"
Target="customui/customUI14.xml"/>

Id is any unique string to identify the relationship. If Excel has a problem with the string
you enter, it might change it when you open the file. Target is the customui folder and file.
Save your changes and add the RELS file back to the zip file.

Note See the section “Found a problem with some content,” later in this chapter
for more information.

The figure shows a screenshot of the Windows File Explorer with the customUI14.xml file
in the customui folder." />
FIGURE 25-4 Place your cursor in the correct spot for entering your custom ribbon relationship.

Caution Even though the previous code appears as four lines in this book, it
should appear as a single line in the RELS file. If you want to enter it as three
separate lines, do not separate the lines within the quoted strings and do not use
a continuation character as you would in VBA. The preceding examples are

correct breaks (not including the line break with the continuation character). The
following would be an example of an incorrect break of the fourth line:

Target = "customui/
customUI14.xml"

Renaming an Excel file and opening a workbook
Rename the Excel file back to its original name by removing the .zip extension. Open your
workbook.

Note If any error messages appear when you open the Excel file, see
“Troubleshooting error messages” later in this chapter.

It can be a little time-consuming to perform all the steps involved in adding a custom
ribbon, especially if you make little mistakes and have to keep renaming your workbook,
opening the zip file, extracting your file, modifying, adding it back to the zip, renaming, and
testing. To aid in this, check out the Custom UI Editor tool, which you download at
http://openxmldeveloper.org/blog/b/openxmldeveloper/archive/2009/08/07/7293.aspx. This
tool updates the RELS file, helps with using custom images, and has other useful aids to
customizing the ribbon. Another tool I like to use is the RibbonX Visual Designer by Andy
Pope, available at www.andypope.info/vba/ribboneditor_2010.htm.

Using images on buttons
The image that appears on a button can be either an image from the Microsoft Office icon
library or a custom image you create and include in the workbook’s customui folder. With a
good icon image, you can hide the button label but still have a friendly ribbon with images that
are self-explanatory.

Using Microsoft Office icons on a ribbon

Microsoft has made it fairly easy to reuse Microsoft’s button images in custom ribbons. Select
File, Options, Customize Ribbon. Place your mouse pointer over any menu command in the
list, and a screentip displays, providing more information about the command. Included at the
very end, in parentheses, is the image name, as shown in Figure 25-5.

http://openxmldeveloper.org/blog/b/openxmldeveloper/archive/2009/08/07/7293.aspx
http://www.andypope.info/vba/ribboneditor_2010.htm

The figure shows a screenshot of the Windows File Explorer with the customUI14.xml file
in the customui folder." />
FIGURE 25-5 Placing your pointer over a command, such as Hyperlink, brings up the icon name, HyperlinkInsert.

To place an image on your button, you need to go back into the customUI14.xml file and
tell Excel what you want. The following code uses the HyperlinkInsert icon for the HelloWorld
button and makes it large, as shown in Figure 25-6. (Note that the icon name is case sensitive.)

Click here to view code image
<customUI
xmlns="http://schemas.microsoft.com/office/2009/07/customui">
<ribbon startFromScratch="false">
<tabs>
<tab id="CustomTab" label="My First Ribbon">
<group id="CustomGroup" label="My Programs">

<button id="button1" label="Click to run"
onAction="Module1.HelloWorld"
imageMso="HyperlinkInsert" size="large"/>

</group>
</tab>
</tabs>

</ribbon>
</customUI>

The figure shows a screenshot of the Windows File
Explorer with the customUI14.xml file in the customui folder." />
FIGURE 25-6 You can apply the image from any Microsoft Office icon to your custom button.

You aren’t limited to just the icons available in Excel. You can use the icon for any
installed Microsoft Office application. You can download a Word document from Microsoft
with two galleries showing the icons available (and their names) from
http://www.microsoft.com/en-us/download/details.aspx?id=21103.

Adding custom icon images to a ribbon

What if the icon library just doesn’t have the icon you’re looking for? You can create your own
image file and modify the ribbon to use it. Follow these steps:

1. Create a folder called images in the customui folder. Place your image in this folder.

2. Create a folder called _rels in the customui folder. Create a text file called
customUI14.xml.rels in this new folder, as shown in Figure 25-7. Place the following code
in the file (and note that the Id for the image relationship is the name of the image file,
helloworld_png):

Click here to view code image
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Relationships
xmlns="http://schemas.openxmlformats.org/package/2006/_
relationships"><Relationship Id="helloworld_png"_
Type="http://schemas.openxmlformats.org/officeDocument/2006/
_
relationships/image"
Target="images/helloworld.png"/></Relationships>

http://www.microsoft.com/en-us/download/details.aspx?id=21103

FIGURE 25-7 Create a _rels folder and an images folder within the customui folder to hold files relevant to your
custom image.

3. Open the customUI14.xml file and add the image attribute to the control, as shown here,
before you save and close the file:

Click here to view code image
<customUI
xmlns="http://schemas.microsoft.com/office/2009/07/customui">
<ribbon startFromScratch="false">

<tabs>
<tab id="CustomTab" label="My First Ribbon">
<group id="CustomGroup" label="My Programs">

<button id="button1" label="Click to run"
onAction="Module1.HelloWorld"
image="helloworld_png"
size="large" />

</group>
</tab>
</tabs>

</ribbon>
</customUI>

4. Open the [Content_Types].xml file and add the following at the very end of the file but
before </Types>:

Click here to view code image
< Default Extension="png" ContentType="graphics/.png"/>

Note If your image is a jpg, you would use the following:

<Default Extension="jpg"
ContentType="application/octet-stream"/>

5. Save your changes, rename your folder, and open your workbook. The custom image
appears on the button, as shown in Figure 25-8.

FIGURE 25-8 With a few more changes to your customui folder, you can add a custom image to a button.

Troubleshooting error messages
To be able to see the error messages generated by a custom ribbon, go to File, Options,
Advanced, General and select the Show Add-In User Interface Errors option.

The attribute “Attribute Name” on the element “customui ribbon” is not defined
in the DTD/schema

As noted in the section “Where to add code: The customui folder and file” earlier in this
chapter, the case of attributes is very particular. If an attribute is “mis-cased,” the error shown
in Figure 25-9 might occur.

FIGURE 25-9 Mis-cased attributes can generate errors. Read the error message carefully; it might help you trace the

problem.

The code in the customUI14.xml file that generated the error had the following line:

<ribbon startfromscratch="false">

Instead of startFromScratch, the code contained startfromscratch (all lowercase
letters). The error message even helps you narrow down the problem by naming the attribute
with which it has a problem.

Illegal qualified name character

For every opening <, you need a closing >. If you forget a closing >, the error shown in Figure
25-10 might appear. The error message is not specific at all, but it does provide a line and
column number to indicate where it’s having a problem. Still, it’s not the actual spot where the
missing > would go. Instead, it’s the beginning of the next line. You have to review your code
to find the error, but you have an idea of where to start.

FIGURE 25-10 For every opening <, you need a closing >.

The following code in the customUI14.xml file generated the error:

Click here to view code image
<tab id="CustomTab" label="My First Ribbon">
<group id="CustomGroup" label="My Programs"
<button id="button1" label="Click to run"
onAction="Module1.HelloWorld" image="helloworld_png"
size="large" />

Note the missing > for the group line (the second line of code). The line should have been
this:

Click here to view code image

<group id="CustomGroup" label="My Programs">

Element “customui Tag Name” is unexpected according to content model of
parent element “customui Tag Name”

If your structure is in the wrong order, such as the group tag placed before the tab tag, as shown
here, a chain of errors appears, beginning with the one shown in Figure 25-11.

FIGURE 25-11 An error in one line can lead to a string of error messages because the other lines are now considered
out of order.

Click here to view code image
<group id="CustomGroup" label="My Programs">
<tab id="CustomTab" label="My First Ribbon">

Found a problem with some content

Figure 25-12 shows a generic catchall message for different types of problems Excel can find.
If you click No, the workbook doesn’t open. If you click Yes, you then receive the message
shown in Figure 25-13. While creating ribbons, though, I found it appearing most often when
Excel doesn’t like the Relationship ID I have assigned to the customui relationship in the RELS
file. What’s nice is that if you click Yes in the “Found a Problem” dialog box, Excel assigns a
new ID, and the next time you open the file, the error should not appear.

FIGURE 25-12 This rather generic message could appear for many reasons. Click Yes to try to repair the file.

FIGURE 25-13 Excel lets you know whether it has succeeded in repairing the file.

Here’s the original relationship:

Click here to view code image
<Relationship Id="rId3"
Type="http://schemas.microsoft.com/office/2007/relationships/ui/
_
extensibility"
Target="customui/customUI14.xml"/>

Here’s the Excel-modified relationship:

Click here to view code image
<Relationship Id="rE1FA1CF0-6CA9-499E-9217-90BF2D86492F"
Type="http://schemas.microsoft.com/office/2007/relationships/ui/
_
extensibility"
Target="customui/customuUI14.xml"/>

In the RELS file, the error also appears if you split the relationship line within a quoted
string. You might recall that you were cautioned against this in the “Understanding the RELS
File” section, earlier in this chapter. In this case, Excel could not fix the file, and you must
make the correction yourself.

Wrong number of arguments or invalid property assignment

If there is a problem with the sub being called by a control, you might see the error message in
Figure 25-14 when you try to run code from your ribbon. For example, the onAction of a

button requires a single IRibbonControl argument such as the following:

Sub HelloWorld(control As IRibbonControl)

It would be incorrect to leave off the argument, as shown here:

Sub HelloWorld()

FIGURE 25-14 It’s important for the subs being called by your controls to have the proper arguments. Refer to Table
25-2 for the various control arguments.

Invalid file format or file extension

The error message shown in Figure 25-15 looks rather drastic, but it could be deceiving. You
could get it if you’re missing quotation marks around an attribute’s value in the RELS file. For
example, look carefully at the following line, and you’ll see that the Type value is missing its
quotations marks:

Type=http://schemas.microsoft.com/office/2007/relationships/ui/extensibility

The line should have been this:

Type="http://schemas.microsoft.com/office/2007/relationships/ui/extensibility"

FIGURE 25-15 A missing quotation mark can generate a drastic message, but it’s easily fixed.

Nothing happens

If you open your modified workbook and your ribbon doesn’t appear, but you don’t get an error

message, double-check your RELS file. It’s possible that you forgot to update it with the
required relationship to your custumUI14.xml file.

Other ways to run a macro
Using a custom ribbon is the most elegant way to run a macro; however, if you have only a
couple of macros to run, it can be a bit of work to modify the file. You could have the client
invoke a macro by going to the View tab, selecting Macros, View Macros, and then selecting
the macro from the Macros dialog box and clicking the Run button, but this is a bit
unprofessional—and tedious. Other options are discussed in the following sections.

Using a keyboard shortcut to run a macro

The easiest way to run a macro is to assign a keyboard shortcut to it. Open the Macro dialog
box by selecting the Developer or View tab and clicking Macros or by pressing Alt+F8. Then
select the macro and click Options. Assign a shortcut key to the macro. Figure 25-16 shows the
shortcut Ctrl+Shift+H being assigned to the RunHello macro. You can now conspicuously
post a note on the worksheet, reminding the client to press Ctrl+Shift+H to clean the first
column.

FIGURE 25-16 The simplest way to enable a client to run a macro is to assign a shortcut key to the macro. Ctrl+Shift+H
now runs the RunHello macro.

Caution Be careful when assigning keyboard shortcuts. Many of the keys are
already mapped to important Windows shortcuts. If you would happen to assign
a macro to Ctrl+C, for example, anyone who uses this shortcut to copy the
selection to the Clipboard will be frustrated when your application does

something else in response to this common shortcut. The letters J, M, and Q are usually
good choices because as of Excel 2019, they had not yet been assigned to Excel’s menu of
“Ctrl+” shortcut combinations. Ctrl+L and Ctrl+T used to be available, but these are now
used to create tables.

Attaching a macro to a command button

Two types of buttons can be embedded in a sheet: the traditional button shape that you can find
in the Form Controls section and an ActiveX command button. (You can access both on the
Developer tab under the Controls, Insert option.)

To add a form control button with a macro to your sheet, follow these steps:

1. On the Developer tab, click the Insert button and select the button control from the Form
Controls section of the drop-down, as shown in Figure 25-17.

FIGURE 25-17 The form controls are found under the Insert icon on the Developer tab.

2. Place your cursor in the worksheet where you want to insert the button and then click and
drag to create the shape of the new button. When you release the mouse button, the
Assign Macro dialog box displays.

3. In the Assign Macro dialog box, select a macro to assign to the button and click OK.

4. Highlight the text on the button and type new meaningful text.

5. To change the font, text alignment, and other aspects of the button’s appearance, right-
click the button and select Format Control from the pop-up menu.

6. To reassign a new macro to the button, right-click the button and select Assign Macro
from the pop-up menu.

Attaching a macro to a shape

The previous method assigned a macro to an object that looks like a button. You can also
assign a macro to any drawing object on the worksheet. To assign a macro to an Autoshape
(which you get by selecting Insert, Illustrations, Shapes), right-click the shape and select
Assign Macro, as shown in Figure 25-18.

This method is useful because you can easily add a drawing object with code and use the
OnAction property to assign another macro to the object. There is one big drawback to this
method: If you assign a macro that exists in another workbook, and the other workbook is
saved and closed, Excel changes the OnAction for the object to be hard-coded to a specific
folder.

FIGURE 25-18 Macros can be assigned to any drawing object on the worksheet.

Attaching a macro to an ActiveX control

ActiveX controls are newer than form controls and slightly more complicated to set up. Instead
of simply assigning a macro to a button, you have a button_click event where you can either
call another macro or have the macro code actually embedded in the event. Follow these steps:

1. On the Developer tab, click the Insert button and select the Command Button icon from
the ActiveX Controls section.

2. Place your cursor in the worksheet where you want to insert the button, and then click
and drag to create the shape of the new button.

3. To format the button, right-click the button and select Properties or select Controls,
Properties from the Developer tab. You can now adjust the button’s caption and color in
the Properties window, as shown in Figure 25-19. If nothing happens when you right-
click the button, enter Design mode by clicking the Design Mode button on the
Developer tab.

FIGURE 25-19 Use the Properties window to adjust aspects of the ActiveX button.

4. To assign a macro to the button, right-click it and select View Code. This creates the
header and footer for the button_click event in the code window for the current
worksheet. Type the code you want to have run or the name of the macro you want to
call.

Note There is one annoying aspect of this Properties window: It is huge and
covers a large portion of your worksheet. Eventually, if you want to use the
worksheet, you’re going to have to resize or close this Properties window. When

you close the Properties window, it is also hidden in the VB Editor. I would prefer to be

able to close this Properties window without affecting my VB Editor environment.

Running a macro from a hyperlink

There is a trick you can use to run a macro from a hyperlink. Because many people are used to
clicking a hyperlink to perform an action, this method might be the most intuitive for your
clients.

The trick is to set up placeholder hyperlinks that simply link back to themselves. Select the
cell with the text you want to link to, and from the Insert tab, select Links, Link (or press
Ctrl+K). In the Insert Hyperlink dialog, click Place In This Document. Figure 25-20 shows a
worksheet with four hyperlinks. Each hyperlink points back to its own cell.

FIGURE 25-20 To run a macro from a hyperlink, you must create placeholder hyperlinks that link back to their cells.
Then, using an event handler macro in the worksheet’s code module, you can intercept the hyperlink and run any macro.

When a client clicks a hyperlink, you can intercept this action and run any macro by using
the FollowHyperlink event. Enter the following code in the code module for the worksheet:

Click here to view code image
Private Sub Worksheet_FollowHyperlink(ByVal Target As Hyperlink)
Select Case Target.TextToDisplay

Case "Quarter 1"
RunQuarter1Report

Case "Quarter 2"
RunQuarter2Report

Case "Quarter 3"

RunQuarter3Report
Case "Quarter 4"
RunQuarter4Report

End Select
End Sub

Next steps
From custom ribbons to simple buttons or hyperlinks, there are plenty of ways to ensure that
your clients never need to see the Macro dialog box. In Chapter 26, you find out how to
package your macros into add-ins that you can easily distribute to others.

CHAPTER 26
Creating add-ins

In this chapter, you will:

Learn what a standard add-in is

Learn how to create, install, and uninstall an add-in

Use a hidden workbook as an alternative to an add-in

You can create standard add-in files for your clients to use by employing VBA. After the client
installs your add-in on her PC, the program will be available to Excel and will load
automatically every time she opens Excel. This chapter discusses standard add-ins.

Be aware that there are two other kinds of add-ins: COM add-ins and Office add-ins.
Neither of these can be created with VBA. You need either Visual Basic.NET or Visual C++ to
create COM add-ins. You use HTML, CSS, and JavaScript to create Office add-ins. Chapter
27, “An introduction to creating Office add-ins,” familiarizes you with the basics of creating
Office add-ins.

Characteristics of standard add-ins
If you are going to distribute an application, you might want to package the application as an
add-in. Typically saved with an .xlam extension, an add-in offers several advantages:

Usually, clients can bypass your Workbook_Open code by holding down the Shift key
while opening the workbook. With an add-in, they cannot bypass the Workbook_Open
code in this manner.

After you use the Add-ins dialog box to install an add-in (by selecting File, Options,
Add-Ins, Manage Excel Add-Ins, Go), the add-in will always be loaded and available.

Programs in an installed add-in can still run even if the macro security level is set to
disallow macros.

Generally, custom functions work only in the workbook in which they are defined. A
custom function added to an add-in is available to all open workbooks.

The add-in does not show up in the list of open files in the Window menu item. The
client cannot unhide the workbook by choosing View, Window, Unhide.

Caution There is one strange rule for which you need to plan. An add-in is a
hidden workbook. Because the add-in can never be displayed, your code cannot
select or activate any cells in the add-in workbook. You are allowed to save
data in your add-in file, but you cannot select any part of the file. Also, if you

do write to your add-in file data that you want to be available in the future, your add-in
code needs to handle saving the file. Because your clients will not realize that the add-in is
there, they will never be reminded or asked to save an unsaved add-in. You might,
therefore, add ThisWorkbook.Save to the add-in’s Workbook_BeforeClose event.

Converting an Excel workbook to an add-in
Add-ins are typically managed using the Add-Ins dialog box. This dialog box presents an add-
in name and description, which you control by entering two specific properties for the file
before you convert it to an add-in.

Note If you’re modifying an existing add-in, you must make it visible before you
can edit the properties. See the section “Using the VB Editor to convert a file to
an add-in” later in this chapter.

To change the title and description shown in the Add-Ins dialog box, follow these steps:

1. Select File, Info. Excel displays the Document Properties pane on the right side of the
window.

2. From the Properties drop-down menu, select Advanced Properties.

3. Enter the name for the add-in in the Title field.

4. Enter a short description of the add-in in the Comments field (see Figure 26-1).

5. Click OK to save your changes.

6. Click the back arrow at the top left of the screen to return to your workbook.

There are two ways to convert a file to an add-in. The first method, using Save As, is easier
but has an annoying byproduct. The second method uses the VB Editor and requires two steps,
but it gives you some extra control. The sections that follow describe the steps for using these
methods.

FIGURE 26-1 Fill in the Title and Comments fields before converting a workbook to an add-in.

Using Save As to convert a file to an add-in

Select File, Save As. In the Save As Type field, scroll through the list and select Excel Add-In
(*.xlam).

As shown in Figure 26-2, the file name changes from filename.xlsm to filename.xlam. Also
note that the save location automatically changes to an AddIns folder. The location of this
folder varies by operating system, but it will be something along the lines of
C:\Users\username\AppData\Roaming\Microsoft\AddIns. It is also confusing that, after the
.xlsm file is saved as an .xlam type, the unsaved .xlsm file remains open. It is not necessary to
keep an .xlsm version of the file because it is easy to change an .xlam back to an .xlsm for
editing.

FIGURE 26-2 The Save As method changes the IsAddin property, changes the name, and automatically saves the file
in your AddIns folder.

Tip If, before selecting the add-in file type, you are already in the folder to which
you want to save, just click the back arrow in the Save As window to return to that
folder.

Caution When the Save As method is being used to create an add-in, a
worksheet must be the active sheet. The add-in file type is not available if a
chart sheet is the active sheet.

Using the VB Editor to convert a file to an add-in

The Save As method is great if you are creating an add-in for your own use. However, if you
are creating an add-in for a client, you probably want to keep the add-in stored in a folder with
all the client’s application files. It is fairly easy to bypass the Save As method and create an
add-in using the VB Editor:

1. Open the workbook that you want to convert to an add-in.

2. Switch to the VB Editor.

3. In the Project Explorer, click ThisWorkbook.

4. In the Properties window, find the property called IsAddin and change its value to True,
as shown in Figure 26-3.

FIGURE 26-3 Creating an add-in is as simple as changing the IsAddin property of ThisWorkbook.

5. Press Ctrl+G to display the Immediate window.

6. In the Immediate window, save the file, using an .xlam extension, like this:

Click here to view code image
ThisWorkbook.SaveAs FileName:="C:\ClientFiles\Chap26.xlam",
_
FileFormat:= xlOpenXMLAddIn

You’ve now successfully created an add-in in the client folder that you can easily find and
email to your client.

Tip If you ever need to make an add-in visible—for example, to change the
properties or view data you have on sheets—repeat the previous steps except
select False for the IsAddin property. The add-in becomes visible in Excel.

When you are done with your changes, change the property back to True.

Having a client install an add-in
When you email an add-in to a client, have her save it on her desktop or in another easy-to-find
folder. You should tell her to follow these steps:

1. Open Excel and select File, Options. The Excel Options dialog appears.

2. In the left navigation pane, select Add-Ins.

3. At the bottom of the window, select Excel Add-Ins from the Manage drop-down menu
(see Figure 26-4).

FIGURE 26-4 Make sure to select Excel Add-Ins, not COM Add-Ins, from the drop-down menu.

4. Click Go. Excel displays the familiar Add-Ins dialog box, shown in Figure 26-5.

5. In the Add-Ins dialog box, click the Browse button.

6. Browse to where you saved the file. Highlight the add-in and click OK.

Note Excel might prompt you to copy the add-in to its AddIns folder. I do not do
this because the folder is hard to find, especially if I need to update the file.

The add-in is now installed. If you allow it, Excel copies the file from where you saved it to
the default AddIns folder. In the Add-ins dialog, the title of the add-in and comments as
specified in the File Properties dialog box are displayed (see Figure 26-5).

FIGURE 26-5 The add-in is now available for use.

Standard add-ins are not secure
Remember that anyone can go to the VB Editor, select your add-in, and change the IsAddin
property to False to unhide the workbook. You can discourage this process by locking the
.xlam project for viewing and protecting it in the VB Editor, but be aware that plenty of
vendors sell a password-hacking utility for less than $40. To add a password to your add-in,
follow these steps:

1. Go to the VB Editor.

2. Select Tools, VBAProject Properties.

3. Select the Protection tab.

4. Select the Lock Project for Viewing check box.

5. Enter the password twice for verification.

CAUTION If you protect the code and don’t include error handling, people
won’t be able to click the Debug button if an error message appears. See
Chapter 24, “Handling errors,” for more information on handling errors in code
so that the program ends properly and still provides customers with error

information they can pass to you.

Closing add-ins
Add-ins can be closed in three ways:

Clear the add-in from the Add-Ins dialog box. This closes the add-in for this session and
ensures that it does not open during future sessions.

Use the VB Editor to close the add-in. In the VB Editor’s Immediate window, type this
code to close the add-in:

Workbooks("YourAddinName.xlam").Close

Close Excel. All add-ins are closed when Excel is closed.

Removing add-ins
You might want to remove an add-in from the list of available add-ins in the Add-Ins dialog
box. There is no effective way to do this within Excel. Follow these steps:

1. Close all running instances of Excel.

2. Use Windows Explorer to locate the file. The file might be located in
%AppData%\Microsoft\AddIns\.

3. In Windows Explorer, rename the file or move it to a different folder.

4. Open Excel. You get a note warning you that the add-in could not be found. Click OK to
dismiss this warning.

5. Select Excel Add-Ins on the Developer tab. In the Add-Ins dialog box, clear the name of
the add-in you want to remove. Excel notifies you that the file cannot be found and asks
whether you want to remove it from the list. Click Yes.

Using a hidden workbook as an alternative to an add-in
One cool feature of an add-in is that the workbook is hidden. This keeps most beginners from

poking around and changing formulas. However, it is possible to hide a workbook without
creating an add-in.

It is easy enough to hide a workbook by selecting View, Window, Hide In Excel. The trick
is to then save the workbook as Hidden. With a file that is hidden, the normal File, Save choice
does not work. You can save the file from the VB Editor’s Immediate window. In the VB
Editor, make sure that the workbook is selected in the Project Explorer. Then, in the Immediate
window, type the following:

ThisWorkbook.Save

There is a downside to using a hidden workbook: A custom ribbon tab will not be visible if
the workbook it is attached to is hidden.

Case study: Using a hidden code workbook to hold all macros and forms
Access developers routinely use a separate database to hold macros and forms. They place
all forms and programs in one database and all data in a second database. These database
files are linked through the Link Tables function in Access.

For large projects in Excel, I recommend using the same method. You use a little bit of
VBA code in the Data workbook to open the Code workbook.

The advantage to this method is that when it is time to enhance the application, you can
mail a new code file without affecting the client’s data file.

I once encountered a single-file application rolled out by another developer that the client
had sent out to 50 sales reps. The reps replicated the application for each of their 10 largest
customers. Within a week, there were 500 copies of this file floating around the country.
When they discovered a critical flaw in the program, patching 500 files was a nightmare.

We designed a replacement application that used two workbooks. The data workbook
ended up with about 20 lines of code. This code was responsible for opening the code
workbook and passing control to the code workbook. As the files were being closed, the
data workbook would close the code workbook.

There were many advantages to this method. First, the customer data files were kept to a
very small size. Each sales rep now has 1 workbook with program code and 10 or more
data files for each customer. As enhancements are completed, we distribute new program
code workbooks. The sales rep opens his or her existing customer data workbook, which
automatically grabs the new code workbook.

Because the previous developer had been stuck with the job of trying to patch 500
workbooks, we were extremely careful to have as few lines of code in the customer
workbook as possible. There are maybe 10 lines of code, and they were tested thoroughly
before being sent out. By contrast, the code workbook contains 3,000-plus lines of code. If

something goes wrong with the application, I am almost certain that the bad code is in the
easy-to-replace code workbook.

In the customer data workbook, the Workbook_Open procedure has this code:

Click here to view code image
Private Sub Workbook_Open()
On Error Resume Next

Click here to view code image
X = Workbooks("Code.xlsm").Name
If Not Err = 0 then
On Error Goto 0
Workbooks.Open Filename:= _
ThisWorkbook.Path & Application.PathSeparator &
"Code.xlsm"

End If
On Error Goto 0
Application.Run "Code.xlsm!CustFileOpen"
End Sub

The CustFileOpen procedure in the code workbook could also handle adding a custom
menu for the application. Because custom tabs for hidden workbooks are not visible, you
have to use the legacy CommandBars method to create a menu that appears on the Add-Ins
tab.

This dual-workbook solution works well and allows updates to be seamlessly delivered to
the client without touching any of the 500 customer files.

Next steps
Microsoft has introduced a new way of sharing applications with customers: Office add-ins.
These are programs that, simply put, use JavaScript, HTML, and XML to put a web page in a
frame on a sheet. Chapter 27 introduces you to what is involved in creating these apps and
deploying them over a network.

CHAPTER 27
An introduction to creating Office add-ins

In this chapter, you will:

Create an Office add-in

Add interactivity to an Office add-in

Learn the basics of HTML and JavaScript

Use XML to define an Office add-in

With Office 2013, Microsoft introduced Office add-ins, applications that provide expanded
functionality to a sheet, such as a selectable calendar, or an interface with the web, such as
retrieving information from Wikipedia or Bing. Like Excel add-ins, once Office add-ins are
installed, they’re always available. But unlike Excel add-ins, the Office add-ins have limited
interaction with sheets and do not use VBA.

An Office add-in consists of an HTML file that provides the user interface on a task or
content pane, a CSS file to provide styles for the HTML file, a JavaScript file to provide
interactivity to the HTML file, and an XML file to register the Office add-in with Excel. This
might sound like a lot of new programming skills, but it’s not. I’ve designed only the most
basic web pages, and that was years ago, but I was able to apply my VBA programming skills
to JavaScript, which is where the bulk of the programming goes. The language is a little
different, but it’s not so different that you can’t create a simple, useful app.

This chapter introduces you to creating an Office add-in to distribute locally and to the
basics of the various programming languages. It is not meant to provide in-depth instruction,
especially for JavaScript.

Note JavaScript custom functions are user-defined functions (UDFs) you create
for use with Excel Online. They use the same JavaScript API as Office add-ins.
This book doesn’t cover creating them. For more information, see Excel

JavaScript UDFs Straight to the Point by Suat M. Ozgur (ISBN 978-1-61547-247-5).

Tip You don’t need a fancy program to write the code for any of the files in an
Office add-in. The Notepad program that comes with Windows does the job. But

when you consider the case sensitivity of some programming languages, like
JavaScript, using a program that provides some help is a good idea. I spent a couple of
hours in frustration over some of the samples in this chapter, wondering why they didn’t
work when the code was perfect. Except the code wasn’t perfect. Again and again I
missed the case sensitivity in JavaScript and XML, and, in one case, I had a curly
apostrophe instead of a straight one.

Switching to Notepad++ (www.notepad-plus-plus.org) was a quick and easy solution
because it highlights keywords and grays out strings (which is how I found the incorrect
apostrophe around a string).

Creating your first Office add-in—Hello World
Hello World is probably the most popular first program for programmers to try out. It’s a
simple program, just outputting the words “Hello World,” but it introduces the basics required
by the application. So, with that said, it’s time to create a Hello World Office add-in.

Caution A network is used to distribute the Office add-in locally. You cannot
use a local drive or a network drive mapped to a drive letter. If you do not have
access to a network, you will not be able to test your Office add-in.

Note In the following steps, you enter text into a text editor. Unlike with the VB
Editor, there isn’t a compiler to point out mistakes before you run the program. It
is very important that you enter the text exactly as written, including the case of

text within quotation marks.

To open a file for editing, such as with Notepad, right-click the file and select Open With.
If you see Notepad, select it; otherwise, select Choose Another App. From the dialog box
that opens, find Notepad. Make sure that Always Use This App To Open filetype Files is
not selected and then click OK. The next time you need to edit the file, Notepad appears in
the quick list of available programs in the Open With option.

Follow these steps to create your Office add-in:

1. Create a folder and name it HelloWorld. This folder can be on your local drive while you
are creating the program. All the program files will be placed in this folder. When you’re
finished, you’ll move it to the network.

http://www.notepad-plus-plus.org

2. Create the HTML program by inserting a text file in the folder and naming it
HelloWorld.html. Then open the HTML file for editing and enter the following code in
it:

Click here to view code image
<!DOCTYPEhtml>
<html>

<head>
<meta charset="UTF-8"/>
<meta http-equiv="X-UA-Compatible" content="IE=Edge"/>
<link rel="stylesheet" type="text/css"
href="program.css"/>

</head>
<body>
<p>Hello World!</p>

</body>
</html>

Save and close the file.

3. Create the CSS file to hold the styles used by the HTML file by inserting a text file into
the folder and naming it program.css. Note that this is the same file name used in the
HTML file in the <link rel> tag. Open the CSS file for editing and enter the following
code in it:

Click here to view code image
body
{
position:relative;
}
li :hover
{

text-decoration: underline;
cursor:pointer;

}
h1,h3,h4,p,a,li
{

font-family: "Segoe UI Light","Segoe UI",Tahoma,sans-
serif;
text-decoration-color:#4ec724;

}

Save and close the file.

4. Create the XML file by inserting a text file in the folder and naming it HelloWorld.xml.
Then open the XML file for editing and enter the following code in it.

Caution The following code sample and others that follow include lines
that extended beyond the width of the page, so I needed to add a _ to
indicate a line that is continued. Unlike in VBA, in this case you should
not type the underscores. Instead, when you get to an underscore, just

ignore it and continue inputting the code after it on the same line.

Click here to view code image
<?xml version="1.0" encoding="utf-8"?>
<OfficeApp
xmlns="http://schemas.microsoft.com/office/appforoffice/1.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="TaskPaneApp">
<Id>08afd7fe-1631-42f4-84f1-5ba51e242f98</Id>
<Version>1.0</Version>
<ProviderName>Tracy Syrstad</ProviderName>
<DefaultLocale>EN-US</DefaultLocale>
<DisplayName DefaultValue="Hello World app"/>
<Description DefaultValue="My first app."/>
<IconUrl DefaultValue=
"http://officeimg.vo.msecnd.net/_layouts/images/general/ _
officelogo.jpg"/>
 <Capabilities>

<Capability Name="Document"/>
<Capability Name="Workbook"/>

 </Capabilities>

<DefaultSettings>
 <SourceLocation DefaultValue="\\workpc\MyApps\HelloWorld\
_
HelloWorld.html"/>
 </DefaultSettings>
 <Permissions>ReadWriteDocument</Permissions>
</OfficeApp>

Do not close the XML file yet.

5. While the XML file is still open, note the ID 08afd7fe-1631-42f4-84f1-
5ba51e242f98. This is a globally unique identifier (GUID). If you are testing on a
private network and not distributing this file, you can likely use this GUID. But if you’re
on a business network with other programmers or if you’re distributing the file, you must
generate your own GUID. See the section “Using XML to define an Office add-in,” later
in this chapter, for more information on GUIDs.

Note GUID stands for globally unique identifier. A GUID is a unique
reference number that identifies software. It’s usually displayed as 32
alphanumeric digits separated into five groups (8-4-4-4-12) by hyphens. A

GUID has so many digits that it's rare for identical ones to be generated.

6. Move the HelloWorld folder to a network share folder if it’s not already there. Note the
path to the folder and to the HTML file because you will be making use of this
information. The path to the folder should be \\myserver\myfolder. For example, my
HelloWorld folder is located at \\workpc\MyApps\HelloWorld.

7. Open the XML file for editing and change <SourceLocation> (located near the bottom
of the code) to the location of the HTML file on your network. Save and close the file.

8. Configure your network share as a Trusted Catalog Address by following these steps:

a. Start Excel and go to File, Options, Trust Center and click Trust Center Settings.

b. Select Trusted Add-In Catalogs.

c. Enter your folder path in the Catalog URL field and click Add Catalog. The path is
added to the list box.

d. Select the Show In Menu box.

e. Click OK. You should see a prompt indicating that the Office add-in will be available
the next time Excel starts (see Figure 27-1). Click OK twice.

9. Restart Excel.

Caution Only one network share at a time can be configured to show in
the catalog. If you want users to have access to multiple Office add-ins at
once, the XML for the Office add-ins must be stored in the same network
share. Otherwise, users will have to go into their settings and select which

catalog to show.

10. Insert the Office add-in you just created into Excel by selecting Insert, Add-Ins, Store.
Then, in the Office Add-Ins dialog box, select Shared Folder. If you don’t see anything
when you’ve selected the link, click Refresh. The Hello World Office add-in should be
listed, as shown in Figure 27-2.

Note If you still do not see anything after refreshing, there is something
incorrect in the files or the setup. Carefully review all the code and steps.
If you do not see anything incorrect, try changing the GUID.

FIGURE 27-1 Configure the location of your Office add-ins under Trusted Add-In Catalogs.

FIGURE 27-2 The Shared Folder lists any Office add-ins available in the active catalog.

11. Select the Office add-in and click Insert. A task pane on the right side of the Excel
window opens, as shown in Figure 27-3, and displays the words “Hello World!”

FIGURE 27-3 By creating Hello World, you take a first step in creating interactive Office add-ins.

Adding interactivity to an Office add-in
The Hello World Office add-in created in the preceding section is a static one; it doesn’t do
anything except show the words in the code. But as you browse the web, you run into dynamic
web pages. Some of those web pages use JavaScript, a programming language that adds
automation to elements on otherwise static websites. In this section, you modify the Hello
World Office add-in by adding a button to write data to a sheet and another button that reads

data from a sheet, performs a calculation, and writes the results to the task pane.

Tip You don’t have to restart Excel if you are editing the code of an installed
Office add-in. Instead, right-click in the Office add-in’s task pane and select
Reload.

To add these interactive features to the Hello World Office add-in, follow these steps:

1. To create the JavaScript file that will provide the interactivity for the two buttons Write
Data To Sheet and Read & Calculate Data From Sheet, first insert a text file in the Hello
World folder and name the file program.js. Then open the JavaScript file for editing and
enter the following code in it:

Click here to view code image
Office.initialize = function (reason) {
//Add any needed initialization
}
//declare and set the values of an array
var MyArray = [[234],[56],[1798], [52358]];

//write MyArray contents to the active sheet
function writeData() {

Office.context.document.setSelectedDataAsync(MyArray, _
{coercionType: 'matrix'});
}

/*reads the selected data from the active sheet
so that we have some content to read*/
function ReadData() {

Office.context.document.getSelectedDataAsync("matrix", _
function (result) {
//if the cells are successfully read, print the results in
the task pane

if (result.status === "succeeded"){
sumData(result.value);
}

//if there was an error, print the error in the task pane
else{
document.getElementById("results").innerText = _

result.error.name;

}
});
}

/*the function that calculates and shows the result
in the task pane*/
function sumData(data) {
var printOut = 0;

//sum together all the values in the selected range
for (var x = 0 ; x < data.length; x++) {

for (var y = 0; y < data[x].length; y++) {
printOut += data[x][y];
}

}
//print the results in the task pane
document.getElementById("results").innerText = printOut;
}

Save and close the file.

Note In JavaScript, lines prefixed by // and /* are comments.

2. Edit the HelloWorld.html file so that it points to the JavaScript file program.js, and add
the two buttons used by the JavaScript code. To do this, replace the existing code with
the following:

Click here to view code image
<!DOCTYPEhtml>
<html>

<head>
<meta charset="UTF-8"/>
<meta http-equiv="X-UA-Compatible"
content="IE=Edge"/>
<link rel="stylesheet" type="text/css"
href="program.css"/>

<!--begin pointer to JavaScript file-->
<script src =
"https://appsforoffice.microsoft.com/lib/1.0/ _

hosted/office.js"></script>

<script src= "program.js"></script>
<!--end pointer to JavaScript file-->

</head>
<body>

<!--begin replacement of body-->
<button onclick="writeData()">Write Data To
Sheet</button></br>
<button onclick="ReadData()">Read & Calculate Data
From Sheet _

</button></br>
<h4>Calculation Results: <div id="results"></div>
</h4>

<!--end replacement of body-->
</body>

</html>

In this new code, you’ve added <script> tags and replaced the code between the
<body> tags. Comment tags, <!--comments-->, are included to show where the
changes are.

3. Save and close the file.

After creating the JavaScript file and updating the HTML file, reload the Office add-in and
test it by clicking the Write Data To Sheet button. It should write the numbers from MyArray
onto the sheet. With those cells selected, click Read & Calculate Data From Sheet, and the
results of adding the selected numbers together will appear in the Calculation Results line of
the task pane, as shown in Figure 27-4.

FIGURE 27-4 Use JavaScript to create an Office add-in that can perform a calculation with data from a sheet.

A basic introduction to HTML

The HTML code in an Office add-in controls how the task or content pane will look, such as
the text and buttons. If you open the HTML file from either of your Hello World files, it opens
in your default browser and looks as it did in Excel’s task pane (though without any
functionality). You can design the Office add-in as you would a web page, including adding
images and links. The following sections review a few basics to get you started in designing
your own Office add-in interface.

Using tags

HTML consists of elements, such as images, links, and controls, that are defined by the use of
tags enclosed in angle brackets. For example, the starting tag <button> tells the code that what
follows, inside and outside the tag’s brackets, relates to a button element. For each start tag,
you have an end tag, which is usually the same as the opening tag but with a slash—like
</button>—but some tags can be empty—like />. A browser does not display tags or
anything within a tag’s brackets. Text that you want displayed needs to be outside the tag's
brackets.

Comments have a tag of their own and don’t require your typical end tag. As in VBA,
commented text doesn’t appear on the screen. Add comments to your HTML code like this:

<!--This is a comment-->

A multiline comment would appear like this:

Click here to view code image
<!--This is a multiline comment.
Notice that nothing special is needed -->

Adding buttons

To create the code for a button, you need to label the button and link it to a function in the
JavaScript file that will run when the button is clicked. Here’s an example:

Click here to view code image

<button onclick="writeData()">Write Data To Sheet</button>

The first part, <button onclick="writeData()">, identifies the control as a button and
assigns the function writeData to the click event for the button. Notice that the function name
is in quotation marks and includes argument parentheses, which are empty. The second part,
Write Data To Sheet, is the text of the label on the button. The label name is not in
quotation marks. The line ends with the closing tag for the button.

To change other attributes of the button, you just need to specify those attributes. For
example, to change the button text to red, add the style attribute for color, like this:

Click here to view code image

<button onclick="writeData()" style="color:Red">Write Data To
Sheet</button>

To add a tooltip that appears when the mouse is placed over the button, as shown in Figure
27-5, use the title attribute, like this:

Click here to view code image
<button onclick="writeData()" style="color:Red"
title = "Use to quickly add numbers to your sheet">
 Write Data To Sheet</button></br>

Use a space to separate multiple attributes. After an attribute name, such as style, put an
equal sign and then the value in quotation marks. Also notice that HTML is rather forgiving
about where you put your line breaks. Just don’t put them within a string, or you might also get
a line break on the screen in that position.

FIGURE 27-5 Add other attributes to your button to change colors or add tooltip text for users.

Using CSS files

CSS stands for Cascading Style Sheets. You create styles in Excel and Word to make it easy to
modify how text looks in an entire file without changing every occurrence. You can do the
same thing with an Office add-in by creating a separate style file (CSS) that your HTML code
references. In the file, you set up rules for various elements of the HTML file, such as layout,
colors, and fonts.

The CSS file provided in the Hello World example can be used for a variety of projects. It
includes styles for h1, h3, and h4 headings, hyperlinks (a), paragraph tags (p), and bullets (li).

Using XML to define an Office add-in
XML defines the elements needed to display and run an Office add-in in Excel, including the
GUID, Office add-in logo, and location of the HTML file. XML also configures how the Office
add-in will appear in the Office Add-Ins store and can provide a version number for the
program.

Caution XML tags are case sensitive. When you make changes to the provided
Hello World sample, be sure you don’t change any of the tags but only their
values.

Two types of user interfaces are available for an Office add-in: a task pane or a content
pane. A task pane starts off docked on the right side of the Excel window, but a user can
undock it and move it around the window. A content pane appears as a frame in the middle of
the Excel window. Which type you use is up to you. To tell an Office add-in which type of
pane to use, set the xsi:type value to either TaskPaneApp or ContentApp.

You should always use a unique identifier when creating an Office add-in. Websites such as
http://www.guidgen.com generate GUIDs for you.

In the Hello World sample, the store icon used is an online icon that Microsoft has made
available. But you can also use your own .jpg file. The image should be small, about 32×32
pixels. Update IconURL with the full path to the image, like this:

Click here to view code image

<IconUrl
DefaultValue="\\workpc\MyApps\HelloWorld\mrexcellogo.jpg"/>

The SourceLocation tag is used to set the full path to the HTML file. If the HTML file
cannot be found when the Office add-in is being installed, an error message appears, stating
that the file couldn’t be found.

Note If you make changes to XML after you’ve already configured the location
of the catalog or installed the Office add-in, be sure to click the Refresh link in
the Office Add-Ins dialog box. For example, if you switch between

TaskPaneApp and ContentApp, the change might not be reflected even if you select to
install the Office add-in again. To be safe, refresh the Office Add-Ins dialog box.

http://www.guidgen.com

Using JavaScript to add interactivity to an Office add-in
JavaScript provides the wow factor behind an Office add-in. You can create a very useful
reference with just HTML, but to make an interactive Office add-in, such as a function
calculator, you need JavaScript.

The following sections provide a basic introduction to JavaScript. If you are already
familiar with JavaScript, you can go ahead to “JavaScript changes for working in the Office
add-in.”

Note The document.getElementById("results").innerText command
used in the following examples is the command for the code to put the returned
value in the place reserved by the “results” variable in the HTML file.

Note Microsoft is always making improvements to the JavaScript API,
expanding its capabilities to handle Excel’s objects. You can keep up with these
changes at the API reference site at https://docs.microsoft.com/en-

us/javascript/api/excel?view=office-js.

The structure of a function

JavaScript code consists of functions called by HTML code and by other JavaScript functions.
Just as in VBA, each JavaScript function starts with function followed by the name of the
function and any arguments in parentheses. But unlike in VBA, there is no End Function at
the end; instead, you use curly braces to group the function. See the following subsection,
“Curly braces and spaces,” for more information.

JavaScript is case sensitive, including variable and function names. For example, if you
create a function called writeData but then try to call WriteData from another function, the
code does not work because in one case, write is in lowercase, and in the other it has a capital
W. JavaScript recognizes these as different functions. Create case rules for yourself, such as
initial caps for each word in a variable, and stick to them. This helps reduce troubleshooting of
JavaScript code issues.

Curly braces and spaces

Curly braces ({}) are characters used in JavaScript but not in VBA. You use them to group
blocks of code that should be executed together. You can have several sets of braces within a

https://docs.microsoft.com/en-us/javascript/api/excel?view=office-js

function. For example, you would use them to group all the code in a function; then, within the
function, you would use them to group lines of code such as within an if statement.

After you’ve finished typing a line in VBA and gone to another line, you might notice that
the line adjusts itself, adding or removing spaces. In JavaScript, spaces don’t usually matter;
the exceptions are spaces in strings and spaces between keywords and variables in the code. In
the code samples in this section, notice that sometimes I have included spaces (a = 1) and
sometimes I have not (a=1).

Semicolons and line breaks

You’ve probably noticed the semicolons (;) used in JavaScript code. They might have appeared
at the end of every line, or maybe only on some lines. Perhaps you’ve noticed a line without a
semicolon or noticed a semicolon in the middle of a line. The reason the use of semicolons
appears inconsistent is that, under normal circumstances, semicolons are not required. A
semicolon is a line break. If you use hard returns in your code, you are already placing line
breaks, so the semicolon is not needed. If you combine multiple lines of code onto one line,
though, you need a semicolon to let the code know that the next piece of code is not part of the
previous code.

Comments

There are two ways to comment out lines in JavaScript. To comment out a single line, place
two slashes (//) at the beginning of the line, like this:

//comment out a single line in the code like this

If you want to comment out multiple lines in VBA, you have to preface each line with an
apostrophe. JavaScript has a cleaner method. At the beginning of the first line you want to
comment out, place a slash and an asterisk (/*). At the end of the last line of the comment,
place an asterisk and a slash (*/). It looks like this:
/* Comment out
multiple lines of code
like this */

Variables

In VBA, you have the option of declaring variables. If you do declare them, you don’t have to
declare the variable type, but after a value is assigned to a variable, it’s not always easy to
change the type. In JavaScript, you don’t declare variables, except for arrays. (See the later
subsection “Arrays” for more information.) When a value is assigned to a variable, it becomes
that type, but if you reference the variable in another way, its type might change.

In the following example, the string “123” is assigned to myVar, but in the next line, a
number is subtracted:
myVar = "123"
myVar = myVar-2

JavaScript just goes with it, allowing you to change the variable from a string to a number.
If you ran this code, myVar would be 121. Note that myVar+2 would not deliver the same
result. See the next subsection, “Strings,” for more information.

If you need to ensure that a variable is of a specific type, use one of these functions to do
so: Boolean, Number, or String. For example, you have a function that is reading in numbers
imported onto a sheet. As is common in imports, the numbers could be stored as text. Instead of
having to ensure that the user converts the data, use the Number keyword when processing the
values like this to force the number to be a number:

Number(importedValue)

Strings

As in VBA, in JavaScript you reference strings by using double quotations marks (“string”),
but, unlike in VBA, you can also use single quotation marks ('string'). The choice is up to
you; just don’t start a string with one type of quotations marks and end with another. The
capability to use either set can be useful. For example, if you want to show quoted text, you use
the single quotes around the entire string, like this:

Click here to view code image

document.getElementById("results").innerText = 'She heard him
shout, "Stay away!"'

This would be the result in the pane:

She heard him shout, "Stay away!"

To concatenate two strings, use the plus (+) sign. You also use the plus to add two numbers.
So what happens if you have a variable hold a number as text and add it to a number, as in this
example:
myVar = "123"
myVar = myVar+2

You might think that the result would be 125. After all, in the previous example, with -2,
the result was 121. In this case, concatenation has priority over addition, and the answer is
actually 1232. To ensure that the variable is treated like a number, use the Number function. If

the variable it is holding cannot be converted to a number, the function returns NaN, for “not a
number.”

Arrays

Arrays are required for processing multiple cells in JavaScript. Arrays in JavaScript are not
very different from arrays in VBA. To declare an unlimited-size array, do this:

var MyArray = new Array ()

Note If you are unfamiliar with using arrays in VBA, see Chapter 8, “Arrays.”

To create an array of limited size, such as 3, do this:

var MyArray = new Array(3)

You can also fill an array at the same time that you declare it. The following creates an
array of three elements, two of which are strings and the third of which is a number:

Click here to view code image

var MyArray = ['first value', 'second value', 3]

The array index always starts at 0. To print the second element, second value, of the
preceding array, do this:

Click here to view code image
document.getElementById("results").innerText = MyArray[1]

If you’ve declared an array with a specific size but need to add another element, you can
add the element by specifying the index number or by using the push() function. For example,
to add a fourth element, 4, to the previously declared array, MyArray, do this (because the
count starts at 0, the fourth element has an index of 3):

MyArray [3] = 4

If you don’t know the current size of the array, use the push() function to add a new value
to the end of the array. For example, if you don’t know the index value for the last value in the
preceding array, you can add a new element, fifth value, like this:

MyArray.push('fifth value')

Refer to the section “How to do a For each..next statement in JavaScript” if you need to
process the entire array at once. JavaScript has other functions for processing arrays, such as
concat(), which can join two arrays, and reverse(), which reverses the order of the array’s
elements. Because this is just a basic introduction to JavaScript, those functions are not covered
here. For a tip on applying a math function to an entire array with a single line of code, see the
section “Math functions in JavaScript.”

JavaScript for loops

When you added interactivity to the Hello World Office add-in earlier in this chapter, you used
the following code to sum the selected range:

Click here to view code image
for (var x = 0 ; x < data.length; x++) {
for (var y = 0; y < data[x].length; y++) {
printOut += data[x][y];

}
}

The two for loops process the array, data, that is passed into the function, with x as the
row and y as the column.

A for loop consists of three separate sections separated by semicolons. When the loop is
started, the first section, var x=0, initializes any variables used in the loop. Multiple variables
would be separated by commas. The second section, x < data.length, tests whether the loop
should be entered. The third section, x++, changes any variables to continue the loop, in this
case incrementing x by 1 (x++ is shorthand for x=x+1). This section can also have more than
one variable, with commas separating them.

Tip To break out of a loop early, use the break keyword.

How to do an if statement in JavaScript

The basic if statement in JavaScript has this syntax:
if (expression){
//do this
}

Here, expression is a logical function that returns true or false, just as in VBA. If the
expression is true, the code continues and runs the lines of code in the //do this section. To

execute code if the expression is false, you need to add an else statement, like this:
if (expression){
//do this if true
}
else{
//do this if false
}

How to do a Select..Case statement in JavaScript

Select..Case statements are very useful in VBA as an alternative to using multiple
If..Else statements. In JavaScript, similar functionality is in the switch() statement.
Typically, this is the syntax of a switch() statement:

Click here to view code image
switch(expression){
case firstcomparison : {

//do this
break;
}

case secondcomparison : {
//do this
break;
}

default : {
//no matches, so do this
break;
}

}

Here, expression is the value you want to compare to the case statements. The break
keyword is used to stop the program from comparing to the next statement, after it has run one
comparison. That is one difference from a Select statement: Whereas in VBA, after a
comparison is successful, the program leaves the Select statement, in JavaScript, without the
break keyword, the program continues in the switch statement until it reaches the end. Use
default as you would a Case Else in VBA—to cover any comparisons that are not
specified.

The preceding syntax works for one-on-one comparisons. If you want to see how an
expression fits within a range, the standard syntax won’t work. You need to replace the
expression with true to force the code into running the switch statement. The case
statements are where you use the expression compared to the range. The following code is a

BMI calculator UDF converted to JavaScript. It compares the calculated BMI to the various
ranges and returns a text description to post to the task pane:

Click here to view code image
Office.initialize = function (reason) {
//Add any needed initialization.
}

function calculateBMI() {
Office.context.document.getSelectedDataAsync("matrix",
function (result) {

//call the calculator with the array, result.value, as the
argument

myCalculator(result.value);
});

}

function myCalculator(data){
var calcBMI = 0;
var BMI="";
//Perform the initial BMI calculation to get the numerical
value
calcBMI = (data[1][0] / (data[0][0] *data [0][0]))* 703

/*evaluate the calculated BMI to get a string value because we
want to evaluate range, instead of switch(calcBMI), we do switch
(true) and then use our variable as part of the ranges */

switch(true){
//if the calcBMI is less than 18.5
case (calcBMI <= 18.5) : {

BMI = "Underweight"
break;
}

//if the calcBMI is a value between 18.5 and (&&) 24.9
case ((calcBMI > 18.5)&&(calcBMI <= 24.9)):{

BMI = "Normal"
break;
}

case ((calcBMI > 24.9)&&(calcBMI <= 29.9)) : {
BMI = "Overweight"
break;
}

//if the calcBMI is greater than 30

case (calcBMI > 29.9) : BMI = "Obese"
default : {
BMI = 'Try again'
break;
}

}
document.getElementById("results").innerText = BMI;

}

How to use a For each..next statement in JavaScript

If you have a collection of items to process in VBA, you might use a For each..next
statement. One option in JavaScript is for (... in ...). For example, if you have an array
of items, you can use the following code to output the list:

Click here to view code image
//set up a variable to hold the output text
arrayOutput= ""
/*process the array
i is a variable to hold the index value.
Its count starts as 0*/
for (i in MyArray) {
/*create the output by adding the element
to the previous element value.
\n is used to put in a line break */

arrayOutput += MyArray[i] + '\n'
}

//write the output to the screen
document.getElementById("results").innerText = arrayOutput

You can do whatever you need to each element of the array. In this example, you’re
building a string to hold the element value and a line break so that when it prints to the screen,
each element appears on its own line, as shown in Figure 27-6. The MyArray variable used in
this code was filled in the earlier section, “Arrays.”

FIGURE 27-6 JavaScript has its own equivalents to many VBA looping statements, such as for..in loop, which was
used to output each result to its own line.

Mathematical, logical, and assignment Operators

JavaScript offers the same basic operators as VBA plus a few more to shorten your code. Table
27-1 lists the various operators. Assume here that x = 5.

TABLE 27-1 JavaScript Operators

Operator Description Example Result
+ Addition x+5 10

- Subtraction x-5 0

/ Division x/5 1

* Multiplication x*5 25

% Remainder after division 11%x 1

() Override the usual order of
operations

(x+2)*5 35, whereas x+2*5=15

- Unary minus (for negative
numbers)

-x -5

== Values are equal x=='5' true

=== Values and types are equal x==='5' false since the types don’t match. x is a number being
compared to a string.

> Greater than x>10 false

< Less than x<10 true

>= Greater than or equal to x>=5 true

<= Less than or equal to x<=4 false

!= Values are not equal x!='5' false

!== Values and types are not equal x!=='5' true

&& And x==5 &&

1==1

true

|| Or x=='5' ||

1==2

false

! Not !(x==5) false

++ Increment ++x or x++ 6

-- Decrement --x or x-- 4

+= Equal to with addition x += 11 16

-= Equal to with subtraction x-=22 -17

= x=2 10

Equal to with multiplication
/= Equal to with division x/=30 6

%= Equal to with the remainder x%=11 1

The increment and decrement operators are two of my favorites; I wish we had them in
VBA. Not only do they reduce your code, but they offer a flexibility that VBA lacks (post- and
pre-increments). You might remember the use of x++ in the Hello World program earlier in this
chapter. You used this in place of x=x+1 to increment the for loop. But it doesn’t just
increment the value. It uses the value and then increments it. This is called a post-increment.
JavaScript also offers a pre-increment, which means the value is incremented and then used. So
if you have x=5, both of the following lines of code return 6:

Click here to view code image
//would increment x and then post the value
document.getElementById("results").innerText = ++x //would
return 6
//would post the value of x (now 6 after the previous increment)
then increment
document.getElementById("results2").innerText = x++ //would
return 6

Math functions in JavaScript

JavaScript has several math functions available, as shown in Table 27-2. Using these functions
is straightforward. For example, to return the absolute value of the variable myNumber, do this:
result = Math.abs(myNumber)

TABLE 27-2 JavaScript math functions

Function Description

Math.abs(a) Returns the absolute value of a.

Math.acos(a) Returns the arc cosine of a.

Math.asin(a) Returns the arc sine of a.

Math.atan(a) Returns the arc tangent of a.

Math.atan2(a,b) Returns the arc tangent of a/b.

Math.ceil(a) Returns the integer closest to a and not less than a.

Math.cos(a) Returns the cosine of a.

Math.exp(a) Returns the exponent of a (Euler’s number to the power a).

Math.floor(a) Rounds down, and returns the integer closest to a.

Math.log(a) Returns the log of a base e.

Math.max(a,b) Returns the maximum of a and b.

Math.min(a,b) Returns the minimum of a and b.

Math.pow(a,b) Returns a to the power b.

Math.random() Returns a random number between 0 and 1 (but not including 0 or 1).

Math.round(a) Rounds up or down and returns the integer closest to a.

Math.sin(a) Returns the sine of a.

Math.sqrt(a Returns the square root of a.

Math.tan(a) Returns the tangent of a.

Tip If you need to apply a math function to all elements of an array, you can do so
by using the map() function and the desired Math function. For example, to
ensure that every value in an array is positive, use the Math.abs function. The

following example changes each element in an array to its absolute value and then prints
the results to the screen, as shown in Figure 27-7:

Click here to view code image
result = 0
arrayOutput = ""
arrNums = [9, -16, 25, -34, 28.9]
result = arrNums.map(Math.abs)
for (i in result){

arrayOutput += result[i] +'\n'
}
document.getElementById("results").innerText = arrayOutput

FIGURE 27-7 Using arrays is a common way of storing data in JavaScript, which offers many functions for
simplifying working with those arrays.

Writing to the content pane or task pane

After you’ve processed a user’s data, you need to display the results. This can be done on the
sheet or in the Office add-in’s pane. Assuming that arrayOutput holds the data you want to
write to the pane, do this:

Click here to view code image
document.getElementById("results").innerText = arrayOutput

This code writes data to the Office add-in’s pane, specifically to the results variable
reserved in the HTML code. To write to the sheet, see the later subsection “Reading from and
writing to a sheet.”

JavaScript changes for working in an Office add-in

Not all JavaScript code will work in an Office add-in. For example, you cannot use the alert
or document.write statements. There are also some new statements for interacting with Excel
provided in a JavaScript API that you link to in the HTML file with this line:

Click here to view code image
<script src =
"https://appsforoffice.microsoft.com/lib/1.0/hosted/office.js">
</script>

Like the APIs used in VBA, the JavaScript API gives you access to objects, methods,
properties, and events that JavaScript can use to interact with Excel. You’ve now seen some of
the most commonly used objects. For more information on these and other available objects, go
to http://msdn.microsoft.com/en-us/library/office/apps/fp142185.aspx.

Initializing an Office add-in

The following event statement must be placed at the top of the JavaScript script:

Click here to view code image
Office.initialize = function (reason) { /*any initialization*/}

It initializes the Office add-in to interact with Excel. The reason parameter returns how the
Office add-in was initialized. If the Office add-in is inserted into the document, then reason is
inserted. If the Office add-in is already part of a workbook that’s being opened, reason is
documentOpened.

Reading from and writing to a sheet

http://msdn.microsoft.com/en-us/library/office/apps/fp142185.aspx

Office.context.document represents the object that the Office add-in is interacting with—
the sheet. It has several methods available, most importantly the two that enable you to read
selected data and write to a range.

The following line uses the setSelectedDataAsync method to write the values in
MyArray to the selected range on a sheet:

Click here to view code image
Office.context.document.setSelectedDataAsync(MyArray,
{coercionType: 'matrix'});

The first argument, MyArray, is required. It contains the values to write to the selected
range. The second argument, coercionType, is optional. Its value, matrix, tells the code that
you want the values treated as a one-dimensional array.

The method for reading from a sheet, getSelectedDataAsync, is similar to the write
method:

Click here to view code image
Office.context.document.getSelectedDataAsync("matrix", function
(result) {

//code to manipulate the read data, result
});

The first argument, matrix, is the coercionType and is required. It tells the method how
the selected data should be returned—in this case, in an array. The second argument shown is
an optional callback function, with result being a variable that holds the returned values
(result.value) if the call was successful and an error if not.

To find out whether the call was successful, use the status property, result.status. To
retrieve the error message, use this:
result.error.name

Next steps
Read Chapter 28, “What’s new in Excel 2019 and what’s changed,” to learn about more
features that have changed significantly in Excel 2019.

CHAPTER 28
What’s new in Excel 2019 and what’s changed

In this chapter, you will:

Understand ways to purchase Excel 2019

Get to know newer features of Excel

Learn how to look up information about the new objects and methods

Ensure your code works in different versions of Excel

This chapter reviews changes since Excel 2007—2016. In conjunction with reviewing those
sections, you should also review information in this book on tables, sorting, and conditional
formatting.

Office 365 subscription versus Excel 2019 perpetual
There are two ways you can purchase Excel 2019. One way is with an Office 365 subscription,
which will always provide you with the latest and greatest changes in Excel. The other way is a
one-time payment for Excel 2019. Although you will still receive patches, Microsoft might
choose not to provide certain new features. Keep in mind that if you have an Office 365
subscription but are writing programs for Excel 2019 users, they may not have access to a
feature you are coding.

If it has changed in the front end, it has changed in VBA
If you were using Excel 2003 (or older) before Excel 2019, almost everything you knew about
programming Excel objects has changed. Basic logic still works (For loops, for example), but
most objects have changed.

If you have been using Excel 2007, 2010, 2013, or 2016, there are still a few changes to
consider, and they are noted in this chapter. For most items, the changes are obvious because if
the Excel user interface has changed, the VBA has changed.

The ribbon

If you have been working with a legacy version of Excel, the ribbon is one of the first changes

you’ll notice when you open Excel 2019. Although the CommandBars object does still work to
a point, if you want to flawlessly integrate your custom controls into the ribbon, you need to
make some major changes.

Note see Chapter 25, “Customizing the ribbon to run macros,” for more
information.

Single-document interface

For years, if you had multiple documents open in Word, you could drag each document to a
different monitor. This capability was not available in Excel until Excel 2013. With Excel
2013, Excel changed from a multiple-document interface to a single-document interface (SDI).
This means the individual workbook window no longer resides within a single application
window. Instead, each workbook is in its own standalone window, separate from any other
open workbook.

Changes to the layout of one window don’t affect any previously opened windows. To see
this in action, open two workbooks. In the second workbook, enter and run the following code,
which adds a new item, Example Option, to the bottom of the right-click menu:

Click here to view code image
Sub AddRightClickMenuItem()
Dim cb As CommandBarButton
Set cb = CommandBars("Cell").Controls.Add
(Type:=msoControlButton, temporary:=True)
cb.Caption = "Example Option"
End Sub

Right-click a cell in the second workbook, and Example Option appears right where it
should. Right-click a cell in the first workbook, and the option does not appear. Return to the
second workbook and press Ctrl+N to add a new workbook. Right-click a cell in this third
workbook, and the menu item appears. Go to the first workbook, create a new workbook, and
check the right-click menu. The option does not appear.

Now delete the custom menu. Go to the third workbook and paste and run the following
code:

Click here to view code image
Sub DeleteRightClickMenuItem()
CommandBars("Cell").Controls("Example Option").Delete

End Sub

The menu item is removed from the third workbook, but when you check the right-click
menu of the second workbook, the item is still there. Although Excel copied the menu from the
active workbook when creating new workbooks, the logic to remove the menu item does not
propagate.

Note Don’t worry about having to delete all instances of the sample menu item.
It was created to be temporary and will be gone when you restart Excel.

Another change to keep in mind is that making a change to the window of one workbook,
such as minimizing it, doesn’t affect the other workbooks. If you want to minimize all
windows, you need to loop through the application’s windows, like this:

Click here to view code image
Sub MinimizeAll()
Dim myWin As Window
For Each myWin In Application.Windows

myWin.WindowState = xlMinimized
Next myWin
End Sub

Modern array formulas

With the introduction to Office 365 of SEQUENCE, SORT, SORTBY, UNIQUE, FILTER, SINGLE,
and RANDARRAY, creating array formulas becomes easier. You will not need to use
.FormulaArray for these functions. Simply use .Formula or .FormulaR1C1 to build the
array formulas. For example, to fill A1:A10 with the numbers 1 to 10, use this code:

Click here to view code image

Range("A1").Formula = "=SEQUENCE(10)"

Note that only cell A1 will report having a formula. The other cells will report having a
value.

Quick Analysis tool

Introduced in Excel 2013, the Quick Analysis tool appears in the lower-right corner when a
range of data is selected. This tool suggests what the user could do with the data, such as apply

conditional formatting or create a chart. You can activate a specific tab, such as Totals, when
the user selects a range, like this:

Click here to view code image
Private Sub Worksheet_SelectionChange(ByVal Target As Range)
Application.QuickAnalysis.Show (xlTotals)
End Sub

Charts

Charts have gone through a few incarnations since Excel 2003, and with those changes to the
interface there have also been changes to the object model. In Excel 2013, Microsoft introduced
a completely new interface and a new method, AddChart2, which is not backward compatible
—not even to Excel 2010. With Excel 2019, Microsoft introduced two new chart styles: funnel
charts and filled map charts. In early 2019, Office 365 will begin supporting custom visuals
from Power BI. As this book goes to press, there is no VBA code available for these charts, but
it will likely be offered.

In Excel 2016, there was a bug so only new charts introduced in Excel 2016 would use the
new Ivy charting engine. If you were creating an old style chart, you had to use the old
programming method. This bug has been fixed in Excel 2019 and for Office 365 subscription
users, but if you are an Excel 2016 Perpetual user, it has not been fixed. see Chapter 15,
“Creating charts,” for more information on this chart compatibility issue.

Excel 2010 introduced a type of minichart, called a sparkline. A sparkline is different from
a standard chart in that it can be inserted within a cell. Sparklines are not backward compatible.

Pivot tables

Excel 2007, 2010, 2013, 2016, and 2019 have offered many new features in pivot tables. If you
use code for a new feature, the code works in the current version but crashes in previous
versions of Excel.

In Excel 2019, you can change cell formatting for a specific cell in a pivot table, and Excel
will remember that formatting even if the shape of the pivot table changes. There is no special
property introduced for this—simply format the cell as usual.

Excel 2019 offers pivot table defaults. These can be set in VBA using
Application.DefaultPivotTableLayoutOptions. For example, to build future pivot
tables in classic drag-and-drop mode, use this:

Click here to view code image

Application.DefaultPivotTableLayoutOptions.InGridDropZones =

True

Note see Chapter 12, “Using VBA to create pivot tables,” for more information.

Slicers

Slicers were a new feature in Excel 2010 for use on pivot tables. They aren’t backward
compatible—not even to Excel 2007. They’re useful in pivot tables because they allow for
easy-to-see and -use filtering options. If you open a workbook with a slicer in an older version
of Excel, the slicer is replaced with a shape that includes text explaining what the shape is there
for and that the feature is not available.

In Excel 2013, slicers were added to tables. The functionality is the same as that of slicers
for pivot tables, but these new slicers are not backward compatible—not even to Excel 2010.

Note see Chapter 12 for more information on pivot table slicers.

Icons

Microsoft added the Icons button to the Insert tab of the ribbon between Excel 2016 and Excel
2019. Although it is a new command in the ribbon, the code to insert an icon uses
Pictures.Insert with the download argument being a location from Office.net. Use the
Macro recorder to discover the correct path to the particular icon.

3D Models

Support for displaying and rotating 3D Models was introduced in June 2017. You can insert
and rotate most files used by 3D Printers. Support for VBA was added later. You can apply
new methods .IncrementRotationX, .IncrementRotationY, and .IncrementRotationZ
to the Model3D object. The following code rotates an object called Bennu by 10 degrees along
the X axis.

Click here to view code image

ActiveSheet.Shapes.Range(Array("Bennu")).Model3D.IncrementRotationY
10

SmartArt

SmartArt was introduced in Excel 2007 to replace the Diagram feature in legacy versions of
Excel. Recording is very limited, but it helps you find the correct schema. After that, the
recorder doesn’t capture text entry or format changes.

The following example created the art shown in Figure 28-1. The name of the schema used
is hChevron3. In this code, I changed SchemeColor for the middle chevron and left the other
two with the default colors:

Click here to view code image
Sub AddDiagram()
With ActiveSheet
Call .Shapes.AddSmartArt(Application.SmartArtLayouts(_
"urn:microsoft.com/office/officeart/2005/8/layout/hChevron3"))
.Select

.Shapes.Range(Array("Diagram 1")).GroupItems(1).TextEffect.Text
= "Bill"
.Shapes.Range(Array("Diagram 1")).GroupItems(3).TextEffect.Text
= "Tracy"
With .Shapes.Range(Array("Diagram 1")).GroupItems(2)

.Fill.BackColor.SchemeColor = 7

.Fill.Visible = True

.TextEffect.Text = "Barb"
End With
End With
End Sub

FIGURE 28-1 The macro recorder is limited when recording the creation of SmartArt. You need to trace through the
object’s properties to find what you need.

Learning the new objects and methods
When you click the Help button in Excel’s VB Editor, you’re brought to Microsoft’s online
Help resource. Select Excel VBA Reference, Object Model to view a list of all objects,
properties, methods, and events in the Excel 2019 object model.

Compatibility mode
With the changes in Excel 2019, it’s important to verify an application’s version. Two
properties you can use to do this are Version and Excel8CompatibilityMode.

Dealing with compatibility issues
Creating a Compatibility mode workbook can be problematic. Most code will still run in
legacy versions of Excel, as long as the program doesn’t run into an item from the Excel
2007 or newer object models. If you use any items from the newer object models,
however, the code will not compile in legacy versions. To work around this, comment out
the specific lines of code, compile, and then comment the lines back in.

If your only Excel compatibility issue is the use of constant values, partially treat your
code as if you were doing late binding to an external application. If you have only constant
values that are incompatible, treat them like late-binding arguments, assigning a variable
the numeric value of the constant. The following section shows an example of this
approach.

Note See “Using constant values,” in Chapter 20 for more information on using
constant values.

Using the Version property

The Version property returns a string that contains the active Excel application version. For
2016 and 2019, this is 16.0. This can prove useful if you’ve developed an add-in to use across
versions, but some parts of it, such as saving the active workbook, are version specific:

Click here to view code image
Sub WorkbookSave()
Dim xlVersion As String, myxlOpenXMLWorkbook As String
myxlOpenXMLWorkbook = "51" 'non-macro enabled workbook
xlVersion = Application.Version
Select Case xlVersion

Case Is = "9.0", "10.0", "11.0"
ActiveWorkbook.SaveAs Filename:="LegacyVersionExcel.xls"

Case Is = "12.0", "14.0", "15.0", "16.0" '12.0 is 2007, 14.0
is 2010

ActiveWorkbook.SaveAs Filename:="Excel2019Version", _
FileFormat:=myxlOpenXMLWorkbook

End Select
End Sub

Caution Note that for the FileFormat property of the Excel 12.0 and newer
Case, I had to create my own variable, myxlOpenXMLWorkbook, to hold the
constant value of xlOpenXMLWorkbook. If I were to try to run this in a legacy
version of Excel just using the Excel constant xlOpenXMLWorkbook, the code

would not even compile.

Using the Excel8CompatibilityMode property

The Excel8CompatibilityMode property returns a Boolean to let you know whether a
workbook is in Compatibility mode—that is, saved as an Excel 97—2003 file. You use this, for
example, if you have an add-in that uses conditional formatting that you don’t want the user to
try to use on the workbook. The CompatibilityCheck function returns True if the active
workbook is in Compatibility mode and False if it is not. The procedure
CheckCompatibility uses the result to inform the user of an incompatible feature:

Click here to view code image
Function CompatibilityCheck() As Boolean
Dim blMode As Boolean
Dim arrVersions()
arrVersions = Array("12.0", "14,0", "15.0", "16.0")
If Application.IsNumber(Application.Match(Application.Version,
arrVersions, 0)) Then

blMode = ActiveWorkbook.Excel8CompatibilityMode
If blMode = True Then

CompatibilityCheck = True
ElseIf blMode = False Then

CompatibilityCheck = False
End If

End If
End Function

Sub CheckWorkbookCompatibility()
Dim xlCompatible As Boolean
xlCompatible = CompatibilityCheck
If xlCompatible = True Then

MsgBox "You are attempting to use an Excel 2007 or newer
function " & _
Chr(10) & "in a 97-2003 Compatibility Mode workbook"

End If
End Sub

Next steps
If we as authors have done our job correctly, you now have the tools you need to design your
own VBA applications in Excel. You understand the shortcomings of the macro recorder yet
know how to use it as an aid in learning how to do something. You know how to use Excel’s
power tools in VBA to produce workhorse routines that can save you hours of time each week.
You’ve also learned how to have your application interact with others so that you can create
applications to be used by others in your organization or in other organizations.

If you have found any sections of the book confusing or thought they could have been
spelled out better, we welcome your comments and will give them consideration as we prepare
the next edition of this book. Write to us:

Pub@MrExcel.com to contact Bill or

ExcelGGirl@gmail.com to contact Tracy

Whether your goal is to automate some of your own tasks or to become a paid Excel
consultant, we hope that we’ve helped you on your way. Both are rewarding goals. With 500
million potential customers, we find that being Excel consultants is a friendly business. If you
are interested in joining our ranks, you can use this book as your training manual. Master the
topics, and you will be qualified to join us.

For assistance with any Excel VBA questions, post your question as a New Thread at the
MrExcel Message Board. It's free to post, and the passionate community answers about 10,000
Excel VBA questions every year. To get started, use the Register link at the top right of the
page at https://www.mrexcel.com/forum/index.php.

mailto:Pub@MrExcel.com
mailto:ExcelGGirl@gmail.com
https://www.mrexcel.com/forum/index.php

Index

Symbols
:= (colon-equal sign), 30
{ } (curly braces), in JavaScript, 536
-- (decrement operator), in JavaScript, 543
++ (increment operator), in JavaScript, 543
+ (plus sign), in JavaScript, 537
“” (quotation marks) in JavaScript, 537
; (semicolons), in JavaScript, 536
[] (square brackets), as Evaluate method, 103
3D Models, 551
24-hour clocks, formatting cells as, 115-116
32-bit API declarations, compatibility, 471-472
64-bit API declarations, compatibility, 471-472
9 runtime error (subscript out of range), 488-489
1004 runtime error

method range of object global failed, 489-490
troubleshooting, 199-200
VB Editor actions, 479-480

A
A1 references

copying formulas, 89-91
R1C1 references versus, 87-88
replacing multiple with single R1C1 reference, 93-95
toggling, 88-89

About dialog box, customizing, 475
above average conditional formatting, 344
above/below average rules, 330
absolute references

in recorded macros, 19-20

with R1C1 references, 92
accelerator keys in userforms, 461-462
Access

database connection terminology, 428-429
fields

checking for existence, 438-439
creating, 440

MDB files, 425
creating shared databases, 427-428

pass-through queries, 429
records

adding, 430-431
deleting, 435
retrieving, 431-433
summarizing, 436-437
updating, 433-435

tables
checking for existence, 437-438
creating, 439

accessing file structure, 501
ACE engine, 426
Activate event (userforms), 155
active control, coloring, 463-464
ActiveCell property, 45
ActiveX controls, running macros from, 512-513
ActiveX Data Objects (ADOs), 426-429
ActiveX labels, minimizing duplicate code, 144-146
Add method

array names, 104
Document object, 415
formula names, 101
number names, 103
string names, 101-103
tables, 103-104

Add Watch dialog box, 43
add-ins. see also Office add-ins

advantages of, 515
closing, 521
converting workbooks to, 516-517

with Save As, 517
with VB Editor, 518

hidden workbooks versus, 521-523
installing, 519-520
removing, 521
saving data in, 516
security, 520
types of, 515
viewing, 519

AddAboveAverage method (FormatConditions object), 344
AddChart method, 328
AddChart2 method, 306-307
AddControl event

frames, 163
MultiPage controls, 168
userforms, 155

AddFields method (pivot tables), 218
adding

button images (on ribbon), 503-505
buttons in HTML, 533-534
color scales to ranges, 336-337
comments to names, 100
controls

to ribbon, 496-500
at runtime, 455-461
to userforms, 157

data bars to ranges, 331-335
Data Model fields to pivot tables, 243
fields in pivot table data area, 212-215
icon sets to ranges, 337-340
images to userforms, 458-459
interactivity to Office add-ins, 530-532, 535
names, 98-99

records (database), 430-431
tables to Data Model, 242
trusted locations, 6-7
value fields to Data Model pivot tables, 243-244
VBA code to workbooks with VBA Extensibility, 276-277

addresses (cell)
of duplicate max values, returning, 301-302
column letter of, returning, 302-303

addresses
email, validating, 287-289
hyperlink, returning, 302

AddTop10 method (FormatConditions object), 345
AddUniqueValues method (FormatConditions object), 346
ADOs (ActiveX Data Objects), 426-429
Advanced Filter, 181

criteria ranges, 189-190
clearing, 198
formula-based conditions, 191-198
joining with logical AND, 191
joining with logical OR, 190-191

in Excel interface, 182
extracting unique list of values, 182

with Excel interface, 183-184
for multiple fields, 187-188
with VBA code, 184-187

filter in place, 199
no records returned, 199-200
viewing all records after, 200

returning all matching records, 200
copying all columns, 200-201
copying subset of columns, 201-203
creating individual reports, 203-207

AfterUpdate event
list boxes/combo boxes, 162
option buttons, 163-164
spin buttons, 166

text box control, 159
alerts, suppressing, 486
alphanumeric data, sorting, 298-300
AND, joining criteria ranges with, 191
API (application programming interface) declarations, 469

32-bit and 64-bit compatibility, 471-472
calling, 470-471
checking open network files, 473
creating running timer, 476-477
customizing About dialog box, 475
disabling X button in userforms, 475-476
explained, 469-470
playing sounds, 477
returning computer name, 472-473
returning display resolution, 474

application events
in class modules, 118, 132-133
list of, 119, 122

Application object, 38, 45
application states, enabling/disabling, 263, 265
Application.EnableEvents = False events, preventing recursive procedure calling, 116
applying math functions to arrays, 544
Areas collection (Range object), selecting noncontiguous ranges, 66
arguments

for ribbon controls, 499-500
troubleshooting, 508-509

arranging VBA and Excel windows, 39
array formulas, R1C1 references with, 96
arrays, 123

applying math functions to, 544
data, retrieving, 126-127
declaring, 123-124
dynamic arrays, declaring, 128-129
filling, 125-126
formulas, 549
functions, passing to, 130

in JavaScript, 538
multidimensional, declaring, 124-125
names, creating, 104
optimizing code with, 128
values, passing to/from, 130

assigning
macros to form controls, 12-13
shortcut keys to macros, 9

assignment operators in JavaScript, 542-543
associating column names with numbers in R1C1 references, 95
attributes

for ribbon controls, 497-498
troubleshooting, 506

author contact information, 554
AutoFilter

avoiding when copying data, 257-258
dynamic filters, 178-179
filtering

by color, 177
by icon, 178

replacing loops with, 173-176
on selected columns only, 207-208
selecting

multiple items, 176-177
with Search box, 177
visible cells only, 179-180

AutoShow, filtering pivot tables, 232-234
AutoSort in pivot tables, 224
AutoSum in recorded macros, 23-26

B
backward compatibility, creating charts, 328
backward in code, moving, 40
BASIC, Visual Basic versus, 2
BeforeDragOver event

frames/option buttons, 163
graphics, 165
label/text box/command button control, 159
list boxes/combo boxes, 162
MultiPage controls, 168
spin buttons, 166
userforms, 155

BeforeDropOrPaste event
frames/option buttons, 163
graphics, 165
label/text box/command button control, 159
list boxes/combo boxes, 162
MultiPage controls, 168
spin buttons, 166
userforms, 155

BeforeUpdate event
list boxes/combo boxes, 162
option buttons, 164
spin buttons, 166
text box control, 159

below average conditional formatting, 344
blank cells

highlighting, 348-349
in pivot table value areas, eliminating, 223-224

bookmarks (Word), 421-422
breaking out of loops, 539
breakpoints, 40

in Watches window, 43
Browse dialog box, 6
building multiplication tables, 93-95
buttons

adding in HTML, 533-534
command buttons, running macros, 510-511
on ribbon, adding images to, 503-505

C
calculated fields in pivot tables, 246-247
calculated items in pivot tables, 247
calculations in pivot tables, changing to percentages, 221-223
calling

API declarations, 470-471
userforms, 154

canceling scheduled macros, 382-383
Cascading Style Sheets (CSS), 534
Case Else statements in Select Case...End Select constructs, 83
case of text, changing, 273-274
case sensitivity

of JavaScript, 526, 536
in text editors, 526
of XML, 526

Case statements in Select Case...End Select constructs, 83-84
CBool function, 284
cell ranges.See ranges
cell references.See references
cells

comments
charts in, 260-262
resizing, 259-260

finding first nonzero-length in range, 292-293
formatting as military time, 115-116
highlighting

above/below average, 344
blank/error cells, 348-349
by date, 348
first unique value, 349-350
formula-based, 349-350
by text, 348
top/bottom values, 345
unique/duplicate, 346-347
by value, 347

progress indicators, creating, 269-270
in ranges

finding empty cells, 62-63
selecting specific cells with SpecialCells method, 63-65

returning
addresses of duplicate max values, 301-302
column letter of address, 302-303
hyperlink addresses, 302

reversing contents, 300-301
selecting with SpecialCells, 274-275
summing based on color, 289-290
visible selecting, 179-180

Cells object, as array, 124
Cells property (Range object), selecting ranges, 57-58
Change event

formatting cells as military time, 115
list boxes/combo boxes, 162
MultiPage controls, 168
option buttons, 164
spin buttons, 166
text box control, 159
tracking user changes, 262-263

changing
colors in waterfall charts, 327-328
default file type, 5
names.See renaming
part of pivot table, 215
pivot table calculations to percentages, 221-223
pivot table layout, 248
rows/formulas to variables in recorded code, 49
shortcut keys for macros, 18
text case, 273-274

characters, substituting multiple, 293-294
chart colors, applying, 312-313
chart events, 116

for embedded charts, 116-117, 134-135

list of, 117-118
chart styles, list of, 307-310
chart titles, specifying, 311-312
ChartColor property, 312-313
ChartFormat object, 319-320
charts

combo charts, creating, 323-325
in comments, 260-262
creating, 305

with AddChart2 method, 306-307
backward compatibility, 328
chart styles, 307-310

exporting as graphics, 328
filtering, 313
formatting

chart colors, 312-313
chart titles, 311-312
fill color, 320-322
with Format method, 319-320
line settings, 322
referring to specific chart, 310-311
with SetElement method, 314-319

map charts, creating, 326
new features, 549-550
new types, 305
Power BI Custom Visuals, 306
version compatibility, 549
waterfall charts, creating, 326-328

check box controls (Word), 422-424
check boxes, 444-446
class modules, 131

application events in, 118, 132-133
collections, creating, 140-142
custom objects

creating, 135-137
referencing, 137-138

embedded chart events in, 116-117, 134-135
enabling/disabling application states, 263, 265
inserting, 131-132
minimizing duplicate ActiveX label code, 144-146

cleaning up recorded code, tips for, 46, 50-52
copy/paste statements, 49
deleting selections, 46-47
finding last data row, 47-48
R1C1 formulas, 49
range references, 47
variables for rows/formulas, 49
With...End With statements, 50

ClearAllFilters method (pivot tables), 229
clearing

Advanced Filter criteria ranges, 198
conceptual filters (pivot tables), 229

Click event
frames/option buttons, 164
graphics, 165
list boxes/combo boxes, 162
MultiPage controls, 168
userforms, 155

clients, training in error handling, 487
clip art, assigning macros to, 12
Close method (Document object), 416
closing

add-ins, 521
documents (Word), 416
Excel, canceling scheduled macros, 383
Properties window, 513
userforms

disabling X button, 475-476
illegally, 169-170

code optimization with arrays, 128
collections, 131, 138

creating, 138

in class modules, 140-142
in standard modules, 139-140

dictionaries, compared, 142-144
grouping controls into, 451-453
minimizing ActiveX label code, 144-146
objects versus, 29

colon-equal sign (:=), 30
color scales, 329

adding to ranges, 336-337
coloring active control, 463-464
colors

changing in waterfall charts, 327-328
chart colors, applying, 312-313
for data bars, 333
fill color, formatting charts, 320-322
filtering by with AutoFilter, 177
multiple colors for data bars, 341-343
RGB colors, 362, 364
summing cells based on, 289-290
theme colors, 359-362

column sets, importing text files into, 402-403
column sparklines, 353
ColumnGrand property (pivot tables), 248
columns

associating names with numbers in R1C1 references, 95
copying all with Advanced Filter, 200-201
copying subset with Advanced Filter, 201-203
referencing with R1C1 references, 93
reordering with Advanced Filter, 201-203
returning letter of address, 302-303
selected columns, AutoFilter on, 207-208
sorting and concatenating, 296-298

Columns property (Range object), referencing ranges, 61
combining

userforms, 167-169
workbooks, 256-257

combo boxes
events, 162
list boxes versus, 160-161

combo charts, creating, 323-325
command button controls, 157-159

events, 159
running macros, 510-511

comments, 18
adding to names, 100
charts in, 260-262
in HTML, 533
in JavaScript, 531, 536
resizing, 259-260

Compatibility mode, troubleshooting, 552
complex expressions in Case statements, 84
computer name, returning, 472-473
concatenating

columns, 296-298
in JavaScript, 537

conceptual filters for pivot tables, 228-231
conditional compilation, 472
conditional formatting. see also data visualizations

above/below average cells, 344
blank/error cells, 348-349
custom number formats, 350-351
date-based, 348
with formulas, 349-350
progress indicators, creating, 269-270
text-based, 348
top/bottom values, 345
unique/duplicate cells, 346-347
value-based, 347

conditions
formula-based in Advanced Filter, 191-198
in If...Then...Else constructs, 81-82
in Select Case...End Select constructs, 83-84

configuring pivot tables, 211-212
connections, 428-429
constant values

compatibility, 552
retrieving when referencing Word, 412-414

constants
defined, 35-37
for SetElement method, 314-318

content management system, Excel as, 388-390
content panes (Office add-ins), 534, 544
content problem error message, 507-508
controls

active control, coloring, 463-464
adding

to ribbon, 496-500
at runtime, 455-461

check boxes, 444-446
combo boxes, 160-162
command buttons, 157-159
frames, 163-164
graphics, 164-165
grouping into collections, 451-453
labels, 157-159
list boxes, 160-162
multicolumn list boxes, 464-465
MultiPage, 167-169, 446
option buttons, 163-164
organizing on UserForm toolbar, 443-444
ProgIDs for, 458
programming, 156
RefEdit, 448-449
renaming, 156
scrollbars as sliders, 450-451
spin buttons, 165-167
tab order, setting, 462-463
TabStrip, 446-448

text boxes, 157-159
toggle buttons, 449-450
troubleshooting new controls, 157
in Word, 422-424

converting
formulas to R1C1 style, 96
pivot tables to values, 215-217
week numbers to dates, 295-296
workbooks to add-ins, 516-517

with Save As, 517
with VB Editor, 518

copying
all columns with Advanced Filter, 200-201
data to worksheets, 257-258
formulas, 89-91
in recorded code, 49
subset of columns with Advanced Filter, 201-203

counting
records in pivot tables, 219
unique values, 290-291
workbooks in directory, 284-285

cracking passwords, 490-491
Create New Theme Colors dialog box, 359
CreateObject function, referencing Word, 411
CreatePivotTable method, 211-212
creating

array names, 104
arrays, 123-124
charts, 305

with AddChart2 method, 306-307
backward compatibility, 328
chart styles, 307-310

combo charts, 323-325
custom sort order, 268-269
customui folder/file, 494-495
custom web pages, 387

dashboards, 368-373
documents (Word), 415-416
dynamic arrays, 128-129
fields (database), 440
formula names, 101
icon sets for subset of range, 340-341
individual reports with Advanced Filter, 203-207
macro buttons

on Quick Access Toolbar, 11
on ribbon, 10

map charts, 326
multidimensional arrays, 124-125
named ranges, 98-99
number names, 103
Office add-ins, 526-530
pivot tables, 211-212
progress indicators, 269-270
ranges from overlapping ranges, 62
ribbon tabs/groups, 495-496
running timers, 476-477
shared Access databases, 427-428
sparklines, 353-355

for dashboard, 369-373
string names, 101-103
table relationships in Data Model, 242
tables, 103-104
tables (database), 439
transparent userforms, 465-466
UDFs (user-defined functions), 279-281
userforms, 153-154
waterfall charts, 326-328

criteria ranges in Advanced Filter, 189-190
clearing, 198
formula-based conditions, 191-198
joining

with logical AND, 191

with logical OR, 190-191
Criteria reserved name, 105
CSS (Cascading Style Sheets), 534
CSV (comma-separated values) files, importing and deleting, 254
.csv file extension, opening files with, 397
curly braces ({ }), in JavaScript, 536
CurrentRegion property (Range object), 175

selecting ranges, 63
cursor locations, 428
cursor types, 428
cursors, 428
custom functions in JavaScript, 525. see also UDFs (user-defined functions)
custom icons, adding to buttons (on ribbon), 504-505
custom number formats, 350-351
custom objects, 131. see also class modules

creating, 135-137
referencing, 137-138

custom properties, creating, 146-149
custom sort order, creating, 268-269
Custom UI Editor tool, 502
custom web pages, creating, 387
customizing

About dialog box, 475
ribbon, 493

accessing file structure, 501
adding button images, 503-505
adding controls, 496-500
creating customui folder/file, 494-495
creating tabs/groups, 495-496
RELS file, 501-502
renaming/opening workbooks, 502
troubleshooting error messages, 493, 505-509
visibility of ribbon, 494

customui folder/file, creating, 494-495

D
daily dates, grouping in pivot tables, 219-221
DAOs (data access objects), 426
dashboards, creating, 368-373
data

in arrays, retrieving, 126-127
web data

retrieving, 375-381
scheduling retrieval, 381

data access objects (DAOs), 426
data area for pivot tables, adding fields, 212-215
data bars, 329

adding to ranges, 331-335
multiple colors for, 341-343

Data field (pivot tables), 218-219
Data Model, 241

importing text files into, 403-404
pivot cache, defining, 243
pivot tables

adding text fields, 243
adding value fields, 243-244
example code, 244-246

tables
adding, 242
creating relationships, 242

data sets for pivot tables, replicating reports, 224-227
data types for input boxes, 152
data visualizations, 329. see also conditional formatting

color scales, adding to ranges, 336-337
data bars

adding to ranges, 331-335
multiple colors for, 341-343

icon sets
adding to ranges, 337-340
creating for subset of range, 340-341

mixing, 343-344
in pivot tables, 249-250
types of, 329-330
VBA methods/properties for, 330-331

Database reserved name, 105
databases, SQL Server, 440-442. see also Access; MDB files
dates

converting week numbers to, 295-296
daily dates, grouping in pivot tables, 219-221
highlighting cells based on, 348
retrieving

permanent, 287
saved, 286

DblClick event
frames/option buttons, 164
graphics, 165
label/text box/command button control, 159
list boxes/combo boxes, 162
MultiPage controls, 168
userforms, 155

Deactivate event (userforms), 155
Debug mode, errors not showing up, 487-488
debugging tools. see also error handling

breakpoints, 40
Immediate window, 41-42
moving forward/backward in code, 40
running code while stepping, 41
stepping through code, 38-40
ToolTips, 42
Watches window, 43-45

declarations (API)
32-bit and 64-bit compatibility, 471-472
calling, 470-471
checking open network files, 473
creating running timer, 476-477
customizing About dialog box, 475

disabling X button in userforms, 475-476
explained, 469-470
playing sounds, 477
returning computer name, 472-473
returning display resolution, 474

declaring
arrays, 123-124
dynamic arrays, 128-129
multidimensional arrays, 124-125
variables, 14, 79

decrement operator (--), in JavaScript, 543
default file type, changing, 5
defined constants in Help topics, 35-37
defining

pivot cache, 210-211
in Data Model, 243

ranges (Word), 418-419
slicer cache, 235

deleting
add-ins, 521
CSV files, 254
duplicate values, 291-292
names, 100
part of pivot table, 215
pivot cache, 216
records (database), 435
selections in recorded code, 46-47

delimited strings, extracting elements from, 296
delimited text files, 393

opening, 397-399
delimiter settings, 401
Design tab (pivot tables), Layout group, 248
Developer tab, enabling, 3-4
dictionaries, collections versus, 142-144
Dim statements, declaring variables, 79
directories

counting workbooks in, 284-285
listing files in, 251-253

disabling
application states, 263, 265
events, 111
macros, 7-8

displaying File Open dialog box, 170-171
display resolution, returning, 474
DLLs (dynamic link libraries), 469
Document object (Word), 415

closing documents, 416
creating documents, 415-416
opening documents, 416
printing documents, 417

documents (Word)
bookmarks, 421-422
closing, 416
creating, 415-416
form fields, 422-424
opening, 416
printing, 417
selections in, 417

inserting text, 417-418
navigating, 417
ranges, 418-421

DoEvents syntax, 488
Do...Loop loops, 75-77

exiting, 76-77
Until clause in, 77-78
While clause in, 77-78

drilling down pivot tables, 265-266
drop-down menus (AutoFilter), hiding, 207-208
DropButtonClick event

combo boxes, 162
text box control, 159

duplicate ActiveX label code, minimizing, 144-146

duplicate cells, highlighting, 346-347
duplicate max values, returning addresses of, 301-302
duplicate values, removing, 291-292
duplicate values rules, 330
dynamic arrays, declaring, 128-129
dynamic cursors, 428
dynamic filters in AutoFilter, 178-179
dynamic link libraries (DLLs), 469

E
early binding, 407-409
Edit Watch dialog box, 43
editing macros

Project Explorer, 14-15
Properties window, 15
VB Editor interface, 13-14
VB Editor settings, 14

either/or decisions in If...Then...Else constructs, 82
Else statements, 81-82
ElseIf statements, 82
email addresses, validating, 287-289
embedded charts, events for, 116-118, 134-135
empty cells in ranges, finding, 62-63
empty files, checking for, 489-490
enabling

application states, 263, 265
Developer tab, 3-4
events, 111
macros, 7-8

End If statements, 81
EndKey method (Selection object), 417
Enter event

frames/option buttons, 164
list boxes/combo boxes, 162
MultiPage controls, 169

spin buttons, 166
text box/command button control, 159

Err object, 484
Error event

frames/option buttons, 164
graphics, 165
label/text box/command button control, 159
list boxes/combo boxes, 162
MultiPage controls, 169
spin buttons, 166
userforms, 155

error handling. see also troubleshooting
checking for empty files, 489-490
with Err object, 484
errors not in Debug mode, 487-488
by Excel version, 492
ignoring errors, 484-486
method range of object global failed (error 1004), 489-490
multiple error handlers, 484
with On Error Go To, 482-483
pausing macro, 487-488
purposely encountering errors, 486-487
subscript out of range (error 9), 488-489
suppressing alerts, 486
training clients in, 487
userforms, 481-482
VB Editor actions, 479-482

error messages, troubleshooting on ribbon, 493, 505-509
errors. see also runtime errors

with filter in place, 199-200
highlighting cells with, 348-349

Evaluate method, avoiding, 103
events. see also procedures

application events
in class modules, 118, 132-133
list of, 119, 122

chart events, 116
for embedded charts, 116-117, 134-135
list of, 117-118

for check boxes, 445-446
for combo boxes, 162
for command button controls, 159
enabling/disabling, 111
for frames, 163-164
for graphic controls, 165
for label controls, 159
levels of, 109
for list boxes, 162
in MultiPage controls, 168-169
for option buttons, 163-164
parameters, 110
for RefEdit controls, 448-449
for scrollbars, 451
for spin buttons, 166-167
for TabStrip controls, 447-448
for text box controls, 159
for toggle buttons, 449-450
in userforms, 155-156
viewing and inserting, 110
where to use, 109
workbook events, list of, 111-113
workbook-level sheet events, list of, 113-114
worksheet events, list of, 114-115

examining recorded macro code, 33-34
breakpoints, 40
defined constants, 35-37
in Immediate window, 41-42
moving forward/backward in code, 40
optional parameters, 34
properties returning objects, 38
running code while stepping, 41
stepping through code, 38-40

with ToolTips, 42
in Watches window, 43-45

Excel
checking if open on network, 473
as content management system, 388-390
interface

Advanced Filter in, 182
extracting unique list of values, 183-184
formula-based conditions, 193-194

pivot tables, history in, 209-210
referencing Word from, 407

CreateObject function, 411
early binding, 407-409
GetObject function, 411-412
late binding, 410
New keyword, 410
retrieving constant values, 412-414

Excel 97-2003 Workbook (.xls) file type, 5
Excel 2019

file types, 4-5
changing default, 5

help features, object model, 551
new features, 547

3D Models, 551
array formulas, 549
charts, 549-550
icons, 550
pivot tables, 550
Quick Analysis tool, 549
ribbon, 548
single-document interface (SDI), 548-549
slicers, 550
SmartArt, 551

Office 365 subscription versus, 547
Excel Binary Workbook (.xlsb) file type, 5
Excel Macro-Enabled Workbook (.xlsm) file type, 4-5

Excel versions
backward compatibility when creating charts, 328
error handling in, 492
password schemes in, 491-492
verifying

with Excel8CompatibilityMode property, 553
with Version property, 552

Excel Workbook (.xlsx) file type, 4
Excel8CompatibilityMode property, 553
existence of names, checking for, 106
Exit Do statement, 76
Exit event

frames/option buttons, 164
list boxes/combo boxes, 162
MultiPage controls, 169
spin buttons, 166
text box/command button control, 159

Exit For statements, 73-74
exiting

Do...Loop loops, 76-77
For...Next loops early, 73-74

exporting
charts as graphics, 328
tables to XML, 258-259

Extract reserved name, 105
extracting

elements from delimited strings, 296
unique list of values, 182

with Excel interface, 183-184
for multiple fields, 187-188
with VBA code, 184-187

F
F1 shortcut key (Help topics), 32-33
FieldInfo parameter, values in, 396-397

fields
calculated fields in pivot tables, 246-247
Data Model fields, adding to pivot tables, 243
database fields

checking for existence, 438-439
creating, 440

multiple value fields
extracting unique list of values, 187-188
in pivot tables, 218-219

in pivot table data area, adding, 212-215
requiring in userforms, 169
row fields in pivot tables, suppressing subtotals, 249
skipping during imports, 395
value fields, adding to Data Model pivot tables, 243-244

file formats, troubleshooting, 509
file names, setting in cells, 282
File Open dialog box, displaying, 170-171
file path, setting in cell, 282
file structure, accessing, 501
file types in Excel 2019, 4-5
files

CSV files, importing and deleting, 254
empty files, checking for, 489-490
listing in directory, 251-253
opening in Notepad, 526
saving, changing default file type, 5
selecting in userforms, 170-171
text files, reading/parsing in memory, 254-255

fill color, formatting charts, 320-322
filling arrays, 125-126
Filter. See AutoFilter
filter in place in Advanced Filter, 199

no records returned, 199-200
viewing all records after, 200

filtering. see also Advanced Filter
charts, 313

OLAP pivot tables, 266-268
pivot tables

with AutoShow, 232-234
with conceptual filters, 228-231
manually, 227-228
with Search box, 232
with slicers, 234-238
with Timeline slicers, 238-241

record sets in pivot tables, 247
finding

empty cells in ranges, 62-63
first nonzero-length cell in range, 292-293
last data row in recorded code, 47-48
pivot table size, 215-217
results in web data, 378-379

fixed-width text files, opening, 393-397
flow control. see also loops

If...Then...Else constructs, 81-82
conditions in, 81-82
either/or decisions in, 82
ElseIf statements in, 82
End If statements in, 81

nesting If statements, 84-86
Select Case...End Select constructs, 83-84

for (... in ...) statement in JavaScript, 541-542
For Each...Loop loops, 79-80
For each..next statements in JavaScript, 541-542
for loops in JavaScript, 539
For statements in For...Next loops, 69-71

Step clause in, 72-73
variables in, 71-72

For...Next loops, 69-71
exiting early, 73-74
nesting, 74
Step clause in For statement, 72-73
variables in For statement, 71-72

form controls, assigning macros to, 12-13
form fields (Word), 422-424
Format method (formatting charts), 319-320
FormatConditions collection, 330
formatting

cells as military time, 115-116
charts

chart colors, 312-313
chart titles, 311-312
fill color, 320-322
with Format method, 319-320
line settings, 322
referring to specific chart, 310-311
with SetElement method, 314-319

conditional formatting. see also data visualizations
above/below average, 344
blank/error cells, 348-349
custom number formats, 350-351
date-based, 348
with formulas, 349-350
text-based, 348
top/bottom values, 345
unique/duplicate cells, 346-347
value-based, 347

ranges (Word), 419-421
rows with AutoFilter, 173-176
slicers, 238
sparklines, 359

with RGB colors, 362-364
sparkline elements, 364-366
with theme colors, 359-362
win/loss charts, 366-367

tables, resetting formatting, 275
forms in hidden workbooks, 522-523. see also userforms
formula-based conditions in Advanced Filter criteria ranges, 191-198
formulas

array formulas, R1C1 references with, 96
for arrays, 549
changing to variables in recorded code, 49
conditional formatting with, 349-350
converting to R1C1 style, 96
copying, 89-91
names, creating, 101
R1C1, in recorded code, 49
in text fields, troubleshooting, 396

forward in code, moving, 40
found a problem error message, 507-508
frame controls, 163-164
FreeFile function, 401
FTP, publishing web data via, 390-391
Function Arguments dialog box, 281
functions. see also declarations (API); UDFs (user-defined functions)

arrays, passing to, 130
in JavaScript, 535
math functions in JavaScript, 543-544
names, checking for existence, 106
recursive, 284

G
GetObject function, referencing Word, 411-412
GetUserName API function, 470-471
globally unique identifiers (GUIDs), 528
global names, 97-98
Go To dialog box, 21-22
Go To Special dialog box, 63-65

hiding rows, 180-181
selecting visible cells only, 179-180

gradients, formatting charts, 321-322
graphic controls, 164-165
graphics, exporting charts as, 328
grouping

controls into collections, 451-453
daily dates in pivot tables, 219-221

GroupName property (option buttons), 163
groups (on ribbon), creating, 495-496
GUIDs (globally unique identifiers), 528

H
Hello World example (Office add-ins), 526-530
help features

in Excel 2019
Help topics, 32-37
macro recorder as, 32
Object Browser, 45-46
object model, 551

in userforms
accelerator keys, 461-462
coloring active control, 463-464
tab order, 462-463
tip text, 462

Help topics, 32-33
defined constants, 35-37
OpenText method, 33
optional parameters, 34
properties returning objects, 38

hiding
drop-down menus (AutoFilter), 207-208
names, 105
rows with Go To Special dialog box, 180-181
userforms, 154
workbooks, 521-523

highlight cells rules, 330
highlighting

cells
above/below average, 344
blank/error cells, 348-349

by date, 348
first unique value, 349-350
formula-based, 349-350
by text, 348
top/bottom values, 345
unique/duplicate, 346-347
by value, 347

rows, 350
HomeKey method (Selection object), 417
horizontal axis in sparklines, viewing, 364-365
hovering, querying variables by, 42
HTML

creating custom web pages, 387
in Office add-ins, 532

buttons, 533-534
CSS files, 534
tags, 533

saving workbooks as, 386-387
hyperlinks

returning addresses of, 302
running macros from, 513-514
in userforms, 454-455

I
icon sets, 329

adding to ranges, 337-340
creating for subset of range, 340-341
mixing, 343-344

icons
custom icons, adding to buttons (on ribbon), 504-505
filtering with AutoFilter, 178
Microsoft Office icons, adding to buttons (on ribbon), 503-504
new features, 550

if statements
Exit Do statements in, 76

in If...Then...Else constructs, 81-82
in JavaScript, 539
nesting, 84-86

If...Then...Else constructs, 81-82
conditions in, 81-82
either/or decisions in, 82
ElseIf statements in, 82
End If statements in, 81

ignoring errors, 484-486
illegal qualified name character error message, 506-507
illegally closing userforms, 169-170
images, adding

to buttons (on ribbon), 503-505
to userforms, 458-459

Immediate window, 41-42
importing

CSV files, 254
from text files, 393

into column sets, 402-403
into Data Model with Power Query, 403-404
delimited files, 397-399
file types available, 393
fixed-width files, 393-397
more than 1,048,576 rows, 399-404
reading one row at a time, 400-401

improving. See optimizing
inactive worksheets, referencing ranges in, 55-56
increment operator (++) in JavaScript, 543
Initialize event (userforms), 155
initializing Office add-ins, 545
input boxes, 151-152

return data types, 152
secure password input, 270-273

InputBox function, 151-152
Insert Function dialog box, 280
inserting

class modules, 131-132
comments for names, 100
events, 110
modules, 15
text in selections (Word), 417-418

installing add-ins, 519-520
interactivity, adding to Office add-ins, 530-532, 535
interface

Excel
Advanced Filter in, 182
extracting unique list of values, 183-184
formula-based conditions, 193-194

Office add-ins, 534
interrupting macros, 111
Intersect method (Range object), creating ranges from overlapping ranges, 62
invalid file format error message, 509
IsEmpty function (Range object), finding empty cells, 62-63
Ivy charts, creating, 305

J
JavaScript

adding interactivity with, 530-532, 535
arrays, 538
case sensitivity, 526, 536
changes for Office add-ins, 544-545
comments, 531, 536
curly braces ({ }) in, 536
custom functions, 525
For each..next statements, 541-542
for loops, 539
functions, 535
if statements, 539
initializing Office add-ins, 545
line breaks, 536
math functions, 543-544

operators, 542-543
reading/writing to worksheets, 545
Select...Case statements, 540-541
semicolons (;) in, 536
spaces in, 536
strings, 537-538
variables, 537
writing to content/task panes, 544

Jet engine, 426
joining

criteria ranges
with logical AND, 191
with logical OR, 190-191

ranges with Union method, 61

K
keyboard shortcuts, running macros, 510
KeyDown event

frames/option buttons, 164
list boxes/combo boxes, 162
MultiPage controls, 169
spin buttons, 166
text box/command button control, 159
userforms, 155

KeyPress event
frames/option buttons, 164
list boxes/combo boxes, 162
MultiPage controls, 169
spin buttons, 167
text box/command button control, 159
userforms, 155

KeyUp event
frames/option buttons, 164
list boxes/combo boxes, 162
MultiPage controls, 169

spin buttons, 167
text box/command button control, 159
userforms, 155

L
label controls, 157-159
labels in sparklines, viewing, 365
last data row, finding in recorded code, 47-48
late binding, 407, 410
Layout event

frames, 164
MultiPage controls, 169
userforms, 155

Layout group (Design tab) for pivot tables, 248
layout settings for pivot tables, 248-249
libraries for object models, setting priority, 409
line breaks in JavaScript, 536
line continuation, 18
line settings, formatting charts, 322
line sparklines, 353
list boxes

combo boxes versus, 160-161
events, 162
ListCount property, 162
multicolumn, 464-465
MultiSelect property, 161-162

ListCount property (list boxes), 162
listing files in directory, 251-253
listings

Data Model pivot table, 245-246
pivot table generation, 214-215
pivot table slicers, 236-238
pivot table static summary, 216-217
pivot table timelines, 239-241
replicating pivot table reports, 224-227

local names, 97-98
creating, 98
reserved, 104-105

lock types, 428
logical AND, joining criteria ranges with, 191
logical operators in JavaScript, 542-543
logical OR, joining criteria ranges with, 190-191
loops. see also flow control

breaking out, 539
Do...Loop, 75-77

exiting, 76-77
Until clause in, 77-78
While clause in, 77-78

For Each...Loop, 79-80
for loops in JavaScript, 539
For...Next, 69-71

exiting early, 73-74
nesting, 74
Step clause in For statement, 72-73
variables in For statement, 71-72

Go To Special dialog box versus, 180-181
replacing with AutoFilter, 173-176
While...Wend, 79

Lotus 1-2-3 macro recorder, Excel macro recorder versus, 1, 24

M
M language, 375
Macintosh computers, compatibility, 492
macro buttons, creating

on Quick Access Toolbar, 11
on ribbon, 10

macro recorder, 8
cleaning up code, tips for, 46-52
Developer tab icons, 4
examining code, 33-34

breakpoints, 40
defined constants, 35-37
in Immediate window, 41-42
moving forward/backward in code, 40
optional parameters, 34
properties returning objects, 38
running code while stepping, 41
stepping through code, 38-40
with ToolTips, 42
in Watches window, 43-45

fields in Record Macro dialog box, 9
as help resource, 32
limitations of, 1-2, 15-16

absolute references, 19-20
AutoSum, 23-24
preparations for recording, 16-17
Quick Analysis, 24-25
recording macro, 17
relative references, 20-24
viewing code in Programming window, 17-19

tips for, 25-26
macros

assigning
to form controls, 12-13
to shortcut keys, 9

editing
Project Explorer, 14-15
Properties window, 15
VB Editor interface, 13-14
VB Editor settings, 14

in hidden workbooks, 522-523
interrupting, 111
pausing, 487-488
restarting, 111
running

with ActiveX controls, 512-513

with command buttons, 510-511
with form controls, 12-13
with hyperlinks, 513-514
with keyboard shortcuts, 510
with macro button on Quick Access Toolbar, 11
with macro button on ribbon, 10
with shapes, 511-512
with shortcut keys, 10

saving, 9
scheduling, 381

canceling scheduled, 382-383
for every two minutes, 385
for x minutes in future, 383-384
Ready mode, 382
verbal reminders, 384-385
windows of time for, 382

security, 5
adding trusted locations, 6-7
enabling/disabling macros, 7-8

shortcut keys, changing, 18
testing, 19

manually filtering pivot tables, 227-228
map charts, creating, 326
map() function (JavaScript), 544
markers in sparklines, viewing, 365-366
matching records, returning all with Advanced Filter, 200

copying all columns, 200-201
copying subset of columns, 201-203
creating individual reports, 203-207

math functions in JavaScript, 543-544
mathematical operators in JavaScript, 542-543
matrix. See arrays
max values, returning addresses of duplicates, 301-302
MDB (multidimensional database) files, 425

creating shared databases, 427-428
database connection terminology, 428-429

fields
checking for existence, 438-439
creating, 440

records
adding, 430-431
deleting, 435
retrieving, 431-433
summarizing, 436-437
updating, 433-435

tables
checking for existence, 437-438
creating, 439

memory, reading/parsing text files in, 254-255
message boxes, 152

errors versus, 487
method range of object global failed (error 1004), 489-490
methods, 28

parameters, 29-30
Microsoft Access. See Access
Microsoft ActiveX Data Objects Library, 426
Microsoft Jet Database Engine, 426
Microsoft Office icons, adding to buttons (on ribbon), 503-504
Microsoft Office Trusted Location dialog box, 6
Microsoft Scripting Runtime reference library, 284
military time, formatting cells as, 115-116
minimizing duplicate ActiveX label code, 144-146
minutes in future, scheduled macros for, 383-384
mixed alphanumeric data, sorting, 298-300
mixed references with R1C1 references, 92-93
mixed text, retrieving numbers from, 294-295
mixing icon sets, 343-344
modeless userforms, 453-454
modules, inserting, 15
MouseDown event

frames/option buttons, 164
graphics, 165

label/text box/command button control, 159
list boxes/combo boxes, 162
MultiPage controls, 169
userforms, 155

MouseMove event
frames/option buttons, 164
graphics, 165
label/text box/command button control, 159
list boxes/combo boxes, 162
MultiPage controls, 169
userforms, 155

MouseUp event
frames/option buttons, 164
graphics, 165
label/command button control, 159
label/text box/command button control, 159
list boxes/combo boxes, 162
MultiPage controls, 169
userforms, 155

moving
forward/backward in code, 40
part of pivot table, 215

MsgBox function, 152
multicolumn list boxes, 464-465
multidimensional arrays, declaring, 124-125
multidimensional database files. See MDB
MultiPage controls, 167-169, 446
multiple A1 references, replacing with single R1C1 reference, 93-95
multiple actions in recorded code, 50
multiple characters, substituting, 293-294
multiple colors for data bars, 341-343
multiple error handlers, 484
multiple fields, extracting unique list of values, 187-188
multiple items, selecting with AutoFilter, 176-177
multiple queries for web data, 377-378
multiple value fields in pivot tables, 218-219

multiplication tables, building, 93-95
MultiSelect property (list boxes), 161-162

N
Name Manager dialog box, 97-98
name of workbook, setting in cell, 282
named ranges

creating, 98-99
referencing, 54-55
for VLOOKUP() function, 106-108

names
adding, 98-99
of arrays, creating, 104
capabilities of, 100
checking for existence, 106
comments, adding to, 100
deleting, 100
of formulas, creating, 101
global, 97-98
hiding, 105
local, 97-98
of numbers, creating, 103
renaming, 99
reserved, 104-105
of strings, creating, 101-103
of tables, creating, 103-104
values, storing with, 102

navigating
documents (Word) with bookmarks, 421-422
selections (Word), 417

navigation keys in recorded macros, 26
nesting

For...Next loops, 74
If statements, 84-86

network files, checking if open, 473

network requirements for Office add-ins, 526-529
new features, 547

3D Models, 551
array formulas, 549
charts, 549-550
icons, 550
pivot tables, 209-210, 550
Quick Analysis tool, 549
ribbon, 548
single-document interface (SDI), 548-549
slicers, 550
SmartArt, 551

New keyword, referencing Word, 410
Next statements in For...Next loops, 69-71
noncontiguous ranges, selecting, 66
nonzero-length cells, finding first in range, 292-293
Notepad, 526
Notepad++, 494, 526
NOW function, 287
NumberFormat property (FormatConditions object), 350-351
numbers

names, creating, 103
retrieving from mixed text, 294-295
week numbers, converting to dates, 295-296

O
Object Browser, 45-46

retrieving constants, 413-414
object models, 407, 551

priority of libraries, setting, 409
Word, 414-415

bookmarks, 421-422
CreateObject function, 411
Document object, 415-417
early binding, 407-409

GetObject function, 411-412
late binding, 410
New keyword, 410
Range object, 418-421
retrieving constant values, 412-414
Selection object, 417-418

object variables, 79-80
object-oriented languages

parts of speech analogy, 28-31
procedural languages versus, 27-28

objects, 28
collections versus, 29
custom. See custom objects
properties, 31
returned by properties, 38
watches on, 44-45

Office 365 subscription
Excel 2019 versus, 547
Power BI Custom Visuals support, 306

Office add-ins, 525
adding interactivity, 530-532, 535
case sensitivity, 526
content/task panes, writing to, 544
creating, 526-530
HTML in, 532

buttons, 533-534
CSS files, 534
tags, 533

initializing, 545
interface types, 534
JavaScript changes for, 544-545. see also JavaScript
network requirements, 526-529
XML in, 534-535

Office Add-Ins dialog box, refreshing, 535
Office icons, adding to buttons (on ribbon), 503-504
Offset property (Range object), 175

referencing ranges, 58-59
OLAP pivot tables, filtering, 266-268
On Error Go To syntax, 482-483
On Error Resume Next syntax, 484-485
online data. See web data
OnTime method, 381

canceling scheduled macros, 382-383
for every two minutes, 385
for x minutes in future, 383-384
Ready mode, 382
verbal reminders, 384-385
windows of time in, 382

Open method (Document object), 416
open network files, checking for, 473
open workbooks, checking for, 282-283
opening

delimited text files, 397-399
documents (Word), 416
files in Notepad, 526
fixed-width text files, 393-397
VB Editor, 18
workbooks when customizing ribbon, 502

OpenText method, 33, 35, 37, 393
delimited text files, 397-399
file types for, 393
fixed-width text files, 393-397
importing more than 1,048,576 rows, 399

operators in JavaScript, 542-543
optimistic lock types, 428
optimizing code with arrays, 128
option buttons, 163

events, 163-164
GroupName property, 163

optional parameters in Help topics, 34
OR, joining criteria ranges with, 190-191
organizing controls on UserForm toolbar, 443-444

overlapping ranges, creating ranges from, 62

P
Page Setup dialog box, ignoring errors, 485-486
parameters, 29-30

for events, 110
optional, 34

parsing text files in memory, 254-255
parts of speech analogy (object-oriented languages), 28-31
pass-through queries, 429
passing

arrays to functions, 130
values to/from arrays, 130

passwords
for add-ins, 520
cracking, 490-491
in Excel versions, 491-492
secure password input, 270-273

pasting in recorded code, 49
patterns, formatting charts, 321
pausing macros, 487-488
percentages, changing pivot table calculations to, 221-223
performance of code, optimizing with arrays, 128
permanent date/time, retrieving, 287
Personal Macro Workbook, 9
pessimistic lock types, 429
pictures, formatting charts, 321
pivot cache

defining, 210-211, 243
deleting, 216

pivot table events (workbook-level), list of, 113-114
pivot tables, 209

AutoSort, 224
calculated fields in, 246-247
calculated items in, 247

calculations, changing to percentages, 221-223
configuring, 211-212
converting to values, 215-217
creating, 211-212
daily dates, grouping, 219-221
data area, adding fields, 212-215
Data Model example code, 244-246
Data Model fields, adding, 243
data sets, replicating reports for, 224-227
data visualizations in, 249-250
drilling down, 265-266
filtering

with AutoShow, 232-234
with conceptual filters, 228-231
manually, 227-228
with Search box, 232
with slicers, 234-238
with Timeline slicers, 238-241

finding size of, 215-217
history in Excel, 209-210
Layout group (Design tab), 248
moving/changing part of, 215
new features, 550
OLAP pivot tables, filtering, 266-268
pivot cache

defining, 210-211, 243
deleting, 216

record sets, filtering, 247
reports, layout settings, 248-249
subtotals, suppressing, 249
value fields

adding to Data Model, 243-244
multiple, 218-219

values area, eliminating blank cells, 223-224
VBA terminology for, 210

playing sounds, 477

plus sign (+) in JavaScript, 537
Power BI Custom Visuals, 306
Power Query add-in, 375

importing text files into Data Model, 403-404
preparing to record macros, 16-17
Preserve keyword, 129
Print_Area reserved name, 105
Print_Titles reserved name, 105
printing documents (Word), 417
PrintOut method (Document object), 417
priority of libraries, setting, 409
private variables, 135
procedural languages, object-oriented languages versus, 27-28
procedures, preventing recursive calling, 116. see also events
ProgIDs for controls, 458
programming

controls, 156
userforms, 154-156

Programming window, viewing code in, 17-19
progress indicators, creating, 269-270
Project Explorer, 14-15
properties, 31, 135. see also variables

custom, creating, 146-149
returning objects, 38

Properties window, 15
closing, 513

Property Get procedures, 137
Property Let procedures, 136
Property Set procedures, 137
protecting

code
disadvantages of, 490
Excel password versions, 491-492
password cracking, 490-491

hidden names, 106
public variables, 135

publishing web data
Excel as content management system, 388-390
via FTP, 390-391
saving as HTML, 386-387
writing macro for, 387

purposely encountering errors, 486-487

Q
QueryClose event (userforms), 155, 169-170
querying

variables
in Immediate window, 41-42
with ToolTips, 42
in Watches window, 43

web data, 375, 377
cleaning up macro, 379-380
examples of, 380-381
finding results in, 378-379
with multiple queries, 377-378
scheduling retrieval, 381

Quick Access Toolbar, macro buttons on, 11
Quick Analysis tool, 549

in recorded macros, 24-25
quotation marks (““) in JavaScript, 537

R
R1C1 references

A1 references versus, 87-88
absolute references with, 92
with array formulas, 96
associating column numbers with column names, 95
converting formulas to, 96
copying formulas, 89-91
for entire columns/rows, 93

mixed references with, 92-93
in recorded code, 49
relative references with, 91-92
replacing multiple A1 references, 93-95
toggling, 88-89

RAND function, 303
random numbers, generating static, 303
Range object, 541

Areas collection, selecting noncontiguous ranges, 66
Cells property, selecting ranges, 57-58
Columns property, referencing ranges, 61
CurrentRegion property, selecting ranges, 63
Intersect method, creating ranges from overlapping ranges, 62
IsEmpty function, finding empty cells, 62-63
Offset property, referencing ranges, 58-59
referencing, 53-54

named ranges, 54-55
in other worksheets, 55-56
relative to other ranges, 56
syntax, 54

Resize property, resizing ranges, 60-61
Rows property, referencing ranges, 61
SpecialCells method, selecting specific cells, 63-65
Union method, joining ranges, 61
in Word, 418

defining ranges, 418-419
formatting ranges, 419-421

ranges, 53
adding

color scales to, 336-337
data bars to, 331-335
icon sets to, 337-340

creating from overlapping ranges, 62
finding

empty cells in, 62-63
first nonzero-length cell in, 292-293

joining with Union method, 61
multiple data bar colors in, 341-343
named ranges

creating, 98-99
for VLOOKUP() function, 106-108

referencing
with Columns property, 61
named ranges, 54-55
with Offset property, 58-59
in other worksheets, 55-56
in recorded code, 47
relative to other ranges, 56
with Rows property, 61
syntax, 54

resizing with Resize property, 60-61
selecting

with Cells property, 57-58
with CurrentRegion property, 63
noncontiguous ranges, 66
specific cells with SpecialCells method, 63-65

sorting
by custom sort order, 268-269
numerically then alphabetically, 298-300

subsets of, creating icon sets for, 340-341
tables

creating, 103-104
referencing, 66-67
selecting, 66

reading. see also importing
from worksheets with JavaScript, 545
text files into memory, 254-255

Ready mode, scheduled macros and, 382
Record Macro dialog box, 8-9, 17
record sets, 428

filtering in pivot tables, 247
recording macros, 8

cleaning up code, tips for, 46-52
Developer tab icons, 4
examining code, 33-34

breakpoints, 40
defined constants, 35-37
in Immediate window, 41-42
moving forward/backward in code, 40
optional parameters, 34
properties returning objects, 38
running code while stepping, 41
stepping through code, 38-40
with ToolTips, 42
in Watches window, 43-45

fields in Record Macro dialog box, 9
as help resource, 32
limitations of, 1-2, 15-16

absolute references, 19-20
AutoSum, 23-24
preparations for recording, 16-17
Quick Analysis, 24-25
recording macro, 17
relative references, 20-24
viewing code in Programming window, 17-19

tips for, 25-26
records

copying to worksheets, 257-258
counting in pivot tables, 219
database

adding, 430-431
deleting, 435
retrieving, 431-433
summarizing, 436-437
updating, 433-435

recursive functions, 284
recursive procedure calling, preventing, 116
RefEdit controls, 448-449

references
R1C1

A1 versus, 87-88
absolute references with, 92
with array formulas, 96
associating column numbers with column names, 95
converting formulas to, 96
copying formulas, 89-91
for entire columns/rows, 93
mixed references with, 92-93
relative references with, 91-92
replacing multiple A1 references, 93-95
toggling, 88-89

to ranges in recorded code, 47
referencing

custom objects, 137-138
Range object, 53-54

with Columns property, 61
named ranges, 54-55
with Offset property, 58-59
in other worksheets, 55-56
relative to other ranges, 56
with Rows property, 61
syntax, 54

tables, 66-67
Word, 407

CreateObject function, 411
early binding, 407-409
GetObject function, 411-412
late binding, 410
New keyword, 410
retrieving constant values, 412-414

refreshing Office Add-Ins dialog box, 535
relationships, creating between tables in Data Model, 242
relative references

with R1C1 references, 91-92

to ranges, 56
in recorded macros, 20-25

RELS file, 501-502
reminders (verbal), scheduling, 384-385
RemoveControl event

frames, 164
MultiPage controls, 169
userforms, 155

removing. See deleting
renaming

controls, 156
names, 99
workbooks when customizing ribbon, 502

reordering columns with Advanced Filter, 201-203
replacing

loops with AutoFilter, 173-176
multiple A1 references with single R1C1 reference, 93-95

replicating reports in pivot tables, 224-227
reports

creating individual with Advanced Filter, 203-207
from pivot tables, layout settings, 248-249
replicating in pivot tables, 224-227

required fields in userforms, 169
requiring variable declarations, 14
reserved names, 104-105
Reset button (VB Editor), 480
Reset command (stopping code), 40
resetting table formatting, 275
Resize event (userforms), 156
Resize property (Range object), 60-61
resizing

comments, 259-260
ranges with Resize property, 60-61
userforms, 457

resolution (of display), returning, 474-475
resources for information. See help resources

restarting macros, 111
Restore Down icon (arranging window), 39
retrieving

array data, 126-127
constant values when referencing Word, 412-414
numbers from mixed text, 294-295
permanent date/time for workbooks, 287
records (database), 431-433
saved date/time for workbooks, 286
user IDs, 285-286
web data, 375, 377

cleaning up macro, 379-380
examples of, 380-381
finding results in, 378-379
with multiple queries, 377-378
scheduling retrieval, 381

return data types for input boxes, 152
returning

all matching records with Advanced Filter, 200
copying all columns, 200-201
copying subset of columns, 201-203
creating individual reports, 203-207

cell addresses of duplicate max values, 301-302
column letter of cell addresses, 302-303
computer name, 472-473
display resolution, 474
hyperlink addresses, 302

reversing cell contents, 300-301
RGB colors, 362, 364
RGB function, 333-364
ribbon

customizing, 493
accessing file structure, 501
adding button images, 503-505
adding controls, 496-500
creating customui folder/file, 494-495

creating tabs/groups, 495-496
RELS file, 501-502
renaming/opening workbooks, 502
troubleshooting error messages, 493, 505-509
visibility of ribbon, 494

macro buttons on, 10
new features, 548

RibbonX Visual Designer, 503
row fields in pivot tables, suppressing subtotals, 249
RowGrand property (pivot tables), 248
rows

changing to variables in recorded code, 49
formatting with AutoFilter, 173-176
hiding with Go To Special dialog box, 180-181
highlighting, 350
referencing with R1C1 references, 93

Rows property (Range object), referencing ranges, 61
running

code while stepping, 41
macros

with ActiveX controls, 512-513
with command buttons, 510-511
with form controls, 12,-13
with hyperlinks, 513-514
with keyboard shortcuts, 510
with macro button on Quick Access Toolbar, 11
with macro button on ribbon, 10
with shapes, 511-512
with shortcut keys, 10

running timers, creating, 476-477
runtime, adding controls, 455-461
runtime errors

subscript out of range, 488-489
method range of object global failed, 489-490
troubleshooting, 199-200
VB Editor actions, 479-480

S
Save As command, converting workbooks to add-ins, 517
saved date/time, retrieving, 286
saving

add-in data, 516
files, changing default file type, 5
macros, 9
workbooks as HTML, 386-387

scaling sparklines, 355-359
scheduling macros, 381

canceling scheduled, 382-383
for every two minutes, 385
for x minutes in future, 383-384
Ready mode, 382
verbal reminders, 384-385
windows of time for, 382

Scroll event
frames, 164
MultiPage controls, 169
userforms, 156

scrollbars, as sliders, 450-451
SDI (single-document interface), 548-549
Search box

filtering pivot tables, 232
selecting with in AutoFilter, 177

searching for strings, 300
secure password input, 270-273
security

add-ins, 520
macros, 5

adding trusted locations, 6-7
enabling/disabling macros, 7-8

passwords
for add-ins, 520
cracking, 490-491

in Excel versions, 491-492
secure password input, 270-273

protecting code
disadvantages of, 490
Excel password versions, 491-492
password cracking, 490-491

Select Case...End Select constructs, 83-84
Select...Case statements

in JavaScript, 540-541
in worksheets, 303-304

selecting
cells with SpecialCells, 274-275
files in userforms, 170-171
multiple items with AutoFilter, 176-177
ranges

with Cells property, 57-58
with CurrentRegion property, 63
noncontiguous ranges, 66
specific cells with SpecialCells method, 63-65

with Search box in AutoFilter, 177
tables, 66
visible cells, 179-180

Selection object (Word), 417
inserting text, 417-418
navigating, 417

Selection property, 38
selections, deleting in recorded code, 46-47
semicolons (;) in JavaScript, 536
separating worksheets into workbooks, 255-256
Set statements for object variables, 80
SetElement method (formatting charts), 314-319
shapes

assigning macros to, 12
running macros from, 511-512

shared Access databases, creating, 427-428
sharing

UDFs (user-defined functions), 281
workbooks, 425

sheet events, workbook-level, 113-114
shortcut keys

assigning to macros, 9
changing for macros, 18
running macros, 10

ShowAllData method, 200
ShowDetail property (pivot tables), 247
single rows, importing text files by, 400-401
single-document interface (SDI), 548-549
size of pivot tables, finding, 215-217
skipping fields during imports, 395
slicer cache, defining, 235
slicers

filtering pivot tables, 234-238
formatting, 238
new features, 550
Timeline slicers, 238-241

sliders, scrollbars as, 450-451
SmartArt

assigning macros to, 12
new features, 551

sorting
columns, 296-298
pivot tables, 224
ranges

by custom sort order, 268-269
numerically then alphabetically, 298-300

sounds, playing, 477
spaces in JavaScript, 536
SparklineGroup object, 353
sparklines, 353, 550

creating, 353-355
for dashboard, 369-373

formatting, 359

with RGB colors, 362, 364
sparkline elements, 364-366
with theme colors, 359-362
win/loss charts, 366-367

scaling, 355-359
tips for, 368-369
types of, 353

Speak On Enter feature, 384
SpecialCells method (Range object), selecting specific cells, 63-65, 274-275
speeding up. See optimizing
spin buttons, 165-167
SpinDown event (spin buttons), 167
SpinUp event (spin buttons), 167
spreadsheets. See worksheets
SQL Server, 440-442
SQL statements

pass-through queries, 429
viewing, 431

square brackets ([]), as Evaluate method, 103
standard add-ins. See add-ins
standard modules, creating collections, 139-140
states, enabling/disabling, 263, 265
static cursors, 428
static random numbers, generating, 303
Step clause in For statement in For...Next loops, 72-73
stepping through code, 38-41
storing values with names, 102
strings

delimited strings, extracting elements from, 296
in JavaScript, 537-538
names, creating, 101-103
searching text for, 300

styles (chart), list of, 307-310
subscript out of range (error 9), 488-489
subset of columns, copying with Advanced Filter, 201-203
subsets of ranges, creating icon sets for, 340-341

substituting multiple characters, 293-294
SubtotalLocation property (pivot tables), 248
subtotals, suppressing in pivot tables, 249
summarizing records (database), 436-437
summing cells based on color, 289-290
suppressing

alerts, 486
subtotals in pivot tables, 249

switch() statement in JavaScript, 540-541
switching to SQL Server, 440-442

T
tab order in userforms, 462-463
tables

adding to Data Model, 242
creating, 103-104
creating relationships in Data Model, 242
database

checking for existence, 437-438
creating, 439

exporting to XML, 258-259
referencing, 66-67
resetting formatting, 275
selecting, 66

tabs (on ribbon), creating, 495-496
TabStrip controls, 446-448
Tag property, 453
tags (HTML), 533
task pane (Office add-ins), 534, 544
Terminate event (userforms), 156
test expressions, 83
testing macros, 19
text

changing case, 273-274
highlighting cells based on, 348

inserting in selections (Word), 417-418
retrieving numbers from, 294-295
searching for strings, 300

text box controls, 157-159
text boxes, assigning macros to, 12
text editors, case sensitivity in, 526
text fields, troubleshooting formulas in, 396
text files

importing from, 393
into column sets, 402-403
into Data Model with Power Query, 403-404
delimited files, 397-399
file types available, 393
fixed-width files, 393-397
more than 1,048,576 rows, 399-404
reading one row at a time, 400-401

reading/parsing in memory, 254-255
writing, 404-405

Text Import Wizard, 16, 35, 37
textures, formatting charts, 320
theme colors, 359-362
Then statements in If...Then...Else constructs, 81-82
time formats, military time, 115-116
time windows for scheduled macros, 382
Timeline slicers, 238-241
timers, creating running, 476-477
tip text in userforms, 462
titles (chart), specifying, 311-312
toggle buttons, 449-450
toggling R1C1 references, 88-89
ToolTips in VB Editor, 42
Top 10 AutoShow, filtering pivot tables, 232-234
top/bottom rules, 330, 345
tracking user changes, 262-263
training clients in error handling, 487
transparency of userforms, 465-466

TrapAppEvent procedure, 133
troubleshooting. see also error handling

1004 runtime error, 199-200
Compatibility mode, 552
error messages on ribbon, 493, 505-509
formulas in text fields, 396
new controls, 157

trusted locations, adding, 6-7
two minutes, scheduled macros for, 385
Type...End Type statements, 146
TypeText method (Selection object), 417-418

U
UDFs (user-defined functions)

cells
finding first nonzero-length in range, 292-293
returning addresses of duplicate max values, 301-302
returning column letter of address, 302-303
returning hyperlink addresses, 302
reversing contents, 300-301
summing based on color, 289-290

characters, substituting multiple, 293-294
columns, sorting and concatenating, 296-298
creating, 279-281
delimited strings, extracting elements from, 296
email addresses, validating, 287-289
in JavaScript, 525
random numbers, generating static, 303
ranges, sorting numerically then alphabetically, 298-300
sharing, 281
text

retrieving numbers from, 294-295
searching for strings, 300

user IDs, retrieving, 285-286
values

counting unique, 290-291
removing duplicates, 291-292

week numbers, converting to dates, 295-296
workbooks

checking for worksheet existence, 283-284
checking if open, 282-283
counting in directory, 284-285
retrieving permanent date/time, 287
retrieving saved date/time, 286
setting file path in cell, 282
setting name in cell, 282

worksheets, Select...Case statements in, 303-304
UDTs (user-defined types), 146-149
Union method (Range object), joining ranges, 61
unique cells, highlighting, 346-347
unique list of values, extracting, 182

with Excel interface, 183-184
for multiple fields, 187-188
with VBA code, 184-187

unique values
counting, 290-291
highlighting first, 349-350

Until clause in Do...Loop loops, 77-78
Unviewable+ VBA Project software, 490
updating records (database), 433-435
user changes, tracking, 262-263
user IDs, retrieving, 285-286
user-defined functions (UDFs). See UDFs
user-defined types (UDTs), 146-149
UserForm toolbar, 443-444
userforms, 151

calling, 154
closing illegally, 169-170
controls

adding at runtime, 455-461
check boxes, 444-446

combo boxes, 160-162
command buttons, 157-159
frames, 163-164
graphics, 164-165
grouping into collections, 451-453
labels, 157-159
list boxes, 160-162
multicolumn list boxes, 464-465
MultiPage, 167-169, 446
option buttons, 163-164
ProgIDs for, 458
programming, 156
RefEdit, 448-449
renaming, 156
scrollbars as sliders, 450-451
spin buttons, 165-167
TabStrip, 446-448
text boxes, 157-159
toggle buttons, 449-450
troubleshooting new controls, 157

creating, 153-154
disabling X button, 475-476
error handling, 481-482
help features

accelerator keys, 461-462
coloring active control, 463-464
tab order, 462-463
tip text, 462

hiding, 154
hyperlinks in, 454-455
images, adding, 458-459
input boxes, 151-152
message boxes, 152
modeless, 453-454
programming, 154-156
required fields, 169

resizing, 457
selecting files in, 170-171
transparency, 465-466
UserForm toolbar, 443-444

V
validating email addresses, 287-289
value fields in pivot tables

adding in Data Model, 243-244
multiple fields, 218-219

values
arrays

filling, 125-126
passing to/from, 130

converting pivot tables to, 215-217
counting unique, 290-291
custom number formats, 350-351
extracting unique, 182

with Excel interface, 183-184
for multiple fields, 187-188
with VBA code, 184-187

first unique, highlighting, 349-350
highlighting cells based on, 347
removing duplicates, 291-292
storing with names, 102

values area of pivot tables, eliminating blank cells, 223-224
variables. see also properties

arrays. See arrays
changing rows/formulas to in recorded code, 49
declaring, 14, 79
in For statement in For...Next loops, 71-72
in JavaScript, 537
object variables, 79-80
querying

in Immediate window, 41-42

with ToolTips, 42
in Watches window, 43

VB Editor
converting workbooks to add-ins, 518
debugging tools

breakpoints, 40
Immediate window, 41-42
moving forward/backward in code, 40
running code while stepping, 41
stepping through code, 38-40
ToolTips, 42
Watches window, 43-45

error handling in, 479-482
interface, 13-14
Object Browser, 45-46
opening, 18
Programming window, viewing code in, 17-19
Project Explorer, 14-15
Properties window, 15
settings, 14

VBA (Visual Basic for Applications)
barriers to entry, 1

macro recorder limitations, 1-2
Visual Basic versus BASIC, 2

data visualization methods/properties, 330-331
Developer tab, enabling, 3-4
help resources

Help topics, 32-33
macro recorder, 32
Object Browser, 45-46

learning curve, 2-3
new features, 547

3D Models, 551
array formulas, 549
charts, 549-550
icons, 550

pivot tables, 550
Quick Analysis tool, 549
ribbon, 548
single-document interface (SDI), 548-549
slicers, 550
SmartArt, 551

object models, 407
as object-oriented language

parts of speech analogy, 28-31
procedural languages versus, 27-28

pivot table terminology, 210
power of, 1
protecting code

disadvantages of, 490
Excel password versions, 491-492
password cracking, 490-491

VBA Extensibility, adding code to workbooks, 276-277
verbal reminders, scheduling, 384-385
verifying workbook version

with Excel8CompatibilityMode property, 553
with Version property, 552

Version property, 552
versions of Excel

error handling, 492
password schemes in, 491-492
pivot tables in, 209-210
verifying

with Excel8CompatibilityMode property, 553
with Version property, 552

viewing
add-ins, 519
all records after filter in place, 200
custom ribbon, 494
Developer tab, 3-4
events, 110
horizontal axis in sparklines, 364-365

macro code in Programming window, 17-19
Project Explorer, 14
sparkline labels, 365
sparkline markers, 365-366
SQL statements, 431
VBA and Excel windows, 39
Word instances, 411

visible cells, selecting, 179-180
Visual Basic, BASIC versus, 2
Visual Basic for Applications. See VBA (Visual Basic for Applications)
visualizations. See data visualizations
VLOOKUP() function

finding results in web data, 378
named ranges for, 106-108

W
warnings, suppressing, 486
Watches window, 43-45

retrieving constants, 413
waterfall charts, creating, 326-328
WCL_FTP utility, 390-391
web data

publishing
Excel as content management system, 388-390
via FTP, 390-391
saving as HTML, 386-387
writing macro for, 387

retrieving, 375, 377
cleaning up macro, 379-380
examples of, 380-381
finding results in, 378-379
with multiple queries, 377-378

scheduling retrieval, 381
week numbers, converting to dates, 295-296
Wend statements in While...Wend loops, 79

While clause in Do...Loop loops, 77-78
While...Wend loops, 79
win/loss sparklines, 353, 366-367
windows (VBA and Excel), viewing, 39
Windows API. See API (application programming interface)
Windows computers, compatibility, 492
windows of time for scheduled macros, 382
WinWord.exe, 411
With...End With statements in recorded code, 50
Word

object model, 414-415
bookmarks, 421-422
Document object, 415-417
Range object, 418-421
Selection object, 417-418

referencing from Excel, 407
CreateObject function, 411
early binding, 407-409
GetObject function, 411-412
late binding, 410
New keyword, 410
retrieving constant values, 412-414

viewing instances, 411
workbook events, list of, 111-113
workbook-level sheet events, list of, 113-114
workbooks

adding code with VBA Extensibility, 276-277
checking if open, 282-283
combining, 256-257
Compatibility mode, troubleshooting, 552
converting to add-ins, 516-517

with Save As, 517
with VB Editor, 518

counting in directory, 284-285
file structure, accessing, 501
hiding, 521-523

renaming/opening when customizing ribbon, 502
retrieving permanent date/time, 287
retrieving saved date/time, 286
saving as HTML, 386-387
setting file path in cell, 282
setting name in cell, 282
sharing, 425
user changes, tracking, 262-263
verifying version

with Excel8CompatibilityMode property, 553
with Version property, 552

worksheets. See worksheets
worksheet events, list of, 114-115
worksheets

as arrays, 124
checking for existence, 283-284
combining into single workbook, 256-257
copying data to, 257-258
inactive worksheets, referencing ranges in, 55-56
reading/writing with JavaScript, 545
Select...Case statements in, 303-304
separating into workbooks, 255-256
user changes, tracking, 262-263

writing
to content/task panes with JavaScript, 544
text files, 404-405
to worksheets with JavaScript, 545

X-Y-Z
X button in userforms, disabling, 475-476
.xlsb (Excel Binary Workbook) file type, 5
.xls (Excel 97-2003 Workbook) file type, 5
.xlsm (Excel Macro-Enabled Workbook) file type, 4-5
.xlsx (Excel Workbook) file type, 4
XML

case sensitivity, 526
exporting tables to, 258-259
in Office add-ins, 534-535

Zoom event
frames, 164
MultiPage controls, 169
userforms, 156

Code Snippets

Many titles include programming code or configuration examples. To optimize the presentation
of these elements, view the eBook in single-column, landscape mode and adjust the font size to
the smallest setting. In addition to presenting code and configurations in the reflowable text
format, we have included images of the code that mimic the presentation found in the print
book; therefore, where the reflowable format may compromise the presentation of the code
listing, you will see a “Click here to view code image” link. Click the link to view the print-
fidelity code image. To return to the previous page viewed, click the Back button on your
device or app.

Hear aboutit first.

Since 1984, Microsoft Press has helped IT professionals, developers, and home office users
advance their technical skills and knowledge with books and learning resources.

Sign up today to deliver exclusive offers directly to your inbox.

New products and announcements

Free sample chapters

Special promotions and discounts

... and more!

microsoftpressstore.com/newsletters

http://microsoftpressstore.com/newsletters

Plug into learning at
microsoftpressstore.com

The Microsoft Press Store by Pearson offers:

Free U.S. shipping

Buy an eBook, get three formats – Includes PDF, EPUB, and MOBI to use with your
computer, tablet, and mobile devices

Print & eBook Best Value Packs

eBook Deal of the Week – Save up to 50% on featured title

Newsletter – Be the first to hear about new releases, announcements, special offers, and
more

Register your book – Find companion files, errata, and product updates, plus receive a
special coupon* to save on your next purchase

Discounts are applied to the list price of a product. Some products are not eligible to receive additional discounts, so your
discount code may not be applied to all items in your cart. Discount codes cannot be applied to products that are already
discounted, such as eBook Deal of the Week, eBooks that are part of a book + eBook pack, and products with special discounts
applied as part of a promotional offering. Only one coupon can be used per order.

http://microsoftpressstore.com

	Title Page
	Copyright Page
	Dedication Page
	Contents at a Glance
	Contents
	Acknowledgments
	About the Authors
	Introduction
	Chapter 1 Unleashing the power of Excel with VBA
	Barriers to entry
	Knowing your tools: The Developer tab
	Understanding which file types allow macros
	Macro security
	Overview of recording, storing, and running a macro
	Running a macro
	Understanding the VB Editor
	Understanding shortcomings of the macro recorder
	Next steps

	Chapter 2 This sounds like BASIC, so why doesn’t it look familiar?
	Understanding the parts of VBA “speech”
	VBA is not really hard
	Examining recorded macro code: Using the VB Editor and Help
	Using debugging tools to figure out recorded code
	Object Browser: The ultimate reference
	Seven tips for cleaning up recorded code
	Next steps

	Chapter 3 Referring to ranges
	The Range object
	Referencing ranges in other sheets
	Referencing a range relative to another range
	Using the Cells property to select a range
	Using the Offset property to refer to a range
	Using the Resize property to change the size of a range
	Using the Columns and Rows properties to specify a range
	Using the Union method to join multiple ranges
	Using the Intersect method to create a new range from overlapping ranges
	Using the IsEmpty function to check whether a cell is empty
	Using the CurrentRegion property to select a data range
	Using the Areas collection to return a noncontiguous range
	Referencing tables
	Next steps

	Chapter 4 Looping and flow control
	For...Next loops
	Do loops
	The VBA loop: For Each
	Flow control: Using If...Then...Else and Select Case
	Next steps

	Chapter 5 R1C1-style formulas
	Toggling to R1C1-style references
	Witnessing the miracle of Excel formulas
	Understanding the R1C1 reference style
	Using R1C1 formulas with array formulas
	Next steps

	Chapter 6 Creating and manipulating names in VBA
	Global versus local names
	Adding names
	Deleting names
	Adding comments
	Types of names
	Hiding names
	Checking for the existence of a name
	Next steps

	Chapter 7 Event programming
	Levels of events
	Using events
	Workbook events
	Worksheet events
	Chart events
	Application-level events
	Next steps

	Chapter 8 Arrays
	Declaring an array
	Declaring a multidimensional array
	Filling an array
	Retrieving data from an array
	Using arrays to speed up code
	Using dynamic arrays
	Passing an array
	Next steps

	Chapter 9 Creating classes and collections
	Inserting a class module
	Trapping application and embedded chart events
	Creating a custom object
	Using a custom object
	Using collections
	Using dictionaries
	Using user-defined types to create custom properties
	Next steps

	Chapter 10 Userforms: An introduction
	Input boxes
	Message boxes
	Creating a userform
	Calling and hiding a userform
	Programming userforms
	Programming controls
	Using basic form controls
	Verifying field entry
	Illegal window closing
	Getting a file name
	Next steps

	Chapter 11 Data mining with Advanced Filter
	Replacing a loop with AutoFilter
	Advanced Filter—easier in VBA than in Excel
	Using Advanced Filter to extract a unique list of values
	Using Advanced Filter with criteria ranges
	Using filter in place in Advanced Filter
	The real workhorse: xlFilterCopy with all records rather than unique records only
	Next steps

	Chapter 12 Using VBA to create pivot tables
	Understanding how pivot tables evolved over various Excel versions
	While building a pivot table in Excel VBA
	Using advanced pivot table features
	Filtering a data set
	Using the Data Model in Excel 2019
	Using other pivot table features
	Next steps

	Chapter 13 Excel power
	File operations
	Combining and separating workbooks
	Working with cell comments
	Tracking user changes
	Techniques for VBA pros
	Next steps

	Chapter 14 Sample user-defined functions
	Creating user-defined functions
	Sharing UDFs
	Useful custom Excel functions
	Next steps

	Chapter 15 Creating charts
	Using .AddChart2 to create a chart
	Understanding chart styles
	Formatting a chart
	Creating a combo chart
	Creating map charts
	Creating waterfall charts
	Exporting a chart as a graphic
	Considering backward compatibility
	Next steps

	Chapter 16 Data visualizations and conditional formatting
	VBA methods and properties for data visualizations
	Adding data bars to a range
	Adding color scales to a range
	Adding icon sets to a range
	Using visualization tricks
	Using other conditional formatting methods
	Next steps

	Chapter 17 Dashboarding with sparklines in Excel 2019
	Creating sparklines
	Scaling sparklines
	Formatting sparklines
	Creating a dashboard
	Next steps

	Chapter 18 Reading from and writing to the web
	Getting data from the web
	Using Application.OnTime to periodically analyze data
	Publishing data to a web page
	Next steps

	Chapter 19 Text file processing
	Importing from text files
	Writing Text Files
	Next steps

	Chapter 20 Automating Word
	Using early binding to reference a Word object
	Using late binding to reference a Word object
	Using the New keyword to reference the Word application
	Using the CreateObject function to create a new instance of an object
	Using the GetObject function to reference an existing instance of Word
	Using constant values
	Understanding Word’s objects
	Controlling form fields in Word
	Next steps

	Chapter 21 Using Access as a back end to enhance multiuser access to data
	ADO versus DAOs
	The tools of ADO
	Adding a record to a database
	Retrieving records from a database
	Updating an existing record
	Deleting records via ADO
	Summarizing records via ADO
	Other utilities via ADO
	SQL Server examples
	Next steps

	Chapter 22 Advanced userform techniques
	Using the UserForm toolbar in the design of controls on userforms
	More userform controls
	Controls and collections
	Modeless userforms
	Using hyperlinks in userforms
	Adding controls at runtime
	Adding help to a userform
	Creating transparent forms
	Next steps

	Chapter 23 The Windows Application Programming Interface (API)
	Understanding an API declaration
	Using an API declaration
	Making 32-bit- and 64-bit-compatible API declarations
	API function examples
	Next steps

	Chapter 24 Handling errors
	What happens when an error occurs?
	Basic error handling with the On Error GoTo syntax
	Generic error handlers
	Training your clients
	Errors that won’t show up in debug mode
	Errors while developing versus errors months later
	The ills of protecting code
	More problems with passwords
	Errors caused by different versions
	Next steps

	Chapter 25 Customizing the ribbon to run macros
	Where to add code: The customui folder and file
	Creating a tab and a group
	Adding a control to a ribbon
	Accessing the file structure
	Understanding the RELS file
	Renaming an Excel file and opening a workbook
	Using images on buttons
	Troubleshooting error messages
	Other ways to run a macro
	Next steps

	Chapter 26 Creating add-ins
	Characteristics of standard add-ins
	Converting an Excel workbook to an add-in
	Having a client install an add-in
	Standard add-ins are not secure
	Closing add-ins
	Removing add-ins
	Using a hidden workbook as an alternative to an add-in
	Next steps

	Chapter 27 An introduction to creating Office add-ins
	Creating your first Office add-in—Hello World
	Adding interactivity to an Office add-in
	A basic introduction to HTML
	Using XML to define an Office add-in
	Using JavaScript to add interactivity to an Office add-in
	Next steps

	Chapter 28 What’s new in Excel 2019 and what’s changed
	Office 365 subscription versus Excel 2019 perpetual
	If it has changed in the front end, it has changed in VBA
	Learning the new objects and methods
	Compatibility mode
	Next steps

	Index
	Code Snippets

